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Preface

Database outages are costly and largely avoidable. This book will help you design
and build an indestructible PostgreSQL 12 cluster that can remain online even in the
most dire circumstances.

From cluster layout and hardware selection to software stacks and horizontal
scalability, this book will help you build a versatile PostgreSQL cluster that will
survive crashes, resist data corruption, and grow smoothly with customer demand.
Configuration, troubleshooting, monitoring and alerting, backups, replication,
decoupling through proxies, failover automation, horizontal scaling, upgrades, and
several other considerations are all part of a healthy PostgreSQL cluster. By the end of
this book, you will have learned all the new features of PostgreSQL 12 to help you
build a more efficient and adaptive database.

Who this book is for

PostgreSQL administrators and developers who wish to build and maintain a highly
reliable PostgreSQL cluster will find this book to be an extremely useful resource.

What this book covers

Chapter 1, Architectural Considerations, explains how the layout of the nodes in our
PostgreSQL cluster can drastically influence its availability.

Chapter 2, Hardware Planning, explains the selection and provisioning of hardware
required to build a highly available PostgreSQL database.

Chapter 3, Minimizing Downtime, explains how we should react when outages
inevitably occur and how to prepare ourselves for them.

Chapter 4, Proxy and Pooling Resources, explains how to combine and abstract
connectivity to isolate and protect the database.

Chapter 5, Troubleshooting, covers several techniques to track sources of poor
performance or stop potential outages before they occur.
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Chapter 6, Monitoring, focuses on what we should monitor, how often we should
check system status, and how to present the data for easy consumption. We will learn
how to effectively monitor PostgreSQL's server status and database performance.

Chapter 7, PostgreSQL Replication, shows how to utilize PostgreSQL replication as
well as third-party table synchronization tools. We will learn several methods to copy
entire databases or individual tables.

Chapter 8, Backup Management, shows where to turn when backing up large
PostgreSQL clusters becomes a concern. This chapter will help ensure backups not
only fulfill their stated role but are also reliable, fast, and efficient.

Chapter 9, High Availability with repmgr, discusses all the capabilities so that we can
construct a fully automated high-availability stack. This chapter is dedicated to
building a fully automated high-availability stack using the repmgr replica and
cluster management tools by 2ndQuadrant.

Chapter 10, High Availability with Patroni, explains how to build a quick, yet
adaptable, high-availability stack to keep our PostgreSQL servers online.

Chapter 11, Low-Level Server Mirroring, shows how to build and manipulate a fault-
tolerant, high-performance foundation for our PostgreSQL clusters.

Chapter 12, High Availability via Pacemaker, shows how to automate cluster
management and ensure high availability. This chapter covers Corosync and
Pacemaker and the steps to manage dual-node servers with this software.

Chapter 13, High Availability with Multi-Master Replication, explains how multiple
writable PostgreSQL nodes affect the concept of high availability. This chapter
explores the inherent limitations of multi-master database technology as applied to
PostgreSQL, as well as how to best utilize it to maximize application availability.

Chapter 14, Data Distribution, shows how clever data management can increase
uptime even further.

Chapter 15, Zero Downtime Upgrades, explains how to upgrade a cluster while
remaining fully online.

[2]
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To get the most out of this book

This book concentrates on Unix systems with a focus on Linux in particular. Such
servers have become increasingly popular for hosting databases for large and small
companies. As such, we highly recommend that you use a virtual machine or
development system running a recent copy of Debian, Ubuntu, Red Hat Enterprise
Linux, or a variant such as CentOS or Scientific Linux.

You will also need a copy of PostgreSQL. If your chosen Linux distribution isn't
keeping the included PostgreSQL packages sufficiently up to date, the PostgreSQL
website maintains binaries for most popular distributions. You can find them

at https://www.postgresqgl.org/download/.

Users of Red Hat Enterprise Linux and its variants should refer to the following URL
to add the official PostgreSQL YUM repository to important database
systems: https://yum.postgresql.org/repopackages.php.

Users of Debian, Ubuntu, Mint, and other related Linux systems should refer to the
PostgreSQL APT wiki page at this URL instead: https://wiki.postgresql.org/
wiki/Apt.

Be sure to include any contrib packages in your installation. They include helpful
utilities and database extensions that we will use in some recipes.

Users of BSD should still be able to follow along with these recipes. Some commands
may require slight alterations to run properly on BSD. Otherwise, all commands have
been confirmed to work on Bash and recent GNU tools.

Download the color images

We also provide a PDF file that has color images of the screenshots/diagrams used in
this book. You can download it here: https://static.packt—cdn.com/downloads/
9781838984854_ColorImages.pdf.

Conventions used

There are a number of text conventions used throughout this book.

CodeInText: Indicates code words in text, database table names, folder names,
filenames, file extensions, pathnames, dummy URLs, user input, and Twitter handles.
Here is an example: "The Environment column has another goal related to physical
separation.”

[31]
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A block of code is set as follows:
[globall]
repol-host=pg-primary
repol-host—-user=postgres
repol-path=/var/lib/pgbackrest
repol-retention-full=1
start—-fast=y

Any command-line input or output is written as follows:

sudo yum install pgbackrest

Bold: Indicates a new term, an important word, or words that you see onscreen. For
example, words in menus or dialog boxes appear in the text like this. Here is an
example: "Select System info from the Administration panel.”

Warnings or important notes appear like this.

Tips and tricks appear like this.

Sections

In this book, you will find several headings that appear frequently (Getting ready, How
to do it..., How it works..., There’s more..., and See also).

To give clear instructions on how to complete a recipe, use these sections as follows:

Getting ready

This section tells you what to expect in the recipe and describes how to set up any
software or any preliminary settings required for the recipe.

How to do it...

This section contains the steps required to follow the recipe.

[4]
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How it works...

This section usually consists of a detailed explanation of what happened in the
previous section.

There's more...

This section consists of additional information about the recipe in order to make you
more knowledgeable about the recipe.

See also

This section provides helpful links to other useful information for the recipe.

Get in touch

Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, mention the
book title in the subject of your message and email us at
customercare@packtpub. com.

Errata: Although we have taken every care to ensure the accuracy of our content,
mistakes do happen. If you have found a mistake in this book, we would be grateful if
you would report this to us. Please visit www.packtpub.com/support/errata,

selecting your book, clicking on the Errata Submission Form link, and entering the
details.

Piracy: If you come across any illegal copies of our works in any form on the Internet,
we would be grateful if you would provide us with the location address or website
name. Please contact us at copyright@packt .com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have
expertise in and you are interested in either writing or contributing to a book, please
visit authors.packtpub.com.

[5]
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Reviews

Please leave a review. Once you have read and used this book, why not leave a
review on the site that you purchased it from? Potential readers can then see and use
your unbiased opinion to make purchase decisions, we at Packt can understand what
you think about our products, and our authors can see your feedback on their book.

Thank you!

For more information about Packt, please visit packt . com.

[6]
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Architectural Considerations

In many ways, database server architecture is treated as a mere afterthought. It's often
much easier to simply create a single node, install some software, and consider the
whole affair resolved. If a company is particularly paranoid, they may even spare
some thought for a replica server, or perhaps some kind of backup.

The true importance of database cluster architecture is easily overlooked as a result.
But what is server architecture? Why does it matter?

Look down the street. Any street is fine. What do you see? Homes, offices, and
buildings of various descriptions. With very rare exceptions, each one of these was
meticulously planned, from the foundation to the walls to the electrical wires, pipes,
up to the roof and drainage systems. A failure in any of these components could lead
to the ultimate demise of the entire structure, given enough time.

The same also applies to a PostgreSQL cluster! Database architecture

defines what goes into a database server cluster, and the reason for each element. How
does it communicate? How many nodes are required? Where do we put those nodes,
and why? What common problems are inherent in those decisions? How will our
decisions influence the underlying cost? What trade-offs can we make, given some
important constraints? How does all of this affect data availability? We need those
answers before we even consider hardware or virtualization. There are many
important considerations we must entertain when designing a highly available
PostgreSQL cluster.

Why then is it so common for critical application and user data that drives the entire
application stack behind the company itself to be treated so callously? We direct so
much attention and focus on the application, with its various layers of indirection,
queues, caches, container automation, and microarchitecture, that the data layer is
overlooked or considered a nuisance.
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This is actually highly understandable. In most cases, a PostgreSQL database layer
demands an entirely different approach that development, system administration,
and other information technology fields may not be entirely familiar with managing.
Even experienced database administrators may not comprehend the scale and
necessary theoretical concepts that drive the high availability of databases.

While we can't reduce the subtle art of database server architecture to a few
memorable quips sure to entertain at parties, we can make the subject far

more approachable. It shouldn't be necessary to have a Ph.D. in abstract theoretical
frameworks to prevent a costly database outage.

In this chapter, we will learn how the layout of the nodes in our PostgreSQL cluster
can drastically influence its availability. We will cover the following recipes:

e Setting expectations with RPO

¢ Defining timetables through RTO
e Picking redundant copies

e Selecting locations

e Having enough backups

¢ Considering quorum

e Introducing indirection

¢ Preventing split brain

e Incorporating multi-master

¢ Leveraging multi-master

Setting expectations with RPO

RPO is a common term in business continuity known as Recovery Point Objective.
In the context of a database system, it describes the amount of data that may be lost
following an unexpected outage before it is once again operational. It's important to
understand this at an early stage because it will drive decisions such as node count,
data synchronization methods, and backup technologies.

