

PostgreSQL 12 High
Availability Cookbook
Third Edition

Over 100 recipes to design a highly available server with
the advanced features of PostgreSQL 12

Shaun Thomas

BIRMINGHAM - MUMBAI

PostgreSQL 12 High Availability
Cookbook
Third Edition
Copyright © 2020 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in
any form or by any means, without the prior written permission of the publisher, except in the case of brief
quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information
presented. However, the information contained in this book is sold without warranty, either express or
implied. Neither the author(s), nor Packt Publishing or its dealers and distributors, will be held liable for any
damages caused or alleged to have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and products
mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the
accuracy of this information.

Commissioning Editor: Amey Varangaonkar
Acquisition Editor: Devika Battike
Content Development Editor: Roshan Kumar
Senior Editor: Jack Cummings
Technical Editor: Manikandan Kurup
Copy Editor: Safis Editing
Project Coordinator: Aishwarya Mohan
Proofreader: Safis Editing
Indexer: Priyanka Dhadke
Production Designer: Deepika Naik

First published: July 2014
Second edition: February 2017
Third edition: February 2020

Production reference: 1250220

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

ISBN 978-1-83898-485-4

www.packt.com

http://www.packt.com

Packt.com

Subscribe to our online digital library for full access to over 7,000 books and videos,
as well as industry leading tools to help you plan your personal development and
advance your career. For more information, please visit our website.

Why subscribe?
Spend less time learning and more time coding with practical eBooks and
Videos from over 4,000 industry professionals

Improve your learning with Skill Plans built especially for you

Get a free eBook or video every month

Fully searchable for easy access to vital information

Copy and paste, print, and bookmark content

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.packt.com and
as a print book customer, you are entitled to a discount on the eBook copy. Get in
touch with us at customercare@packtpub.com for more details.

At www.packt.com, you can also read a collection of free technical articles, sign up for
a range of free newsletters, and receive exclusive discounts and offers on Packt books
and eBooks.

https://subscribe.packtpub.com/
http://www.packt.com
http://www.packt.com

Contributors

About the author
Shaun Thomas has been experimenting with PostgreSQL since late 2000 and serves
as a database consultant, teacher, blogger, and support engineer with 2ndQuadrant.
He has presented at conferences such as Postgres Open, 2Q PGCONF, and PgConf on
topics such as handling extreme throughput, high availability, failover techniques,
monitoring tools, database architecture, multi-master conflict avoidance, and high
availability upgrade concepts. He believes in a multi-disciplinary approach when it
comes to high availability.

He believes that PostgreSQL has a stupendous future ahead, and he can't wait to see
the advancements subsequent versions will bring.

About the reviewers
Ilja Everilä is a software developer and consultant with over a decade of experience
in various projects, currently employed at Siili Solutions Oyj. He has done both
frontend and backend work and database administration in PostgreSQL. All in all, he
is very much into database work and found this book an interesting read on an
important subject.

Richard Yen received a bachelor of science in electrical engineering and computer
science from the University of California, Berkeley. He started his career as a
developer and DBA for Turnitin, an ed-tech start-up, and went on to work as a
support engineer for EnterpriseDB, a professional services and software company
focusing on PostgreSQL. His wealth of experience interacting with many clients,
ranging from small start-ups to large financial and governmental institutions, has
exposed him to many technologies, several of which are covered in this book.

Packt is searching for authors like you
If you're interested in becoming an author for Packt, please visit
authors.packtpub.com and apply today. We have worked with thousands of
developers and tech professionals, just like you, to help them share their insight with
the global tech community. You can make a general application, apply for a specific
hot topic that we are recruiting an author for, or submit your own idea.

http://authors.packtpub.com

Table of Contents
Preface 1

Chapter 1: Architectural Considerations 7
Setting expectations with RPO 8

Getting ready 9
How to do it... 9
How it works... 10
There's more... 11

Defining timetables through RTO 11
Getting ready 11
How to do it... 12
How it works... 13
There's more... 14

This may seem familiar 15
Node counts 15

Picking redundant copies 15
Getting ready 16
How to do it... 16
How it works... 16
There's more... 18

Selecting locations 18
Getting ready 18
How to do it... 19
How it works... 19
There's more... 21
See also 21

Having enough backups 22
Getting ready 22
How to do it... 22
How it works... 23
There's more... 24
See also 24

Considering quorum 25
Getting ready 25
How to do it... 25
How it works... 26
There's more... 28

Introducing indirection 28
Getting ready 29
How to do it... 29

Table of Contents

[ii]

How it works... 29
There's more... 31
See also 31

Preventing split brain 31
Getting ready 32
How to do it... 32
How it works... 32
There's more... 34

Incorporating multi-master 34
Getting ready 34
How to do it... 34
How it works... 35
There's more... 36
See also 37

Leveraging multi-master 38
Getting ready 38
How to do it... 38
How it works... 38
There's more... 41
See also 41

Chapter 2: Hardware Planning 42
Planning for redundancy 43

Getting ready 43
How to do it... 44
How it works... 45
There's more... 45
See also 46

Having enough IOPS 46
Getting ready 46
How to do it... 47
How it works... 47
There's more... 49

A working example 49
Making concessions 50

Sizing storage 50
Getting ready 51
How to do it... 51
How it works... 52
There's more... 53

Real-world example 53
Adjusting the numbers 54
Incorporating the spreadsheet 54

Investing in a RAID 55
Getting ready 56
How to do it... 56

Table of Contents

[iii]

How it works... 56
There's more... 58
See also 58

Picking a processor 58
Getting ready 59
How to do it... 60
How it works... 61
There's more... 61

Simultaneous multithreading 62
Clock boosting 62
Power usage 63

See also 63
Allocating enough memory 63

Getting ready 63
How to do it... 64
How it works... 65
There's more... 65

Exploring nimble networking 66
Getting ready 67
How to do it... 67
How it works... 68
There's more... 70

A networking example 70
Remember redundancy 70
Saving the research 71

Managing motherboards 71
Getting ready 72
How to do it... 73
How it works... 73
There's more... 74
See also 74

Selecting a chassis 75
Getting ready 75
How to do it... 75
How it works... 76
There's more... 77

Saddling up to a SAN 77
Getting ready 78
How to do it... 78
How it works... 79
There's more... 80
See also 81

Tallying up 81
Getting ready 82
How to do it... 82
How it works... 82

Table of Contents

[iv]

There's more... 83
Protecting your eggs 84

Getting ready 84
How to do it... 85
How it works... 85
There's more... 86

Chapter 3: Minimizing Downtime 87
Determining acceptable losses 88

Getting ready 89
How to do it... 89
How it works... 90

Configuration – getting it right the first time 91
Getting ready 91
How to do it... 91
How it works... 92
There's more... 96
See also 97

Configuration – managing scary settings 97
Getting ready 98
How to do it... 98
How it works... 99
There's more... 99

Distinct settings 100
More information 100

See also 100
Identifying important tables 100

Getting ready 101
How to do it... 101
How it works... 103
There's more... 104

Reset stats 104
Using pgstattuple 105

See also 105
Defusing cache poisoning 106

Getting ready 106
How to do it... 107
How it works... 109
See also 110

Terminating rogue connections 111
Getting ready 111
How to do it... 112
How it works... 113
There's more... 114

Reducing contention with concurrent indexes 115
Getting ready 116

Table of Contents

[v]

How to do it... 116
How it works... 116
There's more... 117

No transactions 117
One at a time 117
Dangers of OLTP use 117

See also 118
Managing system migrations 118

Getting ready 118
How to do it... 119
How it works... 120
There's more... 121
See also 122

Managing software upgrades 122
Getting ready 123
How to do it... 123
How it works... 125
There's more... 126
See also 126

Mitigating the impact of hardware failure 126
Getting ready 127
How to do it... 128
How it works... 129
There's more... 130

Copying WAL files more easily 130
Built-in delay 131
Adding compression 131
Secondary delay 132

See also 132
Applying bonus kernel tweaks 132

Getting ready 133
How to do it... 133
How it works... 134
There's more... 135

Some additional background 135
Be wary of THP 136

Chapter 4: Proxy and Pooling Resources 138
Exploring the magic of virtual IPs 140

Getting ready 140
How to do it... 141
How it works... 141
There's more... 142

Obtaining and installing HAProxy 143
Getting ready 143
How to do it... 144

Table of Contents

[vi]

How it works... 145
See also 146

Configuring HAProxy to load balance PostgreSQL 147
Getting ready 147
How to do it... 147
How it works... 148
There's more 150

Determining connection costs and limits 150
Getting ready 151
How to do it... 151
How it works... 152
There's more... 153

Installing PgBouncer 153
Getting ready 154
How to do it... 154
How it works... 155
See also 156

Configuring PgBouncer safely 156
Getting ready 156
How to do it... 157
How it works... 158
There's more... 159

What about pool_mode? 159
Problems with prepared statements 160

See also 160
Connecting to PgBouncer 160

Getting ready 161
How to do it... 161
How it works... 161
See also 161

Listing PgBouncer server connections 162
Getting ready 162
How to do it... 162
How it works... 162
There's more... 164
See also 164

Listing PgBouncer client connections 164
Getting ready 164
How to do it... 165
How it works... 165
There's more... 166
See also 166

Evaluating PgBouncer pool health 167
Getting ready 167
How to do it... 167

Table of Contents

[vii]

How it works... 168
There's more... 170
See also 171

Changing PgBouncer connections while online 171
Getting ready 171
How to do it... 172
How it works... 172
There's more... 173
See also 174

Enhancing PgBouncer authentication 174
Getting ready 174
How to do it... 175
How it works... 176
There's more... 177
See also 178

Chapter 5: Troubleshooting 179
Performing triage 180

Getting ready 180
How to do it... 181
How it works... 181
There's more... 183

Installing common statistics packages 183
How to do it... 184
How it works... 184

Evaluating the current disk performance with iostat 184
Getting ready 185
How to do it... 185
How it works... 186
There's more... 187
See also 187

Tracking I/O-heavy processes with iotop 188
Getting ready 188
How to do it... 188
How it works... 189
There's more... 190
See also 190

Viewing past performance with sar 190
Getting ready 191
How to do it... 191
How it works... 192
There's more... 193
See also 193

Correlating performance with dstat 193
Getting ready 194

Table of Contents

[viii]

How to do it... 194
How it works... 194
See also 197

Interpreting /proc/meminfo 197
Getting ready 197
How to do it... 197
How it works... 198
There's more... 200
See also 200

Examining /proc/net/bonding/bond0 200
Getting ready 201
How to do it... 201
How it works... 202

Checking the pg_stat_activity view 203
Getting ready 203
How to do it... 204
How it works... 204
There's more... 207
See also 207

Checking the pg_stat_statements view 208
Getting ready 208
How to do it... 208
How it works... 210
There's more... 211

Reset the status 211
Catch more queries 212

See also 212
Deciphering database locks 212

Getting ready 213
How to do it... 213
How it works... 213
There's more... 215
See also 216

Debugging with strace 216
Getting ready 217
How to do it... 217
How it works... 218
There's more... 219
See also 220

Logging checkpoints properly 220
Getting ready 221
How to do it... 221
How it works... 222
There's more... 223
See also 224

Table of Contents

[ix]

Chapter 6: Monitoring 225
Figuring out what to monitor 226

Getting ready 227
How to do it... 227
How it works... 227
There's more... 229

Installing and configuring Nagios 229
Getting ready 230
How to do it... 230
How it works... 232
There's more... 233
See also 234

Configuring Nagios to monitor a database host 234
Getting ready 235
How to do it... 236
How it works... 237
There's more... 239
See also 240

Enhancing Nagios with Check_MK 240
Getting ready 240
How to do it... 241
How it works... 242
There's more... 244
See also 244

Getting to know check_postgres 244
Getting ready 245
How to do it... 245
How it works... 247
There's more... 248
See also 248

Installing and configuring Telegraf 249
Getting ready 249
How to do it... 249
How it works... 250
See also 251

Adding a custom PostgreSQL monitor to Telegraf 251
Getting ready 252
How to do it... 252
How it works... 254
There's more... 255
See also 256

Installing and configuring InfluxDB 256
Getting ready 257
How to do it... 257
How it works... 258

Table of Contents

[x]

There's more... 260
See also 261

Installing and configuring Grafana 261
Getting ready 261
How to do it... 262
How it works... 262
See also 265

Building a graph in Grafana 265
Getting ready 265
How to do it... 266
How it works... 268
See also 271

Customizing a Grafana graph 271
Getting ready 271
How to do it... 271
How it works... 273
There's more... 275
See also 276

Using InfluxDB tags in Grafana 276
Getting ready 277
How to do it... 277
How it works... 278
There's more... 279
See also 280

Chapter 7: PostgreSQL Replication 281
Deciding what to copy 282

Getting ready 282
How to do it... 282
How it works... 283

Securing the WAL stream 284
Getting ready 285
How to do it... 285
How it works... 286
There's more... 287
See also 288

Setting up a hot standby 288
Getting ready 289
How to do it... 289
How it works... 291
See also 294

Upgrading to asynchronous replication 294
Getting ready 294
How to do it... 295
How it works... 296

Table of Contents

[xi]

There's more... 297
Cascading replication 297
Using replication slots 298
Viewing replication status on a replica 298

See also 299
Bulletproofing with synchronous replication 299

Getting ready 300
How to do it... 300
How it works... 301
There's more... 302

Being less strict 302
Being more strict 303
Enabling extreme durability 304

See also 304
Faking replication with pg_receivewal 304

Getting ready 305
How to do it... 305
How it works... 306
There's more... 307
See also 308

Setting up Slony 308
Getting ready 308
How to do it... 309
How it works... 311
There's more... 312
See also 312

Copying a few tables with Slony 313
Getting ready 313
How to do it... 313
How it works... 315
There's more... 316
See also 316

Setting up Bucardo 317
Getting ready 317
How to do it... 317
How it works... 319
See also 320

Copying a few tables with Bucardo 320
Getting ready 320
How to do it... 321
How it works... 322
See also 323

Setting up pglogical 324
Getting ready 324
How to do it... 325
How it works... 326

Table of Contents

[xii]

See also 327
Copying a few tables with pglogical 328

Getting ready 328
How to do it... 328
How it works... 330
There's more... 331
See also 332

Copying a few tables with native logical replication 332
Getting ready 332
How to do it... 333
How it works... 333
There's more... 334

No sequences 334
Tool integration 335
Keys required for UPDATE and DELETE 335

See also 336

Chapter 8: Backup Management 337
Deciding when to use third-party tools 338

Getting ready 339
How to do it... 339
How it works... 340

Installing and configuring Barman 342
Getting ready 343
How to do it... 343
How it works... 345
See also 347

Backing up a database with Barman 348
Getting ready 348
How to do it... 348
How it works... 349
There's more... 349

Retention policies 350
Parallel backup 350

See also 350
Restoring a database with Barman 351

Getting ready 351
How to do it... 351
How it works... 352
There's more... 353

Streaming replicas 353
RPO zero 354

See also 355
Obtaining Barman diagnostics and information 355

Getting ready 356
How to do it... 356

Table of Contents

[xiii]

How it works... 357
Sending Barman backups to a remote location 359

Getting ready 359
How to do it... 360
How it works... 360

Installing and configuring pgBackRest 361
Getting ready 362
How to do it... 362
How it works... 363
There's more... 365
See also 366

Backing up a database with pgBackRest 366
Getting ready 366
How to do it... 366
How it works... 367
There's more... 368

More backup types 368
Use full regularly 369

See also 369
Restoring a database with pgBackRest 369

Getting ready 370
How to do it... 370
How it works... 371
There's more... 372

Installing and configuring WAL-E 373
Getting ready 374
How to do it... 375
How it works... 376
See also 377

Managing WAL files with WAL-E 377
Getting ready 377
How to do it... 378
How it works... 378
There's more... 379

Recovering WAL files 380
Backing up the database 380
Removing old files 381

See also 381

Chapter 9: High Availability with repmgr 382
Preparing systems for repmgr 384

Getting ready 384
How to do it... 385
How it works... 386

Installing and configuring repmgr 388
Getting ready 388

Table of Contents

[xiv]

How to do it... 388
How it works... 390
See also 394

Cloning a database with repmgr 395
Getting ready 395
How to do it... 395
How it works... 396
There's more... 398

Viewing the cluster 398
Cloning from Barman 398

See also 399
Incorporating a repmgr witness 399

Getting ready 400
How to do it... 400
How it works... 402
See also 403

Performing a managed failover 403
Getting ready 404
How to do it... 404
How it works... 405
There's more... 406

Always watching 406
Testing the waters 407
Useful shortcuts 407

See also 408
Customizing the failover process 408

Getting ready 409
How to do it... 409
How it works... 410
There's more... 412
See also 412

Using an outage to test availability 413
Getting ready 413
How to do it... 413
How it works... 414
There's more... 416

Returning a node to the cluster 417
Getting ready 417
How to do it... 418
How it works... 418
There's more... 420
See also 421

Integrating primary fencing 421
Getting ready 422
How to do it... 422

Table of Contents

[xv]

How it works... 423
There's more... 425
See also 426

Performing online maintenance and upgrades 426
Getting ready 426
How to do it... 427
How it works... 428
There's more... 429
See also 431

Chapter 10: High Availability with Patroni 432
Understanding more about Patroni and its components 433

Why HAProxy? 433
Why etcd? 434
Why Patroni? 434
The stack 435

Preparing systems for the stack 435
Getting ready 436
How to do it... 436
How it works... 436
See also 437

Installing and configuring etcd 437
Getting ready 437
How to do it... 438
How it works... 440
There's more... 441
See also 442

Installing and configuring Patroni 442
Getting ready 443
How to do it... 443
How it works... 445
There's more... 449

Cluster status 449
Better service management 450

See also 451
Installing and configuring HAProxy 451

Getting ready 451
How to do it... 452
How it works... 453
See also 454

Performing a managed switchover 455
Getting ready 455
How to do it... 455
How it works... 455
There's more... 457

Using an outage to test availability 457

Table of Contents

[xvi]

Getting ready 458
How to do it... 458
How it works... 458
There's more... 459

Returning a node to the cluster 459
Getting ready 460
How to do it... 460
How it works... 460
There's more... 461

Adding additional nodes to the mix 462
Getting ready 462
How to do it... 462
How it works... 463
There's more... 465
See also 466

Replacing etcd with ZooKeeper 466
Getting ready 466
How to do it... 467
How it works... 468
There's more... 469
See also 469

Replacing etcd with Consul 469
Getting ready 469
How to do it... 470
How it works... 470
There's more... 471
See also 472

Upgrading while staying online 472
Getting ready 472
How to do it... 472
How it works... 474
There's more... 475

Chapter 11: Low-Level Server Mirroring 476
Understanding our chosen filesystem components 477

Why DRBD? 477
Why LVM? 478
Why XFS? 479
The stack 479

Preparing systems for volume mirroring 480
Getting ready 481
How to do it... 481
How it works... 482
There's more... 483
See also 484

Table of Contents

[xvii]

Getting started with the LVM 484
Getting ready 485
How to do it... 485
How it works... 486
There's more... 487
See also 488

Adding block-level replication 488
Getting ready 488
How to do it... 488
How it works... 489
See also 491

Incorporating the second LVM layer 491
Getting ready 492
How to do it... 492
How it works... 492
There's more... 493
See also 494

Verifying a DRBD filesystem 494
Getting ready 494
How to do it... 494
How it works... 495
There's more... 496
See also 496

Correcting a DRBD split brain 496
Getting ready 497
How to do it... 497
How it works... 498
See also 499

Formatting an XFS filesystem 499
Getting ready 500
How to do it... 500
How it works... 500
See also 502

Tweaking XFS performance 502
Getting ready 503
How to do it... 503
How it works... 503
There's more... 505
See also 505

Maintaining an XFS filesystem 505
Getting ready 506
How to do it... 506
How it works... 507
There's more... 508
See also 508

Table of Contents

[xviii
]

Using LVM snapshots 508
Getting ready 509
How to do it... 509
How it works... 510
See also 511

Switching live stack systems 511
Getting ready 512
How to do it... 512
How it works... 513
There's more... 514

Detaching a problematic node 514
Getting ready 514
How to do it... 515
How it works... 515
There's more... 516
See also 516

Chapter 12: High Availability via Pacemaker 517
Before we begin... 519
Installing the components 519

Getting ready 520
How to do it... 520
How it works... 520
There's more... 521
See also 522

Configuring Corosync 522
Getting ready 522
How to do it... 523
How it works... 524
See also 525

Preparing start up services 526
Getting ready 526
How to do it... 526
How it works... 527
There's more... 527
See also 528

Starting with base options 528
Getting ready 529
How to do it... 529
How it works... 529
There's more... 531
See also 531

Adding DRBD to cluster management 531
Getting ready 532
How to do it... 532

Table of Contents

[xix]

How it works... 533
There's more... 534
See also 535

Adding LVM to cluster management 535
Getting ready 536
How to do it... 536
How it works... 536
There's more... 538

Adding XFS to cluster management 538
Getting ready 539
How to do it... 539
How it works... 539

Adding PostgreSQL to cluster management 541
Getting ready 541
How to do it... 541
How it works... 542
There's more... 543

Adding a virtual IP to proxy the cluster 544
Getting ready 544
How to do it... 544
How it works... 545

Adding an email alert 546
Getting ready 546
How to do it... 546
How it works... 547

Grouping associated resources 548
Getting ready 548
How to do it... 549
How it works... 549

Combining and ordering related actions 550
Getting ready 550
How to do it... 551
How it works... 551

Performing a managed resource migration 553
Getting ready 553
How to do it... 553
How it works... 554
There's more... 555

Using an outage to test migration 556
Getting ready 556
How to do it... 557
How it works... 557
There's more... 558

Chapter 13: High Availability with Multi-Master Replication 559

Table of Contents

[xx]

Overview of multi-master 560
Deciding whether multi-master is right for you 562

Getting ready 562
How to do it... 562
How it works... 563
See also 566

Obtaining and installing BDR 566
Getting ready 567
How to do it... 567
How it works... 568
There's more... 570

Starting with a single BDR node 571
Getting ready 571
How to do it... 571
How it works... 572
There's more... 572

Creating an additional BDR node 573
Getting ready 573
How to do it... 574
How it works... 574
There's more... 576

Testing DDL replication on each node 577
Getting ready 577
How to do it... 577
How it works... 578
There's more... 578

Using sequences safely 580
Getting ready 581
How to do it... 581
How it works... 581
There's more... 583

Global allocation sequences 583
Timeshard introspection 584

See also 585
Configuring HAProxy for the multi-master approach 585

Getting ready 585
How to do it... 586
How it works... 586
There's more... 587
See also 588

Combining PgBouncer with HAProxy 588
Getting ready 588
How to do it... 589
How it works... 589

Performing a managed node switchover 590

Table of Contents

[xxi]

Getting ready 591
How to do it... 591
How it works... 591
There's more... 592
See also 593

Improving failover speed 593
Getting ready 593
How to do it... 593
How it works... 594

Performing a major version upgrade online 596
Getting ready 597
How to do it... 597
How it works... 598
There's more... 600

Chapter 14: Data Distribution 602
Identifying horizontal candidates 604

Getting ready 604
How to do it... 605
How it works... 606
There's more... 607
See also 607

Setting up a foreign PostgreSQL server 608
Getting ready 608
How to do it... 608
How it works... 609
There's more... 609

Altering foreign servers 610
Dropping foreign servers 610

See also 610
Mapping a remote user 611

Getting ready 611
How to do it... 611
How it works... 612
There's more... 613
See also 614

Creating a foreign table 614
Getting ready 614
How to do it... 614
How it works... 615
There's more... 617

Creating all tables for a foreign schema 617
Dropping foreign tables 617

See also 618
Using a foreign table in a query 618

Getting ready 619

Table of Contents

[xxii]

How to do it... 619
How it works... 619
There's more... 621

Explaining strange planner decisions 622
Improvements in PostgreSQL 9.6 622
Improvements in PostgreSQL 10 623
Improvements in PostgreSQL 11 623

Optimizing foreign table access 623
Getting ready 624
How to do it... 624
How it works... 625
There's more... 626

Transforming foreign tables into local tables 626
Getting ready 627
How to do it... 627
How it works... 628
There's more... 629
See also 630

Creating a scalable nextval replacement 630
Getting ready 631
How to do it... 632
How it works... 633
There's more... 634

Building a sharding API 635
Getting ready 635
How to do it... 635
How it works... 636
There's more... 637

shard_manager extension 637
Citus 638
Postgres-XL 638
BDR AutoScale 638

See also 639
Talking to the correct shard 639

Getting ready 640
How to do it... 640
How it works... 641
There's more... 642

Keeping things fast by creating a cache 642
Choosing an application data to map logical shard 642

Moving a shard to another server 643
Getting ready 644
How to do it... 644
How it works... 645
There's more... 646

Table of Contents

[xxiii]

Chapter 15: Zero-downtime Upgrades 647
Preparing upgrade requirements 648

Getting ready 648
How to do it… 649
How it works… 649

Remembering PgBouncer and pglogical 651
Getting ready 651
How to do it… 652
How it works… 652
There's more… 653
See also 653

Creating a publication set 654
Getting ready 654
How to do it… 654
How it works… 656
There's more… 658

Handling sequences 658
Getting ready 658
How to do it… 659
How it works… 659
There's more… 660

Bootstrapping the target cluster 660
Getting ready 660
How to do it… 661
How it works… 662
There's more… 663

Starting the subscription 664
Getting ready 664
How to do it… 664
How it works… 665
There's more… 666

Monitoring progress 667
Getting ready 667
How to do it… 668
How it works… 668
There's more… 670
See also 671

Switching targets 672
Getting ready 672
How to do it… 672
How it works… 673
There's more… 675

Cleaning everything up 676
Getting ready 676
How to do it… 677

Table of Contents

[xxiv]

How it works… 677

Other Books You May Enjoy 680

Index 683

Preface
Database outages are costly and largely avoidable. This book will help you design
and build an indestructible PostgreSQL 12 cluster that can remain online even in the
most dire circumstances.

From cluster layout and hardware selection to software stacks and horizontal
scalability, this book will help you build a versatile PostgreSQL cluster that will
survive crashes, resist data corruption, and grow smoothly with customer demand.
Configuration, troubleshooting, monitoring and alerting, backups, replication,
decoupling through proxies, failover automation, horizontal scaling, upgrades, and
several other considerations are all part of a healthy PostgreSQL cluster. By the end of
this book, you will have learned all the new features of PostgreSQL 12 to help you
build a more efficient and adaptive database.

Who this book is for
PostgreSQL administrators and developers who wish to build and maintain a highly
reliable PostgreSQL cluster will find this book to be an extremely useful resource.

What this book covers
Chapter 1, Architectural Considerations, explains how the layout of the nodes in our
PostgreSQL cluster can drastically influence its availability.

Chapter 2, Hardware Planning, explains the selection and provisioning of hardware
required to build a highly available PostgreSQL database.

Chapter 3, Minimizing Downtime, explains how we should react when outages
inevitably occur and how to prepare ourselves for them.

Chapter 4, Proxy and Pooling Resources, explains how to combine and abstract
connectivity to isolate and protect the database.

Chapter 5, Troubleshooting, covers several techniques to track sources of poor
performance or stop potential outages before they occur.

Preface

[2]

Chapter 6, Monitoring, focuses on what we should monitor, how often we should
check system status, and how to present the data for easy consumption. We will learn
how to effectively monitor PostgreSQL's server status and database performance.

Chapter 7, PostgreSQL Replication, shows how to utilize PostgreSQL replication as
well as third-party table synchronization tools. We will learn several methods to copy
entire databases or individual tables.

Chapter 8, Backup Management, shows where to turn when backing up large
PostgreSQL clusters becomes a concern. This chapter will help ensure backups not
only fulfill their stated role but are also reliable, fast, and efficient.

Chapter 9, High Availability with repmgr, discusses all the capabilities so that we can
construct a fully automated high-availability stack. This chapter is dedicated to
building a fully automated high-availability stack using the repmgr replica and
cluster management tools by 2ndQuadrant.

Chapter 10, High Availability with Patroni, explains how to build a quick, yet
adaptable, high-availability stack to keep our PostgreSQL servers online.

Chapter 11, Low-Level Server Mirroring, shows how to build and manipulate a fault-
tolerant, high-performance foundation for our PostgreSQL clusters.

Chapter 12, High Availability via Pacemaker, shows how to automate cluster
management and ensure high availability. This chapter covers Corosync and
Pacemaker and the steps to manage dual-node servers with this software.

Chapter 13, High Availability with Multi-Master Replication, explains how multiple
writable PostgreSQL nodes affect the concept of high availability. This chapter
explores the inherent limitations of multi-master database technology as applied to
PostgreSQL, as well as how to best utilize it to maximize application availability.

Chapter 14, Data Distribution, shows how clever data management can increase
uptime even further.

Chapter 15, Zero Downtime Upgrades, explains how to upgrade a cluster while
remaining fully online.

Preface

[3]

To get the most out of this book
This book concentrates on Unix systems with a focus on Linux in particular. Such
servers have become increasingly popular for hosting databases for large and small
companies. As such, we highly recommend that you use a virtual machine or
development system running a recent copy of Debian, Ubuntu, Red Hat Enterprise
Linux, or a variant such as CentOS or Scientific Linux.

You will also need a copy of PostgreSQL. If your chosen Linux distribution isn't
keeping the included PostgreSQL packages sufficiently up to date, the PostgreSQL
website maintains binaries for most popular distributions. You can find them
at https://www. postgresql. org/ download/ .

Users of Red Hat Enterprise Linux and its variants should refer to the following URL
to add the official PostgreSQL YUM repository to important database
systems: https:/ /yum. postgresql. org/ repopackages. php.

Users of Debian, Ubuntu, Mint, and other related Linux systems should refer to the
PostgreSQL APT wiki page at this URL instead: https:/ /wiki. postgresql. org/
wiki/Apt.

Be sure to include any contrib packages in your installation. They include helpful
utilities and database extensions that we will use in some recipes.

Users of BSD should still be able to follow along with these recipes. Some commands
may require slight alterations to run properly on BSD. Otherwise, all commands have
been confirmed to work on Bash and recent GNU tools.

Download the color images
We also provide a PDF file that has color images of the screenshots/diagrams used in
this book. You can download it here: https:/ /static. packt- cdn. com/ downloads/
9781838984854_ ColorImages. pdf.

Conventions used
There are a number of text conventions used throughout this book.

CodeInText: Indicates code words in text, database table names, folder names,
filenames, file extensions, pathnames, dummy URLs, user input, and Twitter handles.
Here is an example: "The Environment column has another goal related to physical
separation."

https://www.postgresql.org/download/
https://www.postgresql.org/download/
https://www.postgresql.org/download/
https://www.postgresql.org/download/
https://www.postgresql.org/download/
https://www.postgresql.org/download/
https://www.postgresql.org/download/
https://www.postgresql.org/download/
https://www.postgresql.org/download/
https://www.postgresql.org/download/
https://www.postgresql.org/download/
https://www.postgresql.org/download/
https://yum.postgresql.org/repopackages.php
https://yum.postgresql.org/repopackages.php
https://yum.postgresql.org/repopackages.php
https://yum.postgresql.org/repopackages.php
https://yum.postgresql.org/repopackages.php
https://yum.postgresql.org/repopackages.php
https://yum.postgresql.org/repopackages.php
https://yum.postgresql.org/repopackages.php
https://yum.postgresql.org/repopackages.php
https://yum.postgresql.org/repopackages.php
https://yum.postgresql.org/repopackages.php
https://yum.postgresql.org/repopackages.php
https://yum.postgresql.org/repopackages.php
https://wiki.postgresql.org/wiki/Apt
https://wiki.postgresql.org/wiki/Apt
https://wiki.postgresql.org/wiki/Apt
https://wiki.postgresql.org/wiki/Apt
https://wiki.postgresql.org/wiki/Apt
https://wiki.postgresql.org/wiki/Apt
https://wiki.postgresql.org/wiki/Apt
https://wiki.postgresql.org/wiki/Apt
https://wiki.postgresql.org/wiki/Apt
https://wiki.postgresql.org/wiki/Apt
https://wiki.postgresql.org/wiki/Apt
https://wiki.postgresql.org/wiki/Apt
https://static.packt-cdn.com/downloads/9781838984854_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781838984854_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781838984854_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781838984854_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781838984854_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781838984854_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781838984854_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781838984854_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781838984854_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781838984854_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781838984854_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781838984854_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781838984854_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781838984854_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781838984854_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781838984854_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781838984854_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781838984854_ColorImages.pdf

Preface

[4]

A block of code is set as follows:

[global]
repo1-host=pg-primary
repo1-host-user=postgres
repo1-path=/var/lib/pgbackrest
repo1-retention-full=1
start-fast=y

Any command-line input or output is written as follows:

sudo yum install pgbackrest

Bold: Indicates a new term, an important word, or words that you see onscreen. For
example, words in menus or dialog boxes appear in the text like this. Here is an
example: "Select System info from the Administration panel."

Warnings or important notes appear like this.

Tips and tricks appear like this.

Sections
In this book, you will find several headings that appear frequently (Getting ready, How
to do it..., How it works..., There's more..., and See also).

To give clear instructions on how to complete a recipe, use these sections as follows:

Getting ready
This section tells you what to expect in the recipe and describes how to set up any
software or any preliminary settings required for the recipe.

How to do it…
This section contains the steps required to follow the recipe.

Preface

[5]

How it works…
This section usually consists of a detailed explanation of what happened in the
previous section.

There's more…
This section consists of additional information about the recipe in order to make you
more knowledgeable about the recipe.

See also
This section provides helpful links to other useful information for the recipe.

Get in touch
Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, mention the
book title in the subject of your message and email us at
customercare@packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our content,
mistakes do happen. If you have found a mistake in this book, we would be grateful if
you would report this to us. Please visit www.packtpub.com/support/errata,
selecting your book, clicking on the Errata Submission Form link, and entering the
details.

Piracy: If you come across any illegal copies of our works in any form on the Internet,
we would be grateful if you would provide us with the location address or website
name. Please contact us at copyright@packt.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have
expertise in and you are interested in either writing or contributing to a book, please
visit authors.packtpub.com.

https://www.packtpub.com/support/errata
http://authors.packtpub.com/

Preface

[6]

Reviews
Please leave a review. Once you have read and used this book, why not leave a
review on the site that you purchased it from? Potential readers can then see and use
your unbiased opinion to make purchase decisions, we at Packt can understand what
you think about our products, and our authors can see your feedback on their book.
Thank you!

For more information about Packt, please visit packt.com.

http://www.packt.com/

1
Architectural Considerations

In many ways, database server architecture is treated as a mere afterthought. It's often
much easier to simply create a single node, install some software, and consider the
whole affair resolved. If a company is particularly paranoid, they may even spare
some thought for a replica server, or perhaps some kind of backup.

The true importance of database cluster architecture is easily overlooked as a result.
But what is server architecture? Why does it matter?

Look down the street. Any street is fine. What do you see? Homes, offices, and
buildings of various descriptions. With very rare exceptions, each one of these was
meticulously planned, from the foundation to the walls to the electrical wires, pipes,
up to the roof and drainage systems. A failure in any of these components could lead
to the ultimate demise of the entire structure, given enough time.

The same also applies to a PostgreSQL cluster! Database architecture
defines what goes into a database server cluster, and the reason for each element. How
does it communicate? How many nodes are required? Where do we put those nodes,
and why? What common problems are inherent in those decisions? How will our
decisions influence the underlying cost? What trade-offs can we make, given some
important constraints? How does all of this affect data availability? We need those
answers before we even consider hardware or virtualization. There are many
important considerations we must entertain when designing a highly available
PostgreSQL cluster.

Why then is it so common for critical application and user data that drives the entire
application stack behind the company itself to be treated so callously? We direct so
much attention and focus on the application, with its various layers of indirection,
queues, caches, container automation, and microarchitecture, that the data layer is
overlooked or considered a nuisance.

Architectural Considerations Chapter 1

[8]

This is actually highly understandable. In most cases, a PostgreSQL database layer
demands an entirely different approach that development, system administration,
and other information technology fields may not be entirely familiar with managing.
Even experienced database administrators may not comprehend the scale and
necessary theoretical concepts that drive the high availability of databases.

While we can't reduce the subtle art of database server architecture to a few
memorable quips sure to entertain at parties, we can make the subject far
more approachable. It shouldn't be necessary to have a Ph.D. in abstract theoretical
frameworks to prevent a costly database outage.

In this chapter, we will learn how the layout of the nodes in our PostgreSQL cluster
can drastically influence its availability. We will cover the following recipes:

Setting expectations with RPO
Defining timetables through RTO
Picking redundant copies
Selecting locations
Having enough backups
Considering quorum
Introducing indirection
Preventing split brain
Incorporating multi-master
Leveraging multi-master

Setting expectations with RPO
RPO is a common term in business continuity known as Recovery Point Objective.
In the context of a database system, it describes the amount of data that may be lost
following an unexpected outage before it is once again operational. It's important to
understand this at an early stage because it will drive decisions such as node count,
data synchronization methods, and backup technologies.

In this recipe, we will examine the ingredients for concocting a comprehensive RPO
that will influence the PostgreSQL cluster composition itself.

Architectural Considerations Chapter 1

[9]

Getting ready
The first thing we need to do is set expectations. These are most often defined by
upper management or some other decision-making entity. Data loss is never desirable
but is unavoidable in catastrophic scenarios. How much data loss can the business
tolerate under these circumstances? Seconds, minutes, or hours' worth?

This recipe will mainly focus on information gathering from key individuals, so make
sure it's possible to at least email anyone involved with the application stack.
Hardware purchases depend on budget proposals, so it may even be necessary to
interact with VP and C-level executives as well. Even if we don't do this right away,
try to determine the extent of influence available to you.

How to do it...
Since we're dealing with many vectors, we should iterate them if possible. Try to
follow a process like this:

Seek the input of major decision makers:1.

VP and C-level executives involved with technology
Product manager
Application designers and architects
Infrastructure team lead

Find an amount of time that will satisfy most or all of the above.2.
Follow the rest of the advice in this chapter to find a suitable architecture.3.
Try to determine a rough cost for this and the closest alternative.4.
Present one or more designs and cost estimates to decision makers.5.
Document the final RPO decision and architecture as reference material.6.

Architectural Considerations Chapter 1

[10]

How it works...
Decision makers such as the technology VP, CEO, CTO, and such are the final word
in most cases. Their input is vital and should be considered a requirement before ever
taking a step further. Keep in mind that these people are likely not familiar with the
technical feasibility of their demands at this extreme implementation level. When
asked a question such as How much data can we lose in a major outage? they're probably
going to say None! Regardless, this is a vital first step for reasons that will shortly
become apparent.

Then, we simply traverse the stack of people who helped define the features the
application stack fulfills, those who designed and implemented it, and whoever may
be in charge of the requisite hardware and network where everything runs. Perhaps
the design has a built-in tolerance for certain amounts of loss. Perhaps inherent
queues or caches act as a sort of buffer for data backend difficulties. Maybe the design
assumes there are multiple data systems all ingesting the same stream for
redundancy. The architecture and those who built it are the best sources of this
information.

Once we know the maximum amount of data the backend can lose before being
restored, we must apply what we learn from the rest of this chapter and choose one or
two best-case designs that can deliver that promise. The point here is that we will be
executing this recipe several times until everyone agrees to all inherent design costs
and limitations before continuing.

The best way to estimate cost is to take the chosen database server architectures and
iterate a gross cost for each element. The next chapter on Hardware Planning describes
in detail how to do this. We don't have to be exact here; the goal is to have some
numbers we can present to decision makers. Do they still want zero RPO if it costs
10x as much as ten seconds of data loss? Are they willing to compromise on a hybrid
design?

Once we have chosen a final structure, possibly the most important step is to produce
a document describing that architecture, why it was chosen, the known limitations,
and the RPO it delivers. Present this document to decision makers and encourage
them to sign it if possible. Save it in any corporate documentation management
system available, and make sure it's one of the first things people see regarding the
database cluster layer. This document will single-handedly answer multiple questions
about the capabilities of the database cluster, all while acting as a reference
specification.

Architectural Considerations Chapter 1

[11]

There's more...
RPO is considered a vital part of business continuity planning. Entire books have
been written on this subject, and what we've presented here is essentially a functional
summary. The subject is deep and varied, rich with its own inherent techniques
beyond simply architecture and design. It is the language of business and resource
management, so it can be a key component when interacting with decision makers.

Learning these concepts in depth can help influence the overall application stack to a
more sustainable long-term structure. We'll cover more of these techniques in this
chapter, but don't be afraid to proactively incorporate these techniques into your
repertoire.

Defining timetables through RTO
Like RPO, RTO refers to a common business continuity term known as Recovery
Time Objective. In practice, this is the amount of time an outage of the database layer
may last. Often, it is incorporated into a Service Level Agreement (SLA) contract
presented to clients or assumed as a metric within the application stack. Like RPO,
this is a contractual-level element that can determine the number of required nodes at
steadily increasing expense as the amount of tolerable downtime decreases.

In this recipe, we will examine the necessary steps to defining a realistic RTO, and
what that could mean given known industry standards.

Getting ready
As with RPO, our goal in determining a functional RTO is to set expectations
regarding inherent architecture limitations. The primary difference here is that RTO is
more easily quantifiable. Fire up your favorite spreadsheet program, such as
OpenOffice, Microsoft Excel, or Google Sheets; we'll be using it to keep track of how
much time each layer of the application, including the database layer contributes to a
potential outage scenario.

Architectural Considerations Chapter 1

[12]

How to do it...
We simply need to produce a spreadsheet to track all of the elements of known RTO
that depend on the database. We can do this with the following steps:

Locate an already-defined RTO SLA for each portion of the application1.
dependent on PostgreSQL if possible.
If this does not exist, seek the input of major decision makers:2.

VP and C-level executives involved with technology
Product manager
Application designers and architects
Infrastructure team lead

Find an amount of time that will satisfy most or all of the above.3.
Create a new spreadsheet for RTO.4.
Create a heading row with the following columns:5.

Activity

Time (seconds)

Count

Total (seconds)

In the Total column, create the following formula:6.

=B2*C2

Create one row for each type of the following Activity categories:7.

Minor Upgrade

Major Upgrade

Reboot

Switchover

Failover

OS Upgrade

Etc.

Copy and paste the formula into the Total column for all the rows we8.
created.

Architectural Considerations Chapter 1

[13]

At the bottom of the Total column, after all relevant rows (row 21, for9.
example), create the following formula:

=SUM(D2:D20)

Ensure that the end result looks something like the following screenshot:10.

Follow the rest of the advice in this chapter to find a suitable architecture.11.
Try to determine a rough cost for this and the closest alternative(s).12.
Present the design and cost estimates to decision makers.13.
Document this final RTO decision and architecture as reference material.14.

How it works...
In order to see where our PostgreSQL cluster fits company expectations, we need to
know whether the company and each individual part of the existing application stack
has an overall target RTO. If it doesn't, it's our job to approximate one. This means
contacting any decision-makers, product owners, architects, and so on, to know what
RTO target we're trying to attain and how other resources may contribute. These will
act as a type of maximum value we can't exceed.

Keep in mind that RTO values tend to be amplified between layers.
If our RTO is higher than some portion of the application stack, that
will necessarily raise the RTO of that layer as well, which may
increase the RTO of each subsequent layer. This is the exact scenario
we're trying to avoid.

Once we have an RTO expectation, we need to examine how possible it is to fall
under that target. The easiest way to accomplish this is to build a spreadsheet that
essentially consists of a list of dependencies, maintenance tasks, or other occurrences
related to PostgreSQL.

Architectural Considerations Chapter 1

[14]

The rows we used for Activity are mainly suggestions, and producing an
exhaustive list is generally dependent on the architecture to a certain extent.
However, all software requires upgrades, machines need to be rebooted, switchover
tests to prove high availability functionality may be required, past experience with
the full application stack and hardware may imply two unexpected outages per year,
and so on. Each of these will contribute to the cumulative RTO for PostgreSQL which
we can use as a reference value.

The number we use for the Count column should be the number of times the
Activity happens on a yearly basis. As an example, PostgreSQL has a quarterly
release schedule for non-critical bug and security enhancements. If you want to
follow along with these, it could make sense to set the Count column of Minor
Upgrade to 4.

A number of architectural examples that we'll discuss later in this
chapter will make it possible to set the Time column to 0 for some
actions, or at least to a much lower value. We'll discuss these where
relevant. This is also one of the reasons we'll need to execute this
recipe multiple times when deciding on an appropriate architecture.

Once we have accounted for as many foreseeable Action components that may be
necessary over the course of a year, we'll have a cumulative total that may represent
the RTO that PostgreSQL can achieve for a given architecture. As a sanity check, we
should compare that value to the lowest RTO for any parts of the application stack
that depend on PostgreSQL. It's important we don't exceed this target.

Then, as with RPO, we need to present the possible RTO to decision-makers so that it
can be integrated into the overall company RTO. To do that, we must continue with
the rest of the chapter to find one or two architectures with either higher or lower
expected RTO, estimate the cost of each, and work on a suitable compromise.

Deriving an appropriate RTO may require multiple iterations of this recipe, from
estimation, architecture selection, presenting it to appropriate parties, and so on. This
isn't a fast or simple process, and it pays to get it right early. We need to know how
many PostgreSQL nodes to purchase, where each will reside, how we switch to
alternatives, how much time each step may take, and so on.

There's more...
Besides what we discussed in the main recipe, there are other RTO concepts we
would like to explore.

Architectural Considerations Chapter 1

[15]

This may seem familiar
Believe it or not, it's very likely you've encountered this concept without even
realizing it. Internet service providers or application hosts often advertise how many
9s of availability their platform can maintain. It's often presented as a chart like this:

Uptime (%) Daily Weekly Monthly Yearly
99 14m 24s 1h 40m 48s 7h 18m 18s 3d 15h 39m 30s

99.9 1m 26s 10m 5s 43m 50s 8h 45m 57s
99.99 8.6s 1m 1s 4m 23s 52m 36s
99.999 0.9s 6s 26.3s 5m 16s

As you can imagine, it's generally more desirable to stay toward the higher end of 9s
to minimize downtime. On the other hand, this is highly restrictive, as Five 9s only
allows just over five minutes of downtime over the course of an entire year. This
doesn't leave much room for database maintenance tasks or unexpected outages at
any other layer of the stack.

Node counts
Generally, the more nodes we have, the lower our RTO will be. It may make sense to
start with an initial estimate spreadsheet, and then create another for each
architecture or variant that seems applicable. This will make it easier to rank the
monetary cost and associated RTO for each. This may influence the final decision, and
hence make it easier to track what options we may have.

Picking redundant copies
How many database servers should any architecture have as part of the inherent
design? There are several factors that contribute to this answer, including the design
of the final architecture itself. The number of redundant data copies ultimately
determines how many nodes must exist, irrespective of whether we require more
data centers, irrespective of whether we should account for latency, and so on.

The goal in this recipe is to consult our needs to derive a node count that won't break
the bank, but still deliver the level of availability we want. In other words, aside from
our primary data node, we will explain how to figure out the number of redundant
data nodes necessary to adequately represent the entire cluster safely and ensure high
availability.

Architectural Considerations Chapter 1

[16]

Getting ready
Luckily, this recipe is a simple counting exercise. The only necessary elements are a
healthy imagination and perhaps some idea of the budgetary constraints before we
begin. Just consider that, for any of our reference designs, we will always require
more than one server node as a minimum.

How to do it...
Observe the following steps when considering node counts driven by high
availability architectures:

Always add one separate server for backups.1.
Always allocate one server for a logical or physical replica.2.
For automated failover, allocate the following:3.

An additional small VM / node to act as a voter
OR a fully qualified replica

For every active data center beyond the first two, allocate one replica.4.
If non-local data access latency is a concern, allocate the following:5.

An additional replica in the primary location
An additional replica in each location for symmetric clusters

How it works...
Why do we demand at least one backup server? The full answer to this question
actually has its own recipe in this chapter. However, catastrophic failure is a fact of
life and we must be ready for such an event. Even if the separate server is not a fully
operational PostgreSQL node, it must exist and should be part of the reference design.

Likewise, we must have at least one PostgreSQL replica. Some of our designs work
with either physical or logical replicas, so we won't differentiate between them here.
Simply assume that every highly active PostgreSQL cluster must have at least two
nodes that can fulfill the role of a primary database. Backups take time to restore,
whereas replicas are generally writable in a minute or less.

Architectural Considerations Chapter 1

[17]

One replica only really covers the case where switching from one PostgreSQL node to
the alternate is a manual procedure. Fully automated failure detection mechanisms
require an odd number of nodes for voting purposes. This third node can either be a
mere voting entity, or a full PostgreSQL replica. We cover this in greater depth in the
Considering quorum recipe.

Once we start accounting for multiple geographic locations at different data centers,
things don't change exceptionally. By now, we have at least one PostgreSQL replica
that is probably at the first alternate location. If we have three or more active data
centers where the application is using PostgreSQL, we'll want a local replica for each.

Then, consider the implications of limiting ourselves to merely one PostgreSQL node
per location. This means any minor upgrade or other maintenance task will mean
switching to an alternate data center while the maintenance is active. This can
introduce unwanted latency that will affect the application. To reduce this, add one
replica to the primary location to account for this effect. For symmetrical data centers
that have no primary location, add a PostgreSQL replica to each location for the same
reasons.

As a quick example, consider two scenarios. Our first company (Company A) only
uses two data centers, and doesn't need automated database failover, nor is it
necessary to worry about downtime caused by minor upgrades. In this case, they
decided to use two PostgreSQL servers and a backup system. This is a minimum of
three nodes related to PostgreSQL, and their cluster looks like this:

Company A

In the second case (Company B), we have a much more demanding financial
institution that requires all three of their data centers to be active at all times. They
chose to have one Primary PostgreSQL server, two Replicas per data center, a
Witness node, and a Backup server. In that extreme case, they used a total of eight
nodes dedicated to PostgreSQL.

Architectural Considerations Chapter 1

[18]

Their cluster would look like this:

Company B

Nodes denoted here are specifically meant to be running
PostgreSQL. Architectures discussed in this chapter will include
various abstraction layers and, as a result, will likely require even
more nodes in the cluster. PostgreSQL nodes tend to be much larger
and do far more work, so are the focus of this recipe.

There's more...
Chosen node counts will naturally suggest certain architectures over others. The
reason we're performing this recipe so early is to get an idea of compatible
architectures. It may be necessary to revise these counts once we learn information
from other recipes in this chapter.

Selecting locations
Once we've decided how many PostgreSQL nodes to allocate in our cluster, where
should we put them? Generally, this is easy to answer, but there are some subtleties
we need to consider as well. A truly high availability cluster can resist many
different types of failure, including where the servers themselves reside.

In this recipe, we will learn all about the ways separate geographical locations can
affect our chosen design.

Getting ready
It's time to start drawing diagrams. Find your favorite drawing program, such as
Visio, Dia, or Draw.io, or a convenient sheet of paper or whiteboard.

Architectural Considerations Chapter 1

[19]

Keep in mind that the ideal design may require more data centers than the company
currently utilizes. In these cases, it may be possible to supply sufficient justification to
contract at least one more location if it benefits the RPO or RTO. Hence, we
recommend following the Setting expectations with RPO recipe and Defining timetables
through RTO recipe before continuing here.

How to do it...
Consider these basic guidelines while thinking about how many data centers are
necessary, and which nodes should be placed in each:

If data must be available in case of a site outage, use one additional1.
location.
Always place the backup in a separate location if possible.2.
If two locations are in the same general geographical area, use one3.
additional location at least 100 miles (160 km) away.
If automated failover is desirable, consider at least three data centers.4.
Place one PostgreSQL server (or witness) in each location.5.
Continue placing PostgreSQL servers evenly until the count is exhausted.6.
Try to place witness servers in a location that is unlikely to lose contact7.
with more than one location simultaneously.

How it works...
Let's consider an extreme example to explain how this works: a financial institution
wants to place six PostgreSQL nodes, one witness server, and a backup system. This
would clearly be a silly design, as shown in the following diagram:

This places every node in a single location that could lose its connection to the
internet, lose power, or suffer some other catastrophe that would render the entire
database stack unusable or even destroyed.

Architectural Considerations Chapter 1

[20]

Now, let's apply the guidelines. First of all, we want to protect the backup; let's place
that elsewhere, as seen in this following diagram:

Now, one PostgreSQL server and the backup are safe in case something happens to
the first data center. Now of course, we have a new problem: what happens if
Chicago itself is somehow isolated from the rest of the internet. Though incredibly
rare, major internet backbone outages like this are possible.

So, let's add a third data center in Dallas. This allows us to actually follow three
separate rules. We can move the backup to that remote location so it's even safer. We
can relocate at least one more PostgreSQL server to that data center as well, so it acts
as an alternate in case Chicago becomes unavailable. And finally, we have three data
centers, so it's possible to safely use automated failover.

Recipes later in this chapter will explain why we keep insisting that
safety comes in odd numbers. For now, just keep it in mind when
considering the design.

With these revisions, our cluster looks more like the following diagram:

The only remaining rules suggest that our node distributions should be more even,
and that the witness should be less likely to lose contact with more than one location
at once. This means we need to move a couple more of our nodes to the other data
centers. But what about the witness node? It's actually best to leave it in the second
Chicago location. If Chicago is separated from Dallas, the witness is still at least in
another data center, and is less likely to lose contact with Chicago, thereby preserving
its voting abilities.

Architectural Considerations Chapter 1

[21]

Given we're discussing a large financial institution that likely has access to multiple
data centers, perhaps there's an even better solution. Following one final node
reorganization, the cluster probably looks more like this diagram:

Now, we can utilize three data centers that are relatively diverse in their geographic
isolation. This may appear to be an extreme case, but is merely illustrative of the
process we recommend to ensure that the overall state of the cluster is as safe as
possible.

There's more...
As database sizes increase, sometimes having only a single offsite backup as the only
recovery source can be somewhat inconvenient. Not only do we have to wait to copy
data from the backup location, but potentially any related time to restore the database
instance to working order, and any further recovery steps.

In these cases, it's reasonable and even suggested to maintain a backup server at each
major data center. This can be done by backing up a local replica, or by using some
other kind of filesystem copy or distribution mechanism synchronizing between the
locations.

See also
Please refer to this short list of companies that offer virtual hosting to use as quick
supplementary data center locations:

Amazon AWS: https://aws.amazon.com/
Rackspace: https://www.rackspace.com/
Microsoft Azure: https://azure.microsoft.com/en-us/
Google Cloud: https://cloud.google.com/
Linode: https://www.linode.com/

https://aws.amazon.com/
https://www.rackspace.com/
https://azure.microsoft.com/en-us/
https://cloud.google.com/
https://www.linode.com/

Architectural Considerations Chapter 1

[22]

Additionally, diagram software is various and widely available. Here are some of our
favorites:

Draw.io: https://www.draw.io/
Visio: https://office.live.com/start/Visio.aspx?auth=2&nf=1
Dia: http:/ /dia- installer. de/

Having enough backups
Database backups are a crucial component to any architecture, and should be
considered a required part of the central design. The only real question in most cases
is: how many backups? All highly available clusters account for relevant backup
copies, lest the cluster itself is lost.

In this recipe, we'll cover one simple set of rules to provide an answer.

Getting ready
This is very important, so write it down if necessary. Put it in company
documentation if possible.

How to do it...
When considering how many backups to allocate, follow the 3-2-1 backup rule, which
consists of these elements:

Keep at least three copies of your data.1.
Store two copies on different devices.2.
Keep at least one copy offsite.3.

Take note that many things may qualify as a copy, including PostgreSQL replicas,
and the original data itself.

https://www.draw.io/
https://office.live.com/start/Visio.aspx?auth=2&nf=1
http://dia-installer.de/
http://dia-installer.de/
http://dia-installer.de/
http://dia-installer.de/
http://dia-installer.de/
http://dia-installer.de/
http://dia-installer.de/
http://dia-installer.de/
http://dia-installer.de/
http://dia-installer.de/

Architectural Considerations Chapter 1

[23]

How it works...
Notice how we don't really recommend a specific backup method, how it should be
stored, or how filesystem-based features might contribute. All of those things are
implementation details and don't matter as much as the rules themselves.

Consider the first rule: keep at least three copies of your data. Since our PostgreSQL
instance is the first copy, we need two more. What might these two be? Could we use
one replica and a backup? Maybe we could use two replicas? Perhaps, but let's
examine the remaining rules first.

Imagine we've produced a PostgreSQL backup, and it's stored on our primary server
and the same filesystem as the database instance. What happens if that storage device
is damaged or destroyed? Now, we've lost the database and the backup.

That naturally leads to the second rule: store two copies on different devices. It's fine
to retain a copy on the local PostgreSQL server and even the same physical storage
device, provided we store a copy of the backup on a device that won't be lost
simultaneously. Store another copy of the backup on a second physical device. This
can be a separate set of storage drives, a SAN, a shared NFS filesystem, or anything
else, so long as it's separate from the database itself.

Be wary of relying on shared infrastructure for following the second
rule. If we have two separate LUNs from the same SAN mounted on
our database server for PostgreSQL and the backup, this means
nothing if the SAN itself is lost. If possible, try to ensure that the
backup is actually on a physically distinct device.

So, to fulfill the second rule, we merely need to ensure that the second copy of our
PostgreSQL instance is on another device. This is most easily done by creating a
replica on another server, or a VM hosted on a different hypervisor. That's two copies
of the data.

Finally there's rule three: keep at least one copy offsite. This is the third copy of our
data, and it's best to place it somewhere that's immune from a catastrophic failure of
the data center itself. In limited circumstances, it may be safe enough to place the
backup on a server in another rack of the same data center, but why take the risk?

Architectural Considerations Chapter 1

[24]

There are ample cloud providers, vault systems, and cheap storage services that can
fill the role of hosting the third and final copy of our data. If we have our own second
data center, that's an easy choice of venue. If not, it's important to select, allocate, and
designate some tertiary location that won't be lost if the worst happens. This third
data copy is an insurance policy, and it doesn't even have to be easily available. As
long as we can obtain the backup upon request, that fits the minimum requirement.

There's more...
There's one important corollary here. PostgreSQL replicas tend to immediately reflect
every change made to the primary node. What happens if someone accidentally
drops a table? In this case, the 3-2-1 rule by itself is not sufficient. Relying on replicas
alone means we've permanently lost this data.

Thus, we strongly recommend the following additional rule: At least one copy must
be a true backup.

Databases such as PostgreSQL are equipped with Point-In-Time-Recovery (PITR),
which allows the user to start with any past backup and apply changes until it
reaches a specific point where recovery is stopped. This lets us recover a backup to
the point before a table was damaged or removed, capture the desired contents, and
reintroduce them into the original database. This can only be done with a real binary-
level backup, and there are multiple tools dedicated to performing this task. This
book even contains a chapter dedicated to Backup Management.

See also
To make the 3-2-1 rule easier to follow, consider the following long-term storage
solutions:

Amazon Glacier: https://aws.amazon.com/glacier/
Backblaze: https://www.backblaze.com/
Azure Backup: https://azure.microsoft.com/en-us/services/backup/
Google Cloud Storage: https://cloud.google.com/storage/

https://aws.amazon.com/glacier/
https://www.backblaze.com/
https://azure.microsoft.com/en-us/services/backup/
https://cloud.google.com/storage/

Architectural Considerations Chapter 1

[25]

Considering quorum
Quorum can best be explained by imagining any voting system. It's a result of trusted
consensus and relies on multiple implementations backed by dissertation and
quantitative study. The most common way to guarantee a quorum for a PostgreSQL
cluster is by utilizing a witness node. This exists only to vote and observe the state of
the cluster. This helps us reach maximum availability by guaranteeing there's always
an active primary node.

In this recipe, we'll examine why it's important to apply the concept of quorum to our
PostgreSQL cluster, and how we may do so.

Getting ready
The primary criteria for establishing a quorum is that we must satisfy the capability
for avoiding tie votes, also known as establishing consensus. Basically, this means we
must have an odd number of PostgreSQL nodes within our cluster such that there's
always a majority. We should already have a preliminary node count by working
through previous recipes in this chapter, in particular, the Picking redundant
copies recipe and the Selecting locations recipe.

That being said, the concept of quorum is only necessary in clusters that intend to
provide automated failover capabilities. If this is not going to be a feature of the end
architecture, this recipe may be skipped.

How to do it...
Once we have an initial node count, we should apply these guidelines to adjust the
total count and node distribution:

If the initial PostgreSQL node count is even, add one witness node.1.
If the initial PostgreSQL node count is odd, convert one replica into a2.
witness node.
In the presence of two locations, the witness node should reside in the same3.
data center as the primary node.
If possible, allocate witness nodes in an independent tertiary location.4.

Architectural Considerations Chapter 1

[26]

How it works...
While deceptively simple, there's actually a lot of thought involved in correctly
placing an odd node, and why we use witness nodes rather than yet another
PostgreSQL replica:

Our first guideline is the most straightforward of these, such that we1.
ensure there are an odd number of nodes in the cluster. Once we have that,
any event in the cluster is submitted to the entire quorum for a decision,
and only agreement guarantees subsequent action. Further, since the
witness cannot vote for itself, only one eligible node will ever win the
election. Consider this sample cluster diagram:

We have three nodes in this cluster and, in the event of a failure of the
Primary node, the Witness must vote for the only remaining Replica. If the
Witness had been a standard replica node, it could have voted for itself and
potentially led to a tied vote. In an automated scenario, this would prevent
the cluster from promoting a replacement Primary node.

The second guideline is a variant of this concept. If we already had an odd2.
number of nodes, one of these should be a Witness rather than a standard
replica. Consider this diagram:

Architectural Considerations Chapter 1

[27]

We can see here that the third node is still a replica, but it also acts as a
Witness. Essentially, we don't allow this node to vote for itself to become
the new Primary. This kind of role works well for read-only replicas that
exist only for application use and is a good way to reuse existing resources.

The third guideline, of placing the Witness in the same location as the3.
Primary node, safeguards node visibility. More important than automation
is safety. By placing the Witness in the same location as the Primary when
there are only two data centers, we can ensure that a network partition—a
situation where we lose network connectivity between the data
centers—won't result in the alternate location incorrectly promoting one of
its replicas. Consider this diagram:

If the connection between Chicago and Dallas is lost, Chicago still has the
majority of voting nodes, and Dallas does not. As a result, the cluster will
continue operating normally until the network is repaired, and we didn't
experience an accidental activation of a node in Dallas.

Some failover automation systems also take physical location into
account by verifying that all nodes in one location agree that all
nodes in the other location are not responding. In these cases, the
only time where automation will not work normally is when a
network partition has occurred. This approach is only viable when
more than one node exists in each location. Such can be
accomplished by allocating further replicas, or even witness nodes.

Unfortunately, our cluster is no longer symmetrical. If we activate the node in Dallas,
there are no witnesses in that location, so we must eventually move the Primary back
to Chicago. This means every failover will be followed by a manual switch to the
other location, thus doubling our downtime.

Architectural Considerations Chapter 1

[28]

The easiest way to permanently address these concerns is to add a third location and
assign a node there. In most cases, this will be the Witness node itself. Consider this
example:

In this case, we may desire that only Chicago or San Jose host the active PostgreSQL
node. In the event of a failure of our Primary node, San Jose should take over instead.
The Witness can see both data centers and decide voting based on this. Furthermore,
it doesn't matter if the Primary is active in Chicago or San Jose, because the Witness is
not tied directly to either location.

There's more...
What happens in the case of a tie? Even if the original cluster contained an odd
number of nodes, when the Primary node goes offline, this is no longer true. In
simple quorum systems, each node votes for itself. However, a Witness, by its
definition, must vote for some other node. This means some replica in the cluster will
have more than one vote, and thus win the election.

In case there are somehow multiple witnesses, and votes are split anyway,
PostgreSQL quorum systems usually account for the Log Sequence Number (LSN)
from the Primary node. Even if it's only a single transaction, one of the nodes with the
most votes will have replicated more data than the other, and this will break the tie.

Introducing indirection
What happens to connections to a PostgreSQL system when the service must be shut
down for maintenance, or the node itself experiences a hardware problem? Previous
recipes have already recommended we integrate at least one data replica into our
design, but how should we handle switching between these resources? A great way
to achieve high availability is to make server maintenance or replacement as simple as
possible.

Architectural Considerations Chapter 1

[29]

The concept we'll be exploring in this recipe will be one of anticipating system
outages, and even welcoming them, by incorporating proxy techniques into the
design.

Getting ready
There are actually several methods for switching from one PostgreSQL node to
another. However, when considering the node architecture as a whole, we need to
know the four major techniques to handle node indirection:

Domain name reassignment1.
Virtual IP address2.
Session multiplexing software3.
Software or hardware load balancer4.

In real terms, these are all basically the same thing: a proxy for our PostgreSQL
primary node. Keep this in mind as we consider how they may affect our architecture.
It would also be a good idea to have some diagram software ready to describe how
communication flows through the cluster.

How to do it...
Integrating a proxy into a PostgreSQL cluster is generally simple if we consider these
steps in the design phase:

Assign a proxy to the primary node.1.
Redirect all communication to the primary node through the proxy.2.
If the proxy requires dedicated hardware or software, designate two to3.
account for failures.

How it works...
These rules are simple, but that's one of the reasons they're often overlooked. Always
communicate with the Primary node through at least one proxy.

Architectural Considerations Chapter 1

[30]

Even if this is merely an abstract network name, or an ephemeral IP address, doing so
prevents problems that could occur, as seen in the following diagram:

What happens when the Primary PostgreSQL node is offline and the cluster is now
being managed by the Standby? We have to reconfigure—and possibly restart—any
and all applications that connect directly to it. With one simple change, we can avoid
that concern, as seen here:

By following the second guideline, all traffic is directed through the Proxy, thus
ensuring that either the Primary or Standby will stay online and remain accessible
without further invasive changes. Now, we can switch the active primary node,
perform maintenance, or even replace nodes entirely, and the application stack will
only see the proxy.

We've encountered clusters that do not follow these two guidelines. Sometimes,
applications will actually communicate directly with the primary node as assigned by
the inventory reference number. This means any time the infrastructure team or
vendor needs to reassign or rename nodes, the application becomes unusable for a
short period of time.

Sometimes, hardware load balancers are utilized to redirect application traffic to
PostgreSQL. On other occasions, this is done with connection multiplexing software
such as PgBouncer or HAProxy. In these cases the proxy is not simply a permanent
network name or IP address that is associated with the PostgreSQL cluster, but a
piece of hardware. This means that a software or hardware failure could also affect
the proxy itself.

Architectural Considerations Chapter 1

[31]

In this case, we recommend using two proxies, as seen here:

This is especially useful in microarchitectures, which may consist of dozens or even
hundreds of different application servers. Each may target a different proxy such that
a failure of either only affects the application servers assigned to it.

There's more...
Given that applications must always access PostgreSQL exclusively through the
Proxy, we always recommend assigning a reference hostname that is as permanent as
possible. This may fit with the company naming scheme, and should always be
documented. PostgreSQL nodes may come and go and, in extreme cases, the cluster
itself can be swapped for a replacement, but the Proxy is (or should be) forever.

Physical proxy nodes themselves are not immune to maintenance or failure. Thus, it
may be necessary to contact the network team to assign a CNAME or other fixture that
can remain static even as the proxy hardware fluctuates.

See also
If you want to learn more about how proxies work, check out this
resource: https://whatis.techtarget.com/definition/proxy-server

Preventing split brain
Split brain is the scenario that occurs when more than one primary node is active in a
PostgreSQL cluster simultaneously. In these circumstances, if any data was written to
both nodes from the application, it becomes extremely difficult to rectify. Certainly,
no cluster with such data corruption can be considered highly available!

https://whatis.techtarget.com/definition/proxy-server

Architectural Considerations Chapter 1

[32]

In this recipe, we will further explore the concept, and how we might mitigate this
problem.

Getting ready
An important concept necessary for preventing split brain scenarios is fencing, or
isolation of a node from the application and database stack. Often, this is
accomplished through STONITH (which stands for Shoot The Other Node In The
Head). After accounting for situations where this is not possible, the old primary
must invoke SMITH instead, or Shoot Myself In The Head. While it may sound
extreme, for servers, this is really a temporary solution to prevent a more worrying
complication.

Keep these terms in mind while we explore how they may affect our architecture.

How to do it...
Apply these steps when designing a cluster to help minimize or eliminate the risk of
split brain:

If available, allocate STONITH hardware for nodes that may take the role1.
of the Primary.
Consider situations where SMITH must be used instead, during network2.
interruptions.
Ensure PostgreSQL does not start automatically following a system reboot.3.

How it works...
Modern servers are often equipped with hardware that enables remote
administration. These components often allow network access to the boot process
itself. In the case where PostgreSQL is installed on virtual servers, the hypervisor
serves this role. Many companies commonly install Power Distribution Units (PDU)
that can be remotely instructed to cut power to a server.

Whatever the approach, working with infrastructure or systems operations teams is
likely necessary to gain access to interact with these devices. As an example, imagine
we have a 2-node cluster consisting of a Primary and Standby, and a PDU is
available for each. We could do something like this:

Architectural Considerations Chapter 1

[33]

In this case, in the case of a failover and subsequent promotion, the Standby could
instruct the PDU to cut power to the Primary to ensure that it wasn't possible for
applications to be connected. But what about a scenario where it's far more common
for network interruptions, such as between two data centers, as seen here:

In this scenario, the Standby would be unable to shut down the Primary node in the
case of a failover. This is why it's important to consider SMITH approaches as well. In
this case, the Primary should monitor the state of the Standby and Witness, and if
both disconnect for a sufficient period, it should assume the Standby will be
promoted. In this case, it would power itself down to prevent applications from
interacting with it.

Finally, always disable the PostgreSQL start up mechanism on clusters equipped with
high availability management software. That software should manage starting and
stopping the service, and this will also prevent unintended events such as
accidentally having two primary nodes active simply because a reboot started a
previously failed PostgreSQL node.

Advanced recipes later in this book will adhere to the rule of
disabling PostgreSQL on startup and provide exact instructions for
doing so.

Architectural Considerations Chapter 1

[34]

There's more...
The reason preventing split brain is so difficult is that it's not an easy problem to
solve. This is why dedicated software for managing high availability exists. While
these are not immune to the issue, they greatly reduce the potential of occurrence.

Pacemaker has components specifically for interacting with STONITH hardware.
repmgr implements the concept of hook scripts for event notifications, and accounts
for scenarios where the Primary is isolated from the remainder of the cluster as seen
in the previous diagram. Patroni uses a sophisticated locking mechanism that only
allows one primary node to be registered at once.

Don't try to invent a solution for an already solved problem when most of the work
has already been done by companies dedicated to the cause.

Incorporating multi-master
Some PostgreSQL vendors provide proprietary extended functionality that makes it
possible for a cluster to contain multiple writable Primary nodes simultaneously.
Users of this kind of software can expect certain enhanced capabilities, though
concessions are often necessary. This recipe will explore how PostgreSQL multi-
master can influence cluster topology.

Getting ready
This recipe will require some knowledge of where the nodes are likely to reside on a
global scale. Will some PostgreSQL nodes be in Dubai, while others are in Cairo or
Toronto? We will also need to have a very basic understanding of how the application
operates. This may mean interacting with application developers or designers to
derive a rough approximation of queries required for basic operation.

How to do it...
When considering deploying multiple writable PostgreSQL nodes, utilize these
guiding questions:

Is there significant geographical distance between nodes?1.
Does the application use multiple transactions or queries per operation?2.
Are accounts or users likely to operate primarily in a certain region?3.

Architectural Considerations Chapter 1

[35]

How it works...
Probably the most obvious benefit arising from using multiple writable PostgreSQL
nodes is one of reduced write latency. Consider an initial cluster that may resemble
this diagram:

Each write to Tokyo or Sydney must first cross thousands of miles before being
committed. And due to how replication works, the local replicas in those regions will
have to wait for the transaction to be replayed before it will be visible there. These
times can be considerable. Consider this table of round-trip-times for network traffic
for the locations we've chosen:

Dallas Sydney Tokyo
Dallas X 205 ms 145 ms

Sydney 200 ms X 195 ms
Tokyo 145 ms 195 ms X

Each write may require over 200 ms simply to reach the primary node. Then, the
same data must be transmitted from the Primary to each Standby, doubling the time
necessary before the transaction may be visible in the continent where it originated.
Since many application actions can invoke multiple transactions, this can cause a time
amplification effect that could last for several minutes in extreme cases.

This is why we ask whether or not an application performs multiple actions per task.
Displaying a web page may require a dozen queries. Submitting a credit application
can mean several writes and polling for results. With competition around every
corner, every second of waiting increases the chances a user may simply use another
application without such latency issues. If each of those nodes were a Primary, the
transaction write overhead would be effectively zero.

Architectural Considerations Chapter 1

[36]

The last question we should answer is one of expandability. As the usage volume of
the cluster increases, we will inevitably require further nodes. A popular method of
addressing this is to regionalize the primary nodes, but otherwise follow standard
replication concepts. As an example, imagine we needed a further two nodes in each
region to fulfill read traffic. It could look something like this:

This Hub + Spoke model helps ensure each region can keep up with demand,
without adding latency by including nodes outside of a particular region. Note also
that, when using these multi-master clusters, all nodes often require direct
connections to each other.

There's more...
These types of multi-master PostgreSQL clusters often require two direct connections
between all participating nodes, one for each direction of communication. This is
called a Mesh topology, and is considered by some to be a source of excessive
communication overhead. If we think about it, that's a valid criticism given that every
transaction in the cluster must eventually be acknowledged by every other primary
node. In very active systems, the impact could be significant.

Architectural Considerations Chapter 1

[37]

A scenario along the lines of the following diagram, for example, may present
complications:

By merely adding three more primary nodes, we've increased the number of
communication channels to 30. In fact, the general formula for this can be expressed
for PostgreSQL multi-master as follows:

C = N * (N - 1)

So, if we have 3 nodes, we can expect 6 channels, but if we have 10 nodes, there are 90
instead. This is one major reason for the Hub + Spoke model, since the local Replica
nodes do not need to be primary nodes and contribute to the topology
communication overhead.

Consider the potential impact of this before simply embracing the benefits of
operating in multiple locations simultaneously.

See also
If interested, feel free to explore some of these concepts in greater depth using the
resources listed here: https://wondernetwork.com/pings/

https://wondernetwork.com/pings/

Architectural Considerations Chapter 1

[38]

Leveraging multi-master
One significant benefit to using software that enables multiple primary nodes in a
PostgreSQL cluster is the associated increase in availability. This functionality can
eliminate node promotion time and allow a fully active application stack on all data
backends if properly configured.

In this recipe, we'll explore advanced usage of a multi-master cluster, and how it can
help us reach the pinnacle of high availability.

Getting ready
It's crucially important to become familiar with the benefits and drawbacks of how
multi-master operation can affect the cluster. The previous Incorporating multi-master
recipe is a good place to start. Additionally, information we cover here can be directly
relevant to the Defining timetables through RTO recipe and the Picking redundant
copies recipe.

In a way, this recipe will bring together a lot of concepts we've covered through the
chapter, so we recommend covering it last if possible.

How to do it...
To really make the most of multi-master architecture, follow these guidelines:

Always allocate a proxy layer.1.
If cross-data center latency is relevant, allocate at least two nodes per2.
location.
It's no longer necessary to worry about adding nodes specifically to3.
maintain quorum.
Geographically partition data if possible.4.

How it works...
We actually recommend applying the first rule to all clusters, as suggested in the
Introducing indirection recipe. It's especially important here as the focus is specifically
centered on maximizing availability.

Architectural Considerations Chapter 1

[39]

Unlike a standard PostgreSQL node, a cluster containing multiple primary nodes
does not require the promotion of alternate systems to writable status. This means we
can switch to them in a nearly instantaneous manner. A properly configured proxy
layer means this is possible without directly alerting the application layer. Such a
cluster could resemble this diagram:

Given this configuration, it's possible to switch from one Primary to the other with a
pause of mere milliseconds in between. This effectively means zero RTO contribution
for that action. This allows us to perform maintenance on any node, essentially
without disturbing the application layer at all.

In the preceding configuration, however, we only have one node per location. In the
event that the Primary in Chicago fails or is undergoing maintenance, applications in
that location will be interacting with the Dallas node. A better design would be
something like this:

With two nodes per data center, we're free to swap between them as necessary. If the
proxy uses a connection check mechanism, it can even autodetect online status and
ensure traffic always goes to the online node in the same location.

Architectural Considerations Chapter 1

[40]

The extra Primary per data center need not remain idle when not in
use. Some proxy systems can allocate application sessions by user,
account, or some other identifying characteristic. This allows safe
load balancing that avoids risks associated with multi-master
systems, such as conflict resolution.

Pay attention to the preceding diagrams and try to find one common attribute they
both share.

Find it yet?

Each cluster has an even number of nodes. Also note that we didn't compensate for
this by adding any kind of witness node to help arbitrate the quorum state. This is
because each node is a Primary with no failover process to manage. As a
consequence, we no longer have the usual cause of split brain, nor must we worry too
much about network partition events.

Finally, try, if possible, to arrange the cluster such that data is as closely associated
with its users as possible. If users are bank clients interacting with their own account
and can be regionalized by country, this is an easy choice. If it's a shared service
microarchitecture with applications indiscriminately modifying data from arbitrary
accounts, that's not so simple.

For those more advanced circumstances, it's possible to approach the problem from a
smaller scale. Perhaps servers in the same rack only communicate with the database
nearest to them physically. Perhaps the proxy layer can use sticky sessions and route
connections to specific primary nodes based on a stable metric.

The goal here is data locality. While multi-master PostgreSQL allows multiple nodes
to ingest writes simultaneously, consider transmission latency. We can observe this in
a simple two-node interaction:

Node A accepts a write for Account X.1.
Node A sends the result to Node B.2.
The application is stateless and connects to Node B.3.
The application notices data is missing in node B and submits a change4.
again.
Node B replays data from Node A.5.
Account X has now been modified twice.6.

Architectural Considerations Chapter 1

[41]

If the application session was tightly coupled to one primary node, this scenario
would not be possible. There are numerous ways to accomplish this coupling, and it
helps ensure fastest turnaround for associated data that was previously modified in
any case.

There's more...
PostgreSQL multi-master solutions use logical replication to transfer data between
nodes by necessity. As a result, software versions need not match. This means that
PostgreSQL 11 and PostgreSQL 12 nodes may coexist in the same cluster. Combined
with a proxy layer as recommended, this allows fully online, major-version upgrades.
From an RTO perspective, this means the following elements may all be assumed to
contribute zero or a small number of milliseconds:

Node failover and switchover
Minor upgrades (v12.1 to v12.2)
Node maintenance
Major upgrades (v11 to v12)

Due to its proprietary nature, PostgreSQL multi-master is generally not available
without additional cost. Consider any associated pricing when tabulating RTO
architecture variant cost sheets. This should enable management to make an informed
decision based on expenses associated with pursuing extremely low RTO features
such as these.

See also
Further reading to consider regarding the concepts introduced in this recipe include
the following:
https://www.postgresql.org/docs/current/logical-replication.html

https://www.postgresql.org/docs/current/logical-replication.html

2
Hardware Planning

What does high availability mean? In the context of what we're trying to build, it
means we want our database to start and remain online for as long as possible. A
critical component of this is the hardware that hosts the database itself. No matter
how perfect a machine and its parts may be, the failure, of or unexpected behavior
from, any element can result in an outage.

So how do we avoid these unwanted outages? We expect them. We must start by
assuming hardware can and will fail, and at the worst possible moment. If we start
with that in mind, it becomes much easier to make decisions regarding the
composition of each server we are building.

Make no mistake! Much of this planning will rely on worksheets, caveats, and
compromise. Some of our choices will have several expensive options, and we will
have to weigh the benefits offered against our total cost outlay. We want to build
something stable, which is not always easy. Depending on the size of our company,
our purchasing power, and available hosting choices, we may be in for a rather
complicated path to that goal.

This chapter will attempt to paint a complete picture of a highly available
environment in such a way that you can pick and choose the best solution without
making too many detrimental compromises. Of course, we'll offer advice on what we
believe is the best overall solution, but you don't always have to take our word for it.

In this chapter, we will learn about the selection and provisioning of hardware
necessary to build a highly available PostgreSQL database. We will cover the
following recipes in this chapter:

Planning for redundancy
Having enough IOPS
Sizing storage

Hardware Planning Chapter 2

[43]

Investing in a RAID
Picking a processor
Allocating enough memory
Exploring nimble networking
Managing motherboards
Selecting a chassis
Saddling up to a SAN
Tallying up
Protecting your eggs

For the purposes of this chapter, we will not cover cloud computing
or other elastic allocation options. Many of the concepts we
introduce can be adapted to those solutions, yet many are
implementation-specific. If you want to use a cloud vendor such as
Amazon or Rackspace, you will need to obtain manuals and
appropriate materials for applying what you learn here.

Planning for redundancy
Redundancy means having a spare, but a spare for what? Everything. Every single
part, from the motherboard to the chassis, power supply to network cable, disk space
to throughput, should have at least one piece of excess equipment or capacity
available for immediate use.

The intent of this recipe is to consider as many of these elements as we can imagine
before committing to a final inventory purchase.

Getting ready
Fire up your favorite spreadsheet program; we'll be using it to keep track of all the
parts that go into the server, and any capacity concerns. If you don't have one,
OpenOffice and LibreOffice are good free alternatives for building these
spreadsheets, as is Google Sheets. The subsequent sections will help determine most
of the row contents.

Hardware Planning Chapter 2

[44]

How to do it...
We simply need to produce a hardware spreadsheet to track our purchase needs. We
can do that with the following steps:

Create a new spreadsheet for parts and details.1.
Create a heading row with the following columns:2.

Type

Capacity

Supplier

Price

Count

Total cost

Create a new row for each type of the following components:3.

Chassis

CPU

Hard Drive (3.5")

Hard Drive (2.5")

Hard Drive (SSD)

Motherboard

XPower Supply

RAID Controller

RAM

SAN

In the Chassis row, under the Total Cost column, enter the4.
formula: =D2*E2.
Copy and paste the formula into the Total Cost column for all the rows5.
we created. The end result should look something like the following
screenshot:

Hardware Planning Chapter 2

[45]

How it works...
What we've done is prepare a spreadsheet that we can fill in with information
collected throughout the remainder of this chapter. We will have very long
discussions regarding each part of the server we want to build, so we need a place to
collect each decision we make along the way.

The heading column can include any other details you wish to retain about each part,
but for the sake of simplicity, we have stuck to the bare minimum. This also goes for
the parts we chose for each column. Depending on the vendor you select to supply
your server, many of these decisions will already be made. It's still a good idea to
include each component in case you need an emergency replacement.

The Total Cost column exists for one purpose: to itemize the cost of each part,
multiplied by how many we will need to complete the server.

To make sure we account for the redundancy element of the
spreadsheet, we strongly suggest inflating the number you use for
the Count column, which will also increase the price automatically.
This ensures that we automatically include extra capacity in case
something fails. If you would rather track this separately, add a
Spare Count column to the spreadsheet instead.

We'll have discussions later as to the failure rates of different types of hardware,
which will influence how many excess components to allocate. Don't worry about
that for now.

There's more...
We also recommend including a summary for all Total Cost columns so we get an
aggregate cost estimate for the whole server. To do that with our spreadsheet
example, keep in mind that the Total Cost column is listed as column F.

To add a Sum Total column to your spreadsheet in row 15, column F, enter the
formula =SUM(F2:F12). If you've added more columns, substitute for column F
whichever column now holds Total Cost. Likewise, if you have more than 13 rows
of different parts, use a different row to represent your summary price than row 15.

Hardware Planning Chapter 2

[46]

See also
There are a lot of spreadsheet options available. Many corporations supply a copy of
Microsoft Excel. However, if this is not the case, there are many alternatives,
including the following:

Google Sheets: https://docs.google.com/spreadsheets/
Open Office: https://www.openoffice.org/
Libre Office: https://www.libreoffice.org/

All of these options are free to use and popular enough that support and
documentation are readily available.

Having enough IOPS
IOPS (stands for Input/Output Operations Per Second) describes how many
operations a device can perform per second before it should be considered saturated.
If a device is saturated, further requests must wait until the device has spare
bandwidth. A server overwhelmed with requests can amount to seconds, minutes, or
even hours of delayed results.

Depending on application timeout settings and user patience, a device with low IOPS
appears as a bottleneck that reduces both system responsiveness and the perception
of quality. A database with insufficient IOPS to service queries in a timely manner is
unavailable for all intents and purposes. It doesn't matter if PostgreSQL is still online
and serving requests in this scenario, as its availability has already suffered.

In this recipe, we will attempt to account for future storage and throughput needs
based on monthly increases in storage utilization.

Getting ready
This process is more of a thought experiment. We will present some very rough
estimates of I/O performance for many different disk types. We should increment the
entries in our hardware spreadsheet based on the perceived need for each.

https://docs.google.com/spreadsheets/
https://www.openoffice.org/
https://www.libreoffice.org/

Hardware Planning Chapter 2

[47]

The main things we will need for this process are numbers. During development,
applications commonly have a goal, expected client count, table count, estimated
growth rates, and so on. Even if we must guess many of these, each will contribute to
our IOPS requirements. Have these numbers ready, even if they're simply guesses.

If the application already exists on a development or stage
environment, try to get the development or QA team to run
operational tests. This is a great opportunity to gather statistics
before choosing potential production hardware.

How to do it...
We need to figure out how many operations per second we can expect. We can
estimate this by using the following steps:

Collect the number of simultaneous database connections. Start with the1.
expected user count, and divide by 50.
Obtain the average number of queries per page. If this is unavailable, use2.
10.
Count the number of tables used in those queries. If this is unavailable, use3.
3.
Multiply these numbers together, and double the result.4.
Multiply the previous total by 8.5.
Increment the Count column in our hardware spreadsheet for one or more6.
of the following, and round up:

For 3.5" hard drives, divide by 200.
For 2.5" hard drives, divide by 150.
For SSD hard drives, divide by 50,000, and then add two.

Add 10% to any count greater than 0 and then round up.7.

How it works...
Wow, that's a lot of work! There's a reason for everything, of course.

Hardware Planning Chapter 2

[48]

In the initial three steps, we're trying to determine how many operations might touch
an object on disk. For every user that's actively loading a page, for every query in that
page, and for every table in that query, that's a potential disk read or write.

We double that number to account for the fact we're estimating these values. It's a
common engineering trick to double or triple calculations to absorb unexpected
capacity, variance in materials, and so on. We can use that same technique here.

Why did we suggest dividing the user count by 50 to get the
connection total? Since we do not know the average query runtime,
we assume 20 ms for each query. For every query that's executing, a
connection is in use. Assuming full utilization, up to 50 queries can
be active per second. If you have a production system that can
provide a better query runtime average, we suggest using that value
instead.

But why do we then multiply by eight? In a worst- (or best-) case scenario, it's not
uncommon for an application to double the number of users or requests on a yearly
basis. Doubled usage means doubled hardware needs. If requirements double in one
year, we would need a server three times more powerful (1 + 2) than the original
estimates to account for the second year. Another doubling would mean a server
seven times better (1 + 2 + 4). CPUs, RAM, and storage are generally available as
powers of two. Since it's fairly difficult to obtain storage seven times faster than what
we already have, we multiply the total by eight.

That gives a total IOPS value roughly necessary for our database to immediately
serve every request for the next 3 years, straight from the disk device. Several
companies buy servers every three or four years as a balance between cost and
capacity, so these estimates are based on that assumption.

In the next step, we get a rough estimate of the number of disks necessary to serve the
required IOPS. Our numbers in these steps are based on hard drive performance. A
15,000 RPM SAS hard drive can serve, under ideal conditions, roughly 200 operations
per second. Likewise, a 10,000 RPM drive can provide about 150 operations per
second.

Current SSDs as of the time of writing commonly reach 200,000-300,000 IOPS, and
some even regularly eclipse a cool million. However, their extreme speed suggests
fewer of them are necessary to reach IOPS goals, and thus failure risk is not as evenly
distributed. We artificially increase the number of these drives because, again, we are
erring toward availability.

Hardware Planning Chapter 2

[49]

Finally, we add a few extra devices for spares that will reside in long-term storage,
just in case one or more drives fail. This also insulates us from the rare event that
hardware is discontinued or otherwise becomes difficult to obtain.

There's more...
Figuring out the number of IOPS we need and the devices involved is only part of the
story. Let's take a look at an example using values we might encounter in a real
application. After that, we'll discuss other things we may need to consider when
adjusting these numbers.

A working example
Sometimes, these large lists of calculations make more sense if we see them in
practice. So let's make the assumption that 2,000 users will use our application each
second. This is how this would look:

2000 / 50 = 40
Default queries per page = 10
Default tables per query = 3
40 * 10 * 3 * 2 = 2,400
2,400 * 8 = 19,200
19,200 IOPS in drives:

5" drives: 19,200 / 200 = 96
5" drives: 19,200 / 150 = 128
SSDs: 2 + (19,200 / 50,000) = 2.38 ~ 3

Add 10%:
5" drives: 96 + 9.6 = 105.6 ~ 106
5" drives: 128 + 12.8 = 140.8 ~ 141
SSDs: 3 + 0.3 = 3.3 ~ 4

We are not taking storage capacity into account, which would likely increase our SSD
total. We will be discussing capacity soon.

Hardware Planning Chapter 2

[50]

Making concessions
Our calculations always assume worst-case scenarios. This is both expensive and, in
most cases, monumentally overzealous. We ignore RAM caching of disk blocks, we
don't account for application frontend caches, and the PostgreSQL shared buffers are
also not included.

Why? Crashes are always a concern. If a database crashes, buffers are forfeit. If the
application frontend cache gets emptied or has problems, reads will be served
directly from the database. Until caches are rebuilt, query results can be multiple
orders of magnitude slower than normal for minutes or even hours. We will discuss
methods of circumventing these effects, but these IOPS numbers give us a baseline.

The number of necessary IOPS, and hence disk requirements, are subject to risk
evaluation and cost-benefit analysis. Deciding between 100% coverage and an
acceptable fraction is a careful balancing act.

Feel free to reduce these numbers; just consider the cost of an outage as part of the
total. If a delay is considered as part of standard operating procedures, fractions up to
50% are relatively low risk. If possible, try to run tests for an ultimate decision before
purchase.

Sizing storage
Capacity planning for a database server involves a lot of variables. We must account
for table count, user activity, compliance storage requirements, indexes, object bloat,
maintenance, archival, and more. We may even need to consider application features
that do not yet exist. New functionality often brings additional tables, extra storage
standards, and increased archival needs. Planning done now may have little
relevance to future usage.

So how do we produce functional estimates for disk space with so many uncertain or
fluctuating elements? We primarily want to avoid a scenario where we lack sufficient
capacity to continue operating. Exhausting disk space results in ignored queries at
best, and a completely frozen and difficult to repair database at worst. Neither are the
ingredients of a highly available environment.

Hardware Planning Chapter 2

[51]

In this recipe, we will explore a possible approach to determine minimum storage for
long-term operations. Our goal is to provision enough to avoid outright catastrophe,
though it's in our best interest to allocate more than the bare minimum.

Getting ready
Since there are numerous variables that contribute to the volume of storage we want,
we need information about each of them. Gather as many data points as possible
regarding things such as the largest expected tables and indexes, row counts per day,
indexes per table, desired excess, and anything else imaginable. We'll use all of it.

This is much easier if we already have a database, and are now
trying to ensure it is highly available. Even if the database is only in
development or staging environments at this moment, a few activity
simulations at expected user counts should provide a basis for many
of our numbers. No matter the case, revisit estimates as concrete
details become available.

How to do it...
We can collect some of the information we want from PostgreSQL if we have a
running instance already. If not, we can use baseline numbers. Follow these steps if
you already have a PostgreSQL database available:

Submit this query to get the amount of space used by all databases:1.

SELECT pg_size_pretty(sum(pg_database_size(oid))::BIGINT)
 FROM pg_database;

Wait for one week.2.
Perform the preceding query again.3.
Subtract the first reading from the second.4.

Downloading the example code:
You can download the example code files for all Packt books you
have purchased from your account at http://www.packtpub.com. If
you purchased this book elsewhere, you can visit
http://www.packtpub.com/support and register to have the files
emailed directly to you.

http://www.packtpub.com
http://www.packtpub.com/support

Hardware Planning Chapter 2

[52]

If we don't have an existing installation and are working with a project that has yet to
start development, we can substitute a few guesses instead. Without a running
PostgreSQL instance, consider using these sample values obtained from a real-world
system:

Our databases have a total size of 100 GB.
After 1 week, our install grew by 1.5 GB.

Of course, you don't have to start with these rather arbitrary
numbers for your own use case. Without a source database, we
simply recommend starting with medium-size growth values to
avoid underestimating. If our estimates are too low, the database
could exceed our plans and require emergency resource allocation.
That's not something we want in a highly available cluster!

Next, we can calculate our growth needs for the next 3 years. Perform the following
steps:

Multiply the data size delta by four.1.
Apply the following formula, where x is the most recent size of the2.
databases, and y is the value from the previous step: x * (1 + y/x)^36.
Multiply the previous result by two.3.

How it works...
The process we illustrate here is the magic of compounding interest. If we have an
existing database directory, it can tell us not only how much space it currently
consumes, but also how quickly it's currently growing. If not, we can start with a
medium-size configuration and substitute a growth assumption that will cause the
cumulative total to double in size every year. Remember, we begin by working with
worst-case scenarios, and modify the numbers afterward.

What if we don't need compounding interest because our expected
growth is linear? It's always easier to start with too much space than
to add more later. If you know your table count will rarely change,
users will not increase in number, or data streams are relatively
consistent, feel free to drop the compounded interest formula.
Otherwise, we suggest using it anyway.

Hardware Planning Chapter 2

[53]

The PostgreSQL query we provide takes advantage of the system catalog and known
statistics regarding the database contents. The pg_database_size function always
returns the number of bytes a database uses, so we must use the pg_size_pretty
function to make it more human-readable.

Once we know the size of the database instance and its growth rate, we can apply a
simple compounding interest function to estimate the volume at any point in the
future. This not only accounts for the current growth rate, but also incorporates
additional accumulation caused by increases in clients, table counts, and other
unspecified sources. It's extremely aggressive, since we take the weekly growth rate,
translate that to a monthly rate, and apply the compounding monthly instead of
yearly.

And then we use a standard engineering tactic and double the estimate, just in case.
Using the provided values—that of a 100 GB database that grows at 1.5 GB per
week—we would have an 815 GB database install in 3 years. With a system that large,
we should allocate at least 1,630 GB.

Alternatively, if our growth rate were more linear, we could simply add the 1.5 GB
weekly growth rate for 3 years. In that case, the final tally after 3 years of
accumulation would only be 334 GB, and we could be safe with a total capacity of 668
GB.

There's more...
Don't let our formulas define your only path. Let's explore how they apply in a real-
world situation, and how we can modify them to better fit our systems.

Real-world example
There are quite a few very large databases using PostgreSQL. Whether or not they
have thousands of tables and indexes, billions of rows, or handle billions of queries
per day, statistics help us plan for the future. Let's apply the previous steps to an
example database that actually exists:

The database is currently 875 GB.
The database was 865 GB last week.
The database grows by 10 GB per week.
Thus, the database grows by 40 GB every 4 weeks.

Hardware Planning Chapter 2

[54]

Using the formula we discussed in step two of this recipe, our size estimate
after 3 years is: 875 * (1 + 40/875)^36 = 4,374 GB.
Doubled, this is 8,748 GB.

Keep in mind that this estimation technique may grossly exaggerate the necessary
space. If we take the existing 40 GB monthly growth rate, the database would only be
2,315 GB in 3 years. Of course, 2.3 TB is still a very large database; it's just half as large
as our estimate.

Adjusting the numbers
We already mentioned that the growth curve used here is extremely aggressive. We
can't risk ever running out of space in a production database and still consider
ourselves highly available. However, there is probably a safe position between the
current growth rate of the database, and the compounded estimate, especially since
we are doubling the allocation anyway.

In the preceding real-world example, the database is likely to have a size between
2,315 GB and 4,374 GB. If we split the difference, that's 3,345 GB. Furthermore, we
don't necessarily have to double that number if we're comfortable having a disk
device that's 70% full 3 years from now, instead of 50%. With that in mind, we would
probably be safe with 5 TB of space instead of 9 TB. That's a vast saving if we're
willing to make those compromises.

Incorporating the spreadsheet
At the beginning of this chapter, in the Planning for redundancy recipe, we created a
hardware cost spreadsheet to estimate the total cost of a highly available server. If we
were following the chapter, our spreadsheet already accounts for the minimum
number of devices necessary to provide the IOPS we want.

Suppose we needed 5,000 IOPS, and decided to use 2.5-inch drives. That would
require about 33 devices. Even at only 300 GB each, that's 9 TB of total available
space. Yet the case for SSDs is the opposite. For our previous example, we would
need at least five 1 GB SSD drives, or one very large PCIe SSD to provide 5 TB of
space for the adjusted sample.

Whichever solution we finally choose, we can take the advice from every section so
far. At this point, the spreadsheet should have a device count that should satisfy
most, if not all, of our space and IOPS requirements.

Hardware Planning Chapter 2

[55]

Investing in a RAID
A Redundant Array of Independent (or Inexpensive) Disks (RAID) often requires a
separate controller card for management. The primary purpose of a RAID is to
combine several physical devices into a single logical unit for the sake of redundancy
and performance.

This is especially relevant to our interests. Carnegie Mellon University published a
study in 2007 on hard drive failure rates. They found that hard drives fail at a rate of
about 3% per year. Furthermore, they found that drive type and interface contributed
little to disk longevity, and that hard drives do not reflect a tendency to fail early as
was commonly accepted. These findings were largely corroborated by a parallel
study released the same year by Google.

What does this mean? For our purposes in building a highly available server, it means
hard drives should be looked at with great disdain. Larger databases will depend on
tens or hundreds of hard drives in order to represent several terabytes of data. With a
3% failure rate per year, a 100-drive array would lose roughly nine devices after 3
years.

This is the primary reason that all of our calculations regarding disk devices
automatically assume a 10% excess inventory allotment. If a drive fails, we need an
immediate replacement. Vendors are not always capable of delivering a new drive
quickly enough. Having a spare on hand, ideally at the hosting facility or in the server
itself, helps ensure continuous uptime.

So how does RAID figure into this scenario? If we hosted our database on several
bare hard drives knowing that around 10% of these drives will fail in 3 years, outages
would be inevitable. What we want is an abstraction layer that can present any
number of hard drives as a single whole, keeping reserves for drive errors, handling
checksums for integrity, and mirroring for redundancy.

RAID provides all of that in several convenient configurations. Good controller cards
often include copious amounts of cache and other management capabilities. Instead
of manually assigning dozens of drives, it's fairly common to split them into several
usable array allocations that reflect much lower operational risk.

Knowing all of this, databases have special needs when it comes to RAID and the
performance characteristics associated with each RAID type. This recipe will explore
the selection criteria for our database, and how to simplify the process.

Hardware Planning Chapter 2

[56]

Getting ready
That was a long introduction, wasn't it? Well, we also strongly suggest taking a look
at the Having enough IOPS and Sizing storage recipes before continuing. Make sure the
hardware spreadsheet has a drive count for the type of drives going into the server
we're designing. If we're using PCIe instead of standard SSD drives, this section can
be skipped.

How to do it...
Only a few RAID levels matter in a database context. Perform these steps to decide
which one is right for this server:

If this is an Online Transaction Processing (OLTP) database primarily for
handling very high-speed queries, use RAID level 1+0.
If this is a non-critical development or staging system, use RAID level 5.
If this is a non-critical Online Analytic Processing (OLAP) reporting
system, use RAID level 5.
If this is a critical OLAP reporting system, use RAID level 6.
If this is a long-term storage OLAP warehouse, use RAID level 6.

How it works...
We have made a lot of snap decisions here. There are quite a few RAID levels we
simply ignored, so there should be some discussion regarding the reasoning we used.

Let's begin with RAID level 0. Level 0 stripes data across all disks at once. It's
certainly convenient, but a single drive failure will lose all stored information in the
array. What about RAID level 1? Level 1 acts as a full mirror of all data stored. For
every set of drives, a second set of drives holds an exact copy. If a drive fails in one
set, the second set is still available. However, if that set also experiences any failure,
all data is lost.

Hardware Planning Chapter 2

[57]

When we talk about RAID 1+0, we actually combine the mirroring capability of RAID
1 with the striping of RAID 0. How? Take a look at the following diagram:

In this RAID 1+0, we have three sets, each consisting of two disks. Each of the two
disks mirrors the other, and the data is striped across all three sets. We could lose a
disk from each set and still retain all of our data. We only have a problem if we lose
two disks from the same set since they mirror each other. Overall, this is the most
robust RAID level available, and the most commonly used for OLTP systems.

RAID level 5 and 6 take a different approach. Again, let's look at six drives and see a
very simplified view of how RAID 5 would operate in that situation:

The solid line shows that the data is spread across all six drives. The dotted line is the
parity information. If a drive fails and the block can't be read directly from the
necessary location, a RAID 5 array will use the remaining parity information from all
drives to reconstruct the missing data. The only real difference between a RAID 5 and
a RAID 6 array is that a RAID 6 array contains a second parity line, so up to two
drives can fail before the array begins operating in a degraded manner.

Hardware Planning Chapter 2

[58]

Using RAID 5 or 6 offers more protection than RAID 0, with fewer costs than RAID
1+0, which requires double the amount of required devices. We selected these for
non-critical OLAP systems because they usually prioritize storage over performance
and are not as sensitive to immediate availability pressures as an OLTP system.

There's more...
We mentioned controller cards earlier and noted that they also offer onboard cache.
RAID has been around for a long time, and though disks are getting much larger,
they haven't experienced an equivalent increase in speed. In scenarios that use RAID
5 or 6, writes can also be slowed since each write must be committed to several
devices simultaneously in the form of parity.

To combat this, RAID controllers allow configuration of the cache to buffer writes in
favor of reads, or vice versa. Don't be afraid to adjust this and run tests to determine
the best cache mix. If everything else fails, start with 100% for writes, as they are the
most in need of caching. Keep a close eye on write performance and give it priority if
possible. Generally, the OS cache does a better job of caching reads, and has much
more memory available to do so.

See also
For more details, refer to the following link:

Disk failures in the real world: http:/ / www.cs. cmu. edu/ ~bianca/ fast07.
pdf

Failure Trends in a Large Disk Drive Population:
http://research.google.com/pubs/pub32774.html

Picking a processor
In selecting a CPU for our server, we have much to consider. At the time of writing,
the current trend among processors in every space—including mobile—is toward
multiple cores per chip. CPU manufacturers have found that providing a large
number of smaller processing units spreads workload horizontally for better overall
scalability.

http://www.cs.cmu.edu/~bianca/fast07.pdf
http://www.cs.cmu.edu/~bianca/fast07.pdf
http://www.cs.cmu.edu/~bianca/fast07.pdf
http://www.cs.cmu.edu/~bianca/fast07.pdf
http://www.cs.cmu.edu/~bianca/fast07.pdf
http://www.cs.cmu.edu/~bianca/fast07.pdf
http://www.cs.cmu.edu/~bianca/fast07.pdf
http://www.cs.cmu.edu/~bianca/fast07.pdf
http://www.cs.cmu.edu/~bianca/fast07.pdf
http://www.cs.cmu.edu/~bianca/fast07.pdf
http://www.cs.cmu.edu/~bianca/fast07.pdf
http://www.cs.cmu.edu/~bianca/fast07.pdf
http://www.cs.cmu.edu/~bianca/fast07.pdf
http://www.cs.cmu.edu/~bianca/fast07.pdf
http://www.cs.cmu.edu/~bianca/fast07.pdf
http://www.cs.cmu.edu/~bianca/fast07.pdf
http://research.google.com/pubs/pub32774.html

Hardware Planning Chapter 2

[59]

As users of PostgreSQL, this benefits us tremendously. PostgreSQL is based on
processes instead of threads. This means each connected client is assigned to a
process that can use a CPU core when available. The host operating system can
perform such allocations without any input from the database software.
Motherboards have limited space, so we need more cores on the same limited real
estate, which means more simultaneously active database clients.

Once again, our discussion veers toward capacity planning for a three- or four-year
cycle. Limited processing capability leads to slow or delayed queries, or a database
that is incapable of adequately handling increasing numbers of simultaneous users.
Yet simply choosing the fastest CPU with the most cores and filling the motherboard
can be a staggering waste of resources. So how, then, do we know what to buy?

This recipe will attempt to answer that question.

Getting ready
Luckily, there are only really two manufacturers that produce commodity server-class
CPUs. Furthermore, each vendor has a line of CPUs designed specifically for server
use. AMD and Intel both provide similar price-to-performance curves, but that's
where the comparison ends.

This is an exciting time to purchase a CPU. At the time of writing, AMD Threadripper
chips compare quite favorably to Intel Xeon processors, and often provide higher core
counts. Unlike previous CPU architecture iterations, choosing a CPU isn't as simple as
it once was.

Before going through this recipe, it would be a good idea to visit AnandTech, Tom's
Hardware, Intel, and AMD, just to get a basic idea of the landscape. There are a lot of
benchmarks that compare various models of CPUs, so don't take our word for it.

Generally, however, we can count on one thing for now: AMD CPUs tend toward
higher core counts, while Intel chips prioritize per-core clock speed. This may affect
which we choose for each environment, so we recommend cultivating a passing
familiarity with these processor architectures if possible.

Hardware Planning Chapter 2

[60]

How to do it...
We can collect some of the information we want from the database if we have one
already. If we already have a PostgreSQL database available, we can execute a query
to start our calculations. This works best if used at the most active time of day.

If you have PostgreSQL 9.2 or higher, execute this query as a superuser to get the
count of simultaneous active users:

SELECT count(*)
 FROM pg_stat_activity
 WHERE state = 'active';

Use this query if you have an older version:

SELECT count(*)
 FROM pg_stat_activity
 WHERE current_query NOT LIKE '<IDLE>%';

If we don't have a PostgreSQL server, we need to make an educated guess. Use these
steps to approximate:

Work with the application developers to obtain a count of expected active1.
clients per second.
Divide the previous number by 50 to remain consistent with our 20 ms2.
query assumption.

Once we have some idea of how many queries will be active simultaneously, we need
to estimate the processor count. Follow these steps:

If we already know how many disks will store our data, use this number.1.
In the case of an SSD base, use 0.
Subtract the previous number from our count of active users.2.

Divide the previous result by 2.3.
Apply the following formula, where x is the value from the previous step:4.

x * (1.4)^3

Hardware Planning Chapter 2

[61]

How it works...
Before we can even begin to decide on a processor count, we need a baseline. With a
working PostgreSQL server to base our numbers on, we can just use the number of
existing users during a busy period. Without that, we need to guess. This guess can
actually be fairly accurate depending on how the application functions. For example,
if the intent is to service 1,000 users per second, we can start with the same
assumption.

After that, we apply a commonly accepted formula used by PostgreSQL
administrators for a very long time. The ideal number of active connections is equal to
twice the amount of available processor cores, plus the amount of disk spindles.
Amusingly, the disk spindles increase the ideal number of connections because they
contribute seek time, which forces the processor to wait for information. While a
processor is waiting for input intended for one connection, the operating system may
decide to lend the processor to another until the data is retrieved.

Thus, we apply that accepted formula in reverse. First, we subtract the number of
spindles, and then divide by two to obtain how many CPUs we should have for our
expected workload.

Afterward, we assume a 40% increase in active clients on a yearly basis, and increase
the CPU core count accordingly for 3 years.

Note that this is a very aggressive growth rate. If we have historical
growth data available, or the company is expecting a different value,
we should use that instead. This is one problem inherent in
estimating expected usage rather than projecting based on existing
patterns.

When purchasing CPUs, no matter how cores are distributed, the final total should be
equal to or greater than the number we calculated. If it isn't, the application may
require more aggressive caching than expected, or we may need to horizontally scale
the database. We're not ready to introduce that yet, but keep it in mind for later.

There's more...
The processor count is only part of the story. Modern CPUs have a few additional
elements we need to consider.

Hardware Planning Chapter 2

[62]

Simultaneous multithreading
Essentially, all modern server-class processors provide a feature that essentially splits
each physical processor core into two virtual cores. Intel calls this hyper-threading,
while AMD uses the standard Simultaneous Multithreading (SMT) terminology.
Historically, this was not well received as benchmarks often illustrated performance
degradation when the feature was enabled.

Recently, several security vulnerabilities have been discovered in
SMT-enabled CPUs. Be sure to check for security advisories before
enabling this feature in earnest.

Since the introduction of Intel's Nehalem-based architecture in 2008 and AMD's
Ryzen architecture in 2017, this is no longer the case. While doubling the processor
count does not result in a doubling of throughput, we've run several tests that show
up to a 40% improvement over using physical cores alone. This may not be universal,
but it does apply to PostgreSQL performance tests. What this means is that the
commonly accepted formula for determining the ideal connection count requires
modification.

The current advice is to only multiply the physical core count by two. Assuming a
40% increase by enabling SMT, the new formula becomes 2 * 1.4 * CPUs + spindles.
With that in mind, if we wanted to serve 1,000 connections per second and used SSDs
to host our data, our minimum CPU count would be 1000 / 50 / 1.4, or 14. Half of that
is seven, but no CPU has seven physical cores, so we would need at least eight. If we
used the physical cores alone for our calculation, we would need 10.

Clock boosting
Recent processors also tend to provide adaptive CPU clock boosting based on
perceived workload. Some vendor motherboards disable this by default.

Make sure to go through the BIOS settings before performing
acceptability tests, as this functionality can provide up to 25% better
performance in isolated cases.

This is possible because the maximum speed of the core itself is increased when
resources are available or demand is high. A 4.2 GHz core might operate temporarily
at 4.5 GHz. For queries that are dependent on nested loops or other CPU-intensive
operations, this can drastically reduce query execution times.

Hardware Planning Chapter 2

[63]

Power usage
Intel family chips often have low voltage versions of their high-performance
offerings. While these processors require up to 30% less electricity, they also run up to
25% slower. Low-power name designations are not always consistent, so when
choosing an Intel processor, make sure to compare specifications of all similarly
named chips.

Beware of accidentally choosing a low-power chip meant for a high-performance
database. However, these chips may be ideal for warehouse or reporting database
use, since those systems are not meant for high throughput or vast amounts of
simultaneous users. They often cost less than their high-performance counterparts,
making them perfect for systems expecting low utilization.

See also
For more details, refer to the following links:

AnandTech: https://www.anandtech.com/
Tom's Hardware: https://www.tomshardware.com/

Allocating enough memory
The primary focus when selecting memory for a highly available system is stability.
It's no accident that most, if not all, server-class RAM is of the error-correcting variety.
There are a few other things to consider that may not appear obvious at first glance.

Due to the multi-core nature of our CPUs, the amount of addressable memory may
depend on the core count. In addition, speed, latency, and parity are all
considerations. We also must include the number of channels reported by each CPU;
failing to match this with an equal count of memory sticks can drastically degrade
performance.

This recipe will help ensure our server remains fast and stable by considering
memory options.

https://www.anandtech.com/
https://www.tomshardware.com/

Hardware Planning Chapter 2

[64]

Getting ready
Some of the decisions we will make depend on the capabilities of the CPU. Make sure
to read through the Picking a processor recipe before continuing. If we have a
PostgreSQL database available, there's also a query that can prepare us for selecting
the most advantageous count of memory modules. It's also a very good idea to
complete the Sizing storage recipe to get a better idea for choosing an amount of
memory.

How to do it...
We can collect some of the information we want from PostgreSQL if we have an
install already. Follow these steps if there's an existing database instance that we can
use:

Execute the following query to obtain the size of all databases in the1.
instance:

SELECT pg_size_pretty(sum(pg_database_size(oid))::BIGINT)
 FROM pg_database;

Multiply the result by eight.2.

If we don't have an existing database, we should use a size estimate of the database
install after 3 years. Refer to the Sizing storage recipe to obtain this estimate. Then,
perform the following steps:

Divide the current or estimated database storage size by ten to obtain the1.
minimum amount of memory.
Multiply our ideal CPU chip count by four to get the memory module2.
count.
Divide the minimum memory amount by the module count to get the3.
minimum module size.
Round up to the nearest available memory module size.4.

Hardware Planning Chapter 2

[65]

How it works...
The important part of this recipe is starting with a viable estimate of the database size.
Since a lack of RAM usually won't cause the database to crash or operate improperly,
we can use looser guidelines to obtain this number. Hence, 3 years down the road, an
existing database install could be eight times larger than its current size. We use eight
based on previous assumptions that the database roughly doubles in size every year.

Why do we then divide that number by ten? Our goal here is to maximize the benefit
of the OS-level cache, which will consume a majority of our RAM. This estimate gives
us a value that is ten times smaller than the space our database consumes. At this
scale, data that is frequently fetched from disk is likely to be served from memory
instead. The alternative is read latency due to insufficient memory for disk caching.

Most current CPUs are quad-channel, and thus operate best when the number of
modules per processor is a multiple of four. Assuming we previously determined
how many processor cores would be ideal for our system in the Picking a processor
recipe, we automatically know the most efficient memory module count. Why do we
multiply by four, regardless of how many memory channels the CPU has? Adding
more memory modules is not wasted on chips with fewer channels, and provides a
possible upgrade path.

Dividing the memory amount by the module count gives our minimum module size.
RAM comes in many dimensions, and our calculation is not likely to match any of the
available dimensions for purchase, so we need to round up. Why not round down?
The operating system will utilize all available RAM to cache and buffer important
data. Unless the greater amount is extremely expensive in comparison, any excess
memory will not be wasted.

Imagine we have a 200 GB PostgreSQL installation, and chose to buy a single CPU
chip. If we follow the preceding procedure, we would want at least 20 GB of RAM
distributed over four RAM chips. Since 20/4 = 5, we would likely want four 8 GB
RAM chips, or a total of 32 GB. This is actually a fairly good starting value in general,
and allows our database to grow before 10% of its current size is greater than 32 GB.

There's more...
We didn't focus on memory speed, timings, or latency here. Timing and latency can
affect performance, but our primary focus is stability. We're always free to order
faster or better memory as our budget allows.

Hardware Planning Chapter 2

[66]

Memory speed, on the other hand, is a more visible factor. Memory speed works with
a multiplier to match the highest compatible motherboard bus speed. This directly
controls how quickly the CPU can utilize available RAM. Before buying memory,
research the stated clock speed and try to match it with one of the faster settings
compatible with both the CPU and motherboard.

For example, DDR4-3200 is twice as fast as DDR4-1600 since it operates at 400 MHz,
as opposed to 200 MHz. Database benchmarks would be vastly different between
these two memory speeds, even with the same CPU. Fast memory means that
PostgreSQL can make more immediate use of cached data and produce results more
quickly.

Exploring nimble networking
The network card enables the database server to exchange data with the outside
world. This includes far more than web servers, spreadsheets, loading jobs,
application servers, and other data consumers. The database server is part of a large
continuum of activity, much of which will center around maintenance, management,
and even filesystem availability.

Little of this other traffic involves PostgreSQL directly. Much happens in the
background regardless of the database and its current workload. Yet even one
mishandled network packet across an otherwise normal driver can render the entire
server invisible to the outside world or, in extreme cases, even lead to a system panic
and subsequent shutdown. On a busy database server, network cards can handle
several terabytes of traffic on a daily basis; the margin of error for such a critical piece
of hardware is exceptionally slim.

What's more, network bandwidth can easily be saturated by an aggressive backup
strategy, which is something critical to a highly available database. For PostgreSQL
systems utilizing streaming replication or WAL archival, that traffic contributes quite
a bit of bandwidth to the overall picture. If our backups are delayed, or replicas sit
idly waiting for network packets, our exposure to risk is high indeed.

That's not to say everything is doom and gloom! With the right network setup and
accompanying hardware, there should be more than enough room for any and all
traffic our database server needs. This recipe will explore all the copious options for
connecting our database to the outside world, and making sure it stays there.

Hardware Planning Chapter 2

[67]

Getting ready
This is one of those times when it pays to do research. At the time of writing, the
current high-speed network standards include 1 Gb/s (gigabits per second), 10 Gb/s,
40 Gb/s, and even 100 Gb/s Ethernet. However, 40 Gb/s network cards are still
extremely rare, and 100 Gb/s is generally reserved for fiber-based switches and data
center use.

This means we will be covering 1 Gb/s and 10 Gb/s interfaces. While we will do our
best to outline all of the important aspects of these technologies to simplify the
process, we strongly encourage using the internet to validate current availability and
performance characteristics.

How to do it...
Let's begin with a few basic calculations. Look at these following numbers that
represent an estimate of interface speed after accounting for network overhead:

1,000 Mb/s * B/10 b = 100 MB/s (Megabytes per second)
10,000 Mb/s * B/10 b = 1,000 MB/s

Next, consider how many ways this will be distributed. If we have an existing
PostgreSQL setup, follow these steps:

Execute the following query to determine the number of existing replicas:1.

SELECT count(*)+1 AS streams
 FROM pg_stat_replication;

Multiply streams by 160 to find the maximum MB/s needed by replication2.
streams.
Execute the following queries together in a psql connection during a busy3.
time of day on a production database:

SELECT SUM(pg_stat_get_db_tuples_fetched(oid)) AS count1
 FROM pg_database;
SELECT pg_sleep(1);
SELECT SUM(pg_stat_get_db_tuples_fetched(oid)) AS count2
 FROM pg_database;

Hardware Planning Chapter 2

[68]

Subtract the results of count1 from count2 for the number of rows fetched4.
from the database per second.
Divide the number of rows per second by 10,000 to get the MB/s used by5.
PostgreSQL connections.
Add the calculated value of MB/s for streams to the value of MB/s for6.
connections.

Without an existing database, follow these steps for some basic bandwidth numbers:

Multiply the desired number of PostgreSQL replicas by 160 to get the1.
maximum MB/s needed by replication streams.
Assume one WAL stream for an off-site disaster recovery database copy.2.
Start with at least one live hot-streaming standby copy.3.
Include any additional database mirrors.4.
Estimate the active client count, as discussed in Picking a Processor.5.
Multiply the active client count estimate by five for MB/s used by6.
PostgreSQL connections.
Add the value of MB/s for streams to the value of MB/s for connections.7.

No matter which checklist we follow, we should double the final tally.

How it works...
If we have an existing database, there is a wealth of statistical information at our
fingertips. The first query we ran gave us a slightly inflated count of PostgreSQL
replicas. For each replica, data must be transferred from the database to another
server. This data is based on PostgreSQL WAL output, and these files are 16 MB each.
A busy server can produce more than ten of these per second, so we multiply the
count of streams by 160 to produce an aggressive amount of network overhead used
by database replicas. As usual, this may be overzealous; it's always best to observe an
actual system to measure maximum WAL segments generated during heavy write
loads.

Hardware Planning Chapter 2

[69]

In PostgreSQL 9.2 and higher, database replicas can stream from
other database replicas. This means network traffic can be
distributed better among streaming clients, reducing network
bandwidth pressure on production systems. PostgreSQL 9.2 and
greater also allow direct backup of streaming replicas. This means
one or two replicas may be the most the production database ever
needs to supply with WAL traffic.

For the next set of numbers, we need to know how much data the database
connections commonly retrieve. PostgreSQL tracks the number of table rows fetched,
but it's a cumulative total. By waiting until a busy time of day and asking the
database how many rows have been fetched before and after a one-second wait, we
know how many rows are fetched per second.

However, we still don't know how many bytes these rows consume. A good estimate
of this is 100 bytes per row. Then, we only have to multiply the number of rows by
100 to find the amount of bandwidth we would need. So why do we divide by 10,000?
What's 10,000 multiplied by 100? One million. On dividing by 10,000, we produce the
number of megabytes per second those tuple fetches probably used.

If an average of 100 bytes per row isn't good enough, we can connect
to one of our primary databases and calculate the average tuple size.
Use the query in the following code snippet:

SELECT sum(pg_relation_size(oid)) / sum(reltuples)
 FROM pg_class;

By adding the amount of streaming traffic to the amount of connection traffic, we
have a good, if slightly inflated, idea of how much bandwidth the server needs.

Without a working database to go by, we need to use a few guesses instead. Luckily,
the number of streams for a reliable database infrastructure starts at two: one for a
live standby, and one for an off-site archive. Each additional desired mirror should
increase this total. Again, we multiply the number of streams by 160 to obtain the
maximum MB/s that all these replicas are likely to require.

The amount of bandwidth client connections use is slightly harder to estimate.
However, if we worked through previous chapter sections, we have a CPU estimate,
which also tells us the maximum number of database clients the server can reliably
support. If we take that value and multiply by five, that provides a rough value in
MB/s as well.

Hardware Planning Chapter 2

[70]

Again, we just add those two totals together, and we know the minimum speed of
our network.

Finally, we multiply the final tally by two to account for any unknown maintenance,
backup, and filesystem synchronization overhead.

There's more...
Besides producing an estimate through some simple calculations, we also want to
make note of a few other networking details.

A networking example
This may be easier to visualize with a real example. Let's start with a very active
database that has one streaming replica, and one off-site archive. Furthermore,
connected clients regularly fetch five million rows per second. Let's work through our
steps:

2 * 160 = 320 MB/s1.
5,000,000 / 10,000 = 50 MB/s2.
320 + 50 = 370 MB/s3.
370 * 2 = 740 MB/s4.

That's a very high value! A 1 Gb/s interface can only supply 100 MB/s at most, so we
would need eight of those to produce the necessary bandwidth. Yet a 10 Gb/s
interface can supply 1,000 MB/s, so it can easily handle 740 MB/s and have room to
spare. Would we rather have eight network cables coming out of our server, or one?

Remember redundancy
One of the first things this chapter suggested was to consider extra inventory. Yet we
haven't really covered online backups. Most server-class motherboards include not
just one, but two onboard network modules. Each module commonly provides four
Ethernet interfaces.

Hardware Planning Chapter 2

[71]

Usually, each interface is considered separate, and two interfaces from each module
are connected to two switches in the data center. This allows server administrators to
seamlessly perform maintenance on either switch without disrupting our network
traffic. Furthermore, if a switch or network module fails, there's always a backup
available.

In our working example, we would need eight 1 Gb/s interfaces to avoid experiencing
network congestion. However, we've already used four of our eight available
interfaces simply to satisfy basic server hosting requirements. That doesn't leave
enough available capacity, and as a consequence, this server would experience a
network bottleneck.

This would not be the case with a 10 Gb/s interface. Each of the interfaces connected
to redundant switches can carry the entire network requirements of the server.

Saving the research
We suggested doing research on 1 Gb/s and 10 Gb/s network cards. Well, don't do too
much. It's very likely the infrastructure department already has a standard server
profile for high-bandwidth systems. This is primarily due to the fact 10 Gb/s is a very
complicated standard compared to 1 Gb/s or lower. There are several different cable
types available along with complimentary network modules, one or more of which
are probably already deployed in the data center.

Just make sure that the infrastructure knows to allocate high-bandwidth resources if
our calculations call for it.

Managing motherboards
We have been working up to this for quite some time. None of our storage, memory,
CPU, or network matters if we have nothing to plug all of it into.

This could have been a long section dedicated to properly weighing the pros and cons
of selecting a motherboard manufacturer for maximum stability. It turns out that
most server vendors have already done all the hard work in that regard. In fact, a few
vendors even disclose many details about the motherboard in their servers outside
the model documentation. We can't really read hundreds of pages of documentation
about every potential server we would like to consider, so what is the alternative?

Hardware Planning Chapter 2

[72]

No matter where we decide to purchase our server, vendors will not sell—or even
present—incompatible choices. If we approached this chapter as intended, we already
have a long list of parts, counts, and necessary details to exclude potential offerings
very quickly. These choices will often come in the form of drop-down lists for every
component the motherboard and chassis will accept.

The chassis will come later. For now, this recipe will focus on CPU, RAM, RAID, and
network compatibility.

Keep in mind that motherboards and the requisite case are almost
exclusively a package deal. This means we can't keep an extra
motherboard available in case of failure, unlike other swappable
elements. This breaks our redundancy rule, but there are ways of
circumventing that problem.

Getting ready
This is one of the times when the hardware spreadsheet will show its true usefulness.
As long as we have been keeping track of our counts through each section, this
segment of server selection will be much simpler. By this point, our spreadsheet
should look something like the following screenshot:

We don't care about the total cost for each part yet. It might be a good idea to create a
separate tab or copy of the spreadsheet for each vendor we want to consider. This
way, we can do some comparison shopping. Also, remember that the counts are
inflated by at least one replacement in case of failure. So we want to look for two 10-
core CPUs, eight 16 GB memory modules, and so on.

Hardware Planning Chapter 2

[73]

How to do it...
Now it's time to do some research. Follow these steps:

Make a list of desired server vendors. This list may even be available from1.
the infrastructure department, if our company has one.
For each vendor, check their available 1U and 2U products.2.
For each 1U or 2U server, remove from consideration any options that don't3.
fulfill your minimum CPU requirements.
Repeat for RAM.4.
Repeat for RAID controller cards.5.
Repeat for network interface cards.6.
Fill in the actual selections, where appropriate, with unit prices.7.
Make corrections to the spreadsheet.8.

How it works...
While this is straightforward, it's highly time-consuming. The number of server
variants available, even from a single vendor, can be staggering. This is one of the
reasons we only consider 1U and 2U servers. The other reason is that 4U servers and
larger are often designed for different use patterns related to vertical scaling,
incorporating more CPUs, hard drives, and even multiple concurrent motherboards.

That is generally excessive for our purposes. When purchasing servers with the
explicit intention to obtain multiple, redundant, and compatible examples, this
becomes more difficult as the cost and complexity of the servers increase.

Although we have reduced our sample size, there is still more work to do. We can
answer questions while considering CPU compatibility. If we want ten-core chips,
and the motherboard only supports up to octa core chips, we can remove that option
from consideration. This also applies to available memory slots and sizes. Yet there's
an unwritten element to RAM: the maximum amount supported by the motherboard.
If the motherboard only supports up to 768 GB, and our earlier calculations show we
may eventually want 1 TB, we can immediately cross it off our list.

Since RAIDs and network cards must be plugged directly into the motherboard or an
expansion daughter card, it's the number of these available slots that directly
concerns us.

Hardware Planning Chapter 2

[74]

We need at least two to accommodate both cards, which could drastically reduce the
contents of our motherboard list. In fact, higher expansion slot requirements may
immediately exclude several 1U servers due to their limited expandability.

While performing this compatibility verification, it is difficult to ignore the prices
listed next to each choice, or the total price changing with each selection. We might as
well take advantage of that and fill in the rest of the spreadsheet and make a copy for
each vendor or configuration. Some choices are likely to provide better complete
matches overall, or offer more scalable future expandability or better price points, so
tracking all of this is beneficial.

There's more...
RAID controllers and network interfaces are somewhat special cases. Some servers
integrate these directly into the motherboard in order to reduce size. This is especially
true when it comes to network modules. If at all possible, try to resist relying solely
upon integrated components.

The entire server will require replacement if these fail. This makes it much more
difficult and expensive to fulfill our redundancy requirement. Server-class
motherboards without integrated network interfaces are rare, but we can use these as
our backup path if their minimum speed matches what we've configured.

For instance, if we want a 10 Gigabit Ethernet (GbE) card and the motherboard has
integrated a 10 GbE module, we can reduce the number of excess cards on our
spreadsheet by one. It's very likely that the integrated version is of lower quality, but
it can suffice until the bad card is replaced.

Redundancy doesn't have to be expensive.

See also
Here is a list of well-known server vendors we could consider while completing this
section:

Penguin Computing: https://www.penguincomputing.com
Supermicro: https://www.supermicro.com/en
Dell: https://www.dell.com
HP: https://www.hp.com

https://www.penguincomputing.com
https://www.supermicro.com/en
https://www.dell.com
https://www.hp.com

Hardware Planning Chapter 2

[75]

Selecting a chassis
To round out our hardware selection phase, it's time to decide just what kind of case
to order from our server vendor. This is the final protective element that hosts the
motherboard, drives, and power supplies necessary to keep everything running. And
like always, we place a heavy emphasis on redundancy.

For the purposes of this section, we will concentrate primarily on 1U and 2U rack-
mounted servers. Why not 4U or larger? Our goal is to obtain at least two of
everything, with similar or matching specifications in every possible scenario. The
idea is to scale horizontally in order to more easily replace a failed component or
server. As the size of the chassis increases, its cost, complexity, and resource
consumption also rise. In this delicate balancing act, it's safer to err toward two
smaller systems with respectable capabilities, than one giant server that's twice as
powerful.

This recipe will provide a quick set of calculations we can perform to estimate how
many server chassis we may need for a PostgreSQL cluster.

Getting ready
Since the server chassis and motherboard are generally a package deal, it's a good
idea to refer to the Managing motherboards recipe. We will be using a very similar
process to choose a server case. This time, we will focus on adequate room for hard
drives and redundant power supplies.

How to do it...
Now it's time to do some more research. Follow these steps:

Refer to the final list of servers from our motherboard selection.1.
For our ideal count of active (not replacement) hard drives, remove any2.
choice that doesn't have enough drive slots. Use this list if it's not
immediately obvious:

The maximum number of 2.5" drives in a 2U server is 24.
The maximum number of 3.5" drives in a 2U server is 12.
The maximum number of 2.5" drives in a 1U server is 8.
The maximum number of 3.5" drives in a 1U server is 4.

Hardware Planning Chapter 2

[76]

Remove from consideration any chassis that does not support dual power3.
supplies. This should happen rarely in server-class systems.
As the list dwindles, give higher priority to cases with more fans or lower4.
average operating temperatures.

How it works...
This time, our job was much easier than considering motherboard constraints, as the
drives themselves determine most of our decisions.

Hot-swappable hard drives are slightly larger than their standard brethren due to the
swap enclosure. Yet cases exist than can hold up to 24 hot-swappable drives across
the front. If we need that many storage devices, we save space by taking advantage of
cases that can accommodate them. We also need to remember to reserve two drives
for the operating system in a RAID-1, separate from our PostgreSQL storage. We can't
diagnose problems on a server that is unable to boot.

Some cases reserve mounts inside, or at the rear, for operating
system drives. They are harder to replace, but free more room for
storage dedicated to PostgreSQL. Here, operating system drives are
treated as an operating overhead without sacrificing case
functionality.

If we need more drives than are available in any configuration, we should consider
Direct Attached Storage (DAS), Network Attached Storage (NAS), or Storage Area
Network (SAN). Some vendors supply drive extension cages specifically to provide
more hot-swap bays for specific server models. While we want to conserve space
when possible, these are relatively inexpensive and much smaller than a NAS or SAN
if we haven't progressed to requiring such a device.

The dual power-supply requirement is not negotiable. Many data centers provide two
power rails per server rack. The intent is to deliver two separate sources of power to
the server in case the server's power supply fails, or power is cut to one of the sources.
Sometimes, these power sources even have separate generators. We're not the only
ones interested in redundancy; data centers want to avoid outages too.

Hardware Planning Chapter 2

[77]

The final, more optional element involves investigating the case itself. Many server
cases have several fans inside and along the rear, and are very loud as a consequence.
This won't matter when the server is in the data center, but the number of fans and
the shape of the airflow will directly affect the server temperature. Higher
temperatures decrease system stability. It's not uncommon for vendors to list the
maximum operating temperatures of each case, so try to gravitate toward the cooler
ones if all else is equal.

There's more...
We use the word vendor frequently, and there's a reason for that. Short of outright
accusing bare cases and motherboards of being faulty, they are simply not stable
enough for our use. There are some great cases available that, in many ways, exceed
the capabilities provided by established server providers.

We don't suggest the smaller vendors for a few reasons. Larger companies often have
replacement policies for each server component, including the case and motherboard.
Building a system ourselves may provide more satisfaction, but vendors presumably
spend time testing for compatibility and failure conditions. They produce manuals
hundreds of pages long detailing the viable parts, configurations, and failure
conditions of the entire unit.

However, we could just as easily argue that redundant servers increase failure
tolerance, as there's always an available backup. Bare cases and motherboards are
usually cheaper, and user-serviceable besides. That is a completely valid path, and if
your risk assessment suggests it's viable, try it out. Our particular recommendations
and biases should not limit your choices.

Saddling up to a SAN
Those familiar with the industry may have encountered NAS as well. How exactly is
that different, and how is it relevant to us?

It's subtle but important. While both introduce networked storage, only a SAN grants
direct block-level access, as if the allocation were raw, unformatted disk space. NAS
systems operate one level higher, providing a fully formatted filesystem such as NFS
or CIFS. This means our PostgreSQL database does not have direct control over the
filesystem; locks, flushes, allocation, and read cache management are all controlled by
a remote server.

Hardware Planning Chapter 2

[78]

When building a highly available server, raw I/O and synchronization messages are
very important, and NFS is more for sharing storage than extending the storage
capabilities of a server. What must we consider when deciding upon utilizing a SAN,
and when should we do this instead of adopting an inexpensive option such as DAS?

We won't be discussing how to evaluate a SAN, which vendors produce the best
hardware, or even basic configuration strategies. There are scores of books dedicated
to SAN management and evaluation that are far beyond the scope of our overview.

This recipe will only consider the when and why for incorporating SAN storage, not
the how.

Getting ready
Because we're going to cover both SAN performance and storage allocation, we
recommend referring to the Having enough IOPS recipe and the Sizing storage recipe.
Just like physical disks, we need to know how much space we need, and roughly how
fast it should be to fulfill our transaction and query requirements.

Do we need a SAN? We can ask ourselves a few questions:

Do our IOPS or storage requirements demand more than 20 hard drives?
Will the size of our database reach or exceed 3 TB within the next 3 years?
Would the risk to the company be too high if we ever ran out of space?
Is there already a SAN available for testing?

If we answer yes to any of these, a SAN might be in our best interests. In that case, we
can determine whether it would fulfill our needs.

How to do it...
Follow these steps if possible:

Request a Logical Unit Number (LUN) from the infrastructure department1.
with the necessary IOPS and storage requirements.
If a SAN isn't available, many SAN vendors will provide testing equipment2.
to encourage purchases. Try to obtain one of these.
Have the infrastructure department format the allocation and attach it to a3.
testing server. Keep note of the path to the storage.

Hardware Planning Chapter 2

[79]

Create a basic PostgreSQL testing database with the following command-4.
line operations as the postgres user:

createdb pgbench
pgbench -i -s 4000 pgbench

Drop the system caches as a user capable of performing root-level5.
commands, as follows:

echo 3 | sudo tee /proc/sys/vm/drop_caches

Test the storage read IOPS with one final command as the postgres user:6.

pgbench -S -c 24 -T 600 -j 4 pgbench

How it works...
The first part of our process is to decide whether or not we actually need a SAN at all.
If the database will remain relatively small, capable of residing easily on local hard
drives for several years, we don't need a SAN just yet.

While it might seem arbitrary, setting 3 TB as a cutoff for local storage comes with a
few justifications. First, consider the local drives. Even if they were capable of
saturating a 6 Gb/s disk controller, 3 TB would require over an hour to transfer to
another local storage device. If that weren't a bottleneck, there is still the network.
With a 10 Gb/s NIC and assuming no overhead, that's 40 minutes of transfer at full
speed.

