
Practical
Entity
Framework

Database Access for Enterprise Applications
—
Brian L. Gorman

Practical Entity
Framework

Database Access for
Enterprise Applications

Brian L. Gorman

Practical Entity Framework: Database Access for Enterprise Applications

ISBN-13 (pbk): 978-1-4842-6043-2 ISBN-13 (electronic): 978-1-4842-6044-9
https://doi.org/10.1007/978-1-4842-6044-9

Copyright © 2020 by Brian L. Gorman

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not
identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Jonathan Gennick
Development Editor: Laura Berendson
Coordinating Editor: Jill Balzano

Cover image designed by Freepik (www.freepik.com)

Distributed to the book trade worldwide by Springer Science+Business Media New York,
233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail
orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a California
LLC and the sole member (owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc).
SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail booktranslations@springernature.com; for reprint, paperback,
or audio rights, please e-mail bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and
licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales
web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to
readers on GitHub via the book’s product page, located at www.apress.com/9781484260432. For more
detailed information, please visit http://www.apress.com/source-code.

Printed on acid-free paper

Brian L. Gorman
Jesup, IA, USA

www.EBooksWorld.ir

https://doi.org/10.1007/978-1-4842-6044-9

This book is dedicated to my wife Cassie and
my children Kiera, Karson, and Kreighton, who have all made

many sacrifices to give me space and time to write, as well as for
your daily, unceasing love, grace, patience, and encouragement.

This book is further dedicated to you, dear reader.
Thank you for allowing me to be part of your journey to greatness.

v

About the Author ��xix

About the Technical Reviewer ��xxi

Acknowledgments ��xxiii

Introduction ���xxv

Table of Contents

Part I: Getting Started ��� 1

Chapter 1: Introduction to Entity Framework ��� 3

One, two, three versions? Oh my!. .. 3

When it all began ... 3

A brief note about ADO.Net .. 5

Entity Framework makes its debut ... 5

Entity Framework and LINQ ... 5

A new direction and a new visionary leader ... 6

Microsoft goes all in for all developers ... 6

A new vision requires a new path ... 6

The state of the union .. 7

The future.. 8

Activity 0101: Getting started with Entity Framework ... 8

Create a new project and add the EF packages .. 9

Activity summary ... 19

Activity supplemental information ... 20

Chapter summary ... 22

Important takeaways ... 23

Closing thoughts .. 23

vi

Chapter 2: Working with an Existing Database �� 25

Reverse engineering or database first .. 25

Why would we approach Entity Framework in this manner? ... 25

Database-first or reverse-engineered solutions .. 26

Keeping everything in sync ... 26

Interacting with the existing database .. 27

Working with a preexisting database activities .. 27

Download the backup file for the latest version of AdventureWorks 27

Activity 0201: Creating a reverse-engineered database in Entity Framework Core 35

Activity 0202: Creating a database-first project in Entity Framework 6 56

Final thoughts for this chapter .. 76

Overall things we learned .. 76

Moving forward ... 76

Chapter 3: Entity Framework: Code First �� 77

Code first doesn’t always mean code first .. 77

When not to use the code-first approach .. 77

When to use the code-first approach .. 78

Code first in an existing project ... 79

Code first in a new project against a mature database ... 79

Code first in a new project with a new database .. 79

The benefits of a well-executed code-first development effort .. 80

Ability to get up and running quickly ... 80

A complete record of database changes in source control ... 80

Agility when needing to revert to a previous state .. 81

Shifting from declarative to imperative database programming ... 82

It’s time to see code-first database programming in action ... 83

Activity 0301: Creating a new code-first implementation against an existing
database project in EFCore ... 84

Use the starter files, or your project from Chapter 2 ... 84

Table of ConTenTs

vii

Activity 0302: Creating a new code-first project in EFCore .. 97

What are we building? ... 98

Activity 0303: Creating a code-first project in EF6 .. 123

Why not a new project? ... 124

Using an existing project to implement an EF6 code-first approach 124

Final thoughts for this chapter .. 145

Final thoughts on section 1 ... 146

Part II: Building the Data Solution �� 147

Chapter 4: Models and the Data Context �� 149

What is the database context, and why do we need it? .. 149

DBContext vs. ObjectContext ... 150

What is the DBContext? ... 150

Constructing a new DBContext .. 151

Critical properties and methods available when working with the DBContext 153

Important properties on the DbContextOptions Builder object .. 153

Important properties on the DBContextOptions object .. 154

Important properties on the DBContext object .. 154

Methods available on the DBContext ... 155

Methods and extensions on the DBSet<T> object .. 156

Methods and extensions for the DBContextOptions Builder object 157

Working with models .. 158

Two immediate benefits of code-first models ... 159

Building a database entity model .. 159

A final thought about models .. 159

Activity 0401: Modifying the Item ... 160

Practical application for your daily routine .. 160

Building out the solution .. 160

Table of ConTenTs

viii

Activity 0402: Using the ChangeTracker to inject some automated auditing 173

Setting up the context ... 173

Common critical underlying objects .. 173

The ChangeTracker is the lifeblood of our interaction with the Entity Framework 174

Implementing automated auditing on our entities .. 174

Final thoughts for this chapter .. 188

Chapter 5: Constraints, Keys, and Relationships �� 189

Constraining our data to enhance our solutions ... 189

Size limitations .. 190

Value constraints ... 192

Default values .. 192

Other data annotations .. 193

Using keys in database tables for unique and relational results .. 194

Working with relational data ... 195

First-, second-, and third-normal form .. 195

First-normal form (1NF) ... 195

Second-normal form (2NF) .. 196

Third-normal form (3NF) .. 198

Types of relationships .. 200

One-to-one relationships ... 200

One-to-many relationships .. 201

Many-to-many relationships ... 202

Some final thoughts about relationships and normalization ... 203

Activities for this chapter .. 203

Activity 0501: Add length, range, and other constraints to the Item model 204

Step 1: Get started ... 204

Affecting the length of columns .. 204

Creating a range on numeric fields ... 209

Ensuring a field is a Key, making fields required, and setting default values
on a column ... 214

Key takeaways from activity 0501 .. 218

Table of ConTenTs

ix

Activity 0502: Setting up relationships ... 219

Creating a one-to-many relationship ... 219

Creating a one-to-one relationship .. 224

Key takeaways from activity 0502 .. 229

Activity 0503: Using a non-clustered unique index ... 230

Soft delete or hard delete, either way, just make sure it works .. 230

Adding a unique, non-clustered index to the ItemGenre table to make sure
that the joins are unique.. 237

Using the Fluent API .. 239

Final thoughts for this chapter .. 243

Chapter 6: Data Access (Create, Read, Update, Delete) �� 245

CRUD ... 245

LINQ ... 245

Basic Interactions ... 245

Leverage the DbSet<T> objects .. 246

Common commands .. 246

Activity 0601: Quick CRUD with scaffolded controllers ... 247

Step 1: Set up .. 248

Step 2: Build the application, update the database, run the web application 253

Step 3: Review the database ... 255

Step 4: Create a model, then a migration .. 257

Step 5: Scaffold the controller ... 260

Step 6: Review the controller – Read .. 264

Step 7: Review the controller – Create .. 265

Step 8: Review the controller – Update ... 266

Step 9: Review the Controller – Delete .. 267

Step 10: Set a couple of categories, then run the application ... 267

Key takeaways from activity 0602 .. 269

Chapter summary ... 269

Table of ConTenTs

x

Chapter 7: Stored Procedures, Views, and Functions ��� 271

Understanding stored procedures, views, and functions .. 271

Stored procedures ... 272

Functions ... 272

Views ... 273

Setting up the database to run scripts efficiently ... 273

The problem .. 274

The solution ... 277

Fluent API .. 277

Working with the database objects ... 279

Activities ... 279

Activity 0701: Working with stored procedures .. 279

Step 1: Set up .. 279

Step 2: Create a new migration for a simple stored procedure ... 280

Step 3: Create the MigrationBuilder extension .. 283

Step 4: Execute and use the results from the stored procedure ... 290

Step 5: Use the Fluent API to map out a result set entity for the stored procedure............. 294

Step 6: Use parameters to avoid SQL Injection attacks ... 297

Final thoughts .. 299

Activity 0702: Working with functions and seed data ... 299

Step 1: Set up .. 300

Step 2: Script out a new scalar-valued function .. 300

Step 3: Add a new migration and update the database ... 302

Step 4: Get the result set from the function into a mapped entity with no defined key 302

Step 5: Make the program changes to execute the function and get the results 303

Step 7: Create a new table-valued function .. 304

Step 8: Seeding data with the Fluent API .. 307

Step 9: Rolling our own custom migrator .. 308

Step 10: Create an Items builder ... 315

Final thoughts .. 320

Table of ConTenTs

xi

Activity 0703: Working with views .. 321

Step 1: Set up .. 321

Step 2: Add the view as a script .. 321

Step 3: Add the view DTO and set the view in the InventoryDbContext 322

Step 4: Update the Fluent API for the view .. 322

Step 5: Create the migration .. 323

Step 6: Make the call and get the data from the new view ... 324

Final thoughts .. 325

Conclusion .. 325

Chapter 8: Sorting, Filtering, and Paging �� 327

It’s time to learn LINQ ... 327

LINQ is not the problem ... 327

Use a profiler or another tool ... 328

Issues and solutions ... 328

Issue #1: Pre-fetching results, then iterating to filter .. 328

Issue #2: Not disconnecting your data .. 329

Issue #3: IEnumerable vs. IQueryable ... 330

Practical application ... 331

Activity 0801: Sorting, paging, and filtering .. 332

Step 1: Get the starter files for setup .. 332

Step 2: Comparing two queries ... 334

Step 3: Perform a server analysis on the code we just wrote ... 336

Step 4: Filtering our results ... 343

Step 5: Paging the filtered results ... 347

Step 6: Disconnecting the result sets .. 349

Final thoughts .. 350

Final thoughts for this chapter .. 351

Table of ConTenTs

xii

Chapter 9: LINQ for Queries and Projections �� 353

Data in the real world.. 353

LINQ vs. stored procedures ... 353

Complex data and the code-first approach ... 354

DTOs, view models, or domain models ... 355

Decoupling your business or view logic from the database ... 355

Sometimes, a pre-defined object is overkill .. 356

One tool to rule them all.. 357

AutoMapper ... 357

Chapter 9 Activities: Using LINQ, decoupled DTO classes, projections,
anonymous types, and AutoMapper .. 358

Activity 0901: Working with LINQ in complex queries ... 358

Step 1: Get set up .. 359

Step 2: Start getting more useful results, and find some limitations 362

Step 3: Use navigation properties to get results.. 364

Step 4: Use projections to get more efficient queries ... 367

Step 5: Getting deep relational data with filters and sorting ... 370

Step 6: Finish the query by projecting to a DTO instead of an anonymous class 378

Final thoughts on activity 0901 ... 381

Activity 0902: Setting up AutoMapper ... 381

Step 1: Getting started ... 381

Step 2: Get the package .. 382

Step 3: Create the Inventory Mapper Profile.. 383

Step 4: Create the DTO objects .. 384

Step 5: Modify the main program to set up AutoMapper and
configure the mappings... 385

Step 6: Leverage AutoMapper ... 387

Final thoughts on activity 0902 ... 388

Activity 0903: Working with AutoMapper in system .. 389

Step 1: Get set up .. 389

Step 2: Perform a more advanced query ... 389

Step 3: Update the DTO so that it maps to the correct type .. 391

Table of ConTenTs

xiii

Step 4: Using AutoMapper to project results to a type .. 393

Step 5: Handling the times when the fields don’t line up exactly 394

Final thoughts on activity 0903 ... 398

Final thoughts for this chapter .. 398

Chapter 10: Encryption of Data ��� 399

Keeping your system’s data secure .. 399

Data at rest .. 399

Encryption in the past vs. encryption today .. 399

Passwords ... 400

SSO via social logins ... 400

ASP.Net built-in authentication .. 400

Salting and hashing ... 401

Protecting sensitive user information ... 403

Encryption basics .. 403

Which type to use .. 404

Chapter 10 Activities: Using Always Encrypted with EFCore and using TDE with EFCore 405

Activity 1001: Using Always Encrypted in an EFCore solution .. 405

Step 1: Get set up .. 405

Step 2: Enable Always Encrypted .. 407

Step 3: Review the data ... 413

Step 4: Review the data in SSMS .. 414

Step 5: Run the application ... 416

Step 6: Fix the Method to Get the Items for Listing using LINQ ... 419

Step 7: Turn on other method calls .. 420

Final thoughts on activity 1001 ... 421

Activity 1002: Using transparent data encryption ... 422

A quick review of TDE vs. AlwaysEncrypted .. 422

How TDE can be a better choice for your solutions ... 422

Step 1: Get set up .. 423

Step 2: Discuss the TDE migration strategy, including backup .. 424

Step 3: Begin the migration strategy ... 426

Table of ConTenTs

xiv

Step 4: Run a script to back up the data for the target columns ... 430

Step 5: Create a new script to generate the database keys .. 432

Step 6: Drop the constraints and indexes on the target columns .. 435

Step 7: Change the data type for target columns to varbinary(max) byte[] 438

Step 8: Encrypt the backup data into the new columns .. 445

Step 9: Delete the backup columns ... 447

Final thoughts on activity 1002 ... 447

Final thoughts for this chapter .. 448

Part III: Enhancing the Data Solution �� 449

Chapter 11: Repository and Unit of Work Patterns ��� 451

The repository pattern .. 451

The sources of information are plentiful ... 451

The repository pattern abstracts the database plumbing code from
the implementation ... 452

Entity Framework’s built-in repository .. 452

The unit of work pattern ... 453

Using a unit of work .. 453

Combining the repository and the unit of work .. 453

The one-two punch ... 453

A couple of drawbacks.. 454

In general, rely on EF ... 455

Separation of concerns ... 455

Logical separation of concerns ... 456

Final benefits of separating our concerns ... 456

Chapter 11 Activities ... 456

Activity 1101: Layering our solution .. 457

Uncoupling this solution .. 457

Step 1: Getting set up .. 457

Step 2: Adding the database layer project ... 458

Step 3: Add the business layer project .. 462

Table of ConTenTs

xv

Step 4: Add AutoMapper to the two-layer projects .. 462

Step 5: Create database operations in the database layer .. 462

Step 6: Implement the database operations .. 464

Step 7: Create operations in the service layer ... 467

Step 8: Implement the service layer operations .. 469

Step 9: Rework the console program .. 470

Final thoughts on activity 1101 – layering our solution... 473

Activity 1102: Rolling our own UoW .. 473

Transactions are easy and effective .. 473

Use the using statement for transaction life cycles .. 474

Step 1: Steps ... 474

Step 2: Modify the database interface and project .. 474

Step 3: Modify the ItemsService interface and implementation in the
InventoryBusinessLayer project .. 480

Step 4: Build the insert logic ... 484

Step 5: Build the update logic ... 489

Step 6: Build the delete logic ... 493

Step 7: Update the transaction scope .. 497

Final thoughts on activity 1102 ... 499

Final thoughts for this chapter .. 500

Chapter 12: Unit Testing, Integration Testing, and Mocking ��������������������������������� 501

Testing your code is a must-have, not a nice-to- have ... 501

The code needs to be changed.. 501

The database is the lifeblood of the application .. 502

Testing saves your sanity and protects the system ... 502

Two different approaches leading to the ability to test changes .. 502

Unit testing .. 502

Libraries utilized .. 503

Integration testing ... 503

Chapter 12 Activities: Unit and Integration Testing ... 504

Table of ConTenTs

xvi

Activity 1201: Unit testing with mocking .. 504

Mocking for our tests .. 505

Activity 1202: Integration testing with the .Net in- memory database 526

Using an in-memory database solution ... 526

Final thoughts for this chapter .. 537

Unit tests ... 537

Integration tests .. 537

Shouldly and XUnit .. 538

Dependencies and injection to decouple layers .. 538

Chapter 13: Alternatives to Entity Framework: Dapper �� 539

Lightweight ORMs ... 539

Entity Framework is likely sufficient, if you use it correctly .. 540

Benefits of using a lightweight ORM ... 540

Drawbacks with Dapper .. 541

Flat data .. 541

Learning curve... 541

Implementing a hybrid solution .. 542

Activity 1301: Implementing a hybrid solution with Dapper ... 542

Providing a read-only data layer alternative ... 543

Final thoughts for this chapter .. 570

Dapper with Slapper.Automapper .. 570

Cached queries and direct access... 570

Multiple table joins, flat, and relational data ... 570

Interface segregation and inversion of control .. 571

We are positioned well for success ... 571

Part IV: Recipes for Success ��� 573

Chapter 14: Asynchronous Data Operations and Multiple Database Contexts ����� 575

Asynchronous operations .. 575

Multithreaded programming .. 575

Async, await, and the TaskParallelLibrary ... 576

Table of ConTenTs

xvii

Responsive solutions for the end user .. 576

Asynchronous database operations .. 577

Basic asynchronous syntax ... 577

Multiple database contexts ... 578

Single sign on (SSO) .. 578

Business units ... 579

Multiple contexts require a bit more work .. 579

Putting it into practice ... 580

Activity 1401: Asynchronous database operations ... 580

Leveraging async and await .. 580

Activity 1402: Multiple database contexts .. 612

The identity context ... 612

Final thoughts for this chapter .. 623

Chapter 15: �Net 5 and Entity Framework �� 625

One framework to rule them all .. 625

A combination of the best parts of everything .. 625

EF6, EFCore, and .NET 5 .. 626

EFCore5 ... 626

Core is going away, right? ... 627

Changes with EFCore5 .. 627

Many-to-many navigation properties .. 627

Table-per-type (TPT) inheritance mapping .. 628

Filtered include .. 628

Rationalize ToTable, ToQuery, ToView, FromSql .. 629

Migrations and deployment experience .. 629

EFCore platforms experience .. 630

Performance .. 630

Final thoughts for this chapter .. 630

Conclusion .. 631

Table of ConTenTs

xviii

 Appendix A: Troubleshooting �� 633

 Migrations ... 633

Objects exist/objects don’t exist.. 633

Comment out code .. 634

Manual insert to the database ... 634

Change DB connection .. 634

 Starter packs... 635

General starter pack creation .. 635

What you should do every time ... 636

 Final packs .. 636

Review your solution ... 637

Use a diff tool like GitHub, VSCode, or WinMerge .. 637

 Index ��� 639

Table of ConTenTs

xix

About the Author

Brian L. Gorman is a developer, computer science

instructor, and trainer and has been working in .NET

technologies as long as they have existed. He was originally

MCSD certified in .NET 1 and has recently recertified with

MCSA: Web Apps, and MCSD: App Builder certifications.

Additionally, he became an MCT as of April 2019 and is

focusing on developing and training developers with

full-stack web solutions with .NET Core and Azure.

In addition to working with .NET technologies, Brian

also teaches computer science for Franklin University, where his courses taught have

included data structures, algorithms, design patterns, and, more recently, full-stack

enterprise solutions in the capstone practicum course. In July 2020, due to COVID-19,

Brian decided to host an online virtual developer conference called SciFiDevCon.

Brian also has a passion for music and has been writing and releasing original

Christian music for the last six years. His music can be found online at any of the major

streaming venues such as Spotify or iTunes.

Brian currently lives in Eastern Iowa with his wife and three young children.

xxi

About the Technical Reviewer

André van Meulebrouck has a keen interest in functional

programming, especially Haskell and F#.

He also likes data technologies from markup languages to

databases and F# type providers.

He lives in Southern California with his wife “Tweety”,

and is active in athletics: hiking, mountain biking, and

gravity/balance sports like freestyle skating (inline and ice),

skateboarding, surfing, and sandboarding.

To keep his mind sharp, he does compositional origami, plays classical guitar, and

enjoys music notation software.

xxiii

Acknowledgments

I would not have been able to write this book if it were not for a number of people who

have both influenced and helped me throughout my career, as well as the multitudes of

grace and support that I have received from my family throughout this process.

I’d like to begin by thanking the partners and team members at Far Reach. Thank

you, Kate Washut, Jason Nissen, Lana Wrage, Chris Rouw, and Chad Feldmann for

allowing me to flex and reduce hours to continue to work on projects like this one and to

all the team at Far Reach for helping me to learn and grow in both tech and soft skills and

for generally having as much fun as possible at work for the last four years.

A special thanks as well to Andre van Meulebrouck for his excellent work as a

technical reviewer and editor. Andre’s thoughts and comments throughout the process

have greatly helped to shape this book. Also, his incredible patience with working

through a couple of bugs with the solution files has been an invaluable resource to help

ensure the resources work and the directions are easy to follow. An extra special thanks

to Andre as well for consistently putting up with my misuse of setup vs. set up.

I’d also like to thank the many friends and acquaintances I’ve made at various

tech conferences in the past few years. I’ve learned so much from all of you. There

are a few that I must mention, however. First, Mike Cole, my peer and friend, thank

you for introducing me to AutoMapper projections, and thanks for all your candid

conversations around EF with me as I wrote this book. Thanks to Mitchel Sellers

for your talk on Entity Framework that I got to see at Iowa Code Camp and again at

our CVINETA meeting addressing the performance pitfalls that arise from misusing

Language Integrated Query (LINQ). Thanks, Jonathan “J” Tower, for your awesome talk

on ORMLite and Dapper at Codemash, which solidified my thoughts on including a

chapter on the topic in this book.

Thank you to Apress and the team who have believed in me and have helped to make

this book possible. Thanks to Jonathan Gennick and Jill Balzano for running the project,

editing, and overseeing the entire schedule and process.

xxiv

I would be remiss if I didn’t also thank Dustin Behn, the leader of the Inspired

Nation, and his life coaching and his Emergence program. Thank you for coaching me

these past few years and for helping me get out of my own way to do things like this book.

Last, and most importantly, to my wife Cassie and our kids, to whom the book is also

dedicated. Thank you for giving me time and space to make this book happen and for

continually checking on my progress by asking how many chapters I have done and how

many I have left.

aCknowledgmenTs

xxv

Introduction

Entity Framework is the ORM of choice for .Net development for a majority of enterprise

application development teams. Through the years, EF has gone through a number of

changes, and the move into the .Net Core world has seen EF become more performant

and more user-friendly.

As this book begins, we’ll take a look at the state of things as they are, and the

state of things to come. In the first couple of chapters, we’ll even look at differences in

approaches to working with EF, whether you are working with EF6 or EFCore. We’ll touch

on the two different approaches to working with the database: database first and code

first. After the first three chapters, we settle in on the code-first approach with EFCore.

The great news is that no matter what approach to the database or version of EF

you are using, with just a few minor exceptions, things will generally work in a similar

fashion, so all of the information in this book is relevant to anyone working with Entity

Framework.

 Who this book is for
Practical Entity Framework is written for anyone that is new to Entity Framework or is

still learning and wants to become much better with Entity Framework.

If you are already an expert or a well-established developer with a few years of EF

under your belt, this book will likely not have a lot of new information for you.

Overall, the book is designed to work through the moving pieces that are necessary

to understand and work with EF, as well as how to approach architecting SOLID

solutions around EF. The practical nature of each activity will give you many examples

and cover a lot of the basic and advanced topics you will likely encounter in real-world

applications.

xxvi

 How this book is structured and what is covered
in the chapters
This book has been developed into four parts. Part 1 contains the first three chapters

and covers many of the introductory topics and contrasts in approaches to using the

database in EF. Part 2, which includes Chapters 4–10, is about building out the database

solution and covers core operations for the code-first approach to working with EF. Part 3

includes Chapters 11–13 and covers critical ways to enhance your solutions. Part 4

includes Chapters 14 and 15 and discusses more recipes for success and a look into the

future of EF.

Part 1 – Getting Started

Chapter 1, “Introduction to Entity Framework,” begins by discussing the current state

of enterprise applications with Entity Framework. In the chapter, we take a look at how to

get set up and start building out a solution with Entity Framework.

Chapter 2, “Working with an Existing Database,” discusses the approach developers

might need to take if there is already an established database and the solution needs to

use EF. The chapter uses a copy of the AdventureWorks database and covers how to work

with the EFCore tools to reverse engineer a database, as well as how to use the database-

first approach in EF6.

Chapter 3, “Entity Framework: Code First,” starts with a discussion of what it means

to be code first and when it may not make sense to use the approach, and then quickly

moves into the benefits of using a code-first approach. The activities walk through

implementing a code-first approach in EFCore and EF6.

Part 2 – Building the Data Solution

Chapter 4, “Models and the Data Context,” covers working with our entities to build

out the objects that represent the tables in the database and then execute the migrations

to make sure the tables exist as defined in code. The activities in this chapter reinforce

that learning.

Chapter 5, “Constraints, Keys, and Relationships,” takes a look at how to set the

primary keys, multiple column keys, and database relationships that you will likely

encounter. The activities cover setting up constraints, index, and relationships in EFCore.

Chapter 6, “Data Access (Create, Read, Update, Delete),” is a critical chapter to learn

how to do the CRUD operations against your database. In the activity for this chapter, we

spin up a website and see how quickly we can build out CRUD operations.

InTroduCTIon

xxvii

Chapter 7, “Stored Procedures, Views, and Functions,” continues our learning of

practical applications of EF with a good luck at what it takes to incorporate database

objects into the code-first solution. The activities cover setting up and working with

stored procedures, functions, views, and seeding data.

Chapter 8, “Sorting, Filtering, and Paging,” takes a deeper dive into working with

LINQ to get data and ensuring that our operations are as efficient as possible with

EF. The activity for the chapter walks through sorting, filtering, and paging the data, as

well as looking at working with a disconnected dataset.

Chapter 9, “LINQ for Queries and Projections,” introduces the valuable use of

projections in our queries and also covers using AutoMapper in our solution. The

activities get us started with projections and then implement AutoMapper into our

solution.

Chapter 10, “Encryption of Data,” takes a look at the two main ways to encrypt our

data – either through the AlwaysEncrypted built-in approach or through a customized

approach using certificates and keys to encrypt or decrypt our data.

Part 3 – Enhancing the Data Solution

Chapter 11, “Repository and Unit of Work Patterns,” takes a look at two of the

more critical patterns around working with data and ORMs. Although EF has built-in

repository (repo) and unit of work (UoW) patterns, sometimes we need to have a bit

more flexibility. The activities for this chapter involve refactoring our code into layers

and then implementing our own UoW.

Chapter 12, “Unit Testing, Integration Testing, and Mocking,” discusses the

importance of unit testing and integration testing, as well as what it means to mock data.

The activities enhance our learning around mock data, as well as implement unit tests

and integration tests.

Chapter 13, “Alternatives to Entity Framework: Dapper,” provides information

on how we can wire up a lightweight ORM to enhance our query performance. The

activities for the chapter build out the ability to see the selection of data from Dapper.

Part 4 – Recipes for Success

Chapter 14, “Asynchronous Data Operations and Multiple Database Contexts,”

begins by refactoring everything to use the async/await pattern for leveraging the

threading operations in our solutions. The chapter concludes with a look at what it takes

to work with multiple databases, including the mandatory use of the fully qualified

context name in order to generate or run database migrations.

InTroduCTIon

xxviii

Chapter 15, “.Net 5 and Entity Framework,” concludes our book with a

forward- looking chapter, in that here we take a first look into what is coming

in the vNext (EFCore5) version of Entity Framework.

 Code samples and exercises
This book is designed to be a training manual for information and the practical use of

Entity Framework. Therefore, each chapter has from one to three workable activities.

To get the most out of this book, you are encouraged to work through each example. To

aid you in this process, I have provided a starter and a final pack for each activity. You

can download the code resources from the book’s catalog page on Apress.com to find

downloads. The code is available at github.com/Apress/practical-entity-framework.

 Connect with the author
I would love to hear from you and/or connect with you. I am especially interested in any

thoughts you have around the book, ways I could have improved it, and/or any errors

you find through your learning journey. Please don’t hesitate to connect with me on

LinkedIn or Twitter. I reserve Facebook connections to people that I know, so please

don’t try to connect with me there. I can also be reached via email.

LinkedIn: www.linkedin.com/in/brianlgorman/

Twitter: https://twitter.com/blgorman

Email: brian@majorguidancesolutions.com

InTroduCTIon

http://www.linkedin.com/in/brianlgorman/
https://twitter.com/blgorman

PART I

Getting Started

3
© Brian L. Gorman 2020
B. L. Gorman, Practical Entity Framework, https://doi.org/10.1007/978-1-4842-6044-9_1

CHAPTER 1

Introduction to Entity
Framework
In this chapter, we are going to cover the history and origins of Entity Framework and

then continue into discussions of where Entity Framework is headed. We’ll conclude

what it takes to get Entity Framework into any .Net project.

 One, two, three versions? Oh my!
Before we begin doing anything, it’s important to note that at the time that I’m writing

this book, there are currently two active versions of Entity Framework in play, and by the

time you are reading it, there may still be two, possibly one, or maybe there will be yet a

third live version of the Entity Framework. In the next few pages, we’ll examine where we

came from; how we got to this situation of having multiple, active versions; and where

we’re going from here. Let’s start at the very beginning.

 When it all began
Microsoft SQL databases have been around for quite some time. In fact, they existed long

before .Net was ever around.

 OLEDb and Spaghetti Database access

Prior to the .Net Framework, often a database connection was handled through code

in an Object Linking and Embedding Database Object (OLEDb). Developers

would often write SQL queries inline and then connect to the database and perform

actions using these tools. Furthermore, queries often lacked any kind of security and

organization. Similar or identical calls might be written from multiple pages. As if this

https://doi.org/10.1007/978-1-4842-6044-9_1#DOI

4

approach didn’t have enough problems to begin with, SQL queries might have even

existed within the html, which is easily viewable from a simple “right-click and view-

source” operation. In the most egregious situations, database credentials might have

even been easily viewable in this same source. Finally, and yes it gets even worse, often

the user credentials that were used in these pages had full access to everything in the

database, perhaps even multiple databases.

In addition to the problems of having a spaghetti code approach to database

operations, exposing queries and credentials to the world leads to extremely dangerous

security breaches. One of the most common security risks when working with data, even

to this day, is an attack known as a SQL Injection query.

Imagine your update statement was fully exposed in source on your web page. All it

would take at that point is a savvy hacker to come along and “inject” a few statements along

with your query, and they could accomplish anything from dropping tables to exporting

your customer list. Even if your query wasn’t directly exposed, if you had given them a form

text field to work with, then they could easily place SQL code right in that form text and

hijack or corrupt your database. Obviously, some better approaches were needed.

 ADO.Net – A better tool for application database interaction

For .Net developers, the next step in working with a database relied on a technology

known as ADO.Net. Believe it or not, ADO.Net is actually still in use, and it’s quite

possible to use it in your projects, even today (and some developers might even die on

the hill of the efficiency of this approach).

ADO.Net was developed to help prevent a few of the problems we’ve previously

discussed. One of the most important aspects of the ADO.Net library was the ability to

easily parameterize queries. This approach means that we no longer were creating our

SQL queries directly inline with our application code. Rather, we create a base connection

object with credentials obscured and the connection string stored in one common,

secure location. The connection object was directly referenced through a SQL command

object. The SQL command object had settings allowing us to toggle the command to

work as a regular query or to execute a database object such as a stored procedure. Most

importantly, the query allows the parameters to be defined and constrained by type, as

well as automatically replacing bad characters often used in SQL Injection attacks.

Once the queries were executed from the command, they could be used to hydrate

a result set, such as a DataReader or a DataSet. These objects were then used to get the

relevant data and render it back to the end user. This approach was the best tool we had

as developers before Entity Framework (or other ORMs such as NHibernate).

Chapter 1 IntroduCtIon to entIty Framework

5

 A brief note about ADO.Net
Even today, it is still possible to program database operations with ADO.Net; however,

ADO.Net is rarely used directly in current enterprise applications. We almost always

want to wrap our database operations with a unit of work and also potentially provide

access through repositories (e.g., the unit of work and repository patterns). Entity

Framework takes ADO.Net to the next level by providing that wrapper for us.

 Entity Framework makes its debut
In 2008, when EF was created, the only version of the .Net Framework in play was just

that – the .Net Framework. The framework actually had been released in version 2.0 and

then 3.0, and finally, some additional tools came in the framework version 3.5 release.

The next obvious iteration was 4.0, and where we landed is a final release of version

4.8 in late September of 2019.

With each iteration of the .Net Framework, Microsoft revolutionized the way we

program in relation to the database with the introduction of Entity Framework and the

query syntax known as LINQ (Language INtegrated Query).

 Entity Framework and LINQ
In tandem, EF and LINQ made it possible to not only work against our database objects

using C# or VB.Net code but also gave us the ability to define database structures

directly in code. Being able to define and work with objects in memory that modeled

the database object while also directly tracking changes against the database was

quite powerful. Directly tracking the changes in memory also leads to a new level of

understanding of concurrency issues for those of us who were used to working with

disconnected data. This was a very good thing, even if it was a slightly painful transition.

While EF and LINQ were some of the more important database tools that were made

available to us with each iteration of the .Net Framework, there was more going on than

just these language and paradigm changes. The introduction of a new CEO would start

to take Microsoft down an entirely different path.

Chapter 1 IntroduCtIon to entIty Framework

6

 A new direction and a new visionary leader
In early 2014, Microsoft got a new CEO in Satya Nadella. Mr. Nadella started Microsoft

on a new course that would shock the developer community. Almost immediately after

starting, he simply announced that Linux (which could be seen as a direct competitor

to Microsoft Windows) would be embraced. Following that, Microsoft quickly started

releasing tools that would be able to be run not just on Windows but also on other

platforms like Macs and Linux computers. While these initial steps were a revolutionary

change in Microsoft’s standard operating procedure, what came next was completely

unexpected.

 Microsoft goes all in for all developers
In late 2016, Microsoft announced that .Net was going to be open sourced. This meant

that going forward, all of the tools and code that developers work with on a daily basis

could be directly extended and were made open for suggested extensions to the entire

world. Any developer with an idea could create a pull request and ask for their changes

to be directly implemented into some of the base libraries of the .Net Framework.

From this point on, Microsoft, and the .Net Framework, was no longer going to be a

black-box operation. Microsoft was now fully and intentionally engaging with the entire

community of developers, not just its core of .Net developers.

 A new vision requires a new path
Making .Net open source was a very strategic and arguably a very wildly successful

decision. However, with great changes often come great needs for new tools and

processes. Moving to be an open source language wasn’t going to be enough. It was also

apparent that the code itself, like some of the recent tools Microsoft was releasing, must

also run on any platform. Perhaps it is even as a result of these changes that you are

reading this book.

In order for the code that is written to be able to live on any server on any operating

system, or even in a container like Docker and Kubernetes, the framework had to be

independent of any windows-specific API calls. While it might have been possible

to run compiled .Net code on a platform like Mono or Xamarin on a Linux or Mac,

Chapter 1 IntroduCtIon to entIty Framework

7

developing, compiling, and executing code directly were simply not possible with the

.Net Framework. Therefore, along with the release of the information that Microsoft

was going open source came the release of what we now refer to as the “Core” platform

with the release of .Net Core 1.0 and a new class library type called the .Net Standard

Library. The initial release of .Net Core was really built for web developers, specifically

those using the .Net MVC web development framework. Because of the limitations of

what could be done with the framework, as well as with the overall change not being

extremely lucrative, initial adoption of the Core platform by .Net developers and

organizations was fairly slow.

Adoption definitely started to increase with a major release in the Core platform 2.0.

However, the final release of .Net Core, version 3.0, has opened the doors for more than

just web development and has accelerated the move to .Net Core across the board.

Another side effect of this new path was the effect that it had on the path for Entity

Framework. With the rewrite of the .Net Framework into .Net Core along came a new

EF, also called Entity Framework Core. Therefore, at the time of this writing, and into the

direct future for the next few foreseeable years, there will be a minimum of two active

versions of EF in play, EF6 and EFCore.

 The state of the union
Although EF6 has reached end of life on new features, the support for EF6 will go on,

likely through the beginning of 2029. Additionally, .Net Core 3.1 will also have a life cycle

that will continue until likely around 2030. With the majority of applications in the real

world at the time of this writing that use Entity Framework being non-core applications,

and the majority of applications in the real world being written in the future in the .Net

Core stack, it will be very important to understand and know both of these frameworks

(EF6 and EFCore) for the next five to ten years.

The good news is that for the most part, both frameworks are doing the same thing

and accomplishing the same goals, with the same architectural concepts. The bad news

is that they are not the same when it comes to working with commands, how they deal

with code-first migrations, working with legacy objects like EDMX Files (only in older

versions of EF), and there are many variances in levels of efficiency when it comes to the

two versions, with EFCore often outperforming EF 6.

Chapter 1 IntroduCtIon to entIty Framework

8

 The future
Having two versions of a framework is likely not the most efficient use of time and

resources. At the time of this writing, there is a planned path to bring all the horses back

into the same barn, which will likely be in play by the time this book is in print and in

your hands. In September of 2020, a new version of .Net will be available. This new

version is likely going to be called .Net 5. For the remainder of this book, we’ll call it

vNext and will refer to EF for .Net 5 as EFvNext or EFCore5.

I will do my best to keep this book and the appropriate resources up to date so that

the entirety of this book will remain relevant, even after that date. Additionally, the

longer life cycles of support for .Net Framework 4.8 and .Net Core 3.0/3.1 will mean

that you and me, as developers, will likely encounter legacy code that is actively used in

production in one or both of these frameworks in the next few years. As we encounter

this code, it is also likely we will be responsible for maintaining and performing feature

updates with the full understanding of how each of these versions of EF works.

 Activity 0101: Getting started with Entity
Framework
In this section of the chapter, we’re going to go through the steps it takes for us to implement

Entity Framework into any solution. As with most things in development, there are multiple

approaches that can be taken to get started, so we’re going to look at each of these.

Note It is entirely likely you won’t need to do a lot of the things you’ll see in the
remainder of this chapter as many .net projects already contain eF as part of the
working solution.

In any project, we can easily set up Entity Framework. Before we do this, however, a

great question to ask yourself as the developer/architect is if the database operations

might need to be used across multiple solutions or projects. To use EF across multiple

solutions or projects, the best approach is to create a reusable code library that stores

your database code, including your context, configuration, and migrations.

Regardless of using a separate library or just including in a single package, the initial

setup will be exactly the same to bring the libraries into your solution or project. Since

Chapter 1 IntroduCtIon to entIty Framework

9

using a separate library is a more robust and reusable approach, we’ll walk through how

to do this in our next activity. We’ll begin by taking a look at a greenfield project and

importing the Entity Framework libraries.

 Create a new project and add the EF packages
To get started creating a new project, make sure you have previously installed the Visual

Studio IDE latest edition. Visual Studio Community is available for free academic use

and can easily be installed on any machine; however, there may be some limitations

if installed on Max or Linux. Downloads can be found here: https://visualstudio.

microsoft.com/downloads/. If the link is no longer working, simply run a google search

for Visual Studio Community Download.

 Step 1: Create a new .Net Core project

Open the Visual Studio IDE and select Create a new project as shown in Figure 1-1.

Figure 1-1. Creating a new project in Visual Studio

Chapter 1 IntroduCtIon to entIty Framework

https://visualstudio.microsoft.com/downloads/
https://visualstudio.microsoft.com/downloads/

10

 Step 2: Search and select Class Library (.Net Core)

For this step, it will be important to select the correct project type. In this activity, we are

creating a new C#.Net Core Class Library. Search for Class Library and then select the

.Net Core version of your choice (C# or Visual Basic). Once you have found the correct

library of choice, select Next. Review Figure 1-2 for important details on what to look for

when creating your new project.

 Step 3: Name your project and select the storage location

Once we’ve selected the type of project, we need to name it and select the correct

place to store it. Name your project EF_Activity001 and select a good location on your

computer where you store your projects. For example, I like to store projects under

C:/<Client>/Projects or C:/<Client>/Code. Here, I’ll place the project in a folder

C:/ApressEntityFramework/Code/. Figure 1-3 highlights what my creation page looked like.

Figure 1-2. Selecting a C#.Net Core Class Library

Chapter 1 IntroduCtIon to entIty Framework

11

After you have selected Create, a new project will be generated with your default

Class1.cs file as your class library. This should open automatically and should look

similar to what is shown here in Figure 1-4.

Figure 1-3. Configuring your new project

Chapter 1 IntroduCtIon to entIty Framework

12

 Step 4: Determine the latest version of Entity Framework

In this activity, we’re using Entity Framework Core, so I want to install the latest version.

To find the latest version, I will just do a quick search for Entity Framework Core NuGet

Package which should point me to this page: www.nuget.org/packages/Microsoft.

EntityFrameworkCore/.

Once there, I can easily see the latest version and the command to install it, as shown

here in Figure 1-5.

Figure 1-4. The project after initial creation

Chapter 1 IntroduCtIon to entIty Framework

http://www.nuget.org/packages/Microsoft.EntityFrameworkCore/
http://www.nuget.org/packages/Microsoft.EntityFrameworkCore/

13

Important notes as shown in the diagram are

• The command to run is located in the main portion of the page. In

this case, it is Install-Package Microsoft.EntityFrameworkCore

-Version 3.0.0.

• There are preview versions available. While they are easily installed,

they may not yet be stable. When working on application code, I

would recommend using the latest stable version.

Figure 1-5. Finding the latest version of Entity Framework Core

Chapter 1 IntroduCtIon to entIty Framework

14

• Although the version is specified, if you run the command for install

without the version, then the latest stable version would automatically

be installed for you (in this case Entity Framework Core 3.0.0).

while you can use version 3.0.0 even after further versions are released, you
should just use the latest version 3 release, for example, version 3.1.3 which was
released at the end of march 2020.

 Step 5: Add the Entity Framework libraries to your project

Now that our class library is set up, we can add the Entity Framework libraries using the

Package Manager Console (PMC). Using the Tools menu at the top of the Visual Studio

IDE, select Tools ➤ NuGet Package Manager ➤ Package Manager Console as shown in

Figure 1-6.

Figure 1-6. Opening the NuGet Package Manager Console

Chapter 1 IntroduCtIon to entIty Framework

15

This will bring the Package Manager Console (PMC) open in the bottom portion of

the Visual Studio IDE.

Once the PMC is open, run the command as found in step 4. The command and the

PMC are illustrated in Figure 1-7 below:

Figure 1-7. Inputting the command to bring the EFCore libraries into our project
in the Package Manager Console

Once we press Enter, the packages will install, and our project will be set up for

using the Entity Framework in this code library.

Your installation should be similar to the output as shown here in Figure 1-8.

Figure 1-8. Running the installation of the EFCore libraries into our project using
the Package Manager Console

Chapter 1 IntroduCtIon to entIty Framework

16

We have now successfully created a class library that references Entity Framework,

but we still have some work to do to get it set up to run against a database.

 Step 6: Create a DBContext

In order to work against the database, we need a DBContext object. The DBContext

(context) object is responsible to act as the interpreter between your code and the actual

database. The context is where we’ll define all of our entity sets and can also override

some of the database schema using the Fluent API.

To make our context, we’re going to convert our Class1.cs file. First, we need to

rename it to something useful. Here, we will just name it ApplicationDbContext,

but you could name yours after your actual application if you would like, such as

MoviesDbContext or AccountingDbContext. The name of your context is entirely up to

you. If using multiple contexts, then I would recommend distinctly naming them in a

way that is easy to discern their intended purpose.

To rename the file, simply right-click the file in the Solution Explorer in Visual Studio

and select “Rename” as shown in Figure 1-9.

Figure 1-9. Selecting the class file to rename

Chapter 1 IntroduCtIon to entIty Framework

17

Alternatively, selecting the file in the Solution Explorer and hitting F2 will

automatically select the file for renaming.

Once the rename textbox appears with the original name in it, enter your new

context name, such as ApplicationDbContext as shown in Figure 1-10.

Figure 1-10. Renaming the Class1.cs file

Hitting Enter will prompt you to perform a rename in all code elements for the file.

We want to do this, so we will select Yes as shown in the dialog in Figure 1-11.

Figure 1-11. Selecting “Yes” to allow auto-rename of the class in all code elements

After rename and selecting Yes, Class1.cs should also be renamed to whatever you

named your context (i.e., ApplicationDbContext) with the constructor named to match

as shown in Figure 1-12.

Chapter 1 IntroduCtIon to entIty Framework

18

 Step 7: Alter your context to implement DbContext correctly

Now that our name is changed to be our context, we need to alter the context so that it is

implemented correctly. To do this, we must accomplish two things:

 1. We must inherit and extend DbContext.

 2. We must have a constructor that allows for injecting the context

options.

First, let’s make our ApplicationDbContext and actual DBContext by becoming a

subclass of DbContext. Extend DBContext and make sure to add the using statement for

Microsoft.EntityFrameworkCore as shown in Figure 1-13.

Figure 1-12. The Class1.cs file has been renamed and the constructor is now
named appropriately

Figure 1-13. Extending the DBContext class

Chapter 1 IntroduCtIon to entIty Framework

19

Next, we need to set the constructor to take in the DBOptions on injection as shown

in Figure 1-14.

Note that in order to accomplish this task, we make a public function with no return

type since it’s a constructor. The name is the exact same as the name of the class, and the

constructor has one injectable parameter of type DbContextOptions. This parameter will

include critical information, such as the connection string to our database. Making these

options injectable will ensure that the context can be used from any application pointing

to any correctly configured database.