In this recipe, we will examine the ingredients for concocting a comprehensive RPO
that will influence the PostgreSQL cluster composition itself.

[8]
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Getting ready

The first thing we need to do is set expectations. These are most often defined by
upper management or some other decision-making entity. Data loss is never desirable
but is unavoidable in catastrophic scenarios. How much data loss can the business
tolerate under these circumstances? Seconds, minutes, or hours' worth?

This recipe will mainly focus on information gathering from key individuals, so make
sure it's possible to at least email anyone involved with the application stack.
Hardware purchases depend on budget proposals, so it may even be necessary to
interact with VP and C-level executives as well. Even if we don't do this right away,
try to determine the extent of influence available to you.

How to do it...

Since we're dealing with many vectors, we should iterate them if possible. Try to
follow a process like this:

1. Seek the input of major decision makers:

VP and C-level executives involved with technology

Product manager

Application designers and architects
Infrastructure team lead

Find an amount of time that will satisfy most or all of the above.

Follow the rest of the advice in this chapter to find a suitable architecture.
Try to determine a rough cost for this and the closest alternative.

Present one or more designs and cost estimates to decision makers.
Document the final RPO decision and architecture as reference material.

A

[91]
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How it works...

Decision makers such as the technology VP, CEO, CTO, and such are the final word
in most cases. Their input is vital and should be considered a requirement before ever
taking a step further. Keep in mind that these people are likely not familiar with the
technical feasibility of their demands at this extreme implementation level. When
asked a question such as How much data can we lose in a major outage? they're probably
going to say None! Regardless, this is a vital first step for reasons that will shortly
become apparent.

Then, we simply traverse the stack of people who helped define the features the
application stack fulfills, those who designed and implemented it, and whoever may
be in charge of the requisite hardware and network where everything runs. Perhaps
the design has a built-in tolerance for certain amounts of loss. Perhaps inherent
queues or caches act as a sort of buffer for data backend difficulties. Maybe the design
assumes there are multiple data systems all ingesting the same stream for
redundancy. The architecture and those who built it are the best sources of this
information.

Once we know the maximum amount of data the backend can lose before being
restored, we must apply what we learn from the rest of this chapter and choose one or
two best-case designs that can deliver that promise. The point here is that we will be
executing this recipe several times until everyone agrees to all inherent design costs
and limitations before continuing.

The best way to estimate cost is to take the chosen database server architectures and
iterate a gross cost for each element. The next chapter on Hardware Planning describes
in detail how to do this. We don't have to be exact here; the goal is to have some
numbers we can present to decision makers. Do they still want zero RPO if it costs
10x as much as ten seconds of data loss? Are they willing to compromise on a hybrid
design?

Once we have chosen a final structure, possibly the most important step is to produce
a document describing that architecture, why it was chosen, the known limitations,
and the RPO it delivers. Present this document to decision makers and encourage
them to sign it if possible. Save it in any corporate documentation management
system available, and make sure it's one of the first things people see regarding the
database cluster layer. This document will single-handedly answer multiple questions
about the capabilities of the database cluster, all while acting as a reference
specification.

[10]
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There's more...

RPO is considered a vital part of business continuity planning. Entire books have
been written on this subject, and what we've presented here is essentially a functional
summary. The subject is deep and varied, rich with its own inherent techniques
beyond simply architecture and design. It is the language of business and resource
management, so it can be a key component when interacting with decision makers.

Learning these concepts in depth can help influence the overall application stack to a
more sustainable long-term structure. We'll cover more of these techniques in this
chapter, but don't be afraid to proactively incorporate these techniques into your
repertoire.

Defining timetables through RTO

Like RPO, RTO refers to a common business continuity term known as Recovery
Time Objective. In practice, this is the amount of time an outage of the database layer
may last. Often, it is incorporated into a Service Level Agreement (SLA) contract
presented to clients or assumed as a metric within the application stack. Like RPO,
this is a contractual-level element that can determine the number of required nodes at
steadily increasing expense as the amount of tolerable downtime decreases.

In this recipe, we will examine the necessary steps to defining a realistic RTO, and
what that could mean given known industry standards.

Getting ready

As with RPO, our goal in determining a functional RTO is to set expectations
regarding inherent architecture limitations. The primary difference here is that RTO is
more easily quantifiable. Fire up your favorite spreadsheet program, such as
OpenOffice, Microsoft Excel, or Google Sheets; we'll be using it to keep track of how
much time each layer of the application, including the database layer contributes to a
potential outage scenario.

[11]
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How to do it...

We simply need to produce a spreadsheet to track all of the elements of known RTO

that depend on the database. We can do this with the following steps:

1. Locate an already-defined RTO SLA for each portion of the application

dependent on PostgreSQL if possible.
2. If this does not exist, seek the input of major decision makers:

e VP and C-level executives involved with technology
e Product manager

e Application designers and architects

e Infrastructure team lead

3. Find an amount of time that will satisfy most or all of the above.

b

Create a new spreadsheet for RTO.
5. Create a heading row with the following columns:

e Activity
e Time (seconds)
e Count

e Total (seconds)

6. In the Total column, create the following formula:

=B2*C2

7. Create one row for each type of the following Activity categories:

e Minor Upgrade
e Major Upgrade
® Reboot

e Switchover

e F'ailover

® OS Upgrade

e Etc.

8. Copy and paste the formula into the Total column for all the rows we

created.

[12]
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9. At the bottom of the Total column, after all relevant rows (row 21, for
example), create the following formula:

=SUM(D2:D20)

10. Ensure that the end result looks something like the following screenshot:

A | B | C .
1 |Activity Time (s) Count Total (s)
2 [Minor Upgrade 30 4 120
3 [Major Upgrade 120 1 120
4 |Reboot 300 1 300
5 |Switchover 60 2 120
]

7| I |

11. Follow the rest of the advice in this chapter to find a suitable architecture.
12. Try to determine a rough cost for this and the closest alternative(s).

13. Present the design and cost estimates to decision makers.

14. Document this final RTO decision and architecture as reference material.

How it works...

In order to see where our PostgreSQL cluster fits company expectations, we need to
know whether the company and each individual part of the existing application stack
has an overall target RTO. If it doesn't, it's our job to approximate one. This means
contacting any decision-makers, product owners, architects, and so on, to know what
RTO target we're trying to attain and how other resources may contribute. These will
act as a type of maximum value we can't exceed.

Keep in mind that RTO values tend to be amplified between layers.
If our RTO is higher than some portion of the application stack, that
will necessarily raise the RTO of that layer as well, which may
increase the RTO of each subsequent layer. This is the exact scenario
we're trying to avoid.

Once we have an RTO expectation, we need to examine how possible it is to fall
under that target. The easiest way to accomplish this is to build a spreadsheet that
essentially consists of a list of dependencies, maintenance tasks, or other occurrences
related to PostgreSQL.

[13]
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The rows we used for Activity are mainly suggestions, and producing an
exhaustive list is generally dependent on the architecture to a certain extent.
However, all software requires upgrades, machines need to be rebooted, switchover
tests to prove high availability functionality may be required, past experience with
the full application stack and hardware may imply two unexpected outages per year,
and so on. Each of these will contribute to the cumulative RTO for PostgreSQL which
we can use as a reference value.

The number we use for the Count column should be the number of times the
Activity happens on a yearly basis. As an example, PostgreSQL has a quarterly
release schedule for non-critical bug and security enhancements. If you want to
follow along with these, it could make sense to set the Count column of Minor
Upgrade to 4.

A number of architectural examples that we'll discuss later in this
chapter will make it possible to set the Time column to 0 for some
actions, or at least to a much lower value. We'll discuss these where
relevant. This is also one of the reasons we'll need to execute this
recipe multiple times when deciding on an appropriate architecture.

Once we have accounted for as many foreseeable Act ion components that may be
necessary over the course of a year, we'll have a cumulative total that may represent
the RTO that PostgreSQL can achieve for a given architecture. As a sanity check, we
should compare that value to the lowest RTO for any parts of the application stack
that depend on PostgreSQL. It's important we don't exceed this target.

Then, as with RPO, we need to present the possible RTO to decision-makers so that it
can be integrated into the overall company RTO. To do that, we must continue with
the rest of the chapter to find one or two architectures with either higher or lower
expected RTO, estimate the cost of each, and work on a suitable compromise.

Deriving an appropriate RTO may require multiple iterations of this recipe, from
estimation, architecture selection, presenting it to appropriate parties, and so on. This
isn't a fast or simple process, and it pays to get it right early. We need to know how
many PostgreSQL nodes to purchase, where each will reside, how we switch to
alternatives, how much time each step may take, and so on.

There's more...

Besides what we discussed in the main recipe, there are other RTO concepts we
would like to explore.

[14]
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This may seem familiar

Believe it or not, it's very likely you've encountered this concept without even
realizing it. Internet service providers or application hosts often advertise how many
9s of availability their platform can maintain. It's often presented as a chart like this:

Uptime (%) Daily Weekly Monthly Yearly
99 14m 24s 1h 40m 48s 7h 18m 18s 3d 15h 39m 30s
99.9 1m 26s 10m 5s 43m 50s 8h 45m 57s
99.99 8.6s 1m 1s 4m 23s 52m 36s
99.999 0.9s 6s 26.3s 5m 16s

As you can imagine, it's generally more desirable to stay toward the higher end of 9s
to minimize downtime. On the other hand, this is highly restrictive, as Five 9s only
allows just over five minutes of downtime over the course of an entire year. This
doesn't leave much room for database maintenance tasks or unexpected outages at
any other layer of the stack.