That directly affects the speed of backups, synchronization, emergency data
restoration, and any number of other critical operations. Some RAID cards also
require special configurations when handling over 4 TB of storage, to which 3 TB is
uncomfortably close if we ever need an extension. SAN devices can often perform
local storage snapshots for nearly instant data copies intended for other servers.
There's no transfer overhead if the other server is also attached to the same SAN.

Remember that servers have limited local disk capacity, either due to the chassis
itself, or by how many directly attached storage extensions they can accommodate.
RAID devices allow online storage expansion, but they can't overcome physical
limitations. SAN hardware does not have any of these inherent limitations and is one
way to mitigate the risk of exhausting your maximum storage capacity.

Hardware Planning Chapter 2

[80]

If a SAN is ever available for testing, we're still not done. Operating performance is
highly dependent on the configuration of the SAN or the storage allocation itself. It's
a good idea to test SAN manufacturer claims before committing all of our storage to
it.

A very easy way to do this is with a basic pgbench test. The pgbench command is
provided by the PostgreSQL software, and can test various aspects of a server. For
our uses, we want to focus on the disk storage. We start by creating a new pgbench
database with createdb, so the pgbench command has somewhere to store its test
data. The -i (init) option to pgbench tells it to initialize new test data, and the -s
(scale) option describes the scale of test data we want.

A scale of 4000 creates a database of roughly 60 GB in size. We recommend adjusting
this scale to be larger than the amount of available RAM. This will help guarantee that
the server cannot cache all of the test data and taint our performance results by
inflating the numbers.

After initializing a new test database, we can use a Linux command that instructs the
server to drop all available cached data. This means none of our test data is in
memory before we begin the benchmark. We don't want to inflate our results,
otherwise the SAN looks more capable than it really is.

The test itself comes from pgbench again. The -S (select-only) option ensures we only
analyze the performance of read operations. Furthermore, we tell the benchmark to
launch 24 clients with the -c (client) parameter, and to run the test for a full 10
minutes with the -T (time) option. While we used 24 clients here, consider any
amount up to three times the number of available processor cores. The final -j (jobs)
flag merely launches 4 concurrent benchmark threads, preventing the test itself from
reducing overall performance due to CPU throttling.

This process should reveal the true capabilities of the SAN, and whether or not our
production database will be safe and offer good performance while relying on remote
storage.

There's more...
Notice how we never ask for a specific number of disks when requesting a SAN
allocation. Modern SAN equipment operates on an implied service level agreement
based on installed components. In effect, if we need 6,000 IOPS and 10 TB of space,
the SAN will combine disks, cache, and even SSDs if necessary, to match those
numbers as closely as possible.

Hardware Planning Chapter 2

[81]

This not only reduces the amount of risky micromanagement we perform as database
administrators (DBAs), but acts as an abstraction layer between storage and server.
In this case, it's possible to modify the storage in any number of ways. We can also
enhance, adjust, or copy without affecting the database installation itself.

The main problem we encounter when using a SAN rather than several servers
configured with local storage is that the SAN itself becomes a single point of failure.
This is something to keep in mind as our journey to high availability progresses.

See also
Here is a list of several SAN vendors, from well-known companies to companies with
great potential:

EMC: https://www.emc.com
NetApp: https://www.netapp.com
VCE: https://www.vce.com
Pure Storage: https://www.purestorage.com/

Tallying up
Now it's time to get serious. We have discussed all the components that go into a
stable server for several pages, and have strongly suggested obtaining multiple spares
for each. Well, that applies to the server itself. Not only does this mean having a spare
idle server in case of a catastrophic failure, but it means having an online server as
well.

Determining excess server inventory isn't quite that simple, but it's fairly close. This is
where the project starts to get expensive, but high availability is never cheap; the
company itself might depend on it.

Unlike the process we used in Chapter 1, Architectural Considerations, this recipe will
focus on server hardware redundancy rather than cluster design. In many ways, this
recipe can help augment architectural considerations.

https://www.emc.com
https://www.netapp.com
https://www.vce.com
https://www.purestorage.com/

Hardware Planning Chapter 2

[82]

Getting ready
We want to consider the overall state of the application architecture here. The
database server doesn't exist in a vacuum. Work with the systems and application
teams to get an idea of the other elements that may depend on our PostgreSQL server.

How to do it...
This won't be a very long list. In any case, follow these steps:

For every critical OLTP system, allocate one online replica.1.
For every two non-cached application or web servers, consider one online2.
replica.
For every ten cached application or web servers, consider one online3.
replica.
For every stage or QA database server analog, allocate one spare server.4.

How it works...
OLTP systems produce a very high transactional volume by their very nature. Any
disruption to this volume is extremely visible and costly. The primary goal of running
a highly available service, such as a database, is to minimize downtime. So for any
database instance that is a critical component, there should be a copy of the server
configured in such a manner that near-immediate promotion to production status is
possible.

Any server that needs direct access to the database, whether it is a queue system,
application server, or web frontend, is sensitive to database overload. One method for
diffusing this risk is to create one database copy for every two to four directly
connected servers. These copies are only usable for reading (rather than writing) data,
but a properly designed application can accommodate this limitation. Not only does
this reduce contention on the database instance that must handle data writes; but it
also eliminates the likelihood of one misbehaving query disrupting the entire
constellation of client-visible services.

Hardware Planning Chapter 2

[83]

The risk to the frontend is greatly reduced when a sophisticated cache is involved.
Properly designed, a failed read from the database can default to a cached copy until
reads can be re-established. This means we can subsist on fewer database replicas. If
the application does not provide that kind of cache, our job as database advocates
becomes one of working with appropriate technical leads until such a cache is
established.

The extra QA resource may seem excessive at first, but it fulfills a critical role. While
the testing teams may never touch the spare server, we can use it in their stead. It's
not possible to safely configure a production system for online failover without first
testing that configuration on two similarly equipped systems. To do otherwise risks
failure of the automatic activation of alternate production servers, which is a de facto
outage. We should always test all major actions before applying them to the
production system. This means we should dry-run all database migrations, upgrades,
resynchronization, backup restoration, and so on in the QA environment.

Without a second server, none of this would be possible.

There's more...
We have mentioned this tip previously, but this deserves special attention.
PostgreSQL 9.2 and above now has the capability to stream replicated data from one
database standby to another. Even with 10 GbE network cards, there is a limit to the
amount of data our production server can or should transmit.

While there is still a limit to the number of replicas we can maintain with this new
functionality, we also mitigate overall traffic, and therefore reduce risk. If our
database is stuck on a version before 9.2, we may never realize these new benefits.

At the time of writing, PostgreSQL 12 is the latest release and versions lower than 9.4
are no longer supported. A crafty DBA can encourage the company to adopt a
forward stance regarding upgrades by providing an upgrade proposal, procedural
checklist, and deployment integration tests.

Now that pg_upgrade is a standard part of PostgreSQL, producing a robust upgrade
plan and the associated compatibility tests is much easier than in the past. By pushing
for upgrades early, we can use new features such as cascading replication, and with
PostgreSQL, this can heavily influence our resulting architecture. Consider this when
choosing your hardware.

Hardware Planning Chapter 2

[84]

The next chapter on zero downtime upgrades provides the recipes
necessary to upgrade a PostgreSQL cluster without ever going
offline. Consider this as a method for increasing server count, and
for establishing a viable upgrade plan for abandoning older versions
of PostgreSQL.

Protecting your eggs
Have we ever implied that mere server inventory was sufficient for high availability?
The place where our servers live—the data center—also incorporates several
redundancies. Extra network lines, separate power sources, multiple generators, air
conditioning and ventilation—everything a server might require—are all part of most
data center guarantees.

Yet some have joked that a common backhoe is the natural enemy of the internet.
There is more truth to that statement than its apparent lack of gravitas might suggest.
Data centers are geographically insecure. Inclement weather, natural disasters,
disrupted network backbones, power outages, and of course, accidentally damaged
trunk lines (from an errant backhoe?) and simple human error can all remove a data
center from the grid. When a data center vanishes from the internet, our servers
become collateral damage.

However, we've done everything right! We have duplicates of everything, multiple
parts, cables, even whole servers. What can we possibly do about the data center?

It's somewhat complicated, but this recipe will help us in the final element of
redundancy we need to always ensure that PostgreSQL remains online.

Getting ready
For this section, we will need a list of every database server in our proposed
architecture and the desired role for each. Try to apply the recipes in the Architectural
Considerations chapter before continuing.

Hardware Planning Chapter 2

[85]

How to do it...
This won't be a very long list. In any case, follow these steps:

For every critical OLTP operating pair, allocate at least one standby.1.
For every two online standby replicas, consider at least one standby.2.
For every other database instance, allocate one standby.3.

How it works...
This type of scenario is known as disaster recovery. In order to truly diffuse a data
center outage, we need backups of every major database server, and even minor
servers. The reasoning is simple: we don't know how long we have to operate at
reduced capacity. At this point, even non-critical reporting services still need analogs;
otherwise, business decisions that depend on activity analysis may not be possible.

We only really need half the amount of database servers. Most disaster recovery
scenarios are severe enough for raised alertness, reduced refresh times, manually
extended queue timeouts, and more. Not only is this less expensive than purchasing a
copy of every server at the primary data center, but it also encourages closer
monitoring until everything is fully restored. Larger companies can opt for complete
parity between data centers, but this is not a requirement.

As DBAs, our scenario often resembles this:

Notice that we didn't make any reservations for QA or development database servers.
In the case of a disaster, the primary concern is ensuring the continued availability of
the application platform. Further development or testing is likely on hold for the
duration of the outage in any case.

Hardware Planning Chapter 2

[86]

There's more...
We cannot stress the importance of this section strongly enough. Some may consider
an entire extra data center as optional due to the cost. It is not. Others may think a
total of three servers for every primary system is too much maintenance overhead.
Again, it is not. The price of a few servers must be weighed against the future of the
company itself; it is the cost of admission into the world of high availability.

By the time we begin utilizing failover nodes, or any replicas in a separate data center,
the damage has already been done. In the absence of these resources, a database crash
can result in hours or even days of unavailability depending on the size of our
database. This can exponentially compound the effects of the original problem.

With this in mind, all critical production systems the author designs always have a
minimum of four nodes: two mirrored production systems, and two mirrored
disaster recovery analogs. This ensures that the disaster recovery system location
remains a viable failover target even while one node is offline for maintenance.
Outages are unexpected, and we must always be prepared for them.

3
Minimizing Downtime

Every piece of software has bugs. All hardware eventually fails or becomes obsolete.
No environment is perfect. As a consequence, even a perfectly healthy database will
require downtime periodically. So, how do we reconcile this need with client
expectations that demand data is always available no matter the circumstances?

As users ourselves, we can relate to the frustration associated with attempting to use
an application or website that isn't responding. Perhaps the only impediment is a
message indicating maintenance. No matter the cause, we have to remember to come
back later and hope everything is working normally by then. Even with our
knowledge about the complexity of software and databases, it is sometimes difficult
to ignore an error message that prevents us from managing a bank account or making
an online purchase.

Every day, users will be less understanding. Business owners and investors, who may
be losing millions in potential sales and liabilities while a system is unavailable, are
even less understanding. Yet there are several tools available that decrease the
likelihood of outages, and others that help guarantee we're agile enough to handle
them when outages, despite our best efforts, occur anyway.

As is often the case with high availability architecture, the trick is to plan ahead.

Minimizing Downtime Chapter 3

[88]

In this chapter, we will learn how we should react when outages inevitably occur and
how to prepare ourselves for them. We will cover the following recipes in this
chapter:

Determining acceptable losses
Configuration – getting it right the first time
Configuration – managing scary settings
Identifying important tables
Defusing cache poisoning
Terminating rogue connections
Reducing contention with concurrent indexes
Managing system migrations
Managing software upgrades
Mitigating the impact of hardware failure
Applying bonus kernel tweaks

Determining acceptable losses
We know that the PostgreSQL database will be offline at some point in the future.
Maybe we need an upgrade to remove a critical security vulnerability or address a
potential data corruption issue. Perhaps a RAM module is producing errors and
requires immediate replacement. Maybe the primary data center was struck by
lightning.

No matter the reason, we need to make decisions quickly. A helpful way to ensure
adaptability is to base our decision-making process on user expectations for various
levels of liability and context. The QA department will not require the same response
level as 10,000 shoppers who can't make a holiday purchase during a critically limited
sale.

System outage and response escalation expectations are generally codified in a
service-level agreement (SLA). How long should the maintenance last? How often
should planned outages occur? When should users be informed and to what extent?
Who is included in the set of potential database users? All of these things, and more,
should be defined before a production system is released. Otherwise, we risk
alienating clients with unexpected and arbitrary downtime or outages that persist for
hours.

Minimizing Downtime Chapter 3

[89]

Clients who have their trust broken may leave and never return. So, let's teach them
when to expect short amounts of unavailability and set their minds at ease with
prompt contact and status management.

Getting ready
Much of our work depends on knowing how much downtime the business is willing
to tolerate and who uses the database and when. We also need to know how long the
application can obscure a PostgreSQL outage through caches, queues, and connection
management. Try to get a complete picture of the database's role before continuing.
It's very likely we already performed some of these steps if we applied the recipes in
Chapter 1, Architectural Considerations.

How to do it...
Try to answer all of these questions:

Who uses the database? For each type of user, answer these questions:
When does this user access the database?
What is the maximum query timeout they will tolerate?
Will the user lose money during an outage?
Is the user likely to return later?
Should this user be included in maintenance notifications?
Should this user be included in emergency notifications?

Can we get the user to agree to or even sign the SLA?
What uptime percentage is expected? 99 percent? 99.9 percent? 99.99
percent? More?
What are the company's official business hours?
When should notifications be sent?
How long can the platform operate without the database?
How long should regular maintenance windows be?
How often can maintenance occur?
Which weekdays can we consider for maintenance?

Minimizing Downtime Chapter 3

[90]

What constitutes an emergency?
What situations require the activation of disaster recovery nodes?
Can we get a lawyer to write all of these into a contract?

How it works...
That is a lot of questions, and the list isn't even complete. It is, however, a very good
start. Notice how we want to know who (or what) is using the database on a regular
basis. This is not the same as a user who connects to the database. In this context, we
want to know the category of user. Is it a business department, another department, a
critical application component, or even just a regular website user? Each of these will
have different expectations, reactions, usage times, and impact.

The next question we need to answer is how uptime is defined. One frequently
quoted value is the number of nines, referring to a percentage approaching 100
percent. Three nines, for example, would be 99.9 percent of a year, which is almost 9
hours. Four nines correspond to about 50 minutes. Keep in mind that we may design
the SLA to include or exclude planned maintenance, depending on the audience.
Unplanned outages definitely count, and remember that this is the total cumulative
time for the entire year.

The next important aspect is the latest time a business is officially available.
Maintenance should begin after this time and no sooner. Critical PostgreSQL nodes
should not be taken offline if more than 5 percent of active users are utilizing the
platform and database. It is not uncommon for regular maintenance windows to
appear very late at night. Disaster recovery systems, standby nodes, and QA or
development copies are all excellent candidates for updates following official
business hours. We still want these systems to be available for developers and QA
staff, or in the case of an unexpected production-level outage, so it pays to be a little
more cautious.

The remainder of our checklist is a mix of important questions that need answers, the
last of which implies the involvement of a lawyer. If possible, have the SLA in a
contract form for all applicable clients and users. A signed agreement acts as a barrier
to litigation and liability and sets very definite boundaries to user expectations early
in the process.

Minimizing Downtime Chapter 3

[91]

Configuration – getting it right the first
time
An important aspect of setting up a highly available database server is starting with a
stable configuration that will not require a lot of future modifications. Even
parameters that can be changed during the database operations can drastically alter
its performance profile and behavior. Other settings may require a full database
restart, which can lead to a short outage depending on the resiliency of the frontend
application.

We want to avoid introducing instability into our PostgreSQL database from the very
beginning. To that end, this recipe will explore common (and, perhaps, uncommon)
configuration options to use in a highly available installation.

Getting ready
The PostgreSQL documentation describes all of the settings we will be discussing. We
recommend that you visit the PostgreSQL website (https:/ /www. postgresql. org/)
and read the documentation regarding server configuration. There's probably too
much to absorb before continuing with this section, but we recommend that you
familiarize yourself with the settings presented here.

We will approach each setting in the order commonly encountered in a recent
postgresql.conf file generated in a new database.

How to do it...
Find these settings in the postgresql.conf file for the desired PostgreSQL instance,
and then perform the following steps:

Set max_connections to three times the number of processor cores on the1.
server. Include virtual (hyperthreading) cores.
Set shared_buffers to 25 percent of RAM for servers with up to 32 GB of2.
RAM. For larger servers, start with 8GB and then test for higher values in
increments of 2 GB.
Set work_mem to 8MB for servers with up to 32 GB of RAM, 16MB for servers3.
with up to 64 GB of RAM, and 32MB for systems with more than 64 GB of
RAM. If max_connections is greater than 400, divide this by 2.

https://www.postgresql.org/
https://www.postgresql.org/
https://www.postgresql.org/
https://www.postgresql.org/
https://www.postgresql.org/
https://www.postgresql.org/
https://www.postgresql.org/
https://www.postgresql.org/
https://www.postgresql.org/
https://www.postgresql.org/

Minimizing Downtime Chapter 3

[92]

Systems with exceedingly large amounts of RAM (that is, 256 GB
and higher) do not require artificially halving the final suggested
value for work_mem.

Set maintenance_work_mem to 1GB.4.
Set wal_level to one of these settings:5.

Use hot_standby for versions prior to 9.4.
Use logical for versions 9.4 and higher.

Set hot_standby to on.6.
Set the minimum write-ahead logging (WAL) size to 10 percent of system7.
RAM:

Divide this value by 16 and use the checkpoint_segments
parameter for 9.4 and below.
Use min_wal_size for 9.5 and beyond. Then, double this value and
use it to set max_wal_size.

Set vacuum_cost_limit to 2000.8.
Set checkpoint_completion_target to 0.9.9.
Set archive_mode to on.10.
Set archive_command to /bin/true.11.
Set max_wal_senders to 10.12.
Retain the necessary WAL files with these settings:13.
Set wal_keep_segments to 3 * checkpoint_segments for 9.3 and below.14.
Set replication_slots to 10 for 9.4 and higher.

Set random_page_cost to 2.0 if you are using RAID or high-15.
performance storage area network (SAN); 1.1 for SSD-based storage.
Set effective_cache_size to 75 percent of the available system RAM.16.
Set log_min_duration_statement to 1000.17.
Set log_checkpoints to on.18.
Set log_statement to ddl.19.

Minimizing Downtime Chapter 3

[93]

How it works...
The commonly accepted formula for estimating max_connections is to take the
number of processor cores, multiply them by 2, and add disk spindles. With the
relatively recent improvement of virtual cores, contributing factors such as SSD or
other high-performance storage, we have a bit more freedom than before. In addition
to this, even if we were to follow this estimation method, allowing a few extra
connections can prevent highly visible connection rejections. Slightly lower
performance is a small price to pay for availability.

The advice for shared_buffers is likely to be different from the accepted practice of
simply setting it to a quarter of the available RAM. This is only really safe advice to
follow for servers with relatively low amounts of RAM, that is, up to 32 GB. We must
consider buffer flushing and the necessary synchronization time.

In the case of a forced checkpoint, an amount of RAM equal to shared_buffers
could be flushed to disk. This kind of write storm can easily cripple even high-end
hardware. Highly available hardware often has far more RAM that could easily be
flushed to storage in an emergency. As such, be wary of using more than 8 GB unless
it's known that the storage hardware is capable of directly absorbing higher amounts
of buffer flushing.

Depending on hardware capabilities, certain advancements in recent
releases of PostgreSQL may benefit from higher amounts of
shared_buffers. While we feel it's better to err on the side of
caution, feel free to test larger values on servers equipped with 128
GB of RAM or more, provided the version of PostgreSQL is 10 or
greater. Stop increasing the value once performance tests fail to
improve.

The work_mem setting is the amount of memory used by several temporary
operations, including data sorts. Thus a single query can consume multiple instances
of this amount simultaneously. A good estimate is to assume that each connection
will use up to four instances at a time. Setting this too high can lead to over-
committed memory and cause the kernel to start killing processes until RAM is
available. This can lead to PostgreSQL shutdown or a server crash, depending on
what processes are stopped. Systems with very high connection counts (over 400)
have increased risk of such a cascade, so we reduce work_mem in these cases.

Minimizing Downtime Chapter 3

[94]

The maintenance_work_mem setting is similar to the work_mem setting in that there
can be multiple instances. However, this is reserved for background workers and
maintenance such as vacuum, analyze, or create index activities. Starving these kinds of
memory operations can drastically increase disk I/O, which can detrimentally affect
query performance. For the cost of a few GBs of RAM, we get a more stable server.

The only reason we set wal_level to hot_standby or logical is that, in a highly
available environment, we should have at least one online streaming standby. Other
recipes will detail how we set these up, but this is the starting point. In the case of
logical, we are using the most inclusive possible value to enable logical replication
at a later date without needing to restart PostgreSQL. The related hot_standby
setting ensures that any replicas we produce in the future will be available for reads
while online.

The number of checkpoint_segments or the proper value for min_wal_size is not
a simple thing to determine. The calculation we used assumes up to 10 percent of
system memory, which could be in transit as checkpoint data, and each segment is 16
MB in size. This time, we are trying to avoid forced checkpoints because we ran out of
segments during data acquisition. This also applies to max_wal_size for lucky users
of 9.5 and above. This newer parameter also allows us to specify a more user-friendly
value in GB or MB.

Vacuum activity is also critically important to server health. By increasing
vacuum_cost_limit, we are making the background automatic vacuum more
aggressive when it manages tables. We've found that the default value is not
sufficient for larger and more active online transaction processing (OLTP) systems,
and can threaten a dangerous scenario where the PostgreSQL transaction ID counter
can exceed its 32-bit storage and result in data loss. PostgreSQL will preemptively
shut itself down to prevent this, which is definitely a roadblock for achieving high
availability.

We also want to reduce disk contention when possible, so we increase
checkpoint_completion_target to 0.9. We don't want to overwhelm the disk
subsystem, and this setting will cause PostgreSQL to spread writes over 90 percent of
the time specified by checkpoint_timeout. By default, checkpoint_timeout is set
to 5 minutes, which should suffice until we start working with larger batches of data
or a busy OLTP system.

Minimizing Downtime Chapter 3

[95]

Next, we enable archive_mode by setting it to on. This setting can only be changed
by restarting PostgreSQL, which we want to avoid. It's possible we will be using
WAL archiving in some respect, even if we don't yet know which method to use at
this point. This means we also need to set archive_command to a command that
always succeeds, or PostgreSQL will fill our logs with complaints that it couldn't
archive old WAL files. By using /bin/true as a placeholder, we can alter it later
should we choose an archiving method.

We increase max_wal_senders because it's necessary for certain synchronization and
backup methods. 10 is a good starting point and is actually the default for PostgreSQL
10 and above. We can always decrease it later, and we definitely require a value
greater than zero. Additionally, wal_keep_segments is set to a relatively high
number in slightly older versions of PostgreSQL. In this case, we retain up to three
multiples of checkpoint_segments, if a streaming standby falls behind. For newer
versions, we set replication_slots to a starting value that should support at least
10 replica streams, and only retain as many checkpoints as strictly necessary.

Astute readers may have noticed that hot_standby,
max_wal_senders and replication_slots are already set
properly if PostgreSQL is version 10 or higher. Thankfully, these
parameters were altered frequently enough that the community
decided to use more common defaults in newer releases.

For older systems that still use wal_keep_segments, a replica can fall permanently
behind if this count of segments is exhausted before they can be processed. In this
case, it can never catch up until the remaining WAL segments are provided with
some other way or the standby is rebuilt. We'll discuss this more when it's time to
discuss WAL archiving. This uses more disk space, so multiply the total number of
these segments by 16 MB to estimate total disk usage.

The cost of reading a random disk block, as opposed to reading it sequentially,
directly affects how the query planner decides to execute a query. By decreasing
random_page_cost, we tell PostgreSQL that our storage's random read performance
is very fast. A highly available server should have equally capable storage, so we
lower this to something more reasonable. In the case of SSD- or PCIe-based storage,
there is far less functional difference between a random or sequential read, so the
setting should reflect this.

Minimizing Downtime Chapter 3

[96]

We did not use a value of 1.0 for random_page_cost, as that
suggests solid-state storage is exactly as fast as RAM, and that
simply isn't the case. Very low values should be sufficient for this
setting, but should not be reduced beyond 1.1.

The last setting that modifies server behavior is effective_cache_size, which tells
the query planner how much RAM is probably being used by the operating system to
cache data. Generally, this makes PostgreSQL prefer indexes because it's likely that
the indexed data is in memory. As most UNIX systems are fairly aggressive when
caching, at least half of the available RAM on a dedicated database server will be full
of cached data.

Finally, we want better logging. We increase the logging of slow queries by setting
log_min_duration_statement to 1000. This is in milliseconds, so any query that
runs for over 1 second will be logged. This helps us to find slow queries without
flooding the logs with thousands or even millions of entries by logging everything.

Similarly, we want log_checkpoints enabled because it provides extremely
beneficial information on checkpoint activity. We can see how long they took, how
frequently they ran, and also how much disk-sync time they required. We need to
know if checkpoints start taking too long or occur too frequently so that some values
can be adjusted. This setting really should be enabled in all PostgreSQL servers.
Likewise, we set log_statement to ddl to at least log all database object changes
(tables, indexes, and more). This is a security concern that we want to monitor.

There's more...
Many, if not most of these settings, show up frequently in the PostgreSQL mailing
lists. As a result, we used many of the prescribed values or formulas. However,
several of these settings show up very often; a tool is available to estimate them by
analyzing the server hardware and by taking parameter hints. The pgtune program
is a contributed utility for automatically estimating many system-dependent server
settings, and there is a convenient online version.

Minimizing Downtime Chapter 3

[97]

We urge caution if you are relying primarily on this utility. It is extremely liberal
when estimating work_mem and shared_buffers. Still, we feel that the values it
produces are much better than the defaults for larger servers, so feel free to
experiment.

See also
There are many more configuration settings that we haven't included. We
recommend that you browse the PostgreSQL documentation to learn more. In
addition to this, we've included a link to the pgtune utility, which may be useful for
optimizing your postgresql.conf file:

PostgreSQL Server Configuration:
https://www.postgresql.org/docs/current/static/runtime-config.htm
l

pgtune: https://pgtune.leopard.in.ua/

Configuration – managing scary settings
When it comes to highly available database servers and configurations, a very
important aspect is whether or not a changed setting requires a database restart
before taking effect. While it is true that many of these are important enough that they
should be set correctly before starting the server, sometimes, our requirements
evolve.

If, or when, this happens, there is no alternative but to restart the PostgreSQL service.
There are, of course, steps we can take to avoid this fate. Perhaps an existing server
didn't need the WAL output to be compatible with hot standby servers. Maybe we
need to move the log file, enable WAL archiving, or increase the number of
connections.

These are all scenarios that require us to restart PostgreSQL. This recipe will
demonstrate how we can avoid this by identifying these settings early on and paying
special attention to them.

https://www.postgresql.org/docs/current/static/runtime-config.html
https://www.postgresql.org/docs/current/static/runtime-config.html
https://pgtune.leopard.in.ua/

Minimizing Downtime Chapter 3

[98]

Getting ready
PostgreSQL has a lot of useful views for database administrators (DBAs) to gather
information about the database and its current state. For this recipe, we will
concentrate on the pg_settings view, which supplies a wealth of data regarding the
current server settings, defaults, and usage context. We recommend that you peruse
the PostgreSQL documentation for this view.

How to do it...
Follow these steps to learn more about PostgreSQL settings:

Execute the following query to obtain a list of settings that require a server1.
restart and their current value:

SELECT name, setting
 FROM pg_settings
 WHERE context = 'postmaster';

Execute this query for a list of only those settings that are not changed from2.
the default and require restart:

SELECT name, setting, boot_val
 FROM pg_settings
 WHERE context = 'postmaster'
 AND boot_val = setting;

Execute the following query for a list of all the settings and a translation of3.
how each setting is managed:

SELECT name,
 CASE context
 WHEN 'postmaster' THEN 'RESTART'
 WHEN 'sighup' THEN 'Reload'
 WHEN 'backend' THEN 'Reload'
 WHEN 'superuser' THEN 'Reload / Superuser SET'
 WHEN 'superuser-backend'
 THEN 'Reload / Superuser Session'
 WHEN 'user' THEN 'Reload / User SET'
 END AS when_changed
 FROM pg_settings
 WHERE context != 'internal'
 ORDER BY when_changed;

Minimizing Downtime Chapter 3

[99]

How it works...
The first and simplest query merely identifies the name and value for each parameter,
which may only be modified by restarting PostgreSQL. In relation to all of the
available settings, this list is relatively short. However, there are a few notable
settings that could affect us.

We already mentioned wal_level, shared_buffers, max_connections, and
max_wal_senders in another recipe. However, this list also includes parameters
related to Secure Sockets Layer (SSL) and WAL archiving. We will eventually
discuss WAL archiving separately, so that leaves SSL. When provisioning a secure
PostgreSQL server that encrypts connection traffic, we require a host SSL certificate. If
this certificate is ever compromised, we need to regenerate it. Unfortunately, we can't
simply tell PostgreSQL to reread the existing certificate; if we overwrite it, the entire
database must be restarted.

The second query only shows the settings that we have not already changed but
would require server restart. This list is potentially more interesting and concise, as
we are presumably seeking further parameters to modify. Of course, the opposite can
also be argued; we have only modified the settings we care about.

The final query is a bit more complicated as it uses a CASE statement, yet it also
simplifies the contents of the view. First, consider the WHERE clause, which purges
internal settings. We don't care about these specifically because they can only be set
when compiling PostgreSQL itself. While such an action may be necessary to apply
an emergency patch from the PostgreSQL developers, we cannot modify several of
these parameters without rebuilding the entire contents of every affected database.
These settings are for experts only, and these experts rarely even consider changing
them.

Within the SELECT statement, we fetch the setting name as well as how it is modified.
Note that all settings that require a server reload to take effect are found in
postgresql.conf. Subsequent changes applied at the session level can also be
overridden using the SET syntax, so we included that as well.

There's more...
Of course, the pg_settings view can provide more than just an insight into the
parameters that require a server restart.

Minimizing Downtime Chapter 3

[100]

Distinct settings
A common request on the PostgreSQL mailing lists is for users to provide a list of
settings they've changed. This helps everyone diagnose where a problem could
originate or give us an idea of a database's usage pattern. Now that we know about
this view, we can easily provide that data with the following query:

SELECT name, setting
 FROM pg_settings
 WHERE boot_val IS DISTINCT FROM setting;

The IS DISTINCT FROM clause isn't as well known as it should be. It can be easy to
forget that != or <> evaluates to NULL when either side of the equation is NULL. Thus,
if the default boot_val value is NULL, we would fail to obtain the entire list of
modified settings.

The IS DISTINCT FROM clause considers NULL as a distinct value instead of an
unknown one, permitting direct comparisons.

More information
The pg_settings view also provides the short_desc and extra_desc columns.
We can use these as shortcuts to remember why we might have changed a setting,
without pulling up the PostgreSQL documentation.

See also
The pg_settings view has a lot more information than what we have presented
here. You can refer to the following documentation for more details: https:/ /www.
postgresql.org/ docs/ current/ static/ view- pg- settings. html.

Identifying important tables
Another aspect of maintaining a highly available database is to know all of the
important information about the contents of the database itself. In this case, we aim to
focus on tables and indexes that receive the most activity. If any problems that might
require maintenance or a restart arise, the most active portions are the likely origin.

https://www.postgresql.org/docs/current/static/view-pg-settings.html
https://www.postgresql.org/docs/current/static/view-pg-settings.html
https://www.postgresql.org/docs/current/static/view-pg-settings.html
https://www.postgresql.org/docs/current/static/view-pg-settings.html
https://www.postgresql.org/docs/current/static/view-pg-settings.html
https://www.postgresql.org/docs/current/static/view-pg-settings.html
https://www.postgresql.org/docs/current/static/view-pg-settings.html
https://www.postgresql.org/docs/current/static/view-pg-settings.html
https://www.postgresql.org/docs/current/static/view-pg-settings.html
https://www.postgresql.org/docs/current/static/view-pg-settings.html
https://www.postgresql.org/docs/current/static/view-pg-settings.html
https://www.postgresql.org/docs/current/static/view-pg-settings.html
https://www.postgresql.org/docs/current/static/view-pg-settings.html
https://www.postgresql.org/docs/current/static/view-pg-settings.html
https://www.postgresql.org/docs/current/static/view-pg-settings.html
https://www.postgresql.org/docs/current/static/view-pg-settings.html
https://www.postgresql.org/docs/current/static/view-pg-settings.html
https://www.postgresql.org/docs/current/static/view-pg-settings.html
https://www.postgresql.org/docs/current/static/view-pg-settings.html
https://www.postgresql.org/docs/current/static/view-pg-settings.html
https://www.postgresql.org/docs/current/static/view-pg-settings.html
https://www.postgresql.org/docs/current/static/view-pg-settings.html

Minimizing Downtime Chapter 3

[101]

What is activity? Inserts, updates, deletes, and selects are a good start. PostgreSQL
collects statistics on all of this information, making it easy to collect and track. It also
records how often indexes or tables are scanned and how many rows were affected
by each. In addition to this, we can observe how much disk space any object
consumes. Given the assistance of a couple of contributed tools, we can also calculate
how much of this space is currently reusable.

Data like this identifies which tables and indexes are the most active, which objects
have the highest row turnover, and which objects require copious disk I/O. Armed
with these statistics, we can properly distribute tables to high-performance
tablespaces, direct extra maintenance toward particularly active tables, or remove
inefficient indexes.

All of these operations increase the stability, responsiveness, and throughput of a
PostgreSQL database. This recipe will help us to accomplish all of those goals, and we
begin by isolating our targets.

Getting ready
Many of these techniques rely on functions and views described in greater detail
within the PostgreSQL documentation. In particular, we use a few system
administration functions, such as pg_relation_size and
pg_total_relation_size, and system views, such as pg_class, pg_index,
pg_stat_user_tables, and pg_stat_user_indexes. We also make use of a
contributed module named pgstattuple.

We strongly recommend that you become familiar with these functions and views in
the PostgreSQL documentation before continuing. After we are finished, we hope to
have successfully conveyed just how useful these views are and encourage further
exploration. When you are building a highly available database, there is rarely such a
thing as too much information about the database.

How to do it...
Follow these steps to learn a little about the database:

Use this query to retrieve a list of the top 20 largest tables in the current1.
database:

SELECT oid::REGCLASS::TEXT AS table_name,
 pg_size_pretty(

Minimizing Downtime Chapter 3

[102]

 pg_total_relation_size(oid)
) AS total_size
 FROM pg_class
 WHERE relkind = 'r'
 AND relpages > 0
 ORDER BY pg_total_relation_size(oid) DESC
 LIMIT 20;

Use this query to obtain a list of the top 20 largest indexes in the current2.
database and their parent tables:

SELECT indexrelid::REGCLASS::TEXT AS index_name,
 indrelid::REGCLASS::TEXT AS table_name,
 pg_size_pretty(
 pg_relation_size(indexrelid)
) AS total_size
 FROM pg_index
 ORDER BY pg_relation_size(indexrelid) DESC
 LIMIT 20;

Use this query to find the top 20 most active tables by determining which3.
receive the most inserts, updates, or deletes:

SELECT relid::REGCLASS AS table_name,
 n_tup_ins AS inserts,
 n_tup_upd + n_tup_hot_upd AS updates,
 n_tup_del AS deletes
 FROM pg_stat_user_tables
 ORDER BY (n_tup_ins + n_tup_upd +
 n_tup_hot_upd + n_tup_del) DESC
 LIMIT 20;

Use this variant to obtain the top 20 tables with fetch activity by checking4.
index and table scans:

SELECT relid::REGCLASS AS table_name,
 coalesce(seq_scan, 0) AS sequential_scans,
 coalesce(idx_scan, 0) AS index_scans,
 coalesce(seq_tup_read, 0) AS table_matches,
 coalesce(idx_tup_fetch, 0) AS index_matches
 FROM pg_stat_user_tables
 ORDER BY (coalesce(seq_scan, 0) +
 coalesce(idx_scan, 0)) DESC,
 (coalesce(seq_tup_read, 0) +
 coalesce(idx_tup_fetch, 0)) DESC
 LIMIT 20;

Minimizing Downtime Chapter 3

[103]

Use this query for the top 20 indexes with read activity in the current5.
database:

SELECT indexrelid::REGCLASS AS index_name,
 coalesce(idx_scan, 0) AS index_scans,
 coalesce(idx_tup_read, 0) AS rows_read,
 coalesce(idx_tup_fetch, 0) AS rows_fetched
 FROM pg_stat_user_indexes
 ORDER BY (coalesce(idx_scan, 0) +
 coalesce(idx_tup_read, 0)) DESC
 LIMIT 20;

How it works...
Each of these queries offers a distinct piece of information about the database. Simply
executing them in a vacuum offers very little insight. We must decipher the results of
each to learn anything. In addition, all of the system catalog views only return
statistics for the current database we're connected to.

If the PostgreSQL instance has dozens of databases and we're only connected to one,
the statistics will only apply to that particular database. To obtain stats on every
database in the instance, we would need to connect to each one and collect the
information separately.

The first query returns the 20 largest tables in the database, including associated
indexes and any TOAST (short for The Oversize Attribute Storage Technique) data.
This way, if a table has a large amount of excessively long row data or several
indexes, we still obtain its true size in relation to all of the other tables. We will likely
make use of the pg_size_pretty function several times throughout this book. When
given a size in bytes, it converts it to a more convenient and readable notation such as
megabytes or gigabytes.

The next query returns the 20 largest indexes in the database. While it is very likely
that these will be associated with the largest tables, this won't necessarily be the case.
Indeed, large composite indexes, functional indexes, or bloated indexes will also be
listed here. Indexes (which are not primary keys) that show up in this list are good
candidates for optimization, either by substituting them with partial indexes or
replacing them with a more efficient version.

Minimizing Downtime Chapter 3

[104]

After size, we move on to table activity. The third query returns the 20 most active
tables based on writes. In many cases, this will immediately identify tables with high
turnover that will frequently invoke autovacuum or autoanalyze and may require
manual adjustment. Often, user session tables appear here due to the inefficient
storage of web session data; identification provides ammunition for process revision.
Overly active tables are bottlenecks and should be minimized if possible.

Then, we may wish to know the table select information. The fourth query is
somewhat crude, but the intent is to return 20 tables that are most often read by user
sessions. Again, it will likely identify tables with extremely inflated read activity in
comparison to the database average. These cases can often be reduced by better
frontend data caches, and identifying them is the first step down this path.

Finally, we can see the top 20 indexes reflecting elevated read activity. This can
further isolate potential indexes that should be monitored. If we invert the sorting of
this query, we can also identify indexes that are not producing many matches at all
and are simply wasting space.

There's more...
Although we've already obtained a wealth of information from PostgreSQL, it still
has a few tricks up its sleeve.

Reset stats
After executing these queries multiple times in a row, it's hard to ignore the fact that
the numbers steadily increase, and there's no associated timestamp. Several statistics-
tracking systems will tabulate the differences between readings and display this as
the rate of change. If we're doing this by hand, we need another way to zero out
statistics for ease of analysis. Use this function to reset all activity statistics to zero:

SELECT pg_stat_reset();

Of course, we suggest that you capture this data before resetting it.

Minimizing Downtime Chapter 3

[105]

Using pgstattuple
The pgstattuple extension is also useful for analysis by performing a deep scan of
any supplied database object. It's best to use the extension to retrieve storage-related
data regarding indexes or tables matched with the preceding queries. Since it
interacts with the server filesystem, only superusers are allowed to install or invoke
the function provided by this extension.

Execute this SQL query to install pgstattuple:

CREATE EXTENSION pgstattuple;

To use the extension, select from it as if it were a normal table or view. The only
difference is that we use it as a function with the name of the table we want to
analyze. For example, to obtain storage statistics on the pg_class table, we could
execute this:

SELECT * FROM pgstattuple('pg_class');

Of particular interest is the free_percent column. If this is quite elevated, the table
mostly consists of empty space and could benefit from CLUSTER or VACUUM FULL. In
addition to this, we should tell developers if this table becomes bloated frequently, as
it is possible that they can modify the application to use it more efficiently.

If this isn't possible, we can also set autovacuum to be more aggressive for each
specific table if necessary.

See also
The tools discussed in this section have a lot of documentation and examples. Please
refer to these sites for more information:

System administration functions:
https://www.postgresql.org/docs/current/static/functions-admin.ht
ml

The Statistics Collector:
https://www.postgresql.org/docs/current/static/monitoring-stats.h
tml

pgstattuple:
https://www.postgresql.org/docs/current/static/pgstattuple.html

https://www.postgresql.org/docs/current/static/functions-admin.html
https://www.postgresql.org/docs/current/static/functions-admin.html
https://www.postgresql.org/docs/current/static/monitoring-stats.html
https://www.postgresql.org/docs/current/static/monitoring-stats.html
https://www.postgresql.org/docs/current/static/pgstattuple.html

Minimizing Downtime Chapter 3

[106]

Defusing cache poisoning
Not every DBA has experienced disk cache poisoning. Those who have, recognize it
as a bane to any critical OLTP system and a source of constant stress in a highly
available environment.

When the operating system fetches disk blocks into memory, it also applies arbitrary
aging, promotion, and purging heuristics. Several of these can invalidate cached data
in the presence of an originating process change such as a database crash or restart.
Any memory stored by PostgreSQL in shared memory is also purged upon database
shutdown.

Perhaps the worst thing a DBA can do following a database crash or restart is to
immediately make the database available to applications and users. Unless storage is
based on SSDs or a very capable SAN, random read performance will drop by two or
three orders of magnitude, as data is being supplied by slow disks instead of by
memory. As a result, all subsequent queries will greatly oversaturate the available
disk bandwidth. This delays query results and slows down the cache rebuild,
potentially multiplying query execution times for several hours.

In a highly available system, we cannot ignore this kind of risk. Saturated disk
bandwidth means random reads are spread very thin. We need to figure out how to
reinstate the disk cache and possibly the PostgreSQL shared buffers before declaring
that the database is usable. Otherwise, the claim of high availability becomes hollow
indeed. Despite PostgreSQL being online, queries can often become so slow that
applications will ignore results and return errors to users.

This recipe will provide a few strategies for mitigating those scenarios.

Getting ready
We recommend that you check the PostgreSQL documentation for system
administration functions and views maintained by the statistics collector. We will be
using the pg_relation_filepath function and the pg_stat_user_tables view.

We will also make use of a contributed utility named pgFincore. This utility is not
included with standard PostgreSQL but is often packaged for popular Linux
distributions. To install it on an Ubuntu server along with the PostgreSQL server, use
this command:

sudo apt-get install postgresql-12-pgfincore

Minimizing Downtime Chapter 3

[107]

Afterward, activate it in the database with this query:

CREATE EXTENSION pgfincore;

Users of 9.4 and above also have the option of pg_prewarm. It can be installed with
the following SQL statement:

CREATE EXTENSION pg_prewarm;

How to do it...
Begin by following these steps to create a static table that stores the top 20 active
tables and indexes:

Execute the following query as a superuser and ignore any errors:1.

DROP TABLE IF EXISTS active_snap;

Next, recreate the snapshot table by running this query as a superuser:2.

CREATE TABLE active_snap AS
(SELECT t.relid AS objrelid,
 s.setting || '/' ||
 pg_relation_filepath(t.relid) AS file_path
 FROM pg_stat_user_tables t, pg_settings s
 WHERE s.name = 'data_directory'
 ORDER BY coalesce(idx_scan, 0) DESC
 LIMIT 20)
UNION
(SELECT t.indexrelid AS objrelid,
 s.setting || '/' ||
 pg_relation_filepath(t.indexrelid) AS file_path
 FROM pg_stat_user_indexes t, pg_settings s
 WHERE s.name = 'data_directory'
 ORDER BY coalesce(idx_scan, 0) DESC
 LIMIT 20);

To restore the disk cache to the operating system easily for 9.4 systems and above
with pg_prewarm available, merely execute this single SQL statement:

SELECT pg_prewarm(objrelid)
 FROM active_snap;

Minimizing Downtime Chapter 3

[108]

Otherwise, we need a slightly more manual route. For 9.3 and older, use these steps:

As a superuser in the database connected with psql, execute the following1.
query in the critical OLTP database before shutting down the database:

COPY active_snap (file_path) TO '/tmp/frequent_tables.txt';

Shut down PostgreSQL.2.
Perform maintenance, updates, or recovery.3.
Execute these commands from the command line:4.

for x in $(tac /tmp/frequent_tables.txt); do
 for y in $x*; do
 dd if=$y of=/dev/null bs=8192
 dd if=$y of=/dev/null bs=8192
 done
done

Restart PostgreSQL.5.

If we're not comfortable with UNIX commands, this pure SQL method will work as
well. Follow these steps instead:

Shut down PostgreSQL.1.
Perform maintenance, updates, or recovery.2.
Restart the database.3.
As a superuser in the database, execute the following SQL query in the4.
critical OLTP database:

UPDATE pg_database
 SET datallowconn = FALSE
 WHERE datname != 'template1';

Next, execute the entire contents of this SQL block:5.

DO $$
DECLARE
 obj_oid oid;
BEGIN
 FOR obj_oid IN SELECT objrelid FROM active_snap
 LOOP
 PERFORM pgfadvise_willneed(obj_oid::regclass);
 END LOOP;
END;
$$ LANGUAGE plpgsql;

Minimizing Downtime Chapter 3

[109]

Finally, execute the following query to re-enable connections:6.

UPDATE pg_database SET datallowconn = TRUE;

How it works...
The first part of this recipe has two steps. We could perform this work at any time, so
the table may have existed from our previous work. Therefore, the first step is to drop
the active_snap table. None of the steps following this one remove this table,
because, in the case of a crash, we want its contents as a starting point for restoring
the cache contents.

After dropping the active_snap table, we recreate it with the top 20 tables and top
20 indexes, which are sorted by how often they're used in SELECT statements. This is
only a close approximation based on the collected database statistics, but it's better
than leaving the data entirely uncached.

After creating the list of the most accessed tables and indexes, we have one of two
paths. In the first and simplest one, we merely preserve the file_path contents of
the active_snap table, as this tells us exactly where the data files are located. After
preserving the table, we can do anything we want, including restarting the database
server.

After we're done with maintenance or crash recovery, we can actually restore the file
cache before starting the PostgreSQL service. To do this, users of PostgreSQL 9.4 and
above can simply rely on the pg_prewarm extension to do all of the hard work.

Otherwise, we require an imposing block of shell scripting. While it looks complex,
it's actually just two loops to fetch a full list of every file that has a name similar to the
ones we identified. As PostgreSQL objects exist in 1 GB chunks, there can be several
of these that we may have to find. Then, we use the dd utility to read the file into
memory twice. We do it twice because the first time it loads the data into memory,
and the second time it encourages the filesystem to mark the blocks as frequently
used so that the operating system is less likely to purge them.

Afterward, we can start PostgreSQL and enjoy a database that is much less likely to
have problems retrieving frequently used data. If we don't have command-line access
to the system where PostgreSQL runs, this process is a little more complicated but
still manageable.

Minimizing Downtime Chapter 3

[110]

In the second scenario, we actually stop the database first. Any of our cache
recoveries must come after the database is restarted. Until that time, we're free to
perform any activity necessary to get the server or database contents in order. After
we start the database, the fun begins.

We need to reject user connections while we load the database cache. The easiest way
to do this without complicated scripts is to simply reject all connections that don't
target the template1 database. It's extremely unlikely that applications or users will
connect to template1 as it generally contains nothing and they have no permissions
within it. For our use, it allows us to reconnect and re-enable connections from
template1 if, for some reason, we get disconnected.

Then, we can use the contents of our previously initialized active_snap table to tell
the pgFincore module to load all of those tables and indexes into memory. After this
is complete, we re-enable the database connections and our work is finished.

Our active_snap table is pretty handy, but it depends on the
existence of statistical data that might not be available in the case of
a system crash. Be wary of using this approach if statistical
information is not trustworthy or is missing.

See also
The tools discussed in this section have a lot of documentation and examples. Please
refer to these sites for more information:

System administration functions:
https://www.postgresql.org/docs/current/static/functions-admin.ht
ml

The Statistics Collector:
https://www.postgresql.org/docs/current/static/monitoring-stats.h
tml

pg_prewarm: https:/ /www. postgresql. org/ docs/ current/ static/
pgprewarm. html

pgFincore: https:/ / github. com/ klando/ pgfincore

https://www.postgresql.org/docs/current/static/functions-admin.html
https://www.postgresql.org/docs/current/static/functions-admin.html
https://www.postgresql.org/docs/current/static/monitoring-stats.html
https://www.postgresql.org/docs/current/static/monitoring-stats.html
https://www.postgresql.org/docs/current/static/pgprewarm.html
https://www.postgresql.org/docs/current/static/pgprewarm.html
https://www.postgresql.org/docs/current/static/pgprewarm.html
https://www.postgresql.org/docs/current/static/pgprewarm.html
https://www.postgresql.org/docs/current/static/pgprewarm.html
https://www.postgresql.org/docs/current/static/pgprewarm.html
https://www.postgresql.org/docs/current/static/pgprewarm.html
https://www.postgresql.org/docs/current/static/pgprewarm.html
https://www.postgresql.org/docs/current/static/pgprewarm.html
https://www.postgresql.org/docs/current/static/pgprewarm.html
https://www.postgresql.org/docs/current/static/pgprewarm.html
https://www.postgresql.org/docs/current/static/pgprewarm.html
https://www.postgresql.org/docs/current/static/pgprewarm.html
https://www.postgresql.org/docs/current/static/pgprewarm.html
https://www.postgresql.org/docs/current/static/pgprewarm.html
https://www.postgresql.org/docs/current/static/pgprewarm.html
https://www.postgresql.org/docs/current/static/pgprewarm.html
https://www.postgresql.org/docs/current/static/pgprewarm.html
https://github.com/klando/pgfincore
https://github.com/klando/pgfincore
https://github.com/klando/pgfincore
https://github.com/klando/pgfincore
https://github.com/klando/pgfincore
https://github.com/klando/pgfincore
https://github.com/klando/pgfincore
https://github.com/klando/pgfincore
https://github.com/klando/pgfincore
https://github.com/klando/pgfincore
https://github.com/klando/pgfincore

Minimizing Downtime Chapter 3

[111]

Terminating rogue connections
There comes a time in every DBA's life when they must disconnect a PostgreSQL
client from the server; for us, that time is now. There are varying degrees of escalation
available for this purpose, and several system catalog views to provide viable targets.
Why would we want to forcefully cancel a query or disconnect a user?

To prevent utter havoc; should a user forget an important clause, a query could
require several hours to complete. During this time, it is consuming an entire CPU
and saturating the storage bandwidth while doing so. A buggy application could start
a transaction and stop responding, leaving an idle transaction potentially holding
locks and causing a wait backlog.

There are many reasons to evict a connection, and most of them revolve around
maintaining a regular flow of queries. If we're unable to maintain low latency and
high throughput, our work in building a highly available environment is wasted. This
recipe will help us to focus on dedicating resources primarily to active user sessions.

Getting ready
Luckily, PostgreSQL provides most of the tools we need. However, there is a more
advanced command-line utility named tcpkill that we may need to use later. If it's
not already installed, we recommend that you do so before continuing. Debian or
Ubuntu-based systems can use this command as a root-capable user:

sudo apt-get install dsniff

For lucky users of 9.6 and above, we suggest setting the new
idle_in_transaction_session_timeout parameter to 3600 or
lower in postgresql.conf. This parameter will tell PostgreSQL to
automatically cut any connection that is idle for longer than an hour.

Minimizing Downtime Chapter 3

[112]

How to do it...
The full escalation path starts very subtly to avoid major disruptive action. Perform
these steps carefully, assuming eth0 is the network interface that PostgreSQL is
using:

Connect to the database as a superuser and execute the following query for1.
PostgreSQL 9.2 and higher versions:

SELECT pid, client_port, state,
 now() - query_start AS duration, query
 FROM pg_stat_activity
 WHERE now() - query_start > INTERVAL '2 seconds'
 AND state != 'idle'
 ORDER BY duration DESC;

Use this query for 9.1 and lower versions:2.

SELECT procpid AS pid, client_port,
 now() - query_start AS duration, current_query
 FROM pg_stat_activity
 WHERE now() - query_start > INTERVAL '2 seconds'
 AND current_query != '<IDLE>'
 ORDER BY duration DESC;

Starting from the top, carefully examine the queries in this list. Make note3.
of pid for any query that should be disconnected.
Stop the currently executing query for the selected pid variables with the4.
following query:

SELECT pg_cancel_backend(pid);

Execute the first query again and check the results for the targeted5.
pid variable.
If the query is still running, or if the state has switched to idle in6.
transaction, execute the following query:

SELECT pg_terminate_backend(pid);

Execute the first query again and check the results for the targeted7.
pid variable.
If the query is still running, disconnect from the database and connect to8.
the server as a root-capable user.

Minimizing Downtime Chapter 3

[113]

Run the following command to terminate the client's network connection,9.
using the contents of the client_port column:

sudo tcpkill -i eth0 -9 port client_port

Wait until the output from tcpkill resembles several identical lines.10.

How it works...
We begin the process by getting a list of every process ID, duration, and query
currently running for longer than 2 seconds. Though 2 seconds is arbitrary, it helps
filter out short and fast queries that we aren't interested in pursuing. If we examine
the queries listed in these results, we may decide that one or more need to be canceled
or disconnected. The results should resemble this output:

If this is the case, the pid column conveys important information necessary to target
the client connection. We begin by invoking pg_cancel_backend in an attempt to
terminate the currently running query. Often, this is enough to clear locks or stop a
query from consuming excessive resources. It's important to rerun the status query to
ensure that the command successfully stopped the client's activity.

If the target connection is still active, we need to escalate to the next step: disconnect
the client from the database. For this, we use pg_terminate_backend instead. This
is roughly equivalent to using an operating system utility to terminate the client
process, but it is something we can do directly from PostgreSQL. Again, we check for
success using the status query just in case.

In very rare cases, pg_terminate_backend can fail and the client connection will
remain unscathed. So, how is this possible? Well, despite their apparent maturity,
networks are notoriously unreliable. Misrouted packets, retransmissions, blocked
sockets, timeouts, stalls, and more issues wait to disrupt the communication line
between PostgreSQL and a connected client.

Minimizing Downtime Chapter 3

[114]

Sometimes, the network socket is in such a state that PostgreSQL was interrupted
while writing output. In this case, PostgreSQL is waiting for the client to
acknowledge the receipt of the data, or for the operating system to mark the network
connection as broken. If this never happens, PostgreSQL will wait patiently forever
until the client properly handles the terminate command.

This isn't ideal for us, as the process could be locking necessary tables or rows. If we
can't get PostgreSQL to terminate the client, we need to use another approach. The
tcpkill command gives us the ability to interrupt a network connection directly;
this causes the operating system to close the network socket. When this happens, the
PostgreSQL client exits automatically.

All we need to do is run tcpkill with the -i parameter, in order to tell it about the
network interface the database is using, the port to focus on, and how aggressive to
be. We know the port from the client_port column of our status query, and
specifying -9 tells tcpkill to block all incoming and outgoing packets so that there's
no ambiguity regarding our intent.

The output from a tcpkill command should look like this toward the end:

127.0.0.10:5432 > 127.0.0.1:37601: R 315492496:315490496(0) win 0
127.0.0.10:5432 > 127.0.0.1:37601: R 315492538:315490538(0) win 0
127.0.0.10:5432 > 127.0.0.1:37601: R 315492622:315490622(0) win 0

It's important to not be impatient. Sometimes, it can take a minute or two before the
connection finally dies.

There's more...
If a connected application encounters a bug and goes haywire, it might be convenient
to disconnect several clients simultaneously. PostgreSQL lets us run query results
through functions, so we could kill all connections that were idle in the transaction for
at least 2 minutes by running this query as a superuser:

SELECT pg_terminate_backend(pid)
 FROM pg_stat_activity
 WHERE now() - state_change > INTERVAL '2 minutes'
 AND state = 'idle in transaction';

Minimizing Downtime Chapter 3

[115]

The pg_stat_activity view offers a lot of characteristics to differentiate target
queries. We could terminate only connections from a specific IP address or those that
connected to the database over a week ago. There is a lot of opportunity here to
maintain a highly available system through direct intervention.

Reducing contention with concurrent
indexes
When administering a PostgreSQL installation, we will eventually need to create new
tables and indexes. In the case of new indexes, the table is locked in shared exclusive
access mode for the duration of the creation process, blocking any insert, update, or
delete activity. This both prevents inconsistencies and allows the database to modify
the table structure to reflect the new index.

Unfortunately, this process is fundamentally incompatible with maintaining a highly
available server. While building the index, PostgreSQL needs to examine every valid
table row, which means loading it from the disk into memory. For large or active
tables, this can cause excessive strain on the system. Other database activities will
reduce their available disk bandwidth, and the required lock will block all
modifications of data in that table. Combined, this can lead to a table being locked for
a very long time.

Ever since PostgreSQL 8.2, indexes could be created concurrently with other
activities. This means PostgreSQL constructs the index in the background and only
requests an exclusive lock that is long enough to attach it to the table. However, soon
after its introduction, some DBAs felt reluctant to use it and have not changed their
evaluation of its safety as it matured.

This may seem trivial, as the feature has now been around for over a decade by this
point, but not enough new administrators know about this functionality. Using it
properly and knowing the caveats can avert several DBA headaches. This recipe will
provide a quick use case.

Minimizing Downtime Chapter 3

[116]

Getting ready
We just need to find an index to create. For the sake of this discussion, we may also
want to create a small pgbench database for demonstration purposes. Execute the
following commands as the postgres user to build a sufficient sample:

createdb pgbench
pgbench -i -s 200 pgbench

This will initialize (-i) a database with a table consisting of 2 million rows (-s 200),
which we can leverage for the short recipe.

How to do it...
Follow these steps to test concurrent index creation:

Connect to the pgbench database and execute the following command as a1.
superuser or the postgres user:

CREATE INDEX CONCURRENTLY idx_account_bid
 ON pgbench_accounts (bid);

In another connection, attempt to execute the following INSERT command2.
before the preceding command completes:

INSERT INTO pgbench_accounts
VALUES (50000000, 100, 15000, 'testing');

How it works...
By adding the CONCURRENTLY modifier, PostgreSQL will begin the process of
building an index. While it does this, it also tracks the incoming insert, update, and
delete activities to include them in the new index.

Minimizing Downtime Chapter 3

[117]

In the connection where we invoked the CREATE INDEX statement, we will not see a
prompt again until PostgreSQL finishes building the index. So, how can we tell it
apart from any regular index creation? Well, one of the reasons we built an example
was to prove that concurrency is present. The INSERT statement in the second
connection should succeed before the index is complete. The process is the same for a
production PostgreSQL instance. Any incoming writes to a table undergoing a
concurrent index creation will complete normally until the final lock is necessary.

There's more...
While concurrent indexes are very useful, they have some very important elements
that we need to consider.

No transactions
Even as of PostgreSQL 12, concurrent index creation cannot take place inside a
transaction. But why not? Well, remember that the process needs to look inside all of
the incoming transactions that could modify the table being indexed. PostgreSQL
normally never allows what most experienced DBAs know as dirty reads of
uncommitted data. As a consequence, concurrent indexes must be built outside of a
transaction by internal database mechanisms.

One at a time
As concurrent index creation is not transaction-safe, PostgreSQL will only build one
at a time per table. Some enterprising DBAs have circumvented this limitation by
building a queue system to send concurrent index-creation requests until the queue is
empty. More advanced PostgreSQL installations may want to consider a similar
system to utilize concurrent indexes extensively.

Dangers of OLTP use
Concurrent indexes are not a panacea; they still follow rules for lock acquisition.
Specifically, PostgreSQL cannot acquire a lock to attach the index as long as any
earlier transactions are still running. While it waits for the lock, any new transactions
that need to modify the table contents will also wait. This feedback loop of waits can
quickly consume all available client connections on an already busy OLTP system.

Minimizing Downtime Chapter 3

[118]

It's best to avoid this situation by following the normal index-creation protocol on
OLTP systems: that is, only create indexes when the volume is low. We can also
massively reduce the risk by avoiding long-running transactions that could
potentially block the final lock request. OLTP systems should only have a
few transactions in any case.

See also
PostgreSQL has an excellent manual page discussing indexes and concurrency. Please
refer to this page for more information: https:/ /www. postgresql. org/ docs/
current/static/ sql- createindex. html.

Managing system migrations
As DBAs, it is likely that we will eventually preside over a server replacement.
Whether this is to avoid failed hardware or due to system upgrades, our job is to
move PostgreSQL from one system to the next.

Performing a server migration while simultaneously maintaining maximum
availability is not simple. One of the easiest methods is limited to users of shared
storage such as a SAN. Such storage can be reassigned to another server quite easily.
Without a SAN or other means of shared storage, we need to utilize another method.

Luckily, PostgreSQL added streaming database replication in version 9.1. This recipe
will explore how we can make a copy of the new server and then switch to it when
we're ready.

Getting ready
For this demonstration, we will need another server or virtual machine to receive a
copy of our database. Have one ready to follow along. We will also be using a
PostgreSQL tool named pg_basebackup. Check the PostgreSQL documentation
regarding this utility for more information.

https://www.postgresql.org/docs/current/static/sql-createindex.html
https://www.postgresql.org/docs/current/static/sql-createindex.html
https://www.postgresql.org/docs/current/static/sql-createindex.html
https://www.postgresql.org/docs/current/static/sql-createindex.html
https://www.postgresql.org/docs/current/static/sql-createindex.html
https://www.postgresql.org/docs/current/static/sql-createindex.html
https://www.postgresql.org/docs/current/static/sql-createindex.html
https://www.postgresql.org/docs/current/static/sql-createindex.html
https://www.postgresql.org/docs/current/static/sql-createindex.html
https://www.postgresql.org/docs/current/static/sql-createindex.html
https://www.postgresql.org/docs/current/static/sql-createindex.html
https://www.postgresql.org/docs/current/static/sql-createindex.html
https://www.postgresql.org/docs/current/static/sql-createindex.html
https://www.postgresql.org/docs/current/static/sql-createindex.html
https://www.postgresql.org/docs/current/static/sql-createindex.html
https://www.postgresql.org/docs/current/static/sql-createindex.html
https://www.postgresql.org/docs/current/static/sql-createindex.html
https://www.postgresql.org/docs/current/static/sql-createindex.html
https://www.postgresql.org/docs/current/static/sql-createindex.html
https://www.postgresql.org/docs/current/static/sql-createindex.html

Minimizing Downtime Chapter 3

[119]

If the donor server is configured as described in the Configuration – getting it right the
first time recipe, modify its pg_hba.conf file and add the following line:

host replication rep_user 0/0 md5

Then, create a user to control replication with this SQL query issued as a superuser:

CREATE USER rep_user WITH PASSWORD 'rep_test' REPLICATION;

Finally, reload the server to activate the configuration line. If you are attempting this
in a real production system, use a better password and replace 0/0 with the actual IP
address of the new server.

How to do it...
Assuming 192.168.1.10 is our donor server, follow these steps to create a copy:

Connect to the new server as the postgres user.1.
Issue the following command to copy data from the donor system:2.

pg_basebackup -U rep_user -h 192.168.1.10 -D /path/to/database

If using PostgreSQL 11 or earlier, create a file named recovery.conf in3.
/path/to/database with the following content:

standby_mode = 'on'
primary_conninfo = 'host=192.168.1.10 port=5432 user=rep_user'

For PostgreSQL 12 or later, create a file named standby.signal in4.
/path/to/database, and then add the following line to
postgresql.conf directly:

primary_conninfo = 'host=192.168.1.10 port=5432 user=rep_user'

Create a file named .pgpass in the home directory of the postgres user5.
with the following line:

*:5432:replication:rep_user:rep_test

Set the correct permissions for the .pgpass file with this command:6.

chmod 0600 ~postgres/.pgpass

Minimizing Downtime Chapter 3

[120]

Start the new server using the following command:7.

pg_ctl -D /path/to/database start

Inform application owners to stop their applications or bring available8.
services up with a maintenance message.
Issue the following command on the donor server to write any pending9.
data to the database:

CHECKPOINT;

Connect to PostgreSQL on the donor server and issue the following query10.
to check replication status:

SELECT sent_location, replay_location
 FROM pg_stat_replication
 WHERE usename = 'rep_user';

Periodically repeat the preceding query until sent_location11.
and replay_location match.
Issue a command on the primary server to stop the database. This12.
command should work on most systems:

pg_ctl -D /path/to/database stop -m fast

Issue this command on the new server:13.

pg_ctl -D /path/to/database promote

Inform application owners to start their applications or bring available14.
services up normally configured in order to use the new database server
address.

How it works...
We start the somewhat long journey on the new server by invoking the
pg_basebackup command. When PostgreSQL introduced streaming replication, it
also made it possible for a regular utility to obtain copies of database files through the
client protocol. To create a copy of every file in the donor system, we specify its
address with the -h parameter. Using the -U parameter, we can tell pg_basebackup
to use the rep_user user we created specifically to manage database replication.

Minimizing Downtime Chapter 3

[121]

When PostgreSQL 11, or earlier, detects the presence of a recovery.conf file, it
begins to recover as if it crashed. The value we used for the primary_conninfo
setting will cause the replica to connect to the primary server. Once established, the
replica will consume changes from the primary database server until it is
synchronized. After starting the database, any activity that occurs in the primary
system will also eventually be replayed in the copy.

PostgreSQL 12 introduces a new system where special files ending in .signal
indicate how the server should start. In this case, we can still specify
primary_conninfo in order to specify the upstream server, but we must also create
a standby.signal file to tell PostgreSQL to treat this new instance as a data replica.

Don't try to use the old recovery.conf standby method with
PostgreSQL 12, as the server will refuse to start if that file is present.

As we created the replication user with a password, we need an automatic method to
convey the password from the replica to the primary. PostgreSQL clients often seek
.pgpass files to obtain credentials automatically; used in this context, the new server
acts as a client.

Once we start the new server, everything should be ready, so we need all sources of
new data in the database to stop temporarily. Once this has happened, we issue
CHECKPOINT to flush the activity to disk. Afterward, we monitor the status of the
replication stream until it is fully synchronized with the donor.

After the synchronization is verified with our replication lag query, we stop the
source PostgreSQL database; its job is complete. All that remains is to promote the
new database to full production status and tell various departments and application
owners that the database is available at the new location. Before the introduction of
replication, this was a far more complicated procedure.

There's more...
If you'd like to read ahead, in Chapter 4, Proxy and Pooling Resources, we explain how
to simplify this even further. The process is the same until the final few steps, where
applications reconnect to the database. If applications and users are using a virtual
address instead of the actual server IP for the old database, they can continue to use
the virtual location after the migration.

Minimizing Downtime Chapter 3

[122]

Simply detach the virtual IP from the old database server and attach it to the new one
before informing the users that the migration is complete. As an added benefit, we
can use the virtual IP address as a form of security. Until we create it, users will be
unable to locate the database. We can take advantage of this and perform database
checks before going fully online.

Once we have created the virtual IP address, any applications that were using the
database before we started the migration will need to reconnect. However, even this
necessity can be removed in certain circumstances; we will discuss this in a future
chapter.

See also
System migrations are extremely complicated. This section only touches on a small
number of concepts. Please refer to these PostgreSQL documentation links for a
deeper exploration of the material we covered:

The pg_basebackup utility:
https://www.postgresql.org/docs/current/static/app-pgbasebackup.h
tml

Log-Shipping Standby Servers:
https://www.postgresql.org/docs/current/static/warm-standby.html

Hot Standby:
https://www.postgresql.org/docs/current/static/hot-standby.html

Managing software upgrades
Software in the server space is normally fairly stable. However, elements such as
security updates and bug fixes must be applied. Highly available servers can't be
stopped often, but without important upgrades, they could crash or experience a
breach, which would be far more serious.

So, how do we ensure that updates can be applied safely while maintaining consistent
availability? Once again, this often comes down to preparation. We prepare by having
duplicate online data copies and by abstracting access paths. With architecture like
this in place, we can switch to a backup server while upgrading the primary server;
thus, the database never actually goes offline.

We'll explore this scenario in this recipe, especially as it is a very common one.

https://www.postgresql.org/docs/current/static/app-pgbasebackup.html
https://www.postgresql.org/docs/current/static/app-pgbasebackup.html
https://www.postgresql.org/docs/current/static/warm-standby.html
https://www.postgresql.org/docs/current/static/hot-standby.html

Minimizing Downtime Chapter 3

[123]

Getting ready
For this section, we need at least one extra server with PostgreSQL installed. This
server should be running a copy of our database. You can follow the Managing system
migrations recipe to build a copy if you don't already have one available. We will also
be using a very simple proxy technique to create a virtual IP address to simplify
redirection. Reviewing these techniques now might be a good idea.

How to do it...
For this scenario, assume that we have two servers with the addresses
of 192.168.1.10 and 192.168.1.20, where 192.168.1.10 is currently the
primary server. In addition, we have a virtual IP address of 192.168.1.30 on the
eth0 Ethernet device. To upgrade the PostgreSQL software on both nodes, follow
these steps:

Stop the database copy on 192.168.1.20 as the postgres user using1.
this command:

pg_ctl -D /path/to/database stop -m fast

Perform any necessary software upgrades. For example, to upgrade a2.
Debian or Ubuntu server to the latest PostgreSQL 12, use the following
command as a root-capable user on 192.168.1.20:

sudo apt-get install postgresql-12

Start the database copy on 192.168.1.20 as the postgres user:3.

pg_ctl -D /path/to/database start

As a root-capable user on 192.168.1.10, stop the virtual IP address with4.
the following command:

sudo ip addr del 192.168.1.30/32 dev eth0

As a database superuser, issue a checkpoint to the database on5.
192.168.1.10:

CHECKPOINT;

Minimizing Downtime Chapter 3

[124]

Connect to PostgreSQL on 192.168.1.10 and issue the following query to6.
check the replication status:

SELECT sent_location, replay_location
 FROM pg_stat_replication
 WHERE usename = 'rep_user';

Periodically, repeat the preceding query until sent_location and7.
replay_location match.
As postgres, stop the PostgreSQL service on 192.168.1.10 with this8.
command:

pg_ctl -D /path/to/database stop -m fast

As postgres, promote the PostgreSQL replica on 192.168.1.20 with this9.
command:

pg_ctl -D /path/to/database promote

As a root-capable user on 192.168.1.20, start the virtual IP address with10.
the following command:

sudo ip addr add 192.168.1.30 dev eth0

If necessary, inform the developers and support staff to restart the11.
application's database connection pools.
Repeat any necessary software upgrades on 192.168.1.10 as already12.
performed on 192.168.1.20.
Erase the existing database on 192.168.1.10 as the postgres user using13.
the following command:

rm -Rf /path/to/database

Use pg_basebackup on 192.168.1.10 to make a copy of the upgraded14.
database on 192.168.1.20:

pg_basebackup -U rep_user -h 192.168.1.20 -D /path/to/database

If using PostgreSQL 11 or earlier, create a file named recovery.conf in15.
/path/to/database with the following content:

standby_mode = 'on'
primary_conninfo = 'host=192.168.1.20 port=5432 user=rep_user'

Minimizing Downtime Chapter 3

[125]

For PostgreSQL 12 or later, create a file named standby.signal in16.
/path/to/database, and then add the following line to
postgresql.conf directly:

primary_conninfo = 'host=192.168.1.20 port=5432 user=rep_user'

Start the newly created copy as the postgres user on 192.168.1.1017.
using the following command:

pg_ctl -D /path/to/database start

How it works...
This entire process is very long, but we hope to illustrate that it is actually very
straightforward. The first step is to upgrade the mirror copy of the database under the
assumption that it is not actively utilized by applications or users. The role of the
secondary node, in this case, is to act as an emergency backup for the primary
database node. As it's not being used, we are able to stop the database, perform any
necessary updates, and start it and allow it to synchronize again.

Afterward, we isolate the primary database node by disabling the virtual IP address.
This allows the streaming replica to replay the last few active transactions so that it's
fully synchronized before we make it the new primary database. We accomplish this
by issuing CHECKPOINT and watching the replication status until it matches on both
systems. When the replication status matches, we can stop the primary PostgreSQL
server; its role in the process is complete.

As software upgrades may take some time to complete or require a server restart, we
need to immediately make the secondary node available as the primary database. We
start by promoting the replica to become the new primary server by sending the
promote command to pg_ctl. Once the database is writable, we reinstate the
192.168.1.30 virtual IP address so that applications and users can reconnect safely.

This process of node switching is fairly quick, provided we already have a replica
ready to take over. With the replica acting as a primary, the next step is to perform
any necessary upgrades, just as we did on the secondary node. After the upgrades are
finished, we cannot simply restart the primary database again, as the replica has been
acting as a primary database for a period of time.

Minimizing Downtime Chapter 3

[126]

This means that we need to rebuild the primary database as a new replica. This makes
both nodes ready for the next upgrade and maintains the two-node relationship. We
start this process by erasing the old contents of the database and then use
pg_basebackup to copy the current primary database.

Then, we create a new recovery.conf file for older versions of PostgreSQL and
direct it to act as a new replica. PostgreSQL 12 and later requires a file named
standby.signal along with changes to postgresql.conf instead, as noted in the
Managing system migrations recipe.

Once the replica is started, we have the same configuration as we had earlier, but now
the roles are reversed; 192.168.1.20 is the primary and 192.168.1.10 is the
replica.

There's more...
Astute readers may have noticed that using pg_basebackup to copy the entire
database following a minor upgrade is somewhat wasteful. We agree! In later recipes,
we will make use of rsync or PostgreSQL-specific software to perform these tasks
instead. This recipe was already pretty long, and setting up rsync properly for this
operation would have added quite a bit more time. The point is to show you the
switching process; feel free to substitute better methods you know for synchronizing
data.

See also
In addition to rsync, a lesser-known utility named pg_rewind can make resetting
replicas much easier. It is beyond the scope of this chapter, so we recommend that
you read more about it here: https:/ /www. postgresql. org/ docs/ current/ static/
app-pgrewind.html.

Mitigating the impact of hardware failure
Software can have bugs, and PostgreSQL is no exception. Flaws in the database
software rarely, if ever, lead directly to data corruption. Hardware can fail too, but
hardware problems are not always so straightforward.

https://www.postgresql.org/docs/current/static/app-pgrewind.html
https://www.postgresql.org/docs/current/static/app-pgrewind.html
https://www.postgresql.org/docs/current/static/app-pgrewind.html
https://www.postgresql.org/docs/current/static/app-pgrewind.html
https://www.postgresql.org/docs/current/static/app-pgrewind.html
https://www.postgresql.org/docs/current/static/app-pgrewind.html
https://www.postgresql.org/docs/current/static/app-pgrewind.html
https://www.postgresql.org/docs/current/static/app-pgrewind.html
https://www.postgresql.org/docs/current/static/app-pgrewind.html
https://www.postgresql.org/docs/current/static/app-pgrewind.html
https://www.postgresql.org/docs/current/static/app-pgrewind.html
https://www.postgresql.org/docs/current/static/app-pgrewind.html
https://www.postgresql.org/docs/current/static/app-pgrewind.html
https://www.postgresql.org/docs/current/static/app-pgrewind.html
https://www.postgresql.org/docs/current/static/app-pgrewind.html
https://www.postgresql.org/docs/current/static/app-pgrewind.html
https://www.postgresql.org/docs/current/static/app-pgrewind.html
https://www.postgresql.org/docs/current/static/app-pgrewind.html
https://www.postgresql.org/docs/current/static/app-pgrewind.html
https://www.postgresql.org/docs/current/static/app-pgrewind.html

Minimizing Downtime Chapter 3

[127]

Disk, CPU, or memory failures don't always cause the server to crash. In fact, these
failures can persist for weeks or even months before their detection by a monitoring
infrastructure. Disk failures are generally abstracted away by RAID or SAN devices,
and these arrays are designed to readily handle online rebuilds. Other types of
failures are more subtle.

CPU or memory problems can manifest in several different ways. In order for
PostgreSQL to function, the data from disk must be read into memory to be processed
by the CPU. During any of these transition states, a bad CPU or RAM module can
inject an invalid checksum or data value that is inconsistent with the rest of the
database. However, PostgreSQL generally assumes that the database is consistent and
that the transaction logs have been faithfully recorded and applied.

When running a dual-node database where one node is always connected and
synchronized with the other, a failure like this can corrupt data on both nodes nearly
simultaneously. When both nodes contain invalid data, our promise of providing a
highly available system is impossible. We have no backup to switch to and no
alternate node to host the database while we repair the problem. Data corruption can
require intricate investigative and mitigation efforts, which are much harder to
complete while the database is online.

This recipe will explore some reasonable ways to prevent this type of scenario by
exercising extreme caution and some extra preparation work.

Getting ready
We need to cover a few different scenarios here. One of the things we want to do is
transfer files from one server to another. A popular way to do this is with the rsync
command. On Debian or Ubuntu systems, we can install it as a root-capable user this
way:

sudo apt-get install rsync

There's also a neat trick we can use to simplify the transferring of files to the WAL
archive system. Create a file named /etc/rsyncd.conf and fill it with this content,
assuming /db/wal_archive is where we want to send files:

[archive]
 path = /db/wal_archive
 comment = Archived Transaction Logs
 uid = postgres
 gid = postgres
 read only = true

Minimizing Downtime Chapter 3

[128]

We're now ready to protect our data from hardware problems.

How to do it...
The first thing we need to do is to secure the WAL stream. Follow these steps to build
a semi-permanent copy of archived WAL data in the /db/wal_archive directory:

On the primary node, modify the postgresql.conf file to include the1.
following setting:

archive_command = 'cp -an %p /db/wal_archive/%f'

Create the /db/wal_archive directory as a root-capable user using the2.
following commands:

sudo mkdir -p -m 0700 /db/wal_archive
sudo chown -R postgres /db/wal_archive

Reload the PostgreSQL service using the following command:3.

pg_ctl -D /path/to/database reload

As a root-capable user, create a script, named del_archives, in the4.
/etc/cron.daily directory and fill it with this content:

find /db/wal_archive -name '0000*' \
 -type f -mtime +2 -delete

Make sure that the script is executable using the following command:5.

chmod a+x /etc/cron.daily/del_archives

Next, we should create the /db/wal_archive folder elsewhere for safety. In this
case, let's assume that the system is at 192.168.1.10 and we have another server set
up specifically for WAL storage at 192.168.1.100.

Impose an hour's delay by following these steps:

On 192.168.1.100, create a /db/wal_archive directory as a root-1.
capable user with these commands:

sudo mkdir -p -m 0700 /db/wal_archive
sudo chown -R postgres /db/wal_archive

Minimizing Downtime Chapter 3

[129]

Ensure that the server at 192.168.1.100 has the rsync.conf file we2.
discussed earlier.
As a root-capable user on 192.168.1.10, create a script named3.
sync_archives in the /etc/cron.d directory with this content:

* * * * * postgres find /db/wal_archive -name '0000*' \
 -type f -mmin +60 | \
 xargs -I{} rsync {} 192.168.1.100::archive

How it works...
To ensure that WAL data is available for recovery or emergency restore, we need to
secure it on a tertiary location away from the primary or secondary server. We start
this by telling PostgreSQL to store the old WAL files instead of deleting them. The cp
command we used to copy the files will not overwrite any existing archives due to the
-n setting. This prevents accidentally corrupting the existing transaction logs.

Then, we need to create the directory where the files will reside. The mkdir command
does this, and the chown command ensures that the PostgreSQL server can write to
that directory. Once the directory is in place, we need to reload PostgreSQL because
we changed archive_command.

Once a WAL file is no longer required by PostgreSQL, it's stored in our
/db/wal_archive directory until it gets deleted. This is why we create the
del_archives script. We only really need 2 or 3 days' worth of live WAL files. This
allows us to send very old files to tape, and newer files are available for Point-in-time
recovery (PITR) or restore. Once we make the script executable with the chattr
command, we will not have to worry about accidentally filling the disks with WAL
files.

The final steps might be the most important of all. We create a directory on a
completely different server rather than on any of our existing database nodes. Once this
directory is there, we create an automated rsync job on the database master that will
run every minute and copy all WAL files older than 1 hour to the new storage area.
Why only an hour? Well, current versions of PostgreSQL don't have the ability to
delay the replay stream, so if we encounter a hardware problem, corrupt data will
immediately synchronize to our spare server. This gives us up to an hour for
monitors, maintenance, and logs to discover the problem before the corrupted WAL
files pollute the tertiary storage server.

Minimizing Downtime Chapter 3

[130]

We could use PITR instead, at this point. However, an imposed 1-
hour delay allows us to have live access to databases that obtain
their WAL files from the tertiary server. Otherwise, we would have
to restore from backup and apply WAL files to reach our desired
point in time.

There's more...
In securing the WAL stream, there are a few other options available to us.

Copying WAL files more easily
If we have a version of PostgreSQL of 9.2 or above, there is a new command that,
much like pg_basebackup, utilizes the replication mechanism for a new purpose.
Assuming PostgreSQL is configured as described in the Configuration – getting it right
the first time recipe, there should be several available replication streams. As we've
planned ahead and have a dual-node cluster, we are already using at least one to
create a copy of the database.

The next step is to focus on the safety of the WAL files, as they are critical to PITR.
Instead of using rsync to copy these between nodes, we can simply pull them
directly from the primary node. With 192.168.1.30 as the virtual database IP
address and rep_user as the name of the replication user, we could use the
following command to obtain WAL data:

pg_receivewal -h 192.168.1.30 -U rep_user -D /db/wal_archive

This command acts like a service. This means it will only copy from the replication
stream while it is actually running. To use pg_receivewal effectively, it needs to be
started as a background service and should be restarted if the virtual IP is moved or
the server it's running on is ever restarted.

We should note that, prior to PostgreSQL 10, this utility was actually
named pg_receivexlog instead. Otherwise, it acts exactly as
described previously.

Minimizing Downtime Chapter 3

[131]

Built-in delay
When we said PostgreSQL has no way to delay applying WAL data to a streaming
replica, we weren't quite telling the whole story. There actually is a setting in versions
of PostgreSQL 9.4 and higher that will delay COMMIT of transactions from the
upstream primary server.

If we wanted to use this with versions of PostgreSQL between 9.4 and 11, we could
simply add this line to the standby's recovery.conf file to wait for an hour before
committing data:

recovery_min_apply_delay = 3600

For PostgreSQL 12 or greater, we would simply add this to postgresql.conf
instead.

This parameter acts very similarly to our cumbersome WAL marshaling, but with one
key difference. All data in the replication stream is applied as quickly as possible, and
only COMMIT is delayed. This means that any corrupt data on the upstream system
could also be on the replica, but it would be invisible to us.

This isn't quite ideal since we want to avoid incorporating the bad data in the first
place, but it's certainly easier to manage. Assuming we've secured the WAL files and
have adequate backup coverage, this kind of delay may be an acceptable compromise.

Adding compression
PostgreSQL WAL files tend to be very compressible. As such, we can save quite a bit
of space while storing them for long periods of time. Since PostgreSQL
archive_command can be anything we wish, we can incorporate compression right
into the process. For example, we could use this postgresql.conf setting instead:

archive_command = 'gzip -qc %p > /db/wal_archive/%f'

Now, whenever PostgreSQL moves a WAL file into the archive, it also compresses it.

Minimizing Downtime Chapter 3

[132]

Secondary delay
We have already discussed maintenance in the previous sections. What we never
covered was self-imposed archival delay. If we're performing maintenance or the
primary node crashes, it is a very good idea to either delete the
/etc/cron.d/sync_archive script or comment out the rsync command itself until
the maintenance is complete. This hour-long barrier helps us to avoid propagating
corrupt data, but there's no reason to take excessive risks.

Some environments have another pair of servers in a different data center that acts as
disaster recovery. If this is our setup, any running server on the disaster-recovery side
should be stopped while we modify or rebuild the primary or secondary servers. The
reasoning is the same: if there is a problem with the maintenance, we have an
untainted copy of everything.

Feel free to re-enable all the synchronization after verifying that crash recovery or
maintenance hasn't introduced invalid data.

See also
As we introduced the pg_receivewal utility, we would be remiss if we didn't
include its helpful documentation as well. Follow this link for more information:
https://www.postgresql.org/docs/current/app-pgreceivewal.html

Applying bonus kernel tweaks
Most operating system kernels are optimized for generalized use. While this does not
preclude operation as a server, we can benefit greatly by altering a few settings to
better utilize our available hardware. This isn't simply a series of configuration
modifications meant to increase performance but critical kernel-related tweaks meant
to prevent outages.

Though, while we're on the subject, there's no reason to not include purely
performance-enhancing modifications. Getting the most out of our hardware
prevents unnecessary operating strain on existing resources. A server running too
close to its limits cannot be considered highly available; an unexpected increase in
demand can render a server unusable under the right circumstances.

This recipe will cover several kernel changes that can keep our server online.

https://www.postgresql.org/docs/current/app-pgreceivewal.html
https://www.postgresql.org/docs/current/app-pgreceivewal.html

Minimizing Downtime Chapter 3

[133]

Getting ready
While the following settings are based on Linux servers, some of the concepts are
universal. We'll try to provide enough information to illustrate this. However, keep
that in mind for this recipe.

Otherwise, look for a directory named /etc/sysctl.d. Any system with this
directory can be easily configured by adding a file that contains extra settings here.
Otherwise, we need to find a file named /etc/sysctl.conf, which serves a similar
purpose but requires direct modification.

The settings we are going to change include the following:

kernel.sched_migration_cost_ns = 5000000
kernel.sched_autogroup_enabled = 0
vm.dirty_background_bytes = 67108864
vm.dirty_bytes = 1073741824
vm.zone_reclaim_mode = 0
vm.swappiness = 1

How to do it...
If there's a /etc/sysctl.d directory, follow these steps to activate it:

Create a file named 30-postgresql.conf in the /etc/sysctl.d1.
directory with the settings we mentioned earlier.
Execute this command as a root-capable user to activate:2.

sudo sysctl --system

Otherwise, follow these steps:

Place the settings in /etc/sysctl.conf.1.
Execute this command as a root-capable user to activate:2.

sudo sysctl -p

Minimizing Downtime Chapter 3

[134]

How it works...
In this case, it's all about the settings. Each of our two illustrated steps simply ensures
that the settings are in a location where they become permanent parts of the server.
Any future reboot will automatically apply these newly selected values instead of the
defaults. The sysctl command activates them immediately, so we don't need to
reboot to modify the system behavior.

The sched_migration_cost_ns setting is the total period of time the scheduler will
consider a migrated process cache hot, and thus less likely to be migrated again. By
default, this is 0.5 ms (or 500,000 ns). As the size of the process table increases, the
complexity inherited by the process scheduler eventually results in high CPU
overhead merely to assign processors to PostgreSQL tasks.

Depending on the count of database clients, we have observed overhead as high as 70
percent, greatly reducing database performance. Our suggested setting of 5 ms gives
PostgreSQL enough time to process one or more queries before the task is eligible for
migration and prevents the CPU task scheduler from being overworked.

The sched_autogroup_enabled setting causes the operating system to group tasks
by origin in order to improve perceived responsiveness. On server systems, large
daemons such as PostgreSQL are launched from the same system task. As they're all
in the same large group, they can be effectively choked out of CPU cycles in favor of
less important tasks. The default setting is 1 (enabled) on some platforms. By setting
this to 0 (disabled), PostgreSQL query performance can be improved by up to 30
percent on databases with hundreds of user connections.

We modify zone_reclaim_mode to completely disable its operation by setting it to 0.
According to the Linux kernel documentation, it may be beneficial to switch off zone
reclaim when memory should be used for caching files from disk. Without this, the
kernel aggressively balances memory between zones, causing excess overhead and
reducing available memory for caching disk data.

The dirty_background_bytes setting is the amount of memory (in bytes) that can
be marked as modified before the operating system begins writing data to disk in the
background. It is closely tied to dirty_ratio, which is the amount of memory (in
bytes) where the operating system blocks all other write activities and aggressively
writes dirty memory until everything has been flushed. This kind of occurrence
effectively stops all database activity until the flush is complete.

Minimizing Downtime Chapter 3

[135]

By setting the background bytes to such a low value of 64 MB, the constant
background writes make it far less likely that we will reach that trigger point. A
highly available server cannot afford long unplanned periods of stopped query
handling. The constant writing actually slightly reduces performance, which is a risk
we have to weigh against the stability of the server.

Older kernels used dirty_background_ratio and dirty_ratio
in place of dirty_background_bytes and dirty_bytes. These
older settings are percentages of total memory and, as such, should
not exceed 1 and 5, respectively, especially on systems with more
than 64 GB of RAM. Doing otherwise risks large flushes that could
over-saturate disk caches and cause I/O waits.

Lastly, we set swappiness to 1; this all but disables memory swapping. When Linux
runs low on memory, it normally starts moving idle processes to disk to free up RAM.
We don't want to risk any of our PostgreSQL clients getting this treatment, so we tell
Linux to only swap if there is no other option. This is common to dedicated servers
such as a critical PostgreSQL system. We don't use zero here because that can cause
strange effects in some cases, and heavily discouraging swap use is usually sufficient.

There's more...
Given that we're discussing kernel parameters pertaining to process scheduling and
memory management, we would like to discuss some of these in more depth. Some of
this involves version-dependent parameter names or explaining why we chose certain
attributes for this recipe. We also need to introduce the critically important topic of
Transparent Huge Pages (THP), which can drastically reduce PostgreSQL
performance.

Some additional background
Some kernel settings have different names with different versions. For instance,
sched_migration_cost_ns is renamed sched_migration_cost in the older
kernel releases. In the most recent kernels, the setting is missing entirely. In addition,
dirty_background_ratio and dirty_ratio have been replaced for a very good
reason.

Minimizing Downtime Chapter 3

[136]

Imagine a server with 512 GB of RAM. Even with a setting of only 1 percent, up to 5
GB of memory could be dirty before the operating system writes anything to disk. In
the event of an emergency flush, the disk subsystem may not be capable of handling
such a large amount. The new settings allow us to use the same logic as before, but
with bytes instead of percentages. In systems with more than 64 GB of RAM, we
highly recommend upgrading to a more recent kernel to make use of dirty_bytes
and dirty_background_bytes.

A good place to start for setting dirty_background_bytes is up to double the size
of the RAID or disk controller cache. This ensures that there is never more memory
waiting to be written than the controller can handle. Similarly, we can set
dirty_bytes to 8 to 10 times the size of the controller cache. This prevents long
flushing delays if the background writer ever falls behind. Our default of 1 GB should
suffice for most modern systems.

As always, your mileage may vary. Some PostgreSQL servers may experience slightly
faster writes with larger amounts of dirty memory buffers. However, the goal of this
book is to reduce the overall risk, even if that's at the cost of some performance. Long
periods of database timeouts due to an overwhelmed disk subsystem do not fit this
model.

Be wary of THP
Addressing memory efficiently is sometimes very difficult, especially on large servers
equipped with vast amounts of RAM. For the sake of efficiency, more modern Linux
kernels might attempt to communicate with larger preallocated blocks of memory.

Normally, this would be extremely beneficial. However, handling such large
contiguous memory segments requires regular maintenance procedures that can
disrupt processes assigned to that portion of RAM. In the wrong circumstances,
PostgreSQL services may be implicitly suspended for tens of seconds while memory
is defragmented.

Due to this, we strongly recommend disabling these if possible. This can be done with
the following commands:

echo never > /sys/kernel/mm/transparent_hugepage/enabled
echo never > /sys/kernel/mm/transparent_hugepage/defrag
echo no > /sys/kernel/mm/transparent_hugepage/khugepaged/defrag

Minimizing Downtime Chapter 3

[137]

If the third command results in an error, use this instead:

echo 0 > /sys/kernel/mm/transparent_hugepage/khugepaged/defrag

Unfortunately, as this is a kernel-level setting, it is applied during system boot and
can't be enforced by a configuration file setting. Changing it permanently so that it
persists between reboots is highly specific to the Linux distribution in use.

For Red Hat and CentOS variants, this command may permanently disable THP:

grubby --update-kernel=ALL --args='transparent_hugepage=never'

Debian and Ubuntu family systems are a bit more difficult. Modify the
/etc/default/grub file and look for the GRUB_CMDLINE_LINUX variable. Once
there, append the following to any string that variable might contain. Here's an
example:

GRUB_CMDLINE_LINUX="transparent_hugepage=never"

Then, execute this command as a root-level user:

sudo update-grub

If further steps are necessary or distributions change how these settings are managed
in the future, please find the most recent instructions and apply them. This setting is
important to ensure a healthy PostgreSQL system.

4
Proxy and Pooling Resources

Abstraction can protect a database from even the busiest platform and also ensure
that applications always contact an online database server. Previous chapters in this
book have already emphasized the importance of masquerading the primary
database node to enable maintenance and availability. Two tools that are very
popular for this purpose are virtual IP addresses and HAProxy software.

Yet there's always more to the story; abstraction isn't merely about indirection.

Modern applications, microarchitectures, and web services often involve hundreds or
even thousands of servers and virtual machines (VMs). If we follow a simple and
naive development cycle where applications have direct access to the database, each
of these servers may require dozens of connections per program. Should each of these
applications maintain their own connection pool, then this can result in hundreds or
thousands of direct connections to the database. But is this what we want? Consider
the scenario illustrated in the following diagram:

We need a way to avoid overwhelming the database with the needs of too many
clients. As we suggested in Chapter 3, Minimizing Downtime, a PostgreSQL server
experiences its best performance when the amount of active connections is less than
three times the available CPU count.

Proxy and Pooling Resources Chapter 4

[139]

With a thousand incoming client connections, we will need hundreds of CPU cores to
satisfy that formula. Every incoming connection requires resources such as memory
for query calculations and results, file handling and port allocations for network
traffic, process management, and more. In addition to this, each connection is another
process that the operating system has to schedule CPU time for. Very large servers
are extremely capable, but resources are not infinite. Even if the database can handle
thousands of connections, performance will suffer for each connection that is in
excess of the design capacity. Therefore, we need to change the map to something
slightly different, as shown here:

By inserting a connection pool in front of the database, hundreds of PostgreSQL
server processes are reduced to just dozens. A database pool works by recycling
database connections as soon as the client completes its current transaction or when
its database work is complete. Instead of hundreds of mostly idle database
connections, we maintain a specific set of highly active connections.

The principal tool that provides pooling capability for PostgreSQL is PgBouncer. We
will explore data node abstraction as well as pooling resources in this chapter to fully
maximize our availability and application responsiveness.

In this chapter, we will learn to combine and abstract connectivity to isolate and
protect the database. We will cover the following recipes in this chapter:

Exploring the magic of virtual IPs
Obtaining and installing HAProxy
Configuring HAProxy to load balance PostgreSQL
Determining connection costs and limits
Installing PgBouncer
Configuring PgBouncer safely
Connecting to PgBouncer
Listing PgBouncer server connections

Proxy and Pooling Resources Chapter 4

[140]

Listing PgBouncer client connections
Evaluating PgBouncer pool health
Changing PgBouncer connections while online
Enhancing PgBouncer authentication

Exploring the magic of virtual IPs
In Chapter 1, Architectural Considerations, we included a recipe on Introducing
Indirection. One of the simplest methods for attaining indirect access to our data is by
assigning a virtual network address to whichever server hosts our current primary
PostgreSQL node.

Therefore, whenever a standby node is promoted to primary status, we can move the
network address to the new server. No applications need to be reconfigured, no
connections must be changed, and all connections are routed to the writable node in
our cluster.

Another semi-popular method is to change the Domain Name System (DNS) to
redirect network connections to the new server. The beauty of this technique is that it
fully insulates the entire access path so that the reorganization of the entire network
can include IP addresses. The main drawback of this approach is that DNS changes
are slow, even with extremely low time-to-live (TTL) settings. It can take several
minutes for DNS updates to fully propagate through various hardware, software, and
caches.

Instead, we can tie the subdomain to an IP address that isn't associated with any
particular server. Then, it's simply a matter of changing the server that claims it owns
that IP address. If we assign a permanent DNS to that IP as well, we can still use DNS
updates for major migrations at a later time. And, better yet, virtual IPs are something
we can control directly.

Getting ready
We only need the ip and arping command-line tools to perform this process. These
utilities may not be present by default, so install them before you continue.

If you are on a Debian or Ubuntu system, issue this command:

sudo apt-get install iproute arping

Proxy and Pooling Resources Chapter 4

[141]

Red Hat and CentOS users can use this:

sudo yum install iproute iputils

Previous versions of this recipe used the ifconfig tool instead.
This has been deprecated in favor of ip based on recent Linux
distribution trends.

How to do it...
For these steps, assume eth0 is the primary network interface and 10.0.0.10 is the
IP we are trying to claim. Follow these steps to move or create a virtual IP:

First, connect to the PostgreSQL node that had the IP address earlier. This1.
is often the primary server.
Release the IP address with the following command:2.

sudo ip addr del 10.0.0.10/32 dev eth0

Ping the desired IP address with the following command:3.

ping -c 3 10.0.0.10

If the preceding command reaches a PostgreSQL server, connect to that4.
system and repeat step 2 to step 3.
Next, connect to the new server that should own the IP address.5.
Claim the IP address with the following command:6.

sudo ip addr add 10.0.0.10/32 dev eth0 label eth0:pgvip

Tell the network about the location of the new IP address using this7.
command:

sudo arping -c 3 -A -I eth0 10.0.0.10

How it works...
If we haven't created a virtual IP yet, we can skip the first three steps. Otherwise, in
order to use an IP address, it must be available. Setting up the same IP address on
multiple servers can wreak havoc on network traffic routing.

Proxy and Pooling Resources Chapter 4

[142]

It's important to never operate while two PostgreSQL servers claim
the same IP address.

Next, we ping the desired address to ensure that there are no replies. This should
prove that our IP address is free for use. It should end with something like this:

--- 10.0.0.10 ping statistics ---
3 packets transmitted, 0 received, +3 errors, 100% packet loss,
 time 2015ms

We want to see 100 percent packet loss. This means that the IP address is currently
unclaimed. If this results in an active server, we need to repeat the command that we
used to shut down the existing virtual IPs there as well.

Provided the address is available, we simply connect to the desired server and use ip
to create a new virtual IP. We named the virtual IP pgvip and attached it to the eth0
interface, using 10.0.0.10 as the target address to claim.

After this step, the IP address may only be visible on the local server, so we need to
tell the upstream switches and routers that the IP is in use. The arping command
does precisely this when passed to the -A parameter. We use the -c setting to send
three gratuitous broadcasts to help ensure that at least one is accepted. Like ip, we
need to tell arping to use eth0 with the -I parameter; otherwise, traffic may be
misrouted.

There's more...
This is really only a demonstration of virtual IP functionality. In the case of a server
reboot, network assignments created directly through ip will disappear. For our
purposes, this is actually the desired result. If a PostgreSQL server tried claiming a
virtual IP address upon reboot and we had already assigned it to a different system,
traffic could go to either system and result in severe consequences.

Would either database handle the requests? Would the misrouted network packets
cause invalid data or some other result? Well, we don't know that network routing
can affect any level of the communication process. The end result is that the database
is unusable in this state.

Proxy and Pooling Resources Chapter 4

[143]

Regardless, the process of maintaining virtual IP addresses is easily automated. Later
in this book, we will discuss at least one tool that automatically assigns a virtual IP or
some other indirection method to the current primary PostgreSQL server. Until then,
this is still a very powerful tool to add to our arsenal.

Obtaining and installing HAProxy
Another great way of abstracting PostgreSQL is to place it behind a proxy to redirect
traffic to the primary read/write node in our cluster. One of the most popular of these
proxies is HAProxy, a generic proxy software that was originally designed for load
balancing web servers.

It's also a highly versatile layer that we'll be using in several other recipes in this
book. Not only does it ensure we always reach the primary node regardless of its
location, but we can also leverage its functionality to spread read queries across
multiple PostgreSQL replicas.

This recipe will explain the basic installation of this high-availability connection
proxy, which we can then extend later on.

Getting ready
If this is a Debian-based system, begin by installing HAProxy from the standard
system repository with the following apt-get command:

sudo apt-get install haproxy

For Red-Hat-based servers, use an equivalent yum command:

sudo yum install haproxy

While distribution-provided versions of HAProxy are fully
functional, they're also extremely antiquated in many cases. If
HAProxy appears to have an apparent bug, it may be necessary to
build it from the source. We've found this isn't generally necessary
for using PostgreSQL since we aren't using the more advanced or
enterprise-enabled functionality.

Proxy and Pooling Resources Chapter 4

[144]

How to do it...
For this recipe, we will need only one PostgreSQL server, and one server for
HAProxy. We'll assume the PostgreSQL server is named pgha1, and the HAProxy is
named pgha-proxy. In addition to this, the IP address for pg1 is 10.0.30.1, while
pgha-proxy uses 10.0.30.20. Follow these steps to configure HAProxy on the
pgha-proxy server:

Create a PostgreSQL database role on pgha1 by executing this SQL:1.

CREATE ROLE haproxy_check;

Create or modify a file named haproxy.cfg in the /etc/haproxy2.
directory with the following content:

global
 maxconn 100

defaults
 log global
 mode tcp
 retries 2
 timeout client 30m
 timeout connect 4s
 timeout server 30m
 timeout check 5s

frontend ft_postgresql
 bind *:5432
 default_backend bk_db

backend bk_db
 option pgsql-check user haproxy_check

 server postgresql_primary pgha1:5432 check

If this is an older Debian-based system, set the ENABLED variable to 1 in the3.
/etc/default/haproxy file.
Start (or restart) HAProxy with the following command as a root-enabled4.
user:

sudo systemctl restart haproxy

Try to connect to pgha1 using psql from pgha-proxy:5.

psql -h pgha-proxy -U postgres -c "SELECT inet_server_addr()"

Proxy and Pooling Resources Chapter 4

[145]

How it works...
HAProxy has a very powerful configuration syntax, which is backed by hundreds of
parameters. While this makes it quite versatile, trying to write a configuration file
from scratch would be extremely difficult. In our case, the number of parameters we
need to set is actually fairly minimal.

We start by creating a simple role named haproxy_check so HAProxy can attempt
to connect to PostgreSQL and verify the server is responding. HAProxy uses its own
connection method that has some compatibility problems if no username is specified.
PostgreSQL roles are not allowed to connect to any database by default, but are
sufficient to pass a connectivity attempt. Once HAProxy has attempted to connect to
PostgreSQL and has received an expected response, it considers the server to be
online. Using a role in this way is completely safe, though, somewhat unorthodox.

Next, we set the global connection limit to 100 connections. This is the number of
connections HAProxy will manage before simply allowing them to queue in the
kernel buffer. Generally, we would want to set this to the same value we use with
max_connections in postgresql.conf, but it's not required.

We continue by configuring the log parameter to global so all HAProxy instances
write to the same log output. HAProxy is an HTTP proxy system at heart, so we must
ensure mode is set to tcp, so HAProxy doesn't try to interpret the actual traffic as
though it were HTTP headers.

After these essentials are set, we also define a number of connection retry and timeout
values. These are all subject to usage patterns, so feel free to modify them to better fit
your cluster needs. Of special note are the server and client timeouts, which will
break the connection if either the client or server is idle for over 30 minutes. We also
set the connect timeout to 4 seconds so that HAProxy doesn't wait forever to
establish a connection. And, finally, we set the check timeout to 5 seconds so that,
once a connection is established, it isn't alive for much longer than is necessary before
being disconnected.

Databases that commonly host persistent connections may need to
greatly increase client and server timeout values or set them to 0
to disable the feature altogether.

Once we've taken care of the default connection handling behavior, we must define
frontend and backend actions. On the frontend, HAProxy will be handling incoming
connections, so we create a new frontend named ft_postgresql.

Proxy and Pooling Resources Chapter 4

[146]

Within this definition, we set bind to *:5432 to listen to all available interfaces on
port 5432 so it looks like just another PostgreSQL node. Then, we link the frontend to
a backend that we'll name bk_db.

On the backend, HAProxy will be forwarding connections to our primary writable
PostgreSQL server. To handle this, we create a new backend named bk_db, which we
already referenced in the frontend configuration section. The only option we set
here is pgsql-check, which is the method HAProxy should use to confirm server
health. This is a special option built specifically for checking PostgreSQL servers.

The only other line in the backend section refers to our PostgreSQL server. Each
server line comes in three distinct sections. First is the server name, second is the host
and port for the service, and, third, is the further options for the definition. We chose
rather boring server names such as postgresql_primary to make it obvious what is
expected.

After starting the haproxy service on all of the cluster servers, it's a good idea to run
a quick test to ensure the proxy is working as expected. To do this, we connect to
pgha1 through pgha-proxy and execute the inet_server_addr function to obtain
the IP address of the server we've contacted. Since this is the port HAProxy is
monitoring, we should have been redirected to pgha1 and received 10.0.30.1 as the
result. A successful result should resemble this output:

See also
HAProxy is available as an open-source product, but it also has an Enterprise Edition
for more advanced functionality. We haven't used any of this here, but you may still
find it useful. There is also other documentation available on how to use more
advanced configuration. Take a look at the following for more information:

HAProxy: https://www.haproxy.com/

HAProxy documentation: https://cbonte.github.io/haproxy-dconv/

https://www.haproxy.com/
https://www.haproxy.com/
https://cbonte.github.io/haproxy-dconv/

Proxy and Pooling Resources Chapter 4

[147]

Configuring HAProxy to load balance
PostgreSQL
Given that we're attempting to build a highly available cluster of PostgreSQL nodes,
it's very likely we'll have a veritable horde of replicas for various purposes. Some will
exist as dedicated standby nodes, one may be a quorum witness, others could be
remote disaster-recovery alternates, and so on.

It would be a shame if all of these resources were not utilized in some manner. We've
bought multiple servers, and strategically placed them in important locations while
taking their dedicated roles into consideration.

Perhaps more importantly, not every application requires the ability to write to the
database. Interactive applications are far more likely to present information obtained
from the database multiple times before incorporating changes. If we facilitate that
behavior by ensuring read requests are always available, we're one step closer to high
availability.

Now it's time to extract the full value from the nodes so that they don't simply sit
idly. This recipe will explain how to leverage HAProxy such that read requests are
always served by one PostgreSQL node or another.

Getting ready
Since this recipe depends on the presence and operation of HAProxy, we recommend
following the Obtaining and installing HAProxy recipe in this chapter before
continuing. Otherwise, this procedure is fairly simple.

How to do it...
We will demonstrate this recipe by using three PostgreSQL servers and one server for
HAProxy. We'll make these assumptions:

There are three PostgreSQL servers with the following attributes:
pgha1 at 10.0.30.1
pgha2 at 10.0.30.2
pgha3 at 10.0.30.3

There is a dedicated HAProxy node named pgha-proxy.

Proxy and Pooling Resources Chapter 4

[148]

Follow these steps to configure HAProxy on the pgha-proxy server:

Add the following block near the end of the /etc/haproxy/haproxy.cfg1.
file:

frontend ft_pg_ro
 bind *:5500
 default_backend bk_pg_ro

backend bk_pg_ro
 balance leastconn
 option pgsql-check user haproxy_check

 server postgresql_pgha1 pgha1:5432 check
 server postgresql_pgha2 pgha2:5432 check
 server postgresql_pgha3 pgha3:5432 check

Trigger HAProxy to reload the configuration file with the following2.
command as a root-enabled user:

sudo systemctl reload haproxy

Try to connect to the new proxy using psql from pgha-proxy:3.

psql -h pgha-proxy -p 5500 -U postgres \
 -c "SELECT inet_server_addr()"

Repeat the previous step two or three more times to observe different4.
connection targets.

How it works...
This recipe is simple but very powerful; it lets us leverage our other PostgreSQL
replicas even if we originally intended only to use them for high availability. In this
example, we will start with three PostgreSQL servers, which we can imagine to be the
primary node and two standby systems.

Given that we already followed the Obtaining and installing HAProxy recipe, we
already have a working HAProxy node that we can reuse for redirecting the database
read traffic. This kind of dual-purpose use isn't something we could have done with a
virtual IP address, especially given the load balancing we're about to enable.

Proxy and Pooling Resources Chapter 4

[149]

Since HAProxy works in frontend/backend pairs, we begin by creating a second
frontend named ft_pg_ro (for frontend, PostgreSQL, read-only) that utilizes the
backend named bk_pg_ro (for backend, PostgreSQL, read-only). We also bind to
port 5500 since the standard PostgreSQL port of 5432 is already used by the
configuration we built for the primary node.

Then, we set up the bk_pg_ro backend itself by listing all of our PostgreSQL nodes.
The trick here is that we set the balance algorithm to leastconn, which sends
database sessions to whichever node has the least number of connections. If multiple
nodes have the same amount, it reverts to simply assigning them in a round-robin
manner. And, as in our previous recipe, we want to enable the pgsql-check feature
so that HAProxy doesn't accidentally attempt to send connections to a node that isn't
fully online.

Once our configuration is complete, we simply need to use systemctl to reload the
HAProxy service itself so it integrates the changes we made. Then, we do something
very interesting by connecting to the proxy server and specifying the read-only port
designation. If we repeat this command several times, we should observe a different
connection result each time, as shown in the following screenshot:

This helps to illustrate that HAProxy is doing exactly as we asked. Now, if the
application has a read-heavy component, we can configure it to utilize port 5500 and
spread that workload to several systems. Due to the proxy, we can even create several
more PostgreSQL replicas dedicated to this purpose to augment the members of the
high-availability stack itself.

Proxy and Pooling Resources Chapter 4

[150]

There's more
It is fairly obvious that the use of port 5500 isn't ideal. Our choice was arbitrary, and,
therefore, there's a small amount of potential for misconfiguration in some other part
of the application stack; some even expect defaults when possible.

To that end, we encourage the use of multiple HAProxy servers. Modern servers are
often deployed as a low-resource virtual system, and proxy nodes are an especially
good match for that approach. Proxy software doesn't require much overhead in the
way of CPU, RAM, or storage bandwidth, so we can simply create more of them.

Always test HAProxy before introducing too many abstraction elements into a
software stack. However, you may find that it's better to create a dedicated HAProxy
node for each purpose, one for write traffic and another for read traffic. Perhaps we
could even use one proxy node per subcategory of the application stack to target
specific PostgreSQL nodes, or stay within a particular data center.

We've even seen situations where HAProxy is installed locally on each application
server with a configuration like the one we shared here. This is especially prevalent in
microarchitectures that want to minimize single-point-of-failure risks by duplicating
everything. Architectures like this will simply rebuild the full application node if it
misbehaves, and HAProxy is part of the total package. The database servers are on
another layer, and HAProxy is no longer a node, but more of a pathfinder.

Determining connection costs and limits
Excessive database connections are not without risk. The level of risk we incur and
what exactly qualifies as excessive are important to determine early. The company
and our customers will find it extremely inconvenient if normal database activity
exhausts system memory, causes timeouts due to increased context-switching, or
overwhelms the kernel with an overly large process table.

To maintain a highly available server, we must know the full impact of every single
connection in terms of required memory and CPU resources. Servicing several
disparate applications from various external servers is difficult, so we must provide
availability while simultaneously avoiding resource exhaustion. If we properly assess
the ideal balance between connection count and performance early on, we can avoid
costly emergencies.

Proxy and Pooling Resources Chapter 4

[151]

Irrespective of whether we helped specify the hardware that will host our PostgreSQL
installation, it's still our job to figure out how many clients it can comfortably support.
Since this chapter is primarily focused on database pools, we can use this opportunity
to choose a practical pool size as well.

Getting ready
We will make a few rough calculations in this section. If possible, obtain data
regarding the number of CPU cores, available RAM, and the number of disk spindles
in the storage pool.

Linux systems have a live filesystem that tracks most of this information. To obtain
the number of CPUs, simply execute this at the command line, and add one to the
highest value since indexing starts at zero:

grep ^processor /proc/cpuinfo

For the amount of RAM in kilobytes, use this command:

grep MemTotal /proc/meminfo

Finding the number of disk spindles can vary greatly between RAID and storage area
network (SAN) implementations, so we suggest obtaining the number from the
infrastructure department.

How to do it...
Start by calculating the number of connections that the RAM can accommodate by
following these steps:

Begin the estimate with 8 MB used per connection.1.
Add four times the value of the work_mem PostgreSQL configuration2.
setting in megabytes, for a per-client total.
Obtain the amount of RAM in megabytes.3.
Divide half of the RAM size by the per-client MB total.4.

Proxy and Pooling Resources Chapter 4

[152]

Next, calculate the number of connections the CPU and disk resources can support by
following these steps:

Obtain the CPU count in cores, including virtual if present.1.
Double the CPU core count.2.
Add the number of disk spindles.3.
If storage is SSD-based, add 100.4.

Use the lower of the two values as the final ideal connection count.

How it works...
To know how much RAM a connection may use, we start with a baseline of 8
megabytes. This accounts for the library overhead, the likelihood of using a
temporary tablespace, and other various allocations necessary for a session to
function. To that, we add four times the work_mem setting. PostgreSQL allocates an
instance of work_mem for each join, sort, merge, and several other operations
necessary to execute a query.

Why four? Well, large and complex queries will use more, while short and simple
queries will use less, so we start with something in the middle. It's actually possible
that this multiplier is somewhat pessimistic, so it trends toward assuming higher
memory use. That's fine, since overestimating, in this case, is safer than running out
of memory in the presence of several simultaneous complex queries.

With this total, we can see how many connections will use half of the available RAM.
We only use half of the system RAM here, since the database itself needs memory. In
addition, queries are much faster when tables are available in the operating system
page cache. If too much RAM is reserved for client use, query performance can suffer
considerably.

In the next set of calculations, we start with the CPU total and double this amount.
The more disk spindles available, the less time each CPU spends waiting for results.
By adding the number of disks, we get an approximation of how many connections
our CPUs can actually support without excessive idling caused by insufficient storage
performance. Every time the CPU must wait for storage IO, that's less time it's
performing valuable work.

We also recognize modern hardware is likely to reside on solid-state storage. This can
dramatically improve session responsiveness and thus increase our production
throughput when handling innumerable connections.

Proxy and Pooling Resources Chapter 4

[153]

By taking the lower of these two calculations (based on RAM, or CPU and IO
capabilities), we account for whatever bottleneck will constrain system performance
the most. This is our ideal connection count, and it works as a first approximation for
the size of any connection pool we create.

There's more...
For an example of this in action, consider a system with 32 GB of RAM, 8 CPU cores,
and 8 disk spindles. We used 8 MB for our work_mem setting, so this means we may
need up to 40 MB per database connection. 16 GB of RAM can then safely support
about 409 connections, assuming memory is our only resource limit.

Otherwise, our 8 CPUs and 8 disks can support up to 24 connections. This is quite a
discrepancy! However, 24 is the safer of the two limits to prevent latency. If we find
that a certain amount of latency is not overly disruptive, we can increase the
connection count, but not higher than 400; otherwise, we risk actually exhausting the
available RAM. The ideal value is likely to be between these two extremes and will
require many rounds of testing to derive; database performance is highly dependent
on data and query composition.

Please keep in mind that the focus of this book is high availability at
nearly all costs, and, as such, our formulas are extremely pessimistic.
We encourage experimentation with these values; you may find a
better balance than what we suggest here.

Installing PgBouncer
The first pooling resource we will explore is called PgBouncer. This is a very popular
connection pool written by Skype developers in 2007. The project has been
maintained by various developers in subsequent years, but its role in lowering the
cost of connecting to PostgreSQL has never changed.

PgBouncer allows PostgreSQL to interact with enormous number of clients than is
otherwise possible because its connection overhead is much lower. Instead of huge
libraries, accounting for temporary tables, query results, and other expensive
resources, it essentially just tracks each client's connection in a queue. Then, based on
the configuration settings, it creates several PostgreSQL connections and assigns them
to the connections on a first-come, first-served basis.

Proxy and Pooling Resources Chapter 4

[154]

This means hundreds, or even thousands of database clients, can theoretically share a
single PostgreSQL connection. Of course, we will never suggest implementing a ratio
that absurd without testing it, yet this possibility presents several new opportunities
for better resource allocation.

The first step for getting this exciting new functionality is the installation of the
software. PgBouncer is popular enough for most Linux systems to package it along
with other PostgreSQL tools, so we will cover some of the most popular distributions.
For the sake of completeness, we also intend to cover pure source installations, which
means we can utilize the latest release regardless of the distribution.

Getting ready
PgBouncer has recently been incorporated into the official PostgreSQL PGDG
package distribution resource. As a result, we no longer recommend compiling from
source as was done with previous revisions of this recipe. We suggest enabling the
PGDG repository if this hasn't already been done.

Simply follow the instructions for the appropriate Linux distribution here: https:/ /
www.postgresql. org/ download/ linux/ .

How to do it...
The steps necessary here are refreshingly short. Simply follow along:

To install in a Debian- or Ubuntu-based system, execute this command:1.

sudo apt-get install pgbouncer

To install in a Red Hat, CentOS, Fedora, or another RHEL-based system,2.
execute this command:

sudo yum install pgbouncer

Optionally, make the configuration directory owned by the postgres3.
system user:

sudo chown postgres:postgres /etc/pgbouncer

https://www.postgresql.org/download/linux/
https://www.postgresql.org/download/linux/
https://www.postgresql.org/download/linux/
https://www.postgresql.org/download/linux/
https://www.postgresql.org/download/linux/
https://www.postgresql.org/download/linux/
https://www.postgresql.org/download/linux/
https://www.postgresql.org/download/linux/
https://www.postgresql.org/download/linux/
https://www.postgresql.org/download/linux/
https://www.postgresql.org/download/linux/
https://www.postgresql.org/download/linux/
https://www.postgresql.org/download/linux/

Proxy and Pooling Resources Chapter 4

[155]

Create a pgbouncer user in our primary PostgreSQL server with this SQL:4.

CREATE USER pgbouncer WITH PASSWORD 'whatever';

If it isn't already, add the service to system startup and shutdown:5.

sudo systemctl enable pgbouncer

How it works...
Before we start the recipe, we recommended installing the PostgreSQL PGDG (short
for PostgreSQL Global Development Group) package repository. We did that
because officially supported packages are often tweaked to work best in the Linux
distribution where they're installed, much like packages from a certain vendor. The
primary difference here is that these will always be the latest supported versions,
rather than what the Linux vendor has decided they will maintain for that particular
release.

Then, we simply use the appropriate package manager to install the pgbouncer set of
packages. We understand this is somewhat anticlimactic, but it's certainly less effort
than compiling from the source and allocating a custom initialization or startup
script. It's also less error-prone since the PostgreSQL package maintainers work hard
to ensure PgBouncer will work as well as a native installation, rather than any
workaround this book could offer. This is especially true now that most mainstream
distributions have switched to systemd.

We understand that the assumed use of systemd commands such as
systemctl or journalctl may be controversial. Regardless, the
most commonly deployed distributions in the Linux server space
are based on Debian and Red Hat. Both of these base distributions
manage system services using systemd, so that will be the
convention used here as well.

Then, we believe it's frequently useful to modify configuration files within the
/etc/pgbouncer folder while we're working within the postgres user account.
Therefore, we alter it to have that user as the owner. This is an entirely optional step,
more for the sake of convenience than anything critical, so it may be skipped for
security purposes.

At this point, we want to create a pgbouncer user that can log in to the server. We
will want this for a secure authentication system later, so we should not skip this step.
Whatever password is chosen here should be retained for later recipes.

Proxy and Pooling Resources Chapter 4

[156]

Finally, we add PgBouncer to the list of other services that start or stop when the
server is shut down or booted up. This ensures the service is always available, and we
don't have to remember to start or stop it ourselves. The initial installation of
PgBouncer may or may not be enabled depending on our Linux distribution, so we
elect to enable it just in case.

See also
The PgBouncer site contains source downloads, documentation, and much more. Feel
free to visit the site to learn more about the project at https:/ /pgbouncer. github. io/
.

Configuring PgBouncer safely
Once PgBouncer is installed, we need to configure it to honor our ideal pool size
calculations. The settings included with the supplied configuration file are for
demonstration purposes only and are unlikely to match our requirements. This
situation is easy to rectify, but it requires a bit of research on our part.

Getting ready
The PgBouncer settings are explained in detail in the example configuration file.
However, we suggest making full use of the service documentation while following
this recipe. We will endeavor to explain important parameters, but there are more
parameters available than we cover here.

When we installed PgBouncer, we suggested modifying the configuration directory to
be writable by the postgres system user, which is the same user that owns the
PostgreSQL service. For the sake of simplicity, we recommend using either this user
or a root-capable user that can modify files on its behalf.

We also need the calculated pool size from the Determining connection costs and limits
recipe, so keep it handy.

https://pgbouncer.github.io/
https://pgbouncer.github.io/
https://pgbouncer.github.io/
https://pgbouncer.github.io/
https://pgbouncer.github.io/
https://pgbouncer.github.io/
https://pgbouncer.github.io/
https://pgbouncer.github.io/
https://pgbouncer.github.io/

Proxy and Pooling Resources Chapter 4

[157]

How to do it...
Presuming that our calculated pool size for our pgha1 PostgreSQL server was 25,
with a memory-imposed maximum of 350, follow these steps to properly configure
PgBouncer:

Execute this query as the postgres user while connected to any database1.
within PostgreSQL:

COPY (
 SELECT '"' || rolname || '" "' ||
 coalesce(rolpassword, '') || '"'
 FROM pg_authid
)
TO '/tmp/userlist.txt';

Copy the /tmp/userlist.txt output file to the /etc/pgbouncer2.
directory where PgBouncer is installed, and then remove
/tmp/userlist.txt.
Open the /etc/pgbouncer/pgbouncer.ini file as the postgres system3.
user.
Under the section labeled [databases], create the following entry:4.

* = host=pgha1

Under the section labeled [pgbouncer], locate each of these entries and5.
change them to the following:

listen_addr = *
auth_type = md5
admin_users = postgres
max_client_conn = 1000
default_pool_size = 25
reserve_pool_size = 5

Start the PgBouncer service by executing the following at the command line6.
as a root-capable user:

sudo systemctl start pgbouncer

Proxy and Pooling Resources Chapter 4

[158]

How it works...
The first thing we do is create an authentication file that PgBouncer can use. As a
third-party daemon, it does not have direct access to PostgreSQL authentication. Yet,
it must still authenticate users before assigning pool resources. Unfortunately, this
means we need to create a copy of the current users and their encrypted passwords
that PgBouncer can use. This file should be regenerated any time new users are
created or passwords are changed.

Frequently regenerating this file will probably be extremely
inconvenient in many environments. We recommend either
automating this process or relying on Lightweight Directory Access
Protocol (LDAP), Pluggable Authentication Modules (PAM), or
some other service that PgBouncer can forward on behalf of the
upstream PostgreSQL server.

The next thing we do is alter the pgbouncer.ini file where the configuration
settings are stored. The first portion that concerns us is the [databases] section,
which keeps track of every database that PgBouncer has mapped. This can be a one-
to-one association or an alias that changes various connection parameters such as
port, host, or username. Feel free to experiment. The value we used will simply
map all of the connections to the pgha1 server.

All of the subsequent settings are to change the operation of PgBouncer. By changing
listen_addr, PgBouncer will monitor all IP addresses assigned to this server. If we
make use of virtual IPs, this is especially important. Later, we ensure that auth_type
is set to md5 so that all of the encrypted passwords we exported are actually used. We
set admin_users to postgres because PgBouncer has an administration console that
we can use to control pooling behavior. For now, setting it to the superuser
database is a good start.

The max_client_conn setting does not restrict PostgreSQL clients, but it does
restrict PgBouncer clients. This is mainly to prevent clients from waiting too long
before being assigned a connection. If throughput is generally good, feel free to
increase this.

Proxy and Pooling Resources Chapter 4

[159]

The default_pool_size setting and the reserve_pool_size setting are actually
per-user and per-database. Therefore, even if we only have one primary database in
our instance, every user can have 25 connections before PgBouncer puts them in the
wait queue. If the number of PostgreSQL connections gets too high and starts
affecting query throughput, we may need to reduce these settings. It may be best to
reserve the pool for applications that need it, so we have better control of the
PostgreSQL connections that it might create.

Once the settings are saved, we start PgBouncer. When we do that, it will watch port
6432 for new PostgreSQL connections. This is the default, just in case PgBouncer is
installed on the same server as our database instance. If installed on a dedicated
proxy node, it may make more sense to change this parameter to 5432.

There's more...
Now that PgBouncer is running, there are a couple of things that require further
explanation.

What about pool_mode?
Perceptive readers probably noticed the pool_mode configuration setting both in the
documentation and in the example file. The possible options for this setting can
essentially be summarized as follows:

Session: A PostgreSQL setting is assigned to a client until the client
disconnects. This is considered to be the safest method, but greedy
applications can monopolize limited connections by never freeing them.
This is the default, and we don't change it in our instructions.
Transaction: Connections are assigned to clients until they complete a
single transaction. Once the transaction is either committed or aborted, the
connection re-enters the pool and is assigned to another client. This is a
good setting to use for applications that insist on holding persistent
database connections as it still enables connection cycling within the pool.
Unfortunately, some applications that use cursors expect them to persist
between transactions for fetching purposes. Since the connection is reset
between every transaction, these cursors are also deallocated and the
application will not function normally.

Proxy and Pooling Resources Chapter 4

[160]

Statement: After every single SQL statement completes, the connection re-
enters the pool for reassignment to another client. There are few, if any,
valid situations where this setting should be used. Only servers that never
make use of features such as transactions, cursors, or prepared queries
should use this value. Most PostgreSQL systems can avoid it completely.

Problems with prepared statements
Database applications and object-relational mappers that use prepared queries will
have a problem if we enable transaction-level pooling. Once a statement is prepared
for execution, it can be reused until it is deallocated. We know that connections are
reset between sessions by default, so these prepared statements are lost. We can fix
this by changing server_reset_query in /etc/pgbouncer/pgbouncer.ini to the
following:

server_reset_query =

By setting a blank value, objects allocated between transactions can persist. However,
this also means that the application should check for a prepared statement before
creating it. Since the connections are recycled, the application may be assigned a
connection where prepared statements are not in their expected states. This is a lot of
extra work on the application side, so we generally don't suggest using transaction
mode while prepared statements or cursors are present.

See also
Although our suggestions on proper configuration will get things working, there are
more options available. We suggest reading the following documentation to learn
more about PgBouncer:

PgBouncer configuration file: https:/ /pgbouncer. github. io/ config.
html

PgBouncer FAQ: https:/ / pgbouncer. github. io/ faq. html

Connecting to PgBouncer
Once PgBouncer is installed, configured, and operational, we still need to utilize it.
So, how do we connect to PgBouncer instead of PostgreSQL? Let's explore that next.

https://pgbouncer.github.io/config.html
https://pgbouncer.github.io/config.html
https://pgbouncer.github.io/config.html
https://pgbouncer.github.io/config.html
https://pgbouncer.github.io/config.html
https://pgbouncer.github.io/config.html
https://pgbouncer.github.io/config.html
https://pgbouncer.github.io/config.html
https://pgbouncer.github.io/config.html
https://pgbouncer.github.io/config.html
https://pgbouncer.github.io/config.html
https://pgbouncer.github.io/config.html
https://pgbouncer.github.io/faq.html
https://pgbouncer.github.io/faq.html
https://pgbouncer.github.io/faq.html
https://pgbouncer.github.io/faq.html
https://pgbouncer.github.io/faq.html
https://pgbouncer.github.io/faq.html
https://pgbouncer.github.io/faq.html
https://pgbouncer.github.io/faq.html
https://pgbouncer.github.io/faq.html
https://pgbouncer.github.io/faq.html
https://pgbouncer.github.io/faq.html
https://pgbouncer.github.io/faq.html
https://pgbouncer.github.io/faq.html

Proxy and Pooling Resources Chapter 4

[161]

Getting ready
Make sure PgBouncer is configured and running. Take a look at the Configure
PgBouncer safely recipe. Then, execute this at the command line to check for the
service:

pgrep -alf pgbouncer

We should see a line similar to this:

21281 /usr/bin/pgbouncer -d /etc/pgbouncer/pgbouncer.ini

If this is not the case, we need help beyond the scope of this book. Feel free to check
the PgBouncer mailing list for assistance. The community is willing to help too, so let
them.

How to do it...
If our PgBouncer server is on pgha-proxy, we can connect to PgBouncer by using
port 6432. We can connect to the postgres database through PgBouncer with the
psql command:

psql -p 6432 -h pgha-proxy postgres

With GUI or other utilities, we simply need to change our host target to the
PgBouncer server, and the port should be 6432.

How it works...
PgBouncer works like a simulated PostgreSQL server. Thus, any standard
PostgreSQL client or driver should be fully compatible. The only difference is that the
default port is 6432 instead of 5432. Effectively, this makes PgBouncer a connection
proxy, and it can be treated as such.

See also
After we connect to PgBouncer, we may want community assistance with common
problems. While the PgBouncer-specific mailing list is no longer available, the
PostgreSQL community lists are very active. For more information, you can refer
to https://www.postgresql.org/list/.

https://www.postgresql.org/list/

Proxy and Pooling Resources Chapter 4

[162]

Listing PgBouncer server connections
PgBouncer provides an administration console to view pool status or control the
service. For now, we will focus on viewing the list of server connections that
PgBouncer maintains. These connections are held for distribution to database clients
as necessary, and they can tell us much more about the health of the pool. Let's
explore the PgBouncer console a bit.

Getting ready
We need to know how to connect to PgBouncer instead of PostgreSQL, so check the
Connect to PgBouncer recipe for a refresher. In this section, we will use something
known as a pseudo-database. When in use, PgBouncer reserves the database
name, pgbouncer, for its own internal purposes in order to access its administration
console. This database does not actually exist, but it will still connect from the
perspective of our PostgreSQL client.

In the highly unlikely event that the pgbouncer database actually exists within your
PostgreSQL installation, we recommend renaming it to avoid confusion.

How to do it...
Follow these steps to get the status of PgBouncer connections to PostgreSQL on the
pgha-proxy server:

Connect to the pgbouncer database on port 6432 of the pgha-proxy1.
server as the postgres user.
Issue the following query:2.

SHOW SERVERS;

How it works...
By connecting to the pgbouncer database name on port 6432, we connect to
PgBouncer using a simulated database that doesn't actually exist. This name tells
PgBouncer that we want the administration console. If we configured PgBouncer
according to the Configure PgBouncer safely recipe, the postgres user is the only
database user allowed to use the console.

Proxy and Pooling Resources Chapter 4

[163]

The author wishes that this information was also available as a view so that we could
fetch only interesting fields, but the PgBouncer syntax is easier to type. By sending
SHOW SERVERS as a query, PgBouncer responds with a list of every connection to
PostgreSQL it is using to fulfill client requests. Fields of particular interest include the
following:

user: This column lists the users that are currently connected to the
database. If we used advanced settings, this could differ from the user that
connected to PgBouncer.
database: This shows the database that the connection is attached to. A
PostgreSQL server can host many databases, so this is very helpful
information. Again, advanced settings can change this from the database
name used to create the connection to PgBouncer.
state: This column answers the following question: is the connection
active, used, or idle? Connections are marked as active when they are
assigned to a client. Connections marked as used have handled at least one
query, but haven't been checked for validity. Used connections are still idle
and available; they merely haven't been verified by PgBouncer. The idle
status means the connection is verified as available, and it hasn't been used
recently. On active servers, PgBouncer connections will almost never be
marked as idle.
connect_time: It displays the exact time PgBouncer created the
connection to PostgreSQL. We can use this to determine connection
freshness. If most of these are recent, it means that the connections are
probably opening and closing too frequently. Connections to PostgreSQL
are relatively expensive to allocate, and connection pools are partially
meant to reduce this cost. We may need to consider changing some of the
PgBouncer connection timeout settings based on the contents of this field.
request_time: This column provides the last time the listed connection
handled query activity. On busy servers, this should always be a very
recent timestamp. Otherwise, we are potentially wasting server resources
by maintaining unnecessary idle connections. In this case, we need to
examine the pool size settings and consider reducing them. Alternatively,
there may be a problem with the marked PostgreSQL connection, or the
assigned client can be frozen. This indicates that we need to check the
database health, or ask the development or support departments to
investigate applications for normal operation.

Feel free to browse the PgBouncer documentation for other available fields.

Proxy and Pooling Resources Chapter 4

[164]

There's more...
We like referring readers to external resources on occasion. Unfortunately, the
PgBouncer documentation is incomplete in important ways. Our explanation of the
state field is a good example of this. The interpretation we used for that field came
from a post in the mailing list by one of the authors. Keep this in mind when seeking
assistance not covered by this book. Mailing lists can fill a huge void left by Spartan
documents meant to cover the bare necessities.

See also
We know that we've listed these documentation links before, but we're still working
with complicated configuration settings and usage. We've listed them here again for
convenience:

PgBouncer usage: https:/ /pgbouncer. github. io/usage. html

PostgreSQL mailing lists: https://www.postgresql.org/list/

Listing PgBouncer client connections
In addition to PostgreSQL server connection status, PgBouncer's administration
console can provide details regarding clients within its queue. Maintaining a healthy
and active PgBouncer queue is the key to high throughput over limited resources. In
this case, we artificially limited the number of server connections available to clients,
which means that there is a potential for stubborn or broken clients to prevent
connection turnover.

This will, of course, effectively remove the connections from the pool, creating a
bottleneck that could lead to choking the transaction throughput. This recipe will
explore the PgBouncer console in a bit more detail so that you can understand what it
knows about the database clients attempting to communicate with PostgreSQL.

Getting ready
In this section, we will continue our previous exploration into the PgBouncer console.
Check the Listing PgBouncer client connections recipe for a refresher. Remember to use
the pgbouncer database name to enter the administration console.

https://pgbouncer.github.io/usage.html
https://pgbouncer.github.io/usage.html
https://pgbouncer.github.io/usage.html
https://pgbouncer.github.io/usage.html
https://pgbouncer.github.io/usage.html
https://pgbouncer.github.io/usage.html
https://pgbouncer.github.io/usage.html
https://pgbouncer.github.io/usage.html
https://pgbouncer.github.io/usage.html
https://pgbouncer.github.io/usage.html
https://pgbouncer.github.io/usage.html
https://pgbouncer.github.io/usage.html
https://pgbouncer.github.io/usage.html
https://www.postgresql.org/list/

Proxy and Pooling Resources Chapter 4

[165]

How to do it...
Follow these steps to get the status of PgBouncer clients:

Connect to the pgbouncer database on port 6432 of the PostgreSQL server1.
as the postgres user.
Issue the following query:2.