 Activity summary
In the previous activity, we created a class library and then imported the Entity

Framework Core library. After completing that import, we renamed the class file and we

set up our DBContext to be ready to be used in any project.

As of right now, we can’t necessarily prove that our setup is ready, but we can trust

that it is either ready or will be very easy to modify once we get an actual application to

use the project.

You might ask the question as to why we stopped here and not just make sure that

everything is working as expected. To answer that, we need to first decide how we are

going to work against our database. Will we use a “code-first” approach for our database,

Figure 1-14. Adding the DBOptions as an injectable object to the constructor

Chapter 1 IntroduCtIon to entIty Framework

20

or are we going to run against an existing database using a “reverse-engineering”

approach? We’ll take a look at each of these in the next couple of chapters.

 Activity supplemental information
In the previous activity, as we created the application, we had worked with Entity

Framework Core as our library. In many instances, you may need to work with the .Net

Framework version of the Entity Framework. As with the earlier activity, this is easily

accomplished. Following the preceding steps, make these changes to work against the

Entity Framework 6 libraries:

 1. In step 2, create a .Net Framework Class Library as shown in

Figure 1-15.

Figure 1-15. Create a .Net Framework Class Library

when the create dialog comes up, you’ll have the opportunity to select the latest
version of the .net Framework that is installed on your machine.

Chapter 1 IntroduCtIon to entIty Framework

21

 2. In step 4, find the .Net Entity Framework 6 NuGet Library as

shown in Figure 1-16.

Figure 1-16. Find the .Net Entity Framework 6 NuGet Packages

 3. In step 7, create the DbContext by implementing DBContext

and importing the library System.Data.Entity. Create the

public constructor with a string input for the connection string.

Reference Figure 1-17 for more information.

Chapter 1 IntroduCtIon to entIty Framework

22

As with the EFCore activity, the EF6 library is not yet working. The paths to create a

“code-first” application with EF6 and EFCore are very similar; however, the “database-

first” vs. “reverse-engineered” approaches in Core and .Net are quite a bit different. We

will cross these bridges together as we reach them.

 Chapter summary
In this first chapter, we have taken a good look at the history of coding against data

and how and why that history has led us to the Entity Framework. We then moved into

creating a project in a class library that would be ready to work as a shareable database

code library.

Although our activity didn’t create a fully functional library, we were able to get a

good start and an overview of what it takes at the foundational level to work with Entity

Framework. We’ve also gained an entry-level understanding of the DBContext object and

are now familiar with how we set up the application to leverage the Entity Framework.

Figure 1-17. Create the DbContext for a .Net Framework project

Chapter 1 IntroduCtIon to entIty Framework

23

 Important takeaways
After working through this chapter, the things we should be in command of are as

follows:

• The history of coding against data and the problems that have existed

before Entity Framework wrapped the ADO.Net libraries

• How Entity Framework can be implemented into a class library for

use in any project (still not useable, but the setup is in place)

• A few differences between EF6 and EFCore in their setup and

implementations

 Closing thoughts
In the next chapter, we will examine how to create a project against an existing database

using the “database-first” EF6 or “reverse-engineered” approach (EFCore).

Chapter 1 IntroduCtIon to entIty Framework

25
© Brian L. Gorman 2020
B. L. Gorman, Practical Entity Framework, https://doi.org/10.1007/978-1-4842-6044-9_2

CHAPTER 2

Working with an Existing
Database
In this chapter, we are going to look at what it takes to get up and running with Entity

Framework when our project already has an existing database. We’ll conclude with a

couple of activities to reverse engineer a database in EFCore and use the database-first

approach in EF6 to generate an EDMX model.

 Reverse engineering or database first
When working with an existing database, we have many options, and how we

accomplish this task depends on what technology we are using. If we are working in

.Net Core Entity Framework (EFCore) or EFvNext, we’ll need to perform a reverse-

engineering operation. If we are working in the .Net Framework and using EF6, we’ll

need to approach this with a database-first operation.

Before we dive into the how of these operations, we should discuss the why, as well

as what some of the good and bad things are about this approach.

 Why would we approach Entity Framework in
this manner?
There are going to be times when an application is needed for a database that already exists.

In these cases, the database may have many years of history and may be quite involved.

Starting from scratch is usually not possible in these cases, because the overall amount

of work it would take would overwhelm even the best development teams. However, in

these cases, it is also desirable to begin new projects, perhaps to break a monolith into a

serverless approach, or to create a new access layer for a specific application.

https://doi.org/10.1007/978-1-4842-6044-9_2#DOI

26

Rather than spend time trying to work new code into an old system, it is often

desirable for both efficiency and security reasons to build new solutions. In these cases,

when the database is mature, and the desired application is new, a database-first or

reverse-engineering approach makes sense.

 Database-first or reverse-engineered solutions
The really good news about this approach is that there are tools in place that allow for

us to very quickly generate the code we need to work against the database. The bad

news is that this code is not very flexible, as we’ll see throughout this chapter. To sum it

up, essentially a database-first or reverse-engineered approach requires regenerating

code any time the database is changed where the application needs to interact with the

database objects. Need to add a column? You’ll need to add it in the database through

your official channels, and then you’ll need to regenerate your database context.

An additional drawback to using the database-first or reverse-engineered approach

is that your database code is often not stored in the repository. While you will have

generated models for the objects you include, the code that actually created them in

the database is often not present. Additionally, there is not a good history of objects and

their state in the database. This can make it tricky when trying to restore to a previous

patch but needing to have the database also in the state it was at the time of that patch.

 Keeping everything in sync
A couple of final thoughts about this approach. In the older version of EF6, we often had

an EDMX file that is a conceptual model of the database. This EDMX file is a gigantic

XML file. If you’ve ever had to do a code merge in GIT or TFS when a large XML file is

involved for multiple developers, you don’t need me to tell you why that isn’t a desirable

situation to be in.

As such, creating the database changes in this approach requires a great deal of

coordination from team members. Additionally, you’ll likely need some tool or some

other way to make sure you keep track of your database history, changes, scripts, and

other important details.

Chapter 2 Working With an existing Database

27

 Interacting with the existing database
Now that we have a decent understanding of why we might want to take a database-first

or reverse-engineered approach to the application, let’s take some time to work through

a couple of activities on how to make this happen.

 Working with a preexisting database activities
In this section of the chapter, we’re going to work through setting up Entity Framework to

work against a preexisting database. We’ll begin by getting a copy of AdventureWorks and

getting that installed and then walk through the steps to use Entity Framework against

the AdventureWorks database. To complete this activity, you’ll need to have a version

of Visual Studio, a working local copy of SQL Express or SQL Developer edition, and

Microsoft SQL Server Management Studio (SSMS) installed.

 Download the backup file for the latest version
of AdventureWorks
Microsoft has made a free database available for use when learning or training on SQL

products. The database is called AdventureWorks and is available here: https://docs.

microsoft.com/en-us/sql/samples/adventureworks-install-configure?view=sql-

server- ver15. Regardless of which version of Entity Framework you want to use for this

activity, the first two steps to get the database restored will be the same. After completing

the database restoration, skip to the activity that is appropriate for the version of EF that

you are using.

 Step 1: Download the latest version of AdventureWorks DB

Begin by downloading the latest AdventureWorksXXXX.bak file to your local machine

(e.g., AdventureWorks2017.bak). Figure 2-1 shows the download page on Microsoft’s

website.

Chapter 2 Working With an existing Database

https://docs.microsoft.com/en-us/sql/samples/adventureworks-install-configure?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/samples/adventureworks-install-configure?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/samples/adventureworks-install-configure?view=sql-server-ver15

28

 Step 2: Restore the AdventureWorks database to your local SQL
instance

After downloading the backup file, we need to restore it to our local SQL Express or SQL

Developer instance (if you don’t have one of these installed, you’ll need to do this first).

Connect to your database in SSMS as shown in Figure 2-2. Then right-click the

Databases folder under your local server name and then select Restore Database.

Figure 2-1. Downloading the latest version of AdventureWorks

Chapter 2 Working With an existing Database

29

Figure 2-2. Selecting “Restore Database” in SQL Server Management Studio

Chapter 2 Working With an existing Database

30

Selecting Restore Database brings up the restoration dialog shown in Figure 2-3.

With the restore database dialog open, select Device and then select the button with

three periods, which will bring up a dialog Select Backup Devices. In this dialog, select

Add and then note the default location for backup files as in Figure 2-4.

Figure 2-3. The Restore Database dialog

Chapter 2 Working With an existing Database

31

Move the backup file from your downloads into the backup location found in the

Locate Backup File dialog shown in Figure 2-4.

You can copy the location from the dialog directly and open a new file explorer to
that path, or you can make note of the directory location in the directory tree on
the left-half of the Locate Backup File dialog.

Cancel the Locate Backup File dialog and then select Add again. You should see a

result like in Figure 2-5. Now that your backup file is in the default location, it should

show in the window for selection.

Figure 2-4. Finding the backup location in the Select Backup Devices -
Add dialog

Chapter 2 Working With an existing Database

32

Now that the file is there, select the file and then OK, and then select OK again on the

Select Backup Devices dialog. This will fill information for the backup dialog to the point

that we can restore the database.

Before we restore, let’s take a quick look and see if there is anything we want to

change. Start by looking at Figure 2-6.

Figure 2-5. The backup file shows in the dialog once placed in the default backups
folder

Chapter 2 Working With an existing Database

33

Most importantly, take note that you can change the database name in the Database

dialog (see Figure 2-7). For example, here I am going to remove the year 2017 from the

database name. Additionally, you can change the default file location and other options

using the Files and Options tabs on the upper left Select a page dialog. I am going to leave

both tabs with all the default options as set automatically.

Figure 2-6. AdventureWorks backup file loaded for potential restore operation

Figure 2-7. Changing the database name before restoration

Chapter 2 Working With an existing Database

34

Once all the options you want are selected and the database name is as you want it to

be, select OK to restore the database. Figure 2-8 shows the resulting progress bar.

Once the restoration is completed, a confirmation dialog (Figure 2-9) will appear.

Figure 2-8. Restore database operation in progress

Figure 2-9. Restore database operation completed

You can then easily browse in SSMS to see the database and its existing tables and

other structures. Your database should look similar to what is shown in Figure 2-10.

Chapter 2 Working With an existing Database

35

 Activity 0201: Creating a reverse-engineered database
in Entity Framework Core
In this activity, we’ll use the existing database AdventureWorks database, which we have

previously restored to our local machine. Our main task is to create a working Entity

Framework database context to work against the existing database.

Figure 2-10. Reviewing the AdventureWorks database in SSMS

Chapter 2 Working With an existing Database

36

For this activity and the activities that follow throughout the book, you will be able

to find two versions of the code. The versions are labeled as ActivityXXXX-Name_Starter

or ActivityXXXX-Name_Final. The starter pack gives you the ability to quickly get going

at the start of the activity. You can always use the final version to compare my completed

project to what you have done to help debug any issues you encounter. You may also

look at the example download for this book, which you can find on the book’s catalog

page on Apress.com.

 Step 1: Create the project and solution

Begin the activity by creating a simple C# console application which will be our startup

project. Name the project something simple, such as Activity0201_ExistingDbCore, or

just use the starter pack.

The Create a new project dialog is shown in Figure 2-11.

Figure 2-11. Creating a C# console app in .Net Core

Chapter 2 Working With an existing Database

37

 Step 2: Reference the code for the EFCore Library created in
Chapter 1, Activity 0101

Next, reference the project from Chapter 1 where we created our Entity Framework Core

library.

if you are not using a repository at this point, i recommend making a copy of the
activity one files for ease of reuse and recovery.

Copy the project from Chapter 1 to the folder with your recently created solution.

Your folder structure should look like what is shown in Figure 2-12.

Figure 2-12. A potential folder structure for your projects and the activity 02 core
solution

After setting the folders and code structure, add a reference to the project within the

solution. First, right-click the Solution and select Add ➤ Existing Project as is shown

in Figure 2-13.

Chapter 2 Working With an existing Database

38

Next, right-click the new project for activity two, and select Add Reference. Browse

and reference the code library from activity 01 in the console project (see Figure 2-14).

Figure 2-13. Adding an existing project to the solution

Chapter 2 Working With an existing Database

39

Select the activity one project from your current solution to reference in the activity

two project as in Figure 2-15.

Figure 2-15. Selecting a project to reference

Figure 2-14. Adding a reference to an existing project

Chapter 2 Working With an existing Database

40

After setting your projects correctly, rebuild the solution. Your project structure

should look similar to what is shown in Figure 2-16.

Figure 2-17. Setting default project and installing Entity Framework Core tools

Figure 2-16. Overall project structure

 Step 3: Install Entity Framework tools

In order to reverse engineer the database, we’ll need the Entity Framework tools. These

are easily installed via NuGet.

First, open the Package Manager Console, and then select the Default project where

Entity Framework is installed in your current solution as shown in Figure 2-17.

Next, type the command Install-Package Microsoft.EntityFrameworkCore.Tools.

if for some reason you are not on the latest version of entity Framework, make sure
to set the version number in the tools installation to match your current version of
entity Framework Core by simply adding -version x.Y.Z to your command.

Chapter 2 Working With an existing Database

41

To validate that the tools are in place, or to see the commands available at any time,

simply type the command Get-Help EntityFrameworkCore in the Package Manager

Console (will require updating local help if you have not done this before).

 Step 4: Install Entity Framework for SQL Server

One of the steps we could have done prior to this activity would be to set the provider.

In this book, we’re using SQL Server as our main database, so we need to install the

EF provider for SQL Server so that we can connect to a SQL database. To do this, run

the command Install-Package Microsoft.EntityFrameworkCore.SqlServer from

the Package Manager Console while pointed at your default Entity Framework library

project as shown in Figure 2-18.

Figure 2-18. Install Package for Microsoft Entity Framework Core using SQL
Server

 Step 5: Reference all of the EF packages in the startup project

In order for the project to work, both the library and the startup project need to reference

the EFCore packages. To get the packages installed, open Tools ➤ Manage NuGet

Packages for Solution and browse to the Installed tab. Another way to get there is

to simply right-click the Solution and select Manage NuGet Packages for Solution.

Managing NuGet Packages can be accessed as shown in Figure 2-19.

Chapter 2 Working With an existing Database

42

Select all EF packages that are installed and install them on the startup project. At

this point, there should be three. Make sure to match currently installed versions. Review

Figure 2-20 to see all of the places to match versions and select projects.

Figure 2-19. Use the right-click context menu to get to the Manage NuGet
Packages for Solution dialog

Figure 2-20. Installing Entity Framework packages to startup project

Chapter 2 Working With an existing Database

43

Make sure to match your versions of the entity Framework. in general, just use the
latest stable release across all projects.

 Step 6: Scaffold a new context using the Scaffold-Context
command

Before we scaffold, let’s address the options associated with scaffolding a context. Most

importantly, note that the context will require a database connection string to be passed

in as an option in the options parameters. This is a good thing. That being said, when we

scaffold, we’ll connect directly to the database.

In order to perform the scaffold operation, we’re going to need to add another

NuGet Package. In the PMC, select the main program project (e.g., EFActivity02_

ExistingDbCore) and then run the command Install-Package Microsoft.

EntityFrameworkCore.Design to get the design tools on the main program (review

Figure 2-21 for more information).

Figure 2-21. Getting the EntityFrameworkCore.Design package

It’s important to note that by default all tables and schemas are going to be

scaffolded unless otherwise specified. In order to make this happen, you simply run the

command with the connection string and the provider specified.

Make sure to once again select the EF_Activity001 project in the Package Manager

Console. We’ll be running the scaffold command against the database project.

With the EF_Activity001 project selected, run the command Scaffold-DbContext

<connection_string.> [optional params].

Chapter 2 Working With an existing Database

44

For example, when using SQLExpress, the command Scaffold-DbContext 'Data

Source=.\SQLExpress;Initial Catalog=AdventureWorks;Trusted_Connection=True'

Microsoft.EntityFrameworkCore.SqlServer will generate a full version of the

database. Figure 2-22 shows the command in context, in the Package Manager Console.

Figure 2-22. Using PMC to scaffold a database context

please note that your database connection string’s server may vary based on
your installed version of sQL. For example, SQL Developer edition often uses
localhost. some installations use (local) or (local)\ServerName.
sometimes you can get away with just a “.”. the easiest way to determine your
installation is to try to connect via SSMS with each of the different versions of the
server [(local), localhost, .\SQLExpress, just a “.”]. once connected,
you’ll need to leverage the correct server in all connection strings going forward.

When this command runs, we get a full DBContext generated and available for use.

Also note, there were a number of warnings given with this database generation, due to the

complexity of the database. The output of the scaffold operation is shown in Figure 2- 23.

Chapter 2 Working With an existing Database

45

At this point, we could start working against the database in our console application,

and in fact, this is what we will use later in this activity, with a slight tweak that has no

effect on the overall project for this activity.

 Step 7: Repeat the scaffold operation but change parameters

As an optional learning experiment, let’s wipe out what we just did (just delete all

models and the new context) or create a new solution and then run the scaffold

operation again. To delete all of the models and the new context, find the newly created

files in the EF_Activity001 project and simply delete them (make sure to keep the

ApplicationDbContext.cs file). Review Figure 2-24 to validate the files to keep.

Figure 2-23. Scaffolding completed

Chapter 2 Working With an existing Database

46

For this run, let’s specify only one schema to scaffold (you can go further on your

own to specify specific tables if you would like). Additionally, instead of using the Fluent

API, let’s specify that we want to use data annotations. We’ll cover the Fluent API and

data annotations later in this book, but for now just know the difference is in how the

models and context work to implement things like required fields, length or size of fields,

and overall relationships between the entities. For the scaffold command, this time

specify the flag -Schema and then implement only the Person schema. Additionally, use

the -DataAnnotations flag to generate data annotations on the models instead of fully

relying on the Fluent API.

Figure 2-24. Deleting all the files that were just scaffolded

Chapter 2 Working With an existing Database

47

On the default project without anything scaffolded, run this command:

Scaffold-DbContext 'Data Source=.\SQLExpress;Initial

Catalog=AdventureWorks;Trusted_Connection=True' Microsoft.

EntityFrameworkCore.SqlServer -Schema 'Person' -DataAnnotations

As before, type the command into the Package Manager Console as shown in

Figure 2-25.

Figure 2-25. Scaffolding a limited context by schema and data annotations

Figure 2-26. Reviewing a generated model class to see data annotations

Once this command is completed, the difference will be easy to see when looking at

any of the models that are generated, as the models will have data annotations on fields

as shown in Figure 2-26.

Chapter 2 Working With an existing Database

48

 Step 8: Creating the final context and configuration files
for connection

In order to connect to the database, we’re going to need to do some configuration. As the

project exists right now, there are no settings files, so we need to get those added in. In

the settings files, we’ll establish our database connection string, which we will then pass

into the context in order to connect to the database.

Before doing that, I’m going to reset and use the full context with data annotations.

This will give me the best amount of available data for further learning. The

command I want to run to scaffold this out is Scaffold-DbContext 'Data Source=.\

SQLExpress;Initial Catalog=AdventureWorks;Trusted_Connection=True'

Microsoft.EntityFrameworkCore.SqlServer -DataAnnotations

The command is exactly the same as the last command, with the exception that

the -Schema flag has been removed. Figure 2-27 shows the full results.

Figure 2-27. Regenerating the entire database with data annotations

Chapter 2 Working With an existing Database

49

Now that the context is ready, I’ll add a file named appsettings.json to the current

activity, as well as the same file in the console application startup project. Additionally,

I want to set the file as Content and Copy if newer for future deployments of the project.

After creating and setting the files as needed, your project structure should look similar

to what is shown in Figure 2-28.

Figure 2-28. Creating the appsettings.json file and setting as Content/Copy if
newer in each of the projects

It is very important to remember to set the file as Content and Copy if newer. Failure

to do this will prevent the connection string from being read when the code executed.

Next, we need to add three more NuGet Packages. Hopefully this is becoming second

Chapter 2 Working With an existing Database

50

nature by now. Use the Package Manager Console (PMC) to add the following three

packages to the console project (don’t forget to select the console project in the drop-

down):

 1. Microsoft.Extensions.Configuration

Install-Package Microsoft.Extensions.Configuration

 2. Microsoft.Extensions.Configuration.FileExtensions

Install-Package Microsoft.Extensions.Configuration.

FileExtensions

 3. Microsoft.Extensions.Configuration.Json

Install-Package Microsoft.Extensions.Configuration.Json

After installing the three packages, review the installed packages in the NuGet

Package Manager as shown in Figure 2-29.

Create the connection string in the appsettings.json file. While you likely only

need it in the console application, it’s not a bad thing to put it in both files to keep the

connection string with the library (all startup projects will need their own appsettings.

json in any situation to reference the connection string).

Add the following lines of code to your appsettings.json file:

"ConnectionStrings": {

 "AdventureWorks": "Data Source=.\\SQLExpress;Initial

Catalog=AdventureWorks;Trusted_Connection=True"

 }

Figure 2-29. A quick review of NuGet packages to make sure they are installed

Chapter 2 Working With an existing Database

51

Note that you will need to make sure to set your connection string correctly, and be

aware that the use of a double slash (\\) is critical in the connection string path. This

connection string should be identical to the connection string used to generate the

context earlier in the activity, with the exception of the double slash.

If your appsettings.json file already contains a node, such as Exclude and you

want to add the connection string, place a comma at the end of the current existing node

and add the ConnectionStrings entry following the comma, just as you would do with

any JSON-formatted text.

In the Program.cs file in the console application, we need to add the connection

string to the builder so that we can leverage it in the future. To do this, add a static

variable and a function to the Program.cs file.

The variable should be declared above the Main method as follows: static

IConfigurationRoot _configuration;

After adding the code, make sure to hover over the red-squiggly line for

IConfigurationRoot and select Show Potential Fixes. When the statements come

up, select the statement to add the using statement for Microsoft.Extensions.

Configuration.

Continue by adding a call to a new method: BuildConfiguration in the Main

method.

Next, add the method code as follows:

static void BuildConfiguration()

{

 var builder = new ConfigurationBuilder()

 .SetBasePath(Directory.GetCurrentDirectory())

 .AddJsonFile("appsettings.json", optional: true,

reloadOnChange: true);

 _configuration = builder.Build();

}

Figure 2-30 shows where in the class definition to insert this code. You may also look

at the example download for this book, which you can find on the book’s catalog page on

Apress.com.

Chapter 2 Working With an existing Database

52

remember that any time the Visual studio iDe shows a red-squiggly line, there are
errors in your code. For each red-squiggly line, attempt to use the suggested fixes.
Most of the time you’ll just need to add missing using statements. a quick shortcut
is to hit the key-chord combination ctrl + “.” – which will bring up the suggestions
for you.

 Step 9: Connecting to the database and showing results

In this final step, we’ll write the code to connect and show results from our existing

database. It is imperative that step 8 has been completed prior to this step.

Add another static variable to store the options builder information. This is a

DbContextOptionsBuilder object, which is a generic, with a type argument that contains

the type of your generated DbContext. In my case, this was AdventureWorksContext.

Therefore, my static variable is declared as static DbContextOptionsBuilder<Adventu

reWorksContext> _optionsBuilder;

Add the variable into the Program class as shown in Figure 2-31.

Figure 2-30. Add configuration code to the Program.cs file

Chapter 2 Working With an existing Database

53

Next, add a new method to build the database context options:

static void BuildOptions()

{

 _optionsBuilder = new DbContextOptionsBuilder<AdventureWorksContext>();

 _optionsBuilder.UseSqlServer(_configuration.GetConnectionString("Advent

ureWorks"));

}

This method sets the options builder to a new instance of the options builder on the

DBContext and then tells the builder to use SQL Server with the configuration settings

for the connection string as defined in the appsettings.json file. Place the code for the

BuildOptions method in the Program class following the BuildConfiguration method.

In order to get the data, we’ll need a query and output method. Create a method

called ListPeople as follows:

static void ListPeople()

{

 using (var db = new AdventureWorksContext(_optionsBuilder.Options))

 {

 var people = db.Person.OrderByDescending(x => x.LastName).Take(20).

ToList();

 foreach (var person in people)

 {

 Console.WriteLine($"{person.FirstName} {person.LastName}");

 }

 }

}

Figure 2-31. A look at the static variables in the Program.cs file

Chapter 2 Working With an existing Database

54

The ListPeople method should be added in the Program class following the

BuildOptions method. Also remember that any time you are concerned about

placement or are having any issues with the code, feel free to review the final version of

the files to see how and where I implemented the solution.

Please note that depending on your generation settings, you may need to use

Persons or People in the name of the entity set (the entity set is directly defined in the

context, if you want to search for it). Review the following image if you are having trouble

finding the Person DbSet property - DbSet<Person>. Also note that if you don’t see

Person, you can use another DbSet, or you may have set the options incorrectly and need

to regenerate the database context in its entirety. The generated AdventureWorksContext

with the DbSet<Person> entry is shown in Figure 2-32.

Figure 2-32. Finding the Person DbSet in the AdventureWorksContext

Finally, if you haven’t already done this, set the Main method to call the

BuildConfiguration method, then the BuildOptions method, and then the ListPeople

method in order and conclude the program execution by adding a simple statement

to make sure the console doesn’t close automatically at the end of execution. After

modification, the Main method should appear as follows:

static void Main(string[] args)

{

 BuildConfiguration();

 BuildOptions();

 ListPeople();

Chapter 2 Working With an existing Database

55

 Console.WriteLine("Press any key to exit");

 Console.ReadKey();

}

Running the program should generate a list of 20 names in reverse alphabetical order

by last name similar to the output shown in Figure 2-33.

Figure 2-33. The output from executing the program as connected to the database
and listing the last 20 names by last name descending

 Final thoughts

In this past activity, we were able to create the code for working against an existing

database in EFCore using the reverse-engineering option. We then saw what it would

take to set up a connection configuration and inject the options into the context for

direct use in code. While we only did a simple query, we can be confident that our

database connection code is working as expected, and we are ready to move on to

learning some more advanced concepts using Entity Framework.

A final thought to remember before moving on is that with EFCore, and likely in

EF vNext, there will not be any EDMX file or any type of visual conceptualization of

the database. While this lack of a visual file may be scary to some of us, we need to

Chapter 2 Working With an existing Database

56

think about the reasoning behind this approach. Having all of the Entity Framework

interaction with the database defined strictly as code is much more robust and

maintainable. Additionally, the ability to keep conflicts to a minimum is much more

possible with this code-only implementation. The conflicts that happen in source

control on a giant XML file (such as the EDMX file) creates more problems than it

ultimately solves. Having the ability to avoid those painful merge operations in the future

is a real win for everyone on the team.

 Activity 0202: Creating a database-first project in Entity
Framework 6
As with creating Entity Framework code libraries, there are a couple of small differences

in how EF6 works against an existing database. In this activity, we’ll look at how a project

can utilize Entity Framework against an existing database in the EF6/.Net Framework

space. I just want to stress that it is my personal belief that these types of projects will

remain critical to understand for quite a few more years, which is why I want to give you

this resource. If you don’t want to work on a .Net Framework, EF6 project, please feel free

to move on to the next chapter. If you want to work on the project but don’t want to go

through the setup, get a copy of the files Activity0202_ExistingDbNetFrameworkEF6_

Starter. With that solution, get the project up and running and then skip to step 3.

 Step 1: Create the project and solution

To begin, we need to create a new .Net Framework C# Console application. Using the

filters, select the language C# and the Type Console to easily filter for the correct project.

Make sure to select the .Net Framework template as shown in Figure 2-34.

Chapter 2 Working With an existing Database

57

Name the project Activity0202_ExistingDbNetFrameworkEF6. Make sure to place the

project in a location that makes it easy for you to find in the future (see Figure 2-35).

Figure 2-34. Create a new C# .Net Framework Console application

Chapter 2 Working With an existing Database

58

 Step 2: Reference the code for the .Net Framework with EF6
Library created in Chapter 1, Activity Supplemental Information

After creating the console application, reference the project from Chapter 1 where we

created our .Net Framework Entity Framework EF6 library.

if you are not using a repository at this point, i recommend making a copy of the
activity one files for ease of reuse and recovery.

Copy the project from Chapter 1 to the folder with your recently created solution.

Figure 2-36 shows what your folder structure should look like.

Figure 2-35. Naming, selecting location, and creating the project

Chapter 2 Working With an existing Database

59

After setting the folders and code structure, add a reference to the project within the

solution. First, right-click the Solution and select Add ➤ Existing Project as shown in

Figure 2-37.

Figure 2-36. A potential folder structure for your two projects and the new
solution

Figure 2-37. Add an existing project to the solution

Chapter 2 Working With an existing Database

60

Browse to the location on your drive where the copy of the EF_Activity_01_

NetFramework code project is located and add that to your solution. When completed,

your project structure should look like what is shown in Figure 2-38.

Figure 2-38. A view of the Solution Explorer after adding the existing project

After adding the new project, add the existing project as a reference

to the main console project. To do this, right-click the main Activity0202_

ExistingDbNetFrameworkEF6 project and select Add Reference (note, although you

cannot see the project name in Figure 2-39, I right-clicked the Activity0202_Existing…

project as shown in Figure 2-38).

Chapter 2 Working With an existing Database

61

Selecting Add Reference brings up the dialog to choose an existing project from the

solution. Choose the EF_Activity01_NetFramework project and complete the operation

to add it as a reference as shown in Figure 2-40.

Figure 2-39. Add an existing project as a reference

Chapter 2 Working With an existing Database

62

After correctly adding the project and referencing it, build the project. If there are any

errors, resolve them. After the successful build, the project should look similar to what is

shown in Figure 2-41.

Figure 2-40. Selecting the existing project to add as a reference

Chapter 2 Working With an existing Database

63

 Step 3: Use the ADO.Net Entity Data Model to create a DBContext

There are a couple of approaches we can take in an EF6 project to do the database-first

approach. In this part, we’ll examine what it takes to do this with the context generator.

Begin by right-clicking the EF_Activity01_NetFramework project and selecting

Add ➤ New Item as shown in Figure 2-42.

Figure 2-41. A view of the Solution Explorer after correctly referencing the existing
project

Chapter 2 Working With an existing Database

64

From the menu Visual C# Items on the left, select Data and then select the ADO.

NET Entity Data Model (note the many different options available). Name your model

AdventureWorks to match the restored database name from earlier in the chapter (see

Figure 2-43 for clarity).

Figure 2-42. Adding a new item to the existing database project

Figure 2-43. Using the ADO.Net Entity Data Model to create a new
AdventureWorks data model

Chapter 2 Working With an existing Database

65

In the next step, we can create the designer or set it up as a code first from database.

Here, we’ll select the EF Designer from database option. Review Figure 2-44 to see the

selection.

Figure 2-44. Selecting the EF Designer from database

After selecting the EF Designer from database and hitting Next to move through

the wizard, the next step we need to do is create a new connection. Use the New

Connection button to start setting up a new database connection to your installation of

AdventureWorks.

Chapter 2 Working With an existing Database

66

Select the option for using a Microsoft SQL Server Data source, use the default

data provider in the data provider drop-down, and, optionally, uncheck Always use

this selection and then select Continue as shown in Figure 2-45.

Figure 2-45. Choosing the data source for a new connection

Select your database server from the drop-down if it shows up. If it does not, you’ll

need to type the name of your server. This is likely going to be (local) or the name of your

machine, followed by \SQLExpress based on how you installed SQL Express (or if you

are running SQL Developer edition, you may use localhost). You will know you have the

server name correct when you can see the database in the list of the database to select

from, as shown in Figure 2-46.

Chapter 2 Working With an existing Database

67

Figure 2-46. Setting the connection properties

Chapter 2 Working With an existing Database

68

Continue through the wizard to the next step, where the connection string

information is set. Make sure to note the name of the entities for the connection string.

We’ll use the default AdventureWorksEntities in order to easily identify the connection

later. Review Figure 2-48 for more information.

Figure 2-47. Testing the connection success message

Make sure to always hit the Test Connection button to ensure your database

connection is set as expected (see Figure 2-47).

Chapter 2 Working With an existing Database

69

In the next step, we get to choose what to include in the database entity sets. Here

you can select specific tables, procedures, and other objects you want access to in your

code via Entity Framework. An important thing to remember is that you can always

update the model later if you want to make changes or your database structure/schema

changes.

For the purposes of brevity, I’ll select all of the existing database objects and will

keep all the selections checked (see Figure 2-49). Additionally, the default name

AdventureWorksModel will be my named model.

Figure 2-48. Setting the connection string name and continuing through the
wizard

Chapter 2 Working With an existing Database

70

if you wanted to separate the lines of business, you could create multiple models,
selecting only by schema and naming each model appropriately.

Figure 2-49. Selecting the database objects to generate and naming the model

On completion, the model will be generated and is easily able to be reviewed.

This would be the EF Context you would reference going forward to work against your

existing database. Figure 2-50 shows the EDMX diagram and files as generated.

Chapter 2 Working With an existing Database

71

You might note that there were a couple of errors during generation. The overall

complexity of the AdventureWorks database and a couple of bad relationships have been

found referencing a table that doesn’t exist. In the real world, I’d need to fix this in my DB

Schema or determine why these relationships are bad and potentially remove them and

regenerate the EDMX file. At any point, the EDMX file can be updated by right-clicking

the designer window and selecting Update Model from Database (shown in Figure 2-51).

Figure 2-50. The generated EDMX file

Chapter 2 Working With an existing Database

72

Also note the reverse is possible – Generate Database from Model.

Another note is to remember that each model is under the t4 templates section of

the overall EDMX document. In the future, if your database needs to change, you would

update the EDMX document from database after applying database changes, which

would regenerate all of the database model code. You should therefore never rely on

changes that you make directly in the models here in this code, as those changes will

get blown away the next time the model is regenerated. This information is noted in the

generated model files directly, as shown in Figure 2-52.

Figure 2-51. Update from Database

Chapter 2 Working With an existing Database

73

 Step 4: Connect and display data

In this step, we’ll connect from our console application to display the data from the

database very quickly. We will not go past a basic operation here, but this will give us

enough context to take it further should we need to. In the future, we’ll only be focusing

on the concepts and interactions with Entity Framework, so once you have your

connection established, the rest of the concepts can be applied at your convenience.

In the console application, we’ll need to add the connection string to the

App.config file. This connection string is important because the startup project

must reference the connection and we don’t want to hard-code that information.

Copy the connection string from the EF_Activity01_NetFramework project to your

Activity0202_ExistingDbNetFrameworkEF6 App.config file.

As a note, the connection string should be something similar to this:

<connectionStrings>

 <add name="AdventureWorksEntities" connectionString="metadata=r

es://*/AdventureWorks.csdl|res://*/AdventureWorks.ssdl|res://*/

AdventureWorks.msl;provider=System.Data.SqlClient;provider connection

string=& quot;data source=(local)\SQLEXPRESS;initial catalog=Adventure

Works;integrated security=True;MultipleActiveResultSets=True;App=Entity

Framework& quot;" providerName="System.Data.EntityClient" />

 </connectionStrings>

Figure 2-52. Models are generated from the t4 templates when the EDMX file is
updated

Chapter 2 Working With an existing Database

74

Place the connection string entry in the file below the <startup>..</startup> xml

node and before the closing </configuration> tag.

Next, open the NuGet Package Manager by selecting Tools ➤ NuGet Package

Manager ➤ Manage NuGet Packages for Solution, or by right-clicking the

ExistingDBNetFramework project and selecting Manage NuGet Packages.

Make sure to include the correct version of Entity Framework by selecting the

Installed tab, and then on the Entity Framework package, check to include in the

console project and then select Install. Review Figure 2-53 for clarity.

Figure 2-53. Install Entity Framework on the console application

Select OK and accept any changes you are prompted to select.

Now that the package is installed and the connection string is in App.config, let’s

add some code to the Main method in Program.cs to connect to the person table in the

database, retrieve, and display some data:

using (var db = new AdventureWorksEntities())

{

 var people = db.People.OrderByDescending(x => x.LastName).Take(20);

 foreach (var person in people)

 {

 Console.WriteLine($"{person.FirstName} {person.LastName}");

 }

Chapter 2 Working With an existing Database

75

Figure 2-54. Output from a simple query against an existing database, listing 20
people ordered by last name descending

 Console.WriteLine("Press any key to exit");

 Console.ReadKey();

}

Please note that you’ll need to add a using statement to your

ExistingDbNetFrameworkEF6 project for the reference to the AdventureWorksEntities

to make sure your code can find the context. My using statement was as follows: using

EF_Activity01_NetFramework;

And the output should look something like what you see here in Figure 2-54.

 EF6 from an existing database: Final thoughts

In this activity, we were able to create a context from an existing database and connect

to it in the console application. Going forward, we would be able to interact against the

database context with other using statements and valid queries just like what we have done

here. While we only queried (read from the database) and did not actually do any create,

update, or delete operations at this point, using Entity Framework to modify the data is

something that would be entirely possible with the context as generated in this activity.

Chapter 2 Working With an existing Database

76

Final thoughts for this chapter
In this chapter, we’ve seen how to generate an EF database context against an existing

database in either the EFCore (and likely the EFvNext) approach or the EF6 approach. To

this point in the book, we haven’t done a lot against the database; however, at this point,

we should have no trouble integrating our learning into these projects going forward,

and we are positioned well to start learning some more advanced concepts.

 Overall things we learned
• Use the Entity Framework tools in EFCore (and likely vNext) to

generate a context against an existing database.

• EFCore and likely EFvNext do not have a database model. Instead,

all contexts are generated in code. Updates to the database require a

new context generation.

• Traditional .Net Framework EF6 can exist with a database model

EDMX that provides a visual diagram of all included database

objects.

• Updates to the database in EF6 require regenerating the model from

the database in the EDMX designer.

• Both of these approaches shown here do not employ migrations and

therefore rely on other manual database operations to create the

physical objects in the database.

• Because there are no migrations, database objects are not

automatically included in the repository along with your codebase.

 Moving forward
Now that we’ve seen how to create an EF library that interacts with the database for an

existing database, it’s time to examine how to create an EF library that works against the

database when the database is greenfield. We’ll cover this concept in the next chapter

where we’ll discuss the code-first approach to the database.

Chapter 2 Working With an existing Database

77
© Brian L. Gorman 2020
B. L. Gorman, Practical Entity Framework, https://doi.org/10.1007/978-1-4842-6044-9_3

CHAPTER 3

Entity Framework:
Code First
In this chapter, we are going to look at what it takes to get up and running with Entity

Framework using the code-first approach. As we move through this chapter, we’ll learn

about the code-first approach to Entity Framework, and we’ll take note of some of the

advantages that working with a code-first approach brings to our development process.

We’ll conclude this chapter by working through some activities to create a couple of

code-first Entity Framework projects in EFCore and EF6.

 Code first doesn’t always mean code first
Even though the name code first implies that the database doesn’t exist until code is

written, it is entirely possible to employ a code-first approach with an existing database,

as well as in a new greenfield project. As with any development scenario, there are

multiple things to consider when attempting to determine if the code-first approach is

correct for your project.

 When not to use the code-first approach
Sometimes when trying to determine when something is the right answer, the way to

start is to determine when it is not the right answer. That being said, in most production

applications that you’ll encounter in today’s world, there are very few reasons that code

first doesn’t make a lot of sense.

The primary reason to avoid using the code-first approach would relate to having

a legacy system that is not capable of supporting the required tools, for example, a

project that was written in any .Net Framework prior to .Net 3.5. In those projects, Entity

Framework didn’t exist, so using the code-first approach is simply not possible.

https://doi.org/10.1007/978-1-4842-6044-9_3#DOI

78

Another reason that you may be forced to avoid the code-first approach could be

organizational restrictions. Perhaps there are greater security concerns at play, making

it against the law or highly dangerous for your company to expose so much power over

the data structure to any developer through code. Perhaps your company will not allow

anyone but that one mysterious DBA to touch the database for any reason. In both of the

previous cases, there may be some training or education that can overcome the issues, or

it may truly just be impossible to work with code first in your development efforts.

Yet another reason to avoid using the code-first approach with EF could be due to

personal preference. Perhaps you don’t like the normalization structure required to use

an ORM. You might also have another solution that you prefer for database interaction,

such as F# type providers. Maybe you’ve been using NHibernate and you don’t want to

change something that you know already works, although you could also do code first

with NHibernate.

A final reason to avoid using code first could simply be that there is a high risk of

losing data in a mature database. While it is entirely possible to overcome this issue,

there will always be a chance that forgetting to plan for database migrations that affect

data can (and perhaps will) happen. Before leaning on this argument as the reason not

to choose code first in your solution, please remember that you would have to overcome

the same data loss issues in traditional database development and that the solution is

usually exactly the same. For example, it is entirely possible to create a migration that

runs a script that backs up data from a table and then run a migration to modify the

table, truncating or causing data loss, and then another final migration to restore the

original data massaged to fit the new table structure, just as you would traditionally have

to do with scripts to modify the database structure. As we’ll soon see, the advantages of a

code-first approach could even make it a better choice in this situation.

 When to use the code-first approach
If you’re wondering when you should use the code-first approach going forward,

simply put, the answer is likely going to be every time you can. While there may still be

situations as discussed in the previous section that exist where you cannot use the code-

first approach, anytime you can use code first, you should use code first.

With EFCore and EFvNext, there is no longer an ability to create a model file like

the EDMX file we saw in the previous chapter. While we can always generate a reverse-

engineered database, the fact remains that we will likely have a model-based approach

to all development going forward. This is a very good thing for several reasons.

Chapter 3 entity Framework: Code First

79

 Code first in an existing project
Now that you’ve bought in and are ready to build out a code-first approach with Entity

Framework, what do you do when you have an existing and mature project, with an

existing database? Since the database already exists, we could begin by scaffolding the

data models such as we’ve seen in the reverse-engineering approach to get the models

auto-generated in our solution, as well as have the DBContext generated and populated

for us (as we’ve seen in Chapter 2). To make the project operate in a code-first manner,

we would then just need to enable migrations and start working with the migrations

against the data structures.

From then on, the project would be able to continue to build out new models and

database objects and apply further migrations as needed. A great level of care would still

be needed in this approach, however, as the database that is already mature needs to be

protected from accidental changes that might truncate data from tables or break critical

performance enhancements (such as a change dropping a view or an index might do),

especially if other line-of-business applications are relying on these data structures for

normal operation.

 Code first in a new project against a mature database
Another approach that might be taken when working with Entity Framework in a code-

first manner might be to develop a new application, but still need to use an existing

database.

In a situation such as this, the development team will need to again use a great deal

of caution to avoid breaking legacy functionality that might exist in other applications.

Additionally, any changes made in the code-first project would need to be propagated

into any legacy applications to avoid potentially causing outages or even more disastrous

consequences for other business units in the organization.

 Code first in a new project with a new database
This greenfield scenario is an obvious choice for working with a code-first approach.

Even when we don’t want to use migrations, at some point we still need data models that

define how to work with the various database objects in order to use Entity Framework.

Chapter 3 entity Framework: Code First

80

Since the project is new and has a new database to accompany it, using code first will

provide the best flexibility and ease of use from our codebase. In this case, it only makes

sense to use the code-first approach.

 The benefits of a well-executed code-first
development effort
In case there is still any doubt about the level of success your team can achieve by using

the code-first approach, I’d like to take a moment to highlight some of the greatest

benefits of using the code-first approach.

 Ability to get up and running quickly
Since the entire database structure is defined in code via migrations, any developer can

open the project, validate the connection string works, and run a simple command to

get the database in the exact state that it is in any environment where it is deployed.

Obviously, there would still be work with some data, as while some data would likely

be created by seeding the database, there would be a number of data tables that need

human interaction. This is no different than the issues any project using a database

would encounter.

 A complete record of database changes in source control
As mentioned previously, using the code-first approach allows for every piece of the

database to be imperatively defined in code. As the structure and needs of the database

were changed, these changes were implemented in code files and a new migration was

created and executed to affect the changes on the database.

In the past, you might have tried migrations and found them to be tricky. In fact,

migrations before EFCore might have even caused you pain when multiple developers

created conflicting migrations. Even if the migrations didn’t conflict, you still were forced

to re-scaffold your migration if another developer pushed theirs first since the overall

model hash code saved in the database would be different. With EFCore, most of these

pain points have been eliminated, and, although migration conflicts can still happen,

they are mainly the result of conflicting changes to the same database objects.

Chapter 3 entity Framework: Code First

81

Since our code is defined directly within the project in this approach, the files

and changes are all tracked in source control. There is no longer any need to create

a database project with a bunch of generated and non-generated scripts, or worse,

manually put your scripts into source control and hope developers keep them up to date.

Having the changes in source control is a very important advantage and should

not be taken lightly. If drives and backups fail, there is always a potential of losing your

database entirely. Even if you don’t lose your database, when a database failure happens,

you would likely still lose all the transactions that had been run since the previous

backup. Although both database and backup failure combined is rare and may never

happen, if it did, and you still have your project code, migrations could be run to restore

the structure and seed data from the database. Really this feature is more useful for

developer machines. As soon as one developer’s changes make it into your developer

source branch, other developers can update their own local database with a few quick

commands. This is highly advantageous when it comes to avoiding conflicts and bugs.