Node counts

Generally, the more nodes we have, the lower our RTO will be. It may make sense to
start with an initial estimate spreadsheet, and then create another for each
architecture or variant that seems applicable. This will make it easier to rank the
monetary cost and associated RTO for each. This may influence the final decision, and
hence make it easier to track what options we may have.

Picking redundant copies

How many database servers should any architecture have as part of the inherent
design? There are several factors that contribute to this answer, including the design
of the final architecture itself. The number of redundant data copies ultimately
determines how many nodes must exist, irrespective of whether we require more
data centers, irrespective of whether we should account for latency, and so on.

The goal in this recipe is to consult our needs to derive a node count that won't break
the bank, but still deliver the level of availability we want. In other words, aside from
our primary data node, we will explain how to figure out the number of redundant
data nodes necessary to adequately represent the entire cluster safely and ensure high
availability.

[15]
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Getting ready

Luckily, this recipe is a simple counting exercise. The only necessary elements are a
healthy imagination and perhaps some idea of the budgetary constraints before we
begin. Just consider that, for any of our reference designs, we will always require
more than one server node as a minimum.

How to do it...

Observe the following steps when considering node counts driven by high
availability architectures:

1. Always add one separate server for backups.
2. Always allocate one server for a logical or physical replica.
3. For automated failover, allocate the following:

¢ An additional small VM / node to act as a voter
¢ OR a fully qualified replica

4. For every active data center beyond the first two, allocate one replica.
5. If non-local data access latency is a concern, allocate the following:

¢ An additional replica in the primary location
¢ An additional replica in each location for symmetric clusters

How it works...

Why do we demand at least one backup server? The full answer to this question
actually has its own recipe in this chapter. However, catastrophic failure is a fact of
life and we must be ready for such an event. Even if the separate server is not a fully
operational PostgreSQL node, it must exist and should be part of the reference design.

Likewise, we must have at least one PostgreSQL replica. Some of our designs work
with either physical or logical replicas, so we won't differentiate between them here.
Simply assume that every highly active PostgreSQL cluster must have at least two
nodes that can fulfill the role of a primary database. Backups take time to restore,
whereas replicas are generally writable in a minute or less.
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One replica only really covers the case where switching from one PostgreSQL node to
the alternate is a manual procedure. Fully automated failure detection mechanisms
require an odd number of nodes for voting purposes. This third node can either be a
mere voting entity, or a full PostgreSQL replica. We cover this in greater depth in the
Considering quorum recipe.

Once we start accounting for multiple geographic locations at different data centers,
things don't change exceptionally. By now, we have at least one PostgreSQL replica
that is probably at the first alternate location. If we have three or more active data
centers where the application is using PostgreSQL, we'll want a local replica for each.

Then, consider the implications of limiting ourselves to merely one PostgreSQL node
per location. This means any minor upgrade or other maintenance task will mean
switching to an alternate data center while the maintenance is active. This can
introduce unwanted latency that will affect the application. To reduce this, add one
replica to the primary location to account for this effect. For symmetrical data centers
that have no primary location, add a PostgreSQL replica to each location for the same
reasons.

As a quick example, consider two scenarios. Our first company (Company A) only
uses two data centers, and doesn't need automated database failover, nor is it
necessary to worry about downtime caused by minor upgrades. In this case, they
decided to use two PostgreSQL servers and a backup system. This is a minimum of
three nodes related to PostgreSQL, and their cluster looks like this:

> ndby

Company A

In the second case (Company B), we have a much more demanding financial
institution that requires all three of their data centers to be active at all times. They
chose to have one Primary PostgreSQL server, two Replicas per data center, a
Witness node, and a Backup server. In that extreme case, they used a total of eight
nodes dedicated to PostgreSQL.
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Their cluster would look like this:

Chicago San Jose Dall
Replica Replica Replica M Replica Replica
Company B

Nodes denoted here are specifically meant to be running
PostgreSQL. Architectures discussed in this chapter will include
various abstraction layers and, as a result, will likely require even
more nodes in the cluster. PostgreSQL nodes tend to be much larger
and do far more work, so are the focus of this recipe.

There's more...

Chosen node counts will naturally suggest certain architectures over others. The
reason we're performing this recipe so early is to get an idea of compatible
architectures. It may be necessary to revise these counts once we learn information
from other recipes in this chapter.

Selecting locations

Once we've decided how many PostgreSQL nodes to allocate in our cluster, where
should we put them? Generally, this is easy to answer, but there are some subtleties
we need to consider as well. A truly high availability cluster can resist many
different types of failure, including where the servers themselves reside.

In this recipe, we will learn all about the ways separate geographical locations can
affect our chosen design.

Getting ready

It's time to start drawing diagrams. Find your favorite drawing program, such as
Visio, Dia, or Draw.io, or a convenient sheet of paper or whiteboard.
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Keep in mind that the ideal design may require more data centers than the company
currently utilizes. In these cases, it may be possible to supply sufficient justification to
contract at least one more location if it benefits the RPO or RTO. Hence, we
recommend following the Setting expectations with RPO recipe and Defining timetables
through RTO recipe before continuing here.

How to do it...

Consider these basic guidelines while thinking about how many data centers are
necessary, and which nodes should be placed in each:

1. If data must be available in case of a site outage, use one additional
location.

N

Always place the backup in a separate location if possible.

W

If two locations are in the same general geographical area, use one
additional location at least 100 miles (160 km) away.

If automated failover is desirable, consider at least three data centers.
Place one PostgreSQL server (or witness) in each location.
Continue placing PostgreSQL servers evenly until the count is exhausted.

NS U

Try to place witness servers in a location that is unlikely to lose contact
with more than one location simultaneously.

How it works...

Let's consider an extreme example to explain how this works: a financial institution
wants to place six PostgreSQL nodes, one witness server, and a backup system. This
would clearly be a silly design, as shown in the following diagram:

Chicago

M Standby Standby Standby| Standby| Standby| M

This places every node in a single location that could lose its connection to the
internet, lose power, or suffer some other catastrophe that would render the entire
database stack unusable or even destroyed.
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Now, let's apply the guidelines. First of all, we want to protect the backup; let's place
that elsewhere, as seen in this following diagram:

Chicago Chicago 2

Replica Replica Replica Replica M Replica M

Now, one PostgreSQL server and the backup are safe in case something happens to
the first data center. Now of course, we have a new problem: what happens if
Chicago itself is somehow isolated from the rest of the internet. Though incredibly
rare, major internet backbone outages like this are possible.

So, let's add a third data center in Dallas. This allows us to actually follow three
separate rules. We can move the backup to that remote location so it's even safer. We
can relocate at least one more PostgreSQL server to that data center as well, so it acts
as an alternate in case Chicago becomes unavailable. And finally, we have three data
centers, so it's possible to safely use automated failover.

Recipes later in this chapter will explain why we keep insisting that
safety comes in odd numbers. For now, just keep it in mind when
considering the design.

With these revisions, our cluster looks more like the following diagram:

Chicago Chicago 2 Dallas:

Replica Replica Replica Replica M Replica M

The only remaining rules suggest that our node distributions should be more even,
and that the witness should be less likely to lose contact with more than one location
at once. This means we need to move a couple more of our nodes to the other data
centers. But what about the witness node? It's actually best to leave it in the second
Chicago location. If Chicago is separated from Dallas, the witness is still at least in
another data center, and is less likely to lose contact with Chicago, thereby preserving
its voting abilities.
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Given we're discussing a large financial institution that likely has access to multiple
data centers, perhaps there's an even better solution. Following one final node
reorganization, the cluster probably looks more like this diagram:

Chicag San Jose Dall

Replica Replica Replica M Replica Replica

Now, we can utilize three data centers that are relatively diverse in their geographic
isolation. This may appear to be an extreme case, but is merely illustrative of the
process we recommend to ensure that the overall state of the cluster is as safe as
possible.

There's more...

As database sizes increase, sometimes having only a single offsite backup as the only
recovery source can be somewhat inconvenient. Not only do we have to wait to copy
data from the backup location, but potentially any related time to restore the database
instance to working order, and any further recovery steps.

In these cases, it's reasonable and even suggested to maintain a backup server at each
major data center. This can be done by backing up a local replica, or by using some
other kind of filesystem copy or distribution mechanism synchronizing between the
locations.

See also

Please refer to this short list of companies that offer virtual hosting to use as quick
supplementary data center locations:

Amazon AWS: https://aws.amazon.com/

Rackspace: https://www.rackspace.com/

Microsoft Azure: https://azure.microsoft.com/en-us/

Google Cloud: https://cloud.google.com/
Linode: https://www.linode.com/
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Additionally, diagram software is various and widely available. Here are some of our
favorites:

e Draw.io: https://www.draw.io/

e Visio: https://office.live.com/start/Visio.aspx?auth=2&nf=1

e Dia: http://dia-installer.de/

Having enough backups

Database backups are a crucial component to any architecture, and should be
considered a required part of the central design. The only real question in most cases
is: how many backups? All highly available clusters account for relevant backup
copies, lest the cluster itself is lost.

In this recipe, we'll cover one simple set of rules to provide an answer.

Getting ready

This is very important, so write it down if necessary. Put it in company
documentation if possible.

How to do it...

When considering how many backups to allocate, follow the 3-2-1 backup rule, which
consists of these elements:

1. Keep at least three copies of your data.
2. Store two copies on different devices.
3. Keep at least one copy offsite.

Take note that many things may qualify as a copy, including PostgreSQL replicas,
and the original data itself.
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How it works...