SHOW CLIENTS;

How it works...
As before, we connect to the pgbouncer database name on port 6432 to use the
administration console. By sending SHOW CLIENTS as a query, PgBouncer responds
with a list of every client using or waiting for a PostgreSQL connection. Fields of
particular interest include the following:

user: This displays the user that is currently connected to the database. If
we used advanced settings, this could differ from the user that is connected
to PgBouncer.
database: This column indicates the database that the client is attached to.
A PostgreSQL server can host many databases, so this is very helpful
information. Again, advanced settings can change this from the database
name used to create the connection to PgBouncer.
state: This column shows whether the connection is active, used, waiting,
or idle. Clients are marked as active when they are currently using a
connection. If the client is queued prior to a connection becoming available,
they are marked as waiting. The used and idle status assignments do not
seem to actually be valid for the client state, so don't worry about them.
connect_time: This provides the exact time PgBouncer created the
connection to PostgreSQL. Although we specifically ask about the client
status, this element is associated with the connection to PostgreSQL. Since
connections are recycled, they can be hours or even days old. In
determining health, we actually want slightly older connections in this list,
as that suggests low connection turnover, and connection turnover can be
expensive.

Proxy and Pooling Resources Chapter 4

[166]

request_time: This lists the last time the listed client transmitted query
activity. On busy servers, this should always be a very recent timestamp.
Otherwise, we are potentially wasting server resources by maintaining
unnecessary idle connections. In this case, we need to examine the pool size
settings and consider reducing them. Alternatively, there may be a problem
with the marked PostgreSQL connection, or the assigned client could be
frozen. This will indicate that we need to investigate the database health,
poll the development, or support departments to check applications for
normal operation.

Feel free to browse the PgBouncer documentation for other available fields.

There's more...
If this recipe looked familiar, that's because the important fields are exactly the same
as those in the Listing PgBouncer server connections recipe. Though their interpretation
is slightly different, and the list itself is probably more dynamic due to active client
states, it's effectively the same data.

The primary difference is the waiting state that we discussed, which doesn't exist
when listing server connections. If there are too many clients waiting for too long, it
can be a sign of a potential issue. Perhaps the connection pool is too small, resulting
in insufficient connection assignments. Maybe a client has gone haywire and is
opening hundreds of connections and never closing them, which could lock up all of
the available connections in the pool.

Whatever the case is, we look for regular state transitions between waiting and active.
It is unfortunate that there is no field that details the connection assignment time.
With this datum, we could readily discover the clients that are unfairly monopolizing
database resources.

See also
We know that we've listed these documentation links before, but we're still working
with complicated configuration settings and usage. We've listed them again for
convenience:

PgBouncer usage: https:/ /pgbouncer. github. io/usage. html

PostgreSQL mailing lists: https://www.postgresql.org/list/

https://pgbouncer.github.io/usage.html
https://pgbouncer.github.io/usage.html
https://pgbouncer.github.io/usage.html
https://pgbouncer.github.io/usage.html
https://pgbouncer.github.io/usage.html
https://pgbouncer.github.io/usage.html
https://pgbouncer.github.io/usage.html
https://pgbouncer.github.io/usage.html
https://pgbouncer.github.io/usage.html
https://pgbouncer.github.io/usage.html
https://pgbouncer.github.io/usage.html
https://pgbouncer.github.io/usage.html
https://pgbouncer.github.io/usage.html
https://www.postgresql.org/list/

Proxy and Pooling Resources Chapter 4

[167]

Evaluating PgBouncer pool health
Though PgBouncer provides similar information regarding both server and client
database connections, the status and health of each pool are also available. If we
didn't already clarify, PgBouncer pools are separated by username, database name,
and the server's hostname. Thus, each PostgreSQL server may have as many
connection pools as there are different databases a user might access via PgBouncer.

PgBouncer supplies somewhat detailed information when seeking server or client
status. However, these are not database views, so we can't summarize or aggregate
the output to make it more usable. When running a highly available database server,
we need to monitor aggregate values if possible to watch for potential patterns of
misconfiguration or abuse.

Unfortunately, since PgBouncer acts as a proxy, we can't rely on the
pg_stat_activity system view for summaries. This means PgBouncer and its
administrative consoles are the main sources of debugging and status information.
Thankfully, there is quite a lot of useful information.

This recipe will explore what information we can gather about our database pools
and usage statistics.

Getting ready
As before, we continue to use the PgBouncer administration console, so we
recommend following the Listing PgBouncer client connections recipe before continuing
here. Remember to use the pgbouncer database name to enter the administration
console.

How to do it...
Follow these steps to get the status of PgBouncer clients:

Connect to the pgbouncer database on port 6432 of the PgBouncer server1.
as the postgres user.
Issue the following query for the pool status:2.

SHOW POOLS;

Proxy and Pooling Resources Chapter 4

[168]

Issue the following query for pool statistics:3.

SHOW STATS;

How it works...
Connecting to the pgbouncer database name on port 6432 connects us to PgBouncer
using a simulated database that doesn't actually exist. This name tells PgBouncer that
we want the administration console. If we configured PgBouncer according to the
Configure PgBouncer safely recipe, the postgres user is the only database user allowed
to use the console.

By sending SHOW POOLS as a query, PgBouncer responds with a row for every
PostgreSQL database to which it is acting as a proxy. Each column is a summary for
various client and server metrics, mainly related to activity or status. Here is a
detailed summary of the columns:

cl_active: This column shows the number of clients that are currently
assigned to a server connection. This number should not exceed the value
we get by adding default_pool_size and reserve_pool_size from
the pgbouncer.ini configuration file. If the total is regularly below the
maximum, we may consider reducing the pool size.
cl_waiting: It denotes the number of clients waiting for a server
connection. Since this is a snapshot of the current activity, the number can
fluctuate drastically between checks. However, if it regularly remains
above zero, and the maxwait column is increasing, the pools are probably
too small.
sv_active: This column details how many PostgreSQL server connections
are assigned to the PgBouncer clients. These clients are not necessarily
active, just associated with the connection. The cl_active and sv_active
columns should always be equal.
sv_idle: This column provides a count of PostgreSQL server connections
that are not in use at all. PgBouncer marks connections as idle after it sends
a reset query to clear out the allocated objects and settings. Thus, not only
is the connection idle but it's also immediately ready for assignment. If
there are several of these, it's because PgBouncer doesn't need them; think
about reducing the pool size.

Proxy and Pooling Resources Chapter 4

[169]

sv_used: This indicates the count of dirty PostgreSQL server connections.
These connections are actually idle, but they have not yet been reset by
PgBouncer for reuse. This means we need to add sv_used to sv_idle to
get the real count of idle connections for this database and user
combination. As with sv_idle, a large number of used connections
indicate reducing pool size limits.
maxwait: This column outlines the maximum number of seconds a client
has waited for a connection. Combined with the cl_waiting cumulative
total, we can infer either an excess or shortage of throughput based on the
connection availability. This statistic is constantly updated, so, if no clients
are waiting, it will show zero. This kind of live feedback allows us to adjust
our pool sizes to ideal levels.

By sending SHOW STATS as a query, PgBouncer responds with a row for every
PostgreSQL database to which it is acting as a proxy. Each column is a summary of
various network and time metrics. Here is a detailed summary of these columns:

total_xact_count: This column represents the total number of
transactions that PgBouncer has directed through the pool. As transactions
are more expensive than simple queries, they can represent a larger ratio of
excess work.
total_query_count: SQL requests are summarized here, and this can
help determine the average number of queries per transaction.
total_received: This column tracks the total amount of data in bytes
sent to PgBouncer through the network for this database and user
combination. In order to have a healthy pool, we need to illustrate high
throughput. Thus, we must also examine the next column.
total_sent: This column tracks the total amount of data in bytes sent
from PgBouncer to the clients accessing the database. The ratio of this value
to total_received can indicate that PgBouncer is handling too many
large queries, which reduces pool connection throughput. It's also possible
that a misconfigured batch job is improperly accessing the database via
PgBouncer.
total_query_time: This is the amount of time in microseconds that
PgBouncer has spent communicating with a client in this pool. This can be
a particularly difficult column to read because it's cumulative, based on all
clients accessing PostgreSQL connections. For now, we suggest ignoring it.
avg_req: This column shows the average number of requests per second
since the last stat update. As with total_requests, this is the number of
transactions, not queries, handled by PgBouncer.

Proxy and Pooling Resources Chapter 4

[170]

avg_recv: This column details the average number of bytes sent to
PgBouncer by each client since the last stat update. In low activity pools,
this may reset to zero between samples.
avg_sent: This column indicates the average number of bytes that
PgBouncer has sent to each client since the last stat update. In low activity
pools, this may reset to zero between samples. Along with avg_recv, we
can again obtain a ratio of sent bandwidth versus received to look for
potential excessive query output.
avg_query_time: This column provides the average query duration in
microseconds for all connections in this pool. This is a much more useful
metric than total_query_time as it actually tells us the average
throughput of the pool. If the average query time is 50 ms, for example, we
can expect each PostgreSQL connection to handle 20 clients per second.
This is valuable data to properly size the connection pools.
avg_wait_time: This column maintains the average number of
microseconds client sessions have waited before being assigned a server
backend. Ideally we want this value to be extremely low or near zero.
Higher values may indicate our pool settings are too low, or that we have
too many slow queries that are limiting session reuse.

Feel free to browse the PgBouncer documentation for other available fields.

There's more...
We've mentioned adjusting pool size several times in this recipe. Since Pgpool acts as
a single proxy for several database and user combinations, we can actually override
the default in cases where pools require more direct management. For instance,
suppose we change our entry in /etc/pgbouncer/pgbouncer.ini for the
postgres database to this:

postgres = host=pgha1 pool_size=5

Then, no user connecting to the postgres database can use more than five
connections, even if the default is 50 per pool. Keep this in mind when analyzing the
pools, clients, servers, and other statistics that PgBouncer collects on our behalf. We
will most likely need several adjustments before reaching an ideal state that won't
overwhelm the PostgreSQL server, yet adequately supplies client requirements.

Proxy and Pooling Resources Chapter 4

[171]

See also
We know we've listed these documentation links before, but we're still working with
complicated configuration settings and usage. We've listed them again for
convenience:

PgBouncer usage: https:/ /pgbouncer. github. io/usage. html

PostgreSQL mailing lists: https://www.postgresql.org/list/

Changing PgBouncer connections while
online
One potentially problematic aspect of PgBouncer is that each database mapping may
only have one endpoint. That is, for each named server we add to its configuration, it
can only represent a single PostgreSQL node.

That may seem like a strange concern on our part, but consider circumstances of
advanced clusters with multiple Primary nodes. This is a completely valid
configuration now that logical replication makes it possible to have two-way
replication. Normally, when we reconfigure PgBouncer to send connections to a new
database server, this change is absolute.

However, advances in PgBouncer versions after 1.9 make it possible to retain
connections to the old PostgreSQL server, yet send new traffic to our new target. This
allows for smooth transitions between servers, since transactions are allowed to
complete rather than face an interruption due to our swap.

This recipe will explain how to accomplish this kind of transition bridge to deliver
even better uptime for multi-master systems.

Getting ready
Since we're working with an advanced use-case of PgBouncer, we recommend either
applying each of the previous PgBouncer recipes, or at least familiarizing yourself
with their contents.

Secondly, the contents of this recipe only really apply to PgBouncer nodes configured
in session pooling mode. If you're using transaction or statement, feel free to
skip.

https://pgbouncer.github.io/usage.html
https://pgbouncer.github.io/usage.html
https://pgbouncer.github.io/usage.html
https://pgbouncer.github.io/usage.html
https://pgbouncer.github.io/usage.html
https://pgbouncer.github.io/usage.html
https://pgbouncer.github.io/usage.html
https://pgbouncer.github.io/usage.html
https://pgbouncer.github.io/usage.html
https://pgbouncer.github.io/usage.html
https://pgbouncer.github.io/usage.html
https://pgbouncer.github.io/usage.html
https://pgbouncer.github.io/usage.html
https://www.postgresql.org/list/

Proxy and Pooling Resources Chapter 4

[172]

How to do it...
Imagine our PgBouncer server is on pgha-proxy, our old PostgreSQL server is pgha1
with an IP address of 10.0.30.1, and the new target is pgha2 with an IP address of
10.0.30.2. Follow these steps to switch servers:

Set the server_fast_close parameter in pgbouncer.ini to 1.1.
Make whatever changes are necessary to the pgbouncer.ini file. For2.
example, we could change our global mapping to this:

[databases]
* = host=pgha2

Send the new RECONNECT command to PgBouncer:3.

psql -U postgres -h pgha-proxy -p 6432 -c "RECONNECT;"
pgbouncer

How it works...
We enable this functionality by setting the server_fast_close parameter in
pgbouncer.ini to 1. This parameter causes PgBouncer to mark a server connection
with a special close_needed attribute any time a session might be affected by a
change to the [databases] section of the configuration file, or someone issues an
explicit RECONNECT.

When this attribute is active, PgBouncer will terminate the server connection as soon
as the current transaction completes. This prevents interrupting transactions that are
in progress, such as long running jobs, or even any transactions in-flight from an
extremely active application. It also means we don't need to wait until the client
explicitly disconnects. The server_fast_close setting should always be enabled if
you want this kind of functionality.

Next, we provide an example where we altered a connection mapping and redirected
it from the pgha1 server to pgha2. Once we've done this, we actually have two
options. If we issue a RELOAD command to PgBouncer, it will detect that the server
string has changed and set the close_needed attribute for us. If we use RECONNECT,
it will set the close_needed attribute whether or not we changed anything. For this
example, we simply used RECONNECT.

Proxy and Pooling Resources Chapter 4

[173]

Once PgBouncer receives the RECONNECT command, we can actually connect to
PgBouncer and check the status of the server backends and observe which
connections will reconnect if they haven't already, as shown in the following
screenshot:

As we can see, PgBouncer is still connected to the old server IP address, and has
marked the server as close_needed. Once that session has finished its transaction,
PgBouncer will reallocate a new connection to pgha2.

There's more...
At this point, the RECONNECT command and related server_fast_close parameter
probably seem extremely handy. However, the process for doing this is also
completely asynchronous.

Imagine we want to perform some maintenance on pgha1 and have issued the
RECONNECT command. How do we know all client sessions have finally been
redirected to the new target server? We could connect to the pgbouncer admin
database and repeatedly issue SHOW SERVER commands, but that's highly
inconvenient.

Proxy and Pooling Resources Chapter 4

[174]

Instead, we should use the new WAIT_CLOSE command. This command will not
return until all connections have cleared their close_needed flag. This makes it a
perfect tool to pause until all sessions have completed a transition from one
PostgreSQL server to another. If we were to use it in a script to automate such server
switches, it might look like this:

psql -U postgres -h pgha-proxy -p 6432 -c "WAIT_CLOSE;" pgbouncer

Now we could write a switchover script that moves connections from pgha1 to
pgha2 and then waits until all transactions have completed before continuing to
subsequent steps. This makes automation within a high availability context much
more consistent.

See also
We know we've listed these links before, but these new commands are explained in
greater depth in the PgBouncer documentation. We've listed them again for
convenience:

PgBouncer configuration: https://pgbouncer.github.io/config.html
PgBouncer usage: https:/ /pgbouncer. github. io/usage. html

Enhancing PgBouncer authentication
By default, PgBouncer is configured to maintain a file of all users that are allowed to
connect. In a previous recipe, we even explain how to produce and maintain this file.
However, as the amount of users increases, or, in the case where some part of the
application creates users dynamically, this is highly inconvenient and potentially
insecure.

Newer versions of PgBouncer improve this situation by implementing a new
authentication procedure. This means we almost never need to manually update a list
of users ever again. Not only does this mean we no longer maintain a list of
usernames and encrypted passwords in a potentially insecure location, but we can
use PostgreSQL itself to manage authentication through PgBouncer.

In this recipe, we will enable the new PgBouncer authentication system, and explore
some of its other capabilities.

https://pgbouncer.github.io/config.html
https://pgbouncer.github.io/usage.html
https://pgbouncer.github.io/usage.html
https://pgbouncer.github.io/usage.html
https://pgbouncer.github.io/usage.html
https://pgbouncer.github.io/usage.html
https://pgbouncer.github.io/usage.html
https://pgbouncer.github.io/usage.html
https://pgbouncer.github.io/usage.html
https://pgbouncer.github.io/usage.html
https://pgbouncer.github.io/usage.html
https://pgbouncer.github.io/usage.html
https://pgbouncer.github.io/usage.html
https://pgbouncer.github.io/usage.html

Proxy and Pooling Resources Chapter 4

[175]

Getting ready
Since we're working with an advanced use-case of PgBouncer, we recommend either
applying each of the previous PgBouncer recipes, or at least familiarizing yourself
with their contents. Pay special attention to the Configuring PgBouncer safely recipe, as
we'll be making further modifications to the pgbouncer.ini and userlist.txt
files.

How to do it...
For this section, we will have a PgBouncer server on pgha-proxy, and a standard
PostgreSQL server at pgha1.

Follow these steps to improve PgBouncer authentication:

Connect to pgha1 as the postgres user to the postgres database, and1.
execute this SQL:

CREATE SCHEMA pgbouncer AUTHORIZATION pgbouncer;

CREATE OR REPLACE FUNCTION pgbouncer.get_auth(p_usename TEXT)
RETURNS TABLE(username TEXT, password TEXT) AS
$$
BEGIN
 RAISE NOTICE 'PgBouncer auth request: %', p_usename;
 RETURN QUERY
 SELECT usename::TEXT, passwd::TEXT
 FROM pg_catalog.pg_shadow
 WHERE usename = p_usename;
END;
$$ LANGUAGE plpgsql SECURITY DEFINER;

REVOKE ALL ON FUNCTION pgbouncer.get_auth(p_usename TEXT)
 FROM PUBLIC;
GRANT EXECUTE ON FUNCTION pgbouncer.get_auth(p_usename TEXT)
 TO pgbouncer;

Repeat the preceding step for any other databases where PgBouncer should2.
be allowed to connect.
Remove all lines from /etc/pgbouncer/userlist.txt except for the3.
entry for the pgbouncer user.
Open the /etc/pgbouncer/pgbouncer.ini file as the postgres system4.
user.

Proxy and Pooling Resources Chapter 4

[176]

Under the section labeled [pgbouncer], locate each of these entries and5.
change it to the following:

auth_user = pgbouncer
auth_query = SELECT * FROM pgbouncer.get_auth($1)

Reload the PgBouncer service by executing the following at the command6.
line as a root-capable user:

sudo systemctl reload pgbouncer

How it works...
The first thing we need to do is create a secure method for PgBouncer to check
passwords. PgBouncer knows how PostgreSQL stores passwords, so it can compare
any value from a client authentication request with the encrypted information in the
database. We merely need a way to retrieve it.

The pgbouncer.get_auth() function does this by retrieving a requested user and
encrypted password from where PostgreSQL itself stores it. Normally it's not possible
for regular users to view the pg_shadow table, but since we created the function as
SECURITY DEFINER, it will execute as the user that created it. That means the
pgbouncer user has indirect access to a secure resource since we ran this SQL as the
postgres user.

We also secure this function by preventing any other user from executing it. By
default, functions created by any user may be executed by any other user. Thus we
want to be extra cautious and explicitly revoke permission from PUBLIC, while
explicitly granting access to the pgbouncer user.

Don't forget to create the function on every database where
PgBouncer may connect. If it can't find the function, no user will be
able to authenticate.

Next we alter the userlist.txt file and remove every entry except for the
encrypted password line for the pgbouncer user itself. PgBouncer will authenticate
any user not listed in this file with the function we just created. By removing all other
users, it can only authenticate itself locally, and all other users must be verified by
PostgreSQL.

Proxy and Pooling Resources Chapter 4

[177]

The next step is to essentially enable this functionality. We start by setting the
auth_user to pgbouncer, since that's the user we want to use for authentication
purposes. We can specify any user that exists in userlist.txt and is also allowed to
execute our special function.

Then, we set the query that actually invokes the pgbouncer.get_auth() function
into auth_query. This can really be any query to PostgreSQL, provided it always
returns two columns where the first contains the username, and the second has the
encrypted password. PgBouncer will use these results to verify any password a client
attempts to provide.

The final step is simply to tell PgBouncer to reload the configuration file to
incorporate our modifications. Once we've done this, we should be able to
authenticate as any user we've previously created in the database instance, even
though the user is not specified in userlist.txt.

There's more...
It may be desirable to make our function even more secure. Perhaps we want to avoid
allowing superuser access through PgBouncer. Maybe we want to be even more
draconian and only allow users assigned to a certain group. We can accomplish both
of these by modifying the verification query to something like this:

SELECT u.rolname::TEXT, u.rolpassword::TEXT
 FROM pg_authid g
 JOIN pg_auth_members m ON (m.roleid = g.oid)
 JOIN pg_authid u ON (u.oid = m.member)
 WHERE NOT u.rolsuper
 AND g.rolname = 'use_proxy'
 AND u.rolname = p_usename;

Not only do we explicitly disallow superusers from connecting through the proxy,
but now users need a supplementary GRANT statement before they're allowed to
connect. If we want a new user recent_hire to connect through this specific proxy,
we could manage the user this way:

CREATE USER recent_hire WITH PASSWORD 'foobar';
GRANT use_proxy TO recent_hire;

Proxy and Pooling Resources Chapter 4

[178]

And, then, if this user moves to some other part of the company or no longer has
access to this segment of the application, we can easily revoke access:

REVOKE use_proxy FROM recent_hire;

There really is quite a bit of potential for managing access by customizing the
verification function.

See also
We know we've listed this link before, but these new parameters are explained in
greater depth in the PgBouncer documentation. We've listed it again for convenience:
https://pgbouncer.github.io/config.html

https://pgbouncer.github.io/config.html
https://pgbouncer.github.io/config.html

5
Troubleshooting

A database administrator (DBA) managing a highly available database server is
charged with a huge responsibility. The amount of integration, speed of operations,
and urgency behind resolving performance degradation can be extremely stressful.
Some personalities thrive under this kind of pressure, while others will find it
impossible to concentrate and will become paralyzed in fear.

We're not going to claim that every DBA in this position is a battle-weary veteran,
typing furiously to save the day while disaster looms. This kind of scenario only
exists in movies and often leads to compounding the original problem. In reality, a
DBA's job includes many more calculated reactions even when managing a
transaction-heavy database with a frightfully low tolerance for downtime. The best
tip we can give—and the whole reason behind this book—is to have an expansive bag
of tricks.

For the purposes of this chapter, our bag is full of common Linux utilities useful for
troubleshooting. With them, we approach system malfunctions like scientists. Given
the behavior of the database or the underlying operating system, it is our job to
produce a hypothesis for the cause. The tools serve as our instruments, ready to
measure and sample, to either prove or disprove until we successfully isolate and
address the problem.

With enough practice, we can begin to expect a certain output, given PostgreSQL's
behavior. Like a good mechanic who can diagnose an engine by its sound, we will
hear the subtle tone of distress deep in the database cluster and have an answer. The
first step toward this goal is to learn the tools.

In this chapter, we will learn several techniques to track sources of poor performance
or stop potential outages before they occur. We will cover the following recipes in this
chapter:

Performing triage
Installing common statistics packages

Troubleshooting Chapter 5

[180]

Evaluating the current disk performance with iostat
Tracking I/O-heavy processes with iotop
Viewing past performance with sar
Correlating performance with dstat
Interpreting /proc/meminfo
Examining /proc/net/bonding/bond0
Checking the pg_stat_activity view
Checking the pg_stat_statements view
Deciphering database locks
Debugging with strace
Logging checkpoints properly

Performing triage
When things go wrong or begin to look strange to an experienced eye, it is time to
investigate. But where do we start?

Is the redundant array of independent disks (RAID) running in parity mode,
thereby drastically reducing the I/O throughput? Is the upstream switch saturated,
robbing the database of bandwidth? Are we out of memory and swapping to disk, or
are we causing memory reclamation threads to terminate processes? Has the
operating system task scheduler gotten overloaded and spiraled into oblivion?

Maybe! We've seen all of these scenarios, and many more. We can't fix a problem that
we are unable to locate. Any time that we spend analyzing an unlikely path is
ultimately wasted, and it only increases downtime. We must take an inventory of the
known symptoms and extrapolate this evidence into one or more avenues of
investigation.

Anything less is simply guesswork. This recipe will explain how to quickly assess a
situation to better direct subsequent forensics.

Getting ready
We do not need a spreadsheet for this. A computer with a network connection should
be enough to quickly rule out several possibilities. Enough practice will render this
process second nature and make some checks unnecessary.

Troubleshooting Chapter 5

[181]

How to do it...
When deciding how to analyze a possible system problem, consider the items in this
checklist:

Can ping reach the PostgreSQL server?
Is it possible to use ssh to enter the server?
Do simple commands such as echo immediately return a Command
Prompt?
Does uptime show the following:

A system load higher than the number of available CPUs?
Whether the server has rebooted recently?

Can psql connect to PostgreSQL locally?
Does the free command show the following:

Any swap space used?
Less free memory than used memory after accounting for
the cache?

Does the df command indicate that the database storage is:
Present and accounted for?
Used below 95 percent?

How it works...
With the exclusion of psql, all of the commands we use in this checklist are present
on almost every Unix system. They do nothing more than provide a very general idea
of the system's health.

If we can ping a server, that doesn't mean it is running. The network service is one of
the first things that the operating system starts and one of the last things it stops. The
server can be stuck somewhere in its boot process or, equally, frozen in a shutdown. It
does indicate, however, that something is available for further checks.

The next thing we try is to ssh to the server. If this command hangs indefinitely or
returns with any kind of error, the server is effectively unusable. At this point, we
would request the infrastructure or server administration departments to attempt to
log in through the local console. Unfortunately, a failed ssh attempt often means that
the server requires a manual reboot and further analysis. If we have a replication
server, now would be a good time to use it until we have a diagnosis.

Troubleshooting Chapter 5

[182]

The next thing we will check is shell responsiveness. Commands such as echo, ls, or
cat are frequently used and should return control immediately after completing. If
there is a significant delay, it's also likely that we experienced a long delay after
logging in to the server. This is usually caused by an overloaded CPU, but extremely
high I/O can also result in intermittent lag.

We can check the CPU tangentially, using the uptime command. Its output looks like
this:

08:53:57 up 9 days, 4:07, 12 users, load average: 9.38, 8.01, 6.53

This particular system has been up for 9 days, indicating that it hasn't rebooted
recently. If it had, this would be a sign that the system kernel might be at fault, since it
can result in unexpected system crashes and reboots. The last three numbers indicate
how stressed the CPU is at an average of 1, 5, and 15 minutes. If this server has only
four CPUs, it is currently overloaded, and we should consider upgrading it or
investigating what contributed to the excessive CPU use.

If we use psql while we are logged in to the server locally, we don't have to contend
with network overhead. If the PostgreSQL service isn't running, we'll see output like
this:

psql: could not connect to server: No such file or directory
 Is the server running locally and accepting
 connections on Unix domain socket "/tmp/.s.PGSQL.5432"?

Output like this would demand investigation, starting with the PostgreSQL logs. If
we can connect, there are system views that we can analyze, which we will explain in
the subsequent sections.

The free command is very inexpensive, and its output tells us a lot, as shown in the
following example:

 total used free shared buffers cached
Mem: 2002 1559 443 0 153 1258
-/+ buffers/cache: 147 1855
Swap: 2043 0 2043

Invoked with the -m parameter, the free output is listed in megabytes (MB). We can
see that this system has 2 GB of RAM, and only 147 MB is used after we account for
disk cache and buffers. We can also see that we are not using swap space. If the used
column shows that more than 50 percent of the system memory is allocated or any
swap is active, we don't have enough memory.

Troubleshooting Chapter 5

[183]

Finally, we use df to detail how much of our available storage space is consumed.
Provided we know the source of the database storage, we can immediately see how
much space is used. For example, this output suggests a problem:

Filesystem Size Used Avail Use% Mounted on
/dev/sda1 40G 5.6G 34.2G 14% /
/dev/sdc1 2T 1.9T 50M 97% /db

Invoked with the -h setting, the df output becomes human-readable instead of a very
large number of kilobytes (KB). We can instantly see that our database mount is
nearly full, and the amount of available space is so low that the database might
actually be in danger.

There's more...
These types of at-a-glance commands are our first means of diagnosis. We need quick
methods that do not require complex interpretation to assess the server. Given that a
problem exists, one or more of these tests should show abnormal results right away. If
not, more advanced techniques are necessary. We will endeavor to describe as many
of these as possible.

Installing common statistics packages
There are several common data-gathering tools, and each of them has its own place.
Several are already installed for extremely basic information, but for the purposes of
this chapter, we need more depth.

For instance, we may want to know the exact distribution of CPU resources,
aggregate views of memory paging volume, or disk I/O utilization. For more in-depth
needs, we could analyze specific processes for storage interaction or resource locks. If
we weren't watching at the exact time a problem occurred, we might want a historical
record of various server performance metrics.

In order to have all these capabilities, we must first install the requisite tools. We
might find it quite shocking that these tools are not installed by default, considering
their role in server administration. This recipe will help ensure basic diagnostic tools
are available for future recipes.

Troubleshooting Chapter 5

[184]

Packages installed in this recipe will be referenced in all the
subsequent recipes, so please don't skip this!

How to do it...
Debian, Mint, or Ubuntu users can install the tools by executing this command as a
root-level user:

sudo apt-get install dstat iotop sysstat

Red Hat, Fedora, CentOS, and Scientific Linux users can install the tools by executing
this command as a root-level user:

sudo yum install dstat iotop sysstat

How it works...
Whether the servers in question are based on RPM Package Manager (RPM) or
Advanced Package Tool (APT) packaging, these resources are commonly leveraged
for diagnostic purposes. As such, modern distributions tend to include them. Once
the software sources are accounted for, the only command we need installs all three
statistics and monitoring tools simultaneously. Now comes the time to use them!

Evaluating the current disk performance
with iostat
Due to the disparity in speed between storage and RAM, one of the first signs of
distress that a DBA will observe is directly related to disk utilization. A badly written
query, an unexpected batch-loading process, a forced checkpoint, overwhelmed write
caches—the array of things that can ruin disk performance is vast.

The first step in tracking down the culprit(s) is to visualize the activity. The iostat
utility is fairly coarse in that it does not operate at the process level. However, it does
output storage activity by device and includes columns such as reads or writes per
second, the size of the request queue, and how busy it is compared to its maximum
throughput.

Troubleshooting Chapter 5

[185]

This allows us to see the devices that are actually slow, busy, or overworked.
Furthermore, we can combine this information with other methods of analysis to find
the activity's source. For now, this recipe will explore the iostat tool itself.

Getting ready
As iostat is part of the sysstat package, we should ensure that the statistics-
gathering elements are enabled. Debian, Mint, and Ubuntu users should modify the
/etc/default/sysstat file and make sure that the ENABLED variable resembles this
line:

ENABLED="true"

Red Hat, Fedora, CentOS, and Scientific Linux users should make sure that the
SADC_OPTIONS variable in /etc/sysconfig/sysstat is set to the following:

SADC_OPTIONS="-S DISK"

Once these changes are complete, restart the sysstat service with this command as a
root-level user:

sudo systemctl restart sysstat

How to do it...
Leverage some sample iostat output by following these steps:

Obtain the statistics of the disk activity every second with this command:1.

iostat -d 1

Show 10 seconds of disk activity in megabytes per second (MBps) with2.
this command:

iostat -dm 1 10

Show extended disk activity in MBps for the sda device with this3.
command:

iostat -dmx sda 1

Troubleshooting Chapter 5

[186]

How it works...
The iostat utility has a rather unique method of interpreting command-line
arguments. If no recognized disks are part of the command, it simply shows
information about all of them. After devices, it checks for timing statistics. To get a
second-by-second status, we specify 1 second as the final argument. By providing the
-d argument, we remove CPU utilization from the report.

The default output rate of iostat is in kilobytes per second (kBps). Current
hardware is often so fast that these results can be almost too high to easily compare,
so we set the -m parameter in the second command to change the output to MBps. We
also take advantage of the fact that the last two parameters are related to timing. The
first parameter specifies the interval, and the second is the number of samples. So, the
second command takes 10 samples at the rate of one per second.

The last command adds two more elements. First, we place a disk device (sda) before
the timing interval. We can list as many devices as we want, and iostat will restrict
the output to those specific resources. This is especially helpful in servers that can
have dozens of disk devices, thus making it difficult to isolate potential performance
issues. Then, we include the -x argument, which lists extended statistics.

Without extended statistics, the output is not very useful. For example, watching the
sda device for 1 second will normally look like this:

Device: tps kB_read/s kB_wrtn/s kB_read kB_wrtn
sda 806.59 3147.25 4742.86 5728 8632

The last two columns only list the cumulative activity for the sampling interval. This
is of limited use. However, the first three columns display the number of transactions
per second (TPS) and how much data was either read from or written to that device
per second. Depending on the hardware we purchased, we might actually know its
limits regarding these measurements, so we have a basic idea of how busy it might
be.

If we enable extended statistics with the -x argument, we gain several extra fields,
including the following:

r/s: This column lists the number of reads per second from the device.
This was previously aggregated into the tps field.
w/s: This column shows the number of writes per second to the device.
This was previously aggregated into the tps field.

Troubleshooting Chapter 5

[187]

avgqu-sz: This column describes the number of requests in the disk's
queue. If this gets very large, the disk will have trouble keeping up with
requests.
await: This column outlines the average time a request spends waiting in
the queue and being serviced, in milliseconds. An overloaded disk will
often have a very high value in this column as it is unable to keep up with
requests.
r_await: This column details the average time read requests spend
waiting in the queue and being serviced, in milliseconds. This helps isolate
whether or not the read activity is overloading the disk.
w_await: This column depicts the average time write requests spend
waiting in the queue and being serviced, in milliseconds. This helps isolate
whether or not the write activity is overloading the disk.
%util: This column represents the percentage of time the device was busy
servicing I/O requests. This is actually a function of the queue size and the
average time spent waiting in the queue. It's also an invaluable at-a-glance
metric. If this is at or near 100 percent for long periods of time, we need to
start analyzing the sources of I/O requests and think about upgrading our
storage.

There's more...
Our examples of iostat always include the -d argument, to only show disk
information. By default, it shows both CPU and disk measurements. The CPU data
looks like this:

avg-cpu: %user %nice %system %iowait %steal %idle
 9.38 0.00 16.67 11.46 0.00 62.50

This can be useful for analysis as well, though there are several other tools that also
provide this data. If we use the -c parameter instead of -d, we will see only the CPU
statistics, and no information about disk devices will be included in the output.

See also
Always examine the manual for the tools that we use in these recipes. In this case, the
manual for iostat is available by executing this command:

man iostat

Troubleshooting Chapter 5

[188]

Tracking I/O-heavy processes with iotop
Many DBAs and system administrators are familiar with the top command, which
displays the processes that use the most CPU or RAM. However, this does not help us
identify the processes that cause high amounts of system I/O.

Fortunately there is a command, much like top, that is designed specifically for
displaying the processes that make storage requests. The iotop utility displays a
continuously updated list of the processes and any I/O they are handling. Provided
that the server is dedicated to PostgreSQL, we can use this information to almost
instantly identify one or more database backends that accumulate disk requests.

Just like top, processes are sorted to the head of the list according to the volume of
their I/O. This recipe will explain more about iotop, and how we can benefit from its
functionality.

Getting ready
The iotop command can only be executed by root-level users, as it uses some kernel
resources available only to superusers. Be ready with the sudo command!

How to do it...
Follow these steps to obtain a sample output from the iotop command:

Enter interactive mode with this command (exit by pressing Q):1.

sudo iotop

Obtain batch output for 10 seconds with this command:2.

sudo iotop -b -n 10

Restrict batch output to only active processes, include a timestamp, and3.
suppress the headers with this command:

sudo iotop -bot -qqq

Troubleshooting Chapter 5

[189]

How it works...
While it may be somewhat inconvenient to need superuser access to invoke iotop,
we're willing to make that sacrifice in this case. Our first command simply starts
iotop as we would use top, interactively. We can sort the output into different
columns with the arrow keys, reverse the sort order by pressing the R key, and quit
by pressing Q. Of the columns presented here, we may be interested in the following:

PID: This column provides the process ID (PID) of process that makes I/O
requests. This can be used to investigate or terminate the program.
DISK READ: This column illustrates the number of bytes read per second
by the listed process.
DISK WRITE: This column details the number of bytes written per second
by the listed process.
IO: This column shows the percentage of time that the listed process spent
issuing I/O requests.
COMMAND: This column depicts the name of the process that handles I/O. If
this is a master process, it might include command-line switches as well.

While this kind of use is informative for live troubleshooting, it's less applicable for
historical applications. Thus, for the second command, we add the -b argument to
put iotop in batch mode. This means that all the output is simply printed to the
screen, which we can redirect to a file if desired. In addition, we used the -n
parameter to only obtain 10 readings—one for each second—for later analysis.

Readers working along by trying these examples might notice that the amount of
output in batch mode is overwhelming. By default, iotop lists every process it can
see, whether or not it is actually utilizing disk resources. We can stop this behavior
with the -o parameter, so only active processes are included in any output. By adding
the -t argument, we also gain a timestamp that we can use to correlate disk activity
across data-gathering techniques.

The -q argument acts to suppress excessive iotop output. By specifying it once,
iotop only includes the column labels at the top of the output. If you specify it twice,
it will never include the column labels. If you specify it a third time, it will also
remove the summary data that iotop normally prints following every iteration. This
type of output is ideal for importing into reporting tools or even analyzing by hand
when searching for interesting time periods.

Troubleshooting Chapter 5

[190]

There's more...
While the iotop data is not actually part of the statistics gathered automatically by
the sysstat package, we can log the data for posterity anyway. Follow these steps as
a root-level user to log the iostat data:

Create a file named iotop at /etc/cron.d/ and fill it with this line:1.

* * * * * root iotop -boat -qqq -d 5 -n 2 >> /var/log/iotop

Reload the configuration files of the cron service with this command:2.

sudo systemctl restart cron

If the previous command didn't work, try this:3.

sudo systemctl restart crond

By adding the -a parameter, iotop will log the cumulative total of the I/O used
between the readings instead of the I/O per second. We use the -d argument to add a
5-second delay between two readings, as specified by the -n parameter. Together, this
means that we get a 5-second sample logged to /var/log/iotop every minute.

If you don't know how cron works, the first five columns list the
minute, hour, day, month, or day of the week when the program
should run. Using a * character here means all, so this job runs
every minute, every day, as the root user.

See also
Always examine the manual for the tools that we use in these recipes. In this case, the
manual for iotop is available by executing this command:

man iotop

Viewing past performance with sar
While there are many tools to view or analyze the current server performance and
behavior, how do we examine historical activity? Most Linux systems rotate log files
in /var/log for varying periods of time. Unfortunately, these are programs and
system logs, not performance measurements.

Troubleshooting Chapter 5

[191]

When we installed the sysstat package in a previous recipe, we gained the use of
the sar utility. Some argue that sar is the Swiss Army knife of metric collection. A
simple invocation can display past data regarding memory, CPUs, interrupt requests
(IRQs), disk devices, networks, or even teletypewriters (TTYs).

When administering a highly available server, there are few things as helpful as
performance trends. This recipe will explore historical trends available via the sar
command.

Getting ready
As sar and iostat are both part of the sysstat package, we recommend that you
review the Evaluating current disk performance with iostat recipe before continuing.

How to do it...
Collect some sample sar data by following these steps:

Display the default sar output with the following command:1.

sar

Show the disk device status every 5 seconds with this command:2.

sar -d 5

View memory usage between 4:00 A.M. and 6:00 A.M. today with this3.
command:

sar -r -s 04:00:00 -e 06:00:00

Examine the I/O statistics for any existing past dates by following these steps:

Find the appropriate sysstat log directory:1.

Red Hat, Fedora, CentOS, and Scientific Linux users should use the
/var/log/sa directory.
Debian, Mint, and Ubuntu users should use the /var/log/sysstat
directory.

Troubleshooting Chapter 5

[192]

List the contents of that directory and choose a file. Files are simply binary2.
formats containing sar data for each retained date. Files are prefixed with
sa. Thus, sa23 is the sar data for the 23rd of the month.
Execute the following command to view past I/O statistics for the 3rd of the3.
month:

sar -f /var/log/sysstat/sa03 -b

How it works...
By default, sar operates in CPU mode. Simply using the command as named; we will
receive CPU activity samples for every 10 minutes of the current day. Once sar
produces this output, it exits. We must invoke it much as we did with iostat if we
want the current data.

In our second example, we've chosen to emulate the iostat output by providing a
summary of disk activity every 5 seconds until we cancel the command. The -d
argument tells sar to display the disk statistics. Just like iostat, sar accepts two
optional parameters for interval and count. As we didn't specify a count, sar will
print disk performance every 5 seconds.

The third example is where we finally begin leveraging the real power of sar. If we
had examined our PostgreSQL log and noticed a large number of idle queries
between 4:00 A.M. and 6:00 A.M., we would need a method to obtain data for that
time period. Well, sar has one argument (-s) to specify the start time of a data
extract, and another argument (-e) to set the end time. These parameters must be
written in HH:MM:SS format or sar will ignore them with an error. We also elected to
use the -r argument to display memory usage data, just to illustrate another metric
that sar can expose.

Our final example depends entirely on what Linux distribution we're using.
Unfortunately, each distro stores its collected sar data in different areas within
/var/log. With that said, the directory assigned to sysstat for data storage
normally retains a default of 7 days' worth of historical information for analysis.

Every day, this data is collected in a file prefixed with sa and suffixed with the
current month's day. On weeks that span 2 months, the count simply restarts with 01.
Once again, we use a different output mode for sar and display the I/O activity.

Troubleshooting Chapter 5

[193]

There's more...
7 days may not be enough for some administrators. To increase this amount, modify
/etc/sysconfig/sysstat or /etc/sysstat/sysstat and change the HISTORY
setting to the desired amount of days to retain data for. For example, we could use
this to keep 30 days of records:

HISTORY=30

See also
Always examine the manual for the tools that we use in these recipes. In this case, the
manual for sar is available by executing this command:

man sar

This is especially true for sar, as it has so many different operating modes and
display formats.

Correlating performance with dstat
Eventually, we will want to view multiple types of system activity simultaneously.
While sar has many operating modes, its output is linear. Without a tool to interpret
its exhaustive data, we are left with a lot of manual analysis of several sar
invocations. While iostat and iotop are wonderful tools, they are rather limited in
scope by comparison.

So, let's introduce dstat. While dstat can't access historical data like sar, it can
display output from several different operation modes side by side. It also includes
color coding to easily distinguish units. It's a very pretty command-line tool and
summarizes several different metrics at a glance.

For servers that are of particular importance, we actually keep a Terminal window
that displays the dstat results openly so that we get an early warning when numbers
begin to look bad.

Troubleshooting Chapter 5

[194]

Getting ready
Unlike the sysstat package, dstat is ready to use immediately after being installed.

How to do it...
The output from dstat is very colorful. Obtain a few samples with these steps:

Display default information with this command:1.

dstat

Display only system load and network activity with this command:2.

dstat -n -l

Display CPU usage, I/O, and disk utilization averaged over 5-second3.
intervals with this command:

dstat -c -r --disk-util 5

For the next 10 seconds, we can display the time, memory usage, interrupts4.
and context switches, disk activity from only the sda device, and the
process using the most I/O, in addition to capturing the results in a CSV
file, all with this command:

dstat -tmyd -D sda --top-io --output /tmp/stats.csv 1 10

How it works...
We hope it's obvious by now that the number of combinations available for the dstat
output is effectively infinite. By default, the dstat output resembles this:

Troubleshooting Chapter 5

[195]

The default output from dstat enables CPU, disk, network, memory paging, and
system modules. In this particular example, we can see that the wai column is
extremely high, suggesting that the server is currently I/O bound.

Another interesting thing about dstat is that it really only displays the exact
modules we request. For the second example, the output becomes this:

In this second example, we've only enabled the network (-n) and system load (-l)
modules, thus extremely reducing the output width. Yet simultaneously, this sparse
format makes it very easy to combine several different metrics without absurdly wide
Terminal windows.

The third sample begins using dstat plugins. By activating the --disk-util
argument, dstat will show the utilization percentage for all active storage devices.
This is in addition to the CPU stats (-c) and I/O (-r) that we already activated.

By adding the last parameter (5), we again take advantage of a common trend for
system view utilities. The last two optional parameters are for a sample interval and
count. In the case of dstat, any number printed while the interval is greater than 1 is
actually the average of all the metrics collected during that time period. So, for our
third example, these numbers are all 5-second cumulative averages.

For posterity, the output looks like this:

Troubleshooting Chapter 5

[196]

This may be difficult to see, but the last line in this output is not bold like the rest.
This means that this particular line had not yet reached the requested interval of 5
seconds. It's not an important detail, but it shows just how much attention the dstat
developers paid to conveying information visually. We easily see a high percentage of
CPU waits, and the sda device read and write utilization is over 90 percent. It looks
like a visual presentation works pretty well.

For our fourth and final example, we try to include as many separate types of data as
possible. In the beginning, we enable the -t, -m, -y, and -d switches. This adds
timestamp, memory performance, interrupts and context switches, and device
activity to the dstat output. We also take advantage of the -D parameter to limit disk
statistics to the sda device. Default disk statistics are inclusive, but now, we can
actually restrict the output to interesting devices.

Next, we add --top-io to list the process that's using the most I/O while dstat
runs. Earlier, we needed iotop to get that data. Of course, iotop provides more
depth and lists more than one culprit, but for quick identification, it's hard to beat
dstat. Then, we use the --output parameter to send the csv output to
/tmp/stats.csv so that we can potentially use a spreadsheet program to analyze or
graph the data we gathered.

Finally, we take advantage of both the interval and count parameters so that we
capture only 10 seconds of statistics. For all of that work, we're rewarded with this
output:

Oh! It looks like all of the I/O and load we saw earlier was due to a pgbench test.
How embarrassing!

Troubleshooting Chapter 5

[197]

See also
Always examine the manual for the tools that we use in these recipes. In this case, the
manual for dstat is available by executing this command:

man dstat

Interpreting /proc/meminfo
Administrators familiar with the Linux /proc filesystem will know that it is a
valuable source for both device status and performance information. The meminfo
entry in this directory will always provide copious data regarding the status,
contents, and state of the memory in our server.

We care about this as DBAs because file cache and write buffering can drastically
affect disk I/O. We are not especially interested in analyzing PostgreSQL's memory
usage itself at this point, except in the context of client connections, inode caches, and
dirty page flushing.

On a modern Linux kernel, there are over 50 different lines of information in
/proc/meminfo. Much of this data is not exceptionally useful to a DBA, so this recipe
will focus on important fields only.

Getting ready
We will be using the watch and grep commands in this recipe. It will be a good idea
to experiment with them and, perhaps, skim the man pages before continuing.

How to do it...
Follow these steps to capture an interesting memory status from /proc/meminfo:

Obtain basic memory states with the following command:1.

grep -A3 MemTotal /proc/meminfo

Execute this command to extract dirty memory buffers and pending writes:2.

grep -A1 Dirty /proc/meminfo

Troubleshooting Chapter 5

[198]

View the state of various memory caches with the following command:3.

grep -A1 Active /proc/meminfo

Show swap usage with the following command:4.

grep Swap /proc/meminfo

How it works...
The first command we execute is nothing but a basic summary of the current memory
state. For a test system with 2 GB of RAM running PostgreSQL, it would resemble
this:

MemTotal: 2050908 kB
MemFree: 840088 kB
Buffers: 9288 kB
Cached: 1102228 kB

This output is similar to what we would learn using the free command. The
MemTotal row should speak for itself, as it is the total size of the memory in the
system. The MemFree row is the total amount of completely unallocated system
memory, including buffers or cache. The Buffers row in this context is mostly
related to internal kernel bookkeeping, so we can ignore it. If we examine the value
reported by the Cached row, we can see that over 1 GB of data is cached in memory.

The second command outlines dirty memory. Dirty memory, in this case, is the
memory that is modified and awaiting synchronization to disk. On the same 2 GB test
system, a long pgbench test might produce results like this:

Dirty: 29184 kB
Writeback: 40 kB

As we've said, the Dirty row details how much memory is waiting to be written to
disk. On systems with very large amounts of RAM, this value can indicate that too
much RAM is dirty. The consequences of this can include long query execution times
or system stalls if the underlying storage is unable to quickly absorb that many disk
writes. In practice, this should rarely be larger than the size of the disk controller's
write cache.

Troubleshooting Chapter 5

[199]

However, what about the Writeback row? This field details how much of the dirty
memory is currently being written to disk. When storage is overwhelmed, the amount
reflected here will rise as the write-back buffer fills with more write requests. This is a
definite sign that the system has encountered far more writes than it was designed to
handle. In essence, each of these fields is a warning sign that the application must be
modified to reduce write workload or that the database needs faster storage, with a
bigger write cache.

With our next command, we examine the contents of the cache itself. Still using our 2
GB test system, the cache looks like this:

Active: 1105760 kB
Inactive: 32764 kB
Active(anon): 207696 kB
Inactive(anon): 9340 kB
Active(file): 898064 kB
Inactive(file): 23424 kB

We won't get into too much detail regarding how the kernel actually works, but we
will note that all the fields named Inactive are something of a misnomer. Any time
something is loaded into the cache, it first gets included in the Inactive list. Based
on the subsequent amount and timing of requests for this data, it might be promoted
into the Active set. Once it is in that list, various aging algorithms might eventually
return it to the Inactive list. Inactive cache data is always a candidate for
replacement with more important data.

In the context of PostgreSQL, we need to pay attention to the Active(file) entry.
This is the number of disk pages in the cache. Disk reads are expensive, and as
databases process data from disk, this is very important to us. We want as many disk
pages as possible to be in the Active(file) list, but this doesn't mean we discount
Inactive(file). Remember, the inactive cache is still in memory and eligible for
database use; it simply hasn't been promoted to the active list. Thus, we want the total
amount of file cache to be as high as possible, reflecting the prioritization of disk
reads for database processing.

We include Active(anon) and Inactive(anon) for one reason: database clients.
Temporary data allocated to database clients is often assigned to an anonymous
cache. This is good for the client program, but with enough of these, we lose valuable
memory from use as a disk cache. One remedy for this is to buy more memory, but
another more scalable solution is to utilize database connection pooling. That is why
this book includes a chapter specifically dedicated to optimizing the connection
count, as this helps preserve memory for data caching.

Troubleshooting Chapter 5

[200]

The last extract we obtain from /proc/meminfo is related to swap usage and looks
like this:

SwapCached: 0 kB
SwapTotal: 2093052 kB
SwapFree: 2093052 kB

Again, we can get this kind of data using the free command as well. We mainly
include it here in case any readers want to search for all of these fields with a single
command, for monitoring purposes.

There's more...
The watch utility will execute any command and its arguments until it is canceled
with Ctrl + C. Instead of using those grep statements every time we want to see
interesting fields in the /proc/meminfo file, we can simply use watch. For example,
to observe the state of dirty buffers waiting to be committed to disk, we can use the
following command:

watch -n 5 grep -A1 Dirty /proc/meminfo

See also
The Linux kernel documentation is somewhat verbose. Nonetheless, more technically
apt readers can find much more information regarding /proc/meminfo at this URL:
https://www.kernel. org/ doc/ Documentation/ filesystems/ proc. txt

Examining /proc/net/bonding/bond0
Highly available databases often come in pairs for redundancy purposes. These
servers can have any number of procedures to keep the data synchronized, and this
book suggests direct connections when possible. Direct connections between servers
ensure fast communication between redundant servers, and it resembles the
following network design:

https://www.kernel.org/doc/Documentation/filesystems/proc.txt
https://www.kernel.org/doc/Documentation/filesystems/proc.txt
https://www.kernel.org/doc/Documentation/filesystems/proc.txt
https://www.kernel.org/doc/Documentation/filesystems/proc.txt
https://www.kernel.org/doc/Documentation/filesystems/proc.txt
https://www.kernel.org/doc/Documentation/filesystems/proc.txt
https://www.kernel.org/doc/Documentation/filesystems/proc.txt
https://www.kernel.org/doc/Documentation/filesystems/proc.txt
https://www.kernel.org/doc/Documentation/filesystems/proc.txt
https://www.kernel.org/doc/Documentation/filesystems/proc.txt
https://www.kernel.org/doc/Documentation/filesystems/proc.txt
https://www.kernel.org/doc/Documentation/filesystems/proc.txt
https://www.kernel.org/doc/Documentation/filesystems/proc.txt
https://www.kernel.org/doc/Documentation/filesystems/proc.txt
https://www.kernel.org/doc/Documentation/filesystems/proc.txt
https://www.kernel.org/doc/Documentation/filesystems/proc.txt
https://www.kernel.org/doc/Documentation/filesystems/proc.txt
https://www.kernel.org/doc/Documentation/filesystems/proc.txt
https://www.kernel.org/doc/Documentation/filesystems/proc.txt

Troubleshooting Chapter 5

[201]

In some cases, it can be advantageous to connect the database servers to a general
network fabric. Depending on the interaction of the upstream network devices, this
can significantly increase the network packet's round-trip time (RTT). This is usually
fine for PostgreSQL replication, but online transaction processing (OLTP) systems
may be more sensitive. Block-level replication systems (such as Distributed
Regulated Block Device (DRBD)) that operate beneath the filesystem fare even
worse.

Each of our database servers should be equipped with at least two independent
network interfaces. In order to prevent downtime, these interfaces must be linked
with a bond. Network bonds act as an abstraction layer that can route traffic over
either interface and, like many kernel-level services, bond status can be checked via
the Linux /proc filesystem.

The health and current communication channel of the server network bond is
surprisingly relevant to throughput. In order to rule out potential delays caused by
upstream network hardware, this recipe will help understand how the bond is
operating.

Getting ready
As we are going to examine the network bond on two paired PostgreSQL servers,
connect to each before continuing. We don't need any special permissions or
attributes for this recipe.

How to do it...
In order to check the status of the network bond, follow these steps:

Determine the current bonding method by executing this command:1.

grep Mode /proc/net/bonding/bond0

Check the currently active interface with this command:2.

grep Active /proc/net/bonding/bond0

Troubleshooting Chapter 5

[202]

How it works...
Surprised that it's so simple? Don't be. Much like /proc/meminfo and
/proc/cpuinfo, the difficulty is not in obtaining the information we need, but in
interpreting it. The first thing that concerns us is the bond mode. There are several
modes, but only one is relevant to us for a dual-failover configuration. The mode
should reflect some kind of an active-backup status; otherwise, it's combining the
interfaces for bandwidth and throughput purposes. The line we want looks like this:

Bonding Mode: fault-tolerance (active-backup)

Next, we check the currently active interface. If the system was configured so that the
network bond is in active-backup mode, only one is active at any one time. The
other server acts as a backup in case the network connection or the interface itself
fails. In an ideal situation, similar interfaces on both servers—for instance, eth3—are
attached to the same switch. If not, we should talk to our network and server
administrators to correct the setup.

We suggest that you use the same interface name on both the servers for one simple
reason: it's difficult to diagnose network routes on bonded interfaces. For best
throughput and RTT, our network should look like this:

We hope it's clear from the diagram that this architecture introduces a possible source
of network lag. As the servers cannot transfer data to each other directly, at least one
extra switch that increases the RTT is involved. As our servers hopefully have two
network interfaces, each server is communicating with the same two switches.
However, if each server is currently working through a different switch, this actually
adds at least two more jumps, as the switches must communicate with an upstream
router. If we follow the dotted path, that unfortunate situation looks like this:

Troubleshooting Chapter 5

[203]

We've seen this scenario increase ping times from 0.03 milliseconds to 0.3
milliseconds. That may not seem like much, but when the network RTT is 10 times
slower, replication and monitoring can suffer significantly. This is one of the few
obscure troubleshooting techniques that can elude even experienced network
administrators. Armed with this, we should be able to diagnose replication and idle-
wait problems, using nothing more than grep.

Checking the pg_stat_activity view
Another source of valuable troubleshooting information is PostgreSQL itself. There
are numerous views, tables, and functions dedicated to tracking and reporting
various statistics and operating statuses for each hosted database. Principal among
these is the pg_stat_activity view.

This view tells us what every database client is doing, where it is connected from,
which user account it is operating under, and other important values. When
administering a highly available database, we must have either iron control over
what executes in the database or the ability to quickly and easily assess its execution
state. Besides using this data to track suspicious activity, we can also cancel long-
running queries or Cartesian products, or simply examine the connection turnover.

We probably use this view into the database more than any other, and it forms the
backbone of several monitoring utilities as well. This recipe will explore just why this
system catalog is so indispensable.

Getting ready
While any user can view the contents of the pg_stat_activity view, only a
superuser can freely examine the contents of every column. To avoid security
exploits, regular users cannot view the current query activity, any connection
information, or fields related to query time or status.

To get the most out of this view safely, we want to grant elevated privileges to
specific users dedicated to monitoring and status checks. In order to do this, we must
first connect to the database as a superuser (such as the postgres user) for the
duration of this recipe.

Troubleshooting Chapter 5

[204]

How to do it...
Perform the following steps to prepare pg_stat_activity for generalized use:

Execute this SQL statement as a database superuser to create a function:1.

CREATE OR REPLACE FUNCTION pg_stat_activity()
RETURNS SETOF pg_stat_activity AS $$
 SELECT * FROM pg_stat_activity;
$$ LANGUAGE sql SECURITY DEFINER;

Execute this SQL statement to secure the function we created:2.

REVOKE ALL ON FUNCTION pg_stat_activity() FROM PUBLIC;

Create a user dedicated to monitoring with this SQL statement:3.

CREATE USER db_mon WITH PASSWORD 'somepass';

Grant the monitoring user the ability to use our function with this SQL4.
statement:

GRANT EXECUTE ON FUNCTION pg_stat_activity() TO db_mon;

Now, connect to PostgreSQL as the db_mon user and examine the contents5.
of
pg_stat_activity by executing this SQL query:

SELECT * FROM pg_stat_activity();

How it works...
The pg_stat_activity view is a wealth of information for a DBA. Unfortunately, it
is all but useless for monitoring due to the security measures that encumber it.
Principally, some of these fields are obfuscated specifically to prevent system
compromises and data leaks. Thus, we must protect the view while still loosening the
security enough to enable better monitoring.

Troubleshooting Chapter 5

[205]

The first step we take is to create a function that is capable of returning a set of rows
similar to the pg_stat_activity view itself. The SETOF modifier tells PostgreSQL
that our function does exactly that. It's no coincidence that the body of our function is
merely a SELECT statement on the pg_stat_activity view.

Why did we use a function to abstract the view? After all, it seems excessive to create
a whole function for such a simple statement. The answer is in the SECURITY
DEFINER function modifier that we added; it allows the function to execute as the
user who created it. Thus, if we create the function as the postgres user, it runs as if
the postgres user invoked it. As the postgres user is a superuser, the function can
see all of the hidden columns, no matter who executes the function.

All new functions are available to all users by default. However, this function
executes as a superuser and we don't want just anyone to execute it and view
potentially sensitive query contents. So, we revoke all permissions from the PUBLIC
context. At this point, only a superuser can call our function.

As we want to be able to monitor database status values, we create a user for this very
purpose. We named our user db_mon, but any username works just as well. As long
as it has a secure password or is only used locally, our security exposure is minimal.
Then, we grant EXECUTE privileges on the pg_stat_activity function, and our
work is complete. The db_mon user can now view all user queries. We can also grant
EXECUTE privileges to other DBAs or support staff who may need it.

What data is available? Important fields include, but are not limited to, the following:

pid or procpid: In versions of PostgreSQL 9.2 and above, this field is
named pid; all older versions use procpid. This tells us the PID assigned
to the backend server process by the operating system and is extremely
valuable for debugging or connection-management purposes.
usename: This displays the name of the user who owns this connection.
backend_start: This provides the date and time when the connection was
established.
xact_start: This tracks the date and time when the current transaction
started, if any.
query_start: This reports the date and time of the last query submitted.

Troubleshooting Chapter 5

[206]

wait_event: In versions of PostgreSQL 9.6 and higher, this labels the
current lock event that is blocking the current query from continuing. There
is a very detailed table in the documentation that further explains the labels
used in this column. If there is nothing blocking this query, the value will
be NULL.
waiting: This column is only valid in PostgreSQL versions 9.5 and below.
This tells us whether or not the connection is currently blocked by
something, and will show either t for true or f for false.
state: In versions of PostgreSQL 9.2 and higher, this column reports the
current state of the connection. States marked as active are executing a
query; the idle ones are not. If a connection is marked idle in
transaction, look carefully at the query_start and xact_start fields
for excessive delays. If a connection was in a transaction and encountered
an error, it will report idle in transaction (aborted); applications
should catch errors and either roll back the transaction or disconnect, so
idle aborted transactions are a possible source of trouble. Unfortunately,
this field does not exist in older versions, so a certain context is lost during
the investigation.
state_change: This displays the last time the session state was altered.
This could mean a query ended, or a new one started, or a new transaction
began but the session is still idle, and so on. It's possibly one of the most
important time-related fields because it lets us know how active the
connection actually is. If this field is quite behind the current time, we
know the session is still performing its last action, which is valuable
diagnostic information.
query: In versions of PostgreSQL 9.1 and above, this column contains most
or all of the last known query this connection executed. This field does not
exist in older versions.
current_query: In versions of PostgreSQL 9.1 and below, this column
contains most or the entire last known query that this connection executed.
In newer versions, this field was split into the state and query fields to
provide better insight into the connection activity during transactions.

Troubleshooting Chapter 5

[207]

There's more...
Mind the version! PostgreSQL versions below 9.2 do not have the state or query
fields and supply only the current_query column. While it might be tempting to
use query and current_query interchangeably, older PostgreSQL versions are
strictly at a disadvantage.

At the time of this edition, PostgreSQL versions older than 9.4 are no
longer supported by the community. We've listed many fields in
these older PostgreSQL versions, but if they are relevant to your
installation, we strongly recommend upgrading.

Similarly, the way waits are displayed changed drastically in PostgreSQL 9.6. In older
versions, the waiting column merely noted whether or not the query was blocked by
some other process. The wait_event replacement makes it possible to actually see
what is blocking a particular query. Previously obscured actions such as lock
acquisitions, disk synchronization, or even background worker interaction, are now
plainly visible. This amount of detail is far more useful for diagnostic purposes than a
mere Boolean value.

In PostgreSQL 9.1 and below, queries are only reflected in the pg_stat_activity
view while they are actually executing. As soon as the query finishes, the
current_query column will be empty or report idle in transaction if the query
was part of a transaction. This means we lose a lot of operating context unless we just
happen to be logging every database query.

On very high-volume OLTP systems, recording every query is not feasible. We've
personally administered databases that handle over 1 billion queries per day, at a rate
of 60,000 per second. Even with a conservative query length of 50 characters, we
would produce over 50 GB of logs every day.

Troubleshooting stuck, idle, or otherwise faulty connections is much easier in the
newer versions of PostgreSQL. If at all possible, upgrade to 9.6 or above.

See also
PostgreSQL has extremely informative documentation regarding how it collects and
maintains statistics. The pg_stat_activity view is described in more depth there,
so take a look at https:/ / www. postgresql. org/ docs/ current/ static/ monitoring-
stats.html.

https://www.postgresql.org/docs/current/static/monitoring-stats.html
https://www.postgresql.org/docs/current/static/monitoring-stats.html
https://www.postgresql.org/docs/current/static/monitoring-stats.html
https://www.postgresql.org/docs/current/static/monitoring-stats.html
https://www.postgresql.org/docs/current/static/monitoring-stats.html
https://www.postgresql.org/docs/current/static/monitoring-stats.html
https://www.postgresql.org/docs/current/static/monitoring-stats.html
https://www.postgresql.org/docs/current/static/monitoring-stats.html
https://www.postgresql.org/docs/current/static/monitoring-stats.html
https://www.postgresql.org/docs/current/static/monitoring-stats.html
https://www.postgresql.org/docs/current/static/monitoring-stats.html
https://www.postgresql.org/docs/current/static/monitoring-stats.html
https://www.postgresql.org/docs/current/static/monitoring-stats.html
https://www.postgresql.org/docs/current/static/monitoring-stats.html
https://www.postgresql.org/docs/current/static/monitoring-stats.html
https://www.postgresql.org/docs/current/static/monitoring-stats.html
https://www.postgresql.org/docs/current/static/monitoring-stats.html
https://www.postgresql.org/docs/current/static/monitoring-stats.html
https://www.postgresql.org/docs/current/static/monitoring-stats.html
https://www.postgresql.org/docs/current/static/monitoring-stats.html

Troubleshooting Chapter 5

[208]

Checking the pg_stat_statements view
We mentioned in another recipe that logging every query on a highly available
database that handles high volumes of query traffic is undesirable. DBAs often solve
this problem by only logging slow queries, by setting
log_min_duration_statement to a reasonable number of milliseconds in
postgresql.conf. Later, only queries that cross this threshold are logged, along
with binding parameters if the query was a prepared statement.

We strongly encourage this practice, as it is invaluable for catching outlying queries
that could benefit from optimization. Unfortunately, faster queries are still invisible to
us. Worse, queries that execute often probably have their data sources cached in
memory, so it's unlikely that they contribute to I/O. The database could be executing
an inefficient or redundant query thousands of times per second, and besides an
elevated server load, we would never know.

This situation is not conducive to the long-term viability of a highly available
database. Phantom queries like this don't simply gorge on valuable CPU resources;
they can multiply unseen until the combined load requires more expensive hardware
or the database buckles under the stress.

However, PostgreSQL can see everything, and now so can we, with
pg_stat_statements. This recipe will explain how to install and utilize this
valuable diagnostic tool.

Getting ready
Activating and using this extension requires us to modify the postgresql.conf
configuration file and restart PostgreSQL. As usual, we need to ensure that we have
access to a PostgreSQL superuser and a user capable of restarting the service, such as
the postgres or root system users.

How to do it...
Begin by installing the pg_stat_statements module. Follow these steps:

Modify the shared_preload_libraries line in postgresql.conf to1.
include the module, like this:

shared_preload_libraries = 'pg_stat_statements'

Troubleshooting Chapter 5

[209]

If you are using PostgreSQL 9.1 or older, add this line to2.
postgresql.conf:

custom_variable_classes = 'pg_stat_statements'

Restart PostgreSQL with a command similar to this:3.

pg_ctl -D /db/pgdata restart

Log in to PostgreSQL as a superuser into any database that should have4.
access to pg_stat_statements and execute the following SQL statement:

CREATE EXTENSION pg_stat_statements;

Perform the following steps to prepare pg_stat_statements for generalized use:

Execute this SQL statement as a database superuser to create a function:1.

CREATE OR REPLACE FUNCTION pg_stat_statements()
RETURNS SETOF pg_stat_statements AS $$
 SELECT * FROM pg_stat_statements;
$$ LANGUAGE sql SECURITY DEFINER;

Execute this SQL statement to secure the function we created:2.

REVOKE ALL ON FUNCTION pg_stat_statements() FROM PUBLIC;

Create a user dedicated to monitoring with this SQL statement:3.

CREATE USER db_mon WITH PASSWORD 'somepass';

Grant the monitoring user the ability to use our function with this SQL4.
statement:

GRANT EXECUTE ON FUNCTION pg_stat_statements() TO db_mon;

Now, connect to PostgreSQL as the db_mon user, and examine the contents5.
of pg_stat_statements by executing this SQL statement:

SELECT * FROM pg_stat_statements();

Troubleshooting Chapter 5

[210]

How it works...
In our opinion, the first set of instructions should not be required. The
pg_stat_statements module is so important that we feel everyone can benefit from
its contents. In any case, the first thing we must do is add pg_stat_statements to
the shared_preload_libraries configuration setting. Several PostgreSQL
modules are only available after being added this way.

The next step is only necessary if we are running a version older than PostgreSQL 9.2.
The custom_variable_classes setting allows us to further configure the
pg_stat_statements module later. Current versions of PostgreSQL will handle this
for us.

As the pg_stat_statements module depends on activating an external library, we
must restart PostgreSQL for it to take effect. Once the module is loaded, there are
necessary functions that access the module; we must also install these functions in
any database where we want pg_stat_statements to be available. By executing the
CREATE EXTENSION statement, we register these functions with the current database.

The next set of instructions focuses on making the pg_stat_statements module
usable to non-superusers and mirrors the process we used in the
Checking the pg_stat_activity view recipe. We begin by creating a function that runs as
the user who defined it. As we created the function as a superuser, this means regular
users can use it to examine the contents of pg_stat_statements.

To prevent any user from executing this elevated privilege function, we revoke all
access from the public context. Then, if we don't already have a user set aside for
monitoring database activity, we create one and then grant them access to execute
pg_stat_statements(), because this is one of their acknowledged roles.

Newer versions of PostgreSQL add more fields to this view, seemingly with every
release. Many of the new fields focus on the I/O related to disk timing and blocks
being dirtied, so they are intended for more advanced usage. However, the columns
we can count on include the following:

query: This column displays up to 1,024 characters of the query being
tracked.
calls: This column contains the total number of times the SQL has been
executed.

Troubleshooting Chapter 5

[211]

total_time: This column provides the total time spent processing the
query, in milliseconds.
rows: This column lists the total number of rows ever returned by the
query.

This is actually enough to perform quite a bit of investigation. We can divide
total_time by calls to obtain the average execution speed. Perhaps we want to
know the total ratio of INSERT statements to SELECT statements. Simply sorting the
data by the calls column can reveal outliers that execute far more often than most
queries. We used these ourselves to find a query that represented more than 50
percent of all the calls in the database. Our developers were very happy to cache the
results of this query for us.

Modern versions of this view actually perform many of these calculations for us,
along with a few we can't. One of the new fields is sttdev_time, and it's not possible
to calculate standard deviations with only aggregate values. Given that standard
deviations are a great tool for quantifying performance variance, this alone is a reason
to upgrade.

There's more...
Of course, this extremely useful view has a few extra features that we want to explain.

Reset the status
Statistics stored in the pg_stat_statements view accumulate until they are
forcefully reset. If we don't want to monitor value deltas between checks, we can
simply reset the status of the module and cause it to erase the data it has collected. To
do that, execute this SQL statement as a superuser:

SELECT pg_stat_statements_reset();

Troubleshooting Chapter 5

[212]

Catch more queries
By default, the pg_stat_statements module only tracks the first 5,000 queries it
encounters during database operation (or 1,000 in older versions). Normally, this is
enough, especially in versions of PostgreSQL above 9.1. Newer versions provide
better aggregation because they remove SQL variables and constants from the query
before including them in the view. However, older versions of databases that
experience a high variance in query construction may want to increase this number.
To do that, add this line to the postgresql.conf file:

pg_stat_statements.max = 10000

Then, we have to restart PostgreSQL again. Once this is finished, the
pg_stat_statements module will track 10,000 queries instead of 1,000. Feel free to
experiment with other values.

See also
We feel strongly that the pg_stat_statements view is indispensable, but we can
only convey a tiny amount in a usage recipe. For an in-depth explanation of its
contents and usage, please check the documentation at https:/ /www. postgresql.
org/docs/current/ static/ pgstatstatements. html.

Deciphering database locks
It's not uncommon for various elements of the database to block each other. Queries
can lock shared resources, system maintenance can temporarily prevent a transaction
from committing; the list is endless. As a result, a critical aspect of troubleshooting a
PostgreSQL system is tracking down blocked sessions, and what might be preventing
normal operation.

There are two very powerful ways to decipher locks within PostgreSQL in the
pg_locks view and the PostgreSQL 9.6+ pg_blocking_pids function. This recipe
will demonstrate why these approaches are so useful.

https://www.postgresql.org/docs/current/static/pgstatstatements.html
https://www.postgresql.org/docs/current/static/pgstatstatements.html
https://www.postgresql.org/docs/current/static/pgstatstatements.html
https://www.postgresql.org/docs/current/static/pgstatstatements.html
https://www.postgresql.org/docs/current/static/pgstatstatements.html
https://www.postgresql.org/docs/current/static/pgstatstatements.html
https://www.postgresql.org/docs/current/static/pgstatstatements.html
https://www.postgresql.org/docs/current/static/pgstatstatements.html
https://www.postgresql.org/docs/current/static/pgstatstatements.html
https://www.postgresql.org/docs/current/static/pgstatstatements.html
https://www.postgresql.org/docs/current/static/pgstatstatements.html
https://www.postgresql.org/docs/current/static/pgstatstatements.html
https://www.postgresql.org/docs/current/static/pgstatstatements.html
https://www.postgresql.org/docs/current/static/pgstatstatements.html
https://www.postgresql.org/docs/current/static/pgstatstatements.html
https://www.postgresql.org/docs/current/static/pgstatstatements.html
https://www.postgresql.org/docs/current/static/pgstatstatements.html
https://www.postgresql.org/docs/current/static/pgstatstatements.html

Troubleshooting Chapter 5

[213]

Getting ready
The pg_locks view needs no special access for use, and the pg_blocking_pids
function can be called by any user. However, these resources are of limited utility
without full access to pg_stat_activity as well. To proceed with this recipe, either
connect to the database as a superuser (such as the postgres user) or refer to the
Checking the pg_stat_activity view recipe to circumvent this limitation.

How to do it...
Create a blocking scenario with the following steps:

Connect to a database and create a test table, and then lock it with this SQL1.
code:

CREATE TABLE lock_test (junk INT);
BEGIN;
LOCK TABLE lock_test IN EXCLUSIVE MODE;

In a second connection, execute the following statement:2.

INSERT INTO lock_test (junk) VALUES (42);

Next, investigate the problem with these steps (PostgreSQL 9.6 and above only):

Execute this query to obtain locking information:1.

SELECT pid, locktype, mode, granted,
 relation::REGCLASS::TEXT AS locked_object
 FROM pg_locks
 WHERE relation IS NOT NULL
 ORDER BY relation, granted DESC;

Run this query to determine blocker sources:2.

SELECT p.pid, p.query,
 s.pid AS blocker_pid, s.query AS blocker_query
 FROM pg_stat_activity p
 JOIN pg_stat_activity s ON (
 s.pid = ANY(pg_blocking_pids(p.pid))
);

Troubleshooting Chapter 5

[214]

How it works...
The first set of steps is not strictly necessary if we have access to a particularly busy
database. The lock tables are generally very active, and output in such a scenario is
usually rather copious. Barring this, we need a way to purposefully demonstrate just
how powerful the PostgreSQL lock debugging tools are.

Of the two queries that actually display PostgreSQL activity blocks, the first relies
entirely upon the pg_locks view. After executing it, we should see this on an
otherwise empty database:

 pid | locktype | mode | granted | locked_object
------+----------+------------------+---------+---------------
 3147 | relation | AccessShareLock | t | pg_locks
 3128 | relation | ExclusiveLock | t | lock_test
 3137 | relation | RowExclusiveLock | f | lock_test

What we can learn directly from the output is that there are two different PIDs that
want to use the same object. We can see that one has a granted exclusive lock to
lock_test, which means it is preventing any other process from modifying its
contents. The other connection needs a lock to a specific row it can't obtain, and hence
we have a lockup.

Yet this particular situation—and many like it—can only be implied by tracking
resource conflicts between connections. There's no causal relationship other than
what we might interpret based on the current state of the pg_locks view. There were
third-party utilities that aimed to address this shortcoming, but none became
particularly popular and the problem remained unresolved.

This is why PostgreSQL 9.6 added the pg_blocking_pids function. Given a single
PID, it can gather a list of any other processes that are currently preventing it from
proceeding. This is why our second query also makes use of pg_stat_activity.
Including it allows us to directly witness the cause-and-effect relationship, as seen
here:

-[RECORD 1]-+--
pid | 3137
query | INSERT INTO lock_test VALUES (42);
blocker_pid | 3128
blocker_query | LOCK TABLE lock_test IN EXCLUSIVE MODE;

Troubleshooting Chapter 5

[215]

Our demonstration is extremely simplified, yet the design of the query will capture
any blocking activity due to our use of the ANY array conditional. The
pg_blocking_pids function returns an array of all blocking processes, meaning our
query should unroll and display an entire chain of locks right up to the original
query.

There's more...
Astute readers may have noticed that the pg_locks and pg_stat_activity views
both share the pid column. Since the pg_locks view only detailed information about
the locks themselves, we can't tell when the lock might have been granted, or any
other pertinent troubleshooting details. There is a very handy query that uses both of
these views.

Users of PostgreSQL 9.5 and older can use this query:

SELECT l.pid, l.mode, l.granted, a.waiting,
 l.relation::REGCLASS::TEXT AS locked_object,
 a.datname, a.client_addr, a.usename,
 a.query_start, now() - a.query_start AS duration,
 substring(a.query, 1, 20) AS query_part
 FROM pg_locks l
 JOIN pg_stat_activity a USING (pid)
 WHERE l.relation IS NOT NULL
 AND now() - a.query_start > INTERVAL '10 minutes'
 ORDER BY a.query_start;

This query is more suitable for PostgreSQL 9.6 and above:

SELECT l.pid, l.mode, l.granted, a.wait_event,
 l.relation::REGCLASS::TEXT AS locked_object,
 a.datname, a.client_addr, a.usename,
 a.query_start, now() - a.query_start AS duration,
 substring(a.query, 1, 20) AS query_part
 FROM pg_locks l
 JOIN pg_stat_activity a USING (pid)
 WHERE l.relation IS NOT NULL
 AND now() - a.query_start > INTERVAL '10 minutes'
 ORDER BY a.query_start;

Troubleshooting Chapter 5

[216]

This query is large, but it also does a lot of work. First, it only returns results where
locks have been held for at least 10 minutes so we're not overwhelmed. It also orders
the rows based on when the queries started. In some cases, the best solution is to
simply observe the number of resources the top queries might be locking, and
terminate the connection to clear the jam. This is much easier when we can actually
tell which queries started the problem.

Beyond this, we've included a good assortment of debugging columns such as
database name, username, connection origin, and a fragment of the query itself. These
details are indispensable when attempting to derive a requisite cause. If a script isn't
operating normally, we want to know where it's running so a developer can fix the
problem! If we can tell them where the query came from, its details, and the full list of
locks, finding the problematic code will be far easier.

Of course, this is only one of many possible combinations of fields between these two
views. Don't be afraid to mix and match!

See also
Read more about pg_locks and pg_blocking_pids in the PostgreSQL manual:

pg_locks:
https://www.postgresql.org/docs/current/static/view-pg-locks.html

System information functions:
https://www.postgresql.org/docs/current/static/functions-info.htm
l

Debugging with strace
Sometimes, the only way to truly observe a server process is by using the kernel itself.
This kind of data is invaluable for troubleshooting or research into PostgreSQL
activity.

The Linux strace utility provides detailed system trace data for any process or
service running on the server. For use with PostgreSQL, this utility means we can
target the database itself or any of the background processes it uses for maintenance.

https://www.postgresql.org/docs/current/static/view-pg-locks.html
https://www.postgresql.org/docs/current/static/functions-info.html
https://www.postgresql.org/docs/current/static/functions-info.html

Troubleshooting Chapter 5

[217]

Perhaps more importantly, we can debug or examine any client connection. Is the
network connection permanently hung? Is the client sending thousands of simple
SQL requests instead of bulk-handling the results of a single large query? The strace
command output is both intricate and verbose. This recipe will use strace to inspect
our server and see what we can discover.

Getting ready
There are certain limitations to using strace. Because of its high-level access to
process information, only root-level users are allowed to examine an application's
activity. Make sure to have this capability before continuing.

As we want activity we can depend on, open a connection to PostgreSQL for us to
locate later. We will be using this connection to generate debug output.

How to do it...
Follow these steps to examine the PostgreSQL processes in various ways:

In our PostgreSQL connection, execute the following query to find the PID1.
of the server backend assigned to us:

SELECT pg_backend_pid() AS pid;

As our root-capable user, attach strace to the preceding PID (4200, for2.
example) with this command:

sudo strace -p 4200

In our PostgreSQL connection, execute the following query to generate3.
some activity:

SELECT 1;

In the Terminal where strace is running, press Ctrl + C to disconnect.4.
Attach strace again, but collect the statistics with the following command:5.

sudo strace -c -S calls -p 4200

Now, execute the following query to generate some complex activity:6.

SELECT * FROM information_schema.columns;

Troubleshooting Chapter 5

[218]

In the Terminal where strace is running, press Ctrl + C to disconnect.7.
Attach strace a final time, but limit the output with the following8.
command:

sudo strace -e recvfrom -p 4200

Execute the following query to generate a simple activity:9.

SELECT 1;

How it works...
We can connect to any process with strace, but for demonstrative purposes, we elect
to control the environment by watching a connection we directly control. The
pg_backend_pid function returns the PID of the backend process that serves our
client, which then lets us monitor its activity on the server.

With the PID of the backend, we can monitor it with the -p parameter to strace,
which watches the listed PID. As we don't want too much output, we elect to execute
a very simple query that does not touch the tables, functions, or views. Our output
should resemble this:

Process 4200 attached - interrupt to quit
recvfrom(11, "Q\0\0\0\16SELECT 1;\0", 8192, 0, NULL, NULL) = 15
sendto(11,
"T\0\0\0!\0\1?column?\0\0\0\0\0\0\0\0\0\0\27\0\4\377\377\377\377"...,
 66, 0, NULL, 0) = 66

Once we press Ctrl + C, strace exits, and we can try a different combination of
parameters. For example, the -c setting disables the normal output in favor of
summarizing the kernel calls. If we use the -S parameter to change the sort column,
we can focus on repeated calls. As counts will be boring with only a few columns,
we've suggested a query that will touch on several database objects. Once we exit
from the second strace command, the output looks like this:

Troubleshooting Chapter 5

[219]

Finally, we would like to introduce the -e parameter, which limits the strace output
to the calls listed. In our case, we chose recvfrom, which is a network-related call
that the backend uses to await requests. When in this mode, strace will only print
recvfrom calls, and nothing else.

The -e setting also provides several shortcuts. If the first keyword is
trace, instead of a recognized call, we can specify a type of call to
watch. For example, this revision of our last strace command
would watch all network-related activities:

strace -e trace=network -p 4200

There's more...
Output from strace can be somewhat esoteric, especially as it limits the content
length by default to increase readability. If we want to really capture a lot of data with
extreme verbosity that will help a human make a diagnosis, we need to increase the
string length. For strace, the parameter for that is -s. If we wanted to greatly extend
the length of the string output, we can do that with this command:

sudo strace -p 4200 -s 2000

Then, we execute the following query:

SELECT 'This is a very long query to view.';

We would then see the following output:

recvfrom(11, "Q\0\0\0001select 'This is a very long query to
 view.';\0", 8192, 0, NULL, NULL) = 50

This would be instead of this output:

recvfrom(11, "Q\0\0\0001select 'This is a very long"..., 8192, 0,
 NULL, NULL) = 50

This is all that is required to monitor PostgreSQL, as even simple queries and data are
truncated with default settings.

Troubleshooting Chapter 5

[220]

See also
Always examine the manual for the tools that we use in these recipes. In this case, the
manual for strace is available by executing this command:

man strace

Logging checkpoints properly
Checkpoints are an integral part of a PostgreSQL server. Table data is not modified
during query execution until modified rows, index pages, and other structures are
committed to the Write-Ahead Log (WAL). WAL files are also known as checkpoint
segments. When the cumulative size of these files exceeds max_wal_size—or the
time since the last checkpoint exceeds checkpoint_timeout—the data files are
modified to reflect the changes.

In versions older than PostgreSQL 9.5, checkpoints were specified as
a count of 16 MB files with the checkpoint_segments parameter,
rather than a cumulative total size. The setting for max_wal_size in
MB is roughly equivalent to checkpoint_segments * 16.

This decoupled writing approach ensures database integrity, at the cost of doubling
the necessary disk writes. This is the main reason why some experienced PostgreSQL
DBAs interested in performance may relocate the WAL location to a separate storage
device. However, even moving the WAL files to another device may not sufficiently
reduce write pressure. Database activity is variable in nature, and checkpoints only
happen every few minutes or after a threshold of data modifications.

As PostgreSQL tries to avoid overwhelming the operating system, writes necessary to
satisfy a checkpoint are spread evenly over the checkpoint interval. Unfortunately,
the operating system may choose to buffer these writes unevenly, resulting in
unexpected write spikes. A busy database might have saturated disk bandwidth
already, thus tying up any resources necessary for writing data modifications.

The way we combat this is by logging all checkpoints and analyzing the output of our
log for checkpoint activity. We may need to leverage tablespaces, storage
improvements, or application revisions to really address resource collisions like this,
so it's in our best interest to be proactive.

Troubleshooting Chapter 5

[221]

This recipe will demonstrate how and why checkpoint logging can help maintain a
highly available PostgreSQL system.

Getting ready
You need to know where to find PostgreSQL logs. We usually suggest a few specific
modifications to the postgresql.conf file for logging, including the following:

log_directory = 'pg_log'
log_checkpoints = on

This means logs will be found within our PostgreSQL data directory, in a
subdirectory named pg_log. Some distributions use /var/log/postgresql instead.
Regardless, determine where the logs are kept. To ensure access, examine these as the
postgres user, who should either own the logs directly or have the necessary read
access.

How to do it...
Assuming our logs are located at /db/pgdata/pg_log, follow these steps to examine
the checkpoint activity:

Execute this command to find the most recent log file:1.

ls -lt /db/pgdata/pg_log/postgres*.log | head -n 1

If the latest log is named postgresql-2019-10-16.log, view all the2.
checkpoints in this log with the following command:

grep checkpoint /db/pgdata/pg_log/postgresql-2019-10-16.log

Execute the following command to obtain the five longest disk syncs:3.

grep 'checkpoint complete:' \
 /db/pgdata/pg_log/postgresql-2019-10-16.log \
 | sed 's/.* sync=/sync=/;' \
 | sed 's/total=[0-9.]* s; //; s/; dist.*//;' \
 | sort -n | tail -n 5

Troubleshooting Chapter 5

[222]

How it works...
We need to first find the most recent log file. The ls command's -t parameter will
sort the data by the last modified time, which the head command limits to one line of
results. Distributions that provide PostgreSQL may adhere to a log-rotation scheme
instead. In these cases, the latest log file will reside in /var/log/postgresql and
will always have the same name. Older logs will have a number appended until the
retention period passes.

No matter how we locate the most recent log file, we use two relatively simple
commands to examine its contents. These log files can be extremely useful, though we
will focus on the checkpoint activity for now. Of those two commands, the first
simply isolates all the checkpoint data in the order it occurred. One complete
checkpoint will resemble these lines:

2019-10-16 23:02:53.108 UTC [34849] LOG: checkpoint starting: time
2019-10-16 23:02:53.128 UTC [34849] LOG: checkpoint complete:
wrote 129631 buffers (24.7%); 0 WAL file(s) added, 0 removed,
2 recycled; write=392.875 s, sync=1.789 s, total=394.667 s;
sync files=203, longest=1.004 s, average=0.008 s, distance=0 kB,
estimate=0 kB

This data is helpful in determining the time period of the checkpoint. Combined with
other troubleshooting tools such as sar, we can correlate the checkpoint with disk
activity. In the case of this example, we wrote 24.7 percent of a 4 GB buffer as well,
which is quite a bit of data. However, these writes are spread over more than 6
minutes, reducing contention.

As useful as the raw log lines are, we can apply a few filters and sorting to expose the
disk synchronization time. Our last command makes use of grep to isolate the
checkpoints, sed to remove excess data, sort to focus on the longest syncs, and tail
to restrict the output to the top five. Of these, the sed commands are the most
complex. However, they merely remove all the content before the first sync field, the
total field, and a couple of excess entries at the end, leaving only the data related to
disk synchronization. Then, our top five most expensive checkpoints look like this:

sync=0.891 s, sync files=87, longest=0.470 s, average=0.010 s
sync=1.203 s, sync files=129, longest=0.302 s, average=0.009 s
sync=1.789 s, sync files=203, longest=1.004 s, average=0.008 s
sync=2.004 s, sync files=187, longest=1.031 s, average=0.010 s
sync=5.083 s, sync files=104, longest=3.076 s, average=0.048 s

Troubleshooting Chapter 5

[223]

The first four could be improved, but the last example is clearly much larger than we
would normally expect or desire. Relatively few files were synchronized, yet the
longest sync of over 3 seconds would likely adversely affect query performance. The
disk synchronization duration exhibited here indicates a high level of contention. If
we were to execute sar for the time periods indicated by the longest checkpoint, we
would most likely see 100 percent disk utilization.

If this utilization is primarily data reads, we may be able to ignore it if the checkpoint
time occurred outside of operational hours. In such cases, the cause is probably
related to maintenance or voluminous batch jobs. Otherwise, we should expand our
investigation to track the source of the disk activity until all the checkpoints are below
a desirable threshold.

There's more...
Some checkpoint data is stored in a PostgreSQL view named pg_stat_bgwriter.
This is more of a summary view of the checkpoint activity, but it is available to any
user who can execute SQL statements in the database. Within this view, there are
three fields related to this recipe that directly concern us:

checkpoints_timed: This column provides the number of checkpoints
that occur based on a schedule. These are normal checkpoints and indicate
regular operation.
checkpoints_req: This column stores the number of checkpoints that
PostgreSQL has forced to occur in order to keep up with write activity. If
there are too many of these, database performance can be extremely
reduced and disk contention can have other adverse effects.
checkpoint_sync_time: This column describes the total amount of time
that the checkpoint system has spent in sync status, in milliseconds. This is
basically a sum of all of the sync columns for all the checkpoints since the
statistics were last reset. This is a good value to graph if you are monitoring
the database, as a sudden spike in the elapsed sync time can indicate
trouble.

Troubleshooting Chapter 5

[224]

See also
The WAL is integral to how PostgreSQL operates. We strongly recommend that you
learn as much about its functionality as possible. The PostgreSQL documentation
provides a great deal of depth in its explanation of how the WAL really works. Please
make use of these links:

WAL Configuration:
https://www.postgresql.org/docs/current/static/wal-configuration.
html

Write-Ahead Log:
https://www.postgresql.org/docs/current/static/runtime-config-wal
.html

The Statistics Collector:
https://www.postgresql.org/docs/current/static/monitoring-stats.h
tml

https://www.postgresql.org/docs/current/static/wal-configuration.html
https://www.postgresql.org/docs/current/static/wal-configuration.html
https://www.postgresql.org/docs/current/static/runtime-config-wal.html
https://www.postgresql.org/docs/current/static/runtime-config-wal.html
https://www.postgresql.org/docs/current/static/monitoring-stats.html
https://www.postgresql.org/docs/current/static/monitoring-stats.html

6
Monitoring

One aspect of PostgreSQL administration that is unfortunately ignored too frequently
is system monitoring. Provisioning, constructing, and maintaining a high availability
cluster is difficult by itself without the extra complications inherent in setting up yet
more infrastructure.

Larger companies with an established Network Operations Center (NOC) probably
have extremely mature incidence response and escalation procedures in place. Others
may rely on a few basic monitors and alerts or ad hoc scripts set to trigger on certain
thresholds. If we aren't part of the first group, we certainly can't include ourselves in
the second and consider our cluster protected. When availability is important for
business continuity, we should take the time to ensure that its activity is continuously
reported, graphed, and summarized.

In this chapter, we will focus on what we should monitor, how often we should check
system status, and how to present the data for easy consumption. When the database
goes down, we need to know immediately. When the storage is higher than our
projected limits, we need to plan accordingly. When database behavior is unexpected
or abnormal, we should have a baseline for comparison. There are several tools
available to do all of these things, and we're going to examine a stack of
complementary services to automate everything.

There's no need to build any of our own tools. System monitoring is a very active
field awash in mature software; we'd be wasting our time and needlessly putting our
database architecture at risk. Let's protect our investment properly with professional
tools vetted by hundreds or thousands of equally concerned and attentive Database
Administrators (DBAs).

Monitoring Chapter 6

[226]

In this chapter, we will learn how to effectively monitor PostgreSQL's server status
and database performance. Primarily, we will focus on using Nagios, Check_MK,
check_postgres, Telegraf, InfluxDB, and Grafana; all of these tools excel at system
monitoring. We will cover the following recipes in this chapter:

Figuring out what to monitor
Installing and configuring Nagios
Configuring Nagios to monitor a database host
Enhancing Nagios with Check_MK
Getting to know check_postgres
Installing and configuring Telegraf
Adding a custom PostgreSQL monitor to Telegraf
Installing and configuring InfluxDB
Installing and configuring Grafana
Building a graph in Grafana
Customizing a Grafana graph
Using InfluxDB tags in Grafana

Figuring out what to monitor
Modern servers have a lot of active hardware and software that can stop working at
any time. A failure can start with the operating system, storage, database, network
connectivity, heat, or several other sources.

So, which elements do we rank highest to ensure system availability? Which
hardware needs the closest monitoring? What kind of tests should we use to ensure
that the software is operating as expected?

When dedicating monitoring resources to check hardware and software, we must
answer several questions to distribute effort efficiently. Every test takes time, uses
network resources, and must save its results to a status file or another database. If our
system checks are too frequent or numerous, we could end up overwhelming our
monitor server. Failing to prioritize the alerting criteria can actually be more
dangerous; if we become too accustomed to ignoring irrelevant alerts, legitimate
system issues can propagate unchecked.

Hence, the first step in building a monitoring infrastructure is to decide what it will
monitor and why. This recipe will guide our efforts in reaching that goal.

Monitoring Chapter 6

[227]

Getting ready
We're going to be building a spreadsheet. This spreadsheet will rank all of our
hardware and software so that we know which systems deserve the most focus. Have
a spreadsheet program available before starting.

How to do it...
Follow these steps to rank the priority and frequency of monitoring hardware and
software:

Create a spreadsheet with six columns labeled Monitor, Importance,1.
Frequency, Warning Level, Critical Level, and Action.
Under the Monitor column, list every relevant piece of hardware and2.
software on the server.
Under the Importance column, rank every monitor at one of these three3.
levels: minor, major, or critical.
Under the Frequency column, choose a monitoring interval. We suggest4.
that you use one of these choices: 10 seconds, 30 seconds, 1 minute, 1
hour, 12 hours, or 1 day.
Under the Warning Level column, choose a threshold where the status of5.
this resource should be considered a warning and might require further
examination.
Under the Critical Level column, choose a threshold where the status6.
of this resource should be considered critical and in need of immediate
attention.
Under the Action column, pick an appropriate action that the monitor7.
should take when a check triggers an alert. We suggest one of these choices:
ignore, email support, email DBAs, and panic.

How it works...
The spreadsheet we're making requires only six columns to fit this recipe. Feel free to
include any other relevant information when making your own spreadsheet. In fact,
we suggest that you retain this document in source control for reference purposes and
revisions. Its mere existence can prove beneficial as a necessary compliance
document.

Monitoring Chapter 6

[228]

When we say to list every piece of hardware or software under the Monitor column,
we expect a few to be forgotten. Part of this step is a mental filter; if we can't think of
the resource, it probably isn't important enough to watch. There are limits to this, and
we strongly suggest that you have at least two other objective people to verify that
the list is complete.

For Importance and Frequency, we're really deciding how active this resource is
and its likelihood to fail or require intervention. For example, consider a disk-space
monitor. Usable disk space is a major concern, but it's not likely to grow quickly. We
can safely check disk space every hour or even every day and remain completely
covered.

There is a major caveat here. Servers that make extensive use of
replication slots should closely monitor disk space in case replica
systems become inactive. Under high WAL write volume, this could
quickly exhaust disk resources and becomes a critical alert.

The Warning Level and Critical Level columns are essential to route the
triggered alerts. A level of warning means a resource may need someone to double-
check its status or acknowledge a problem for later review. If a resource reaches a
critical status, every person interested in the server should be alerted immediately.

Mind the signal-to-noise ratio. Critical alerts should really only
trigger under circumstances that require immediate and concerted
attention. If this is not the case, the threshold is likely too low. Alerts
that become too noisy are eventually ignored. Don't fall into this
trap!

Finally, the monitoring software needs to know what action to take if an alert is
triggered. If we ever choose ignore, we should simply disable that particular alert
entirely. On the other hand, the support staff can usually solve simple resource
problems or forward the alert to a DBA. At other times, we want the DBA to know
immediately due to the importance or complexity of the hardware or software being
monitored. As a last resort, the alert can merely panic and alert everyone in every
contact list in the hope that at least one person is available to address the issue.

In the end, the first few lines of our spreadsheet may look something like this:

Monitoring Chapter 6

[229]

There's more...
If we have access to a collaborative spreadsheet tool such as Google Docs or an
internal wiki, we should maintain this information there. Not only does this act as a
central resource, but it ensures that all monitors have a logical reason to exist and
have a predetermined escalation path. When problems arise, any time spent on
deciding what to do or who to inform only serves to increase the overall amount of
risk.

In the rare instance that management or business interests question our system
monitoring policies, we have an immediate answer. As DBAs, we want our company
to know that the database is in good hands, and a strict monitoring policy helps to
accomplish this.

Installing and configuring Nagios
Nagios is a well-known monitoring tool. We won't make any claims that it is the best
or most suitable tool for watching a highly available PostgreSQL installation.
However, the community is large, the functionality is extensive and established, and
interoperability with other tools and libraries is high. It was also one of the first to
attain prominence and, as such, is a good way to learn how most monitoring systems
function.

As an unfortunate consequence, the amount of installation prerequisites is rather
lengthy. To get Nagios working properly, we need an HTTP server, Perl, and a mail
daemon. Some plugins require PHP, while others need MySQL, SNMP (short for
Simple Network Management Protocol) or any number of esoteric utilities and
acronyms. There might be DBAs who also have strong skills as webmasters, but we
can't depend on that. Getting Nagios installed with all of its foundation services is
very complex, so we don't recommend that you do so.

Monitoring Chapter 6

[230]

Due to its history, the likelihood that Nagios is available on major Linux distributions
is very high. Installing Nagios through the distribution will handle most, if not all,
configuration and interoperability concerns. While an installation of this type only
has minimal settings enabled and only monitors the monitoring server itself, it's a
step in the right direction.

This recipe will focus on using distribution packaging tools such as yum or apt to
install and configure a basic Nagios setup.

Getting ready
Red Hat-derived systems such as Fedora, RHEL, and CentOS have a prerequisite
package that is not part of the included distribution repositories. To install Nagios, we
need to add the Extra Packages for Enterprise Linux (EPEL) library. Red Hat systems
can do this by obtaining the most recent EPEL package for their OS versions and
architectures from https://fedoraproject.org/wiki/EPEL.

Look for the package file that begins with epel-release and download it to the
monitoring server. Once the package is downloaded, it can be installed with this
command as a root-level user:

sudo rpm -ivh epel-release-*.rpm

How to do it...
Follow these steps to install and configure Nagios on a Debian, Mint, or Ubuntu
monitoring server:

Execute these commands as a root-level user to install Nagios and some1.
useful plugins:

sudo apt update
sudo apt install nagios4 nagios-nrpe-plugin

Set the nagiosadmin password by executing this command as a root-level2.
user:

sudo htdigest -c /etc/nagios4/htdigest.users Nagios4
nagiosadmin

https://fedoraproject.org/wiki/EPEL

Monitoring Chapter 6

[231]

Modify the /etc/nagios4/apache2.conf file and comment out the3.
following lines:

Require ip ::1/128 [ignore the rest here]
<Files "cmd.cgi">
</Files>

Modify /etc/nagios4/cgi.cfg and set the following attribute:4.

use_authentication=1

Enable Nagios within Apache with this command:5.

ln -s /etc/nagios4/apache2.conf \
 /etc/apache2/sites-enabled/010-nagios.conf

Activate all necessary modules within Apache:6.

sudo a2enmod auth_digest authz_groupfile

Restart Apache with this command:7.

sudo systemctl restart apache2

Make the ping utility usable by Nagios:8.

sudo chmod u+s /bin/ping

Follow these steps to install Nagios on a Red Hat, Fedora, CentOS, and Scientific
Linux monitoring server:

If it exists, open the /etc/selinux/config file and change the SELINUX1.
parameter to match the following:

SELINUX=permissive

Execute the following command as a root-level user and ignore any errors:2.

sudo setenforce 0

Execute this command as a root-level user to install Nagios:3.

sudo yum install nagios nagios-plugins-all nagios-plugins-nrpe

Set the nagiosadmin password by executing this command as a root-level4.
user:

htpasswd -c /etc/nagios/passwd nagiosadmin

Monitoring Chapter 6

[232]

Execute these commands as a root-level user to start Nagios on system5.
boot:

sudo systemctl enable nagios
sudo systemctl enable httpd

Execute these commands as a root-level user to start Nagios:6.

sudo systemctl start httpd
sudo systemctl start nagios

Make the ping utility usable by Nagios:7.

sudo chmod u+s /usr/bin/ping

How it works...
Red Hat-based distributions focus primarily on system stability and lack many third-
party utilities and daemons. Luckily, this is not a concern for us as groups exist to
rectify this situation. One such group maintains EPEL, which we can exploit to
simplify the process of installing Nagios.

Debian-based servers, for better or worse, are not so strict. Though they are often just
as stable, the package repository is much more extensive. Hence, we can install
Nagios with one invocation of apt. When installing the nagios4 package, all of the
necessary prerequisites are retrieved and installed as well. Unlike previous versions,
however, authentication is not enabled by default so we must execute a few steps to
manage that.

First, we actually create a password for the nagiosadmin user with the htdigest
utility. Then, we must remove several lines from apache2.conf, which enable
authentication only under limited circumstances. Finally, we modify cgi.cfg and
explicitly enable authentication by setting use_authentication to 1.

Once we've done this, we need to tell Apache that it should serve the Nagios web
management site. This is as simple as creating a symbolic link to the Apache sites-
enabled directory where it looks for site configuration files. Afterward, we enable all
modules within Apache that Nagios may use by calling the a2enmod utility. Finally,
we simply restart Apache with systemctl to commit all of these changes.

Monitoring Chapter 6

[233]

Installing the nagios package on Red Hat-based systems is somewhat more
complicated. RHEL servers will often enable SELinux by default for the sake of
security. We choose to set SELinux in permissive mode so that it warns us of potential
security problems but still allows basic functionality. Nagios makes use of external
servers that SELinux would otherwise block. Using the setenforce utility, we also
manually switch to permissive mode without rebooting the server. Due to our
modification of /etc/selinux/config, future server reboots will leave SELinux in
permissive mode.

With SELinux out of the way, we can install Nagios with yum, which should resolve
and install any prerequisites for us. Unlike the Debian-based install, it will not
automatically prompt us for a password for the nagiosadmin user. Hence, we must
use the htpasswd utility to create one. To do so, we use the -c parameter to set the
location of the password file we want to modify. Then, we set the second parameter
to nagiosadmin as that's the name of the user for whom we are creating a password.

Next, we need to configure Nagios to start when the server starts. Modern Red Hat-
based systems and Debian derivatives all use systemd for service management, so we
use that to enable and start necessary HTTP and Nagios daemons.

And finally, since Nagios executes as a non-privileged system user, we need to
modify the ping utility with chmod so it runs as the user who owns it. This means
ping will execute as if launched by the root user. We used a quick-and-dirty
approach, and there are generally better methods by using group memberships, but
this should be OK for demonstration purposes.

There's more...
We know that Nagios is running by accessing its HTTP location. Provided we know
the name or IP address of the monitor server, we can access Nagios via a web
browser. Assuming that 10.0.30.51 is the IP of the server we're using to monitor
PostgreSQL, the web interface would exist here on Red Hat systems:

http://10.0.30.51/nagios

Or it would exist here for Debian-based systems:

http://10.0.30.51/nagios4

Monitoring Chapter 6

[234]

Our default Nagios dashboard should resemble the following screenshot:

See also
As we mentioned earlier, installing Nagios is not easy due to all of the other resources
it depends on. Please refer to the following links to learn more about installing and
configuring Nagios. We've also included a link to a comparison of various monitoring
tools in case you want to try one of the Nagios alternatives:

Nagios quickstart installation guides:
https://assets.nagios.com/downloads/nagioscore/docs/nagioscore/4/
en/quickstart.html

Nagios Core documentation:
https://assets.nagios.com/downloads/nagioscore/docs/nagioscore/4/
en/toc.html

Configuring Nagios to monitor a database
host
Once Nagios is installed, it will automatically configure a few basic monitors directed
toward its own server. If we click on the Hosts link in the web administration site, we
are presented with this:

https://assets.nagios.com/downloads/nagioscore/docs/nagioscore/4/en/quickstart.html
https://assets.nagios.com/downloads/nagioscore/docs/nagioscore/4/en/quickstart.html
https://assets.nagios.com/downloads/nagioscore/docs/nagioscore/4/en/quickstart.html
https://assets.nagios.com/downloads/nagioscore/docs/nagioscore/4/en/toc.html
https://assets.nagios.com/downloads/nagioscore/docs/nagioscore/4/en/toc.html

Monitoring Chapter 6

[235]

The local server is all that we are currently watching. This is useful to verify that
Nagios is working as intended, but we need to monitor one or more database servers
as well. In this recipe, we will learn how to watch external servers. By the end, we
should see at least one more server listed by Nagios.

Getting ready
Initially, Nagios can only monitor remote servers by checking exposed services such
as HTTP, FTP, or PostgreSQL. To check items such as CPU, RAM, or disk space, we
need to rely on Nagios Remote Plugin Executor (NRPE) to forward system
information to the monitoring server upon request. This means that NRPE must be
installed on any server we want to monitor, including our PostgreSQL servers.

To install this on Debian-based servers, use the following command:

sudo apt-get install nagios-nrpe-server

Red Hat derivatives will need to use this command:

sudo yum install nrpe

Next, open /etc/nagios/nrpe.cfg and change the allowed_hosts setting to
include the IP address or hostname of the monitor server. If 10.0.30.51 is the
monitor server, it should look like this:

allowed_hosts=10.0.30.51

After this change is made, we must restart the NRPE service itself on Debian systems:

sudo systemctl restart nagios-nrpe-server

Red Hat derivatives will need to enable and start the service:

sudo systemctl enable nrpe
sudo systemctl start nrpe

Monitoring Chapter 6

[236]

How to do it...
Follow these steps on the monitoring system to watch the 10.0.30.1 server, which is
the first node of our PostgreSQL cluster:

Use the following directory for Debian-based systems:1.

/etc/nagios4

Use this directory for Red Hat derivatives:2.

/etc/nagios

As a root-level user, create a file named conf.d/db_conf.cfg in the3.
preceding path. It may be necessary to create the conf.d directory itself on
some systems.
Make sure the following line appears in the nagios.cfg file on Debian-4.
based systems:

cfg_dir=/etc/nagios4/conf.d

Otherwise, make sure this line appears in nagios.cfg on Red Hat-based4.
systems:

cfg_dir=/etc/nagios/conf.d

In the db_conf.cfg file, define a command entry by adding this text:5.

define command {
 command_name check_nrpe_1arg
 command_line $USER1$/check_nrpe -H $HOSTADDRESS$ -c $ARG1$
}

In the db_conf.cfg file, define a hostgroup entry by adding this text:6.

define hostgroup {
 hostgroup_name pg-servers
 alias PostgreSQL Servers
}

In the db_conf.cfg file, define a host entry by adding this text:7.

define host {
 use generic-host
 host_name pg-1
 alias PostgreSQL Node 1
 address 10.0.30.1

Monitoring Chapter 6

[237]

 hostgroups pg-servers
 max_check_attempts 10
 check_command check-host-alive
}

In the db_conf.cfg file, define a service entry by adding this text:8.

define service {
 use generic-service
 hostgroup_name pg-servers
 service_description Current Load
 check_command check_nrpe_1arg!check_load
}

Reload the Nagios configuration files on Debian-based systems:9.

sudo systemctl reload nagios4

Red Hat-based servers should use this command:10.

sudo systemctl reload nagios

How it works...
This recipe has a lot of moving parts, but it merely looks more complicated than it
really is. We begin by finding the directory where supplementary configuration files
are stored. Once this is located, we can create an entry to watch our PostgreSQL
servers. To do this, we create a file named db_conf.cfg.

You don't have to use db_conf.cfg. Nagios should recognize any
file that ends with a .cfg extension. If you'd rather separate hosts,
host groups, and services, feel free to do so.

The order of the elements that we are creating does not matter; Nagios has a very
advanced parser that checks configuration entries all at once. Still, it's more logical to
define things before they're used, so we've elected to begin with the check command
we'll be using in this example.

Once that's defined, we define the PostgreSQL hostgroup so that we have a way of
grouping all of our database servers together. This enables us to create dozens or
hundreds of PostgreSQL servers and apply the same checks to all of them.

Monitoring Chapter 6

[238]

The next entry we create in our db_conf.cfg file tells Nagios that this is a host it
should monitor. Older versions of Nagios would implicitly ping hosts, but now we
must explicitly request the method of host check. In our case, the predefined check-
host-alive operation is fine. Nagios will ping this server to ensure that it's online,
and this will be the only check until we configure more.

The meaning of the use line may not be obvious. Nagios has several requirements to
define a configuration entry. Instead of copying the same settings over and over
again, we can create a template and then use it later. In this case, Nagios comes
preconfigured with several basic templates, and we're making use of one for our
newly created hosts.

The next entry we create in db_conf.cfg is a service we want to check. In this case,
we are going to take advantage of NRPE to obtain the current system load. By setting
hostgroup-name to pg-servers, Nagios will check the system load on all
PostgreSQL servers; there's no need to create a service entry for each host.

check-command is probably somewhat opaque as well. Every service requires a
command to execute. Commands are defined like other Nagios objects and must be
named for reference. This is why we defined the check_nrpe_1arg command before
using it here. Nagios separates commands from their parameters with an exclamation
point. Therefore, in this example, we're invoking NRPE to check the system load on
the remote server.

Finally, we tell Nagios to reload its configuration files. This causes Nagios to reread
all configuration files, including the one we created. If everything goes well, clicking
on Host Groups in the web interface should produce this summary:

If we don't see this, it may be necessary to manually upgrade the NRPE service on
each remote host. Nagios, backward compatibility in this area could stand to be
improved, and Debian monitoring systems are especially prone to experience
complications when communicating with older versions of NRPE.

Monitoring Chapter 6

[239]

There's more...
Wait a minute! We never added a check for PostgreSQL itself! As we can't allow
PostgreSQL to remain unmonitored, create a user on our PostgreSQL server with the
following command:

CREATE USER nagios;

Then, make an entry in the pg_hba.conf file to allow trusted checks from the
monitoring server with this line:

host template1 nagios 10.0.30.51/32 trust

Then, reload the PostgreSQL configuration with this command:

pg_ctl -D $PGDATA reload

Next, add a service entry to our db_conf.cfg file like this:

define service {
 use generic-service
 hostgroup_name pg-servers
 service_description PostgreSQL Status
 check_command check_pgsql
}

Red Hat systems or others that do not supply check_pgsql as a standard definition
may also need the command itself defined like this:

define command{
 command_name check_pgsql
 command_line $USER1$/check_pgsql -H '$HOSTADDRESS$' '$ARG1$'
}

After reloading our Nagios configuration files, click on the Services link in the web
interface. It should now list two monitored services for the pg-1 server, as seen here:

Monitoring Chapter 6

[240]

See also
Nagios configuration objects are fairly complicated. To use them properly, we
strongly suggest that you browse the Nagios object manual located at
https://assets.nagios.com/downloads/nagioscore/docs/nagioscore/4/en/object
definitions.html

Enhancing Nagios with Check_MK
While Nagios is well established in the system administration community, it retains a
few shortcomings due to its long legacy. This is not to suggest that Nagios is a bad
platform! However, we can make it better for our own uses and for other
administrators that help us to monitor our database clusters.

Check_MK is a popular extension to Nagios that provides a better interface, more
built-in monitors, and—for those interested—a GUI management system. This
management GUI is actually one of the main things we will cover in this recipe as it
has some idiosyncrasies of its own. This recipe will present the basics of Check_MK
and encourage you to experiment with some of its more powerful features.

Getting ready
To complete this recipe, we will need a configured Nagios installation. Please follow
the steps in the Installing and configuring Nagios recipe. However, either skip the
Configuring Nagios to monitor a database host recipe or follow these two steps:

Delete the db_conf.cfg file that we created for our database host.1.
Reload the nagios service.2.

We also need to install and configure the base packages. The creators of Check_MK
published a comprehensive set of instructions on how to download the correct system
packages for your distribution, as well as basic installation steps. They also provide
follow-up activation procedures. This should be available at the following URL:
https://checkmk.com/cms_introduction_packages.html.

For reference, when it comes to the omd create step, we chose to name our OMD
server pgmon. You do not need to do this to follow along, but do consider naming it
something general for the entire PostgreSQL cluster if Check_MK isn't already
maintained by another server management department.

https://assets.nagios.com/downloads/nagioscore/docs/nagioscore/4/en/objectdefinitions.html
https://assets.nagios.com/downloads/nagioscore/docs/nagioscore/4/en/objectdefinitions.html
https://assets.nagios.com/downloads/nagioscore/docs/nagioscore/4/en/objectdefinitions.html
https://checkmk.com/cms_introduction_packages.html
https://checkmk.com/cms_introduction_packages.html

Monitoring Chapter 6

[241]

Remember to download and install the Raw edition of Check_MK,
unless you own a subscription to their Enterprise edition.

How to do it...
For this recipe, our database has a local hostname of pg-1, and the monitor server is
named monitor-server. Start by following these steps to set up pg-1 with a
Check_MK resource agent:

Click on Monitoring Agents in the WATO - Configuration segment of the1.
left sidebar.
Download the appropriate agent that matches the operating system being2.
monitored. Assuming pg-1 is a Debian system, we might download
check-mk-agent_1.6.0p5-1_all.deb.
Install the agent via yum, apt, or any appropriate package manager.3.
Select and download any additional agent plugins you'd like to monitor.4.
We recommend the mk_postgres plugin.
Install any chosen plugins into the following folder on pg-1:5.

/usr/lib/check_mk_agent/plugins

Mark any downloaded plugins as executable so Check_MK can use them:6.

sudo chmod a+x /usr/lib/check_mk_agent/plugins

Follow these steps to create and configure the host and service monitors for our
PostgreSQL server:

Navigate to the monitor server in a web browser, to the pgmon URL (or the1.
name you chose during omd create): http://monitor-server/pgmon.
Enter cmkadmin as the username and use the password generated during2.
omd create.
Click on Hosts in the WATO - Configuration segment of the left sidebar.3.
Click on the Create new folder icon.4.
Name the folder PostgreSQL Servers, and click on Save & Finish.5.
Click on the PostgreSQL Servers folder.6.
Click on the Create new host icon.7.

Monitoring Chapter 6

[242]

Set the Hostname to pg-1 and the Alias to PostgreSQL Node 1, and click8.
on Save & Finish.
Click on the highlighted service discovery link in the information box9.
above the list of hosts. It will then begin scanning pg-1 for services.
Click on Fix all missing / vanished after the scan is complete.10.
Click on the orange icon that says there are Changes.11.
Click on Activate Affected.12.
Wait for five minutes, then click on All services in the Views-Services13.
segment of the left sidebar.

How it works...
While we could have included instructions on installing Check_MK, they are actually
very long and would have required several pages of explanation. The official site does
an admirable job presenting the installation process, so why duplicate it? The
abundant documentation is a great reason to use it.

Once we log in, we see a very large and somewhat imposing interface. However, for
now, we are only interested in the left sidebar. What we're looking for is the Web
Administration Tool (WATO) section, as seen here:

It's a good idea to quickly explain how to install Check_MK resource agents before
we start monitoring anything. This will need to be done on any system that
Check_MK is expected to monitor. Thankfully, it's very simple and Check-MK itself
even provides the agents and any related plugins directly within the Monitoring
Agents menu option.

All we must do is download an agent for the operating system of the server we're
monitoring. Users of Red Hat-based or Debian-derived distributions can merely
download and install the package and have a working resource agent. Installing
plugins is equally simplified since we only need to download any plugins we want
and deposit them into the /usr/lib/check_mk_agent/plugins folder. After a
quick chmod command to make plugins usable, the agent is fully configured.

Monitoring Chapter 6

[243]

Otherwise, the interface for managing hosts is actually very friendly to new users.
Once we click on Hosts, we can either create a new host right away or create a folder
first. We recommend that you always group the servers in specific folders to make
bulk actions easier. Hence, we click on this enticing icon:

Once we name and save the folder, we can enter the folder and create the new host.
After creating the host and saving its configuration, we are presented with this notice:

When Check_MK inventories a server, it attempts to automatically detect the services
and resources it can monitor. Nagios definitely can't do this! Once we activate all of
the changes we made, we need to wait for a minute or two for Check_MK to add the
new checks and collect the status of each. After some time has elapsed, we can click
on All services to see our newly monitored PostgreSQL server:

On our particular test server, Check_MK found about 25 services it knew how to
monitor, including those detected by the optional mk_postgres plugin. We don't
have to select all of them of course, but adding the same services to Nagios would
have been much more difficult.

Monitoring Chapter 6

[244]

There's more...
Check_MK doesn't just provide a handy web interface, but it actually has a very
advanced command-line utility. For instance, if we stopped the recipe after creating
the folder and server and then activated the changes, we could have performed the
server inventory with these two commands:

su - pgmon
cmk -I pg-1
cmk -O

The first command checks the pg-1 server for new services. The second saves the
services it found and reloads so they show up in our All services menu option. The
command-line tool makes a great companion to the web interface when handling
several server clusters.

See also
We really like the Check_MK documentation. It's comprehensive, verbose, and full of
examples. Check some of the following links for more information:

Getting Started with Monitoring: https:/ /checkmk. com/ cms_check_ mk_
getting_ started. html

Check_MK on the command line: https:/ / checkmk. com/ cms_ cmk_
commandline. html

Catalog of Check Plug-ins:
https://checkmk.com/cms_check_plugins_catalog.html

Getting to know check_postgres
Our friends at Bucardo created a useful, general-purpose PostgreSQL checking utility.
The check_postgres tool currently has an inventory of more than 50 checks to
monitor PostgreSQL servers.

While this is an exceptionally useful tool, integrating it into our overall stack is
necessary to fully take advantage of its capabilities. This recipe will cover the basic
usage and integration with Nagios for easy PostgreSQL monitoring of large database
clusters.

https://checkmk.com/cms_check_mk_getting_started.html
https://checkmk.com/cms_check_mk_getting_started.html
https://checkmk.com/cms_check_mk_getting_started.html
https://checkmk.com/cms_check_mk_getting_started.html
https://checkmk.com/cms_check_mk_getting_started.html
https://checkmk.com/cms_check_mk_getting_started.html
https://checkmk.com/cms_check_mk_getting_started.html
https://checkmk.com/cms_check_mk_getting_started.html
https://checkmk.com/cms_check_mk_getting_started.html
https://checkmk.com/cms_check_mk_getting_started.html
https://checkmk.com/cms_check_mk_getting_started.html
https://checkmk.com/cms_check_mk_getting_started.html
https://checkmk.com/cms_check_mk_getting_started.html
https://checkmk.com/cms_check_mk_getting_started.html
https://checkmk.com/cms_check_mk_getting_started.html
https://checkmk.com/cms_check_mk_getting_started.html
https://checkmk.com/cms_check_mk_getting_started.html
https://checkmk.com/cms_check_mk_getting_started.html
https://checkmk.com/cms_cmk_commandline.html
https://checkmk.com/cms_cmk_commandline.html
https://checkmk.com/cms_cmk_commandline.html
https://checkmk.com/cms_cmk_commandline.html
https://checkmk.com/cms_cmk_commandline.html
https://checkmk.com/cms_cmk_commandline.html
https://checkmk.com/cms_cmk_commandline.html
https://checkmk.com/cms_cmk_commandline.html
https://checkmk.com/cms_cmk_commandline.html
https://checkmk.com/cms_cmk_commandline.html
https://checkmk.com/cms_cmk_commandline.html
https://checkmk.com/cms_cmk_commandline.html
https://checkmk.com/cms_cmk_commandline.html
https://checkmk.com/cms_cmk_commandline.html
https://checkmk.com/cms_check_plugins_catalog.html
https://checkmk.com/cms_check_plugins_catalog.html

Monitoring Chapter 6

[245]

Getting ready
Though some Linux distributions package the check_postgres utility for easy
installation, the versions that are included are usually quite antiquated. We
recommend that you obtain a copy of the latest check_postgres source code. At the
time of this book revision, the latest version is 2.24.0, released on November 5, 2018.
Obtain the latest copy of the check_postgres source code
from https://bucardo.org/check_postgres/.

As we want to use Nagios to execute the check_postgres, please follow the steps in
the Configuring Nagios to monitor a database host recipe to produce a working
installation with a basic database host configuration. We will be making further
modifications to the db_conf.cfg file introduced there.

The check_postgres program also needs PostgreSQL command-line tools to invoke
checks. So, we should at least install minimal packages on the monitoring server.
Assuming we've already enabled the PostgreSQL PGDG repository, Debian systems
can install them this way:

sudo apt install postgresql-client-12

Red Hat-derived distributions can use this:

sudo yum install postgresql12

How to do it...
Install check_postgres by following these steps:

Use these commands to extract the check_postgres source and enter the1.
source directory:

tar -xf check_postgres-2.24.0.tar.gz
cd check_postgres-2.24.0/

Next, build and install the actual software with these commands:2.

perl Makefile.PL
make
sudo make install

Repeat these steps on any servers where you wish to run3.
check_postgres. It's a good idea to install it on any PostgreSQL servers in
addition to the monitoring system.

https://bucardo.org/check_postgres/

Monitoring Chapter 6

[246]

As the postgres user on a PostgreSQL server, try using these commands to obtain
database information:

Check the state of the database size with this command:1.

check_postgres.pl --action=database_size -w 100MB -c 200MB

Create a large table by executing this SQL as the postgres user in the2.
postgres database:

CREATE TABLE bigtable AS
SELECT generate_series(1,1000000) AS vals;

Cause a critical alert by executing this command:3.

check_postgres.pl --action=table_size -w 10MB -c 20MB

Integrate check_postgres.pl into Nagios by following these steps:

Create a command section in the db_conf.cfg file with this content:1.

define command {
 command_name check_pg
 command_line /usr/local/bin/check_postgres.pl -H
$HOSTADDRESS$ --action $ARG1$ -w $ARG2$ -c $ARG3$
}

Create a service section in the db_conf.cfg file that looks like this:2.

define service {
 use generic-service
 hostgroup_name pg-servers
 service_description PostgreSQL Database Size
 check_command check_pg!database_size!100MB!200MB
}

Reload the Nagios configuration files on Debian-based systems:3.

sudo systemctl reload nagios4

Red Hat-based servers should use this command:4.

sudo systemctl reload nagios

Monitoring Chapter 6

[247]

How it works...
This recipe comes in three parts because we're doing three distinctly different things.
Installing check_postgres itself is actually very easy. The entirety of the utility is
contained within a single file, so we can simply move check_postgres.pl to a
suitable location in our PATH environment setting. However, we suggest that you use
the standard installation process as we did.

While executing sudo make install, look for this line near the
end: Installing /usr/local/bin/check_postgres.pl.

This will indicate where the check_postgres.pl script is located.
Ours was installed in /usr/local/bin, but yours may be
elsewhere.

Next, we try a couple of basic commands to ensure that check_postgres works. The
first command makes use of the database_size action and alerts us if our database
is larger than the warning (-w) or critical (-c) thresholds that we set. The table_size
action performs a similar task but applies the thresholds to every table in the
database. By default, check_postgres connects to the postgres database, so we
placed a large table there to trigger a critical alert. The output is very large as it lists
every table, but it should begin like this:

POSTGRES_TABLE_SIZE CRITICAL: DB "postgres" (host:pgha1) largest table
is "public.bigtable": 35 MB

As we have verified that the check works, we want Nagios to invoke it instead. This
removes the need to create ad hoc invocations and allows us to search for large tables
on all of the database servers that Nagios is monitoring.

We will start the process by adding a command to Nagios in the db_conf.cfg file
we created for our single test server. Remember where check_postgres.pl was
installed because we need to specify the full path to the script just in case it's not part
of the standard PATH environment. We will set the first argument to the action we
want to perform and reserve the second and third for the warning and critical levels
respectively. By making our check_pg command so generic, we can use it for every
action that check_postgres supports. Otherwise, we would have needed a separate
command section for each check.

Monitoring Chapter 6

[248]

Then, we add a service check. We will need to add one of these for each
check_postgres action that we want to activate. In our example, we only enabled
the database_size check and applied the same thresholds that we used when
manually invoking the script. By reloading the Nagios configuration files, it will
incorporate the new PostgreSQL database size check and apply it to any server that
we have in the pg-servers group.

There's more...
Though the documentation explains all of the actions available for check_postgres,
it may be inconvenient to refer to it regularly. The check_postgres.pl script
accepts the usual --help parameter, but it also has a more notable ability. If we
specify the --man parameter instead, check_postgres will actually display the
entire manual. This is similar to investigating the check_postgres man page like
this:

man check_postgres

Sometimes, man pages don't get installed properly or are not available for one reason
or another. The --man parameter should always work on any system that also
contains the perl documentation package.

See also
As check_postgres is developed by Bucardo, their site contains various resources
related to its operation. We recommend these links for more information:

The check_postgres site: https://bucardo.org/check_postgres/
The check_postgres documentation:
https://bucardo.org/check_postgres/check_postgres.pl.html

https://bucardo.org/check_postgres/
https://bucardo.org/check_postgres/check_postgres.pl.html
https://bucardo.org/check_postgres/check_postgres.pl.html

Monitoring Chapter 6

[249]

Installing and configuring Telegraf
When monitoring multiple clusters of servers, we need a data collection method that's
both scalable and configurable. The Telegraf daemon is a scalable statistics gathering
service, perfect for large clusters as it operates in conjunction with InfluxDB in a
client-server model. A common Telegraf + InfluxDB cluster may look like this, with
Telegraf running on every PostgreSQL server:

While Telegraf works best with InfluxDB, it's not required to start collecting
information from the server and PostgreSQL itself. This recipe will explain how to
install and configure Telegraf so we have basic performance monitoring at our
fingertips.

Getting ready
We must prepare by obtaining a copy of the latest Telegraf package as distributed by
influxdata. At the time of this edition, the latest version is 1.12.3, released on October
7, 2019. Download the latest copy
from https://portal.influxdata.com/downloads/.

Later, we simply need a root-capable user to install Telegraf as a system-wide service.
Use apt or yum (or any relevant package management system) to install the package
on any PostgreSQL server we want to monitor.

How to do it...
Assume that we have a PostgreSQL server named pgha1. Follow these steps on the
server to enable basic monitoring:

Create a file named pgha1.conf in /etc/telegraf/telegraf.d and use1.
the following contents:

[[inputs.postgresql]]
 address = "host=pgha1 user=postgres"

https://portal.influxdata.com/downloads/

Monitoring Chapter 6

[250]

 outputaddress = "pgha1"
 max_lifetime = "0s"
 databases = ["pgbench"]

Modify the /etc/telegraf/telegraf.conf file and add these two lines2.
near the end:

[[outputs.file]]
files = ["/tmp/metrics.out"]

Then, restart the telegraf service:3.

sudo systemctl restart telegraf

Watch the /tmp/metrics.out file to see what Telegraf is doing:4.

tail -f /tmp/metrics.out | grep postgres

How it works...
Believe it or not, the first step is to create a configuration file for the local PostgreSQL
installation so we can monitor every database that looks interesting. For now, we'll
focus on a previously created pgbench database because it's easy to simulate
database activity here.

There are really only four configuration elements we must actually set. We begin with
address, which is a standard PostgreSQL connection string, and we've specified our
pgha1 server. Related to this is outputaddress, which acts as a label in any
monitoring display and lets us identify the system specifically instead of using a
default generated name.

Then, we set max_lifetime to 0s, which indicates we want Telegraf to remain
connected to PostgreSQL and simply submit queries after every waiting interval. If
Telegraf loses the connection, it will simply re-establish it and continue operations.

And finally, we specify the databases where we actually want metrics. This is an
array and we've limited it to pgbench as it's the only database currently in our
installation. If there are more databases to monitor, we would add them here.

Monitoring Chapter 6

[251]

What we love about Telegraf is that it exists purely to poll other services, commands,
or systems for performance data and then send it elsewhere for processing.
Unfortunately for us, it's not so obvious what Telegraf is doing without some kind of
way to examine what it's monitoring. So, to prove Telegraf is actually doing
something, we enable the file output plugin so all collected metrics are written to
/tmp/metrics.out.

We probably wouldn't write to a disk file on a real production system, but it's great
for demonstration purposes. Once we've restarted Telegraf itself, it should
immediately start writing to the metric file we specified. We can use a basic tail
command to watch it poll PostgreSQL for status information at the default interval of
10 seconds.

See also
Telegraf is designed to communicate with many popular data aggregation,
monitoring, and visualization systems. There are also copious plugins available for
different methods of collecting data to send. As such, it has extensive documentation
on configuring these. Check out this URL for more: https:/ /docs. influxdata. com/
telegraf/

Adding a custom PostgreSQL monitor to
Telegraf
The primary reason we chose to install Telegraf stems from its ability to monitor
arbitrary data points. Due to the existence of a PostgreSQL plugin for Telegraf
capable of handling arbitrary SQL, we can actually collect data from the database
itself. Monitoring PostgreSQL becomes as easy as writing a query!

Even though the Installing and configuring Telegraf recipe already used the PostgreSQL
plugin, that particular extension only offers basic metrics. This recipe is going to
introduce and explore the extensible PostgreSQL plugin instead.

We will include a few sample queries we developed for monitoring PostgreSQL
servers through this recipe. Feel free to develop your own as we explain how to
further leverage the Telegraf PostgreSQL module.

https://docs.influxdata.com/telegraf/
https://docs.influxdata.com/telegraf/
https://docs.influxdata.com/telegraf/
https://docs.influxdata.com/telegraf/
https://docs.influxdata.com/telegraf/
https://docs.influxdata.com/telegraf/
https://docs.influxdata.com/telegraf/
https://docs.influxdata.com/telegraf/
https://docs.influxdata.com/telegraf/
https://docs.influxdata.com/telegraf/
https://docs.influxdata.com/telegraf/

Monitoring Chapter 6

[252]

Getting ready
As the Telegraf PostgreSQL module needs to log in to a database within the cluster to
gather its statistics, we should create a user specifically for this purpose. Execute these
SQL queries to create a user with an appropriate password and all the necessary
permissions to read all statistics:

CREATE USER perf_mon WITH PASSWORD 'testpw';
GRANT pg_read_all_stats TO perf_mon;

In addition, follow the instructions in the Installing and configuring Telegraf recipe so
that there is a fully functional Telegraf data collector.

How to do it...
Assume that we have a PostgreSQL server named pgha1. Follow these steps on the
server to enable more enhanced metrics:

Create or modify a file named pgha1.conf in1.
/etc/telegraf/telegraf.d.
Start with the header section for the extensible metrics:2.

[[inputs.postgresql_extensible]]
 address = "host=pgha1 user=perf_mon dbname=postgres"
 outputaddress = "pgha1"
 max_lifetime = "0s"
 databases = ["pgbench"]

Continue by defining a query to monitor replication slot lag:3.

[[inputs.postgresql_extensible.query]]
 sqlquery="""
 SELECT slot_name,
 pg_wal_lsn_diff(
 pg_current_wal_insert_lsn(),
 restart_lsn
)::BIGINT as restart_lsn_lag,
 pg_wal_lsn_diff(
 pg_current_wal_insert_lsn(),
 confirmed_flush_lsn
)::BIGINT as confirmed_flush_lag
 FROM pg_replication_slots
 """
 version=940
 withdbname=false

Monitoring Chapter 6

[253]

 tagvalue="slot_name"
 measurement="postgresql.slot_lag"

Next, add a query to retrieve XID wraparound information:4.

[[inputs.postgresql_extensible.query]]
 sqlquery="""
 SELECT age(datfrozenxid) AS xid_age
 FROM pg_catalog.pg_database
 WHERE datname
 """
 version=900
 withdbname=true
 measurement="postgresql.xid"

Then, add a query to view session activity statistics:5.

[[inputs.postgresql_extensible.query]]
 sqlquery="""
 SELECT count(*) AS total,
 count(*) FILTER (
 WHERE state
 LIKE 'idle in%') AS trans_idle,
 count(*) FILTER (
 WHERE state = 'active') AS active,
 count(*) FILTER (
 WHERE wait_event
 IS NOT NULL) AS waiting,
 count(*) FILTER (
 WHERE state = 'active' AND
 now() - state_change >
 INTERVAL '1s') AS slow
 FROM pg_stat_activity;
 """
 version=960
 withdbname=false
 measurement="postgresql.sessions"

Finally, restart the telegraf service:6.

sudo systemctl restart telegraf

Watch the /tmp/metrics.out file to see what Telegraf is doing:7.

tail -f /tmp/metrics.out | grep xid

Monitoring Chapter 6

[254]

How it works...
If we already applied the Installing and configuring Telegraf recipe, the first portion of
the configuration probably looks familiar. We define a connection string and set
address so our perf_mon user can connect and retrieve metrics. As before, we use
outputaddress to provide a convenient system alias so we can find these statistics
later. We also set max_lifetime to 0s for persistent connections and databases to
pgbench so we can focus on our primary database.

But that was something we already knew how to do. The exciting part lies within the
inputs.postgresql_extensible.query sections. Telegraf will execute each of the
queries we define every 10 seconds by default so we'll have a continuous stream of
information. We already know how to write queries, so let's explore the other
parameters for each query.

The first is the version specification. If we examine each query, we might see that
they reflect a different version number every time. This is for compatibility purposes
to prevent Telegraf from executing a query on a version of PostgreSQL that doesn't
support it. It also means we can define the same query multiple times with different
syntax if necessary, if we want to support multiple PostgreSQL versions.

In our case, we restricted each query to match system catalog columns or supported
SQL syntax. Just remember that Telegraf expects versions to be reflected as 960
instead of 9.6.0 or it may not execute the queries at all.

Next comes the withdbname attribute, which is a way to restrict results to each
database we specified in the databases parameter. All we need to do is assume
Telegraf will append one or more database names at the end of the query. If we set
this value to true, it will transform WHERE dbname into WHERE dbname=pgbench,
for instance.

The tagvalue field can be misleading. It essentially means we should specify any
columns that act as labels rather than metrics. This is why we only set it to
slot_name for the first query for replication slot lag, as the first column specifies the
name of the slot we want to monitor. This allows various monitoring systems to
watch specific replication slots if desired.

Lastly, for each query, we define the name of measurement itself. Certain display
systems for these metrics provide a convenient drill-down system where we can
choose each element as separated by a period. So, for example, if we wanted to view
XID wraparound information, we would first choose pgha1, then postgresql, and
then xid.

Monitoring Chapter 6

[255]

Once we restart the Telegraf service itself, we can watch our previously defined
output in /tmp/metrics.out for some of these values to prove everything is
working properly.

We also want to bring attention to the fact we used ::BIGINT
casting in the second query for slot lag. This is necessary because the
value is interpreted as text by default, which we won't be able to
aggregate later. This is one good reason to check file output, as we
can then ensure integer types show up correctly.