 Agility when needing to revert to a previous state
With the code being in source control, EF migrations also have the added benefit that,

when written correctly, can easily roll back a change against the database. Rolling back

a change can be a destructive event that loses data, but this is also something that is

rarely, if ever, done in production. In fact, there is a camp where some users don’t rely on

rollbacks at all. The theory there being that just adding another migration to move the

database back in a forward direction is a better approach. Either way, you’re still going to

need to plan for how the data is affected.

With the ability to revert, however, it is extremely easy to set a local developer

database to match the exact state a database was in at any point of development.

For example, it is easy to roll back the database to the state in time when a bug was

introduced to your codebase or a patch was released. This allows for effectively coding

against the database as it was at that time, making it easier and safer to release a

common modification across all official releases of your project or to patch a bug fix.

Another advantage of the migrations is the fact that changes can be reverted at will.

For example, if a feature is released and then eventually eliminated, migrations allow the

feature to continue to exist at a patch level but to be removed from future development.

Chapter 3 entity Framework: Code First

82

Having this history and ability to easily reset the database to the state it needs to be

is all managed by the code in the migrations. Therefore, as a developer, you don’t have to

spend your time trying to remember which scripts to run and testing to make sure your

tables and other object structures are correct for the patch, fix, or feature on which you

are working.

 Shifting from declarative to imperative database
programming
Another important concept with the use of code-first database development is that

we are making a conscious transition to imperative database programming and saying

goodbye to declarative programming around our database.

Imperative programming is the concept that as a developer, we are directly defining

what should happen, thereby locking in the details of the implementation, leaving little

to interpretation or fluctuation of implementation.

Declarative programming is just getting to an end result, regardless of how you get

there. In this paradigm, often the details of the implementation can be murky or fluent,

as long as the result is achieved.

For example, a declarative approach to development around the database might

look something like you know there is a table that holds some data that was defined

somewhere. You could query that data and perhaps connect to another table or maybe

a view to build out a result set, but as long as the data shows up, it is not important how

you got it to render. Also, you can sort of count on some fields being in the table for

the important information like name, age, date of birth, email, or maybe even a phone

number, but it may have changed, so you better double-check before counting on that

data. If the data isn’t there, or has changed, maybe I can ask to store that important

information somewhere and someone can build out the database scripts so that I can get

it eventually.

An imperative approach is more defined, and code first is most definitely imperative

by nature. Every database structure is exactly modeled in code. This means you know

exactly what tables exist and what fields exist on those tables. In fact, you can easily

create an instance of a model that holds exactly the correct data, with exactly the correct

limitations that exist in the database, including type and any other constraints like length

or range. Furthermore, relationships are directly defined, so you can be certain that a

foreign key exists in each related table and you can easily query and populate related data.

Chapter 3 entity Framework: Code First

83

For the most part, Entity Framework has always been somewhat imperative, with

well-defined structures in place. However, the code-first approach has solidified the

imperative approach with the ability to force the database to conform to specific

requirements, rather than relying on things to potentially be implemented correctly in

the database.

 It’s time to see code-first database programming
in action
Now that we’ve seen some of the advantages and reasons behind using a code-first

approach, it’s time to dive in with a couple of activities. These activities will help us learn

more about how the code-first approach works and also see the power that it gives us to

work with this approach.

One thing we will not see here is what it would take to put code first into an existing

project that is mature. The overall approach would be the same as if using against an

existing database. Code would then need to be updated to start working against the EF

library for new and maintenance development, and the original connections and code

(such as ADO.Net implementation) could remain in place.

In the next three activities, we’ll look at using code-first approach in a new greenfield

project in both EFCore and EF6. We’ll also use EFCore to create a new implementation

against a mature database.

I want to take a final moment before diving into some coding activities to make sure

a couple of other things are clear. We’re about to learn how to implement the Entity

Framework against an existing and a new database in EFCore and also an existing EF6

project (this would be a scenario such as upgrading an older application to use EF6 in

the .Net Framework).

Please note that in order to keep the focus on the actual implementation and use of

Entity Framework, I’ve chosen to make the startup projects work as console applications.

We all know this is not likely to be how your project will work in the real world. However,

learning to do things like making web controllers and displaying data on views or

rendering information to Xamarin forms, or other similar practical activities, is outside

of the scope of this book. It is my belief that if you are a web developer or a Xamarin

developer or a UWP or WPF developer, you already have the skills you need in those arenas

(or you will likely have resources available to learn them). Therefore, the choice to restrict

the GUI portion of these activities to a minimal implementation is a conscious choice.

Chapter 3 entity Framework: Code First

84

With that choice comes a small price, however, which I feel is important to address. If

you are building out solutions in WPF, UWP, Xamarin, and/or ASP.Net MVC, it is highly likely

that those project templates scaffold out an implementation directly to Entity Framework

for you, so going through the setup and working in a new manner may not be necessary in

many of these cases. Even so, learning how to build out a solution from the ground up will

position you to rearchitect your solutions to make a more robust implementation. By the

end of these activities, you’ll likely have everything you need to understand how to build out

an Entity Framework code-first solution into any existing or new project.

 Activity 0301: Creating a new code-first
implementation against an existing database
project in EFCore
In this first activity, we’re going to go through building out an EFCore code-first

implementation against an existing database. This will give us the opportunity to see

what it might be like to spin up a new project in a mature business environment, against

a mature database that likely has other line-of-business applications working against it.

 Use the starter files, or your project from Chapter 2
To begin, we’re going to pick up where we left off at the end of Chapter 2, where we had

built out a reverse-engineered database project against the AdventureWorks database,

using Entity Framework Core.

If for some reason you do not have these files or you simply want a fresh start, the

code resources for this book include a starter zip file package for this activity called

Activity0301_EFCore_Starter.

I did modify the implementation a bit to use a singleton configuration builder and

of course named my project for this chapter; other than that, everything else is the same

as where we landed at the end of Chapter 2. At any point, you can use the starter files

or leverage the finished files Activity0301_EFCore_Final as a reference during this

activity. At this point, I’m assuming you are well versed in getting started with Visual

Studio and getting a project open or up and running, so we’re going to dive right in.

Moving the builder code to a singleton is not necessary; I’ve simply done this to get the

code out of the way of our learning. If you want to see how to implement, you can review

the implementation in the starter files for activity 0301.

Chapter 3 entity Framework: Code First

85

 Step 1: Setup and getting started

To begin, either open the starter files entitled Activity0301_EFCore_Starter.zip or

your previous files from Chapter 2. Once the project is opened, validate that you have the

correct database connection in the appsettings.json file(s). Once that is correct, validate

that your project structure is similar to what is shown in Figure 3-1.

Figure 3-1. The initial project structure is shown

Chapter 3 entity Framework: Code First

86

This is essentially where we had left off using the existing database at the end of

Chapter 2.

 Step 2: Make sure EF is ready to scaffold migrations

Ensure that you have installed the Microsoft.EntityFrameworkCore.Design package on

the starter project. To do this, right-click the Solution and select Manage NuGet Packages

for Solution. Once the window opens, select the Installed tab and then make sure that

Microsoft.EntityFrameworkCore.Design is installed with the latest version of EFCore.

If the design package is not installed, switch to browse and then find the package and

install it to the starter project. The EF_Activity001 project will not need this library. You

can see what this looks like as shown in Figure 3-3.

Once you’ve validated the project setup, run the project to verify that it is working

correctly as per the EFCore activity from Chapter 2.

If we run the project as is, we get a console output of the list of the last 20 non-

distinct users in the person table as shown in Figure 3-2.

Figure 3-2. Simple console output at the start of the project

Chapter 3 entity Framework: Code First

87

Figure 3-3. Use the Manage NuGet Packages for Solution dialog to ensure that the
Microsoft.EntityFrameworkCore.Design package is installed

 Step 3: Create the initial migration

Now let’s create our initial migration in order to begin working with the code-first

approach in our application.

To begin, let’s try running a command in the PMC. The command to run is add-

migration “Initial Migration.” Before running the command, make sure that you

have selected the Entity Framework library project that contains the actual database

context. If you fail to select the correct project, you will get an error. Figure 3-4 shows the

incorrect project selected.

Figure 3-4. Running a command with an incorrect default project selected

Chapter 3 entity Framework: Code First

88

Running this command generates the following error as shown in Figure 3-5.

Figure 3-5. The error received when trying to run migrations against an incorrect
default project

Figure 3-6. Failure to create database migration when multiple contexts are
present

Change the Default project drop-down to point to the project with the actual

AdventureWorks DBContext in it, and then run the command again. Do you think it will

work? Figure 3-6 shows the outcome.

In this case, it didn’t work, because we have two database contexts in our project. If

you remember back to Chapter 1, we created a context by default for our use. Then in

Chapter 2 we generated a new context. Up to this point, we haven’t used migrations, so

we directly instantiated the correct context when we needed it. Now, with two contexts,

Visual Studio doesn’t know which one to use to scaffold the migration. Later in the book,

we’ll cover how to work with multiple contexts. For now, let’s just delete the unused

context from this project. Find the file ApplicationDbContext.cs that we created in the

EF_Activity001 project, right-click it, and select Delete. This is shown in more detail in

Figure 3-7.

Chapter 3 entity Framework: Code First

89

When the warning pops up about permanent deletion, just select OK and allow the

file to be destroyed.

it is important to remember that changes to the structure of the project require a
rebuild before attempting to add the migration. after deleting the second database
context, remember to rebuild the solution before moving on.

Figure 3-7. Delete the unused database context file

Chapter 3 entity Framework: Code First

90

If we fail to rebuild and try to apply the migration, we will get the exact same error as

before, letting us know that more than one DbContext was found.

With the file now deleted and the project rebuilt, once again, let’s attempt to make

our first migration. Do you think it will work this time? Review Figure 3-8 to see what

happens when we run the command again.

Figure 3-8. The initial migration has been created

 Step 4: Review the migration

Now that we have a migration ready to go, we might be tempted to jump right in and run

the migration. This would be a very big mistake, as the initial migration scaffolded has a

lot of tables that it is planning to create which already exist in our database.

Chapter 3 entity Framework: Code First

91

Remember our earlier discussion of the pros and cons of using the code-first

approach? This is one of the cons. Right now, we have no migrations applied in the

database, so the migration builder thinks we need to create all the tables. However,

our database already has all the tables, so we need to make sure that they don’t get

created for us. Review Figure 3-9 to see the table creation statements as generated in the

migration.

Figure 3-9. The initial migration contains all the table create statements, even
though tables already exist in the database

Chapter 3 entity Framework: Code First

92

So, what should we do next? There are actually a couple of approaches we can take.

One approach would be to comment out everything in the “Up” method and apply the

migration with the update-database command.

This approach should work, but it begs the question about what the next developer

would do, and the developer after that, if they have a fresh start on an existing database

on their machine. A potential solution to that problem could be to run the migration

with the code commented out and then propagate the changes and run on other

machines or simply modify other developer databases so that the first migration would

appear to have already been applied. However, no matter what we do here, care would

need to be exercised when running for the first time in production to avoid any potential

problems.

Since our database is existing, there should not be a reason that we need to generate

the tables as is. Therefore, let’s go ahead and comment out the code in the Up method.

You could also remove it if you wanted, assuming everyone would have access to an

existing sample of the database. Additionally, we will likely never want to delete these

existing tables, so let’s also entirely delete the code in the Down method.

 Step 5: Comment out the code in the “Up” method and delete
Down method code

Comment out the code in the Up method, and delete the code in the Down method in this

initial migration. Since the Up method is very large, collapse the method and then select

it; then just hit the key chord ctrl+k and then ctrl+c to apply the block comment. Once that

is complete, uncomment the method declaration and closing brace. Figure 3- 10 shows

how we can comment the code in the migration to avoid execution when the update-

database command is run.

Chapter 3 entity Framework: Code First

93

With the migration prepared to run with no effect on our data, let’s feel free to run

the update-database command in the PMC and see what happens.

there is no need to fear this command right now. if this operation goes sideways,
we can restore from backup. please do not do this against a production database
until you are certain the results you want will be achieved.

In the PMC, run the command update-database as shown in Figure 3-11.

Figure 3-10. The Up method code is commented out and the Down method code
is revmoved for the initial migration

Chapter 3 entity Framework: Code First

94

 Step 6: Examine the database

Looking directly at the database, we can now see that a table was added, and we have

an entry in it. Notice the command I ran earlier performed an insert into the database

table __EFMigrationsHistory. Let’s look at this table in our database. Figure 3-12

shows the database structure after the migration is executed.

Figure 3-12. The EF Migrations History Table with the initial migration tracked
as having been run. Note that the table can be viewed from SSMS or from within
Visual Studio using the Server Explorer

Figure 3-11. Running the update-database command in the PMC

Chapter 3 entity Framework: Code First

95

Now that we have the data reviewed, we can see how EF knows what migrations to

apply in our database. If the migration exists by name in the table (MigrationId column),

then the update-database command will not run that migration.

having the name of a migration in the table prevents execution. For other
developers and production databases, we could simply script out and then add the
__EFMigrations table to developer or production databases and then insert the first
entry by id so that the initial migration will never be executed on another database.

Here we see the name of the database migration as generated, which is nothing more

than a datetime stamp with the name of the migration as named by us. It would be very

easy to script the __EFMigrations table, insert it into any database that is going to work

with this project, and insert the first record into the table to prevent the migration from

ever being run.

 Step 7: Add another migration to see what happens

What happens if we leave the code commented out? Let’s leave the migration as is and

then add another migration to find out. Run the command add-migration “testing

migrations” to see what is generated. Figure 3-13 shows the expected output when no

changes exist, which is what we should see now.

Figure 3-13. Adding a second migration

Chapter 3 entity Framework: Code First

96

As we can see, this migration is blank. Therefore, we do not need to uncomment

our code (in fact, we could remove it) from the first initial migration. With that in mind,

we should be ok to push to another machine with the existing database or even our

production machine without fear of causing any problems in the future. That being said,

it’s always wise to make a quick backup before doing something like this, just in case. If

you can’t get a backup due to regulations, space, or other mitigating factors, then you

could consider scheduling your initial deployment to run immediately following your

next automated backup.

 Step 8: Remove the blank migration

In the last step, we added a migration that has nothing in it. Therefore, we should just

remove it from our migrations as it is not accomplishing anything. If you noticed, the

last statement in the PMC when we ran update-database was “To undo this action, use

Remove-Migration.” Let’s go ahead and run that remove-migration command now. The

command is shown in Figure 3-14.

Figure 3-14. Removing a migration

In this case, we had not applied the migration. If for some reason you had run the

migration that was blank, you would first need to roll back your migration history to the

previous migration and then run the remove-migration command. Although we are not

covering this in our activity, the command to roll back a migration would be as follows:

update-database -migration [name-of-your-migration] command; in this case, it

is something like update-database -migration InitialMigration. Please also note

the command is different in EF6, where we would specify -target instead of -migration

in the command to roll back a migration [update-database -target [name-of-your-

migration].

Chapter 3 entity Framework: Code First

97

 Final thoughts

In this activity, we saw what it takes to get our database set up to work with code-first

migrations when the database already exists. We did not cover how to start modifying the

database, but we are position to do so.

The most important takeaways from this activity are as follows:

• It is very easy in EFCore to get up and running with code-first against

an existing database.

• Make sure to avoid using destructive code in your initial migration.

The system should be smart enough from that time on to not try to

re-create the database.

• Use the commands add-migration [migration name] and update-

database to create and execute migrations.

• Use the command remove-migration to remove a migration that

has not been applied to the database. If the migration is applied, use

the update-database command with the -migration [migration

name] flag to first roll back to the previous migration and then run the

remove-migration command.

In the next activity, we’ll start fresh with a new project and a new database, and

then we’ll see what it takes to start modifying data in our new database using code-first

migrations. Do not fear, the ability to modify data as shown in the next activity would

work in exactly the same manner in our existing database project from this point on.

 Activity 0302: Creating a new code-first project
in EFCore
In this second activity, we’re going to create a new code-first project in EFCore. To begin

this activity, we’re going to start a new project, with a new purpose and setup. We’ll

set our connection strings as before within the configuration files, and then we’ll start

working with the code-first approach with a new database. Although you likely have

similar code in place, it may be confusing where I’m starting with this activity. For this

reason, I recommend that you simply start with the files from the project Activity0302_

EFCoreNewDb_Starter which has been pre-configured with a code library and startup

Chapter 3 entity Framework: Code First

98

console project. Feel free to update the versions of EFCore as to the latest version at the

time you are starting this project.

 What are we building?
In this activity, we’re going to build a simple database to manage inventory. Inventory

items could be any object you have around your house, such as a bunch of movies or

books or board games, and can also include items like computers, cameras, and even

clothes. We will be building this from the ground up, and this will be the start of what

we’ll be building with for the remainder of the book.

if you are using the starter files, skip to step 2. step 1 is going to show how to
build this project from the ground up.

 Step 1: Set up and use a new project

To begin from scratch, create a new .Net Core Console project and name the project

Activity0302_EFCoreNewDb. Start by opening Visual Studio and selecting Create a new

project. Creating a new project is shown in Figure 3-15.

Figure 3-15. Create a new project

Chapter 3 entity Framework: Code First

99

Create a new Console App (.Net Core) project. Selecting a console app is shown in

Figure 3-16.

Figure 3-16. Creating a new .Net Core Console project

Configure your project to save to a location on your drive that is easy to find; name

the project as stated above Activity0302_EFCoreNewDb. Figure 3-17 shows how we can

name the project and select the storage location for our code.

Chapter 3 entity Framework: Code First

100

The project should be created as expected. Once created, it should look similar to

what is shown in Figure 3-18.

Figure 3-17. Configuring the new project

Chapter 3 entity Framework: Code First

101

Next, we need to add a project to house our database operations. Right-click the

Solution and select Add ➤ New Project (see Figure 3-19).

Figure 3-18. The current project as generated during creation

Figure 3-19. Adding a new project to the solution

Chapter 3 entity Framework: Code First

102

Name the new project InventoryDatabaseCore and set it to save in the same folder

as your other project. Review Figure 3-21 for more information on configuring the

project.

Figure 3-20. Use the .Net Core Class Library template

For this project, select Class Library (.Net Core), shown in Figure 3-20.

Chapter 3 entity Framework: Code First

103

Add a reference to the new project in the Activity0302_EFCoreNewDb project by

right-clicking the project and selecting Add ➤ Reference (as shown in Figure 3-22).

Figure 3-21. Configure the DB Project name and folder location

Figure 3-22. Adding a reference to the new DB project in the starter project

Chapter 3 entity Framework: Code First

104

Select the DB project to reference it in the starter project (see Figure 3-23).

Figure 3-23. Selectin the DB project as a project reference

Right-click the Solution and select Manage NuGet Packages for Solution, as

shown in Figure 3-24.

Chapter 3 entity Framework: Code First

105

Install the following packages to both projects:

Microsoft.EntityFrameworkCore

Microsoft.EntityFrameworkCore.SqlServer

Microsoft.Extensions.Configuration.FileExtensions

Microsoft.Extensions.Configuration.Json

Install the following packages to the starter project [Activity0302_EFCoreNewDb]:

Microsoft.EntityFrameworkCore.Design

Microsoft.Extensions.Configuration

Install the following packages to the DB project [InventoryDatabaseCore]:

Microsoft.EntityFrameworkCore.Tools

Installing NuGet packages is shown in Figure 3-25.

Figure 3-24. Bring up the Manage NuGet Packages for Solution dialog

Chapter 3 entity Framework: Code First

106

In the end, you should have the following entries as shown in Figure 3-26 in the

starter project file.

Figure 3-26. The package and project references are shown in the .csproj file

Figure 3-25. Installing NuGet packages to the projects

And the DB project should have the entries as shown in Figure 3-27.

Chapter 3 entity Framework: Code First

107

Next, rename the class in the InventoryDatabaseCore project from Class1.cs to

InventoryDbContext.cs. When prompted, select Yes to allow renaming (as seen in

Figure 3-28).

Figure 3-27. The DB project package references

Figure 3-28. Renaming the Class1.cs file to be our new InventoryDbContext

Chapter 3 entity Framework: Code First

108

Change the class code in the InventoryDbContext to be a DB Context type and

implement a constructor to allow injection of DBContextOptions:

public class InventoryDbContext : DbContext

{

 public InventoryDbContext(DbContextOptions options)

 : base()

 {

 }

}

Add an appsettings.json file to each project. In the file, add the connection

string to connect to your database. Use .\\SQLExpress if you are using SQLExpress or

localhost if you are using SQLDeveloper edition.

{

 "ConnectionStrings": {

 "InventoryManager": "Data Source=.\\SQLExpress;Initial Catalog=Inventory

Manager;Trusted_Connection=True"

 }

}

Figure 3-29 shows what an appsettings.json file should look like with an active

connection string and also highlights the two locations to add the new file.

Figure 3-29. Setting the connection string in appsettings.json

Chapter 3 entity Framework: Code First

109

Make sure to set the appsettings.json files as Copy to Output Directory ➤ Copy if

newer for the starter project EFCoreNewDb (as shown in Figure 3-30).

Figure 3-30. Setting the appsettings.json file as Copy if newer for deploy

In the starter project, add a new file: ConfigurationBuilderSingleton.cs. In the new

file, place the code as follows:

public sealed class ConfigurationBuilderSingleton

{

 private static ConfigurationBuilderSingleton _instance = null;

 private static readonly object instanceLock = new object();

 private static IConfigurationRoot _configuration;

Chapter 3 entity Framework: Code First

110

 private ConfigurationBuilderSingleton()

 {

 var builder = new ConfigurationBuilder()

 .SetBasePath(Directory.GetCurrentDirectory())

 .AddJsonFile("appsettings.json", optional:

true, reloadOnChange: true);

 _configuration = builder.Build();

 }

 public static ConfigurationBuilderSingleton Instance

 {

 get {

 lock (instanceLock)

 {

 if (_instance == null)

 {

 _instance = new ConfigurationBuilderSingleton();

 }

 return _instance;

 }

 }

 }

 public static IConfigurationRoot ConfigurationRoot

 {

 get

 {

 if (_configuration == null) { var x =

ConfigurationBuilderSingleton.Instance; }

 return _configuration;

 }

 }

}

Chapter 3 entity Framework: Code First

111

After adding the singleton class, change the program.cs file to contain the following

code:

class Program

{

 static IConfigurationRoot configuration;

 static DbContextOptionsBuilder<InventoryDbContext> _optionsBuilder;

 static void Main(string[] args)

 {

 BuildOptions();

 Console.WriteLine(_configuration.GetConnectionString("Inventory

Manager"));

 ListInventory();

 }

 static void BuildOptions()

 {

 _configuration = ConfigurationBuilderSingleton.ConfigurationRoot;

 _optionsBuilder = new DbContextOptionsBuilder<InventoryDbContext>();

 _optionsBuilder.UseSqlServer(_configuration.GetConnectionString

("InventoryManager"));

 }

 static void ListInventory()

 {

 }

}

Run the program to validate that everything is set up and that your connection string

is printed out as expected. Figure 3-31 shows the expected output of the connection

string (your output may vary if your connection string is different than mine).

as a final reminder, when adding a lot of code such as we’ve done in this activity
in the last two steps, if something goes wrong and you are getting a lot of errors,
don’t forget to compare your code to the final version of the files.

Chapter 3 entity Framework: Code First

112

As you are already sure your project is working as expected, skip to step 3.

 Step 2: Make sure your project is set up correctly

As mentioned previously, the easiest approach for starting this activity is to get the

starter files for the activity. Once you have the files, open the project, then make sure the

connection string is set to match your local environment database, and finally run the

program to make sure it works as expected.

When the program is working as expected, the output should be similar to what is

shown in Figure 3-31 at the end of step 2.

 Step 3: Add a reusable library for our database models –
the “code” of code first

While it is entirely possible to put your code in the same location as the context, it is

much more flexible for future use if we separate the models to their own class. Right-

click the Solution, and then select Add ➤ New Project. Use the Class Library (.NET Core)

project template. Name the new project InventoryModels and save the project in the

same directory as your other projects in the solution.

After creation, the project should look as follows in Figure 3-32.

Figure 3-31. The program is set up and working as expected

Chapter 3 entity Framework: Code First

113

Rename Class1 to Item.cs. When prompted, select Yes to rename. In the Item.cs

file, add a public property for Id as int and Name as string. We will modify this class in

more detail later in the book, but we’ll keep it simple here.

public class Item

{

 public int Id { get; set; }

 public string Name { get; set; }

}

Next, reference the InventoryModels project in the InventoryDatabaseCore Library

project. Right-click the InventoryDatabaseCore project, select Add ➤ Reference, and

then select the InventoryModels project as a project reference as shown in Figure 3-33.

Figure 3-32. Creating the class library for the inventory system models

Chapter 3 entity Framework: Code First

114

 Step 4: Reference the library in an entity DbSet

This next step is one of the most critical steps in the process. If we forget to do this, our

migration will scaffold successfully with nothing to update in the database, creating

a blank migration. Therefore, if you run the add-migration command after creating a

model, and the migration is blank, consider checking your DbContext to make sure you

included a reference to the DBSet.

In the file InventoryDbContext in the InventoryDatabaseCore library, add the

following line of code:

public DbSet<Item> Items { get; set; }

Adding this line of code will require a using statement to reference the Models

project using InventoryModels. See Figure 3-34 for more clarity.

Figure 3-33. Referencing the InventoryModels library in the
InventoryDatabaseCore library

Chapter 3 entity Framework: Code First

115

 Step 5: Add a new migration

We are now ready to begin creating migrations for our new database. To do this,

after ensuring that we have set everything up to this point as covered, we can run the

command add-migration “Initial Migration” in the PMC.

Make certain the Default project drop-down is pointing to the

InventoryDatabaseCore project. Once this is in place, run the command as shown earlier

for the initial migration. Review Figure 3-35 for more clarity.

Figure 3-34. Adding the DbSet<Item> to the Inventory DB Context

Figure 3-35. Adding the initial migration for our new database creates an error

Note that this generated an error. The error is “Unable to create an object of type

‘yourdbcontext’…”. The error is not very helpful as to what went wrong.

This error is happening because we do not have a default constructor in the context

file. Let’s add a default constructor and try again.

Chapter 3 entity Framework: Code First

116

Use the following code to add a new default constructor:

public InventoryDbContext() : base() { }. Additionally, make sure to

add the options in as a parameter to the base method in the explicit

constructor:

public InventoryDbContext(DbContextOptions options)

 : base(options)

{

}

Review Figure 3-36 to see the code as placed into the file.

Figure 3-37. Another error. No database provider has been configured for this
DbContext

Figure 3-36. Fixing the class with a default constructor

Now that this is fixed, try to add the migration again. Do you think it will work this

time?

If you guessed “no,” you get a prize. The prize is yet another error (see Figure 3-37).

Chapter 3 entity Framework: Code First

117

The text of this error is actually “No database provider has been configured for this

DbContext. A provider can be configured by overriding the DbContext.OnConfiguring

method or by using AddDbContext on the application service provider. If AddDbContext is

used, then also ensure that your DbContext type accepts a DbContextOptions<TContext>

object in its constructor and passes it to the base constructor for DbContext.”

So how do we fix this issue?

As it turns out, we need to do what it says in the error. The easiest solution is simply to

override the OnConfiguring method. In fact, if we go back to activity one from this chapter

and look at the context that was generated, we’ll see exactly the code that we need. Review

Figure 3-38 to see the code from the OnConfiguring method in activity 0301.

Figure 3-38. Activity 0301 had placed an override for OnConfiguring in the
DbContext

A couple of important notes. This code from activity 0301 is exactly the same

as the options builder that we are using in our startup project. In this case, however,

the startup project was not run, so the context did not get an options builder injected

(remember, we added a default constructor that takes no parameters in order to run

migrations). Therefore, the context itself needs to know how to connect to the database.

Another important note is the fact that the context is literally begging us to change

out the code so that we don’t use a hard-coded connection string. While we could get

away with that for now, we really should update it to prevent having our connection

string information in code (eventually we’ll need to connect to a production database

with something other than the trusted windows login).

Let’s add the code for the OnConfiguring method to our DbContext:

protected override void OnConfiguring(DbContextOptionsBuilder

optionsBuilder)

{

 if (!optionsBuilder.IsConfigured)

 {

Chapter 3 entity Framework: Code First

118

 optionsBuilder.UseSqlServer("Data Source=localhost;Initial Catalog=

AdventureWorks;Integrated Security=True");

 }

}

Next, let’s remove the direct reference to the connection string. The good news is that

we already have an appsettings.json file in place. Now we just need to leverage that from

our database context.

Just as we did in the startup, we’ll need to build out the connection string from the

builder. If we were using an Asp.Net core application, we could leverage the services and

just work through that, but from this console project, it’s a bit trickier.

Also, we can’t reference the startup project static builder that we built, because that

would create a circular dependency. So, let’s just rehash the builder code directly.

In the InventoryDatabaseContext, add the following code directly into the

OnConfiguring override method:

protected override void OnConfiguring(DbContextOptionsBuilder

optionsBuilder)

{

 if (!optionsBuilder.IsConfigured)

 {

 var builder = new ConfigurationBuilder()

 .SetBasePath(Directory.GetCurrentDirectory())

 .AddJsonFile("appsettings.json", optional: true,

reloadOnChange: true);

 _configuration = builder.Build();

 var cnstr = _configuration.GetConnectionString("InventoryManager");

 optionsBuilder.UseSqlServer(cnstr);

 }

}

You’ll also need to reference any missing using statements such as using

Microsoft.Extensions.Configuration; and using System.IO; at the top of the file.

Additionally, you’ll need to add a class-level variable before the Main method:

static IConfigurationRoot _configuration;

Let’s try that add-migration command one more time (see Figure 3-39).

Chapter 3 entity Framework: Code First

119

 Step 6: Updating the database

Now that we have an initial migration in place, we are ready to update our local

database. Let’s see what happens if we just run the update-database command in the

PMC. The successful command execution is shown in Figure 3-40.

Figure 3-39. Adding the migration succeeds now that we have access to the
configuration and have correctly set up the database context to run with a code-
first approach

Figure 3-40. Updating the database was successful

There is a chance this will not work for you out of the box. Depending on your

local instance and how things are configured, you may need to make sure that you can

connect with local windows accounts and/or set to mixed mode if you want to use a SQL

Server user id and password.

Chapter 3 entity Framework: Code First

120

In some rare instances, you may need to create the database yourself and then run

the update-database command. In the end, you should be able to get the update-

database command to work as expected.

Examining the database using SQL Server Management Studio (SSMS) proves the

database exists as we would expect (see Figure 3-41).

Figure 3-41. Examining the newly created database

 Step 7: Insert and retrieve a set of items

As a final part to this activity, let’s insert and retrieve some items from the Items table in

our database. This part of the activity is optional, as we’ll be covering how to work with

the database in more detail later in the book. However, I’m a big believer in taking things

one step at a time, and this simple insert and retrieve is a good way to get our feet wet.

If you consider yourself to be well versed in EF and LINQ, perhaps step away from

the activity and attempt to write the insert and read/write of about five items to and from

the Items table.

Chapter 3 entity Framework: Code First

121

To begin, in the console startup, let’s add a method to populate the database.

This method should be called InsertItems. Add any using statements for System.

Collections.Generic and the InventoryModels project as needed. In the method,

we’ll get an instance of the context and then insert a prefabricated list of items. The

InsertItems method should be added anywhere in the Program class. I generally just

add to the end when adding new methods.

static void InsertItems()

{

 var items = new List<Item>() {

 new Item() { Name = "Top Gun" },

 new Item() { Name = "Batman Begins"},

 new Item() { Name = "Inception" },

 new Item() { Name = "Star Wars: The Empire Strikes Back"},

 new Item() { Name = "Remember the Titans"}

 };

 using (var db = new InventoryDbContext(_optionsBuilder.Options))

 {

 db.AddRange(items);

 db.SaveChanges();

 }

}

Additionally, let’s remove the printout of the connection string and replace with a

call to the InsertItems method within the Main method:

static void Main(string[] args)

{

 BuildOptions();

 InsertItems();

 ListInventory();

}

By doing this, we’ll quickly discover how poor our initial DB design is, as there will be

many things we want to enhance about the Items table.

Also note, we are not going to prevent duplicates for now. As stated, we’ll learn more

in the future about how to do things correctly against the database.

Chapter 3 entity Framework: Code First

122

Finally, let’s query the database and output each returned item, taking just the

top five for now since we know that if we run this method multiple times, there will be

duplicates inserted on every run. Add a new method called ListInventory within the

Program class, following the InsertItems method.

static void ListInventory()

{

 using (var db = new InventoryDbContext(_optionsBuilder.Options))

 {

 var items = db.Items.Take(5).OrderBy(x => x.Name).ToList();

 items.ForEach(x => Console.WriteLine($"New Item: {x.Name}"));

 }

}

Run the application. The results should be similar to what you see in Figure 3-42.

Figure 3-42. The output of our first code-first application

 Final thoughts

In this activity, we have worked through the steps that it takes to get a new project up and

running with the EFCore code-first approach. By now, you should be very familiar with

the idea of how code-first database interaction works. However, it’s always a great idea to

highlight and review our takeaways from this learning activity.

• The DbContext is the controller for interaction with the database. All

the information we need is handled by the context, including DbSets,

and configuration to connect.

Chapter 3 entity Framework: Code First

123

• The Model classes dictate how the table will be structured. Adding

public properties will generate columns in the tables.

• Add the model to the context as a DbSet in order to make sure the

migration includes that model in the scaffolding.

• For the migrations to work, we need the Microsoft.

EntityFrameworkCore.Tools package and we need to override the

OnConfiguring method in the DbContext to make sure the database

connection is set as expected. Additionally, the startup project needs

the package Microsoft.EntityFrameworkCore.Design.

• We create the migration with the command add-migration

[migration name] and then run update-database to execute the

migration against the database

• Migrations are tracked in the database in the table __

EFMigrationsHistory

one final note is that we will be leveraging this project for much of the remainder
of the book. if you are fluent with source control, now would be a good time to add
your project to a repository so that you can easily work with it in the future.

 Activity 0303: Creating a code-first project in EF6
In the final activity for this chapter, we’re going to implement an EF6 code-first

implementation against an existing project that uses classic ADO.Net as its data

access layer. In the real world, your existing project may have another version of Entity

Framework already in place (EF2, EF3, EF4, EF5) and may just need a few tweaks to

update to use EF6. Additionally, another path with a project that has an existing older

EF implementation could just build a data access library for new functionality in EF6.

However, it is likely that if you need to do this sort of upgrade, it is to bring some older

application up to the last LTS version of the .Net Framework and EF6 to extend its life

with the best security and architecture possible, in a manner that is much less expensive

than a full rewrite.

Chapter 3 entity Framework: Code First

124

 Why not a new project?
You could create a new project with a new .Net 4.8 and EF6 architecture implementation.

However, if a new project is going to be built, I encourage you to build it in the latest

version of Core or in .Net 5 (vNext), depending on when you are reading this book.

 Using an existing project to implement an EF6 code-first
approach
Before we begin, it’s important to note that there will be a few major differences in how

this works from what we’ve learned in the EFCore activities, as working with EF6 and the

database context with migrations has a couple of minor differences. Additionally, while

the overall idea remains the same, a couple of the commands are different in the PMC

for EF6 vs. Core.

 Pre-activity setup

To get started with this activity, it will be easiest to just grab a copy of the starter files

Activity0303_EF6_UpdateFromExisting_Starter. Extract the files and work along with

me as we build out the solution using EF6 code first.

 Step 1: Configure the connection if necessary and run the project

As with other projects, this code is pointed at our restored version of AdventureWorks and

should use a similar connection string. Make sure the connection string is set up correctly

and run the project. You should see output similar to what is shown in Figure 3- 43.

Figure 3-43. Initial output from a pseudo-legacy application against the
AdventureWorks database

Chapter 3 entity Framework: Code First

125

 Step 2: Create a new library and add the Entity Framework
libraries

As with other projects, we’re going to create a new library and then add the Entity

Framework libraries to this project. We’ll also need to add the Entity Framework libraries

to the startup project. Begin by adding the new library project and naming it something

like AWEFDataAccessLayer (see Figure 3-44).

Figure 3-44. The new data access layer library for our existing project

Next, add the EntityFramework NuGet Package to both the new DAL project and the

original startup project as shown in Figure 3-45.

Figure 3-45. Installing Entity Framework to the library and the startup
project

Chapter 3 entity Framework: Code First

126

 Step 3: Delete the EFMigrations History table
from the AdventureWorks database
If you completed the previous activities in this chapter, you should already have an
EFMigrations table in the AdventureWorks database. You’ll want to make sure to delete this
table before running the wizard in step 4. You can easily delete the table by right- clicking
and selecting Delete in the SSMS. Another solution would be to script the table as delete
and then execute the script. A third solution would be to restore the backup to a new
instance of the AW database and then just point to that new instance in this activity. A final
solution would be to just leave it but remove it from the generated context and code after

running the wizard in the next step. Figure 3-46 shows how to delete the migrations table.

Figure 3-46. Deleting the previously created migrations table

Chapter 3 entity Framework: Code First

127

 Step 4: Create the code-first implementation

Thinking back to our EF6 implementation against the existing database from Chapter 2, we

had an auto-generated context that was built out for us. With this project, we will not end

up with an EDMX file that will generate code for us. Instead, we’re going to have regular

model files and a context which we’ll be able to leverage going forward.

To begin, right-click the project and select Add ➤ New Item (see Figure 3-47).

Figure 3-47. Add a new item to your data access layer library project

In the Add New Item dialog, on the left navigation pane, select Data. Then select ADO.

Net Entity Data Model. Name the model AdventureWorks and select Add. Figure 3-48

shows the Add New Item dialog.

Chapter 3 entity Framework: Code First

128

In the Entity Data Model Wizard, select Code First from database (see Figure 3- 49).

Figure 3-48. Creating the new code-first data model

Chapter 3 entity Framework: Code First

129

If you’ve worked through other activities, you likely already have a connection

to choose from. If not, you’ll need to create a new connection. If creating the new

connection, review the EF6 activity against an existing database from Chapter 2 for

more information. Once you have the connection, select it. Name your connection

in the App.Config as the default, which is the name of your model. In my case, this is

AdventureWorks. There are some slight differences that we’ll want in this connection

string, so you can name this connection string anything but AdventureWorksDb, which

is the configuration string name for the classic database instance in these activity files.

Setting up the configuration string is shown in Figure 3-50.

Figure 3-49. Selecting the Code First from database option

Chapter 3 entity Framework: Code First

130

Once the database connection is set, you’ll get the options for what tables and views

to include. Since we’ll be doing an initial migration and we want to ultimately squelch

all of this from being re-created, make sure to just select all of the tables and views (see

Figure 3-51).

Figure 3-50. Setting the connection and connection string properties

Chapter 3 entity Framework: Code First

131

Leave the box to Pluralize or singularize checked, and then select Finish. In the end,

you’ll have a DBContext file and a bunch of model files.

Figure 3-52 shows the AdventureWorks DBContext. Make note of the way the

connection string is directly passed to this context by name (as opposed to builder

options as in EFCore).

Figure 3-51. Selecting all the database objects for creation

Chapter 3 entity Framework: Code First

132

Also make note of how the views are referenced in the generated context (see

Figure 3-53).

Figure 3-52. A quick look at the generated DBContext

Figure 3-53. A look at how the views are defined in the generated DBContext

You should also note all of the other models that are defined as expected and the lack

of an EDMX file.

Chapter 3 entity Framework: Code First

133

 Step 5: Enable migrations

Now that we have the database structure defined with models and the DBContext, it’s

time to generate the initial migration.

Remember that any time our database models or context have changed, it’s

important to rebuild the project and make sure there are no errors. You should have no

errors at this point. However, make sure to build now, and then fix any errors if any exist.

We cannot generate migrations if the project will not build.

Next, open the PMC, then point to the EFDataAccessLayer project as the default, and

run the command add-migration “Initial Migration” to see what happens (review

Figure 3-54).

Figure 3-54. Attempting to add the initial migration in our EF data access layer
library

Here, we see there is an error, telling us that no configuration type is found. To fix

this, we need to run the command enable-migrations. However, before we do that, we

need to consider what we are going to enable. Enabling migrations can be configured

to run automatically (on project startup) or can be left as a manual operation (requires

intervention). On a new instance, automatic migrations are what we likely want. In this

case, however, we need to be extremely careful as automatic migrations may remove

or delete objects or data from our existing database. Therefore, we’ll want to make sure

automatic migrations are not enabled. We can check and easily change this setting later

in the DBContext file.

Run the command enable-migrations in the PMC to see what happens. The output

with an error is shown in Figure 3-55.

Chapter 3 entity Framework: Code First

134

This error might be particularly confusing. If we look at the app.config file in our

library, the connection string is definitely there. However, the config for the console

startup project does not have this connection string.

Copy the connection string from the configuration file in the library to the startup

project. For convenience, the code is shown first here, and then the placement is shown

in Figure 3-56.

<connectionStrings>

 <add name="AdventureWorks"

 connectionString="data source=localhost;initial catalog=AdventureWor

ks;integrated security=True;MultipleActiveResultSets=True;App=Entity

Framework"

 providerName="System.Data.SqlClient" />

</connectionStrings>

Figure 3-55. Error for no connection string in the application config file

Chapter 3 entity Framework: Code First

135

One more important note is that there is an additional section added to the config

file in both projects when we referenced the Entity Framework packages. If this section

is missing, EF will likely not work. Make sure both config files have the following config

sections:

<configSections>

 <section name="entityFramework"

 type="System.Data.Entity.Internal.ConfigFile.

EntityFrameworkSection, EntityFramework, Version=6.0.0.0,

Culture=neutral, PublicKeyToken=b77a5c561934e089"

 requirePermission="false" />

</configSections>

<entityFramework>

 <providers>

 <provider invariantName="System.Data.SqlClient" type="System.Data.

Entity.SqlServer.SqlProviderServices, EntityFramework.SqlServer" />

 </providers>

</entityFramework>

The placement of the code is shown in Figure 3-57.

Figure 3-56. Copying the connection string to the startup project app.config file

Figure 3-57. Validate the config sections and Entity Framework entries in each
project’s config file

Chapter 3 entity Framework: Code First

136

If for some reason this section of the config is messed up, try to remove and then

reinstall the Entity Framework libraries to the project. That should clear up the config

file. Also note that you’ll have two connection strings in the App.config file for the main

project as the legacy code connection already existed.

Once again, run the command enable-migrations to see what happens (see

Figure 3-58).

Figure 3-58. Migrations are now enabled

Figure 3-59. The configuration file for our migrations is now in place

With the migrations enabled, we can see that there is a folder “Migrations” in the

AWEFDataAccessLayer project. If we look at the configuration file, we can see the line for

enabling the migrations right in the constructor (review Figure 3-59).

Note the line for AutomaticMigrationsEnabled = false. If we want to turn

automatic migrations on, we can set this option to true. We could have also used that

as a flag in the enable-migrations command with the command Enable-Migrations

-EnableAutomaticMigrations.

Chapter 3 entity Framework: Code First

137

 Step 6: Create the initial migration

In some cases, the initial migration may already have been created for you. In our case, it

is likely we need to generate it.

Continue to make sure your project builds and that you are in the PMC pointing to

the default project of your AWEFDataAccessLayer.

The next part of this activity is only going to happen if you are working against all the

data in AdventureWorks or in any other database which includes geography data. I opted

to keep this spatial data in for this example, even though referencing geography data will

create a number of additional problems for us to solve.

Run the command add-migration “Initial Migration” to see what happens.

If you don’t get an error for spatial types, skip to step 8.

Here, if you do get a geography error, as shown in Figure 3-60, we’ll need to fix it.

Figure 3-60. Spatial types geography error

This error might happen if you are using an older version of EF6, such as a version

less than or equal to version 6.3. This error should not happen on version 6.4+ of EF6.

To fix this error, install the NuGet package Microsoft.SqlServer.Types on the

AWEFDataAccessLayer project and the startup console project (see Figure 3-61).

Chapter 3 entity Framework: Code First

138

make sure to rebuild the solution after adding nuGet packages. Failure to rebuild
the solution will not allow the pmC to recognize new nuGet packages. once the
solution is rebuilt, the package(s) will be recognized in the pmC.

In order for our migrations to work, we need to tell Entity Framework to use this

spatial types provider. We might be able to map it in the providers section of the app.

config file. However, a guaranteed way to make this work is to add the following two lines

of code to the constructor of the AdventureWorks context:

SqlProviderServices.SqlServerTypesAssemblyName =

 "Microsoft.SqlServer.Types, Version=14.0.0.0, Culture=neutral,

PublicKeyToken=89845dcd8080cc91"; SqlServerTypes.Utilities.

LoadNativeAssemblies(AppDomain.CurrentDomain.BaseDirectory);

Upon completion, this would look similar to what is shown in Figure 3-62.

Figure 3-61. Installing the Microsoft SqlServer Types library

Chapter 3 entity Framework: Code First

139

Once again, run the command add-migration “Initial Migration” to see what

happens. When successful, the new migration should be generated.

 Step 8: Comment all “Up” code, delete all “Down” code, update
the database

As in the previous activity (activity 0302), we don’t want to re-create all the tables

(running would likely error and let us know that the objects already exist). Therefore, we

need to clean up our initial migration.

Start by commenting the code for the initial migration’s Up() method. Likely, we will

never need or want this code. However, in case the code needs to be restored for some

reason, we will still have it (see Figure 3-63).