Notice how we don't really recommend a specific backup method, how it should be
stored, or how filesystem-based features might contribute. All of those things are
implementation details and don't matter as much as the rules themselves.

Consider the first rule: keep at least three copies of your data. Since our PostgreSQL
instance is the first copy, we need two more. What might these two be? Could we use
one replica and a backup? Maybe we could use two replicas? Perhaps, but let's
examine the remaining rules first.

Imagine we've produced a PostgreSQL backup, and it's stored on our primary server
and the same filesystem as the database instance. What happens if that storage device
is damaged or destroyed? Now, we've lost the database and the backup.

That naturally leads to the second rule: store two copies on different devices. It's fine
to retain a copy on the local PostgreSQL server and even the same physical storage
device, provided we store a copy of the backup on a device that won't be lost
simultaneously. Store another copy of the backup on a second physical device. This
can be a separate set of storage drives, a SAN, a shared NFS filesystem, or anything
else, so long as it's separate from the database itself.

Be wary of relying on shared infrastructure for following the second
rule. If we have two separate LUNs from the same SAN mounted on
our database server for PostgreSQL and the backup, this means
nothing if the SAN itself is lost. If possible, try to ensure that the
backup is actually on a physically distinct device.

So, to fulfill the second rule, we merely need to ensure that the second copy of our
PostgreSQL instance is on another device. This is most easily done by creating a
replica on another server, or a VM hosted on a different hypervisor. That's two copies
of the data.

Finally there's rule three: keep at least one copy offsite. This is the third copy of our
data, and it's best to place it somewhere that's immune from a catastrophic failure of
the data center itself. In limited circumstances, it may be safe enough to place the
backup on a server in another rack of the same data center, but why take the risk?
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There are ample cloud providers, vault systems, and cheap storage services that can
fill the role of hosting the third and final copy of our data. If we have our own second
data center, that's an easy choice of venue. If not, it's important to select, allocate, and
designate some tertiary location that won't be lost if the worst happens. This third
data copy is an insurance policy, and it doesn't even have to be easily available. As
long as we can obtain the backup upon request, that fits the minimum requirement.

There's more...

There's one important corollary here. PostgreSQL replicas tend to immediately reflect
every change made to the primary node. What happens if someone accidentally
drops a table? In this case, the 3-2-1 rule by itself is not sufficient. Relying on replicas
alone means we've permanently lost this data.

Thus, we strongly recommend the following additional rule: At least one copy must
be a true backup.

Databases such as PostgreSQL are equipped with Point-In-Time-Recovery (PITR),
which allows the user to start with any past backup and apply changes until it
reaches a specific point where recovery is stopped. This lets us recover a backup to
the point before a table was damaged or removed, capture the desired contents, and
reintroduce them into the original database. This can only be done with a real binary-
level backup, and there are multiple tools dedicated to performing this task. This
book even contains a chapter dedicated to Backup Management.

See also

To make the 3-2-1 rule easier to follow, consider the following long-term storage
solutions:

e Amazon Glacier: https://aws.amazon.com/glacier/

Backblaze: nttps://www.backblaze.com/

Azure Backup: https://azure.microsoft.com/en-us/services/backup/

GOOgle Cloud Storage: https://cloud.google.com/storage/
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Considering quorum

Quorum can best be explained by imagining any voting system. It's a result of trusted
consensus and relies on multiple implementations backed by dissertation and
quantitative study. The most common way to guarantee a quorum for a PostgreSQL
cluster is by utilizing a witness node. This exists only to vote and observe the state of
the cluster. This helps us reach maximum availability by guaranteeing there's always
an active primary node.

In this recipe, we'll examine why it's important to apply the concept of quorum to our
PostgreSQL cluster, and how we may do so.

Getting ready

The primary criteria for establishing a quorum is that we must satisfy the capability
for avoiding tie votes, also known as establishing consensus. Basically, this means we
must have an odd number of PostgreSQL nodes within our cluster such that there's
always a majority. We should already have a preliminary node count by working
through previous recipes in this chapter, in particular, the Picking redundant

copies recipe and the Selecting locations recipe.

That being said, the concept of quorum is only necessary in clusters that intend to
provide automated failover capabilities. If this is not going to be a feature of the end
architecture, this recipe may be skipped.

How to do it...

Once we have an initial node count, we should apply these guidelines to adjust the
total count and node distribution:

1. If the initial PostgreSQL node count is even, add one witness node.

2. If the initial PostgreSQL node count is odd, convert one replica into a
witness node.

3. In the presence of two locations, the witness node should reside in the same
data center as the primary node.

4. If possible, allocate witness nodes in an independent tertiary location.
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How it works...

While deceptively simple, there's actually a lot of thought involved in correctly
placing an odd node, and why we use witness nodes rather than yet another
PostgreSQL replica:

1. Our first guideline is the most straightforward of these, such that we
ensure there are an odd number of nodes in the cluster. Once we have that,
any event in the cluster is submitted to the entire quorum for a decision,
and only agreement guarantees subsequent action. Further, since the
witness cannot vote for itself, only one eligible node will ever win the
election. Consider this sample cluster diagram:

Chicago

We have three nodes in this cluster and, in the event of a failure of the
Primary node, the Witness must vote for the only remaining Replica. If the
Witness had been a standard replica node, it could have voted for itself and
potentially led to a tied vote. In an automated scenario, this would prevent
the cluster from promoting a replacement Primary node.

2. The second guideline is a variant of this concept. If we already had an odd
number of nodes, one of these should be a Witness rather than a standard
replica. Consider this diagram:

Chicago

e e
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We can see here that the third node is still a replica, but it also acts as a
Witness. Essentially, we don't allow this node to vote for itself to become
the new Primary. This kind of role works well for read-only replicas that
exist only for application use and is a good way to reuse existing resources.

3. The third guideline, of placing the Witness in the same location as the
Primary node, safeguards node visibility. More important than automation
is safety. By placing the Witness in the same location as the Primary when
there are only two data centers, we can ensure that a network partition—a
situation where we lose network connectivity between the data
centers—won't result in the alternate location incorrectly promoting one of
its replicas. Consider this diagram:

Chicago Dallas—

M " plica

If the connection between Chicago and Dallas is lost, Chicago still has the
majority of voting nodes, and Dallas does not. As a result, the cluster will
continue operating normally until the network is repaired, and we didn't

experience an accidental activation of a node in Dallas.

Some failover automation systems also take physical location into
account by verifying that all nodes in one location agree that all
nodes in the other location are not responding. In these cases, the
only time where automation will not work normally is when a
network partition has occurred. This approach is only viable when
more than one node exists in each location. Such can be
accomplished by allocating further replicas, or even witness nodes.

Unfortunately, our cluster is no longer symmetrical. If we activate the node in Dallas,
there are no witnesses in that location, so we must eventually move the Primary back
to Chicago. This means every failover will be followed by a manual switch to the
other location, thus doubling our downtime.
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The easiest way to permanently address these concerns is to add a third location and
assign a node there. In most cases, this will be the Witness node itself. Consider this
example:

Chicago Dallas— San Jose

M e

In this case, we may desire that only Chicago or San Jose host the active PostgreSQL
node. In the event of a failure of our Primary node, San Jose should take over instead.
The Witness can see both data centers and decide voting based on this. Furthermore,
it doesn't matter if the Primary is active in Chicago or San Jose, because the Witness is
not tied directly to either location.

There's more...

What happens in the case of a tie? Even if the original cluster contained an odd
number of nodes, when the Primary node goes offline, this is no longer true. In
simple quorum systems, each node votes for itself. However, a Witness, by its
definition, must vote for some other node. This means some replica in the cluster will
have more than one vote, and thus win the election.

In case there are somehow multiple witnesses, and votes are split anyway,
PostgreSQL quorum systems usually account for the Log Sequence Number (LSN)
from the Primary node. Even if it's only a single transaction, one of the nodes with the
most votes will have replicated more data than the other, and this will break the tie.

Introducing indirection

What happens to connections to a PostgreSQL system when the service must be shut
down for maintenance, or the node itself experiences a hardware problem? Previous
recipes have already recommended we integrate at least one data replica into our
design, but how should we handle switching between these resources? A great way
to achieve high availability is to make server maintenance or replacement as simple as
possible.
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The concept we'll be exploring in this recipe will be one of anticipating system
outages, and even welcoming them, by incorporating proxy techniques into the
design.

Getting ready

There are actually several methods for switching from one PostgreSQL node to
another. However, when considering the node architecture as a whole, we need to
know the four major techniques to handle node indirection:

1. Domain name reassignment

2. Virtual IP address

3. Session multiplexing software

4. Software or hardware load balancer

In real terms, these are all basically the same thing: a proxy for our PostgreSQL
primary node. Keep this in mind as we consider how they may affect our architecture.
It would also be a good idea to have some diagram software ready to describe how
communication flows through the cluster.

How to do it...

Integrating a proxy into a PostgreSQL cluster is generally simple if we consider these
steps in the design phase:

1. Assign a proxy to the primary node.

2. Redirect all communication to the primary node through the proxy.

3. If the proxy requires dedicated hardware or software, designate two to
account for failures.

How it works...