There's more...
The queries we defined earlier should not be considered the only things that should
be monitored. We chose some very important elements, including the following:

Replication lag when using slots can be extremely dangerous. Replication
slots cause PostgreSQL to retain WAL files indefinitely until the
downstream system indicates they are no longer required. In addition to
monitoring disk space, this is important to watch over time because we can
observe when the lag began to increase, how long the value was elevated,
and other long-term activity. This is something Nagios or Check_MK won't
do natively, so it's good to explicitly collect this data.
The next query tracks transaction ID wraparound. PostgreSQL uses a 32-bit
integer in tuple headers to indicate which transaction can see each row.
Due to this limitation, it can only handle up to 2 billion transactions before
cleanup is required. This cleanup is done during each VACUUM and the
background autovacuum process. These both locate overridden rows to
erase or set visible rows to a special value until an update overrides them.
However, if this cleanup is blocked or falls behind, the XID age can climb
until it reaches a maximum value that will cause the database to shut down
to preserve data. It's always important to watch this value in any metric
dashboard available.
Finally, we watch general query activity. In this case, we just do the basics.
Lots of sessions that are idle in a transaction can lead to lock contention or
blocked DDL, so we want that to stay low. We also watch for queries that
have been running for longer than one second, as a sharp increase here
may indicate a resource bottleneck. Waiting is also important to observe
since that's an easy indicator of row contention or a rogue lock.

Monitoring Chapter 6

[256]

However, there is always more to consider. We provided a query for watching slot
lag, but not regular replication lag. Maybe we want to watch database size over time,
the ten largest tables in the database, or the number of rows fetched from disk instead
of shared memory. The PostgreSQL catalog is vast and we can retrieve and format
much of it in a way that would present well in a monitoring dashboard.

We encourage browsing the web for more metrics and including them; information is
power.

See also
We refer to both the Telegraf extensible PostgreSQL plugin and the PostgreSQL
catalogs here. Refer to these resources to learn more:

The Telegraf postgresql_extensible plugin:
https://github.com/influxdata/telegraf/tree/master/plugins/inputs
/postgresql_extensible

PostgreSQL System Catalogs:
https://www.postgresql.org/docs/current/catalogs.html

Installing and configuring InfluxDB
One critical component of a monitoring system is a data collection or aggregation
layer. A very common design here is to use a client-server model so that multiple
independent metric gathering services communicate with a centralized system for
processing and interpretation.

InfluxDB is a time-series database designed specifically for efficiently ingesting
performance metrics from varying sources. One of these just happens to be Telegraf,
which we introduced in previous recipes. A common Telegraf + InfluxDB cluster may
look like this, with InfluxDB running on a single monitoring server, as seen in this
familiar diagram:

https://github.com/influxdata/telegraf/tree/master/plugins/inputs/postgresql_extensible
https://github.com/influxdata/telegraf/tree/master/plugins/inputs/postgresql_extensible
https://github.com/influxdata/telegraf/tree/master/plugins/inputs/postgresql_extensible
https://www.postgresql.org/docs/current/catalogs.html
https://www.postgresql.org/docs/current/catalogs.html

Monitoring Chapter 6

[257]

InfluxDB acts as a data-gathering and centralization repository so data visualization
tools and trend analysis software can produce trend information, graphs, dashboards,
alerts, and other useful elements for server management.

This recipe will explain how to install and configure InfluxDB so we can combine all
of our Telegraf readings in a single location for interpretation.

Getting ready
We must prepare by obtaining a copy of the latest InfluxDB package as distributed by
influxdata. At the time of this edition, the latest version is 1.7.8, released on August
21, 2019. Download the latest copy from
https://portal.influxdata.com/downloads/.

Later, we simply need a root-capable user to install InfluxDB as a system-wide
service. Use apt or yum (or any relevant package management system) to install the
package on any PostgreSQL server we want to monitor.

Don't forget to follow the instructions in the Installing and configuring Telegraf recipe
and the Adding a custom PostgreSQL monitor to Telegraf recipe so that there is a fully
functional Telegraf data collector. The custom PostgreSQL metric data may also be
useful for demonstration purposes.

How to do it...
Assume that we have a monitoring server named pgmon and a PostgreSQL server
named pgha1 on which we installed Telegraf. Follow these steps on the server to
enable basic monitoring:

Install the InfluxDB package downloaded from influxdata on pgmon as1.
recommended by your Linux distribution's packaging system.
Enable and start InfluxDB with systemctl:2.

sudo systemctl enable influxdb
sudo systemctl start influxdb

https://portal.influxdata.com/downloads/

Monitoring Chapter 6

[258]

Find the [[outputs.influxdb]] header in the3.
/etc/telegraf/telegraf.conf file on pgha1 and ensure it looks like
this:

[[outputs.influxdb]]
 urls = ["http://pgmon:8086"]

Then, restart the influxdb service on pgha1:4.

sudo systemctl restart telegraf

Wait about 5-10 minutes to accumulate some data within InfluxDB.5.
Connect to InfluxDB with this command on pgmon:6.

influxdb -database telegraf

Write the following query, and make sure it's all on one line:7.

SELECT * FROM "postgresql.sessions" ORDER BY time DESC LIMIT
5;

How it works...
We don't go into too much detail when installing InfluxDB because influxdata offers
several different types of packages for many operating systems and Linux
distributions. Normally we focus on Debian/Ubuntu and Red Hat derivatives, but in
this case, they made sure to make the software very widely available. It should be
possible to simply install the package we downloaded at the beginning of this recipe
so we can move on.

The true beginning of the recipe is starting InfluxDB itself. Note how we say
starting and not configuring. Believe it or not, the default configuration is fine for
demonstration purposes, and if you later determine you want to increase security,
InfluxDB has excellent documentation for accomplishing that. So, we just need to use
systemctl to first enable and then start the influxdb service, and we're ready to
consume data.

With InfluxDB running on pgmon, we should turn our attention to the pgha1
PostgreSQL server. We should already have Telegraf running there if we applied
those recipes, so all we need to do now is modify the configuration there to send
performance measurements to our pgmon server.

Monitoring Chapter 6

[259]

The default /etc/telegraf/telegraf.conf configuration has most likely already
enabled the output plugin that communicates with InfluxDB. However, the default
operating mode is to send data to the localhost while we want to use pgmon instead.
InfluxDB offers many methods for data transmission, and the easiest of these is
simple HTTP. So all we need to do is add one or more URLs so Telegraf sends data to
the right location.

In this case, we can simply set the urls parameter array to include
http://pgmon:8086, which is the host where our InfluxDB system is running, and
its default port. Since we've modified the telegraf.conf configuration file, we must
also restart Telegraf with systemctl to incorporate our changes.

At this point, it's best to wait a few minutes. The default Telegraf sampling rate is one
reading every ten seconds, so we don't need to wait long. But why not go make a cup
of coffee and relax while InfluxDB accumulates some data?

Connecting to InfluxDB is extremely simple. We simply need to use the influx
command-line tool and specify the database we want to connect to by setting the -
database parameter to telegraf. We should be able to connect immediately
without any further authentication needed. This may seem insecure at first, but
performance metrics are rarely sensitive. If they are, there are options for securing the
InfluxDB database itself.

Note how we didn't actually create the telegraf database within
InfluxDB. The InfluxDB Telegraf output plugin does that
automatically when communicating with InfluxDB through
HTTP—convenient!

Once connected, we can issue queries using a very similar SQL syntax that we, as
PostgreSQL users, may recognize. However, there is one critical difference: newlines
are not allowed unless they're part of the data itself. So, we can't use multi-line
queries. Aside from that, we can view session information quite easily. The query we
used in the instructions should return results that look like this:

Monitoring Chapter 6

[260]

There's more...
Unlike the handy psql command-line tool for PostgreSQL, InfluxDB's influx does
not offer a ready supply of handy shortcuts for finding information about the
database itself. Like MySQL, it uses SHOW syntax. InfluxDB was also designed from
the ground up to track performance measurements. As such, it doesn't actually have
tables but refers to collected data as measurements instead.

Hence, if we want to know what measurements are available for analysis, we can
issue SHOW MEASUREMENTS and receive a list like this:

name: measurements
name

cpu
disk
kernel
mem
postgresql
postgresql.sessions
postgresql.slot_lag
postgresql.xid
processes
swap
system

Notice how all of our PostgreSQL measurements, including the custom ones, are
visible here. If we want to see which fields are available in each measurement, we
would have to use this query:

SHOW FIELD KEYS FROM "postgresql.sessions"

That statement would return something like this based on how we defined that
measurement:

name: postgresql.sessions
fieldKey fieldType
-------- ---------
active integer
slow integer
total integer
trans_idle integer
waiting integer

Monitoring Chapter 6

[261]

It's not likely we'll be exploring InfluxDB this way since we'll be installing a GUI in
subsequent recipes, but it's still fun to see how things work.

See also
Luckily, InfluxDB provides very thorough documentation. They cover everything
from explicit installation instructions, influx syntax, and advanced configuration to
security and supported communication plugins. You can find it all at this URL:
https://docs.influxdata.com/influxdb/v1.7/

Installing and configuring Grafana
When viewing the collected data and statistics regarding our highly available
database, we could simply settle for the raw numbers. They tell a story and include
the precise measurements necessary for making decisions regarding architecture and
incidence response. However, many would argue that this is much easier with graphs
and charts, as they enable the identification of trends.

There are a lot of graphing libraries and tools, but relatively few of them are tailored
to the needs of an agile monitoring team. The developers at Grafana Labs helped fill
this role by contributing Grafana, which is an extremely versatile tool. Grafana makes
visualizing the collected system statistics easy. Better yet, it's extremely easy to install
and use.

This recipe will describe how to obtain and install Grafana and get it ready to receive
data from InfluxDB.

Getting ready
We must prepare by obtaining a copy of the latest Grafana package as distributed by
Grafana Labs. At the time of this edition, the latest version is 6.6.2, released on
February, 2020. Download the latest copy from https:/ /grafana. com/ grafana/
download.

This page also contains instructions for Debian, Ubuntu, Red Hat, and CentOS
operating systems, which essentially recommends using apt or yum to install.

https://docs.influxdata.com/influxdb/v1.7/
https://docs.influxdata.com/influxdb/v1.7/
https://grafana.com/grafana/download
https://grafana.com/grafana/download
https://grafana.com/grafana/download
https://grafana.com/grafana/download
https://grafana.com/grafana/download
https://grafana.com/grafana/download
https://grafana.com/grafana/download
https://grafana.com/grafana/download
https://grafana.com/grafana/download
https://grafana.com/grafana/download

Monitoring Chapter 6

[262]

We also recommend following the instructions in the Installing and configuring
Telegraf, Adding a custom PostgreSQL monitor to Telegraf, and Installing and configuring
InfluxDB recipes so that there is a fully functional Telegraf and InfluxDB combination
complete with fresh activity data from at least one PostgreSQL server.

How to do it...
Follow these steps to install, configure, and start Grafana on a dedicated monitoring
server such as pgmon:

Install the Grafana package downloaded from Grafana Labs on pgmon as a1.
root-enabled user as recommended by your Linux distribution's packaging
system.
Enable and start Grafana with systemctl:2.

sudo systemctl enable grafana
sudo systemctl start grafana

Direct a browser to the default port (3000) on the monitor server to log in3.
to the interface. For our example, this would be: http://pgmon:3000/.
Enter the user admin and password admin and click Log In.4.
Change the password as directed and click Save.5.
Click Add data source.6.
Select the InfluxDB option.7.
Enter http://pgmon:8086/ as the URL.8.
Set the Database to telegraf.9.
Change the HTTP Method to POST.10.
Click Save & Test.11.

How it works...
Like most modern Linux software, Grafana Labs provides Grafana through prepared
.deb or .rpm packages, though they also provide standard compiled binaries. This
should be sufficient for Red Hat, CentOS, Debian, Ubuntu, and other similar
distributions, as well as other systems. They also have more advanced installation
instructions for situations where these won't work.

Monitoring Chapter 6

[263]

Unlike some system services, Grafana is not automatically enabled upon installation,
so we do this ourselves with systemctl. Afterward, all we need is a browser to
continue working with Grafana. Assuming we installed the package on a server
named pgmon, this means Grafana will run on port 3000 by default. Once we direct a
browser to http://pgmon:3000/, we should see this screen:

Since Grafana realizes it was freshly installed, it honors the default username of
admin and password of admin. We can enter these to Log In for further
configuration—well...almost. We must first change the password for the admin user
before continuing. We're glad Grafana requires this, as it's good practice to enforce
password management early and often. All we need to do here is enter a reliable and
memorable password (or paste one from a password management system) and click
Save.

If everything is successful, we should see the default dashboard, which helpfully
shows us the next steps we should complete. It should look like this (though we've
changed the default theme to make everything a bit more readable):

Monitoring Chapter 6

[264]

It's great that Grafana puts this on the dashboard for new installations. This makes it
much easier to get fast and efficient historical data graphs and dashboards for our
cluster. We then move on to adding the data source itself by choosing Add data
source. Once we do that, we should see this screen:

There are several options here, but we only need to set three of them. We start with
the URL to our pgmon server and the default port where InfluxDB runs at 8086.
Together, this makes http://pgmon:8086/. Next, we skip down to InfluxDB
Details where we set the Database to telegraf and HTTP Method to POST. This
will allow us to submit more complex queries if necessary, and if our InfluxDB server
contains multiple databases, we can focus on the one installed by following the
recipes in this book.

Monitoring Chapter 6

[265]

Once we click Save & Test, we want to see this output from Grafana:

At this point, we are ready to start adding Grafana dashboards to view our server
activity.

See also
Grafana has rather extensive documentation. We suggest that you read further on
these topics if possible. Use the following links for more information:

Grafana Documentation: https://grafana.com/docs/
Download Grafana: https://grafana.com/grafana/download
Installing Grafana: https://grafana.com/docs/installation/

Building a graph in Grafana
The Grafana interface introduces several extensive capabilities. Grafana primarily
displays information as a series of dashboards meant to group together interesting or
related graphs. Dashboards contain panels, which are essentially customized views of
our performance measurement data.

These panels can contain any number of things, from standard graphs to gauges,
top-10 lists, logs, heat-maps, or even lists of other dashboards. There's a lot here to
work with and, given all of these options, it's probably best to begin with a standard
chart of values so we can understand how Grafana works with the most common use
case.

This recipe will take you through the interface to create a graph within a Grafana
dashboard. Finally, we can avoid extremely technical discussions for a while!

Getting ready
In this recipe, we will be combining the results of all of the previous recipes related to
Telegraf, InfluxDB, and Grafana. We recommend that you have a functional monitor
server configured as discussed in those recipes.

https://grafana.com/docs/
https://grafana.com/grafana/download
https://grafana.com/docs/installation/

Monitoring Chapter 6

[266]

When we installed and configured Grafana, it should have asked us to provide a new
password for the admin administrative user. This information will be necessary to log
in to the interface.

How to do it...
We will mainly be exploring the web interface of the Grafana installation we created
earlier, which should be located on our pgmon server at the http://pgmon:3000/
URL. Please log in to the interface and follow these steps:

Click New dashboard to create a new dashboard:1.

In New Panel, click Add Query to start creating the chart:2.

Click Select measurement and select postgresql.sessions.3.
Click on value within field (value) and choose total.4.
In the SELECT line, click the + icon and select Aliasing - alias.5.
Click the inside of alias (alias) and write Total.6.
In the FORMAT AS line, select Table.7.

Monitoring Chapter 6

[267]

In Mean time interval, write 10s.8.
In the SELECT line, click the + and select Fields - field.9.
Modify the second field to monitor the slow field with an alias of Slow.10.
Repeat the last two steps to add a field for every data point so it resembles11.
the following:

Click the gear icon on the left to select General:12.

Monitoring Chapter 6

[268]

Change the Title to Session Activity.13.
Click the Save dashboard icon near the top of the page:14.

Enter any notes if necessary, and click Save.15.
Click the Go back icon next to the dashboard name at the top-left of the16.
page:

Click the Dashboard settings icon near the top of the page:17.

Change the Name to PostgreSQL Cluster and click the Save button.18.
Click the Go back icon one more time to return to the main dashboard19.
view.

How it works...
While the Grafana interface is easy to navigate, some elements of it may seem non-
intuitive, and many of the icon command descriptions are hidden within tooltips. So,
just in case, we've provided instructions to click through each element of the interface
and produce a graph within a custom dashboard.

Monitoring Chapter 6

[269]

We begin by clicking New dashboard to start the process. Since this is a new
installation of Grafana, we even get a special link to do this that's on the main page.
Normally, we have to use the left sidebar menu to do this, as shown in the following
screenshot:

In the future, when we add more dashboards, we would want to use this procedure
instead. Otherwise, every dashboard is composed of one or more panels that contain
display information. We create one of these by choosing Add query within the
default New Panel that exists for any new dashboard.

This will send us to a new page to configure the query for the data we want to display
in the graph. To facilitate ease of use, this is primarily a point-and-click affair of
picking what we want to display through several dialogs.

By clicking Select measurement, we should see a list of every metric within the
Telegraf database we created within InfluxDB. Any more measurements we add to
that database in the future will also be available here, and we can add them to any
new graph we create. So, if we find new or better queries, this list should be a
complete reference to what is available.

The fields themselves are managed by field() declarations. If we click inside the
parentheses, Grafana will list only valid fields contained in the table we're trying to
display. It's like writing a SELECT statement one field at a time and only being
allowed to choose valid columns. And similarly, we can choose to add an Alias
modifier to make the graph legends easier to interpret. Every time we click the + icon
at the end of the line, we can add further items or transformations to our data.

Changing the FORMAT AS line to Table is technically optional, but we've done that
here to simplify the display. By default, Grafana displays new data as a time series,
which includes the full path to the data point in question. We don't particularly need
that, so we'll treat the measurements as if they were from a table.

Monitoring Chapter 6

[270]

It's best for the Mean time interval to reflect the granularity of the measurements
themselves, and since Telegraf defaults to collecting readings every ten seconds, we
set this to 10s. If we increase the interval, that will just average more readings
together and potentially smooth some of the curves in our graph. If we don't need ten
seconds of granularity, it's perfectly acceptable to increase to longer intervals.

We can optionally return to the field list and begin adding the remaining columns we
want to incorporate into this graph. We wrote the query ourselves, so it makes sense
to include all of them if possible. We also want to rename this panel to match what
we're displaying, so we then switch to the General interface tab where we can change
the Title to something descriptive such as Session Activity.

We're basically finished with adding the graph, so we can save the changes we made
to the dashboard using the context menu at the top of the screen and exit back to the
dashboard itself. We can edit the dashboard properties themselves by clicking the
gear icon near the top of the screen. This allows us to change the Name of the
dashboard to something more appropriate such as PostgreSQL Cluster.
Afterward, we just Save and return to the main dashboard display.

If we did everything correctly, we should see something like this:

For the sake of this demonstration, we kept pgbench running in the
background while adding this data to Grafana. A real production
system would likely be much more active.

Monitoring Chapter 6

[271]

It seems like a lot of steps, but with enough practice, it will become second nature.
Besides that, we don't have to learn any new languages or syntax to monitor our
PostgreSQL node and database performance, so we can immediately become
productive.

See also
As we've mentioned before, Grafana has excellent documentation. Dashboards and
panels are both described here, and we recommend reading more about them to truly
leverage their available functionality:

Basic concepts: https://grafana.com/docs/guides/basic_concepts/
Graph Panel: https://grafana.com/docs/features/panels/graph/

Customizing a Grafana graph
Grafana panels are very helpful in their default form, even though they simply reflect
the data they can access. One of the less obvious features that Grafana offers is data
transformation. Grafana has several choices for line and background colors, legend
names, and so on. Beyond simply making a chart more readable, sometimes this is
necessary to properly interpret the data!

There is a lot of extra functionality available in Grafana, and only exploration will
truly unveil much of it. We'll introduce a few basic examples in this recipe.

Getting ready
In this recipe, we will be combining the results of all of the previous recipes related to
Telegraf, InfluxDB, and Grafana. We recommend that you have a functional monitor
server configured as discussed in those recipes.

When we installed and configured Grafana, it should have asked us to provide a new
password for the admin administrative user. This information will be necessary to log
in to the interface.

https://grafana.com/docs/guides/basic_concepts/
https://grafana.com/docs/features/panels/graph/

Monitoring Chapter 6

[272]

How to do it...
Follow these instructions to apply several transformations to a simple graph:

Direct a web browser at the monitor server on port 3000.4.
Click the Home quick menu in the top left-hand corner and choose the5.
PostgreSQL Cluster dashboard.
Choose the Add panel option from the context menu at the top of the6.
screen:

Choose the Add Query option under New Panel.7.
Click Select measurement and select postgresql.8.
Set the new field to xact_commit.9.
In the SELECT line, click the + icon and select Transformations -10.
derivative.
In the SELECT line, click the + icon and select Math - math.11.
Change the parameter to the math() function to /10.12.
In the SELECT line, click the + icon and select Transformations -13.
moving_average.
In the SELECT line, click the + icon, select Aliasing - alias, and set the alias14.
to Commit/s.
In the FORMAT AS line, select Table.15.
Select the Visualization icon to the left of the query area:16.

Monitoring Chapter 6

[273]

Under Mode Options - Line Width, select 2.17.
Click the button labeled Add series override.18.
Enter Commit/s in the box next to alias or regex.19.
Click the + icon next to alias or regex, select Color - change, and choose a20.
new color for the graph line.
Toggle the Avg, Current, and Max options under Legend - Values.21.
Click the gear icon on the left to select General.22.
Change Title to TPS.23.
Save the dashboard and return to the general dashboard view.24.

How it works...
To explain how to customize a graph within Grafana, we should probably start by
creating a new panel to contain it. Once we've logged into the interface, we must first
navigate to the PostgreSQL Cluster dashboard we want to modify, and then add a
new panel using the context menu at the top of the screen. As in the last recipe, this
will create a New Panel where we can start the process by using Add Query.

The fun starts after we change Select measurement to postgresql and change the
field to xact_commit as now we can start adding transformations. The first thing we
do is add a derivative transformation. Why must we do this? We do so because many
PostgreSQL catalog statistics consist of monotonically increasing values. The
InfluxDB derivative() function calculates the rate of change over time, so it works
so long as we have at least two measurements.

Next, we add a Math transformation to divide the total by 10. This is necessary
because Telegraf only reads the data from PostgreSQL every ten seconds. This means
the difference between the two readings will be ten times higher than the number of
transactions per second we're trying to calculate. It also means if we modify the
sampling rate within Telegraf, we'll want to change any graphs that may depend on
that as well.

Finally, we add a moving_average transformation to smooth out the graph slightly.
Instead of just the mean value, we're actually averaging the last ten readings together
along a sliding window. This kind of filter may or may not be necessary, but this is
mainly for demonstration purposes. What is necessary is adding a column, Alias, as
we'll be using that later. We also set the FORMAT AS line to Table again for the sake
of readability.

Monitoring Chapter 6

[274]

If we did everything correctly, our final query should look like this:

Next, we move to the visualization menu so we can change how the graph and lines
appear on the screen. We begin our exploration by setting Line Width to 2 to make
our chart line a bit thicker. This should immediately be reflected in the preceding
graph, so feel free to experiment with other settings in the Mode Options section.

Now it's time to demonstrate how it's possible to change each field individually
instead of for the entire graph. This is done by selecting Add series override for any
field we desire to modify. When we click the + icon next to alias or regex, we are
presented with a very long list of possible changes. For now, we just want to change
the color to prove it works as advertised. The default color is green in our particular
chart, so we changed it to blue.

We can also modify the legend that describes the chart itself. We feel it's always
useful to include Avg, Current, and Max options since this is much more precise than
the relative values presented in the chart itself. Once that's done, feel free to explore
this menu further and play with the other visualization tweaks; there may be some
other components that may prove useful.

Once we're satisfied that the chart has been adequately beautified, all that remains is
to rename the panel to something more useful and save our changes. Since this chart
is meant to display transactions per second, we named ours TPS. Assuming
everything went well, we should see this new panel once we return to the PostgreSQL
Cluster dashboard:

Monitoring Chapter 6

[275]

We can see a moderately busy server thanks to the pgbench we are running in the
background. Nice, eh?

There's more...
Eagle-eyed readers may have noticed that our chart isn't quite complete. We're
missing the number of rollback operations per second! If we click the top bar of the
panel, we should see an Edit option. If we choose that, we can add the
xact_rollback field and further customize the visualization appropriately.

This is probably important since we want the number of rollback operations per
second to be extremely low if not zero. To help to reach that goal, we added the
xact_rollback field, entered the Visualization menu, and set the color for that
reading to red. We also changed the line width to 5 so we had a nice bold indicator of
potential problems.

Monitoring Chapter 6

[276]

This is what we ended up with:

As we hoped, there are no rollbacks in our current database for the period of time
we're watching.

See also
We haven't even really scratched the surface of what Grafana can do. Here are a few
links to sections in the documentation that may provide some better insight about
what customization options are available, along with more advanced use cases:

Graph Panel: https://grafana.com/docs/features/panels/graph/
Using InfluxDB in Grafana:
https://grafana.com/docs/features/datasources/influxdb/

Time Range Controls: https://grafana.com/docs/reference/timerange/

Using InfluxDB tags in Grafana
One thing we have not yet explored is using display tags or labels in presenting graph
data within Grafana. This is critical as it is something we will do regularly, especially
when charted data must be grouped by one or more column names.

https://grafana.com/docs/features/panels/graph/
https://grafana.com/docs/features/datasources/influxdb/
https://grafana.com/docs/features/datasources/influxdb/
https://grafana.com/docs/reference/timerange/

Monitoring Chapter 6

[277]

This is also important when interacting with InfluxDB systems, as Grafana sends
queries using its natively supported syntax. This means any query that is not quite
understood by InfluxDB will also not display properly in Grafana. The output from
Grafana is also not something we would recognize as users of PostgreSQL.

This recipe will explain how to set up one final Grafana panel that will track
replication slot lag on two previously allocated replica nodes.

Getting ready
In this recipe, we will be combining the results of all of the previous recipes related to
Telegraf, InfluxDB, and Grafana. We recommend that you have a functional monitor
server configured as discussed in those recipes.

When we installed and configured Grafana, it should have asked us to provide a new
password for the admin administrative user. This information will be necessary to log
in to the interface.

How to do it...
Follow these instructions to add a replication slot lag graph to Grafana using display
tags:

Direct a web browser at the monitor server on port 3000.1.
Click the Home quick menu in the top left-hand corner and choose the2.
PostgreSQL Cluster dashboard.
Choose the Add panel option from the context menu at the top of the3.
screen.
Click Select measurement and select postgresql.slot_lag.4.
Set the new field to restart_lsn_lag.5.
In the GROUP BY line, click the + icon and select tag(slot_name).6.
Enter $tag_slot_name in the box to the right of ALIAS BY.7.
Leave the FORMAT AS line as Time series.8.
Click the gear icon on the left to select General.9.
Change Title to Replication Slot Lag.10.
Save the dashboard and return to the general dashboard view.11.

Monitoring Chapter 6

[278]

How it works...
Assuming we've applied the previous recipes, much of this is the same procedure as
they outlined. Log in to the interface, choose our favorite PostgreSQL Cluster
dashboard, and select Add panel.

What's new here is how we write the query. Unlike previous recipes, after we use
Select measurement to pick postgresql.slot_lag as our measurement and set the
field to restart_lsn_lag, we skip the step of adding a column alias. As it turns out,
we won't be needing it.

Instead, we move to the GROUP BY line and make sure to group by the tag we
created when initially configuring Telegraf: slot_name. We also want to leave
FORMAT AS alone because, this time around, we want to view the data as a time
series.

So, how do we make the graph more readable? Grafana creates variables for many
common substitutions. One of these, of course, is the name of any tag contained
within the data it retrieves from InfluxDB. It prefixes these tags with $tag_, hence
any tag we create should be available as $tag_whatever_tag. In this case, we want
to use $tag_slot_name for the slot name.

Once we make the tag substitution change, the graph legend should immediately
reflect the more readable slot name values. All that remains is to make any other
changes we may desire and save the dashboard for our viewing pleasure.

For this chapter, we left pgbench running in the background on a PostgreSQL cluster
containing two replica nodes. We then turned one of these off so replication lag
would be non-zero. Here's what we ended up with:

Monitoring Chapter 6

[279]

As we can see here, our my_clone node is the one that fell behind and probably
requires intervention.

There's more...
The resulting graph isn't quite complete from our example. Note how the y axis
simply says the units are in billions. Billions of what? We know the slot lag is
represented in bytes, so we could edit the panel, enter the Visualization menu, and
change the Unit to bytes. This makes the graph more representative of what's
actually happening. As it turns out, the my_clone replica is really behind by about 2
GB of WAL data. Now we could add further advanced options such as setting alerts
to avoid exhausting available storage space.

Don't forget to explore the Grafana documentation to really take advantage of its full
range of capabilities. It's much easier to relate to metrics we can see and understand.

Monitoring Chapter 6

[280]

See also
We haven't even really scratched the surface of what Grafana can do. Here are a few
links to sections in the documentation that may provide some better insight about
interacting with InfluxDB, along with more advanced use cases such as creating
alerts:

Graph Panel: https://grafana.com/docs/features/panels/graph/
Using InfluxDB in Grafana: https:/ /grafana. com/ docs/ features/
datasources/ influxdb/

Alerting Engine and Rules Guide: https:/ /grafana. com/ docs/ alerting/
rules/

https://grafana.com/docs/features/panels/graph/
https://grafana.com/docs/features/datasources/influxdb/
https://grafana.com/docs/features/datasources/influxdb/
https://grafana.com/docs/features/datasources/influxdb/
https://grafana.com/docs/features/datasources/influxdb/
https://grafana.com/docs/features/datasources/influxdb/
https://grafana.com/docs/features/datasources/influxdb/
https://grafana.com/docs/features/datasources/influxdb/
https://grafana.com/docs/features/datasources/influxdb/
https://grafana.com/docs/features/datasources/influxdb/
https://grafana.com/docs/features/datasources/influxdb/
https://grafana.com/docs/features/datasources/influxdb/
https://grafana.com/docs/features/datasources/influxdb/
https://grafana.com/docs/features/datasources/influxdb/
https://grafana.com/docs/features/datasources/influxdb/
https://grafana.com/docs/features/datasources/influxdb/
https://grafana.com/docs/alerting/rules/
https://grafana.com/docs/alerting/rules/
https://grafana.com/docs/alerting/rules/
https://grafana.com/docs/alerting/rules/
https://grafana.com/docs/alerting/rules/
https://grafana.com/docs/alerting/rules/
https://grafana.com/docs/alerting/rules/
https://grafana.com/docs/alerting/rules/
https://grafana.com/docs/alerting/rules/
https://grafana.com/docs/alerting/rules/
https://grafana.com/docs/alerting/rules/
https://grafana.com/docs/alerting/rules/
https://grafana.com/docs/alerting/rules/

7
PostgreSQL Replication

One element that is absolutely required for any highly available PostgreSQL
installation is replication. It does not matter whether we have a Storage Area
Network (SAN) that provides disk redundancy, nor is Distributed Replicated Block
Device (DRBD) or other block-level replication sufficient to protect our investment.
Duplicating and backing up data is always a good practice, but when it comes to
availability, we need online copies of the database.

Similarly, if other departments need data that resides in our Online Transactional
Processing (OLTP) database, how can we provide it safely? In ideal circumstances,
we can supply a copy of the necessary tables. This way, we don't strain the primary
database with ad hoc report-based queries. A new Database Administrator (DBA)
might try to accomplish this by building a synchronization library or performing
scheduled extracts and copies into a remote database. However, there are easier
ways!

PostgreSQL gives us methods to build and maintain a fully online copy of our
primary database. Furthermore, there are existing utilities to duplicate tables when
we don't need a copy of the whole database. In this chapter, we will utilize
PostgreSQL replication as well as third-party table-synchronization tools. Building
the best stack requires familiarity with the tools available.

In this chapter, we will learn several methods to copy entire databases or individual
tables. We will cover the following recipes in this chapter:

Deciding what to copy
Securing the WAL stream
Setting up a hot standby
Upgrading to asynchronous replication
Bulletproofing with synchronous replication
Faking replication with pg_receivewal
Setting up Slony

PostgreSQL Replication Chapter 7

[282]

Copying a few tables with Slony
Setting up Bucardo
Copying a few tables with Bucardo
Setting up pglogical
Copying a few tables with pglogical
Copying a few tables with native logical replication

Deciding what to copy
Before copying anything, we need to determine what to copy. In some instances, it
might be necessary to copy the entire database for disaster-recovery purposes. At
other times, such copying would waste resources. We need to differentiate between
these two scenarios.

Once we've done this, we should decide what to do when we don't want to copy the
whole database. We need to know which tables to copy and where to send them. To
accomplish this, we will build a very small spreadsheet in this section to keep track of
the resources we will need for all of our table and database replicas.

Getting ready
We're going to build a spreadsheet. This spreadsheet will specify the type of replica
we want to maintain, as well as where it will reside. Have a spreadsheet program
available before starting.

How to do it...
Follow these steps to determine replication resource requirements:

Create a spreadsheet with six columns labeled Source Server, Target1.
Server, Type, DB Name, Table, and Set.
Under the Source Server column, list the role or name of the PostgreSQL2.
server that provides the data.
Under the Target Server column, list the role or name of the PostgreSQL3.
server that receives the data.
Under the Type column, select either Replica to copy the whole database4.
or Logical to copy individual tables.

PostgreSQL Replication Chapter 7

[283]

Under the DB Name column, enter the name of the database where tables5.
reside on the source server. If you are using Replica for Type, enter All
here.
Under the Table column, enter All for every table in the listed database,6.
or enter a single table name. If you are copying multiple individual tables,
create a single row for each table.
Under the Set column, enter a name for the set of tables being copied. Do7.
this only if using Logical for the Type column.
Create at least one row in the spreadsheet for a Disaster Recovery (DR)8.
copy of every source server in your PostgreSQL clusters.

How it works...
The spreadsheet we're making only requires six columns to fit this recipe. Feel free to
include any other relevant information when making your own. In fact, we suggest
that you retain this document for reference purposes and revisions.

We begin by listing the name or role of the server where all of the data will originate.
This Source Server column will help us—and everyone else—to keep track of
where the original data resides. If a server is listed too often in this column, we may
want to reconsider removing some replicas so that we don't overwhelm it.

Next, we need to decide where to send the data. The Target Server column lets us
define where the tables will reside after being replicated. This allows us to formally
dictate how many copies will live in how many locations. There are some limitations
based on the type we define for this replica entry.

We have only two options when listing the type of replication. We can either mirror
the entire database as a Replica type or single tables in the case of a Logical copy.
Any target server can only appear once if its value in the Type column is Replica.
Otherwise, a server might receive several Logical sources.

Then, we need to list DB Name where we can find the table to copy. If we are copying
the entire database as a Replica type, this value will always be All. Otherwise, we
should list a single database name.

Next, we decide which table(s) to copy. In the case of a Replica type, this value will
be All. Otherwise, should we copy the entire listed database or an inventory of
specific tables? To mirror every table in the database, enter All here. Otherwise, use
the name of the table that we want to include (including its schema).

PostgreSQL Replication Chapter 7

[284]

Finally, if we are copying a list of individual tables or a named database, we should
name the replica Set. Replication utilities commonly use these set names to address
the objects being copied, so we can define any sets we plan to use.

The final step we've listed is to determine where we require at least one copy of the
entire database. This replica will be an online copy that we can switch to in the case of
server or data center failure. In a truly high-availability architecture, this is not
optional.

With all of these entries, our spreadsheet might look something like this:

In this particular example, we have our DR copy of the database and another full
replica for departments to query without disturbing the primary system. Then, we
copy three tables to the reporting database for our Business Intelligence (BI) or
marketing teams to integrate into their customer activity reports.

Securing the WAL stream
The primary mechanism that PostgreSQL uses to provide a data durability guarantee
is through its Write-Ahead Log (WAL). All transactional data is written to this
location before ever being committed to database files. Once WAL files are no longer
necessary for crash recovery, PostgreSQL will either delete or archive them. For a
highly available server, we recommend that you keep these important files as long as
possible. There are several reasons for this:

Archived WAL files can be used for Point-In-Time Recovery (PITR).
If you are using streaming replication, interrupted streams can be re-
established by applying WAL files until the replica has caught up.
WAL files can be reused to service multiple server copies.

To gain these benefits, we need to enable PostgreSQL WAL archiving and save these
files until we no longer need them. This recipe will address our recommendations for
the long-term storage of WAL files when not using a WAL streaming backup
mechanism such as Barman.

PostgreSQL Replication Chapter 7

[285]

Getting ready
To properly archive WAL files, we recommend that you provision a server dedicated
to backups or file storage. Depending on the transaction volume, an active
PostgreSQL database might produce thousands of these daily. At 16 MB apiece, this is
not an idle concern. For instance, for a 1 TB database, we recommend at least 3 TB of
storage space.

Also, we will be using rsync as a daemon on this archive server. To install this on a
Debian-based server, execute the following command as a root-level user:

sudo apt-get install rsync

Red Hat-based systems will need this command instead:

sudo yum install rsync xinetd

How to do it...
Our archive server has a 3 TB mount at the /db directory and is named arc_server
on our network. The PostgreSQL source server resides at pgha1. Follow these steps
for long-term storage of important WAL files on an archive server:

Debian-based systems will need to modify the /etc/default/rsync file1.
and change the RSYNC_ENABLE variable to true.
Create a directory to store archived WAL files as the postgres user with2.
these commands:

sudo mkdir -p /db/pg_archived
sudo chown postgres:postgres /db/pg_archived

Create a file named /etc/rsyncd.conf and fill it with the following3.
contents:

[wal_store]
 path = /db/pg_archived
 comment = DB WAL Archives
 uid = postgres
 gid = postgres
 read only = false
 hosts allow = pgha1
 hosts deny = *

PostgreSQL Replication Chapter 7

[286]

Restart the rsync daemon on Debian-based systems with the following4.
command:

sudo systemctl start rsync

Red Hat-based systems can start rsync with this command instead:

sudo systemctl start rsyncd

Change the archive_mode and archive_command parameters in5.
postgresql.conf to read the following:

archive_mode = on
archive_command = 'rsync -aq %p arc_server::wal_store/%f'

Restart the PostgreSQL server with the following command on Debian-6.
based hosts (assuming this is our main installation):

sudo systemctl restart postgresql@12-main

Red Hat-related distributions should use this command instead:

sudo systemctl restart postgresql-12

How it works...
The rsync utility is normally used to transfer files between two servers. However, we
can take advantage of using it as a daemon to avoid connection overhead imposed by
using SSH as an rsync protocol. Our first step is to ensure that the service is not
disabled in some manner, which would make the rest of this recipe moot.

Next, we need a place to store archived WAL files on the archive server. Assuming
that we have 3 TB of space in the /db directory, we simply claim /db/pg_archived
as the desired storage location. There should be enough space to use /db for backups
as well, but we won't discuss that in this recipe.

Following that, we create a file named /etc/rsyncd.conf, which will configure
how rsync operates as a daemon. Here, we name the /db/pg_archived directory
wal_store so that we can address the path by its name when sending files. We give
it a human-readable name and ensure that files are owned by the postgres user as
this user also controls most of the PostgreSQL-related services.

PostgreSQL Replication Chapter 7

[287]

The next and possibly the most important step is to block all hosts but the primary
PostgreSQL server from writing to this location. We set hosts deny to *, which
blocks every server. Then, we set hosts allow to the primary database server's
hostname so that only it has access. If everything goes well, we can start rsync with
systemd, though Red Hat-related Linux systems may use the name rsyncd instead.

Then, we enable archive_mode by setting it to on. With archive mode enabled, we
can specify a command that will execute when PostgreSQL no longer needs a WAL
file for crash recovery. In this case, we invoke the rsync command with the -a
parameter to preserve elements such as file ownership, timestamps, and so on.

In addition, we specify the -q setting to suppress output as PostgreSQL only checks
the command exit status to determine its success. In the archive_command setting,
the %p value represents the full path to the WAL file, and %f resolves to the filename.
In this context, we're sending the WAL file to the archive server at the wal_store
module we defined in rsyncd.conf. Once we restart PostgreSQL, it will start storing
all of the old WAL files by sending them to the archive server.

If any rsync command fails because the archive server is
unreachable, PostgreSQL will keep trying to send it until it is
successful. If the archive server is unreachable for too long, we
suggest that you change the archive_command setting to store files
elsewhere. This prevents accidentally overfilling the PostgreSQL
server storage. Make sure you're monitoring the pg_xlog or pg_wal
folder with an alerting system, as discussed in Chapter
6, Monitoring.

There's more...
As we will likely want to use the WAL files on other servers, we suggest that you
make a list of all of the servers that could need WAL files. Then, modify the
rsyncd.conf file on the archive server and add this section:

[wal_fetch]
 path = /db/pg_archived
 comment = DB WAL Archive Retrieval
 uid = postgres
 gid = postgres
 read only = true
 hosts allow = host1, host2, host3
 hosts deny = *

PostgreSQL Replication Chapter 7

[288]

Now we can fetch WAL files from any of the hosts in hosts allow. As these are
dedicated PostgreSQL replicas, recovery servers, or other defined roles, this makes
the archive server a central location for all of our WAL needs. Make sure this server is
as fault-tolerant as possible; otherwise, it becomes a single-point-of-failure to lose all
of the WAL files at once.

See also
For more details, refer to the following:

We suggest that you read more about the archive_mode and
archive_command settings on the PostgreSQL site. We've included a link
here:
https://www.postgresql.org/docs/current/runtime-config-wal.html.
The rsyncd.conf file should also have its own manual page. Read it with
this command to learn more about the available settings:

man rsyncd.conf

Setting up a hot standby
It is a very good practice, if not an outright requirement, to have a second online copy
of a PostgreSQL server in high-availability clusters. Without such an online server,
recovery from an outage may require hours of incident response, backup recovery,
and server provisioning. We have everything to gain by having extra online servers.

In addition, the process of setting up a hot standby acts as the basis for creating
PostgreSQL streaming replicas. This means that we can reuse this recipe over and
over again anytime we need to create PostgreSQL mirrors, provision extra backup
copies, set up test instances, and so on.

All of this is made possible by the pg_basebackup command, which forms the basis
of many other derived tools. This recipe will cover the basic usage of this backup
command so we can leverage it for the rest of this book.

https://www.postgresql.org/docs/current/runtime-config-wal.html

PostgreSQL Replication Chapter 7

[289]

Getting ready
A hot standby server should have similar—if not exactly the same—specifications as
the PostgreSQL server it is subscribed to. Try to accomplish this if possible. Due to
our use of rsync, we recommend applying the Securing the WAL stream recipe to
consume WAL files from the upstream system.

The log shipping method we'll be using here has been deprecated
for quite a while. However, this is a good opportunity to learn how
things worked in the past and the benefits of newer approaches.

If this is a Red Hat or CentOS system, the new server will need some initial
provisioning now that systemd is more prevalent. To run PostgreSQL in a non-
default directory, we recommend executing this command:

systemctl edit postgresql-12

Then, enter the following contents to use /db/pgdata as the PostgreSQL data
directory:

[Service]
Environment=PGDATA=/db/pgdata

This will ensure standard systemctl commands work as expected and the server is
fully integrated with other system management tools.

How to do it...
For this scenario, the server at 10.0.30.1 is the primary PostgreSQL server, and
10.0.30.2 will be the new copy. On all PostgreSQL servers, our data directory
should be located at /db/pgdata.

Follow these steps to build a PostgreSQL hot standby:

Ensure that the pg_hba.conf file on the primary server contains this line:1.

host replication rep_user 10.0.30.2/32 trust

PostgreSQL Replication Chapter 7

[290]

Set the wal_level and max_wal_senders parameters in2.
postgresql.conf to the following (or higher) values on the primary
server:

wal_level = logical
max_wal_senders = 10

If these settings weren't already at or above these levels, restart PostgreSQL3.
on the primary server. Debian-based systems can use a command like this:

sudo systemctl restart postgresql@12-main

Red Hat-based systems would need a command like this:4.

sudo systemctl restart postgresql-12

Create the replication user, if it doesn't already exist, with this SQL5.
statement:

CREATE USER rep_user WITH REPLICATION;

On the new server replica, create the /db/pgdata directory with this6.
command as a root-level user:

sudo mkdir -p /db/pg_archived
sudo chown -R postgres:postgres /db

Create a file named /etc/cron.d/postgres with the following contents7.
in a single line:

* * * * * postgres flock /tmp/wal_sync rsync -aq --del
 arc_server::wal_fetch/ /db/pg_archived

Copy the primary server data with this command on the secondary server8.
as the postgres user:

pg_basebackup -D /db/pgdata -h 10.0.30.1 -U rep_user

Users of PostgreSQL 12 should place the following single line in the9.
/db/pgdata/postgresql.conf file on the new server copy:

restore_command = 'test -f /db/pg_archived/%f && cp -n
/db/pg_archived/%f %p'

PostgreSQL Replication Chapter 7

[291]

PostgreSQL 12 will also need a file named standby.signal in the10.
/db/pgdata directory:

touch /db/pgdata/standby.signal

Older versions will require a file named recovery.conf and the following11.
contents:

standby_mode = 'on'
restore_command = 'test -f /db/pg_archived/%f && cp -n
/db/pg_archived/%f %p'

Ensure that the postgresql.conf file on the standby server contains the12.
following setting:

hot_standby = on

Start PostgreSQL on the new standby server on Debian-based systems like13.
this:

sudo systemctl start postgresql@12-main

Red Hat-based systems would need a command like this:14.

sudo systemctl start postgresql-12

How it works...
The first thing we do with this recipe is to allow the new PostgreSQL server to
retrieve data from the primary server. There are a few ways to do this, but for the
sake of demonstration, we created a rule for the server at 10.0.30.2 to connect to the
replication pseudo-database. This allows tools such as pg_basebackup to copy
database files from the primary database when we initialize the replica.

In a related concern, we must ensure that the wal_level setting of the primary
server is set to hot_standby and that max_wal_senders is a value greater than 0.
Earlier chapters on configuring PostgreSQL have already made this suggestion, but
this recipe won't work at all if these parameters are set wrong. We restart PostgreSQL
after modifying these settings to force it to use the new values. This also has the
added benefit of integrating the changes to pg_hba.conf so rep_user has sufficient
access to copy PostgreSQL data files.

PostgreSQL Replication Chapter 7

[292]

Next, we should make sure that rep_user exists. Earlier chapters contained
instructions to create this user, but it doesn't hurt to double-check. Regardless of what
user we use to copy data, it must have the replication permission used in the
CREATE USER syntax.

Once we've done that, the new child server needs the same data directory as its
parent. We also want to have a location to synchronize WAL files so that the copy can
process them and remain up to date. We set the permissions so that only the
postgres user can view their contents. We should end up with something like this:

With these two directories in place, it's time to copy WAL files from the archive
server. To accomplish this, we create a file in /etc/cron.d that will execute an
rsync command every minute. This rsync command will copy WAL files from the
archive server to the /db/pg_archived directory. The -a parameter ensures that it
will include file permissions and ownership, and -q will suppress non-error
messages so it's easier to tell whether something went wrong. We have also added the
--del setting, which will cause rsync to delete any files that don't exist on the
archive server.

Why execute every minute? It prevents the hot standby from falling
too far behind without making use of pure PostgreSQL replication.
If you want to use this server as an insurance policy, it might be a
good idea to delay it behind the source database by an hour. This
way, mistakes will not appear on the standby for an hour, giving us
a chance to fix problems before they taint database copies. To sync
every hour, change the * * * * * portion of the rsync command
to 0 * * * *.

As we're launching rsync asynchronously, we use flock to create a temporary lock
file in the /tmp directory. This way, if the primary server produced a large burst of
WAL files, we won't have two conflicting rsync commands trying to synchronize the
files to /db/pg_archived on the standby server.

PostgreSQL Replication Chapter 7

[293]

Once we've established a ready supply of WAL files, we need to copy the actual
database. For this, we use the pg_basebackup command itself. While
pg_basebackup is primarily a backup utility, it serves a dual purpose. When
launched with the -D parameter, it copies the server data files from the host indicated
by the -h parameter and saves them to the indicated directory. Hence, our
pg_basebackup command copied files from 10.0.30.1 to /db/pgdata. This
produces a PostgreSQL data directory capable of hosting a running database. We also
applied the -U setting to use the rep_user user that we created specifically for
replication-related tasks.

Next, we want to start the PostgreSQL hot standby, but first, we need to tell it how to
recover WAL files. Older versions of PostgreSQL require us to create a file named
recovery.conf so PostgreSQL will enter recovery mode instead of normal
operation, while versions 12 and beyond use a file named standby.signal. In this
recovery mode, it expects to process WAL files until there are no more available.
While modern versions of PostgreSQL do this automatically, versions 11 and older
require us to set standby_mode to on in recovery.conf, which instructs it to wait
forever under the assumption that more WAL files will arrive later. This is called
continuous recovery, and this is what makes a hot standby work.

Another setting that we use is restore_command. Here, we use a simple cp
command to regularly consume WAL files in the /db/pg_archived directory after
using the test command to check whether the file exists. This prevents annoying log
entries like this:

There are other ways to do this, such as the deprecated pg_standby utility, but the
documentation is quite clear that these approaches are to be avoided.

There's one more thing to confirm before we start the PostgreSQL hot standby.
Simply having a standby is useful, but having a readable standby is better. By
enabling hot_standby in the postgresql.conf file, we can execute basic SELECT
statements against the standby instance.

We should have a fully functional hot standby PostgreSQL server once we start the
database on the replica.

PostgreSQL Replication Chapter 7

[294]

See also
As this is such a common configuration, the PostgreSQL documents discuss it at great
length. We also made extensive use of the pg_basebackup command. You can find
out more information about these from the following URLs:

Log-Shipping Standby Servers: https:/ /www. postgresql. org/ docs/
current/ warm- standby. html

Hot Standby: https:/ /www. postgresql. org/docs/ current/ hot- standby.
html

pg_basebackup: https:/ /www. postgresql. org/ docs/ current/ app-
pgbasebackup. html

Upgrading to asynchronous replication
Since the release of PostgreSQL 9.0, DBAs have had access to asynchronous streaming
replication. This means all modern supported versions anyone is likely to encounter
have this feature.

Unlike the older hot standby methods used in earlier versions, replica servers can
connect to an upstream PostgreSQL server and consume data modifications directly.
With low network latency and fast transactions, this means that it is fairly common
for streaming replicas to lag behind the master by only a few milliseconds.

In the context of high availability, this means we can scale horizontally by copying
the database to multiple servers. Of course, this means that we need to copy the entire
database to each server. For small-to-medium-sized database instances, this is a
relatively minor requirement. This also means that we can produce up-to-date
backups, perform ad hoc queries on practically live data, and aggregate information
into reports without disrupting our primary database.

This recipe will explain how to set up a streaming asynchronous database replica and
explore some of the hidden caveats of doing so.

Getting ready
We will be continuing the work we performed in the Setting up a hot standby recipe, so
please refer to that recipe to build a working hot standby. We will alter the standby
setup to include streaming replication and better security.

https://www.postgresql.org/docs/current/warm-standby.html
https://www.postgresql.org/docs/current/warm-standby.html
https://www.postgresql.org/docs/current/warm-standby.html
https://www.postgresql.org/docs/current/warm-standby.html
https://www.postgresql.org/docs/current/warm-standby.html
https://www.postgresql.org/docs/current/warm-standby.html
https://www.postgresql.org/docs/current/warm-standby.html
https://www.postgresql.org/docs/current/warm-standby.html
https://www.postgresql.org/docs/current/warm-standby.html
https://www.postgresql.org/docs/current/warm-standby.html
https://www.postgresql.org/docs/current/warm-standby.html
https://www.postgresql.org/docs/current/warm-standby.html
https://www.postgresql.org/docs/current/warm-standby.html
https://www.postgresql.org/docs/current/warm-standby.html
https://www.postgresql.org/docs/current/warm-standby.html
https://www.postgresql.org/docs/current/warm-standby.html
https://www.postgresql.org/docs/current/warm-standby.html
https://www.postgresql.org/docs/current/warm-standby.html
https://www.postgresql.org/docs/current/hot-standby.html
https://www.postgresql.org/docs/current/hot-standby.html
https://www.postgresql.org/docs/current/hot-standby.html
https://www.postgresql.org/docs/current/hot-standby.html
https://www.postgresql.org/docs/current/hot-standby.html
https://www.postgresql.org/docs/current/hot-standby.html
https://www.postgresql.org/docs/current/hot-standby.html
https://www.postgresql.org/docs/current/hot-standby.html
https://www.postgresql.org/docs/current/hot-standby.html
https://www.postgresql.org/docs/current/hot-standby.html
https://www.postgresql.org/docs/current/hot-standby.html
https://www.postgresql.org/docs/current/hot-standby.html
https://www.postgresql.org/docs/current/hot-standby.html
https://www.postgresql.org/docs/current/hot-standby.html
https://www.postgresql.org/docs/current/hot-standby.html
https://www.postgresql.org/docs/current/hot-standby.html
https://www.postgresql.org/docs/current/hot-standby.html
https://www.postgresql.org/docs/current/hot-standby.html
https://www.postgresql.org/docs/current/app-pgbasebackup.html
https://www.postgresql.org/docs/current/app-pgbasebackup.html
https://www.postgresql.org/docs/current/app-pgbasebackup.html
https://www.postgresql.org/docs/current/app-pgbasebackup.html
https://www.postgresql.org/docs/current/app-pgbasebackup.html
https://www.postgresql.org/docs/current/app-pgbasebackup.html
https://www.postgresql.org/docs/current/app-pgbasebackup.html
https://www.postgresql.org/docs/current/app-pgbasebackup.html
https://www.postgresql.org/docs/current/app-pgbasebackup.html
https://www.postgresql.org/docs/current/app-pgbasebackup.html
https://www.postgresql.org/docs/current/app-pgbasebackup.html
https://www.postgresql.org/docs/current/app-pgbasebackup.html
https://www.postgresql.org/docs/current/app-pgbasebackup.html
https://www.postgresql.org/docs/current/app-pgbasebackup.html
https://www.postgresql.org/docs/current/app-pgbasebackup.html
https://www.postgresql.org/docs/current/app-pgbasebackup.html
https://www.postgresql.org/docs/current/app-pgbasebackup.html
https://www.postgresql.org/docs/current/app-pgbasebackup.html

PostgreSQL Replication Chapter 7

[295]

How to do it...
For this scenario, the server at 10.0.30.1 is the primary PostgreSQL server, and
10.0.30.2 will be the asynchronous replica. Follow these steps to build a
PostgreSQL asynchronous replica:

Give the rep_user user a password with this SQL statement:1.

ALTER USER rep_user WITH PASSWORD 'newpass';

On the primary server, modify the pg_hba.conf line and remove any2.
references to the rep_user user. Then, add this line:

host replication rep_user 10.0.30.2/32 md5

Reload the configuration files on the primary server with the following3.
command as the postgres user:

pg_ctl -D /db/pgdata reload

On the replica server, create a file named .pgpass in the postgres user's4.
home directory with the following contents:

10.0.30.1:*:replication:rep_user:newpass

Alter the .pgpass file to have the correct permissions with this command:5.

chmod 600 ~/.pgpass

Add the following parameter in postgresql.conf (12+) or6.
recovery.conf on the recovery server:

primary_conninfo = 'host=10.0.30.1 user=rep_user'

Restart PostgreSQL on the streaming replica server on Debian-based7.
systems like this:

sudo systemctl restart postgresql@12-main

Red Hat-based systems would need a command like this:8.

sudo systemctl restart postgresql-12

PostgreSQL Replication Chapter 7

[296]

Confirm that the standby is connected by executing this SQL on the9.
primary PostgreSQL server:

SELECT client_addr, usename, state
 FROM pg_stat_replication;

How it works...
Using trust authentication is not generally a recommended practice. It is one thing
to copy the database without a password once, but quite another to leave a long-term
security hole for all database replicas. This means it is time to ensure that the
rep_user user has a password. We also need to change pg_hba.conf to reflect the
fact that we want to use regular md5 authentication instead of trust. Once we reload
the configuration files on the primary server, we move on to the streaming replica.

To get into the practice of using .pgpass files, we create one on the replica server for
the rep_user user. The line we created in this file will send our desired password
when the sections match; in this case, if we connect to 10.0.30.1 on any port to the
replication database as the rep_user user, authentication will succeed
automatically. If any of these are different, the PostgreSQL client libraries will not
send a password, and the client will receive an error. This is a fairly easy way to
automate password submissions securely. PostgreSQL will also ignore this file if the
permissions are wrong, so we set the control flags with chmod so that only the
postgres user can access it.

Next, we rewrite the contents of the recovery.conf file to include
primary_conninfo. This line is used to specify the connection information for
establishing streaming replication. Since our password is in the .pgpass file, we
don't need to enter it here. We also removed pg_standby in favor of a regular cp
command with the errors suppressed. Now that our primary method of WAL
consumption is directly from another server, we only need WAL files from
/db/pg_archived as a failback in case the stream is disrupted.

Why do we use .pgpass instead of entering the password in the
recovery.conf file? It is very common for system automation tools
to distribute configuration files to dozens or even hundreds of
servers. Using .pgpass, we can settle on and redistribute
passwords easily. Also, tools that build recovery.conf will not
need to know the password for the replication user. Just make sure
to protect this file well, as it's a potential attack vector since it
contains several important database passwords.

PostgreSQL Replication Chapter 7

[297]

Once we reload the standby server, it should become a streaming replica instead of a
regular hot standby. We can confirm this with the SQL statement that checks the
pg_stat_replication view on the primary server. We should get output similar to
this:

Once we've got streaming replication working, generally, we recommend eventually
disabling log shipping by removing restore_command from recovery.conf or
postgresql.conf. Scenarios failing back to this old methodology are rare, given
streaming's overall superiority.

There's more...
We unleash a whole universe of new functionality when we switch to asynchronous
replication. As the versions of PostgreSQL have advanced over the years, this list
becomes longer.

Cascading replication
If we have several streaming replicas, older versions of PostgreSQL required replica
servers to connect directly to the primary server. PostgreSQL allows streaming
replicas to subscribe to other replicas in versions 9.3 and above. We can further
reduce strain on the primary database server by offloading replication duties to a
topology of alternate servers using this capability.

This chaining includes backup features. The pg_basebackup tool puts PostgreSQL in
backup mode by invoking the pg_start_backup() function. As this function writes
to the database, it normally can't be used on a streaming replica because it's read-
only. However, chaining replication makes it possible to use pg_basebackup on
standby servers. This can greatly simplify the backup process and reduce overhead
on the primary server.

PostgreSQL Replication Chapter 7

[298]

Using replication slots
Relying on transaction log files is a risky endeavor. If the primary server deletes one
before a replica can process it, we may need to rebuild the replica outright. If we're
using PostgreSQL 9.4 or higher, we can prevent that kind of mishap by using
replication slots instead.

We would need to create a replication slot on the primary server itself with this SQL:

SELECT * FROM pg_create_physical_replication_slot('pg2_slot');

Then, on the replica, we would add this line to its postgresql.conf (12+) or
recovery.conf files before starting (or restarting) the instance:

primary_slot_name = 'pg2_slot'

Now our replica can't fall behind. We should be careful that replica outages are
limited, otherwise, the primary could accumulate too many unnecessary transaction
log files and run out of storage space. It may be necessary to remove unused
replication slots so this doesn't happen. Use this SQL if a replica needs to be offline
for long periods of time:

SELECT pg_drop_replication_slot('pg2_slot');

Viewing replication status on a replica
Beginning with PostgreSQL 9.6, we can view a lot of information about the replication
stream from the replica server. In previous versions, there were only a couple of
functions, and they only really told us which transaction log the replica had recently
processed. Version 9.6 introduces a view named pg_stat_wal_receiver to solve
that issue. Consider we have our pg2 replica and it's using a replication slot named
pg2_slot. We could use this query on the replica to learn a bit more:

SELECT status, latest_end_lsn, latest_end_time, slot_name
 FROM pg_stat_wal_receiver;

The output of this should resemble the following screenshot:

PostgreSQL Replication Chapter 7

[299]

This tells us that the streaming is active and it's using the slot as expected, and it tells
us the position in the transaction log it last replayed. We can also see the upstream
time that position represents, making it much easier to determine replication lag
visually.

Views like this help us to troubleshoot and monitor status from a replica's
perspective. Remember the PostgreSQL catalog is available and is always growing
with each new version.

See also
There are good resources within the PostgreSQL documentation regarding streaming
replication. For more information, please visit these URLs:

Log-Shipping Standby Servers:
https://www.postgresql.org/docs/current/warm-standby.html

The Password File:
https://www.postgresql.org/docs/current/static/libpq-pgpass.html

Bulletproofing with synchronous
replication
Sometimes, to provide acceptable data durability, a high-availability configuration
must utilize synchronous commits. Beginning with PostgreSQL 9.1, database servers
can now refuse to commit a transaction until the data is located on at least one
alternate server. Unlike asynchronous replication, where this is optional, synchronous
replicas enforce this requirement to a fault.

Past discussions in the PostgreSQL mailing list suggest that there is a long-standing
misconception that synchronous replication is similar to RAID-1 operation. In
RAID-1, the same exact data exists on two disks (or two disk sets), and if one of the
pair fails, it continues to operate in degraded mode until the problem is addressed.
This is absolutely not the case with PostgreSQL synchronous replication.

https://www.postgresql.org/docs/current/warm-standby.html
https://www.postgresql.org/docs/current/static/libpq-pgpass.html

PostgreSQL Replication Chapter 7

[300]

Unlike RAID-1, PostgreSQL replicas can exist on different servers, on different
networks, or even in different countries. PostgreSQL synchronous replication is a
guarantee that data is written to at least two servers. Despite the necessary increase in
latency to confirm this, the guarantee is upheld at all times.

This recipe is for databases that need this kind of extreme durability.

Getting ready
We will be continuing the work we performed in the Upgrading to asynchronous
replication recipe, so please refer to that section to build a working asynchronous
replica. We will alter the standby setup to include synchronous streaming replication.

How to do it...
For this scenario, the server at 10.0.30.1 is still the primary PostgreSQL server.
Follow these steps to change an asynchronous PostgreSQL server into a synchronous
replica:

Revise the primary_conninfo parameter on the recovery server to add1.
application_name:

primary_conninfo = 'host=10.0.30.1 user=rep_user
application_name=pgha2

Restart the streaming server with systemctl as standard:2.

systemctl restart postgresql@12-main

Or alternatively, use the following:3.

systemctl restart postgresql-12

Change the synchronous_standby_names and synchronous_commit4.
settings in the postgresql.conf file on the primary server to read the
following:

synchronous_commit = 'on'
synchronous_standby_names = 'pgha2'

PostgreSQL Replication Chapter 7

[301]

Reload the configuration files on the primary server with the following5.
command as the postgres user:

pg_ctl -D /db/pgdata reload

Confirm that the standby is connected by executing this SQL on the6.
primary PostgreSQL server:

SELECT client_addr, state, sync_state, application_name
 FROM pg_stat_replication;

How it works...
Promoting an asynchronous standby server to synchronous mode is actually a fairly
simple procedure. We begin by modifying the primary_conninfo setting in the
standby's postgresql.conf (12+) or recovery.conf file to include the
application_name value. PostgreSQL differentiates replicas by their stated
application name, so if we change this, we can specifically target that particular
replica. Any other synchronous standby nodes should be assigned different names.

Once we restart the PostgreSQL server on the streaming standby, it will reconnect to
the primary server with the new application_name value that we assigned. From
this point onward, we can refer to the standby server as pgha2. Hence, when we alter
the synchronous_standby_names and synchronous_commit variables in the
primary server's postgresql.conf file, we use the same name there.

Any time we want to change the synchronous_standby_names variable, we merely
need to tell PostgreSQL to reload its configuration files. This should immediately
cause the primary node to consider pgha2 a synchronous standby server. Any
transaction will only commit if it can write to this server as well as the primary one.

This last point is extremely important. If the synchronous standby
becomes unavailable for any reason, the primary server will stop
writing to the database as well! If you are performing maintenance
on the secondary server, we suggest that you set
synchronous_standby_names to a blank value and reload the
PostgreSQL server. This will break the synchronous guarantee until
the standby can be reconnected.

PostgreSQL Replication Chapter 7

[302]

Once we have reloaded the primary server's configuration files, we can check the
pg_stat_replication view again to observe how streaming is currently
functioning. After executing the query, we should see something like this:

As we can see in this example, the primary server sees pgha2 as a synchronous
streaming replica.

There's more...
Beyond the basics of synchronous replication, there are also a few other things we can
do with this powerful feature.

Being less strict
We really want to confirm whether the streaming replication works as advertised. To
do this, let's shut down the standby server with this command:

sudo systemctl stop postgresql-12

Then, try to write to the primary server. This simple SQL statement should wait
indefinitely:

CREATE TABLE foo (bar INT);

If we then restart the streaming replica using the following command, we should see
the transaction complete:

sudo systemctl start postgresql-12

As you might imagine, this can be problematic in true high-availability architectures
that handle thousands of transactions per second. As such, we don't actually
recommend that you use synchronous replication on OLTP servers. As these
comprise the bulk of highly available PostgreSQL clusters, opportunities to take
advantage of this level of data durability are somewhat slim.

PostgreSQL Replication Chapter 7

[303]

However, a synchronous commit is actually somewhat optional. If we want to try the
experiment again, we can first issue this SQL statement before trying a basic write
query:

SET synchronous_commit TO false;

This disables synchronous replication temporarily for the current session. Subsequent
write queries in this connection should succeed normally as if the remote server was a
standard asynchronous copy.

Being more strict
The synchronous_commit configuration parameter has another, more relevant
setting for those interested in high availability. The default functionality of a
synchronous standby is to consume transactions from the replication stream and
acknowledge receipt. Yet this only means the data has been physically written to disk
on the replica system. There's still the very slim chance that a crash of the
synchronous standby might prevent transactions from reaching the actual data files
on that system.

If we set synchronous_commit to remote_apply, however, the result is subtly
different. This value is only available in PostgreSQL 9.6 and higher and it makes
synchronous replication even more strict in its implementation. With this value in
place, a transaction will not be committed on the primary node until it's written to a
standby server and that standby has also processed the transaction. It's a slight but
extremely important difference.

In the context of high availability, it means the replica is an exact copy of the
upstream server at all times because the primary server can't even commit
transactions without the standby also reflecting those changes. Unlike standard
synchronous commits, there is no race condition between receipt and application.

Of course, we pay for this durability and availability with latency.
It's important to know when to decide between the two extremes.

PostgreSQL Replication Chapter 7

[304]

Enabling extreme durability
PostgreSQL 9.6 also introduces another important component to a highly available
cluster of servers commonly found in the NoSQL world. Of course, we're talking
about committing writes to several replicas simultaneously. Version 9.6 changes the
syntax for synchronous_standby_names so that it's now possible to specify
multiple standby servers as well as how many should be active at once. If we had two
replicas, rep1 and rep2, and needed both to always be in sync with the primary, we
would modify the parameter accordingly:

synchronous_standby_names = '2 (rep1, rep2)'

We could also have five replicas in the list, and enable three of them or any similar
combination. Again, we trade latency for better durability, but in some cases, that's a
perfectly valid transaction. This level of paranoia is rarely necessary, but it's nice to
have the choice.

See also
There are good resources within the PostgreSQL documentation regarding streaming
replication. For more information, please visit these URLs:

Log-Shipping Standby Servers:
https://www.postgresql.org/docs/current/warm-standby.html

Write-Ahead Log:
https://www.postgresql.org/docs/current/runtime-config-wal.html

Faking replication with pg_receivewal
Some built-in tools deserve a special mention. The pg_receivexlog command was
introduced with PostgreSQL 9.2. With this utility, PostgreSQL can transmit
transaction logs to a remote system without the need for a dedicated PostgreSQL
server. This also means that we can avoid ad hoc tools such as rsync when
maintaining an archive server to save old WAL files.

https://www.postgresql.org/docs/current/warm-standby.html
https://www.postgresql.org/docs/current/runtime-config-wal.html

PostgreSQL Replication Chapter 7

[305]

This allows us to set up any server to pull transaction logs directly from the primary
PostgreSQL server. For highly available servers, PostgreSQL no longer needs to fork
an external command to safeguard transaction logs into an archive location. Also, we
can monitor the state of the transmission through the pg_stat_replication system
view.

In effect, we remove quite a bit of overhead from our PostgreSQL server and offload
it to a less sensitive system. This recipe will provide a quick outline for using this
utility.

Getting ready
Before starting with this recipe, ensure that you have a good understanding of how
PostgreSQL replication works. To do this, follow the Upgrading to asynchronous
replication and Bulletproofing with synchronous replication recipes.

Can't find pg_receivewal? This utility was named
pg_receivexlog until PostgreSQL 10 imposed a naming revision
of several internal systems related to WAL management. If you're
using one of these older installations, use that command name
instead. It should work the same!

How to do it...
For this scenario, the server at 10.0.30.1 is still the primary PostgreSQL server, and
10.0.30.20 will be our archive server. Follow these steps to save WAL data
remotely:

Ensure that the pg_hba.conf file on the primary server contains this line:1.

host replication rep_user 10.0.30.20/32 md5

Ensure that the wal_keep_segments and archive_mode settings in2.
postgresql.conf are set as follows on the primary server:

wal_keep_segments = 1000
archive_mode = off

Restart the configuration files on the primary server with the following3.
command:

sudo systemctl restart postgresql@12-main

PostgreSQL Replication Chapter 7

[306]

Alternatively, restart with this command:4.

sudo systemctl restart postgresql-12

On the archive server, create the /db/pg_archived directory with these5.
commands as a root-enabled user:

sudo mkdir -p -m 0700 /db/pg_archived
sudo chown postgres:postgres /db/pg_archived

Start the pg_receivewal utility on the archive server with the following6.
command as the postgres user:

pg_receivewal -h 10.0.30.1 -U rep_user \
 -D /db/pg_archived -v \
 &> /db/pg_archived/wal_archive.log &

How it works...
First, we need to ensure that the archive server at 10.0.30.20 can connect to the
primary server to receive the transaction log traffic. Next, unlike other recipes that
depend on archive_mode to be enabled on the primary server, we want to disable it
this time. We are going to rely on pg_receivewal instead.

One setting that we change might seem a bit odd at first. The wal_keep_segments
parameter defines how many transaction logs PostgreSQL should keep after it no
longer needs them. Normally, it would delete old files or call the archive command
to process them if archive_mode is on. By setting it to 1000, we are telling it to
always have at least 1,000 extra files. This helps to avoid lost WAL archives if there's a
network problem or we have to restart pg_receivewal.

Are 1,000 files too many? At 16 MB each, this accounts for 16 GB of
space. Providing this much space should be very easy with modern
storage devices. This many files should account for several hours of
activity on all but the most active databases. It may actually be
prudent to increase the limit further, depending on database
activity.

Once these settings are in place, we need to restart PostgreSQL to disable WAL
archival. At this point, the primary server will no longer save or transmit old WAL
files anywhere. To make up for this, we make sure that the archive server has a
location to store these files and that the postgres user can write to it. To continue
with our examples, we will continue to use the /db/pg_archived directory.

PostgreSQL Replication Chapter 7

[307]

Finally, we start the pg_receivewal tool itself. We pass the -h parameter to connect
to the primary database and use -U to enforce the replication user, rep_user. The -D
parameter is required, and we use it to save WAL files to the /db/pg_archived
directory we created.

Then, we enable verbose output with -v just so that we are always informed about
what pg_receivewal is doing. We direct all output to a file named
wal_archive.log and consider our work complete. The final & character launches
the command in the background so that it functions even if we disconnect from the
server.

If everything goes well, our /db/pg_archived directory should soon have some
WAL files and a log inside it, as shown in the following screenshot:

The file that ends in partial is a WAL transfer that is currently in progress.

There's more...
Starting with PostgreSQL 9.5, pg_receivewal is also fully compatible with
synchronous replication. If we wanted to enable this capability, we could modify the
final launch command to look something like this:

pg_receivewal -h 10.0.30.1 -U rep_user \
 -D /db/pg_archived -v --synchronous \
 &> /db/pg_archived/wal_archive.log &

Normally, pg_receivexlog only flushes to disk periodically. With the --
synchronous parameter enabled, it will flush all transactions upon receipt, as well as
sending an acknowledgment to the upstream primary. Now, we don't necessarily
need a full copy of our database everywhere. Perhaps we could leverage this feature
on a server that simply accumulates transaction logs in a secure location.

Being available isn't always a matter of never going offline; it also means our data is
safe. Transaction logs are a critical source of PITR functionality and crash recovery.
Having transaction logs written immediately to a tertiary location without database
overhead conveys a certain amount of high availability to the files themselves.

PostgreSQL Replication Chapter 7

[308]

See also
The pg_receivewal / pg_receivexlog utility has more extensive documentation
on PostgreSQL's site. Visit these URLs to learn more:

pg_receivewal: https:/ /www.postgresql. org/docs/ current/ app-
pgreceivewal. html

pg_receivexlog: https://www.postgresql.org/docs/9.6/app-pgreceivex
log.html

Setting up Slony
While there are a few logical asynchronous replication systems for PostgreSQL,
Slony-I (Slony, in short) was the first to gain wide adoption. Why would we use
Slony when PostgreSQL already has physical and logical replication? PostgreSQL
versions prior to 10 could only copy the entire installation.

The only option for those systems is to copy every database, schema, table, and user
at the binary level. In effect, streaming replication creates perfect clones of
PostgreSQL servers. So what happens if we want to upgrade from one of these
antiquated versions to something more modern without shutting down PostgreSQL
itself? Sometimes this requires tooling designed back when those versions were more
predominant.

Slony accomplishes exactly that goal. It is designed to copy tables only, capturing
changes on a provider server and sending them to one or more subscribers. This
recipe will provide a basic installation and configuration designed for one provider
and one subscriber.

Getting ready
If we've already installed the official PostgreSQL PGDG repositories, we already have
access to this replication utility. At the time of this book revision, the latest version
available is 2.2.8.

Slony can be installed on Debian or Ubuntu systems with this command:

sudo apt install postgresql-12-slony1-2 slony1-2-bin

https://www.postgresql.org/docs/current/app-pgreceivewal.html
https://www.postgresql.org/docs/current/app-pgreceivewal.html
https://www.postgresql.org/docs/current/app-pgreceivewal.html
https://www.postgresql.org/docs/current/app-pgreceivewal.html
https://www.postgresql.org/docs/current/app-pgreceivewal.html
https://www.postgresql.org/docs/current/app-pgreceivewal.html
https://www.postgresql.org/docs/current/app-pgreceivewal.html
https://www.postgresql.org/docs/current/app-pgreceivewal.html
https://www.postgresql.org/docs/current/app-pgreceivewal.html
https://www.postgresql.org/docs/current/app-pgreceivewal.html
https://www.postgresql.org/docs/current/app-pgreceivewal.html
https://www.postgresql.org/docs/current/app-pgreceivewal.html
https://www.postgresql.org/docs/current/app-pgreceivewal.html
https://www.postgresql.org/docs/current/app-pgreceivewal.html
https://www.postgresql.org/docs/current/app-pgreceivewal.html
https://www.postgresql.org/docs/current/app-pgreceivewal.html
https://www.postgresql.org/docs/current/app-pgreceivewal.html
https://www.postgresql.org/docs/current/app-pgreceivewal.html
https://www.postgresql.org/docs/9.6/app-pgreceivexlog.html
https://www.postgresql.org/docs/9.6/app-pgreceivexlog.html

PostgreSQL Replication Chapter 7

[309]

And Red Hat-derived systems can use this:

sudo yum install slony1-12

Once this is done on all intended provider and subscriber nodes, continue with the
recipe to configure and use Slony.

How to do it...
For these instructions, 10.0.30.1 (pgha1) is the provider PostgreSQL node, and
10.0.30.2 (pgha2) is our desired subscriber. Follow these instructions to activate
Slony on the postgres default database:

Provide the rep_user database user with superuser capabilities by1.
running this SQL statement on both PostgreSQL nodes:

ALTER USER rep_user WITH SUPERUSER;

Enter the following line in the .pgpass file for the postgres OS user on2.
both nodes:

::postgres:rep_user:passwordhere

Ensure that the following line exists within the pg_hba.conf file on the3.
master node:

host postgres rep_user 10.0.30.2/32 md5

Ensure that the following line exists within the pg_hba.conf file on the4.
subscriber node:

host postgres rep_user 10.0.30.1/32 md5

Reload the PostgreSQL service on both nodes with the following command5.
as the postgres user:

pg_ctl -D /db/pgdata reload

Find the Slony configuration directory. In Debian and Ubuntu systems, this6.
is simply /etc/slony1 while Red Hat derivatives use /etc/slony1-12.
Create a symbolic link from the preceding directory to /etc/slony as in7.
this Debian example:

sudo ln -s /etc/slony1 /etc/slony

PostgreSQL Replication Chapter 7

[310]

Create a file named nodes.slonik in the Slony configuration directory of8.
the provider node with the following contents:

cluster name = replication;
define master 'dbname=postgres host=pgha1
 user=rep_user';
define sub1 'dbname=postgres host=pgha2
 user=rep_user';
node 1 admin conninfo = @master;
node 2 admin conninfo = @sub1;

Create a file named init.slonik in the /etc/slony directory of the9.
master node with the following contents:

include </etc/slony/nodes.slonik>;
init cluster (id=1, comment = 'Master');
store node (id=2, comment = 'Subscriber', event node=1);
store path (server = 1, client = 2, conninfo = @master);
store path (server = 2, client = 1, conninfo = @sub1);

Install Slony on both nodes by executing the following command as the10.
postgres user on the provider node:

slonik < /etc/slony/init.slonik

Start Slony on the provider node with this command as the postgres user:11.

slon replication \
 'dbname=postgres host=10.0.30.1 user=rep_user' \
 &> /var/log/postgresql/slony.log &

Start Slony on the subscriber node with this command as the postgres12.
user:

slon replication \
 'dbname=postgres host=10.0.30.2 user=rep_user' \
 &> /var/log/postgresql/slony.log &

PostgreSQL Replication Chapter 7

[311]

How it works...
Once installed, we need to ensure that our rep_user user, which we've used in the
past, has PostgreSQL superuser capabilities. Slony performs many tasks that are only
available to superusers, so this step is not optional. Then, we modify the postgres
user's .pgpass file to allow the rep_user database user to connect from either node.
While we're making user changes, we also alter pg_hba.conf on both nodes so that
each server can connect to the other. Once we reload the PostgreSQL configuration
files, the user setup is complete.

We should note that more advanced installations will probably have
a specific user for streaming replicas and a completely separate user
for logical replication solutions such as Slony due to the superuser
requirement. That wasn't entirely necessary for this book, but do
consider it when using tools such as Slony.

With our preliminary work complete, we create a basic configuration file (in the
directory that we've linked to /etc/slony for convenience) named nodes.slonik.
This file describes the name of the cluster as well as each node and its connection
parameters. We create this file because it is a preamble commonly used in all Slony-
related commands—why not save some typing effort?

Next, we create the init.slonik file to initialize the Slony cluster. We start by
including the nodes.slonik file we created earlier, and then initialize node 1 as the
master node. After the cluster is created, we store the node for our subscriber. The
two store path commands are necessary so that each node knows how to
communicate with the other.

We should create two path entries for each subscriber node that we create, as each
channel is unidirectional. Slony communicates like this, where each Slony box
represents one path:

PostgreSQL Replication Chapter 7

[312]

With our configuration files created, we need to install Slony on both nodes. We do
this by sending the contents of our init.slonik file to the slonik command. The
slonik tool has its own language and interprets our configuration files as
instructions. For now, these instructions tell it to initialize a cluster named
replication with one node, one subscriber, and two communication paths.

Now that Slony is installed on both the master and subscriber nodes, we need to start
the slon utility. This tool does all of the actual work of the Slony software. It copies
data to the subscriber, schedules and executes internal events, performs maintenance,
and so on. It acts like a multipurpose daemon but does not fork or run in the
background by itself. Hence, we send the output to a log file in
/var/log/postgresql and tell it to run in the background by specifying & at the
end of the command. Once again, we have to specify connection information for these
daemons to work properly.

There's more...
Only Debian variants are supplied with a systemd-compatible service control file,
mainly because it is adapted from the deprecated /etc/init.d/slony1 file
included with the package. As a consequence, we chose to start Slony manually to
demonstrate how this is done. On Debian systems, you can do this instead:

sudo systemctl enable slony1
sudo systemctl start slony1

We're not quite sure why the PGDG packagers of Red Hat and CentOS don't include
a similar file for these distributions but suspect it's partially due to the fact Slony itself
has been deigned a historic curiosity. Indeed, we'll soon learn that all trigger-based
replication systems are considered antiquities.

See also
The Slony documentation is extremely extensive and includes a tutorial similar to this
one. It also includes much more in-depth explanations of the process. Please refer to
these resources for more:

Slony-I 2.2.8 Documentation: http:/ / www.slony. info/ documentation/ 2.
2/index. html

Replicating Your First Database: http:/ /www. slony. info/
documentation/ 2. 2/tutorial. html

http://www.slony.info/documentation/2.2/index.html
http://www.slony.info/documentation/2.2/index.html
http://www.slony.info/documentation/2.2/index.html
http://www.slony.info/documentation/2.2/index.html
http://www.slony.info/documentation/2.2/index.html
http://www.slony.info/documentation/2.2/index.html
http://www.slony.info/documentation/2.2/index.html
http://www.slony.info/documentation/2.2/index.html
http://www.slony.info/documentation/2.2/index.html
http://www.slony.info/documentation/2.2/index.html
http://www.slony.info/documentation/2.2/index.html
http://www.slony.info/documentation/2.2/index.html
http://www.slony.info/documentation/2.2/index.html
http://www.slony.info/documentation/2.2/index.html
http://www.slony.info/documentation/2.2/index.html
http://www.slony.info/documentation/2.2/index.html
http://www.slony.info/documentation/2.2/index.html
http://www.slony.info/documentation/2.2/index.html
http://www.slony.info/documentation/2.2/tutorial.html
http://www.slony.info/documentation/2.2/tutorial.html
http://www.slony.info/documentation/2.2/tutorial.html
http://www.slony.info/documentation/2.2/tutorial.html
http://www.slony.info/documentation/2.2/tutorial.html
http://www.slony.info/documentation/2.2/tutorial.html
http://www.slony.info/documentation/2.2/tutorial.html
http://www.slony.info/documentation/2.2/tutorial.html
http://www.slony.info/documentation/2.2/tutorial.html
http://www.slony.info/documentation/2.2/tutorial.html
http://www.slony.info/documentation/2.2/tutorial.html
http://www.slony.info/documentation/2.2/tutorial.html
http://www.slony.info/documentation/2.2/tutorial.html
http://www.slony.info/documentation/2.2/tutorial.html
http://www.slony.info/documentation/2.2/tutorial.html
http://www.slony.info/documentation/2.2/tutorial.html
http://www.slony.info/documentation/2.2/tutorial.html
http://www.slony.info/documentation/2.2/tutorial.html

PostgreSQL Replication Chapter 7

[313]

Copying a few tables with Slony
Once Slony is installed and running on both nodes, we can actually make use of it
and copy tables to a remote database. For high-availability PostgreSQL servers,
making data available to external systems means long-running and potentially
disruptive ad hoc queries no longer execute locally. It also means that reporting
environments have direct copies of relevant tables and do not need to retrieve this
data from our OLTP systems.

While OLTP servers can act as OLAP systems as well, these workloads are quite
different. For the best performance possible and the least risk of outages, each server
should be specialized. This recipe will use Slony to copy individual tables so we can
decouple these two use cases.

Getting ready
We will be continuing where we left off in the Setting up Slony recipe. Please make
sure to have completed that recipe before continuing. As we need tables to test Slony,
we should create some. The pgbench utility can do this quickly. Execute this
command on the primary PostgreSQL server as the postgres user:

pgbench -i postgres

How to do it...
For this recipe, pgha1 is our provider and pgha2 will remain our subscriber. Follow
these instructions on the provider node (unless told otherwise) to copy the pgbench
tables and all future changes from pgha1 to pgha2:

Extract the table creation statements from the primary database with the1.
following command as the postgres user:

pg_dump -s -t 'pgbench*' postgres > /tmp/tables.sql

Create the empty tables on the subscriber node by executing this command2.
as the postgres user on the primary node:

psql -U rep_user -h pgha2 -f /tmp/tables.sql postgres

PostgreSQL Replication Chapter 7

[314]

Confirm that the tables exist on the subscriber node by executing the3.
following SQL statement on the subscriber node:

SELECT schemaname, tablename
 FROM pg_tables
 WHERE tablename LIKE 'pgbench%';

Create a file named pgbench_set.slonik in the /etc/slony directory4.
with the following contents:

include </etc/slony/nodes.slonik>;
create set (id=1, origin=1, comment='pgbench Tables');
set add table (set id=1, origin=1, id=1,
 fully qualified name = 'public.pgbench_accounts');
set add table (set id=1, origin=1, id=2,
 fully qualified name = 'public.pgbench_branches');
set add table (set id=1, origin=1, id=3,
 fully qualified name = 'public.pgbench_tellers');

Create a file named subscribe_pgbench.slonik in the /etc/slony5.
directory with the following contents:

include </etc/slony/nodes.slonik>;
subscribe set (id = 1, provider = 1, receiver = 2,
 forward = no);

Create the pgbench subscription set with this command:6.

slonik < /etc/slony/pgbench_set.slonik

Subscribe our secondary node to the new pgbench set with this command:7.

slonik < /etc/slony/subscribe_pgbench.slonik

Execute the following SQL on the subscriber node to confirm that data is8.
being copied:

SELECT count(*) FROM pgbench_accounts;

PostgreSQL Replication Chapter 7

[315]

How it works...
Before we can copy any data, we need to begin by building the necessary table
structures to receive the data. Slony only copies data and assumes that the source and
target tables have the exact same columns. Therefore, we use pg_dump to obtain a
schema-only (-s) extract of any table that begins with pgbench (-t 'pgbench*').
Using the -h parameter, we can execute the resulting SQL statement on the subscriber
database and create all of the pgbench tables as empty shells.

Before attempting to create the Slony set, we should first confirm that the tables exist
on the subscriber. We can check the pg_tables view and should see these records:

Once we've done this, we can continue by creating a slonik script that will create the
Slony subscription set itself. Sets are sent to any node that requests a subscription and
only includes tables in that set. This lets us group tables by content if necessary.
Observant readers may notice that we didn't add the pgbench_history table to the
subscription set. This is because Slony only copies tables with primary keys by
default.

Slony table IDs are assigned manually and must be unique across all
sets. We recommend skipping IDs between sets in case tables are
added later. An easy rule is to add 100 or 1,000 between each set.
Hence, if we created another set, its table IDs could start at 100 to
provide a sufficient buffer.

Next, we create one more slonik script for the subscription command itself. As this
is our first set, its id is 1. Though Slony supports chained table replication, we don't
need that for our setup, so we disable it by setting forward to no.

To send table contents to the remote server, we simply need to create the table set on
the primary node and subscribe the secondary node to the new set. This is one reason
that we created the two slonik scripts. Another reason is due to the chance that we
might need to rebuild this Slony replication cluster in the future. By having all of
these scripts, we can do this in a few quick steps by executing all of the slonik
scripts.

PostgreSQL Replication Chapter 7

[316]

Provided there were no errors returned by the slonik commands, we can confirm
that data is being sent to the subscriber with a single SQL query. We should see this:

Remember that we only extracted and copied the table definitions to the remote
server. If we see any rows there, they must have come from Slony.

There's more...
Slony operates by attaching triggers to both the source and target tables. Due to this,
creating a Slony set on a very active database can cause locking contention. Why does
it need triggers? The triggers on the source system capture insert, update, and delete
activities and forward them to the remote system. On subscriber nodes, the triggers
block any insert, update, or delete activity that does not originate from Slony itself.

The triggers also make it possible to switch between which node is the subscriber and
which is the origin without any further table locks. Keep this in mind when copying
data via Slony, or the locks could cause query timeouts and customer complaints. Try
to schedule new sets and set modifications during maintenance periods or low-usage
periods.

See also
The Slony documentation is extremely extensive and includes a tutorial similar to this
one. It also includes much more in-depth explanations of the process. Please refer to
these resources for more:

Slonik Meta Commands:
http://www.slony.info/documentation/2.2/metacmds.html

Slonik Preamble Commands:
http://www.slony.info/documentation/2.2/hdrcmds.html

Configuration and Action commands:
http://www.slony.info/documentation/2.2/cmds.html

http://www.slony.info/documentation/2.2/metacmds.html
http://www.slony.info/documentation/2.2/metacmds.html
http://www.slony.info/documentation/2.2/hdrcmds.html
http://www.slony.info/documentation/2.2/hdrcmds.html
http://www.slony.info/documentation/2.2/cmds.html
http://www.slony.info/documentation/2.2/cmds.html

PostgreSQL Replication Chapter 7

[317]

Setting up Bucardo
Bucardo is another popular logical replication engine that actually seems to have
originated earlier than Slony, in 2002. Like Slony, it also uses triggers to perform its
synchronization activity, but its syntax is much simpler. Furthermore, it also provides
multi-master capabilities; this means that changes made in either the primary or
secondary node will appear in both copies of a replicated table.

There is something to be said for tools that encourage simplicity when maintaining a
complex high-availability architecture. Let's explore Bucardo further.

Getting ready
If we've installed the official PostgreSQL PGDG repositories, we already have access
to this replication utility. At the time of this book revision, the latest version available
is 5.5.0.

Bucardo can be installed on Debian or Ubuntu systems with this command:

sudo apt install bucardo

And Red Hat-derived systems can use this:

sudo yum install bucardo_12

Once this is done on all intended provider and subscriber nodes, continue with the
recipe to configure and use Bucardo.

How to do it...
For these instructions, 10.0.30.1 (pgha1) is the provider PostgreSQL node, and
10.0.30.2 (pgha2) is the subscriber. Follow these instructions on the provider
system (unless informed otherwise) to activate Bucardo:

Enter the following line in the .pgpass file for the postgres user:1.

::*:bucardo:passwordhere

Ensure that the following line exists within the pg_hba.conf file on both2.
systems:

host all bucardo 10.0.30.1/24 md5

PostgreSQL Replication Chapter 7

[318]

Reload the PostgreSQL service on both nodes with the following command3.
as the postgres user:

pg_ctl -D /db/pgdata reload

Next, create a bucardo user in the database by executing the following4.
command as the postgres user:

CREATE USER bucardo WITH PASSWORD 'newpass' SUPERUSER;

Create a bucardo database with this command as the postgres user:5.

createdb -O bucardo bucardo

Create the default Bucardo configuration file and make it owned by the6.
postgres user:

sudo touch /etc/bucardorc
sudo chown postgres:postgres /etc/bucardorc
sudo chmod 644 /etc/bucardorc

As the postgres system user, complete the Bucardo installation with this7.
command, making sure to follow the configuration prompts:

bucardo install

Add the postgres database with these commands as the postgres user:8.

bucardo add db pgha1 dbname=postgres host=pgha1
bucardo add db pgha2 dbname=postgres host=pgha2

Then, ensure the necessary /var/run and /var/log directories can be9.
written by the postgres user:

sudo mkdir /var/run/bucardo /var/log/bucardo
sudo chown postgres:postgres /var/log/bucardo
sudo chown postgres:postgres /var/run/bucardo

Finally, start the Bucardo service by executing this command as the10.
postgres user:

bucardo start

PostgreSQL Replication Chapter 7

[319]

How it works...
Bucardo has a lot of prerequisites, and its installation and configuration process has
become somewhat cumbersome. Yet it also provides a proper daemon control utility
in bucardo once the onerous installation is complete. Once Bucardo is installed on
the primary server, we merely have to invoke bucardo with the install parameter
to finish the process.

For Bucardo to be installed, it needs a user named bucardo and a database named
bucardo. The bucardo user acts like the rep_user user we created for replication, so
it must be a PostgreSQL superuser. As such, we need to ensure that we use a
superuser for the User configuration setting during the installation process. This is
why we recommend that you run the bucardo utility as postgres when possible.
Here's what our installation screen looked like:

Once we press P and hit Enter, Bucardo is installed. This means the only steps that
remain involve starting the Bucardo service itself.

A lot of our preparatory work in creating the bucardo user and
database are only necessary because we didn't use trust
authentication in pg_hba.conf. Normally the bucardo install
command does all of this for us. Unfortunately, it also contains a lot
of reconnection magic and is very easy to disrupt with unexpected
settings. It's easier to simply circumvent a large portion of its
installation by doing it ourselves.

To do this, we need to prepare the /var/run/bucardo and /var/log/bucardo
directories so that Bucardo can create files there. As we are going to launch it as the
postgres user, the postgres system user needs to own these directories as well.

Next, we configure Bucardo itself by adding an internal alias for the postgres
database on each server. The bucardo command has a lot of operation modes, but for
now, all we need to do is add the postgres database itself. After doing so, we can
start Bucardo by calling bucardo with the start parameter.

PostgreSQL Replication Chapter 7

[320]

If everything goes well, we can call bucardo with the status parameter and see that
it's running, as shown in the following screenshot:

See also
Bucardo has an easy-to-follow documentation page with instructions on installation
and basic configuration. To learn more, please visit their site for these resources:

Bucardo Installation: https://bucardo.org/Bucardo/Installation.html
The Bucardo command-line tool: https:/ /bucardo. org/ Bucardo/
bucardo. html

Copying a few tables with Bucardo
Bucardo provides a very capable control mechanism in the bucardo command-line
tool. Unlike Slony, which depends on an arcane programming language to create new
replication sets and subscriptions, Bucardo is much more straightforward. As with
Slony, we still want to copy data to other servers to avoid overwhelming our primary
server.

In this recipe, we will utilize bucardo to create what Bucardo refers to as a dbgroup
and relgroup. A Bucardo dbgroup consists of multiple databases in a provider-
subscriber relationship, and a relgroup contains one or more tables. These are the
basis of its synchronization system.

Getting ready
We will be continuing where we left off in the Setting up Bucardo recipe. Please make
sure that you have completed that recipe before continuing. As usual, we will use the
pgbench utility to create an initial set of tables. Execute this command on the primary
PostgreSQL server as the postgres user if you haven't already done so:

pgbench -i postgres

https://bucardo.org/Bucardo/Installation.html
https://bucardo.org/Bucardo/bucardo.html
https://bucardo.org/Bucardo/bucardo.html
https://bucardo.org/Bucardo/bucardo.html
https://bucardo.org/Bucardo/bucardo.html
https://bucardo.org/Bucardo/bucardo.html
https://bucardo.org/Bucardo/bucardo.html
https://bucardo.org/Bucardo/bucardo.html
https://bucardo.org/Bucardo/bucardo.html
https://bucardo.org/Bucardo/bucardo.html
https://bucardo.org/Bucardo/bucardo.html
https://bucardo.org/Bucardo/bucardo.html
https://bucardo.org/Bucardo/bucardo.html

PostgreSQL Replication Chapter 7

[321]

How to do it...
As with all of the previous recipes, pgha2 will remain our replication subscriber.
Execute all commands in this recipe on the provider system (pgha1) as the postgres
system user. Follow these steps to copy the sample pgbench tables:

Extract the table creation statements from the primary node with the1.
following command:

pg_dump -s -t 'pgbench*' postgres > /tmp/tables.sql

Create the empty tables on the subscriber node by executing this command2.
on the primary node:

psql -U rep_user -h pgha2 -f /tmp/tables.sql postgres

Add all of the pgbench tables to Bucardo with these commands:3.

bucardo add table pgbench_accounts db=pgha1
bucardo add table pgbench_branches db=pgha1
bucardo add table pgbench_tellers db=pgha1

Confirm tables are being tracked by executing this command:4.

bucardo list tables

Create a Bucardo database group with this command:5.

bucardo add dbgroup pgbench pgha1:source pgha2:target

Create a Bucardo relation group by executing this command:6.

bucardo add relgroup pgbench pgbench_accounts \
 pgbench_branches pgbench_tellers

Execute the following commands to add a synchronization set to Bucardo:7.

bucardo stop
bucardo add sync pgbench dbgroup=pgbench \
 relgroup=pgbench onetimecopy=1
bucardo start

Finally, execute this command to view the status of Bucardo:8.

bucardo status

PostgreSQL Replication Chapter 7

[322]

How it works...
As with Slony, we need to begin by duplicating table structures to the subscriber.
Bucardo only copies data and assumes that the source and target tables have the exact
same columns. Therefore, we use pg_dump to obtain a schema-only (-s) extract of any
table that begins with pgbench (-t 'pgbench*'). Using the -h parameter, we can
execute the resulting SQL on the subscriber database and create all of the pgbench
tables as empty shells.

After copying the table definitions, we can use the bucardo tool for all of the
remaining steps. The first of these include configuring Bucardo to recognize each
table we want to replicate. The add table parameter does this. By adding the
db=pgha1 segment, we explicitly state which database owns the table we're adding.
In this case, pgha1 is the alias we created for the origin server during the installation
of Bucardo.

To prove that Bucardo added these tables to its configuration, we can check with the
list tables parameter. The output from bucardo should resemble this:

This relation group is the equivalent of a Slony table set. Like a relation set, we also
need to define a database group. This database group will represent the source and
target relationships for all of the tables we plan to synchronize. We state this
relationship explicitly as pgha1:source and pgha2:target so there is no ambiguity
regarding how these two databases are related within Bucardo.

With a database group defined, it's time to give directions to our relation group by
utilizing the bucardo tool again. This time, we send the add sync parameter and a
few other elements. The relgroup parameter tells Bucardo which table set we will be
copying, and the dbgroup parameter denotes which database relationship we wish to
involve. Bucardo defines groups this way because it's entirely possible for tables to
exist in multiple databases. Were we to declare multiple different database groups,
we could assign the same relation group to any or all of them.

PostgreSQL Replication Chapter 7

[323]

These tables are empty on the target, and this is not the behavior we want. So, we also
set the onetimecopy value to 1, indicating that it should fill the tables before keeping
them updated.

This behavior is much different from how Slony works. If the source
and target tables already contain data, Slony will truncate the target
and copy all data from the source. If a table has already been
synchronized before adding it to a replication set, this redundant
copying can be very expensive. Bucardo only copies all data if it is
told to do so with the onetimecopy parameter, which is a major
benefit when running a sensitive high-availability cluster.

Bucardo maintains separate child processes for each replication set so that it can
handle multiple synchronization sets simultaneously. However, notice that we
temporarily stopped the bucardo service before adding the synchronization set. This
is because we noticed an intermittent bug regarding the onetimecopy parameter.

If a new sync set is added while Bucardo is running, there's a chance the current table
contents won't be copied to the target database even though we asked for an initial
copy. Even if this bug has been fixed, it's good to be precautious.

After Bucardo is restarted, we should view the sync status to confirm that it is active
and copying our cluster properly. The status output from bucardo should look like
this:

From this output, we can see that the pgbench synchronization set is in a Good state
and hasn't encountered any events that would adversely affect replication.

See also
Bucardo has more capabilities than we've covered here. To learn more, please visit
their site: https://bucardo.org/Bucardo/bucardo.html

https://bucardo.org/Bucardo/bucardo.html
https://bucardo.org/Bucardo/bucardo.html

PostgreSQL Replication Chapter 7

[324]

Setting up pglogical
PostgreSQL 9.4 introduced a feature called replication slots. This essentially makes it
possible to decode the transaction log and extract database write traffic for remote
replay at a logical level. Unlike standard replication, which requires the primary and
replica to be identical, slots can be mined for specific information relevant to user
needs.

One of the first PostgreSQL extensions to make use of replication slots is pglogical by
2ndQuadrant. Like Slony and Bucardo, pglogical can copy individual tables from one
database to another. Unlike those other pieces of software, it does so without
encumbering tables with performance-robbing triggers and does not rely on an
external daemon to coordinate data copy streams.

This recipe will explain how to install and configure pglogical for easy table copies.

Getting ready
The latest community version of pglogical at the time of writing this book is 2.2.2.
2ndQuadrant conveniently maintains packages for most major Linux platforms and
makes them available as a public repository. They provide instructions for
subscribing at this URL: https://dl.2ndquadrant.com/default/release/site/.

Rather than editing several files and importing keys, 2ndQuadrant has a script that
handles this automatically. Debian variants can use these commands to install the
repository and pglogical for PostgreSQL 11:

curl https://dl.2ndquadrant.com/default/release/get/deb | sudo bash
sudo apt install postgresql-11-pglogical

Red Hat or CentOS fans would add a repository and pglogical for PostgreSQL 11
with these commands:

curl https://dl.2ndquadrant.com/default/release/get/11/rpm | sudo bash
sudo yum install postgresql11-pglogical

Note that RPM/yum-managed distributions must include the version in the
repository subscription.

https://dl.2ndquadrant.com/default/release/site/

PostgreSQL Replication Chapter 7

[325]

At the time we were updating this chapter, pglogical didn't yet
support PostgreSQL 12. As such, all instructions and
demonstrations will assume PostgreSQL 11. This may have changed
by the time of publication, so we recommend checking the
repository at this URL for the target platform and PostgreSQL
version: https://dl.2ndquadrant.com/default/release/browse/.

How to do it...
As usual for these instructions, 10.0.30.1 (pgha1) is the provider PostgreSQL node,
and 10.0.30.2 (pgha2) is the subscriber. Follow these steps to install pglogical:

Ensure that the pg_hba.conf file on the provider and subscriber servers1.
contains these lines:

host all rep_user 10.0.30.1/24 md5
host replication rep_user 10.0.30.1/24 md5

Ensure that the wal_level, max_replication_slots, and2.
shared_preload_libraries settings in postgresql.conf are set as
follows on the provider server:

wal_level = logical
max_replication_slots = 10
shared_preload_libraries = 'pg_stat_statements, pglogical'

Ensure the shared_preload_libraries setting is set as follows on the3.
subscriber server:

shared_preload_libraries = 'pg_stat_statements, pglogical'

Debian-based distributions should restart PostgreSQL with this command:4.

sudo systemctl restart postgresql@11-main

Red Hat-based distributions should restart PostgreSQL with this command:5.

sudo systemctl restart postgresql-11

https://dl.2ndquadrant.com/default/release/browse/
https://dl.2ndquadrant.com/default/release/browse/

PostgreSQL Replication Chapter 7

[326]

Create the replication user on both nodes if it doesn't already exist with this6.
SQL statement:

CREATE USER rep_user WITH REPLICATION SUPERUSER PASSWORD
'newpass';

On both servers, create a file named .pgpass in the postgres user's home7.
directory with the following contents:

::*:rep_user:newpass

Alter the .pgpass file to have the correct permissions with this command:8.

chmod 600 ~/.pgpass

Execute these statements in the postgres database on the provider server:9.

CREATE EXTENSION pglogical;
SELECT pglogical.create_node(
 node_name := 'origin',
 dsn := 'host=pgha1 dbname=postgres user=rep_user'
);

Finally, execute these statements in the postgres database on the10.
subscriber node:

CREATE EXTENSION pglogical;
SELECT pglogical.create_node(
 node_name := 'target',
 dsn := 'host=pgha2 dbname=postgres user=rep_user'
);

How it works...
We start by changing a handful of configuration settings. The two lines in
pg_hba.conf ensure that the rep_user user can connect to both the replication
stream on the origin server, along with any database we might want to use as a
source for table replication.

PostgreSQL Replication Chapter 7

[327]

The other settings are for postgresql.conf, and if you followed the Configuration –
getting it right the first time recipe in Chapter 3, Minimizing Downtime, on
configuration, you should already have all of these set properly. We change
wal_level to logical because that's a requirement to use logical replication in
PostgreSQL. The previous replica setting is only suitable for standard streaming
replication.

We also need to increase max_replication_slots if it is a low or zero value so
logical replication works as expected. And finally, we must include pglogical in the
list of shared libraries to load on server start. By restarting PostgreSQL, we activate all
of these modifications, and this step is required because we introduced a new shared
library.

The next steps create a rep_user user to actually manage the replication stream, with
a password saved in .pgpass so the stream is at least relatively secure. Note that we
included both SUPERUSER and REPLICATION modifiers to provide this user with
appropriate privileges.

The last two steps simply install the pglogical extension in the primary and
subscriber databases and create a node to represent each. By naming any nodes
involved in replication, we can use them in multiple replication streams if we so
desire.

See also
To learn more about pglogical and PostgreSQL logical replication, refer to the
following resources:

The pglogical documentation:
https://www.2ndquadrant.com/en/resources/pglogical/pglogical-docs
/

Logical Decoding Concepts:
https://www.postgresql.org/docs/current/logicaldecoding-explanati
on.html

https://www.2ndquadrant.com/en/resources/pglogical/pglogical-docs/
https://www.2ndquadrant.com/en/resources/pglogical/pglogical-docs/
https://www.postgresql.org/docs/current/logicaldecoding-explanation.html
https://www.postgresql.org/docs/current/logicaldecoding-explanation.html

PostgreSQL Replication Chapter 7

[328]

Copying a few tables with pglogical
Once we've installed the pglogical extension, we have access to any of the
functionality it provides. For now, we're going to focus on the basic table replication
features. More advanced capabilities are available, but we won't be needing them for
this recipe.

An important difference between pglogical and every other current logical replication
system is that it does not use triggers to capture changes to table contents. With the
addition of logical replication slots, pglogical actually intercepts table changes as
transactions are committed. This makes it a perfect match for OLTP database systems
that require high availability and don't want to sacrifice performance. The transaction
log is a standard part of PostgreSQL, so why not leverage it for logical replication
now that such a thing is possible?

This recipe will demonstrate how to copy tables with this useful extension.

Getting ready
We will be continuing where we left off in the Setting up pglogical recipe. Please make
sure that you have completed that recipe before continuing. As usual, we will use the
pgbench utility to create an initial set of tables. Execute this command on the primary
PostgreSQL server as the postgres user if you haven't already done so:

pgbench -i postgres

How to do it...
As with all of the previous recipes, pgha1 is our origin server and pgha2 will remain
our replication subscriber. Execute all commands in this recipe as the postgres
system user on the provider node unless stated otherwise. Follow these steps to copy
the sample pgbench tables:

Extract the table creation statements from the primary node with the1.
following command:

pg_dump -s -t 'pgbench*' postgres > /tmp/tables.sql

PostgreSQL Replication Chapter 7

[329]

Create the empty tables on the subscriber node by executing this command2.
on the primary node:

psql -U rep_user -h pgha2 -f /tmp/tables.sql postgres

Execute this SQL on the primary server to create a replication set:3.

SELECT pglogical.create_replication_set(
 set_name := 'pgbench',
 replicate_insert := TRUE, replicate_update := TRUE,
 replicate_delete := FALSE, replicate_truncate := FALSE
);

Add the pgbench tables to the replication set with the following SQL on4.
the primary server:

SELECT pglogical.replication_set_add_table(
 set_name := 'pgbench', relation :=
'public.pgbench_accounts'
);
SELECT pglogical.replication_set_add_table(
 set_name := 'pgbench', relation :=
'public.pgbench_branches'
);
SELECT pglogical.replication_set_add_table(
 set_name := 'pgbench', relation :=
'public.pgbench_tellers'
);

Execute the following SQL on the subscriber node to begin replicating the5.
set:

SELECT pglogical.create_subscription(
 subscription_name := 'pgbench',
 replication_sets := ARRAY['pgbench'],
 synchronize_data := TRUE,
 provider_dsn := 'host=pgha1 dbname=postgres user=rep_user'
);

Check the health of our subscription with this SQL statement executed on6.
the subscriber node:

SELECT subscription_name, status, provider_node,
 replication_sets
 FROM pglogical.show_subscription_status('pgbench');

PostgreSQL Replication Chapter 7

[330]

How it works...
After the last few extensions, using pglogical is almost refreshingly easy. As usual, we
start by copying the pgbench table definitions from the origin node to the subscriber.
Once that is done, the provider node has only one job: to create a subscription set.

The subscription set we create is named pgbench to fit the theme of copying multiple
pgbench tables. When defining a replication set with the create_replication_set
function, we actually have a few options that the other replication systems did not
offer. We elected to only replicate INSERT and UPDATE statements in this example. In
such a scenario, the origin server can delete records from the table or truncate it
entirely, and the records on the subscriber will remain. The only other step is to add
all of the tables we want in that replication set with the
replication_set_add_table function.

We only need to execute a single command on the subscriber! We've already created
the tables themselves, so why complicate matters? By invoking the
create_subscription function, we specify the name of the subscription itself, the
replication set we want, and the provider of the table contents. We don't need to state
the synchronize_data parameter since it defaults to TRUE already, but it's
important to know the option is available.

If we execute the final statement on the subscriber, we should be able to determine
whether our data stream is working properly. The output from the provided SQL
statement should look something like this:

The pglogical extension works by utilizing background workers, a feature added in
PostgreSQL 9.4. Since these background workers are a part of PostgreSQL itself,
they're running while our database instance is online. This is the reason pglogical
does not require a daemon to manage subscriptions or data transfers; PostgreSQL
handles it automatically.

PostgreSQL Replication Chapter 7

[331]

There's more...
Remember in step 3 how we defined the replication set to only forward INSERT and
UPDATE statements? The primary reason to do something like this is that we're
sending data to some kind of archival system. Since these types of databases tend to
accumulate data for months or even years, they're also commonly partitioned. The
pglogical extension is perfectly compatible with this approach, but there is one caveat.

Before PostgreSQL 10 introduced native partitioning, partitions were usually
managed via a trigger and a complicated series of constraints to distribute data based
on inheritance rules. Reporting or other data accumulation systems that use this
approach rely on this trigger to ensure data is deposited in the correct partition.

To ensure data gets where we need it to go, we need to modify that trigger slightly so
it's compatible with pglogical. For example, if our trigger is named
pgbench_accounts_part_trig, we would need to execute this SQL:

ALTER TABLE pgbench_accounts
ENABLE ALWAYS TRIGGER pgbench_accounts_part_trig;

Once we've done that, we could have a single partition or hundreds, and incoming
data from pglogical will reach its appropriate destination. If we already have data in
our tables, we also need to set synchronize_data to FALSE during the subscription
phase, or we might end up with multiple copies of the origin data. This is due to
limitations PostgreSQL inheritance-based partitions have regarding primary keys.

The preceding caveat only applies to inheritance-based partitions.
Partitions created using the native PostgreSQL 10+ (CREATE TABLE
... PARTITION OF ...) syntax are implemented much
differently. As a consequence, pglogical is not able to insert into
native PostgreSQL partitions.

The base table in these cases is not really a table, but more of a
redirection object and pglogical operates at an API level that does
not follow the redirection. Hence, pglogical will attempt to insert
into the base partition table, which does not really exist.

PostgreSQL Replication Chapter 7

[332]

See also
Again, we strongly recommend visiting the following documentation to learn more
about pglogical and logical replication slots:

The pglogical documentation:
https://www.2ndquadrant.com/en/resources/pglogical/pglogical-docs
/

Logical Decoding Concepts:
https://www.postgresql.org/docs/current/logicaldecoding-explanati
on.html

Copying a few tables with native logical
replication
Starting with version 10, PostgreSQL natively supports logical replication using
publication and subscription structures. These are directly managed by the
PostgreSQL syntax parser as native SQL, and create objects in the system catalog that
are managed just like everything else.

This makes it almost trivial to create lists of tables to transmit to recipient PostgreSQL
servers located elsewhere. It also means standard PostgreSQL tools can interact with
the subscription and table sets in ways that extensions cannot reproduce.

This recipe will create a basic table set and explain a bit about the limitations of this
type of logical replication.

Getting ready
Unlike the other software we've discussed previously, there's nothing to install. So
long as we're using PostgreSQL 10 or greater, we already have this functionality.
Simply follow along with the recipe!

Otherwise, we will use the pgbench utility to create an initial set of tables. Execute
this command on the primary PostgreSQL server as the postgres user if you haven't
already done so:

pgbench -i postgres

https://www.2ndquadrant.com/en/resources/pglogical/pglogical-docs/
https://www.2ndquadrant.com/en/resources/pglogical/pglogical-docs/
https://www.postgresql.org/docs/current/logicaldecoding-explanation.html
https://www.postgresql.org/docs/current/logicaldecoding-explanation.html

PostgreSQL Replication Chapter 7

[333]

How to do it...
As with all of the previous recipes, pgha1 is our origin server and pgha2 will remain
our replication subscriber. Execute all commands in this recipe as the postgres
system user on the provider node unless stated otherwise. Follow these steps to copy
the sample pgbench tables:

Extract the table creation statements from the primary node with the1.
following command:

pg_dump -s -t 'pgbench*' postgres > /tmp/tables.sql

Create the empty tables on the subscriber node by executing this command2.
on the primary node:

psql -U rep_user -h pgha2 -f /tmp/tables.sql postgres

Execute this SQL on the primary server to create a replication set:3.

CREATE PUBLICATION pgbench
 FOR TABLE pgbench_accounts, pgbench_branches,
 pgbench_tellers, pgbench_history;

Execute the following SQL on the subscriber node to begin replicating the4.
set:

CREATE SUBSCRIPTION pgbench CONNECTION 'host=pgha1
dbname=postgres user=rep_user' PUBLICATION pgbench;

Check the health of our subscription with this SQL statement:5.

SELECT slot.slot_name, slot.slot_type, slot.active,
 stat.application_name, stat.state, stat.client_addr
 FROM pg_replication_slots slot
 JOIN pg_stat_replication stat ON (stat.pid =
slot.active_pid);

How it works...
That was much easier than expected! Without any extra software to install, there's
very little in the way of setup. All we need to do is create the publication and the
subscription and our tables are immediately in transit.

PostgreSQL Replication Chapter 7

[334]

Still, we need something to replicate, so we used pg_dump to extract the tables we
want to copy. Similarly, PostgreSQL will not automatically create recipient tables on
the subscriber, so we must bootstrap them as empty shells with psql by importing
the tables.sql file we extracted previously.

Unlike Slony, Bucardo, or pglogical, however, we don't need to first create node
records before copying tables. PostgreSQL itself is the node, and it has its own
records, which it manages internally. Hence, we can jump straight to using CREATE
PUBLICATION to publish the list of tables we want to provide to other nodes. We
could have specified FOR ALL TABLES here instead, but we like being explicit.

Next, we invoke CREATE SUBSCRIPTION on the recipient node, and in this case, we
only need to name our subscription and list the provider DSN and the fact we want to
obtain the pgbench PUBLICATION set. Since a listed provider may publish multiple
sets, this is a fairly logical operation.

Once we've done all of that, we can inquire as to the state of the subscription by
executing a query on the provider node. If everything went well, we should see this:

From here, we can see that PostgreSQL explicitly names the slot after the
subscription, and the connecting server does the same via application_name. This
makes it much easier to track which publications are being sent to which subscribers.

There's more...
Despite how easy native replication is to manage, there are some elements we believe
are important to share.

No sequences
Unlike Slony, Bucardo, or pglogical, native logical replication does not support
sequences. We didn't explain how to copy sequences in those recipes, but the
functionality is provided. This means if we want to use PostgreSQL native logical
replication to upgrade between major versions, we would need to manually dump
the most recent sequence values from the origin node and import them in the
subscriber.

PostgreSQL Replication Chapter 7

[335]

This isn't too difficult to accomplish manually but should be a consideration before
expecting the sequences to automatically reflect the proper values.

Tool integration
We mentioned that PostgreSQL native logical replication is highly integrated into the
database system and included tools. The best way to demonstrate this is to use the \d
command from within psql to describe one of the tables we're copying:

As we can see here, psql reported that this table is part of a publication. This is also
very handy when browsing through the database objects in our system.

Keys required for UPDATE and DELETE
Observant readers may have noticed we added the pgbench_history table to the
publication. We've already explained why other logical replication solutions do not
allow this, but we felt it would be a good demonstration. PostgreSQL did not
complain about this when we created the publication, but watch what happens when
we try to delete a value from the table:

PostgreSQL Replication Chapter 7

[336]

This means PostgreSQL native logical replication has the same limitation as other
implementations. This makes perfect sense though, as it would be impossible for the
recipient system to safely delete or update a record without a unique identifying
characteristic. Hence, it's always a good practice to add some kind of key to any tables
to facilitate replication at a later time.

See also
PostgreSQL native logical subscription sets are extremely useful for basic replication
needs. For more information, check out the PostgreSQL documentation:

CREATE PUBLICATION: https:/ /www. postgresql. org/ docs/ current/
sql- createpublication. html

CREATE SUBSCRIPTION:
https://www.postgresql.org/docs/current/sql-createsubscription.ht
ml

Logical Replication:
https://www.postgresql.org/docs/current/logical-replication.html

https://www.postgresql.org/docs/current/sql-createpublication.html
https://www.postgresql.org/docs/current/sql-createpublication.html
https://www.postgresql.org/docs/current/sql-createpublication.html
https://www.postgresql.org/docs/current/sql-createpublication.html
https://www.postgresql.org/docs/current/sql-createpublication.html
https://www.postgresql.org/docs/current/sql-createpublication.html
https://www.postgresql.org/docs/current/sql-createpublication.html
https://www.postgresql.org/docs/current/sql-createpublication.html
https://www.postgresql.org/docs/current/sql-createpublication.html
https://www.postgresql.org/docs/current/sql-createpublication.html
https://www.postgresql.org/docs/current/sql-createpublication.html
https://www.postgresql.org/docs/current/sql-createpublication.html
https://www.postgresql.org/docs/current/sql-createpublication.html
https://www.postgresql.org/docs/current/sql-createpublication.html
https://www.postgresql.org/docs/current/sql-createpublication.html
https://www.postgresql.org/docs/current/sql-createpublication.html
https://www.postgresql.org/docs/current/sql-createpublication.html
https://www.postgresql.org/docs/current/sql-createpublication.html
https://www.postgresql.org/docs/current/sql-createsubscription.html
https://www.postgresql.org/docs/current/sql-createsubscription.html
https://www.postgresql.org/docs/current/logical-replication.html

8
Backup Management

A proper database backup is probably the most important component of a true high
availability stack. Inadequate backups can lead to or even compound data loss by
providing a false sense of security in the face of a catastrophe.

In the chapter where we explained architecture, we provided a recipe that explained
the 3-2-1 backup rule. This is a good start but is more of a design and resource
allocation consideration. Truly managing PostgreSQL backups means having the
right software, configuring it optimally, and testing both the backup and recovery
procedures.

We've written this chapter to apply the architecture lessons we learned at the
beginning of this book, and expand upon it with a solid foundation by focusing on
the Barman backup software. In our experience, this is the most reliable approach for
constructing a fully integrated high availability stack because it's designed from a
server management perspective. Most backup tools merely focus on one instance of
PostgreSQL, despite the fact most larger installations consist of multiple independent
clusters that require coordination.

Yet other tools still serve a valuable purpose. Sometimes a one-off backup really is the
best approach, and other tools work better for synchronizing data to dedicated cloud
servers. This is why this chapter also covers the proper usage of the popular
pgBackRest and WAL-E backup systems. All that we really ask is that nobody ever
depends on pg_dump for anything beyond occasional partial extracts; it is not a
backup tool.

This chapter will help to ensure backups not only fulfill their stated role but are also
reliable, fast, and efficient. Disk space is getting cheaper every day, but it still isn't
free. Let's make our backups a true pillar that supports the availability of our data.

Backup Management Chapter 8

[338]

In this chapter, we will learn where to turn when backing up large PostgreSQL
clusters becomes a concern. We will cover the following recipes in this chapter:

Deciding when to use third-party tools
Installing and configuring Barman
Backing up a database with Barman
Restoring a database with Barman
Obtaining Barman diagnostics and information
Sending Barman backups to a remote location
Installing and configuring pgBackRest
Backing up a database with pgBackRest
Restoring a database with pgBackRest
Installing and configuring WAL-E
Managing WAL files with WAL-E

Deciding when to use third-party tools
Managing PostgreSQL backups need not be difficult or require third-party software
tooling. In many small or even medium-size environments, it may be perfectly
acceptable to rely on the provided pg_basebackup utility.

Yet this assumption rapidly breaks down upon the introduction of even small
amounts of complexity. Creating a one-time backup is only a tiny portion of backing
up a Relational Database Management System (RDBMS). A complete backup
solution will also manage WAL files to orchestrate Point-In-Time Recovery (PITR),
restore a backup to a remote location, and target multiple servers if necessary. There's
a lot of room for accidents, and any mistake can result in a useless backup or a lost
production environment.

While much of this can be scripted, why reinvent the wheel? These tools exist because
someone took the time to solve the problem of backup management beyond the
basics. This recipe will act as a worksheet to assess the PostgreSQL clusters and what
environments they represent. This will help us to determine how many backups we
should have and perhaps how best to automate using more advanced software.

Backup Management Chapter 8

[339]

Getting ready
We will be filling out a very short spreadsheet inventory of our PostgreSQL server
clusters. In this context, a cluster is an independent combination of primary nodes
and associated standby or replica systems. Some organizations have several of these,
so we must have a record of them all to ensure each can be replaced in the case of a
total server loss. Even if we choose not to use more advanced backup software, this
will serve as a valuable source of inventory and documentation for our database
infrastructure.

Be sure to have access to a spreadsheet program before continuing. We also strongly
recommend a diagram of all PostgreSQL servers for each segment of your database
architecture. This will likely include production and Disaster Recovery (DR)
environments, but may also include user acceptance testing, staging/QA, and
development depending on how critical these are to the organization.

How to do it...
Follow these steps to determine the extent of necessary backup tooling:

Create a spreadsheet with the following columns: Cluster Name,1.
Environment, Streaming, Logical, DC, Size (GB), PITR, and Backup.
Create a row for each server indicating its Cluster Name based on the2.
primary focus of the data.
For each row, set the corresponding attribute column as follows:3.

For Environment, use Production, Disaster Recovery, UAT,
QA, or any other common internal indicator.
Specify the number of physical streaming replica nodes in the
cluster.
If applicable, list the number of logical replica nodes; any node
that may exist as a write target counts here.
If there are multiple data centers, list how many the cluster
inhabits in the DC column.
Indicate the amount of storage required for the largest node in
the cluster.
Specify either TRUE or FALSE in the PITR column if PITR is
desired when restoring from a backup.

Backup Management Chapter 8

[340]

Enter the highest value between the DC and Logical columns in the4.
Backup column.
Consider using a backup management platform if any of these are true:5.

Any environment contains three or more clusters.
Three or more environments are involved.
Three or more nodes in a cluster may provide a source for a
backup.
Three or more nodes are logical in nature.
The total number of backups across all clusters is greater than
three.
PITR is TRUE for any cluster.
Any cluster is greater than 1 TB in size.

How it works...
The idea behind this spreadsheet is to describe the environments in our architecture
sufficiently so that we can track where the backups originate and how many there
should be. Once we have a definitive number, it may be apparent that it's too much to
manage with a series of ad hoc scripts and scheduled backup or WAL archival
maintenance events.

This example spreadsheet represents part of our architecture in the introduction:

When we say Cluster Name, we really mean the primary focus of the data itself. If
the application stack is a stock trading system, we might call it Trading. If it's a
complex game engine based on many interactions, it could be a Gameworld instead.
The point is to be descriptive of the collective PostgreSQL nodes where the data
resides.

Backup Management Chapter 8

[341]

The Environment column has another goal related to physical separation. In many
systems, it's not uncommon to duplicate every server in multiple tiers. Some may
exist in case of a system outage, others for quality assurance, and more for
development. Each may be separated from the others by strict firewall rules to
prevent cross-contamination. Some may be built as a restoration from another.

It's important to know how many PostgreSQL nodes exist as Streaming replicas
mainly because any of them may become a source of our backup data. In the event a
primary server goes offline permanently, we may need to reconfigure the backup
system to use the new server as a target.

Next, we want to know how many logical nodes there are in the cluster. What is a
logical node? Any node that can receive writes qualifies here. This could be a
reporting or archival server that ingests and accumulates data for long-term analysis,
or any writable node in a multi-master cluster, or even horizontally scaled shards
managed by some complex data federation mechanism. Whatever the case, all
writable nodes have data that is not represented on another node, and hence should
be backed up.

The number of data centers (DC) is important mainly as a data isolation case. Backup
systems are usually physically located in the same data center as the nodes they back
up. This data may be exported later, but the first iteration is usually local. What
happens if we have two data centers and only back up one of them? That's fine until
we lose that data center in a catastrophic event, at which point we have no backups at
all! The truly paranoid will want a backup in every data center as a failsafe.

The reason we care about the Size (GB) of each node is based on backup duration.
Physical storage performance has generally not been keeping pace with data growth
rates in larger organizations. The author has personally administered a 60 TB cluster
and designed a backup system specifically to manage its size in a reasonable time.
This required several weeks of development and debugging, and while the end result
worked as desired, it's entirely custom-made. That makes it fragile and lacking in
support. Many custom backup solutions have these attributes, and database size
tends to amplify problems. It's much harder to diagnose or restart a failed 60 TB
backup than one that's only 200 GB.

Finally, we must consider whether or not we want to use PITR when performing a
database restoration. Not all environments will require this, as indicated in the
example spreadsheet. However, managing PITR means keeping track of every WAL
file produced from every writable server between each backup. It means those files
must be managed, backed up, and retrieved individually. This can be complex on its
own and becomes much more difficult as server count increases.

Backup Management Chapter 8

[342]

From all of this, we can produce a rough (and likely inflated) estimate of how many
backups we could need to safeguard the cluster. Each of these is a moving part that
we don't want to mix with others, which may exist in multiple environments and
consist of several mutually-exclusive targets. Orchestrating this manually or using
bespoke scripts is possible, but extremely error-prone even when designed by experts
in the field.

The recommendations we listed for choosing to use backup software should not be
considered exhaustive. Attentive readers may have noticed that we used the number
3 frequently, and we did so to gently suggest anything greater than a mere pair of
servers likely requires augmented management.

Consider the Dev environment of the Gameworld example we provided. Each
developer likely has their own sample data, working set, portion of the engine, patch
level, and any number of variables. If that PostgreSQL resource were lost, that could
result in hours or even days of lost productivity. This means even development
environments can contribute to backup complexity, as in this example we would need
to manage eight separate backups for each PostgreSQL system being used by a
different developer.

Installing and configuring Barman
Though PostgreSQL provides a very capable tool in pg_basebackup, it's not really a
complete backup management system. Barman is a backup and recovery manager
developed by 2ndQuadrant to remedy that situation.

Unlike included utilities, Barman can receive WAL archives, produce and restore
database backups, list available backups, control backup retention policies, and more.
With a single command, we can manage backups of any PostgreSQL server we've
configured Barman to recognize. Further, we can accomplish this from the backup
server itself with no need to perform any local post-installation tasks on any
PostgreSQL servers.

However, before we can get any of these abilities, we must first install and configure
Barman. This recipe will walk you through this process as simply as possible.

Backup Management Chapter 8

[343]

Getting ready
At the time of writing this book, the most recent version of Barman is 2.9. Because of
2ndQuadrant's close interaction with the PostgreSQL community, it is available
within the PostgreSQL package repositories. If you are using a Debian- or Ubuntu-
based system, follow the instructions at this URL to add the PostgreSQL repository to
the system that will be running Barman: https://wiki.postgresql.org/wiki/Apt.

Otherwise, Red Hat-based systems should add the PostgreSQL repository by
installing the derivative-appropriate RPM located at this URL:
https://yum.postgresql.org/repopackages.php.

We recommend that you use repositories only, as the repository-provided packages
perform tasks other than software installation, such as user creation.

Please note that Barman 2.9 is the first version that supports
PostgreSQL 12 and above. If you are using such a PostgreSQL
installation, ensure the Barman version meets or exceeds this
minimum.

How to do it...
For this procedure, we will need two servers. The backup server will be named pg-
backup, and our primary PostgreSQL server will be named pg-primary. Make sure
to have the password for the barman system user and the postgres database user.
As usual, our database is located at /db/pgdata.

Follow these steps:

For Red Hat-based servers, use the following command:1.

Install the Barman toolkit as a root-capable user:

sudo yum install barman

Debian-based systems should use this command instead:

sudo apt-get install barman

https://wiki.postgresql.org/wiki/Apt
https://yum.postgresql.org/repopackages.php
https://yum.postgresql.org/repopackages.php

Backup Management Chapter 8

[344]

On the pg-backup server as the barman user, execute the following 2.
commands for direct SSH access to pg-primary as the postgres user:

ssh-keygen -t rsa -N ''
ssh-copy-id postgres@pg-primary

Execute this SQL on the pg-primary server to create a user for barman:3.

CREATE USER barman WITH REPLICATION SUPERUSER
 PASSWORD 'mypasshere';

Ensure that the following lines exist in the pg_hba.conf file on pg-4.
primary:

host all barman pg-backup md5
host replication barman pg-backup md5

Enter the following line in the .pgpass file for the barman user on pg-5.
backup:

::*:barman:barman-password

Reload the PostgreSQL service on pg-primary with the following6.
command as the postgres user:

pg_ctl -D /db/pgdata reload

Create a file named pg-primary.conf in the /etc/barman.d folder, and 7.
use the following contents:

[pg-primary]

description = "Primary PostgreSQL Server"
conninfo = "host=pg-primary user=barman dbname=postgres"
streaming_conninfo = "host=pg-primary user=barman"
ssh_command = "ssh postgres@pg-primary"
backup_method = rsync
archiver = off
streaming_archiver = on
slot_name = barman
backup_options = exclusive_backup

If this is a Debian-based system, include this line in pg-primary.conf:8.

path_prefix = /usr/lib/postgresql/12/bin

Backup Management Chapter 8

[345]

For Red Hat-based distributions, include this line in pg-primary.conf:

path_prefix = /usr/pgsql-12/bin

As the barman user on pg-backup, execute the following commands to9.
bootstrap the WAL-streaming process:

barman receive-wal pg-primary --create-slot
barman cron
barman switch-wal pg-primary --force
barman archive-wal pg-primary

As the barman user on pg-backup, execute the following command to 10.
check the primary server's configuration entry:

barman check pg-primary

How it works...
Our first step is to install Barman itself. As this book focuses on Red Hat-based and
Debian-based Linux systems, this process is very simple. Barman is available in the
PostgreSQL repositories for either platform, making the first step the easiest.
Unfortunately, we have quite a few more steps to complete.

For Barman to work properly, it must be able to retrieve PostgreSQL files from the
pg-primary server. To facilitate this, we generate an SSH key on pg-backup with
ssh-keygen. We set the key type to RSA with the -t parameter and set the pass-
phrase to a blank value with -N. This allows Barman to communicate with the pg-
primary system without a password, yet do so securely. The ssh-copy-id
command sends the public key to the desired server. This is why we need the
postgres system user password if possible.

Then, we create a barman user so Barman can log into the pg-primary instance to
invoke backup commands, attach to the replication stream, and perform other high-
level administrative actions. Because we do both of these things, we create the user
with SUPERUSER and REPLICATION privileges.

Next, we need to modify pg_hba.conf on the pg-primary server to allow the
barman database user to connect from pg-backup to the replication stream and other
databases as well. We also update the .pgpass file for the barman user so it sends the
password when requested. Once we reload PostgreSQL with pg_ctl, we are finished
making changes on the pg-primary server.

Backup Management Chapter 8

[346]

When we install the Barman packages, they should create a /etc/barman.d
directory. To manage our pg-primary server, we create a pg-primary.conf file to
specifically manage its backup settings. We can do this for as many systems we want
to back up.

The first is a label for the section so that Barman knows pg-primary refers to the pg-
primary PostgreSQL server. By setting conninfo, Barman can use internal Python
libraries to perform management functions that require direct database access. The
streaming_conninfo setting is similar, but necessary only for streaming replication
in case we want to use a different user or DSN here. And ssh_command tells Barman
how to access files on the pg-primary server as the postgres system user.

Then, we set backup_method to rsync because this is one of the most efficient
procedures and takes advantage of our ssh_command earlier as well. This type of
backup makes use of filesystem hard links to make it possible to produce differential
backups, something PostgreSQL doesn't natively support.

We set archiver to off and streaming_archiver to on because we want to
explicitly prefer WAL streaming rather than rely on PostgreSQL to transmit WAL
files to a directory Barman watches for that purpose. This isn't strictly necessary but
removes any ambiguity as to how this backup should be handled.

The last meaningful parameter we change is the slot_name option, setting it to
barman so if Barman is ever disconnected from pg-primary for any extended
duration, it can resume fetching WAL files once the connection is re-established. This
ensures PITR is as up to date as replication allows.

Lastly, we explicitly set backup_options to exclusive_backup. Currently, Barman
supports both exclusive and concurrent backups and will produce a warning if we
don't choose one or the other. The default here could change in the future, so we set it
here just to avoid unexpected behavior when or if that happens.

Barman is fully configured at this point, but we're still not quite done. Because we
want to use WAL streaming, we need to kickstart the process manually. This
procedure tends to proceed in this order with the commands listed:

Create the replication slot Barman expects.1.
Make sure Barman background processes are launched.2.
Tell PostgreSQL to switch to another WAL file so Barman can archive one.3.
Archive the captured WAL file so it is reflected in the WAL inventory.4.

Backup Management Chapter 8

[347]

Technically, only the first step is required. When Barman gets installed, it includes a
file that should automatically invoke barman cron every minute. That command
automatically includes steps to archive any incoming WAL files and to launch the
background WAL retrieval thread. However, if our PostgreSQL server isn't very
active, we could end up waiting quite a long time before a WAL switch occurs
naturally.

That's a lot of preliminary work, but if everything goes well, the Barman command-
line tool will be fully functional. We can test this by checking the status of the server
that we've configured under the pg-primary label. It's important that we use barman
with the check pg-primary parameters because it doesn't just check the server
status—it also creates various directories and tracking files that it uses to manage the
PostgreSQL server backups. If everything goes as expected, server status should
resemble this output:

See also
Barman has a very clean and concise website, which includes basic documentation on
installation and usage. For further reading, we recommend these URLs:

Barman: https://www.pgbarman.org/
Barman Manual: https://docs.pgbarman.org/

https://www.pgbarman.org/
https://docs.pgbarman.org/

Backup Management Chapter 8

[348]

Backing up a database with Barman
After Barman is installed, we should be able to leverage any of its capabilities using
the Barman command-line tool. For now, we will focus entirely on creating a backup,
verifying that the new backup exists, and examining its contents.

Barman doesn't just produce backups—it also catalogs them extensively. We will use
this to our advantage in this recipe to prove that Barman works as advertised.

Getting ready
This recipe depends on Barman being installed on a backup server. Please follow the
Installing and configuring Barman recipe before continuing.

How to do it...
All steps should be executed as the barman system user on the pg-backup server that
we were using in the previous recipe. Follow these steps to create, verify, and
examine a Barman backup:

Create the first backup with this command:1.

barman backup pg-primary

Examine the list of backups with this command:2.

barman list-backup pg-primary

View the metadata of the most recent backup with this command:3.

barman show-backup pg-primary latest

View all of the files in the most recent backup with this command:4.

barman list-files pg-primary latest

Backup Management Chapter 8

[349]

How it works...
Creating a backup is extremely easy. To do so, we merely need to invoke the barman
command with the backup parameter and specify pg-primary as the label we want
to back up. When activated, Barman contacts the pg-primary server and tells it to
enter backup mode. It then retrieves all database files over SSH and saves them in its
backup catalog. We can view the contents of the catalog in several ways.

The first way to examine the catalog is by using the list-backup parameter. On our
test server, we would expect to see output similar to this:

Backups are listed from the least to most recent. The first column is the name of the
server that Barman backed up. The second column details the unique ID of the
backup and is composed primarily of the time and date the backup started. All
further commands need this ID, as it tells Barman which backup we want to view.

Barman provides a few convenient shortcuts to avoid needing the
backup IDs. The latest keyword, for example, always resolves to the
ID of the most recent backup.