Figure 3-62. Setting the provider in the constructor of the context

Chapter 3 entity Framework: Code First

140

There should not be a situation where we ever want to run the down code on this

migration, as it would be highly destructive, so just remove any code and replace with a

comment to note the intentional removal of code (see Figure 3-64).

Figure 3-63. Comment out (or remove) all code in the “Up” method for the initial
migration

Figure 3-64. Remove the “Down” method code for the initial migration

After cleaning up the initial migration, build the project. Then run the update-

database command in the PMC. Figure 3-65 shows the successful update of the database

with the new migration.

Chapter 3 entity Framework: Code First

141

Validate that the next migration does not require the models again by adding another

migration with the command add-migration "test scaffolding" to see what happens

(as shown in Figure 3-66).

Figure 3-65. Updating the database

Figure 3-66. Making sure the next migration scaffolds with no model changes

Since this new migration is blank, we know we are not going to cause any issues, and

we can just delete the test migration. Right-click the file and select Delete. If for some

reason you had applied this migration, just revert with the command update-database

-targetmigration InitialMigration and then delete the test migration.

Chapter 3 entity Framework: Code First

142

 Step 9: Leverage the new context from the startup app

Now that our context is wired up, we can leverage it from the regular code in our startup

application.

Reference the new library project in the console startup application (shown in

Figure 3-67).

Figure 3-67. Referencing the new EF library in the startup project

Add a new method called GetPeopleEF to the Program class, which returns a list of

Person, and is coded as follows:

private static List<Person> GetPeopleEF()

{

 var people = new List<Person>();

 using (var context = new AdventureWorks())

 {

 var result = context.People

 .Where(x => x.LastName.StartsWith("G"))

 .Take(5)

 .OrderBy(x => x.LastName).ToList();

 foreach (var p in result)

 {

 var person = new Person()

 {

 BusinessEntityID = p.BusinessEntityID,

 FirstName = p.FirstName,

 LastName = p.LastName,

 PersonType = p.PersonType,

 Suffix = p.Suffix,

Chapter 3 entity Framework: Code First

143

 Title = p.Title

 };

 people.Add(person);

 }

 }

 return people;

}

Note that we’ll need to set a using statement to map Person now, since there is a

conflict between our original DAL and the new EF DAL. Assuming all functional UI will

rely on the original mappings, we’ll have to map our EF objects back to DAL objects to

ensure we don’t break legacy applications. The using statement for Person is as follows:

using Person = AWDataLayerObjects.Person;

In case you’ve never seen a using statement assigned to a variable before, review

Figure 3-68 to see what the code should look like.

Figure 3-68. The using statement to eliminate ambiguity for the Person object

Finally, to complete the program, add two lines of code to the program.cs Main

method:

var efPeople = GetPeopleEF();

efPeople.ForEach(p => Console.WriteLine($"Next Person:

{p.GetFullName()}"));

This code should come right before the completion of the program.

Run the program to see it in action. Your output should be similar to the output in

Figure 3-69.

Chapter 3 entity Framework: Code First

144

 Final thoughts

In this final activity, we have worked through creating a new code-first EF6 library

against an existing database. Creating against a new database would be a similar process,

although creating new EF6 projects is likely something you will not be doing very much

of in the future. If a new database and project are being built, you should consider

moving to EFCore or .Net vNext (.Net 5+).

As a reminder, there are some major differences when using EF6 in a code-first

manner. We saw a few of them in play in this activity.

• Code-first migrations require a configuration file.

• The configuration file must have migrations enabled.

• Migrations can be automatic or manual, based on a flag in the

configuration file.

• Use the command add-migration [migration name] to scaffold a

new migration.

• Use the command update-database to apply the next migration.

• Use the command update-database -targetmigration [migration

name] to roll back the database to a previous migration.

• EF6 implementations have a much more verbose config file.

• EF6 implementations generally require the connection string to

specify that multiple active result sets are allowed.

Figure 3-69. The final output of the program

Chapter 3 entity Framework: Code First

145

 Final thoughts for this chapter
In this chapter, we have taken an in-depth look at how we can get different projects set

up to work with the code-first approach to database development.

We have also gained a basic understanding of what it takes to make changes via

migrations when working with the code-first approach.

We also saw that getting things to work manually can sometimes be excessively

painful, while somehow beautiful. There is a certain reassurance that happens when you

know for sure that your code and your database are completely in sync with each other.

We also saw that while there were errors during setup, they were easily overcome, and

we are prepared to set up projects of all types in the future.

Our key takeaways for this chapter are

• Code-first migrations can be applied to any project, at any stage of

maturity.

• Models are the key to generating database objects and working with

the data in code.

• The DBContext acts as a definition for all database objects available.

• A DbSet<T> is essentially a table of the object defined in its generic

type T.

• Migrations need to be scaffolded.

• Migrations can be applied in a forward or backward direction.

• Migrations are tracked in the database.

• Code-first development allows any developer to quickly build out a

copy of the database by structure on any machine.

• Code-first development could be considered as an imperative

approach to database programming.

Chapter 3 entity Framework: Code First

146

 Final thoughts on section 1
In these first three chapters, we’ve seen what it takes to work with Entity Framework in

both the classic manner (.Net Framework <= 4.8 and EF6) and in the new manner (.Net

Core 3.0/EFCore 3.0). This was a necessary thing to cover because as developers

we will likely encounter both versions for many years to come in legacy apps and new

development.

For the remainder of the book, we’ll be focused on EFCore and vNext Entity

Framework concepts and database programming. Even so, almost every concept we

learn will still be relevant, even to the EF6 implementations, even if the older versions

have a small difference in implementation or syntax.

Now that we have a very good understanding of how to get projects up and running

with Entity Framework, in the next section, we’ll start diving deeper into building out the

data solution, beginning with a deeper look at models, contexts, and migrations.

Chapter 3 entity Framework: Code First

PART II

Building the Data Solution

149
© Brian L. Gorman 2020
B. L. Gorman, Practical Entity Framework, https://doi.org/10.1007/978-1-4842-6044-9_4

CHAPTER 4

Models and the Data
Context
In this chapter, we are going to examine the data context and the creation of models, as

well as look in a bit more detail about how these objects work in concert for code-first

database programming with Entity Framework.

By the end of the chapter, we’ll have reviewed and become even more familiar with

some of the inner workings of the database context. Through practical examples, we’ll

also become very familiar with using models to build out our database tables.

 What is the database context, and why do
we need it?
Taking a quick step back, if you are reading this and you are used to working with an older

version of EF (pre-EF4.1) or a non-code-first approach, you’ve perhaps never used the

DBContext before. Instead, you might be familiar with an object called the ObjectContext.

The ObjectContext contains all of the methods necessary to work against the database,

such as CreateDatabase, SaveChanges, and more (see https://docs.microsoft.com/

en-us/dotnet/api/system.data.entity.core.objects.objectcontext?view=entity-

framework-6.2.0 for more information).

https://doi.org/10.1007/978-1-4842-6044-9_4#DOI
https://docs.microsoft.com/en-us/dotnet/api/system.data.entity.core.objects.objectcontext?view=entity-framework-6.2.0
https://docs.microsoft.com/en-us/dotnet/api/system.data.entity.core.objects.objectcontext?view=entity-framework-6.2.0
https://docs.microsoft.com/en-us/dotnet/api/system.data.entity.core.objects.objectcontext?view=entity-framework-6.2.0

150

 DBContext vs. ObjectContext
In the previous versions of EF, DbContext could, in some instances, act like a decorator

on the ObjectContext, as it is possible for the DBContext to be created by wrapping an

ObjectContext. It was also possible to gain access to the underlying ObjectContext from

the DBContext when necessary.

In EF6, both DBContext and ObjectContext are implementations of the same interface,

the IObjectContextAdapter. By having this common definition, and the ability for a

DBContext to work like a decorator, it was possible to make the transition from the older-style

EF with the *.edmx files from existing databases to the code-first approach with no *.edmx

files, while still being able to support the original *.edmx implementations.

In both EF6 and EFCore, and likely also in EFvNext, the DbContext object is a critical

component for code-first implementations. The DBContext contains all of the critical

methods necessary to work against the database. With EF using a DBContext, a lot of the

underlying patterns are implemented by default and don’t require manual intervention.

We will focus on working with the DBContext for the remainder of this book.

Additionally, we will be homing in on EFCore and vNext for our examination of the

DBContext, as the future of the DBContext is likely more relevant to you. Along the way,

however, we will still make a few notes about how things were different in EF6, just in

case you’re working with EF6 in legacy code, or in the case where you are upgrading and

need to know about the differences between the two implementations.

 What is the DBContext?
To begin looking at the DBContext, let’s get the official statement from the Microsoft

documents about what the DbContext class is. The official documentation from

https://docs.microsoft.com/en-us/dotnet/api/microsoft.entityframeworkcore.

dbcontext?view=efcore-3.0 states the following about the DbContext Class:

A DbContext instance represents a session with the database and can be
used to query and save instances of your entities. DbContext is a combination
of the Unit Of Work and Repository patterns.

Using the DbContext, therefore, we get orchestration around two significant patterns

in database development, the unit of work (UoW) pattern and the repository design

pattern. This means that by using the DBContext, we don’t have to explicitly manage simple

transactions when working with the DBContext, as they will be handled by the context

Chapter 4 Models and the data Context

https://docs.microsoft.com/en-us/dotnet/api/microsoft.entityframeworkcore.dbcontext?view=efcore-3.0
https://docs.microsoft.com/en-us/dotnet/api/microsoft.entityframeworkcore.dbcontext?view=efcore-3.0

151

implementing the UoW pattern. In other words, when working with the code to apply

changes, until calling the SaveChanges method, everything that has been set to be modified is

managed in the same implicit transaction. If something fails during that call to SaveChanges,

the entire modified set is rolled back, which can be both a blessing and a curse.

To be more prepared and to gain a better understanding of this, we will take a deeper

look at the UoW and repository patterns in more detail later in the book, as well as

discuss working with explicit transactions and when to use them. Until then, we’ll just

leverage the built-in UoW and repository patterns.

Although most of the interaction we will have with the DBContext in many

applications will be limited to adding DBSets and a few other small code modifications,

it is a good use of our time to learn more about how the DBContext works, is constructed,

and some of the options available to us through it. We can examine this in more detail by

diving into the inner workings of the DBContext.

 Constructing a new DBContext
In EFCore and likely vNext, there are only two constructors for the DBContext. We’ve

already seen both constructors in use in our example Activity0302_EFCoreNewDb_Final.

If you have not worked through that activity, you may want to take a moment to do so at

this time.

In most cases, when creating the DBContext, we’ll use the complex constructor,

which takes a DBContextOptions object, but there are specific instances when the default

constructor with no parameters will be used. Primarily, the default constructor is used when

running migrations, as we saw in the previous chapter. The default constructor could also be

used in a system without dependency injection anytime a DBContext is instantiated.

The DBContext class gives us the ability to inject options for use during normal operation

of the database interactions with EF via the DBContextOptions class. When working with the

DBContextOptions class, we generally will use a DBContextOptionsBuilder object, as the

DBContextOptions class is usually composed and/or injected, not directly created.

The DBContextOptionsBuilder gives us a couple of critical operations that we’ll

leverage. In the last chapter, we set the type of database we wanted to use and injected

the connection string for the DBContext through the DBContextOptionsBuilder and the

DBContextOptions as follows:

protected override void OnConfiguring(DbContextOptionsBuilder

optionsBuilder)

Chapter 4 Models and the data Context

152

 {

 if (!optionsBuilder.IsConfigured)

 {

 var builder = new ConfigurationBuilder()

 . SetBasePath(Directory.

GetCurrentDirectory())

 . AddJsonFile("appsettings.json", optional:

true, reloadOnChange: true);

 _configuration = builder.Build();

 var cnstr = _ configuration.GetConnectionString

("InventoryManager");

 optionsBuilder.UseSqlServer(cnstr);

 }

 }

Most importantly, in this implementation, we did not have a startup class or method in

place that set up dependency injection via services at runtime. Therefore, no DBContextOptions

were injected into the DBContext. To remedy this, we configured the options by overriding the

OnConfiguring method as shown previously. As a result of overriding the OnConfiguring method

and building the options builder as we did in this example, we could also further configure

the DBOptionsBuilder if we needed to implement any other custom functionality, such as

adding interceptors or enabling logging.

We should also note through this examination that any creation of the DBContext

will use the OnConfiguring method, so we can continue to modify the options for our

DBContext, even if the system is leveraging dependency injection.

As an alternative to overriding the OnConfiguring method, we can build the options

inline and inject them into the constructor of the DBContextOptions directly as is shown

in the following code block (which is easily generated by creating a new ASP.Net MVC

Project):

public void ConfigureServices(IServiceCollection services)

 {

 services.AddDbContext<ApplicationDbContext>(options =>

 options.UseSqlServer(

 Configuration.GetConnectionString

("DefaultConnection")));

Chapter 4 Models and the data Context

153

What’s important to note here is the fact that in the ASP.Net MVC project, the project

template sets the DBContextOptions to use SQL Server and leverages a configuration

entry by name to get the connection string.

In both the earlier cases, we’ve set the database to use SQL Server. There are many

other database options available, if your organization or project cannot leverage SQL

Server.

 Critical properties and methods available when
working with the DBContext
In the next couple of sections, we’ll take a look at a couple of properties and methods

that exist for our use when building up and working with a DBContext. This reference

is not an exhaustive list of all properties and methods available but should cover many

of the common properties and methods that we’re likely to use. The full list of detailed

specifications for each object is available in the documentation at Microsoft, which can

be found here: https://docs.microsoft.com/en-us/dotnet/api/microsoft.entityfr

ameworkcore?view=efcore-3.1.

 Important properties on the DbContextOptions
Builder object
Each of our objects used in the composition of the DBContext for normal operations

contains a couple of noteworthy properties. At the time of this writing, there are two

properties of the DbContextOptionsBuilder class, which are shown in Table 4-1.

Table 4-1. Properties of the DbContextOptionsBuilder class

Property Purpose

IsConfigured allows us to determine if the options are configured and respond accordingly

Options Gives direct access to the DBContextOptions object

We’ve already seen these properties in action in the last chapter, although the call for

Options to get the connection string was implicit in the DBContext, whereas we directly

coded against the IsConfigured property.

Chapter 4 Models and the data Context

https://docs.microsoft.com/en-us/dotnet/api/microsoft.entityframeworkcore?view=efcore-3.1
https://docs.microsoft.com/en-us/dotnet/api/microsoft.entityframeworkcore?view=efcore-3.1

154

 Important properties on the DBContextOptions object
Even though we don’t directly create a DBContextOptions object, we may still wish to

code against a couple of the properties. There are three properties available to us in the

DBContextOptions class, as shown in Table 4-2.

Table 4-2. Properties of the DbContextOptions class

Property Purpose

ContextType Gets the type for the context, if no type is defined, then dBContext will

be returned

Extensions Gets a list of extensions as configured, such as the type of database being

leveraged

IsFrozen Used to determine if the Context is open for further configuration. If

true, the system cannot further override the context options in the

onConfiguring method

In most cases, we won’t have a need to leverage these properties directly, but it’s

good to know they are available should we need to provide an implementation that is

more defined than a default implementation would be. I can definitely see a use case

where locking the options from further configuring could be a nice security feature,

potentially preventing logging or even injecting a new database connection string.

 Important properties on the DBContext object
The DbContext itself also has a couple of properties. As with the other objects, we

don’t have to do anything with these properties if we don’t need to, but there are some

cases where it might make sense to work with the properties. The four properties of the

DBContext are listed in Table 4-3.

Chapter 4 Models and the data Context

155

Although it is not always necessary to work with these properties, there will be times

when you’ll want to get direct access to the underlying database to perform operations.

A particularly common use of this would be to execute a command that runs a stored

procedure, which we’ll see in more detail later in the book.

In addition to the properties on each of these objects, there are some methods

that we’ll be leveraging for the remainder of our work in this book. Let’s start with the

DBContext, which contains the majority of the methods we’ll be using.

 Methods available on the DBContext
When working with the DBContext, we’ll first note that most methods have both a

traditional synchronous method and also have an asynchronous implementation.

The main reason for using an asynchronous method is to try to avoid blocking your

main threads when making calls to the database. In general, you should try to do this

whenever possible for a better user experience. That being said, it’s important to note

that the DBContext is not a thread safe object, so you may run into concurrency issues

and other painful situations if you are building out a multithreaded application.

Table 4-3. Properties of the DbContext class

Property Purpose

ChangeTracker allows us to get direct information about the interactions with entities in

our context. Can be used to determine if lazyloading is enabled and if the

context entities have changes, and it is leveraged for major operations like

accepting changes and cascading deletes

ContextId every context has a unique id. this can be useful information for logging

what context was being leveraged to perform an operation when there are

multiple contexts or multiple instances of a context

Database this property implements a façade on the database and is primarily used for

determining and working with critical database operations like connections,

commands, and transactions

Model Gets the metadata for the underlying entities and relationships as mapped in

the database

Chapter 4 Models and the data Context

156

As mentioned previously, the methods shown in Table 4-4 are not an exhaustive

list of the methods available. To get the full list, you can always reference the full

documentation at Microsoft. Table 4-4 shows some of the more common methods we’ll

use to give us a general idea of what the DBContext can do.

Table 4-4. Methods of the DbContext class

Method Purpose

Add/AddAsync allows insertion of the entity into the database

Find/FindAsync Find a specific entity by Id

OnConfiguring allows for us to override the options

OnModelCreating allows us to use the FluentapI to further define our entities and

their relationships

Remove delete an entity from the database

SaveChanges/

SaveChangesAsync

apply the tracked changes in a single transaction

Update Used to perform an update to the tracked entity

What we can see is that the DBContext itself has all the methods necessary for

performing CRUD operations, as well as the critical method for saving changes. Even

though these methods exist, as we’ll see in upcoming examples, we’ll actually leverage

methods and extensions on the DBSet<T> objects to do the majority of our CRUD

operations.

 Methods and extensions on the DBSet<T> object
The DBSet<T> object has a couple of critical methods and extensions that we will

leverage in code, specifically for CRUD operations. Table 4-5 shows some of the more

important methods and extensions we will rely on when working with DBSet<T> objects.

Chapter 4 Models and the data Context

157

While the majority of the methods we work with will be from the DBSet<T>

or DBContext objects, there may be a few instances where methods from the

DBContextOptions and/or DBContextOptionsBuilder could be leveraged. For the

DBContextOptions, the most common method that would likely be leveraged would be

the Freeze method, which prevents the builder options from being further configured in

the OnConfiguring method.

 Methods and extensions for the DBContextOptions
Builder object
The DBContextOptionsBuilder has the ability to set the specific database type using

extensions and can also be leveraged to perform some configuration around logging

and interceptors. Table 4-6 shows some of the methods and extensions available on the

DBContextOptionsBuilder.

note that the method names listed in table 4-6 sometimes contain a space in the
name. this is purely to allow the preceding table to wrap the text. In actual code,
there are no spaces in the method names.

Table 4-5. Methods and extensions of the DBSet<T> object

Name Method or Extension Purpose

Add Method add the entity to the context for insert

AsNoTracking Method Gets an entity that is not tracked so that any

modifications do not cause concurrency issues

Create Method Creates a new entity for the type t

Find/FindAsync Method locates an entity by Id and attaches the entity

Include Method Used to fetch related entities

Remove Method sets the entity as deleted in the context

SqlQuery Method allows execution of a raw SQL Query

AddOrUpdate extension Inserts the entity if it does not exist or updates

the entity if it does exist

Chapter 4 Models and the data Context

158

Now that we have an overview of the objects, methods, and extensions we’ll be using

to interact with the database, let’s just quickly review what it looks like to work with an

entity that is modeled in code.

 Working with models
Assuming you’ve worked through the previous chapters in this book, you’ve already had

a chance to create a class called Item. You then were able to use the Item class as a model

to define the structure of a table in the database by adding a property for DbSet<Item> in

the InventoryDbContext and then creating and applying a code-first migration (for more

information, review Activity0302_EFCoreNewDb_Final). In that activity, however, we just

touched the surface.

Table 4-6. Methods and extensions of the DBContextOptionsBuilder

Name Method or Extension Purpose

AddInterceptors Method allows adding a list of interceptors to monitor

or modify operations

Configure

Warnings

Method Used to change runtime behavior of warnings,

can impact performance

EnableDetailed

Errors

Method Used to include detailed error messages

generated by exceptions, can impact

performance

EnableSensitive

DataLogging

Method allows information to be logged that would

ordinarily be suppressed, can be a security risk

UseInMemory

Database

extension allows the context to work against an in-

memory database

UseLazyLoading

Proxies

extension enables the creation of proxies for lazy loading

UseSqlLite extension sets the context to use SQL Lite for the

underlying storage.

UseSqlServer extension sets the context to use SQL Server for the

underlying storage

Chapter 4 Models and the data Context

159

 Two immediate benefits of code-first models
The real power of writing the database objects as code is twofold. The first benefit is that

we have an immediate object which we can directly use in code throughout our system.

The second benefit is that we get to define every critical piece of the database in a

common language every developer understands, while also having that code tracked in

our source control repository.

 Building a database entity model
In a closer examination, a model is nothing more than another coded C# .Net class. This means

we can implement models with all of the same tools and techniques we would expect for any

object-oriented system.

For example, we can define properties, which then become fields in the database.

We can also set constraints on the models, as well as track relationships. Since everything

is defined in code, building the models correctly will be critical.

 A final thought about models
To this point in the book, we have not done a lot with models. Don’t worry, we’ll be getting

into working with models more substantially as we progress through the remainder of

the text. In a future chapter, we’ll cover what it takes to add constraints and build out

relationships in the database.

For now, we simply need to be aware of the fact that we can model a table directly in

a code-first implementation. This is accomplished by taking the following steps:

 1. Create the model as a C# .Net class to generate a table.

 2. Add public properties to the model with a data type and a name

for fields.

 3. Add the entity to the DBContext (if not already there) as DBSet<T>

where T is the type of your model. If the model is already in the

DBContext, proceed to step 4.

 4. Generate a new code-first migration to apply any and all of the

modeled changes using the add-migration command.

 5. Update the database using the update-database command.

Chapter 4 Models and the data Context

160

In general, these five steps directly translate to an eF6 code-first implementation of
the database.

 Activity 0401: Modifying the Item
In this activity, we will modify the Item class we created in the last chapter by adding a

couple of additional properties. We will then add a new database migration and update

the database to get the new fields into the database table.

After we have completed that operation for the critical fields on the Item class, we’ll

build out an auditing hierarchy to finish up the activity.

 Practical application for your daily routine
Going forward, as you build out your systems, you will be using a similar flow in most of your

daily work. This activity is an exercise to give us another chance to practice building model

properties and using them to generate a database migration and then perform the update.

While everything we do in this activity could have been done in one set of operations,

if you would like even more practice, take the time to add only one property at a time

and create a new migration each time, and then update the database each time. Either

way, this activity will give you more practice with generating migrations and updating

the database, such as you would do in your day-to-day development routine.

 Building out the solution
From this point on, you’ll use the same project, so you can simply build out this project

for the remainder of the text. However, starter and finished files will always be available

for each activity. It may be more convenient and easier to follow along by just grabbing

the starter files at the beginning of each activity.

 Step 1: Getting started

To get started, grab the starter files Activity0401_ModifyingTheItem_Starter.zip, and

get them open in your local development environment. Alternatively, you could work

with the project files you created from Activity0302_EFCoreNewDb.

Chapter 4 Models and the data Context

161

When grabbing starter files, make sure to set or validate the connection string to
map to your database in the appsettings.json files, and then run an initial
update-database command to get the database up to speed at the start of the project.

There is a small change in the starter files from the final version of Activity0302_

EFCoreNewDb. In the starter files for Activity0401_ModifyingTheItem, I’ve added a new

project called InventoryHelpers, and I’ve moved the ConfigurationBuilderSingelton.

cs file into that project and then referenced the project as needed.

After making sure the database is updated to the latest version by running an

update-database command, run the project, and you should see output similar to what

is shown in Figure 4-1 (note that your list may vary depending on how many times you

have run the program).

Figure 4-1. Running the starter project and validating that it is working as expected

 Step 2: Adding fields to the Item class

Now that our project is up and running as expected, we can easily modify the Item model

to make changes to the database.

For this example, we’ll add an integer to track Quantity, strings for Description and

Notes, and a boolean object for tracking if the item is on sale. Additionally, we’ll use

nullable objects to optionally track two DateTime fields and two decimal fields. These fields

will be named PurchasedDate, SoldDate, PurchasePrice, and CurrentOrFinal price.

Chapter 4 Models and the data Context

162

As we build this out, we’re placing properties with non-nullable fields at the top

and nullable properties at the bottom. Make a note that this is not a requirement. The

properties could be in any order that you desire. For example, if you wanted, you could

enforce that properties are listed alphabetically. We’ll eventually see that the generated

migration doesn’t care how we order the properties.

One last thought before we modify some code. If you are experienced with database

development, you might already be thinking about auditing the rows with things like

CreatedDate, CreatedBy, ModifedDate, ModifiedBy, IsActive, IsDeleted, and any other

auditing information you might find useful. We’ll get to that before the end of the

activity, so please be patient and do not add these fields until prompted to do so.

Begin by adding the integer for quantity with a property named Quantity:

public int Quantity { get; set; }

Follow that by adding string fields for Notes and Description:

public string Description { get; set; }

public string Notes { get; set; }

Continue by adding a boolean property for tracking if the item is listed for sale:

public bool IsOnSale { get; set; }

Next, add the DateTime fields with properties for PurchasedDate and SoldDate, using

the “?” to make sure both fields are nullable in case we haven’t yet sold the item or in

case we simply don’t remember or want to track the date of purchase:

public DateTime? PurchasedDate { get; set; }

public DateTime? SoldDate { get; set; }

Complete the initial Item object rework by adding the nullable decimal fields for

purchased price and current or final value:

public decimal? PurchasePrice { get; set; }

public decimal? CurrentOrFinalPrice { get; set; }

The final Item class at this point should look similar to what is shown in Figure 4-2.

Chapter 4 Models and the data Context

163

 Step 3: Add a new migration to get the fields into the database

With our model changed, we need to add a new migration to make the changes propagate

into the database.

Begin by making sure to save all your changes, and then run a build. Generally, you’d

hit the chord ctrl+s and then ctrl+shift+b to save and then build. That being said, building

the solution should save changes, so the step to save may be extraneous.

Figure 4-2. The additional properties have been added to the Item class

Chapter 4 Models and the data Context

164

To be clear, it is also not necessary to build the project. Building the project will

happen before the add-migration command is applied. However, by building the

project first, we ensure that we can clean up any errors before trying to create the

migration. If we simply run the add-migration command and the project won’t build,

we’ll get an error notification and the migration will not be generated.

Review the output window to make sure the build completes (see Figure 4-3).

Figure 4-4. Failing to set the correct project results in an error when trying to add
a migration

Figure 4-3. Ensuring the build is completed without errors in the output window

If you are using your files from the previous chapter, and you did not move the
ConfigurationBuildersingleton to its own project, your solution will likely state that
you only have three projects where the build succeeded.

Next, open the Package Manager Console (PMC) and run the command to add

the migration. Make sure to select the correct project which contains your DBContext.

Failure to do so will result in an error (review Figure 4-4).

Chapter 4 Models and the data Context

165

To create a new migration, use the command add-migration "UpdateItem_

AddCriticalFields" as shown in Figure 4-5.

Figure 4-5. Adding the migration to update the Items table

Figure 4-6. Updating the database with the modified Item columns

After adding the migration completes, update the database using the command

update-database as shown in Figure 4-6.

 Step 4: Review the database directly

After running an update, it is always a good idea to make sure the database was

updated as expected. Take a moment now to look at the table directly using SQL Server

Management Studio (SSMS) in your local database to make sure the fields are tracking

with your Item class as defined in the code and migration. Figure 4-7 shows what the

Items table should look like after adding the new fields and updating the database.

Chapter 4 Models and the data Context

166

In Figure 4-7, after reviewing our database table, we see a couple of important notes.

First, the fields that were just applied were applied in alphabetical order regardless of

how we coded them in the model. If we had examined the migration, we would have

seen them also laid out in this manner. Additionally, we see that the original fields

are still at the top of the column list. This tells us that fields are generally created in

alphabetical order, but their positions are kept in sequence with the migrations.

 Step 5: Add the auditing class for easily creating auditing fields

As mentioned earlier, seasoned database programmers likely recognize that there are a couple

of things that are generally very nice to track. As a caveat to this, however, I will say that with

newer versions of SQL Server, it is possible to use timestamps to see what the database looked

like at a specific time. Even so, it is generally a good idea to track who created, who modified, or

deleted and when these things happened. Additionally, tracking if an entry is active or using a

soft delete is often an approach that is favorable to help recover from problems created by users

and can also be used to filter items without losing a lot of history.

Figure 4-7. The Items table after updating the database

Chapter 4 Models and the data Context

167

To make the auditing for our system happen in a SOLID development approach, we

will create a couple of small interfaces and then implement them in an auditing base

class. We’ll then extend the auditing base class for the Item class, create the resulting

migration, and update the database.

depending on how robust you want to build out your solution, you could choose
to create a new project for shared objects to keep your interfaces separate from
your implementations. to keep this example more contained, we’ll just put the
interfaces in the Models project.

Begin by creating a new interface file in the InventoryModels project called

IIdentityModel.cs and add the following code to the file:

public interface IIdentityModel

{

 public int Id { get; set; }

}

remember that if any part of the activity becomes confusing or you are
encountering strange errors, you may always refer to my final solution for the
activity to see how I intended for you to implement the code.

Depending on how you are tracking your users by Id, we’ll need to respond

accordingly with the type for user id. When working with built-in ASP.Net MVC users,

likely this will be a string to map to a guid. For other systems, you might be using an int

or long type. We don’t have users in this system, so for now we’ll use integers, and we

could update this later as the need arises.

Create another file for IAuditedModel.cs, then write the code to create an interface

called IAuditedModel, and add properties for tracking who created or modified the data

row. We’ll only require the created date for now. This will allow a system process to insert

without tracking a user, and the default modification will not be set since the initial insert

is a create operation, not a modification. All fields other than CreatedDate should be set

as nullable.

public interface IAuditedModel

Chapter 4 Models and the data Context

168

{

 public int? CreatedByUserId { get; set; }

 public DateTime CreatedDate { get; set; }

 public int? LastModifiedUserId { get; set; }

 public DateTime? LastModifiedDate { get; set; }

}

Next, let’s create one final interface to track if an entity is active in the system. Create

a file IActivatableModel.cs and add interface code as follows:

public interface IActivatableModel

{

 public bool IsActive { get; set; }

}

Now that all the interfaces are in place, we could create multiple base classes to

make various entity implementations. Since we don’t do multiple inheritance in C# .Net,

we’ll just create one base class to rule them all.

Create a new file called FullAuditModel.cs, then make the class abstract, and

implement all three of our new interfaces. Also remember, we will never want to add this

class to our DBContext as a DBSet. Keeping the base class as an abstract class should also

prevent future confusion on this point.

public class FullAuditModel : IIdentityModel, IAuditedModel,

IActivatableModel

{

 public int Id { get; set; }

 public int? CreatedByUserId { get; set; }

 public DateTime CreatedDate { get; set; }

 public int? LastModifiedUserId { get; set; }

 public DateTime? LastModifiedDate { get; set; }

 public bool IsActive { get; set; }

}

Chapter 4 Models and the data Context

169

 Step 6: Extend the FullAuditModel base class on Item, add
the migration, and update the database

Using the newly created FullAuditModel class, we’ll implement auditing on the Items

table by extending the audit class. After setting up the inheritance hierarchy, we’ll need

to add another migration and then update the database to complete this activity.

First, extend the FullAuditModel base class on Item. Additionally, don’t forget to

remove the local field for Id on the Item class to avoid creating a second Id column.

public class Item : FullAuditModel

{

 //removed Id Field

 public string Name { get; set; }

 public int Quantity { get; set; }

 //... additional fields here

After reworking the code, the Item class should look like what is shown in Figure 4-8.

Figure 4-8. Extending the FullAuditModel abstract class on Items

Chapter 4 Models and the data Context

170

Alternatively, we could have just implemented all the interfaces directly on the Item

class, or we could have left the IsActive (IActivatableModel) boolean out of auditing,

then implemented the base auditing, and then added the IActivatableModel interface

directly to the Item class.

The way you implement any solution needs to make sense for your system. Here, we’re

taking the shortest route to success, but that may not always be the best way to write the code.

It will always be up to you to make the best decisions for your system as the developer.

Always remember to save your changes and build the project. Then use the PMC to

add a new migration with the command add-migration "UpdatedItem_AddedAuditing".

The resulting migration should look similar to what is shown in Figure 4-9.

Figure 4-9. Adding the migration to implement the auditing fields on the Items table

Review the generated migration and make sure it looks to be adding the correct fields

to your database as expected in the Up method.

Next, update the database using the update-database command in the PMC (see

Figure 4-10).

Chapter 4 Models and the data Context

171

Then review the table one last time to make sure your migration was applied as

expected. In SSMS, find the Items table and right-click to refresh and then review the

columns. The Items table should look like what is shown in Figure 4-11.

Figure 4-11. Reviewing the database after update

Figure 4-10. Applying the database update

Chapter 4 Models and the data Context

172

 Final thoughts about modifying the models in our solution

At this point, we have completed the activity and are prepared to move on to the next

activity. If you are tracking your code in source control, now would be a good time to

commit your changes as an excellent restore point.

Please also note that if we tried to run the code from the console, it will not work

since we are not handling the additional required fields (i.e., CreatedDate). We will be

looking at this in more detail in the next activity.

Another point of note is that everything we have done in this activity could have

easily been done in exactly the same manner in an EF6 code-first approach.

Some of the key takeaways from this activity are

• We can create one migration with many changes, or we can make small

changes and create a migration for each small change along the way.

• It is possible and desirable to use SOLID code patterns when building

the models for our databases.

• The way that you implement your database is up to you, so you must

make the best decisions around architecture.

• Adding the “?” operator to any public property will allow any

normally non-nullable type to be nullable in the database.

• Strings and other nullable types are defaulted to nullable in the

database.

• Using the add-migration and update-database commands will be a

common operation for any developer in a code-first approach.

• It does not matter what order we create properties in the model class.

Each migration will alphabetize the properties for creation.

• Additional properties in a consecutive migration are applied after

original columns – the entire table is not restructured to alphabetize

the order of columns.

• EFCore and EF6 work nearly the same on basic operations for

creating models, generating migrations, and updating the database

from pending migrations.

Chapter 4 Models and the data Context

173

 Activity 0402: Using the ChangeTracker to inject
some automated auditing
In this activity, we are going to set up our database to automate some of the audit trail

for us. As with all things, what we do here could be further modified to suit our needs.

Before we dive into the activity, let’s take a moment to quickly review a few things about

the DBContext object.

 Setting up the context
We’ve already seen a few examples in this book and discussed scenarios where we’ve

covered setting up the context to work against existing or new databases. The main

takeaways from what we’ve already learned include

• The DBContext needs to be able to connect to the database via

a connection string. This is accomplished in the pre-configured

DbContextOptions in EFCore and was passed directly as a string to

the constructor in EF6.

• EFCore gives us a method that allows us to check if the context

options are configured. When they are not, we can perform custom

code to ensure the configuration is built as needed.

• EF6 allowed passing in a prebuilt ObjectContext to the constructor.

 Common critical underlying objects
In addition to the things we’ve already seen, a couple of critical notes about the

DBContext include the fact that in both EF6 and EFCore, the underlying database is

able to be exposed and used as an object. Additionally, both versions of the DBContext

rely heavily on an object to track changes, which can be leveraged through the property

ChangeTracker.

We’ll take a deeper look at accessing the underlying database later in the book

when we cover database objects like stored procedures. For this activity, we’re going to

concentrate on the ChangeTracker.

Chapter 4 Models and the data Context

174

 The ChangeTracker is the lifeblood of our interaction
with the Entity Framework
In a typical workflow, some items are fetched and displayed to the user. After the user

has time to review the objects, they may perform updates on one or more of the objects,

may insert new objects, or may delete objects.

As the user performs actions, EF is working behind the scenes to orchestrate the

changes, while having the ability to undo the changes if something goes wrong. The

changes are generally only in memory, until a point when an explicit call is made to

update the database via the DBContext - SaveChanges method.

At the time that the SaveChanges method is called, the changes that are stored in the

ChangeTracker are applied to the database through the underlying connection to the

database from EF.

 Implementing automated auditing on our entities
By utilizing the ChangeTracker and the knowledge of SaveChanges, we can quickly write

some code to intercept and inject auditing information.

 Step 1: Getting started

The first thing we need to do is make sure we have a working version of the project ready

to go. For simplicity, you could just get the starter files for the project Activity0402_

ImplementingAutomatedAuditing_Starter.

Alternatively, if you’ve completed the activities to this point in the book, you could just

continue with your existing project. The name of the project is ultimately irrelevant, so don’t

spend time renaming your existing project if you are using your own version of the code.

As with prior activities, if you get the starter files, make sure to configure the database

connection string correctly and perform an update-database command to ensure your

version of the project is ready to proceed.

 Step 2: Check out the current situation

Before we proceed, let’s check out what the table is currently doing in the fields we’ve

added in this chapter.

Chapter 4 Models and the data Context

175

Open SSMS and right-click your Items table, and then select the option ➤ Select

top 1000 rows. Depending on how many times you’ve run the program, you should

have some multiple of 5 number of entries. I’m currently at 20 as shown in Figure 4-12.

Figure 4-12. The state of the database with duplicated entries and bad
CreatedTime column data

A careful review of the data in the table reveals that all the data in the fields is set

to the default state. If the field is nullable, the value is null. If the field is an integer or

bit (boolean), the value is 0 or false. The non-nullable CreatedDate field is set to a

default date of 1/1/0001. Likely we didn’t enter that data when Jesus was a baby, so this is

certainly not a valid date for our inventory items.

To get our project back up to speed, we need to do a couple of cleanup items. In the

process, we will look at the power of working with the ChangeTracker object.

 Step 3: Clean up the data

The first thing that we should do is just delete all our stubbed in data. The easiest way to

do this is to just write a script, and we could do that. However, we should examine what it

looks like to remove entities using EF instead of writing scripts.

Chapter 4 Models and the data Context

176

As a caveat, this solution is not ideal for an existing database with production data.

In cases such as that, you would need to leave the data intact and then determine if you

want to update the fields like CreatedDate or just leave them to a default date of some

sort. Alternatively, you could do a migration scheme to back up your data, perform the

updates, and then restore critical application data.

In the main program of the project, after the BuildOptions method and before the

InsertItems method, let’s just add a method for DeleteAllItems:

static void Main(string[] args)

{

 BuildOptions();

 DeleteAllItems();

 InsertItems();

 ListInventory();

}

Then implement the following DeleteAllItems method in the Program class

following the BuildOptions method:

static void DeleteAllItems()

{

 using (var db = new InventoryDbContext(_optionsBuilder.Options))

 {

 var items = db.Items.ToList();

 db.Items.RemoveRange(items);

 db.SaveChanges();

 }

}

After this code is implemented, the Program.cs file should look something like what

is shown in Figure 4-13.

Chapter 4 Models and the data Context

177

Run the program and review your database table to validate that all items are deleted

and then only the first five are added back (see Figure 4-14).

Figure 4-13. Implementing a method to delete all items

Chapter 4 Models and the data Context

178

 Step 4: Intercept save changes to see the change tracker
in action

In every instance where we are making changes to the database, the final step that we

take is to call to the SaveChanges method. As of right now, we are letting the default

operation take place. Let’s change that.

In the InventoryDBContext file in the InventoryDatabaseCore project, add a

method to override SaveChanges as follows:

public override int SaveChanges()

{

 var tracker = ChangeTracker;

 foreach (var entry in tracker.Entries())

 {

 System.Diagnostics.Debug.WriteLine($"{entry.Entity} has state

{entry.State}");

 }

 return base.SaveChanges();

}

Figure 4-14. The database is cleaned up with the new code

Chapter 4 Models and the data Context

179

In my implementation, I placed the method at the bottom of the DBContext, below

the OnConfiguring method, as shown here in Figure 4-15 (OnConfiguring method is

collapsed in this view to save space).

Figure 4-15. Overriding the SaveChanges() method in the DBContext

Place a breakpoint on the diagnostics debug line, and then run the program to validate

this is working as expected. Once you have seen enough iterations to get a grasp on the

ChangeTracker, feel free to remove the breakpoint and run to completion. Figure 4-16

shows the execution of this code, with the expected output values in the Output window.

Chapter 4 Models and the data Context

180

Taking a closer look at the valid states of an entity in the ChangeTracker, we can
leverage any of these states in code. Additionally, our “logging” was fairly vanilla in this
case, as we could also have grabbed the entity Id and other properties from the entry.
Entity if we would have needed to do so.

Diving into the documentation at https://docs.microsoft.com/en-us/dotnet/api/
microsoft.entityframeworkcore.entitystate?view=efcore-3.1, we can see the valid
entity states which we can code against. They are Added, Deleted, Detached, Modified, and
Unchanged.

In our code, with the CreatedDate, we’ll care about the Added state, and with the
LastModifiedDate, we’ll care about Deleted and Modified.

 Step 5: Respond to the entity state in the change tracker
Before we build our automated logging, we need to address an elephant in the room. As of
right now, our system is not tracking users. Therefore, at this time, we don’t have a way to
correctly set the valid user id. If we were working in ASP.Net MVC with default identities,

we could grab the logged in user id from session and just pass it in with the model.

Figure 4-16. The change tracker has a reference to every object that has been
added or deleted in our example

Chapter 4 Models and the data Context

https://docs.microsoft.com/en-us/dotnet/api/microsoft.entityframeworkcore.entitystate?view=efcore-3.1
https://docs.microsoft.com/en-us/dotnet/api/microsoft.entityframeworkcore.entitystate?view=efcore-3.1

181

Additionally, if we want to ensure a user id, we’d likely need to block the default

method from executing and create an overload that contains the user id as a parameter

and then proceed to set the values accordingly and call to the base.SaveChanges method

from the overload.

For this example, let’s start by going back to the program and setting the user id on

the Item model directly. This will simulate what we could do in our code provided we

had some way to get the user id of the logged in user.

Add the following code in the DeleteAllItems method right after getting all of the

items into the items list:

foreach (var item in items)

{

 item.LastModifiedUserId = 1;

}

And add the following code in the InsertItems method as the first statement in the

using block:

foreach (var item in items)

{

 item.LastModifiedUserId = 1;

}

Next, we’ll go back into the DBContext to set our automated auditing. One important

thing we need to do is modify the entity’s CreatedDate or LastModifiedDate property.

This is a bit tricky, because we’ll need to do some type checking first, to make sure the

type has the correct field, and then set the value when it does. Even though we’ve set

a pretty solid example, as of right now, there could still be a rogue entity that someone

created without the auditing fields.

After validating that this is an entity type that has auditing, we can then create a

switch to handle the various entity states and update our entry with a local reference

accordingly.

Implement the following code to check entry entity type and use a switch when we

are set to modify the entry:

public override int SaveChanges()

{

 var tracker = ChangeTracker;

Chapter 4 Models and the data Context

182

 foreach (var entry in tracker.Entries())

 {

 if (entry.Entity is FullAuditModel)

 {

 var referenceEntity = entry.Entity as FullAuditModel;

 switch (entry.State)

 {

 case EntityState.Added:

 referenceEntity.CreatedDate = System.DateTime.Now;

 break;

 case EntityState.Deleted:

 case EntityState.Modified:

 referenceEntity.LastModifiedDate = System.DateTime.Now;

 break;

 default:

 break;

 }

 }

 }

 return base.SaveChanges();

}

When implemented correctly, the code should look as follows in Figure 4-17.

Chapter 4 Models and the data Context

183

Run the application again, and then check the table for results. At this point, we

should be back to only five records and they should all have a valid created date and user

id. Figure 4-18 shows a sample of what the data should look like after a new run with the

latest version of the code.

Figure 4-17. Checking the type, then the state, and responding as needed for
automating the auditing on our entities

Figure 4-18. The results are working as expected with a valid CreatedDate and
CreatdByUserId

Chapter 4 Models and the data Context

184

Although the automated auditing is working, we really don’t have a good validation on

any updated items, and we don’t have the IsActive flag set to true for the inserted items.

 Step 6: Create an update method to prove out our auditing

Return to the Program.cs file, and add a method call to a new method named UpdateItems

in the Main method, and in the Program.cs class, add a new method, UpdateItems, and

then set the current price for all items as well as the last modified user id:

static void UpdateItems()

 {

 using (var db = new InventoryDbContext(_optionsBuilder.

Options))

 {

 var items = db.Items.ToList();

 foreach (var item in items)

 {

 item.LastModifiedUserId = 1;

 item.CurrentOrFinalPrice = 9.99M;

 }

 db.Items.UpdateRange(items);

 db.SaveChanges();

 }

 }

And when implemented, the Program.cs code should look something like what is

shown in Figure 4-19.

Chapter 4 Models and the data Context

185

With this code in place, run the program again, and then view the results in the

database. If everything is working correctly, all entries should have a price and should

also have a created and modified date (see Figure 4-20).