These rules are simple, but that's one of the reasons they're often overlooked. Always
communicate with the Primary node through at least one proxy.
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Even if this is merely an abstract network name, or an ephemeral IP address, doing so
prevents problems that could occur, as seen in the following diagram:

Chicago:

Standby
Applications

What happens when the Primary PostgreSQL node is offline and the cluster is now
being managed by the Standby? We have to reconfigure—and possibly restart—any
and all applications that connect directly to it. With one simple change, we can avoid
that concern, as seen here:

Chicago

Applications L]

Standby

By following the second guideline, all traffic is directed through the Proxy, thus
ensuring that either the Primary or Standby will stay online and remain accessible
without further invasive changes. Now, we can switch the active primary node,
perform maintenance, or even replace nodes entirely, and the application stack will
only see the proxy.

We've encountered clusters that do not follow these two guidelines. Sometimes,
applications will actually communicate directly with the primary node as assigned by
the inventory reference number. This means any time the infrastructure team or
vendor needs to reassign or rename nodes, the application becomes unusable for a
short period of time.

Sometimes, hardware load balancers are utilized to redirect application traffic to
PostgreSQL. On other occasions, this is done with connection multiplexing software
such as PgBouncer or HAProxy. In these cases the proxy is not simply a permanent
network name or IP address that is associated with the PostgreSQL cluster, but a
piece of hardware. This means that a software or hardware failure could also affect
the proxy itself.
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In this case, we recommend using two proxies, as seen here:

Applications Standby|

H

This is especially useful in microarchitectures, which may consist of dozens or even
hundreds of different application servers. Each may target a different proxy such that
a failure of either only affects the application servers assigned to it.

There's more...

Given that applications must always access PostgreSQL exclusively through the
Proxy, we always recommend assigning a reference hostname that is as permanent as
possible. This may fit with the company naming scheme, and should always be
documented. PostgreSQL nodes may come and go and, in extreme cases, the cluster
itself can be swapped for a replacement, but the Proxy is (or should be) forever.

Physical proxy nodes themselves are not immune to maintenance or failure. Thus, it
may be necessary to contact the network team to assign a CNAME or other fixture that
can remain static even as the proxy hardware fluctuates.

See also

If you want to learn more about how proxies work, check out this
resource: https://whatis.techtarget.com/definition/proxy-server

Preventing split brain

Split brain is the scenario that occurs when more than one primary node is active in a
PostgreSQL cluster simultaneously. In these circumstances, if any data was written to
both nodes from the application, it becomes extremely difficult to rectify. Certainly,
no cluster with such data corruption can be considered highly available!

[31]


https://whatis.techtarget.com/definition/proxy-server

Architectural Considerations Chapter 1

In this recipe, we will further explore the concept, and how we might mitigate this
problem.

Getting ready

An important concept necessary for preventing split brain scenarios is fencing, or
isolation of a node from the application and database stack. Often, this is
accomplished through STONITH (which stands for Shoot The Other Node In The
Head). After accounting for situations where this is not possible, the old primary
must invoke SMITH instead, or Shoot Myself In The Head. While it may sound
extreme, for servers, this is really a temporary solution to prevent a more worrying
complication.

Keep these terms in mind while we explore how they may affect our architecture.

How to do it...

Apply these steps when designing a cluster to help minimize or eliminate the risk of
split brain:

1. If available, allocate STONITH hardware for nodes that may take the role
of the Primary.

2. Consider situations where SMITH must be used instead, during network
interruptions.

3. Ensure PostgreSQL does not start automatically following a system reboot.

How it works...

Modern servers are often equipped with hardware that enables remote
administration. These components often allow network access to the boot process
itself. In the case where PostgreSQL is installed on virtual servers, the hypervisor
serves this role. Many companies commonly install Power Distribution Units (PDU)
that can be remotely instructed to cut power to a server.

Whatever the approach, working with infrastructure or systems operations teams is
likely necessary to gain access to interact with these devices. As an example, imagine
we have a 2-node cluster consisting of a Primary and Standby, and a PDU is
available for each. We could do something like this:
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Chicago

In this case, in the case of a failover and subsequent promotion, the Standby could
instruct the PDU to cut power to the Primary to ensure that it wasn't possible for
applications to be connected. But what about a scenario where it's far more common
for network interruptions, such as between two data centers, as seen here:

— Chicago— — Dallas— rSan Jose—

- ITI
Primary [— Standby M

In this scenario, the Standby would be unable to shut down the Primary node in the
case of a failover. This is why it's important to consider SMITH approaches as well. In
this case, the Primary should monitor the state of the Standby and Witness, and if
both disconnect for a sufficient period, it should assume the Standby will be
promoted. In this case, it would power itself down to prevent applications from
interacting with it.

Finally, always disable the PostgreSQL start up mechanism on clusters equipped with
high availability management software. That software should manage starting and
stopping the service, and this will also prevent unintended events such as
accidentally having two primary nodes active simply because a reboot started a
previously failed PostgreSQL node.

Advanced recipes later in this book will adhere to the rule of
disabling PostgreSQL on startup and provide exact instructions for
doing so.
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There's more...

The reason preventing split brain is so difficult is that it's not an easy problem to
solve. This is why dedicated software for managing high availability exists. While
these are not immune to the issue, they greatly reduce the potential of occurrence.

Pacemaker has components specifically for interacting with STONITH hardware.
repmgr implements the concept of hook scripts for event notifications, and accounts
for scenarios where the Primary is isolated from the remainder of the cluster as seen
in the previous diagram. Patroni uses a sophisticated locking mechanism that only
allows one primary node to be registered at once.

Don't try to invent a solution for an already solved problem when most of the work
has already been done by companies dedicated to the cause.

Incorporating multi-master

Some PostgreSQL vendors provide proprietary extended functionality that makes it
possible for a cluster to contain multiple writable Primary nodes simultaneously.
Users of this kind of software can expect certain enhanced capabilities, though
concessions are often necessary. This recipe will explore how PostgreSQL multi-
master can influence cluster topology.

Getting ready

This recipe will require some knowledge of where the nodes are likely to reside on a
global scale. Will some PostgreSQL nodes be in Dubai, while others are in Cairo or
Toronto? We will also need to have a very basic understanding of how the application
operates. This may mean interacting with application developers or designers to
derive a rough approximation of queries required for basic operation.

How to do it...

When considering deploying multiple writable PostgreSQL nodes, utilize these
guiding questions:

1. Is there significant geographical distance between nodes?
2. Does the application use multiple transactions or queries per operation?
3. Are accounts or users likely to operate primarily in a certain region?
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How it works...

Probably the most obvious benefit arising from using multiple writable PostgreSQL
nodes is one of reduced write latency. Consider an initial cluster that may resemble

this diagram:

Tokyo— — Dallas— — Sydney—
Standby Standby

Each write to Tokyo or Sydney must first cross thousands of miles before being
committed. And due to how replication works, the local replicas in those regions will
have to wait for the transaction to be replayed before it will be visible there. These
times can be considerable. Consider this table of round-trip-times for network traffic
for the locations we've chosen:

Dallas Sydney Tokyo
Dallas X 205 ms 145 ms
Sydney 200 ms X 195 ms
Tokyo 145 ms 195 ms X

Each write may require over 200 ms simply to reach the primary node. Then, the
same data must be transmitted from the Primary to each Standby, doubling the time
necessary before the transaction may be visible in the continent where it originated.
Since many application actions can invoke multiple transactions, this can cause a time
amplification effect that could last for several minutes in extreme cases.

This is why we ask whether or not an application performs multiple actions per task.
Displaying a web page may require a dozen queries. Submitting a credit application
can mean several writes and polling for results. With competition around every
corner, every second of waiting increases the chances a user may simply use another
application without such latency issues. If each of those nodes were a Primary, the
transaction write overhead would be effectively zero.
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The last question we should answer is one of expandability. As the usage volume of
the cluster increases, we will inevitably require further nodes. A popular method of
addressing this is to regionalize the primary nodes, but otherwise follow standard
replication concepts. As an example, imagine we needed a further two nodes in each
region to fulfill read traffic. It could look something like this:

Tokyo Dallas Sydney

Standby Standby Standby Standby Standby Standby

This Hub + Spoke model helps ensure each region can keep up with demand,
without adding latency by including nodes outside of a particular region. Note also
that, when using these multi-master clusters, all nodes often require direct
connections to each other.

There's more...

These types of multi-master PostgreSQL clusters often require two direct connections
between all participating nodes, one for each direction of communication. This is
called a Mesh topology, and is considered by some to be a source of excessive
communication overhead. If we think about it, that's a valid criticism given that every
transaction in the cluster must eventually be acknowledged by every other primary
node. In very active systems, the impact could be significant.
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A scenario along the lines of the following diagram, for example, may present
complications:

By merely adding three more primary nodes, we've increased the number of
communication channels to 30. In fact, the general formula for this can be expressed
for PostgreSQL multi-master as follows:

C=N* (N-1)
So, if we have 3 nodes, we can expect 6 channels, but if we have 10 nodes, there are 90
instead. This is one major reason for the Hub + Spoke model, since the local Replica

nodes do not need to be primary nodes and contribute to the topology
communication overhead.

Consider the potential impact of this before simply embracing the benefits of
operating in multiple locations simultaneously.

See also

If interested, feel free to explore some of these concepts in greater depth using the
resources listed here: https://wondernetwork.com/pings/
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Leveraging multi-master

One significant benefit to using software that enables multiple primary nodes in a
PostgreSQL cluster is the associated increase in availability. This functionality can
eliminate node promotion time and allow a fully active application stack on all data
backends if properly configured.