We won't show the output of the next two commands because they're somewhat
overwhelming and can fill several screens. However, we can explain what they
would display. In the case of the show-backup parameter to barman, we get to see
the metadata of the backup itself. Metadata may include the start and stop time of the
backup, the timeline the server was on, the range of WAL files produced during the
backup, and so on.

We can also observe the full contents of the backup. If we invoke barman with the
list-files parameter and pass the ID of the backup we want to view, it sends a list
of every file that it has stored. This includes any WAL files necessary to restore this
particular backup.

There's more...
There are, however, a couple of extra points we'd like to make.

Backup Management Chapter 8

[350]

Retention policies
We referred to retention policies at the beginning of this recipe. This means that we
can configure Barman to only retain a certain number of backups to avoid exhausting
disk space. We begin by adding this line to the pg-primary.conf file under the pg-
primary label:

retention_policy = RECOVERY WINDOW OF 1 WEEK

This tells Barman to delete any backup files or WAL archives that are not necessary to
restore backups less than one week old. To perform this maintenance, execute the
following command regularly:

barman cron

Since we installed from distribution packages, this command should already be part
of our Barman server. In case it isn't, we recommend ensuring it is launched from the
system or user crontab regularly.

Parallel backup
One great feature of Barman is that it can launch several simultaneous rsync threads
to help to accelerate the backup process. This is disabled by default to avoid
overloading the backup server, but if the system has a lot of CPUs available and high
disk throughput, we can make backups complete even faster. Simply include a line
like this in the server configuration such as pg-primary.conf:

parallel_jobs = 8

All future PostgreSQL backup jobs will start eight simultaneous file transfer threads
when backing up the pg-primary server. In some cases, this can drastically reduce
backup times!

See also
For more details, refer to the following:

The barman command tool has a manual that we can view locally. Use this
command to learn more about what it can do:

man barman

Backup Management Chapter 8

[351]

We would also like to recommend the Barman documentation again. It
really does a very good job of describing some of the more advanced
functionality. For reference, use this URL: https://docs.pgbarman.org/.

Restoring a database with Barman
As you might expect, Barman does not just create backups—it can also restore them.
This functionality can be used to restore the current server, but its real power lies in
its ability to restore data remotely. With this capability and a little bit of preparation,
we can clone a PostgreSQL backup any number of times without straining the
primary database server.

This recipe will explore Barman's recovery aptitude and the steps necessary to start a
PostgreSQL server cloned by Barman.

Getting ready
This recipe depends on Barman being installed on a backup server and at least one
backup registered in the backup catalog. Please follow the Installing and configuring
Barman recipe and the Backing up a database with Barman recipe before continuing.

How to do it...
We will need one new server for this procedure. The backup server will remain pg-
backup, but we need a target server for the restore. This server will be named pg-
clone. Make sure to have the password for the postgres system user on this server.
As usual, our database will be located at /db/pgdata:

On the pg-backup server as the barman user, execute the following1.
command for direct SSH access to pg-clone as the postgres user:

ssh-copy-id postgres@pg-clone

Ensure that the target restore directory is empty on pg-clone with this2.
command executed as the postgres user:

rm -Rf /db/pgdata

https://docs.pgbarman.org/

Backup Management Chapter 8

[352]

Transmit the backup to pg-clone by running this command as barman on3.
the pg-backup server:

barman recover \
 --remote-ssh-command "ssh postgres@pg-clone" \
 pg-primary latest /db/pgdata

As the postgres user on pg-clone, start the PostgreSQL service with the4.
following command:

pg_ctl -D /db/pgdata start

How it works...
As with our Barman installation process, we need to ensure that Barman can
communicate directly with the PostgreSQL clone system. Once more, we rely on ssh-
copy-id to transmit the necessary SSH key to the pg-clone server.

The next step is to erase any existing PostgreSQL files on the target server. This step
should not be necessary on a new server, but it never hurts to double-check.
Assuming that the postgres user has permission to write to /db directory, we are
now ready to recover the backup to the pg-clone server.

At this point, we want to invoke the barman command with its recover operand.
Remember, the default recovery system is the local server. As we're executing
commands from pg-backup, that's not entirely useful to us. Instead, we want to send
the data to pg-clone. We do this using the --remote-ssh- command parameter
and by specifying the ssh command necessary to reach the pg-clone server. This is
why we copied Barman's public RSA key to pg-clone.

The next parameter to barman includes the label of the backup we want to restore, the
ID of the specific backup, and the directory where the files should be located. In this
case, we are restoring the pg-primary database using the latest backup and restoring
it to the /db/pgdata directory. We want the output of this command to look like this:

Backup Management Chapter 8

[353]

If any parameters could be dangerous to the cluster upon starting the cloned server,
Barman will warn us of them in this output. However, we should give a cursory look
at postgresql.conf to ensure that the server will run properly on pg-clone. For
example, Barman will disable the archive_command setting on a newly restored
server. We don't want the new server polluting our WAL archive with invalid files!

The final step is to start the PostgreSQL server on the new pg-clone server with
pg_ctl.

There's more...
There are, however, a couple of extra points we'd like to make.

Streaming replicas
Barman does not have a mode to initialize the newly restored server as a streaming
replica of the original. This would require setting primary_conninfo in either
recovery.conf or postgresql.conf of the newly restored system. However,
Barman only knows how to connect to the backup source as the user we've
configured for backup purposes.

Since this could be considered a security exploit, it's up to us to specify the correct
DSN necessary to transform the new server to a streaming replica. Barman does,
however, provide a parameter named --standby-mode, which will set create
a standby.signal file in Postgres 12 and above, or add the equivalent
standby_mode setting to recovery.conf for older installations.

Backup Management Chapter 8

[354]

Still, we need to supply the appropriate primary_conninfo parameter in
postgresql.conf for PostgreSQL 12 and above, or recovery.conf otherwise, like
this:

primary_conninfo = 'host=pg-primary user=postgres'

If you've followed the recipes in the previous chapters, you may also consider using
the rep_user user instead, as we created it specifically for replication purposes.

RPO zero
RPO zero is an industry term that stands for Recovery Point Objective of zero. In the
context of a backup, it means we've lost zero committed transactions and can recover
to full operating capacity as if nothing had happened.

Unlike most other backup management suites, Barman provides the capability of
obtaining transaction data directly from the PostgreSQL replication stream as we
demonstrated in this recipe. It's also important to understand that Barman supports
synchronous replication as well.

To begin, we check the pg-primary server to find the name Barman assigns:

barman show-server pg-primary | grep archiver_name

The result of this command will be the value we use for
synchronous_standby_names in postgresql.conf. It would also be necessary to
enable synchronous_commit, as seen in this example:

synchronous_commit = 'on'
synchronous_standby_names = 'barman_receive_wal'

Now, all committed transactions must be acknowledged by Barman before they can
complete on the upstream server. When a Barman backup is restored, it has access to
these streamed transactions as well.

It's important to note that WAL files are not archived by Barman until the next is
started. This is the reason we use the switch-wal routine in the installation recipe.
That means incomplete or partial WAL files are stored in a temporary holding area.
Once again, we can obtain that information by using the show-server sub-
command:

barman show-server pg-primary | grep streaming_wals_directory

Backup Management Chapter 8

[355]

The result of this command is a directory where any partially transferred WAL files
may exist for the indicated server. If there is a file there named with a
.partial extension, this means there's either an ongoing WAL stream or the
upstream server has crashed.

For ongoing streams, this is normal and expected since Barman is still receiving data
for that file. If the upstream server has crashed, we would want to use this file to
replay those last few transactions that were committed before the system became
unrecoverable. Barman doesn't currently perform this task automatically, but this is
an expected feature in Barman 2.10 or 2.11.

Otherwise, we can simply perform our backup restore and manually move the
.partial WAL file into the pg_wal folder before starting PostgreSQL. We would
also need to remove the .partial extension for PostgreSQL to recognize it.

This is a feature no other PostgreSQL backup solution provides and is one of the
reasons we chose to feature Barman prominently in this book.

See also
For more details, refer to the following:

The barman command tool has a manual we can view locally. Use this
command to learn more about what it can do:

man barman

To get the more immediate output of the restore mode parameters, execute
this command:

barman recover

Obtaining Barman diagnostics and
information
Simply storing backup data in a series of directories is of limited use. With
PostgreSQL especially, it's important to know the WAL positions when the backup
started and ended so a backup restore recovers properly.

Backup Management Chapter 8

[356]

There are other important and relevant questions as well. How many servers are we
managing? How many backups exist for each of these? What are the names and dates
for each backup? What about the synchronization status of Barman while retrieving
WAL files? What if we need product support and need to provide diagnostic data?
Where does Barman store files? What about other settings we didn't specify during
installation?

We could go on and on with endless questions like this. Instead, this recipe will focus
on a handful of the most useful forensic information commands and explain how they
work.

Getting ready
This recipe depends on Barman being installed on a backup server and at least one
backup registered in the backup catalog. Please follow the Installing and configuring
Barman recipe and the Backing up a database with Barman recipe before continuing.

How to do it...
All steps should be executed as the barman system user on the pg-backup server that
we were using in the previous recipe. Follow these steps to obtain diagnostic and
other information about Barman server and backups:

Show the list of all servers Barman is managing with this command:1.

barman list-server

View a basic summary of all backups with this command:2.

barman list-backup all

Show all configuration settings for a particular server with this command:3.

barman show-server pg-primary

Display the current replication status of a server with this command:4.

barman replication-status pg-primary

Backup Management Chapter 8

[357]

Show the full status of the Barman installation, including all servers,5.
backups, and WAL archives with this command:

barman diagnose

How it works...
One of the first things we may need to do upon logging in to a new Barman server is
to figure out what it's backing up. We could check the /etc/barman.d folder for a
list of files, but this isn't always the best approach. Why not just ask Barman itself
with the list-server parameter? We created another server on our test system and
can see them both listed here:

Now that we have a list of servers, we can dig into each individually if necessary.
Barman also provides an all keyword, which substitutes for a server name in any
command that expects this information. Hence, we could either list all backups that
exist for one server in particular or all at once. By executing the command as written,
we saw this on our test server:

At this point, we could use barman show-backup to show extended information
about any of the backups listed in this output. That would tell us how big the backup
was on disk, how long the backup took, WAL files required, and so on.

Backup Management Chapter 8

[358]

How is each server actually configured within Barman? There are a lot of possible
configuration parameters we didn't change in pg-primary.conf, so those are some
defaults that are unknown to us. With that in mind, we can invoke the show-server
command on a particular server, as we did with the pg-primary system in this
output:

Consider that this particular output is truncated because it includes dozens of settings
that would require several pages to display. Still, we can see many important values,
including barman_home, which is where backups and WAL files are actually stored.
We could use this information to change or introspect any parameter Barman offers.

It's also important to know the replication state of Barman itself. Not only is
observable lag relevant, but so are the connected user and host and anything that may
be related here. This is what we see for replication status on our very basic pg-
primary server:

Backup Management Chapter 8

[359]

What we see here is a healthy replication connection that shows no lag, meaning
Barman is perfectly up to date with the upstream system.

We saved the biggest and most thorough command for last. If we execute barman
diagnose, Barman will supply us with all of the preceding information, and quite a
bit more just in case. The command was designed to show all Barman settings, server
settings for each server, full diagnostic data for every backup, known WAL ranges,
and much more, all exported as a single JSON object.

This can either be imported into a monitoring system to watch for important changes
or trends such as backup sizes and durations or to send to a consulting company for
support. The output of the diagnose command is basically everything necessary to
troubleshoot a misbehaving or misconfigured Barman server.

Sending Barman backups to a remote
location
Previous chapters emphasized the importance of storing backups in a remote offsite
location in case of catastrophic site loss. Often, this is handled manually by exporting
the backup mount or its contents using software or hardware-level filesystem
synchronization features.

Beginning with Barman 2.6, it's possible to configure a server to act merely as an
offsite storage location for Barman backup data. This can be done on a per-server
basis in case it's necessary to follow certain distribution criteria. Not every enterprise
has access to sophisticated or expensive distributed SAN snapshots and scripting is
sometimes temperamental. Why not use Barman?

This recipe will explain how to configure a passive server that acts merely as an
offsite backup holding area.

Getting ready
This recipe depends on Barman being installed on a backup server and at least one
backup registered in the backup catalog. Please follow the Installing and configuring
Barman recipe and the Backing up a database with Barman recipe before continuing.

Backup Management Chapter 8

[360]

How to do it...
For this procedure, we will need two servers. The backup server will be named pg-
backup and our offsite backup server named pg-offsite. Make sure to have the
password for the barman system user or at least access to the account via sudo. As
usual, our database is located at /db/pgdata.

Follow these steps:

Install Barman packages on pg-offsite as if it were another Barman1.
server.
On the pg-offsite server as the barman user, execute the following2.
commands for direct SSH access to pg-backup as the barman user:

ssh-keygen -t rsa -N ''
ssh-copy-id barman@pg-backup

If the barman system user on pg-backup has no password, use sudo to3.
access the account. Then, create a file named authorized_keys in the
.ssh folder with the contents of the .ssh/id_rsa.pub file from pg-
offsite.
Create a file named sync-primary.conf in /etc/barman.d on pg-4.
offsite with the following contents:

[pg-primary]

description = "Offsite Copy of Primary PostgreSQL Server"
primary_ssh_command = "ssh barman@pg-backup"

Wait while the contents from pg-backup synchronize to pg-offsite.5.
Execute the following command on pg-offsite to list synchronized data:6.

barman list-backup pg-primary

How it works...
We begin the recipe with a very familiar procedure: installing Barman. Any passive
Barman server is just another Barman system that subscribes to other Barman servers.
Since this is handled through configuration files, this means we could even have a
Barman server that both handles PostgreSQL backup directly and subscribes to some
other Barman system.

Backup Management Chapter 8

[361]

One good application of this concept is to have one Barman server in
each of the two data centers. The Barman server that is local to one
data center can back up all PostgreSQL servers at that location and
subscribe to the Barman server in the other location. This would
ensure both Barman servers have offsite equivalents to protect their
backups.

Next, we can repeat the usual process of creating an SSH key for the barman user on
the pg-offsite. Then, we copy that key to the barman user on pg-backup to allow
passwordless SSH access between the systems. This is mainly required so pg-
offsite can use rsync to retrieve backup and WAL files from pg-backup.

Just as we had to configure pg-primary on pg-backup to actually back up that
PostgreSQL server, we must produce an equivalent configuration on pg-offsite.
This is easily done by starting with a section named for the PostgreSQL server we
want to synchronize (pg-backup) and then setting primary_ssh_command to
connect to pg-backup via SSH. This is why the (pg-primary) section header matches
the one we created on pg-backup.

Once this configuration exists, barman cron will eventually run and launch a
process that synchronizes data from pg-backup. Depending on the size of our
backup directories, this could take a while to complete. After that process has
finished, we can execute any of the same diagnostic commands as we would on pg-
backup. This includes barman list-backup.

Installing and configuring pgBackRest
It may not always be necessary to maintain a cluster-wide PostgreSQL backup
management server. Sometimes we just want to back up a single instance quickly and
efficiently. While pg_basebackup provides at least this much functionality, it doesn't
provide WAL management, backup inventories, retention expiration, automatic PITR
capabilities, and so on.

pgBackRest is a command-line tool that provides all of the aforementioned features
and more, including inline compression, checksum verification, data encryption, and
offsite storage. While not really meant to manage an army of PostgreSQL servers, it is
more than capable of handling a local installation with aplomb.

This recipe will help to install and bootstrap pgBackRest as simply as possible.

Backup Management Chapter 8

[362]

Getting ready
At the time of writing this book, the most recent version of pgBackRest is 2.18.
Because of Crunchy Data's close involvement and interaction with the PostgreSQL
community, it is available within the PostgreSQL package repositories. If you are
using a Debian- or Ubuntu-based system, follow the instructions at this URL to add
the PostgreSQL repository to any system that will be running pgBackRest: https:/ /
wiki.postgresql. org/ wiki/ Apt.

Otherwise, Red Hat-based systems should add the PostgreSQL repository by
installing the derivative-appropriate RPM located at this URL:
https://yum.postgresql.org/repopackages.php.

Please note that pgBackRest 2.18 is the first version that supports
PostgreSQL 12 and above. If you are using such a PostgreSQL
installation, ensure the pgBackRest version meets or exceeds this
minimum.

How to do it...
For this procedure, we will need one server, our primary PostgreSQL server, which
will be named pg-primary. As usual, our database is located at /db/pgdata.

Follow these steps to install and configure pgBackRest:

Install the pgBackRest toolkit as a root-capable user:1.

For Red Hat-based servers, use the following command:

sudo yum install pgbackrest

Debian-based systems should use this command instead:

sudo apt-get install pgbackrest

Modify /etc/pgbackrest.conf to reflect the following contents:2.

[main]
pg1-path=/db/pgdata
[global]
repo1-path=/var/lib/pgbackrest
repo1-retention-full=1
start-fast=y

https://wiki.postgresql.org/wiki/Apt
https://wiki.postgresql.org/wiki/Apt
https://wiki.postgresql.org/wiki/Apt
https://wiki.postgresql.org/wiki/Apt
https://wiki.postgresql.org/wiki/Apt
https://wiki.postgresql.org/wiki/Apt
https://wiki.postgresql.org/wiki/Apt
https://wiki.postgresql.org/wiki/Apt
https://wiki.postgresql.org/wiki/Apt
https://wiki.postgresql.org/wiki/Apt
https://wiki.postgresql.org/wiki/Apt
https://wiki.postgresql.org/wiki/Apt
https://yum.postgresql.org/repopackages.php
https://yum.postgresql.org/repopackages.php

Backup Management Chapter 8

[363]

Ensure the following parameter is set in postgresql.conf:3.

archive_command = 'pgbackrest --stanza=main archive-push %p'

If it isn't there already, add this line near the top of the pg_hba.conf file:4.

local all postgres peer

Reload PostgreSQL using pg_ctl as the postgres user:5.

pg_ctl -D /db/pgdata reload

Create the cluster definition within pgBackRest as the postgres user:6.

pgbackrest --stanza=main \
 --log-level-console=info stanza-create

Check that WAL archival is working properly with this command as the7.
postgres user:

pgbackrest --stanza=main \
 --log-level-console=info check

Retrieve information about pgBackRest as the postgres user to verify8.
installation:

pgbackrest info

How it works...
As usual, we start by installing the software itself using apt or yum. PgBackRest itself
doesn't actually consist of many files but requires several Perl libraries that will also
be installed. Try not to be alarmed by the list of dependencies.

Next, we need to modify the pgbackrest.conf file and configure it to know the
path to our local PostgreSQL installation by setting pg1-path to /db/pgdata. We
don't set any other parameters because pgBackRest works well locally by calling
commands as the postgres user. The reason the path variable is named pg1-path is
due to pgBackRest support for managing multiple databases, so they introduced
variable indexing in version 2.

Backup Management Chapter 8

[364]

Note the [global] section is meant to contain settings that would apply to all
possible PostgreSQL systems it manages. Due to that, we've set the storage location of
the pgBackRest repository to /var/lib/pgbackrest since we want to keep all
backups in the same directory. Additionally, we specify that there must be at least
one full backup at all times by setting repo1-retention-full. Further, every
backup should force an immediate CHECKPOINT with start-fast to prevent
potentially waiting for several minutes for a backup to begin.

Since pgBackRest relies on archive_command to collect WAL files from PostgreSQL,
we must set that parameter to use the archive-push option. Depending on how our
installation is secured, we may also need to modify pg_hba.conf to include a peer
line. This will allow the local Postgres OS user—provided we're logged into that
account—to connect as the postgres PostgreSQL user without a password.

One reason previous chapters recommended setting archive_mode to on is that
changes to archive_command only require a reload of the PostgreSQL service rather
than a full restart. Once we perform this step, we will activate any authentication
changes as well and should be able to start executing pgBackRest commands.

We'll note that not every pgBackRest command requires
specification of the relevant configuration stanza, but most do. This
is why almost every command in this recipe includes --
stanza=main as a preamble. We also include --log-level-
console=info or most commands would produce no output at all.
We like to know what's on!

The first of these is to initialize a pgBackRest stanza. While we may think of
PostgreSQL clusters based on functions such as trading or reporting, pgBackRest
approaches these from the perspective of sections within the configuration file.
Because we're only working with a single cluster at the moment, we named our
stanza main, and the stanza-create command bootstraps pgBackRest with all
expected path locations for saving WAL and backup files.

Next, we must test a WAL transfer to pgBackRest. Just as Barman will not back up a
database until it can verify at least one successful WAL retrieval, we want an
unbroken chain of custody between PostgreSQL and pgBackRest. The check
command performs this task for us, forcing PostgreSQL to switch to a new WAL file
and archive the previous one into the pgBackRest repository.

Backup Management Chapter 8

[365]

Our final step is to verify the pgBackRest repository reflects some record of our
stanza. If we use the info command, we should see all stanza and backup
information contained in the repository. Right now we only have the main stanza and
no backups at all, so we should see something like this:

As we can see here, the WAL file we archived while running the check command is
listed in this output.

There's more...
If we inadvertently implied that pgBackRest cannot function from an external
centralized backup server, that is not actually the case. However, setting it up to
operate in this manner is actually somewhat complicated. Unlike Barman, which
leverages rsync and PostgreSQL streaming replication, pgBackRest uses its own
communication protocol between systems.

This means it must be installed in a client to server model, where pgBackRest is
installed on both systems and configured separately on either. The configuration itself
is not especially difficult, but this kind of configuration is beyond the scope of this
particular chapter. The pgBackRest documentation actually has a comprehensive
explanation of how this model works and provides adequate instruction on
implementation as well.

See the section entitled Dedicated Backup Host in the pgBackRest user guide for more
information.

Backup Management Chapter 8

[366]

See also
PgBackRest has a dedicated concise website that includes basic documentation on
installation and usage. For further reading, we recommend these URLs:

pgBackRest: https://pgbackrest.org/
pgBackRest Command
Reference: https://pgbackrest.org/user-guide.html

Backing up a database with pgBackRest
Once we've configured pgBackRest to our satisfaction, producing a backup is actually
very simple using the pgbackrest command-line tool. As with Barman, we will
focus entirely on creating a backup, verifying that the new backup exists, and
examining its contents.

Part of the point of such backup tools is the fact they maintain an extensive catalog of
backup and WAL information. This recipe will leverage that information to prove
pgBackRest works as advertised.

Getting ready
This recipe depends on pgBackRest being installed on a PostgreSQL server. Please
follow the Installing and configuring pgBackRest recipe before continuing.

How to do it...
For this procedure, we will need one server, our primary PostgreSQL server, which
will be named pg-primary. As usual, our database is located at /db/pgdata. Follow
these steps to create, verify, and examine a pgBackRest backup:

Create a full backup with this command:1.

pgbackrest --stanza=main --type=full \
 --log-level-console=info backup

Examine the metadata of the most recent backup with this command:2.

pgbackrest --stanza=main info

https://pgbackrest.org/
https://pgbackrest.org/user-guide.html

Backup Management Chapter 8

[367]

Retrieve the list of files in the most recent backup with this command:3.

pgbackrest ls backup/main/latest --recurse

How it works...
It should be no surprise that we begin the recipe by creating a backup of our main
PostgreSQL instance. What may not be so obvious is that we could have dispensed
with the unnecessary extra options such as --type=full. While normally this will
force a full backup rather than an incremental one, pgBackRest requires the first
backup to be a full backup anyway. As such, we could have used this command
instead:

pgbackrest --stanza=main backup

The reality is that pgBackRest commands are not as verbose as they first appear.
We're simply being thorough and explicit, which isn't always required. Either way,
we can verify the backup exists and has completed successfully by checking the
backup inventory using the info command. We should see something like this:

One thing that's interesting from this output is that the repository size is listed
separately. This is because pgBackRest automatically enables compression of files as
they're processed. Also, note that we used the --stanza parameter here to ensure we
only see results for the main stanza. This isn't required, but if we were backing up
multiple PostgreSQL instances, it would be better to focus on one at a time.

Backup Management Chapter 8

[368]

Finally, we included a command that will produce a list of every file in the
pgBackRest file inventory. The ls command expects a parameter that essentially
maps to the contents of the repository itself. We can list archive (WAL) or backup
files, and search further by adding a slash and a subdirectory name to see more
information.

For the sake of this recipe, we used the shortcut that represents the latest backup in
the main repository. We also added the --recurse option to see all files, including
those in subdirectories. Feel free to experiment with this command to see what else it
can do.

There's more...
There are, however, a couple of extra points we'd like to make.

More backup types
pgBackRest actually supports three types of backup. We only used fully because this
is a demonstration of a single backup, but this is what the documentation has to say
about all of them:

full: All database cluster files will be copied and there will be no
dependencies on previous backups.
incr: This is incremental from the last successful backup.
diff: This is like an incremental backup but always based on the last full
backup.

Incremental backups only contain differences since the last successful backup, hence
creating a chain of much smaller backups than we'd expect from storing every
PostgreSQL file. Consider what happens when we take an incremental backup and
check the repository:

Backup Management Chapter 8

[369]

If we compare that to the full backup we started with, it's much smaller at less than
500 bytes! Of course, our test database is essentially idle, but this should prove that
only modified files are being backed up incrementally.

Use full regularly
Barman performs incremental backup by using filesystem hard links for files that
haven't changed, hence ensuring every backup always has a full file listing.
pgBackRest simply skips unmodified files.

The end result is very similar except that pgBackRest incremental backups become
fully dependent on previous full backups. If a pgBackRest full backup is removed, all
subsequent incremental and differential backups become invalid. Hence, pgBackRest
has safeguards to ensure at least one full backup exists at all times and recommends
creating new ones regularly, such as once per week.

Keep this in mind when scheduling backups and choosing which type to use!

See also
pgBackRest has a dedicated concise website that includes basic documentation on
installation and usage. For further reading, we recommend these URLs:

pgBackRest: https://pgbackrest.org/
pgBackRest Command
Reference: https://pgbackrest.org/command.html

Restoring a database with pgBackRest
Like all good backup management suites, pgBackRest is also well equipped to restore
data from its backup repository. We can either restore the latest backup for a specific
stanza or choose one of the specific backups in the inventory. There are also settings
we can use to restore to a different directory than where the data originated.

It's also important to understand that pgBackRest is a pull-based system. This means
only the repository itself may be considered remote. Hence, if we want to build a new
PostgreSQL clone system, we have to install pgBackRest and configure it to request
files from the backup server. This is a stark contrast to Barman, which assumes all
commands are initiated from the backup server itself.

https://pgbackrest.org/
https://pgbackrest.org/command.html

Backup Management Chapter 8

[370]

This recipe will explore pgBackRest's recovery aptitude and the steps necessary to
start a PostgreSQL server restored by pgBackRest.

Getting ready
This recipe depends on pgBackRest being installed on a remote PostgreSQL server.
Please follow the Installing and configuring pgBackRest recipe before continuing.

How to do it...
We will need one new server for this procedure. The primary PostgreSQL server will
remain pg-primary, but we need a target server for the restore. This server will be
named pg-clone. Make sure to have the password for the postgres system user on
this server. As usual, our database will be located at /db/pgdata:

Install the pgBackRest toolkit as a root-capable user on pg-clone:1.

For Red Hat-based servers, use the following command:

sudo yum install pgbackrest

Debian-based systems should use this command instead:

sudo apt-get install pgbackrest

On the pg-clone server as the postgres user, execute the following2.
command for direct SSH access to pg-primary as the postgres user:

ssh-copy-id postgres@pg-primary

Ensure that the target restore directory is empty on pg-clone with this3.
command executed as the postgres user:

rm -Rf /db/pgdata

Modify the /etc/pgbackrest.conf file on pg-clone and fill it with4.
these contents:

[main]
pg1-path=/db/pgdata

[global]
repo1-host=pg-primary

Backup Management Chapter 8

[371]

repo1-host-user=postgres
repo1-path=/var/lib/pgbackrest
repo1-retention-full=1
start-fast=y

Transmit the backup from pg-primary by running these commands as5.
postgres on the pg-clone server:

mkdir -p 0700 /db/pgdata
pgbackrest --stanza=main \
 --log-level-console=info restore

As the postgres user on pg-clone, start the PostgreSQL service with the6.
following command:

pg_ctl -D /db/pgdata start

How it works...
pgBackRest operates under the assumption that repositories act as central storage
locations for all WAL and backup file contents, and that these repositories may be
located remotely. This means we must install pgBackRest on any server that requires
access to the repository. So, our first step is to install the software itself, allowing us to
use the pgbackrest command-line utility.

To facilitate remote repository access, we need to ensure that pgBackRest can
communicate directly with the pg-primary server as the postgres user since that is
the user that owns the backup files on that system. Once more, we rely on ssh-copy-
id to transmit the necessary SSH key to the pg-primary server.

The next step is to erase any existing PostgreSQL files on the pg-clone server. This
step should not be necessary on a new server, but it never hurts to double-check.
Assuming that the postgres user has permission to write to the /db directory,
everything should be ready for the restoration procedure.

Before we can do that, however, we must configure pgBackRest to understand it
needs to rely on a remote repository. To do this, we actually begin with a very similar
configuration file as we used in the Installing and configuring pgBackRest recipe. The
primary difference here is that we also specify the repo1-host and repo1-host-
user parameters to target the pg-primary server as the postgres user. When these
settings are provided, pgBackRest will operate by retrieving information from the
remote repository via SSH.

Backup Management Chapter 8

[372]

Once we create the /db/pgdata directory, it's safe to invoke the pgbackrest
command with its restore operand. As written in the instructions, this will produce a
high volume of output as files are transferred and decompressed to the proper
locations. Since we didn't specify which backup we wanted to restore, pgBackRest
will default to the latest available.

After the restore is complete, pgBackRest will helpfully configure restore_command
in postgresql.conf for PostgreSQL 12 and above, or recovery.conf otherwise. It
sets this parameter to use the archive-get command to fetch WAL files from the
archive. This will retrieve WAL files in recovery mode until there are no more
available.

We want the output of restore_command to end with output telling us the process
was successful, as in this example:

As usual, we should give a cursory look at postgresql.conf to ensure that the
server will run properly on pg-clone before starting the service. For example, don't
forget to either comment out the archive_command parameter or to set it to
something safe such as /bin/true. Otherwise, we could end up transmitting WAL
files from the restored database to the existing WAL archive!

The final step is to start the PostgreSQL server on the new pg-clone server with
pg_ctl. If we modified systemctl properly to use our nonstandard directory, we
could also use sudo systemctl start instead.

There's more...
pgBackRest has a somewhat unconventional feature that allows it to restore into an
existing PGDATA directory. Most backup and restore utilities steadfastly refuse to
operate within a live PostgreSQL installation, but pgBackRest sees this as an
opportunity for efficiency.

Imagine for instance we dropped the pgbench_accounts table from our test
database and that's the only action we've taken since the last backup. It would be silly
to restore the entire database, which could be hundreds of GB or even TB in size. Why
not just restore only the files that have changed since the backup occurred?

Backup Management Chapter 8

[373]

pgBackRest calls this type of a restore a delta, and we can invoke such a restore with
this variant of the restore command:

pgbackrest --stanza=main --delta \
 --log-level-console=info restore

By specifying --delta, we tell pgBackRest that we want to restore directly into the
PostgreSQL data directory of our specified stanza and only want to restore files that
changed since the last backup. If we omit this option and try to restore into a pre-
existing data directory, pgBackRest will refuse to overwrite any files.

Installing and configuring WAL-E
WAL-E is a tool designed specifically for interacting with various cloud services and
PostgreSQL. Cloud services are often designed to require complex API calls before
accepting read or write commands. This makes it somewhat difficult to send them
arbitrary files such as PostgreSQL transaction logs we wish to save in a secure
location.

The principal benefit of keeping WAL files in a remote cloud location is the same as
maintaining offline backups. By moving transaction logs to an external server, we can
use them in emergencies or complete data center disasters. It's a different form of
high availability where we trade the expense and latency of involving distant servers
for a major increase in geographical diversity.

WAL-E supports transmitting and retrieving files through several cloud vendors and
APIs:

Amazon S3 (https://aws.amazon.com/s3/)
Microsoft Azure Blobs (https:/ / azure. microsoft. com/ en-us/)
Google Storage (https://cloud.google.com/storage/)
SWIFT (https://wiki.openstack.org/wiki/Swift)

While creating accounts with these services and managing their resources is beyond
the scope of this book, several Packt books do an admirable job in our stead. If you
are unaccustomed to managing cloud-based systems, we recommend becoming
familiar with at least one of these environments before attempting to implement this
recipe.

This recipe will explore the process of integrating WAL-E into our PostgreSQL
environment.

https://aws.amazon.com/s3/
https://azure.microsoft.com/en-us/
https://azure.microsoft.com/en-us/
https://azure.microsoft.com/en-us/
https://azure.microsoft.com/en-us/
https://azure.microsoft.com/en-us/
https://azure.microsoft.com/en-us/
https://azure.microsoft.com/en-us/
https://azure.microsoft.com/en-us/
https://azure.microsoft.com/en-us/
https://azure.microsoft.com/en-us/
https://azure.microsoft.com/en-us/
https://azure.microsoft.com/en-us/
https://azure.microsoft.com/en-us/
https://azure.microsoft.com/en-us/
https://cloud.google.com/storage/
https://wiki.openstack.org/wiki/Swift

Backup Management Chapter 8

[374]

Getting ready
Before storing our WAL files in the cloud, we'll need somewhere to put them. Create
an account with one of the supported WAL-E services and create a storage location
for files we'll be transmitting. For example, in Amazon AWS, we would select S3 and
Create Bucket, and fill out a form like this:

We also strongly encourage setting up specific authentication credentials for this
location to avoid unnecessary distribution of critical users or passwords for other
portions of the application layer.

After this, we need to install some prerequisite libraries. WAL-E depends on Python 3
and is easiest to install with pip. With that in mind, Debian-based systems would use
this apt-get command to prepare:

sudo apt-get install python3-pip lzop

Red Hat-based systems need to install the EPEL package for the appropriate Red Hat
platform from the following URL: https://fedoraproject.org/wiki/EPEL.

https://fedoraproject.org/wiki/EPEL

Backup Management Chapter 8

[375]

Then, execute this command to get pip running:

sudo yum install python36-setuptools lzop

How to do it...
For this recipe, we'll be using an Amazon S3 user account with associated access key
identified as key-ID and key-value. We've also created a bucket we will refer to as
bucket-path, which is located in the aws-region zone. Follow these steps to install
and configure WAL-E on a PostgreSQL server:

As the postgres user, use pip3 to install WAL-E and a complementary1.
environment utility:

pip3 install --user wal-e envdir

Install the necessary WAL-E cloud driver (Amazon, in our case) as the2.
postgres user with this command:

pip3 install --user boto

Create a configuration directory as the postgres user to contain3.
environment variables:

mkdir -m 0700 -p ~/env

As the postgres user, install several environment variables with these4.
commands:

cd ~/env
echo 'key-id' > AWS_ACCESS_KEY_ID
echo 'key-value' > AWS_SECRET_ACCESS_KEY
echo 'bucket-path' > WALE_S3_PREFIX
echo 'aws-region' > AWS_REGION

Test WAL-E by retrieving a list of existing backup files:5.

envdir ~/env wal-e backup-list

Backup Management Chapter 8

[376]

How it works...
We begin by using pip3 to actually install WAL-E using Python version 3. As with
most Python software, now that Python 2 has been deprecated, WAL-E requires
Python 3 to function. Some older Linux distributions may still make it difficult to
side-load Python 3, so be wary of this requirement.

While each cloud service has its own necessary driver, we don't need to install all of
them. The appropriate driver should be described in the WAL-E requirements, but a
failed attempted transmission will also tell us which one we need if it isn't already
installed. If we were missing the necessary driver, we would receive an error like this:

Next, we create a directory to keep configuration files for WAL-E. This part isn't
strictly necessary, but WAL-E depends on quite a bit of sensitive information. It needs
to authenticate with the cloud storage server for every interaction. The safest way to
do this is to maintain several files that are only readable by the postgres system
user. The only other alternative is calling the wal-e command by manually passing
these values.

The final step is configuring our authentication, connection, and storage path
information with files in the directory we prepared. In the case of Amazon S3, this
means we need an access key ID and an associated secret access key saved into
similarly named files for WAL-E.

In the case of the WALE_S3_PREFIX variable, it's important to only use the path to the
bucket we created earlier and, optionally, a directory. If we named our bucket
postgres-ha-cookbook and added a wal directory, we would use
s3://postgres-ha-cookbook/wal for WALE_S3_PREFIX.

When we created our bucket, we were allowed to select a region where the Amazon
servers would actually store our data. WAL-E needs to know where those servers are,
so at least in the case of Amazon S3, we need to set the AWS_REGION variable. The
default region is us-east-1, but the correct region for our bucket should be listed in
the AWS S3 interface.

Backup Management Chapter 8

[377]

We can't actually test sending a WAL file just yet but can verify whether or not WAL-
E can communicate with our cloud resource. The backup-list command will
retrieve a list of backups previously uploaded by the wal-e utility. We don't have
any of those, but any response other than an error should be considered a successful
test.

Given how cloud service API needs may vary, we strongly
recommend learning about cloud services in general before
attempting this recipe. It's far easier to understand what WAL-E
expects if we're comfortable working with cloud servers.

See also
WAL-E is also available on GitHub, along with all of its documentation. Please use
the following resource to learn more: https://github.com/wal-e/wal-e.

Managing WAL files with WAL-E
With WAL-E installed, we can now use it to transmit transaction WAL files to and
from our cloud service of choice. Remember, by keeping WAL files in a remote
location, they're isolated from natural disasters, data center outages, being
overwritten, and any number of unplanned events. Consider cloud storage as a form
of long-term archival of our transaction logs.

Why is this important? Remember our mantra: outages are unavoidable. We can take
multiple steps to avoid them, but sometimes the situation is beyond human
intervention. Sometimes, we simply need to rebuild. Offsite backup of WAL files
means we can apply PITR to a recent backup and reach the last known stable state of
our data. Since WAL-E integrates directly into the PostgreSQL transaction log
archival process, the WAL files we preserve are as fresh as possible.

This recipe will explore see how offsite WAL management works with WAL-E.

Getting ready
Before continuing with this recipe, please complete the steps in the Installing and
configuring WAL-E recipe.

https://github.com/wal-e/wal-e

Backup Management Chapter 8

[378]

How to do it...
Assuming we have a server that should be archiving transaction logs, follow these
steps to store them in a cloud service using WAL-E:

Edit the postgresql.conf file to reflect these parameter settings:1.

archive_command = 'envdir ~postgres/env wal-e wal-push %p'
archive_timeout = '60'

Reload the PostgreSQL service with the following command as the2.
postgres user:

pg_ctl -D /db/pgdata reload

Connect as the postgres user and force it to switch transaction logs with3.
this SQL if using PostgreSQL 10 or above:

SELECT pg_switch_wal();

Users of PostgreSQL 9.6 and below should use this SQL instead:4.

SELECT pg_switch_xlog();

Watch the end of the PostgreSQL log file for transmission success. Use a5.
command similar to this to capture WAL-E-specific information:

tail -f /var/log/postgresql/postgresql-12-main.log \
 | grep "DETAIL"

How it works...
WAL-E is generally easy to use once it has been installed. In this case, we merely need
to modify the postgresql.conf configuration file and reload PostgreSQL to change
the archive_command parameter. Assuming our installation of WAL-E is working
properly, there really are no more steps. However, it's always a good idea to verify.

Regarding the changes we made to postgresql.conf, only two are different than
those we dictated in the Configuration – getting it right the first time recipe of Chapter
3, Minimizing Downtime.

Backup Management Chapter 8

[379]

We begin by setting archive_command to invoke the wal-e utility. The wal-push
parameter tells it to transmit the specified file to our cloud storage and to assume it's
a WAL file. It performs some cursory checks before and after it does this, so we can't
use it as a general tool to send miscellaneous files to the cloud.

Next, it's a good idea to set archive_timeout to some value other than zero. This
recipe uses a value of 60 seconds as a guide, but to determine the appropriate value,
it's important to consider what the parameter actually does. When
archive_timeout is set to a non-zero value, it will rotate transaction logs after that
many seconds have elapsed, regardless of need.

This matters because PostgreSQL usually only switches the current transaction log
after the number of changes inside exceeds about 16 MB. On low-volume systems,
this may take minutes or even hours. As a result, there could be up to 16 MB of data
that hasn't yet been archived and would be lost in the case of a catastrophic outage.
By forcing PostgreSQL to switch transaction logs more frequently, we produce a type
of heartbeat that implies the server is alive so long as transaction logs keep appearing
in our cloud storage. We could argue any highly available PostgreSQL server should
always utilize this parameter.

The last thing we do before checking our log file is to simply invoke the
pg_switch_wal or pg_switch_xlog function to manually switch to a new WAL
file. This effectively triggers an immediate archival of the previous WAL file and,
hence, WAL-E. There's a lot more output than we're watching for, but if everything
went well, we should see something like this in the logs:

There's more...
WAL-E has a lot of other functionality we don't have time to fully describe. There are,
however, a couple of extra points we'd like to make.

Backup Management Chapter 8

[380]

Recovering WAL files
Every good command has an analog, right? We can send WAL files, so we must also
be able to receive them. Imagine we have a replica system or a backup we've recently
pulled from a tape archive. Now we want to use our safe and secure WAL files
previously stored in the cloud. Like all good PostgreSQL restores, we need to start
with a properly prepared recovery.conf file.

To use WAL-E to restore remotely stored transaction logs to a recovered database,
start with something like this:

restore_command = 'envdir ~postgres/env wal-e wal-fetch "%f" "%p"'

Of course, this would cause our PostgreSQL server to constantly spam the cloud
service with file requests. This is fine so long as there are files to retrieve, but if we've
reached the end of available files it's just excess traffic against our cloud quotas. We
can avoid that by using recovery_target_name, recovery_target_time, or
recovery_target_xid to stop recovery once it reaches our chosen destination.

If it's not possible to obtain a specific recovery target, we recommend watching the
log file during recovery until messages start repeating. If WAL-E repeatedly fails to
obtain the next transaction log in the sequence, it's probably time to promote the
server so it stops recovering.

Backing up the database
WAL-E can also act as a backup solution. We don't generally recommend this as
backing up to a remote location is usually a rather expensive proposition. It isn't
simply a matter of monetary cost; we should also consider time and latency. It might
not be a good idea to back up a 1 TB database using WAL-E, but a smaller system that
doesn't exceed a few GB may be a perfect fit.

The best thing about this capability is that it's easy to invoke. Here's how we would
back up our database using WAL-E:

envdir ~postgres/env wal-e backup-push /db/pgdata

And here's the command we would use to restore the same database:

envdir ~postgres/env wal-e backup-fetch /db/pgdata LATEST

These two commands make a great pair if we have no other recourse or want to test
offsite recovery. In highly available systems, it's always good to have prepared
alternatives standing by.

Backup Management Chapter 8

[381]

Removing old files
Of course, we might not need to retain transaction logs forever. WAL-E also provides
a simple command for purging old WAL files that have served their purpose. We're
mainly concerned with high availability, so being able to restore from a backup taken
several weeks ago probably isn't necessary. We can use a command like this to
remove these old files:

envdir ~postgres/env wal-e delete --confirm retain 2

This would remove all but WAL files for the two most recent backup operations. The
--confirm flag commits the change; otherwise, WAL-E errs on the side of caution
and considers the command a dry run.

Unfortunately, this only really works if we have performed a backup with WAL-E. If
our database is too large for this to be feasible, we would need another clean-up
method. We hope a future release of WAL-E will allow specifying a time target
instead of assuming all WAL files are related to a backup in some way.

See also
WAL-E is also available on GitHub, along with all of its documentation. Please use
the following resource to learn more:

WAL-E: https://github.com/wal-e/wal-e

https://github.com/wal-e/wal-e

9
High Availability with repmgr

repmgr is a replication management tool developed by 2ndQuadrant. Originally, it
was mainly intended to simplify the management of streaming replicas but has since
evolved into a full failover management suite.

Up until now, we've performed a great deal of preliminary work. We know the
proper settings, we can create replicas in our sleep, and we have all the skills
necessary to troubleshoot and fix a misbehaving server or two. Yet we're still missing
at least one critical element to truly achieve high availability: automation.

Many of the recipes in previous chapters cover utilities that are almost automated. We
learned how to manage access abstraction in Chapter 4, Proxy and Pooling Resources,
for example. Chapter 7, PostgreSQL Replication, got us even further, giving us the
necessary tools to maintain a veritable army of alternate servers for primary
substitution at a moment's notice.

But we still need manual intervention. Only one of the backend nodes is writable, so
we have a virtual IP address, or CNAME, that needs to be reassigned to whichever
node is acting as the primary. What we need is some kind of daemon that will watch
the state of the cluster and use a consensus algorithm to manage voting so that we
always have only one primary node. That daemon could also manage shared
resources and ensure a single-access path to the sole writable server.

High Availability with repmgr Chapter 9

[383]

From the three PostgreSQL servers and the concepts that we learned in previous
chapters, we know that the best stack we could produce with the aforementioned
tools would look like this:

This arrangement of servers definitely combines the lessons we've learned from this
book so far. There is a minimum of two nodes for maintenance purposes, and a
witness system to maintain voting quorum. We also have a floating virtual IP address
for abstract application access, and everything is managed by the repmgr software.

Use of repmgr provides a cluster with the following capabilities:

Various tools for building and maintaining nodes
Automatic election of a replacement in the case of node failure
Quorum management to prevent erroneous or unintentional node
promotion
Robust split-brain protection
Recovered primary nodes can rejoin the cluster as replicas

In this chapter, we will discuss all of these capabilities and more so that we can
construct a fully automated high availability stack. Let's get started!

Past editions of this book focused mainly on using repmgr as a
replica-management tool, but there are far more capabilities that
remained unexplored. This new chapter explains how to use repmgr
to achieve high availability with no other necessary software.

This chapter is dedicated to building a fully automated high availability stack using
the repmgr replica and cluster-management tools by 2ndQuadrant. We will cover the
following recipes in this chapter:

Preparing systems for repmgr
Installing and configuring repmgr

High Availability with repmgr Chapter 9

[384]

Cloning a database with repmgr
Incorporating a repmgr witness
Performing a managed failover
Customizing the failover process
Using an outage to test availability
Returning a node to the cluster
Integrating primary fencing
Performing online maintenance and upgrades

Preparing systems for repmgr
The repmgr has a few dependencies necessary for it to function optimally, and
systems should be provisioned with certain minimal capabilities. This recipe will
discuss what these dependencies are and how the servers themselves should be
prepared to best facilitate repmgr communication and node management.

Let's get this part done so we can proceed to the really interesting stuff!

Getting ready
At the time of writing this book, the most recent version of repmgr is 5.0. As with
Barman, repmgr is available within the PostgreSQL package repositories. If you are
using a Debian- or Ubuntu-based system, follow the instructions at
https://wiki.postgresql.org/wiki/Apt. This link will provide instructions to add
the PostgreSQL repository to any system that will be running as a repmgr server or
client.

Otherwise, Red Hat-based systems should add the PostgreSQL repository by
installing the derivative-appropriate RPM located
at https://yum.postgresql.org/repopackages.php.

We recommend that you use repositories only, as the repository-
provided packages perform tasks other than software installation,
such as user creation.

https://wiki.postgresql.org/wiki/Apt
https://wiki.postgresql.org/wiki/Apt
https://yum.postgresql.org/repopackages.php

High Availability with repmgr Chapter 9

[385]

Additionally, repmgr works best when it can communicate via passwordless SSH
between nodes. Several commands leverage this capability, and we recommend
setting this up to get the most out of repmgr. We'll explain one method of doing this,
but the best approach is to manage server keys through configuration management,
such as Ansible, Puppet, or Salt.

This recipe also assumes the use of systemd on modern Linux systems. Consequently,
the PostgreSQL service is named and maintained differently on each of the major
distributions. Debian-based systems name the service postgresql@[version]-
[name], while Red Hat systems usually name it postgresql-[version].

The examples in this recipe will assume that you are using a Debian or an Ubuntu
system, but you should always use the appropriate and correct value that
corresponds to your Linux distribution.

Finally, one of the utilities used to manage the VIP resource is not considered
standard and may not be installed. Debian-based systems should use this command
to install the potentially missing resource:

sudo apt-get install arping

Red Hat derivatives should install this package:

sudo yum install iputils

How to do it...
For this recipe, we will need at least three PostgreSQL servers. For demonstration
purposes, we'll assume that they are named pgha1, pgha2, and pgha3. We will also
need a dedicated IP address to use for the VIP location, such as 10.0.30.50.

Follow these steps on all three servers:

Debian-based systems should use the following apt-get command to1.
install the base repmgr software:

sudo apt-get install postgresql-12-repmgr

Red Hat-based systems will need to use this yum command instead:

sudo yum install repmgr12

High Availability with repmgr Chapter 9

[386]

Execute the following commands for direct SSH access to the postgres2.
user to all nodes:

ssh-keygen -t rsa -N ''
ssh-copy-id postgres@pgha1
ssh-copy-id postgres@pgha2
ssh-copy-id postgres@pgha3

Repeat the preceding step for pgha2 and pgha3.3.
Prepare a file named nodes.txt and fill it with each known node name,4.
FQDN, and IP address for all cluster nodes. The following is an example
for our cluster:

pgha1
pgha2
pgha3
10.0.30.1
10.0.30.2
10.0.30.3

Execute the following command on all hosts as the postgres user:6.

ssh-keyscan -H -f nodes.txt >> ~/.ssh/known_hosts

Create a file named /etc/sudoers.d/postgres and use the following7.
contents:

Defaults:postgres !requiretty
postgres ALL = NOPASSWD: \
 /bin/systemctl stop postgresql@12-main, \
 /bin/systemctl start postgresql@12-main, \
 /bin/systemctl restart postgresql@12-main, \
 /bin/systemctl reload postgresql@12-main, \
 /sbin/ip addr add 10.0.30.50/32 dev eth0 label eth0\:pg, \
 /sbin/ip addr del 10.0.30.50/32 dev eth0 label eth0\:pg, \
 /usr/sbin/arping -b -A -c 3 -I eth0 10.0.30.50

How it works...
Since repmgr works as both a PostgreSQL extension and a service daemon, we've
chosen to differentiate between installing the software packages and installing
repmgr components in the next recipe. To that end, we've provided both apt and yum
commands to install the appropriate repmgr package for prominent supported Linux
distributions.

High Availability with repmgr Chapter 9

[387]

Since repmgr uses a PostgreSQL extension, it is version dependent, so make sure that
you install the version that matches your PostgreSQL installation.

Once the package itself is installed, we merely need to ensure that every node can
communicate via passwordless SSH through the postgres user. This is a fairly
common configuration, so it's possible that this has already been done. Regardless,
we begin by generating an RSA token with a public key.

This key should be added to the .ssh/authorized_keys file on every cluster node,
which can be done via the ssh-copy-id command. We transmit this to all nodes, as
repmgr does not assume that it is being invoked from one of our PostgreSQL nodes.
This will allow it to connect to all servers via SSH, including the local system. If we
don't have the postgres user password necessary to use ssh-copy-id, simply cut
and paste the contents of the .ssh/id_rsa.pub file into the
.ssh/authorized_keys file manually on all nodes.

Once we've accomplished this step for each node in the cluster, every node should be
able to communicate via SSH as the postgres user in a reciprocal manner. This
symmetric design will ensure that any node can operate as the primary node and that
we can connect to any system and execute repmgr commands without worrying
whether or not they will succeed.

Next, we create a file named nodes.txt that contains every possible known name for
each of these nodes. We simply use the hostname and IP address for the systems in
our example, but it's best to include any name and alias used to connect to the servers
via SSH. This is in case the SSH utilities prompt us to add hosts to the
.ssh/known_hosts file if they are not already listed.

If repmgr encounters one of these prompts while operating, the requested command
will fail, and so we use the ssh-keyscan utility to retrieve the SSH signature from
each name listed in nodes.txt to preallocate entries in .ssh/known_hosts.
Provided that we also perform this procedure on every node, there should be no
disruption of repmgr commands that require SSH.

Lastly, we create a definition for sudoers so that the postgres user can invoke
certain commands through sudo. This will allow us to start, stop, or restart
PostgreSQL, as well as administer the VIP as necessary. Only these exact commands
are allowed, so this isn't considered a vulnerability, and all of these commands will
prove useful for high-availability automation.

With these steps completed, we should be able to proceed to repmgr activation.

High Availability with repmgr Chapter 9

[388]

Installing and configuring repmgr
Installation of the repmgr software package is only the beginning of activating
repmgr itself. The repmgr keeps track of the cluster state within the PostgreSQL
cluster nodes. Each cluster change is reflected in the stored metadata, and command-
line tools compare this information to the current cluster state in order to detect
inconsistencies that require intervention.

This recipe will focus on activating repmgr within PostgreSQL and configuring the
command-line tool and daemon to manage each node.

Getting ready
One important requirement of this recipe is that we know where certain PostgreSQL
binaries are found. Locate the directory where PostgreSQL binaries are installed—for
example, most Debian-based systems use /usr/lib/postgresql/12/bin while
Red Hat systems use /usr/pgsql-12/bin instead.

One way to do this is to obtain the information from the package manager itself.
Debian systems can use this command to find PostgreSQL binaries:

dpkg -L postgresql-12 | grep bin

Red Hat and similar systems can use this command instead:

rpm -ql postgresql12 | grep bin

Other package managers may have different methods of collecting this information.

How to do it...
For the purposes of this recipe, we will need one server named pgha1. As always, the
/db/pgdata path will be our default data directory. Follow these steps:

Connect to PostgreSQL and execute the following commands to create a1.
user and database for managing repmgr:

CREATE USER repmgr WITH SUPERUSER REPLICATION;
CREATE DATABASE repmgr OWNER repmgr;

High Availability with repmgr Chapter 9

[389]

Modify the postgresql.conf file and set the following parameters:2.

shared_preload_libraries = 'pg_stat_statements, repmgr'
wal_log_hints = 'on'

Modify the pg_hba.conf file and add the following lines:3.

host all repmgr 10.0.30.0/24 trust
host replication repmgr 10.0.30.0/24 trust

Restart the PostgreSQL service with this command on Debian-based4.
systems

sudo systemctl restart postgresql@12-main

Red Hat derivatives should restart PostgreSQL with this command instead:

sudo systemctl restart postgresql-12

Create a file named /etc/repmgr.conf with the following contents:5.

node_id = 1
node_name = 'pgha1'
conninfo = 'host=pgha1 port=5432 dbname=repmgr user=repmgr'
data_directory = '/db/pgdata'
pg_bindir = '/path/to/postgres/bin'
use_replication_slots = 'yes'

log_level = 'DEBUG'
log_file = '/var/log/postgresql/repmgr.log'
monitoring_history = 'true'

failover = 'automatic'
primary_visibility_consensus = 'true'

promote_command = 'repmgr standby promote'
follow_command = 'repmgr standby follow -f /etc/repmgr.conf -W
--upstream-node-id=%n '

service_start_command = 'sudo systemctl start postgresql@12-
main'
service_stop_command = 'sudo systemctl stop postgresql@12-
main'
service_restart_command = 'sudo systemctl restart
postgresql@12-main'
service_reload_command = 'sudo systemctl reload postgres@12-
main'

High Availability with repmgr Chapter 9

[390]

On Red Hat and CentOS systems and similar, use the appropriate
configuration path instead. This will likely be
/etc/repmgr/12/repmgr.conf or similar.

Register this node as the primary with the following command as the6.
postgres user:

repmgr primary register

Debian-based systems will need to modify the /etc/default/repmgrd7.
file and set the following variables:

REPMGRD_ENABLED=yes
REPMGRD_CONF="/etc/repmgr.conf"
REPMGRD_OPTS="--daemonize=false"

Enable and restart the repmgrd daemon with the following commands as a8.
root-level user:

sudo systemctl enable repmgrd
sudo systemctl restart repmgrd

If the preceding commands do not work, try these instead:

sudo systemctl enable repmgr12
sudo systemctl restart repmgr12

Examine the repmgr logfile with tail:9.

tail -n 5 /var/log/postgresql/repmgr.log

How it works...
Though this recipe focuses on a single PostgreSQL node to initialize the cluster, only
the first step must be performed on our initial primary node. For setting up
subsequent replica nodes, we only need to begin with the configuration file.

This first step is to provide a location where repmgr can maintain its metadata
regarding the cluster status and configuration. To do this, we create a repmgr user
and a repmgr database to make the association obvious. As repmgr itself is a
PostgreSQL extension, we must also modify postgresql.conf to include repmgr in
the shared_preload_libraries parameter.

High Availability with repmgr Chapter 9

[391]

Without this step, the repmgr command-line tool and daemon will be unable to
initialize or operate. We also enable wal_log_hints as recommended by the
PostgreSQL documentation so that repmgr can take advantage of tools such
as pg_rewind when rejoining old primary nodes.

Next, we add two lines to the pg_hba.conf file to allow the repmgr user to connect
to any database, including the replication pseudo database. To follow our
example, we allow these connections to originate from anywhere within the
10.0.30.0 subnet.

Though our example uses trust authorization, we suggest that real
production systems utilize .pgpass files and md5 authentication
instead. Unless the PostgreSQL servers can communicate directly on
a private firewalled network, this setup allows any user on these
servers to clone our database.

To finish our configuration duties, we create a single file named repmgr.conf in the
/etc directory. All repmgr configuration files technically only require us to modify
four parameters, and these are the most critical.

The first of these is the node_id parameter, which we set to 1 to indicate that this is
the first node. The ID for a node can be any value, so long as it is unique for every
node in the cluster. Since this is our only cluster, we can rely on incremental values
such as 1, 2, and 3 for subsequent nodes.

Next comes the node_name parameter, which we set to pgha1 to reflect the
hostname. There really are no requirements here other than using a distinct and
memorable name within the cluster.

Then we move on to specifying the conninfo parameter. This is the PostgreSQL
connection string that repmgr will use when interacting with its metadata. As a
consequence, connection information needs to match our previous entries in
pg_hba.conf and use the repmgr database that we created specifically for this
purpose.

The final required element is the data_directory parameter, which we've set to our
standard parameter of /db/pgdata. Some repmgr commands require this to produce
replicas, or to rewind an old primary node so that it can be reattached as a standby.

High Availability with repmgr Chapter 9

[392]

Next, we set pg_bindir so that repmgr always knows where to find certain
PostgreSQL binaries. Some of these include pg_rewind, psql, pg_basebackup, and
others. Many Linux distributions place these in nonstandard directories that are not
included in any system PATH specification, meaning that repmgr will not operate
normally if this setting is omitted.

The last change that we need to make is to set the use_replication_slots
parameter to true. When repmgr creates new replicas, it will automatically produce
the appropriate conninfo entry in recovery.conf or postgresql.conf,
depending on the PostgreSQL version. When slots are enabled, it will also create and
manage associated replication slots so that replicas cannot fall behind during
extended outages. While this is not required, we strongly recommend keeping this
parameter enabled to avoid potentially lengthy and frequent rebuilds of replica
nodes.

We then take the opportunity to make the output more verbose for demonstration
purposes by setting log_level to DEBUG. Similarly, we set the
monitoring_history parameter to true so that cluster events are all recorded in
the repmgr.monitoring_history table for debugging purposes. We also set
log_file to an appropriate location because journald only captures a small
fraction of the debugging output, and we want to see everything.

You may find the log_level output of DEBUG too verbose once
we've established a working system. If this is the case, feel free to
comment out this line to revert to the default value of INFO.

The next few parameters pertain specifically to daemon operation. We first set
failover to automatic so that the daemon can manage failovers without manual
intervention. Next, we enable the slightly more obscure
primary_visibility_consensus so that there must be consensus from remaining
nodes that the primary node is unreachable before the promotion is allowed. This
helps specifically to prevent split-brain in uneven network disruptions.

The promote_command value is used when repmgr decides that a specific node
should be promoted to primary status. In simple cases like this, simply using repmgr
standby promote is usually sufficient. This will cause the repmgr process running
on the elected node to execute that command as if we had done so from the command
line.

High Availability with repmgr Chapter 9

[393]

Similarly, the follow_command parameter is used to inform other existing replicas to
follow the newly promoted primary. In this case, we specify the standard repmgr
standby follow command, the -W parameter to indicate that it should wait for the
primary to become available, and --upstream-node-id to be explicit about which
node to follow.

While our examples show repmgr standby promote and repmgr
standby follow without specifying the full path to these binaries,
this is only because Debian-based systems create a
/usr/bin/repmgr wrapper, which is likely to be in most system
paths. Any other Linux distribution (or otherwise) that does not
share this attribute should always specify the full path to the
repmgr binary in these parameters.
The pg_bindir parameter is not prepended to promote_command
or follow_command, as either command may refer to an executable
script in any location. When in doubt, or if things aren't working as
expected, specify the entire path.

The --upstream-node-id option is not technically required to
follow the current primary node. If replication is working normally,
repmgr will obtain the correct target from the metadata database;
however, in limited circumstances, the state of this metadata can be
ambiguous, such as in witness nodes that merely copy the metadata
periodically. We can prevent this by explicitly specifying the
upstream node, which should be correct unless the node record
itself was changed.

The final components of our configuration file pertain to how repmgr manages the
PostgreSQL service. Each of the service_*_command parameters correspond to the
operation we would need repmgr to perform automatically in our stead. In this case,
we rely on systemctl to invoke these commands via sudo. This is one reason we
configured sudoers in the Preparing systems for repmgr recipe; be sure to use the same
commands that we specified there.

Now that everything is prepared, we can finally register the primary node and
complete the installation process by creating various database objects. These steps are
all performed by the repmgr command, provided that we specify the primary
register parameters. Our output should look something like this:

High Availability with repmgr Chapter 9

[394]

We're almost done! The repmgr system comes with a daemon that manages
communication and controls behavior between other repmgr nodes. If we start this
daemon, then repmgr will run in the background and process node communication,
the consensus model, elections, and node promotions, among other elements.

Debian systems need to modify the /etc/default/repmgrd file and enable the
daemon itself by setting REPMGRD_ENABLED to yes, and by specifying the location of
the repmgr configuration file with REPMGRD_CONF. While /etc/repmgr.conf is the
default location, Debian systems require this to be set explicitly before operating. And
perhaps most importantly, we must ensure that REPMGRD_OPTS is set to --
daemonize=false so that systemd properly tracks the repmgrd process ID and can
successfully stop or restart the service.

This has been a long-standing bug ever since repmgr changed the
default for the --daemonize option to true in version 4.1 back in
early 2018. We're not quite sure why the PGDG packagers still
haven't corrected this issue.

Once we enable and start the repmgr daemon using the distribution-appropriate
command, we can examine the log. We should see the initial startup messages there,
as shown in the following screenshot:

See also
The official repmgr site maintains current documentation and sources, along with
version announcements. Please use these resources for more information:

repmgr: https://repmgr.org/
repmgr documentation: https://repmgr.org/docs/current/index.html
repmgr GitHub: https://github.com/2ndQuadrant/repmgr

https://repmgr.org/
https://repmgr.org/docs/current/index.html
https://github.com/2ndQuadrant/repmgr

High Availability with repmgr Chapter 9

[395]

Cloning a database with repmgr
As repmgr is a client/server PostgreSQL management suite, we need at least two
nodes involved before we're really using it. We can perform the tasks outlined in this
recipe as many times as we wish, creating several clones and registering them with
repmgr. Of course, this book is only for demonstration purposes, so we'll leave the
larger clusters to you. With multiple nodes involved, the chances of data loss or
system outages decline, which is excellent for our goal of attaining high availability.

This recipe will focus on the process necessary to add a node to an existing repmgr
cluster. The existing cluster in our case is the one that we established on pgha1 in the
previous recipe.

Getting ready
This recipe depends on repmgr being installed on both a primary server and the clone
that we will use. Please follow the Installing and configuring repmgr recipe before
continuing.

How to do it...
For the purposes of this recipe, pgha1 will remain our primary node, and the replica
will be pgha2. As always, the /db/pgdata path will be our default data directory.

All of these commands should be executed from pgha2. Follow these steps to
produce a fully functional repmgr replica:

Create a repmgr.conf file as described in the Installing and configuring1.
repmgr recipe on pgha2, but make the following changes to the stated
parameters:

node_id = 2
node_name = 'pgha2'
conninfo = 'host=pgha2 port=5432 dbname=repmgr user=repmgr'

Clone the pgha1 node with the following command as the postgres user.2.
Executed this command on pgha2:

repmgr standby clone -h pgha1 -U repmgr -d repmgr

High Availability with repmgr Chapter 9

[396]

Start the new replica as the postgres user with systemctl on Debian3.
systems:

systemctl start postgresql@12-main

On Red Hat-based systems, use the following command:

systemctl start postgresql-12

Register pgha2 with pgha1 as the postgres user:4.

repmgr standby register

Start the repmgrd daemon with the following command as a root-level5.
user on Debian systems:

sudo systemctl start repmgrd

Use this command for Red Hat variants:

sudo systemctl start repmgr12

Connect to the repmgr database on pgha1 and view the sync status of6.
pgha2 with this SQL statement:

SELECT standby_node_id, standby_name, replication_lag
FROM repmgr.replication_status;

How it works...
One good thing about the Installing and configuring repmgr recipe is that it applies to
any and all repmgr nodes, except for a few settings that must be distinct on each.
These include the node_id, node_name, and conninfo. This makes sense, as each
node should have a uniquely identifiable ID and name, and the conninfo parameter
should always be set to the local node managed by repmgr.

Once the repmgr.conf configuration file is properly defined, we can clone pgha1
with the repmgr command-line tool. Because no PostgreSQL instance exists on pgha2
yet, this should be a safe operation. Since the new node has no metadata, we must
specify the upstream host that we're cloning with -h and the name of the metadata
database itself with -d. All other settings, such as the PostgreSQL data directory, are
derived from our repmgr.conf file.

High Availability with repmgr Chapter 9

[397]

Assuming that there were no errors, the command should produce a lot of extremely
verbose output, with the following at the end (we've removed the debugging output
for readability):

If we follow the advice in the last line and start PostgreSQL with systemctl, then the
clone should immediately connect to pgha1 and begin replication. We can do this
because repmgr knows all of the connection information necessary to establish a
streaming replication connection with pgha1. During the cloning process, repmgr
automatically sets the primary_conninfo and primary_slot_name parameters in
recovery.conf or postgresql.auto.conf as necessary to start directly in
replication mode.

With everything up and running, we should be able to register the new clone similar
to the process that we used to register the primary. The repmgr command-line tool
offers several useful operations. For now, we will settle with standby register to
inform repmgr that it should track pgha2 as part of the new cluster.

Once we start the repmgrd daemon, all nodes should become aware of each other
and the current status of each one. We can confirm this by checking the
replication_status view on any node. If we execute the supplied SQL statement,
we should see this:

The replication_status view has other useful columns, but for now, we can see
that the cluster considers pgha2 the only standby node, and it's not lagging behind
the current primary at all.

High Availability with repmgr Chapter 9

[398]

There's more...
Cloning to expand our cluster is only the beginning of the story. Once we have more
than one node, it also makes sense to start viewing the cluster itself. We can even
clone from Barman backups as well! Let's learn about these additional features in
more detail.

Viewing the cluster
There is another way to obtain the cluster status. The repmgr command can also
report how it perceives the cluster from any active node, given the cluster show
parameter. Here is the entire command as executed by the postgres user:

repmgr cluster show

The result of this command as executed on pgha2 is as follows:

The repmgr cluster show command also accepts a handy --csv option to indicate
the online status of each node ID and whether or not it is replicating. This is
presented in CSV format for easy programmatic interpretation if desired.

Cloning from Barman
Since repmgr and Barman are both developed by 2ndQuadrant, they have been
designed to be integrated if this is what is wanted. One reason that we might decide
to do this is to reduce I/O strain on the primary node when creating a new clone. It's
also very easy to configure.

Assuming that we've already explored the recipes in the chapter on backup
management, we could add these two settings to repmgr.conf and clones would be
constructed from a backup rather than the primary node:

barman_host='barman@pg-backup'
 barman_server='pg-primary'

High Availability with repmgr Chapter 9

[399]

Since repmgr knows the parameters that Barman expects, it can invoke all the
commands necessary to recover the latest backup on the local node. Of course, this
assumes that we have already configured passwordless SSH from the new node to
the backup server as the barman user, and from the backup server to the new node as
the postgres user.

Keep these reciprocal SSH expectations in mind, as several PostgreSQL tools rely
upon them.

See also
The official repmgr site maintains current documentation and goes into more depth
on how these commands work. Please use these resources for more information:

repmgr standby clone: https://repmgr.org/docs/current/repmgr-
standby-clone.html

repmgr standby register: https:/ /repmgr. org/docs/ current/ repmgr-
standby- register. html

repmgr cluster show: https:/ /repmgr. org/ docs/ current/ repmgr-
cluster- show. html

Cloning a standby from Barman: https:/ /repmgr. org/ docs/ current/
cloning- from- barman. html

Incorporating a repmgr witness
As we discussed in Chapter 1, Architectural Considerations, it is incredibly important
to include an odd number of nodes in most cluster designs. Generally, this is
necessary to guarantee that a voting quorum can be established in the case that the
primary node becomes unavailable. We must choose one existing standby system to
promote and take over the cluster.

We must also consider the possibility of split-brain and network partitions. Witness
nodes help protect us from these scenarios by acting as an objective third party. If
they are located in the same data center as the current primary, then the network
partitions will prevent it from voting at all, and we will be protected from network
partitions. If it's in a tertiary data center away from either the current primary or
standby, there will be two independent routes to verify whether or not the primary
node is actually offline or unreachable.

https://repmgr.org/docs/current/repmgr-standby-clone.html
https://repmgr.org/docs/current/repmgr-standby-clone.html
https://repmgr.org/docs/current/repmgr-standby-clone.html
https://repmgr.org/docs/current/repmgr-standby-register.html
https://repmgr.org/docs/current/repmgr-standby-register.html
https://repmgr.org/docs/current/repmgr-standby-register.html
https://repmgr.org/docs/current/repmgr-standby-register.html
https://repmgr.org/docs/current/repmgr-standby-register.html
https://repmgr.org/docs/current/repmgr-standby-register.html
https://repmgr.org/docs/current/repmgr-standby-register.html
https://repmgr.org/docs/current/repmgr-standby-register.html
https://repmgr.org/docs/current/repmgr-standby-register.html
https://repmgr.org/docs/current/repmgr-standby-register.html
https://repmgr.org/docs/current/repmgr-standby-register.html
https://repmgr.org/docs/current/repmgr-standby-register.html
https://repmgr.org/docs/current/repmgr-standby-register.html
https://repmgr.org/docs/current/repmgr-standby-register.html
https://repmgr.org/docs/current/repmgr-standby-register.html
https://repmgr.org/docs/current/repmgr-standby-register.html
https://repmgr.org/docs/current/repmgr-standby-register.html
https://repmgr.org/docs/current/repmgr-standby-register.html
https://repmgr.org/docs/current/repmgr-cluster-show.html
https://repmgr.org/docs/current/repmgr-cluster-show.html
https://repmgr.org/docs/current/repmgr-cluster-show.html
https://repmgr.org/docs/current/repmgr-cluster-show.html
https://repmgr.org/docs/current/repmgr-cluster-show.html
https://repmgr.org/docs/current/repmgr-cluster-show.html
https://repmgr.org/docs/current/repmgr-cluster-show.html
https://repmgr.org/docs/current/repmgr-cluster-show.html
https://repmgr.org/docs/current/repmgr-cluster-show.html
https://repmgr.org/docs/current/repmgr-cluster-show.html
https://repmgr.org/docs/current/repmgr-cluster-show.html
https://repmgr.org/docs/current/repmgr-cluster-show.html
https://repmgr.org/docs/current/repmgr-cluster-show.html
https://repmgr.org/docs/current/repmgr-cluster-show.html
https://repmgr.org/docs/current/repmgr-cluster-show.html
https://repmgr.org/docs/current/repmgr-cluster-show.html
https://repmgr.org/docs/current/repmgr-cluster-show.html
https://repmgr.org/docs/current/repmgr-cluster-show.html
https://repmgr.org/docs/current/cloning-from-barman.html
https://repmgr.org/docs/current/cloning-from-barman.html
https://repmgr.org/docs/current/cloning-from-barman.html
https://repmgr.org/docs/current/cloning-from-barman.html
https://repmgr.org/docs/current/cloning-from-barman.html
https://repmgr.org/docs/current/cloning-from-barman.html
https://repmgr.org/docs/current/cloning-from-barman.html
https://repmgr.org/docs/current/cloning-from-barman.html
https://repmgr.org/docs/current/cloning-from-barman.html
https://repmgr.org/docs/current/cloning-from-barman.html
https://repmgr.org/docs/current/cloning-from-barman.html
https://repmgr.org/docs/current/cloning-from-barman.html
https://repmgr.org/docs/current/cloning-from-barman.html
https://repmgr.org/docs/current/cloning-from-barman.html
https://repmgr.org/docs/current/cloning-from-barman.html
https://repmgr.org/docs/current/cloning-from-barman.html
https://repmgr.org/docs/current/cloning-from-barman.html
https://repmgr.org/docs/current/cloning-from-barman.html

High Availability with repmgr Chapter 9

[400]

Essentially, a witness node must agree with the remainder of the cluster to form a
majority and trigger a failover event. This recipe will focus on the process necessary
to add a witness to an existing repmgr cluster.

Getting ready
This recipe depends on repmgr being installed on both a primary server and the
witness that we will use. Please follow the Installing and configuring repmgr and
Cloning a database with repmgr recipes before continuing.

How to do it...
For the purposes of this recipe, pgha1 will remain our primary node and the witness
will be pgha3. As always, the /db/pgdata path will be our default data directory.

All of these commands should be executed from pgha3. Follow these steps to
produce a fully functional repmgr witness:

Create a new and empty PostgreSQL instance using initdb as the1.
postgres user:

initdb -D /db/pgdata

Modify the postgresql.conf file and set the following parameter:2.

shared_preload_libraries = 'repmgr'

Modify the pg_hba.conf file and add the following line:3.

host all repmgr 10.0.30.0/24 trust

Start the PostgreSQL service with this command on Debian-based systems:4.

sudo systemctl start postgresql@12-main

Red Hat derivatives should restart PostgreSQL with this command instead:

sudo systemctl start postgresql-12

High Availability with repmgr Chapter 9

[401]

Connect to PostgreSQL and execute the following to create a user and5.
database for managing repmgr:

CREATE USER repmgr WITH SUPERUSER REPLICATION;
CREATE DATABASE repmgr OWNER repmgr;

Create a file named /etc/repmgr.conf with the following contents:6.

node_id = 3
node_name = 'pgha3'
conninfo = 'host=pgha3 port=5432 dbname=repmgr user=repmgr'
data_directory = '/db/pgdata'
pg_bindir = '/path/to/postgres/bin'
log_level = 'DEBUG'
log_file = '/var/log/postgresql/repmgr.log'
monitoring_history = 'true'
primary_visibility_consensus = 'true'

On Red Hat and CentOS systems and similar, use the appropriate7.
configuration path instead. This will likely
be /etc/repmgr/12/repmgr.conf or similar.
Register this node as the witness with the following command as the8.
postgres user:

repmgr witness register -h pgha1 -d repmgr

Debian-based systems will need to modify the /etc/default/repmgrd9.
file and set the following variables:

REPMGRD_ENABLED=yes
REPMGRD_CONF="/etc/repmgr.conf"
REPMGRD_OPTS="--daemonize=false"

Enable and restart the repmgrd daemon with the following commands as a10.
root-level user:

sudo systemctl enable repmgrd
sudo systemctl restart repmgrd

If the preceding commands do not work, try these instead:

sudo systemctl enable repmgr12
sudo systemctl restart repmgr12

High Availability with repmgr Chapter 9

[402]

Verify that the witness can see the cluster using the following command as11.
the postgres user:

repmgr cluster show

How it works...
In many ways, creating a witness node is very similar to starting a new repmgr
cluster. Since the witness only needs to act as a voting member and observe the
primary node, it does not need a full copy of our operational data. In fact, it only
needs a very small PostgreSQL installation to track the repmgr cluster metadata.

To that end, we can use initdb, pg_createcluster, or whatever tool is provided
by our Linux distribution to start with an empty database. The important thing is that
we make the same modifications that we made when we initialized the primary node.

Principally, this means adding the repmgr shared library to
shared_preload_libraries in postgresql.conf and modifying pg_hba.conf
to allow connections; however, unlike a full member node, we don't need to allow
replication streaming; this node will never act as a primary, and is not a candidate for
promotion.

With the PostgreSQL configuration complete, we should be able to start the database
service. Just like our primary node, we must also create the repmgr user and database
to store the cluster metadata.

Once PostgreSQL is running and the repmgr user and database exist, we can focus on
configuring repmgr as a witness node. As with all repmgr.conf files, we include the
node_id, node_name, and conninfo parameters and modify them to reflect pgha3
in all respects. We also specify the same data_directory, pg_bindir, log_level,
log_file, and monitoring_history entries as our other recipes for consistency.

And that is where the configuration ends. Unlike regular nodes that expect to be
promoted, we don't need promotion or follow commands. There's no reason for the
daemon to start, stop, reload, or restart the PostgreSQL service. In this case, the
repmgr daemon merely exists to vote and watch the rest of the cluster and nothing
more.

With the configuration complete, we should be able to register the new witness in a
similar way to the process that we used to register the first standby. Since witness
nodes are treated differently, they also have their own syntax. In this case, we use
witness register to inform repmgr that it should track pgha3 as a cluster witness.

High Availability with repmgr Chapter 9

[403]

Note that, much like repmgr standby clone, we also provide the host (-h) and
database (-d) options while registering. This is because we're not cloning the node,
but we still need the cluster metadata. One of the jobs of the repmgr daemon on a
witness node is to regularly refresh the contents of the metadata from the appropriate
primary system. But we must get at least one copy to bootstrap the process. To do
this, when we register a witness node, we tell it where that information resides.

At this point, we can enable and start the repmgrd daemon with systemctl. Since
the witness node depends on a copy of the cluster metadata rather than streaming it
directly via replication, one of the best ways to demonstrate proper operation is with
repmgr cluster show, as shown here:

Note how the witness is identified specifically by its role, and that the upstream is
pgha1. This means that it is currently copying metadata regularly from pgha1. In the
event of a switchover or failover, this will necessarily change.

See also
The official repmgr site maintains current documentation and goes into more depth
on how these commands work. Please use these resources for more information:

repmgr witness register: https:/ /repmgr. org/ docs/ current/ repmgr-
witness- register. html

Using a witness server: https://repmgr.org/docs/current/repmgrd-
witness-server.html

Performing a managed failover
Creating a PostgreSQL clone can be surprisingly dangerous. When using a utility
such as rsync, accidentally transposing the source and target can result in erasing the
source PostgreSQL data directory. This is especially true when swapping from one
node to another and then reversing the process. It's all too easy to accidentally invoke
the wrong script when the source and target are so readily switched.

https://repmgr.org/docs/current/repmgr-witness-register.html
https://repmgr.org/docs/current/repmgr-witness-register.html
https://repmgr.org/docs/current/repmgr-witness-register.html
https://repmgr.org/docs/current/repmgr-witness-register.html
https://repmgr.org/docs/current/repmgr-witness-register.html
https://repmgr.org/docs/current/repmgr-witness-register.html
https://repmgr.org/docs/current/repmgr-witness-register.html
https://repmgr.org/docs/current/repmgr-witness-register.html
https://repmgr.org/docs/current/repmgr-witness-register.html
https://repmgr.org/docs/current/repmgr-witness-register.html
https://repmgr.org/docs/current/repmgr-witness-register.html
https://repmgr.org/docs/current/repmgr-witness-register.html
https://repmgr.org/docs/current/repmgr-witness-register.html
https://repmgr.org/docs/current/repmgr-witness-register.html
https://repmgr.org/docs/current/repmgr-witness-register.html
https://repmgr.org/docs/current/repmgr-witness-register.html
https://repmgr.org/docs/current/repmgr-witness-register.html
https://repmgr.org/docs/current/repmgr-witness-register.html
https://repmgr.org/docs/current/repmgrd-witness-server.html
https://repmgr.org/docs/current/repmgrd-witness-server.html
https://repmgr.org/docs/current/repmgrd-witness-server.html

High Availability with repmgr Chapter 9

[404]

We've already established how repmgr can ease the process of clone creation, and
now it's time to discuss node promotion. There are two questions we will answer in
this recipe: how do we swap from one active PostgreSQL node to another, and how
do we then reactivate the original node without risking our data? The second
question is perhaps more important because of the fact that we will be at reduced
capacity following node deactivation.

This recipe will explore how to keep our database available through multiple node
swaps.

Getting ready
This recipe depends on repmgr being installed on a primary server, and the
possession of at least one standby and a witness. Please go through all previous
recipes before continuing.

How to do it...
For the purposes of this recipe, pgha1 will start as our primary node and pgha2 will
start as a physical standby. Follow these steps to promote pgha2 to be the new cluster
primary:

Pause the repmgr daemon on all nodes by executing this command as the1.
postgres user on any system:

repmgr service pause

As the postgres user on pgha2, invoke the following command to2.
promote it to become the new primary:

repmgr standby switchover --siblings-follow

Check the cluster status as the postgres user on any node:3.

repmgr cluster show

Unpause the repmgr daemon on all nodes by executing this command as4.
the postgres user on any system:

repmgr service unpause

High Availability with repmgr Chapter 9

[405]

How it works...
To start the process, we must first temporarily disable the automated repmgr daemon
with repmgr service pause. This is extremely important, as repmgr is currently
configured to detect an outage, trigger an election, and automatically promote a node.
If we manually invoke commands that alter the cluster state, the daemon could also
start issuing commands and we may end up with an inoperable cluster.

It's extremely important to always pause the service when using
repmgr commands that reassign, modify, or disable the current
primary node. If we fail to do this, repmgr may start trying to "fix"
the cluster while we're still making manual changes. Consider this a
standard part of any kind of maintenance of a cluster operating
under repmgr.

Next, we invoke the repmgr tool from pgha2 with standby switchover
parameters. This tells repmgr that the current node should be the new primary and
that the previous primary should be converted into a standby.

By including the --siblings-follow option, we explicitly request that all other
standby or witness nodes follow the new primary. This is not done automatically in
the case of temporary maintenance procedures, where nodes will be reverted to their
old roles once complete. It can also be a good idea to omit this option in clusters that
make extensive use of cascading replication; otherwise, all nodes will follow the
promoted standby system.

We can actually observe the entire procedure in the output from the command, which
even without debugging enabled, is extremely verbose. We hope the output ends
with these messages:

From this output, we can not only see that the switchover was successful, but we can
also see some of the subcommands that repmgr used to accomplish that end goal. We
can also see that it cleaned up any unused replication slots, since pgha1 should be
streaming from pgha2 rather than vice versa.

High Availability with repmgr Chapter 9

[406]

We can further verify the state of the cluster by using the repmgr cluster show
command, as seen in this example:

What we want to see here is that both the old primary and the witness are both
following the newly promoted node. We also want to see that pgha2 is running as the
primary node for the cluster. The cluster show command tends to notice
inconsistencies, and these will appear in the output as something that could warrant
investigation or corrective measures.

Once we've verified that the cluster is operating as expected, we unpause the repmgr
service with repmgr service unpause so that future failovers will work normally.

There's more...
There are, however, a couple of extra points that we'd like to make.

Always watching
Remember the witness node? Pausing the repmgr service only prevents the daemons
from taking action when they detect an outage. Each will continue to watch the other
nodes, especially the upstream primary. If we check the witness node logs, we have
an objectively uninvolved history of the manual switchover we demonstrated
previously.

Here is an example of that activity:

High Availability with repmgr Chapter 9

[407]

It's apparent that the witness node noticed the connection from pgha1, and that
triggered six 10-second checks where it would have declared that node as
unreachable. This would determine how the witness would vote if we hadn't paused
the daemon cluster management.

Since the cluster recovers before the full timeout period, the witness reconnects and
then notices that some other node is the new primary. Since witness nodes only
maintain a copy of the cluster metadata, it realizes it must connect to pgha2 to
maintain the current information.

If this had not been a manual switchover or some kind of other test, we would have
seen far more output pertaining to a node election, selection, and so on.

Testing the waters
Several repmgr commands also accept the --dry-run argument. When supplied to
an operation, repmgr will invoke the process normally, but will only produce
debugging output, and will skip elements that would modify the cluster state. It's a
way of verifying that there are no unexpected problems that would definitely disrupt
the switchover.

This is especially important here, as a switchover actually performs several actions:

Stops the current primary node
Promotes the standby on the selected node
Converts the old primary into a new standby
Connects to any other nodes in the cluster and changes their streaming
connection

This is not an exhaustive list, as each of the preceding steps may consist of further
granular operations. It's important to use the dry run option before triggering such
potentially dangerous tasks.

Useful shortcuts
Since the introduction of repmgr 4.2, repmgr standby switchover will
automatically pause the service to prevent it from interfering in the procedure. While
we still recommend pausing the service explicitly to prevent accidents in case other
commands are involved, it's permissible to omit this in this circumstance.

High Availability with repmgr Chapter 9

[408]

However, repmgr will not automatically unpause the daemons at the end of a
switchover. After all, the repmgr service may have been paused before we invoked
the switchover process. Therefore, if we want to both automatically pause and
unpause the repmgr service during a switchover, we can use this command instead:

repmgr standby switchover --siblings-follow --repmgrd-force-unpause

See also
The official repmgr site maintains current documentation and goes into more depth
on how these commands work. Please use these resources for more information:

repmgr standby switchover: https://repmgr.org/docs/current/repmgr-
standby-switchover.html

repmgr service pause: https://repmgr.org/docs/current/repmgr-
service-pause.html

repmgr service unpause: https://repmgr.org/docs/current/repmgr-
service-unpause.html

Pausing the repmgrd service:
https://repmgr.org/docs/current/repmgrd-pausing.html

Customizing the failover process
Very few out-of-the-box installations adequately represent the needs of every
potential user. As a result, repmgr relies more on command invocation than on
configuration parameters.

As a result, repmgr functions in far more environments than it normally would. There
are organizations that use a VIP to always track the current primary node, as we will
soon demonstrate. There are others that prefer reconfiguring PgBouncer hosts
instead. Still others rely on F5 load balancers, CNAME assignment, or any number of
other abstraction techniques.

Rather than dictate which is the preferred method, repmgr allows all of these to
flourish as necessary based on user needs. In fact, repmgr offers quite a few
parameters that accept a script or another kind of command to manage cluster
operations. There's even an event handler to act as a routing engine for more
advanced use cases.

https://repmgr.org/docs/current/repmgr-standby-switchover.html
https://repmgr.org/docs/current/repmgr-standby-switchover.html
https://repmgr.org/docs/current/repmgr-standby-switchover.html
https://repmgr.org/docs/current/repmgr-service-pause.html
https://repmgr.org/docs/current/repmgr-service-pause.html
https://repmgr.org/docs/current/repmgr-service-pause.html
https://repmgr.org/docs/current/repmgr-service-unpause.html
https://repmgr.org/docs/current/repmgr-service-unpause.html
https://repmgr.org/docs/current/repmgr-service-unpause.html
https://repmgr.org/docs/current/repmgr-service-unpause.html
https://repmgr.org/docs/current/repmgr-service-unpause.html
https://repmgr.org/docs/current/repmgrd-pausing.html
https://repmgr.org/docs/current/repmgrd-pausing.html

High Availability with repmgr Chapter 9

[409]

This recipe, however, will focus on explaining the promote_command parameter
necessary to allocate a VIP that follows our current primary node.

Getting ready
This recipe depends on us having a fully operational repmgr cluster. Please go
through all recipes up to and including Incorporating a repmgr witness. Pay special
attention to the Preparing systems for repmgr recipe, which defines the
/etc/sudoers.d/postgres definition that allows the postgres user to invoke
specific root-level commands.

How to do it...
For the purposes of this recipe, pgha1 will remain our primary node, and the standby
will be pgha2. Follow these steps on pgha1 and pgha2, unless otherwise specified:

Create a file named repmgr_promote_self.sh in the /usr/local/bin1.
folder and specify the following contents:

#!/usr/bin/env bash

VIP=10.0.30.50
IFACE=eth0
PATH=/usr/pgsql-12/bin:$PATH
VIP_CONF="${VIP}/32 dev ${IFACE} label ${IFACE}:pg"

ssh -o StrictHostKeyChecking=no \
 -o UserKnownHostsFile=/dev/null \
 -o ConnectTimeout=5 \
 -o ServerAliveInterval=1 \
 postgres@${VIP} sudo ip addr del ${VIP_CONF}

sudo /sbin/ip addr add ${VIP_CONF}
sudo /usr/sbin/arping -b -A -c 3 -I ${IFACE} ${VIP}

repmgr standby promote
exit 0

Mark the script as executable with this command as a root-level user:2.

sudo chmod a+x /usr/local/bin/repmgr_promote_self.sh

High Availability with repmgr Chapter 9

[410]

Modify repmgr.conf and make sure that promote_command is set to use3.
the new script, including the full path, as shown here:

promote_command = '/usr/local/bin/repmgr_promote_self.sh'

Restart repmgr using systemctl on Debian systems with this command:4.

sudo systemctl restart repmgrd

Red Hat-based servers should use this command instead:

sudo systemctl restart repmgr12

Issue the following commands on pgha1 as the postgres user to bootstrap5.
the VIP:

sudo ip addr add 10.0.30.50/32 dev eth0 label eth0:pg
sudo arping -b -A -c 3 -I eth0 10.0.30.50

How it works...
The focus of this recipe is on operational customization. We begin by defining a script
that performs several actions on our behalf.

Say that we want a VIP to always be located on the current primary node. In the event
of a switchover or failover, this means that the VIP must be moved. The easiest (but
perhaps not the safest) way to do this is to connect to the VIP itself and invoke a
command that destroys it.

Our ssh command does just that, and we use the ConnectTimeout and
ServerAliveInterval options to ensure that our connection doesn't get stuck
because we terminate the VIP while still connected to it. The reason for specifying
StrictHostKeyChecking and UserKnownHostsFile is less obvious. We do this
because the VIP is used by at least two systems, and if each server has a unique host
key, the key will change every time we move it. To avoid worrying about that, we
simply avoid tracking the host key entirely, but only when manipulating the VIP
itself.

High Availability with repmgr Chapter 9

[411]

The StrictHostKeyChecking and UserKnownHostsFile flags are
not necessary if all hosts share the same host key. This can happen if
a single key pair is generated with ssh-keygen and copied to the
~postgres/.ssh folder on all known hosts. This is not an
uncommon configuration, but this recipe can't work with this
example. If your environment reflects this design, feel free to
remove these SSH options.

Next, we use the ip addr command to add the 10.0.30.50 VIP address to our eth0
interface. To be safe, we also use what is known as a gratuitous ARP with arping to
broadcast the fact that we arbitrarily claimed the IP address. This will inform
listening hosts to treat us as the owner of that address since we were the last ones
seen communicating on it.

At the end of the script, we issue a standard repmgr standby promote, which is
always required of a promotion event. This will act as a trigger to repmgr that it
should promote the local standby and modify dependent metadata for the sake of
consistency. In reality, we are merely augmenting the repmgr standby promote
event to include extra steps. In this case, we destroy a remote VIP claim and issue our
own.

As always, any executable script should be assigned the proper operating system
flags; that's our last step to make the script usable. Once we modify the
promote_command parameter in repmgr.conf to invoke the script on any failover
event, repmgr should use our new script instead of repmgr standby promote.

We're technically done with the process after restarting the repmgr daemon. At that
point, failure of the primary node will trigger an election that will elect the current
(and only) standby. Then repmgr will execute the repmgr_promote_self.sh
command, which will ensure that the VIP only exists on the promoted node.

However, just to ensure that the cluster is fully operational, it's in our interest to
create the VIP on the current primary node. This is likely to be pgha1, but if it is
pgha2, that is perfectly fine. The cluster should be symmetrical thanks to the witness.

High Availability with repmgr Chapter 9

[412]

There's more...
Don't think that our VIP takeover script is the only thing that is possible to
accomplish here. In fact, we hope you don't even use our example at all. There are no
safeguards that verify that the VIP no longer works after attempting to deactivate it;
in fact, there aren't any other kinds of error checking at all. A real production-quality
script would, for example, ensure that the VIP could be claimed before finally calling
repmgr standby promote.

In fact, the script can do basically anything that doesn't affect the cluster until finally
triggering the promotion step itself. Provided that each of these steps includes some
kind of verification or exception handling, all it takes to abort the whole process is to
either return a nonzero status or simply to avoid invoking repmgr standby
promote.

Remember, in a high-availability cluster, it's not just the uptime that we must
consider. In an event where we can't verify that no other server is still presenting the
VIP, our attempt to create it locally could result in a split-brain scenario. It's better to
be cautious, even if that means that we don't get an automatic failover if something
isn't working as expected.

An inoperable failover system is merely annoying and can be fixed relatively
painlessly. A situation where two nodes are listening on the same IP address,
perceived differently from various application servers, where nobody knows where
data may have been committed, is much more troublesome.

But it's not all doom and gloom. Since the script is arbitrary, it really can do anything.
It may make sense to transmit an email with machine or cluster details by embedding
repmgr cluster show before and after the failover.

The script doesn't even need to be written in a shell language. So long as it executes
repmgr standby promote at some point and exits with 0 upon success, it could be
written in any language—even C.

See also
The official repmgr site maintains the current documentation and goes into more
depth on how these commands work. Please use this resource for more information:
https://repmgr.org/docs/current/repmgrd-basic-configuration.html

https://repmgr.org/docs/current/repmgrd-basic-configuration.html
https://repmgr.org/docs/current/repmgrd-basic-configuration.html

High Availability with repmgr Chapter 9

[413]

Using an outage to test availability
It's always considered good practice to test a failover procedure to prove that it
functions as designed. There are a lot of moving parts in the cluster design discussed
in this chapter, and an errant setting in PostgreSQL, repmgr, SSH, the VIP, network
hardware, or any number of other influences can impact automation.

Testing helps reveal potential problem areas in a procedure, demonstrates average
event durations, and serves as practice for when unexpected outages actually occur.
The easiest way to test a cluster is to stop PostgreSQL on the primary server, which
should trigger repmgr on other nodes to hold an election and promote the standby.

This recipe will demonstrate a simple failover procedure caused by stopping
PostgreSQL, but also more advanced techniques to test operation during a network
outage.

Getting ready
This recipe requires us to have a fully operational repmgr cluster. Please complete all
of the recipes up to and including Incorporating a repmgr witness. You should also
complete the Customizing the failover process recipe so that we have a functional VIP
established.

How to do it...
For the purposes of this recipe, pgha1 will remain our primary node, the standby will
be pgha2, and our witness is pgha3. The VIP is 10.0.30.50. Follow these steps to
test the failover process:

Issue the following command on pgha1 to stop PostgreSQL on a Debian1.
system:

sudo systemctl stop postgresql@12-main

Red Hat derivatives should use this command to stop PostgreSQL instead:

sudo systemctl stop postgresql-12

Watch the repmgr logs on pgha2 as the postgres user:2.

tail -f /var/log/postgresql/repmgr.log

High Availability with repmgr Chapter 9

[414]

Watch the state of the cluster on pgha3 with this command as the3.
postgres user:

watch -n 1 repmgr cluster show

Once pgha2 assumes the primary role, execute this command to check the4.
state of the VIP on pgha2:

ip addr show dev eth0 label eth0:pg

How it works...
Finally, an easy recipe! Our first (and really only) step is to stop PostgreSQL on the
primary node. Our second step is to watch the aftermath. One quick call to
systemctl to stop PostgreSQL, and we want to watch the other two nodes to see the
state of the cluster change, and how it happens.

The first of these observations is on the standby node, which will presumably be
promoted. We set the log location to /var/log/postgresql/repmgr.log in the
Installing and configuring repmgr recipe. This allows us to watch the log as the repmgr
daemon begins to perform the failover process.

The first thing that happens is that pgha2 loses contact with pgha1 and begins a
series of checks to verify that this wasn't an errant reading. We can see this in the
following log extract:

The default check interval of ten seconds is defined by the reconnect_interval
parameter in repmgr.conf. The default number of six checks before considering the
primary node failed is defined by the reconnect_attempts parameter. These two
attributes combine to a default of 60 seconds to allow for transitory events, after
which an election will follow. In our case, the outage window will be a minimum of
one minute.

High Availability with repmgr Chapter 9

[415]

Once the checks have all been exhausted, we can see the election occur in the pgha2
logs as well, as shown here:

Interestingly, we can actually see that pgha3 reports its visibility of pgha1 as well.
This means that if the witness node could still interact with the primary, the election
would have been aborted at that point. The assumption here is that a transient
network disruption occurred, and we would not want to promote pgha2 under those
circumstances. In this instance, we can see that all requirements for promotion have
passed and that pgha2 will begin the promotion step by executing whatever
command is specified in the promote_command parameter.

We already discussed the script that manages the VIP in the previous recipe, where
the VIP is moved to the new server before the node promotes itself. Assuming that
things went as expected, we should see something like this:

What's interesting about the promotion process is that we not only observe more
potential timeout areas but that the witness daemon automatically followed the
rightly elected primary node. Remember, we're watching the logs on pgha2, which is
the standby node being elected, not the witness node itself. Yet these messages are
relevant from the perspective of the primary node since the witness plays a critical
observational role, so it's important to know its status.

Speaking of the witness node, we should have a connection to that server from which
we were also watching the state of the cluster as it evolved. At the end, when pgha2
is the new primary, we should see the following as the final result of repmgr
cluster show:

High Availability with repmgr Chapter 9

[416]

We can see from this output that pgha2 is the only running primary node. But why
are there two primary nodes listed in this output? Until pgha1 rejoins the cluster as a
standby, it still is technically a primary node. Another way to look at the situation is
that any node that is writable could be considered primary in nature, even if it's not
the dedicated primary of the repmgr cluster itself.

This is why it's important to strictly control access paths to our PostgreSQL nodes. If
any applications can connect directly to pgha1, they could erroneously insert data
that would be lost unless we check before converting the node to a standby. To that
end, we want to verify that the VIP properly relocated to pgha2.

The ip command reports all network devices and assigned addresses, and we can use
the show operation to specifically find the VIP itself among those claimed on pgha2.
To be safe, we would also want to repeat the command on pgha1 in order to confirm
that the VIP is not active there.

There's more...
Stopping PostgreSQL isn't the only way to test how failover systems work. One
common method is to force a network break instead of a true outage. This helps to
demonstrate how systems work when only one path of communication is disrupted.

For example, assuming that pgha2 is using IP 10.0.30.2, we could instruct pgha1 to
ignore all traffic from that location with a command such as this:

sudo iptables -A INPUT -s 10.0.30.2/32 -j DROP

Since network barriers such as this don't immediately break established connections,
it may take some time to affect pgha2. Once it does, pgha2 will attempt to trigger an
election. However, there will be one critical difference in the result, as shown here:

High Availability with repmgr Chapter 9

[417]

This outcome is due to the fact that we enabled the
primary_visibility_consensus parameter. If we had not done this, then repmgr
would have considered a simple node majority sufficient to continue the election. In
that case, pgha2 would have won and promoted itself.

As a result, we consider that parameter paramount in any production repmgr
configuration. Had we omitted visibility consensus and continued, the cluster would
have reflected two online and operational primary nodes! In fact, we believe the
parameter should be enabled by default for this very reason.

In any case, when we are done testing, we can remove the firewall rule like this:

sudo iptables -D INPUT -s 10.0.30.2/32 -j DROP

Returning a node to the cluster
Any time one primary PostgreSQL node is superseded by another, either because of a
crash or planned switchover, it becomes necessary to return the node to the cluster as
a standby. This returns the cluster to a fully symmetric pair so that the node can
operate as a candidate in future migration events.

Rather than manually using pg_rewind, rsync, or some other intervention method,
repmgr has a dedicated command that should be sufficient for returning the cluster to
fully operational status. This recipe will explain how to return a node to the cluster
and what limitations there might be while doing so.

Getting ready
This recipe requires us to have a fully operational repmgr cluster. Please complete all
recipes up to and including Using an outage to test availability. This means that pgha2
rather than pgha1 will likely be operating as the primary.

High Availability with repmgr Chapter 9

[418]

How to do it...
For the purposes of this recipe, pgha2 will be our primary node, and the old primary
will be pgha1. Follow these steps to reincorporate pgha1 into the repmgr cluster:

If this wasn't a planned switchover event, check the PostgreSQL logs for1.
any anomalies that could explain the outage. Likewise, gather forensic and
diagnostic evidence, as this information will likely be destroyed once the
node is reintroduced to the cluster.
If it is not already stopped, stop PostgreSQL on pgha1 with this command2.
on Debian-based systems:

sudo systemctl stop postgresql@12-main

Red Hat variants should use this command instead:

sudo systemctl stop postgresql-12

Issue the following command on pgha1 as postgres to test the rejoin3.
process:

repmgr node rejoin -h pgha2 -U repmgr -d repmgr --force-rewind
--dry-run

If the output explains that prerequisites are met, repeat the previous4.
command without the --dry-run option—for example:

repmgr node rejoin -h pgha2 -d repmgr --force-rewind

Check the state of the cluster as the postgres user on any node:5.

repmgr cluster show

How it works...
One thing we must remember before attempting to rejoin a node to the cluster is that
doing so will necessarily eliminate potential diagnostic information from the node. In
the event that pgha2 becomes the primary because pgha1 failed, we would want to
investigate to gather information, and potentially try to recover data if there was
evidence of a split-brain state.

High Availability with repmgr Chapter 9

[419]

Assuming that this is not the case, or that we've otherwise decided that the old
primary is reusable, we must then ensure that PostgreSQL has been stopped. The
repmgr rejoin process only works if PostgreSQL is not running. This is because
several base files will require modification, and the primary_conninfo streaming
parameter requires a service restart in any case. One call to systemctl later, and
we're ready for the fun part.

To reintroduce an old primary to an established repmgr cluster, we only need to
invoke the repmgr node rejoin operation. As with standby clone and witness
register, we need to specify the upstream hostname (-h) and metadata database
name (-d) in order to stream from the correct target. Remember, repmgr can manage
tens or even hundreds of PostgreSQL nodes, and any may have become the primary
since the rejoining node went offline. We need the latest information to safely join the
cluster once more.

We also specify the --dry-run option to test the procedure before executing it.
Similarly to standby switchover, it's always a good idea to test a dangerous
command before you commit to executing it. As a rejoin process can modify the
underlying files and reconfigures PostgreSQL, we definitely want to ensure that
everything will work before we start making changes.

Here is an example of a successful dry run:

This applies especially to our case since we've also decided to include the --force-
rewind parameter. The pg_rewind utility was designed to essentially revert WAL
changes, allowing a node to resynchronize with an upstream system without copying
every single file. This is generally much faster than using rsync or some other data
copy utility, but has certain prerequisites. It also means that we may only be able to
perform the operation one time. Performing a dry run first suggests, but does not
guarantee, that the rewind will likely succeed.

High Availability with repmgr Chapter 9

[420]

Assuming that the dry run was successful, a node rejoin should have very similar
output, as shown here:

In this case, we didn't need to rewind at all because this was a controlled test where
we gracefully stopped pgha1. This won't always be the case.

The last thing we want to do when everything is complete is to examine the state of
the cluster. Again, we rely on repmgr cluster show for this and should see output
similar to the following:

As expected, the cluster is operating with pgha2 as the current primary node, and
pgha1 is seen as the sole standby system.

There's more...
There are limited circumstances where a node cannot be recovered, rewound, or
rejoined. In these instances, it becomes necessary to essentially rebuild the node.
When this happens, we can basically follow the procedure outlined in the Cloning a
database with repmgr recipe to reintroduce the node to the cluster. If we're brave, we
can even truncate the procedure to these commands as the postgres user on the
failed node:

sudo systemctl stop postgresql@12-main
rm -Rf /db/pgdata
repmgr standby clone -h pgha2 -d repmgr
sudo systemctl start postgresql@12-main

High Availability with repmgr Chapter 9

[421]

In past engagements, the author has even written scripts that attempt to use node
rejoin, and if that command returns a nonzero exit code, it rebuilds the node, as
shown previously.

In fact, it may be a good idea to wrap many of these recipe examples
as scripts in any case. It's probably much easier to type
do_rejoin.sh rather than the command offered in this recipe,
provided that the script automatically derives the correct upstream
and builds the expected command line. Sometimes it's the best way
to ensure that optimal parameters are always specified, and helps us
avoid accidentally typing in the wrong targets.

See also
The official repmgr site maintains the current documentation and goes into more
depth on how these commands work. Please use these resources for more
information:

repmgrd configuration: https:/ /repmgr. org/ docs/ current/ repmgrd-
basic- configuration. html

repmgr node rejoin: https:/ /repmgr. org/ docs/ current/ repmgr- node-
rejoin. html

Integrating primary fencing
An important concept of high availability is node fencing, or physically disabling or
separating a node from the cluster under specific circumstances. A somewhat
common related method of accomplishing this is to shoot the other node in the head
(STONITH).

We technically utilize an aspect of this in other recipes when we connect to the VIP in
order to destroy it before establishing it on the local node. One critical flaw in
STONITH is the assumption that it's possible to contact the remote system in order to
disable it. This may not be possible in cases of network disruption, leaving us with no
assurance that the remote primary is actually offline or otherwise disabled.

https://repmgr.org/docs/current/repmgrd-basic-configuration.html
https://repmgr.org/docs/current/repmgrd-basic-configuration.html
https://repmgr.org/docs/current/repmgrd-basic-configuration.html
https://repmgr.org/docs/current/repmgrd-basic-configuration.html
https://repmgr.org/docs/current/repmgrd-basic-configuration.html
https://repmgr.org/docs/current/repmgrd-basic-configuration.html
https://repmgr.org/docs/current/repmgrd-basic-configuration.html
https://repmgr.org/docs/current/repmgrd-basic-configuration.html
https://repmgr.org/docs/current/repmgrd-basic-configuration.html
https://repmgr.org/docs/current/repmgrd-basic-configuration.html
https://repmgr.org/docs/current/repmgrd-basic-configuration.html
https://repmgr.org/docs/current/repmgrd-basic-configuration.html
https://repmgr.org/docs/current/repmgrd-basic-configuration.html
https://repmgr.org/docs/current/repmgrd-basic-configuration.html
https://repmgr.org/docs/current/repmgrd-basic-configuration.html
https://repmgr.org/docs/current/repmgrd-basic-configuration.html
https://repmgr.org/docs/current/repmgrd-basic-configuration.html
https://repmgr.org/docs/current/repmgrd-basic-configuration.html
https://repmgr.org/docs/current/repmgr-node-rejoin.html
https://repmgr.org/docs/current/repmgr-node-rejoin.html
https://repmgr.org/docs/current/repmgr-node-rejoin.html
https://repmgr.org/docs/current/repmgr-node-rejoin.html
https://repmgr.org/docs/current/repmgr-node-rejoin.html
https://repmgr.org/docs/current/repmgr-node-rejoin.html
https://repmgr.org/docs/current/repmgr-node-rejoin.html
https://repmgr.org/docs/current/repmgr-node-rejoin.html
https://repmgr.org/docs/current/repmgr-node-rejoin.html
https://repmgr.org/docs/current/repmgr-node-rejoin.html
https://repmgr.org/docs/current/repmgr-node-rejoin.html
https://repmgr.org/docs/current/repmgr-node-rejoin.html
https://repmgr.org/docs/current/repmgr-node-rejoin.html
https://repmgr.org/docs/current/repmgr-node-rejoin.html
https://repmgr.org/docs/current/repmgr-node-rejoin.html
https://repmgr.org/docs/current/repmgr-node-rejoin.html
https://repmgr.org/docs/current/repmgr-node-rejoin.html
https://repmgr.org/docs/current/repmgr-node-rejoin.html

High Availability with repmgr Chapter 9

[422]

This is why version 4.4 of repmgr introduced a workaround for this scenario. It is
now possible to specify a certain amount of connected child nodes (either standby or
witness) must exist. The assumption here is that the primary can become isolated
from a quorum amount of remaining nodes, and that those nodes will then elect a
new primary. At that point, repmgr can invoke a script that is presumably designed
to disable the node and thereby prevent a split-brain scenario.

This recipe will explain how to safely enable this mode of operation, and discuss
other strengths that it can impart to a healthy repmgr-enabled HA cluster.

Getting ready
This recipe requires us to have a fully operational repmgr cluster. Please complete all
recipes up to and including Incorporating a repmgr witness. This will ensure that a full
cluster exists to demonstrate how quorum majority exclusion works.

How to do it...
For the purposes of this recipe, pgha1 will remain our primary node, the standby will
be pgha2, and the witness will be pgha3. Follow these steps on pgha1 and pgha2
unless otherwise specified:

Alter the repmgr.conf file and add the following parameter settings:1.

child_nodes_connected_min_count = 1
child_nodes_connected_include_witness = 'true'
child_nodes_disconnect_command =
'/usr/local/bin/repmgr_fence_node.sh'

Create a file named repmgr_fence_node.sh in /usr/local/bin with2.
the following contents:

#!/usr/bin/env bash

VIP=10.0.30.50
IFACE=eth0
PATH=/usr/pgsql-12/bin:$PATH
VIP_CONF="${VIP}/32 dev ${IFACE} label ${IFACE}:pg"

sudo /sbin/ip addr del ${VIP_CONF}

psql -c "UPDATE pg_database SET datconnlimit=0" postgres

High Availability with repmgr Chapter 9

[423]

sudo systemctl stop postgresql@12-main
exit 0

Mark the script as executable:3.

chmod a+x /usr/local/bin/repmgr_fence_node.sh

Restart repmgr on Debian-based systems with this command:4.

sudo systemctl restart repmgrd

Red Hat variants should use this command instead:5.

sudo systemctl restart repmgr12

How it works...
This recipe essentially comes in two parts, consisting of three configuration changes
and a management script. All of the configuration settings related to standby
disconnection handling are prefixed with child_. There are several of these, but for a
cluster of this design where there is one primary, one standby, and one witness, we
only really need to modify three of them.

The first two parameters are fairly closely related. We begin by setting the
child_nodes_connected_min_count option to 1, which reflects our desire for at
least one node to always be connected to the primary. However, witness nodes are
not considered part of this count unless we also enable the
child_nodes_connected_include_witness option. In a cluster of three nodes,
this means that either the standby or witness (or both) should be connected at all
times.

Given maintenance and other common tasks, we would expect periodic node
communication disruptions. Safe guidelines suggest that we should coordinate efforts
to avoid disabling multiple nodes simultaneously. So in the case that both of the other
nodes disconnect from the primary system, it should be relatively safe to assume that
the other nodes are still operating, but are unable to communicate with the primary.
In such an event, they would hold an election and promote the standby.

Always use repmgr service pause to temporarily disable the
repmgr daemon during maintenance work. This will prevent
automated failover until the maintenance is complete and
automation is resumed with repmgr service unpause.

High Availability with repmgr Chapter 9

[424]

The final parameter we must provide is child_nodes_disconnect_command,
which, like promote_command or follow_command, specifies an arbitrary program
or script to invoke when certain criteria are met. In this case, repmgr will execute the
command if fewer than one child node is connected for over 30 seconds by default.

The script itself is relatively simple in our example. It begins by dismantling the VIP,
thereby preventing connections through that resource. Because of the fact that it is
possible to declare a VIP from anywhere, two or more nodes may be broadcasting
availability for that address. By having the primary destroy its own VIP address, the
only other possible source is the other standby node.

The script continues by manipulating the pg_database PostgreSQL catalog table and
setting the datconnlimit column to 0 for all databases. The purpose of this is to
disallow any connections except for superusers. This facilitates investigation of the
node, including data extraction in case any transactions committed before the
network split occurred. It also excludes applications or other connections from further
introducing new data.

The final step that the script performs is to physically stop the PostgreSQL service.
Again, this is a precaution that fulfills two goals: disconnect previously established
connections and disallow PostgreSQL from ingesting any further data at all. We can't
have a split brain if it's literally impossible to write to the old primary.

Once we mark the new management script as executable, the only remaining step is
to restart the repmgr daemon with systemctl. The repmgr service will apply child
monitoring once it restarts, but that won't be immediately evident from the log until
we start disconnecting nodes.

A great benefit from the approach that we've used in this example is that any changes
we make to the PostgreSQL configuration are immediately reverted once we execute
repmgr node rejoin and add the old primary to the cluster once more. If the
standby was unable to promote itself before communication was re-established, we
can simply start the primary and execute the following SQL to restore the default
connection limits:

UPDATE pg_database SET datconnlimit=-1;

Setting datconnlimit to -1 means that there's no limit other than
max_connections. We would also want to rebuild the VIP connection manually
since it was removed without some other node taking over. A very easy way to do
this is to manually invoke the repmgr_promote_self.sh command.

High Availability with repmgr Chapter 9

[425]

There's more...
If we use firewall rules, we can even watch the fencing process in action. In our
cluster, the IP addresses 10.0.30.2 and 10.0.30.3 correspond to the standby and
witness respectively. We can block all traffic from those nodes with these commands:

sudo iptables -A OUTPUT -s 10.0.30.2/32 -j REJECT
sudo iptables -A OUTPUT -s 10.0.30.3/32 -j REJECT
sudo iptables -A INPUT -s 10.0.30.2/32 -j REJECT
sudo iptables -A INPUT -s 10.0.30.3/32 -j REJECT

Then we would want to observe the primary's reaction by watching the log like this:

tail -f /var/log/postgresql/repmgr.log

After a few seconds, the primary will notice that communication to both the standby
and witness is no longer possible. This is what the logs look will like at this point:

Once pgha1 detects that pgha2 and pgha3 have disconnected, there's a chance that it
could be outvoted by the remaining two nodes. The default child disconnection
timeout is 30 seconds because that is half as long as the default necessary to elect a
new primary. This ensures that pgha1 will disable itself before another primary node
exists in the same cluster.

Once the timeout elapses, pgha1 decides that communication has been sufficiently
disrupted and that it should invoke the disconnection script. We can see that decision
and the result in the logs as well:

High Availability with repmgr Chapter 9

[426]

Remember, one of the actions of the fencing script is to shut down PostgreSQL. This
would mean that repmgrd can no longer perform checks on the database. This is as it
should be, since we haven't yet investigated the situation.

If we do decide to start PostgreSQL again, we can take advantage of the fact that only
superuser accounts are allowed to connect. This will help us investigate the node or
export data if necessary before stopping it again and applying the Returning a node to
the cluster recipe.

See also
The official repmgr site maintains the current documentation and goes into more
depth on how these commands work. Please use these resources for more
information:

Monitoring standby disconnections on the primary node:
https://repmgr.org/docs/current/repmgrd-primary-child-
disconnection.html

repmgrd configuration: https://repmgr.org/docs/current/repmgrd-
basic-configuration.html

Performing online maintenance and
upgrades
Once repmgr is in charge of a fully online PostgreSQL cluster consisting of multiple
nodes, we need to account for server maintenance. Whether we need to apply a
security patch to PostgreSQL or replace server hardware, it is inevitable that we will
perform at least one switchover over the lifetime of the cluster.

What else must we consider when performing maintenance on a PostgreSQL cluster
managed by repmgr? What about upgrading repmgr itself? This recipe will answer
those questions to round off the chapter.

Getting ready
This recipe requires us to have a fully operational repmgr cluster. Please complete all
recipes up to and including Incorporating a repmgr witness. We will need a working
cluster to demonstrate various transient states and log messages.

https://repmgr.org/docs/current/repmgrd-primary-child-disconnection.html
https://repmgr.org/docs/current/repmgrd-primary-child-disconnection.html
https://repmgr.org/docs/current/repmgrd-primary-child-disconnection.html
https://repmgr.org/docs/current/repmgrd-basic-configuration.html
https://repmgr.org/docs/current/repmgrd-basic-configuration.html
https://repmgr.org/docs/current/repmgrd-basic-configuration.html

High Availability with repmgr Chapter 9

[427]

How to do it...
For the purposes of this recipe, we will rely on the standard three nodes of pgha1 as
the primary node, pgha2 as the physical standby, and pgha3 as the dedicated
witness. Follow these steps to carry out maintenance on the repmgr primary server:

Begin by pausing the repmgr service on all nodes by executing this1.
command as the postgres user on any system:

repmgr service pause

Verify that all repmgr services are suspended by executing this command2.
as the postgres user on any system:

repmgr service status

As the postgres user on pgha2, invoke the following command to test the3.
switchover process:

repmgr standby switchover --siblings-follow --dry-run

Check the dry-run output for errors, and if all messages are successful,4.
invoke the following commands to promote pgha2 to become the new
primary:

repmgr standby switchover --siblings-follow
/usr/local/bin/repmgr_promote_self.sh

Check the cluster status as the postgres user on any node:5.

repmgr cluster show

Perform the necessary maintenance on pgha1, including software6.
upgrades, server reboots, and other items.
Test the rejoin process for pgha1 to the cluster with the following7.
command as the postgres user:

repmgr node rejoin -h pgha2 -d repmgr --force-rewind --dry-run

Check the dry-run output for errors, and if all messages are successful,8.
rejoin pgha1 to the cluster:

repmgr node rejoin -h pgha2 -d repmgr --force-rewind

High Availability with repmgr Chapter 9

[428]

Unpause the repmgr service on all nodes by executing this command as the9.
postgres user on any system:

repmgr service unpause

Check the cluster status as the postgres user on any node:10.

repmgr cluster show

How it works...
Observant readers probably noticed that this recipe can essentially be summarized as
a combination of the Performing a managed failover and Returning a node to the cluster
recipes. In many ways, this is true; it's also the purpose here to emphasize the
importance of pausing the repmgr service.

We can't state how important this is: always pause the repmgr daemons before
executing potentially disruptive commands. The last thing we want is for the repmgr
service to start trying to promote a node while we're tinkering with anything within
the cluster. This could produce unexpected results, including service outages!

So after pausing the daemon, it's a good idea to verify that the daemons are paused.
Sometimes network disruptions or other events may prevent the pause command
from working normally. This is an example of a paused cluster that is otherwise
functioning without error:

Once we've established that repmgr will no longer interfere with our work, we can
carry out the switchover. We've already mentioned in the switchover recipe that the
repmgr standby switchover command should automatically pause the daemons
by default; however, it's always a good idea to explicitly control some elements of
cluster management—for example, we may not want a switchover if we are
performing maintenance on the standby node. Pausing the service ensures that no
matter what kind of work is required, the cluster is safe.

High Availability with repmgr Chapter 9

[429]

As such, we also changed our instructions slightly to always include the --dry-run
argument. This allows us to verify that the switchover event should conclude without
significant problems. A failed switchover could leave our cluster without a primary
node, so it's important to dry run before executing the standard command that
actually performs the transfer.

Since the repmgr standby switchover operation is a command-line action, and
the repmgr service is disabled, we also need to manually move the VIP to the new
node. Remember that the repmgr_promote_self.sh script is only invoked during
an automatic failover, so this means that we must perform this task ourselves during
maintenance.

Once pgha2 is promoted and the VIP is no longer running on pgha1, we can do
whatever we want to the node. We can reboot it, install new hardware, upgrade
software, or even totally replace the entire operating system. So long as we don't erase
the PostgreSQL data and configuration files for repmgr, it should be possible to
reconnect pgha1 to the cluster.

Having completed the maintenance, it will be time to rejoin the node to the cluster. As
with the switchover, we test this procedure with --dry-run to avoid any unexpected
complications. This isn't as critical as it is when performing a switchover, but it could
save us from a time-consuming node rebuild in the case that pgha1 encounters rejoin
problems that can't be resolved.

Finally, assuming that everything went smoothly, we can unpause the repmgr service
and then check to make sure that the cluster appears healthy. While we have shown it
at the end here, don't be afraid to run repmgr cluster show frequently to see the
status of the cluster. One way to react quickly to a situation is to be highly familiar
with the results. If we know what the cluster looks like at each point of our
maintenance, we can avoid panic and costly or unnecessary lost time trying to
decipher the status output.

There's more...
What about upgrading repmgr itself? It's important to understand that repmgr
operates both as a PostgreSQL extension and as a piece of software that includes a
management daemon. The procedure outlined here also applies to upgrading repmgr
itself, but there's an important caveat.

High Availability with repmgr Chapter 9

[430]

Between major versions, from 4.4 to 5.0 for example, it's possible that
incompatibilities may have been introduced that affect the PostgreSQL extension.
When this happens, it becomes necessary to manually upgrade the extension within
the repmgr metadata database. It can also only be done on the primary node since we
must write to that database.

We can use the following steps to accomplish this goal:

Stop repmgrd on all nodes using systemctl.1.
Explicitly disable the repmgrd service to prevent restarting—for example:2.

sudo systemctl disable repmgrd

Upgrade the repmgr packages on all nodes using yum, apt, make, and so3.
on.
Restart PostgreSQL on each node. This will load the newest version of the4.
repmgr shared library.
Connect to PostgreSQL on the primary node and execute this statement to5.
commit any pending writes, thereby reducing service restart time:

CHECKPOINT;

Restart PostgreSQL using systemctl to reload the updated shared library.5.
Connect to PostgreSQL on the primary and witness nodes as the postgres6.
user to the repmgr database and execute this statement:

ALTER EXTENSION repmgr UPDATE;

Use the following systemctl command to update the daemon service file:7.

sudo systemctl daemon-reload

Re-enable the repmgr service with systemctl—for example:8.

sudo systemctl disable repmgrd

Start repmgrd on all nodes using systemctl.9.

This procedure is outlined in more detail within the repmgr documentation, and is a
bit different than what we explained in the recipe. This is because we're changing
how repmgr itself works, and that can be more invasive than other kinds of
maintenance because it operates with PostgreSQL itself.

High Availability with repmgr Chapter 9

[431]

This is the one exception where we must suffer a slight amount of downtime that
can't be eliminated by switching to another node.

See also
The official repmgr site maintains the current documentation and goes into more
depth on how these commands work. Please use these resources for more
information:

repmgr service pause: https:/ /repmgr. org/ docs/ current/ repmgr-
service- pause. html

repmgr service unpause: https:/ / repmgr. org/ docs/ current/ repmgr-
service- unpause. html

repmgr standby switchover: https:/ /repmgr. org/ docs/ current/ repmgr-
standby- switchover. html

repmgr node rejoin: https:/ /repmgr. org/ docs/ current/ repmgr- node-
rejoin. html

Upgrading repmgr: https:/ /repmgr. org/ docs/ current/ upgrading-
repmgr. html

https://repmgr.org/docs/current/repmgr-service-pause.html
https://repmgr.org/docs/current/repmgr-service-pause.html
https://repmgr.org/docs/current/repmgr-service-pause.html
https://repmgr.org/docs/current/repmgr-service-pause.html
https://repmgr.org/docs/current/repmgr-service-pause.html
https://repmgr.org/docs/current/repmgr-service-pause.html
https://repmgr.org/docs/current/repmgr-service-pause.html
https://repmgr.org/docs/current/repmgr-service-pause.html
https://repmgr.org/docs/current/repmgr-service-pause.html
https://repmgr.org/docs/current/repmgr-service-pause.html
https://repmgr.org/docs/current/repmgr-service-pause.html
https://repmgr.org/docs/current/repmgr-service-pause.html
https://repmgr.org/docs/current/repmgr-service-pause.html
https://repmgr.org/docs/current/repmgr-service-pause.html
https://repmgr.org/docs/current/repmgr-service-pause.html
https://repmgr.org/docs/current/repmgr-service-pause.html
https://repmgr.org/docs/current/repmgr-service-pause.html
https://repmgr.org/docs/current/repmgr-service-pause.html
https://repmgr.org/docs/current/repmgr-service-unpause.html
https://repmgr.org/docs/current/repmgr-service-unpause.html
https://repmgr.org/docs/current/repmgr-service-unpause.html
https://repmgr.org/docs/current/repmgr-service-unpause.html
https://repmgr.org/docs/current/repmgr-service-unpause.html
https://repmgr.org/docs/current/repmgr-service-unpause.html
https://repmgr.org/docs/current/repmgr-service-unpause.html
https://repmgr.org/docs/current/repmgr-service-unpause.html
https://repmgr.org/docs/current/repmgr-service-unpause.html
https://repmgr.org/docs/current/repmgr-service-unpause.html
https://repmgr.org/docs/current/repmgr-service-unpause.html
https://repmgr.org/docs/current/repmgr-service-unpause.html
https://repmgr.org/docs/current/repmgr-service-unpause.html
https://repmgr.org/docs/current/repmgr-service-unpause.html
https://repmgr.org/docs/current/repmgr-service-unpause.html
https://repmgr.org/docs/current/repmgr-service-unpause.html
https://repmgr.org/docs/current/repmgr-service-unpause.html
https://repmgr.org/docs/current/repmgr-service-unpause.html
https://repmgr.org/docs/current/repmgr-standby-switchover.html
https://repmgr.org/docs/current/repmgr-standby-switchover.html
https://repmgr.org/docs/current/repmgr-standby-switchover.html
https://repmgr.org/docs/current/repmgr-standby-switchover.html
https://repmgr.org/docs/current/repmgr-standby-switchover.html
https://repmgr.org/docs/current/repmgr-standby-switchover.html
https://repmgr.org/docs/current/repmgr-standby-switchover.html
https://repmgr.org/docs/current/repmgr-standby-switchover.html
https://repmgr.org/docs/current/repmgr-standby-switchover.html
https://repmgr.org/docs/current/repmgr-standby-switchover.html
https://repmgr.org/docs/current/repmgr-standby-switchover.html
https://repmgr.org/docs/current/repmgr-standby-switchover.html
https://repmgr.org/docs/current/repmgr-standby-switchover.html
https://repmgr.org/docs/current/repmgr-standby-switchover.html
https://repmgr.org/docs/current/repmgr-standby-switchover.html
https://repmgr.org/docs/current/repmgr-standby-switchover.html
https://repmgr.org/docs/current/repmgr-standby-switchover.html
https://repmgr.org/docs/current/repmgr-standby-switchover.html
https://repmgr.org/docs/current/repmgr-node-rejoin.html
https://repmgr.org/docs/current/repmgr-node-rejoin.html
https://repmgr.org/docs/current/repmgr-node-rejoin.html
https://repmgr.org/docs/current/repmgr-node-rejoin.html
https://repmgr.org/docs/current/repmgr-node-rejoin.html
https://repmgr.org/docs/current/repmgr-node-rejoin.html
https://repmgr.org/docs/current/repmgr-node-rejoin.html
https://repmgr.org/docs/current/repmgr-node-rejoin.html
https://repmgr.org/docs/current/repmgr-node-rejoin.html
https://repmgr.org/docs/current/repmgr-node-rejoin.html
https://repmgr.org/docs/current/repmgr-node-rejoin.html
https://repmgr.org/docs/current/repmgr-node-rejoin.html
https://repmgr.org/docs/current/repmgr-node-rejoin.html
https://repmgr.org/docs/current/repmgr-node-rejoin.html
https://repmgr.org/docs/current/repmgr-node-rejoin.html
https://repmgr.org/docs/current/repmgr-node-rejoin.html
https://repmgr.org/docs/current/repmgr-node-rejoin.html
https://repmgr.org/docs/current/repmgr-node-rejoin.html
https://repmgr.org/docs/current/upgrading-repmgr.html
https://repmgr.org/docs/current/upgrading-repmgr.html
https://repmgr.org/docs/current/upgrading-repmgr.html
https://repmgr.org/docs/current/upgrading-repmgr.html
https://repmgr.org/docs/current/upgrading-repmgr.html
https://repmgr.org/docs/current/upgrading-repmgr.html
https://repmgr.org/docs/current/upgrading-repmgr.html
https://repmgr.org/docs/current/upgrading-repmgr.html
https://repmgr.org/docs/current/upgrading-repmgr.html
https://repmgr.org/docs/current/upgrading-repmgr.html
https://repmgr.org/docs/current/upgrading-repmgr.html
https://repmgr.org/docs/current/upgrading-repmgr.html
https://repmgr.org/docs/current/upgrading-repmgr.html
https://repmgr.org/docs/current/upgrading-repmgr.html
https://repmgr.org/docs/current/upgrading-repmgr.html
https://repmgr.org/docs/current/upgrading-repmgr.html

10
High Availability with Patroni

Patroni is a high-availability management software developed by Zalando
for orchestrating and automating several aspects of a PostgreSQL cluster. Unlike
repmgr, it requires a series of other components and interacts with them as a series of
layers to produce the end result of high availability.

We learned how to manage access and abstraction in Chapter 4, Proxy and Pooling
Resources. Chapter 7, PostgreSQL Replication, took us even further, giving us the
necessary tools to maintain a veritable army of alternative servers for primary
substitution at a moment's notice. Much of what we discussed while describing a
repmgr-driven cluster, is that Patroni takes the last few steps necessary to automate
failover and other elements of a healthy PostgreSQL cluster.

In this chapter, we will learn how to build a quick, yet adaptable, high-availability
stack to keep our PostgreSQL servers online. In order to do that, we will cover the
following recipes:

Preparing systems for the stack
Installing and configuring etcd
Installing and configuring HAProxy
Installing and configuring Patroni
Performing a managed switchover
Using an outage to test availability
Returning a node to the cluster
Adding additional nodes to the mix
Replacing etcd with ZooKeeper
Replacing etcd with Consul
Upgrading while staying online

Before we dive into the recipes, let's learn a bit more about Patroni and its assistant
components of HAProxy and etcd.

High Availability with Patroni Chapter 10

[433]

Understanding more about Patroni and
its components
The reason Patroni works as a series of software layers is to reduce the reliance on
any single point of failure. There's always a consensus management element and a
pooling resource. Each portion of the stack is designed to operate on all candidate
servers. Due to this, we no longer need to rely upon a virtual IP address or Canonical
Name Record (CNAME) that must be reassigned to a promoted replica.

In the end, Patroni should deliver a cluster with the following capabilities:

It can automatically elect a replacement in the case of failover.
It can redirect write-capable connections to a newly elected primary node.
Newly provisioned nodes can add themselves to the cluster.
Recovered primary nodes can rejoin the cluster as replicas.

Luckily, our new stack is capable of satisfying all of those requirements.

Why HAProxy?
Part of improving our stack is to understand its weaknesses. Even our repmgr design
called for the use of a virtual IP address. The primary complication here is that a
virtual IP can be declared from anywhere and, if not properly managed, can lead to a
split-brain scenario.

HAProxy doesn't have that limitation because every IP address acts as if it were the
primary node. So, as long as we connect through the proxy port we choose during
configuration, we're communicating with whichever node is the primary at that
specific moment. HAProxy acts as a routing layer, rather than a single floating
resource.

High Availability with Patroni Chapter 10

[434]

Why etcd?
In order to build our stack, we will need a reliable message-passing layer. Some
enterprising students at Stanford University came up with a consensus algorithm,
which they named Raft. There's a lot of theory regarding how it works, but the end
result is that a key-value pair stored within a Raft-based layer remains internally
consistent across all servers and is generally resistant to network partitions and split-
brain. Unlike repmgr, which implements the algorithm directly, Patroni makes this a
modular component.

The default software Patroni uses for Raft is etcd. This is crucially important because
we will be using etcd to store the location of the primary Postgres server. Provided
we have a service that can connect to etcd, any one of our Postgres servers will
immediately know the location of the primary system. This makes it trivial to alter
replication sources when the primary system changes.

Why Patroni?
Patroni is the glue that binds these pieces together. It acts as a master coordinator and
serves a number of roles. This is the process it uses on every PostgreSQL server:

It checks for the presence of an existing primary server in the Raft layer.1.
If no primary server is found, it inserts a key in the Raft layer claiming the2.
primary role.
If this server is the primary, it signals the HAProxy layer to use it as the3.
new redirection target.
If a primary server is found, it performs several checks and attempts to4.
transform the current server into a replica.

Patroni repeats these steps every few seconds on every server where it is installed. As
a consequence, some outages may result in race conditions where multiple replicas
will attempt to become the new primary server. The Raft layer ensures that only one
will win this race, and Patroni takes care of the rest.

This also allows each Postgres server to operate independently, so there is no single
point of failure. Since replicas redirect themselves to the new primary server in
parallel, the whole cluster becomes a self-healing swarm.

High Availability with Patroni Chapter 10

[435]

The stack
By the time we're finished with this chapter, our complete architecture diagram will
be far different from what we might normally expect:

We can see that each Patroni element only communicates with its own local Postgres
instance. It also communicates with etcd and HAProxy in order to maintain the
cluster in a healthy state. Because each of these vertical elements operates
independently, we could continue adding Postgres nodes with managing Patroni
elements almost indefinitely.

But first, we have to build it.

You can refer to the following links for more information:

The Raft Consensus Algorithm: https:/ /raft. github. io/
HAProxy: http:/ / www. haproxy. org/
etcd: https:/ /github. com/ coreos/ etcd
Patroni: https://github.com/zalando/patroni

Preparing systems for the stack
Patroni, etcd, and HAProxy have a number of dependencies that they need to
function. Most of these can be easily obtained, so the amount of work in this recipe
should be relatively minimal.

Let's get this part done so that we can proceed to the really interesting stuff!

https://raft.github.io/
https://raft.github.io/
https://raft.github.io/
https://raft.github.io/
https://raft.github.io/
https://raft.github.io/
https://raft.github.io/
https://raft.github.io/
https://raft.github.io/
https://raft.github.io/
http://www.haproxy.org/
http://www.haproxy.org/
http://www.haproxy.org/
http://www.haproxy.org/
http://www.haproxy.org/
http://www.haproxy.org/
http://www.haproxy.org/
http://www.haproxy.org/
http://www.haproxy.org/
http://www.haproxy.org/
https://github.com/coreos/etcd
https://github.com/coreos/etcd
https://github.com/coreos/etcd
https://github.com/coreos/etcd
https://github.com/coreos/etcd
https://github.com/coreos/etcd
https://github.com/coreos/etcd
https://github.com/coreos/etcd
https://github.com/coreos/etcd
https://github.com/coreos/etcd
https://github.com/coreos/etcd
https://github.com/zalando/patroni

High Availability with Patroni Chapter 10

[436]

Getting ready
This recipe depends on a few potentially supplementary packages that are missing
from many Linux distributions. Red Hat-based systems need to install the EPEL
package for the appropriate Red Hat platform from the following URL:
https://fedoraproject.org/wiki/EPEL.

Users of Debian-based distributions should be able to follow this recipe as written.

How to do it...
For this recipe, we will need at least three PostgreSQL servers. For demonstration
purposes, we'll assume they are named pgha1, pgha2, and pgha3. Follow these steps
on all three servers:

Debian-based systems should use the apt-get command to install as1.
many distribution-provided packages as possible:

sudo apt-get install python3-psycopg2 python3-pip python-yaml

Red Hat-based systems will need to substitute this yum command instead:2.

sudo yum install python3-psycopg2 python3-pip PyYAML

How it works...
We begin by ensuring multiple popular libraries are available. After following so
many recipes in this book, it's extremely likely that many (or even all) of these
libraries are already installed. That said, it never hurts to be certain!

First in the list is Python's psycopg2 Postgres interface layer. Patroni uses this to
connect to Postgres for various operations, and, because it is so commonly used, it's
already packaged by our distribution. Python libraries tend to evolve extremely
quickly, so this isn't always possible.