Figure 4-19. Implemented UpdateItems method

Chapter 4 Models and the data Context

186

 Step 7: Update the Insert to set all items as active, add Notes
and Description

To complete the program and simulate a useable experience, let’s set the active flag and

description field. Back in the InsertItems method in the Program.cs file, update the

creation of the items to include the active flag and description.

static void InsertItems()

{

 var items = new List<Item>() {

 new Item() { Name = "Top Gun", IsActive = true, Description="I feel

the need, the need for speed" },

 new Item() { Name = "Batman Begins", IsActive = true

 , Description="You either die the hero or live long

enough to see yourself become the villain"},

 new Item() { Name = "Inception", IsActive = true, Description="You

mustn't be afraid to dream a little bigger" },

 new Item() { Name = "Star Wars: The Empire Strikes Back",

IsActive = true

 , Description="He will join us or die, master"},

 new Item() { Name = "Remember the Titans", IsActive = true,

Description = "Attitude reflects leadership"}

 };

}

Figure 4-21 shows the reworked InsertItems method.

Figure 4-20. The results with auditing in place

Chapter 4 Models and the data Context

187

Run the program and then review the database to validate that all items are active

and have a description, price, and a created and modified date and user id. Figure 4-22

shows the expected output.

Figure 4-22. The final results of the fully audited database context

Figure 4-21. The code from the updated InsertItems method

 Final thoughts about working with the DBContext
We have now completed the automated auditing activity. Here are the key takeaways

from our study of this practical implementation:

• The ChangeTracker object is the lifeblood of the changes against the

database.

• Using the ChangeTracker, we can determine all of the entities that are

tracked and check their state and then respond accordingly.

• There are other methods and properties from the DBContext that we

have not yet explored.

We’ll continue to work with the DBContext and our inventory system for the

remainder of the book. If you are tracking your changes in source control, now would be

a great time to check in your changes.

Chapter 4 Models and the data Context

188

 Final thoughts for this chapter
In this chapter, we’ve taken a deeper look at models and the DbContext. We reviewed

the overall hierarchy for EFCore with the DBContext, DBContextOptions, and

DbContextOptionsBuilder classes. We’ve leveraged all of these to create our connection

string from the appsettings.json file.

We also made note of all of the major properties and methods available to us through

the DBContext and DBContextOptions. While we will not have the need to use a lot of

them in regular work, knowing they are out there and what they are for positions us to be

better at providing the correct solution for each problem in the future.

We’ve also taken an in-depth look at a practical implementation that is positioning

us to write a very good application, as we built out the solution over two new activities.

In our first activity, we started by looking at the Item model and discussing what it

takes to create some new fields in the database. We then had the opportunity to practice

creating a couple of database migrations and applying them.

We then finished up the chapter by looking at overriding the SaveChanges method so

that we could implement automated auditing in our second activity.

There are many other properties and methods available to us that we didn’t work

through in the activities. Some of these we will leverage in the future.

There are a couple of issues with our system as it stands right now that we have

noticed along the way. The first issue is that we are not preventing duplicates from

being entered. Another issue that we have is that we didn’t put any constraints on our

database, which means our string fields are generated at max length. We need to fix this.

In the next chapter, we’ll look at forming a more robust database structure with keys,

constraints, and relationships.

Chapter 4 Models and the data Context

189
© Brian L. Gorman 2020
B. L. Gorman, Practical Entity Framework, https://doi.org/10.1007/978-1-4842-6044-9_5

CHAPTER 5

Constraints, Keys,
and Relationships
In this chapter, we are going to learn about how we can use data annotations to further

constrain our database structures from code. In addition, we’ll look at how we can easily

build out some relationships in our models that translate directly into relationships in

the database.

When we’ve finished with this chapter, we’ll have the ability to correctly create

entities that not only specify type but have further constraints like primary and

secondary keys and limit the length on strings. Additionally, we’ll learn to enforce

required fields and default values and how we can build one-to-many and one-to-one

relationships modeled in code and enforced in EF.

As another reminder, our book from this point is focused on the EFCore and EFvNext

versions of the Entity Framework; however, everything we do at this level can also be

done in the same or a very similar manner in EF6 if you are supporting a legacy EF6

codebase.

 Constraining our data to enhance our solutions
To this point in our book, we’ve simply created properties on our only model – the Item.

We were able to work with this without any problem; however, as you might expect,

working with everything in the default mode is usually not going to be considered the

preferred mode. As such, we need to learn more about structuring our models so that we

can build solutions in a preferred manner.

https://doi.org/10.1007/978-1-4842-6044-9_5#DOI

190

One issue with leaving the properties of Item in a default state is that nothing is

constrained. When working with databases, constraining the data means that we need

to lock it down so that only the appropriate operations can take place. Some examples of

constraints we’ll examine in more detail are as follows:

• Size limitations – for example, minimum and maximum string length

• Value constraints – that is, min, max, and range of acceptable values

on numeric fields

• Default values – such as making sure a bit is always true or false by

default

As we approach each of these constraints, we’ll need to evaluate our systems to

make sure that what we are applying to the database constraints makes sense. It is also

highly likely that as we maintain an existing project, we’ll need to rely on a few of these

constraints to keep from having to do further manipulation to protect existing data.

 Size limitations
In our activity at the end of the chapter, we’ll look at putting a size limitation on string

properties. This is incredibly important, even though we’ve not applied the constraint in

our earlier activities.

One thing you might have noted to this point is that in our original database, all our

string fields have NVARCHAR(MAX)values. While this is definitely a functional solution,

having an unlimited size is both unnecessary and is considered bad practice.

In most cases, your string field will not need to exceed 250, 500, or 1000 characters.

In other instances, you might want 4000 or 8000 characters in a field for a longer input

like a Notes or a Comments field. However, there are very few, if any, reasons to have a

2GB available allocation on the size of a single column.

Doing the math on this, we know there are one billion bytes in a GB, so this is two

billion available bytes. Using NVARCHAR allows for unicode characters, which is useful

if you need to store complex characters such as diacritical marks, Cyrillic, Arabic,

Mandarin, or other similar characters. As an aside, the data type VARCHAR only stores

non-unicode characters. No matter what you are storing, it is highly unlikely you need

enough room to store the text of an entire novel in a single field, let alone also requiring

multiple fields of unlimited length on the same table.

Chapter 5 Constraints, Keys, and relationships

191

Going even one step deeper, we know that unicode characters require two bytes per

character, and non-unicode characters would require only one byte of storage. Assuming

we use NVARCHAR, this means we can store one billion characters in that single

field when allocated as NVARCHAR(MAX). Fortunately, most instances of the database

will grow to match size needs and not just use the full allocation of 2GB from the initial

creation of the column. Even so, do we really want every row to have one or more fields

that can expand to use up to 2GB of storage space? The entire size allotment of the

SQLExpress database is only 2GB, so it would be really unfortunate to use that on one

string column.

Imagine we have the most powerful supercomputer available to mankind, and

it comes with unlimited storage, which therefore takes size constraints off the table

as a reasonable reason to constrain a text field. Would it really be a problem to use

NVARCHAR(MAX) in this case? The answer, of course, is a resounding “yes.”

As database developers, we must consider what happens not just when we store data

but also when we fetch or parse the data in queries. Assuming we have just a few of these

unlimited length columns, and also assuming many of them have grown to very large

lengths (i.e., each one is storing the entire text of a novel for some reason), what happens

when we run a query that is looking for a partial match such as “WHERE field like

'%contains_text%'”?

We can reasonably assume that queries such as those mentioned earlier will quickly

become useless. With potentially unlimited text to search over multiple rows, the

execution time would quickly balloon out of a reasonable response time (imagine how

long it would take and the number of results you would get when searching for the word

“jedi” in a database that stores the entire text of each of the Star Wars books ever written

in plain-text fields).

To limit the length of a string field, we simply add a data annotation called

StringLength, which is applied as an attribute by placing the following code above any

string property in our model:

[StringLength(<size, int>)]

In addition, most annotations provide the ability to add an error message that is the

default error message sent to the UI client when the validation fails. For example:

[StringLength(50, ErrorMessage = "The value of this field is limited to 50

characters")]

Chapter 5 Constraints, Keys, and relationships

192

 Value constraints
In addition to size constraints, another important type of constraint is a limitation on

the expected value of a column. This value could be anything from a limitation on the

numeric value to be in a range, such as minimum and maximum values. This could also

be as simple as making sure that a field is not able to be set to null as its value.

Required fields are created with a simple attribute [Required] to reference the

required data annotation, placed on top of any existing property. This attribute should

be used anytime the database field needs to store a value other than null in the table, for

example, a primary or foreign key.

The data annotation for setting minimum and maximum constraints on the

properties in code is the Range attribute. For example, a range of 0 to max int could be

[Range(0, int.MaxValue)]. In any range annotation, the first number is the minimum

value and the second number is the max value.

 Default values
A final consideration in constraining our data is the default value of an unset column.

This is an extremely important aspect in a mature system, because null values on a row

or loss of data could cause a lot of problems for your existing codebase and users.

As we add a field to any new or existing table, we can set a constraint on the field to

enforce a default value. There are many situations where this approach can save a lot of

trouble.

One critical use of this functionality would be adding a new field with a required

value to an existing table with data. The field could be an easily managed field such as an

IsActive boolean flag, or it could be more complex, such as a number to store the id of

a user preference from a pre-defined list of options that references the available options

stored in another table. In the first case, we can just set everything to active. The second

case will never be as black and white as there are ramifications of every choice. What if

we default to some simple value? What if we add an “unset” element to the options? How

will this work in our current system?

Adding a default value is also accomplished with a data annotation, and looks as

follows:

[DefaultValue(<the_value>)]

Chapter 5 Constraints, Keys, and relationships

193

 Other data annotations
In addition to those we’ve already discussed, there are a couple of other data annotations

to be aware of. In every case, these annotations exist to apply further constraints on what

can be used to store in the database. The main difference with a few of these is that while

the constraint still applies, in some cases the constraint is accomplished at the code

level, rather than the database level.

The StringLength, Range, and DefaultValue attributes each contributed a specific

result to the underlying database structure. But what if you want to only allow an email

address, zip code, phone number, or other special types of data into the field? In these

cases, you can use another annotation, but just remember that these don’t apply at the

database level. For example, limiting to an email address is easily accomplished with the

attribute:

[EmailAddress(ErrorMessage = "Invalid Email Address")]

In this case, our code will prevent inserting and updating if the input does not conform

to a pre-defined email address format. However, the database is still just storing an NVARCHAR

or VARCHAR and does not have any other information about the format of the string.

Other annotations to be aware of are as follows:

• ZipCode – though I’ve had better luck just using a regular expression.

• Regular Expression – format must match your expression for the

model state to be valid.

• Display Name – sets the text to replace the name of the field in the

UI. This is useful if you have a field like FirstName and you want to

display “First Name.”

• Table – it is possible to name the table differently than the name of

the model if so desired (affects database structure).

• Index – applies an index to the column (affects database structure)

(shown in the next section).

• NotMapped – allows a field to exist that is not tracked in the database.

• Compare – allows making sure one field is the same as another (i.e.,

password creation for a user taking a second input to validate) (does

not affect database structure).

Chapter 5 Constraints, Keys, and relationships

194

Further annotations can be found by looking at the datatype enumeration:
https://docs.microsoft.com/en-us/dotnet/api/system.
componentmodel.dataannotations.datatype?view=netcore-3.1.

 Using keys in database tables for unique
and relational results
We’ve already seen how using an Id field has generated a primary key on our Items table.

However, there will be times when we need to do more than just define the primary key.

By default, the field Id is going to implicitly be the primary key. In addition to the

implicit generation, we can explicitly define keys. This is accomplished with the [Key]

annotation as an attribute.

Suppose, however, that we have a join table and we want to create a composite

key on the two ids. In EF6, this could be accomplished a couple of ways using

data annotations. The first way was to use the [Key] attribute with a column order

[Column(Order=n)] (the order groups the keys). The problem with this is you cannot use

the approach if you already have a primary key defined. The second approach was to use

an index annotation as an attribute. This is a great way to do it in EF6 but, unfortunately,

at the time of this writing, is not possible in EFCore. To accomplish this in our final

activity later in this chapter, we’ll have to use the FluentAPI.

Indexes allow us to tell the database what fields are most important on the table, so

that the database can precompile some statistics using those fields. This allows, among

other things, more efficient queries where those fields are critical in searching for results.

Additionally, indexes can be used to make sure column combinations are unique.

Applying an index for any field by itself is as simple as adding the [Index]

annotation attribute to the field. When creating a composite key or non-clustered index,

we can use the [Index] annotation with the order, just like the key with column order

above, and we can also set a third property to make the combination unique with a

unique constraint. For example, consider that we have items that have a group of unique

objects (like movies with actors), and we create a table called “ItemObjects” that stores

various actor/actress names and other common properties we care about across various

objects. We need a many-to-many relationship to put objects and items together, but we

don’t want to create duplicates of the same relationship. In that case, we could use the

following setup in a join table called ItemObjects:

Chapter 5 Constraints, Keys, and relationships

https://docs.microsoft.com/en-us/dotnet/api/system.componentmodel.dataannotations.datatype?view=netcore-3.1
https://docs.microsoft.com/en-us/dotnet/api/system.componentmodel.dataannotations.datatype?view=netcore-3.1

195

[Index("IX_ItemObjectUnique", 1, IsClustered = false, IsUnique = true)]

public int ItemId {get;set;}

[Index("IX_ItemObjectUnique", 2, IsClustered = false, IsUnique = true)]

public int ActorId {get;set;}

Now that we have a good understanding of constraints and keys, we can examine

what it takes to set up relationships between tables in the database.

 Working with relational data
Most of the systems we build for line-of-business applications require some sort of

relational data. Orders need Items and quantity. Addresses require States and/or

Regions and Countries. User preferences require selections. SaaS systems often have

editions and multi-tenancy. While it is possible to implement without an RDBMS (think

NoSQL here), if we’re using Entity Framework, we’re also going to need to work with

related data.

 First-, second-, and third-normal form
A quick dive into relational database theory would help you to understand normalization

and the difference between first-normal form (1NF), second-normal form (2NF), and

third-normal form (3NF). There are also other normalization schemas in fourth-normal

form (4NF) and Boyce-Codd-normal form (BCNF). In most business applications,

the deepest level of normalization that is practical and performant would be 3NF. We

will not touch on 4NF and BCNF in this text, but you may want to study them further

if normalization is important and/or interesting to you. It is important to note that

ORMs violate BCNF and 4NF by default to allow for efficiency gains and practical usage

scenarios.

 First-normal form (1NF)
1NF is the simplest form of normalization. For a database to be considered 1NF, the table

rows must each have a unique key and the rest of the fields in any combination must not

be the same as any other row.

Chapter 5 Constraints, Keys, and relationships

196

Looking at the AdventureWorks database, there is a table Person.Contact which

has a few fields. The fields include Title, FirstName, MiddleName, LastName, Suffix,

EmailAddress, and a few others. The ContactID field is a unique key, and it can be

assumed that although there may be multiple people who have the same title, first name,

middle name, and last name, they likely have different email addresses. Therefore, this

table is a great example of 1NF. Make note, however, that fields like Title and Suffix

may have the same value across many rows (i.e., Mr., Mrs., Dr., Jr., Sr., III, etc.). Figure 5-1

shows the Contact table below:

 Second-normal form (2NF)
2NF requires first that the table is in 1NF, but also prevents having duplicated data that

can be directly related to another column in the table. For example, in AdventureWorks

we have the table HumanResources.Employee, which has a field ManagerId. Suppose

we also had tracked the name of the manager as a field, in addition to tracking the

Figure 5-1. The Person.Contact table from AdventureWorks as an example of first-
normal form (1NF)

Chapter 5 Constraints, Keys, and relationships

197

ManagerId. If the ManagerId ever changed, then the ManagerName would also have

to change. Another example would be a field FullName in that table that is just a

combination of the FirstName and LastName Fields. In that case, if either the first or last

name changes, FullName would also have to change. The following query shows what

the table might look like in violation of 2NF:

 select hre.EmployeeId, Contact.FirstName, Contact.LastName, Contact.

FirstName + ' ' + Contact.LastName as FullName

 , hre.ManagerId, manager.FirstName + ' ' + manager.LastName

ManagerName

 from HumanResources.Employee hre

 inner join Person.Contact Contact on hre.ContactID = Contact.ContactID

 inner join HumanResources.Employee empManager on hre.ManagerID =

empManager.EmployeeID

 inner join Person.Contact manager on manager.ContactID = empManager.

ContactID

 where hre.ManagerID = 21

Figure 5-2 shows the results of executing the query.

Figure 5-2. What the Employee table could look like if it violated second-normal
form (2NF)

Chapter 5 Constraints, Keys, and relationships

198

There is another example in AdventureWorks where violation of 2NF is prevented.

This is more common in our day-to-day work and very much like what we’ll build in our

examples.

The table Person.StateProvince is set up well to be in 2NF. For example, the table

has the primary key of StateProvinceID, and then, instead of repeating data like the

name of the Country or the name of the Territory, those pieces of information are

brought in through foreign-key relationships to the tables Person.CountryRegion and

Sales.SalesTerritory, respectively.

By following this normalization, the Names of the Country and Territory

can be derived, but they are not going to require extra fields being changed in the

StateProvince table if for some reason the country name changes or the territory name

changes. Figure 5-3 highlights an example of 2NF.

 Third-normal form (3NF)
3NF attempts to further break down 2NF into a unique group of columns (i.e., there

are no transitive dependencies in the database) so that there is not any issue with

compositional data becoming corrupted or incomputable due to changes in related

data. For me, this can be a bit confusing, so it might help if you think in terms of auditing

the database.

Figure 5-3. The Person.StateProvince table follows 2NF

Chapter 5 Constraints, Keys, and relationships

199

For example, in AdventureWorks, the Sales.SalesOrderHeader table has a column

SubTotal and a column TaxAmt and then Freight and then TotalDue. Knowing

that TotalDue is calculated from SubTotal, TaxAmt, and Freight, we have a couple

of potential normalization problems, where either this table is in violation of 2NF

(TotalDue changes if SubTotal, Tax, and/or Freight change for some reason) or we

are in violation of 3NF. Since the TotalDue field is computed, the 2NF issues are mostly

eliminated as the value automatically updates.

However, since that TaxAmt field is likely equal to the SubTotal multiplied by the

TaxRate of the shipping address of the StateProvince where the customer lives and

is likely calculated at the time of the order processing, then the problem becomes an

auditing issue without 3NF.

Looking at the Sales.SalesTaxRate table, there is a column TaxRate and a foreign

key to StateProvinceId. What happens if legislation changes in the StateProvince that

raises the TaxRate for that region? In that case, the new TaxRate would be used on future

orders, but the old one would have been used during the original calculation to create

the TaxAmt. Because of this, the original TotalDue amount would appear as a different

amount during an audit due to the change of the TaxRate. A violation of 3NF is shown in

Figure 5-4.

Figure 5-4. A violation of 3NF happens when a field in one table is dependent on
the value of another table, and that other table has a dependency on a third table.
When that third table changes and results in changes to the related table, then the
resulting dependency is also affected

Chapter 5 Constraints, Keys, and relationships

200

If the Sales.SalesOrderHeader table was in proper 3NF, the tax rate would have

been stored at the time of the placement of the order so that the total due column could

be correctly calculated using the subtotal multiplied by the tax rate at the time of the

order.

While understanding the differences between 1NF, 2NF, and 3NF goes well beyond

our text, it is important to be aware of them when creating our entities. With this

awareness, we can now start to create proper, normalized relationships.

 Types of relationships
When working with relational data, we have three types of relationships that we can use.

They are

• One to one

• One to many

• Many to many

All three of the relationships have distinct purposes and are easily built out in

code-first implementations. The way they are built is directly related to how the code is

referenced from one model to another. What’s more, in the many-to-many relationship,

we can either define the join table explicitly, or we can rely on the implicit creation of the

table. In most cases, we’ll use a one-to-many or a many-to-many relationship, even if we

have a one-to-one correlation as the result. However, we should know how a one-to-one

relationship would work in case we ever need to set one up.

 One-to-one relationships
One-to-one relationships are useful when there are two tables that are directly linked to

each other but there is only one row in each table that is joined. The relationship is built

with a primary key in one table and the foreign key in the other table and to be truly one-

to- one should go in both directions (both tables are modified with a foreign key to relate

to the only matching row in the other table).

One-to-one relationships generally provide additional attributes that are created to

further define an object, which, when coupled, create a more detailed implementation of

the object.

Chapter 5 Constraints, Keys, and relationships

201

An example of a one-to-one relationship from AdventureWorks happens between

the tables Sales.Customer and Sales.Individual, where each customer is given an ID

and that ID is used to relate directly to an individual. This allows for a customer to have

an account number as well as some demographics and be related indirectly to a contact

in the system through the individual table. Figure 5-5 shows how the customer and

individual tables form a one-to-one relationship.

 One-to-many relationships
A one-to-many relationship is likely the most common relationship we’ll encounter.

Generally, one-to-many relationships rely on a key object that is then configured or

further defined with options. One-to-many relationships are easily set up as drop-

down lists or option lists when building out objects for making selections in the

UI. For example, in AdventureWorks, Sales.SalesOrderHeader has a one-to-many

relationship to Sales.SalesOrderDetail. For every Sales Order Header, we can have

as many related details as we need to fulfill the order. A simpler example was already

shown in Figure 5-3, where we had the Person.CountryRegion table having a one-to-

many relationship with Person.StateProvinces and the Sales.SalesTerritory table

also had a one-to-many relationship with StatesProvinces. Figure 5-6 illustrates how

SalesOrderHeader to SalesOrderDetail is a one-to-many relationship.

Figure 5-5. The Sales.Customer and Sales.Individual tables are related in a
one- to- one relationship

Chapter 5 Constraints, Keys, and relationships

202

 Many-to-many relationships
Many-to-many relationships are a bit more complex than the other two relationship

types. In any many-to-many relationship, we are required to use a join table in order to

relate entities to each other. This join table allows for a two-way relationship between

the two entities. The first table can join and get all elements from the second table that

match via the grouping in the join table, and the second table can do the same thing in

reverse.

In a straightforward example, we might use many-to-many relationships for things

like user preferences. We could look for any users that have set a single preference value,

or we can look for all the preferences of a single user. This is very useful for correctly

mapping data.

An example from AdventureWorks exists where the Person.Contact table is in a

many-to-many relationship with the Sales.CreditCard table. This means that a single

credit card could be used by multiple contacts, such as a couple of family members

sharing a card, or a single contact could have multiple credit cards associated to them,

such as would be the case for most individuals. We can perform queries in either

direction and we can expect to get valid results. Figure 5-7 displays the many-to-many

relationship between Contact and CreditCard via the ContactCreditCard join table.

Figure 5-6. An example of a one-to-many relationship in the AdventureWorks
database

Chapter 5 Constraints, Keys, and relationships

203

 Some final thoughts about relationships and
normalization
When working with any RDBMS, forming the correct relationships will be critical in

order to effectively work with the data. By knowing the different types of normalization

and relationships available to us, we can make sure to build out the best solutions as

needed.

With the many different forms of normalization, we need to find the balance

between what works and what works with efficiency. As the database developer, it will be

our job to understand the trade-offs that will happen if we want to design a database to

BCNF or 4NF, vs. the problems that might happen if we only use a 1NF strategy.

 Activities for this chapter
The rest of the chapter is devoted to activities. For each of the activities, there will be

a starter file set available. The activities will be designed in a way that you could easily

work all or part of each of the activities. When opening a new starter pack, don’t forget

that you will need to configure the database connection string and run the update-

database command to get the database updated to the state it needs to be at the start of

the activity.

Alternatively, if you have been working along with the text to this point, you could

simply use your files as is, with the only real difference again being the name of the

project.

Figure 5-7. The Contact to CreditCard relationship in AdventureWorks has the
join table ContactCreditCard to form a many-to-many relationship

Chapter 5 Constraints, Keys, and relationships

204

Finally, as with the previous chapter, these activities are focused on the

EFCore/EFvNext. Everything we’ll do in these activities could be done with an EF6

implementation, with the potential of a couple of minor syntax differences.

 Activity 0501: Add length, range, and other
constraints to the Item model
In this activity, we will again dive into the Item class to build out a better database

structure. This will give us the chance to see how to apply some of the common data

annotations in our models to constrain our database.

By the end of the activity, we’ll be able to set the minimum and maximum length of a

string field, understand what it takes to make a field required, be able to set range limits,

and apply default values for columns in our tables.

 Step 1: Get started
To begin, open your solution, or get the files for Activity0501_

ConstrainingTheDatabase_Starter.zip. Once open, make sure your database

connection string is correct and update the database to make sure any pending

migrations are applied.

 Affecting the length of columns
In the next part of this activity, we will limit the length on all the columns currently sized

to NVARCHAR(MAX).

 Step 2: Add length constraints to the strings on the Item class

Before beginning step 2, let’s take a look at the table as it stands in the database. Right

now, the fields Name, Description, and Notes are all NVARCHAR(MAX) length. Figure 5-8

shows the current database table with highlighted fields to illustrate the string length.

Chapter 5 Constraints, Keys, and relationships

205

In the real world, if we already have data in the tables, changing the length is likely

to be a problem, because this could cause a loss of data if you decrease the length of the

field. One way to prevent issues could be to quickly select the data from the table into a

backup table using a query; then once the operation is completed, restore by selecting

the data back into the table from the backup table. A great way to ensure you don’t

have mistakes in such a scenario would be to script this process and ensure it works as

expected.

In our case, we are not concerned with lost data, so we will proceed as such.

Before we add the constraints, let’s set some static constants in place, so we don’t

have to use magic numbers in our code. In the InventoryModels project, create a file

called InventoryModelConstants.cs and add the following code to the file:

 public const int MAX_DESCRIPTION_LENGTH = 250;

 public const int MAX_NAME_LENGTH = 100;

 public const int MAX_NOTES_LENGTH = 2000;

Figure 5-9 shows where the file is placed and what it should look like.

Figure 5-8. All string fields are currently NVARCHAR(MAX) length

Chapter 5 Constraints, Keys, and relationships

206

With the constants in place, open the Item.cs file for the Item model and add the

following code above the Name property:

[StringLength(InventoryModelsConstants.MAX_NAME_LENGTH)]

Adding the StringLength annotation attribute will require adding the using

statement using System.ComponentModel.DataAnnotations to the top of the file.

Repeat the operation to add the following line of code above Description:

[StringLength(InventoryModelsConstants.MAX_DESCRIPTION_LENGTH)]

And add this line of code above Notes:

[StringLength(InventoryModelsConstants.MAX_NOTES_LENGTH, MinimumLength = 10)]

In this example, the minimum length is set to show that it can be done and how it

works. In the real world, the minimum length would likely be left blank. Make a note

that while the maximum length is enforced at the database level in schema, a minimum

length will be enforceable only by the model state. Even after creating this, someone

could come along and do a manual insert to the table with a Notes entry having a

length less than 10. Because I would ultimately remove this limitation, I did not create a

constant to map the minimum length of 10.

Figure 5-9. The Length Constants in the Inventory Models Constants file

Chapter 5 Constraints, Keys, and relationships

207

Figure 5-10 shows the reworked Item model with constraints applied.

 Step 3: Create the migration

With the length fields set, open the PMC and make sure to select the

InventoryDatabaseCore project in the default project drop-down; then create a new

migration with the add-migration "updateItem_enforceStringMaxLength" command.

Upon completion, you should see output similar to what is shown in Figure 5-11.

As we can see, this operation “may result in the loss of data.” Even so, we can still

apply the migration. This warning is to be expected, since we could be truncating strings

if the current table has notes longer than 2000 characters, a Name longer than 100

characters, or a Description longer than 250 characters.

Take a look at the generated migration as shown in Figure 5-12.

Figure 5-10. Enforcing maximum length on the string properties

Figure 5-11. Adding the migration to enforce maximum string length

Chapter 5 Constraints, Keys, and relationships

208

Here we can see the columns will be altered to have a maxLength, but none of

them have any limit on something like a minLength, even though we had specified that

limitation in our annotation.

Figure 5-12. The migration as generated to enforce string maximum lengths

Chapter 5 Constraints, Keys, and relationships

209

 Step 4: Update the database

After reviewing the database migration, go ahead and run the update-database

command to set the lengths as expected. After the command executes, check the Items

table in the database to ensure that the correct lengths are now enforced. Reviewing the

database should look similar to what is shown in Figure 5-13.

 Creating a range on numeric fields
When working with the database, we’ll often have fields that should be further

constrained to limit what values make sense. For example, we should never have a

negative quantity, and we likely want to lock down the price on an item so that it is also

not negative.

Figure 5-13. The database table with maximum length in place for the string
properties

Chapter 5 Constraints, Keys, and relationships

210

 Step 5: Add range values to the quantity and price fields

Once again, we don’t want to use magic numbers, so let’s start with some constants in

the InventoryModelsContants file. Add a constant for minimum and maximum quantity

and price.

public const int MINIMUM_QUANTITY = 0;

public const int MAXIMUM_QUANTITY = 1000;

public const double MINIMUM_PRICE = 0.0;

public const double MAXIMUM_PRICE = 25000.0;

Next, add the constraints in the Item class.

Above the Quantity Field, add the constraint as follows:

[Range(InventoryModelsConstants.MINIMUM_QUANTITY, InventoryModelsConstants.

MAXIMUM_QUANTITY)]

Above the PurchasePrice and CurrentOrFinalPrice, add the following code:

[Range(InventoryModelsConstants.MINIMUM_PRICE, InventoryModelsConstants.

MAXIMUM_PRICE)]

Once again, we’ll see that these range values are not going to generate constraints on

the table, but only constraints that our code would have to respect in the model state.

 Step 6: Add the migration

Make sure to save and build, and then add the migration with the command

add- migration "updateItem_setMinMaxValuesOnQuantityAndPrice".

Generating the migration backs up what we expected – that the constraint from these

data annotations is only on the model state and not enforced in the database. Perhaps to

our surprise, the migration generates with no code in it as shown in Figure 5-14.

Chapter 5 Constraints, Keys, and relationships

211

Before we go rolling the migration back, however, there is something else we can do.

We can apply a check constraint directly in the migration to set our ranges. To do this,

simply add a couple of lines to the Up method to add the constraint using TSQL.

migrationBuilder.Sql(@"IF NOT EXISTS(SELECT *

 FROM INFORMATION_SCHEMA.TABLE_CONSTRAINTS

 WHERE CONSTRAINT_NAME='CK_Items_Quantity_Minimum')

 BEGIN

 ALTER TABLE [dbo].[Items] ADD CONSTRAINT CK_Items_Quantity_Minimum

CHECK (Quantity >= 0)

 END

 IF NOT EXISTS(SELECT *

 FROM INFORMATION_SCHEMA.TABLE_CONSTRAINTS

 WHERE CONSTRAINT_NAME='CK_Items_Quantity_Maximum')

 BEGIN

 ALTER TABLE [dbo].[Items] ADD CONSTRAINT CK_Items_Quantity_Maximum

CHECK (Quantity <= 1000)

 END");

Remember to also include a “rollback” statement to drop the constraint if it exists.

Additionally, note that it is a good practice to ensure that your Down statements and Up

statements are idempotent. In this manner, the migration can be run even if the objects

do or don’t exist, without error.

Figure 5-14. Adding a range constraint generates a blank migration

Chapter 5 Constraints, Keys, and relationships

212

migrationBuilder.Sql(@"IF EXISTS(SELECT *

 FROM INFORMATION_SCHEMA.TABLE_CONSTRAINTS

 WHERE CONSTRAINT_NAME='CK_Items_Quantity_Minimum')

BEGIN

 ALTER TABLE [dbo].[Items] DROP CONSTRAINT CK_Items_Quantity_Minimum

END");

migrationBuilder.Sql(@"IF NOT EXISTS(SELECT *

 FROM INFORMATION_SCHEMA.TABLE_CONSTRAINTS

 WHERE CONSTRAINT_NAME='CK_Items_Quantity_Maximum')

BEGIN

 ALTER TABLE [dbo].[Items] DROP CONSTRAINT CK_Items_Quantity_Maximum

END");

Although it is not shown here, we could repeat these statements for the price

columns to add the check constraints on price values.

Another note is that you can have more than one builder statement in a migration Up

or Down method. For this reason, I split the Down method into two builder statements

to show that this is possible. In effect, this is like using the “GO” statement between

statements in a normal TSQL script, in that the first statement will complete before

the second and consecutive statements start when split in this manner. With only one

builder statement in the Up method, we could not use the GO statement and the entire

statement is run in one transaction. For clarity, the reworked migration with constraint

statements in the Up and Down method is shown in Figure 5-15.

Chapter 5 Constraints, Keys, and relationships

213

 Step 7: Run the migration to add the check constraints to match
the range limitations in our data annotations

After saving and building the project, run the command update-database. Once the

command has completed, right-click and script the Items table for create in SSMS to

view the constraints and field information. The result of scripting the table for create is

shown in Figure 5-16.

Figure 5-15. Multiple or single migration builder statements allow scripts to be
executed against the database using a migration

Chapter 5 Constraints, Keys, and relationships

214

 Ensuring a field is a Key, making fields required, and
setting default values on a column
As we’ve seen, a property called Id on the model acts implicitly as the primary key on

the table. It is possible, however, to explicitly name a database field as a key. In fact, it is

possible to have multiple fields as keys.

 Step 8: Add the [Key] annotation to the Id field

In our code, we’ll keep the Id field as the key, but we’ll explicitly define it. In the

FullAuditedModel.cs class, add the data annotation [Key] above the Id field (bring

in the using statement once the Key annotation is added). Figure 5-17 shows what this

should look like.

Figure 5-16. The check constraints are now in place on the database table schema

Chapter 5 Constraints, Keys, and relationships

215

 Step 9: Making some fields required

In most cases, the ability to make a field required in the database is determined by the

data type. If we want the field to be non-nullable, we use a non-nullable type. If we want

it to be nullable, we use the question mark to indicate a nullable type.

However, some fields could be ambiguous, like strings. To ensure that a field always

has a value when we are working with our data, even if it is a nullable type, we can use

the [Required] data annotation. The required annotation will enforce the field to be

required in the database as well as invalidate the model state if the field is left null (note:

null and empty string are not the same thing!).

Since every item should have a name, let’s add the [Required] annotation attribute

to the Name field in the Item.cs file as shown in Figure 5-18.

Feel free to make other fields required as you see fit.

 Step 10: Adding a default value to a field

We’ve mentioned previously that there is a way to do a soft delete by adding an

IsDeleted boolean value to the table. Once our table has data in it, however, we can

only add fields as nullable, unless we enforce a default value.

Figure 5-17. Setting a field as a Key is easily done with the [Key] annotation

Figure 5-18. Making the Name field required

Chapter 5 Constraints, Keys, and relationships

216

Assuming that we want to make items able to be deleted without losing data, we can

do this in our hierarchy. First, we create another interface in the InventoryModels project

called ISoftDeletable, adding the property IsDeleted as a boolean:

public interface ISoftDeletable

{

 bool IsDeleted { get; set; }

}

We would then want to set the value to false and make the field required to avoid any

confusion (is null deleted or not?).

Implement the interface on the FullAuditModel, and add the following data

annotations:

[Required]

[DefaultValue(false)]

The DefaultValue requires bringing in the using statement: using System.

ComponentModel;

All of this is shown in Figure 5-19.

Figure 5-19. The FullAuditModel with the required annotation and default value
set to false on the IsDeleted field

Chapter 5 Constraints, Keys, and relationships

217

 Step 11: Create the migration

With all of the data formatting in place, let’s create one last migration to lock down our

database and create the changes we’ve requested. Run the command add-migration

"updateItem_addSoftDeleteKeyAndRequiredName". The migration generated should

look similar to what is shown in Figure 5-20.

In our generated migration, we note that the migration will in fact make Name non-

nullable and will also add the IsDeleted attribute as non-nullable with a default value of

false, as we would expect.

 Step 12: Update the database and review

Save everything and build, and then run the update-database command. After running,

open the table for review in SSMS. The table structure with fields, keys, and constraints is

shown in Figure 5-21.

Figure 5-20. The migration generated by the additional constraints for required
fields and default values

Chapter 5 Constraints, Keys, and relationships

218

We can now easily see how our constraints have been applied.

 Key takeaways from activity 0501
This activity gave us a good look at how we can use annotations and migrations to

modify our database. Some of the things we learned were

• Can set the key for the table with the [Key] annotation.

• Making fields required is possible with the [Required] annotation.

Figure 5-21. The Items table after applying constraints from activity 0501

Chapter 5 Constraints, Keys, and relationships

219

• Use [StringLength] to set the maximum length of a string.

• Use [DefaultValue(<value>)] to set the default value of a field.

• Some of the annotations only apply to the model state. In these cases,

we can create a script to run TSQL statements.

• Use [Range] to set the minimum and maximum values of a field in

the model state.

This concludes activity 0501.

 Activity 0502: Setting up relationships
In this activity, we will create a one-to-one relationship and a one-to-many relationship.

We’ll build out the relationships and the data structures in code, but we will not yet be

implementing them in the UI (we will finish the implementations in the coming chapter

on CRUD operations).

By the end of the activity, we’ll be able to define a one-to-one and a one-to-many

relationship in code. We’ll also understand the difference between the two types of

relationships and when it will be appropriate to use either.

 Creating a one-to-many relationship
One of the most common relationships we’ll encounter is the one-to-many relationship.

In this system, we’ll create a table to store Categories, and then we’ll create a one-to-

many relationship so that we can create a few categories and then have many items in

each category.

 Step 1: Get set up

To get set up for this activity, grab the Activity0502_CreatingRelationships_Starter.

zip file, extract and open the project, or feel free to continue working along in your

current project. Once you have the files, make sure to build, set your connection string,

and run the update-database command to ensure the table structure of your database

is set up correctly. As always, please remember that if you get lost, don’t understand

a concept, or need more clarity on what code is being introduced, you can find my

solution in the *_final.zip files.

Chapter 5 Constraints, Keys, and relationships

220

 Step 2: Create the Categories table entity

In the InventoryModels project, add a new entity entitled Category in a file Category.cs.

For the Category, we’ll use a FullAudited Entity and set an additional field for the Name

of the category.

public class Category : FullAuditModel

{

 [StringLength(InventoryModelsConstants.MAX_NAME_LENGTH)]

 public string Name { get; set; }

}

Having this category entity in place, add the DBSet<Category> to the

InventoryDbContext in the InventoryDatabaseCore file:

public DbSet<Category> Categories { get; set; }

This code should be placed directly below the DbSet<Item> Items { get; set; }.

With the context reference in place and the entity setup, we could create the

migration; however, we have yet to create the one-to-many relation, so we should do that

before adding the migration.

 Step 3: Create the one-to-many relationship

To create a relationship in our code-first implementation, we need to reference the types

that are related in the models involved in the relationship.

For this example, each of our Item objects should have one Category. Each of our

categories can have many items. By saying this out loud, we can determine which types

to place in each entity.

Since the Item only has one Category, we create a virtual reference to the single

category. In the Item.cs file, add the lines:

 public virtual Category Category {get; set;}

 public int? CategoryId { get; set; }

We need to make the CategoryId nullable because the database may already have

data at this point. With that data, we won’t be able to set the category id to map until we

have some categories to map to. Therefore, we’ll allow null here to prevent the migration

from failing. If you must make it required, you’ll need to back up your data, delete from

Chapter 5 Constraints, Keys, and relationships

221

the table, and then re-insert with valid category ids after running the migration. Again,

the best way to do backup operations such as this would be to use a script that you write

to ensure you don’t lose any data.

Note that it is also imperative that your Id field name matches exactly to the name of

the virtual item. If these names are not the same, by convention an extra Id field would

automatically be added to line up to your virtual Category field.

if for some reason your Category table has an Id field, but it’s named something
like CategoryId instead of Id, you can explicitly set the name of the id field by
using the data annotation [ForeignKey("CategoryId")].

Additionally, we want to use the virtual keyword on any of our relationships so that

EF can override and/or extend the properties to support lazy loading of the relational

data.

Next, on the Category object, we need to create a list of items. Remember, any

category can have many items – which indicates an ICollection<Item> should be

available, preferably IQueryable and IEnumerable. For that reason, it is very common to

just use a List object. By default, a List is an IEnumerable object. If the List needs to be

queried, you’ll need to do a cast or use the LINQ expression .AsQueryable();. Add the

following to your Category entity:

public virtual List<Item> Items { get; set; } = new List<Item>();

Make sure to set the List to a new list by default to avoid null reference exceptions

on the list in the cases where the related items are not loaded into scope.

For clarity, the current code of the Category class is shown in Figure 5-22.

Figure 5-22. The Category with the list of related items to finish out the one-to-
many relationship

Chapter 5 Constraints, Keys, and relationships

222

 Step 4: Create the migration

Make sure to save and build the solution. Since we have set the entities to relate to one

another and have added Categories to the DBContext, let’s add the migration using

the command add-migration "createCategoriesTableForItemCategories". After

running the command, the output should be similar to what is shown in Figure 5-23.

Figure 5-23. The generated migration for creating Categories with relation to
items

Chapter 5 Constraints, Keys, and relationships

223

As you can see, there is a lot to unpack in this migration. First of all, we get the

column for CategoryId added to the Items table and it is nullable, as we indicated. We

can update these later and/or make it required for insert as we build out our solution.

The next part of the migration sets the table for the Categories. Note that there is

nothing in this second part to indicate a relationship to the Items table. This is to be

expected. Categories are independent of the Items.

The next statement is the index on the CategoryId field in the Items table. This is a

common index we’ll want since we’ll likely sort or group by the CategoryId.

The final statement is the meat of the relationship. Note that the foreign key is

added to Items related to Categories on Category.Id. Also notice the onDelete:

ReferentialAction.Restrict. This action means that if we delete an item, it will not

affect the categories table. However, a category will not be able to be deleted if any items

exist that reference that category by id.

 Step 5: Update the database

Now that we have the migration in place, we are ready to update the database. Run the

command update-database, and then open SSMS and review the tables. The tables

should have a relationship like the one shown in the diagram in Figure 5-24.

Chapter 5 Constraints, Keys, and relationships

224

 Creating a one-to-one relationship
In some instances, we will want to have a one-to-one relationship. For now, we’ll

just use a contrived example to show how to do this. Assume that we want to assign a

hexadecimal web color to each Category and that we want the color to be unique to the

category. We’ll create a simple table to store the Color value and relate it directly to the

Category in a one-to-one relationship.

Figure 5-24. The database now has Categories and the relationship is one-to-
many with Items

Chapter 5 Constraints, Keys, and relationships

225

 Step 6: Create the Color entity

Create another entity in the Inventory Models project entitled CategoryColor by

creating a new file called CategoryColor.cs in the project. This is going to be a simple

entity with the default int Id and ColorValue as a string. Additionally, add a constant for

the StringLength on the ColorValue field to be length 7.

Also, add the maximum color value length to the InventoryModelsContstants file:

public const int MAX_COLORVALUE_LENGTH = 7;

Create the CategoryColor entity and implement IIdentityModel.cs. Add the

ColorValue string property with the max length from the constants file, as well as the

default Id property to implement the IIdentityModel interface.

public class CategoryColor : IIdentityModel

{

 [Key]

 [Required]

 public int Id { get; set; }

 [StringLength(InventoryModelsConstants.MAX_COLORVALUE_LENGTH)]

 public string ColorValue { get; set; }

}

To complete the creation of the entity, add the CategoryColor DBSet in the

InventoryDBContext file: public DbSet<CategoryColor> CategoryColors { get;

set; }, following the DBSet<Category> Categories property. Make sure to add any

using statements as needed so the code will compile as expected.

 Step 7: Create the one-to-one relationship

As with the one-to-many relationship, we still need to create the relationship in code

before creating the migration.Here, we’ll just add the direct one-to-one relationship by

giving the color object one category and the category object one color.

In the CategoryColors entity, add the following code: public virtual Category

Category { get; set; }

Chapter 5 Constraints, Keys, and relationships

226

Then set the Key field to also be a foreign key to the Category (setting this makes it so

that the table is related but does not store the CategoryId in the table):

[Key, ForeignKey("Category")]

[Required]

public int Id { get; set; }

For clarity, review Figure 5-25 to see what the CategoryColor entity model should

look like.

do not miss the ForeignKey constraint on the id field. if you miss adding this, then
the one-to-one relationship will not map and work as expected.

Once that is in place, add the relationship to the Category class as expected:

 public virtual CategoryColor CategoryColor { get; set; }

 public int? CategoryColorId { get; set; }

For further clarity, review Figure 5-26.

Figure 5-25. The CategoryColor entity with reference to Category for one-to-one
relationship

Chapter 5 Constraints, Keys, and relationships

227

 Step 8: Create the migration

Now that the entities are in the context and the relationships are modeled to build

a one-to-one relationship, add the migration with the command add-migration

"createCategoryColorAndRelateToCategory".

Once the migration is completed, it should look as follows in Figure 5-27.

Figure 5-26. The Category entity with reference to the color for one-to-one
relationship

Chapter 5 Constraints, Keys, and relationships

228

Note that the table is created and the entities are related as expected. The main

difference is the onDelete action is set to ReferentialAction.Cascade. This means that

if one is deleted, so is the other. If you think about it, this makes sense as we said every

color needs a category and every category needs a color, so deleting one should delete

the other.