In this recipe, we'll explore advanced usage of a multi-master cluster, and how it can
help us reach the pinnacle of high availability.

Getting ready

It's crucially important to become familiar with the benefits and drawbacks of how
multi-master operation can affect the cluster. The previous Incorporating multi-master
recipe is a good place to start. Additionally, information we cover here can be directly
relevant to the Defining timetables through RTO recipe and the Picking redundant

copies recipe.

In a way, this recipe will bring together a lot of concepts we've covered through the
chapter, so we recommend covering it last if possible.

How to do it...

To really make the most of multi-master architecture, follow these guidelines:

1. Always allocate a proxy layer.

2. If cross-data center latency is relevant, allocate at least two nodes per
location.

3. It's no longer necessary to worry about adding nodes specifically to
maintain quorum.

4. Geographically partition data if possible.

How it works...

We actually recommend applying the first rule to all clusters, as suggested in the
Introducing indirection recipe. It's especially important here as the focus is specifically
centered on maximizing availability.
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Unlike a standard PostgreSQL node, a cluster containing multiple primary nodes
does not require the promotion of alternate systems to writable status. This means we
can switch to them in a nearly instantaneous manner. A properly configured proxy
layer means this is possible without directly alerting the application layer. Such a
cluster could resemble this diagram:

— Chicago— — Dallas—

Given this configuration, it's possible to switch from one Primary to the other with a
pause of mere milliseconds in between. This effectively means zero RTO contribution
for that action. This allows us to perform maintenance on any node, essentially
without disturbing the application layer at all.

In the preceding configuration, however, we only have one node per location. In the
event that the Primary in Chicago fails or is undergoing maintenance, applications in
that location will be interacting with the Dallas node. A better design would be
something like this:

Chicago Dallas

With two nodes per data center, we're free to swap between them as necessary. If the
proxy uses a connection check mechanism, it can even autodetect online status and
ensure traffic always goes to the online node in the same location.

[39]




Architectural Considerations Chapter 1

The extra Primary per data center need not remain idle when not in
use. Some proxy systems can allocate application sessions by user,
account, or some other identifying characteristic. This allows safe
load balancing that avoids risks associated with multi-master
systems, such as conflict resolution.

Pay attention to the preceding diagrams and try to find one common attribute they
both share.

Find it yet?

Each cluster has an even number of nodes. Also note that we didn't compensate for
this by adding any kind of witness node to help arbitrate the quorum state. This is
because each node is a Primary with no failover process to manage. As a
consequence, we no longer have the usual cause of split brain, nor must we worry too
much about network partition events.

Finally, try, if possible, to arrange the cluster such that data is as closely associated
with its users as possible. If users are bank clients interacting with their own account
and can be regionalized by country, this is an easy choice. If it's a shared service
microarchitecture with applications indiscriminately modifying data from arbitrary
accounts, that's not so simple.

For those more advanced circumstances, it's possible to approach the problem from a
smaller scale. Perhaps servers in the same rack only communicate with the database
nearest to them physically. Perhaps the proxy layer can use sticky sessions and route
connections to specific primary nodes based on a stable metric.

The goal here is data locality. While multi-master PostgreSQL allows multiple nodes
to ingest writes simultaneously, consider transmission latency. We can observe this in
a simple two-node interaction:

Node A accepts a write for Account X.
Node A sends the result to Node B.
The application is stateless and connects to Node B.

L e

The application notices data is missing in node B and submits a change
again.

Node B replays data from Node A.

Account X has now been modified twice.

SRS
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If the application session was tightly coupled to one primary node, this scenario
would not be possible. There are numerous ways to accomplish this coupling, and it
helps ensure fastest turnaround for associated data that was previously modified in
any case.

There's more...

PostgreSQL multi-master solutions use logical replication to transfer data between
nodes by necessity. As a result, software versions need not match. This means that
PostgreSQL 11 and PostgreSQL 12 nodes may coexist in the same cluster. Combined
with a proxy layer as recommended, this allows fully online, major-version upgrades.
From an RTO perspective, this means the following elements may all be assumed to
contribute zero or a small number of milliseconds:

Node failover and switchover

e Minor upgrades (v12.1 to v12.2)
¢ Node maintenance
¢ Major upgrades (v11 to v12)

Due to its proprietary nature, PostgreSQL multi-master is generally not available
without additional cost. Consider any associated pricing when tabulating RTO
architecture variant cost sheets. This should enable management to make an informed
decision based on expenses associated with pursuing extremely low RTO features
such as these.

See also

Further reading to consider regarding the concepts introduced in this recipe include

the following:
https://www.postgresqgl.org/docs/current/logical-replication.html
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Hardware Planning

What does high availability mean? In the context of what we're trying to build, it
means we want our database to start and remain online for as long as possible. A
critical component of this is the hardware that hosts the database itself. No matter
how perfect a machine and its parts may be, the failure, of or unexpected behavior
from, any element can result in an outage.

So how do we avoid these unwanted outages? We expect them. We must start by
assuming hardware can and will fail, and at the worst possible moment. If we start
with that in mind, it becomes much easier to make decisions regarding the
composition of each server we are building.

Make no mistake! Much of this planning will rely on worksheets, caveats, and
compromise. Some of our choices will have several expensive options, and we will
have to weigh the benefits offered against our total cost outlay. We want to build
something stable, which is not always easy. Depending on the size of our company,
our purchasing power, and available hosting choices, we may be in for a rather
complicated path to that goal.

This chapter will attempt to paint a complete picture of a highly available
environment in such a way that you can pick and choose the best solution without
making too many detrimental compromises. Of course, we'll offer advice on what we
believe is the best overall solution, but you don't always have to take our word for it.

In this chapter, we will learn about the selection and provisioning of hardware
necessary to build a highly available PostgreSQL database. We will cover the
following recipes in this chapter:

e Planning for redundancy
¢ Having enough IOPS
e Sizing storage
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e Investing in a RAID

e Picking a processor

¢ Allocating enough memory

¢ Exploring nimble networking
¢ Managing motherboards

e Selecting a chassis

e Saddling up to a SAN

e Tallying up

e Protecting your eggs

For the purposes of this chapter, we will not cover cloud computing
or other elastic allocation options. Many of the concepts we
introduce can be adapted to those solutions, yet many are
implementation-specific. If you want to use a cloud vendor such as

Amazon or Rackspace, you will need to obtain manuals and
appropriate materials for applying what you learn here.

Planning for redundancy

Redundancy means having a spare, but a spare for what? Everything. Every single
part, from the motherboard to the chassis, power supply to network cable, disk space
to throughput, should have at least one piece of excess equipment or capacity
available for immediate use.

The intent of this recipe is to consider as many of these elements as we can imagine
before committing to a final inventory purchase.

Getting ready

Fire up your favorite spreadsheet program; we'll be using it to keep track of all the
parts that go into the server, and any capacity concerns. If you don't have one,
OpenOffice and LibreOffice are good free alternatives for building these
spreadsheets, as is Google Sheets. The subsequent sections will help determine most
of the row contents.
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How to do it...

We simply need to produce a hardware spreadsheet to track our purchase needs. We
can do that with the following steps:

1. Create a new spreadsheet for parts and details.

2. Create a heading row with the following columns:

Type
Capacity
Supplier
Price
Count

Total cost

3. Create a new row for each type of the following components:

Chassis

CPU

Hard Drive (3.5")
Hard Drive (2.5")
Hard Drive (SSD)
Motherboard
XPower Supply
RAID Controller
RAM

SAN

4. In the Chassis row, under the Total Cost column, enter the
formula: =D2*E2.

5. Copy and paste the formula into the Total Cost column for all the rows
we created. The end result should look something like the following

screenshot:
| B | D | E | F
1 |Type Capacity Price Count Total Cost
2 |Chassis 0
3 |[CPU 0
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How it works...

What we've done is prepare a spreadsheet that we can fill in with information
collected throughout the remainder of this chapter. We will have very long
discussions regarding each part of the server we want to build, so we need a place to
collect each decision we make along the way.

The heading column can include any other details you wish to retain about each part,
but for the sake of simplicity, we have stuck to the bare minimum. This also goes for
the parts we chose for each column. Depending on the vendor you select to supply
your server, many of these decisions will already be made. It's still a good idea to
include each component in case you need an emergency replacement.

The Total Cost column exists for one purpose: to itemize the cost of each part,
multiplied by how many we will need to complete the server.

To make sure we account for the redundancy element of the
spreadsheet, we strongly suggest inflating the number you use for
the Count column, which will also increase the price automatically.
This ensures that we automatically include extra capacity in case
something fails. If you would rather track this separately, add a
Spare Count column to the spreadsheet instead.

We'll have discussions later as to the failure rates of different types of hardware,
which will influence how many excess components to allocate. Don't worry about
that for now.

There's more...

We also recommend including a summary for all Total Cost columns so we get an
aggregate cost estimate for the whole server. To do that with our spreadsheet
example, keep in mind that the Total Cost column is listed as column F.

To add a sum Total column to your spreadsheet in row 15, column F, enter the
formula =suM (F2:F12). If you've added more columns, substitute for column F
whichever column now holds Total Cost. Likewise, if you have more than 13 rows
of different parts, use a different row to represent your summary price than row 15.
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See also

There are a lot of spreadsheet options available. Many corporations supply a copy of
Microsoft Excel. However, if this is not the case, there are many alternatives,
including the following;:

. Google Sheets: https://docs.google.com/spreadsheets/
. Open Office: https://www.openoffice.org/
e Libre Office: https://www.libreoffice.org/

All of these options are free to use and popular enough that support and
documentation are readily available.