Next, we install pip, a Python-specific installation utility that can download and
install Python packages from the Python Package Index (PyPI). This is very similar to
the PostgreSQL Extension Network, but for popular Python packages. We'll need it to
continue with this recipe as well as Patroni's own installation routine.

https://fedoraproject.org/wiki/EPEL
https://fedoraproject.org/wiki/EPEL

High Availability with Patroni Chapter 10

[437]

YAML stands for Yet Another Markup Language. It's a format that some projects use
to define configuration files. Patroni happens to be among these projects. The Python
API that interacts with these files is actually named PyYAML, but Debian-based
systems rename it to python-yaml to fit their chosen naming scheme. Red-Hat
systems tend to use the provided package name.

With all of these elements installed, we should be able to construct the rest of the
stack fairly easily.

See also
psycopg2: http://initd.org/psycopg/
PyPI: https://pypi.org/
PyYAML: https://pyyaml.org/

Installing and configuring etcd
In order for Patroni to reliably determine or define the identity of the primary
PostgreSQL instance, we need a distributed key-value layer. In this recipe, we'll be
installing etcd to fulfill that role.

The etcd maintainers appear to have designed it to operate primarily in nameless
virtual containers. This means that we just need to download it and place some
binaries in appropriate locations. It's not an ideal installation with reliable
configuration files and other expected components, but that's easily rectified if we
decide to rely on etcd in the long term.

So, let's get started.

Getting ready
The etcd service does seem to be a commonly provided package in many Linux
distributions, but it commonly lags behind the latest patches. The project itself moves
rapidly as well; in fact, the version changed four times while this book was being
written. As such, we recommend obtaining the latest stable release provided at
https://github.com/etcd-io/etcd/releases.

http://initd.org/psycopg/
https://pypi.org/
https://pyyaml.org/
https://github.com/etcd-io/etcd/releases
https://github.com/etcd-io/etcd/releases

High Availability with Patroni Chapter 10

[438]

While we will use 3.3.18 as the version number in our instructions, don't worry if the
version you use is slightly different.

How to do it...
For this recipe, we will need at least three PostgreSQL servers. For demonstration
purposes, we'll assume they are named pgha1 (10.0.30.1), pgha2 (10.0.30.2),
and pgha3 (10.0.30.3). Follow these steps on all three servers except where
indicated:

Extract the files in the etcd binary distribution and install the necessary1.
files with the following commands as a root-capable user:

tar -xf etcd-v3.3.18-linux-amd64.tar.gz
sudo cp etcd-v3.3.18-linux-amd64/etcd* /usr/local/bin

Create a storage directory for etcd with these commands as a root-level2.
user:

sudo mkdir /db/etcd
sudo chown postgres:postgres /db/etcd

Create a file named /etc/etcd.conf on the pgha1 server with the3.
following content:

name: pgha1
data-dir: /db/etcd
initial-advertise-peer-urls: http://pgha1:2380
listen-peer-urls: http://0.0.0.0:2380
listen-client-urls: http://0.0.0.0:2379
advertise-client-urls: http://pgha1:2379
initial-cluster:
"pgha1=http://pgha1:2380,pgha2=http://pgha2:2380,pgha3=http://
pgha3:2380"

High Availability with Patroni Chapter 10

[439]

Create a file named /etc/etcd.conf on the pgha2 server with the4.
following content:

name: pgha2
data-dir: /db/etcd
initial-advertise-peer-urls: http://pgha2:2380
listen-peer-urls: http://0.0.0.0:2380
listen-client-urls: http://0.0.0.0:2379
advertise-client-urls: http://pgha2:2379
initial-cluster:
"pgha1=http://pgha1:2380,pgha2=http://pgha2:2380,pgha3=http://
pgha3:2380"

Create a file named /etc/etcd.conf on the pgha3 server with the5.
following content:

name: pgha3
data-dir: /db/etcd
initial-advertise-peer-urls: http://pgha3:2380
listen-peer-urls: http://0.0.0.0:2380
listen-client-urls: http://0.0.0.0:2379
advertise-client-urls: http://pgha3:2379
initial-cluster:
"pgha1=http://pgha1:2380,pgha2=http://pgha2:2380,pgha3=http://
pgha3:2380"

Start the etcd daemon by executing this command as the postgres user:6.

etcd --config-file /etc/etcd.conf
&>/var/log/postgresql/etcd.log &

As the postgres user on pgha2 and pgha3, execute the following7.
command but replace NUM with the node number:

ETCDCTL_API=3 etcdctl put ha-cookbook-NUM "Hello World!"

As the postgres user on pgha1, execute the following command:8.

ETCDCTL_API=3 etcdctl get ha-cookbook-1 ha-cookbook-9

High Availability with Patroni Chapter 10

[440]

How it works...
We start by downloading and installing etcd so that we have a distributed
communication layer for Patroni to use. The file we download should contain the
documentation as well, but we only need to install etcd and etcdctl. These two
command-line utilities either launch etcd or send it arbitrary instructions while it's
running.

Much like PostgreSQL, etcd also uses a write-ahead log (WAL) for data durability.
Therefore, we need a storage location for this WAL data. By default, etcd will create a
subdirectory from where it was launched, which we don't really want if our intent is
to establish and interact with the same etcd cluster every time.

Now, we must configure etcd on all of the PostgreSQL servers that comprise the
Patroni cluster. We start by naming the node with the name parameter, and then
define the WAL directory we discussed earlier with the data-dir parameter.

The etcd service maintains a peer-to-peer network for nodes to communicate among
themselves. By default, this network operates on port 2380 on each node where etcd
is running, but we want to explicitly state the hostname to ensure that we can accept
outside connections. The initial-advertise-peer-urls setting defines the name
and port that other etcd nodes should use when communicating with this system.

Likewise, the listen-peer-urls parameter provides an analogous behavior by
defining which host and port to monitor for connections. Essentially, we're binding to
local resources in this case, and, according to the documentation, it's not valid to
specify a hostname here. So, we've used 0.0.0.0 in order to bind to any addresses
used by the host where etcd is running. This should be fine as long as no other
services are using port 2380.

Beyond internal communications, clients usually connect to etcd on port 2379 to store
and retrieve key-value pairs. By setting the listen-client-urls parameter to
listen on both the node name and 0.0.0.0, we've ensured Patroni can set values
locally, and any node in the cluster can also communicate with etcd in case their local
etcd service is unavailable. Similarly to peer advertisement, each node announces
itself with the value in the advertise-client-urls parameter, so we use the node
name for external communication.

High Availability with Patroni Chapter 10

[441]

Finally, we can launch the etcd service itself and redirect its output to a log file.
Normally, etcd operates explicitly through command-line flags or environment
variables, but these are somewhat inconvenient compared to the stability of a
configuration file. Therefore, we set the --config-file flag to our
/etc/etcd.conf file to prevent that behavior.

To prove everything went as expected, and that the keys set in one node are available
on all nodes, we used etcdctl to set a value. The reason we also set the
ETCDCTL_API environment variable to 3 is due to the fact that etcdctl is only
compatible with the version 2 API by default. We wanted to specifically demonstrate
that the get parameter can fetch a whole range of keys if we so desire. Here's what
the get output should look like on pgha1:

There's more...
We don't provide a standard Linux init script to control the etcd service because
most Linux distributions have migrated to systemd as a service control mechanism.
If we wanted to control etcd in this way, we would create a file named
etcd.service in the /etc/systemd/system directory with the following content:

[Unit]
Description=etcd key-value store
Documentation=https://github.com/etcd-io/etcd
After=network.target

[Service]
User=postgres
Type=notify
ExecStart=/usr/local/bin/etcd --config-file /etc/etcd.conf
Restart=always
RestartSec=10s
LimitNOFILE=40000

[Install]
WantedBy=multi-user.target

High Availability with Patroni Chapter 10

[442]

Then, we could enable, start, and stop etcd using the following systemctl
commands:

sudo systemctl enable etcd
sudo systemctl start etcd
sudo systemctl stop etcd

Additionally, our log output would be available via the journalctl command:

journalctl -u etcd

This is much easier than the old process of writing a shell script to manage these
actions. Consider using this approach for other services or daemons installed in the
recipes of this book.

See also
The etcd configuration flags: https:/ /etcd. io/docs/ v3. 4.0/ op-guide/
configuration/

Installing and configuring Patroni
Patroni is the primary coordinating component of our stack. As we can see from
diagram in The stack subsection, it is involved in every element of the stack to some
degree. Although it ties all of the stack elements together, we're installing it next
specifically because of how tightly it integrates with the key-value layer and
PostgreSQL.

If a PostgreSQL server is already running, Patroni will adopt it. If not, Patroni will
create a new instance based on how it's configured. We've already established that the
key-value store distributes the same information across the entire cluster, so the first
established server also becomes the primary node for the cluster. Any subsequent
Patroni instance will start as, or transform itself into, a replica.

This means that it's critically important to get this part right. So, pay special attention
to this recipe!

https://etcd.io/docs/v3.4.0/op-guide/configuration/
https://etcd.io/docs/v3.4.0/op-guide/configuration/
https://etcd.io/docs/v3.4.0/op-guide/configuration/
https://etcd.io/docs/v3.4.0/op-guide/configuration/
https://etcd.io/docs/v3.4.0/op-guide/configuration/
https://etcd.io/docs/v3.4.0/op-guide/configuration/
https://etcd.io/docs/v3.4.0/op-guide/configuration/
https://etcd.io/docs/v3.4.0/op-guide/configuration/
https://etcd.io/docs/v3.4.0/op-guide/configuration/
https://etcd.io/docs/v3.4.0/op-guide/configuration/
https://etcd.io/docs/v3.4.0/op-guide/configuration/
https://etcd.io/docs/v3.4.0/op-guide/configuration/
https://etcd.io/docs/v3.4.0/op-guide/configuration/
https://etcd.io/docs/v3.4.0/op-guide/configuration/
https://etcd.io/docs/v3.4.0/op-guide/configuration/
https://etcd.io/docs/v3.4.0/op-guide/configuration/
https://etcd.io/docs/v3.4.0/op-guide/configuration/
https://etcd.io/docs/v3.4.0/op-guide/configuration/
https://etcd.io/docs/v3.4.0/op-guide/configuration/
https://etcd.io/docs/v3.4.0/op-guide/configuration/
https://etcd.io/docs/v3.4.0/op-guide/configuration/

High Availability with Patroni Chapter 10

[443]

Getting ready
This recipe depends on multiple libraries and services. Please follow the Preparing
systems for the stack and Installing and configuring etcd recipes before continuing.

While some distributions make Patroni available, including PGDG, distribution
packages are not yet consistent. As of writing this book, the latest version of Patroni is
1.6.3, which released on December 5th, 2019.

The latest version of Patroni should be available for installation using the pip utility.
However, some of the requirements to run Patroni are not listed. Therefore, we
recommend downloading and extracting the source for the requirements.txt file it
contains. The latest release can be found at https:/ / github. com/ zalando/ patroni/
releases.

Extract the package and note the requirements.txt file we will use in the recipe.

How to do it...
For this recipe, we will need at least three PostgreSQL servers. As before, we'll
assume they are named pgha1, pgha2, and pgha3, all of which exist on the
10.0.30.x subnet. Follow these steps on all three servers except where indicated:

Use pip to install Patroni by running the following commands as a root-1.
capable user:

sudo pip3 install -r /path/to/requirements.txt
sudo pip3 install patroni

Execute this command to find where the PostgreSQL binaries are stored:2.

pg_config --bindir

Now, create a configuration directory for Patroni, which is owned by the3.
postgres user:

sudo mkdir /etc/patroni
sudo chown postgres:postgres /etc/patroni

https://github.com/zalando/patroni/releases
https://github.com/zalando/patroni/releases
https://github.com/zalando/patroni/releases
https://github.com/zalando/patroni/releases
https://github.com/zalando/patroni/releases
https://github.com/zalando/patroni/releases
https://github.com/zalando/patroni/releases
https://github.com/zalando/patroni/releases
https://github.com/zalando/patroni/releases
https://github.com/zalando/patroni/releases
https://github.com/zalando/patroni/releases
https://github.com/zalando/patroni/releases

High Availability with Patroni Chapter 10

[444]

As the postgres user, continue by creating a file named stampede.yml in4.
the /etc/patroni directory with the following content. Replace all
instances of pgha1 with the appropriate server name on each node:

scope: stampede
name: pgha1

restapi:
 listen: pgha1:8008
 connect_address: pgha1:8008

etcd:
 host: pgha1:2379

bootstrap:
 dcs:
 ttl: 30
 loop_wait: 10
 retry_timeout: 10
 maximum_lag_on_failover: 1048576
 postgresql:
 use_pg_rewind: true
 use_slots: true
 parameters:
 wal_level: logical
 wal_log_hints: "on"

 initdb:
 - encoding: UTF8
 - data-checksums

 pg_hba:
 - host replication rep_user 10.0.30.1/24 md5
 - host all 10.0.30.1/24 md5
 - host all 10.0.30.1/24 md5

 users:
 admin:
 password: adminpass
 options:
 - createrole
 - createdb

postgresql:
 listen: pgha1:5432
 connect_address: pgha1:5432
 data_dir: /db/pgdata

High Availability with Patroni Chapter 10

[445]

 bin_dir: [VALUE FROM STEP 2]
 pgpass: /tmp/pgpass0
 authentication:
 replication:
 username: rep_user
 password: newpass
 superuser:
 username: postgres
 password: newpass
 parameters:
 unix_socket_directories: '/var/run/postgresql'
 external_pid_file: '/var/run/postgresql/12-main.pid'
 logging_collector: "on"
 log_directory: "/var/log/postgresql"
 log_filename: "postgresql-12-main.log"

As the postgres user, modify the readability of the stampede.yml file5.
with this command:

chmod 600 /etc/patroni/stampede.yml

Starting with pgha1, execute the following command as the postgres user6.
to start Patroni on each server:

patroni /etc/patroni/stampede.yml \
 &> /var/log/postgresql/patroni.log &

How it works...
As with all good recipes, we begin with the primary ingredients. Several projects
written with Python are often distributed via PyPI and the associated pip installation
tool. If we invoke pip3 (for Python version 3) with the install parameter, we
should be able to obtain any software available in the package index. We're
particularly interested in the patroni and patronictl utilities, as well as the
associated requirements.

This is why we recommended downloading the Patroni source. Patroni is somewhat
terse with its exception handling, and rather than explain a missing dependency, it
simply fails and emits a jumbled heap of debug output. To avoid this, we simply
install all the basic requirements as defined by the source, even if this is more than we
may strictly need.

High Availability with Patroni Chapter 10

[446]

Then, we need to locate the PostgreSQL binaries, and the easiest way to do that is to
invoke the pg_config utility with the --bindir parameter. This is especially
necessary if we're using a Linux distribution that has a nonstandard binary directory
that might affect a cluster operation. We will be using this value later in the
configuration file, so keep it for later.

Debian-based distributions will likely use
/usr/lib/postgresql/[version]/bin as the binary path, while
Red Hat-variants will use /usr/pgsql-[version]/bin instead.
Try to use these first to save some time.

Our next job is to create a configuration file for Patroni. This file will define how a
new cluster definition is initialized, the current operation parameters, and the existing
structure of the patronictl command-line tool. We start by creating a file named
stampede.yml in the /etc/patroni directory and ensure it's owned by the
postgres user. This allows us to potentially add password information and ensure it
remains confidential and secure within our cluster.

This configuration file is defined in YAML format and can be considered in five
distinct sections. We define the cluster and node name in the first section. We chose
the name stampede due to its relation to the PostgreSQL mascot, but feel free to
choose something better suited to the cluster's purpose. The node name should reflect
the name of the server to keep things simple, but, again, this is not a requirement.

Anywhere you see pgha1 in the configuration file, remember to
change it to pgha2, pgha3, and so on, on each system. This file
needs to be distinct for each PostgreSQL instance being managed by
Patroni, and we've elected to have one Patroni + instance pair per
server.

In the restapi section, we define two parameters. We set listen to pgha1:8008 so
Patroni watches port 8008 on the named node. This URL can be used to obtain or
define configuration information, or for determining the current primary server. We
set connect_address to the same value so that Patroni can access its own REST API
if necessary. These parameters are distinct in case of scenarios where they must differ,
but in most cases this isn't necessary.

After restapi is the etcd section. This is where we define the location of our key-
value store. Due to its relative simplicity, we're only required to set the host
parameter to pgha1:2379, the same client interface and port we defined for etcd.

High Availability with Patroni Chapter 10

[447]

Next, we define the bootstrap section, and it contains several sub-elements. All of
the parameters we define within these subsections are used to initialize a new cluster.
If we attach Patroni to an existing PostgreSQL instance, only the dcs section remains
relevant and is saved to the key-value store for further use.

The dcs portion corresponds to the cluster definition. We begin by setting ttl to 30,
meaning the primary node must reclaim its status every 30 seconds, or potentially
trigger a failover to another node. By setting loop_wait to 10, a replica should notice
a missing master in 10 seconds or less. Setting the retry_timeout parameter to 10
essentially prevents stalled connections during operations, that is, if the servers
vanish due to network issues. And finally, we set maximum_lag_on_failover to the
byte equivalent of 1 MB, which is a minimum threshold that replicas must satisfy
before being considered failover candidates.

After the basic dcs elements, we define how PostgreSQL is handled by Patroni. If
we're using PostgreSQL 9.5 or higher, we can set use_pg_rewind to true as a faster
method for transforming a former primary into a new replica without the need for a
data resync. We also recommend using replication slots in PostgreSQL 9.4 and greater
when possible to prevent irrecoverable replica lag, and setting use_slots to true
makes that explicit to Patroni.

The parameters subsection is merely a series of values commonly found in
postgresql.conf. Versions of PostgreSQL older than 12 can also specify a
recovery_conf section, which corresponds to the recovery.conf file used to
define replica recovery operations. These are specifically supplementary values,
meaning we only add them if we want to override Patroni defaults or define any
configuration elements we consider to be critical to the cluster operation. Normally,
we would restrict such additions to replication requirements, or for necessary WAL
file management.

After the dcs section comes the initdb section, which is basically used to handle
parameters to PostgreSQL's initdb utility. In this case, we've elected to enable data
checksums and ensure a newly initialized database uses the UTF8 character encoding.
Specifying this latter value may not seem necessary, but we've encountered ASCII
encoded databases, and it's very difficult to fix these once they're established. This can
sometimes happen if the machine's locale is not properly bootstrapped, as is
sometimes the case in Docker or LXC containers.

High Availability with Patroni Chapter 10

[448]

Then there's a pg_hba section for additional entries in newly created pg_hba.conf
files. In this case, we've elected to allow the rep_user account to utilize the
replication pseudo-database, and all other accounts can connect within our limited
subnet. This is where you would place any necessary pg_hba.conf entries for the
basic cluster operation within an application stack.

Next, we have the users section, where we may create as many user accounts for a
newly instantiated cluster as we need. In our case, we opted for a single admin
account with the ability to generate further roles and databases. This section is also
the reason we want the file to be owned by the postgres system user. We want as
little password exposure as possible!

The last section in the configuration file is postgresql, which determines the
operating state of each local PostgreSQL instance. Like the restapi section, this also
has listen and connect entries for defining connection targets. This is also where
we define data_dir as the PostgreSQL data may reside in different locations on each
server.

The reason we set bin_dir explicitly to the full path of the PostgreSQL binaries is
due to the possibility of servers hosting multiple PostgreSQL versions, or using
nonstandard installation directories. This is where we use the value we obtained with
pg_config earlier.

The pgpass and authentication sections essentially go together. The first defines a
location for a temporary password file, and the second declares both the replication
and superuser. Since proper authentication is necessary for newly provisioned
replicas to bootstrap themselves and begin replication, these sections ensure that the
process always succeeds.

And finally, we can provide as many arbitrary postgresql.conf values in the
parameters subsection as we desire. Unlike those within the bootstrap section, these
are only applied to the instance the current Patroni node is managing. While not
likely, there are occasions where certain nodes will require specific settings to
function properly.

Fortunately, the Patroni configuration file is the most difficult part of using it. Once
we make the configuration file readable only to the postgres user, we can start
Patroni on each node bypassing the full path of the configuration file to the patroni
command.

High Availability with Patroni Chapter 10

[449]

Even if the data directory of each new replica was completely empty, we should see
something like this in the Patroni logs shortly after starting the service:

This is because Patroni will use pg_basebackup to initialize new replicas that have
no existing data.

There's more...
Once Patroni is installed, we can view the cluster status to understand how it's
running. There are some additional modifications we can also make to better
integrate Patroni with the operating system.

Cluster status
We can also view the full status of the cluster from any existing node. To do this, we
need to pass the list parameter and the path to our configuration file to the
patronictl command-line tool. We also need to specify which cluster we want
information about. This is because there are multiple methods for obtaining cluster
information.

If we use the -c parameter to detail a configuration file, our results should look like
this:

The patronictl command also accepts the location of the distributed keystore
system. So, we could get the same summary status by passing -d pgha1:2379
instead, for example.

High Availability with Patroni Chapter 10

[450]

We want to note that, in this example, pgha3 was the same node
designated as our witness in Chapter 9, High Availability with
repmgr. Such nodes are not streaming replicas; Patroni saw that this
node was invalid and, as a result, rebuilt it. This is what Patroni was
designed to do, that is, to automate as much as possible.

Better service management
As with etcd, we can manage Patroni via systemd if we create a file named
patroni.service in the /etc/systemd/system directory with the following
content:

[Unit]
Description=Patroni PostgreSQL Cluster Service
Documentation=https://github.com/zalando/patroni
After=etcd.service

[Service]
User=postgres
Type=simple
ExecStart=/usr/local/bin/patroni /etc/patroni/stampede.yml
Restart=always
RestartSec=10s
LimitNOFILE=40000

[Install]
WantedBy=multi-user.target

Note that we want to start after etcd, and that we set the Type field to simple, which
indicates the patroni process should be running for the service to be considered
active.

Then, we could enable, start, and stop etcd using these systemctl commands:

sudo systemctl enable patroni
sudo systemctl start patroni
sudo systemctl stop patroni

Additionally, our log output would be available via the journalctl command:

journalctl -u patroni

High Availability with Patroni Chapter 10

[451]

While there are legitimate complaints regarding how systemd handles certain
elements, it's hard to argue against how quickly we integrated this service into our
server. It's certainly cleaner than relying on pkill to stop Patroni, or using output
redirection and & to fork a process manually.

The remaining recipes in this chapter will assume that a
patroni.service file is in place to encourage reliable cluster
management.

See also
YAML configuration settings:
https://github.com/zalando/patroni/blob/master/docs/SETTINGS.rst

Installing and configuring HAProxy
The final element on the stack is HAProxy. Patroni uses this to redirect traffic to the
primary read/write node in our PostgreSQL cluster. Technically, we don't strictly
need this component since Patroni will operate without it. However, if we want the
capability to always reach the primary node regardless of its location, then this recipe
is essential.

This recipe will introduce HAProxy to act as a high-availability connection proxy for
Patroni.

Getting ready
This recipe depends on some necessary libraries and services. Please follow the
Preparing systems for the stack and Installing and configuring Patroni recipes before
continuing.

If this is a Debian-based system, begin by installing HAProxy from the standard
system repository with the apt-get command:

sudo apt-get install haproxy

https://github.com/zalando/patroni/blob/master/docs/SETTINGS.rst

High Availability with Patroni Chapter 10

[452]

For Red Hat-based servers, use an equivalent yum command:

sudo yum install haproxy

How to do it...
For this recipe, we will need atleast three PostgreSQL servers. As usual, we'll assume
they are named pgha1, pgha2, and pgha3. In addition, assume that the IP address of
pgha1 is 10.0.30.1. Follow these steps on all three servers except where indicated:

Create a file named haproxy.cfg in the /etc/haproxy directory with the1.
following content:

global
 maxconn 100

defaults
 log global
 mode tcp
 retries 2
 timeout client 30m
 timeout connect 4s
 timeout server 30m
 timeout check 5s

frontend ft_postgresql
 bind *:5000
 default_backend bk_db

backend bk_db
 option httpchk

 server postgresql_pg1 pgha1:5432 check port 8008
 server postgresql_pg2 pgha2:5432 check port 8008
 server postgresql_pg3 pgha3:5432 check port 8008

If this is an older Debian-based system, set the ENABLED variable to 1 in the2.
/etc/default/haproxy file.
Start HAProxy with the following command as a root-enabled user:3.

sudo systemctl restart haproxy

Execute the following command as the postgres user on any node:4.

psql -h localhost -p 5000 -c "select inet_server_addr();"

High Availability with Patroni Chapter 10

[453]

How it works...
HAProxy has a very powerful configuration syntax backed by hundreds of
parameters. While this makes it quite versatile, trying to write a configuration file
from scratch would be extremely difficult. In our case, the number of parameters we
need to set is actually fairly minimal.

We start by setting the global connection limit to 100 connections. This is the number
of connections HAProxy will manage before simply allowing them to queue in the
kernel buffer. Generally, we would want to set this to the same value we use with
max_connections in postgresql.conf, but it's not required.

Next, we set the log parameter to global so all HAProxy instances write to the same
log output. HAProxy is an HTTP proxy system at heart, so we must ensure the
mode parameter is set to tcp so HAProxy doesn't try to interpret the actual traffic.

After these essentials are set, we also define a number of connection retry and timeout
values. These are all subject to usage patterns, so feel free to modify them to better fit
your cluster needs. Of special note are the server and client timeouts, which will
break the connection if either the client or the server is idle for over 30 minutes. We
also set the connect timeout to 4 seconds so HAProxy doesn't wait forever to
establish a connection. And finally, we set the check timeout to 5 seconds so that
once a connection is established, it isn't alive much longer than necessary before being
disconnected.

Databases that commonly host persistent connections may need to
greatly increase the client and server timeout values or set them
to 0 in order to disable the feature altogether.

Once we've taken care of the default connection handling behavior, we must define
the frontend and backend actions. On the frontend, HAProxy will be handling
incoming connections, so we create a new frontend called ft_postgresql. Within
this definition, we set bind to *:5000 to listen to all of the available interfaces on port
5000. Then, we link the frontend to a backend that we'll name bk_db.

On the backend, HAProxy will be forwarding connections to our primary writable
PostgreSQL server. To handle this, we create a new backend named bk_db, which we
already referenced in the frontend configuration section. The only option we set
here is httpchk, the method HAProxy should use to confirm server health.

High Availability with Patroni Chapter 10

[454]

All of the other lines in the backend section refer to one of our PostgreSQL servers.
Each server line comes in three distinct sections. First comes the server name, then the
host and port for the service, and finally further options for the definition. We chose
rather boring server names such as postgresql_pg1 to make it obvious what is
expected.

Aside from the host:port combination for each server, we also defined check port
8008. This option tells HAProxy to connect to port 8008 to determine server health,
and this is also where Patroni is performing some magic. When HAProxy connects to
a server on port 8008, it is actually connecting to Patroni.

Since each local Patroni node knows whether or not it is the primary system,
HAProxy is actually asking each node whether or not it is the primary. It's an
ingenious way to leverage a proxy health check. With these configuration values in
place, any incoming connection to port 5000 on any HAProxy host will be forwarded
to whichever server passed the backend health check. Due to this, there's no need for
a virtual IP address or a CNAME definition; we'll always be sent to the correct
system.

After restarting the haproxy service with systemctl on all of the cluster servers, it's
a good idea to run a quick test to ensure that the proxy is working as expected. To do
this, we connect to port 5000 on any server and execute the inet_server_addr
function to obtain the IP address of the server we've contacted. Since this is the port
HAProxy is monitoring, we should have been redirected to pgha1 and get
10.0.30.1 as the result. A successful result should resemble this output:

See also
The HAProxy documentation: https://cbonte.github.io/haproxy-dconv/

https://cbonte.github.io/haproxy-dconv/

High Availability with Patroni Chapter 10

[455]

Performing a managed switchover
Managing a Patroni cluster is relatively easy as long as it's operating normally. The
primary reason for this is the provided patronictl command-line tool. Beyond
simply displaying the cluster status, it also manages several other helpful operations.

In particular, we can use it to force the primary node to step down and allow one of
the replicas to take its place. In a high-availability context, this is a great way to
perform system upgrades. We merely need to switch to another primary, upgrade the
old system, and repeat. We're done when every node is the latest PostgreSQL version.
During this process, the database is never offline. This procedure also works for
regular system maintenance.

This recipe will demonstrate the process to change the primary node using Patroni.

Getting ready
This recipe depends on the presence of the entire stack. Please complete all of the
previous recipes in this chapter before continuing.

How to do it...
For this recipe, we should already have three PostgreSQL servers. As usual, we'll
assume they are named pgha1, pgha2, and pgha3. If pgha1 is the current primary,
follow these steps to promote a different node to primary status:

Execute the following command as the postgres user to initiate a failover:1.

patronictl -d pgha1:2379 switchover stampede

Answer the presented prompts as directed.2.
Wait a few seconds before running this command as the postgres user:3.

patronictl -d pgha1:2379 list stampede

How it works...
We were serious when we said this recipe would be fairly simple. By calling
patronictl with the failover parameter, we're telling it that we definitely want to
promote another node to primary status.

High Availability with Patroni Chapter 10

[456]

The -d flag allows us to specify etcd as a configuration source and is usually the safer
option since it should always reflect the current state of the cluster.

Our example targeted the pgha1 server on the etcd port of 2379, but we could have
used any of the cluster systems. Since the distributed key-value system may play host
to any number of clusters, we must also specify stampede as the name of the cluster
we want to manage.

Once we invoke the failover command, Patroni asks multiple questions to verify
the process to make absolutely certain before altering the cluster state. Most of these
choices are defaults that do not require an answer. We could choose any one of the
replicas to promote, but if we do not, Patroni will select one on our behalf.

After we confirm the final prompt, Patroni will present the status output like this:

Note that pgha1 is now marked as stopped and pgha2 is the new cluster leader. This
state is actually only temporary. We never removed pgha1 from the cluster, so
Patroni will modify it to act as a replica. If we wait for a few seconds and check the
cluster status with the list parameter to patronictl, we will see evidence of the
transition:

The procedure for reclaiming a previous master and converting it to a replica
normally requires several commands. We would need to manually invoke
pg_rewind or rsync, find the location of the new leader, modify recovery.conf,
and restart the instance with pg_ctl. Patroni performs all of these steps
automatically.

High Availability with Patroni Chapter 10

[457]

Patroni delivers a very hands-off self-healing approach that is actually fairly difficult
to defeat, even on purpose. That's exactly what we want from a high-availability
solution.

There's more...
We were not exaggerating when we said Patroni was difficult to defeat. If a system
operator was ignorant of Patroni's presence, they might attempt to stop the
PostgreSQL service with pg_ctl or some other system-level script. Upon noticing the
outage, Patroni would immediately restart the database instance.

If the outage was on the primary node, Patroni would promote another node to
leader status and begin the process of converting the old leader into a replica. It's
extremely likely that this cycle will complete before the system administrator is able
to even verify that the PostgreSQL service was stopped.

Patroni considers itself the true arbiter of the PostgreSQL systems it manages. So, the
only way to actually prevent the comical scenario here is to temporarily defer cluster
management. We can do that by invoking patronictl with the pause parameter, as
shown in this command:

patronictl -d pgha1:2379 pause stampede

While paused, Patroni will not detect outages, invoke automated failovers, or enact
any other kind of high-availability actions. To revert the cluster to its standard
managed state, we would use the resume parameter, as shown in this command:

patronictl -d pgha1:2379 resume stampede

Using an outage to test availability
Every high-availability cluster must possess the capability to detect and route around
server failures. Hardware faults, virtual instance crashes, mistyped commands, and
any number of potential disasters lurk around every corner. The best way to
determine the true resilience of our stack is to test it by breaking something.

This recipe will explore what happens when attacking Patroni directly.

High Availability with Patroni Chapter 10

[458]

Getting ready
This recipe depends on the presence of the entire stack. Please complete all of the
recipes up to Installing and configuring HAProxy before continuing.

How to do it...
For this recipe, we should already have three PostgreSQL servers. As usual, we'll
assume they are named pgha1, pgha2, and pgha3. If pgha2 is the current primary,
follow these steps to simulate a server failure:

Execute the following command as a root-enabled user on pgha2:1.

sudo systemctl stop patroni

Follow the Patroni log on pgha1 or pgha3 with this command:2.

sudo journalctl -u patroni

How it works...
This recipe relies on a dirty trick to avoid the long and irritating process of rebooting
a server. The patroni daemon considers itself the solitary coordinator of the
PostgreSQL service. Just as it will restart the PostgreSQL services that we stop
without its permission, it will also stop the PostgreSQL service if we end the patroni
service itself.

Since we set up Patroni as a system service, we can use the systemctl command to
stop the patroni daemon. We need to stop Patroni on the server currently acting as
the primary node. Without Patroni running on this server, the lock on the primary
node pointer in the key-value layer will expire. Upon the next internal status
iteration, both pgha1 and pgha3 will notice there's no registered leader and attempt
to claim the position.

Only one node can win this race. If we invoke the tail command with the -f
(follow) flag on either pgha1 or pgha3, or both, we can actually watch the takeover.
This is what it should look like on the new primary window:

High Availability with Patroni Chapter 10

[459]

There's more...
Relying on the tail command is an old standby method that's frequently useful for
watching logs. Unfortunately, we also need to know which server won the leadership
race to know which logs to observe. We could use the list parameter for
patronictl, yet the takeover process relies on several timeouts. The authors of
Patroni considered this and added a -w flag to watch the command by running it
upon a configurable interval.

This means we could observe the failover and takeover as it happened with a
command like this:

patronictl -d pgha1:2379 list -w 5 stampede

Of course, this isn't really a novel feature. It's extremely likely that most Linux
systems have the watch command installed, and it fills the same role. We could get
the same result with this command:

watch -n 5 patronictl -d pgha1:2379 list stampede

Still, it's less typing. If we know about the -w flag, we're likely to use it when
interacting with the patronictl command simply due to convenience.

Returning a node to the cluster
Recovering systems after a major crash or outage is not an enjoyable experience. We
must reboot or restore one or more servers, perform forensics to determine the root
cause of the failure, and attempt to repair or replace corrupt data files.

This is no less true on systems that rely on Patroni as their high-availability solution.
However, Patroni automates the more annoying portions of recovering a damaged
PostgreSQL database.

This recipe will show how to recommission a previously damaged or offline
PostgreSQL node within a Patroni cluster.

High Availability with Patroni Chapter 10

[460]

Getting ready
This recipe depends on the presence of the entire stack. Please complete all of the
previous recipes in this chapter before continuing.

We also need a broken server. The easiest way to do this is to break it ourselves.
Execute these commands on any system to simulate an unrecoverable server crash:

pkill -9 patroni
pkill -9 postgres
find /db/pgdata -name '*r*' -o -name '*0*' -delete

This will cause an unclean shutdown of both Patroni and PostgreSQL and remove
several necessary files for the PostgreSQL service to operate.

How to do it...
For this recipe, we should already have three PostgreSQL servers. As before, we'll
assume they are named pgha1, pgha2, and pgha3. Follow these steps to fix the
broken system:

Remove the contents of the corrupt cluster by running the following1.
command as the postgres user on the broken system:

rm -Rf /db/pgdata

Start a new patroni daemon with this command as a root-enabled user:2.

sudo systemctl start patroni

Follow the Patroni log with this command:3.

sudo journalctl -u patroni -f

How it works...
Do, or do not; there is no try. If the system outage is serious enough, we do not know
the full extent of the damage to system files. If our database was not initialized with
file checksums, it might be weeks before the corruptions make themselves known. If a
crashed server takes over as a primary before that happens, these corruptions could
eventually be replicated to other systems.

High Availability with Patroni Chapter 10

[461]

It's safer to simply start from scratch. Therefore, our first step is to erase the
/db/pgdata directory itself. With no old files to lead Patroni astray, it will rebuild
the data by invoking pg_basebackup and configuring the instance that we specified
in /etc/patroni/stampede.yml. We can even watch this happen by following the
logs.

This is what we should see when recreating a node with an empty data directory:

This seems too easy, but that really is all we need to do. Erase the old data and start
Patroni. The simpler a procedure is, the more difficult it is to make mistakes. Once
that step is complete, we can utilize journalctl to follow the logs as the node is
rebuilt and rejoins the cluster.

There's more...
Of course, this process does not lend itself well to extremely large database
installations. Beyond a few hundred gigabytes, erasing all of the data and
resynchronizing is extremely time, network, and I/O intensive. For these scenarios,
we recommend a different technique. Before starting Patroni, we can manually
synchronize the data files with rsync.

These are the commands we might use when rebuilding pgha2 from the contents of
pgha1 if we have Secure Shell (SSH) keys in place:

psql -U rep_user -h pgha1 \
 -c "SELECT pg_start_backup('resync', TRUE);" postgres
rsync -av --delete-after postgres@pgha1:/db/pgdata /db
psql -U rep_user -h pgha1 -c "SELECT pg_stop_backup();" postgres
rm /db/pgdata/postmaster*

Some more experienced DBAs might recognize this as the old process for obtaining a
PostgreSQL backup before pg_basebackup became a standard utility. Though
somewhat antiquated by today's standards, there's really no replacement for rsync to
minimize the amount of synchronizing with an existing set of files.

High Availability with Patroni Chapter 10

[462]

We hope that PostgreSQL will eventually integrate partial file transfers into
pg_basebackup so it's possible to patch a replica from a donor system. Until then, we
always have rsync.

Adding additional nodes to the mix
Eventually, we may decide to expand our cluster of PostgreSQL servers to
accommodate more traffic, further increase availability, or retire an old system. Once
we've established an etcd + HAProxy + Patroni stack, how difficult is the process of
adding further nodes?

We wish it were possible to follow the previous recipes and consider ourselves
finished. Unfortunately, modifying an operating cluster stack requires a small amount
of finesse. Luckily, the extra steps are somewhat minimal, and our reward is an
adaptable architecture. Let's get started.

Getting ready
This recipe is somewhat unique. It depends primarily on the Installing and configuring
etcd, Installing and configuring Patroni, and Installing and configuring HAProxy recipes.
However, we must stress that they should not be followed exactly. The steps outlined
here will explain necessary deviations, so pay close attention.

How to do it...
For the purposes of this recipe, we are going to be adding a new pgha4 server to the
stack. As in all of the other recipes, we already have pgha1, pgha2, and pgha3
operating. Follow these steps to fully integrate pgha4 into the cluster:

Follow the steps in the Installing and configuring etcd for pgha4 until you are1.
asked to start etcd, but do not start the service.
Execute the following command as the postgres user on any one of2.
pgha1, pgha2, or pgha3:

etcdctl member add pgha4 http://pgha4:2380

High Availability with Patroni Chapter 10

[463]

Modify the /etc/etcd.conf configuration file on pgha4 and make sure it3.
includes these lines (take note not to copy line wrapping from the book
here):

initial-cluster-state: existing
initial-cluster:
"pgha4=http://pgha4:2380,pgha1=http://pgha1:2380,pgha2=http://
pgha2:2380,pgha3=http://pgha3:2380"

Start the etcd daemon as a root-enabled user with the following command4.
on pgha4:

sudo systemctl start etcd

Follow the steps in the Installing and configuring HAProxy recipe.5.
Modify the /etc/haproxy/haproxy.conf configuration file on all of the6.
servers and ensure it includes this line in the backend bk_db section:

server postgresql_pg4 pgha4:5432 maxconn 100 check port 8008

Reload the haproxy daemon on all of the servers by executing the7.
following command as a root-enabled user:

sudo systemctl reload haproxy

Follow the steps in the Installing and configuring Patroni recipe.8.
On any server, execute the following command as the postgres user to9.
obtain the new cluster status:

patronictl -d localhost:2379 list stampede

How it works...
As with most things, we start at the beginning. To integrate a new node, we need to
add each necessary component of the stack. In this case, etcd is the first, and most
complicated, portion. Generally, we can follow the installation process as outlined in
the Installing and configuring etcd recipe, but we absolutely must not start the etcd
service just yet.

High Availability with Patroni Chapter 10

[464]

When we first bootstrapped etcd, we specified the initial-cluster parameter in
the original configuration file. This parameter did not include pgha4 when the cluster
was established, so etcd will not acknowledge its attempts to join. We can modify the
cluster definition by invoking the etcdctl command with the member add
parameter. We only need to supply the name of the member and its peer connection
information so that etcd knows how to connect to it.

Then, we need to add pgha4 to the list of servers in the initial-cluster parameter
in its own configuration file. This allows pgha4 to join the cluster in a similar manner
as the original members when it was newly established. The only difference is that we
also need to set the initial-cluster-state parameter to existing so that the
etcd daemon on pgha4 joins the current cluster instead of creating a new one.

Once we've added pgha4 to the etcd cluster in the proper way, it is safe to start the
etcd service. After this, the remaining steps to integrating pgha4 practically complete
themselves.

In circumstances where there is already a ring of consensus etcd
servers, it may not be necessary to create local installations
specifically for Patroni. Check with your infrastructure department
to see whether they already have a key-value set of servers that
Patroni can utilize. Then, we can skip the entire process up to this
point.

To that end, we can install and configure HAProxy just as we did on the other nodes.
We can even start the daemon without worry. It just won't connect to any services on
the new node until we add the necessary server configuration line in the backend
bk_db section of the configuration file on all nodes. Once we reload the haproxy
service so it integrates the changes we've made to the configuration file, we're ready
to complete the cluster expansion.

The easiest step is to install and start Patroni on pgha4. As we've learned from
previous recipes, Patroni handles most of the difficult elements in bootstrapping a
PostgreSQL server. It will connect to the current leader, create a new data directory
by cloning the contents of the primary node, and automatically add it to the Patroni
layer.

High Availability with Patroni Chapter 10

[465]

After Patroni is installed and running, we can view the current operational nodes
bypassing the list parameter to patronictl. If everything went as expected, we
should see this:

There's more...
The analogous process of adding a node to the cluster stack is to remove one. That
procedure is considerably easier, in general. For example, we could execute these
commands as a root-level user in order to remove pgha2 from our Patroni cluster:

sudo systemctl stop patroni
export MEMBER=$(etcdctl member list | grep pgha2 | cut -d ':' -f 1)
etcdctl member remove $MEMBER

Since the etcd layer is persistent across all nodes, pgha2 is permanently removed
from all of them unless we add it again by following this recipe. Once Patroni is
stopped and etcd no longer considers the pgha2 part of the key-value layer, we can
safely recycle the server without worry.

We also need to remove references to pgha2 from the HAProxy configuration file, but
that isn't critical.

Hopefully, you're making use of configuration management tools
such as Ansible, SaltStack, Puppet, or Chef. In larger clusters, these
types of management tools are essential for modifying configuration
files and restarting services. With these tools, we could remove
pgha2 from the HAProxy configuration file, transmit it to every
node in the cluster, and restart the haproxy service without logging
into each individual system. They also greatly simplify
bootstrapping new servers with mostly configured software and
settings based on predefined profiles.

High Availability with Patroni Chapter 10

[466]

See also
The etcd runtime reconfiguration: https://etcd.io/docs/v3.4.0/op-
guide/runtime-configuration/

Replacing etcd with ZooKeeper
It's common for server stacks to already partially exist, often using components we
don't have the privilege of choosing. Servers and related software can be around for
years before we adapt them to our needs. Therefore, it's possible an infrastructure
department already uses a distributed key-value storage system such as etcd for its
own purposes.

ZooKeeper is one of these alternative key-value storage layers. Patroni is fully capable
of utilizing this instead of etcd, provided we make some changes to how it is
configured.

This recipe will explain how to leverage an existing ZooKeeper installation to our
advantage!

Please note that installing ZooKeeper itself is beyond the scope of
this recipe. The intention here is to make changes to Patroni that
make it compatible with an existing ZooKeeper installation. This can
happen when an infrastructure already incorporates ZooKeeper,
allowing us to leverage it as well. If there is no pre-existing set of
ZooKeeper nodes, feel free to skip this recipe.

Getting ready
This recipe depends on the presence of the entire stack, as well as an existing
installation of ZooKeeper. Please complete all of the recipes up to Installing and
configuring HAProxy before continuing.

https://etcd.io/docs/v3.4.0/op-guide/runtime-configuration/
https://etcd.io/docs/v3.4.0/op-guide/runtime-configuration/
https://etcd.io/docs/v3.4.0/op-guide/runtime-configuration/

High Availability with Patroni Chapter 10

[467]

How to do it...
For this recipe, we should already have three PostgreSQL servers. As usual, we'll
assume they are named pgha1, pgha2, and pgha3. If pgha1 is the current primary,
follow these steps to switch to ZooKeeper:

Locate the myid file in the ZooKeeper configuration directory for each1.
server. This is usually /etc/zookeeper/conf. It should contain a single-
digit number. Keep this for reference.
Assuming the server number in myid corresponds to the server name2.
we've assigned (pgha1 and so on), ensure the zoo.cfg configuration file
on each server contains the following lines:

server.1=pgha1:2888:3888
server.2=pgha2:2888:3888
server.3=pgha3:2888:3888

If necessary, reload the ZooKeeper configuration file with the following3.
command:

sudo systemctl reload zookeeper

Execute this command as a root-enabled user on all nodes to stop Patroni,4.
ensuring the cluster leader is stopped last:

sudo systemctl stop patroni

Remove these two lines from /etc/patroni/stampede.yml on each5.
server:

etcd:
 host: ...

Add these two lines to /etc/patroni/stampede.yml on each server:6.

zookeeper:
 hosts: pgha1:2181,pgha2:2181,pgha3:2181

Beginning with the former leader (pgha1), start Patroni on all servers with7.
this command:

sudo systemctl start patroni

High Availability with Patroni Chapter 10

[468]

How it works...
Since these servers presumably already have ZooKeeper installed and configured, it's
likely the configuration files reflect the settings we want. However, it's always a good
idea to perform due diligence. This also gives us the opportunity to see the full list of
available ZooKeeper servers as listed in the configuration file. It may mean there is a
large constellation of additional systems available for our PostgreSQL cluster.

Of special note is the myid file. ZooKeeper can maintain a cluster of up to 255 nodes,
and each is assigned an arbitrary number in this file. Our small sample setup can
easily align these ID values to the server name we've assigned, but this is probably
not the case in a real environment. Make special note of these ID values when
checking the ZooKeeper configuration file for the server.x entries we need for our
own uses.

If we modified the ZooKeeper configuration file, we need to reload the zookeeper
service so that it incorporates our changes. Afterward, we must stop Patroni on all
hosts where it is installed for our cluster. This is one of the rare instances where we
have no choice but to accept downtime within our cluster. The key-value layer is a
critical component to Patroni, and switching it requires temporarily disabling the
entire stack.

Moving from etcd to ZooKeeper is actually fairly easy. We start by removing the etcd
and associated host entries from the stampede.yml configuration file for the cluster.
Then, we add equivalent lines for zookeeper, which requires the entire list of hosts
in host:port format for the cluster.

Once we start Patroni, the alterations are complete and we are now using ZooKeeper
as our key-value layer instead of etcd. We can verify this by examining the Patroni log
output. Here's what the primary node logs should contain after it has been launched:

High Availability with Patroni Chapter 10

[469]

There's more...
Since we changed the location of the key-value layer of our cluster, we should also
alter the host:port value to the -d parameter when invoking the patronictl
command. If we wanted to temporarily disable cluster management while relying on
ZooKeeper, we could invoke this command on any node:

patronictl -d pgha3:2181 pause stampede

See also
The ZooKeeper Getting Started Guide:
https://zookeeper.apache.org/doc/current/zookeeperStarted.html

Replacing etcd with Consul
Consul is another key-value layer we can use instead of etcd. As with ZooKeeper, it's
possible that an infrastructure department has already decided on the official
software for several dedicated roles. If this is the case and Consul is the chosen key-
value store within the company, it would be silly to maintain another without some
overriding reason.

There may be reason to prefer one key-value layer over another, but that conversation
is far beyond the scope of this book. Instead of initiating an argument on the finer
points of leader election algorithms, let's convert our stack to Consul in place of etcd.

Please note that installing Consul itself is beyond the scope of this
recipe. The intention here is to make changes to Patroni that make it
compatible with an existing Consul installation. This can happen
when an infrastructure already incorporates Consul, allowing us to
leverage it as well.

Getting ready
This recipe depends on the presence of the entire stack. Please complete all of the
recipes up to Installing and configuring HAProxy before continuing.

https://zookeeper.apache.org/doc/current/zookeeperStarted.html

High Availability with Patroni Chapter 10

[470]

How to do it...
For this recipe, we should already have three PostgreSQL servers. As usual, we'll
assume they are named pgha1, pgha2, and pgha3. If pgha1 is the current primary,
follow these steps to switch to Consul:

Execute this command as the postgres user on all nodes to stop Patroni,1.
ending with the cluster leader:

sudo systemctl stop patroni

Remove these two lines from /etc/patroni/stampede.yml on each2.
server:

etcd:
 host: ...

Add these two lines to /etc/patroni/stampede.yml on each server,3.
remembering to substitute the proper server name:

consul:
 host: pgha1:8500

Beginning with the former leader (pgha1), start Patroni on all servers with4.
this command:

sudo systemctl start patroni

How it works...
Unfortunately, our first order of business is to break the entire cluster. The key-value
layer is essential to storing the cluster definition, as well as ensuring that only one
PostgreSQL server ever wins the leadership race. It's one element that is not optional,
and, as a result, we must shut down all of our Patroni instances in order to swap out
all key-value references at once.

While we suggest stopping the leader node last, this is not entirely
essential. However, avoiding needless failovers is always beneficial
to cluster health.

High Availability with Patroni Chapter 10

[471]

Next, we need to remove the etcd and corresponding host line from the Patroni
stampede.yml configuration file. We can then add equivalent consul and host
lines that inform Patroni to use Consul instead. It's important that we specify 8500 for
the port element, as Patroni uses the HTTP protocol for all interactions. By default,
Consul monitors port 8500 for incoming HTTP connections.

Our last step is to merely start the patroni service. Since we stopped the primary
node last, we should start it before the others. It likely has the most up-to-date
database state, and since we stopped all normal cluster operations, there's a slight
chance the replica nodes are at least slightly behind the leader.

If we examine the Patroni logs after starting the patroni service, we should see
something like this on the primary system:

Not very interesting, eh? Unlike etcd and ZooKeeper, Patroni doesn't tell us if it has
connected to a Consul.io Raft cluster. We're not sure why this is, but we can still see
that it has established a lock and promoted pgha1 to be the cluster leader.

There's more...
Since we changed the location of the key-value layer of our cluster, we should also
alter the host:port value to the -d parameter when invoking the patronictl
command. If we wanted a list of cluster nodes from pgha2 while relying on Consul,
we would execute this command:

patronictl -d pgha2:8500 list stampede

High Availability with Patroni Chapter 10

[472]

See also
For more details on Consul, refer to the following links:

Consul – Bootstrapping a Datacenter:
https://www.consul.io/docs/guides/bootstrapping.html

Consul – configuration:
https://www.consul.io/docs/agent/options.html

Upgrading while staying online
We've all encountered this scenario: PostgreSQL recently released version 12.1 and
we need to upgrade to protect ourselves from potential data corruption. Or perhaps it
isn't PostgreSQL that requires an upgrade, but the system kernel or another critical
element of the operating system.

Regardless of the reason, we must accommodate the procedure somehow. Upgrading
software while remaining online is the ultimate aspiration of maintaining a high-
availability stack. This recipe will demonstrate how we can reach that goal by
leveraging Patroni's functionality.

Getting ready
This recipe depends on the presence of the entire stack. Please complete all of the
recipes up to Installing and configuring HAProxy before continuing.

How to do it...
For this recipe, we should still have three PostgreSQL servers. As usual, we'll assume
they are named pgha1, pgha2, and pgha3. If pgha1 is the initial leader, follow these
steps to perform an in-place system upgrade:

Start a status monitor on pgha3 with the following command executed as1.
the postgres user:

patronictl -d localhost:2379 list -w 5 stampede

https://www.consul.io/docs/guides/bootstrapping.html
https://www.consul.io/docs/agent/options.html

High Availability with Patroni Chapter 10

[473]

Execute the following command on any node as the postgres user to2.
initiate a switchover from pgha1 to pgha2:

patronictl -d localhost:2379 switchover \
 --master pgha1 --candidate pgha2 \
 --scheduled now --force stampede

Verify that pgha2 has assumed the cluster leadership role. The status3.
screen should eventually resemble this output:

As a root-enabled user on pgha1, stop Patroni with this command:4.

sudo systemctl stop patroni

Perform any necessary upgrades to the system software, reboot the pgha15.
server, or apply a minor PostgreSQL update.
When the upgrades are complete, start Patroni on pgha1 with the6.
following command:

sudo systemctl start patroni

Verify that the Lag in MB column in the status report for pgha1 reaches 0.7.
Execute the following command on any node as the postgres user to8.
initiate a switchover from pgha2 to pgha1:

patronictl -d localhost:2379 switchover \
 --master pgha2 --candidate pgha1 \
 --scheduled now --force stampede

Verify that pgha1 has resumed the cluster leadership role. As it was with9.
the pgha2 switchover, it should show Leader under the Role column in
the status report.
As a root-capable user on pgha2, stop Patroni with this command:10.

sudo systemctl stop patroni

High Availability with Patroni Chapter 10

[474]

Perform any necessary upgrades to the system software, reboot the pgha211.
server, or apply a minor PostgreSQL update.
When the upgrades are complete, start Patroni on pgha2 with the12.
following command:

sudo systemctl start patroni

Repeat the previous three steps for pgha3.13.

How it works...
Before we explain the steps of this recipe, we want to mention that none of this
process is actually necessary except for killing the patroni daemon on the node
we're upgrading. If we stop Patroni on pgha1, the cluster will eventually notice and
elect a new leader without our direct intervention. However, depending on our
timeout settings, the cluster may remain without a leader for several seconds. This
recipe ensures the cluster is never without a primary server and is always writable.

Otherwise, our first step is to start a monitor on pgha3 since it will be upgraded last.
This allows us to see which node is the current leader and any transition states while
we upgrade the other two systems. This is important since pgha1 and pgha2 will
both spend time in a leadership position.

Our next step is to actually invoke a switchover. We already did this in the Performing
a managed switchover recipe, but this time we've added a few extra flags to the
patronictl command. We use --master to show that pgha1 is the current leader, -
-candidate to specifically select pgha2 as the failover target, --scheduled to now
so the failover happens immediately, and --force because we are skipping
verification prompts.

If we return to pgha3 to watch the transition status, the whole process should finish
relatively quickly. Once we're satisfied that the cluster is stable again, we can stop the
patroni service and then do whatever we want with pgha1. After the upgrades or
other maintenance processes have finished, we just need to start Patroni on pgha1
and wait for it to catch up with the other nodes. Again, we can watch this happen on
pgha3.

High Availability with Patroni Chapter 10

[475]

Now we revert the earlier transition with another managed failover. This time, --
master is pgha2 and --candidate is pgha1. All we have to do is watch the monitor
on pgha3 and wait until the cluster is stable once more. Then, pgha2 and pgha3 are
both safe to upgrade as we did with pgha1. After stopping Patroni on the node we
want to upgrade, we have carte blanche to make software modifications.

There's more...
Do not confuse a major PostgreSQL upgrade with a minor one. While we can use the
steps in this recipe to upgrade from 12.0 to 12.1, for example, we cannot use it to
move from 11.4 to 12.0 or 12.1.

This is because an upgrade of that magnitude currently requires pg_upgrade,
pg_dump, or some clever application of logical replication. In any of these cases, the
newly upgraded PostgreSQL instance is actually a copy of the old database, rather
than a binary compatible update.

Patroni relies on the PostgreSQL physical replication system to synchronize nodes.
Since it's not possible to replicate between major PostgreSQL versions, Patroni can't
integrate nodes with large version mismatches.

If we tried a similar tactic as outlined in this recipe and used pg_upgrade after
moving the cluster leader to pgha2, pgha1 could never rejoin the cluster. As such, we
could never revert the leadership role back to pgha1. It would forever be excluded
from our existing Patroni cluster.

While unfortunate, a full major-version upgrade for a Patroni cluster still requires a
full outage window as of PostgreSQL 12. Technically, there is a method for
addressing this shortcoming, and we'll provide further details of this in Chapter 15,
Zero-downtime Upgrades.

11
Low-Level Server Mirroring

So far in this book, we've discussed quite an array of functionality and methodology
dedicated to keeping PostgreSQL systems online. By now, we have a burgeoning
menagerie of replication utilities, system monitoring tools, connection pooling layers,
failover and cluster automation frameworks, and even a handful of troubleshooting
tips.

We then moved on to combining several of these techniques and a few others to
create a software stack that automates and protects a PostgreSQL cluster. However,
despite the power demonstrated in these chapters on repmgr and Patroni, they still
rely primarily on PostgreSQL replication to safeguard replicated data. If we have an
extremely high transaction throughput, even PostgreSQL replication may be too slow
to fully resist data loss in the event of a server outage.

So, what tools can we use to safeguard our critical data beyond the guarantees that
are granted by PostgreSQL? Where do we go next?

Well, as it turns out, merely installing PostgreSQL on a server can be done too early.

In this chapter, we will learn how to build and manipulate a fault-tolerant, high-
performance foundation for our PostgreSQL clusters. We will cover the following
recipes in this chapter:

Preparing systems for volume mirroring
Getting started with the Logical Volume Manager (LVM)
Adding block-level replication
Incorporating the second LVM layer
Verifying a Distributed Replicated Block Device (DRBD) filesystem
Correcting a DRBD split brain
Formatting an XFS filesystem
Tweaking XFS performance
Maintaining an XFS filesystem

Low-Level Server Mirroring Chapter 11

[477]

Using LVM snapshots
Switching live stack systems
Detaching a problematic node
Building and attaching a new node

Understanding our chosen filesystem
components
Presuming that we have all of the hardware and software we discussed earlier, our
servers are still missing the following three things:

The ability to synchronize data to two servers simultaneously
The capacity to freeze data to prevent changes for backup purposes
A durable filesystem designed for multiprocessing I/O

There are several solutions for each of these missing elements, yet we've settled on
three in particular: DRBD, LVM, and XFS. Let's explore a bit about each of these
technologies and discuss why we've chosen them for mirroring data at the server
level.

Why DRBD?
DRBD stands for Distributed Replicated Block Device. DRBD is meant to operate
below the filesystem layer, mirroring the contents of one server's storage to another at
the block level. This means the operating system doesn't even know that its data is
located on another server as well. Having trouble imagining how it works? Well, the
following diagram will help:

Low-Level Server Mirroring Chapter 11

[478]

As you can see here, DRBD acts as an abstraction from the disk device that normally
hosts our PostgreSQL database. The primary benefit we gain from this situation is
that data is always located on at least two servers at all times. If one server crashes
and its storage is rendered unusable, we have a backup available.

Why not use streaming replication instead? Default PostgreSQL synchronous
streaming replication only guarantees that transactions are written to the standby, not
replayed within the actual database. So, even if we use the remote_apply setting for
the synchronous_commit parameter, we've merely increased our transaction
commit latency.

As we've already discussed, streaming replication means that the primary node will
halt on commit if there isn't at least one replica available at all times. With DRBD, the
other server has a copy of the block written to disk, which is identical in all aspects.
Any block written to one server is always available on the other.

There's also a dirty little secret that most people don't know about PostgreSQL
synchronous replication: it's not really synchronous! Remember, PostgreSQL
streaming replication works by transmitting write-ahead logging (WAL) events to
recipient nodes. Well, consider the fact that COMMIT is a WAL event. This means it
must be written in the WAL before it can be sent to another server.

In practice, all synchronous replication does is prevent the current PostgreSQL
session from accepting further commands until COMMIT succeeds. The data has
already been written to the WAL, and the transaction is already applied locally. If the
primary server then crashes, technically, some committed transactions could be lost.

Since the application never received an acknowledgment for the COMMIT message, it
would most likely try again after some failover process. This isn't always the case,
however, and in less robust designs, it could ultimately result in data loss due to
assumptions on data synchronicity. DRBD distinctly lacks this weakness.

Why LVM?
LVM is the Logical Volume Manager. Like DRBD, LVM is another abstraction layer
that sits between the filesystem and the underlying disk devices. Why is this
necessary? Well, LVM allows us to dynamically manage disk devices as one single
continuous piece of storage that we can arbitrarily extend, group, freeze, or
reorganize—all while remaining online.

Low-Level Server Mirroring Chapter 11

[479]

Have you ever wanted to simply add storage to a filesystem without messy symbolic
links or a server reboot? What about moving data from one device to another after an
upgrade? With LVM, all of this is easily accomplished. Using a modern server with
hot-swappable disks or a storage area network (SAN), we never even have to reboot
the server to completely reconfigure its disk devices.

Through the entire process of almost any LVM change, PostgreSQL can remain online
and service requests. This is the ultimate in high availability.

Why XFS?
XFS stands for Extents File System. Some may consider this a somewhat
controversial selection, given that ext4 performs perfectly well and is the current
default for all of the major Linux distributions. Both XFS and ext4 are journaling
filesystems; they provide online growth, LVM freezing, and numerous maintenance
and repair tools.

However, XFS still has something that ext4 does not: allocation groups. ext4, like all
of its predecessors, has a single file allocation table for the entire formatted device.
XFS, on the other hand, can split the allocation table into several segments so that
multiple independent CPU processes can write to the disk simultaneously. The end
result of this is that large servers with many CPUs and random writes, such as a
PostgreSQL database, can perform better on an XFS-formatted device.

If you are using Red Hat Enterprise Linux (RHEL) and have a
support contract with Red Hat, be wary of using XFS. Red Hat
considers XFS enterprise-grade storage and distributes it separately
as a paid extension. If this becomes a problem, please feel free to use
ext4 and ignore the XFS-related sections of this chapter.

The stack
At the end of this chapter, we will have a software stack that looks like the following
diagram:

Low-Level Server Mirroring Chapter 11

[480]

Each of the following layers represents one enhancement necessary for the best long-
term high availability:

The first LVM layer (starting at the storage) protects DRBD from inheriting
device-specific block sizes and allows for online resizing or migration to
new devices.
The DRBD layer replicates data to another server for immediate use.
The second LVM layer provides snapshot capabilities and other potentially
useful LVM functionality to the filesystem.
The XFS layer is the last element where data resides and is available for
direct manipulation by programs such as PostgreSQL.

The recipes we provide in this chapter should make this easier to understand, despite
its advanced nature.

The layers in our stack do come at a cost, however. Since each is an
abstraction above the raw storage device, performance will decrease
slightly. We believe this trade-off is worth the security and
availability the stack provides.

Preparing systems for volume mirroring
Before we can use LVM, DRBD, or XFS on our servers, we must take some
preliminary steps. We've never encountered a Linux system that has been optimized
for this kind of advanced usage directly after installation. In this recipe, we will
modify several configuration files and even reboot the server.

We're trying to put each system in a standard state that we will use for all future
database servers. This means that LVM needs to ignore some devices to prevent
disrupting DRBD. The initial RAM disks during boot should reflect this same
allocation, and device performance shouldn't be lost between abstraction layers. We
also need all of the tools that we will use throughout this chapter.

Low-Level Server Mirroring Chapter 11

[481]

This recipe will guarantee that these criteria are true, so be prepared!

Getting ready
The only things we should need at this point are the ability to run commands as root
and a device dedicated to database storage. However, if you are running an RHEL
system (not a derivative such as CentOS or Scientific Linux), you may need to contact
Red Hat to obtain the necessary licenses and packages to add XFS functionality. Thus,
we will approach this recipe under the assumption that packages are available on
Debian-based servers and RHEL derivatives.

How to do it...
To keep things simple, we will assume that each server we prepare has a device
named /dev/sdb for database storage. Follow these steps as root:

Install the xfsprogs package with apt-get or yum.1.
Install drbd-utils with apt-get on Debian-based systems, or drbd with2.
yum on Red Hat derivatives.
In the devices section of /etc/lvm/lvm.conf, change the filter setting3.
so that it reads like so:

filter = ["a|/dev/sd.*|", "a|/dev/drbd.*|", "r|.*|"]

In the devices section of /etc/lvm/lvm.conf, set this parameter to4.
disable the caching of the write state:

write_cache_state = 0

In the global section of /etc/lvm/lvm.conf, set this parameter to5.
disable the caching of device metadata:

use_lvmetad = 0

Remove the existing LVM cache file with the following command:6.

rm /etc/lvm/cache/.cache

Low-Level Server Mirroring Chapter 11

[482]

Execute the following command to validate our LVM changes:7.

lvmconfig --validate

Update the kernel's list of available devices with the following command:8.

update-initramfs -u

Create a file named /etc/udev/rules.d/20-postgresql.rules with9.
the following contents:

ACTION=="add|change", KERNEL=="sd[a-z]",
ATTR{queue/read_ahead_kb}="4096"
ACTION=="add|change", KERNEL=="drbd[0-9]",
ATTR{bdi/read_ahead_kb}="4096"

Finally, reboot the server using the following command:10.

reboot

How it works...
In order for the stack to work properly, we need to get the server ready. For now, this
means installing basic toolkits such as xfsprogs for XFS maintenance tools and
drbd-utils for DRBD administrative scripts. Once this is complete, we move on to
preparing LVM.

Since LVM is so highly integrated into the system, we need to perform several steps.
The first is to modify the primary lvm.conf file so that it only watches certain
devices, and while it does so, it never caches the result. Due to the way Linux is
designed, there are several different aliases and paths that point to the same device in
the /dev filesystem. To remove these extra paths, we set a very strict filter that
only includes /dev/sd* devices and /dev/drbd* devices.

We want LVM to avoid caching devices by setting write_cache_state to 0 because
the DRBD devices may disappear or reappear based on their statuses. It's equally
important to set use_lvmetad to 0, as this activates a daemon that caches the device
state. We don't want an invalid cache poisoning the active device list. Just to make
sure there are no stale LVM caches, we remove the existing
/etc/lvm/cache/.cache file so that all readings are current.

Low-Level Server Mirroring Chapter 11

[483]

Before we commit to these configuration changes, we absolutely must validate the
configuration file with lvmconfig. If we reboot the server while there are mistakes in
the LVM configuration file, it might not boot successfully! By invoking update-
initramfs with the -u parameter, it generates a new device map that will be used
when the system boots. This ensures that devices are consistent at all availability
levels in case we need emergency access.

Before we venture further, we need to address performance. In the book PostgreSQL
10 High Performance, Packt Publishing by Gregory Smith, Et al, he suggests that we
increase the read_ahead_kb setting for every block device to 4096 kilobytes or
higher. Unfortunately, due to the transient nature of our devices, there is no static
method we can use that would survive a device appearing after boot. This is where
the udev filesystem comes in. It watches as various system devices change state,
appear, or reappear. Thanks to this, we can give it parameters to use when new
storage devices appear, such as our DRBD or LVM devices.

The two lines we added to 20-postgresql.rules tell the udev filesystem to set the
read_ahead_kb value to 4096 any time a new device is added or modified. In our
case, we are specifically interested in the sdb and drbd0 devices, but we include all
sd or drbd devices for future expansion purposes if necessary. This ensures that we'll
always have a large read buffer for good PostgreSQL performance, no matter how
many abstraction layers we place between the device and the database.

The last thing we do is reboot the server. This gives us a fresh slate, with a cleanly
generated device map based on the changes we made.

There's more...
The version of DRBD you receive with these instructions may vary depending on the
age of your distribution. Though DRBD 9.0 is the latest official release, DRBD 8.4 is
the most recent stable version included with many distributions at the time of writing
this book. As such, all the recipes in this chapter assume that this is the installed
version. To check whether you are using 8.4, execute drbdadm with the -V parameter
and examine the DRBD_KERNEL_VERSION_CODE output.

If this value doesn't include 8040 or greater, please consider upgrading to a more
recent distribution or kernel that includes a recent DRBD 8.4 module. Otherwise, it
may be necessary to obtain the module source and build manually. The DRBD source
is available from the Linbit site at https:/ /www. linbit. com/ en/drbd- community/
drbd-download/ .

https://www.linbit.com/en/drbd-community/drbd-download/
https://www.linbit.com/en/drbd-community/drbd-download/
https://www.linbit.com/en/drbd-community/drbd-download/
https://www.linbit.com/en/drbd-community/drbd-download/
https://www.linbit.com/en/drbd-community/drbd-download/
https://www.linbit.com/en/drbd-community/drbd-download/
https://www.linbit.com/en/drbd-community/drbd-download/
https://www.linbit.com/en/drbd-community/drbd-download/
https://www.linbit.com/en/drbd-community/drbd-download/
https://www.linbit.com/en/drbd-community/drbd-download/
https://www.linbit.com/en/drbd-community/drbd-download/
https://www.linbit.com/en/drbd-community/drbd-download/
https://www.linbit.com/en/drbd-community/drbd-download/
https://www.linbit.com/en/drbd-community/drbd-download/
https://www.linbit.com/en/drbd-community/drbd-download/
https://www.linbit.com/en/drbd-community/drbd-download/
https://www.linbit.com/en/drbd-community/drbd-download/
https://www.linbit.com/en/drbd-community/drbd-download/
https://www.linbit.com/en/drbd-community/drbd-download/

Low-Level Server Mirroring Chapter 11

[484]

If you complete this chapter and feel brave enough to try using DRBD 9.0, Linbit has
a useful guide that you can refer to at https:/ /docs. linbit. com/docs/ users- guide-
9.0/.

We should note that DRBD 9.0 is treated like a flagship piece of supported software.
Linbit will only provide RPM and DEB packages to paying customers. Without these
packages, installation is much more complicated and includes integrating a new
Linux kernel module. We don't recommend this process unless you are comfortable
with these types of procedures.

See also
For more details, refer to the following:

The DRBD User's Guide: https://docs.linbit.com/docs/users-
guide-8.4/

PostgreSQL 10 High Performance, Packt Publishing, by Gregory Smith,
Et al:
https://www.packtpub.com/big-data-and-business-
intelligence/postgresql-10-high-performance

Getting started with the LVM
The LVM is something of an optional master control panel for Linux storage devices.
It can combine several devices into one, allows arbitrary storage grouping, which is
far more granular than simple partitions, and provides functionality such as data
snapshots and reorganization. It's very powerful and, in the right hands, greatly
improves potential server uptime.

It is also the first layer above the raw storage device in our stack. We start with LVM
instead of DRBD, because DRBD at the device level is extremely messy. So, what do
we gain by insulating DRBD from the raw storage device? Take a look at the
following:

We can easily add storage to the LVM device group assigned to DRBD.
DRBD can be resized while in an online state.
We can perform storage migrations without taking PostgreSQL offline.

None of this is possible unless LVM is the first layer. For a high-availability server,
this is extremely desirable. Follow along to see how it works.

https://docs.linbit.com/docs/users-guide-9.0/
https://docs.linbit.com/docs/users-guide-9.0/
https://docs.linbit.com/docs/users-guide-9.0/
https://docs.linbit.com/docs/users-guide-9.0/
https://docs.linbit.com/docs/users-guide-9.0/
https://docs.linbit.com/docs/users-guide-9.0/
https://docs.linbit.com/docs/users-guide-9.0/
https://docs.linbit.com/docs/users-guide-9.0/
https://docs.linbit.com/docs/users-guide-9.0/
https://docs.linbit.com/docs/users-guide-9.0/
https://docs.linbit.com/docs/users-guide-9.0/
https://docs.linbit.com/docs/users-guide-9.0/
https://docs.linbit.com/docs/users-guide-9.0/
https://docs.linbit.com/docs/users-guide-9.0/
https://docs.linbit.com/docs/users-guide-9.0/
https://docs.linbit.com/docs/users-guide-9.0/
https://docs.linbit.com/docs/users-guide-9.0/
https://docs.linbit.com/docs/users-guide-9.0/
https://docs.linbit.com/docs/users-guide-9.0/
https://docs.linbit.com/docs/users-guide-8.4/
https://docs.linbit.com/docs/users-guide-8.4/
https://docs.linbit.com/docs/users-guide-8.4/
https://www.packtpub.com/big-data-and-business-intelligence/postgresql-10-high-performance
https://www.packtpub.com/big-data-and-business-intelligence/postgresql-10-high-performance
https://www.packtpub.com/big-data-and-business-intelligence/postgresql-10-high-performance

Low-Level Server Mirroring Chapter 11

[485]

Getting ready
At this point, all we need is a single unformatted device to use for database storage.
In addition, make sure you've prepared the system as described in the Preparing
systems for the stack recipe of Chapter 10, High Availability with Patroni.

How to do it...
For the purposes of this recipe, we will assume that the /dev/sdb device has been
dedicated to PostgreSQL use. Follow these steps as the root user on two servers to
create the first LVM layer:

Create and verify a single LVM partition on the device with these1.
commands:

parted /dev/sdb mklabel gpt
parted /dev/sdb mkpart primary 1 100%
parted /dev/sdb set 1 lvm on
parted /dev/sdb print

Register /dev/sdb1 as an LVM physical device with this command:2.

pvcreate /dev/sdb1

Create a single volume group to contain /dev/sdb1 with this command:3.

vgcreate VG_DRBD /dev/sdb1

Create a single logical volume as 100% of the outer volume group with this4.
command:

lvcreate -n LV_DATA -l 100%VG VG_DRBD

Verify that the new volume exists and is available with this command:5.

lvdisplay VG_DRBD/LV_DATA | grep LV

Low-Level Server Mirroring Chapter 11

[486]

How it works...
Before we can use LVM safely, we should create at least one partition on the raw
device. For this, we use parted, which is a more advanced partition editor than
fdisk. We need parted because it can set the partition table type as gpt, which
allows filesystems greater than 2 TB. This is what the first invocation of parted does,
with the mklabel parameter set to gpt.

To create the partition itself, we call parted with the mkpart parameter. By using
mkpart, we also need to specify the type of partition we want and its starting and
ending positions. We keep things simple by starting at the beginning of the device
and using 100% of the available storage.

Finally, we set the LVM flag to true by invoking parted with the set parameter.
The set parameter requires a partition number, the flag we want to set, and the
value. In our case, we are using the first partition and setting the lvm flag to on.

It's always a good idea to verify our creations, and parted has a print setting to
output the current partition table for a specified disk device. Here is /dev/sdb on our
test system:

As you can see, the test device we've used for this example is fairly small, at just
around 32 GB. However, you can also see that the partition table is gpt, and the lvm
flag is set as expected.

Now, we can start with LVM itself. The first step is to use pvcreate to create a
physical LVM device. This allows LVM to manage the device and only requires us to
name /dev/sdb1 as the device we're adding.

Next, we need a volume group. Volume groups can be comprised of multiple
physical volumes and be split into several logical volumes. By calling vgcreate, we
need to name the group with the first parameter. Every subsequent parameter is a
device that should be part of the new group. In our case, we only have the
/dev/sdb1 device, so that becomes our last parameter.

Low-Level Server Mirroring Chapter 11

[487]

Since the volume group can host several logical volumes, we need to create at least
one. Unlike vgcreate, the lvcreate command does not assume that the first
parameter is the volume name. Therefore, we need to specify the -n parameter to
name the volume. By using the -l parameter, we can specify a percentage of the
volume group as the size of our volume. For the base volume, we want to use all
available storage space (100%VG) since DRBD will be the next layer. The last
parameter for lvcreate is the name of the volume group we are using for this logical
volume.

The last thing we do is verify that the logical volume has the elements we expect. We
can get this with the lvdisplay command, as follows:

From this, we can see that the new logical volume is 32.00 GiB in size and is
available for use. We can also observe that LVM created a new device path at
/dev/VG_DRBD/LV_DATA. This path will be how we address the storage in the future.
It can be formatted, mounted, or treated just like any other Linux storage device.

As we'll discuss in the next recipe, this new /dev location can be used as the target
device for another resource, such as DRBD.

There's more...
We hope you noticed the naming scheme that's inherent in all of the LVM commands.
Commands prefixed with pv are meant for physical volume management. Similarly,
vg is used for volume groups, and lv is for logical volumes. This greatly simplifies
the management of LVM devices.

We used pvcreate, vgcreate, and lvcreate in this recipe. However, it shouldn't
surprise you that there are also analogous pvremove, vgremove, and lvremove
commands as well. There are also commands to retrieve information about volumes
and groups: pvdisplay, vgdisplay, and lvdisplay.

This is one of the reasons we enjoy working with LVM; we rarely have to guess at
commands.

Low-Level Server Mirroring Chapter 11

[488]

See also
LVM itself is a conceptual architecture. To understand more about how it
works, we recommend the Linux Documentation Project discussion on the
topic at http://tldp.org/HOWTO/LVM-HOWTO/.
In addition to this, all of the LVM commands have their own man page. We
highly recommend at least viewing the man page for each utility before
using it; for example, consider the following:

man lvextend

Adding block-level replication
DRBD is the next component of our software stack. Unlike LVM, it requires at least
two servers to function normally. One server acts as the Primary data server, and the
other acts as a Secondary. These roles can be switched at any time, depending on
which server is running PostgreSQL.

This recipe will focus on configuring and activating DRBD as part of our stack.

Getting ready
By now, we hope you've followed the steps in the Getting started with the LVM recipe
for two servers with /dev/sdb as the physically identical pieces of storage on each
server. While DRBD can operate in standalone mode on a single server, this is
actually a more advanced usage. The steps in this recipe are best applied on both of
the servers simultaneously, that is, unless noted otherwise.

How to do it...
For the purposes of this recipe, we will assume that the /dev/VG_DRBD/LV_DATA
device already exists. The two PostgreSQL nodes for this example are named pg1 and
pg2 and are located on the 10.0.30.0 subnet. Follow these steps as the root user on
each server to add DRBD:

Create a file named /etc/drbd.d/pg.res with the following content:1.

resource pg {
 device minor 0;

http://tldp.org/HOWTO/LVM-HOWTO/

Low-Level Server Mirroring Chapter 11

[489]

 disk /dev/VG_DRBD/LV_DATA;
 meta-disk internal;
 on pg1 {
 address 10.0.30.101:7788;
 }
 on pg2 {
 address 10.0.30.102:7788;
 }
}

Allocate the DRBD storage with this command:2.

drbdadm create-md pg

Enable and start the DRBD service:3.

systemctl enable drbd
systemctl start drbd

Use drbdadm on pg1 to invalidate the data on pg2:4.

drbdadm invalidate-remote pg

View the status of DRBD from any node using this command:5.

cat /proc/drbd

Run this command on pg1 to declare it as the primary node:6.

drbdadm primary pg

How it works...
We begin by creating a configuration file for DRBD with the least amount of
information necessary. In the pg.res file, we define a DRBD resource named pg for
our PostgreSQL data. DRBD resource numbers start at zero, so we use the define
keyword to set the DRBD minor device number to 0. This means our DRBD device
will be named /dev/drbd0.

After setting the device number, we specify which storage volume this DRBD
resource should use with the disk keyword. The meta-disk keyword allows us to
define a device to store DRBD metadata. To keep things simple, we've used the
internal setting so that metadata is stored on the same device as the data we are
synchronizing.

Low-Level Server Mirroring Chapter 11

[490]

The last thing we do in the resource configuration file is to define each host involved
in the replication. The on keyword expects a hostname that matches our PostgreSQL
nodes, followed by a block of parameters. The only attribute we actually need is the
IP address of the server we name, followed by a port, which DRBD should use for
communication and transfer purposes. A common port number is 7788, as shown in
our example, but really, this can be any arbitrary, unused value.

Once we have a valid configuration file, we need to initialize the DRBD device. When
we invoke drbdadm with the create-md parameter, it allocates metadata for the
named DRBD resource. Since pg is the name of our resource, we specify that here as
well. We could have also used all, which applies the command to any configured
resources.

Depending on the default debugging parameters, this may produce quite a bit of
output, but should look like the following near the end:

With the metadata in place, we can enable and start (or restart) the DRBD service.
Once we do this, DRBD will attempt to connect both nodes named in our resource
definition file. This is why DRBD should be started on both nodes consecutively, or
the running node will wait indefinitely for the other to start as well.

DRBD is connected at this point, but it doesn't know the state of the underlying
storage data. Due to this, we must invalidate one of the nodes so that DRBD considers
the other node up to date. When we use drbdadm with invalidate-remote, we tell
DRBD to consider local data valid, and all data on any other node in need of
replacement.

If we examine the contents of /proc/drbd at this moment, we should see
synchronization taking place:

Low-Level Server Mirroring Chapter 11

[491]

The top line of this output actually provides most of the DRBD status information.
The section labeled ro stands for roles, and the slash always separates the current
node from the remote node. By default, both DRBD systems report their role as
a Secondary node. Similarly, ds represents disk states and tells us the status of data
on each node. Based on this, we can see that the current node is UpToDate, while the
remote is Inconsistent. We invalidated the data on pg2 from pg1, so this is exactly
what we should expect.

Once synchronization is complete, it is time to declare one of the nodes as the primary
resource. For this task, we run drbdadm with the primary parameter. The only
difference we should see is a change in the ro reading in /proc/drbd. It should
reflect Primary/Secondary when viewed from pg1 and Secondary/Primary when
viewed from pg2. At this point, DRBD is working, and any data we save on one node
should automatically exist on the other as well.

See also
For more details, refer to the following:

The DRBD documentation is extremely detailed. We strongly recommend
browsing this URL to truly understand how DRBD works:
https://docs.linbit.com/docs/users-guide-8.4/.
In addition to this, the drbdadm tool that administers almost all DRBD
functionalities has a man page:

man drbdadm

Incorporating the second LVM layer
In this recipe, we are going to create the second of our two LVM abstraction layers.
While the first layer provides an elastic base for DRBD, this one will provide most of
the LVM functionality that we will actually use on a regular basis.

Tasks such as creating filesystem snapshots or reorganizing data are within the
domain of the second layer. This is because we create the filesystem on top of this
second LVM definition. We can mount or otherwise manipulate a snapshot like any
other filesystem. If we tried to create a snapshot with the first LVM layer, we would
still have a snapshot, but it would be of an unreadable DRBD binary blob.

https://docs.linbit.com/docs/users-guide-8.4/

Low-Level Server Mirroring Chapter 11

[492]

With that in mind, this recipe will explain how to add an LVM layer necessary for
filesystem manipulation.

Getting ready
Please follow all the previous recipes before starting.

How to do it...
Perform these steps only on pg1 as the root user:

Register /dev/drbd0 as an LVM physical device using this command:1.

pvcreate /dev/drbd0

Create a single volume group to contain /dev/drbd0 using this command:2.

vgcreate VG_POSTGRES /dev/drbd0

Create a single logical volume as 95% of the outer volume group using3.
this command:

lvcreate -n LV_DATA -l 95%VG VG_POSTGRES

Verify that the new volume exists and is available using this command:4.

vgdisplay VG_POSTGRES | grep Size

How it works...
Do these steps seem familiar? They should! With a few minor exceptions, this is
almost the same as the steps we used in the Getting started with the LVM recipe. Unlike
the other instructions, we don't need to partition the /dev/drbd0 device and can
immediately add it to LVM with pvcreate.

Following this, we use vgcreate to define a new volume group named
VG_POSTGRES, containing /dev/drbd0 as its only device. The definition for this
volume group actually exists on the /dev/drbd0 device itself, meaning it is
replicated by DRBD to the other node. This is why we only need to execute these
commands on pg1.

Low-Level Server Mirroring Chapter 11

[493]

Next, we use lvcreate with the -n parameter to create a logical volume named
LV_DATA within the VG_POSTGRES group. This time, we use the -l parameter to set
the volume size at 95%VG instead of 100%VG. This means LV_DATA will contain 95
percent of the total available space within the VG_POSTGRES volume group.

Why did we neglect to allocate the remaining 5 percent? Snapshot
space. We can use snapshots for backups, risky temporary work, or
simply as a placeholder. If you never plan on using filesystem
snapshots, feel free to use 100 percent of the VG_POSTGRES group
instead.

Instead of verifying the allocation of our logical volume, our last command retrieves
some of the information about the volume group. On our testing system, it looks like
the following:

We can see that the volume group is 31.99 GiB in size, that 3.79 GiB is allocated,
and that 208.00 MiB is free. Based on this information, we can presume 30.39 GiB
is allocated to the LV_DATA volume, leaving us with 1.60 GiB for allocating
snapshots. We are glad this is only an example, as 1.60 GiB is not very much free
snapshot space!

There's more...
Is 5 percent too much space to set aside for snapshots, especially in multi-terabyte
volumes? Probably! Unfortunately, the only other mechanism available to define the
volume size is the -L parameter for lvcreate, which only works with absolute
measurements. Yet we know the size of our devices, and we are free to make loose
estimates.

For example, imagine we have a 4 TB storage device, and we only want to leave
around 50 GB for snapshots instead of 200 GB. This lvcreate command specifies the
size of our device in GB:

lvcreate -n LV_DATA -L 3950G VG_POSTGRES

Low-Level Server Mirroring Chapter 11

[494]

See also
As before, we strongly recommend examining the LVM documentation and man
pages to fully leverage LVM's capabilities. We recommend using this URL from the
Linux Documentation Project to learn more: http:/ /tldp. org/ HOWTO/ LVM- HOWTO/ .

Verifying a DRBD filesystem
A semi-common maintenance concern regarding synchronized devices is verification.
The question we should always ask ourselves in a high-availability scenario is how
confident we are that the data on both nodes match.

The drbdadm utility provides a parameter specifically for addressing this need.
However, there are some caveats to consider when using it, which we will explain in
this recipe.

Getting ready
Follow the recipes defined in all of the previous sections before starting here. At the
very least, we need a fully operational DRBD node pair to follow this recipe.

How to do it...
Follow these steps as the root user on pg1:

Add this block of text inside the resource section defined in1.
/etc/drbd.d/pg.res:

net {
 verify-alg md5;
}

Run this command to make DRBD reread its configuration files:2.

drbdadm adjust pg

Begin verification with this command:3.

drbdadm verify pg

http://tldp.org/HOWTO/LVM-HOWTO/
http://tldp.org/HOWTO/LVM-HOWTO/
http://tldp.org/HOWTO/LVM-HOWTO/
http://tldp.org/HOWTO/LVM-HOWTO/
http://tldp.org/HOWTO/LVM-HOWTO/
http://tldp.org/HOWTO/LVM-HOWTO/
http://tldp.org/HOWTO/LVM-HOWTO/
http://tldp.org/HOWTO/LVM-HOWTO/
http://tldp.org/HOWTO/LVM-HOWTO/
http://tldp.org/HOWTO/LVM-HOWTO/
http://tldp.org/HOWTO/LVM-HOWTO/
http://tldp.org/HOWTO/LVM-HOWTO/
http://tldp.org/HOWTO/LVM-HOWTO/
http://tldp.org/HOWTO/LVM-HOWTO/

Low-Level Server Mirroring Chapter 11

[495]

Monitor /proc/drbd until verification is complete:4.

watch cat /proc/drbd

Disconnect and reconnect the DRBD resource:5.

drbdadm disconnect pg
drbdadm connect pg

How it works...
Our first job is to define what we mean by verify. DRBD is somewhat minimal by
design, and it has no default for the algorithm it should use for checksum
comparisons. The verify-alg setting is a network-oriented attribute and defines
how DRBD should compare data segments. We also know md5 is a widely used
checksum algorithm. Therefore, we set the verify-alg in a net block within the
resource definition for pg.

Afterward, we need to reread the configuration files so that the verify-alg setting is
defined for the verification step. By invoking drbdadm with the adjust parameter, it
will read and apply any valid changes we made to /etc/drbd.d/pg.res. When
we're ready, we can launch the verification process by calling drbdadm with the
verify parameter.

Due to the CPU overhead of md5, this will be noticeably slower than a full device
synchronization. We can watch its progress by paying attention to /proc/drbd:

We can see that our example verification is 17.3% complete, with an estimated
completion time of just over 11 minutes. The estimate is produced based on network
speed, md5 speed, and the amount of remaining data. These details can fluctuate
frequently, as writes to the DRBD device slow down the verification process.

The last step is to disconnect and then reconnect the pg resource from the DRBD
network. During verification, DRBD marks blocks that have unmatched md5
checksums but does not resend them until a new connection is established. We can't
speculate about the reason for this step, but it is required to correct errors.

Low-Level Server Mirroring Chapter 11

[496]

The last step is only required if any block failed verification. Errors
(that is, bad blocks) will be located in the kernel log according to the
DRBD documentation. We recommend checking for drbd0
messages in /var/log/syslog, /var/log/messages, and
/var/log/kern.log, depending on your distribution.

There's more...
When we're done with this recipe, it's important to ensure the configuration files on
each system match. Since we added the net block to /etc/drbd.d/pg.res on pg1,
we should do the same on pg2. After making any changes to a DRBD configuration
file, run this command to enable them:

drbdadm adjust pg

See also
The DRBD documentation explains online verification in more detail than we do.
Please refer to this URL for a full discussion of the process of invoking online
verification: https://docs.linbit.com/docs/users-guide-8.4/#s-use-online-veri
fy.

Correcting a DRBD split brain
One looming danger when running any replication system is that of node status
conflicts. This happens when more than one node has been the primary, and we want
to reestablish the previous mirror state. This can happen in many ways, but a
common scenario can occur if the existing primary node experiences a sudden failure
and the remaining secondary node is promoted to primary status.

In the case where we repair the old primary node, we can't simply reattach it to the
DRBD network and expect successful synchronization. In cases where the last status
for each node is that of a primary, DRBD will not resolve this conflict automatically. It
is our job to manually choose the best primary node from our available choices, and
reattach the other node.

https://docs.linbit.com/docs/users-guide-8.4/#s-use-online-verify
https://docs.linbit.com/docs/users-guide-8.4/#s-use-online-verify

Low-Level Server Mirroring Chapter 11

[497]

In this recipe, we'll explore the steps necessary to reattach a malfunctioning node to
an existing DRBD architecture. We can't have a highly available PostgreSQL cluster
with only one functional node.

Getting ready
Since we're working with DRBD and need a fully established mirror, please follow
the steps in all of the recipes up to Adding block-level replication before continuing. In
addition to this, we need to simulate a split brain. A very easy way to do this is to put
both nodes in the primary state while disconnected from each other.

Assuming that we have nodes pg1 and pg2, where pg1 is the current primary node,
follow these instructions as the root user to cause a split brain:

On both nodes, disconnect from DRBD with this command:1.

drbdadm disconnect pg

On pg2, execute this command to force it into primary status:2.

drbdadm primary --force pg

If we were to use drbdadm to attempt to connect the nodes now, we would see the
following message in the system logs:

Split-Brain detected but unresolved, dropping connection!

How to do it...
Follow these instructions as the root user to repair a split-brain scenario:

First, decide which node should be the new primary. This should be1.
relatively easy, since some event likely precipitated the node mismatch. For
the remainder of this recipe, we will assume pg2 should be the new
primary node.
Prepare each server by assuring that each is disconnected from the other:2.

drbdadm disconnect pg

Disable the VG_POSTGRES volume with vgchange on pg1:3.

vgchange -a n VG_POSTGRES

Low-Level Server Mirroring Chapter 11

[498]

Use drbdadm to downgrade pg1 to secondary status:4.

drbdadm secondary pg

Execute this command on pg1 to connect while discarding metadata:5.

drbdadm connect --discard-my-data pg

Execute this command on pg2 to connect to DRBD:6.

drbdadm connect pg

How it works...
The first step is clearly the most critical. We need to determine which node has the
most recent valid data. In almost all cases, there should be sufficient logs to make this
determination. However, in some network disruption scenarios coupled with
automated failover solutions, this may not be obvious. Unfortunately, resolving this
step is too varied to adequately express in a simple guide.

If you are unsure of how to continue following an extremely
complicated failure scenario, we strongly recommend contacting
Linbit, which maintains the DRBD software. Their support
information is available at https://www.linbit.com/en/support/.

For our example, we manually promoted the pg2 node, so it should be the new
primary. With that in mind, there are many states DRBD could have right now, and
we want one in particular: StandAlone. By disconnecting both nodes, we don't have
to worry about aborted or premature connection attempts disrupting our progress.
We want both nodes to report StandAlone in /proc/drbd as the connection state
(cs), as shown in this screenshot:

Our next step is actually related to LVM. If DRBD status is primary on a node, the
second LVM layer is probably active as well. Since LVM uses the underlying DRBD
device, we can't demote this node to secondary status until we use vgchange to set
the active (-a) state of VG_POSTGRES to no (n).

https://www.linbit.com/en/support/

Low-Level Server Mirroring Chapter 11

[499]

Given that there are no other elements connected to /dev/drbd0, we can set its status
to secondary with drbdadm. While in the secondary state, we can attempt to connect
to the DRBD network with drbdadm connect. Since both nodes were primary at one
point, each was maintaining a different map of modified blocks; these maps will not
match. If this happens, DRBD will refuse to connect to the network, and it will revert
to the StandAlone status.

To prevent that, we add --discard-my-data to the connect operation. This option
acknowledges the situation, and it tells the secondary node to ignore its own change
map in favor of what the primary node may contain. If the secondary node is too out
of date for the updated map, DRBD will simply resynchronize all data on the device.

Of course, none of this will happen until we invoke drbdadm connect from the new
primary node. We do this last because we can always change our minds and abort the
process. If we did this before connecting the secondary node, previously existing
storage maps would have already been discarded, and resynchronization would be
taking place.

See also
DRBD addresses this exact scenario in their documentation. We recommend reading
through this URL for a different perspective on manual split-brain recovery:
https://docs.linbit.com/docs/users-guide-8.4/#s-resolve-split-brain.

Formatting an XFS filesystem
The next and last part of our stack is the filesystem layer. This is where the
PostgreSQL data will reside, so we need to ensure it's allocated properly. Unlike the
underlying LVM layers, the filesystem is not so easily modified.

In this recipe, we will discuss some common formatting options and why we
recommend them in addition to the necessary commands.

https://docs.linbit.com/docs/users-guide-8.4/#s-resolve-split-brain
https://docs.linbit.com/docs/users-guide-8.4/#s-resolve-split-brain

Low-Level Server Mirroring Chapter 11

[500]

Getting ready
Since this is the last layer in our complete stack, we strongly suggest following all of
the recipes up to Incorporating the second LVM layer before starting here.

How to do it...
Assuming pg1 is our current primary node, follow these steps as the root user:

Activate the second LVM volume with this command:1.

lvchange -a y VG_POSTGRES/LV_DATA

Count the number of CPUs on the primary node.2.
Multiply the CPU count by four.3.
If the total in the previous step is less than 256, use 256.4.
Use this command to find the Linux kernel version:5.

uname -r

For kernel versions 3.0 and above, format the XFS filesystem with this6.
command, setting agcount to the value derived in the preceding steps:

mkfs.xfs -d agcount=256 /dev/VG_POSTGRES/LV_DATA

For kernels below 3.0, format with this command:7.

mkfs.xfs -d agcount=256 -l size=128m -l lazy-count=1 \
 -i attr=2 /dev/VG_POSTGRES/LV_DATA

How it works...
We begin by activating (-a y) the VG_POSTGRES/LV_DATA volume with lvchange.
This is like vgchange, but only affects the named volume, instead of every volume in
the named group. We used this command merely to demonstrate that either
command will work for our stack, especially since there is only one volume to
activate.

Low-Level Server Mirroring Chapter 11

[501]

The next three steps involve a simple calculation, but it deserves some explanation.
The main feature we want to exploit here is the count of allocation groups. Each
allocation group can be addressed independently when making filesystem
modifications. Presumably, this enhances performance in several different categories
since it reduces allocation table contention.

To reach our desired number, we start with the total CPU count on our primary
server. This is the maximum number of concurrent processes that can touch the
filesystem simultaneously. However, we live in a world where upgrades are frequent
and CPU core counts are only increasing. Thus, we suggest multiplying the current
CPU count by four, because we only get one chance to create the XFS layer once it
contains data. We want to keep time-consuming data migrations to a minimum if
possible.

With this calculated allocation group count in hand, we can begin formatting. The
mkfs.xfs utility supplied by xfsprogs will perform this step for us. The command
we used contained several parameters, separated into data (-d), log (-l), and inode (-
i) settings. Here is a quick summary of what these options do:

The agcount setting defines how many allocation groups XFS should
create. Our example uses 256, but you may have more.

Because our sample device is only 4 GB, it's too small for an
agcount value of 256. If you've been following along and created a
similarly tiny device, use a setting of 128 instead.

We set the log's size to 128m for a 128 MB journal. Journaling filesystems
are not new, but we need a sufficient size in order to track many concurrent
changes on active databases. On kernels at and above 3.0, this value is
calculated based on the device size, so we don't need to set it.
By setting lazy-count to 1, we get the full power of our agcount setting.
Though there are several allocation groups, there is still a master
superblock that tracks some universal counters. By enabling this, XFS uses
other techniques to maintain these values, avoiding sequential superblock
access. On kernels 3.0 and higher, this is set to 1 by default.
The attr inode setting configures an internal mechanism to store inline
attributes. This is more of an implementation detail, but version 2 is more
efficient. On kernels above 2.6.16, this is set to 2 by default.

Low-Level Server Mirroring Chapter 11

[502]

XFS has recently incorporated discard mechanics to interact better
with SSD devices. However, this can introduce extreme delays while
waiting for discard processing. For the initial filesystem formatting,
it may be beneficial to add the -K parameter to disable this feature.
This can significantly reduce formatting time.

While this is a lot to digest, it should be clear by now that newer kernels make it
much easier to use XFS. Instead of all these other options, we merely need to set
agcount and format the filesystem. If everything works as expected, we should see
the following output from the mkfs.xfs command:

From this, we can see that our agcount value is indeed set to 256, lazy-count is set
to 1, and attr is set to 2.

See also
A definitive source of current XFS documentation is oddly difficult to find. Instead,
we recommend that you examine the mkfs.xfs manual provided by man for more
information:

man mkfs.xfs

Tweaking XFS performance
When it comes to performance optimization on XFS filesystems, allocation groups are
only the beginning. To maintain a high-availability PostgreSQL server, we want to get
the most out of XFS. For us, this means using specific mount options.

Thankfully, unlike formatting, mount options can be changed frequently and require
very little downtime. Though it isn't essential that we apply these values
immediately, the options discussed in this recipe are our recommendations for this
stack.

Low-Level Server Mirroring Chapter 11

[503]

Getting ready
In order to mount an XFS filesystem, we need one to exist. Please follow the steps
contained in the Formatting an XFS filesystem recipe before continuing.

How to do it...
Assuming pg1 is our current primary node, follow these steps as the root user:

Use this command to find the Linux kernel version:1.

uname -r

Create a mount location by executing this command:2.

mkdir /db

For kernel versions 3.0 and above, mount the filesystem with this3.
command:

mount -t xfs -o noatime,nodiratime \
 -o logbsize=256k,allocsize=1m \
 /dev/VG_POSTGRES/LV_DATA /db

For kernels below 3.0, mount with this command:4.

mount -t xfs -o noatime,nodiratime \
 -o logbufs=8,logbsize=256k,attr2 \
 -o allocsize=1m /dev/VG_POSTGRES/LV_DATA /db

Execute this command to confirm a successful mount:5.

df /dev/mapper/VG_POSTGRES-LV_DATA

How it works...
Our first step is to find our current kernel version as this will dictate which settings
have been defaulted to our desired values. Then, we continue with the mount
command and specify -t to set the filesystem type to xfs. The last two parameters to
the mount command define the device we are mounting and which directory it
should be attached to. In this case, we use our /dev/VG_POSTGRES/LV_DATA device
and the /db directory that we've discussed throughout this book.

Low-Level Server Mirroring Chapter 11

[504]

All of the parameters prefixed with -o are options that mount should apply during
the mounting process. These options define how certain aspects of the filesystem
behave. Here is a quick overview of the options we selected and what they mean:

We use noatime to prevent file metadata from reflecting the last time the
file was accessed. In a PostgreSQL database, storage files are likely
constantly being accessed and modified, so tracking this information is a
waste of time and incurs unnecessary writes.
We use nodiratime for a similar reason regarding directory access times.
By ensuring logbufs is set to 8, we get the maximum number of available
buffers for the filesystem data journal. On kernels 3.0 and above, this is set
to 8 by default.
The maximum value for logbsize is 256k. This is a very small amount of
memory, and it ensures good performance for file deletion operations.
The attr2 option reflects the attr=2 value that we set when formatting
XFS, and it produces more efficient inode tables. On kernels 3.0 and above,
this is enabled by default.
The allocsize setting is extremely important. It defines the amount of
space associated with each newly created file. It's meant to prevent
excessive file fragmentation by preallocating larger amounts than
requested. By setting this to 1m, these allocations are limited to 1 MB in size.

In 3.0 kernels and above, XFS implemented a dynamic allocation
calculation that will often use values above 256 MB per file. Due to
aggressive kernel caching, these larger allocations may not be
released for hours or even days, causing a mismatch between used
and free space in the filesystem. This can result in 0 percent free
space, even if the usage percentage is very low. Never forget this
setting in newer kernels.

A successful mount will return no output, so we need to confirm that the space is
available some other way. The df command will report the amount of used and free
space on a device, and we can pass it the -h parameter to make the output human-
readable. This is what we see on our test system:

Low-Level Server Mirroring Chapter 11

[505]

There's more...
There is one final important mount option that we have not yet
discussed—nobarrier. Write barriers insert a flush operation between a filesystem
write and disk sync to prevent inadvertent data reordering. Some storage devices
contain a battery-backed disk cache such as high-end RAID solutions, SANs, and
some solid-state disks with on-board capacitors. This kind of hardware can survive
sudden power loss and does not require explicit barrier-imposed data flushing.

Without this excessive data flushing, write performance can improve noticeably. To
use this setting, merely include nobarrier in the list of mount options; for example,
consider the following:

mount -t xfs -o noatime,nodiratime,logbsize=256k \
 -o allocsize=1m,nobarrier /dev/VG_POSTGRES/LV_DATA /db

Do not use this setting on any other device, as data corruption would be the likely
result.

See also
For more details, refer to the following:

The XFS FAQ contains a lot of information related to performance and
tweaking XFS in general. You can view this information at
https://xfs.org/index.php/XFS_FAQ.
Otherwise, the mount manual provided by man has a section specifically
pertaining to XFS mount options:

man mount

Maintaining an XFS filesystem
Conventional wisdom regarding Linux filesystems suggests that file defragmentation
is not a necessary task. While this is true in general, file fragmentation isn't something
we should allow to spiral out of control. PostgreSQL storage files are limited to 1 GB
in size, yet we configured XFS to preallocate no more than 1 MB at a time.

https://xfs.org/index.php/XFS_FAQ

Low-Level Server Mirroring Chapter 11

[506]

This introduces the potential for data fragmentation on Online Transactional
Processing (OLTP) systems or any database cluster where several tables experience
high turnover. To prevent this from adversely affecting sequential scans, and to
promote good filesystem health in general, we need to track and potentially correct
overly fragmented files.

XFS provides two tools suited to this activity. The first is xfs_db, which provides
information about an XFS filesystem. The second is xfs_fsr, which allows us to
defragment XFS while it is still mounted and active. This recipe will cover the basic
usage of these tools to keep our high availability server performing well.

Getting ready
For this recipe, we want a formatted and active XFS filesystem. Follow the steps in
the Formatting an XFS filesystem recipe before continuing. It may also be a good idea to
set up a dummy database where you mounted XFS. This way, you can run a pgbench
test to create a lot of database write activity so that there is a small amount of data
fragmentation. This is not required to follow along with this recipe.

How to do it...
Assuming pg1 is our current primary node and /dev/VG_POSTGRES/LV_DATA is the
device we formatted with XFS, follow these steps as the root user:

Examine the current fragmentation status with this command:1.

xfs_db -f -c frag /dev/VG_POSTGRES/LV_DATA

Defragment the filesystem with xfs_fsr:2.

xfs_fsr -t 600 /dev/VG_POSTGRES/LV_DATA

Afterward, view the real-time fragmentation status:3.

xfs_db -f -c frag -r /dev/VG_POSTGRES/LV_DATA

Low-Level Server Mirroring Chapter 11

[507]

How it works...
We begin with the xfs_db utility to view the current fragmentation status of the
filesystem. The -c parameter lets us specify a command that xfs_db should invoke.
In this case, we want it to check the fragmentation status, so we set -c to frag. We set
the -f parameter as it allows us to use xfs_db on a mounted filesystem.

The fragmentation status is calculated by counting the number of non-contiguous
extents on all files and comparing that number to the total amount of files. To prepare
for this, we continuously invoked pgbench to cause a high level of fragmentation.
Here is the fragmentation on our system:

As you can see, our filesystem is 39.30% fragmented. To correct this, we need to use
xfs_fsr to reorganize any fragmented files. To do this, we only need to call xfs_fsr
with either the device path or the path where the device is mounted. For the sake of
consistency, we chose the former.

We can also limit the amount of time XFS spends fixing fragmentation with the -t
parameter, which sets the runtime in seconds. We chose 600 seconds for an even 10
minutes, but larger systems might require an hour or longer. By setting the -t
parameter, we can run xfs_fsr regularly as a maintenance item so that
fragmentation is regularly kept in check.

XFS defragmentation proceeds on a file-by-file basis. Therefore, if
the xfs_fsr command is canceled, or does not defragment every
file before it exceeds our time limit, no progress is lost.

If we examine the filesystem again with xfs_db, our fragmentation should be
significantly reduced. Let's consider the following screenshot:

Now, our fragmentation is down to 0.59%, which is well within the tolerances for
good sequential access performance. However, you might have noticed that we
added an -r parameter just after the -c frag declaration.

Low-Level Server Mirroring Chapter 11

[508]

Remember when we said that XFS maintains an internal database? Well, due to
caching and update intervals, parts of the XFS database are not always accurate. The
-r option to the -c frag command tells XFS that we want real-time information
about the filesystem, and not what is currently stored in the tracking database.

There's more...
While we use the xfs_db command to obtain file fragmentation information, it can
actually do much more. XFS maintains a small internal database that xfs_db can
view or manipulate. Unfortunately, modifying XFS metadata can render the
filesystem corrupt or otherwise unusable. We highly recommend never using xfs_db
for anything but checking fragmentation statuses or obtaining other forensic
information.

Only experts should ever use xfs_db command parameters other than frag.

See also
Both the xfs_db and xfs_fsr commands have fairly extensive manual pages. We
recommend using these to learn more about the other functionalities these tools
provide:

man xfs_db
man xfs_fsr

Using LVM snapshots
One of the reasons we created a second layer of LVM on top of DRBD was to provide
filesystem snapshot capabilities. When we create a snapshot, all the files on a
particular volume will appear static on that snapshot until one of the following two
things happens:

We destroy the snapshot.
The changes to the source volume are larger than the space we reserved for
the snapshot.

Low-Level Server Mirroring Chapter 11

[509]

This is the primary reason we left 5 percent space unused within our PostgreSQL
volume group. If we create a snapshot, up to 5 percent of the database can change
before we have to remove it. For larger storage devices, this should give us a lot of
time to perform emergency restores, create byte-stable backups, or any other
operation that requires consistent data.

In this recipe, we'll learn how to properly allocate, use, and remove an LVM snapshot.

Getting ready
For this recipe, we want a formatted and active XFS filesystem. Please follow the steps
in the Formatting an XFS filesystem recipe before continuing.

How to do it...
This procedure will assume pg1 is our current primary node and
VG_POSTGRES/LV_DATA is the principal data volume. Follow these steps as the root
user to create and use an LVM snapshot:

Create the snapshot with lvcreate:1.

lvcreate -l 100%FREE -s -n snap VG_POSTGRES/LV_DATA

Create a directory to mount the snapshot on using this command:2.

mkdir /mnt/db_snap

Mount the snapshot as a regular XFS filesystem using this command:3.

mount -t xfs -o nouuid /dev/VG_POSTGRES/snap /mnt/db_snap

Enter the snapshot pgdata directory using this command:4.

cd /mnt/db_snap/pgdata

Examine snapshot information with lvdisplay:5.

lvdisplay VG_POSTGRES/snap | grep snap

Follow these steps as the root user to unmount and remove an LVM snapshot:

Unmount the snapshot with this command:1.

umount /mnt/db_snap

Low-Level Server Mirroring Chapter 11

[510]

Destroy the snapshot with lvremove:2.

lvremove VG_POSTGRES/snap

How it works...
We can use the same lvcreate utility that helped us provision the PostgreSQL
volume. We start the command with the -l parameter set to 100%FREE to use any
unallocated space in the VG_POSTGRES volume group. While we can specify sizes in
MB or GB with the -L setting, we really only need to do this if we plan on creating
multiple snapshots.

The -s parameter makes this volume a snapshot, which causes LVM to base its
contents on those of another volume. Thus, we specify VG_POSTGRES/LV_DATA as the
origin volume group and volume we want to use for the snapshot. We also use the -n
parameter to set the name of the new volume to snap, making our intentions more
obvious.

With the volume created, we simply need to mount it to access the contents. A quick
mkdir later, we have a location in /mnt/db_snap, where we can find the files after
mounting.

The mount command itself contains the basic parts necessary to use the filesystem
and nothing more. We set the type to xfs with -t, while the last two parameters
dictate the device and the location where it should be mounted.

Since we are using an XFS filesystem, we also need to provide the nouuid mount
option. By default, XFS will not allow the same filesystem to be mounted more than
once. The nouuid option skips this check, allowing us to mount the snapshot.

At this point, the files in the /mnt/db_snap/pgdata directory will be the same as
those in /db/pgdata. The primary difference between the two lies in the fact that
/db/pgdata is our live database instance, and it has continued changing. The files at
/mnt/db_snap/pgdata are frozen in time from when the lvcreate command was
completed. If we view the snapshot volume with lvdisplay, we can see this in
action:

Low-Level Server Mirroring Chapter 11

[511]

Notice that LVM tells us that this is a snapshot volume and what the source volume
is. We can also see that 10.34% of the snapshot space is used. This means that files
have changed on the source volume, and the snapshot responded by storing the
original blocks locally. When all of its space is consumed, the snapshot will be
marked as invalid by LVM. Periodic checks with lvdisplay are important to
determine the validity of the files we are using that reside on a snapshot.

When we are finished with the snapshot, it's good practice to destroy it. We start this
process by unmounting the snapshot volume from /mnt/db_snap. Afterward, we
can use lvremove for the first time to destroy the snapshot volume. The lvremove
command only requires the name of the volume we want to destroy, and it will
confirm our intent before doing so. Once a volume has been removed, there's no way
to restore it.

Be careful with keeping snapshots around too long or creating them
during business hours. Depending on the underlying device,
performance can suffer significantly due to the extra writes
necessary to maintain the snapshot.

See also
The Linux Documentation Project has a very simple example of snapshot usage. Feel
free to browse the example at http:/ / www. tldp. org/ HOWTO/ LVM- HOWTO/ snapshots_
backup.html.

Switching live stack systems
At this point, we have our data located simultaneously on two servers. The second
system can fulfill many possible roles. It can replace the current node in case of
hardware failure, or allow us to perform server maintenance or upgrades with very
little downtime.

Regardless of our intent, properly utilizing the second system is the key to a highly
available database server. In this recipe, we'll discuss the proper method for
activating the second server in a two-node pair so that we can make changes to one or
both nodes.

http://www.tldp.org/HOWTO/LVM-HOWTO/snapshots_backup.html
http://www.tldp.org/HOWTO/LVM-HOWTO/snapshots_backup.html
http://www.tldp.org/HOWTO/LVM-HOWTO/snapshots_backup.html
http://www.tldp.org/HOWTO/LVM-HOWTO/snapshots_backup.html
http://www.tldp.org/HOWTO/LVM-HOWTO/snapshots_backup.html
http://www.tldp.org/HOWTO/LVM-HOWTO/snapshots_backup.html
http://www.tldp.org/HOWTO/LVM-HOWTO/snapshots_backup.html
http://www.tldp.org/HOWTO/LVM-HOWTO/snapshots_backup.html
http://www.tldp.org/HOWTO/LVM-HOWTO/snapshots_backup.html
http://www.tldp.org/HOWTO/LVM-HOWTO/snapshots_backup.html
http://www.tldp.org/HOWTO/LVM-HOWTO/snapshots_backup.html
http://www.tldp.org/HOWTO/LVM-HOWTO/snapshots_backup.html
http://www.tldp.org/HOWTO/LVM-HOWTO/snapshots_backup.html
http://www.tldp.org/HOWTO/LVM-HOWTO/snapshots_backup.html
http://www.tldp.org/HOWTO/LVM-HOWTO/snapshots_backup.html
http://www.tldp.org/HOWTO/LVM-HOWTO/snapshots_backup.html
http://www.tldp.org/HOWTO/LVM-HOWTO/snapshots_backup.html
http://www.tldp.org/HOWTO/LVM-HOWTO/snapshots_backup.html
http://www.tldp.org/HOWTO/LVM-HOWTO/snapshots_backup.html
http://www.tldp.org/HOWTO/LVM-HOWTO/snapshots_backup.html

Low-Level Server Mirroring Chapter 11

[512]

Getting ready
By now, we need the full stack and probably a fully active database server as well.
Follow all the recipes up to Tweaking XFS performance before starting here.

How to do it...
For this recipe, we will need two PostgreSQL servers, pg1 and pg2, where pg1 is the
currently active node. Follow these steps as the root user on the system indicated to
move an active PostgreSQL service from one node to another:

Stop the PostgreSQL service on pg1 on Debian-based systems:1.

sudo systemctl stop postgresql@12-main

Red Hat derivatives should use the following command instead:2.

sudo systemctl stop postgresql-12

Unmount the /db filesystem on pg1:3.

umount /db

Mark the VG_POSTGRES group as inactive using vgchange on pg1:4.

vgchange -a n VG_POSTGRES

Demote DRBD status to secondary with drbdadm on pg1:5.

drbdadm secondary pg

Promote DRBD status to primary with drbdadm on pg2:6.

drbdadm primary pg

Mark the VG_POSTGRES group as active using vgchange on pg2:7.

vgchange -a y VG_POSTGRES

Mount the /db filesystem on pg2:8.

mount -t xfs -o noatime,nodiratime \
 -o logbsize=256k,allocsize=1m \
 /dev/VG_POSTGRES/LV_DATA /db

Low-Level Server Mirroring Chapter 11

[513]

Start PostgreSQL on pg2 on Debian-based systems:9.

sudo systemctl start postgresql@12-main

Red Hat derivatives should use this command instead:

sudo systemctl start postgresql-12

How it works...
There is actually very little in this recipe that we have not done in this chapter. What
we have actually done here is formalized the steps necessary to tear down and build
up an active stack. We start the process by stopping the PostgreSQL service with
systemctl, as we clearly can't move the data while it's still in use.

Next, we use umount to decouple the /dev/VG_POSTGRES/LV_DATA device from the
/db directory. With no locks on the storage volume, we can use vgchange with the -
a parameter set to n to deactivate any volume in the VG_POSTGRES group. Since the
VG_POSTGRES group actually resides on the DRBD device, it can only be active on one
node at a time.

Once the volumes are no longer active, we can set the DRBD status to secondary
with drbdadm. After we perform this step, the /dev/VG_POSTGRES directory and any
corresponding device will actually disappear. This is because a DRBD device in the
secondary status is only active within DRBD. Here is what DRBD shows us in
/proc/drbd regarding this situation:

DRBD sees the device as Secondary on both nodes; currently, neither node can
access our PostgreSQL data. From this point, we merely reverse the process to
reactivate all of these resources on pg2 instead.

We begin reactivating PostgreSQL by promoting the storage to the primary status
with drbdadm on the pg2 node. This causes the requisite VG_POSTGRES volume
group to appear on pg2, making it a candidate for activation with vgchange.

Low-Level Server Mirroring Chapter 11

[514]

Then, we simply reuse the mount command that we discussed in the Tweaking XFS
performance recipe on the pg2 node, making the data available to us once again. If we
start PostgreSQL with the systemctl control system, our database will begin
running as if it were still on the pg1 node. PostgreSQL does not know anything has
changed.

There's more...
Since data can switch nodes arbitrarily as demonstrated here, upgrades and
maintenance to server hardware are much easier. What can we do with the extra
node? We can reboot it, apply firmware or kernel updates, apply security patches, or
even update the database software to a bug-fix release.

Following any required or suggested changes to the secondary node, we merely
promote it to run PostgreSQL in place of the current server. Then, we can repeat
modifications on the other node. With this, we can limit outages to a matter of
seconds while still providing high uptime guarantees, all without skipping system
maintenance.

In fact, this process is so standardized that we will be exploring it in great detail in the
next chapter. Once this teardown and buildup procedure is automated, maintaining
or replacing servers is even easier.

Detaching a problematic node
There's one last thing we need to cover before ending this chapter. If a server is
causing problems, there's a good chance that the infrastructure department will want
to reclaim, rebuild, or replace it. Simply stopping the broken server is a possible
solution, but there is a safer way to decouple DRBD from another system.

In this recipe, we'll quickly cover partially dismantling a running DRBD system
without disrupting the active server.

Getting ready
By now, we need the full stack and probably a fully active database server as well.
Follow all the recipes up to Tweaking XFS performance before starting here.

Low-Level Server Mirroring Chapter 11

[515]

How to do it...
For this recipe, we will need two PostgreSQL servers: pg1 and pg2, where pg1 is the
currently active node. Follow these steps as the root user on the system indicated to
permanently remove pg2 from the DRBD cluster:

Execute this command on both pg1 and pg2 to disconnect DRBD:1.

drbdadm disconnect pg

Invalidate the data on the remote node with drbdadm on pg1:2.

drbdadm invalidate-remote pg

Invalidate the data on the current node with drbdadm on pg2:3.

drbdadm invalidate pg

How it works...
This recipe is one of the easiest in our list, but it is equally important. We begin by
using drbdadm to disconnect each node from the communication link DRBD uses
to copy data between servers.

Then, we use drbdadm again to doubly invalidate the data on the bad node. First, we
use the invalidate-remote parameter on pg1 to ensure it sees pg2 as unusable.
Then, we use the invalidate parameter on pg2, so it sees its own data as incorrect.
We can see what this looks like by examining the contents of /proc/drbd again:

As you can see here, DRBD considers the data on the current node as Inconsistent,
meaning it cannot be used as the source data for a new DRBD pair. At this point, we
can release pg2 to its fate, no matter what that might be.

Low-Level Server Mirroring Chapter 11

[516]

There's more...
Some might claim that any data invalidation is excessive. DRBD has its own
safeguards to protect against inadvertent data copies. While true, server pools are not
always cleaned up properly. Invalidating the data on pg2 does more than protect pg1
from being adversely affected if or when pg2 reconnects. We've effectively ensured
pg2 cannot contribute data to any other DRBD cluster as a primary node.

However, we can go even further. We can actually physically destroy all traces of
DRBD data on the decommissioned node. These commands on pg2 will do the work
for us:

drbdadm down pg
drbdadm wipe-md pg
dd if=/dev/zero of=/dev/VG_DRBD/LV_DATA bs=1024 count=1024

The first drbdadm command stops the DRBD device itself. The second command
erases its metadata. Why then, do we need the third?

The dd utility is absurdly dangerous because it can write arbitrary blocks to any
device on a server with almost no restrictions. We set the input file (if) to
/dev/zero, and the output file (of) to /dev/VG_DRBD/LV_DATA, which we know as
the device DRBD was using. Then, we set the block size (bs) to 1024, and write a
count of 1024 blocks to the device. Essentially, we just overwrite the first megabyte of
data on the DRBD device with zeros.

We did this because metadata can be extracted from other nodes and reapplied.
Theoretically, this means pg2 can be salvaged with enough expertise. By corrupting
the data on the device itself, this is no longer possible. Furthermore, if we use
drbdadm with create-md later, then there is no existing data to interfere with the
new metadata.

See also
Linbit, the maker of DRBD, has very extensive documentation on system
troubleshooting. Refer to this URL for more information:
https://docs.linbit.com/docs/users-guide-8.4/#ch-troubleshooting.

https://docs.linbit.com/docs/users-guide-8.4/#ch-troubleshooting
https://docs.linbit.com/docs/users-guide-8.4/#ch-troubleshooting

12
High Availability via

Pacemaker
Almost everything that we've discussed so far has led directly to this chapter. By
now, we have multiple servers, redundant alternates, backup, synchronization, and
much more. If we combine all of these techniques, management becomes more
difficult with each component we add.

In the previous chapter, we covered all of the elements for a robust and elastic storage
structure. Even then, we noted the arduous nature of moving a running server from
one node to another. Typing commands safely takes time, as does referring to a
checklist and verifying commands before running them in a production environment.
We would never recommend anything less.

Finally, we will learn how to configure two linked nodes to manage themselves. It's
not entirely foolproof, yet the process we are about to undergo is robust and
implemented safely by many enterprises. Instead of a dozen commands to move an
active PostgreSQL instance to another server, we will need only one. Furthermore, the
software can detect several failure scenarios and relocate PostgreSQL on our behalf if
something goes wrong.

High Availability via Pacemaker Chapter 12

[518]

The safest cluster in a high availability architecture is one that requires the least
amount of manual intervention. To that end, this chapter will cover Corosync and
Pacemaker and the steps to manage dual-node servers with this software. By the end
of this chapter, we should have something similar to this diagram:

All of the components shown here are installed on both nodes, but the grayed-out
ones are unavailable on Node 2. Yet, we could use Pacemaker to reverse the graph so
that Node 2 is the active server instead of Node 1. Those are a lot of changes to make
manually.

In this chapter, we will learn how to automate cluster management and ensure high
availability. We will cover the following recipes in this chapter:

Installing the components
Configuring Corosync
Preparing start up services
Starting with base options
Adding DRBD to cluster management
Adding LVM to cluster management
Adding XFS to cluster management
Adding PostgreSQL to cluster management
Adding a virtual IP to proxy the cluster
Adding an email alert
Grouping associated resources
Combining and ordering related actions
Performing a managed resource migration
Using an outage to test migration

High Availability via Pacemaker Chapter 12

[519]

Before we begin...
Before we spend any more time on this chapter, we should ask ourselves a question:
is automation necessary? It's certainly nice to have, but is it required? Will we benefit
from the admittedly esoteric incantations needed to install and configure these tools?

The answer is not always so straightforward. While exceedingly powerful, Pacemaker
is infamously difficult to use and even a little overzealous in applying its rules. Both
repmgr and Patroni are far more forgiving in this regard. An improperly built
Pacemaker cluster might produce a database that moves to another node at the
slightest provocation. Much like Patroni, Pacemaker enforces its current status and
can actively thwart management attempts it didn't personally invoke.

We won't lie; the learning curve is immense and should extend far longer than what
this chapter teaches. If this is too much for now, skip this chapter with our best
regards. Both repmgr and Patroni are comparatively easier to use, and arguably more
modern given today's clustering needs and the popularity of container-based servers.
Some already rely on Pacemaker though, making it critically important to how this
stack functions in those environments.

Otherwise, we want you to know that this chapter is only the beginning. We will
guide you through the creation of a functional Pacemaker-managed system, but we
strongly recommend experimenting frequently on a pair of virtual servers capable of
managing filesystem mounts. This gives you a safe area to make mistakes, break
Pacemaker in all kinds of interesting ways, and learn more about the material we
present here.

None of this content is easy, but we promise it's worth the time to absorb. We will
introduce this material slowly to aid the process.

Installing the components
The two main components of the software we use in this chapter are Corosync and
Pacemaker. Each of these is comprised of or depends on several other elements and
prerequisites. For now, we'll simply refer to the entire suite as Pacemaker, as it
encompasses the bulk of how we will control the failover system.

This recipe should be relatively short, as we will only discuss the installation of
Corosync and Pacemaker, not their configuration.

High Availability via Pacemaker Chapter 12

[520]

Getting ready
Red Hat-based systems such as Fedora, CentOS, and Scientific Linux will already
have Pacemaker in their repositories. Debian and its derivatives, such as Ubuntu, also
include Pacemaker as an optional install from standard repositories. Red Hat
Enterprise Linux (RHEL) itself, however, only offers the software as a paid add-on,
available at this URL: https://www.redhat.com/en/store/all-products.

Whatever choice you make, it shouldn't be necessary to compile Pacemaker from
source on most Linux distributions.

How to do it...
Follow these quick steps to install Pacemaker and Corosync on all PostgreSQL server
pairs:

Install the main packages and all dependencies with this command as a1.
root-capable user for Debian-based systems:

sudo apt-get install corosync pacemaker crmsh

Red Hat-based operating systems should use this command instead:2.

sudo yum install corosync pacemaker

Stop the cluster software and disable Pacemaker from starting on system3.
boot:

sudo systemctl stop corosync
sudo systemctl disable pacemaker
sudo systemctl stop pacemaker

How it works...
This short recipe consists of three steps:

Install Corosync, Pacemaker, and cluster resource management tools.1.
Stop Corosync and Pacemaker.2.
Disable Pacemaker on server boot.3.

https://www.redhat.com/en/store/all-products

High Availability via Pacemaker Chapter 12

[521]

The first step makes sense since we need the software to build the cluster. The second
step is necessary while we modify the configuration file in the next recipe. But why
the last step? When running a highly available cluster, caution is a beneficial attribute.
A server may reboot for any number of reasons, and many of those include crashes
that require further investigation.

Were Pacemaker to start immediately following a server reboot, we could potentially
lose valuable diagnostic information. More importantly, a rebooted server should be
considered in an unknown or potentially damaged state until it is examined by an
experienced system administrator. We don't want a misbehaving server as part of our
critical infrastructure.

Corosync is the communication layer between each Pacemaker node, but it does not
actually contribute to managing cluster services. Hence, it is safe to leave this enabled
but not started while we modify its configuration in a later recipe.

There's more...
If you believe we are being too wary, simply skip the last step in our recipe. However,
it's important to remember that services are easy to start on Linux servers. This
command, for instance, will start Pacemaker normally even while disabled:

sudo systemctl start pacemaker

If the server was rebooted as result of maintenance, the preceding commands will
return the system to normal operation. Otherwise, a few cursory checks through
server logs may determine that the cause of the system crash does not adversely affect
PostgreSQL data. If so, once again, it is easy to start Corosync and Pacemaker and re-
establish the dual-node cluster.

What we have done here is a very rudimentary form of STONITH, which means to
Shoot The Other Node In The Head. Dedicated STONITH hardware may power a
server off completely or remove it from the network, making it inaccessible through
anything other than console emulation or direct access. Truly high-availability
systems cannot afford to introduce unknown entities into a carefully crafted and
manicured architecture. To do so invites undefined behavior across the spectrum of
database services that could lead to outages or data loss.

High Availability via Pacemaker Chapter 12

[522]

If we claim that our data is important and our uptime is essential, we need to adopt a
similar stance toward crashed or damaged servers. We haven't gone so far as to
completely disable the server in this recipe; we only prevent it from rejoining a
functioning Pacemaker pair. In a true STONITH-enabled organization, our measures
would be much more drastic.

See also
The ClusterLabs website (https:/ /clusterlabs. org/) is a repository of all things
related to Pacemaker. It has several relevant tutorials, examples, and copious
documentation. If you had trouble installing with our recipe, try an alternative listed
at this URL: https://wiki.clusterlabs.org/wiki/Install

Configuring Corosync
Once Corosync and Pacemaker are installed, we only need to modify a single
configuration file to activate them. As we mentioned earlier and showed in the
introduction diagram, Corosync is the conduit that Pacemaker uses for
communication. Corosync also binds itself to services that rely on its channels, so it
will also launch Pacemaker on our behalf.

This recipe will explain how to create a simple configuration for Corosync that will
establish a secure Pacemaker cluster.

Getting ready
We have already installed everything we need, but if we are running an older Debian-
based system such as Ubuntu or Mint, we have one more step. Before Corosync will
work properly, we need to enable its start up script. Open the
/etc/default/corosync file and make sure it contains this line:

START=yes

Without it, Corosync won't run even if we start it manually. We removed it from
system boot time, but that doesn't mean we never want it to run at all!

https://clusterlabs.org/
https://clusterlabs.org/
https://clusterlabs.org/
https://clusterlabs.org/
https://clusterlabs.org/
https://clusterlabs.org/
https://clusterlabs.org/
https://clusterlabs.org/
https://wiki.clusterlabs.org/wiki/Install

High Availability via Pacemaker Chapter 12

[523]

How to do it...
For this recipe, we have two PostgreSQL nodes: pg1 and pg2, which are assigned IP
addresses of 10.0.30.101 and 10.0.30.102. Follow these steps as a root-capable
user:

On pg1, run this command to generate an authorization key file:1.

corosync-keygen

If this doesn't return quickly, open another connection to pg1 and perform2.
several activities to generate sufficient entropy until corosync-keygen
completes. A good source of random events is software compilation, for
example.
Copy the resulting /etc/corosync/authkey file to pg2.3.
Ensure the totem section of corosync.conf in /etc/corosync on both4.
pg1 and pg2 resembles the following:

totem {
 version: 2
 cluster_name: pgha
 crypto_cipher: aes256
 crypto_hash: sha256
 transport: knet
}

Ensure the nodelist section of corosync.conf in /etc/corosync on5.
both pg1 and pg2 resembles the following:

nodelist {
 node {
 name: pg1
 nodeid: 1
 ring0_addr: 10.0.30.101
 }

 node {
 name: pg2
 nodeid: 2
 ring0_addr: 10.0.30.102
 }
}

High Availability via Pacemaker Chapter 12

[524]

Start Corosync on both pg1 and pg2 with this command:6.

sudo systemctl restart corosync
sudo systemctl start pacemaker

Show the status of Pacemaker with the crm utility on pg1:7.

sudo crm status

How it works...
The first step involves securing our Corosync communication channel. The
corosync-keygen utility will generate a 2,048-bit key that helps Pacemaker nodes to
securely communicate with each other, but doing so may require a lot of random
input. This random input must come from the server itself, so simply typing gibberish
in the console while we wait will not suffice.

We can generate entropy by making the server perform tasks. If the server is
otherwise idle, we may need to execute commands, test SQL, or compile basic
software. Given enough server activity, the corosync-keygen command will
eventually exit and save a file named authkey in the /etc/corosync configuration
directory. As we want this file to be the same on all nodes, we also copy it from pg1
to pg2.

There are two critical sections of the configuration we must modify. The first of these
is the totem section, which acts as a kind of bootstrap for the cluster itself. The
version portion is likely already in the existing configuration and, for now, can only
be set to 2. Then, we set cluster_name to something informative like pgha, but use
any descriptive name that best fits your environment.

Then, we need to change three more lines in the totem section to suit our needs. First,
we change crypto_cypher and crypto_hash to one of the many supported
protocols to enable secure and encrypted communication between nodes. The manual
lists several, so choose an encryption algorithm that fits your security requirements.
When using encryption, the transport attribute must be set to knet, completing this
section of the configuration file.

Next, we must specify each node that is allowed to participate in this cluster within
the nodelist section. Each node must provide name, nodeid, and ring0_addr to
correspond with the hostname, node number, and IP address. It's very important that
the name matches the actual hostname of each server, or Pacemaker will consider
each node unhealthy and may not operate properly.

High Availability via Pacemaker Chapter 12

[525]

These configuration file instructions differ greatly from previous
editions of this book. Version 3.0 of Corosync introduced a new
configuration format and section requirements. We're not sure why
they didn't change the version attribute to reflect this, however.
The old instructions will not work with the newer versions of this
software.

When this is done on both nodes, we can start Corosync and then Pacemaker with the
systemctl command.

To verify that the Pacemaker cluster exists, we can use the crm command. What is
crm? It stands for cluster resource manager and will be the command we use for all
Pacemaker interactions from now on. The status parameter displays the current state
of the cluster, and for our test systems, it looks like this:

As we can see, Pacemaker can communicate with both nodes, so it lists them as
Online. The rest of the information presented here regarding quorum and votes can
be ignored for now, but we'll cover it soon enough.

See also
For more details, refer to the following:

As mentioned earlier, the ClusterLab site (clusterlabs.org) should be
considered the ultimate resource regarding Corosync and Pacemaker. To
learn more about the process we used here, proceed to this URL:
https://wiki.clusterlabs.org/wiki/Initial_Configuration.

Otherwise, the corosync.conf file actually has its own extensive manual
page available via the man utility. It's extremely useful to create more
advanced clusters. Use the following command:

man corosync.conf

https://clusterlabs.org/
https://wiki.clusterlabs.org/wiki/Initial_Configuration
https://wiki.clusterlabs.org/wiki/Initial_Configuration
https://wiki.clusterlabs.org/wiki/Initial_Configuration

High Availability via Pacemaker Chapter 12

[526]

Preparing start up services
A common interpretation of a functional server is one that runs on its own
recognizance. After being rebooted, it starts all necessary services and does its job as
configured. It might be hard to believe, but we want to fight that inclination for two
important reasons:

Pacemaker is a state machine.
Pacemaker needs total control of any service it manages.

Pacemaker wants to start services itself so it knows that the current status is the one it
created. It will perform tests to obtain this information, but for things such as DRBD,
this isn't always reliable. It's generally safer to start from scratch. Beyond this, if a
service that isn't supposed to be running starts, Pacemaker will only have to stop it
anyway.

In this recipe, we'll quickly cover which services to disable on each of our PostgreSQL
nodes.

Getting ready
As we're continuing to configure Corosync and Pacemaker, make sure you've
followed all of the previous recipes of this chapter.

How to do it...
For this recipe, we will use the same two PostgreSQL nodes: pg1 and pg2. We will
also continue to assume that our PostgreSQL data is located at /db/pgdata:

Prevent PostgreSQL or DRBD from starting on system boot on Red Hat-1.
based systems by executing these commands on both servers as a root-
capable user:

sudo systemctl disable postgresql-12
sudo systemctl disable drbd

Debian-based systems should use the following commands to disable2.
PostgreSQL and DRBD instead:

sudo systemctl disable postgresql@12-main
sudo systemctl disable drbd

High Availability via Pacemaker Chapter 12

[527]

How it works...
All we really want to do here is remove PostgreSQL and DRBD from the list of
services that start at system boot time. These are the only two services that are
controlled via system start up scripts, so our work here is very short indeed.

One critically important element is that systemd-equipped Linux distributions are
fully compatible with the Linux Standard Base (LSB) set of expected status codes.
Pacemaker uses this information to always know the result of an action. Stopped
services return different codes than running ones when checked with systemctl
status, for example. It's possible to manage PostgreSQL and DRBD without
systemd, but be aware that LSB codes must be used properly for Pacemaker to
operate normally.

Previous editions of this book also included a PostgreSQL start up
script designed to ensure LSB exit codes expected by Pacemaker.
This was because some Linux distribution control scripts didn't
always return the proper exit codes, and this caused Pacemaker to
act in unexpected ways. Modern Linux systems using systemd don't
have this problem, so we've chosen to omit the extra script.

Otherwise, the main focus of this recipe is to ensure that only Pacemaker is allowed to
fully control and manage the PostgreSQL and DRBD services. Since Pacemaker is a
state machine, it also knows the expected status of every service it manages on each
node. If PostgreSQL should not be running, but the service is configured to start on
boot, Pacemaker would merely stop it again.

The point of this recipe is to be 100% certain that that doesn't happen.

There's more...
If you have another test server with PostgreSQL installed and running, try some of
these tests to confirm it works as described:

Start PostgreSQL and confirm the exit status is 0 for success with this1.
command:

sudo systemctl start postgresql@12-main
echo $?

High Availability via Pacemaker Chapter 12

[528]

Stop PostgreSQL and confirm the exit status is 0 for success with this2.
command:

sudo systemctl stop postgresql@12-main
echo $?