 Step 9: Update the database

With the migration reviewed, save and build, and then run the update-database

command to execute the changes. Once the database migration has completed, open

the tables in SSMS to review. See Figure 5-28, which shows the one-to-one relationship

between Categories and CategoryColors.

Figure 5-27. The generated migration for building the Category to CategoryColor
one-to-one relationship

Chapter 5 Constraints, Keys, and relationships

229

 Key takeaways from activity 0502
In this activity, we learned how to build out a one-to-many relationship and also a one-

to- one relationship. Important things to remember are

• Build out the entities, and then build the relations in the entities

using virtual objects.

• If using a one-to-many, create a List of the related objects in the “one”

table and a direct reference to the “one” object in the “many” object

entity.

• Set both key and foreign key on the Id of a table in a one-to-one

relationship.

• Cascading Delete can prevent delete if the entity has a related

dependency with data.

• Cascading Delete can wipe out an entry if the other part of the

relationship is deleted.

• Naming is done by convention, so use simple Id fields and then

name the related field EntityId to easily map directly to the correct

relational fields.

Figure 5-28. The Categories and CategoryColors one-to-one relationship after
database migrations are applied

Chapter 5 Constraints, Keys, and relationships

230

 Activity 0503: Using a non-clustered unique index
This final activity for this chapter will be dual purposed in nature. First, we will examine

what it takes to build out a many-to-many relationship. After setting up that relationship,

we’ll also see what it takes to create a non-clustered index that is unique on the many-

to- many relationship. The unique constraint is critical to make sure that we don’t have

duplicate records in the database.

 Soft delete or hard delete, either way, just make sure it
works
A good thing to remember about this setup is that if we are using a soft-delete approach,

we’ll need to make sure that any relationships are still intact if we delete and then restore

an object. This could be accomplished by soft deleting the join entry or just leaving it

alone but making sure the data is handled correctly in both directions.

If we use a hard-delete approach, then deleting one of the sides of the relationship

should also delete the entry in the join table via a cascading-delete operation.

By the end of the activity, we’ll be able to define a many-to-many relationship

in code, either implicitly or explicitly. We’ll also understand what it means to set up

a unique constraint as a non-clustered index on our database using the code-first

approach.

 Step 1: Set up and getting started

As with other activities, please find the files Activity0503_

ManyToManyWithUniqueNonClusteredIndex_Starter.zip or use your solution that you

continue to build out as we go. Once you have the solution open, make sure to set any

connection strings, build the project, and run the update-database command to make

sure your database is up to date with no pending migrations.

 Step 2: Add the Genre entity

As we’re tracking items, we likely have some inventory categories like movies and books,

games, or other types of media. One common grouping that might exist across categories

would be Genre. For example, we can have books and movies that are considered to be

“Western” or “Sci-Fi.”

Chapter 5 Constraints, Keys, and relationships

231

To set this up, create a new entity in the InventoryModels project for Genre as a

FullAuditModel. Add a string Name property to describe the Genre, and constrain the

Name field using constraints that already exist. Make sure to add any missing using

statements so the code will compile. We’ll keep the Genre model pretty simple for

purposes of demonstration and brevity.

public class Genre : FullAuditModel

{

 [Required]

 [StringLength(InventoryModelsConstants.MAX_NAME_LENGTH)]

 public string Name { get; set; }

}

 Step 3: Add the migration and update the database

While we can likely create the Genre table, do the relationship mappings, and create the

many-to-many relationship in one migration, I’m going to go ahead and create the table

in a single migration first. The main reason I want to do this is just to keep my migration

simple. The migration with the many-to-many relationship and join table will be a bit

more complex, so I’d like to keep that migration separate from this table creation.

Make sure to add the public DbSet<Genre> Genres { get; set; } statement

to the InventoryDbContext. The entry should follow the DbSet<CategoryColor>

CategoryColors property.

Make sure to save and build the project, and then run the command add-migration

"addGenreTable". Review the generated migration, which should look similar to the

migration as shown in Figure 5-29.

Chapter 5 Constraints, Keys, and relationships

232

After reviewing the migration and making sure it is as expected, run the update-

database command to add the table to the database. Review your database in SSMS to

make sure the Genre table is in place as expected (see Figure 5-30).

Figure 5-29. The migration generated to add the Genre table

Chapter 5 Constraints, Keys, and relationships

233

 Step 4: Add the ItemGenre entity

To make a many-to-many relationship, we’ll use a join table called ItemGenres. This will

track the Item.Id and Genre.Id fields to create a mapping of Items to Genres.

In EF6, if we did not want to explicitly create this table, adding the relationships

directly as lists in each of the respective entities would implicitly create the table. In

EFCore, it has so far been a requirement to directly define this object.

For the ability to both audit the join table and use the joins in code (rather than fully

loading the entities to get join information), along with the fact that the migration likely

won’t work as expected in EFCore or EFvNext without the join object, I recommend just

building out this entity explicitly. In the end, the table will get created either way, so you

may as well take control of it.

Create the ItemGenre entity in the Inventory Models project as a FullAuditModel.

Add two fields for each side of the relationship, an ObjectTypeId and the

List<ObjectType> ObjectTypes, to map (just as we have done previously in a one-to-

many relationship).

Figure 5-30. The Genre table after creation

Chapter 5 Constraints, Keys, and relationships

234

By building this out, it becomes clear that the join table is nothing more than a one-

to- many relationship from the join to each side of the many-to-many relationship:

public class ItemGenre : FullAuditModel

{

 [Required]

 public int ItemId { get; set; }

 public virtual Item Item { get; set; }

 [Required]

 public int GenreId { get; set; }

 public virtual Genre Genre { get; set; }

}

 Step 5: Make sure to reference the join table in the Item
and Genre entities

If we create the migration right now, we won’t get the join table as expected, because we

did not yet set the list of entities to map in each of Item and Genre.

Starting with the Item class, create a public virtual List<ItemGenre> ItemGenres

{ get; set; } = new List<ItemGenre>(); property. Make sure to add the missing

using statement for System.Collections.Generic so the code will compile.

Do the same thing in the Genre class, but name the property as GenreItems. Again,

don’t forget to add any missing using statements.

For clarity, the Genre class is shown in Figure 5-31.

Figure 5-31. The Genre model with the navigation property for GenreItems

Chapter 5 Constraints, Keys, and relationships

235

 Step 6: Create the migration

Even though we have not added the ItemGenre directly to the DBContext, with the

references in place on the left and right side (Item and Genre), the table should be

created now as expected. Additionally, in case you missed it previously, make sure that

you have added the DbSet<Genre> to the DBContext and have already generated the table

for Genre prior to attempting to create this relationship.

After saving and building the solution, run the command add-migration

"createdGenreAndItemGenreRelationship", then review the results. In your migration,

you should see the table ItemGenre being created with the fields as expected, including

an ItemId and GenreId. There should be constraints for the primary key, as well as two

foreign keys set with ReferentialAction.Cascade onDelete. Finally, you should see

two indexes, one for the ItemId field and one for the GenreId field.

After reviewing the migration, run the update-database command to set the table

and relationships, and then review in SSMS. When created correctly, the table should

look as shown in Figure 5-32.

Chapter 5 Constraints, Keys, and relationships

236

And to see it more clearly, a database diagram of the three tables shows the

relationships (see Figure 5-33).

Figure 5-32. The ItemGenre join table is generated to link the Genres and Items in
a many-to-many relationship

Chapter 5 Constraints, Keys, and relationships

237

 Adding a unique, non-clustered index to the ItemGenre
table to make sure that the joins are unique
To keep from having multiple rows in the database that map the same two Item and

Genre entities into a relationship, we’ll create a new index that makes that combination

unique. This is important so that we can make sure that when we perform a soft delete or

restore from delete, we don’t just create duplicate rows.

As mentioned earlier in the chapter, in EF6 the first thing we could do is add the

composite key in the join table. To do this, we could have added the [Key] attribute

to the columns and set an order on the column to group them. This would create a

composite key on the two columns. The problem with this approach is that it requires

the composite key to be a primary key on the table. Already having the Id as the primary

key would eliminate this approach. Just to show what it would have looked like in EF6,

review Figure 5-34.

Figure 5-33. The relationship as shown in a database diagram

Chapter 5 Constraints, Keys, and relationships

238

Another way to do this in EF6 was to use the [Index] annotation.

Using the Index annotation would have looked something like what is shown in

Figure 5-35.

Figure 5-34. In EF6, creating a composite key only works if the created key can be
the table’s primary key

Chapter 5 Constraints, Keys, and relationships

239

 Using the Fluent API
Up to this point, we’ve not used the FluentAPI, so we don’t know a lot about it. That’s

ok. For now, I’ll ask you to trust me and know that we will study the FluentAPI in more

detail later in this book.

 Step 7: Adding the unique index in the Fluent API

Before we add any code, let’s first look at the file InventoryDbContextModelSnapshot.

cs. Make note of the first line: this is a generated file. Looking further into the file, we

see a bunch of FluentAPI-like syntax. However, we know that with this being generated,

adding code here is a terrible idea. We need to do something like what we see for the

relationships that are defined, but we need to do it in a place where we can guarantee

it will always be applied correctly. Some of the code that exists in the generated

InventoryDbContextModelSnapshot file is shown in Figure 5-36. What’s very interesting

about this generated code is this is the place where the code portion of the project lines

up with the migrations. For example, you can easily see that the ItemGenre relationships

are clearly defined in this file.

Figure 5-35. Using the Index annotation is only available in EF6, not in EFCore

Chapter 5 Constraints, Keys, and relationships

240

Open the InventoryDbContext file and add the following code anywhere in the

file. I chose to put the code after the constructors. This code allows us to override the

OnModelCreating method.

protected override void OnModelCreating(ModelBuilder modelBuilder)

{

 ///code here...

}

Next, update the inner text for the method to add the non-clustered index for

ItemGenre relationships with the following code:

//unique, non-clustered index for ItemGenre relationships

modelBuilder.Entity<ItemGenre>()

 .HasIndex(ig => new { ig.ItemId, ig.GenreId })

 .IsUnique()

 .IsClustered(false);

Figure 5-36. A simple look at the generated model snapshot shows how some
relationships can be formed in a Fluent-API like syntax

Chapter 5 Constraints, Keys, and relationships

241

Figure 5-37. The OnModelCreating method is used to implement custom
FluentAPI declarations for further defining database schema

For clarity, the new code is shown in its entirety in Figure 5-37.

 Step 8: Add the migration

Make sure to save and build the solution, and then run the command add-migration

"createUniqueNonClusteredIndexForItemGenre". Review the migration as shown in

Figure 5-38 to see what is being applied.

Figure 5-38. Adding the unique, non-clustered index

Chapter 5 Constraints, Keys, and relationships

242

 Step 9: Update the database and review the table

Now that we’ve seen the migration and can see how the index is added, we can run the

command update-database. Once this is completed, let’s review our table definition in

SSMS. As shown in Figure 5-39, during the review of our table indexes, we can easily see

the index is now created as expected.

 Final thoughts on activity 0503

In this activity, we saw what it takes to create a many-to-many relationship using code-

first migrations, and then we took our first look at using the FluentAPI to generate a

unique, non-clustered index. Some of the key takeaways were

• The many-to-many relationship uses a join table that consists of two

one-to-many relationships.

Figure 5-39. Reviewing the table reveals the created index is in place

Chapter 5 Constraints, Keys, and relationships

243

• We don’t want to add our join tables to the DBContext. Instead, we

should force developers to work from one of the main data entities.

• EF6 had a nice data annotation for creating an index. EFCore requires

using the FluentAPI.

• Creating a composite key is possible (two or more fields to create a

unique identifier); however, the composite key must be the table’s

primary key in order to be created.

 Final thoughts for this chapter
In this chapter, we’ve learned how to build out a better database schema in a code-first

database approach. Specifically, we’ve learned about

• Limiting the length of fields

• Setting constraints on the values of the fields

• Setting default values on fields

• Creating one-to-one, one-to-many, and many-to-many relationships

• Adding unique indexes using the FluentAPI

At this point, we are in a really good place to start generating some solid database

architectures and implementations. As the developer, it will be our job to know about

these options that exist and how to work with them correctly to achieve the best overall

results with our databases.

In the next chapter, we’ll take a deeper dive into working with real data in this system

we’re building, so that we’ll not only have the tools to architect a solid solution but

the skills to develop against the data using common Create, Read, Update, and Delete

(CRUD) actions.

Chapter 5 Constraints, Keys, and relationships

245
© Brian L. Gorman 2020
B. L. Gorman, Practical Entity Framework, https://doi.org/10.1007/978-1-4842-6044-9_6

CHAPTER 6

Data Access (Create,
Read, Update, Delete)
In this chapter, we are going to learn about the basic tenets of data access using Entity

Framework. By the end of the chapter, we’ll have a good understanding of how to

interact successfully with the data in our database.

 CRUD
The common actions that most applications need are lovingly referred to as CRUD,

which stands for Create, Read, Update, and Delete. Working with EF to perform CRUD

operations is generally easy and efficient, but also requires at least a basic understanding

of the Language Integrated Query (LINQ) syntax.

 LINQ
You may already have some understanding of LINQ. You may even be an expert with

LINQ. Perhaps you consider yourself fairly new to LINQ, or you have always felt that it is

confusing. Luckily for all of us, there are tools we can use to generate some of the basic

LINQ we would need when just getting started. Additionally, we will cover LINQ in a bit

more detail later in this book.

 Basic Interactions
In order to work against the database, we need to understand a few of the common

commands that we’ll rely upon when working against the database.

https://doi.org/10.1007/978-1-4842-6044-9_6#DOI

246

 Leverage the DbSet<T> objects
As we’ve built out our database library, we added properties on a few of our entities to

the InventoryDbContext (context) using code such as public DbSet<Item> Items {

get; set; }. By adding these properties, we can now leverage the power of EF and work

against these entity sets directly.

For example, if we want to add a new Item, we can build a new Item object in code

and then use the inventory context to add the item with code such as

using (var db = new InventoryDbContext(_optionsBuilder.Options))

 {

 db.Items.Add(item);

 db.SaveChanges();

 }

Here we’ve leveraged the context, specified the Items property, and used the

extension Add to add a new item. We could leverage the commands Remove or Update as

well.

 Common commands
When getting started with EF, you will want to have a few commands in your toolbox.

As you continue to learn and as we build on our skills through this text, we’ll cover more

than just some of these commands. For now, there are a few common commands we

need to know.

A comprehensive list of commands will always be available on the official

documentation site, which can be found here: https://docs.microsoft.com/en-us/

dotnet/api/microsoft.entityframeworkcore.dbset-1?view=efcore-3.1.

An additional consideration is that there are some asynchronous methods available.

When working with the methods that change the datastore, we should leverage

the synchronous versions, such as Add, Update, and Remove. We then can use the

asynchronous version of the save method – SaveChangesAsync. For queries where we are

retrieving data, the async methods are readily available.

Chapter 6 Data aCCess (Create, reaD, UpDate, Delete)

https://docs.microsoft.com/en-us/dotnet/api/microsoft.entityframeworkcore.dbset-1?view=efcore-3.1
https://docs.microsoft.com/en-us/dotnet/api/microsoft.entityframeworkcore.dbset-1?view=efcore-3.1

247

For our immediate understanding, Table 6-1 examines a few of the common

commands. When looking at the code in Table 6-1 that follows, all commands would

be run as shown previously, with the variable reference to the DbContext, and then the

specific property to leverage the entity, followed by the command text. Examples from

the work we’ve done so far include entities such as Item, Genre, and Category.

As previously mentioned, there are other methods available to us, as well as more

preferred ways to work with LINQ to get query results. We will see this in action in our

practical activities that follow.

 Activity 0601: Quick CRUD with scaffolded
controllers
To this point in the text, we’ve stayed away from picking a UI implementation and have

only worked with console applications.

However, to get started with our practical CRUD activities, I want to let the system

do the work for us. For this reason, we’re going to leverage a very simple ASP.Net MVC

implementation with scaffolded views and controllers.

Our main point here will be the code that is generated in the controllers, but we’ll

also see how quickly we can spin up a basic web application in .Net MVC Core.

Table 6-1. Common commands for CRUD operations against our datastore

Command Text Example Use

Add db.Items.Add(item) add a new Item (or other entity) to the database

table

Find db.Genres.Find(2) Find a Genre (or other entity) by the Id (when the

Id is a key)

Remove db.Categories.

Remove(aCategory)

remove a Category (or other entity) by passing

a tracked entity

Update db.Items.

Update(item)

Update a tracked Item (or other entity) by

passing a tracked entity with modified values

Chapter 6 Data aCCess (Create, reaD, UpDate, Delete)

248

 Step 1: Set up
For this activity, we are going to start from scratch and import the code we’ve already

written. This will be a bit painful, so if you want to skip to step 2, get the starter pack

Activity0601_QuickCrud_Web_Starter.zip files, extract the files, build, update

the database, and run the project (will spin up a website locally). If you run into an

issue with the database, change the connection string to point to your local database

implementation, but use a different database than you’ve been using in previous

chapters. If you want to see how this works for yourself, then complete the rest of step 1

that follows.

Open Visual Studio and create a new project. Select the C# ASP.Net Core Web

Application template (see Figure 6-1).

Name the application something like Activity0601_QuickCrud_Web and save it in a

place that logically makes sense to you.

Figure 6-1. Creating a new Core Web Application

Chapter 6 Data aCCess (Create, reaD, UpDate, Delete)

249

When prompted, select Web Application (Model-View-Controller). Keep

Configure for HTTPS selected, and, most importantly, change the authentication using

the very small Change link on the top right under authentication. Review Figure 6-2 for

more information.

Select the option to use Individual User Accounts, and track them in-app. This

will insert an ApplicationDBContext and user account management using the ASP.

Net Identity schemas. If you forget to do this step, your project will build, but it won’t

have any default database setup. You can add the database later or you can build the

project without user accounts later as well if you forget, but it will likely be easier to just

generate a new project for our learning purposes. Review Figure 6-3 to see the Change

Authentication dialog with the Individual User Accounts option selected.

Figure 6-2. Creating the project, select the Change Authentication link

Chapter 6 Data aCCess (Create, reaD, UpDate, Delete)

250

After selecting the authentication and hitting OK and then Create, your project will

be created. Note that there is a folder for Models and a folder for Data already in the

project.

In the Data folder, we get the ApplicationDbContext and the migrations for the

project, which include the initial migration to build out the user accounts (see Figure 6- 4).

Note that the ApplicationDbContext is implementing the IdentityDbContext (this

is where all the Asp.Net Identity models and tables come from). Without any work of our

own, we’ll have full authentication capability baked into the application.

Figure 6-3. Selecting the Individual User Accounts with the in-app storage option

Figure 6-4. The generated ApplicationDbContext

Chapter 6 Data aCCess (Create, reaD, UpDate, Delete)

251

If you take time to examine the initial migration, you’ll see all the tables for

the AspNet users and roles are being built in that migration. Also note that the

DBContextOptions are injected into the ApplicationDbContext.

Looking at the first migration, we see the tables for the ASP.Net Identity schema

setup, as shown in Figure 6-5.

In .Net Core, the settings for an ASP.Net Website are stored in the appsettings.

json file. If we look closely at the settings file, we see the database connection string

is configured here. By default, it’s set up to use the local database and just points to a

filename. For our purposes, we can just leave this as is. If for some reason you don’t have

a local database (localdb) installed, you could set your connection string to map to

SQLExpress or SQLDeveloper edition. The database connection in the appsettings.json

file is shown in Figure 6-6.

Figure 6-5. The initial migration as generated by the Asp.Net identity schemas

Chapter 6 Data aCCess (Create, reaD, UpDate, Delete)

252

Next, take a quick look at the Startup.cs file. A critical piece of the action happens in

this file. In the ConfigureServices method, the services add the DBContext into scope.

This is ultimately how the ASP.Net Core Web Application uses dependency injection for

the DBContext object (see Figure 6-7).

There is much more going on here with this application, and it is by no means

production-ready. However, these are the critical moving parts we need to know about

for working with this code for the rest of this activity.

Figure 6-7. The startup.cs file in the web application uses dependency injection to
register the ApplicationDbContext for use in the web application controllers

Figure 6-6. The database connection string is in the appsettings.json file

Chapter 6 Data aCCess (Create, reaD, UpDate, Delete)

253

I also considered covering an approach of not using the context or, instead, bringing

in our context, moving the models out to their own project, and making the application

more professional, but decided to just keep this activity as a stand-alone activity for the

most part with a basic web implementation. This will allow us to proceed quickly to the

meat of the activity.

At the end of the book in Chapter 14, there is a section on using multiple

database contexts in the same application. If you’re interested in bringing in the

InventoryDbContext and its associated models, then you should look into that section.

We are now ready to work with this web application to see some quick CRUD

operations in action.

 Step 2: Build the application, update the database, run
the web application
Before we can do anything else, we need to make sure the application is working and

that our connection string is going to work as generated. Build the application, and then

update the database using the command update-database in the PMC (review Figure 6-8

for clarity).

Once the migration has been applied, run the web application. If everything is

working as expected, you should have no problem signing up for a new account and

registering with the application (see Figure 6-9).

Figure 6-8. Updating the database to implement the identity schema initial
migration

Chapter 6 Data aCCess (Create, reaD, UpDate, Delete)

254

After registering, make sure to confirm your account. If you don’t do this, you’ll

need to go to the database and review the users table, find your user id, and update the

value of EmailConfirmed to 1. Figure 6-10 highlights the link to click to avoid having to

update the EmailConfirmed field manually.

After confirming, log in and your email should be shown at the top right of the

application. Figure 6-11 shows the view for a logged in user.

Figure 6-10. It is imperative to confirm your account to avoid having to manually
update the database to be able to log into your account

Figure 6-11. Registration is confirmed and user is logged in

Figure 6-9. Registering with the local application

Chapter 6 Data aCCess (Create, reaD, UpDate, Delete)

255

 Step 3: Review the database
Optionally, we can check out our database to ensure that it has the tables and users as

we would expect. To do this, just open the Server Explorer in Visual Studio, which is

located under the View menu. The server explorer can also be opened using the key-

chord combination of Ctrl+Alt+S (see Figure 6-12).

In the server explorer, right-click Data Connections, and select Add Connection.

When the Data Source Chooser comes up, select Microsoft SQL Server. Make sure to

uncheck the option for Always use this selection in case you might have a reason to

use a different approach in the future (see Figure 6-13).

Figure 6-12. Opening the server explorer

Figure 6-13. Adding the server connection to the local db file

Chapter 6 Data aCCess (Create, reaD, UpDate, Delete)

256

In the Add Connection dialog, in the Server Name box, place the name of your SQL

Server that you are using based on your appsettings connection string. For example, if

you changed nothing, the server is likely (localdb)\mssqllocaldb.

Remember to take out the extra slash character when trying to connect, as there are

likely two slashes in your appsettings file!

Select the database name from the drop-down. Note that if you aren’t connected

correctly to the server in the Server Name box, then you will not see any databases here,

so you’d need to go back and input the correct server name first. Figure 6-14 shows the

server and database connection for my local database file.

Figure 6-14. Connecting to the database in the Server Explorer

Chapter 6 Data aCCess (Create, reaD, UpDate, Delete)

257

Use the Test Connection button to validate that you are able to connect, and then

hit the OK button to set the database server connection.

Once you are connected correctly, open the server in the Data Connections portion

of the Server Explorer to validate the tables are there. You can also view data in the

AspNetUsers table to make sure your login user info is stored as you would expect (see

Figure 6-15).

 Step 4: Create a model, then a migration
Now that we are able to work with our data and have ensured everything is set up as

expected, we can create a simple model and then leverage the scaffolding to see some

quick CRUD operations.

Let’s create a simple Item model with a Category as per some of the previous work

we’ve done (without the auditing, Genres, and other features of the models we’ve made

in previous activities). Add the two files, Item and Category, to the Models folder in the

web application. Bring similar code as from our previous work into play to give the Item

and Categories a relationship.

Figure 6-15. Viewing the database in the Server Explorer

Chapter 6 Data aCCess (Create, reaD, UpDate, Delete)

258

An example of what the item class could look like this:

public class Item

{

 [Key]

 [Required]

 public int Id { get; set; }

 [StringLength(50)]

 public string Name { get; set; }

 public virtual int CategoryId { get; set; }

 public virtual Category Category { get; set; }

}

The Category class could look as follows:

public class Category

{

 [Key]

 [Required]

 public int Id { get; set; }

 [StringLength(50)]

 public string Name { get; set; }

 public virtual List<Item> Items { get; set; } = new List<Item>();

}

Once the two classes are created and the relationship is formed, add the two classes

to the ApplicationDbContext as public DbSet properties:

public class ApplicationDbContext : IdentityDbContext

{

 public DbSet<Item> Items { get; set; }

 public DbSet<Category> Categories { get; set; }

 public ApplicationDbContext(DbContextOptions<ApplicationDbContext>

options)

Chapter 6 Data aCCess (Create, reaD, UpDate, Delete)

259

 : base(options)

 {

 }

}

Before moving on, one thing I didn’t do in the previous code is make the Name as a

[Required] field. In most cases, that should likely have been required. Feel free to add a

[Required] annotation attribute to each Name field in each class if you so desire.

Next, build the project, and then run the command add-migration createTables_

ItemsAndCategories in the PMC, which will generate the migration, which should look

similar to the one shown in Figure 6-16.

Figure 6-16. The migration for creating the tables for Items and Categories in the
web application

Chapter 6 Data aCCess (Create, reaD, UpDate, Delete)

260

Finally, run the command update-database to apply the changes, and then examine the

tables in the Server Explorer to make sure they were created correctly (see Figure 6-17).

 Step 5: Scaffold the controller
In the ASP.Net MVC web application, we can easily scaffold our controllers once our

database is set up correctly. To do this, we just perform a couple of quick actions, and

this will give us the views that we need on top of the actions and routes to run a simple

CRUD-enabled website. Again, this is not production-ready, but we can leverage this to

see some CRUD actions without doing a lot of LINQ work ourselves.

Figure 6-17. Updating and examining the database

Chapter 6 Data aCCess (Create, reaD, UpDate, Delete)

261

Right-click the Controllers folder, and then select Add ➤ Controller (review

Figure 6-18).

In the next dialog, select MVC Controller with Views, using Entity Framework,

and then select Add. The Add New Scaffolded item dialog is shown in Figure 6-19.

Figure 6-18. Adding a new Controller

Chapter 6 Data aCCess (Create, reaD, UpDate, Delete)

262

The way things work in the MVC .Net web application is by convention over

configuration. Therefore, we want to name the file ItemsController, which will create

views for the CRUD operations around the Item entity, as well as the route for /Items/

Index. This route will be the default listing route for all items in the database. Also, the

/Index route is implied, so just using https://localhost:port/Items will get you to the

Items listing page.

In the Add MVC Controller with views, using Entity Framework dialog, select

the Item model class and the ApplicationDbContext data context class. Leave the

options checked for Generate views, Reference script libraries, and Use a layout

page. Note the name of the controller is suggested to be ItemsController, as we would

expect. Once this form is set correctly, hit the Add button to begin the process. Review

Figure 6-20 for more information.

Figure 6-19. The Add New Scaffolded Item dialog allows us to select the
generation tools to use for creating the Controller and associated Views

Chapter 6 Data aCCess (Create, reaD, UpDate, Delete)

263

Once the ItemsController is generated, we can review it to see everything in action

as is shown in Figure 6-21.

Figure 6-20. Scaffolding the Controller and Views for the web application

Chapter 6 Data aCCess (Create, reaD, UpDate, Delete)

264

Review the controller and make a quick note that the controller is receiving the

injected ApplicationDbContext, which will be used to perform the CRUD operations.

 Step 6: Review the controller – Read
In the next few steps, we’re going to review the generated CRUD operations. We will do

them in the order of Read, Create, Update, Delete, as that is the order that they will

appear in the controller.

Review the default Index method, which gets all items for display. Here, we see a

simple LINQ query:

public async Task<IActionResult> Index()

{

 var applicationDbContext = _context.Items.Include(i => i.Category);

 return View(await applicationDbContext.ToListAsync());

}

Note the query goes to the context (_context), gets all items, and then does an

Include operation to get the categories for the items. The next statement then executes

the query with the ToListAsync method and passes the results as a list to the view.

Figure 6-21. The Items controller is generated

Chapter 6 Data aCCess (Create, reaD, UpDate, Delete)

265

A couple of important things are happening here that we need to be aware of. The

first point of note is that the Include command allows the context to get all Items and

then gives the ability to load their associated Category information. This is important for

displaying and choosing the associated category for an item, and this is how we will use

LINQ to retrieve relationships.

The second important note here is that the query is not executed until the await

operation with the ToListAsync statement. This is critical for the optimal performance of

EF. By waiting to perform the execution, the result set can be optimized. If, for example,

we wanted to order by the Name property, we should do that in the query, before calling

the ToListAsync() method, which would look like this:

var applicationDbContext = _context.Items

 .OrderBy(x => x.Name)

 .Include(i => i.Category);

return View(await applicationDbContext.ToListAsync());

There is another read operation, which is used to show one individual result. In

the first query, we had selected all items to a list. In the Details method, there is a

parameter for the specific Id, and then it returns just that matching Item joined to

the appropriate Category. This is done with the same query as earlier, but replaces

ToListAsync with another LINQ statement: FirstOrDefaultAsync.

var item = await _context.Items

 .Include(i => i.Category)

 .FirstOrDefaultAsync(m => m.Id == id);

 Step 7: Review the controller – Create
For the rest of the controller, we’ll often see two methods working in tandem. The first

method is going to retrieve some results to render to the page for viewing and taking

input from the user, and the second method is the POST method that allows the Web to

post back the user input for creating, editing, or deleting the Item, as defined by the user.

For the first Create method, the ApplicationDBContext Categories are returned

to be placed into a SelectList, which allows the user to choose which Category to

associate to the Item.

ViewData["CategoryId"] = new SelectList(_context.Categories, "Id", "Id");

Chapter 6 Data aCCess (Create, reaD, UpDate, Delete)

266

The second Create method takes the passed in information and checks the

ModelState to make sure it is in a valid state (i.e., lengths as expected, required fields,

other Model constraints). Once it is valid, the data context adds the new Item to the

database. If there is an error, the data is sent back to the web page for the user to correct

any issues.

Important notes from this operation are the Add method against the context and the

SaveChangesAsync method for saving the changes once the context has been modified:

_context.Add(item);

await _context.SaveChangesAsync();

return RedirectToAction(nameof(Index));

 Step 8: Review the controller – Update
With items that already exist in the database, we can perform the “U” of the CRUD

operation. In the controller, the name of the Update method is Edit. As with the Create

method, we have an initial GET on the first Edit method that returns the matching result

by Id to the page for the user to update the values and then allows the POST on a second

Edit method to update the modified values in the database.

The initial GET finds the item to edit by Id and also populates the select list for

Categories (if you are a web programmer, you likely see that this call could easily be

improved by making only one call to get Categories and/or caching the categories):

var item = await _context.Items.FindAsync(id);

if (item == null)

{

 return NotFound();

}

The POST method allows the user to change properties and then to send those

changes back for update. As with Create, the first thing that is checked is the state of

the model. The page won’t let you continue if you have missing required fields or issues

with length on a field as defined in the model’s data annotations or the Fluent API

configuration of the model in the context. Once the state is validated, the database can

perform the appropriate update.

Chapter 6 Data aCCess (Create, reaD, UpDate, Delete)

267

Another nice feature in this method is that the update option automatically handles

the situation where concurrency exceptions are encountered. In this case, if another user

deletes the entity, the page lets you know by showing a NotFound Exception for the entity.

_context.Update(item);

await _context.SaveChangesAsync();

 Step 9: Review the Controller – Delete
Our final CRUD action is the Delete action. Here, like the other methods in the controller,

there is a GET method that allows us to get the correct item for review for delete and

then a second POST method to delete the Item from the database. The first method is

the same as we’ve seen on Edit, getting the item with information about the specifics to

display to the user for confirmation of the delete operation.

The second method takes in the Id and then finds the Item in the _context again to

get the object with tracking (without tracking, performing the delete won’t accomplish

anything). When a match is found and has been retrieved with tracking to that object,

the Remove method is called to set the model state to Deleted.

[HttpPost, ActionName("Delete")]

[ValidateAntiForgeryToken]

public async Task<IActionResult> DeleteConfirmed(int id)

{

 var item = await _context.Items.FindAsync(id);

 _context.Items.Remove(item);

 await _context.SaveChangesAsync();

 return RedirectToAction(nameof(Index));

}

 Step 10: Set a couple of categories, then run the
application
To see all of this in action, we first need a couple of categories. We could scaffold out the

categories controller and then use that to add categories. For simplicity and time, just

add a couple of categories in the database directly, for example, Movies and Books. Also

note that there are currently no items in the database.

Chapter 6 Data aCCess (Create, reaD, UpDate, Delete)

268

Using the Server Explorer, select Show Table Data. Then manually add the two

categories as shown in Figure 6-22.

With the categories added, we can run the application to review all of this in action.

Please note, as stated a few times earlier, this is not intended to be a production-

ready application. We would never want to use Ids as a display on the categories for

selection. For instance, we would change out the Id to Name in the controller to show

the actual Name of the Category for user selection. We would also add authorization and

navigation to the website, among many other things, to improve the user experience of

this application.

To view the items, simply type the name of the controller in the browser route:

https://localhost:port/Items (just add /Items to the localhost:port that is

already running on your machine)

In Figure 6-23, I’ve added a couple of Items into my database using the web browser

and the scaffolded ItemsController and views.

Figure 6-22. Adding a couple of categories

Figure 6-23. Viewing the Items in the web browser

Chapter 6 Data aCCess (Create, reaD, UpDate, Delete)

269

Try to perform each CRUD operation on the various Item views. Use the Create New

link to pull up the create form and the Edit, Details, and Delete to work through the

rest of the CRUD operations.

 Key takeaways from activity 0602
In this activity, we allowed the .Net Web application template to scaffold controllers

around one of our ApplicationDBContext entities. By doing this, we were able to see

some of the more critical LINQ operations that are needed to correctly perform CRUD

operations against the database.

• Use Add to create a new entity.

• Use Update to edit the entity property values.

• Use Remove to delete the entity.

• Use Find to locate an entity.

• Use Include to join to other tables.

• Use FirstOrDefault to get a specific entity by Id or another property.

• The model state allows us to determine if there are any errors on any

of the properties in the model as defined in the data annotations or

Fluent API.

 Chapter summary
In this chapter, we quickly discussed the idea of creating a CRUD application and how

we could interact with the database for each operation. We also looked at the primary

methods we’ll want to be in command of to build database-enabled applications.

In our activity, we took the time to spin up a website, where we scaffolded out a

controller and allowed the system to generate the main LINQ queries that we would

need. This allowed us to quickly see how working with EF to create a robust solution is

possible, even with a very basic understanding of LINQ.

In the next chapter, we’re going to learn about how we can build code around some

of the major pieces of SQL Server, including Stored Procedures, Views, and Functions.

Chapter 6 Data aCCess (Create, reaD, UpDate, Delete)

271
© Brian L. Gorman 2020
B. L. Gorman, Practical Entity Framework, https://doi.org/10.1007/978-1-4842-6044-9_7

CHAPTER 7

Stored Procedures, Views,
and Functions
In this chapter, we are going to look into ways to leverage the built-in programmable

features of SQL Server that allow for maximum performance and efficiency.

We’ve already seen that we can easily create tables in a code-first approach with

Entity Framework. However, in real-world applications, we are going to need to start

building out more robust database solutions. By the end of this chapter, we will have

a working understanding of what it takes to leverage database objects like stored

procedures, views, and functions. We’ll also know how to set up our code and migrations

to create and manage versions of these objects. Along the way, we’ll also learn more

about the Fluent API and how we can leverage it to further define entities and data in our

solutions.

 Understanding stored procedures, views,
and functions
Before we dive into working with these database objects, we should make sure that

we are fully aware of what they are and why we would use them. Additionally, we’ll be

working with datasets that don’t necessarily map to a tracked database object. For that

reason, we need to learn a couple of new techniques when working with our database

context and the model builder.

In the course of the activities at the end of the chapter, we’ll see what it takes to add a

query set into the database context so that we can get the results we are expecting when

working with procedures, functions, and views. First, let’s take a brief moment to discuss

stored procedures, functions, and views.

https://doi.org/10.1007/978-1-4842-6044-9_7#DOI

272

 Stored procedures
As developers, we can easily write code in C# or VB.Net that does repetitive operations

like looping, making calculations, or mutating data. However, it is entirely possible to

write code in Microsoft SQL using the T-SQL syntax.

Writing some code on the server has a number of advantages, with the main

advantage being efficiency. When we create a stored procedure, we are essentially

writing a functional unit of code that can take parameters and perform queries and

data manipulation on the server. By using the server to run this prepared code, the

server itself can create and store execution plans, thereby speeding up the operation

in subsequent runs. An additional benefit is that using the stored procedure allows for

returning the manipulated data directly, rather than returning a large set of data and

then using C# or VB.Net code to further process the data in memory.

We can easily create a new procedure with the syntax CREATE OR ALTER PROCEDURE

<name>. The easiest way to get a procedure script started is to right-click Stored

Procedures under Programmability in SSMS and select Stored Procedure, which

generates a script.

Great examples and use cases for stored procedures generally fall around operations

such as getting large result sets and performing calculations as part of the results.

 Functions
Scalar and table-valued functions are extremely versatile and can help us to easily set up

a routine that can manipulate our data, even when the view selection is part of a larger

query.

Like stored procedures, functions can take parameters and can be optimized by

query execution plans stored on the server.

The two types of functions have distinctly different uses. For situations where a

single-value result is needed, we can run the scalar function. In other situations, we

might need a result set, which can be returned as an in-memory table as a table-valued

function.

A good example of a scalar-valued function would be a function that manipulates

data from an array into a comma-separated list as a single string, whereas a good table-

valued function might be to get the items that were added in the last two weeks and then

use that data to join against another table or get a limited set of data based on those

results.

Chapter 7 Stored proCedureS, ViewS, and FunCtionS

273

 Views
Another scenario that happens frequently in the real world is one where we need to get

some conglomerated data, which generally requires joining one or more tables. We then

need to be able to perform some sort of sorting or filtering against that data, such as

getting the top ten results or results where a field contains some key value.

Anytime we run into a situation where we need to denormalize our data to present

a segment of data for user review or reporting and then filter that result, a view can be a

very handy asset.

Where a stored procedure takes parameters and manipulates data using prepared

statements, we can think of a view as a prebuilt query that gets the results as designed

and allows further filtering against that data. A view is essentially like an in-memory

table with denormalized data based on pre-specified table joins.

The benefit of the view is that we’ve abstracted the denormalization so that the

filtering can happen simply, without having to also redefine the join statements. We can

therefore perform a simple SELECT … WHERE query statement against the view, or we can

use the view and join to other tables for even more specific results.

A very typical use of a view would be to generate data for a report, such as all items

with included category name. We could then further limit that view to only return those

rows that have a category name of movie.

 Setting up the database to run scripts efficiently
Out of the box, EF doesn’t have a super nice way to handle non-table database

structures. In older versions of the .Net Framework, we were able to write files and then

use those files to generate a SQL database script. Those days are gone, and that’s a good

thing. In code-first Entity Framework solutions, we can add a migration and then put a

script in the migration directly for execution. While possible, this is not the best solution

for a number of reasons.

Therefore, in order to work with non-table database objects in EF code first, we need

to implement a quick solution.

Chapter 7 Stored proCedureS, ViewS, and FunCtionS

274

 The problem
To make the issues with directly scripting a stored procedure in a migration clearer,

let’s examine a potential migration and then an update to that procedure in a second

migration.

First, here is a script that would easily generate a stored procedure to get items with

genre and category information:

CREATE OR ALTER PROCEDURE dbo.GetItemsForListing

 @minDate DATETIME = null,

 @maxDate DATETIME = null

AS

BEGIN

 SET NOCOUNT ON;

 SELECT item.Name, item.Description, item.Notes

 , item.IsActive, item.IsDeleted, g.Name, cat.Name

 FROM dbo.Items item

 LEFT JOIN dbo.ItemGenre ig on item.Id = ig.ItemId

 LEFT JOIN dbo.Genres g on ig.GenreId = g.Id

 LEFT JOIN dbo.Categories cat on item.CategoryId = cat.Id

 WHERE (@minDate IS NULL OR item.CreatedDate >= @minDate)

 AND (@maxDate IS NULL OR item.CreatedDate <= @maxDate)

END

GO

This is a straightforward query, but if we put it into a migration directly, it would look

like what is shown in Figure 7-1.

Chapter 7 Stored proCedureS, ViewS, and FunCtionS

275

As you might imagine, putting the code inline inside the migration makes it

somewhat tricky to do a code review on the script. Additionally, putting in the second

and consecutive migrations leads to large scripts in both the Up and Down methods. For

an example of how verbose the migrations could become, review Figure 7-2.

Figure 7-1. A fully scripted migration to create a stored procedure

Chapter 7 Stored proCedureS, ViewS, and FunCtionS

276

Figure 7-2. Each migration containing an update now has multiple hard-coded
stored procedure scripts in the body of the migration

Chapter 7 Stored proCedureS, ViewS, and FunCtionS

277

The complexity to perform a code review also increases, as the available choices are

to compare the code in the Down method to the code in the Up method for changes or to

find the previous migration for this procedure and compare the scripts as hard-coded in

each migration’s Up method.

As if that isn’t bad enough, although we have history via this code, we don’t have

a well-organized history that is easy to review or even find the version for which we

are looking. Once we get to version 6, for example, we would have to sort through six

migrations to figure out where in the history of the code the issue we might be looking

for exists.

Therefore, we need a better solution, a solution that is a nice and easy way to keep

our migrations to a minimal footprint, while also giving our fellow developers an easy

way to review our changes and ultimately making it easier to track code versions in a

historical fashion.

 The solution
As we’ve seen earlier, we can run a script in the migration using the migrationBuilder

calling the SQL method. As with other objects in .Net, migrationBuilder can be

extended. To make our solution, we’ll be writing a simple extension that will get the

script by reading a text file to a string.

After creating the extension method, all we need to do is add the text files into our

project as embedded resources, and we no longer have to write our SQL scripts inline. We

then reference the file directly in the migration.

In addition to removing the code from the migration file, this solution gives us the

ability to easily keep and track all versions of the scripted database objects. We’ll take a

look at this solution in more detail in the first activity for this chapter.

 Fluent API
To this point in the book, we haven’t really spent a lot of time taking a look at the Fluent

API and how we can use that in our code. When we worked with models in Chapter 4

and relationships in Chapter 5, we saw data annotations, and we used them to build

things like required fields, string length, keys, and the various relationships between

entities. We did leverage the Fluent API for our unique clustered index, but we didn’t

spend a lot of time talking about what the Fluent API does for us.

Chapter 7 Stored proCedureS, ViewS, and FunCtionS

278

In addition to data annotations and direct mapping of relationships in our models,

there is another tool that we can use to define entity structure and relationships. This

tool is called the Fluent API.

The Fluent API can do everything you can do with data annotations, but it also allows

for more specific configurations. In our activities for this chapter, we’ll leverage the

Fluent API to make sure that an entity we are creating does not generate a new table in

the database or insert itself into every migration, while still being available to be used for

querying objects.

In order to work with the Fluent API, we’ll need to override another method in our

database context. The method that we will override is called OnModelCreating which has

a parameter of type ModelBuilder. We already set this up in Chapter 5, but if you skipped

over that chapter, you might have missed this critical piece of working with the Fluent API.

The Fluent API is leveraged from this model builder with references such as

modelBuilder.Entity<Item>().Property(x => x.Name).IsRequired()

and

modelBuilder.Entity<Item>().HasOne(x => x.Category).WithMany(y => y.Items)

Even now, there are already references to the Fluent API in place in the projects we

have been building without us even knowing about them. Take a quick look at the auto-

generated file InventoryDbContextModelSnapshot.cs in the InventoryDatabaseCore

project to see more Fluent API calls in action.

For our purposes, we’ll need to dive in deeper in the override to set entities to not

have a key and to act like a read-only view. We’ll see this in full detail in the activities, but

a sample of what we’ll see looks like this:

modelBuilder.Entity<AllItemsPipeDelimitedString>(x =>

 {

 x.HasNoKey();

 x.ToView("AllItemsPipeDelimitedString");

 });

Chapter 7 Stored proCedureS, ViewS, and FunCtionS

279

 Working with the database objects
In the final part of this chapter, we will again dive into three new examples where we can

learn about building out our scripting solution and working with non-table database objects.

While we are focusing on stored procedures, views, and functions, please remember

that with this scripting solution using files, we’ll be able to run any database script to

create or modify any database objects. For example, we could easily create scripts for

other objects like indexes or triggers, if desired.

 Activities
Before beginning these activities, please note that these three activities build off of each

other, so skipping to activity two might leave you a bit in the dark as to what happened

with the stored procedures. Likewise, skipping activity two will cause you to miss the fix

with an implementation for what went wrong in activity one.

 Activity 0701: Working with stored procedures
In this first activity, we are going to take a first look at how we can work with stored

procedures in our solution. We’ll begin by looking at the inline scripting as mentioned

previously. We’ll then proceed to write the extension method we need to process our

code as files. After getting the extension method setup, we’ll conclude the activity with a

final look at using the files so we can clearly see the benefits of this strategy.