Having enough IOPS

IOPS (stands for Input/Output Operations Per Second) describes how many
operations a device can perform per second before it should be considered saturated.
If a device is saturated, further requests must wait until the device has spare
bandwidth. A server overwhelmed with requests can amount to seconds, minutes, or
even hours of delayed results.

Depending on application timeout settings and user patience, a device with low IOPS
appears as a bottleneck that reduces both system responsiveness and the perception
of quality. A database with insufficient IOPS to service queries in a timely manner is
unavailable for all intents and purposes. It doesn't matter if PostgreSQL is still online
and serving requests in this scenario, as its availability has already suffered.

In this recipe, we will attempt to account for future storage and throughput needs
based on monthly increases in storage utilization.

Getting ready

This process is more of a thought experiment. We will present some very rough
estimates of I/O performance for many different disk types. We should increment the
entries in our hardware spreadsheet based on the perceived need for each.
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The main things we will need for this process are numbers. During development,
applications commonly have a goal, expected client count, table count, estimated
growth rates, and so on. Even if we must guess many of these, each will contribute to
our IOPS requirements. Have these numbers ready, even if they're simply guesses.

If the application already exists on a development or stage
8 environment, try to get the development or QA team to run

operational tests. This is a great opportunity to gather statistics
before choosing potential production hardware.

How to do it...

We need to figure out how many operations per second we can expect. We can
estimate this by using the following steps:

1.

o

Collect the number of simultaneous database connections. Start with the
expected user count, and divide by 50.

Obtain the average number of queries per page. If this is unavailable, use
10.

Count the number of tables used in those queries. If this is unavailable, use
3.

Multiply these numbers together, and double the result.

Multiply the previous total by 8.

Increment the Count column in our hardware spreadsheet for one or more
of the following, and round up:

e For 3.5" hard drives, divide by 200.
e For 2.5" hard drives, divide by 150.
e For SSD hard drives, divide by 50,000, and then add two.

Add 10% to any count greater than 0 and then round up.

How it works...

Wow, that's a lot of work! There's a reason for everything, of course.
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In the initial three steps, we're trying to determine how many operations might touch
an object on disk. For every user that's actively loading a page, for every query in that
page, and for every table in that query, that's a potential disk read or write.

We double that number to account for the fact we're estimating these values. It's a
common engineering trick to double or triple calculations to absorb unexpected
capacity, variance in materials, and so on. We can use that same technique here.

Why did we suggest dividing the user count by 50 to get the
connection total? Since we do not know the average query runtime,
we assume 20 ms for each query. For every query that's executing, a
connection is in use. Assuming full utilization, up to 50 queries can
be active per second. If you have a production system that can
provide a better query runtime average, we suggest using that value
instead.

But why do we then multiply by eight? In a worst- (or best-) case scenario, it's not
uncommon for an application to double the number of users or requests on a yearly
basis. Doubled usage means doubled hardware needs. If requirements double in one
year, we would need a server three times more powerful (1 + 2) than the original
estimates to account for the second year. Another doubling would mean a server
seven times better (1 + 2 + 4). CPUs, RAM, and storage are generally available as
powers of two. Since it's fairly difficult to obtain storage seven times faster than what
we already have, we multiply the total by eight.

That gives a total IOPS value roughly necessary for our database to immediately
serve every request for the next 3 years, straight from the disk device. Several
companies buy servers every three or four years as a balance between cost and
capacity, so these estimates are based on that assumption.

In the next step, we get a rough estimate of the number of disks necessary to serve the
required IOPS. Our numbers in these steps are based on hard drive performance. A
15,000 RPM SAS hard drive can serve, under ideal conditions, roughly 200 operations
per second. Likewise, a 10,000 RPM drive can provide about 150 operations per
second.

Current SSDs as of the time of writing commonly reach 200,000-300,000 IOPS, and
some even regularly eclipse a cool million. However, their extreme speed suggests
fewer of them are necessary to reach IOPS goals, and thus failure risk is not as evenly
distributed. We artificially increase the number of these drives because, again, we are
erring toward availability.
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Finally, we add a few extra devices for spares that will reside in long-term storage,
just in case one or more drives fail. This also insulates us from the rare event that
hardware is discontinued or otherwise becomes difficult to obtain.

There's more...

Figuring out the number of IOPS we need and the devices involved is only part of the
story. Let's take a look at an example using values we might encounter in a real
application. After that, we'll discuss other things we may need to consider when
adjusting these numbers.

A working example

Sometimes, these large lists of calculations make more sense if we see them in
practice. So let's make the assumption that 2,000 users will use our application each
second. This is how this would look:

2000/ 50 =40
Default queries per page = 10

Default tables per query =3
40*10*3*2=2,400
2,400 * 8 =19,200
19,200 IOPS in drives:
e 5" drives: 19,200 / 200 = 96
e 5" drives: 19,200 / 150 = 128
e SSDs: 2 + (19,200 / 50,000) =2.38 ~ 3
Add 10%:
e 5" drives: 96 + 9.6 = 105.6 ~ 106
e 5" drives: 128 + 12.8 =140.8 ~ 141
e SSDs:3+0.3=3.3~4

We are not taking storage capacity into account, which would likely increase our SSD
total. We will be discussing capacity soon.
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Making concessions

Our calculations always assume worst-case scenarios. This is both expensive and, in
most cases, monumentally overzealous. We ignore RAM caching of disk blocks, we
don't account for application frontend caches, and the PostgreSQL shared buffers are
also not included.

Why? Crashes are always a concern. If a database crashes, buffers are forfeit. If the
application frontend cache gets emptied or has problems, reads will be served
directly from the database. Until caches are rebuilt, query results can be multiple
orders of magnitude slower than normal for minutes or even hours. We will discuss
methods of circumventing these effects, but these IOPS numbers give us a baseline.

The number of necessary IOPS, and hence disk requirements, are subject to risk
evaluation and cost-benefit analysis. Deciding between 100% coverage and an
acceptable fraction is a careful balancing act.

Feel free to reduce these numbers; just consider the cost of an outage as part of the
total. If a delay is considered as part of standard operating procedures, fractions up to
50% are relatively low risk. If possible, try to run tests for an ultimate decision before
purchase.

Sizing storage

Capacity planning for a database server involves a lot of variables. We must account
for table count, user activity, compliance storage requirements, indexes, object bloat,
maintenance, archival, and more. We may even need to consider application features
that do not yet exist. New functionality often brings additional tables, extra storage
standards, and increased archival needs. Planning done now may have little
relevance to future usage.

So how do we produce functional estimates for disk space with so many uncertain or
fluctuating elements? We primarily want to avoid a scenario where we lack sufficient
capacity to continue operating. Exhausting disk space results in ignored queries at
best, and a completely frozen and difficult to repair database at worst. Neither are the
ingredients of a highly available environment.
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In this recipe, we will explore a possible approach to determine minimum storage for
long-term operations. Our goal is to provision enough to avoid outright catastrophe,
though it's in our best interest to allocate more than the bare minimum.

Getting ready

Since there are numerous variables that contribute to the volume of storage we want,
we need information about each of them. Gather as many data points as possible
regarding things such as the largest expected tables and indexes, row counts per day,
indexes per table, desired excess, and anything else imaginable. We'll use all of it.

This is much easier if we already have a database, and are now
trying to ensure it is highly available. Even if the database is only in
development or staging environments at this moment, a few activity
simulations at expected user counts should provide a basis for many
of our numbers. No matter the case, revisit estimates as concrete
details become available.

How to do it...

We can collect some of the information we want from PostgreSQL if we have a
running instance already. If not, we can use baseline numbers. Follow these steps if
you already have a PostgreSQL database available:

1. Submit this query to get the amount of space used by all databases:

SELECT pg_size_pretty (sum(pg_database_size (oid)) ::BIGINT)
FROM pg_database;

2. Wait for one week.
3. Perform the preceding query again.
4. Subtract the first reading from the second.

Downloading the example code:

You can download the example code files for all Packt books you
have purchased from your account at http://www.packtpub.com. If
you purchased this book elsewhere, you can visit
http://www.packtpub.com/support and register to have the files
emailed directly to you.
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If we don't have an existing installation and are working with a project that has yet to
start development, we can substitute a few guesses instead. Without a running
PostgreSQL instance, consider using these sample values obtained from a real-world
system:

e Our databases have a total size of 100 GB.
o After 1 week, our install grew by 1.5 GB.

Of course, you don't have to start with these rather arbitrary
numbers for your own use case. Without a source database, we
simply recommend starting with medium-size growth values to
avoid underestimating. If our estimates are too low, the database
could exceed our plans and require emergency resource allocation.
That's not something we want in a highly available cluster!

Next, we can calculate our growth needs for the next 3 years. Perform the following
steps:

1. Multiply the data size delta by four.

2. Apply the following formula, where x is the most recent size of the
databases, and y is the value from the previous step: x * (1 + y/x)"36.

3. Multiply the previous result by two.

How it works...

The process we illustrate here is the magic of compounding interest. If we have an
existing database directory, it can tell us not only how much space it currently
consumes, but also how quickly it's currently growing. If not, we can start with a
medium-size configuration and substitute a growth assumption that will cause the
cumulative total to double in size every year. Remember, we begin by working with
worst-case scenarios, and modify the numbers afterward.