Finally, check the status of PostgreSQL while it is stopped and confirm the3.
exit value is 3, indicating the service isn't running, with this command:

sudo systemctl status postgresql@12-main
echo $?

The $? variable represents the exit status of the previous command. It's an easy way
to visualize the exit code, which is normally only used by other utilities. Any script
that does not return these three exit codes for these specific conditions cannot be used
with Pacemaker.

See also
The Linux Standard Base specification for initialization scripts is fully documented.
We recommend referring to the following URL to learn more about LSB exit codes:
https://refspecs. linuxbase. org/ LSB_5.0. 0/LSB- Core- generic/ LSB-Core-
generic/iniscrptact. html

Starting with base options
As a cluster resource manager, Pacemaker has some defaults that we are interested in
changing. Pacemaker is very powerful, so it makes several assumptions about the
composition of cluster resources and nodes it controls. One of which is that there are
several nodes and not just two.

This works well for large cooperative networks of web servers or independent
services that can operate transiently. However, we have two nodes that are very
much dependent on shared storage that can only be used by one node at a time. So,
this recipe is going to perform three tasks:

Disable STONITH because we don't currently have STONITH-enabled1.
hardware.
Disable cluster quorum because two systems cannot produce a meaningful2.
vote.

https://refspecs.linuxbase.org/LSB_5.0.0/LSB-Core-generic/LSB-Core-generic/iniscrptact.html
https://refspecs.linuxbase.org/LSB_5.0.0/LSB-Core-generic/LSB-Core-generic/iniscrptact.html
https://refspecs.linuxbase.org/LSB_5.0.0/LSB-Core-generic/LSB-Core-generic/iniscrptact.html
https://refspecs.linuxbase.org/LSB_5.0.0/LSB-Core-generic/LSB-Core-generic/iniscrptact.html
https://refspecs.linuxbase.org/LSB_5.0.0/LSB-Core-generic/LSB-Core-generic/iniscrptact.html
https://refspecs.linuxbase.org/LSB_5.0.0/LSB-Core-generic/LSB-Core-generic/iniscrptact.html
https://refspecs.linuxbase.org/LSB_5.0.0/LSB-Core-generic/LSB-Core-generic/iniscrptact.html
https://refspecs.linuxbase.org/LSB_5.0.0/LSB-Core-generic/LSB-Core-generic/iniscrptact.html
https://refspecs.linuxbase.org/LSB_5.0.0/LSB-Core-generic/LSB-Core-generic/iniscrptact.html
https://refspecs.linuxbase.org/LSB_5.0.0/LSB-Core-generic/LSB-Core-generic/iniscrptact.html
https://refspecs.linuxbase.org/LSB_5.0.0/LSB-Core-generic/LSB-Core-generic/iniscrptact.html
https://refspecs.linuxbase.org/LSB_5.0.0/LSB-Core-generic/LSB-Core-generic/iniscrptact.html
https://refspecs.linuxbase.org/LSB_5.0.0/LSB-Core-generic/LSB-Core-generic/iniscrptact.html
https://refspecs.linuxbase.org/LSB_5.0.0/LSB-Core-generic/LSB-Core-generic/iniscrptact.html
https://refspecs.linuxbase.org/LSB_5.0.0/LSB-Core-generic/LSB-Core-generic/iniscrptact.html
https://refspecs.linuxbase.org/LSB_5.0.0/LSB-Core-generic/LSB-Core-generic/iniscrptact.html
https://refspecs.linuxbase.org/LSB_5.0.0/LSB-Core-generic/LSB-Core-generic/iniscrptact.html
https://refspecs.linuxbase.org/LSB_5.0.0/LSB-Core-generic/LSB-Core-generic/iniscrptact.html
https://refspecs.linuxbase.org/LSB_5.0.0/LSB-Core-generic/LSB-Core-generic/iniscrptact.html
https://refspecs.linuxbase.org/LSB_5.0.0/LSB-Core-generic/LSB-Core-generic/iniscrptact.html
https://refspecs.linuxbase.org/LSB_5.0.0/LSB-Core-generic/LSB-Core-generic/iniscrptact.html
https://refspecs.linuxbase.org/LSB_5.0.0/LSB-Core-generic/LSB-Core-generic/iniscrptact.html
https://refspecs.linuxbase.org/LSB_5.0.0/LSB-Core-generic/LSB-Core-generic/iniscrptact.html
https://refspecs.linuxbase.org/LSB_5.0.0/LSB-Core-generic/LSB-Core-generic/iniscrptact.html
https://refspecs.linuxbase.org/LSB_5.0.0/LSB-Core-generic/LSB-Core-generic/iniscrptact.html
https://refspecs.linuxbase.org/LSB_5.0.0/LSB-Core-generic/LSB-Core-generic/iniscrptact.html
https://refspecs.linuxbase.org/LSB_5.0.0/LSB-Core-generic/LSB-Core-generic/iniscrptact.html
https://refspecs.linuxbase.org/LSB_5.0.0/LSB-Core-generic/LSB-Core-generic/iniscrptact.html
https://refspecs.linuxbase.org/LSB_5.0.0/LSB-Core-generic/LSB-Core-generic/iniscrptact.html
https://refspecs.linuxbase.org/LSB_5.0.0/LSB-Core-generic/LSB-Core-generic/iniscrptact.html
https://refspecs.linuxbase.org/LSB_5.0.0/LSB-Core-generic/LSB-Core-generic/iniscrptact.html
https://refspecs.linuxbase.org/LSB_5.0.0/LSB-Core-generic/LSB-Core-generic/iniscrptact.html

High Availability via Pacemaker Chapter 12

[529]

Enable resource stickiness to prevent disruptive automated node swaps.3.

Getting ready
As we're continuing to configure Corosync and Pacemaker, make sure you've
followed all previous recipes.

How to do it...
For this recipe, we will use the same two PostgreSQL nodes: pg1 and pg2. Perform
the following steps on either server as the root user:

Disable STONITH with this crm command:1.

crm configure property stonith-enabled=false

Ignore quorum voting with this crm command:2.

crm configure property no-quorum-policy=ignore

Increase the default resource stickiness with this crm command:3.

crm configure rsc_defaults resource-stickiness=100

Finally, view the current state of the cluster configuration with this4.
command:

crm configure show

How it works...
This recipe differs from those in the previous sections in that we can execute these
steps from any server. Commands issued by the crm utility are sent to the cluster
itself, so any node will transmit them successfully and Pacemaker will act
accordingly. In the case of our configuration changes, the only action that Pacemaker
takes is to alter its stored settings.

High Availability via Pacemaker Chapter 12

[530]

The first thing we do is disable STONITH by calling crm with the configure
property parameter for stonith-enabled. While STONITH is an amusing
acronym, there are actual devices on the market that fill this role. These devices can
isolate a node from a network in several ways, and Pacemaker is capable of
interacting with them by default. As we don't have one right now, it's best to tell
Pacemaker that it shouldn't expect such functionality.

Our next step includes shutting down our fledgling democracy by disabling quorum
verification. We only have two nodes, and votes comprised of only two voters are
entirely meaningless because they will always result in a tie. Without an odd number
of nodes, no quorum (agreement) can be reached. This time, we configure property
for no-quorum-policy and set it to ignore. This essentially means that the nodes
will continue to vote, but we don't care unless they can reach a quorum. As two
servers can't reach a quorum, resources will run where we tell them to run, and they
have no say in the matter.

The last setting we change with configure rsc_defaults is resource-
stickiness. As we mentioned earlier, Pacemaker is really built for transient services
that act as independent agents. If an HTTP daemon moves from one node to another,
nobody really cares or notices. If PostgreSQL acted similarly, there would be several
broken applications and irritated users.

By changing this setting to 100, we give every resource a default weight, so it sticks to
whichever server it started on. Unless there's a crash or forced migration, it will stay
there indefinitely.

Our last step is to view our handiwork by issuing crm with configure show.
Pacemaker stores its configuration as XML, and while this is somewhat human-
readable, it's hardly concise. On our test cluster, it produces this output:

As we can see, both pg1 and pg2 are each labeled as node. In addition, stonith-
enabled, no-quorum-policy, and resource-stickiness are all set as we
described in the recipe.

High Availability via Pacemaker Chapter 12

[531]

We're well on our way to building a Pacemaker cluster.

There's more...
The crm command is actually a fully functional pseudo-shell. If executed without
parameters, it presents a prompt and waits for valid crm commands. These
commands include help for every level chosen. For example, to see what options are
available when putting node into standby, we can type this input while in a crm
shell:

node help standby

Then, we can use what we learned previously and put the node into standby state
until it is rebooted and Corosync is started again, like this:

node standby pg1 reboot

This is extremely helpful as Pacemaker has a lot of commands, and it's easy to forget
the proper syntax.

See also
The crm shell has undergone a lot of changes in the last few years, including splitting
from the Pacemaker project itself. As such, its documentation is somewhat
fragmented. The new crm shell maintainers have information that is mostly
compatible with versions packaged with Debian and Red Hat-based systems at this
URL: https://crmsh.github.io/man/

Adding DRBD to cluster management
DRBD is actually one of the most difficult resources to manage with Pacemaker.
Unlike a regular service that is started or stopped depending on where it is active,
DRBD is always active. The only thing that changes between two nodes running
DRBD is the Primary or Secondary state ascribed to each.

https://crmsh.github.io/man/

High Availability via Pacemaker Chapter 12

[532]

Due to this complication, DRBD is not one resource but two:

A DRBD resource to manage starting and stopping DRBD
A master/slave resource to control which node acts as Primary

In this recipe, we'll allocate both of these resources so that Pacemaker can manage
DRBD properly.

Getting ready
As we're continuing to configure Pacemaker, make sure you've followed all previous
recipes.

How to do it...
In the previous chapter, we created a DRBD resource named pg. With this in mind,
follow these steps as the root user to add DRBD to Pacemaker:

Create a basic Pacemaker primitive for DRBD with this command:1.

crm configure primitive drbd_pg ocf:linbit:drbd \
 params drbd_resource="pg" \
 op monitor interval="15" role="Master" \
 op monitor interval="20" role="Slave" \
 op start interval="0" timeout="240" \
 op stop interval="0" timeout="120"

Create a master/slave resource with this command:2.

crm configure ms ms_drbd_pg drbd_pg \
 meta master-max="1" master-node-max="1" \
 clone-max="2" clone-node-max="1" notify="true"

Clean up any errors that might have accumulated with crm:3.

crm resource cleanup drbd_pg

Display the status of our new resources with crm:4.

crm resource status

High Availability via Pacemaker Chapter 12

[533]

How it works...
Most of the resources we create in subsequent sections are called primitives. These
should be considered the base resource element that Pacemaker controls as they have
a one-to-one relationship with each service. The first one we create is for our DRBD
service.

When creating new configuration entries with crm, we declare them with configure
primitive, and then we must supply a name. To keep things simple, we named this
resource drbd_pg. After the name, we must supply a resource agent to actually
manage this service. Pacemaker is shipped with several, but we are specifically
interested in the ocf:linbit:drbd agent, as it was written by the makers of DRBD
themselves.

Next, we can configure the resource agent by specifying params, followed by the
options it recognizes, labeled with op. Among these options, we define monitor
interval for the master server and one for the slave that isn't quite as frequent.
Finally, we override start timeout and stop timeout so that they match the
minimum values expected by Pacemaker. It will complain if we use values lower than
this, but feel free to increase them.

At this point, we create the master/slave resource that controls how Pacemaker views
the drbd_pg resource. Instead of adding and configuring a primitive, this time we
configure a master/slave resource (ms) and name it ms_drbd_pg. After naming our
ms resource, we designate drbd_pg as the primitive to treat as a master or slave
service. All of the entries after the meta designation are somewhat confusing and
arbitrary, so we hope these pointers help:

By setting master-max to 1, we tell Pacemaker that only one node in the
cluster can ever be promoted to master for this service.
Similarly, setting master-node-max to 1 limits Pacemaker to a single copy
of this resource per server.
The clone-max setting actually describes the number of active copies for
this resource, which is 2 in our case.
Oddly enough, the clone-node-max setting means basically the same
thing as master-node-max. We set this to 1 as well to safeguard the DRBD
resource from potential Pacemaker bugs or future changes in default
settings.
Finally, the notify setting effectively transmits master/slave notices to all
nodes so that Pacemaker knows the new status of the shared resource
everywhere it is running.

High Availability via Pacemaker Chapter 12

[534]

What do we mean by a resource copy? Internally, Pacemaker stores resources as
defined roles. If a single resource has two roles, it actually exists as two items within
Pacemaker. In Pacemaker lingo, these are referred to as clones. The crm system hides
these details from us, but they're still very real and difficult to manage.

The values we chose for all of the meta options are actually Pacemaker defaults. We
could have omitted them, but a high-availability system cannot remain safe while it is
at the mercy of malleable defaults. We set these in stone now to prevent Pacemaker
upgrades from potentially causing problems in the future.

When adding new resources, sometimes Pacemaker enters an undefined state and
lists errors that aren't actually valid. We can clear these out using the resource
cleanup parameter to target the drbd_pg primitive. It's always a good idea to keep
the Pacemaker status clean to avoid possible conflicts later.

Our final job is to view the status of all configured resources by calling crm with
resource status. Our test system showed this output:

Even though we created two primitive resources, we only see one entry:
ms_drbd_pg. Note, however, that it represents the drbd_pg resource. We can also see
Masters and Slaves for this set, though there should never be more than one of
each with the configuration we used.

There's more...
In Pacemaker, resource agents can be viewed separately with the crm program, and
many are available. To get a list of all of the LSB resource agents (scripts in
/etc/init.d or services available via systemd) Pacemaker can see, use this
command:

crm ra list lsb

For a list of Pacemaker-specific agents, use this command:

crm ra list ocf

High Availability via Pacemaker Chapter 12

[535]

This information isn't entirely helpful by itself. Knowing that the agents exist does not
tell us what parameters they have. To see this, we need to view the meta information
for the agent. We used the ocf:linbit:drbd agent in this recipe, and we can view
its usage information with this command:

crm ra meta ocf:linbit:drbd

If this is not convenient enough, we can actually use the man command for most
agents as well. If we know the class, provider, and name of an agent, we can view its
Unix manual. For example, to see the manual for the ocf:heartbeat:nginx agent,
we could use this command:

man ocf_heartbeat_nginx

See also
Some of this information is also available within the DRBD documentation at this
URL: https://docs.linbit.com/docs/users-guide-8.4/#s-pacemaker-crm-drbd-ba
cked-service.

Adding LVM to cluster management
To avoid potential conflicts, we will continue to add resources to Pacemaker in the
same order as if we were starting them manually. After DRBD, there comes our
second LVM layer. The primary purpose of Pacemaker in this instance is to activate
or deactivate the VG_POSTGRES volume group that we created in the previous
chapter.

This is necessary because DRBD cannot demote a primary resource to secondary
status as long as there are any open locks. Any LVM volume group that contains
active volumes can cause these kinds of locks. Also, we cannot utilize a volume group
that has no active volumes when DRBD is promoted on the second node.

This recipe will explain the steps necessary to manage our VG_POSTGRES/LV_DATA
data volume with Pacemaker.

https://docs.linbit.com/docs/users-guide-8.4/#s-pacemaker-crm-drbd-backed-service
https://docs.linbit.com/docs/users-guide-8.4/#s-pacemaker-crm-drbd-backed-service

High Availability via Pacemaker Chapter 12

[536]

Getting ready
As we're continuing to configure Pacemaker, make sure you've followed all of the
previous recipes.

Users of some Debian-derivative systems, such as Ubuntu, need to
beware! To avoid potential issues, it may be necessary to delete the
/lib/udev/rules.d/85-lvm2.rules file if it exists. Some
versions of this file automatically mount LVM devices when they
appear; such actions can interfere with Pacemaker LVM
management.

How to do it...
Perform these steps on any Pacemaker node as the root user:

Add an LVM primitive to Pacemaker with crm:1.

crm configure primitive pg_lvm ocf:heartbeat:LVM \
 params volgrpname="VG_POSTGRES" \
 op start interval="0" timeout="30" \
 op stop interval="0" timeout="30"

Clean up any errors that might have accumulated with crm:2.

crm resource cleanup pg_lvm

Display the status of our new LVM resource with crm:3.

crm resource status

How it works...
As with the previous recipe, we begin by adding a primitive to Pacemaker. For the
sake of consistency and simplicity, we name this resource pg_lvm. To manage LVM,
we also need to specify the ocf:heartbeat:LVM resource agent.

High Availability via Pacemaker Chapter 12

[537]

Remember, to see the list of parameters for a resource agent, use the
ra meta command to the crm shell. For the LVM agent, this
invocation would display usage information: crm ra meta
ocf:heartbeat:LVM.

The only parameter (params) that concerns us regarding the LVM resource agent is
volgrpname, which we set to VG_POSTGRES. The other options we set are more
advisory minimum values, which reflect the number of seconds we should wait
before considering an operation as failed.

In our case, we wait 30 seconds before declaring a start or stop status check as a failed
action. If Pacemaker is unable to start LVM, it will attempt to do so on other available
nodes. In the event that Pacemaker can't stop LVM, it will report an error and
perform no further actions until the error is cleared or corrected.

Speaking of clearing errors, it's a good practice to perform resource cleanup after
adding a new resource to Pacemaker. While not strictly required, this keeps the status
output clean and ensures that Pacemaker will add the next resource as expected.
Sometimes, Pacemaker will refuse to perform further actions if the error list contains
any entries.

As we will do with all of the recipes in this chapter, our last action is to view the
status of the resources to prove that the new addition is listed. Our test server shows
that it is:

In addition to the ms_drbd_pg resource that represents drbd_pg, we can see the new
pg_lvm resource. Pacemaker also checked the status of LVM and displays it as
Started.

High Availability via Pacemaker Chapter 12

[538]

There's more...
If you're tired of always checking the status of Pacemaker manually, there is a tool we
can use instead. Much like top, which displays the current list of running processes,
the crm_mon command monitors the status of a Pacemaker cluster and prints the
same output as crm status. For our cluster in its current state, it looks like this:

This will refresh regularly and makes it easy to watch live transition states as
Pacemaker performs actions related to cluster management. Feel free to keep this
running in another Terminal window for the sake of convenience.

Adding XFS to cluster management
Next in our list of resources to manage with Pacemaker is the filesystem. As with
LVM and DRBD, Pacemaker needs the ability to start and stop the resource arbitrarily
to clear locks or enable activation. In addition, filesystems are somewhat more
complex than LVM simply due to the number of necessary parameters required to
use them.

For Pacemaker to manage a filesystem, we need to tell it about the device it's
mounting, which directory the mount should target, the type of filesystem, and any
extra options we want to use. While DRBD and LVM encode metadata within
reserved storage areas on the device, filesystem mounts require explicit parameters.

This recipe will explain the steps necessary to manage our XFS filesystem with
Pacemaker.

High Availability via Pacemaker Chapter 12

[539]

Getting ready
As we're continuing to configure Pacemaker, make sure you've followed all of the
previous recipes.

How to do it...
Perform these steps on any Pacemaker node as the root user:

Export our list of XFS mount options to avoid long lines by executing these1.
commands:

export OPS=noatime,nodiratime,logbufs=8,logbsize=256k
export OPS=$OPS,attr2,allocsize=1m

Add an XFS primitive to Pacemaker with crm:2.

crm configure primitive pg_fs ocf:heartbeat:Filesystem \
 params device="/dev/VG_POSTGRES/LV_DATA" \
 directory="/db" \
 fstype="xfs" \
 options="$OPS" \
 op start interval="0" timeout="60" \
 op stop interval="0" timeout="120"

Clean up any errors that might have accumulated with crm:3.

crm resource cleanup pg_fs

Display the status of our new XFS resource with crm:4.

crm resource status

How it works...
Due to the limited format of this book, we wanted to avoid excessive line wrapping in
the commands we present. Hence, the first step simply saves all of the XFS mount
options from the previous chapter in a variable named OPS that we can reference
when adding the Pacemaker primitive.

High Availability via Pacemaker Chapter 12

[540]

Regarding the primitive itself, we continue our preferred naming scheme and label it
pg_fs (for the PostgreSQL filesystem). As usual, we need a resource agent to
facilitate Pacemaker management, and the ocf:heartbeat:Filesystem agent fills
that role nicely.

As with all agents, to see the list of parameters for a resource agent,
use the ra meta command to the crm shell. For the Filesystem
agent, this invocation would display usage information: crm ra
meta ocf:heartbeat:Filesystem.

We highly recommend that you use this command in each recipe, if
only to verify that the parameters act as we claim they do.

This time, the list of parameters (params) we set for the resource agent is somewhat
longer than what we used for LVM. Here's a short explanation of each:

The device parameter tells Pacemaker which device it should try to
mount. From the previous chapter, this is /dev/VG_POSTGRES/LV_DATA.
The directory specifies where the device should be mounted. Following
the example set by our previous chapter, this is the /db directory.
By setting fstype, we explicitly tell Pacemaker we are attempting to
mount an xfs filesystem. Modern mount commands can often determine
the filesystem automatically, but we advocate a more cautious approach.
Finally, we set the mount options. Our list of options was very long, so
we stored it in the $OPS variable, which we used here.

The other options (op) we set are more advisory minimum values that reflect the
number of seconds we should wait before considering an operation as failed. The
timeouts to start and stop a filesystem are somewhat longer than an LVM device
because filesystems can have direct users. A filesystem user includes any Terminals
currently located in a mounted directory, automated tasks using it as a file target, or
files held open by a running process—any one of these can prevent a filesystem from
being unmounted.

High Availability via Pacemaker Chapter 12

[541]

As usual, we perform resource cleanup on the pg_fs device to clear out any
invalid errors. Afterward, we can view the clean resource status with crm, which
looks like this on our test system:

As expected, we can see that pg_fs has joined our growing list of Pacemaker
resources.

Adding PostgreSQL to cluster
management
By now, we've fulfilled a fairly long series of prerequisites simply to add PostgreSQL
to the list of services managed by Pacemaker. We're over halfway through this
chapter and are just now getting to the parts relevant to a PostgreSQL DBA. If you're
new to DBA work, this might come as quite a shock, but it comes with the territory.

Once we add this resource, Pacemaker will be capable of starting and stopping
everything necessary to run a PostgreSQL server. We'll still need to add several more
elements to control factors such as start order and associated services, but we've
reached a critical juncture. We are very close to having a highly-available PostgreSQL
cluster.

In this recipe, we'll discuss the steps required to add PostgreSQL itself to Pacemaker
control.

Getting ready
As we're continuing to configure Pacemaker, make sure you've followed all of the
previous recipes.

High Availability via Pacemaker Chapter 12

[542]

How to do it...
Perform these steps on any Pacemaker node as the root user:

Add a PostgreSQL primitive to Pacemaker with crm:1.

crm configure primitive pg_service systemd:postgresql@12-main
\
 op monitor interval="30" timeout="60" \
 op start interval="0" timeout="60" \
 op stop interval="0" timeout="60"

Clean up any errors that might have accumulated with crm:2.

crm resource cleanup pg_service

Display the status of our new PostgreSQL resource with crm:3.

crm resource status

How it works...
The next primitive that we add to Pacemaker will need to use systemd to manage
PostgreSQL. As we'd mentioned at the beginning of this chapter, this ensures
Pacemaker receives expected LSB status codes when performing actions. Hence,
when we call crm with the configure primitive parameters, we name the new
primitive pg_service to remain consistent. We also use the
systemd:postgresql@12-main resource agent, which targets our specific
PostgreSQL instance.

One consequence of this is that our resource agent is not fully integrated into
Pacemaker and has no configurable parameters. The only things we can change are
the generic options (op) such as monitor intervals and start or stop timeouts. For this
agent, we've set all of the timeouts to 1 minute, but you may need to adjust these
based on your PostgreSQL usage.

We set the monitor interval to 30 seconds and the timeout to 60 seconds for one
reason: system overload. If a checkpoint causes enough write activity, PostgreSQL
may fail to respond quickly enough, even though it is still running. If this happens
frequently, we strongly recommend that you look into the problem and correct it.

High Availability via Pacemaker Chapter 12

[543]

However, Pacemaker compounds this problem slightly. If a monitor action fails,
Pacemaker assumes that the service is dead, and it will try to restart it. If that fails, it
will move everything over to the alternate node. This can cause an outage seemingly
at random, which is not good in a high-availability environment.

Following this, we continue our usual steps of clearing out any invalid errors and
viewing the Pacemaker cluster status. On our test system, the status shows this
output:

As expected, we can see that pg_service is Started.

Until we add a few more rules, Pacemaker isn't very smart. On our
test system, Pacemaker repeatedly attempted to start PostgreSQL on
the pg2 node, even though it was already running on pg1. Of
course, this failed, and it eventually checked pg1 to reach the
preceding output. We were not kidding when we said Pacemaker
considers resources transitory until told otherwise! Be wary of this
behavior in the next few recipes.

There's more...
Though we used systemd to manage PostgreSQL, the resource-agents repository
package installed with Pacemaker contains a resource agent specifically designed for
PostgreSQL. However, its usage is far more complicated. It can also monitor
PostgreSQL by querying it instead of simply using a process ID test. If you want to
use this agent instead, follow these steps as root:

Set the path of pg_ctl with this command:1.

export CTL=$(pg_config --bindir)/pg_ctl

Add the pgsql resource agent as primary with this command:2.

crm configure primitive pg_agent ocf:heartbeat:pgsql \
 params pgctl="$CTL" \

High Availability via Pacemaker Chapter 12

[544]

 pgdata="/db/pgdata" \
 op monitor interval="30" timeout="60" \
 op start interval="0" timeout="60" \
 op stop interval="0" timeout="60"

To get the full benefit of this resource agent, you'll also want to set the monitor_user
and monitor_password agent parameters. To see the full list of parameters for this
agent, use this crm command:

crm ra meta ocf:heartbeat:pgsql

Alternatively, view the man page:

man ocf_heartbeat_pgsql

Adding a virtual IP to proxy the cluster
We discussed virtual IP addresses earlier; now, it's time to leverage them in a more
automated fashion. A virtual IP is not a service in the traditional sense, but it does
provide functionality that we need in a high-availability configuration. In cases where
we also have control over DNS resolution, we can even assign a name to the virtual IP
address to insulate applications from future changes.

For now, this recipe will limit itself to outlining the steps required to add a transitory
IP address to Pacemaker.

Getting ready
As we're continuing to configure Pacemaker, make sure you've followed all of the
previous recipes.

How to do it...
We will assume that the 10.0.30.150 IP address exists as a predefined target for our
PostgreSQL cluster. Users and applications will connect to it instead of the actual
addresses of pg1 or pg2.

High Availability via Pacemaker Chapter 12

[545]

Perform these steps on any Pacemaker node as the root user:

Add an IP address primitive to Pacemaker with crm:1.

crm configure primitive pg_vip ocf:heartbeat:IPaddr2 \
 params ip="10.0.30.150" \
 iflabel="pgvip" \
 op monitor interval="5"

Try to view the IP allocation on pg1 and pg2:2.

ip addr | grep -A1 :pgvip

Clean up any errors that might have accumulated with crm:3.

crm resource cleanup pg_vip

Display the status of our new IP address with crm:4.

crm resource status

How it works...
This call to crm with configure primitive allows us to associate an arbitrary IP
address with our Pacemaker cluster. Once again, we follow the simple naming
scheme and label our resource pg_vip. As we always require a resource agent, we
need one that is designed to handle network interfaces. There are actually two that fit
this role: IPaddr and IPaddr2. Though we can use either, the IPaddr2 agent is
designed specifically for Linux hosts, so we might as well use it for maximum
compatibility.

The minimum parameters (params) we need for this resource agent include the IP
address (ip) and a label for network management (iflabel). We chose to set these to
the IP address that we set aside earlier (10.0.30.150). We also chose a descriptive
label to associate with the interface (pgvip). Due to the nature of IP addresses, it's a
good idea to check the interface on both machines to see that it is properly listed. Our
test system looks like this:

High Availability via Pacemaker Chapter 12

[546]

We check both pg1 and pg2 because Pacemaker still starts resources independently,
and the new IP address might be on either node. We'll be resolving this soon, so don't
worry if the IP address is allocated to the wrong node, as it was in our case!

As usual, we run resource cleanup and then display the resource status of the
cluster. No matter where pgvip is running, we should see output similar to this:

As expected, the pg_vip Pacemaker resource is Started and part of our growing list
of resources.

Adding an email alert
The last thing we are going to add should be considered a requirement when building
a high-availability PostgreSQL cluster. Any time the status of Pacemaker changes, we
can have it transmit an email alerting us to the activity. Not only is this possible with
Pacemaker, but it's also relatively easy to set up.

This recipe will outline the steps necessary to add an email alert to Pacemaker.

Getting ready
As we're continuing to configure Pacemaker, make sure you've followed all of the
previous recipes.

How to do it...
Perform these steps on any Pacemaker node as the root user:

Add an email primitive to Pacemaker with crm:1.

crm configure primitive pg_mail ocf:heartbeat:MailTo \
 params email="dbas@mycompany.com" \
 subject="Pacemaker\ cluster\ status\ changed:\ "

High Availability via Pacemaker Chapter 12

[547]

Clean up any errors that might have accumulated with crm:2.

crm resource cleanup pg_mail

Display the status of our new email alert with crm:3.

crm resource status

How it works...
To add an email alert, we need to configure another primitive with crm. We
name this resource pg_mail so that it fits in with the other services that we've
configured so far. As always, we need a resource agent for Pacemaker to invoke when
necessary, and the ocf:heartbeat:MailTo agent works well for our use case.

The MailTo agent is not a regular resource, as it does not represent any actual system
service. It's more of a defined action that Pacemaker should invoke while managing
other cluster resources. This means it's essentially useless until we associate it with
another Pacemaker primitive.

The MailTo agent also has two parameters (params) we are interested in setting. We
begin by setting email to an email address for a recipient tasked with monitoring the
PostgreSQL cluster. In most cases, this is either a single DBA or the entire team. In
any case, we strongly suggest that you transmit these alerts to anyone associated with
the PostgreSQL database in case one or more members of the team are unavailable.

If you don't already have one, speak with the infrastructure team or
whoever is in charge of setting up email lists at your company.
Using a generic address that reaches everyone in the team,
Pacemaker won't need to be changed whenever you hire or fire a
DBA.

The next setting that concerns us is the subject of the message. If we don't set this,
Pacemaker uses a suitable default, but it's good to have more control over the
messages in case we want to set up email rules or filters. Use any message you like,
but there are a couple of important notes:

Spaces must be escaped by a backslash (\). Otherwise, Pacemaker will print
out a lot of errors and refuse to add the primitive.
The subject is more of a prefix. Pacemaker will add more detail to the
subject and body of the email when the message is sent.

High Availability via Pacemaker Chapter 12

[548]

With that said, we are now ready to clean up and view our list of resources. Let's see
the output of resource status on our test system:

We can see from this output that pg_mail is listed as Started, even though it doesn't
do anything by itself. We'll be fixing this soon enough.

Grouping associated resources
Defining all of the critical resources within Pacemaker is a good start. However,
Pacemaker is not concerned with keeping related services operating together. It is
designed to facilitate service management for any series of resources over a large
array of servers. This is a recurring theme in this chapter and one we have to
overcome to fully leverage Pacemaker's abilities.

One way we can do this is by creating a group of related resources. When we do this,
the group represents every member as a whole and must run on one server or
another. This prevents the problems we had in the previous recipes, such as the
possibility of new resources being started on the wrong node.

We'll create a group in this recipe and discuss other important caveats.

Getting ready
As we're continuing to configure Pacemaker, make sure you've followed all of the
previous recipes.

High Availability via Pacemaker Chapter 12

[549]

How to do it...
Perform these steps on any Pacemaker node as the root user:

Add group to Pacemaker with crm:1.

crm configure group PGServer pg_lvm pg_fs pg_service pg_vip

Display the status of our new group with crm:2.

crm resource status

How it works...
For the first time in this chapter, we are not configuring a primitive, but a group.
Unlike primitives, which describe each resource we want to manage, a group tells
Pacemaker how. In this case, any resource listed in the group must share a few new
attributes:

Resources must reside on the same node.
Resources must be started in the specified order.
Resources must be stopped by reversing the specified order.

We named the group PGServer, and now we can address every member as a
cohesive unit using that name. The resource order mirrors the order in which we
defined the primitives, which is the logical order necessary to start (and stop) a
PostgreSQL server.

When PGServer is started, Pacemaker will activate LVM, followed by XFS, then
PostgreSQL, and finally, it will add our virtual IP address. We didn't add the email
alert, because there's no logical place for it within the group. If we list it at the
beginning, we'll only get an alert if everything is shut down. We can't place it at the
end, or we won't see changes in DRBD.

DRBD has a related complication: it's only a single entry but represents two states.
We can't target specific states in the grouping, so we must omit it from the group.
However, there is a solution to associate the mail and DRBD resources with our new
group; we'll cover this in the next recipe.

High Availability via Pacemaker Chapter 12

[550]

Until then, we can view the group with our usual resource status command.
Here's what we have on our test system:

Now we see a new Resource Group named PGServer. We can also see that all of
the items within the group are indented, making the association more obvious.

Combining and ordering related actions
There are two final pieces of the puzzle that will produce a fully functional
Pacemaker cluster. At this point, we have three independent base-level entries in
Pacemaker: DRBD, the PGServer group, and the email alert. They are independent
because Pacemaker may start or stop them on any server in the list of active nodes.

We can fix this by defining a colocation between related resources. When we create a
colocation, we are effectively stating that wherever this service goes, this other service
should follow. Of course, this by itself is not sufficient. We also need to declare the
expected order necessary for the services to start.

In this recipe, we'll finish our Pacemaker setup by creating necessary colocation
entries, and define a service start order.

Getting ready
As we're continuing to configure Pacemaker, make sure that you've followed all of
the previous recipes.

High Availability via Pacemaker Chapter 12

[551]

How to do it...
Perform these steps on any Pacemaker node as the root user:

Add colocation for DRBD to Pacemaker with crm:1.

crm configure colocation col_pg_drbd \
 inf: PGServer ms_drbd_pg:Master

Add colocation for the email alert with crm:2.

crm configure colocation col_pg_mail \
 inf: pg_mail PGServer

Add a resource order to Pacemaker with crm:3.

crm configure order ord_pg \
 Mandatory: ms_drbd_pg:promote PGServer:start

Display the configuration of our cluster with crm:4.

crm configure show

How it works...
As with all of our changes to Pacemaker, we configure the item we're adding. For
this first step, we are adding a colocation named col_pg_drbd to represent the
dependency between the PGServer group and the ms_drbd_pg master/slave
resource. To do this, we need three elements. They are as follows:

The strength of the relationship, expressed as a score: We used inf: to
represent infinity, meaning that these two items should always be
associated.
The name of the resource we are trying to colocate: We use the group
name PGServer, as we want all Pacemaker resources to follow it to the
same node.
The name of a resource this entry should be colocated with and is
dependent upon: By setting this to ms_drbd_pg:Master, we are telling
Pacemaker that the PGServer group must be on the same server where
DRBD is the master node, wherever that might be.

High Availability via Pacemaker Chapter 12

[552]

We then repeat this process with the email alert. This time we name the colocation
col_pg_mail to express it as a colocation of the pg_mail resource. The score
remains at inf: for infinity, and we make one final and very important change.
When defining a colocation, the order is extremely important. In fact, all colocation
entries should be read as: resource a depends on resource b.

With the email alert colocation, we now have what amounts to a dependency chain.
The email alert depends on the state of the PGServer group, and the PGServer
group depends on the DRBD master server. Yet, colocations are rules, so Pacemaker
is still free to execute these resources independently of each other, as long as the final
result matches the defined state we dictated.

As colocations have no inherent order, we need to impose one. We create one final
configure entry by defining an order named ord_pg. This time we state that the
relationship should be Mandatory:, which tells Pacemaker that the order of services
is not optional or a mere suggestion. When we define the order of our resources, we
can also dictate an action that Pacemaker should take, separated by a colon.

The order we defined tells Pacemaker that it should promote the ms_drbd_pg
resource before it is allowed to start the PGServer group. Why didn't we add the
email alert to our order definition? We didn't do so because its order doesn't matter.
By being a colocation, it is associated with the PGServer group, but since it has no
imposed order, any change to the group or to DRBD will trigger an email alert.

One crm command we haven't used until now is configure show. Colocation and
order definitions don't alter the outward appearance of resource status, so we needed
another way to prove Pacemaker incorporated our changes. This is what we see on
our test system:

Notice that we ran this command on the pg2 server, and we were still shown the
current Pacemaker configuration. Pacemaker also takes it upon itself to remove all of
our formatting for these particular entries. If we were to remove the egrep statement,
we'd see the entire Pacemaker configuration for our cluster, containing all of the
additions we've made in this chapter.

High Availability via Pacemaker Chapter 12

[553]

Performing a managed resource
migration
Now that we have a working Pacemaker cluster-management system, we should put
it to use. There are a lot of scenarios where we might need to manually change the
active PostgreSQL node. Doing this with Pacemaker is much easier than the process
we outlined in the previous chapter. That was a long process composed of several
manual steps, each of which we would want to confirm in a perfect world.

With Pacemaker, we can change the active system by issuing a single command from
any node in the cluster. There are some safeguards we'll also need to discuss and
possibly a caveat or two to consider, but this will be our first use of Pacemaker as a
piece of functional software. We've done a lot of work setting everything up!

Let's make Pacemaker do some work on our behalf for a change.

Getting ready
To migrate resources from one node to another, we need a fully functional Pacemaker
cluster that manages all of our software layers. Make sure you've followed all of the
previous recipes before continuing.

How to do it...
This recipe will assume pg1 is currently the active node, and we want to move
PostgreSQL to pg2. Perform these steps on either Pacemaker node as the root user:

Initiate the migration with crm:1.

crm resource migrate PGServer pg2

Remove the continued forced migration with this command:2.

crm resource unmigrate PGServer

Use crm to display the currently active node:3.

crm resource status PGServer

High Availability via Pacemaker Chapter 12

[554]

How it works...
The process is as simple as we claimed. We can launch a migration by specifying
resource migrate as our primary crm arguments. There are only two remaining
parameters for us to define: the resource we want to migrate and the target location.
The PGServer group represents PostgreSQL and all of its prerequisite storage
elements, so that is our third parameter.

The last parameter is the target node, and as pg2 is the only other node in this
Pacemaker configuration, it's an easy choice. What happens during a migration? The
following is a screenshot of crm_mon during a migration:

As you can see, Pacemaker is doing just as we claimed in the previous section and is
shutting down PGServer resources in reverse order. It has already stopped pg_vip
and pg_service and will shortly proceed to the rest of the services. In fact, here is a
full ordered list of what Pacemaker does during a migration with our configuration:

Create a rule with an infinite score that the PGServer group should be1.
running on pg2.
Stop the pg_mail alert on pg1, causing an email alert.2.
Start the pg_mail resource on pg2.3.
Stop the pg_vip resource on pg1.4.
Stop the pg_service resource on pg1.5.
Stop the pg_fs resource on pg1.6.
Stop the pg_lvm resource on pg1.7.
Demote ms_drbd_pg to Secondary on pg1.8.
Promote ms_drbd_pg to Primary on pg2.9.

High Availability via Pacemaker Chapter 12

[555]

Start the pg_lvm resource on pg2.10.
Start the pg_fs resource on pg2.11.
Start the pg_service resource on pg2.12.
Start the pg_vip resource on pg2.13.

We hope you can see the obvious linear progression Pacemaker is following; it
mirrors the process we used when we performed these tasks manually. After the
migration is over, we call unmigrate to remove the infinite score that Pacemaker
added. This will allow pg1 to retain the PGServer group when it returns to that
system at a later date.

Our final step is to examine resource status of the PGServer group itself. If we
did our job right, we should see this output:

Pacemaker reports that PGServer is running on pg2, just as we asked.

There's more...
When we call crm resource migrate, Pacemaker merely makes a simple
configuration change. As the PGServer resource is running on pg1 and we set
stickiness to 100, any score higher than that will override the current (and preferred)
node.

When we ask for a migration, Pacemaker sets the node score for pg2 at infinity, the
highest value possible. The next time the resource target evaluation system runs, it
sees that the score has changed and starts reorganizing the cluster to match. It's
actually quite elegant. Unfortunately, it means that we need to remove the score or
we could be in trouble later.

When we unmigrate the PGServer group, Pacemaker removes the infinite score
assigned to pg2, leaving it with a regular score of 100. This is enough to keep
PGServer attached to pg2, but nothing more. This is important because the score is
absolute.

High Availability via Pacemaker Chapter 12

[556]

Imagine if the rule was still in place and Pacemaker vastly preferred pg2 over pg1. In
the event pg2 crashes, Pacemaker will dutifully move PostgreSQL over to pg1. This is
exactly what we want. However, what happens after we fix pg2 and reattach it to
Pacemaker? That's right; the infinite score means Pacemaker will move it to pg2
immediately. Oh, no!

We can't overstate how important this is. Never invoke a resource
migration without using unmigrate as the second step. Failure to
do so can result in unplanned outages, which is not something we
want in a highly available PostgreSQL cluster.

Using an outage to test migration
While planned migrations are always preferred, sometimes hardware failures or
server instability will introduce an aspect of surprise. If we had not used Pacemaker,
a server crash would be a catastrophic event. Even if we had followed every chapter
in this book this far and had Nagios, the full TIG monitoring stack, and email alerts
galore, a DBA would need to be available to activate the alternate node.

If an outage occurred at night when everyone was sleeping, we would be faced with a
worst-case scenario. The necessary personnel might not hear the alert for several
minutes, and more time would be lost on triage and activation steps. Such an outage
could extend from a few minutes to over an hour. So much for our high availability!

Yet at this point, we don't know whether Pacemaker would negate the preceding
scenario. While we've tested how Pacemaker handles an expected and safe migration,
what happens when a node disappears entirely? Will Pacemaker cover us in the event
that there is an outage when nobody is immediately available?

In this recipe, we'll attempt to answer all of those questions and test Pacemaker with a
server reboot.

Getting ready
For this final recipe, we need a complete and tested Pacemaker stack before causing
an automated migration. Make sure you've followed all of the previous recipes before
attempting this.

High Availability via Pacemaker Chapter 12

[557]

How to do it...
This recipe will assume pg1 is currently the active node and pg2 is acting as the
standby. Perform these steps on the Pacemaker node indicated as the root user:

Start crm_mon on pg2.1.
Kill the corosync service on pg1:2.

pkill -f -9 corosync

Reboot pg1 with this command:3.

reboot

Watch Pacemaker start all services on pg2.4.

How it works...
We've made use of crm_mon before; it's an easy way to view the current status of all
Pacemaker cluster resources. By starting this monitor on pg2, we can watch what
happens when pg1 shuts down. Unfortunately, simple reboots are too safe. The
server will call the Pacemaker shutdown script, which will cause it to migrate to pg2
like it did in the previous recipe.

By calling pkill with the -9 argument on the corosync service, Pacemaker can no
longer interfere. The Linux kernel will end the corosync process, negating any
safeguards that Pacemaker might try to impose when pg1 reboots. We should return
to pg2 to watch the output of crm_mon while pg1 is offline.

The final result should look something like this:

Note that pg1 shows up as OFFLINE, and pg2 is the only server in the Online list.

High Availability via Pacemaker Chapter 12

[558]

There's more...
There's one final way to force a migration, and it's one we actually suggest for almost
all cases. One of the arguments we can pass to crm node is the desired state of the
node. Instead of killing the corosync service and rebooting pg1, we could run this
command:

crm node standby pg1

This tells Pacemaker that pg1 should no longer be considered a valid target for
resources. This also causes Pacemaker to migrate PGServer and any dependencies
over to pg2. No matter what the state of Pacemaker is, pg1 will always be listed as
Standby in the cluster by crm status.

This is an easy way to perform maintenance that might require multiple reboots or
other potentially disruptive changes. To bring pg1 online once again, we would use
this command:

crm node online pg1

The effect on Pacemaker is the same as a migrate command followed by an
unmigrate operation. The pg1 node is simply added to the list of possible target
nodes, and the cluster remains on pg2. The principal difference is that we've removed
any chance of pg1 interfering with pg2. A standby Pacemaker node cannot
participate in the cluster, and we can see at a glance that it's undergoing maintenance
until we change it back to online status.

13
High Availability with Multi-

Master Replication
Multi-master replication is a relatively new concept within the PostgreSQL world that
allows more than one node to accept writes and all nodes to contain the same data
regardless of origin. The concept of how the multi-master approach works is
generally easy to understand if we examine the workflow of how it is implemented
between two nodes.

This chapter will explore the inherent limitations of multi-master database technology
as applied to PostgreSQL, as well as how to best utilize it to maximize application
availability.

In this chapter, we will learn how multiple writable PostgreSQL nodes affect the
concept of high availability. We will cover the following topics in this chapter:

Deciding whether multi-master is right for you
Obtaining and installing BDR
Starting with a single BDR node
Creating an additional BDR node
Testing DDL replication on each node
Using sequences safely
Configuring HAProxy for the multi-master approach
Combining PgBouncer with HAProxy
Performing a managed node switchover
Improving failover speed
Performing a major-version online upgrade

High Availability with Multi-Master Replication Chapter 13

[560]

Overview of multi-master
Consider the following diagram:

We can see in preceding diagram that there are two PostgreSQL nodes: Node A sends
data from the WAL to Node B via WAL streaming, a feature that has been available
since PostgreSQL 9.0.

The primary divergence here from regular streaming replication is the element
labeled LD, which in this case stands for logical decoder. Node B contains a similar
additional element that we've labeled LA for logical apply.

In standard streaming replication, WAL is transmitted unchanged and applied to the
data files exactly as it is received. While fast and efficient, this meant that every
streaming replica was required to be an exact copy of the upstream system. This is
fine for distributing read traffic, but is somewhat limited in application since we can't
simply copy a few tables, import only some data, and so on.

When logical streaming became available with PostgreSQL 9.4, it was suddenly
possible to consume the writes themselves rather than how they were represented on
disk when written on the upstream system. Those familiar with logical replication
already know how this works.

The trick here is that the multi-master approach introduces a second logical channel
and LA/LD combination so that the process is bidirectional. Consider the following
diagram:

High Availability with Multi-Master Replication Chapter 13

[561]

Now each node decodes, transmits, receives, and applies data from its local WAL to
the other node.

However, this is much easier to describe with a couple of simplified diagrams than it
is to build correctly. As a consequence, there is only one commercially available
product that performs this kind of dual-channel logical replication for PostgreSQL.
This product is called bidirectional replication (BDR), and has existed in some form
or another since PostgreSQL 9.4 when it first became theoretically possible. So far, this
is the only multi-master PostgreSQL platform available.

No matter how the multi-master approach is achieved, it presents a lot of exciting
possibilities. Do we have databases on two or three continents? Instead of waiting
200–500 ms per transaction simply because of network transfer times, we can write all
data locally, and it will reach other nodes eventually. And at a smaller scale, we no
longer need to wait for the promotion of a physical standby if the primary node ever
becomes unavailable; we can simply redirect the application to any other writable
node. In extreme scenarios, this can even be done per connection.

Once this happens, we no longer need failover management frameworks. Node
promotion is no longer necessary. Node maintenance is as simple as reconnecting the
application layer to another writable node. While not a panacea, in many ways it
seems too good to be true.

High Availability with Multi-Master Replication Chapter 13

[562]

Deciding whether multi-master is right for
you
Multi-master PostgreSQL promises many exciting benefits that are hard to ignore.
Despite this, there are some inherent limitations that could potentially prevent safe
adoption within the application stack. Failure to account for these before deploying
multi-master PostgreSQL could result in data loss or disruption of the cluster itself.

Consider, for example, what happens if two nodes accept a write for the same tuple.
How should the conflict be resolved? Are there any necessary changes to the schema,
or the application itself, before the adoption of the multi-master approach is safe?
What else must we plan for?

While not an exhaustive resource, this recipe will attempt to answer many pressing
concerns related to multi-master PostgreSQL. Some of these are based on theoretical
cluster concepts.

Getting ready
In some ways, this recipe can be considered advanced reading. For now, it's best to
try to understand the full application stack and how it interacts with PostgreSQL. We
will be asking several questions that should be answered before the multi-master
approach is even considered as a possible solution.

How to do it...
Answer these questions about your application stack and PostgreSQL schema and
databases:

Does our application use autoincrement or sequential surrogate keys?1.
Is the most recent modification an acceptable way to resolve conflicts?2.
Do we use any columns as data aggregates?3.
Which is more important: latency or immediate constancy?4.
Will cross-cluster DDL locks disrupt the application?5.

High Availability with Multi-Master Replication Chapter 13

[563]

How it works...
There are several considerations we should make when evaluating multi-
master PostgreSQL, but these are some of the most important. These are decisions we
must make or changes that must be incorporated into the application itself before it is
safe for distribution across multiple nodes.

We begin with an obvious one: incremental fields. If we rely on sequences and have
two nodes, then there's potential for conflict if the nodes do not account for this. Say
that Node A assigns ID 5 to a new row, and Node B does the same; this would result
in one row being lost. One way of preventing this is to integrate the node number into
the sequence and skip increments. So Node A could assign ID 5, 15, 25, and so on,
while Node B uses 6, 16, 26, and so on.

However, that solution tends to require local node modification, which introduces the
possibility of accidentally forgetting to make such changes after node allocation. Even
automation may not totally solve this, depending on how sequences are tracked. It's
better to use IDs that are physically unable to produce conflicts, such as UUIDs. BDR,
in particular, offers multiple cluster-aware sequence configuration settings that
handle ID values properly, though one requires the target field to be defined as a
BIGINT.

This is one example of how the schema itself may require
modification or simply not be easily compatible. UUID use isn't
common, and BIGINT isn't quite as frequent as we would like.
Many of the questions we ask in this recipe will end this way, with
some kind of compromise that is necessary for full compatibility.

The next question is related to how conflicts should be handled, should they arise. If
two nodes operate on the same tuple, we can only retain one row or the other, not
both. PostgreSQL logical replication works by sending the entire row to the recipient
system, not merely any changed values. This means that merging is only possible
under limited and highly advanced scenarios.

The main consequence of this is that the default algorithm for resolving conflicts is
last update wins, which uses the transaction commit timestamp to determine which
of the conflicting rows should be represented across the cluster. BDR does offer a
method of performing column-level conflict resolution to accomplish a kind of merge
operation, but this requires enabling timestamp tracking on a per-row and -column
basis, which can result in quite a bit of overhead storage and processing.

High Availability with Multi-Master Replication Chapter 13

[564]

It's best to answer this question about conflict resolution by perhaps asking a second
question: can we avoid conflicts? A great way to do this is to simply avoid allowing
multiple nodes to write to the same rows. This can be done through data hashing,
sticky sessions that ensure that applications don't disruptively swap arbitrarily
between nodes. There are other strategies, but these two tend to address the largest
sources of unwanted data conflicts.

A somewhat related concern is how aggregate columns affect the multi-master
approach. Since PostgreSQL can only substitute one column or the other (even when
using BDR column-level conflict resolution), we could potentially lose data if that
column value differs between the nodes.

A way of visualizing this is a situation that involves simple updates:

Node A: UPDATE tab_a SET val=val + 10 WHERE id=1;
Node B: UPDATE tab_a SET val=val + 100 WHERE id=1;

If val started at 100, then we either have a value of 110 or 200, and we can only store
one. Even though this is a simple integer field, we are treating it as an aggregate
value, since it accumulates data rather than being set directly. This applies equally to
arrays that are appended, JSON objects that are modified, and so on. Any time we
have a column that had a previous value that we modified and replaced would
necessarily trigger a conflict if two nodes assign different values.

In many cases, the way forward is identical to the approach used in the previous
question: avoid conflicts if possible. BDR does provide a data type known as a
conflict-free replicated data type (CRDT) that can address this to an extent. There are
several of these, and they all have different theoretical frameworks for which works
best in certain situations. Once again, we're faced with a choice that may involve
modifying the schema or application layer itself, should conflicting updates be a
cause for concern.

The next question is more subtle: do we care more about latency or consistency?
Those familiar with the CAP theorem know that it describes the relationship between
consistency, availability, and partition tolerance within a cluster context. What is
less commonly discussed is PACELC, a conceptual extension to CAP. Simply put, it
says that in the case of a distributed cluster, it's only possible to have availability and
consistency or latency and consistency, not both.

High Availability with Multi-Master Replication Chapter 13

[565]

What this means in practice is that we must make a choice: do we want immediate
transaction responses, or should the cluster's consensus management layer use
distributed locking within a quorum of nodes to prevent any possibility of data
conflict. The latter option is much slower, sometimes by more than an order of
magnitude, but solves the preceding problems of having to manage row- or column-
level conflicts.

The default for BDR is to prefer minimized latency, and hence high availability. It
provides a configuration setting that implements a quorum-based consensus model
instead, for those where slower transaction rates are preferable to eventual
consistency. Either way, we must choose whichever is appropriate for our application
stack.

Finally, we address the impact of DDL within the cluster. If we modify the database
schema, it's safest to apply that same change to every node simultaneously. This
prevents a row from one node being unable to replay on another node, such as in
situations where there is a missing column. BDR does this by intercepting DDL
statements and replaying them through the consensus layer to other participating
nodes. The local transaction won't complete until other nodes can replay the DDL,
and have done so.

Naturally, this introduces a potential problem for a DDL that requires an exclusive
lock, such as table modifications or even index creation. We may have to wait for
every node to allow pending transactions to complete before the lock is granted, then
every node must wait until the change is applied before the global lock is released. In
a busy application, this is likely to be unacceptable.

This is a harder problem to solve since the fabric of the replication system itself
depends on schema compatibility. If Node B can't replay a row from Node A because
a column is missing, then replication cannot progress at all on that channel. This may
mean that we have to implement tiered deployment, where changes are made to each
node manually but the column remains unused until all nodes reflect all
modifications. BDR offers more advanced streaming triggers that can modify the
tuple being applied, thereby implementing complex internode versioning transforms
during DDL transitions.

No matter how we progress, the matter of DDL management should be addressed
early. Some applications, such as reporting systems or applications that do not
require 24/7 availability, can likely tolerate long DDL locks. But this book is about
high availability, and so if our focus is on implementing high availability systems,
then we're more likely dealing with a busy OLTP system. DDL changes in these
situations are difficult enough when only one node is involved; it becomes much
more difficult as the amount of writable nodes increases.

High Availability with Multi-Master Replication Chapter 13

[566]

There are solutions. We simply want to emphasize that these should all be considered
before a PostgreSQL cluster is deployed into a multi-master context. It would be a
nasty surprise otherwise, especially if we can avoid problems through careful
planning.

See also
As we've mentioned before, we covered several theoretical frameworks in this recipe.
Please refer to the following resources to learn more:

CAP theorem: https://robertgreiner.com/cap-theorem-revisited/
Consistency Tradeoffs in Modern Distributed Database System
Design: https://www.cs.umd.edu/~abadi/papers/abadi-pacelc.pdf

Obtaining and installing BDR
BDR is the first (and currently the only) multi-master solution for PostgreSQL. Once
installed on two or more nodes, it allows database writes to occur on any node, and
the changes will then be copied to the remainder of the cluster. This allows for
immediate writes in any node within a distributed PostgreSQL cluster without any
need for a failover.

BDR has existed as an open-source product since the introduction of logical
replication in PostgreSQL 9.4, but required a specially patched version to operate. A
later proprietary version worked as an extension to community PostgreSQL 9.6. At
the time of writing, both of these implementations have been deprecated in favor of a
new approach that we'll describe in the recipe itself.

This recipe will show you how to obtain and install BDR, including the necessary
steps to integrate it into PostgreSQL so that all necessary background processes
activate.

https://robertgreiner.com/cap-theorem-revisited/
https://www.cs.umd.edu/~abadi/papers/abadi-pacelc.pdf

High Availability with Multi-Master Replication Chapter 13

[567]

Getting ready
BDR is currently the only method of getting applying the multi-master approach to
PostgreSQL, and it is only available as a proprietary extension to PostgreSQL 10 and
11. This may change in the future, but for now, this means that BDR will act as our
demonstration platform for the multi-master approach. It will be necessary to obtain
BDR directly from its vendor, 2ndQuadrant.

The BDR product page is available at https:/ /www. 2ndquadrant. com/ en/ resources/
postgres-bdr-2ndquadrant/ .

It will be necessary to sign up for a 60-day trial before continuing with this recipe, or
indeed the remainder of this chapter.

While 2ndQuadrant supports a cloud-based option, Docker images and Debian- or
Red-Hat-based packages obtained from their private repositories, we will focus on
using the packages in this recipe.

At the time of writing this chapter, the latest version of BDR is 3.6.12. BDR follows a
similar numbering scheme as versions of PostgreSQL before version 10. As a result,
the current major version is 3.6. We recommend installing the latest version available
when evaluating BDR.

How to do it...
Follow these steps to install BDR in a PostgreSQL 10 database node, assuming that it
is located on the 10.0.30.1 subnet:

For Debian-based systems, install the following packages as a root-enabled1.
user:

sudo apt install postgresql-10-dbgsym
sudo apt install postgresql-10-bdr-plugin \
 postgresql-10-bdr-plugin-dbg \
 postgresql-10-pglogical \
 postgresql-10-pglogical-dbg

Red Hat systems should use the following commands instead:2.

sudo yum install postgresql10-debuginfo
sudo yum install postgresql10-pglogical \
 postgresql10-pglogical-debuginfo \
 postgresql10-bdr \
 postgresql10-bdr-debuginfo

https://www.2ndquadrant.com/en/resources/postgres-bdr-2ndquadrant/
https://www.2ndquadrant.com/en/resources/postgres-bdr-2ndquadrant/
https://www.2ndquadrant.com/en/resources/postgres-bdr-2ndquadrant/
https://www.2ndquadrant.com/en/resources/postgres-bdr-2ndquadrant/
https://www.2ndquadrant.com/en/resources/postgres-bdr-2ndquadrant/
https://www.2ndquadrant.com/en/resources/postgres-bdr-2ndquadrant/
https://www.2ndquadrant.com/en/resources/postgres-bdr-2ndquadrant/
https://www.2ndquadrant.com/en/resources/postgres-bdr-2ndquadrant/
https://www.2ndquadrant.com/en/resources/postgres-bdr-2ndquadrant/
https://www.2ndquadrant.com/en/resources/postgres-bdr-2ndquadrant/
https://www.2ndquadrant.com/en/resources/postgres-bdr-2ndquadrant/
https://www.2ndquadrant.com/en/resources/postgres-bdr-2ndquadrant/
https://www.2ndquadrant.com/en/resources/postgres-bdr-2ndquadrant/
https://www.2ndquadrant.com/en/resources/postgres-bdr-2ndquadrant/
https://www.2ndquadrant.com/en/resources/postgres-bdr-2ndquadrant/
https://www.2ndquadrant.com/en/resources/postgres-bdr-2ndquadrant/
https://www.2ndquadrant.com/en/resources/postgres-bdr-2ndquadrant/
https://www.2ndquadrant.com/en/resources/postgres-bdr-2ndquadrant/
https://www.2ndquadrant.com/en/resources/postgres-bdr-2ndquadrant/

High Availability with Multi-Master Replication Chapter 13

[568]

Modify postgresql.conf and ensure that the following parameters are3.
set to these values:

wal_level = 'logical'
shared_preload_libraries = 'pglogical, bdr'
track_commit_timestamp = 'on'

Connect to PostgreSQL and create a user to manage BDR connectivity:4.

CREATE USER bdr_user WITH SUPERUSER REPLICATION
 PASSWORD 'changeme';

Modify pg_hba.conf and include the following two lines:5.

host all bdr 10.0.30.0/24 md5
host replication bdr 10.0.30.0/24 md5

Add bdr_user to the Postgres OS user's .pgpass file—for example:6.

::*:bdr_user:changeme

Restart the PostgreSQL service on Debian systems with the following7.
command:

sudo systemctl restart postgresql@10-main

Red Hat systems will need to use this command instead:

sudo systemctl restart postgresql-10

How it works...
The primary purpose of this short recipe is to install BDR on any PostgreSQL node
that will participate in a BDR cluster. Primarily, this means installing the actual
packages, modifying a few configuration files, and restarting the service itself. This is
a universal recipe that applies equally to any BDR node, so keep that in mind for
later, as we'll be referring to it frequently.

High Availability with Multi-Master Replication Chapter 13

[569]

To that end, our first step is to install the packages themselves. We will assume that
you either have a BDR 60-day trial or are a 2ndQuadrant support customer, giving
you direct access to their private package repositories. Note that this step also
recommends installing debugging packages as well. The reason for this is very
simple: BDR is complicated. In the event that something goes wrong, diagnostic and
forensic information is invaluable. Debug symbols make it possible to track problems
down to the function level and even further in some cases. Given how tightly
integrated BDR and PostgreSQL are, this is often necessary to track down problems
that are caused by a bug or unhandled edge case.

Also note that even though this chapter is about BDR, we recommend that you install
pglogical as well. This is because BDR itself works in conjunction with pglogical,
which acts as the logical replication management layer. This way, pglogical can still
act as a logical replication solution, and BDR can leverage that functionality rather
than duplicating it. The two are tightly integrated, and BDR will often call
pglogical APIs directly, so make sure both of these are available.

Next, there are three settings that we must change. It's very likely that we already set
wal_level to logical as suggested in Chapter 3, Minimizing Downtime; however,
we wanted to explicitly list this requirement, as BDR will not function without logical
WAL settings enabled.

Next, we include pglogical and bdr in shared_preload_libraries. In this
particular example, they are the only two enabled modules, but they need not be the
only ones in the list; we did recommend adding pg_stat_statements, after all. Just
make sure that they appear in the order that we described, as the BDR shared library
depends on pglogical symbols being available before it will load properly.

Then we enable track_commit_timestamp to add commit timestamp information
to the WAL. Remember how we explained that BDR uses the commit timestamp of
each transaction to manage conflict resolution? This setting is necessary for BDR to
tell that rows from one BDR node are newer than rows from another, and allows data
to remain consistent across all nodes.

At this point, we can make a decision. Our instructions recommend creating a user
specifically for managing BDR. This makes it easier to debug and also track events
that happen in the cluster, assuming they were caused by BDR. So the next few steps
involve creating a bdr_user superuser and ensuring that it is allowed to connect to
all databases and the replication stream for logical streaming purposes.

High Availability with Multi-Master Replication Chapter 13

[570]

However, this is not required. We could use the postgres user as we have many
times throughout the book and everything would still work normally. If you are
simply exploring BDR, it may even be easier to do just that. Just make sure that there
are no password prompts, and that a superuser is involved.

Why does BDR require a superuser? While some BDR functionality
may be delegated to a non-superuser role for various purposes, BDR
itself requires superuser capabilities for one major reason: user
masquerading. Rows are applied according to table ownership, and
the only way to do that is to become the user making the change.
Currently, this is a capability restricted only to PostgreSQL
superuser accounts.

Finally, we restart PostgreSQL itself, thereby activating the pglogical and bdr
shared library modules. This will also launch a number of related background
workers necessary for managing the cluster.

There's more...
Believe it or not, logical replication (and therefore BDR) is fully compatible with
synchronous mode. If we wanted to enable this, we would need to bootstrap the
entire cluster first. Afterward, we could define these two parameters in
postgresql.conf:

synchronous_commit = 'remote_write' synchronous_standby_names = 'ANY 1
(sync_slot_1, sync_slot_2)'

In this case, sync_slot_1 or sync_slot_2 would be the name of the
synchronization slot used by the downstream system. BDR has a particular naming
scheme, so it would be something like bdr_db_cluster_origin_target, but it
does work as expected. Any COMMIT will be held until the synchronous requirements
are met, just as if we were using synchronous physical replication.

This way, we can use BDR nodes to act as synchronous targets for other BDR nodes.
Assuming we have a cluster of more than two nodes, this is even fairly resilient, as it
is unlikely that multiple nodes will fail simultaneously.

High Availability with Multi-Master Replication Chapter 13

[571]

Starting with a single BDR node
Once the software is physically installed on the server and configured to launch with
PostgreSQL, we must start building our cluster. Despite how strange it might seem to
have a cluster of only a single node, that's exactly how every BDR cluster begins.

We can think of our first BDR node as a seed from which the remainder of the cluster
will grow. This node is very likely the current writable node used by our application
stack. Thus, this recipe is a sort of conversion procedure, where we will explain how
to transform a standard PostgreSQL database into the first node of a BDR cluster.

Let's begin!

Getting ready
This entire procedure is dependent on BDR software being installed on your system.
Please follow the Obtaining and installing BDR recipe before continuing.

How to do it...
Follow these steps as the bdr_user PostgreSQL user to activate BDR on an active
database named myapp on the pgha1 host:

Execute the following SQL to create the BDR extension:1.

CREATE EXTENSION bdr CASCADE;

Initialize the current node with the following SQL:2.

SELECT bdr.create_node(
 node_name := 'chicago',
 local_dsn := 'dbname=myapp host=pgha1 user=bdr_user'
);

Create the BDR cluster definition with the following SQL:3.

SELECT bdr.create_node_group(
 node_group_name := 'megacorp'
);

Run the following function to wait for everything to complete:4.

SELECT bdr.wait_for_join_completion();

High Availability with Multi-Master Replication Chapter 13

[572]

How it works...
Creating our first node basically consists of three steps. We start by creating the bdr
PostgreSQL extension using the CASCADE keyword. This also creates the pglogical
extension required for BDR to function. Alternatively, we could create the pglogical
extension explicitly before doing the same for bdr. Either way, the presence of the
extensions provides us with a wealth of function calls and metadata for building and
introspecting our BDR cluster.

The second step is the creation of the node itself. Every BDR node definition is a pair
comprised of a name and a connection DSN, both of which we set by supplying them
to the bdr.create_node function. The node name must be unique across the cluster,
so we recommend choosing something descriptive of the role this node should play
or its location or perhaps both. We recommend using a consistent naming scheme for
all nodes before creating them to prevent issues in the future.

Once we have an initial node, we can define the cluster itself by invoking the
bdr.create_node_group function. There are a lot of advanced parameters we could
supply, but the only one that really matters is the cluster name. This is where we give
our BDR cluster a unique name that it will use for several metadata elements. It will
also use this text string within replication slot names and other identifiers within
PostgreSQL. Each BDR cluster can only have one name, so make this one count!

Finally, we have the generally optional step of waiting for the cluster creation steps to
complete. The bdr.wait_for_join_completion function blocks until any
asynchronous events related to node status have finished. Creating the node group
carries the implicit step of joining the local node to that group. If we do this quickly
enough, there is a slim chance that calling subsequent BDR functions could fail. This
is extremely unlikely, but the function is there to prevent this from happening.

At this point, we have a fully functional BDR cluster by the strictest definition;
however, we still don't have a multi-master cluster. Let's follow the next recipe to fix
that.

There's more...
If we use \dx+ bdr within our database, we should see every function, table, and
view available for interacting with the extension. Among these is the
bdr.node_summary view that reflects the current join state and several other
attributes of all nodes in the cluster.

High Availability with Multi-Master Replication Chapter 13

[573]

Let's run the following query in the myapp database really quickly to see how it looks
with a single node:

SELECT node_seq_id, node_id, node_name, node_group_name,
peer_state_name FROM bdr.node_summary;

We should see something like this:

While BDR itself assigns a sequential node ID to each node as it joins the cluster, it
also assigns an absolute node_id as part of the create_node function call. Various
node attributes are combined to produce this number so that it will always be unique
across the cluster. This way, there will be no conflicts when new nodes join the overall
group.

We can also see that our node and group names are faithfully represented here and
our node is listed as ACTIVE. This should not be viewed as a live or online status of
the node, but the status of its current role as a cluster member. Nodes may be in the
process of joining or they may have been parted (removed) from the cluster or several
other states between these. This lets us see how all of the nodes are interacting, and
how each may contribute to quorum votes, for instance.

There are a lot of tables and views here, so feel free to explore them to learn more.

Creating an additional BDR node
Once we've established the BDR cluster seed node, we can begin by adding one or
more additional nodes to establish multi-master functionality. This is where things
start to get exciting!

This recipe is also very simple and will focus on adding any new node to an
established BDR cluster. We should be able to run through the recipe as many times
as we want, using as many nodes as we desire, to create a large cluster.

Don't get too carried away, however, as BDR only supports up to 1,024 nodes!

High Availability with Multi-Master Replication Chapter 13

[574]

Getting ready
We need at least one BDR node within an activated cluster, so make sure that you
follow the Starting with a single BDR node recipe before beginning. Additionally, since
this is a new node, make sure that you apply the Obtaining and installing BDR recipe
here as well.

How to do it...
Follow these steps as the bdr_user PostgreSQL user to create another BDR node on
an active database named myapp, on the pgha2 host:

Execute the following SQL to create the BDR extension:1.

CREATE EXTENSION bdr CASCADE;

Initialize the current node with the following SQL:2.

SELECT bdr.create_node(
 node_name := 'tokyo',
 local_dsn := 'dbname=myapp host=pgha2 user=bdr_user'
);

Create the BDR cluster definition with the following SQL:3.

SELECT bdr.join_node_group(
join_target_dsn := 'dbname=myapp host=pgha1 user=bdr_user',
wait_for_completion := True
);

Obtain the status of the cluster nodes with the following query:4.

SELECT node_seq_id, node_id, node_name,
 node_group_name, peer_state_name
 FROM bdr.node_summary;

How it works...
Just as we did when we created the initial node, we always start by creating the bdr
extension itself. This is a prerequisite to making all BDR-related functions available
for our use.

High Availability with Multi-Master Replication Chapter 13

[575]

Next, we perform the same step as the previous recipe by using bdr.create_node to
establish metadata for this node before it joins the cluster. Perhaps it seems silly to
create a node with no context for where it belongs since it's not associated with any
cluster. The true role of the create_node function is to establish node metadata
within BDR and pglogical. This information will be exchanged with any cluster we
try to join.

It's also the reason why the node_id value is generated to be unique
across the cluster. This ensures that any new node is fully defined
before it attempts to join our cluster.

The real work begins when we invoke the bdr.join_node_group function.
Assuming we've started with a fresh, empty database, this function does several
things:

Contacts the upstream node specified by join_target_dsn
Creates a replication slot on the upstream system
Exchanges metadata information with the cluster
Obtains schema definitions for the current database
Copies any data from the node it's joining through
Creates replication slots to and from all other BDR nodes
Sets the node as ACTIVE once it joins the cluster successfully

There are other intermediate steps involved here, but these are the important ones. In
the end, we've transformed an empty database into a fully qualified member of the
BDR cluster with a single function call.

Though we set the wait_for_completion parameter to True explicitly, this
parameter is enabled by default. We just wanted to demonstrate that the function will
block until the entire join procedure is complete.

Note that the join_node_group function is atomic. If it fails for
some reason, or the node ends in a state other than ACTIVE, then the
node generally cannot join the cluster. This is because BDR performs
the entire join procedure within a transaction on the remote node.
This ensures that the new node has retrieved all data up to that
transaction and can then subscribe to a replication slot to obtain the
remainder. If this fails for any reason, we recommend parting and
dropping the failed node and trying again after fixing the error that
prevented a successful join.

High Availability with Multi-Master Replication Chapter 13

[576]

Once the node has joined, we can check with the bdr.node_summary view to see
how our cluster looks with two nodes. Here's an example:

In our case, we executed the query from pgha2, so we can see that the local record
comes first. This output demonstrates that metadata from pgha1 arrived safely, and
at least as far as BDR is concerned, the nodes in the cluster should be fully
operational.

There's more...
One difficulty associated with using the bdr.join_node_group function is that it
relies on PostgreSQL logical replication semantics to transfer data from the remote
node. The associated overhead makes this a fairly slow process, and for larger
databases may mean days or even weeks of data synchronization. Assuming a single
function call can survive for that long is a very risky proposition.

As a result, BDR also provides a command-line tool that can convert a physical
replica into a BDR node. Using the same node DSNs and names as in the recipes,
converting pgha2 would work like this:

bdr_init_physical -D /db/pgdata \
 --node-name=tokyo \
 --remote-dsn='dbname=myapp host=pgha1 user=bdr_user' \
 --local-dsn='dbname=myapp host=pgha2 user=bdr_user'

Since the data already exists locally, the only things BDR needs to do is add the
missing metadata and create BDR-specific replication slots between the new node and
the rest of the cluster.

This is the most efficient way to add a BDR node, since there are numerous methods
for copying data between servers. Unlike a single PostgreSQL transaction, these are
events that can also be resumed if interrupted, making it much less likely that
creating a cluster of VLDB BDR nodes will end in failure.

High Availability with Multi-Master Replication Chapter 13

[577]

Testing DDL replication on each node
One of the potential roadblocks of multi-master replication is the fact that schemas
must be compatible on all nodes. Any node that does not have the same columns and
types on tables risks being unable to consume data from the upstream node that
generated the incompatible tuple.

As a result, a hallmark feature of BDR (and likely any other multi-master system that
emerges in the future) is that DDL is transparently replicated. This ensures that the
schemas are always compatible with all nodes, and prevents costly delays in
replication caused by stuck data.

This recipe will be a short proof of concept to prove that DDL is transparently
replicated and serves as a good check to try on any new BDR cluster to ensure that it's
working correctly.

Getting ready
In order to apply this recipe, we should begin with at least two functional BDR nodes.
Please follow all recipes up to Creating an additional BDR node before continuing.

How to do it...
Assuming that we have two nodes in pgha1 and pgha2 and a BDR-enabled database
named myapp, follow these steps to test the DDL replication:

Execute the following SQL on pgha1:1.

CREATE TABLE event_log (
 event_id BIGSERIAL PRIMARY KEY,
 event VARCHAR(100) NOT NULL,
 event_dt TIMESTAMPTZ NOT NULL DEFAULT now()
);

Execute the following SQL on pgha2:2.

CREATE INDEX idx_event_log_event_dt
 ON event_log (event_dt);

Examine the table on pgha1 by using this command in psql (for example):3.

\d event_log

High Availability with Multi-Master Replication Chapter 13

[578]

How it works...
We start by creating event_log as our first table on pgha1. Those of you who are
familiar with logical replication know that DDL is not part of the replication stream;
however, it is possible to intercept DDL within PostgreSQL itself and trigger the
actions afterward.

As a result, BDR captures DDL events and adds them to the replication stream as part
of the logical output. The receiving node understands that this isn't standard
replicated data and applies the DDL locally. Assuming that everything worked
properly, we should see this table appear on pgha2 as well.

Next, we create an index on the event_dt column because we want to be able to
quickly locate events by date. The only difference here is that we applied the change
from pgha2. This DDL should replay on pgha1 much like the original table creation.
We test for this by using the \d syntax within psql to describe the event_log table
while on pgha1.

This is what we see on our test system:

As expected, the new index on event_dt shows up on this node as well. We now
have proof that we have a two-node multi-master cluster.

There's more...
Not all DDL statements are equally safe. Say that we want to alter the event column
and change the type to TEXT. Watch what happens if we attempt that directly:

High Availability with Multi-Master Replication Chapter 13

[579]

The risk here is that certain type conversions would cause a full table rewrite on not
just the node being altered, but every node in the cluster. This could lead to a long-
duration exclusive lock everywhere, and could eventually cause major problems.

As an alternative, BDR recommends this process:

Add a new column:1.

ALTER TABLE event_log
 ADD event_new TEXT;

Create a trigger function that keeps the columns synchronized:2.

CREATE FUNCTION f_copy_event()
RETURNS TRIGGER AS
$$
BEGIN
 NEW.event_new := NEW.event;
 RETURN NEW;
END;
$$ LANGUAGE plpgsql;

CREATE TRIGGER t_copy_event_b_iu
BEFORE INSERT OR UPDATE
 ON event_log
 FOR EACH ROW
 EXECUTE PROCEDURE f_copy_event();

Copy all current data into the new column in small to medium batches:3.

UPDATE event_log
 SET event_new = event
 WHERE event_new IS NULL
 AND id BETWEEN 1 AND 1000000;

Once the new column is populated, add the NOT NULL constraint:4.

ALTER TABLE event_log
 ALTER event_new SET NOT NULL;

High Availability with Multi-Master Replication Chapter 13

[580]

Finally, swap the column names and drop the old column and5.
management trigger in a transaction:

BEGIN;
ALTER TABLE event_log RENAME event TO event_old;
ALTER TABLE event_log RENAME event_new TO event;
ALTER TABLE event_log DROP COLUMN event_old;
DROP TRIGGER t_copy_event_b_iu ON event_log;
COMMIT;

If that seems like a lot of work to make what should be one simple change, that's
because it is. But consider the alternative if this procedure isn't followed. BDR would
lock the table in exclusive mode on every node, PostgreSQL would entirely rebuild
the table using a process that could take hours, and only then would the change
finally be available.

Even if you are not using BDR, this is a better method for applying such invasive
DDL changes while remaining highly available. The only difference is that BDR
requires this approach because of the implications of cross-cluster locks.

There are some other DDL restrictions like this that should be considered, especially
if the application relies on automated DDL deployment scripts. All of these will
require auditing and very likely testing in another BDR-enabled environment to
ensure that they will work as expected.

This is yet another factor that is part of embracing a full multi-master PostgreSQL
cluster. While all standard PostgreSQL functionality is enabled, converting an
application or stack isn't a trivial affair.

Using sequences safely
Sequences and identity columns within a multi-master context are especially prone to
complications. PostgreSQL itself is essentially unaware of the presence of other
PostgreSQL nodes that may refer to the same sequences, and each node operates
independently of the others in that regard.

As a result, each new incremental value from a standard sequence is arbitrary and
could result in duplicate values on nodes. This would be a disaster if we are using
them for a primary key, as any conflicts here would result in lost data.

This recipe will demonstrate how to safely use sequences with BDR and prevent any
node from producing conflicting values.

High Availability with Multi-Master Replication Chapter 13

[581]

Getting ready
In order to apply this recipe, we should begin with at least two functional BDR nodes.
Please follow all recipes up to Creating an additional BDR node before continuing.

How to do it...
Assuming we have two nodes in pgha1 and pgha2 and a BDR-enabled database
named myapp, follow these steps to manage and use sequences:

Execute the following statement on any BDR node before using any DDL1.
that contains BIGSERIAL or SEQUENCE:

SET bdr.default_sequence_kind = 'timeshard';

Create a SEQUENCE and check the results as follows:2.

CREATE SEQUENCE myseq;
SELECT nextval('myseq');

Create a BIGSERIAL table and insert a test record as follows:3.

DROP TABLE IF EXISTS event_log;
CREATE TABLE event_log (
 event_id BIGSERIAL PRIMARY KEY,
 event VARCHAR(100) NOT NULL,
 event_dt TIMESTAMPTZ NOT NULL DEFAULT now()
);

INSERT INTO event_log (event) VALUES ('Testing');
SELECT * FROM event_log;

Use the following query to check the status of sequences tracked by BDR:4.

SELECT * FROM bdr.sequences;

How it works...
Since the earliest incarnation of BDR 3, the timeshard sequence type has existed to
prevent sequential ID collisions. It works using an algorithm pioneered by Instagram
that uses bit packing to overload a 64-bit integer with identifying information. Each
ID actually contains the BDR sequential node ID, a timestamp, and the local sequence
value.

High Availability with Multi-Master Replication Chapter 13

[582]

There are basically two ways to ensure that all new sequences generate values
according to this approach. We can either do as the instructions suggest and set
bdr.default_sequence_kind to timeshard before creating any kind of sequence,
or we can set the same parameter in our postgresql.conf file. Whatever we decide,
it's best to be consistent to avoid accidentally creating any of the wrong types on
different nodes.

The bdr.default_sequence_kind parameter is a local setting that
takes effect once the sequence is created. Since the parameter itself is
not replicated, we recommend setting it in the postgresql.conf
file on all nodes. Alternatively, the parameter may be enforced by
using a preamble that sets it after any connection is established.

Once the parameter is set, it should remain in effect until we disconnect our session.
With that in mind, the first test of this functionality is to specifically create a sequence
and then obtain one value to prove it's working.

Once we call nextval, we should see something like this:

We can perform a similar feat using a BIGSERIAL type when creating a table. This
produces an implicit sequence that BDR intercepts and modifies to use the
timeshard algorithm.

We can check that our sequences are properly generated by selecting rows from the
table. We should see something like this when doing so:

As we can see, these values are extremely and arbitrarily large. While they will not
conflict, they're very likely a drastic departure from whatever sequence methodology
may have been in use previously.

High Availability with Multi-Master Replication Chapter 13

[583]

Due to the fact that the algorithm uses bit packing and assumes a 64-bit integer, this
only works with BIGINT or BIGSERIAL column types. Using this approach may
require us to modify the existing schema before implementation. In fact, BDR will
report an error if timeshard is enabled and a table is created using SERIAL rather
than BIGSERIAL.

Regardless, one cool trick we can perform after setting our sequence types is
introspecting from the BDR metadata. At this point, we should see the following
sequence settings:

We can use this to track all sequences on a BDR-enabled database.

There's more...
Managing sequences is a very important topic. As such, BDR has more functionality
for managing them, which we will explore in the following section.

Global allocation sequences
As we've already seen, the values produced by timeshard sequences may not be
desirable. In some cases, frontend languages may not even be compatible. JavaScript,
for example, is not compatible with such large values by default. So what can we do
instead?

Another valid setting for the bdr.default_sequence_kind parameter is galloc,
for global allocation. Rather than arbitrarily producing large values, each node
actually requests a range of values from the consensus layer. Once this range is
exhausted, the node obtains another, and so on.

High Availability with Multi-Master Replication Chapter 13

[584]

This approach may result in more latency on each sequence range boundary, but is
otherwise compatible with more common INTEGER and SERIAL types. Look at the
following SQL:

SET bdr.default_sequence_kind = 'galloc';
CREATE SEQUENCE galloc_test;
SELECT nextval('galloc_test');

If we were to execute this, then pgha1 would use values 1 through 1 billion, pgha2
would use the next billion values, and so on. If we used a SERIAL type while creating
a table, the blocks would each be sized at 1 million instead.

Timeshard introspection
Remember how we mentioned that timeshard sequence fields are bit-packed 64-bit
integers? Well, BDR includes functions that make it possible to unpack a value to
obtain the information it contains.

Let's try this by using the following query to unpack the event_id field in the
event_log table:

SELECT event_id,
 bdr.extract_nodeid_from_timeshard(event_id) AS node_id,
 bdr.extract_localseqid_from_timeshard(event_id) AS seq_val,
 bdr.extract_timestamp_from_timeshard(event_id) AS stamp FROM
event_log;

If we insert one or two more rows from each of our nodes, we should see something
like this:

With this technique, we can actually see which nodes inserted which values. We can
also see that the local sequences would have generated conflicting values if we hadn't
used some kind of sanitized sequence approach. It should also be obvious from this
output that even sequential seq_val values do not produce sequential results; bit-
packing makes the results somewhat arbitrary.

High Availability with Multi-Master Replication Chapter 13

[585]

Either way, this is a great source of diagnostic information, and we can even use it to
compare node activity since we can aggregate these fields to determine which nodes
generate the most rows.

See also
For more details on Sharding and IDs at Instagram, refer to the following
link: https:// instagram- engineering. com/ sharding- ids- at-instagram-
1cf5a71e5a5c.

Configuring HAProxy for the multi-master
approach
Though we already have an entire chapter on proxy and load balancing
techniques Chapter 4, Proxy and Pooling Resources, some of these concepts change
slightly in a multi-master context.

Consider the implications of attempting to use simple round-robin query distribution.
If our application reconnects for each operation and inserts data into Node A, but
then selects from Node B, this is an implicit race condition that may not be satisfied at
that specific time.

This can also produce strange effects if the application is stateless and performs
SELECT–UPDATE pairs regardless of which node it is communicating with. In the
presence of high latency for any reason, this could result in two different sequential
incremental updates on the same base value.

This recipe will explain how to alter our previous HAProxy configuration to better
adapt to a multi-master environment.

Getting ready
In order to apply this recipe, we should begin with at least two functional BDR nodes.
Please follow all recipes up to Creating an additional BDR node before continuing. We
also recommend following the recipes in Chapter 4, Proxy and Pooling Resources, that
are related to HAProxy so that both BDR nodes are included.

https://instagram-engineering.com/sharding-ids-at-instagram-1cf5a71e5a5c
https://instagram-engineering.com/sharding-ids-at-instagram-1cf5a71e5a5c
https://instagram-engineering.com/sharding-ids-at-instagram-1cf5a71e5a5c
https://instagram-engineering.com/sharding-ids-at-instagram-1cf5a71e5a5c
https://instagram-engineering.com/sharding-ids-at-instagram-1cf5a71e5a5c
https://instagram-engineering.com/sharding-ids-at-instagram-1cf5a71e5a5c
https://instagram-engineering.com/sharding-ids-at-instagram-1cf5a71e5a5c
https://instagram-engineering.com/sharding-ids-at-instagram-1cf5a71e5a5c
https://instagram-engineering.com/sharding-ids-at-instagram-1cf5a71e5a5c
https://instagram-engineering.com/sharding-ids-at-instagram-1cf5a71e5a5c
https://instagram-engineering.com/sharding-ids-at-instagram-1cf5a71e5a5c
https://instagram-engineering.com/sharding-ids-at-instagram-1cf5a71e5a5c
https://instagram-engineering.com/sharding-ids-at-instagram-1cf5a71e5a5c
https://instagram-engineering.com/sharding-ids-at-instagram-1cf5a71e5a5c
https://instagram-engineering.com/sharding-ids-at-instagram-1cf5a71e5a5c
https://instagram-engineering.com/sharding-ids-at-instagram-1cf5a71e5a5c
https://instagram-engineering.com/sharding-ids-at-instagram-1cf5a71e5a5c
https://instagram-engineering.com/sharding-ids-at-instagram-1cf5a71e5a5c
https://cdp.packtpub.com/postgresql_12_high_availability_cookbook__third_edition/wp-admin/post.php?post=353&action=edit#post_85

High Availability with Multi-Master Replication Chapter 13

[586]

How to do it...
Assuming pgha-proxy is the proxy server, and pgha1 and pgha2 are the BDR nodes,
follow these steps to make HAProxy more compatible with BDR:

Add the following to the global section of the haproxy.cfg file:1.

global
 stats socket /var/run/haproxy/sock level admin

Ensure that the bk_db section of the haproxy.cfg file looks like this:2.

backend bk_db
 option pgsql-check user haproxy_check

 stick-table type ip size 1
 stick on dst

 server bdr_chicago pgha1:5432 check
 server bdr_tokyo pgha2:5432 backup check

Trigger HAProxy to reload the configuration file with the following3.
command as a root-enabled user:

sudo systemctl reload haproxy

How it works...
This recipe actually performs two tasks. First, we enable stats socket in the
global section in admin mode so we can retrieve information from HAProxy and
send commands if necessary. We will be using this capability later, so it's a good time
to do this since we're modifying the configuration anyway.

The next thing we do essentially converts HAProxy into more of a stateful connection
arbitrator. We actually add only two things to the bk_db configuration to accomplish
this. The first is an IP-based stick-table that stores the HAProxy dst (destination)
field.

HAProxy stick tables determine where new connections will be directed when they
are established. The reason we used the destination rather than the source is that the
source is unreliable. It could be a legitimate application host system or a single
address if connections are filtered through a PgBouncer node.

High Availability with Multi-Master Replication Chapter 13

[587]

Using the destination gives us the capability of preferring one BDR node over
another. In this case, the conceit is that this proxy node is closer to the Chicago data
center than Tokyo, so we'd rather send application connections to the local database
than the remote location.

That is also the reason we added the backup tag to the server bdr_tokyo line. If
the state of HAProxy is ever reset, such as during a service restart, the Tokyo BDR
node will be considered only a backup node if the Chicago location is not reachable.

The stick table also performs another important role: semi-permanence. In the event
that the Chicago node goes offline and traffic is redirected to Tokyo, traffic remains in
that configuration even if the Chicago node returns. This is to prevent frequent and
unnecessary connection switching in the event a node is experiencing intermittent
failures or there is some kind of network communication issue.

Restarting HAProxy activates these settings and resets any other stateful information
that it may have been tracking. This gives our cluster a fresh starting point with our
preferred architecture.

There's more...
One of the reasons we enabled the HAProxy stats socket is so we can send commands
to the service. Some of these are diagnostic, while others are commands to manage
the backends themselves.

Rather than connecting and then using the inet_server_addr function to determine
which PostgreSQL node we're connecting to as we have done in the past, we can
simply ask HAProxy. If we have socat installed, all it takes is this command to show
the state of the stick table:

echo "show table bk_db" | socat /var/run/haproxy/sock -

Assuming that the HAProxy service was freshly restarted, we should see something
like this:

High Availability with Multi-Master Replication Chapter 13

[588]

HAProxy numbers server backends sequentially, so the server_id of 1 is the
expected result. More importantly, HAProxy also directly reports the server_name
that corresponds to the current traffic target, which shows that bdr_chicago is
where all new connections are being sent.

See also
For more details on HAProxy Unix Socket Commands, refer to the following: https:/
/cbonte.github. io/ haproxy- dconv/ 2. 0/management. html#9. 3.

Combining PgBouncer with HAProxy
HAProxy fulfills an important role in a highly available multi-master stack by
ensuring that we always reach one writable node in a manner that prevents server
flapping. Despite this, we have no way of politely managing traffic without another
component. PgBouncer is that missing piece.

Beyond the pooling functionality that PgBouncer provides, the elements we really
want to exploit are the RECONNECT and WAIT_CLOSE operations. By combining these
two operations, we can put a BDR node into maintenance mode and allow any
pending transactions to complete before working on the server.

This recipe will explain how to combine PgBouncer with HAProxy in a way that will
ensure that there is literally no interruption in application traffic.

Getting ready
In order to apply this recipe, we should begin with at least two functional BDR nodes
and a suitable HAProxy managing them. Please follow all recipes up to Creating an
additional BDR node and Configuring HAProxy for the multi-master approach before
continuing. We also recommend following the recipes in Chapter 4, Proxy and Pooling
Resources, that are related to PgBouncer, particularly Installing PgBouncer, Configuring
PgBouncer safely, and Enhancing PgBouncer authentication.

https://cbonte.github.io/haproxy-dconv/2.0/management.html#9.3
https://cbonte.github.io/haproxy-dconv/2.0/management.html#9.3
https://cbonte.github.io/haproxy-dconv/2.0/management.html#9.3
https://cbonte.github.io/haproxy-dconv/2.0/management.html#9.3
https://cbonte.github.io/haproxy-dconv/2.0/management.html#9.3
https://cbonte.github.io/haproxy-dconv/2.0/management.html#9.3
https://cbonte.github.io/haproxy-dconv/2.0/management.html#9.3
https://cbonte.github.io/haproxy-dconv/2.0/management.html#9.3
https://cbonte.github.io/haproxy-dconv/2.0/management.html#9.3
https://cbonte.github.io/haproxy-dconv/2.0/management.html#9.3
https://cbonte.github.io/haproxy-dconv/2.0/management.html#9.3
https://cbonte.github.io/haproxy-dconv/2.0/management.html#9.3
https://cbonte.github.io/haproxy-dconv/2.0/management.html#9.3
https://cbonte.github.io/haproxy-dconv/2.0/management.html#9.3
https://cbonte.github.io/haproxy-dconv/2.0/management.html#9.3
https://cbonte.github.io/haproxy-dconv/2.0/management.html#9.3
https://cbonte.github.io/haproxy-dconv/2.0/management.html#9.3
https://cbonte.github.io/haproxy-dconv/2.0/management.html#9.3
https://cbonte.github.io/haproxy-dconv/2.0/management.html#9.3
https://cbonte.github.io/haproxy-dconv/2.0/management.html#9.3
https://cbonte.github.io/haproxy-dconv/2.0/management.html#9.3
https://cbonte.github.io/haproxy-dconv/2.0/management.html#9.3
https://cdp.packtpub.com/postgresql_12_high_availability_cookbook__third_edition/wp-admin/post.php?post=353&action=edit#post_85

High Availability with Multi-Master Replication Chapter 13

[589]

How to do it...
These steps will assume that we've installed PgBouncer on pgha-proxy, the same
node as our HAProxy service. Follow these instructions to tightly couple PgBouncer
and HAProxy:

Alter the haproxy.cfg file so that the ft_postgresql section resembles1.
the following:

frontend ft_postgresql
 bind *:5433
 default_backend bk_db

Modify the [databases] section in the pgbouncer.ini file and ensure2.
that it contains the following line:

* = host=pgha-proxy port=5433

Modify the [pgbouncer] section in the pgbouncer.ini file and change3.
the following entry:

listen_port = 5432

Restart the HAProxy and PgBouncer services in the following order:4.

sudo systemctl restart haproxy
sudo systemctl restart pgbouncer

How it works...
This recipe is essentially a mild reconfiguration of both HAProxy and PgBouncer. We
start by reconfiguring HAProxy to bind to port 5433 rather than our earlier
recommendation of 5432. We do this because HAProxy isn't going to be the only
component between the application and the PostgreSQL nodes.

Next, we have to slightly modify two sections of the pgbouncer.ini file in order to
work with HAProxy. Rather than configuring which backend PgBouncer connects to,
we simply connect to the HAProxy node itself. This can either be the local server or
the hostname of the proxy server; either way, PgBouncer should no longer directly
contact any PostgreSQL nodes.

High Availability with Multi-Master Replication Chapter 13

[590]

The connection target should always be handled by HAProxy since it can
automatically detect which server is online and preferred based on the active stick
table. Now we no longer need to modify the pgbouncer.ini file and reload the
service any time we want to use one BDR node over another. We also need to change
the connection port so that it uses the same target that HAProxy is monitoring: 5433.

Then we move on to the port that PgBouncer itself binds to with the listen_port
parameter. By setting this to 5432, the pgha-proxy server becomes a transparent
component that masquerades as whichever BDR node is currently the preferred
target.

Finally, we restart the HAProxy and then the PgBouncer services—in that order—to
cleanly reserve the correct and expected ports. From this point on, any connection
through the proxy node should target the most appropriate BDR node based on
availability.

Given how simple this procedure is, we could have combined it
with the next recipe; however, we feel having a separate set of
instructions for node maintenance is better for reference purposes.

Performing a managed node switchover
HAProxy and PgBouncer are an ideal combination for performing high-availability
node maintenance in a multi-master context. The reason for this is related to the fact
HAProxy uses its detection mechanism to automatically direct traffic to any online
node. Since all BDR nodes are writable, this means that any switch from one node to
another will allow full application functionality. We can either allow this to happen
automatically or we can take direct control.

When we added PgBouncer, this gave us the added capability of transaction
management. Before we can stop a PostgreSQL node, it's considered polite to allow
any executing transactions to complete their work. By combining the RECONNECT and
WAIT_CLOSE operations of PgBouncer with the seamless redirection of HAProxy, we
can decommission any BDR node without the application ever knowing.

This recipe will explain how to operate PgBouncer with HAProxy to safely remove a
multi-master node from the cluster and how to return it to service.

High Availability with Multi-Master Replication Chapter 13

[591]

Getting ready
This recipe requires the full BDR, HAProxy, and PgBouncer stack. Please follow all
recipes necessary for completing the Combining PgBouncer with HAProxy recipe before
continuing.

How to do it...
These steps should be performed on the PgBouncer and HAProxy nodes, which will
be referred to as pgha-proxy. Follow these instructions to disable the bdr_chicago
node and then return it to service:

Begin by disabling the Chicago server within HAProxy:1.

echo "disable server bk_db/bdr_chicago" | \
 socat /var/run/haproxy/sock -

Then tell PgBouncer to reconnect after transactions are complete and to2.
wait until all connections have been reestablished:

psql -h pgha-proxy -U pgbouncer pgbouncer -c "RECONNECT"
psql -h pgha-proxy -U pgbouncer pgbouncer -c "WAIT_CLOSE"

Perform whatever maintenance is necessary on the Chicago node.3.
Execute the following HAProxy command to re-enable the Chicago server:4.

echo "enable server bk_db/bdr_chicago" | \
 socat /var/run/haproxy/sock -

How it works...
The focus of this recipe involves actively moving connections away from the
preferred Chicago node. This requires three commands that could easily be scripted.

We start by disabling the bdr_chicago server using the HAProxy socket. This has
the effect of preventing HAProxy from sending new connections to this server.
Existing connections are not terminated! This is important for the next steps.

High Availability with Multi-Master Replication Chapter 13

[592]

Then we issue a RECONNECT command to the pgbouncer pseudo database. This will
mark all existing connections as requiring reconnection as soon as the current
transaction has completed. Once the current transaction completes, the backend will
be discarded and a new connection will be established. Thanks to HAProxy, this will
be the Tokyo server.

Finally, we send a WAIT_CLOSE command to the pgbouncer pseudo database. This
lets us poll for when the pending transactions have all committed and new
connections have replaced the old ones. Once this happens, the Chicago node should
be completely idle and safe to maintain.

Once that process is complete, we are free to mangle the Chicago server as we desire.
When we want to reintroduce it to the cluster, we simply reverse the process and use
socat to send an enable command to HAProxy for the bdr_chicago server.

Thanks to our stick table, this will not cause a disruptive reconnection event by itself.
All connections will remain in Tokyo until we repeat the migration procedure on that
node as well.

There's more...
All of these socat commands are highly cumbersome since they require pipes and
the physical location of the command socket. Thankfully, there is a nonstandard
utility named haproxyctl that simplifies many of these operations. Debian
derivatives should have access to this within standard repositories, but Red-Hat-
related systems may need to visit the Git repository.

However it is obtained, this utility transforms the management of HAProxy into
something that's much easier to understand and perform:

haproxyctl disable server bk_db/bdr_chicago
haproxyctl enable server bk_db/bdr_chicago

We definitely feel that this is a major improvement! We only wish all Linux
distributions packaged it as readily as HAProxy, or that the HAProxy project itself
adopted it internally.

High Availability with Multi-Master Replication Chapter 13

[593]

See also
The HAProxyCTL tool really is very useful. Please use the following resource to learn
more or obtain it for unpackaged platforms: https:/ /github. com/flores/
haproxyctl.

Improving failover speed
Once we've completed a multi-master failover stack, there's really only one task
remaining to prove that it does as we claim. We need to both test the failover process
and also modify one or two settings to get it as low as possible, while also doing so
safely and avoiding disruptive flapping between nodes.

This recipe will explain what tests we can perform on our cluster to do this and which
settings we can modify to wring as much failover performance out of a multi-master
environment as possible.

Getting ready
This recipe requires the full BDR, HAProxy, and PgBouncer stack. Please follow all
recipes necessary for completing the Combining PgBouncer with HAProxy recipe before
continuing.

How to do it...
This recipe will assume that we have two PostgreSQL BDR servers as pgha1 and
pgha2 and a PgBouncer and HAProxy server as pgha-proxy. Follow these steps to
observe and improve cluster failover time:

Start the following command on pgha-proxy in a terminal window:1.

while [true]; do \
 psql -qAt -U postgres myapp \
 -c "SELECT inet_server_addr(), now()"; \
done

Open a terminal connection to both pgha1 and pgha2 with the rights to2.
start and stop the PostgreSQL service.

https://github.com/flores/haproxyctl
https://github.com/flores/haproxyctl
https://github.com/flores/haproxyctl
https://github.com/flores/haproxyctl
https://github.com/flores/haproxyctl
https://github.com/flores/haproxyctl
https://github.com/flores/haproxyctl
https://github.com/flores/haproxyctl
https://github.com/flores/haproxyctl
https://github.com/flores/haproxyctl

High Availability with Multi-Master Replication Chapter 13

[594]

Observe the IP address returned while step 1 operates, and stop3.
PostgreSQL on that server. Debian-related systems can use the following
command:

sudo systemctl stop postgresql@10-main

Red Hat systems will need to stop PostgreSQL in the following way:4.

sudo systemctl stop postgresql-10

Return to pgha-proxy and wait until the connections resume, and then5.
stop the loop with Ctrl + C.
Restart PostgreSQL on the system where it was stopped.6.
Modify the pgbouncer.ini configuration file on pgha-proxy, and modify7.
these two parameters:

server_connect_timeout = 1
server_login_retry = 1

Reload the PgBouncer service on pgha-proxy:8.

sudo systemctl reload pgbouncer

Repeat step 1 to step 6 and note the difference in failover times.9.

How it works...
The goal of this recipe is to observe how quickly PgBouncer will switch from one
server to another. HAProxy handles most of this work already, but PgBouncer has its
own series of checks and safeguards that could artificially increase the failover time
necessary to reassign server connections.

So the first thing we want to do is observe the process in action using the default
settings. If we start an endless loop that simply reports the IP address of the server
we're contacting, we accomplish two goals. The first is that we connect as quickly as
possible to PgBouncer so that we have a timeline, and we also learn the IP address of
the current BDR server, which should correspond to pgha1 or pgha2.

Then we will want a connection to both of our BDR servers, as we'll be stopping and
starting PostgreSQL at least once on each server. By stopping the PostgreSQL service,
HAProxy will quickly notice that it is offline and begin redirecting traffic to the other
node. PgBouncer, however, will require quite a bit longer.

High Availability with Multi-Master Replication Chapter 13

[595]

If we return to pgha-proxy after stopping PostgreSQL, we should see a long pause
where there is no output, as psql can no longer connect to a database. PgBouncer still
thinks its pool of connections is valid and doesn't really understand that HAProxy
has changed targets. This is what we observed during our local test:

Once we have these results, it's safe to start PostgreSQL on pgha1 or pgha2 so that
the cluster is fully operational again. We'll be repeating this process, so both nodes
should be online and functional before we continue.

Note that it took just over 15 seconds for PgBouncer to begin making new connections
to the currently active server. It turns out that there's a reason for this particular
result: PgBouncer has two parameters in pgbouncer.ini that control how it
interprets connection problems.

The first of these is server_connect_timeout, which we set to 1. Each new
connection to PgBouncer is assigned a connection from the pool. If this connection
does not respond, PgBouncer will try to establish a new one. The default time of 15
seconds means that the first failure requires 15 seconds before PgBouncer will connect
to the new target HAProxy that was chosen.

The second relevant parameter is server_login_retry, which we also set to 1. If
we've separated the authentication and pool systems as recommended in Chapter 4,
Proxy and Pooling Resources, then PgBouncer will attempt to validate the login with
PostgreSQL before assigning a backend. This is technically a separate timeout and is
treated differently than a connection timeout. As a result, we also need to set this to a
low value to minimize failover time.

Once we've changed these two attributes, we simply need to reload the PgBouncer
service so that it incorporates them. After that step completes, we can repeat the
entire process one more time. Since HAProxy has moved the connection target to the
other server, we'll need to stop PostgreSQL on that node instead.

High Availability with Multi-Master Replication Chapter 13

[596]

Following the same procedure as before, we should stop PostgreSQL on pgha1 or
pgha2, whichever is the active node. If we watch the psql loop on pgha-proxy, we
should again see when connections switch from one target to the other. This is what
we saw on our systems:

Now our failover process only required about 2.3 seconds, which is quite an
improvement, and far better than any promotion-based stack could deliver. It doesn't
matter whether we used repmgr, Patroni, or Pacemaker: there is no way to get a
failover this fast using conventional means.

Generally, we don't want to go lower than this anyway. HAProxy has various settings
that can make it more aggressive for marking a server as offline and switching traffic,
but even a short network blip can last longer than 2–3 seconds. If we switch BDR
nodes every time that happens, we may end up disrupting our database and actually
lower our overall uptime.

Performing a major version upgrade
online
One of the most sought-after features of a PostgreSQL high availability cluster is the
ability to upgrade between major versions while still remaining online. By this, we
mean upgrading from PostgreSQL 10 to 11, for instance.

Until the advent of logical replication, such a procedure was a literal impossibility.
Even though pg_upgrade was a vast improvement over the previous dump and
restore process, it still required a short outage to rebuild the database catalog and
copy or link the data files. In a time-sensitive environment, even such a truncated
outage of a few minutes can be disruptive and expensive.

A multi-master design changes literally everything in a way that's difficult to truly
believe. Because of the use of logical replication, it's possible to mix different
PostgreSQL versions within the same cluster. This makes upgrading between major
PostgreSQL versions nearly trivial.

High Availability with Multi-Master Replication Chapter 13

[597]

This recipe will demonstrate how the multi-master approach, and BDR in particular,
makes such an upgrade possible. Why do you think we wrote this chapter using the
older PostgreSQL 10 for all of the previous recipes?

Getting ready
This recipe requires the full BDR, HAProxy, and PgBouncer stack. Please follow all
recipes necessary for completing the Combining PgBouncer with HAProxy recipe before
continuing. We will also need a third PostgreSQL server with PostgreSQL 11
installed, rather than PostgreSQL 10.

How to do it...
For a cluster that includes PostgreSQL servers pgha1 and pgha2 and a pgha-proxy
proxy server, follow these steps on the server indicated to integrate pgha3 to replace
pgha1:

Bootstrap an empty PostgreSQL instance on pgha3 using initdb as the1.
postgres user:

initdb -D /db/pgdata

Copy the postgresql.conf and pg_hba.conf from pgha1 to pgha3.2.
Copy the .pgpass file from pgha1 to pgha3.3.
Follow the instructions in the Obtaining and installing BDR recipe, but4.
substitute 11 anywhere 10 is used. This applies to package installation
names, systemctl service names, and so on.
Dump all global objects on pgha1 from pgha3 as the postgres user:5.

pg_dumpall -g -h pgha1 -U bdr_user \
 -f global_objects.sql -d postgres

Import all global objects in pgha3 as the postgres user:6.

psql -f global_objects.sql

Create the empty myapp database as the postgres user on pgha3 for the7.
BDR setup:

createdb myapp

High Availability with Multi-Master Replication Chapter 13

[598]

Follow the Creating an additional BDR node recipe for pgha3.8.
Examine the state of the cluster with the following query on any node:9.

SELECT node_seq_id, node_id, node_name,
 node_group_name, peer_state_name
 FROM bdr.node_summary;

Modify the haproxy.cfg file on pgha-proxy and add a new entry for10.
pgha3. The bk_db section should now look like this:

backend bk_db
 option pgsql-check user haproxy_check

 stick-table type ip size 1
 stick on dst

 server bdr_chicago pgha1:5432 check
 server bdr_tokyo pgha2:5432 backup check
 server bdr_dubai pgha3:5432 check

Reload the haproxy service on pgha-proxy:11.

sudo systemctl reload haproxy

Follow the Performing a managed node switchover recipe, but do not re-enable12.
pgha1 on the last step.
Repeat all steps for any remaining version 10 nodes.13.

How it works...
At its heart, this recipe is really just a combination of three other recipes:

Obtaining and installing BDR
Creating an additional BDR node
Performing a managed node switchover

The beauty of the multi-master approach is that so long as the nodes can
communicate, we have completed our upgrade process by simply adding another
node of a higher version. We can either retain the node we're replacing or remove it
from the cluster as part of a full upgrade and replace procedure.

High Availability with Multi-Master Replication Chapter 13

[599]

As a result, the first few steps merely involve creating a fresh and empty PostgreSQL
instance on pgha3 to receive the data from our cluster. While doing this, we want to
copy any existing global objects from the existing cluster, such as users and roles. We
also want to copy any configuration files and the .pgpass file we've been
maintaining up to this point. It contains the bdr_user authentication information,
and potentially other important users as well.

Then we apply the Obtaining and installing BDR recipe on pgha3, but make sure that
you substitute the target version number where necessary. This means that packages
named postgresql-10 will be postgresql-11, and the systemctl service will be
named postgresql@11-main or postgresql-11 here as well. At the end of
everything, we should have an empty instance with all libraries installed, up and
running and ready for BDR.

At this point, we create the database for our app, which was myapp in our case. This is
where BDR should be activated to synchronize data from the cluster. We can do this
by simply following the Creating an additional BDR node recipe for the new pgha3
node. In our particular case, we named the new node after Dubai, to go along with
Chicago and Tokyo.

If we examine the cluster at this point, it should show the new node as expected. This
is what we see in our test system:

So far, none of this should be surprising. We added a new node and it shows up. The
next part of the recipe is to add the new node to HAProxy so that it is a full member
of the cluster. This only requires one more line to haproxy.cfg for the new pgha3
server. Note that we didn't use the backup keyword here. This is because our intent is
to replace pgha1 with pgha3 so that it won't be an alternative connection target from
pgha-proxy.

Once we reload the HAProxy configuration file, we merely need to move any existing
connections elsewhere in the cluster. We can do this by following the Performing a
managed node switchover recipe. This conveniently moves all traffic away from pgha1
to pgha3, and then we choose to leave pgha1 offline.

High Availability with Multi-Master Replication Chapter 13

[600]

At this point, we can either change our mind and restart pgha1 or go through further
steps to permanently remove it from the cluster, as if our upgrade were being
performed on a node-by-node basis.

Then we simply need to apply the same procedure over and over again for each node
in the cluster. Once we've incrementally replaced all PostgreSQL 10 nodes with new
version 11 nodes, our upgrade is complete. By invoking manual node switchovers
using PgBouncer, the application would never even realize an upgrade took place.

BDR will support PostgreSQL 12 by the time this book is published,
or a few months afterward, making it possible to upgrade to the
most recent version without any downtime at all.

There's more...
So how would we permanently remove pgha1 from the cluster so that pgha3 replaces
it entirely? We really only need to perform a handful of steps:

Remove pgha1 from haproxy.cfg and reload the HAProxy service.1.
Remove pgha1 from the cluster by executing the following command from2.
either pgha2 or pgha3:

SELECT bdr.part_node('chicago');

Purge the pgha1 metadata from the cluster by running the following SQL3.
on both pgha2 and pgha3:

SELECT bdr.drop_node('chicago');

Verify that the node has been removed with the following query:4.

SELECT node_seq_id, node_id, node_name,
 node_group_name, peer_state_name
 FROM bdr.node_summary;

The first step should be obvious. We don't want HAProxy to send traffic to a node
we're decommissioning.

High Availability with Multi-Master Replication Chapter 13

[601]

But then we part pgha1 using bdr.part_node, which in BDR parlance means that
we are removing the node from cluster communication. Any associated replication
slots are removed from all nodes, any background associated workers are stopped,
and so on. This only affects BDR and does not damage the contents of pgha1 in any
way. It also means that the node cannot ever rejoin the cluster. It will be treated as if it
has diverged because, without the replication slots, there's no way to know what data
it has compared to the contents of the other nodes.

If we check the status of the cluster at this point, it will look like this:

As we can see here, our Chicago node is marked as PARTED, which means that the
cluster still knows it exists, but will also refuse to communicate with it. This is
because a node may be parted even when it is offline, in case it was damaged, for
example. So in the rare case that an offline node returns to the cluster, it won't be
allowed to exchange data and potentially cause corruption.

Then if we really want to remove a node, we would run bdr.drop_node to purge
any remaining metadata from the cluster. The reason this is not done automatically
when the node is parted is because of the handshake process and quorum system.
Nodes across the cluster may be in up or down states and need to have matching
metadata. This means that purging node metadata must be a manual procedure, and
should be performed on each individual node. In this case, we're sincerely stating that
we want all references to the old node to be totally destroyed.

One benefit of dropping the node after parting it is that we can reuse the node name
later. If we decide to replace the Chicago node as a new entry, we may do so since it
will be joining as an empty database or through bdr_init_physical, just as any
other node did.

We want to emphasize that the old node cannot ever rejoin the
cluster once parted, so long as it contains data, although it would be
possible to drop and recreate the myapp database to reuse the
physical instance.

Generally, parted nodes are only good for reference purposes. Only
empty nodes or transformed physical replicas are allowed to join a
BDR cluster.

14
Data Distribution

Every business has the goal of being successful. The consequence of having a
successful business when there's a database involved is increasingly high volume.
This volume can be composed of query activity, data accumulation, or both. A
PostgreSQL database that is not prepared for vast amounts of data or transaction load
will slowly falter until the platform suffers.

Customers notice bad performance just as readily as outages. If our database is
struggling to service queries, we have three options:

Spend time optimizing the platform to reduce database interaction
Buy a more capable database server
Store data on several PostgreSQL servers

Indeed, we should probably always implement the first option in any case. Yet there
is a limit to what can be optimized. If the platform is using object-relational mapping
(ORM), then making query changes can be difficult because they are generated from
the framework. Frontend caching can prevent a vast amount of database accesses, but
we need to consider cold caches, refreshes, and write volume. Writes must touch the
database regardless of the cache state, so we need a solution that does not involve
optimization.

We can also buy a newer, bigger, and better server. We can add CPUs, memory, and
storage to a single expensive server until we saturate its available slots and ports. If
we've maximized the most expandable server currently manufactured, we have a
problem if the database volume continues to increase. What can we do?

Data Distribution Chapter 14

[603]

A good platform architect will see this potential disaster before it strikes. We must
make the assumption that our business and software will be successful beyond our
wildest dreams and act accordingly. If we were Facebook, Instagram, or Skype, we
would recognize the necessity of using multiple database servers early, enabling
horizontal growth. It just so happens that PostgreSQL has a rich interface for database
federation that we can leverage.

That will be the focus of this chapter. A highly available PostgreSQL cluster isn't only
online and responding now, it does so in the future as well. Whether we accomplish
horizontal distribution through assigned regions, associated groups, or at random, we
need the infrastructure in place to facilitate this type of access. We will use
PostgreSQL features to split up our data and ensure that the platform can run for
years to come for the millions of users that will follow.

The features we will discuss in this chapter rely on the PostgreSQL
foreign data wrapper, which wasn't introduced until PostgreSQL
9.3. We want to emphasize that at the time of the writing of the
current edition of this book, PostgreSQL 9.4 is the oldest
community-supported version.

We strongly recommend upgrading any old PostgreSQL clusters to
9.4 or higher when possible if you foresee a future need for widely
distributed data. They will not be able to implement many of the
ideas discussed here until then. This also ensures compatibility with
other techniques in this book that require logical replication.

In this chapter, we will learn how clever data management can increase uptime even
further. We will cover the following recipes in this chapter:

Identifying horizontal candidates
Setting up a foreign PostgreSQL server
Mapping a remote user
Creating a foreign table
Using a foreign table in a query
Optimizing foreign table access
Transforming foreign tables into local tables
Creating a scalable nextval replacement
Building a sharding API
Talking to the correct shard
Moving a shard to another server

Data Distribution Chapter 14

[604]

Identifying horizontal candidates
Before we can really decide how to spread our data across several database servers,
we need to find appropriate candidates. To do this, we should start at the database
level for databases that are extremely active. What qualifies as extremely active?
Databases that fit any of the following criteria are a good start:

The database experiences more than 10 million transactions per day
The database handles more than 100 million queries per day
The database writes more than 100 million tuples per day

Once we've chosen a database for horizontal scalability, we need to look at its tables
and decide which should be distributed. Tables that make good choices are those that
fit one or more of the following criteria:

Tables that contain more than 10 million rows
Tables that experience more than 1 million writes per day
Tables that are larger than 10 GB

This recipe will discuss some easy ways to find prospective tables for further study.

Getting ready
This recipe uses an existing database for concrete numbers. If you do not have one of
these, create it with pgbench using the following commands as the postgres user:

 createdb pgbench
 pgbench -i -s 200 pgbench

The -i flag initializes a new series of benchmark tables and the -s flag specifies the
scale of the data. We started with a scale of 200, so our largest table has 20 million
rows and is about 3 GB in size. Feel free to use a higher scale for demonstrative
purposes.

We will also be using the pg_stat_statements extension that we discussed in the
Checking the pg_stat_statements view recipe from Chapter 5, Troubleshooting. Make sure
that it's installed in every database with the following SQL statement:

CREATE EXTENSION pg_stat_statements;

Data Distribution Chapter 14

[605]

How to do it...
As the postgres user on a suitable PostgreSQL cluster, follow these steps to find
horizontal scalability candidates:

Execute the following query while connected to any database:1.

WITH db AS (
 SELECT d.datname AS database_name,
 d.xact_commit + d.xact_rollback AS transactions,
 d.tup_inserted + d.tup_updated
 + d.tup_deleted AS writes,
 sum(s.calls) AS queries
 FROM pg_stat_database d
 LEFT JOIN pg_stat_statements s ON (s.dbid = d.datid)
 WHERE d.datname NOT IN (
 'template0', 'template1', 'postgres'
)
 GROUP BY 1, 2, 3
)
SELECT *
 FROM db
 WHERE db.transactions > 10000000
 OR db.writes > 100000000
 OR db.queries > 100000000;

Create the following view in the candidate database with this SQL2.
statement:

CREATE OR REPLACE VIEW v_shard_candidates AS
 SELECT c.oid::regclass::text AS table_name,
 c.reltuples::NUMERIC AS num_rows,
 pg_total_relation_size(c.oid) / 1048576 AS size_mb,
 t.n_tup_ins + t.n_tup_upd + t.n_tup_del AS writes
 FROM pg_class c
 JOIN pg_namespace n ON (n.oid = c.relnamespace)
 JOIN pg_stat_user_tables t ON (t.relid = c.oid)
 WHERE n.nspname NOT IN ('pg_catalog',
 'information_schema')
 AND c.relkind = 'r'
 AND (c.reltuples > 10000000
 OR
 t.n_tup_ins + t.n_tup_upd + t.n_tup_del > 1000000
 OR
 pg_total_relation_size(c.oid) / 1048576 > 10240);

Data Distribution Chapter 14

[606]

Use the following query to check that the view matches the tables:3.

SELECT *
 FROM v_shard_candidates
 ORDER BY size_mb DESC;

How it works...
The first step checks the pg_stat_database system view. This provides various
global statistics about all databases in the PostgreSQL database cluster. This is a very
easy way to obtain a list of extremely active databases that we can break into smaller
pieces. The query gives us all three numbers that we want regarding database
statistics.

Our example database isn't quite busy enough, so we omitted the entire WHERE clause
to show the pgbench database statistics:

To get specific table measurements, we need to connect to any databases named by
the database activity query. Then we create a view that will always provide a list of
tables that match our three criteria. This will probably be used much more often than
the database query, so it's handy to have it defined at all times.

If you create the view in the template1 database, then all future
databases created within this cluster will automatically have the
view defined.

The view itself isn't too complicated but deserves some explanation. The
pg_total_relation_size function provides the size of the table, including all
indexes and TOAST data. This is important because the full impact of a table is much
more than the data it contains. The pg_total_relation_size function returns
results in bytes, so we transform it into megabytes so that it's more useful to us.

Data Distribution Chapter 14

[607]

We restrict relkind to r because this only matches relations, which is how
PostgreSQL identifies tables. The last thing we do is apply our three conditions for
candidate tables so that any criterion is enough for the table to appear on our list. The
last query simply invokes the view and orders the results nicely for us.

Our pgbench database contained a single matching table, as shown in the following:

We can see that the pgbench_accounts table contains 20000000 rows and is 2993
MB in size.

There's more...
Growth rates are also important. We recommend creating a scheduled task that
checks these results at the end of every day and either emails them to a responsible
DBA or saves them into a table for further examination. After the statistics are
checked and logged, call the following two functions to reset them to zero:

SELECT pg_stat_statements_reset();
SELECT pg_stat_reset();

Any tables that are growing quickly are even more critical to identify early.

See also
We used quite a few system views in this recipe. Please use the following URLs to
PostgreSQL documentation that provides further depth regarding statistic tables and
system catalogs:

The Statistics Collector:
https://www.postgresql.org/docs/current/monitoring-stats.html

pg_stat_statements:
https://www.postgresql.org/docs/current/pgstatstatements.html

pg_class:
https://www.postgresql.org/docs/current/catalog-pg-class.html

https://www.postgresql.org/docs/current/monitoring-stats.html
https://www.postgresql.org/docs/current/pgstatstatements.html
https://www.postgresql.org/docs/current/catalog-pg-class.html

Data Distribution Chapter 14

[608]

Setting up a foreign PostgreSQL server
The first requirement of data federation is the ability to connect to remote databases.
With this capability, we can read or write to a remote PostgreSQL database table as if
it were local. By doing so, certain query elements can be offloaded to the other server.
We can also access metadata that is stored in a central location that acts as a shared
resource for all database servers.

This recipe will describe how to create a foreign PostgreSQL server and will be the
basis for several of the upcoming sections.

Getting ready
Before we can use the PostgreSQL foreign data wrapper functionality, we need to add
the postgres_fdw extension to the database that will use it. Execute the following
SQL statement as the postgres user in the database that will be contacting foreign
servers (pgbench, for example):

 CREATE EXTENSION postgres_fdw;

How to do it...
For this recipe, we have two servers: pg-primary as our main data source and pg-
report as a reporting server. As with the previous recipe, we will use pgbench as
our sample database. Follow these steps to create a connection from pg-report to
pg-primary within pgbench.

Connect to pgbench on the pg-report PostgreSQL server as the1.
postgres user.
Execute the following SQL statement:2.

CREATE SERVER primary_db
 FOREIGN DATA WRAPPER postgres_fdw
 OPTIONS (host 'pg-primary', dbname 'pgbench');

Execute the following SQL statement to check for the foreign server entry:3.

SELECT srvname, srvoptions
 FROM pg_foreign_server;

Data Distribution Chapter 14

[609]

How it works...
We start by connecting to the database where we will be accessing remote data. As
our test database is pgbench, this is where the foreign server will reside.

The server creation itself consists of a server name, a foreign-data wrapper, and
options for the foreign-data wrapper. For the server name, we used primary_db to
keep things simple, but anything relatively descriptive is a good choice.

The CREATE SERVER statement can use several available foreign data wrappers, but
to contact a PostgreSQL server, we need postgres_fdw. This data wrapper will
accept many standard PostgreSQL connection parameters, including host, dbname,
port, and so on.

We only used the dbname and host settings because we don't want to force this
server connection to always use any specific user or password combination. This
allows us to map one or more local users to users on the remote database. When new
connections are created to the foreign server, each user will access the remote data as
themselves. This is a much more secure usage pattern.

Finally, we check the pg_foreign_server view to make sure that PostgreSQL
registered it with the options we specified. Once this is verified, we can move on to
the next step. Here is our test server's output:

There's more...
Foreign data servers have a couple more pieces of functionality that we should
discuss.

Data Distribution Chapter 14

[610]

Altering foreign servers
Assume for a moment that we need the definition of the primary_db foreign server
to change. For instance, what if we integrated PgBouncer to reduce user contention
and we need to use the non-default port of 6432? Here's how we would add the port
option:

ALTER SERVER primary_db OPTIONS (ADD port '5433');

If we need to change this again later, we would use the following syntax instead:

ALTER SERVER primary_db OPTIONS (SET port '5444');

We must admit that this difference in syntax is something of an oddity. To
PostgreSQL, SET only modifies attributes that were specified when we called CREATE
SERVER. We must use ADD to override a default, even though SET could have been
overloaded to perform both actions. This merely means that SET might fail with an
error, noting that the option isn't found. If this happens, simply use ADD instead.

Dropping foreign servers
If we no longer want a foreign server, we can drop it along with all dependent
objects. This use case is probably the only one that will work unless we simply never
referenced the foreign server at all. Use the following SQL statement as a database
superuser:

DROP SERVER primary_db CASCADE;

See also
The PostgreSQL foreign data wrapper has quite a bit of documentation available. The
CREATE SERVER statement has its own entry as well. Please refer to the following
URLs for more information:

postgres_fdw:
https://www.postgresql.org/docs/current/postgres-fdw.html

CREATE SERVER:
https://www.postgresql.org/docs/current/sql-createserver.html

pg_foreign_server:
https://www.postgresql.org/docs/current/catalog-pg-foreign-server
.html

https://www.postgresql.org/docs/current/postgres-fdw.html
https://www.postgresql.org/docs/current/sql-createserver.html
https://www.postgresql.org/docs/current/catalog-pg-foreign-server.html
https://www.postgresql.org/docs/current/catalog-pg-foreign-server.html

Data Distribution Chapter 14

[611]

Mapping a remote user
Database users and the permissions they are granted may vary between PostgreSQL
clusters. This is especially true if we do not directly administer the remote server. The
role of user mappings is to overcome this obstacle by linking a local database user
with a remote database user.

User mappings must be created for any local user that is going to utilize the remote
server. Furthermore, these mappings are only valid for the remote server for which
they're defined. This can be somewhat inconvenient in situations where all or most
local users will be accessing remote data; however, this is a small price to pay for the
security inherent in such a design.

In this recipe, we will create a user mapping to access our remote server.

Getting ready
As we will be using a foreign server in this recipe, please follow the Setting up a
foreign PostgreSQL server recipe in this chapter before proceeding.

How to do it...
For this recipe, we will continue to use two servers: pg-primary as our main data
source and pg-report as a reporting server. We will keep pgbench as our sample
database. Follow these steps to create and map a user from pg-report to pg-
primary within pgbench:

Execute the following SQL statement on both PostgreSQL servers as the1.
postgres user:

CREATE USER bench_user WITH PASSWORD 'testing';

Connect to pgbench on the pg-report PostgreSQL server as the2.
postgres user.
Execute the following SQL statement to create the mapping:3.

CREATE USER MAPPING FOR bench_user
 SERVER primary_db
 OPTIONS (user 'bench_user', password 'testing');

Data Distribution Chapter 14

[612]

Execute the following SQL statement to check for the foreign server entry:4.

SELECT u.rolname AS user_name,
 s.srvname AS server_name,
 um.umoptions AS map_options
 FROM pg_user_mapping um
 JOIN pg_authid u ON (u.oid = um.umuser)
 JOIN pg_foreign_server s ON (s.oid = um.umserver);

How it works...
The first thing we need is a user that we know exists on both servers. While we can
link a local user with any remote user, this is easiest when they have the same name.
This prevents confusion or connection problems in the future. If we are linking to a
remote server that we don't administer, then this may not be possible. For now,
however, we have control over both systems, so we can create the bench_user safely
with a simple password for testing purposes.

Next, we create the user mapping itself. As with the server, we need to fill in three
sections: a local user name, the server to use, and options for the mapping. We just
created bench_user, so this will be our local user that we will associate with the
mapping. Then we specify the primary_db server that we created in the previous
recipe. Finally, we set the options for the mapping, which consists of the name of the
remote user and their password.

The password option is required for non-superusers. This is not
noted in the documentation for foreign servers, user mappings, or
foreign tables. The PostgreSQL developers included it as a security
precaution to prevent mapped users from accessing unauthorized
entries in .pgpass files or other automated password entry systems.

As a last step, we want to verify that PostgreSQL is storing the user mapping with the
options we specified. It's always good to visualize database changes whenever
possible, if only to put our minds at ease. The query we use gets its data from
pg_user_mapping, though we do perform a couple of joins to transform meaningless
IDs into useful information. Here's how it looks on our test server:

Data Distribution Chapter 14

[613]

As we can see, the bench_user is properly associated with the primary_db server
and shows the correct remote user mapping name and associated password.

There's more...
As we said in the introduction, every user must have a mapping if they are to access
the remote data. This is rather onerous to do manually, so we can use PostgreSQL
anonymous blocks to make things easier. The following SQL statement, for instance,
will map all local users under the assumption that the remote system has the same
users:

DO $$
DECLARE
 user_name VARCHAR;
BEGIN
 FOR user_name IN
 SELECT usename FROM pg_user
 LOOP
 EXECUTE
 'CREATE USER MAPPING FOR ' || user_name || '
 SERVER primary_db
 OPTIONS (user ' || quote_literal(user_name) || ')';
 END LOOP;
END;
$$ LANGUAGE plpgsql;

Feel free to modify the SELECT phrase that we used to only target certain groups of
users. This isn't the only way PostgreSQL anonymous blocks make maintenance
easier. Learn more about them
at https://www.postgresql.org/docs/current/sql-do.html.

Keep in mind that you will need to either use a non-password
authentication system in pg_hba.conf on the remote server or
simply use trust authentication. By not specifying passwords,
PostgreSQL will refuse to check any local password source, making
authentication impossible otherwise.

https://www.postgresql.org/docs/current/sql-do.html

Data Distribution Chapter 14

[614]

See also
The CREATE USER MAPPING statement has good documentation in the PostgreSQL
manual, as does the pg_user_mapping view. Please refer to the following URLs for
more information:

CREATE USER MAPPING:
https://www.postgresql.org/docs/current/sql-createusermapping.htm
l

pg_user_mapping:
https://www.postgresql.org/docs/current/catalog-pg-user-mapping.h
tml

Creating a foreign table
The last step in initializing foreign data access is the creation of the foreign table itself.
While doing so, we are limited to specifying column names, types, default values, and
whether or not each column is nullable. This table skeleton helps the PostgreSQL
query planner interact with the remote data as efficiently as possible.

In this recipe, we will create a foreign table and make it ready for use by our mapped
user.

Getting ready
As we will be using a foreign server and a user mapping in this recipe, please follow
all the previous recipes before proceeding.

How to do it...
For this recipe, we will perform all actions on the pg-report PostgreSQL server in
the pgbench database. Follow these steps as the postgres user to create a table in
pg-report that refers to a table on pg-primary within pgbench:

Create a user mapping for the postgres user with the following SQL1.
statement:

CREATE USER MAPPING FOR postgres
 SERVER primary_db
 OPTIONS (user 'postgres', password 'changeme');

https://www.postgresql.org/docs/current/sql-createusermapping.html
https://www.postgresql.org/docs/current/sql-createusermapping.html
https://www.postgresql.org/docs/current/catalog-pg-user-mapping.html
https://www.postgresql.org/docs/current/catalog-pg-user-mapping.html

Data Distribution Chapter 14

[615]

Drop any existing pgbench_accounts table with the following SQL2.
statement:

DROP TABLE IF EXISTS pgbench_accounts;

Execute the following SQL statement to create the foreign table:3.

CREATE FOREIGN TABLE pgbench_accounts
(
 aid INTEGER NOT NULL,
 bid INTEGER,
 abalance INTEGER,
 filler CHAR(84)
)
SERVER primary_db
OPTIONS (table_name 'pgbench_accounts');

Analyze pgbench_accounts to create local statistics:4.

ANALYZE pgbench_accounts;

Grant bench_user access to pgbench_accounts with the following SQL5.
statement on both pg-primary and pg-report:

GRANT ALL ON pgbench_accounts TO bench_user;

Describe the contents of the pgbench_accounts table with psql:6.

psql pgbench -c '\d pgbench_accounts'

How it works...
In the first step, we create a user mapping for the postgres user. This is primarily a
security step; remote tables should be as locked down as possible under the
assumption that their contents are untrusted or otherwise sensitive. This allows us to
create the foreign table as the postgres database superuser, preventing any
unauthorized use of the remote server.

Next, we drop the local copy of the pgbench_accounts table on the pg-report
server. This is both the largest table created by pgbench and the table we identified as
a potential candidate for remote access of some kind. We drop it because we are
going to replace it with a foreign table that refers to the same table on pg-primary.

Data Distribution Chapter 14

[616]

To create the foreign table itself, we can look at the table definition of
pgbench_accounts and ignore things such as primary keys, indexes, and other
types of constraint. By issuing a CREATE FOREIGN TABLE statement instead of
CREATE TABLE, PostgreSQL looks for some additional table-specification settings. As
with user mappings, we set the SERVER to primary_db. For OPTIONS, we simply
need to name the remote table that this foreign table represents: pgbench_accounts.

The next step is not strictly necessary, but one that we strongly recommend taking.
PostgreSQL knows very little about the contents of the remote database or the table
we've just created. The PostgreSQL query planner makes much better decisions when
it is fully informed of the table contents. By running ANALYZE on
pgbench_accounts, PostgreSQL fetches enough data to perform statistical analysis
and stores that information in pg_stats for query-planning purposes.

Then the bench_user user mapping we created needs specific access to be granted
before it can use the new table. If we simply granted access locally, then the remote
bench_user would still not be able to use the table, so we would receive an error by
doing so. Any grants for foreign tables must be equivalent on both of the servers
involved.

Finally, we use psql to examine the foreign table structure. The following is what
PostgreSQL sees when a foreign table is used in a query. Our test server provided the
following output:

PostgreSQL makes it fairly clear that this is a Foreign table. The FDW options
column lists any column options that we might have attached, though it's empty in
this case. We can see that this table resides on the primary_db server and that it
corresponds to the pgbench_accounts table on that system. All of this allows us to
see that this isn't a regular table; it also allows us to see where its data is actually
stored.

Data Distribution Chapter 14

[617]

There's more...
While creating foreign tables is a good start, there are a couple more tricks remaining
for this PostgreSQL feature.

Creating all tables for a foreign schema
This recipe provides an example of the creation of a single foreign table, though in an
actual production system, this process could be quite cumbersome. Do we really want
to create dozens or even hundreds of tables one by one? In PostgreSQL 9.5 and later,
we can actually import the entire foreign schema.

The test data we're using is the default set of tables created by the pgbench tool. This
means that all of the tables exist in the public schema. With this knowledge, we
could substitute this command for the CREATE FOREIGN TABLE step in our recipe:

IMPORT FOREIGN SCHEMA public
 FROM SERVER primary_db
 INTO public;

Of course, importing the public schema is not a recommended practice. Yet it's clear
that we can utilize this syntax to greatly simplify mirroring remote schemas from
other PostgreSQL systems. Also note that we can import from one schema but place
the new foreign tables somewhere else entirely. While it's good practice to maintain
consistent schema names across a cluster, there are scenarios where we can benefit
from renaming them.

Consider a series of PostgreSQL servers that each hosts one or more shards. We could
link the servers together using foreign tables and name remote schemas based on the
shards they reference. In essence, we would have access to all of our data from any
node. How's that for high availability?

Dropping foreign tables
PostgreSQL enforces foreign table statements everywhere. For instance, let's try to
drop this table using a regular DROP TABLE statement:

DROP TABLE pgbench_accounts;

Data Distribution Chapter 14

[618]

The server would quickly respond with the following output:

Similarly, if we checked the relkind column in the pg_class catalog table, its type
would be listed as f for foreign table instead of r for relation. PostgreSQL saves
several hints and other breadcrumbs so that there is never any question as to the
nature of foreign tables. Doing so prevents bugs and can even produce better
performance, as remote access is taken into consideration before it selects the most
efficient query plan. The more you use foreign tables, the more of these reminders
you'll encounter.

See also
Refer to the following links for more details:

CREATE FOREIGN TABLE:
https://www.postgresql.org/docs/current/sql-createforeigntable.ht
ml

IMPORT FOREIGN SCHEMA:
https://www.postgresql.org/docs/current/sql-importforeignschema.h
tml

Using a foreign table in a query
Foreign tables exist as empty shells on the local database, lending merely their
structure for query-planning and data-fetching purposes. The foreign-data wrapper
transforms data requests into something the remote server can understand and
presents it in a way that PostgreSQL will recognize.

As we're using the postgres_fdw wrapper, the situation is simplified. A PostgreSQL
server should have less trouble communicating with another PostgreSQL server than
an Oracle server, for instance. Though this means less transformation, there are still
limitations to what functionality a foreign table might provide compared to a local
table.

In this recipe, we'll use a foreign table in a few scenarios and examine how it
performs in each. We'll also explore some of the common caveats involved in foreign
table access.

https://www.postgresql.org/docs/current/sql-createforeigntable.html
https://www.postgresql.org/docs/current/sql-createforeigntable.html
https://www.postgresql.org/docs/current/sql-importforeignschema.html
https://www.postgresql.org/docs/current/sql-importforeignschema.html

Data Distribution Chapter 14

[619]

Getting ready
As we will be using the pgbench_accounts foreign table in this recipe, please
complete all of the previous recipes before proceeding.