 Step 1: Set up
To begin, get a copy of the starter files Activity0701_StoredProcedures_Starter.zip, or

continue working with your own solution that you’ve been building as we’ve moved

through this book. If you are going to work with your own solution, do not use the web

project in Chapter 6, but rather use the final version of your code as it existed at the end

of Chapter 5. Either way, once you have your project open, make sure your database

connections are correct in the appsettings.json file, and make sure to build and run

the update-database command to ensure your database is current with the migrations

in the project. Additionally, it is a good idea to run the program to make sure everything

works before modifying it.

Chapter 7 Stored proCedureS, ViewS, and FunCtionS

280

You may need to set the Activity0701_WorkingWithStoredProcedures
project as the startup project to make the solution run as expected.

 Step 2: Create a new migration for a simple stored
procedure
After making sure your project is up to date and has all migrations applied, begin by

running the following command:

add-migration CreateSproc_GetItemsForListing.

Provided you have no unchanged files and all models are correctly implemented in

the database, this command will generate an empty migration file (see Figure 7-3).

Figure 7-3. An empty migration is generated when no code changes are present
and the add-migration command is executed

if for some reason your migration is not clean, you had some pending changes that
needed to be applied to your local database. as long as the changes look good,
you could just apply them via the update-database command and then make a
new blank migration to continue with this activity.

Chapter 7 Stored proCedureS, ViewS, and FunCtionS

281

Next, add the script to create a new stored procedure in the Up method:

migrationBuilder.Sql(@"CREATE OR ALTER PROCEDURE dbo.GetItemsForListing

 @minDate DATETIME = null,

 @maxDate DATETIME = null

AS

BEGIN

 SET NOCOUNT ON;

 SELECT item.Name, item.Description, item.Notes

 , item.IsActive, item.IsDeleted, g.Name, cat.Name

 FROM dbo.Items item

 LEFT JOIN dbo.ItemGenre ig on item.Id = ig.ItemId

 LEFT JOIN dbo.Genres g on ig.GenreId = g.Id

 LEFT JOIN dbo.Categories cat on item.CategoryId = cat.Id

 WHERE(@minDate IS NULL OR item.CreatedDate >= @minDate)

 AND(@maxDate IS NULL OR item.CreatedDate <= @maxDate)

END");

Don’t run the migration yet! We have more work to do. As a personal best practice,

I recommend that you make sure every migration you create is idempotent in both

directions. By that, I mean you can run and rerun the Up and Down methods at will

without having failures in your database. This is especially critical as you move the code

to other machines.

Note that the create procedure code starts with CREATE OR ALTER, which means

that even if this procedure previously existed in the database, this code would still run

successfully. Do note that the CREATE OR ALTER syntax requires SQL Server 2016 or

greater, so if you are working against an older SQL Server version, you would need to

check for existence of the procedure and then just run a straight CREATE statement when

the procedure doesn’t exist.

To complete the migration, we need to wire up the Downmethod. While it might

be tempting to simply put the code DROP PROCEDURE <name> in the Down method, the

statement is not safe for execution in all states. If the database has already deleted

the procedure or it doesn’t exist, this Down method execution would fail. Therefore, I

recommend always checking for existence before making any DROP or ALTER statements.

By safeguarding our statements, even if the object doesn’t currently exist, the scripts

won’t fail and our migrations will continue to execute.

Chapter 7 Stored proCedureS, ViewS, and FunCtionS

282

Add the following code to the Down(…) method of the new migration:

migrationBuilder.Sql("DROP PROCEDURE IF EXISTS dbo.GetItemsForListing");

For clarity, the entire migration is shown in Figure 7-4.

Figure 7-4. The migration to create the GetItemsForListing stored procedure, with
an idempotent Down method to handle rollback of the database changes

Now that the migration is complete, run the command update-database to add the

stored procedure into the database (review Figure 7-5).

Chapter 7 Stored proCedureS, ViewS, and FunCtionS

283

We can validate the existence of the procedure in our database via SSMS or in the

Server Explorer as shown in previous activities.

Additionally, as a developer, I often like to run the Down method just to make sure I

don’t have any issues. To do that now, just find the name of the previous migration and

run the update-database -migration <previous_migration_name>, which will revert

the database to the prior migration. The migration name can be found either in the name

of the file that was just generated, or you can review the dbo.__EFMigrationsHistory

table in the database to find the name. This reminds us that we can always tell which

migrations have been applied by comparing the existing MigrationId values in the

database table to the files in the Migrations folder in our solution.

Make sure to check the database after reverting to ensure the new procedure has

indeed been dropped. Once satisfied that the migration works in both directions, rerun

the update-database command to complete this step of the activity. At this point, you’ll

have the migration applied and the procedure will exist in your database.

 Step 3: Create the MigrationBuilder extension
At this point, we could create a new migration and run an update against the stored

procedure to see how that would look. However, we have already discussed this

approach, and we can see what this approach would look like in Figure 7-2. Therefore,

knowing that we could continue on this path, there is no need to rehash it here. However,

this is an excellent time to examine a better solution.

In EF6, we were able to call a method on the migration called SqlResource. This

method would take in the file and read it for execution. At the time of this writing, this

SqlResource method does not exist in EFCore.

Figure 7-5. The PMC commands run to create the migration and to update the
database with our custom script

Chapter 7 Stored proCedureS, ViewS, and FunCtionS

284

Therefore, the first thing we need to do to get to a better solution is to create a new

extension that will extend the MigrationBuilder class. The extension method could be

named anything we want, but since we’re emulating behavior from EF6, we’ll call it the

same thing: SqlResource.

Once the method is created, we’ll leverage the fact that the script is nothing more

than text that needs to be run in the migration builder. We can therefore just put our

code into a flat *.sql file, add that file to our project as an embedded resource, and then

use our extension method to read the file as a stream for execution.

First, add a new folder under the Migrations folder entitled Scripts as shown in

Figure 7-6.

Figure 7-6. A new folder entitled Scripts is added in the Migrations folder

The location of this folder is going to be important, but the location of the extension

inside this folder will be critical so that we don’t have to worry about the path to our

script files.

In the new Scripts folder, create a new class file called

MigrationBuilderSqlResource.cs. We’ll write our extension in this class. Also, in the

Scripts folder, create a new subfolder called Procedures. In each object folder, we’ll

create subfolders for each object by name for better organization and maintenance.

Create a subfolder called GetItemsForListing in the Procedures folder, and then create

two files in the folder GetItemsForListing.v0.sql and GetItemsForListing.v1.sql.

For clarity, the overall look of my project structure as described is shown in Figure 7-7.

Chapter 7 Stored proCedureS, ViewS, and FunCtionS

285

Modify the MigrationBuilderSqlResource.cs file with the following code, making

sure to bring in any missing using statements so the code will compile:

public static class MigrationBuilderSqlResource

{

 public static OperationBuilder<SqlOperation> SqlResource(this

MigrationBuilder mb, string relativeFileName)

 {

 using (var stream = Assembly.GetAssembly(typeof(MigrationBuilder

SqlResource)).GetManifestResourceStream(relativeFileName))

 {

 using (var ms = new MemoryStream())

 {

 stream.CopyTo(ms);

 var data = ms.ToArray();

 var text = Encoding.UTF8.GetString(data, 3,

data.Length - 3);

 return mb.Sql(text);

 }

 }

 }

}

Figure 7-7. Setting up the scripts and extensions hierarchy in the Migrations
folder

Chapter 7 Stored proCedureS, ViewS, and FunCtionS

286

For clarity, the using statements you will need to add will be as follows:

using Microsoft.EntityFrameworkCore.Migrations;

using Microsoft.EntityFrameworkCore.Migrations.Operations;

using Microsoft.EntityFrameworkCore.Migrations.Operations.Builders;

using System.IO;

using System.Reflection;

using System.Text;

Next, add the text from the create statement in the previous migration to both the v0

and the v1 version of the GetItemsForListing.v*.sql files.

Once these are in place, further modify the v1 version of the file to remove references

to the Genres table from the procedure as follows:

CREATE OR ALTER PROCEDURE dbo.GetItemsForListing

 @minDate DATETIME = null,

 @maxDate DATETIME = null

AS

BEGIN

 SET NOCOUNT ON;

 SELECT item.Name, item.Description, item.Notes

 , item.IsActive, item.IsDeleted, cat.Name

 FROM dbo.Items item

 LEFT JOIN dbo.Categories cat on item.CategoryId = cat.Id

 WHERE(@minDate IS NULL OR item.CreatedDate >= @minDate)

 AND(@maxDate IS NULL OR item.CreatedDate <= @maxDate)

END

When finished, the v1 file should look like what is shown in Figure 7-8.

Chapter 7 Stored proCedureS, ViewS, and FunCtionS

287

To be clear, the v0 file text is just the exact text from the Up method for creating the

stored procedure as in the first migration, without the wrapping migrationBuilder.

Sql(@”… code. This v0 file is our rollback option, so we want to get back to where we were

at the end of the previous migration if we roll back our current migration using this file.

Before setting up a migration, it’s not a bad idea to double-check that the code you

will be creating is going to execute as expected. If you want, you could take the select

statement from the v1 file and execute it in SSMS to validate the results no longer contain

any references to the Genres table, have no duplicated entries, and work to return results

as expected. You could even execute the whole script and then make a call to the stored

procedure. Since the start is CREATE OR ALTER, even running the migration would just

restore the same procedure code.

With both files containing the code as expected, rebuild and then add a new

migration using the command:

add-migration UpdateProc_GetItemsForListing_RemoveGenre

This generates a blank migration as expected.

In the Up method, simply reference the new extension with the path to the v1 file as

follows (use the namespace from the extension, followed by the path from that location

to the file):

migrationBuilder.SqlResource("InventoryDatabaseCore.Migrations.Scripts.

Procedures.GetItemsForListing.GetItemsForListing.v1.sql");

Figure 7-8. The updated version of the stored procedure to get Items removes the
reference to genres

Chapter 7 Stored proCedureS, ViewS, and FunCtionS

288

Add the v0 version to the Down method:

migrationBuilder.SqlResource("InventoryDatabaseCore.Migrations.Scripts.

Procedures.GetItemsForListing.GetItemsForListing.v0.sql");

For clarity, the migration is shown in Figure 7-9.

Figure 7-10. Failure to set the script files as embedded resources or incorrect paths
to the files will generate a cryptic Object Reference not set to an instance of an
object error

Figure 7-9. The migration file which allows for updating and rolling back the
procedure change using files instead of inline SQL

As with other files, make sure to add the using statement so that the code

will compile. The using statement that needs to be added should be using

InventoryDatabaseCore.Migrations.Scripts;.

Rebuild and attempt to update the database. Even if your path is correct, you should

see an error for an object reference not set to an instance of an object (see Figure 7-10).

Chapter 7 Stored proCedureS, ViewS, and FunCtionS

289

One thing we didn’t do prior to trying to run our migration is to make sure that all

scripts are added as embedded resources. Now that we’ve seen this error, we know we

need to set the files as Embedded resource in the properties. Figure 7-11 shows how to

select a file and set it as an embedded resource.

Figure 7-11. Set the scripts as embedded resources

Set both script files as Embedded resource and then rebuild and run the update-

database command again. This time we should be able to execute the migration as

expected (review Figure 7-12).

Chapter 7 Stored proCedureS, ViewS, and FunCtionS

290

If you continue to get an object reference error, make sure you have

set your path correctly in the Up method, using the namespace for your

MigrationBuilderSqlResource.cs file, followed by the folders and file names.

don’t forget to double up on the procedure name in the relative file name, since the
file is in a folder with the same name as the file.

Review your procedures in the database using SSMS or the Server Explorer to

validate that your stored procedure is now up to date and does not reference the genre

any longer. For further practice, roll back the migration to make sure your v0 file is

working as expected, and then reapply the migration. If you’ve followed exactly, your

rollback command should be

update-database -migration CreateSproc_GetItemsForListing

Review the database again to validate the genre code is back in the stored procedure

as expected on rollback, and then run the command update-database to get your

database migrations up-to-date.

 Step 4: Execute and use the results from the stored
procedure
There are a number of ways to get our code to execute a stored procedure. We could

write code against a regular ADO.Net SqlCommand object, passing in the parameters and

working with the data by getting a DataReader and reading it into a list of objects. This

approach is how we would have worked through executing stored procedures (or other

commands) in the past and doesn’t leverage Entity Framework. Even so, that approach is

still a very viable solution.

Figure 7-12. The update-database command works as expected to read the file
once we’ve embedded the files as resources

Chapter 7 Stored proCedureS, ViewS, and FunCtionS

291

However, this is a book on Entity Framework, so we should stick with that approach

and see how we can get EF to execute the stored procedure and return results for us.

In the Main method of the Program.cs file in the activity 0701 project, add a new

method after ListInventory called GetItemsForListing. For clarity, this change is

shown in Figure 7-13.

Figure 7-13. Adding the GetItemsForListing method to the Main method

Next, write the GetItemsForListing method as follows:

static void GetItemsForListing()

{

 using (var db = new InventoryDbContext(_optionsBuilder.Options))

 {

 var results = db.Items.FromSqlRaw("EXECUTE dbo.

GetItemsForListing").ToList();

 foreach (var item in results)

 {

 Console.WriteLine($"ITEM {item.Id}] {item.Name}");

 }

 }

}

Now run the code. We get an error about a duplicate key (review Figure 7-14).

Chapter 7 Stored proCedureS, ViewS, and FunCtionS

292

The reason this happens is because in the data results, there are two columns

with the name “Name.” Because of this naming conflict, the collection can’t be iterated

correctly to display the Name property.

One fix would be a new migration, where we explicitly name the fields so there

are no duplicates. Since the result has two fields that are named the same, this could

be confusing. For that reason, let’s fix the procedure to explicitly name the field

CategoryName.

Add a new migration with the command add-migration UpdateProc_

GetItemsForListing_ExplicitColumnNames, and set the Down method to reference

the file from the Up method of the previous migration. Then set the Up method

to reference a new v2 of the script. Remember to add the using statement for the

InventoryDatabaseCore.Migrations.Scripts. For clarity, the new migration should have

the following code:

public partial class UpdateProc_GetItemsForListing_ExplicitColumnNames :

Migration

{

 protected override void Up(MigrationBuilder migrationBuilder)

 {

 migrationBuilder.SqlResource("InventoryDatabaseCore.Migrations.

Scripts.Procedures.GetItemsForListing.GetItemsForListing.v2.sql");

 }

Figure 7-14. An error for duplicate key in the result set

Chapter 7 Stored proCedureS, ViewS, and FunCtionS

293

 protected override void Down(MigrationBuilder migrationBuilder)

 {

 migrationBuilder.SqlResource("InventoryDatabaseCore.Migrations.

Scripts.Procedures.GetItemsForListing.GetItemsForListing.v1.sql");

 }

}

Next, create the v2 version of the script. Copy the code from v1, and update the text

to explicitly select the cat.Name as CategoryName. For clarity, review the code for the v2

script as follows:

CREATE OR ALTER PROCEDURE dbo.GetItemsForListing

 @minDate DATETIME = null,

 @maxDate DATETIME = null

AS

BEGIN

 SET NOCOUNT ON;

 SELECT item.Name, item.Description, item.Notes

 , item.IsActive, item.IsDeleted, cat.Name as CategoryName

 FROM dbo.Items item

 LEFT JOIN dbo.Categories cat on item.CategoryId = cat.Id

 WHERE(@minDate IS NULL OR item.CreatedDate >= @minDate)

 AND(@maxDate IS NULL OR item.CreatedDate <= @maxDate)

END

don’t forget to set the new v2 script file as an embedded resource.

After creating the file and the migration, run the update-database command.

Once the database is updated, rerun the program to see results, which will generate

yet another error (see Figure 7-15).

Chapter 7 Stored proCedureS, ViewS, and FunCtionS

294

Here we see that the error is due to the fact that a required field Id is not returned.

This is actually a really big problem. In order to make this query work, we would have

to select every single field, whether it is required or not in the Model, because we are

querying against the Items table joined to the Categories table. If the field maps to

the database, we must get something for that field in order for the FromSqlRaw query to

return and map to an Item that has a reference to a Category.

To make matters even worse, the query would also be required to return all of the

auditing fields we have built in. While this might not be a big deal in a small set of data,

the overhead might quickly balloon out of control. Furthermore, we are likely trying to

list lightweight information about the Items, and then when the user asks to modify or

work with one of the items, we would get more useful information about the specific

Item. For all of these reasons, adding in all the fields to our stored procedure would be a

very bad practice and a terrible idea.

Ultimately, we need to find a better solution to this problem, either with the direct

call to select just what we want or a common class that we could leverage to run the

query directly with ADO.Net and map it back. To continue to stick with EF, we need to

take our first look at working with the Fluent API.

 Step 5: Use the Fluent API to map out a result set entity
for the stored procedure
In order to use the Fluent API for mapping the results, we need a DTO (data transfer

object) that will map the exact results we are looking for in our result set. In this

case, a class that stores the fields as defined in the v2 version of our procedure

GetItemsForListing.

Figure 7-15. The Id column we’re trying to display is not returned

Chapter 7 Stored proCedureS, ViewS, and FunCtionS

295

In the InventoryModels project, add a new folder Dtos and then add a new class

GetItemsForListingDto, to the class, and then add the following code to the class:

public class GetItemsForListingDto

{

 public string Name { get; set; } = "";

 public string Description { get; set; } = "";

 public string Notes { get; set; } = "";

 public bool IsActive { get; set; } = true;

 public bool IsDeleted { get; set; } = true;

 public string CategoryName { get; set; } = "";

}

For clarity on the code and the placement in the solution, review Figure 7-16.

Figure 7-16. The GetItemsForListingDto class

After adding the class, we need to add the item to the InventoryDbContext. Prior to

EFCore 3.0, we could have used an object called DbQuery<T> instead of DbSet<T>. With

EFCore 3.0+, the DbQuery<T> object is obsolete. Going forward, all code should use the

DbSet<T> syntax and then configure the entity to have no key and work as a read-only

dataset using the Fluent API.

as of eFCore 3.0, the dbQuery<t> object is obsolete.

Chapter 7 Stored proCedureS, ViewS, and FunCtionS

296

Add the following line of code after the public DbSet<Genre> Genres property

to the InventoryDbContext and remember to add the correct using statement for the

InventoryModels.Dtos namespace:

public DbSet<GetItemsForListingDto> ItemsForListing { get; set; }

With this addition, if we created a migration right now, the migration would request

for us to add a new table ItemsForListing to the database. We don’t want to do this,

of course. If you want to see this in action, run the add-migration command with

any name to see the generated code, and then run remove-migration to delete the

migration.

Next, we need to add the following line of code to leverage the Fluent API

in the OnModelCreating method to allow for the result set to be used from the

context without generating a table in the database. Add the following code into the

InventoryDbContext.OnModelCreating method after the code for the unique clustered

index we created in Chapter 5:

modelBuilder.Entity<GetItemsForListingDto>(x =>

{

 x.HasNoKey();

 x.ToView("ItemsForListing");

});

Finally, we need to update the program so that we are making the correct calls using

the new result set object. In the main program GetItemsForListing method, update the

code to get the results from the new DbSet<GetItemsForListingDto> ItemsForListing,

and change the Console.WriteLine to use fields we actually have (we didn’t ever

retrieve the Id for the Item). The reworked code should look as follows:

static void GetItemsForListing()

{

 using (var db = new InventoryDbContext(_optionsBuilder.Options))

 {

 v ar results = db.ItemsForListing.FromSqlRaw("EXECUTE dbo.

GetItemsForListing").ToList();

 foreach (var item in results)

 {

Chapter 7 Stored proCedureS, ViewS, and FunCtionS

297

 Console.WriteLine($"ITEM {item.Name} - {item.Description}");

 }

 }

}

For clarity, review Figure 7-17 to see the critical changes to the code.

Figure 7-17. The GetItemsForListing method after reworking to use the new
context set ItemsForListing, with changes emphasized

Figure 7-18. The stored procedure is executed, and we can leverage the results as
expected

Now when we run the program, we get results as expected, and as shown in Figure 7-18.

 Step 6: Use parameters to avoid SQL Injection attacks
Unless you are brand new to database programming you’ve likely heard of the term

“SQL Injection.” If you haven’t heard of the term, suffice it to say that injection is one

of the OWASP top ten security risks and has been on that list for my entire career as a

developer.

Chapter 7 Stored proCedureS, ViewS, and FunCtionS

298

A SQL Injection attack can happen any time we don’t protect the parameters we’re

passing to our database. For example, if we pass a regular string where we took some

user input for a search for the last name, perhaps a malicious user comes along and puts

this as the value to search for

Gorm' ; update users set password = 'Password1'; select * from information_

schema.tables; --

All you were trying to get from the user was a last name to search for, but they

understood you were likely running a query to search by last name, and if you don’t

parameterize the query, they can inject more code into your statement. In this case, the

attacker is trying to update all the user passwords to ‘Password1’ and also get a list of

all database tables returned in the query. For this reason, we want to make sure we are

never using any kind of input from the user without first parameterizing it.

One last thought about SQL Injection that often goes overlooked is that it may

happen in places you don’t necessarily expect it to happen. I’ve seen lots of stored

procedures throughout my career that build dynamic SQL and execute that dynamically

built query directly within the procedure. In all such cases, you must be extra careful

that you have not created an opportunity for the attacker to inject anything unexpected

or malicious into your SQL statements. Even if the query is parameterized, if you are

creating SQL statements from fields, your attacker could potentially save code into the

field that will compromise your dynamic statements once concatenated.

Therefore, to make our statement more secure, let’s look at parameterizing our call to

the stored procedure. In the Main method for the program, add another method called

GetItemsForListingWithParams. Then add the method with the following code (once

again, you’ll need another using statement: Microsoft.Data.SqlClient):

static void GetItemsForListingWithParams()

{

 var minDate = new SqlParameter("minDate", new DateTime(2020, 1, 1));

 var maxDate = new SqlParameter("maxDate", new DateTime(2021, 1, 1));

 using (var db = new InventoryDbContext(_optionsBuilder.Options))

 {

 var results = db.ItemsForListing

 .FromSqlRaw("EXECUTE dbo.GetItemsForListing

@minDate, @maxDate", minDate, maxDate)

Chapter 7 Stored proCedureS, ViewS, and FunCtionS

299

 .ToList();

 foreach (var item in results)

 {

 Console.WriteLine($"ITEM {item.Name} - {item.Description}");

 }

 }

}

Run the program to validate that both the call with no params and the call with

params get data as expected. Feel free to test the parameters by modifying the dates on

the parameters to make it so that the stored procedure will not return results.

 Final thoughts
When working with stored procedures, by adding a simple extension, we can easily script

out our changes and use the files in our migrations. Once that is in place, we have the

ability to easily see the versions of each database object as well as could easily compare

two files to see the changes for a migration.

We learned a great deal about how to work with scripted database objects in this

activity, including

• How to use a DTO object to map the result set of a stored procedure

or other scripted result

• How to modify the Fluent API to set an entity type to not have a key

and act like a read-only view

• How to protect our code from SQL Injection attacks by

parameterizing the queries

Now that we’ve seen how to work with scripted objects, we can move on to the next

activity, where we’ll learn about working with the different types of functions.

 Activity 0702: Working with functions and seed data
In this activity, we are going to learn how to create and work with functions. Additionally,

we’ll briefly touch on the difference between scalar-valued functions and table-valued

functions.

Chapter 7 Stored proCedureS, ViewS, and FunCtionS

300

 Step 1: Set up
To begin, continue where you’ve left off in the previous activities, or grab a copy of the

starter files Activity0702_WorkingWithFunctions_Starter.zip. Once you’ve opened

and built the project, make sure to run the update-database command to ensure your

database is synced up with the current migrations. Additionally, run the program to

ensure that you have all of the code working to insert, update, and read data and that the

correct starter project is set.

it is critical that you have either completed activity 0701 before working on this
activity or that you start with the activity 0702 starter files. the code in this activity
will leverage part of the solution as built-in activity 0701 for scripting database
objects in migrations.

 Step 2: Script out a new scalar-valued function
The first type of function we want to build is a scalar-valued function. These functions

are used to get a single value, usually as the result of a calculation. They are highly useful

for one-off executions, but dangerous if you include them as a join in a query (essentially

executing the function one time for every use in each row).

A good use of this would be to get a calculation that would be difficult to achieve

without multiple built-in SQL commands being executed to return a single result.

Another use could be to do something like get a list of the unique values of a field,

alphabetized, as a comma-separated value string. Instead of a comma, I prefer to use a

pipe, just in case a field value has a comma in it.

The easiest way to see what the script should be would be to right-click the

Functions folder under Programmability and select New ➤ Scalar-valued Function,

which will generate the script (see Figure 7-19).

Chapter 7 Stored proCedureS, ViewS, and FunCtionS

301

Once generated, the function has a lot of overhead that can be removed, and then we

note that the first part of the function requires a name and any parameters that we would

want to include. The next statement is the return declaration and then the function

concludes with the function body.

Let’s modify the function to take the IsActive BIT as a parameter and then set the

return type to VARCHAR(2500). We’ll write the body to get a pipe-delimited list of the

names of all active items in alphabetical order where the IsActive flag is matched.

Create a new folder named Functions under the Migrations\Scripts

folder in the InventoryDatabaseCore project. In the Functions folder, add a

subfolder for the function ItemNamesPipeDelimitedString, and then add a file

ItemNamesPipeDelimitedString.v0.sql to the folder (see Figure 7-20 for clarification).

Figure 7-19. Creating a new scalar-valued function

Figure 7-20. Created the file for the new function in the Scripts hierarchy

don’t forget to set the new itemnamespipedelimitedString.v0.sql file as an
embedded resource.

Chapter 7 Stored proCedureS, ViewS, and FunCtionS

302

Add the following code to the new file to script the creation of the function:

CREATE OR ALTER FUNCTION [dbo].[ItemNamesPipeDelimitedString]

(@IsActive BIT)

RETURNS VARCHAR (2500)

AS

BEGIN

 RETURN (SELECT STRING_AGG (Name, '|')

 FROM Items

 WHERE IsActive = @IsActive)

END

 Step 3: Add a new migration and update the database
Now that we have the file in place, add a new migration with the command add-

migration CreateFunction_ItemNamesPipeDelimitedString.

In the migration Up method, add the line

migrationBuilder.SqlResource("InventoryDatabaseCore.Migrations.Scripts.

Functions.ItemNamesPipeDelimitedString.ItemNamesPipeDelimitedString.

v0.sql");

Then in the migration Down method, add the line

migrationBuilder.Sql("DROP FUNCTION IF EXISTS dbo.

ItemNamesPipeDelimitedString");

Run the update-database command to get the function into the database. Verify the

function exists in your database by reviewing it in SSMS or in the Server Explorer.

 Step 4: Get the result set from the function into a mapped
entity with no defined key
In the real world, we’d likely use this function in concert with something else like a

stored procedure or another result set. For illustrative purposes, we’re just going to call it

to validate that it works.

Before we can run this function to see it in action, just like with the stored procedure,

we need to set a result that we can return that isn’t tracked in the database.

Chapter 7 Stored proCedureS, ViewS, and FunCtionS

303

To make sure we can easily work with this result set, we need to create an entity in

our Models project that simply has the string return type that we’ll be getting from our

function.

In the Models project under the Dtos folder, add a new class file

AllItemsPipeDelimitedStringDto.cs with one public string property called AllItems:

public class AllItemsPipeDelimitedStringDto

{

 public string AllItems { get; set; } = "";

}

Now that we have this result object which we can map our function result to; we can

go ahead and modify the InventoryDbContext to add a new DbSet object to it. In the

InventoryDatabaseCore project, in the InventoryDbContext, add the following line of

code after the DbSet<Entity> declarations:

public DbSet<AllItemsPipeDelimitedStringDto> AllItemsOutput { get; set; }

Next, we need to update the OnModelCreating method to add the Fluent API

mapping to set the new result set to having no key and working as a read-only database

object. Add the following code into the OnModelCreating Method:

modelBuilder.Entity<AllItemsPipeDelimitedStringDto>(x =>

{

 x.HasNoKey();

 x.ToView("AllItemsOutput");

});

 Step 5: Make the program changes to execute the
function and get the results
In the Main method of the program file in the activity 0702 project, in the Program.cs

file in the Main method, add a new method call AllActiveItemsPipeDelimitedString.

In the method, add the following code:

static void AllActiveItemsPipeDelimitedString()

{

 using (var db = new InventoryDbContext(_optionsBuilder.Options))

Chapter 7 Stored proCedureS, ViewS, and FunCtionS

304

 {

 var isActiveParm = new SqlParameter("IsActive", 1);

 var result = db.AllItemsOutput

 .FromSqlRaw("SELECT [dbo].

[ItemNamesPipeDelimitedString] (@IsActive)

AllItems", isActiveParm)

 .FirstOrDefault();

 Console.WriteLine($"All active Items: {result.AllItems}");

 }

}

Run the program to see the results. They should be similar to what is shown in

Figure 7-21.

Figure 7-21. The results of executing the function

 Step 7: Create a new table-valued function
Repeat steps 2–5 for a new function called GetItemsTotalValue. Again, we’re doing a bit

of a contrived example here, but we’ll just get a list of items with Id, Name, Quantity,

Price, and Total Value [calculated] where IsActive is true. As a reminder, the steps

will be as follows:

• Script out a new table-valued function and modify it to get the data

(see script).

• Add the folder for the function and create the migration using the

SqlResource approach.

Chapter 7 Stored proCedureS, ViewS, and FunCtionS

305

• Create and map a result set DTO for the function.

• Execute a method call that gets the data and outputs it to the screen.

Begin by creating a new subfolder called GetItemsTotalValue in the Functions

folder. Add a new file called GetItemsTotalValue.v0.sql, and add the script for an

inline table-valued function with the following code:

CREATE OR ALTER FUNCTION dbo.GetItemsTotalValue (

 @IsActive BIT = true

)

RETURNS TABLE

AS

RETURN

(

 SELECT Id, [Name], [Description], Quantity, PurchasePrice, Quantity *

PurchasePrice as TotalValue

 From Items

 Where IsActive = @IsActive

)

As always, don’t forget to make the file an embedded resource. For clarity on what

this should look like, review Figure 7-22.

Figure 7-22. Added the new script in the correct folder in the hierarchy and set the
file as an embedded resource

Add a new migration with the command add-migration CreateFunction_

GetItemsTotalValue. Add the v0 script to the Up method.

migrationBuilder.SqlResource("InventoryDatabaseCore.Migrations.Scripts.

Functions.GetItemsTotalValue.GetItemsTotalValue.v0.sql");

Chapter 7 Stored proCedureS, ViewS, and FunCtionS

306

Bring the using statements in and the drop function code to the Down method:

migrationBuilder.Sql("DROP FUNCTION IF EXISTS dbo.GetItemsTotalValue");

Complete the migration by running the update-database command.

Next, add a new DTO in the Dtos folder in the InventoryModels project called

GetItemsTotalValueDto to map results for execution. The code for the class is

public class GetItemsTotalValueDto

{

 public int Id { get; set; }

 public string Name { get; set; } = "";

 public string Description { get; set; } = "";

 public int Quantity { get; set; }

 public decimal? PurchasePrice { get; set; }

 public decimal? TotalValue { get; set; }

}

Add the new GetItemsTotalValueDto to the InventoryDbContext as a DbSet:

public DbSet<GetItemsTotalValueDto> GetItemsTotalValues { get; set; }

Configure the Fluent API to ensure no table is created for the new DTO. Add the

following code to the OnModelCreating method in the InventoryDbContext, following

the code we created previously for the AllItemsPipeDelimitedStringDto:

modelBuilder.Entity<GetItemsTotalValueDto>(x =>

 {

 x.HasNoKey();

 x.ToView("GetItemsTotalValues");

 });

Finally, add code to the main activity Program class, in the Main method called

GetItemsTotalValues and then implement the function to run the execution of the

function and display results:

static void GetItemsTotalValues()

{

 using (var db = new InventoryDbContext(_optionsBuilder.Options))

Chapter 7 Stored proCedureS, ViewS, and FunCtionS

307

 {

 var isActiveParm = new SqlParameter("IsActive", 1);

 var result = db.GetItemsTotalValues

 .FromSqlRaw("SELECT * from [dbo].

[GetItemsTotalValue] (@IsActive)", isActiveParm)

 .ToList();

 foreach (var item in result)

 {

 Console.WriteLine($"New Item] {item.Id,-10}" +

 $"|{item.Name,-50}" +

 $"|{item.Quantity,-4}" +

 $"|{item.TotalValue,-5}");

 }

 }

}

Run the program to get the results (review Figure 7-23).

Figure 7-23. The results from running the function

 Step 8: Seeding data with the Fluent API
Now that we can render some of the data for Categories, it’s time to put some default

data into the database. We’ll also do some default data for Genres as well as fix up the

creation of items to make our data more apparent.

When we want to have some default values that should always exist, the best place

to put these is into a seed method. We can use the seed to make sure that certain data

is placed into the tables if it doesn’t already exist. The seed will run automatically after

every call to update-database in the PMC locally, and when released to production, we’d

make sure the migrations are triggered to ensure both migrations and seeds are applied

and run.

Chapter 7 Stored proCedureS, ViewS, and FunCtionS

308

There are a couple of approaches to working with seed data. The first way we can do

this is in the Fluent API. Other than using the Fluent API, we can create seed methods

that we trigger from the OnModelCreating method where we can execute some custom

code.

Add the following code at the bottom of the OnModelCreating() method, following

the code we recently added for the GetItemsTotalValues:

modelBuilder.Entity<Genre>(x => {

 x.HasData(

 new Genre() { Id = 1, CreatedDate = DateTime.Now,

IsActive = true, IsDeleted = false, Name = "Fantasy" },

 new Genre() { Id = 2, CreatedDate = DateTime.Now,

IsActive = true, IsDeleted = false, Name = "Sci/Fi" },

 new Genre() { Id = 3, CreatedDate = DateTime.Now,

IsActive = true, IsDeleted = false, Name = "Horror" },

 new Genre() { Id = 4, CreatedDate = DateTime.Now,

IsActive = true, IsDeleted = false, Name = "Comedy" },

 new Genre() { Id = 5, CreatedDate = DateTime.Now,

IsActive = true, IsDeleted = false, Name = "Drama" }

);

 });

Right now, if we want to add that data, we need to create a migration, which would

script out the insert of this data into the database. For now, let’s hold off on that so that

we can get some categories and category colors into the database as well.

 Step 9: Rolling our own custom migrator
To roll our own migration with seed data, we need a new project. We could stub this

into the Main method of the Program file, but this would be a bad practice in the real

world (as is putting in the Items, by the way). The reason this is a bad idea is that having

the custom migration in the Main method of the executing program is only safe for

one instance at a time. Likely, your real-world application will have more than one

concurrent user.

Chapter 7 Stored proCedureS, ViewS, and FunCtionS

309

Another benefit of creating this custom project is that we can include the execution

of this project in our build pipeline, thereby making sure to run migrations on the

database at the end of our deploy process before starting up the application.

Create a new console project called InventoryDataMigrator. Reference the

InventoryDatabaseCore and InventoryHelpers projects, and bring in the NuGet

Packages for all the Entity Framework and configuration files that we’ve been using.

Note that InventoryModels will be available by the fact that it is referenced in the

InventoryDatabaseCore project. An easy way to bring in all the NuGet packages is to

open the project file and just modify it with the same ItemGroup entries that exist in the

activity console project. Use this code (making sure to match your current version if not

the same as mine):

<ItemGroup>

 <PackageReference Include="Microsoft.EntityFrameworkCore" Version="3.1.4" />

 <PackageReference Include="Microsoft.EntityFrameworkCore.Design"

Version="3.1.4">

 <PrivateAssets>all</PrivateAssets>

 <IncludeAssets>runtime; build; native; contentfiles; analyzers;

buildtransitive</IncludeAssets>

 </PackageReference>

 <PackageReference Include="Microsoft.EntityFrameworkCore.SqlServer"

Version="3.1.4" />

 <PackageReference Include="Microsoft.Extensions.Configuration.

FileExtensions" Version="3.1.4" />

 <PackageReference Include="Microsoft.Extensions.Configuration.Json"

Version="3.1.4" />

</ItemGroup>

Then build the project to bring in the packages. Once this is completed, you

could open the NuGet Package Manager and just review that everything is installed as

expected.

Make sure to put a hard copy of the appsettings.json file in your directory with the

program, so that you can get access to your database. Additionally, don’t forget to set the

file as Content with Copy to Output Directory set to Copy if newer.

Chapter 7 Stored proCedureS, ViewS, and FunCtionS

310

Leverage the setup that is in the Program.cs file of the activity project to get direct

access to the database context in the migrator project. Make sure that you add all

required using statements so the code will compile. At this point, your code should look

like this:

class Program

{

 static IConfigurationRoot _configuration;

 static DbContextOptionsBuilder<InventoryDbContext> _optionsBuilder;

 static void BuildOptions()

 {

 _configuration = ConfigurationBuilderSingleton.ConfigurationRoot;

 _optionsBuilder = new DbContextOptionsBuilder<InventoryDbConte

xt>();

 _optionsBuilder.UseSqlServer(_configuration.GetConnectionString("In

ventoryManager"));

 }

 static void Main(string[] args)

 {

 BuildOptions();

 }

}

In the Main method of your migrator project, create a new method called

EnsureAndRunMigrations. In the method, add the following code to start:

static void EnsureAndRunMigrations()

{

 using (var db = new InventoryDbContext(_optionsBuilder.Options))

 {

 db.Database.Migrate();

 }

}

Having this code would be sufficient to kick off migrations automatically, but

we also want to add custom seed data into our pipeline. To do that, add a new

Chapter 7 Stored proCedureS, ViewS, and FunCtionS

311

method call in the Main method called ExecuteCustomSeedData following the call to

EnsureAndRunMigrations call. Then write the method with code as follows:

private static void ExecuteCustomSeedData()

 {

 using (var context = new InventoryDbContext(_optionsBuilder.

Options))

 {

 var categories = new BuildCategories(context);

 categories.ExecuteSeed();

 }

 }

Now add a new class file into the migrator project called BuildCategories.cs as

named in the preceding method. In the BuildCategories class, add a method called

ExecuteSeed and a constructor that has a parameter for the InventoryDbContext. Make

sure to add any missing using statements. Additionally, you’ll need to add a private

read-only InventoryDbContext _context; statement to create a variable to hold the

value of the injected InventoryDbContext.

public class BuildCategories

{

 private readonly InventoryDbContext _context;

 public BuildCategories(InventoryDbContext context)

 {

 _context = context;

 }

 public void ExecuteSeed()

 {

 //_context.Categories.Add...

 }

}

Chapter 7 Stored proCedureS, ViewS, and FunCtionS

312

Now add the following code into the ExecuteSeed method of the BuildCategories

class:

if (_context.Categories.Count() == 0)

{

 _context.Categories.AddRange(

 new Category()

 {

 CreatedDate = DateTime.Now,

 IsActive = true,

 IsDeleted = false,

 Name = "Movies",

 CategoryColor = new CategoryColor() { ColorValue = "Blue" }

 },

 new Category()

 {

 CreatedDate = DateTime.Now,

 IsActive = true,

 IsDeleted = false,

 Name = "Books",

 CategoryColor = new CategoryColor() { ColorValue = "Red" }

 },

 new Category()

 {

 CreatedDate = DateTime.Now,

 IsActive = true,

 IsDeleted = false,

 Name = "Games",

 CategoryColor = new CategoryColor() { ColorValue = "Green" }

 }

);

 _context.SaveChanges();

 var movies = _context.Categories.FirstOrDefault(x => x.Name.ToLower().

Equals("movies"));

 var blue = _context.CategoryColors.FirstOrDefault(x => x.ColorValue.

ToLower().Equals("blue"));

Chapter 7 Stored proCedureS, ViewS, and FunCtionS

313

 movies.CategoryColorId = blue.Id;

 var books = _context.Categories.FirstOrDefault(x => x.Name.ToLower().

Equals("books"));

 var red = _context.CategoryColors.FirstOrDefault(x => x.ColorValue.

ToLower().Equals("red"));

 books.CategoryColorId = red.Id;

 var games = _context.Categories.FirstOrDefault(x => x.Name.ToLower().

Equals("games"));

 var green = _context.CategoryColors.FirstOrDefault(x => x.ColorValue.

ToLower().Equals("green"));

 games.CategoryColorId = green.Id;

 _context.SaveChanges();

}

Now, when we run the project, we’ll get migrations to execute as well as running

this seed. Note that the seed will only execute if there are no Categories in the database,

which is by design to protect from concurrent runs creating duplicates.

In the Package Manager, add a new migration with the command add-migration

Seed_Genre_Category_and_Colors. This will generate a new migration as shown in

Figure 7-24.

Figure 7-24. The migration is a script to seed data from the genres from the Fluent
Api configuration

Chapter 7 Stored proCedureS, ViewS, and FunCtionS

314

Don’t run update-database. Instead, we’ll run the migrator project we created to

both execute the migration and seed the categories and colors.

Right-click the InventoryDataMigrator project and select Debug ➤ Start new

instance. This will run to completion (review Figure 7-25).

Use SSMS to check your database to ensure that your data was inserted as expected

for Genres, Categories, and CategoryColors, with the following queries:

SELECT * from dbo.Genres

SELECT * from dbo.Categories

SELECT * from dbo.CategoryColors

SELECT * FROM __EFMigrationsHistory ORDER BY MigrationId DESC

Review your data in the database for the Genres, Categories, and CategoryColors

tables. Also note that your migration has executed in the __EFMigrationsHistory table.

If you run update-database in the PMC now, you should get the notification that all

migrations have been run (see Figure 7-26).

Figure 7-25. The InventoryDataMigrator project runs to completion to execute the
migrations and seed the data

Figure 7-26. No migrations need to be applied because our migrator project ran
them for us

Chapter 7 Stored proCedureS, ViewS, and FunCtionS

315

 Step 10: Create an Items builder
Add a new file called BuildItems.cs to your InventoryDataMigrator project,

and create a private instance variable and constructor that has a parameter for the

InventoryDbContext, just like we did in the BuildCategories class. Also stub out the

ExecuteSeed method.

public class BuildItems

{

 private readonly InventoryDbContext _context;

 public BuildItems(InventoryDbContext context)

 {

 _context = context;

 }

 public void ExecuteSeed()

 {

 //...code

 }

}

After stubbing out the class, add a method call to build the Items in the

ExecuteCustomSeedData method:

private static void ExecuteCustomSeedData()

{

 using (var context = new InventoryDbContext(_optionsBuilder.Options))

 {

 var categories = new BuildCategories(context);

 categories.ExecuteSeed();

 var items = new BuildItems(context);

 items.ExecuteSeed();

 }

}

Finally, let’s add the items we want to have in our project going forward to the

ExecuteSeed method in your database. Feel free to modify this any way you see fit or

desire.

Chapter 7 Stored proCedureS, ViewS, and FunCtionS

316

if (_context.Items.Count() == 0)

{

 var movie = _context.Categories.FirstOrDefault(x => x.Name.ToLower()

== "movies");

 var book = _context.Categories.FirstOrDefault(x => x.Name.ToLower() ==

"books");

 var game = _context.Categories.FirstOrDefault(x => x.Name.ToLower()

== "games");

 var scifi = _context.Genres.FirstOrDefault(x => x.Name.ToLower() ==

"sci/fi");

 var fantasy = _context.Genres.FirstOrDefault(x => x.Name.ToLower()

== "fantasy");

 var horror = _context.Genres.FirstOrDefault(x => x.Name.ToLower() ==

"horror");

 var comedy = _context.Genres.FirstOrDefault(x => x.Name.ToLower() ==

"comedy");

 var drama = _context.Genres.FirstOrDefault(x => x.Name.ToLower() ==

"drama");

 var createdDate = DateTime.Now;

 _context.Items.AddRange(

 new Item()

 {

 CategoryId = movie.Id,

 CreatedDate = createdDate,

 CurrentOrFinalPrice = 19.99m,

 IsActive = true,

 IsDeleted = false,

 IsOnSale = false,

 Name = "Top Gun",

 Description = "I feel the need, the need for speed",

 PurchasedDate = createdDate,

 PurchasePrice = 18.50m,

 Quantity = 1,

Chapter 7 Stored proCedureS, ViewS, and FunCtionS

317

 ItemGenres = new List<ItemGenre> {

 new ItemGenre { GenreId = comedy.Id }

 }

 },

 new Item()

 {

 CategoryId = movie.Id,

 CreatedDate = createdDate,

 CurrentOrFinalPrice = 12.99m,

 IsActive = true,

 IsDeleted = false,

 IsOnSale = true,

 Name = "Batman Begins",

 Description = "Why do we fall, Bruce?",

 PurchasedDate = createdDate,

 PurchasePrice = 14.50m,

 Quantity = 4,

 ItemGenres = new List<ItemGenre> {

 new ItemGenre { GenreId = scifi.Id } ,

 new ItemGenre { GenreId = drama.Id }

 }

 },

 new Item()

 {

 CategoryId = book.Id,

 CreatedDate = createdDate,

 CurrentOrFinalPrice = 35.99m,

 IsActive = true,

 IsDeleted = false,

 IsOnSale = true,

 Name = "Practical Entity Framework",

 Description = "The book that teaches practical application

with EF",

 PurchasedDate = createdDate,

Chapter 7 Stored proCedureS, ViewS, and FunCtionS

318

 PurchasePrice = 44.50m,

 Quantity = 100

 },

 new Item()

 {

 CategoryId = book.Id,

 CreatedDate = createdDate,

 CurrentOrFinalPrice = 6.99m,

 IsActive = true,

 IsDeleted = false,

 IsOnSale = false,

 Name = "The Lord of the Rings",

 Description = "The fellowship of the Ring",

 PurchasedDate = createdDate,

 PurchasePrice = 12.50m,

 Quantity = 7,

 ItemGenres = new List<ItemGenre> {

 new ItemGenre { GenreId = scifi.Id },

 new ItemGenre { GenreId = fantasy.Id }

 }

 },

 new Item()

 {

 CategoryId = game.Id,

 CreatedDate = createdDate,

 CurrentOrFinalPrice = 23.99m,

 IsActive = true,

 IsDeleted = false,

 IsOnSale = false,

 Name = "Battlefield 5",

 Description = "First person shooter",

 PurchasedDate = createdDate,

 PurchasePrice = 44.50m,

 Quantity = 17,

Chapter 7 Stored proCedureS, ViewS, and FunCtionS

319

 ItemGenres = new List<ItemGenre> {

 new ItemGenre { GenreId = scifi.Id }

 }

 },

 new Item()

 {

 CategoryId = game.Id,

 CreatedDate = createdDate,

 CurrentOrFinalPrice = 0.00m,

 IsActive = true,

 IsDeleted = false,

 IsOnSale = false,

 Name = "World Of Tanks",

 Description = "AN MMO WW2 Tanks First-Person Shooter",

 PurchasedDate = createdDate,

 PurchasePrice = 0.00m,

 Quantity = 1

 }

);

 _context.SaveChanges();

}

Once your code is complete, manually delete all of the items, category colors, and

categories from the Items, CategoryColors, and Categories tables from your database:

DELETE FROM CategoryColors

DELETE FROM Categories

DELETE FROM Items

Next, use the Debug ➤ Start new instance to run the migrator project to execute

the item builder seed.