What if we don't need compounding interest because our expected
growth is linear? It's always easier to start with too much space than
to add more later. If you know your table count will rarely change,
users will not increase in number, or data streams are relatively
consistent, feel free to drop the compounded interest formula.
Otherwise, we suggest using it anyway.
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The PostgreSQL query we provide takes advantage of the system catalog and known
statistics regarding the database contents. The pg_database_size function always
returns the number of bytes a database uses, so we must use the pg_size_pretty
function to make it more human-readable.

Once we know the size of the database instance and its growth rate, we can apply a
simple compounding interest function to estimate the volume at any point in the
future. This not only accounts for the current growth rate, but also incorporates
additional accumulation caused by increases in clients, table counts, and other
unspecified sources. It's extremely aggressive, since we take the weekly growth rate,
translate that to a monthly rate, and apply the compounding monthly instead of

yearly.

And then we use a standard engineering tactic and double the estimate, just in case.
Using the provided values—that of a 100 GB database that grows at 1.5 GB per
week—we would have an 815 GB database install in 3 years. With a system that large,
we should allocate at least 1,630 GB.

Alternatively, if our growth rate were more linear, we could simply add the 1.5 GB
weekly growth rate for 3 years. In that case, the final tally after 3 years of
accumulation would only be 334 GB, and we could be safe with a total capacity of 668
GB.

There's more...

Don't let our formulas define your only path. Let's explore how they apply in a real-
world situation, and how we can modify them to better fit our systems.

Real-world example

There are quite a few very large databases using PostgreSQL. Whether or not they
have thousands of tables and indexes, billions of rows, or handle billions of queries
per day, statistics help us plan for the future. Let's apply the previous steps to an
example database that actually exists:

The database is currently 875 GB.

The database was 865 GB last week.

The database grows by 10 GB per week.

Thus, the database grows by 40 GB every 4 weeks.

[53]



Hardware Planning Chapter 2

¢ Using the formula we discussed in step two of this recipe, our size estimate
after 3 years is: 875 * (1 + 40/875)"36 = 4,374 GB.

e Doubled, this is 8,748 GB.

Keep in mind that this estimation technique may grossly exaggerate the necessary
space. If we take the existing 40 GB monthly growth rate, the database would only be
2,315 GB in 3 years. Of course, 2.3 TB is still a very large database; it's just half as large
as our estimate.

Adjusting the numbers

We already mentioned that the growth curve used here is extremely aggressive. We
can't risk ever running out of space in a production database and still consider
ourselves highly available. However, there is probably a safe position between the
current growth rate of the database, and the compounded estimate, especially since
we are doubling the allocation anyway.

In the preceding real-world example, the database is likely to have a size between
2,315 GB and 4,374 GB. If we split the difference, that's 3,345 GB. Furthermore, we
don't necessarily have to double that number if we're comfortable having a disk
device that's 70% full 3 years from now, instead of 50%. With that in mind, we would
probably be safe with 5 TB of space instead of 9 TB. That's a vast saving if we're
willing to make those compromises.

Incorporating the spreadsheet

At the beginning of this chapter, in the Planning for redundancy recipe, we created a
hardware cost spreadsheet to estimate the total cost of a highly available server. If we
were following the chapter, our spreadsheet already accounts for the minimum
number of devices necessary to provide the IOPS we want.

Suppose we needed 5,000 IOPS, and decided to use 2.5-inch drives. That would
require about 33 devices. Even at only 300 GB each, that's 9 TB of total available
space. Yet the case for SSDs is the opposite. For our previous example, we would
need at least five 1 GB SSD drives, or one very large PCle SSD to provide 5 TB of
space for the adjusted sample.

Whichever solution we finally choose, we can take the advice from every section so
far. At this point, the spreadsheet should have a device count that should satisfy
most, if not all, of our space and IOPS requirements.
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Investing in a RAID

A Redundant Array of Independent (or Inexpensive) Disks (RAID) often requires a
separate controller card for management. The primary purpose of a RAID is to
combine several physical devices into a single logical unit for the sake of redundancy
and performance.

This is especially relevant to our interests. Carnegie Mellon University published a
study in 2007 on hard drive failure rates. They found that hard drives fail at a rate of
about 3% per year. Furthermore, they found that drive type and interface contributed
little to disk longevity, and that hard drives do not reflect a tendency to fail early as
was commonly accepted. These findings were largely corroborated by a parallel
study released the same year by Google.

What does this mean? For our purposes in building a highly available server, it means
hard drives should be looked at with great disdain. Larger databases will depend on
tens or hundreds of hard drives in order to represent several terabytes of data. With a
3% failure rate per year, a 100-drive array would lose roughly nine devices after 3
years.

This is the primary reason that all of our calculations regarding disk devices
automatically assume a 10% excess inventory allotment. If a drive fails, we need an
immediate replacement. Vendors are not always capable of delivering a new drive
quickly enough. Having a spare on hand, ideally at the hosting facility or in the server
itself, helps ensure continuous uptime.

So how does RAID figure into this scenario? If we hosted our database on several
bare hard drives knowing that around 10% of these drives will fail in 3 years, outages
would be inevitable. What we want is an abstraction layer that can present any
number of hard drives as a single whole, keeping reserves for drive errors, handling
checksums for integrity, and mirroring for redundancy.

RAID provides all of that in several convenient configurations. Good controller cards
often include copious amounts of cache and other management capabilities. Instead
of manually assigning dozens of drives, it's fairly common to split them into several
usable array allocations that reflect much lower operational risk.

Knowing all of this, databases have special needs when it comes to RAID and the
performance characteristics associated with each RAID type. This recipe will explore
the selection criteria for our database, and how to simplify the process.
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Getting ready

That was a long introduction, wasn't it? Well, we also strongly suggest taking a look
at the Having enough IOPS and Sizing storage recipes before continuing. Make sure the
hardware spreadsheet has a drive count for the type of drives going into the server
we're designing. If we're using PCle instead of standard SSD drives, this section can
be skipped.

How to do it...

Only a few RAID levels matter in a database context. Perform these steps to decide
which one is right for this server:

e If this is an Online Transaction Processing (OLTP) database primarily for
handling very high-speed queries, use RAID level 1+0.

If this is a non-critical development or staging system, use RAID level 5.
If this is a non-critical Online Analytic Processing (OLAP) reporting
system, use RAID level 5.

If this is a critical OLAP reporting system, use RAID level 6.

If this is a long-term storage OLAP warehouse, use RAID level 6.

How it works...

We have made a lot of snap decisions here. There are quite a few RAID levels we
simply ignored, so there should be some discussion regarding the reasoning we used.

Let's begin with RAID level 0. Level 0 stripes data across all disks at once. It's
certainly convenient, but a single drive failure will lose all stored information in the
array. What about RAID level 1? Level 1 acts as a full mirror of all data stored. For
every set of drives, a second set of drives holds an exact copy. If a drive fails in one
set, the second set is still available. However, if that set also experiences any failure,
all data is lost.
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When we talk about RAID 1+0, we actually combine the mirroring capability of RAID
1 with the striping of RAID 0. How? Take a look at the following diagram:

Mirror 1 —Siripe — Mirror 2 —Stripe — Mirror 3

In this RAID 1+0, we have three sets, each consisting of two disks. Each of the two
disks mirrors the other, and the data is striped across all three sets. We could lose a
disk from each set and still retain all of our data. We only have a problem if we lose
two disks from the same set since they mirror each other. Overall, this is the most
robust RAID level available, and the most commonly used for OLTP systems.

RAID level 5 and 6 take a different approach. Again, let's look at six drives and see a
very simplified view of how RAID 5 would operate in that situation:

The solid line shows that the data is spread across all six drives. The dotted line is the
parity information. If a drive fails and the block can't be read directly from the
necessary location, a RAID 5 array will use the remaining parity information from all
drives to reconstruct the missing data. The only real difference between a RAID 5 and
a RAID 6 array is that a RAID 6 array contains a second parity line, so up to two
drives can fail before the array begins operating in a degraded manner.
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Using RAID 5 or 6 offers more protection than RAID 0, with fewer costs than RAID
1+0, which requires double the amount of required devices. We selected these for
non-critical OLAP systems because they usually prioritize storage over performance
and are not as sensitive to immediate availability pressures as an OLTP system.

There's more...

We mentioned controller cards earlier and noted that they also offer onboard cache.
RAID has been around for a long time, and though disks are getting much larger,
they haven't experienced an equivalent increase in speed. In scenarios that use RAID
5 or 6, writes can also be slowed since each write must be committed to several
devices simultaneously in the form of parity.

To combat this, RAID controllers allow configuration of the cache to buffer writes in
favor of reads, or vice versa. Don't be afraid to adjust this and run tests to determine
the best cache mix. If everything else fails, start with 100% for writes, as they are the
most in need of caching. Keep a close eye on write performance and give it priority if
possible. Generally, the OS cache does a better job of caching reads, and has much
more memory available to do so.

See also

For more details, refer to the following link:

¢ Disk failures in the real world: http://www.cs.cmu.edu/~bianca/fast07.
pdf

e Failure Trends in a Large Disk Drive Population:
http://research.google.com/pubs/pub32774.html

Picking a processor

In selecting a CPU for our server, we have much to consider. At the time of writing,
the current trend among processors in every space—including mobile—is toward
multiple cores per chip. CPU manufacturers have found that providing a large
number of smaller processing units spreads workload horizontally for better overall
scalability.
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As users of PostgreSQL, this benefits us tremendously. Postgr<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>