How to do it...
All queries in this recipe should be performed by the bench_user mapped user in
the pgbench database on the pg-report PostgreSQL server. Follow these steps:

Execute the following simple query to view a remote query plan:1.

EXPLAIN VERBOSE
SELECT aid, bid, abalance
 FROM pgbench_accounts
 WHERE aid BETWEEN 500000 AND 500004;

Execute the following SQL statement to examine how PostgreSQL handles2.
remote aggregates:

EXPLAIN VERBOSE
SELECT sum(abalance)
 FROM pgbench_accounts
 WHERE aid BETWEEN 500000 AND 500004;

Execute the following SQL statement to see a query plan involving a JOIN:3.

EXPLAIN VERBOSE
SELECT a2.aid, a2.bid, a2.abalance
 FROM pgbench_accounts a1
 JOIN pgbench_accounts a2 USING (aid)
 WHERE a1.aid BETWEEN 500000 AND 500004;

How it works...
The first query is very simple. We only fetch the five inclusive records from 500000
to 500004. We chose these values because they are so far into the table that scanning
to find them would be very slow. This encourages the remote system to use the index
on the aid column, and we can easily tell if it does not.

Data Distribution Chapter 14

[620]

As we used EXPLAIN VERBOSE, PostgreSQL reports the query that it would have
performed on the remote server as well. This is how the full explanation looks on our
test server:

PostgreSQL tries to send WHERE clauses to the remote server whenever possible. We
can see from the Remote SQL lines that, aside from some inconsequential
transformations, it sent the entire query to the remote server unaltered.

In the next query, we made a very minor change that should have caused the remote
server to aggregate the abalance column as a sum and send it back to us. This will
work with all PostgreSQL foreign data wrappers, but only versions 10 and later will
properly forward aggregates for much-improved performance. Again, let's see the
actual output on our test system:

The Remote SQL that PostgreSQL sent to the remote server includes the sum
aggregate. Versions of PostgreSQL older than 10 were not capable of doing this,
meaning they would need to fetch all records to the local system and aggregate them
there. This is probably OK for such a small amount of data, but consider the overhead
that would be involved if we requested a sum of one million rows. This alone is a
great reason to upgrade!

What happens when we try to join two foreign tables? We only have the
pgbench_accounts table, so we joined it with itself. The query still only asks for five
rows, and both of its inputs are on the remote server, so we might expect the remote
server to perform the join.

Data Distribution Chapter 14

[621]

This expectation would be wrong. To illustrate, here's the EXPLAIN output for the last
query on our test server:

Don't worry too much about most of this output; just direct your attention to both of
the Remote SQL sections. First, note that there are two of these sections. This means
that our single query was transformed into two remote queries. Next, note that one of
the queries has no WHERE clause and is fetching all 200 million of the rows in
pgbench_accounts.

The foreign-data wrapper is literal in its interpretation of our WHERE clause. We
supplied one WHERE clause for the first instance of pgbench_accounts, and in
normal circumstances, this would be enough. Unfortunately, search conditions are
not transitive where foreign tables are concerned. One of the queries returns five rows
as we expected, while the other must process 200 million rows to find the matching
aid values for those five rows.

Foreign tables are very powerful, but they must be used judiciously. Failing to
observe the previous lessons will result in the same scenarios, or worse.

There's more...
While there are a number of notable caveats regarding foreign table usage, the
situation is not entirely catastrophic. Foreign data wrappers continue to change as the
developers work on them, and we can take advantage of those upgrades as they
appear.

Data Distribution Chapter 14

[622]

Explaining strange planner decisions
There's actually a very simple reason PostgreSQL fails to meet our expectations in the
last query example. The answer lies in the structure of foreign tables themselves.
When we defined the pgbench_accounts table, we specified four column names.
PostgreSQL expects to see one or more of those column names within the SELECT
clause in every interaction with the foreign table.

In versions of PostgreSQL older than 10, the second query example changes the
SELECT clause to read sum(abalance). While the abalance column is part of our
foreign table definition, sum is not. A functional transformation of any kind renders
the column mappings moot, and PostgreSQL must apply them after data is retrieved
from the remote server. Newer versions of the foreign-data wrapper optimize this,
but only for recognized aggregate functions.

The third query example performs badly for a different reason. If we ignore the
problem with the non-transitive WHERE clause, there's still another issue. We could
add another WHERE clause for the second instance of pgbench_accounts in that
query, but as the EXPLAIN output shows, we would still be executing two queries on
the remote server instead of one.

This is due to how PostgreSQL currently handles foreign data. If we imagine the
postgres_fdw wrapper as a worker carrying a large box, every box requires a new
worker. In this scenario, every foreign table is a box, and every box is separate. Each
time PostgreSQL encounters a foreign table, it dispatches a worker with their box and
waits for the results. As JOIN is a distinctly separate action, we get two workers and
two boxes.

There are, of course, exceptions to this behavior. With the introduction of PostgreSQL
9.6, certain combined operations become possible. Subsequent versions have
improved query pushdown behavior even further.

Improvements in PostgreSQL 9.6
Two things that changed in PostgreSQL 9.6 are both associated with deferring certain
actions to the remote server. In PostgreSQL 9.6, JOIN and ORDER BY operations are
actually transmitted to the remote system, though there are some restrictions:

Joined foreign tables exist on the same SERVER. In our case, this would be
primary_db.

Data Distribution Chapter 14

[623]

The remotely joined tables must be distinct. Our third query example was a
self-join, which is unfortunately not supported by the pushdown logic.
We don't want to sort and join at the same time.

Basically, this means that we could create pgbench_branches as a foreign table and
joining it with pgbench_accounts would be done by the remote system. We could
also sort the results of a query from a single table, but not if we join them. In that case,
PostgreSQL would sort the results from each table independently and again revert to
performing the join locally.

In effect, PostgreSQL 9.6 could walk and chew gum, but not simultaneously. Still, this
is a vast improvement over older versions that could accomplish neither task.

Improvements in PostgreSQL 10
PostgreSQL 10 improves things even further by adding the aforementioned ability to
send aggregate functions to the remote server. This applies both to built-in aggregates
and even user-supplied versions; however, the aggregate must exist on both servers
to function properly.

Improvements in PostgreSQL 11
PostgreSQL 11 also improves foreign data wrappers by adding the ability to push
aggregates down, even in the case of partitioned tables. The new declarative
partitions in PostgreSQL 10 were missing several features, and one of them was
proper handling by some elements of the foreign-data wrapper logic. That is no
longer the case.

Optimizing foreign table access
If you read the end of the previous recipe, you might assume that we don't
recommend that you use foreign tables at all. However, we would like to reassure
you that foreign tables are not all doom and gloom. To prove it, we're going to use a
disarmingly simple technique to optimize them: views.

Data Distribution Chapter 14

[624]

It's true that PostgreSQL foreign-data wrappers cannot always combine queries for
multiple tables on the same server. Provided we have access to the remote server, we
can rectify this situation by creating a view to encapsulate the core of the query we
want to perform. We can do this because PostgreSQL only knows the name of remote
objects, not their composition. We can take advantage of this and use views to force
remote joins.

In this recipe, we will describe how to use a remote view in place of a foreign table.

Getting ready
As we will be using the pgbench_accounts foreign table in this recipe, please
complete all the previous recipes before proceeding.

How to do it...
For this recipe, we will continue to use the pg-primary and pg-report database
servers. All queries should be performed by the postgres user in the pgbench
database. Follow these steps to enforce better remote JOIN performance:

Create a view for the basis of the join on pg-primary:1.

CREATE OR REPLACE VIEW v_pgbench_accounts_self_join AS
SELECT a1.aid, a2.bid, a2.abalance
 FROM pgbench_accounts a1
 JOIN pgbench_accounts a2 USING (aid)
 ORDER BY a1.aid DESC;

Grant access to bench_user on the new view on pg-primary:2.

GRANT SELECT ON v_pgbench_accounts_self_join
 TO bench_user;

Create a foreign table that references the view on pg-report:3.

CREATE FOREIGN TABLE pgbench_accounts_self
(
 aid INTEGER NOT NULL,
 bid INTEGER,
 abalance INTEGER
)
SERVER primary_db
OPTIONS (table_name 'v_pgbench_accounts_self_join');

Data Distribution Chapter 14

[625]

Grant access to bench_user on the foreign table on pg-report:4.

GRANT SELECT ON pgbench_accounts_self
 TO bench_user;

Examine the new query plan on pg-report with the following SQL5.
statement:

EXPLAIN VERBOSE
SELECT aid, bid, abalance
 FROM pgbench_accounts_self
 WHERE aid BETWEEN 500000 AND 500004;

How it works...
For the first step, we create a view named v_pgbench_accounts_self_join on pg-
primary that uses the same columns and the same self-join we attempted in the
previous recipe. Then, we grant access to bench_user so that the view is usable on
the pg-report server.

Next, we create a foreign table just as we did in the Creating a foreign table recipe, but
this time, we name the local foreign table pgbench_accounts_self even though the
view has a very different name. This should illustrate that names do not have to
necessarily match and that PostgreSQL doesn't care whether the remote object is a
table or a view. Once again, we grant access to the foreign table to the mapped
bench_user user and our work is complete.

Before we finish this exercise, let's look at a verbose EXPLAIN that uses the foreign
table. Here's the output from our test system:

This is much better! Now, we can see that the WHERE clause is being sent to restrict
output from the v_pgbench_accounts_self_join view. As this view is evaluated
on the pg-primary server, the join happens there as well. We have successfully
combined two foreign tables into one. For users of PostgreSQL 9.6, which already
provides this functionality, our view includes an ORDER BY clause that is also
applied. We've successfully given PostgreSQL the ability to walk and chew
bubblegum at the same time.

Data Distribution Chapter 14

[626]

There's more...
As powerful as this technique might be, its utility is limited by the fact that we're
using views to circumvent normal table access methods. This means that our foreign
table now has the same limitations as views. Unless the view is very simple—which
would defeat the purpose of using a view like this—we cannot perform any of the
following actions:

We cannot insert into a foreign table view
We cannot update records in a foreign table view
We cannot delete from a foreign table view

However, there is one thing that we can do with a foreign table view that we can't do
with a local view. As foreign tables can be analyzed to gather statistics, we can
analyze foreign table views as well. This produces local statistics that may include
correlations that PostgreSQL would normally not find.

In the current state of the PostgreSQL foreign data architecture, this might not mean
much. Yet as techniques and the underlying code improve, what is now merely an
interesting fluke might become an advanced optimization approach. Only time will
tell.

Transforming foreign tables into local
tables
Remote tables provide an easy and convenient way to access remote data in a
PostgreSQL database. This is good for highly available systems, as a properly
compartmentalized system invites segmented maintenance. Yet, remote data comes
with a rather drastic cost regarding data fetching and handling overhead.

PostgreSQL 9.3 introduced the internal support of materialized views. Traditionally,
materialized views merely instantiate a view into a physical structure to avoid
expensive or complicated query plans and result sets. They also make it possible to
index or optimize a view in ways that are not normally possible. Now, imagine what
we can do with such a structure when utilizing foreign tables.

In this recipe, we will explore how materialized views can drastically increase the
local data-access capability within a PostgreSQL database.

Data Distribution Chapter 14

[627]

Getting ready
As we will be using the pgbench_accounts foreign table in this recipe, please
complete all recipes up to Creating a foreign table before proceeding.

How to do it...
For this recipe, we will focus on the pg-report database server. All queries should
be performed by the postgres user in the pgbench database. Follow these steps to
create and use a materialized view:

Rename the pgbench_accounts foreign table with the following SQL1.
statement:

ALTER FOREIGN TABLE pgbench_accounts
 RENAME TO remote_accounts;

Use the following SQL statement to create a materialized view:2.

CREATE MATERIALIZED VIEW pgbench_accounts AS
SELECT *
 FROM remote_accounts
 WHERE bid = 5
 WITH DATA;

Add an index to pgbench_accounts to make it usable:3.

CREATE INDEX idx_pgbench_accounts_aid
 ON pgbench_accounts (aid);

Execute the following SQL statement to produce a simple query plan:4.

EXPLAIN ANALYZE
 SELECT *
 FROM pgbench_accounts
 WHERE aid BETWEEN 400001 AND 400050;

Data Distribution Chapter 14

[628]

How it works...
In this recipe, we begin by moving the existing pgbench_accounts table out of the
way. The intent, in this case, is to prove that we can treat a materialized view in a
similar way to a local table. To do this, we want to create it with the same name that
the foreign table currently uses. This means that pgbench_accounts
becomes remote_accounts and better illustrates its relationship with the foreign
server as a bonus.

Next, we create the actual materialized view. We could define all of the columns
manually, but in this case, we want it to simply mirror the remote table. Think of this
as object-oriented programming: we have a class named pgbench_remote, and we
will instantiate it as pgbench_accounts.

Note, however, that we added a WHERE clause to restrict the results to rows where
bid is 5. For our particular set of test data, this represents only 100,000 rows of the
total 20 million. We did this to illustrate that we could have a central repository of
data and maintain only a small subset on each local server for better scalability
purposes. By finishing the statement with WITH DATA, PostgreSQL executes the query
and stores the result in our new materialized view. If we had omitted this, the view
would be empty and unusable.

At this point, we created an index on the aid column. This reflects the primary key
that exists on the remote table, and it means that any local queries that expect it will
perform normally. To prove this, our final step is to perform a basic query that
retrieves 50 rows from the table and examines the path that PostgreSQL used to
execute our request.

Our test system produced the following output:

We can note a few important things from this EXPLAIN output. First, our results are
being supplied by the idx_pgbench_accounts_aid index we created. The query
runtime is reported as 0.276 ms, which is roughly one-fortieth of a millisecond. This
is the performance we would expect from an indexed retrieval with such a small
amount of rows.

Data Distribution Chapter 14

[629]

There's more...
There are a few unfortunate aspects of materialized views that we must consider:

The contents are completely static
They cannot be the target of INSERT, UPDATE, or DELETE statements
Refreshing their contents may be slow

By static, we mean that the rows stored in the materialized view are the result of the
SELECT statement that we used to define it. It would be a great way to bootstrap a
reporting table of some kind, but then we encounter the next item in our list: no
modifications. A natural consequence of this is that we can't build manual
maintenance procedures designed to top off the contents. This means that we must
refresh the contents of the materialized view all at once with the following statement:

REFRESH MATERIALIZED VIEW pgbench_accounts;

If the query that builds the output is slow and we have several materialized views
like it, then maintenance times could increase dramatically. Some contributed
materialized view architectures do not have this limitation, and it's entirely possible
that future versions of PostgreSQL will also improve this aspect. For now, though,
we'll want to limit our materialized view definitions to queries that are very well
optimized.

Refreshing a materialized view requires an exclusive lock because
its entire contents are replaced during the refresh. Be wary of
queries or batch jobs that depend on these views, as they may be
temporarily blocked until the refresh is complete. PostgreSQL
versions 9.4 and beyond can prevent this blocking by using the
following syntax:

REFRESH MATERIALIZED VIEW CONCURRENTLY
pgbench_accounts;

Data Distribution Chapter 14

[630]

See also
The PostgreSQL documentation does a pretty good job of explaining materialized
views. Please refer to the following resources to learn more:

CREATE MATERIALIZED VIEW:
https://www.postgresql.org/docs/current/sql-creatematerializedvie
w.html

REFRESH MATERIALIZED VIEW:
https://www.postgresql.org/docs/current/sql-refreshmaterializedvi
ew.html

You can also build your own materialized view library. Before PostgreSQL 9.3
incorporated the feature, users commonly applied the techniques described at
https://tech.jonathangardner. net/ wiki/ PostgreSQL/ Materialized_ Views.

Creating a scalable nextval replacement
Now that we have all of the tools to communicate between disparate servers, we can
start building a very rudimentary API to generate ID values that are distinct across a
pool of database servers. By doing so, database-level function calls are available to the
application and encourage data distribution, otherwise known as application-level
sharding. This, in turn, increases our scalability and availability, as it will take far
more than a single database outage to truly derail the application.

A company that did this early in the development cycle of its platform is Instagram.
In fact, they're very open about the process they used, as described in their blog post
at https://instagram-engineering.com/sharding-ids-at-
instagram-1cf5a71e5a5c.

The idea they implemented may seem complicated but is actually deceptively simple.
Here's a basic breakdown of what they were trying to create:

The system should accommodate several thousand logical shards
Generated SERIAL IDs should be unique across all logical shards
The ID generator should remain viable for several decades at minimum
The ID generator must handle extremely high insert traffic

https://www.postgresql.org/docs/current/sql-creatematerializedview.html
https://www.postgresql.org/docs/current/sql-creatematerializedview.html
https://www.postgresql.org/docs/current/sql-refreshmaterializedview.html
https://www.postgresql.org/docs/current/sql-refreshmaterializedview.html
https://tech.jonathangardner.net/wiki/PostgreSQL/Materialized_Views
https://tech.jonathangardner.net/wiki/PostgreSQL/Materialized_Views
https://tech.jonathangardner.net/wiki/PostgreSQL/Materialized_Views
https://tech.jonathangardner.net/wiki/PostgreSQL/Materialized_Views
https://tech.jonathangardner.net/wiki/PostgreSQL/Materialized_Views
https://tech.jonathangardner.net/wiki/PostgreSQL/Materialized_Views
https://tech.jonathangardner.net/wiki/PostgreSQL/Materialized_Views
https://tech.jonathangardner.net/wiki/PostgreSQL/Materialized_Views
https://tech.jonathangardner.net/wiki/PostgreSQL/Materialized_Views
https://tech.jonathangardner.net/wiki/PostgreSQL/Materialized_Views
https://tech.jonathangardner.net/wiki/PostgreSQL/Materialized_Views
https://tech.jonathangardner.net/wiki/PostgreSQL/Materialized_Views
https://tech.jonathangardner.net/wiki/PostgreSQL/Materialized_Views
https://tech.jonathangardner.net/wiki/PostgreSQL/Materialized_Views
https://tech.jonathangardner.net/wiki/PostgreSQL/Materialized_Views
https://tech.jonathangardner.net/wiki/PostgreSQL/Materialized_Views
https://tech.jonathangardner.net/wiki/PostgreSQL/Materialized_Views
https://instagram-engineering.com/sharding-ids-at-instagram-1cf5a71e5a5c
https://instagram-engineering.com/sharding-ids-at-instagram-1cf5a71e5a5c
https://instagram-engineering.com/sharding-ids-at-instagram-1cf5a71e5a5c

Data Distribution Chapter 14

[631]

For us to accomplish these goals in the same manner as Instagram, we can utilize a
standard 64-bit BIGINT column type separated into three sections:

Bits 1–42 represent the number of milliseconds since an arbitrary epoch.
This is viable for roughly 140 years.
Bits 43–53 represent the logical shard number for up to 2,048 shards.
Bits 54–64 are used for the actual generated ID for up to 2,048 ID values.

This may not seem like much, but this means that we can generate 2,048 IDs per 2,048
shards per millisecond for almost 140 years. Taken to its extreme, this is over 4 billion
IDs per second. It's possible that there are systems that have higher insert volumes
than this, but we can't think of any.

In this recipe, we'll build such a function using PostgreSQL's plpgsql language and
explain how each part works.

Getting ready
We will actually be starting from scratch in this recipe and will no longer use the
pgbench tables. Instead, we want to start with new shell tables designed specifically
for sharding. Execute the following SQL statements as the postgres user on an
empty database to get ready:

CREATE SCHEMA myapp;
CREATE TABLE myapp.msg_log (
 id SERIAL PRIMARY KEY,
 message TEXT NOT NULL
);

We will be using this schema and table for the rest of this chapter.

Data Distribution Chapter 14

[632]

How to do it...
Execute the following SQL statements as the postgres user to create a function that
can generate IDs as we described:

Create the schema to hold shard-related functionality:1.

CREATE SCHEMA shard;

Create a sequence to act as an ID generator:2.

CREATE SEQUENCE shard.table_id_seq;

Create a function that will generate IDs:3.

CREATE OR REPLACE FUNCTION shard.next_unique_id(
 shard_id INT
)
RETURNS BIGINT AS
$BODY$
DECLARE
 epoch DATE := '2020-01-01';
 epoch_ms BIGINT;
 now_ms BIGINT;
 next_id BIGINT;
BEGIN
 epoch_ms := floor(
 extract(EPOCH FROM epoch) * 1000
);
 now_ms := floor(
 extract(EPOCH FROM clock_timestamp()) * 1000
);
 next_id := (now_ms - epoch_ms) << 22
 | (shard_id << 11)
 | (nextval('shard.table_id_seq') % 2048);
 RETURN next_id;
END;
$BODY$ LANGUAGE plpgsql;

Execute the following query to generate an ID and view its contents:4.

SELECT (newval & 2047) AS id_value,
 (newval >> 11) & 2047 AS shard_id,
 (newval >> 22) / 1000 / 3600 / 24 AS days
 FROM (SELECT shard.next_unique_id(15)
 AS newval) nv;

Data Distribution Chapter 14

[633]

How it works...
Our first two steps aren't all that interesting; we merely create the shard schema and
a sequence named table_id_seq for the IDs needed for value increments. Our
design saves on implementation complexity by using the same sequence for every
table within a shard, but this is not a requirement.

The bulk of the work is defined in the next_unique_id function we create. We start
the function with the epoch variable, set to the beginning of 2020. This is an arbitrary
starting date and could have been any date in the past. The important thing to
remember is that this value is used as a baseline for how long the IDs will remain
unique.

Next, we have the following section of code:

epoch_ms = floor(
 extract(EPOCH FROM epoch) * 1000
);

The extract PostgreSQL function will obtain the date in any format we want. By
passing EPOCH, we get the date as the number of seconds since January 1, 1970, with a
decimal representing the number of milliseconds as well. If we multiply this by 1000,
then we're left with the number of milliseconds since the beginning of 1970 to our
chosen epoch of 2020-01-01.

We repeat this process for now_ms, but this time, we use the clock_timestamp
function instead of a static date. The clock_timestamp function always returns a
timestamp obtained from the execution time of the function call. This is important
because functions such as now will return the start time of the surrounding
transaction. If we used now, then we could theoretically experience ID collisions after
using more than 2,048 IDs.

In this block of code, we calculate the ID we return as a fully unique value:

next_id = (now_ms - epoch_ms) << 22
 | (shard_id << 11)
 | (nextval('shard.table_id_seq') % 2048);

Remember what we said about using the full size of a 64-bit integer. We begin with
the time that has elapsed since our epoch and shift that value to the left by 22 bits.
This left shift makes room for the shard ID and the generated ID, both of which
should be between 0 and 2047.

Data Distribution Chapter 14

[634]

Finally, we append an ID obtained from the sequence that we created at the
beginning and modulo by 2,048 to ensure that we don't overflow the 11 bits we're
using for this portion. In the end, we are left with an encoded ID with all of the
attributes that we discussed at the beginning of this recipe.

If we call our new function once or twice, we should see it generate ID values;
however, to prove it's doing what we claim, we need to reverse the encoding process
to see what the ID actually contains. On our test system, one call of next_unique_id
produces the following output:

We called the function and passed it 15 as the shard number to use, and after
decoding the ID, we can see that it's unchanged. If we called this function several
times in a row, we would see the id_value increment as well. We discarded a lot of
information in our rush to decode the number of days since our epoch date, so we
only see that 11 days have elapsed. In reality, that portion of the ID represents days,
hours, minutes, seconds, and milliseconds since the beginning of 2020.

If this looks similar to the timeshard global sequence type used by
BDR as described in Chapter 13, High Availability with Multi-Master,
then that's no coincidence. This is really an excellent way to
guarantee no sequence collisions in clusters containing multiple
writable nodes.

There's more...
If we wanted to use our new ID generator in a table, then we could do it very simply.
Assuming that we already have our myapp.msg_log table, we could create a new
table based on it with the following SQL statement:

CREATE SCHEMA myapp1;
CREATE TABLE myapp1.msg_log (
 LIKE myapp.msg_log INCLUDING INDEXES
);

ALTER TABLE myapp1.msg_log

Data Distribution Chapter 14

[635]

ALTER id TYPE BIGINT,
ALTER id SET DEFAULT shard.next_unique_id(1);

This structure would correspond with shard number 1. All we need to do is modify
the id column so that it can store our 64-bit integer and then set the default value to
invoke our next_unique_id function. By doing so, we can create up to 2,048
schemas holding tables like this, and every generated ID will be unique across all of
them.

Building a sharding API
When building a horizontally scalable system, we need a database library that
facilitates its use. Without this, ad hoc tables can derail the whole process by
producing a heterogeneous environment incompatible with a horizontal architecture.
We need consistency if we also want reliability.

In the previous recipe, we discussed the necessary components of a function that can
generate unique IDs across thousands of logical shards. This will form the core of our
API, as it ensures that ID collisions are avoided within our application; however,
what about the rest? How do we manage each shard? How do we add tables to the
application? How can we automate as much management as possible to encourage
adhering to the API?

This recipe will attempt to answer these questions and many more by having you
create the necessary functions to manage a shard-driven system.

Getting ready
This recipe depends on the work we performed in the Creating a scalable nextval
replacement recipe. Please review that part of this chapter before continuing.

How to do it...
Follow these steps to build a complete database-sharding API:

Learn one of the PostgreSQL procedural languages.1.
Create a table to track shard-configuration settings.2.
Write one or more functions to manage shard-configuration settings.3.
Create a table to track shard tables and source schemas.4.

Data Distribution Chapter 14

[636]

Write a next_unique_id equivalent function.5.
Write one or more functions to control which tables are managed.6.
Write one or more functions to build or alter each shard's structure based7.
on the tables it contains.
Create a table to track logical-to-physical shard mappings.8.
Write one or more functions to manage logical-to-physical shard mappings.9.
Define a role to grant sufficient permissions to users tasked with using all10.
of the preceding functions.

How it works...
Before we discuss these steps, we readily admit that there is a lot of work involved
here, and most of it is beyond the scope of this book. However, this is the minimum
list of components necessary for a functional shard API. Fortunately, we only have to
build this once!

The first step is to learn one of the procedural languages that PostgreSQL provides for
database interaction. The core PostgreSQL server comes with PL/pgSQL, PL/Tcl,
PL/Perl, and PL/Python as possible choices, though there are many more, such as
Java, Ruby, or even PHP. Each of these has different performance characteristics and
varying levels of difficulty, so choose whichever you are most comfortable with or
whichever produces the best results. We used the pgSQL language for our
next_unique_id function, but this doesn't mean you must follow our lead.

Next, we need a table and associated functions to manage shard-configuration
settings; perhaps this means a table named shard_config and two functions named
get_shard_config and set_shard_config. We use functions so that we can
protect the boundaries of our 64-bit integer or to prevent changes to settings that
would adversely affect the cluster of shards. Like any API, we should never trust user
input.

After this, we need a table and associated functions to manage the architecture of our
shards. For instance, the table of API-managed tables might be called shard_table.
Then, we might create register_base_table to add tables to shard management
and unregister_base_table to remove them.

Data Distribution Chapter 14

[637]

Then we might add create_next_shard to increment the active shard counter and
create an empty schema based on this new value. We might also want
create_id_function to generate an optimized shard-specific ID generation
function whenever a new shard is added. We'll probably need init_shard_tables
to create table copies of all the base tables we've registered, which will also modify
each copy to use our unique ID function.

Beyond managing the actual structure of the shards, we also need to control who can
invoke all of these special functions, especially since there are so many of them. So it
would be a good idea to create shard_admin role that we can grant to users or
applications that need to invoke the API routines. Perhaps we may even want more
granularity than this, and have a separate role for viewing shard metadata as well,
among others.

Do we need more? Possibly. This core of functions provides the minimal structure
necessary to create and maintain a working sharded database, but few systems exist
with only minimal implementations.

There's more...
Due to the inherent complexity, there are a lot of sharding resources available that are
beyond the scope of this book. Let's discuss some of them.

shard_manager extension
As we said earlier, building a fully functional API is beyond the scope of this book.
However, we have written a reference implementation named Shard Manager,
available on the PostgreSQL Extension Network (PGXN)
at https://pgxn.org/dist/shard_manager/.

Shard Manager creates all of the configuration tables and functions that we discussed
in this recipe, along with a couple of extras. Furthermore, it operates as a PostgreSQL
extension—for example, to create a schema named shard to store the API and
configuration tables, we would use the following SQL statements:

CREATE SCHEMA shard;
CREATE EXTENSION shard_manager WITH SCHEMA shard;

Documentation is currently somewhat sparse, but there is enough to install and use
the provided functions, as well as some basic usage examples. Feel free to contribute
to this documentation if you come up with fixes or enhancements!

https://pgxn.org/dist/shard_manager/

Data Distribution Chapter 14

[638]

Citus
While the shard_manager extension is more of a functional demonstration
prototype, Citus is a fully functional data distribution extension. Though it does limit
some PostgreSQL features by necessity, it transparently shards and distributes data
among configured nodes. It is available from Citus Data at https:/ /www. citusdata.
com/product/community.

Each table can be configured to store data on multiple nodes as well for some overlap
in case a node is lost. The proprietary enterprise version even has a feature for
rebalancing shards in case new nodes are added or removed. It's a well-known
solution for scenarios where it's neither appropriate to produce a homegrown shard
management suite or otherwise too complicated.

Postgres-XL
While building a sharding API can be educational in some ways, if we're willing to
embrace a bit of vendor lock-in, there's an alternative. Postgres-XL is a fork of core
PostgreSQL that incorporates a lot of sharding concepts by distributing data to
separately allocated data nodes. It is currently maintained primarily by 2ndQuadrant,
and is available at https://www.postgres-xl.org/.

As with CitusDB, some features are restricted, but they are fewer in number.
Generally, each node acts with nearly the full feature set of a standard PostgreSQL 10
installation. The main drawback to using this platform is that it requires a lot of
manual setup: data nodes, coordinator nodes, and GTM nodes, along with GTM
proxies, must all be installed and configured properly.

BDR AutoScale
Since we used BDR rather extensively in Chapter 13, High Availability with Multi-
Master Replication, we figured we'd share this here as well. The BDR development
roadmap currently includes a feature named AutoScale. The idea, in this case, is to
leverage the multinode nature of a BDR cluster and also integrate sharding concepts,
as we discussed in this chapter.

Early planning suggests that AutoScale will leverage the automated management of
PostgreSQL 10-style declarative partitions by including multinode node affinity. This
means that writing data to one multi-master node can distribute that information
among a subset of the existing cluster within partition tables for better scaling and
maintenance purposes.

https://www.citusdata.com/product/community
https://www.citusdata.com/product/community
https://www.citusdata.com/product/community
https://www.citusdata.com/product/community
https://www.citusdata.com/product/community
https://www.citusdata.com/product/community
https://www.citusdata.com/product/community
https://www.citusdata.com/product/community
https://www.citusdata.com/product/community
https://www.citusdata.com/product/community
https://www.citusdata.com/product/community
https://www.citusdata.com/product/community
https://www.postgres-xl.org/
https://www.postgres-xl.org/
https://www.postgres-xl.org/
https://www.postgres-xl.org/

Data Distribution Chapter 14

[639]

See also
As we suggested that you learn one of the PostgreSQL procedural languages, here is a
list of links to several popular choices:

PL/pgSQL: https://www.postgresql.org/docs/current/plpgsql.html
PL/Perl: https:/ /www. postgresql. org/ docs/ current/ plperl. html

PL/Python: https://www.postgresql.org/docs/current/plpython.html
PL/Java: https:/ / tada. github. io/pljava/

PL/PHP: https:/ /public. commandprompt. com/ projects/ plphp

PL/R: https:/ /joeconway. com/ plr

PL/V8: https://github.com/plv8/plv8

Talking to the correct shard
In this section, we have chosen to represent database shards as PostgreSQL schema
names. If our basic schema is named myapp, shard 1 would be myapp1, shard 15
would be myapp15, and so on. This is what we call the logical shard name.

Beyond this, shards should be independent of each other so that they can be relocated
to another PostgreSQL server arbitrarily; however, if shards can be moved at will,
how do we find them? In much the same way that LVM has a physical drive, logical
shards have a corresponding physical shard. The physical shard is the server where
the logical shard currently resides, as shown in the following diagram:

https://www.postgresql.org/docs/current/plpgsql.html
https://www.postgresql.org/docs/current/plperl.html
https://www.postgresql.org/docs/current/plperl.html
https://www.postgresql.org/docs/current/plperl.html
https://www.postgresql.org/docs/current/plperl.html
https://www.postgresql.org/docs/current/plperl.html
https://www.postgresql.org/docs/current/plperl.html
https://www.postgresql.org/docs/current/plperl.html
https://www.postgresql.org/docs/current/plperl.html
https://www.postgresql.org/docs/current/plperl.html
https://www.postgresql.org/docs/current/plperl.html
https://www.postgresql.org/docs/current/plperl.html
https://www.postgresql.org/docs/current/plperl.html
https://www.postgresql.org/docs/current/plperl.html
https://www.postgresql.org/docs/current/plperl.html
https://www.postgresql.org/docs/current/plperl.html
https://www.postgresql.org/docs/current/plperl.html
https://www.postgresql.org/docs/current/plperl.html
https://www.postgresql.org/docs/current/plpython.html
https://tada.github.io/pljava/
https://tada.github.io/pljava/
https://tada.github.io/pljava/
https://tada.github.io/pljava/
https://tada.github.io/pljava/
https://tada.github.io/pljava/
https://tada.github.io/pljava/
https://tada.github.io/pljava/
https://tada.github.io/pljava/
https://tada.github.io/pljava/
https://tada.github.io/pljava/
https://tada.github.io/pljava/
https://public.commandprompt.com/projects/plphp
https://public.commandprompt.com/projects/plphp
https://public.commandprompt.com/projects/plphp
https://public.commandprompt.com/projects/plphp
https://public.commandprompt.com/projects/plphp
https://public.commandprompt.com/projects/plphp
https://public.commandprompt.com/projects/plphp
https://public.commandprompt.com/projects/plphp
https://public.commandprompt.com/projects/plphp
https://public.commandprompt.com/projects/plphp
https://public.commandprompt.com/projects/plphp
https://public.commandprompt.com/projects/plphp
https://public.commandprompt.com/projects/plphp
https://joeconway.com/plr
https://joeconway.com/plr
https://joeconway.com/plr
https://joeconway.com/plr
https://joeconway.com/plr
https://joeconway.com/plr
https://joeconway.com/plr
https://joeconway.com/plr
https://joeconway.com/plr
https://github.com/plv8/plv8

Data Distribution Chapter 14

[640]

Elements such as clients, products, and vendors are shared resources that all
PostgreSQL shard servers can use. This is where our foreign tables would be
beneficial. The logical shards (schemas) myapp1 through myapp4 all reside on PG
Server 1, and myapp5 through to myapp8 all live on PG Server 2. In this architecture,
we have eight logical shards distributed to two physical servers.

In this recipe, we will explore various techniques to preserve and decode the logical-
to-physical mapping necessary to interact with the correct data.

Getting ready
This recipe depends on the work we performed in the Creating a scalable nextval
replacement recipe. Please review that part of this chapter before continuing.

How to do it...
All SQL statements in this recipe should be executed by the postgres database user.
Follow these steps to build a table to map logical shards to their physical locations:

Execute the following SQL statement to create the shard-mapping table:1.

CREATE TABLE shard.shard_map
(
 map_id SERIAL PRIMARY KEY,
 shard_id INT NOT NULL,
 source_schema VARCHAR NOT NULL,
 shard_schema VARCHAR NOT NULL,
 server_name VARCHAR NOT NULL,
 UNIQUE (shard_id, source_schema)
);

Create a shard and register it with the shard map using the following SQL:2.

CREATE SCHEMA myapp1;
INSERT INTO shard.shard_map
 (shard_id, source_schema, shard_schema, server_name)
VALUES (1, 'myapp', 'myapp1', 'pg-primary');

Data Distribution Chapter 14

[641]

Repeat the previous step to create a second shard:3.

CREATE SCHEMA myapp2;
INSERT INTO shard.shard_map
 (shard_id, source_schema, shard_schema, server_name)
VALUES (2, 'myapp', 'myapp2', 'pg-primary');

View the current status of our shard mappings:4.

SELECT * FROM shard.shard_map;

How it works...
If you wish, you can view this as another primer on preparing a shard-management
API. Our first step towards this goal is to create a table to store the logical-to-physical
location mappings necessary to locate a specific shard. At minimum, this table needs
to track the shard ID (shard_id), the skeleton schema the shard is based on
(source_schema), the shard name itself (shard_schema), and the server where the
shard resides (server_name).

Some may wonder where the shard_map table should reside.
There's a reason we introduced the shared PostgreSQL server in the
introduction to this recipe: metadata should be stored on that central
server. A combination of foreign tables and materialized views will
ensure that all servers have immediate access to its contents if
necessary.

Alternatively, a multi-master cluster could ensure that the shared
resource tables exist on all shard servers directly.

Next, we create and save the location of two new shards for illustrative purposes. For
our shard names, we chose to simply append the shard name to the source schema
name. In addition, we created both shards on the pg-primary server that we used in
various chapters of this book. This kind of naming scheme makes it simple to locate
and interact with any particular shard in our cluster.

Data Distribution Chapter 14

[642]

The final step is to visualize the data that we stored regarding our logical-to-physical
mapping. On our test server, the mappings are as follows:

Note that the shard_map table is designed in such a way that we can create mappings
for any number of schemas. Any schema can have all 2,048 shards, and we can find
the physical location for any of them based on this table.

There's more...
While the mapping is an important step, we still need two things to really make use
of the mapping. Let's see what they are.

Keeping things fast by creating a cache
In modern applications, it is becoming increasingly common to inject a secondary
cache layer between the application and database. This layer stores commonly
retrieved data in memory for immediate use. This layer might be composed of
memcached or a NoSQL database, such as CouchDB, MongoDB, or Redis.

Once such a layer exists, it's important that the shard_map table is one of the first
tables copied there. It has very few rows (a maximum of 2,048 is tiny in the database
world), and storing it in memory removes the relatively expensive round-trip to the
database. With this mapping in memory, the application will always and immediately
know which physical server contains the data it seeks for a specific shard.

Choosing an application data to map logical shard
How does an application know which shard it should use in any particular situation?
This answer requires one more modification to the table structure that our application
uses. Our last decision involves adding a shard_id column to one table. This table
can be anything, but should represent some defining aspect that can centralize related
data.

Data Distribution Chapter 14

[643]

A good choice for this is a customer table. In an order system, all interaction is
eventually driven by customer activity. If we assign a customer a specific shard ID, all
of their order data will be stored in that shard. As the application likely has the
customer row information available at all times, it should also know the associated
shard, and therefore where the data physically resides.

As a consequence, customer data should also be stored in the shared PostgreSQL
instance that other shard servers can see. Customer data is relatively sparse compared
to high volumes of order, image, or other types of activity that a customer can
generate. If the customer table is too large to cache directly, we could create a
customer_shard table in the shared database instead.

Moving a shard to another server
The final important aspect of database sharding that we are going to explore in this
chapter is reorganization. The purpose of allocating a large number of logical shards
is to prepare for future expansion. If we started with 2,048 shards, all of which are
currently mapped to a single server, we will eventually want to move some of them
elsewhere.

The easiest way to do this is to leverage PostgreSQL replication. Essentially, we will
create a streaming replica for the server that we want to split and drop the schemas
that we don't need on each server. Consider a database with two shards. Our end goal
is to produce something like the following:

On each server, we simply drop the schema indicated by the dashed box. This way,
we still have two shards, and only the location of myapp2 has changed—its data
remains unharmed.

This recipe will cover the process described here, making it easy to move shards to a
new physical location.

Data Distribution Chapter 14

[644]

Getting ready
This recipe depends on the work we performed in the Creating a scalable nextval
replacement and Talking to the right shard recipes. Please go through these recipes
before continuing.

How to do it...
In addition to our usual pg-primary PostgreSQL server, we will also be using pg-
primary2 for this recipe. Database data will remain in the /db/pgdata directory. A
server named pg-shared will play the role of our shared database as well. Follow
these steps as the postgres system user and postgres database user where
indicated:

Use pg_basebackup executed from the pg-primary2 server to clone the1.
data from pg-primary:

pg_basebackup -h pg-primary -D /db/pgdata

Create a file named recovery.conf in /db/pgdata on pg-primary22.
with the following contents:

standby_mode = 'on'
primary_conninfo = 'host=pg-primary user=postgres'

Start PostgreSQL on pg-primary2:3.

sudo systemctl start postgresql@12-main

When ready to split the shards, promote pg-primary2 to a writable state:4.

pg_ctl -D /db/pgdata promote

Execute the following SQL statement on pg-shared to change the shard5.
mapping:

UPDATE shard.shard_map
 SET server_name = 'pg-primary2'
 WHERE shard_schema = 'myapp2';

Refresh any cached copies of the shard_map table.6.

Data Distribution Chapter 14

[645]

Drop the myapp2 schema on pg-primary:7.

DROP SCHEMA myapp2;

Drop the myapp1 schema on pg-primary2:8.

DROP SCHEMA myapp1;

How it works...
We've already discussed the process of creating streaming replicas several times
throughout this book, so we've elected to use a shortened version here. Our primary
goal here is to create a full database clone of pg-primary on pg-primary2. This
clone should continue to receive data from pg-primary until we are ready to split up
our application data. When database activity is low or we can temporarily disable
write activity to the myapp2 schema, we can promote pg-primary2 so that it acts as a
writable server.

Once pg-primary2 is writable, we execute an UPDATE statement on the shard_map
table in pg-shared. Then we either refresh or invalidate cached copies of that table
so that they are rebuilt. From this point on, all new requests to interact with data
stored in the myapp2 shard will be directed to the pg-primary2 server.

With the myapp2 shard's physical location changed and the caches updated, it should
be safe to drop the unneeded schemas on each PostgreSQL server. The pg-primary
server is only in charge of the myapp1 shard now, so we can drop myapp2. Similarly,
the pg-primary2 server is only handling the myapp2, so we can drop myapp1.

If our data was evenly distributed, each PostgreSQL server would now be half the
size of what pg-primary originally was. Furthermore, database load, IOPS and TPS
requirements, and other metrics would also be scaled down. By doubling our server
count, we've cut our per-server hardware requirements in half, and have thereby
increased our query response times and availability.

Data Distribution Chapter 14

[646]

There's more...
Though our example used only two schema shards, this process scales well to any
number of preallocated segments. It's surprisingly easy to relocate schemas using the
method described here, and there's no reason that we must limit ourselves to splitting
one server into only two. The only real limitation is that we can't effectively
recombine servers once they've been split this way.

There is, however, one important caveat that we must explain. This type of database
sharding works best when the application is designed to accommodate it. In fact, it's
even better to create all of the logical shards upfront, before data is inserted into any
shard. Why is this?

Consider an existing schema with existing data. Foreign keys, customers, and
customer activity have been accumulating for years. Redistributing this data into all
of the necessary tables of our shard schemas will be extremely difficult and will likely
be an entirely manual migration process.

This same problem exists if we only start our application with a small number of
shards instead of allocating the maximum from the beginning. If we only have 4 out
of 2,048 active shards and they're already on 4 physical servers, we will need to create
new shards and manually distribute the data once again.

However, we can also start with all 2,048 shards at the beginning. From the very start,
customers are assigned to shards, and data is inserted into the proper shard. Even if
all shards start on one server, we can expand using the method described in this
recipe. If we want to immediately grow to four servers, we merely create three clones
and evenly distribute the shards to each system.

It's important to advocate and impose this architecture early in systems that are likely
to require high transactional volume; otherwise, the path to horizontal scalability and
the availability associated with it will be a long and hard one.

15
Zero-downtime Upgrades

A major version upgrade is the ultimate test of high availability for a database cluster
service such as PostgreSQL. This process has advanced drastically since the early
days. Consider the procedure required for some older versions:

6.5 – 8.2: dump and restore all databases
8.3 – 8.4: pg_migrator
9.0: pg_upgrade

Beginning with PostgreSQL 9.4 and the addition of logical replication, it became
possible to leverage this process to upgrade to any future version without stopping
the database service. However, the steps necessary to complete such an upgrade are
non-trivial and utilize tools that are not officially provided by the standard
community release.

That makes it important for us to explain how zero-downtime upgrades work.
Perhaps more often than many will admit, upgrades are postponed to avoid costly
downtime for extremely active database clusters with no clear maintenance window.
Sometimes, this can last for years, and it can even risk running on a version of
PostgreSQL that's no longer supported. At that point, the entire cluster is running on
borrowed time. One unpatched bug could spell the end of everything, forcing a less-
than-ideal rushed upgrade.

So how do we upgrade this way? The basic process is this:

Allocate a separate cluster architecture using the higher-version software.1.
Copy all data from the existing cluster.2.
Verify that the data matches as expected.3.
Switch connections to the new cluster.4.

Each of those steps appears simple, but includes a lot of preliminary work, allocation,
configuration, waiting, and so on. The goal of this chapter is to break down each of
those elements into one or more recipes to complete the entire upgrade successfully.

Zero-downtime Upgrades Chapter 15

[648]

This is one of the final pieces for keeping a PostgreSQL cluster online through any
possible action, and as we'll find out as the chapter progresses, it can even apply to
more than upgrades. Taken as a whole, this chapter will free any Database
Administrator (DBA) from worrying about their high-throughput database being
offline, even for the dreaded major version upgrade!

In this chapter, we will learn how to upgrade a cluster while remaining fully online.
We will cover the following recipes in this chapter:

Preparing upgrade requirements
Remembering PgBouncer and pglogical
Creating a publication set
Handling sequences
Bootstrapping the target cluster
Starting the subscription
Monitoring progress
Switching targets
Cleaning everything up

Preparing upgrade requirements
Upgrading between major PostgreSQL versions without taking things offline is not a
trivial exercise. There are many steps necessary to prepare, and we must integrate
supplementary software to complete the process.

We've covered all the tools necessary to complete this maneuver through the course
of the book, but that doesn't mean we know quite how to combine them, or what is
involved. This recipe will make sure that we ask ourselves several questions about
the PostgreSQL cluster, both to get ready for the upgrade and to ensure we have
everything we'll need.

Let's get started.

Getting ready
Given the nature of this kind of process, it may be better to think of it as a data
migration. As a result, we'll be asking several questions in the following instructions.
Some of these may require acquiring hardware resources or expanding existing
capacity. Please ensure these resources are available before continuing.

Zero-downtime Upgrades Chapter 15

[649]

How to do it…
Ask and answer these questions about the cluster being upgraded:

How many nodes are in the existing cluster?1.
How much data is represented within each node of the cluster?2.
Do we have enough equivalent hardware to reproduce every node?3.
If not, can we subsist on a smaller server count for any duration?4.
If not, is there sufficient storage capacity on existing cluster nodes to host5.
two copies of the data?
Do applications currently communicate through a proxy layer?6.
If not, would it be difficult to introduce a proxy layer?7.

How it works…
There should be an obvious theme to these questions. As we suggested in the
beginning of this recipe, we will need a lot of resources to perform this task. Why?
Consider this diagram for a company with a somewhat large PostgreSQL cluster:

If every one of these nodes is in use while we are using the version 10 cluster, we
must determine how many version 11 nodes we actually need.

The easiest way to proceed is to simply reproduce every node, as in the preceding
diagram. In some cases, such as with an extremely busy online transactional
processing (OLTP) cluster, it might be the only way. By migrating onto a cluster with
the same node count, we know we have sufficient capacity to support the application
stack. Backups of the second cluster will be up to date as soon as we activate it.

Zero-downtime Upgrades Chapter 15

[650]

But what if we can't acquire so many extra servers? In that case, we could perhaps
upgrade a cluster using a node configuration like that shown in the following
diagram:

By using three fewer nodes, we could reduce the expense and required resources for
the upgrade. Can we remove even more? If the platform can survive on diminished
capacity, we could repurpose the deprecated version 10 nodes once the upgrade is
complete. It would make the upgrade take longer and require more steps, but we
would save resources.

Many modern clusters use Virtual Machines (VMs) for their
PostgreSQL clusters. If possible, try to allocate the same machine
specification for the replacement VMs. We can then recycle the old
VMs back into the pool once we finish the upgrade.

Perhaps we do not have an easy way to produce double the number of servers for a
one-time upgrade. If that's the case, will our current hardware be sufficient? If we
happen to have more than twice the required storage space to host our data, we can
simply set up a second PostgreSQL instance on each server.

These extra instances will need to monitor a different TCP port and exist in a different
directory, but they can reduce expenses significantly. If we know the size of our data
on disk, we can decide to use the same hardware if we have more than twice as much
available space. If there isn't enough space, can we add some? Often adding storage is
much easier and cheaper than obtaining entire servers or VMs.

Zero-downtime Upgrades Chapter 15

[651]

Beyond capacity, however, is the question of connection management. We learned
about proxies in Chapter 4, Proxy and Pooling Resources. That chapter is very
important to understanding just why we need a proxy in a PostgreSQL cluster. If
connections directly contact our version 10 cluster, how do we transparently move
them to the version 11 cluster? We absolutely need a proxy to complete this
procedure.

The question is: do we have one already? If not, we must add one. Even a simple
virtual IP address or CNAME makes it possible to move the application connection
target to the new cluster once we're ready. But to do that, we would have needed to
follow the recipes in this book, or have already built our architecture with the same
concepts in mind.

If we don't have a proxy, what would be required to add one? How many
applications will need to be reconfigured? Will we need to request an outage or
maintenance window to restart the application stack to absorb that change? If so, can
we then apply one or more recipes from this book to get the best proxy possible to
take full advantage of the maintenance window?

Integrating a proxy layer may not be simple at this stage, but it is an utter necessity.

We will learn later that the preferred proxy layer for this chapter is
PgBouncer. Don't worry if you're not currently using that! Simply
having the proxy layer means it can be replaced with something
else. The key is having some connection target separate from
PostgreSQL itself, so we can masquerade the cluster that is actually
active.

Remembering PgBouncer and pglogical
There are two essential pieces of software that drive the zero-downtime PostgreSQL
upgrade procedure. Even though we covered both in previous chapters, we feel it is
important to review why we chose these components. So, this recipe will explain just
why PgBouncer and pglogical are critical to a seamless PostgreSQL upgrade.

Getting ready
There's really no preparation necessary for this recipe. Dive right in!

Zero-downtime Upgrades Chapter 15

[652]

How to do it…
Follow these deceptively simple instructions:

Review all recipes related to PgBouncer in Chapter 4, Proxy and Pooling1.
Resources.
Review all recipes related to pglogical in Chapter 7, PostgreSQL Replication.2.

How it works…
Why even have this recipe? We're glad you asked!

We introduced PgBouncer in Chapter 4, Proxy and Pooling Resources, and it gives us
the ability to transparently redirect application connections from one server to
another without interrupting transaction activity. This is the secret sauce that no other
proxy approach can match.

A virtual IP address would interrupt active transactions unless we stopped the
application. HAProxy would as well. The only proxy software that understands the
PostgreSQL communication protocol is PgBouncer, and we want to take advantage of
that.

The other essential capability PgBouncer provides is to PAUSE and RESUME session
activity. Unlike RECONNECT, which only marks existing connections as needing
replacement, and directs new sessions to the correct location, PAUSE waits for
transactions to complete and then immediately closes the backend entirely. It also
puts PgBouncer in a state that will not allocate a new backend until RESUME is called.

This PAUSE and RESUME cycle allows us to inject a short wait into application activity
while we switch from the version 10 PostgreSQL cluster to the version 11 cluster. This
wait is where replication lag is reduced to zero, and we reconfigure PgBouncer to
connect to the PostgreSQL 11 replacement cluster. The application only perceives a
short pause rather than rude disconnection messages, and resumes operating as if
nothing has changed.

We explained how to use pglogical in Chapter 7, PostgreSQL Replication, as it allows
us to copy data between two otherwise binary-incompatible PostgreSQL releases. The
recipes in this chapter will rely on pglogical to transfer data from PostgreSQL 10 to
PostgreSQL 11 while the platform is running.

Zero-downtime Upgrades Chapter 15

[653]

We only scratched the surface of pglogical's full capabilities in Chapter 7, PostgreSQL
Replication. Rather than copying only a small handful of tables, we can actually
allocate entire schemas into publications. Unlike PostgreSQL 10 native logical
replication, we can also replicate sequence values. This is extremely important,
because it means sequences will resume at the correct values rather than being reset
to 1 in the replacement cluster. It would be possible to set all sequences manually to
fix this, but that requires extra steps that are otherwise not necessary.

With pglogical as our logical replication mechanism, we can build a replacement
cluster, transfer all the data, and be immediately ready for the actual upgrade. And
that upgrade is a mere PgBouncer PAUSE, reconfigure, and RECONNECT cycle.

The following recipes will explain how this is slightly different than how we used
PgBouncer and pglogical in previous chapters, so pay attention!

There's more…
Consider this our last warning to ensure some kind of proxy is incorporated into your
PostgreSQL cluster. In order to complete this upgrade, PgBouncer will be required. If
there's already a proxy layer, we encourage either augmenting it with PgBouncer, or
replacing it entirely. If there isn't, find a suitable maintenance window and begin
working with application developers, management, infrastructure, and any other
departments necessary to incorporate a layer of indirection.

It is a painful, one-time event that will prevent a far greater amount of problems in
the future. From now on, this chapter will assume that PgBouncer is installed as part
of the cluster and is available for certain upgrade steps. Trust us, it's worth the effort.

See also
It may be a good idea to refresh your memory on PgBouncer and pglogical
functionality. We encourage at least skimming through these URLs:

pgbouncer command-line usage: https:/ /www. pgbouncer. org/usage.
html

pglogical 2: https:/ / github. com/ 2ndQuadrant/ pglogical/ tree/ REL2_ x_
STABLE/ docs

https://www.pgbouncer.org/usage.html
https://www.pgbouncer.org/usage.html
https://www.pgbouncer.org/usage.html
https://www.pgbouncer.org/usage.html
https://www.pgbouncer.org/usage.html
https://www.pgbouncer.org/usage.html
https://www.pgbouncer.org/usage.html
https://www.pgbouncer.org/usage.html
https://www.pgbouncer.org/usage.html
https://www.pgbouncer.org/usage.html
https://www.pgbouncer.org/usage.html
https://www.pgbouncer.org/usage.html
https://github.com/2ndQuadrant/pglogical/tree/REL2_x_STABLE/docs
https://github.com/2ndQuadrant/pglogical/tree/REL2_x_STABLE/docs
https://github.com/2ndQuadrant/pglogical/tree/REL2_x_STABLE/docs
https://github.com/2ndQuadrant/pglogical/tree/REL2_x_STABLE/docs
https://github.com/2ndQuadrant/pglogical/tree/REL2_x_STABLE/docs
https://github.com/2ndQuadrant/pglogical/tree/REL2_x_STABLE/docs
https://github.com/2ndQuadrant/pglogical/tree/REL2_x_STABLE/docs
https://github.com/2ndQuadrant/pglogical/tree/REL2_x_STABLE/docs
https://github.com/2ndQuadrant/pglogical/tree/REL2_x_STABLE/docs
https://github.com/2ndQuadrant/pglogical/tree/REL2_x_STABLE/docs
https://github.com/2ndQuadrant/pglogical/tree/REL2_x_STABLE/docs
https://github.com/2ndQuadrant/pglogical/tree/REL2_x_STABLE/docs
https://github.com/2ndQuadrant/pglogical/tree/REL2_x_STABLE/docs
https://github.com/2ndQuadrant/pglogical/tree/REL2_x_STABLE/docs
https://github.com/2ndQuadrant/pglogical/tree/REL2_x_STABLE/docs
https://github.com/2ndQuadrant/pglogical/tree/REL2_x_STABLE/docs
https://github.com/2ndQuadrant/pglogical/tree/REL2_x_STABLE/docs
https://github.com/2ndQuadrant/pglogical/tree/REL2_x_STABLE/docs
https://github.com/2ndQuadrant/pglogical/tree/REL2_x_STABLE/docs
https://github.com/2ndQuadrant/pglogical/tree/REL2_x_STABLE/docs

Zero-downtime Upgrades Chapter 15

[654]

Creating a publication set
The first component to successfully upgrading a PostgreSQL cluster while fully
online is building a pglogical publication set. This publication set will represent all
the data we want on the new cluster, and gives us an opportunity to prune anything
that should be deprecated.

Unlike previous forays into logical replication, we will actually need to entertain
some extra considerations. This recipe will explain how to build a publication set that
ensures a smooth major version upgrade.

Getting ready
The Remembering PgBouncer and pglogical recipe already recommended reviewing the
material on pglogical. We also suggest actually following the Setting up
pglogical recipe in Chapter 7, PostgreSQL Replication, on the provider node so
everything is fully operational before we begin.

How to do it…
Assuming we have a PostgreSQL 10 provider node that has pglogical installed, follow
these steps:

Produce an unlogged table of all the schemas that should be transferred.1.
Use a query like this to generate an initial list:

CREATE UNLOGGED TABLE schema_list AS
SELECT nspname
 FROM pg_namespace
 WHERE nspname NOT LIKE 'pg_%'
 AND nspname NOT IN ('information_schema', 'pglogical');

Audit the resulting table of schemas and remove any subsequent schemas2.
that should not be copied.
Produce a list of tables that do not have a primary key using the following3.
query:

CREATE UNLOGGED TABLE table_list AS
SELECT n.nspname AS schema_name,
 t.relname as table_name,
 c.conname IS NOT NULL AS has_primary_key
 FROM pg_class t

Zero-downtime Upgrades Chapter 15

[655]

 JOIN pg_namespace n ON (n.oid = t.relnamespace)
 JOIN schema_list s USING (nspname)
 LEFT JOIN pg_constraint c ON (c.conrelid = t.oid
 AND c.contype = 'p')
 WHERE t.relkind IN ('r', 'p')
 AND t.relpersistence = 'p';

Audit the resulting list of tables and remove any that should not be part of4.
the migration.
Execute the following query to obtain a list of tables that have no primary5.
key:

SELECT * FROM table_list
 WHERE NOT has_primary_key;

For any table that does not have a primary key, decide whether or not the6.
table can be considered insert-only. If so, ignore it for now.
For tables that do not have a primary key and cannot operate as insert-only,7.
either add a primary key based on existing columns or add a surrogate key,
such as in this example with pgbench_history:

CREATE SEQUENCE pgbench_history_id_seq;

ALTER TABLE pgbench_history
 ADD _migrate_id BIGINT
 DEFAULT nextval('pgbench_history_id_seq') NULL;

ALTER SEQUENCE pgbench_history_id_seq
OWNED BY pgbench_history._migrate_id;

UPDATE pgbench_history
 SET _migrate_id = default
 WHERE _migrate_id IS NULL;

ALTER TABLE pgbench_history
ALTER _migrate_id SET NOT NULL;

ALTER TABLE pgbench_history
 ADD PRIMARY KEY (_migrate_id);

UPDATE table_list
 SET has_primary_key = True
 WHERE schema_name = 'public'
 AND table_name = 'pgbench_history';

Zero-downtime Upgrades Chapter 15

[656]

Run the following query to add regular tables to the default replication set:8.

SELECT pglogical.replication_set_add_table(
 set_name := 'default',
 relation := schema_name || '.' || table_name
)
 FROM table_list
 WHERE has_primary_key;

Run this query to add tables without primary keys:9.

SELECT pglogical.replication_set_add_table(
 set_name := 'default_insert_only',
 relation := schema_name || '.' || table_name
)
 FROM table_list
 WHERE NOT has_primary_key;

How it works…
The job of this recipe is to either transfer everything, or some subset of the data we
wish to retain. We start this process by listing all of the schemas in our database using
a specially constructed query that omits any likely PostgreSQL catalog tables and the
ever-present information_schema, as well as pglogical itself. From here we can
decide to leave the list unadulterated, or remove rows for schemas we want to
discard.

We then perform the same task for all tables in the database. It's important to know
whether or not a table has a primary key. As a consequence, the query we use here is
rather complicated, using PostgreSQL catalog tables such as pg_class,
pg_namespace, and pg_constraint. The purpose of this query is to isolate, from
the schemas we want to copy, any tables that are either regular tables or partition
tables (relkind IN ('r', 'p')) and are not unlogged or temporary tables
(relpersistence = 'p'). By including the pg_constraint table, we can identify
which tables have a primary key and which do not, so we can use that information
later.

Why do we need to know which tables have primary keys? For logical replication to
operate efficiently, it must be possible to locate records on the subscriber system.
Without a primary key, we would need to use the entire row as a key, which means a
sequential scan for every update or delete. pglogical does not allow this kind of
operation, so it enforces a rule that standard, logically replicated tables must have a
primary key.

Zero-downtime Upgrades Chapter 15

[657]

We can remove that stipulation if the table is insert-only, because any row inserted
into the provider can simply be inserted into the subscriber as well. Our next step is
to examine the tables that do not have a primary key. We can either add primary keys
to each of these tables, or decide that would be too much unnecessary work. Some
logging tables, for instance, may be purely for tracking activity, and as a result, could
contain many millions or even billions of insert-only rows. Tables like this do not
need special handling, and it would be extremely wasteful to retrofit a new key onto
these for a one-time migration.

For other types of tables, perhaps through old design or by mistake, it may be that it's
a historical accident that no primary key was assigned. In these cases, this is a good
opportunity to fix that situation by adding one. If this itself is not possible, it may be
necessary to add a primary key specifically for the purpose of the migration itself. In
this case, the procedure is fairly complicated, and involves several steps:

Create a sequence.1.
Add a nullable default column to the table.2.
Alter the sequence so it's associated with the new column.3.
Update each record in the table, possibly in smaller batches in cases of4.
extremely large tables.
Remove the nullable attribute from the new column.5.
Transform the new column to a primary key.6.
Lastly, update our table list to reflect that the table now has a primary key.7.

As in our example with the pgbench_history table, this can be a lot of extra work,
especially if we have a vast array of tables that require this kind of procedure.

Whatever the case, our next step is to register these tables with pglogical so it knows
to transmit them to the subscribing system. The easiest way to do this is to use our
table_list as a source and call the pglogical.replication_set_add_table
function for every applicable row. We need to call this function twice in two different
contexts:

First for tables that do have a primary key, where we add it to the default1.
replication set.
Second for tables that do not have a primary key, where we add them to2.
the default_insert_only replication set.

This ensures every table we want to preserve through the migration is included, even
those that don't work normally with logical replication.

Zero-downtime Upgrades Chapter 15

[658]

There's more…
There is a much easier way to do this that may apply if all tables have primary keys.
pglogical has a function specifically for this case that greatly simplifies the preceding
procedure, especially if we want every table to be part of the migration. We could
have obtained our list of schemas and then executed the following function:

SELECT pglogical.replication_set_add_all_tables(
 set_name := 'default',
 schema_names := array_agg(nspname)
)
 FROM schema_list;

This would automatically register every table in each schema with pglogical for the
default replication set. We hope your upgrade qualifies for using this function, but
even if it doesn't, the procedure detailed in this recipe should work.

Handling sequences
Sequences are the primary reason we recommend using pglogical for major
PostgreSQL version upgrades. Though they're often associated with tables, sequences
are separate objects that only contain information about themselves. They're often
overlooked because there are no events to capture regarding logical replication; there
are no inserts, updates, or deletes to encode or decode.

Since pglogical is an extension and doesn't rely entirely upon logical decoding in
order to operate, it also adds functionality to augment PostgreSQL. pglogical handles
sequences by periodically refreshing the values on the subscriber system to ensure
they're much higher than the last value on the provider. In the case of an upgrade,
there should be no sequence conflict after switching to the new cluster.

This recipe will explain how to register sequences with pglogical, and other useful
steps for managing sequences leading to an upgrade.

Getting ready
Please follow the Creating a publication set recipe before starting here.

Zero-downtime Upgrades Chapter 15

[659]

How to do it…
Assuming we have a PostgreSQL 10 provider node that has pglogical installed, follow
these steps:

Register all sequences with this query:1.

SELECT pglogical.replication_set_add_all_sequences(
 set_name := 'default',
 schema_names := array_agg(nspname)
)
 FROM schema_list;

Verify registered sequences with this query:2.

SELECT s.set_id, ss.set_seqoid
 FROM pglogical.replication_set s
 JOIN pglogical.replication_set_seq ss USING (set_id);

How it works…
This is, thankfully, a short and easy-to-understand recipe. Unlike when we were
registering tables and had to account for primary keys, sequences aren't tables at all,
so when we register them with pglogical, we don't need to do anything special.

As a result, we can simply invoke replication_set_add_all_sequences to
process all sequences for the schemas we want to copy, rather than
using replication_set_add_sequence for each individual sequence. It's also a
good idea to verify we added the sequences we expected, since we don't necessarily
know how pglogical might interpret all sequences in the listed schemas.

As an example on our test system where we have a sensor_log table with a
sequence, we saw these results:

It's only one sequence, but we didn't register it explicitly. Tables in a schema can have
any number of sequences, which may not be properly associated. It's also not
impossible for sequences to exist on their own, and not belong to any table or column
at all. As a result, we recommend checking once sequences are added, to ensure all
sequences are listed.

Zero-downtime Upgrades Chapter 15

[660]

There's more…
When the time comes to synchronize these, we don't actually have to do anything.
The subscriber sequences will be updated periodically to reflect updated values.
However, should we want to follow a specific schedule, we can actually force a
synchronization using a provided function.

Using the following query will manually update all sequences:

SELECT pglogical.synchronize_sequence(set_seqoid)
 FROM pglogical.replication_set_seq;

Keep in mind that this function, like many pglogical functions, is asynchronous. It
merely injects the command into the pglogical process queue, and will not wait for
the sequence to synchronize before returning.

Bootstrapping the target cluster
Another critical component of a major PostgreSQL upgrade using pglogical is that we
need somewhere to send the data. Ideally, this is a cluster comprised of the same
number of nodes, with identical hardware or better, and all the same supporting
software, abstraction layers, and automation.

The goal of this recipe is to produce a target cluster using the newer PostgreSQL
version so we can subscribe to the old one.

Getting ready
Though we'll technically be starting the new cluster from scratch, be sure to have
completed the Creating a publication set recipe so we know pglogical is ready to
transmit data to the new cluster we build.

Additionally, we will need to know the path to the initdb utility, as it is often
obfuscated by software packaging. On Debian-based systems, it is usually found in
/usr/lib/postgresql/11/bin for version 11, for example. Users of Red Hat
derivatives can find it in the /usr/pgsql-11/bin path instead.

Zero-downtime Upgrades Chapter 15

[661]

How to do it…
Assuming we have our old server (pg-old) and a new server (pg-new) to act as the
subscriber, and our database to be copied is named myapp and stored in /db/pgdata,
follow these instructions:

Bootstrap an empty PostgreSQL instance on pg-new using initdb as the1.
postgres user:

initdb -D /db/pgdata

Copy postgresql.conf and pg_hba.conf from pg-old to pg-new.2.
Copy the .pgpass file from pg-old to pg-new.3.
Dump all global objects on pg-old from pg-new as the postgres user:4.

pg_dumpall -g -h pg-old -U rep_user \
 -f global_objects.sql --database postgres

Import all global objects in pg-new as the postgres user:5.

psql -f global_objects.sql

Create the empty myapp database as the postgres user on pg-new:6.

createdb myapp

Dump all Data Definition Languages (DDLs) from pg-old for structures7.
and definitions:

pg_dump -s -h pg-old -U rep_user \
 -f myapp_schema_def.sql -d myapp

Import the DDLs into pg-new so all tables, views, and so on exist:8.

psql -f myapp_schema_def.sql myapp

Follow the instructions in the Setting up pglogical recipe of Chapter9.
7, PostgreSQL Replication, using pg-new as the subscriber.
Create any necessary replicas to reproduce the number of nodes decided on10.
in the Preparing upgrade requirements recipe.
Install any supplementary software such as repmgr, Patroni, Barman, and11.
so on to complete the cluster.

Zero-downtime Upgrades Chapter 15

[662]

How it works…
The early portion of this recipe focuses on initializing a new cluster using initdb
with the target version of PostgreSQL we want to upgrade to. For the purposes of
demonstration in this recipe, we used version 11.

As usual when performing this kind of bootstrap, we copy all of the configuration
files from the origin node. In this case, we want at least the postgresql.conf and
pg_hba.conf files, as they define the majority of our configuration settings and
connection access definitions. If your cluster uses the postgresql.conf
include_dir directive, copy the full contents of any of those locations as well. It's
important to capture as much of the original cluster structure as we can.

Don't forget to examine the postgresql.conf file for potential
incompatibilities between versions. These are minimal between
PostgreSQL 10 and 11, but are much more noticeable between 9.5
and 11, for example. It may be easiest to simply attempt to start the
instance using the donated configuration file, and fixing things that
PostgreSQL logs as errors that prevent it from running.

Part of this process is to use pg_dumpall to gather all roles defined within pg-old.
These roles have been used by all portions of the application stack up to now, so we
will need them in the new cluster as well. These will also be necessary for any object
access GRANT or REVOKE statements within the database DDL. Once these are
successfully exported, we can use psql and specify the file we dumped, and all users
should then exist.

Now we want to start building database objects, including the database itself. We
start by using createdb to create the myapp database in this case, as that is where our
test application data resides. Do note that we'll need to perform this step for any
databases we wish to copy from pg-old if we have multiple active databases per
PostgreSQL service.

This time rather than dumping global data, we obtain object definitions with
pg_dump by specifying the -s (schema-only) flag. We prefix the output file with the
database name in case we need to do this for multiple databases. In our example, the
file is named myapp_schema_def.sql, but just make sure it's unique and
memorable. It may also be a good idea to timestamp the file so it can be used as a sort
of record for what we did.

Zero-downtime Upgrades Chapter 15

[663]

Once we import this schema definition into the correct database using the psql tool,
everything is technically ready to start receiving data from the old system. This is
why we recommend following the Setting up pglogical recipe of Chapter 7, PostgreSQL
Replication, to finish setting up this server.

With the Primary node of the upgraded cluster ready, we can begin reproducing the
remainder of the cluster, or at least the nodes we decided would be necessary in the
Preparing upgrade requirements recipe. We need the Primary node at an absolute
minimum, but it's a good idea to pre-provision any replica nodes at this time. This is
because when we create the initial subscription, any replica nodes will begin
accumulating the data as well.

Once we've begun to establish the data portions of our cluster, we can reproduce all
of the helpful scaffolding. If we're using a failover system such as repmgr or Patroni,
we would want to get these pieces installed at this point. Even if they're disabled to
prevent a failover event until we've completed the upgrade, they will be ready to
enable when we're ready. This applies to backup servers as well.

Why now? We want the replacement cluster to be as fully operational as possible,
even while it's ingesting data from the old cluster via pglogical. This serves
something of a dual purpose: first as a stress test, and second as proof that everything
works prior to completing the upgrade. We will eventually have a parallel cluster
containing all data from the old version, and it should reflect all the same capabilities.

There's more…
There may be some debate as to the efficiency of creating replicas now, rather than
waiting for the subscription to complete. This is actually a valid and rather astute
observation. In cases of extremely large clusters, it may actually be a much better idea
to delay the creation of replica nodes, backup nodes, and other dependent servers
until the initial synchronization step is complete.

The biggest justification for this is the fact that PostgreSQL physical replication uses
write-ahead logging (WAL) traffic to maintain replicas. WAL is generally much
larger than the originating data since it contains all page-level operations, including
index creation. For a very large databases (VLDB) installation several terabytes in
size, this may equate to several multiples of extra data transfer to each replica node
during the initial bootstrapping phase.

Zero-downtime Upgrades Chapter 15

[664]

In cases like these, we actually recommend skipping the last two steps of this recipe
and waiting until after the Monitoring progress recipe indicates pg-old and pg-new
are synchronized. With a less active upstream, it will be easier to create each replica,
and any backup nodes will be interacting with a system similar to pg-old in volume.

Starting the subscription
The last ingredient in our high-availability PostgreSQL major version upgrade is to
actually invoke the subscription. This is the point of no return, so we must ensure that
everything is ready, and that nothing interrupts the synchronization process until it is
complete.

This recipe will explain what is happening during the subscription process, and how
to help make sure it completes without issue.

Getting ready
We will need two fully operational PostgreSQL clusters, so please follow all recipes
up to the Bootstrapping the target cluster recipe before proceeding.

How to do it…
Assuming we have our old server (pg-old) and a new server (pg-new) to act as the
subscriber, follow these instructions to start the subscription:

Execute the following query on pg-new to initiate the subscription:1.

SELECT pglogical.create_subscription(
 subscription_name := 'myapp_upgrade',
 provider_dsn := 'host=pg-old dbname=myapp user=rep_user'
);

Wait for the subscription to complete by executing this query on pg-new:2.

SELECT pglogical.wait_for_subscription_sync_complete(
 'myapp_upgrade'
);

Zero-downtime Upgrades Chapter 15

[665]

Check for the following line in the pg-new PostgreSQL log:3.

LOG: starting apply for subscription myapp_upgrade

Check for the following line in the pg-old PostgreSQL log:4.

LOG: exported logical decoding snapshot

How it works…
Creating the subscription itself is the easy part; we simply call the
create_subscription function as we did in the Copying a few tables with pglogical
recipe of Chapter 7, PostgreSQL Replication. Of all possible parameters, we only need
to supply the subscription_name parameter to label the subscription, and the
provider_dsn parameter so pglogical knows how to contact the provider.

Observant readers may notice that we did not specify the replication_sets
parameter. This is because, unlike in the chapter on replication, we did not create a
subscription set. pglogical will subscribe to the default and default_insert_only
sets unless told otherwise. Since that's where we placed all of the tables on the
provider, pg-new should receive data without needing to list the sets.

We also did not set the synchronize_data attribute to True, as this is the default for
any new subscription. The very act of creating the subscription should automatically
start the synchronization process, which may take a very long time to complete.

In fact, that's the reason we also execute the
wait_for_subscription_sync_complete function. Since most pglogical functions
are asynchronous, this will explicitly wait until the subscription is fully established
before returning the session prompt.

Once we've executed these two functions, we can actually check the PostgreSQL logs
on both pg-new and pg-old to verify that it's doing as we asked. We should see
something like this immediately in the pg-new logs once we invoke
create_subscription:

This lets us know that the subscriber has launched a pglogical apply worker that will
begin making logical changes to the local myapp database; it even uses the
subscription name so we know what is happening.

Zero-downtime Upgrades Chapter 15

[666]

The story on pg-old is similar. pglogical will connect to the upstream provider as
requested and request a subscription. This causes the creation of a replication slot as
well as the creation of a background worker to start copying data to pg-new. In order
for this data to remain consistent, pglogical also instructs PostgreSQL to export a
transaction snapshot with the same transaction information as the replication slot.

This means all of the copied data will remain static until pg-new starts consuming
from the replication slot and moves its transaction ID forward. We should see
something like this in the PostgreSQL logs of pg-old when that process begins:

It may be a very long time before we receive any further messages from either
PostgreSQL node. The exported snapshot must remain open and available for the
duration of the initial subscription synchronization, and no further messages will
appear until it completes. If either node is restarted, our progress is lost, and we must
erase the contents of pg-new and start again.

There's more…
It probably seems dire when we say that the initial subscription requires success, or
we must start from the beginning. This really is a natural consequence of how
transaction snapshot exports work; if we lose the connection holding that snapshot,
we don't have a consistent picture of the data.

In that case, and especially for larger databases, it may make more sense to avoid
adding any tables or sequences to the subscription set we create on pg-old. It is quite
possible to subscribe to an empty replication set, and this should succeed relatively
quickly and establish a communication channel between both servers that is reliant
only upon the replication slot.

Once we've done this, we can actually add tables to the replication set in small
batches. Each of these batches will still require a separate synchronization, but
depending on the size of the data they represent, it could be much less disruptive
than attempting to copy all database contents in a single transaction.

All we have to do is skip the Creating a publication set recipe until we've established
the subscription. Once the subscription exists, we can periodically add new tables like
this:

SELECT pglogical.replication_set_add_table(
 set_name := 'default',

Zero-downtime Upgrades Chapter 15

[667]

 relation := 'my_new_table',
 synchronize_data := True
);

The key here is the synchronize_data parameter, which we've set to True, though
the default is False. Normally the replication_set_add_table function is only
used to add new (and presumably empty) tables to a replication set. What we're
saying here is that the table contains data, so any subscribed nodes will likely want
those contents.

In fact, we could modify the Creating a publication set recipe to
account for this table batching. The recipe already creates a list of
tables that should be synchronized, so imagine we added a numeric
ID to the table_list as well. We could then copy 10 or 100 tables
at a time, until everything was ready.

Monitoring progress
One important step for establishing an upgrade target is to watch and ensure all data
from the old cluster successfully migrates to the new one. There are multiple methods
for accomplishing this task, and we may choose to try all of them for safety, or just so
we know how long we may need to wait until the new cluster is ready.

This recipe will explain a few easy ways to check the state of a subscription while it
performs the initial data synchronization.

Getting ready
Please follow all previous recipes in this chapter before starting here.

Zero-downtime Upgrades Chapter 15

[668]

How to do it…
Assuming we have our old server (pg-old) and a new server (pg-new) to act as the
subscriber, follow these instructions to monitor the subscription progress of
the myapp database:

Use this query on pg-new to check the state of the subscription itself:1.

SELECT *
 FROM pglogical.show_subscription_status(
 'myapp_upgrade'
);

Run this query on both systems to get an idea of the relative database size:2.

SELECT pg_size_pretty(pg_database_size('myapp'));

Execute the following query on both servers to check the current table3.
being synchronized:

SELECT application_name, query, state_change
 FROM pg_stat_activity
 WHERE application_name LIKE 'myapp_%';

Run this query on both systems to compare information for the table4.
currently being copied, as is done for pgbench_accounts in this example:

SELECT pg_size_pretty(pg_relation_size(
 'pgbench_accounts'
));

If possible, check to see the most recent ID is the same on both systems, as5.
in this example on a table named sensor_log:

SELECT max(id) FROM sensor_log;

How it works…
The first of our queries for checking status will provide a lot of information about the
subscription, but is of somewhat limited utility. Here's an example from our test
system:

Zero-downtime Upgrades Chapter 15

[669]

Note that the status field indicates the subscription is initializing. Everything
else is basically a static field indicating some information about the subscription itself.
When the subscription is complete, the status field will display replicating
instead. It's not much in the way of diagnostics, but does at least confirm the
subscription is still establishing itself.

The next check we can perform using the pg_database_size function is a very
coarse comparison of overall database size. If, for example, we have a 1 TB database
and the new cluster is still only 250 GB, we can generally predict how much time is
remaining based on how long it took to reach that size.

Keep in mind that unlike the provider node, the subscriber system is
a fresh installation receiving data that has yet to experience any
modifications. As a result, the new cluster will not show any data
bloat. If the provider system has more than 20% bloat, the final size
of the new cluster may be much smaller than we might expect. Don't
use this check as a final status, but it is safe to get a general idea of
progress.

Next, we can actually inquire within the pg_stat_activity PostgreSQL catalog
table to actually observe the initialization itself. The initial table synchronization step
is not actually done through logical replication, but by pglogical itself. It connects to
the remote server from the subscriber and initiates a COPY statement. This is one of
the most efficient ways to load data into a table.

As a result, we can actually check to see when a COPY statement is running, and that
tells us which table pglogical is currently synchronizing. Here is a sample from pg-
old in our environment:

Zero-downtime Upgrades Chapter 15

[670]

This output is actually slightly more informative than we'd implied. Consider the
session labeled myapp_upgrade_snap. This is the session holding the transaction
snapshot that ensures all COPY statements represent consistent data. As a result, we
will only see this connection on pg-old rather than pg-new.

Meanwhile, a session performing the actual COPY should appear on both systems. The
version on pg-old sends the data to stdout, while the session on pg-new consumes
the data from stdin. We should see a pair of these on each server until the
subscription has copied every table.

Unfortunately, the order of these tables is nondeterministic, so we can't use it as a
progress indicator. However, we can see which table is currently being copied. If it is
one of our larger tables, we can use the next indicator to estimate when it will
complete.

The pg_relation_size function is very useful here, because it reports the amount
of bytes consumed on disk by the object. If we ignore table bloat for now, the table
should be about the same size on each system. If we execute the function on pg-old,
we know the current size of the table, and pg-new will likely be some percentage of
that amount.

If that value stops increasing, we know either that the table has completely
transferred, or replication has been interrupted somehow. Assuming it's the former,
we can confirm that by checking pg_stat_activity again. If the values still don't
match, we also gain a new data point: the true size of the data on disk, barring any
table bloat. This is another great benefit from upgrading in this manner!

Finally, we can examine each table more closely. This is something we can only do
once the table has fully transferred, since the COPY statement is atomic. Regardless,
we can use this on any table that has already synchronized, and it can confirm the
most recent ID is represented on both systems.

There's more…
If the initial synchronization has been running for a protracted duration, the last
check we supplied may report very different values. After all, pg-old is still
receiving new rows for all tables, and the snapshot for the initial synchronization to
pg-new may have been established hours, or even days ago.

Zero-downtime Upgrades Chapter 15

[671]

Luckily, we can actually exploit the same trick pglogical used when creating the
transaction snapshot. Since it needs the snapshot to ensure every COPY statement is
consistent, we can actually use the transaction ID as well.

So long as we connect as a superuser, it's possible to specify the transaction snapshot
ID and see the same thing as pglogical while it sends data to pg-new.

If we want to do this, we merely need to obtain the snapshot ID from the pg-old logs
as we did in the Starting the subscription recipe. Then we can use a series of commands
like this:

BEGIN TRANSACTION ISOLATION LEVEL REPEATABLE READ;
SET TRANSACTION SNAPSHOT '00000007-00000DB8-1';
SELECT max(id) FROM sensor_log;

Even if the transaction has been running for days, we have requested a REPEATABLE
READ isolation level. This guarantees we see the same data as pglogical is exporting
within its COPY statements.

This only works until the subscription is fully synchronized and switches to
replicating status. Still, it's a great tool if we want to manually observe
synchronization progress and validity.

See also
We used a few features of the PostgreSQL system catalog in this recipe. You can read
more about them using these resources:

System Administration Functions: https:/ / www.postgresql. org/docs/
current/ functions- admin. html

The Statistics Collector: https:/ /www. postgresql. org/ docs/ current/
monitoring- stats. html

SET TRANSACTION: https:/ /www. postgresql. org/ docs/ current/ sql-
set- transaction. html

https://www.postgresql.org/docs/current/functions-admin.html
https://www.postgresql.org/docs/current/functions-admin.html
https://www.postgresql.org/docs/current/functions-admin.html
https://www.postgresql.org/docs/current/functions-admin.html
https://www.postgresql.org/docs/current/functions-admin.html
https://www.postgresql.org/docs/current/functions-admin.html
https://www.postgresql.org/docs/current/functions-admin.html
https://www.postgresql.org/docs/current/functions-admin.html
https://www.postgresql.org/docs/current/functions-admin.html
https://www.postgresql.org/docs/current/functions-admin.html
https://www.postgresql.org/docs/current/functions-admin.html
https://www.postgresql.org/docs/current/functions-admin.html
https://www.postgresql.org/docs/current/functions-admin.html
https://www.postgresql.org/docs/current/functions-admin.html
https://www.postgresql.org/docs/current/functions-admin.html
https://www.postgresql.org/docs/current/functions-admin.html
https://www.postgresql.org/docs/current/functions-admin.html
https://www.postgresql.org/docs/current/functions-admin.html
https://www.postgresql.org/docs/current/monitoring-stats.html
https://www.postgresql.org/docs/current/monitoring-stats.html
https://www.postgresql.org/docs/current/monitoring-stats.html
https://www.postgresql.org/docs/current/monitoring-stats.html
https://www.postgresql.org/docs/current/monitoring-stats.html
https://www.postgresql.org/docs/current/monitoring-stats.html
https://www.postgresql.org/docs/current/monitoring-stats.html
https://www.postgresql.org/docs/current/monitoring-stats.html
https://www.postgresql.org/docs/current/monitoring-stats.html
https://www.postgresql.org/docs/current/monitoring-stats.html
https://www.postgresql.org/docs/current/monitoring-stats.html
https://www.postgresql.org/docs/current/monitoring-stats.html
https://www.postgresql.org/docs/current/monitoring-stats.html
https://www.postgresql.org/docs/current/monitoring-stats.html
https://www.postgresql.org/docs/current/monitoring-stats.html
https://www.postgresql.org/docs/current/monitoring-stats.html
https://www.postgresql.org/docs/current/monitoring-stats.html
https://www.postgresql.org/docs/current/monitoring-stats.html
https://www.postgresql.org/docs/current/sql-set-transaction.html
https://www.postgresql.org/docs/current/sql-set-transaction.html
https://www.postgresql.org/docs/current/sql-set-transaction.html
https://www.postgresql.org/docs/current/sql-set-transaction.html
https://www.postgresql.org/docs/current/sql-set-transaction.html
https://www.postgresql.org/docs/current/sql-set-transaction.html
https://www.postgresql.org/docs/current/sql-set-transaction.html
https://www.postgresql.org/docs/current/sql-set-transaction.html
https://www.postgresql.org/docs/current/sql-set-transaction.html
https://www.postgresql.org/docs/current/sql-set-transaction.html
https://www.postgresql.org/docs/current/sql-set-transaction.html
https://www.postgresql.org/docs/current/sql-set-transaction.html
https://www.postgresql.org/docs/current/sql-set-transaction.html
https://www.postgresql.org/docs/current/sql-set-transaction.html
https://www.postgresql.org/docs/current/sql-set-transaction.html
https://www.postgresql.org/docs/current/sql-set-transaction.html
https://www.postgresql.org/docs/current/sql-set-transaction.html
https://www.postgresql.org/docs/current/sql-set-transaction.html
https://www.postgresql.org/docs/current/sql-set-transaction.html
https://www.postgresql.org/docs/current/sql-set-transaction.html

Zero-downtime Upgrades Chapter 15

[672]

Switching targets
We've now reached the point where the upgrade is possible. We have a brand new
cluster running the newer version of PostgreSQL, all data has been copied, and we
have tested the application on the new cluster to ensure compatibility. It is now time
to switch the application stack to the new cluster and complete the upgrade
transition.

PgBouncer will play a key role in this final step, and will ensure the application
barely even notices the migration. This recipe will explain how the upgrade itself
works, and the other steps we need to execute to ensure everything is fully
synchronized.

Getting ready
Please follow all previous recipes before starting here.

How to do it…
These steps will assume we have our old primary (pg-old), a new primary (pg-new),
and a proxy server running PgBouncer. Follow these instructions to complete the
upgrade process:

Ensure there are no long-running transactions with this query on pg-old:1.

SELECT pid, state, client_addr, username,
 now() - xact_start AS duration, query
 FROM pg_stat_activity
 WHERE state != 'idle'
 AND now() - xact_start > INTERVAL '60s'
 ORDER BY duration DESC;

Terminate or resolve any transactions identified in the preceding execution.2.
Check the replication lag on pg-old with this query:3.

SELECT slot_name, database, active,
 pg_wal_lsn_diff(
 pg_current_wal_lsn(),
 confirmed_flush_lsn
) AS write_lag
 FROM pg_replication_slots;

Zero-downtime Upgrades Chapter 15

[673]

If lag is relatively low, execute the following command as the postgres4.
user on pg-proxy to pause the PgBouncer connections:

psql -U pgbouncer -h pg-proxy -c "PAUSE" pgbouncer

Run this query on pg-old to flush all pending replication traffic to pg-new:5.

SELECT pglogical.wait_slot_confirm_lsn(NULL, NULL);

Manually update sequences with this query on pg-old:6.

SELECT pglogical.synchronize_sequence(set_seqoid)
 FROM pglogical.replication_set_seq;

Modify the pgbouncer.ini configuration on pg-proxy to use pg-new as7.
the connection target.
Reload the PgBouncer system service as a root-level user on pg-proxy:8.

sudo systemctl reload pgbouncer

Unsubscribe from pg-old with this SQL on pg-new:9.

SELECT pglogical.drop_subscription(
 subscription_name := 'myapp_upgrade'
);

Invoke the following command as the postgres user on pg-proxy to10.
resume PgBouncer connections:

psql -U pgbouncer -h pg-proxy -c "RESUME" pgbouncer

How it works…
The first thing we want to do before upgrading is to examine any running
transactions on the server. Anything that has been running for longer than one
minute at the time we want to perform the upgrade is suspicious, and should be
examined. It could be a batch job that may not complete for several hours, or a rogue
connection that has languished after completing a desktop user's ad hoc query.

PostgreSQL can't tell the difference, and either of these connections will prevent
PgBouncer from pausing the connections. PgBouncer must allow an executing
transaction to complete before the PAUSE command will complete. Since we need this
command to switch to the new cluster, we must remove these potential blockers
before beginning.

Zero-downtime Upgrades Chapter 15

[674]

The query we've chosen for that task will report the process ID (pid) of the session,
along with the source of the connection (client_addr), the user, the duration of the
full transaction, and the query that the connection last executed. This should be
enough diagnostic information to figure out why the transaction is running or idle,
and we can either contact the responsible party, or terminate it with the
pg_terminate_backend() function.

Next, we should check for any replication lag. If the database infrastructure is very
write-heavy or otherwise active, the upgrade cluster may be significantly behind. If
there are tens or hundreds of GB of representative data lag, we do not want to initiate
the upgrade. If we did, we might introduce a very long outage while we wait for the
new cluster to catch up. Even if we need to reschedule the upgrade, that is better than
such an outage.

Ideally, the query we included should provide results like this:

As we can see here, the slot assigned to our upgrade cluster shows zero lag. A few
MB are nothing to worry about, but once we start seeing several GB, we may want to
reconsider, reschedule, or find the source of the excess write traffic that is causing the
lag.

Once we've established that nothing will prevent the upgrade itself, we can start the
real procedure. We begin by using psql to issue a PAUSE command to the pgbouncer
pseudo-database. This will cause PgBouncer to stop assigning PostgreSQL backends
to clients after they complete their current transaction. All client connections will then
be held in a wait state until we send a RESUME command to PgBouncer. At this point,
we need to work fast to minimize the process.

Next, we should execute the wait_slot_confirm_lsn function. This function is
provided by pglogical to perform several tasks, but for our purposes, it is a signal that
the pg-new cluster has fully caught up to the last transaction at the time we ran the
function. Basically, the function will not return until the lag is zero. Since PgBouncer
is preventing any new write traffic, this should mean the pg-new cluster has all data
on pg-old, up to the point we paused PgBouncer.

Zero-downtime Upgrades Chapter 15

[675]

After we've eliminated logical replication lag, we should trigger one final
synchronization of the sequences to ensure the values will be higher than those on the
old cluster. As we did in the Handling sequences recipe, we can execute the
synchronize_sequence function on all sequences tracked by pglogical. This is
normally done periodically while pglogical is running, but since we don't know the
time of the last synchronization, it's best to perform the process manually so we know
all sequences are up to date.

If we haven't already, now is the time to alter the pgbouncer.ini configuration file
so any database targets are directed to pg-new. This does not affect PgBouncer until
we use systemctl to reload the service, causing it to re-read the configuration file.
Make sure to reload, rather than restart, the service, or PgBouncer will
automatically resume connections.

To save time, consider preparing two configuration files before the
upgrade. One configuration file will reflect the pg-old as the
connection target, while the other will use pg-new. Then create a
symbolic link from the appropriate file to pgbouncer.ini. This link
is much faster and easier to change as part of an automated process.

Before we direct connections to pg-new, we really want to drop the subscription we
created. If we don't, PgBouncer may still operate on the tables or sequences in ways
we might not expect. For instance, since sequences are periodically refreshed and pg-
old is no longer accepting writes, pglogical could reset the sequences on pg-new to
some lower value even though we've been using them. Thus we use the
drop_subscription function here to make sure that can't happen.

Finally, we can issue a RESUME command to the pgbouncer pseudo-database and
resume traffic to our database cluster. Assuming everything worked properly, this
traffic will interact with pg-new, and the old cluster no longer has any role.

Congratulations, you've upgraded a cluster without ever going offline!

There's more…
Some might claim the time between a PgBouncer PAUSE and RESUME counts as an
outage. From the perspective of a user waiting for a response from the application,
which is in turn waiting for a connection from PgBouncer, this is true.

Zero-downtime Upgrades Chapter 15

[676]

This is why we strongly recommend automating step 4 to step 10, from the second we
PAUSE until we RESUME. Each of these steps requires no interaction, but should be
completed so the upgrade is finished safely. Assuming there was no lag, this would
mean the wait_slot_confirm_lsn function would immediately return. Sequences
should update quickly with synchronize_sequence. The time required to swap a
symbolic link for pgbouncer.ini is nearly zero. Calling the drop_subscription
function is equally fast. A script can issue all of these commands back-to-back and
even check for rare edge cases if there's time.

Cumulatively, no more than 2-5 seconds should elapse for the entire upgrade. As
with any risky procedure, we always encourage testing everything in a development
or QA environment until there are no mistakes and everything is fully documented
and timed. We should know how long each step takes, so that when we perform the
upgrade in our production environment, there are no surprises.

This may not be truly zero downtime, but we dare anyone to notice a single 2-5
second pause when moving from PostgreSQL 10 to 11.

Cleaning everything up
We've completed the upgrade, and everything is running smoothly. Now comes the
time to dismantle or reuse any remaining hardware, nodes, and resources used by the
old cluster. This may be a relaxing task, as all the hardest tasks have already been
completed.

This recipe will discuss what steps are necessary to fully extract pglogical from the
upgraded cluster, and what we can potentially consider regarding the old one.

Getting ready
Please follow all previous recipes before starting here.

Zero-downtime Upgrades Chapter 15

[677]

How to do it…
These steps will assume we have our old primary (pg-old) and the new primary
(pg-new). Follow these instructions to complete the upgrade process:

Optionally, execute this SQL on pg-new to remove the pglogical1.
extension:

DROP EXTENSION pglogical;

Optionally, remove pglogical from shared_preload_libraries in2.
postgresql.conf, and restart PostgreSQL on pg-new.
If this has not already been done, enable any high-availability management3.
software such as repmgr, Patroni, or Pacemaker for the pg-new cluster.
If this has not already been done, enable any backup software such as4.
Barman or automated snapshots for the pg-new cluster.
Stop any high-availability management software on the pg-old cluster5.
such as repmgr, Patroni, or Pacemaker.
Stop any backups or automated snapshots for the pg-old cluster.6.
Stop PostgreSQL on any nodes in the pg-old cluster.7.
Except for the Primary pg-old node, recycle or reuse any remaining nodes8.
within the pg-new cluster.
If nodes are being reused in pg-new, modify settings in any configuration9.
management software for these nodes. Otherwise, decommission the
remaining pg-old node configurations.
If the upgrade was done on the same servers in extra storage space, erase10.
pg-old data on all but the Primary node.
After a few days, remove the old Primary pg-old cluster data or node.11.

How it works…
This entire recipe is essentially optional, but makes a good checklist of elements we
may wish to consider when cleaning up after such a major upgrade.

Zero-downtime Upgrades Chapter 15

[678]

The first steps are optional because we may find that we need pglogical for
transmitting table data to other parts of the cluster. So long as it's installed and listed
in postgresql.conf, we could use it either for future upgrade needs, or managing
any number of full or partial logical replicas. Some enterprises may dictate that any
unused extensions should be uninstalled, and if that is the case, we may as well do
that first.

Next, we need to enable any software that manages the cluster in ways that we may
have temporarily disabled during the transition. We wouldn't want an automated
failover being triggered for instance, so even if they're installed, we likely disabled
repmgr, Patroni, or any other availability software.

This also applies to backups. Presumably, we're already backing up the pg-new
cluster regularly to prove the process works as expected. But we may have also
disabled any ongoing WAL consumption or snapshots for the period of the upgrade
itself to avoid any disruptions. These should be enabled at this point as well. We
might also consider invoking a post-upgrade backup so the process can complete
while we watch.

Otherwise, the rest of the recipe involves decommissioning the remainder of the pg-
old cluster. We tried to touch all of the major components here, but it's not really an
exhaustive list. The first of these is high-availability software like repmgr, Patroni,
and Pacemaker. Any resources these control might interfere with the pg-new cluster,
or otherwise cause unnecessary failovers. We should disable all of that software now.

Once again, we want to perform the same operation on backups. Do not delete the
backups themselves as we may need to refer to them later, but periodic scheduled
backups or snapshots should be eliminated from the pg-old cluster. Even if we only
prevent consumption of disk resources, we've accomplished something useful.

After disabling all of the automatic safeguards, we can safely shut down PostgreSQL
on every node in the pg-old cluster. Any replicas we no longer need can either be
permanently decommissioned, or perhaps reused in the pg-new cluster. We did, after
all, potentially upgrade to a slightly under-provisioned cluster to preserve resources.
Now is the time to start reestablishing the cluster as the original architecture
intended.

Zero-downtime Upgrades Chapter 15

[679]

The only exception here is the pg-old Primary node itself. There's still a very slim
chance we need to revert the upgrade, and as unlikely as that may be, we should
retain that node for at least a day or two until we know it's no longer necessary.
Technically, this is optional, especially in container-based environments that are
highly volatile in general, but we wanted to make sure it's considered.

One thing that may be overlooked is configuration management software such as salt,
Ansible, Chef, Puppet, and so on. Any nodes we decide to reuse from pg-old to pg-
new must have their profiles altered so they don't inadvertently revert to the old
cluster settings. We don't want to manually integrate a node into the new cluster, only
to have some automated framework undo our hard work sometime later, possibly
even outside of work hours.

Any nodes that won't be reused should either be powered down or reabsorbed into
the VM hypervisor at this point. Even if not for our pg-new PostgreSQL cluster,
physical hardware can always be reused for something, or at least sold to recoup
residual value. Hypervisors can always use more memory, CPU, and storage
resources for reassignment to other VMs as well.

This still applies if we performed the upgrade inline on the same hardware as the pg-
old cluster, but using a different PostgreSQL port. Rather than cleaning up nodes, we
would be erasing data from directories associated with the pg-old cluster. This may
or may not be a separate volume mount, but is still a resource to reclaim. And as we
mentioned before, the pg-old Primary data should always be removed last. There's
always the chance we need to refer to its contents, if only to verify older data in pg-
new.

Eventually, however, even this stipulation will expire, and we should be able to safely
recycle or decommission pg-old Primary resources as well. Once there are sufficient
backups for the pg-new cluster, we can even remove any backup allocations for pg-
old as well. These should be stored long-term in the cloud, a tape archive, or an
offline server vault, but are not required to be online once the new cluster takes over.

Once we've accounted for all the various bits and pieces of the pg-old cluster, we can
truly consider our upgrade complete. Congratulations on your online upgrade!

Other Books You May Enjoy
If you enjoyed this book, you may be interested in these other books by Packt:

PostgreSQL 11 Administration Cookbook
Simon Riggs, Gianni Ciolli, Et al

ISBN: 978-1-78953-758-1

Troubleshoot open source PostgreSQL version 11 on various platforms
Deploy best practices for planning and designing live databases
Select and implement robust backup and recovery techniques in
PostgreSQL 11
Use pgAdmin or OmniDB to perform database administrator (DBA) tasks
Adopt efficient replication and high availability techniques in PostgreSQL
Improve the performance of your PostgreSQL solution

https://www.packtpub.com/big-data-and-business-intelligence/postgresql-11-administration-cookbook

Other Books You May Enjoy

[681]

Mastering PostgreSQL 12 - Third Edition
Hans-Jürgen Schönig

ISBN: 978-1-83898-882-1

Understand the advanced SQL functions in PostgreSQL 12
Use indexing features in PostgreSQL to fine-tune the performance of
queries
Work with stored procedures and manage backup and recovery
Master replication and failover techniques to reduce data loss
Replicate PostgreSQL database systems to create backups and to scale your
database
Manage and improve the security of your server to protect your data
Troubleshoot your PostgreSQL instance for solutions to common and not-
so-common problems

https://www.packtpub.com/data/mastering-postgresql-12-third-edition

Other Books You May Enjoy

[682]

Leave a review - let other readers know
what you think
Please share your thoughts on this book with others by leaving a review on the site
that you bought it from. If you purchased the book from Amazon, please leave us an
honest review on this book's Amazon page. This is vital so that other potential
readers can see and use your unbiased opinion to make purchasing decisions, we can
understand what our customers think about our products, and our authors can see
your feedback on the title that they have worked with Packt to create. It will only take
a few minutes of your time, but is valuable to other potential customers, our authors,
and Packt. Thank you!

Index

/
/proc/meminfo
 interpreting 197, 198, 199, 200
 reference link 200
/proc/net/bonding/bond0
 examining 200, 201
 working 202

A
acceptable losses
 determining 88, 89, 90
activity 101
Advanced Package Tool (APT) 184
Amazon S3
 URL 373
application-level sharding 630
associated resources
 grouping 548, 549
 working 549, 550
asynchronous replication
 upgrading 294, 295, 296
 working 296, 297

B
balance PostgreSQL
 loading, by configuring HAProxy 147, 148,

149

Barman backups
 sending, to remote location 359, 360, 361
Barman diagnostics
 obtaining 355, 356, 357, 358, 359
Barman information
 obtaining 355, 356, 357, 358, 359
Barman Manual
 URL 347
Barman

 configuring 342, 343, 344, 345
 database, backing up with 348, 349
 database, cloning from 398
 database, restoring with 351, 352, 353
 installing 342, 343, 344, 345
 URL 347
 working 345, 346, 347
base options
 working with 528, 529, 530
BDR AutoScale 638
BDR node
 starting with 571, 572, 573
bidirectional replication (BDR)
 about 561
 installing 566, 568, 570
 node, creating 573, 575, 576
 obtaining 566, 568, 570
 reference link 567
 working 568, 570
block-level replication
 about 488
 adding 489, 491
bonus kernel tweaks
 additional settings 135
 applying 132, 133, 135
Bucardo command-line tool
 reference link 320
Bucardo
 installation link 320
 setting up 317, 318
 used, for copying tables 320, 321, 322, 323
 working 319
bulletproofing, with synchronous replication
 about 299, 300, 301, 302
 being less strict 302, 303
 being more strict 303
 extreme durability, enabling 304

[684]

business continuity planning 11
Business Intelligence (BI) 284

C
cache poisoning
 defusing 106, 107, 108, 109, 110
Canonical Name Record (CNAME) 433
cascading replication 297
chassis
 selecting 75, 77
 working 76
Check_MK
 about 240
 references 244
 used, for enhancing Nagios 240, 241, 242,

243

check_postgres
 about 244, 245, 246
 references 248
 working 247, 248
checkpoint segments 220
checkpoints
 logging 220, 221, 223
 working 222
Citus 638
CitusData
 URL 638
clones 534
cluster management
 DRBD, adding 531, 532, 533, 534
 LVM, adding 535, 536, 537
 PostgreSQL, adding to 541, 542, 543
 XFS, adding 538, 539, 540, 541
cluster resource manager 525
clusters
 viewing 398
 working 662, 663
combining
 actions 550, 551, 552
common statistics packages
 installing 183
 working 184
concurrent indexes
 contention, reducing 115, 117
 creation, testing 116

 limitations 117, 118
conflict-free replicated data type (CRDT) 564
connection costs
 determining 150, 151, 152
 working 152, 153
connection limits
 determining 150, 151, 152
 working 152, 153
consistency, availability, and partition tolerance

(CAP) theorem
 about 564
 reference link 566
Consul
 etcd, replacing with 469, 470, 471
 references 472
continuous recovery 293
Corosync
 configuring 522, 523, 524
 installing 519, 520
 working 521, 524, 525
CREATE FOREIGN TABLE
 reference link 618
CREATE SERVER
 reference link 610
CREATE USER MAPPING
 reference link 614
custom PostgreSQL monitor
 adding, to Telegraf 251, 252, 253, 254, 255

D
data center locations
 reference link 21
data centers (DC) 341
data definition languages (DDLs) 661
database administrators (DBAs) 81, 98
database backups
 about 22
 allocating 22
 working 23
database host
 monitoring, by configuring Nagios 234, 236,

237, 238
database locks
 deciphering 212, 213, 215, 216
 working 214, 215

[685]

database server
 access, working 82
 capacity planning 50
 information, collecting 51, 52
 numbers, adjusting 54
 protecting 84, 86
 real-world example 53
 spreadsheet, incorporating 54
 tallying up 81, 83
 working 52, 53, 85
database
 backing up, with Barman 348, 349
 backing up, with pgBackRest 366, 367, 368
 cloning, from Barman 398
 cloning, with repmgr 395, 397
 restoring, with Barman 351, 352, 353
 restoring, with pgBackRest 369, 370, 371,

372

DDL replication
 testing, on each node 577, 578
Direct Attached Storage (DAS) 76
Disaster Recovery (DR) 85, 283, 339
disk performance
 evaluating, with iostat 184, 185, 186, 187
Distributed Regulated Block Device (DRBD)
 about 201
 adding, to cluster management 531, 532,

533, 534
Distributed Replicated Block Device (DRBD)
 about 476
 need for 477, 478
Domain Name System (DNS) 140
DRBD documentation
 reference link 535
DRBD filesystem
 online verification, reference link 496
 verifying 494, 495
DRBD source
 reference link 483
DRBD split brain
 correcting 496, 497, 498, 499
 manual recovery, reference link 499
DRBD User’s Guide
 reference link 491
dstat

 used, for correlating performance 193, 194,
195, 196, 197

E
email alert
 adding 546, 547, 548
establishing consensus 25
etcd configuration flags
 reference link 442
etcd runtime reconfiguration
 reference link 466
etcd
 about 434
 configuring 437, 438, 439, 440, 441
 installing 437, 438, 439
 replacing, with Consul 469, 470, 471
 replacing, with ZooKeeper 466, 467, 468
 working 440, 441
ext4 479
Extents File System (XFS) 479
Extra Packages for Enterprise Linux (EPEL)

230

F
failover process
 customizing 408, 409, 410, 411
failover speed
 improving 593, 594, 596
fencing 32
filesystem components 477
foreign PostgreSQL server
 setting up 608, 609
foreign schema
 tables, creating for 617
foreign servers
 altering 610
 dropping 610
foreign table access
 optimizing 623, 624, 625
foreign tables
 creating 614, 615, 616
 reference link 617
 transforming, into local tables 626, 627, 628
 using, in query 618, 619, 620, 621

[686]

G
geographical locations
 selecting 18, 19, 21
 working 19, 20
Gigabit Ethernet (GbE) 74
Google Storage
 URL 373
Grafana graph
 customizing 271, 272
 working 273, 274
Grafana
 configuring 261, 262
 graph, building 265, 266, 268, 269, 270
 InfluxDB tags, using 276, 277, 278
 installing 261, 262
 references 265, 271
 working 262, 263, 264
graph
 building, in Grafana 265, 266, 268, 269, 270
gratuitous ARP 411

H
HAProxy Unix Socket Commands
 reference link 588
HAProxy
 configuring 451, 452, 453, 454
 configuring, for multi-master approach 585,

586, 588
 configuring, to load balance PostgreSQL

147, 148, 149
 installing 143, 144, 451, 452, 453, 454
 need for 433
 obtaining 143, 144
 PgBouncer, combining with 588, 590
 references 146
 working 145, 146
HAProxyCTL tool
 reference link 593
hardware failure
 mitigating 126, 127, 128, 129
hardware
 monitoring 226, 227, 228
high availability cluster 18
high availability, with Pacemaker

 virtual IP, adding to proxy cluster 544, 545,
546

high availability, with Patroni
 nodes, adding to mix 462, 463, 464
 nodes, returning to cluster 459, 460, 461
 testing, with outage 457, 458
high availability, with repmgr
 nodes, returning to cluster 417, 418, 419,

420

 testing, with outage 413, 414, 415, 416
horizontal candidates
 identifying 604, 605, 606, 607
hot standby server
 setting up 288, 289, 291
 working 291, 293
Hot Standby
 reference link 122
Hub model 36
hyper-threading 62

I
I/O-heavy processes
 tracking, with iotop 188, 189, 190
IMPORT FOREIGN SCHEMA
 reference link 618
indirection
 about 28
 working 29, 30
InfluxDB tags
 using, in Grafana 276, 277, 278
InfluxDB
 about 256
 configuring 256, 257, 258
 installing 256, 257, 258
 reference link 261
 working 258, 259
Input/Output Operations Per Second (IOPS)
 about 46
 concessions, creating 50
 estimating 47
 working 48
 working example 49
Instagram 630
interrupt requests (IRQs) 191
iostat

[687]

 used, for evaluating disk performance 184,
185, 186, 187

iotop
 used, for tracking I/O-heavy processes 188,

189, 190, 192

K
kilobytes (KB) 183
kilobytes per second (kBps) 186

L
Lightweight Directory Access Protocol (LDAP)

158

Linux Documentation Project 488
Linux Standard Base (LSB) 527
live stack systems
 switching 511, 512, 513
local tables
 foreign tables, transforming into 626, 627,

628

Log Sequence Number (LSN) 28
Log-Shipping Standby Servers
 reference link 122
logical shard 639
Logical Unit Number (LUN) 78
Logical Volume Manager (LVM)
 about 476, 478
 adding, to cluster management 535, 536,

537

 working with 484, 485, 486
LVM snapshots
 using 508, 509, 511
 working 510, 511

M
managed failover
 performing 403, 404, 405, 406
managed node switchover
 performing 590, 592, 593
managed resource migration
 performing 553
 working 554, 555
managed switchover
 performing 455, 456
mapping

 considerations 642
materialized views
 about 626
 aspects 629
 reference link 630
megabytes (MB) 182
memory
 allocating 63, 64
 working 65
Mesh topology 36
Microsoft Azure Blobs
 URL 373
migration
 testing, with outage 556, 557
motherboards
 managing 71, 72
 working 73
multi-master PostgreSQL clusters
 about 38
 architecture 38
 incorporating 34
 leveraging 38
 logical replication, using 41
 reference link 41
 types 36, 37
 working 35, 36, 38, 40
multi-master replication
 HAProxy, configuring 585, 586, 588
 overview 560, 561
 selecting 562, 563, 565, 566
multiple writable PostgreSQL nodes
 deploying 34

N
Nagios object manual
 reference link 240
Nagios Remote Plugin Executor (NRPE) 235
Nagios
 configuration link 234
 configuring 229, 230, 231, 232
 configuring, to monitor database host 234,

236, 237, 238
 enhancing, with Check_MK 240, 241, 242,

243

 installation link 234

[688]

 installing 229, 230, 231, 232
 working 232, 233
native logical replication
 keys, for DELETE 335
 keys, for UPDATE 335
 no sequences 334
 tool integration 335
 used, for copying tables 332, 334
Network Attached Storage (NAS) 76
network partition 27
nimble networking
 estimating 67
 example 70
 exploring 66
 redundancy 70, 71
 research 71
 working 68, 69

O
Online Analytic Processing (OLAP) 56
online maintenance
 performing 426, 427, 429
Online Transaction Processing (OLTP) 56, 94,

201, 506
ordering
 actions 550, 551, 552
outage
 used, for testing high availability with Patroni

457, 458
 used, for testing high availability with repmgr

413, 414, 415, 416
 using, to test migration 556, 557

P
PACELC 564
Pacemaker
 installing 519, 520
 working 521
parallel backup 350
past performance
 viewing, with sar 190, 192
Patroni
 about 433
 cluster status 449
 components 433

 configuring 442, 444, 446, 448, 449
 installing 442, 444, 446, 448
 need for 434
 service management 450
performance
 correlating, with dstat 193, 194, 195, 196,

197

pg_basebackup utility
 reference link 122
pg_class
 reference link 607
pg_foreign_server
 reference link 610
pg_locks and pg_blocking_pids functions
 reference link 216
pg_prewarm
 reference link 110
pg_receivewal
 reference link 132
 used, for faking replication 304, 305, 306,

307

pg_rewind utility
 reference link 126
pg_settings view
 about 100
 settings 100
pg_stat_activity view
 checking 203, 204, 207
 reference link 207
 working 205, 206
pg_stat_statements view
 checking 208, 209
 queries 212
 reference link 212, 607
 status, resetting 211
 working 210, 211
pg_user_mapping
 reference link 614
pgBackRest Command Reference
 reference link 366
pgBackRest
 backup types 368, 369
 configuring 361, 362, 363, 364, 365
 database, backing up with 366, 367, 368
 database, restoring with 369, 370, 371, 372

[689]

 full backups 369
 installing 361, 362, 363, 364, 365
 URL 366
PgBouncer authentication
 enhancing 174, 175, 176, 177
PgBouncer client connections
 listing 164, 165, 166
PgBouncer connections
 changing, while online 171, 172, 173
PgBouncer pool health
 evaluating 167, 168, 169, 170
PgBouncer server connections
 listing 162, 163
PgBouncer usage
 reference link 164
PgBouncer, pool_mode
 about 159
 prepared statements, problems 160
 session 159
 statement 160
 transaction 159
PgBouncer
 about 153, 672
 combining, with HAProxy 588, 589
 configuration link 178
 configuring 156, 157, 158, 159
 connecting to 160, 161
 installing 153, 154
 overview 651, 652, 653
 references 160
 URL 156
 working 155, 156
pgFincore
 reference link 110
pglogical
 extracting, from updated cluster 676, 677,

678, 679
 overview 651, 652, 653
 reference link 327
 setting up 324, 325, 326
 used, for copying tables 328, 329, 330
 working 326
pgstattuple
 reference link 105
pgtune

 reference link 97
physical shard 639
Pluggable Authentication Modules (PAM) 158
Point-In-Time-Recovery (PITR) 24, 129, 284,

338

Postgres-XL
 about 638
 URL 638
postgres_fdw
 reference link 610
PostgreSQL 10
 improvements 623
PostgreSQL 11
 improvements 623
PostgreSQL 9.6
 improvements 622
PostgreSQL
 indexes and concurrency, reference link 118
PostgreSQL database
 setting up 91, 92, 93, 94, 96, 97
PostgreSQL Global Development Group

(PGDG) 155
PostgreSQL mailing lists
 reference link 164
PostgreSQL procedural languages
 references 639
PostgreSQL Server Configuration
 reference link 97
PostgreSQL server
 working 61
PostgreSQL system catalog, features
 references 671
PostgreSQL system catalog
 reference link 256
PostgreSQL versions
 upgrade process, completing 672, 673, 675
 upgrading 648, 649, 650, 651
PostgreSQL
 adding, to cluster management 541, 542,

543

 pgstattuple extension, using 105
 reset stats 104
 upgrading, while staying online 474, 475
 version, upgrading while staying online 472,

473

Power Distribution Units (PDU) 32

[690]

primary fencing
 integrating 421, 422, 423, 424
primitives 533
problematic node
 detaching 514, 516
process ID (PID) 189
processor
 clock boosting 62
 information, collecting 60
 multithreading 62
 power usage 63
 selecting 58, 59
proxies, resources
 reference link 31
proxy techniques 29
proxy
 integrating, into PostgreSQL cluster 29
pseudo-database 162
publication set
 creating 654, 655, 656
 working 656, 657
Python Package Index (PyPI) 436

Q
query
 foreign table, using in 618, 619, 620, 621
quorum
 considering 25
 total count, adjusting 25
 working 26, 27

R
Raft 434
Recovery Point Objective (RPO)
 about 8
 expectations, setting with 8, 9
 working 10
Recovery Point Objective of zero (RPO zero)

354, 355
Recovery Time Objective (RTO)
 about 11
 Internet service providers 15
 node counts 15
 timetables, defining through 11, 12, 13
 working 13, 14

Red Hat Enterprise Linux (RHEL) 479, 520
redundancy
 hardware spreadsheet, tracking 44
 planning 43, 45
 working 45
Redundant Array of Independent Disks (RAID)
 about 55, 180
 investing 55
 performing 56
 working 56, 57
redundant data copies
 selecting 15, 16
 working 16
reference hostname
 assigning 31
Relational Database Management System

(RDBMS) 338
remote user
 mapping 611, 612
replication resource requirements
 determining 282, 283, 284
replication slots
 about 324
 using 298
replication status
 viewing, on replica 298, 299
replication
 faking, with pg_receivewal 304, 305, 306,

307

repmgr witness register
 reference link 403
repmgr witness server
 reference link 403
repmgr witness
 incorporating 399, 400, 401, 402, 403
repmgr
 configuring 388, 389, 390, 393, 394
 database, cloning with 395, 397
 installing 388, 389, 390, 393, 394
 references 394, 408
 systems, preparing for 384, 385, 386, 387
repmgrd
 configuration link 426
retention policies 350
rogue connections

[691]

 terminating 111, 112, 113, 114, 115
round-trip time (RTT) 201
RPM Package Manager (RPM) 184

S
SAN vendors
 reference link 81
sar
 used, for viewing past performance 190
scalable nextval replacement
 creating 630, 631, 632, 633, 634
scary settings
 managing 97, 98, 99
second LVM layer
 incorporating 491, 492, 493, 494
Secure Sockets Layer (SSL) 99
securing options, WAL stream
 built-in delay 131
 compression, adding 131
 files, copying 130
 secondary delay 132
SELinux 233
sequences
 global allocation sequences 583
 handling 658, 659
 timeshard introspection 584
 using 580, 581, 583
 working 659
server vendors
 reference link 74
server
 shard, moving to 643, 644
Service Level Agreement (SLA) 11, 88
services
 starting 526, 527
shard
 moving, to another server 643, 644, 645
shard_manager extension 637
sharding API
 building 635, 636, 637
Shoot Myself In The Head (SMITH) 32
shoot the other node in the head (STONITH)

32, 421, 521
Simple Network Management Protocol (SNMP)

229

Simultaneous Multithreading (SMT) 62
Slony documentation
 reference link 316
Slony
 reference link 312
 setting up 308, 309, 310
 used, for copying tables 313, 314, 315, 316
 working 311, 312
software stack 479
software upgrades
 managing 122, 124, 125, 126
 performing 426, 427, 429
software
 monitoring 226, 227, 228
split brain
 about 31
 preventing 31
 risk, eliminating 32
 working 32, 33
Spoke model 36
stack
 about 435
 systems, preparing for 435, 437
standby server, settings
 reference link 132
Statistics Collector
 reference link 105, 607
Storage Area Network (SAN)
 about 76, 77, 78, 92, 151, 479
 working 79, 80
strace
 debugging with 216, 217, 218, 219, 220
 working 218, 219
strange planner decisions 622
streaming replication
 about 353, 354
 reference link 299
subscription progress
 monitoring 667, 668, 669, 670
subscription
 starting 664
 working 665, 666
SWIFT
 URL 373
synchronous replication

[692]

 about 478
 used, for bulletproofing 299, 300, 301, 302
system administration function
 reference link 105
system migrations
 managing 118, 119, 122
 working 120, 121
system problem
 analyzing 181
system troubleshooting
 reference link 516
systems
 preparation, for volume mirroring 480, 482,

484

 preparing, for repmgr 384, 385, 386, 387
 preparing, for stack 435, 437

T
tables
 building, to map logical shards 640, 641
 copying, with Bucardo 320, 321, 322, 323
 copying, with native logical replication 332,

333, 334
 copying, with pglogical 328, 329, 330
 copying, with Slony 313, 314, 315, 316
 creating, for foreign schema 617
 identifying 100, 102, 103
 used, for copying tables 333
target cluster
 bootstrapping 660, 661
Telegraf postgresql_extensible plugin
 reference link 256
Telegraf
 configuring 249
 custom PostgreSQL monitor, adding 251,

252, 253, 254, 255
 installing 249
 reference link 251
 working 250, 251
teletypewriters (TTYs) 191
The Oversize Attribute Storage Technique

(TOAST) 103
third-party tools
 using 338, 339, 340, 342
time-to-live (TTL) 140

timetables
 defining, through RTO 11, 12, 13
transactions per second (TPS) 186
Transparent Huge Pages (THP)
 about 135
 disadvantages 136
triage
 performing 180, 181, 182

V
version online upgrade
 performing 596, 598, 599
very large databases (VLDB) 663
virtual IPs
 exploring 140, 141
 working 141, 142
Virtual Machines (VMs) 650

W
WAL files
 configuration link 224
 copying 130
 managing, with WAL-E 377, 378, 379
 recovering 380
WAL stream
 securing 284, 285, 286
 working 286, 287
WAL-E
 configuring 373, 374, 375, 376, 377
 installing 373, 374, 375, 376, 377
 managing, with WAL-E 377, 378, 379
 used, for backing up database 380
 used, for removing old files 381
Web Administration Tool (WATO) 242
witness node 25
write-ahead logging (WAL) 92, 220, 284, 440,

478, 663

X
XFS filesystem
 formatting 499, 501, 502
 maintaining 505, 507, 508
XFS performance
 tweaking 502, 503, 504, 505
XFS

 adding, to cluster management 538, 539,
540, 541

Y

Yet Another Markup Language (YAML) 437

Z
ZooKeeper
 etcd, replacing with 466, 467, 468

	Cover
	Title Page
	Copyright and Credits
	About Packt
	Contributors
	Table of Contents
	Preface
	Chapter 1: Architectural Considerations
	Setting expectations with RPO
	Getting ready
	How to do it...
	How it works...
	There's more...

	Defining timetables through RTO
	Getting ready
	How to do it...
	How it works...
	There's more...
	This may seem familiar
	Node counts

	Picking redundant copies
	Getting ready
	How to do it...
	How it works...
	There's more...

	Selecting locations
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Having enough backups
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Considering quorum
	Getting ready
	How to do it...
	How it works...
	There's more...

	Introducing indirection
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Preventing split brain
	Getting ready
	How to do it...
	How it works...
	There's more...

	Incorporating multi-master
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Leveraging multi-master
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Chapter 2: Hardware Planning
	Planning for redundancy
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Having enough IOPS
	Getting ready
	How to do it...
	How it works...
	There's more...
	A working example
	Making concessions

	Sizing storage
	Getting ready
	How to do it...
	How it works...
	There's more...
	Real-world example
	Adjusting the numbers
	Incorporating the spreadsheet

	Investing in a RAID
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Picking a processor
	Getting ready
	How to do it...
	How it works...
	There's more...
	Simultaneous multithreading
	Clock boosting
	Power usage

	See also

	Allocating enough memory
	Getting ready
	How to do it...
	How it works...
	There's more...

	Exploring nimble networking
	Getting ready
	How to do it...
	How it works...
	There's more...
	A networking example
	Remember redundancy
	Saving the research

	Managing motherboards
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Selecting a chassis
	Getting ready
	How to do it...
	How it works...
	There's more...

	Saddling up to a SAN
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Tallying up
	Getting ready
	How to do it...
	How it works...
	There's more...

	Protecting your eggs
	Getting ready
	How to do it...
	How it works...
	There's more...

	Chapter 3: Minimizing Downtime
	Determining acceptable losses
	Getting ready
	How to do it...
	How it works...

	Configuration – getting it right the first time
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Configuration – managing scary settings
	Getting ready
	How to do it...
	How it works...
	There's more...
	Distinct settings
	More information

	See also

	Identifying important tables
	Getting ready
	How to do it...
	How it works...
	There's more...
	Reset stats
	Using pgstattuple

	See also

	Defusing cache poisoning
	Getting ready
	How to do it...
	How it works...
	See also

	Terminating rogue connections
	Getting ready
	How to do it...
	How it works...
	There's more...

	Reducing contention with concurrent indexes
	Getting ready
	How to do it...
	How it works...
	There's more...
	No transactions
	One at a time
	Dangers of OLTP use

	See also

	Managing system migrations
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Managing software upgrades
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Mitigating the impact of hardware failure
	Getting ready
	How to do it...
	How it works...
	There's more...
	Copying WAL files more easily
	Built-in delay
	Adding compression
	Secondary delay

	See also

	Applying bonus kernel tweaks
	Getting ready
	How to do it...
	How it works...
	There's more...
	Some additional background
	Be wary of THP

	Chapter 4: Proxy and Pooling Resources
	Exploring the magic of virtual IPs
	Getting ready
	How to do it...
	How it works...
	There's more...

	Obtaining and installing HAProxy
	Getting ready
	How to do it...
	How it works...
	See also

	Configuring HAProxy to load balance PostgreSQL
	Getting ready
	How to do it...
	How it works...
	There's more

	Determining connection costs and limits
	Getting ready
	How to do it...
	How it works...
	There's more...

	Installing PgBouncer
	Getting ready
	How to do it...
	How it works...
	See also

	Configuring PgBouncer safely
	Getting ready
	How to do it...
	How it works...
	There's more...
	What about pool_mode?
	Problems with prepared statements

	See also

	Connecting to PgBouncer
	Getting ready
	How to do it...
	How it works...
	See also

	Listing PgBouncer server connections
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Listing PgBouncer client connections
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Evaluating PgBouncer pool health
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Changing PgBouncer connections while online
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Enhancing PgBouncer authentication
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Chapter 5: Troubleshooting
	Performing triage
	Getting ready
	How to do it...
	How it works...
	There's more...

	Installing common statistics packages
	How to do it...
	How it works...

	Evaluating the current disk performance with iostat
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Tracking I/O-heavy processes with iotop
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Viewing past performance with sar
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Correlating performance with dstat
	Getting ready
	How to do it...
	How it works...
	See also

	Interpreting /proc/meminfo
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Examining /proc/net/bonding/bond0
	Getting ready
	How to do it...
	How it works...

	Checking the pg_stat_activity view
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Checking the pg_stat_statements view
	Getting ready
	How to do it...
	How it works...
	There's more...
	Reset the status
	Catch more queries

	See also

	Deciphering database locks
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Debugging with strace
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Logging checkpoints properly
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Chapter 6: Monitoring
	Figuring out what to monitor
	Getting ready
	How to do it...
	How it works...
	There's more...

	Installing and configuring Nagios
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Configuring Nagios to monitor a database host
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Enhancing Nagios with Check_MK
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Getting to know check_postgres
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Installing and configuring Telegraf
	Getting ready
	How to do it...
	How it works...
	See also

	Adding a custom PostgreSQL monitor to Telegraf
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Installing and configuring InfluxDB
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Installing and configuring Grafana
	Getting ready
	How to do it...
	How it works...
	See also

	Building a graph in Grafana
	Getting ready
	How to do it...
	How it works...
	See also

	Customizing a Grafana graph
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Using InfluxDB tags in Grafana
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Chapter 7: PostgreSQL Replication
	Deciding what to copy
	Getting ready
	How to do it...
	How it works...

	Securing the WAL stream
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Setting up a hot standby
	Getting ready
	How to do it...
	How it works...
	See also

	Upgrading to asynchronous replication
	Getting ready
	How to do it...
	How it works...
	There's more...
	Cascading replication
	Using replication slots
	Viewing replication status on a replica

	See also

	Bulletproofing with synchronous replication
	Getting ready
	How to do it...
	How it works...
	There's more...
	Being less strict
	Being more strict
	Enabling extreme durability

	See also

	Faking replication with pg_receivewal
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Setting up Slony
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Copying a few tables with Slony
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Setting up Bucardo
	Getting ready
	How to do it...
	How it works...
	See also

	Copying a few tables with Bucardo
	Getting ready
	How to do it...
	How it works...
	See also

	Setting up pglogical
	Getting ready
	How to do it...
	How it works...
	See also

	Copying a few tables with pglogical
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Copying a few tables with native logical replication
	Getting ready
	How to do it...
	How it works...
	There's more...
	No sequences
	Tool integration
	Keys required for UPDATE and DELETE

	See also

	Chapter 8: Backup Management
	Deciding when to use third-party tools
	Getting ready
	How to do it...
	How it works...

	Installing and configuring Barman
	Getting ready
	How to do it...
	How it works...
	See also

	Backing up a database with Barman
	Getting ready
	How to do it...
	How it works...
	There's more...
	Retention policies
	Parallel backup

	See also

	Restoring a database with Barman
	Getting ready
	How to do it...
	How it works...
	There's more...
	Streaming replicas
	RPO zero

	See also

	Obtaining Barman diagnostics and information
	Getting ready
	How to do it...
	How it works...

	Sending Barman backups to a remote location
	Getting ready
	How to do it...
	How it works...

	Installing and configuring pgBackRest
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Backing up a database with pgBackRest
	Getting ready
	How to do it...
	How it works...
	There's more...
	More backup types
	Use full regularly

	See also

	Restoring a database with pgBackRest
	Getting ready
	How to do it...
	How it works...
	There's more...

	Installing and configuring WAL-E
	Getting ready
	How to do it...
	How it works...
	See also

	Managing WAL files with WAL-E
	Getting ready
	How to do it...
	How it works...
	There's more...
	Recovering WAL files
	Backing up the database
	Removing old files

	See also

	Chapter 9: High Availability with repmgr
	Preparing systems for repmgr
	Getting ready
	How to do it...
	How it works...

	Installing and configuring repmgr
	Getting ready
	How to do it...
	How it works...
	See also

	Cloning a database with repmgr
	Getting ready
	How to do it...
	How it works...
	There's more...
	Viewing the cluster
	Cloning from Barman

	See also

	Incorporating a repmgr witness
	Getting ready
	How to do it...
	How it works...
	See also

	Performing a managed failover
	Getting ready
	How to do it...
	How it works...
	There's more...
	Always watching
	Testing the waters
	Useful shortcuts

	See also

	Customizing the failover process
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Using an outage to test availability
	Getting ready
	How to do it...
	How it works...
	There's more...

	Returning a node to the cluster
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Integrating primary fencing
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Performing online maintenance and upgrades
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Chapter 10: High Availability with Patroni
	Understanding more about Patroni and its components
	Why HAProxy?
	Why etcd?
	Why Patroni?
	The stack

	Preparing systems for the stack
	Getting ready
	How to do it...
	How it works...
	See also

	Installing and configuring etcd
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Installing and configuring Patroni
	Getting ready
	How to do it...
	How it works...
	There's more...
	Cluster status
	Better service management

	See also

	Installing and configuring HAProxy
	Getting ready
	How to do it...
	How it works...
	See also

	Performing a managed switchover
	Getting ready
	How to do it...
	How it works...
	There's more...

	Using an outage to test availability
	Getting ready
	How to do it...
	How it works...
	There's more...

	Returning a node to the cluster
	Getting ready
	How to do it...
	How it works...
	There's more...

	Adding additional nodes to the mix
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Replacing etcd with ZooKeeper
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Replacing etcd with Consul
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Upgrading while staying online
	Getting ready
	How to do it...
	How it works...
	There's more...

	Chapter 11: Low-Level Server Mirroring
	Understanding our chosen filesystem components
	Why DRBD?
	Why LVM?
	Why XFS?
	The stack

	Preparing systems for volume mirroring
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Getting started with the LVM
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Adding block-level replication
	Getting ready
	How to do it...
	How it works...
	See also

	Incorporating the second LVM layer
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Verifying a DRBD filesystem
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Correcting a DRBD split brain
	Getting ready
	How to do it...
	How it works...
	See also

	Formatting an XFS filesystem
	Getting ready
	How to do it...
	How it works...
	See also

	Tweaking XFS performance
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Maintaining an XFS filesystem
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Using LVM snapshots
	Getting ready
	How to do it...
	How it works...
	See also

	Switching live stack systems
	Getting ready
	How to do it...
	How it works...
	There's more...

	Detaching a problematic node
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Chapter 12: High Availability via Pacemaker
	Before we begin...
	Installing the components
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Configuring Corosync
	Getting ready
	How to do it...
	How it works...
	See also

	Preparing start up services
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Starting with base options
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Adding DRBD to cluster management
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Adding LVM to cluster management
	Getting ready
	How to do it...
	How it works...
	There's more...

	Adding XFS to cluster management
	Getting ready
	How to do it...
	How it works...

	Adding PostgreSQL to cluster management
	Getting ready
	How to do it...
	How it works...
	There's more...

	Adding a virtual IP to proxy the cluster
	Getting ready
	How to do it...
	How it works...

	Adding an email alert
	Getting ready
	How to do it...
	How it works...

	Grouping associated resources
	Getting ready
	How to do it...
	How it works...

	Combining and ordering related actions
	Getting ready
	How to do it...
	How it works...

	Performing a managed resource migration
	Getting ready
	How to do it...
	How it works...
	There's more...

	Using an outage to test migration
	Getting ready
	How to do it...
	How it works...
	There's more...

	Chapter 13: High Availability with Multi-Master Replication
	Overview of multi-master
	Deciding whether multi-master is right for you
	Getting ready
	How to do it...
	How it works...
	See also

	Obtaining and installing BDR
	Getting ready
	How to do it...
	How it works...
	There's more...

	Starting with a single BDR node
	Getting ready
	How to do it...
	How it works...
	There's more...

	Creating an additional BDR node
	Getting ready
	How to do it...
	How it works...
	There's more...

	Testing DDL replication on each node
	Getting ready
	How to do it...
	How it works...
	There's more...

	Using sequences safely
	Getting ready
	How to do it...
	How it works...
	There's more...
	Global allocation sequences
	Timeshard introspection

	See also

	Configuring HAProxy for the multi-master approach
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Combining PgBouncer with HAProxy
	Getting ready
	How to do it...
	How it works...

	Performing a managed node switchover
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Improving failover speed
	Getting ready
	How to do it...
	How it works...

	Performing a major version upgrade online
	Getting ready
	How to do it...
	How it works...
	There's more...

	Chapter 14: Data Distribution
	Identifying horizontal candidates
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Setting up a foreign PostgreSQL server
	Getting ready
	How to do it...
	How it works...
	There's more...
	Altering foreign servers
	Dropping foreign servers

	See also

	Mapping a remote user
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Creating a foreign table
	Getting ready
	How to do it...
	How it works...
	There's more...
	Creating all tables for a foreign schema
	Dropping foreign tables

	See also

	Using a foreign table in a query
	Getting ready
	How to do it...
	How it works...
	There's more...
	Explaining strange planner decisions
	Improvements in PostgreSQL 9.6
	Improvements in PostgreSQL 10
	Improvements in PostgreSQL 11

	Optimizing foreign table access
	Getting ready
	How to do it...
	How it works...
	There's more...

	Transforming foreign tables into local tables
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Creating a scalable nextval replacement
	Getting ready
	How to do it...
	How it works...
	There's more...

	Building a sharding API
	Getting ready
	How to do it...
	How it works...
	There's more...
	shard_manager extension
	Citus
	Postgres-XL
	BDR AutoScale

	See also

	Talking to the correct shard
	Getting ready
	How to do it...
	How it works...
	There's more...
	Keeping things fast by creating a cache
	Choosing an application data to map logical shard

	Moving a shard to another server
	Getting ready
	How to do it...
	How it works...
	There's more...

	Chapter 15: Zero-downtime Upgrades
	Preparing upgrade requirements
	Getting ready
	How to do it…
	How it works…

	Remembering PgBouncer and pglogical
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also

	Creating a publication set
	Getting ready
	How to do it…
	How it works…
	There's more…

	Handling sequences
	Getting ready
	How to do it…
	How it works…
	There's more…

	Bootstrapping the target cluster
	Getting ready
	How to do it…
	How it works…
	There's more…

	Starting the subscription
	Getting ready
	How to do it…
	How it works…
	There's more…

	Monitoring progress
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also

	Switching targets
	Getting ready
	How to do it…
	How it works…
	There's more…

	Cleaning everything up
	Getting ready
	How to do it…
	How it works…

	Other Books You May Enjoy
	Index