Finally, remove the calls at the start of our activity program that delete and generate/

update items. Also delete the call to the GetItemsForListing method and delete the

method or comment the method out, so that the list of Items will only print once. To

finish the cleanup, delete all the unused methods for item create/update. For clarity, the

Main method from my program file is shown in Figure 7-27.

Chapter 7 Stored proCedureS, ViewS, and FunCtionS

320

Run the project to see the final result, which should look similar to the results in

Figure 7-28.

 Final thoughts
In this activity, we created a scalar-valued function and a table-valued function using

migrations in our new file-based approach.

We also continued to work with objects using the Fluent API for each of these result

sets to ensure no new tables were added to the database.

We concluded the activity by seeding data from the Fluent API and by creating a

custom solution of our own to run migrations and seed data.

Figure 7-27. The new version of the Main method no longer needs to create items

Figure 7-28. The final run of activity 0702 shows the data and working
functions

Chapter 7 Stored proCedureS, ViewS, and FunCtionS

321

 Activity 0703: Working with views
In our final activity for this chapter, we are going to work with views in our database.

Based on what we’ve learned in the previous activities, we can easily create a view. This

should almost be muscle memory by now for us.

 Step 1: Set up
To begin, continue where you’ve left off in the previous activities, or grab a copy of

the starter files Activity0703_WorkingWithViews_Starter.zip. Once you’ve opened

and built the project, make sure to run the update-database command to ensure

your database is synced up with the current migrations (or use the Debug ➤ Start

new instance on the migrator project). Additionally, run the program to ensure your

program works as expected.

it is critical that you have completed activities 0701 and 0702 before working
on this activity or that you start with the activity 0703 starter files. the code will
leverage part of the solutions as built-in activities 0701 and 0702 for scripting
database objects in migrations.

 Step 2: Add the view as a script
Begin in the InventoryDatabaseCore project by creating a new folder in the

Migrations/Scripts folder for Views. Add a new folder for ItemsWithGenres, and then

add the script ItemsWithGenres.v0.sql. Add the following code to the script:

CREATE OR ALTER VIEW ItemsWithGenres AS

SELECT i.Id, i.[Name], i.[Description], i.IsActive, i.IsDeleted

 , g.Id GenreId, g.[Name] Genre, g.IsActive [GenreIsActive],

g.IsDeleted [GenreIsDeleted]

FROM items i

LEFT JOIN ItemGenre ig on i.Id = ig.ItemId

LEFT JOIN Genres g on ig.GenreId = g.Id

again, don’t forget to set the new file as an embedded resource.

Chapter 7 Stored proCedureS, ViewS, and FunCtionS

322

 Step 3: Add the view DTO and set the view
in the InventoryDbContext
In the InventoryModels project, add a folder for Views, then create a class file called

ItemsWithGenresDto.cs, and add the properties to match the result set for the view as

scripted in step 2:

public class ItemsWithGenresDto

{

 public int Id { get; set; }

 public string Name { get; set; } = "";

 public string Description { get; set; } = "";

 public bool IsActive { get; set; } = true;

 public bool IsDeleted { get; set; } = false;

 public int? GenreId { get; set; }

 public string Genre { get; set; } = "";

 public bool? GenreIsActive { get; set; } = true;

 public bool? GenreIsDeleted { get; set; } = false;

}

Next, add the public DbSet<ItemsWithGenresDto> ItemsWithGenres {get;set;}

to the InventoryDbContext.

 Step 4: Update the Fluent API for the view
As with the procedures and functions, update the Fluent API to handle the new view

with no key and set the view to be a read-only view. Add the following code into the

OnModelCreating method, following the call that seeds Genre data.

modelBuilder.Entity<ItemsWithGenresDto>(x =>

{

 x.HasNoKey();

 x.ToView("ItemsWithGenres");

});

Chapter 7 Stored proCedureS, ViewS, and FunCtionS

323

 Step 5: Create the migration
Make sure that you’ve set the InventoryDatabaseCore project as the default in the PMC,

and then add the view into the database by running the command add-migration

CreateView_ItemsWithGenres. Note that this might ask us to update the genre data,

because we have a dynamic date/time in the create statement. Run the remove-

migration command to roll back the migration.

In the InventoryDbContext, hard-code a created date for the Genre data. We’re going

to have to update at least once (otherwise our data will get deleted or constantly ask us to

update).

var createdDate = new DateTime(2020, 01, 01);

modelBuilder.Entity<Genre>(x => {

 x.HasData(

 new Genre() { Id = 1, CreatedDate = createdDate, IsActive = true

 , IsDeleted = false, Name = "Fantasy" },

 new Genre() { Id = 2, CreatedDate = createdDate, IsActive = true

 , IsDeleted = false, Name = "Sci/Fi" },

 new Genre() { Id = 3, CreatedDate = createdDate, IsActive = true

 , IsDeleted = false, Name = "Horror" },

 new Genre() { Id = 4, CreatedDate = createdDate, IsActive = true

 , IsDeleted = false, Name = "Comedy" },

 new Genre() { Id = 5, CreatedDate = createdDate, IsActive = true

 , IsDeleted = false, Name = "Drama" }

);

});

Run the command add-migration update_genreCreatedDate. You should see an

update with the hard-coded create date for the Genre data. Update the database with

the update-database command. Now run the command add-migration CreateView_

ItemsWithGenres migration again. This time it should be blank. Lesson learned – don’t

put dynamic data in the HasData seed method in the Fluent API!

After creating the migration, add the v0 file declaration to the Up method:

migrationBuilder.SqlResource("InventoryDatabaseCore.Migrations.Scripts.

Views.ItemsWithGenres.ItemsWithGenres.v0.sql");

Chapter 7 Stored proCedureS, ViewS, and FunCtionS

324

And add the DROP VIEW IF EXISTS statement to the Down() method:

migrationBuilder.Sql("DROP VIEW IF EXISTS dbo.ItemsWithGenres");

Then update the database by running the update-database command or by right-

clicking the migrator project and selecting Debug ➤ Start new instance.

 Step 6: Make the call and get the data from the new view
In the activity’s main Program class, in the Main method, add a method call to a new

method named GetItemsWithGenres. Then, create the method, with the following code:

static void GetItemsWithGenres()

{

 using (var db = new InventoryDbContext(_optionsBuilder.Options))

 {

 var result = db.ItemsWithGenres.ToList();

 foreach (var item in result)

 {

 Console.WriteLine($"New Item] {item.Id,-10}" +

 $"|{item.Name,-50}" +

 $"|{item.Genre??"",-4}");

 }

 }

}

Finally, run the project to see the updated results. Your output should be similar to

the output shown in Figure 7-29.

Chapter 7 Stored proCedureS, ViewS, and FunCtionS

325

Figure 7-29. The output from the completed activity shows the items with their
genres using the data from the new view

 Final thoughts
In this final activity, we’ve seen how to set up a view and corrected a couple of things that

needed to be fixed up.

Like stored procedures and functions, we can create a new view with simple scripts

and then execute the scripts via migrations. Once the view is created, we can then add it

as an object and make sure it is an entity set with no key and set it to be a read-only view

using the Fluent API. Once this information is in place, it is fairly easy to get the results of

the view.

 Conclusion
In this chapter, we have spent a lot of time learning about how to work with database

objects. We’ve covered how to work with functions, views, and stored procedures. We

also dove into creating seed data and handling migrations from the Fluent API and from

our own custom solution.

In the next chapter, we’ll take our first deeper dive into working with LINQ to do

some sorting, filtering, and paging of results.

Chapter 7 Stored proCedureS, ViewS, and FunCtionS

327
© Brian L. Gorman 2020
B. L. Gorman, Practical Entity Framework, https://doi.org/10.1007/978-1-4842-6044-9_8

CHAPTER 8

Sorting, Filtering,
and Paging
In this chapter, we’re going to build on what we’ve learned in the previous seven

chapters. To this point, we have created a database using the code-first approach, and

now are ready to start working with the data in a more robust fashion.

 It’s time to learn LINQ
Now that our data is modeled and we have the InventoryDBContext in place to get the

data, we need to start learning and working with LINQ in our solutions. To be clear, LINQ

exists outside of Entity Framework, with options like LINQ to Objects, LINQ to XML,

and even LINQ to ADO.Net, so don’t make the mistake of thinking that LINQ is just for

working with the Entity Framework. For our purposes, we’re going to focus on LINQ

to Entities, which allows us to work against EF with LINQ queries. Before we move on,

however, let’s first address the elephant in the room.

 LINQ is not the problem
One of the most prevalent misconceptions about working with LINQ and EF is that using

LINQ is slow and bulky. Additionally, many developers have struggled with some of the

concepts around making LINQ performant. To answer the question, yes, absolutely,

LINQ is highly performant. The real problem is not LINQ per se. The real problem

exists with the way LINQ is implemented by the developer. As with any programming

language, if the developer doesn’t set things up correctly, the language cannot do its best

work.

https://doi.org/10.1007/978-1-4842-6044-9_8#DOI

328

 Use a profiler or another tool
There are some instances where we can instantly find and fix issues with our queries. In

other cases, we might be receiving complaints from users about pages taking too long

to load, but we didn’t realize there was a performance issue. To make sure that our code

is not causing problems, it’s critical to have some sort of tool that helps us trace through

execution and identify bottlenecks.

There are many tools available for this specific reason, with the most popular tool

being the Entity Framework Profiler. The Entity Framework Profiler is a solid tool for

determining execution bottlenecks and other issues with our code, but using it requires

purchasing a license.

When working with web solutions, there is another alternative that I highly

recommend called Stackify Prefix. Using the free version of prefix does require installing

a program on your machine and at the time of this writing only works for web solutions.

In order to work against non-web solutions, you would need to upgrade to the paid

version of the program.

Another tool that a developer could use is simply to turn on the SQL Server Profiler

to monitor calls to your database. This tool is also great for seeing what is going on with

our database calls. The main drawback is that the SQL Server Profiler can be a bit chatty

without configuration. Additionally, to get the filters set correctly so that the tool can be

used well takes a lot of practice. For our purposes, we’ll be using this tool in our activities

for this book, but I highly encourage you to check out the other available tools as well.

 Issues and solutions
In order to make sure we don’t fall into some of the more common incorrect

implementations, let’s first examine a few statements and then examine the problems

they have, as well as the way to correctly implement the code.

 Issue #1: Pre-fetching results, then iterating to filter
There are a number of things that Entity Framework does well. One of the things that

EF handles well is lazy loading results as needed. Lazy loading is essentially the art of

getting the data just in time, without pulling all the data until needed.

Chapter 8 Sorting, Filtering, and paging

329

A great example of where this takes place is when we build out queries to get data

into a list. The data from the query is only pulled when the query is executed. This

is why when you are debugging an application, you might have seen statements like

“Expanding the results view will enumerate the IEnumerable” when debugging database

calls.

Because of this implementation and the misconceptions around it, one of the most

prevalent issues when working with Entity Framework is causing these executions to

take place and then doing more work against the data that should have been done before

the execution.

Consider the following statement:

var people = db.Person.ToList().OrderByDescending(x => x.LastName);

as compared to

var query = db.Person.OrderByDescending(x => x.LastName);

var result = query.Take(10);

foreach (var person in result)

In the first example, the call to get the results ToList will bring back all the results

in the table, and then iterate those results to sort on all of the table rows, whereas in the

second query, the deferred execution allows for the query to apply the transformations

prior to the execution, thereby only needing to work with the limited results. As would be

expected, the second query can perform much better in most situations.

 Issue #2: Not disconnecting your data
We’ve already seen a few queries in our work to this point that fetched data for display.

In those queries, we did something like DBContext.Entity.ToList, where we got a list

of the objects in the database. What we maybe didn’t know at the time is that each one of

these entities in the result set has change tracking enabled. Change tracking allows the

DBContext to track the changes that have happened, so that we can perform any updates

and save changes back to the database.

If the only thing you are going to do with your data is render it for review, there is no

need to track the changes. Additionally, if you are working in a stateless environment like

the Web, when you are going to perform an update, you likely will retrieve the data to be

Chapter 8 Sorting, Filtering, and paging

330

updated again before massaging that data with the appropriate updates. Consider the

following code again, as it could be used to get a list of Person objects and display those

people on a grid for review:

var query = db.Person.OrderByDescending(x => x.LastName);

var result = query.Take(10);

foreach (var person in result)

The user would likely then select one of the Person objects to modify and then make

their changes and post that data back to the controller, where the controller would then

retrieve the Person by Id, update the fields, and then save the changes.

In this and similar scenarios, the first call could have been done in a disconnected

fashion, as is shown here:

var query = db.Person.AsNoTracking().OrderByDescending(x => x.LastName);

var result = query.Take(10);

foreach (var person in result)

It is even possible to set your Entity Framework DBContext so that all of your requests

are set to operate without change tracking. This can be accomplished by adding the

following statement to the DBContext constructor:

ChangeTracker.QueryTrackingBehavior = QueryTrackingBehavior.NoTracking;

A final thought is that any query that uses a projection to a DTO or an anonymous

class will also not be tracking an entity, since no entity exists for that DTO or anonymous

class. We’ll be taking a look at using DTOs and anonymous classes when we talk about

LINQ with projections in the next chapter.

 Issue #3: IEnumerable vs. IQueryable
Which object type should we use when creating our queries, and why? There are many

to choose from. In most queries, the end result is a collection of objects, which are often

rendered as a List<T>. As we saw in issue #1, it’s not always ideal to get the results into a

List<T>. This issue is really the same as getting items into a list too early in the process,

but by understanding the differences here, we can gain a very good understanding of

how to write the best code when working with EF.

Chapter 8 Sorting, Filtering, and paging

331

To go deeply into the difference between IEnumerable and IQueryable, the main

differences come down to when and where the code is executed. Is query execution

on the server side or in-memory? What about filtering, sorting, limiting, and/or

transforming that data? These questions are the most critical concerns we should have

when determining performance of our query. Table 8-1 shows how each of these object

types handles queries and filtering.

Looking at the table and based on our overall discussion, it should be clear by now

that lazy loading with deferred execution can generally allow for our queries to be more

performant, as well as limit our results to only include the objects that we need in scope.

The fact that the IEnumerable object requires pulling data at the onset means that

lazy loading is off the table when using an IEnumerable object such as a List<T>. The

IQueryable object, however, allows for building out your entire query, with filters, and

then on execution only getting the exact data that is needed into memory.

 Practical application
In the next part of the chapter, we’re going to be working with LINQ to build out some

real-world queries that require filtering, paging, and sorting. As we do this, we’ll take a

look at ways that work that aren’t as efficient as possible, and then we’ll fix the queries

so that we have a full command of how to write the most efficient queries we need to

accomplish the task at hand.

Table 8-1. IEnumerable vs. IQueryable

and how they each handle queries and

filtering

IEnumerable IQueryable

initial Query Server side Server side

Filtering Client side Server side

Chapter 8 Sorting, Filtering, and paging

332

 Activity 0801: Sorting, paging, and filtering
In this activity, we’re going to use LINQ to build out robust and efficient queries for use

in our applications.

In most applications, there is some requirement to display a grid or list of objects that

contains the data for each of the objects. Additionally, the application generally provides

the user an ability to sort the items and enter a text-based search for items that match

and provides the ability to page through results.

As we’ve discussed previously, we can either get all the results at once and then

filter them in memory, or we can pull only the data we need to display at the current

time. Depending on what you are trying to accomplish, there are advantages and

disadvantages in each approach to consider. As always, as the developer, it will be up to

you to make the correct choice.

For our activity, we could take some time and build out our entire Items database

with lots of records. Please feel free to do that if you’d rather continue working with our

Items database. However, in the interest of time, and to help us see the ramifications of

non-performant queries, the starter files will point to our previously installed instance

of the AdventureWorks database. If for some reason you don’t have AdventureWorks

installed, you could refer back to Chapter 2, where we were working against the existing

AdventureWorks database for more information.

 Step 1: Get the starter files for setup
Begin by getting a copy of the starter files Activity0801_Sorting_Filtering_Paging.

Open the files and build the solution out. At the start of this activity, there is nothing to

run and no database migrations are outstanding. Make sure to edit the connection string

in the appsettings.json file to ensure your database connection is set correctly for the

AdventureWorks database. If, for some reason, you’d rather just create the starter pack

yourself, you can easily do so. There isn’t much to it. Simply implement the following

instructions:

 1. Create a new .Net Core Console Project.

 2. Find the EF_Activity001 project folder from the end of Chapter 3,

copy it to your local solution directory, and add a reference to it.

Chapter 8 Sorting, Filtering, and paging

333

 3. Find the InventoryHelpers project folder from any of the projects

in Chapter 7, copy it to your local solution directory, and add a

reference to it.

 4. Add the appsettings.json file from EF_Activity001 into the

main activity project for the database connection string, and edit

the connection string to your needs. Don’t forget to make the file

as content with the action “Copy if newer.”

 5. Install each of the NuGet packages individually through the NuGet

Package Manager:

 a. Microsoft.EntityFrameworkCore

 b. Microsoft.EntityFrameworkCore.Design

 c. Microsoft.EntityFrameworkCore.SqlServer

 d. Microsoft.Extensions.Configuration.FileExtensions

 e. Microsoft.Extensions.Configuration.Json

Note: Make sure your versions match across all projects; you may

need to update EF_Activity001 to a newer version.

 6. Add the code that follows into the Program.cs class in the main

activity project, add any missing using statements, and then run

the project to validate you have no errors:

class Program

{

 private static IConfigurationRoot _configuration;

 private static DbContextOptionsBuilder<AdventureWorksContext>

_optionsBuilder;

 static void Main(string[] args)

 {

 BuildOptions();

 }

Chapter 8 Sorting, Filtering, and paging

334

 static void BuildOptions()

 {

 _configuration = ConfigurationBuilderSingleton.

ConfigurationRoot;

 _optionsBuilder = new DbContextOptionsBuilder<Adventure

WorksContext>();

 _optionsBuilder.UseSqlServer(_configuration.GetConnection

String("AdventureWorks"));

 }

}

 Step 2: Comparing two queries
To begin, let’s start by looking at the execution of two queries that will garner the exact

same results. This will give us a chance to see the difference in how queries are applied

during execution.

Create two new methods in the Main method of the program file. The first method

should be called ListPeopleThenOrderAndTake. The second method should be called

QueryPeopleOrderedToListAndTake.

static void Main(string[] args)

{

 BuildOptions();

 Console.WriteLine("List People Then Order and Take");

 ListPeopleThenOrderAndTake();

 Console.WriteLine("Query People, order, then list and take");

 QueryPeopleOrderedToListAndTake();

}

Both methods will get a result of ten People, ordered. In fact, we’ve already seen a

similar query in Chapter 2, as well as mentioned in the text for this chapter.

In the ListPeopleThenOrderAndTake method, add the following code:

static void ListPeopleThenOrderAndTake()

{

 using (var db = new AdventureWorksContext(_optionsBuilder.Options))

 {

Chapter 8 Sorting, Filtering, and paging

335

 var people = db.Person.ToList().OrderByDescending(x => x.LastName);

 foreach (var person in people.Take(10))

 {

 Console.WriteLine($"{person.FirstName} {person.LastName}");

 }

 }

}

In the QueryPeopleOrderedToListAndTake method, add the following code:

static void QueryPeopleOrderedToListAndTake()

{

 using (var db = new AdventureWorksContext(_optionsBuilder.Options))

 {

 var query = db.Person.OrderByDescending(x => x.LastName);

 var result = query.Take(10);

 foreach (var person in result)

 {

 Console.WriteLine($"{person.FirstName} {person.LastName}");

 }

 }

}

Make sure that you’ve added any missing using statements; then run the code to

ensure that both are returning the same ten records. Your results should be similar to

what is shown in Figure 8-1.

Chapter 8 Sorting, Filtering, and paging

336

 Step 3: Perform a server analysis on the code we just
wrote
As we’ve seen, both queries perform fairly well in these examples, and both return the

exact same results. Therefore, we must ask, are these two queries equally effective and

efficient when it comes to the implementations?

To find out, let’s perform an analysis. In SSMS, turn on the tool to profile your

server calls by going to Tools ➤ SQL Server Profiler. Enabling SQL Server Profiler is

highlighted in Figure 8-2 for clarity.

Figure 8-2. Bring up the SQL Server Profiler with the menu item in SSMS

Figure 8-1. The results of running both methods

Chapter 8 Sorting, Filtering, and paging

337

After bringing up the profiler, connect to your local database, or whatever database

connection you are using for the AdventureWorks database. Connecting to a SQLExpress

database is shown in Figure 8-3. Make sure to use the correct server based on your

implementation.

After connecting, you could name your Trace, or just hit Run. Either way, hit Run to

start the trace (see Figure 8-4).

Figure 8-3. Connect to the database

Chapter 8 Sorting, Filtering, and paging

338

Once the trace is running, you’ll see anything that hits your database for operations

against the datastore (review Figure 8-5).

At any point, you can clear the trace window by hitting the eraser button on the

toolbar (as shown in Figure 8-6).

Figure 8-4. Start a new trace; optionally, name it something useful if you would
like

Figure 8-5. The SQL Server Profiler trace is listening for events

Chapter 8 Sorting, Filtering, and paging

339

Once you have cleared out your window, go back to the code and place breakpoints

on the start of each method and the end of each method. This will help us to easily track

the code that is executed in each statement (see Figure 8-7).

Because SQl Server is running, you may get notifications about locks and audits
periodically in the window. While these can be filtered out, you can always just
clear the window before running your code.

Figure 8-6. Use the eraser button to clear the trace

Figure 8-7. The code with breakpoints, ready for profiling

Chapter 8 Sorting, Filtering, and paging

340

Run the code, and make sure to clear the profiler before running the queries. Make

sure to review the SQL Server Profiler often to see the queries as we build out this

activity. A sample of the output is shown in Figure 8-8.

Here, we see the first query as sent to SQL Server for getting results. If we click

the query, we can see the direct query in the window below the log. Also note that it

looks like the query executed twice. It did not. What we’re seeing is the start and end of

the batch request. The BatchCompleted entry (highlighted in the figure) contains the

execution time, reads, and other information about the query. Drilling into the entry to

get the query text is shown in Figure 8-9.

While your numbers may be different than mine (i.e., 3821 reads and execution

duration of 1490 is unique to my run), your query text should be exactly the same as mine.

Let’s execute that query text in our SQL Server with a new query to the database

directly to see the results for ourselves.

Right-click your AdventureWorks database entry in SSMS and select New Query to

open a new query window. Copy and paste the query from the Profiler into the window.

The query should be as follows:

SELECT [p].[BusinessEntityID], [p].[AdditionalContactInfo], [p].

[Demographics], [p].[EmailPromotion], [p].[FirstName], [p].[LastName], [p].

[MiddleName], [p].[ModifiedDate], [p].[NameStyle], [p].[PersonType], [p].

[rowguid], [p].[Suffix], [p].[Title]

FROM [Person].[Person] AS [p]

Figure 8-8. The first query profiled in the SQL Server Profiler

Figure 8-9. The first query as executed according to the profiler

Chapter 8 Sorting, Filtering, and paging

341

Run the query to see the results (as is shown in Figure 8-10).

Important notes here, for my query, are that the execution took about a second and

returned nearly 20,000 rows. That’s pretty much to be expected when pulling all people

into a list.

Clear out the profiler again and continue through the second query (review

Figure 8- 11).

Figure 8-10. The results of the query

Figure 8-11. The second method as executed and profiled in the SQL Server Profiler

Chapter 8 Sorting, Filtering, and paging

342

Running through the second query provides the following in the SQL Server Profiler

showing that a stored procedure was executed and here we have only 41 reads with a

duration of 1. Again, your execution times may vary, but your query should be

exec sp_executesql N'SELECT TOP(@__p_0) [p].[BusinessEntityID], [p].

[AdditionalContactInfo], [p].[Demographics], [p].[EmailPromotion], [p].

[FirstName], [p].[LastName], [p].[MiddleName], [p].[ModifiedDate], [p].

[NameStyle], [p].[PersonType], [p].[rowguid], [p].[Suffix], [p].[Title]

FROM [Person].[Person] AS [p]

ORDER BY [p].[LastName] DESC',N'@__p_0 int',@__p_0=10

Take that code and run it in the SSMS query window to see it perform there as well

(as shown in Figure 8-12).

Figure 8-12. The second query as profiled shows a much better performance, as
well as only the results we wanted

Chapter 8 Sorting, Filtering, and paging

343

Here we can easily see that only returning the ten results we wanted is much more

efficient. Additionally, the ordering was done for the result set on the server, not in

memory.

Clearly, how we write our queries matters when working with Entity Framework. Just

getting the results we want does not always mean we are using EF correctly.

 Step 4: Filtering our results
By now we should know that pulling code into a list before doing sorting and filtering is a

bad thing. For that reason, we won’t be pulling into a list until the end of the query from

this point on. If you want to prove it out, however, feel free to repeat a similar test run to

what we have done previously.

As with most things, it will be up to you as the developer to find the correct approach

to what your system needs. For this next part, we’ll be filtering by partial name or by the

Person Type. In your real-world applications, you will likely need to allow the user to

give you input to filter results in a manner similar to this approach.

Add code in the Main method to add a statement to ask the user for a search term,

and then use that term in a method called FilteredPeople:

Console.WriteLine("Please Enter the partial First or Last Name, or the

Person Type to search for:");

var result = Console.ReadLine();

FilteredPeople(result);

In the FilteredPeople(string filter) method, use the following code with a

LINQ statement to correctly filter the results before pulling into a List for reviewing the

results:

static void FilteredPeople(string filter)

 {

 using (var db = new AdventureWorksContext(_optionsBuilder.

Options))

 {

 var searchTerm = filter.ToLower();

 var query = db.Person.Where(x => x.LastName.ToLower().

Contains(searchTerm)

 || x.FirstName.ToLower().

Contains(searchTerm)

Chapter 8 Sorting, Filtering, and paging

344

 || x.PersonType.ToLower().

Equals(searchTerm));

 foreach (var person in query)

 {

 Console.WriteLine($"{person.FirstName} {person.

LastName}, {person.PersonType}");

 }

 }

 }

Now run the code to ensure it works, entering some text to filter, such as "Gonza" or

"Mich" or "VC" (review Figure 8-13 to see sample results).

Grabbing the query from SQL Server Profiler yields the following query that was

executed on the server:

exec sp_executesql N'SELECT [p].[BusinessEntityID], [p].

[AdditionalContactInfo]

, [p].[Demographics], [p].[EmailPromotion], [p].[FirstName], [p].[LastName]

, [p].[MiddleName], [p].[ModifiedDate], [p].[NameStyle], [p].[PersonType]

, [p].[rowguid], [p].[Suffix], [p].[Title]

FROM [Person].[Person] AS [p]

Figure 8-13. Searching for anyone with a partial name match to Gonza

Chapter 8 Sorting, Filtering, and paging

345

WHERE (((@__searchTerm_0 = N'''')

OR (CHARINDEX(@__searchTerm_0, LOWER([p].[LastName])) > 0))

OR ((@__searchTerm_0 = N'''')

OR (CHARINDEX(@__searchTerm_0, LOWER([p].[FirstName])) > 0)))

OR (LOWER([p].[PersonType]) = @__searchTerm_0)',N'@__searchTerm_0

nvarchar(50)'

,@__searchTerm_0=N'gonza'

This shows that the query was filtered by lower based on the search term I sent in

from the previous query. Running the code shows some 288 results. Figure 8-14 shows

the query with results.

Run a couple more to see the results you would expect and validate that the query is

working.

Figure 8-14. The results of the filtered query

Chapter 8 Sorting, Filtering, and paging

346

Now you might be asking about SQL Injection at this point. What happens if I search

for O'Brien, for example, or try to run some other malicious code in my search term?

Figure 8-15 gives a look at an attempt at SQL Injection.

This renders the following query:

exec sp_executesql N'SELECT [p].[BusinessEntityID], [p].

[AdditionalContactInfo], [p].[Demographics], [p].[EmailPromotion], [p].

[FirstName], [p].[LastName], [p].[MiddleName], [p].[ModifiedDate], [p].

[NameStyle], [p].[PersonType], [p].[rowguid], [p].[Suffix], [p].[Title]

FROM [Person].[Person] AS [p]

WHERE (((@__searchTerm_0 = N'''') OR (CHARINDEX(@__searchTerm_0, LOWER([p].

[LastName])) > 0)) OR ((@__searchTerm_0 = N'''') OR (CHARINDEX(@__

searchTerm_0, LOWER([p].[FirstName])) > 0))) OR (LOWER([p].[PersonType]) =

@__searchTerm_0)',N'@__searchTerm_0 nvarchar(50)',@__searchTerm_0=N'o''bri'

And we can see that the search term is indeed protected from the single quote,

suggesting that our LINQ query is parameterized. Even so, it’s still our responsibility to

make sure that this is the case.

As an additional test, we could try the old standard - passing the text “' or 1=1

--” into the search filter to see if our query returns filter results or all the results in the

database. When the query does not return all the results, we can have some assurance

that our query is working as expected without being open to SQL Injection.

Figure 8-15. Seeing what happens if adding key characters to our filter

Chapter 8 Sorting, Filtering, and paging

347

 Step 5: Paging the filtered results
Even with filtering in place, we saw that our results contained some 288 results in the

previous query. While there may be some instances where you would be fine with

returning all of these results (your UI control handles paging well and won’t freeze up

with large result sets), it is often ideal to just page the results and get only the records

being rendered to the user at the time of the request.

To do this easily, we can further modify our LINQ query from step 4. Add a new

method that uses the same search term for simplicity. Call the method FilteredAndPag

edResult([filter], [pageNumber], [pageSize]). Write the method to take the string

filter as before, this time also returning a number of records equal to page size and the

results from the expected page.

To prove it out, just do a for loop around the call in the Main method to simulate

paging. Add a breakpoint to the database call to see each page in action. Use a page size

of 5, 10, 15, 20, or 25. For even more fun, make sure to order the results by Last Name so

that they are not just filtered but also sorted and paged.

int pageSize = 10;

for (int pageNumber = 0; pageNumber < 10; pageNumber++)

{

 Console.WriteLine($"Page {pageNumber + 1}");

 FilteredAndPagedResult(result, pageNumber, pageSize);

}

When making the call, we can see paged results as expected. Please note that if you

do a more extensive search, the code as written will print out page numbers with no

results. If you don’t like that functionality, you could move the printout of the page to the

method and only show the page number if there are results to print.

static void FilteredAndPagedResult(string filter, int pageNumber, int

pageSize)

{

 using (var db = new AdventureWorksContext(_optionsBuilder.Options))

 {

 var searchTerm = filter.ToLower();

 var query = db.Person.Where(x => x.LastName.ToLower().

Contains(searchTerm)

Chapter 8 Sorting, Filtering, and paging

348

 || x.FirstName.ToLower().

Contains(searchTerm)

 || x.PersonType.ToLower().

Equals(searchTerm))

 .OrderBy(x => x.LastName)

 .Skip(pageNumber * pageSize)

 .Take(pageSize);

 foreach (var person in query)

 {

 Console.WriteLine($"{person.FirstName} {person.LastName},

{person.PersonType}");

 }

 }

}

And the result as rendered when searching for “Gonz” is shown in Figure 8-16.

Figure 8-16. The result when searching with filtered and sorted and paged
results

Chapter 8 Sorting, Filtering, and paging

349

Again, it is critical to inspect your queries in the profiler to make certain they

are performing as expected. The paging method makes multiple calls, as we would

anticipate, each one limited to the correct set of results. The final query looked as follows

for me during execution:

exec sp_executesql N'SELECT [p].[BusinessEntityID], [p].

[AdditionalContactInfo], [p].[Demographics], [p].[EmailPromotion], [p].

[FirstName], [p].[LastName], [p].[MiddleName], [p].[ModifiedDate], [p].

[NameStyle], [p].[PersonType], [p].[rowguid], [p].[Suffix], [p].[Title]

FROM [Person].[Person] AS [p]

WHERE (((@__searchTerm_0 = N'''') OR (CHARINDEX(@__searchTerm_0, LOWER([p].

[LastName])) > 0)) OR ((@__searchTerm_0 = N'''') OR (CHARINDEX(@__

searchTerm_0, LOWER([p].[FirstName])) > 0))) OR (LOWER([p].[PersonType]) =

@__searchTerm_0)

ORDER BY [p].[LastName]

OFFSET @__p_1 ROWS FETCH NEXT @__p_2 ROWS ONLY',N'@__searchTerm_0

nvarchar(50),@__p_1 int,@__p_2 int',@__searchTerm_0=N'gon',@__p_1=90,@_

_p_2=10

By validating this approach, we can see that EF is highly performant against large

database tables as long as our queries are written correctly. To see how much worse the

performance could have been, you could try that last method by pulling to a list first and

then doing the filtering, ordering, and paging on the results.

Just imagine the performance hit you would have if you made the call for every page

in this code, pulling back all nearly 20,000 records. Then, only after getting all 20,000

records on each iteration, perform another operation to further filter down to just the 10

records you need on every page this is displayed to the UI.

 Step 6: Disconnecting the result sets
For the next part of this activity, I want to go back to one other issue we mentioned

previously. For every single result we pulled back in this application, we did not need to

keep tracking in place.

To make our queries as lightweight as possible, therefore, we can simply add the

.AsNoTracking() statement to each query, right after the db.Person statement. Go

ahead and do that now. Search for db.Person in your code, and replace with db.Person.

AsNoTracking.

Chapter 8 Sorting, Filtering, and paging

350

Run the code again to validate it works. If you continue to profile the code, you

may see some performance increases in the duration column, but they are likely not

extremely noticeable on the IQueryable methods.

Another thing we could do is disable the tracking completely on the entire context.

Locate the AdventureWorksContext in the EF_Activity001 project, and add the

following to the public constructors:

ChangeTracker.QueryTrackingBehavior = QueryTrackingBehavior.NoTracking;

Setting the entire context to avoid tracking behaviors is shown in Figure 8-17.

At this point, running the project will still work, and the results should again be

essentially as performant as possible.

 Final thoughts
In this activity, we’ve seen how to use sorting, filtering, and paging to refine our results.

By making certain to optimize our query formation, we’ve set up our Entity Framework

instance to optimize for both performance and functionality when working against a

large dataset.

Figure 8-17. Turning off tracking for the entire context

Chapter 8 Sorting, Filtering, and paging

351

 Final thoughts for this chapter
This chapter gave us our first deep dive into working with LINQ, and specifically

working with LINQ to Entities. We still have a lot to learn when it comes to LINQ, but

with the knowledge we gained in this chapter, we now understand the impact that a few

differences in how things are coded can work. The main takeaways from this chapter are

• Make sure to perform the execution of the queries at the latest

possible opportunity in the codebase.

• Remember to disable change tracking when entities do not need to

stay connected for tracking in the DBContext.

• When working with LINQ to Entities and the Entity Framework in

general, make sure to use some sort of profiler to help examine the

actual queries you are executing on the database.

In the next chapter, we’ll continue looking at how we can use LINQ to get results

from our database into disconnected DTO objects using projections and anonymous

classes.

Chapter 8 Sorting, Filtering, and paging

353
© Brian L. Gorman 2020
B. L. Gorman, Practical Entity Framework, https://doi.org/10.1007/978-1-4842-6044-9_9

CHAPTER 9

LINQ for Queries
and Projections
 Data in the real world
In this chapter, we are going to learn how to use queries in complex scenarios to get

the data we want. To this point, we’ve worked with the database in a fairly superficial

manner. As this is a book on practical application of the concepts, we really need to

experience working with data in real-world scenarios.

Often, when working with data, there will be a need to perform join operations

across multiple tables and then use that data in some manner. There are a couple of

approaches that we can employ in these scenarios.

 LINQ vs. stored procedures
In the past, we would simply create views and stored procedures to make all the joins

and then rely on the database server to optimize the execution plans for these scenarios.

With LINQ, we are able to command the server to perform the joins and get the data

just as easily as if we had written a stored procedure. The benefits of using LINQ include

the fact that we can be much more flexible, with the ability to simply change a few things

here and there to get a more advanced result set. By using LINQ, we also avoid having

to rewrite or modify an entire stored procedure and, along with that, avoid the necessity

of going through the governance channels that are involved in pushing changes to the

production database.

There are a couple of drawbacks to this approach, however. The major thing to

consider is what was discussed earlier – execution plans. With stored procedures, the

server itself will store a cached execution plan. This means that while you still have

https://doi.org/10.1007/978-1-4842-6044-9_9#DOI

354

the pain of the first execution runtime, the second and consecutive executions of that

stored procedure should be more efficient. LINQ does not allow the server to store up an

execution plan, so each query must be treated like a new execution on the server. Even

with optimized queries, the loss of the execution plan might be enough to consider using

a stored procedure in some instances.

 Complex data and the code-first approach
After getting our data from these complex join queries, either via a stored procedure or

through LINQ queries, we need to be able to pass it to our controller or view layers or, at

minimum, to some other layer where the data will be utilized.

When we built out our models in the code-first approach, we were able to quickly

create the exact structures that we wanted to exist in our database. With data being

returned from our database from a complex query, we’re not going to want to have a

table or other structure that is directly modeled in the code-first approach.

A couple of options exist for us, which would allow us to use that data efficiently.

As with any system, you, as the developer, should consider the best approach for your

system. Additionally, you’ll want to make sure any architecture decisions you make are

based on the standards of your organization.

The first approach you could easily take is to just keep adding models to your Models

project. Another approach you could take is to modify some of the existing models to

hold transformed data. Always remember that unless you create direct dependencies

and/or add the model to the DBContext, in the code-first approach, a model can exist

without needing to be migrated into the database. Furthermore, on existing models that

you have, simply adding the data annotation [NotMapped] to any field will allow you

to add fields that do not get placed into the database, even if the model is part of the

database schema.

While this approach works well, and may even be the desired approach in your

current system, I would advise against using this strategy. There are two downfalls to this

approach that I simply prefer to avoid. They both relate to confusion and maintainability

in the future.

First of all, having fields that are NotMapped in your models, just clutter them up with

more fields, while also making it so, the model and the database itself are not in a one-to-

one synchronized relationship. Again, it’s not necessary to map fields one to one in the

Chapter 9 LINQ for QuerIes aNd projeCtIoNs

355

model to what’s in the table, but it becomes more confusing in the long run, especially

over time and as the models continue to change.

The second issue with this approach is that your Models project can start to

experience class explosion, and, as with the first problem, now you’ll have entire classes

that don’t map to the database, which can add yet another layer of confusion.

 DTOs, view models, or domain models
Before I get hate mail, let’s clear a few things up. DTOs, View Models, and Domain

Models are not the same thing and generally should not be used in an interchangeable

manner. Clearly, each has a specific purpose. For example, you can have view models

that don’t map to any database objects at all, with a primary purpose of just mapping

information for user interaction on a screen. You might also see domain models that

could be the result of data from multiple models interacting with each other for some

specific behavior. DTOs, on the other hand, could just be a simple way to map fields from

one data type to another. So yes, these three objects are not even close to the same thing.

That being said, when I’m talking about DTOs for the rest of this chapter, a DTO could

be substituted in your system with a view model or a domain model, if that’s what makes

sense for your system.

 Decoupling your business or view logic from the
database
One of the better approaches is to create DTO objects that map the data needed for the

next layer of the system to a class specifically molded to meet the needs of the business

or view logic. We generally would place these DTOs in some sort of stand-alone project

or at least at some layer of the architecture that is separate from the database Models

project.

By placing the data into specific DTOs in a separate project, we can be much more

granular about the structure and application of these objects. This solves the problems

created previously with having too many classes and fields in the Models project and

classes, respectively. In the end, our business logic or view layer logic is then decoupled

from our database logic, which is a very good thing.

Chapter 9 LINQ for QuerIes aNd projeCtIoNs

356

 Sometimes, a pre-defined object is overkill
In some cases, going to the trouble of creating a DTO object is not practical and can lead

to excessive overhead in our projects. When it’s our data and we want it now, but we

don’t want to build out yet another class to hold that modeled data, we can perform an

operation known as projecting the data into an anonymous classes (or anonymous types).

Anonymous classes were introduced in C# 2.0, so they’ve been around for some

time now. Likely you’ve seen some sort of application where an anonymous class was

defined for quick use within a method or class body. A simple anonymous class for an

Item type might look like this:

var item = new { Name = "ROG Strix Scar II", Brand = "Asus", Price =

2199.99 };

In that declaration, a new anonymous class was created and assigned to the item

variable. If we wanted, we could then use that object just like any other class while it

remained in scope. For example, we could write out the details of the item with calls to

item.Name and item.Brand.

Putting that knowledge to use, we can easily see how it would be easy to use LINQ to

get some data and then combine that with the ability to create a new anonymous type to

model that data.

For example, a simple query against the Person table in the AdventureWorks

joined to the Employee table, then joined to the SalesPerson table, further joined to

OrderHeaders, then OrderDetails, and all the way through to Product could yield some

great results which we might want to map to just have access to the fields Product.Name,

SalesPerson.FirstName, OrderHeader.OrderDate, and others. That kind of interaction

can easily be accomplished using LINQ and anonymous types in a query similar to this

one:

var salesReportDetails = db.SalesPerson.Select(sp => new

{

 beid = sp.BusinessEntityId,

 sp.BusinessEntity.BusinessEntity.FirstName,

 sp.BusinessEntity.BusinessEntity.LastName,

 sp.SalesYtd,

 Territories = sp.SalesTerritoryHistory.Select(y => y.Territory.Name),

 OrderCount = sp.SalesOrderHeader.Count(),

Chapter 9 LINQ for QuerIes aNd projeCtIoNs

357

 TotalProductsSold = sp.SalesOrderHeader.SelectMany(y =>

y.SalesOrderDetail).Sum(z => z.OrderQty)

}).Where(srds => srds.SalesYtd > filter).AsQueryable()

 .OrderBy(srds => srds.LastName).ThenBy(srds => srds.FirstName).

ThenByDescending(srds => srds.SalesYtd)

 .Take(20).ToList();

 One tool to rule them all
Anytime we have fully modeled our DTO objects and perform a bunch of queries, we’d

run into the same problem. At some point, we’d be manually creating an instance of

some DTO object and then mapping each field, one by one to the DTO object from either

a model or an anonymous type.

While this approach works, like many others, it is not the best solution. For one

thing, writing line after line of code to map one object to another object that is often

nearly identical in structure is tedious. This approach also can lead to errors where the

programmer accidentally copies and pastes the field mappings and forgets to update

one or two so that now the field has incorrect or no data in it. This is where AutoMapper

comes in like Mighty Mouse, singing “Here I come to save the day!” Even so, even

AutoMapper runs into some limburger cheese every now and then.

 AutoMapper
The most successful tool available today that correctly translates objects from one type to

another is AutoMapper, which is available here: www.nuget.org/packages/automapper/.

In addition to the ability to correctly map one type to another, AutoMapper has an

even niftier ability to project data from LINQ queries directly into their types, thereby

even skipping the step of getting the data into one type and then calling AutoMapper’s

Map<T> function. Don’t worry if this is unclear right now; as we work through the

following activities, we’ll understand more about what is going on.

While it is unmistakably the best tool for the job, highly performant, and simple to

use for mappings and projections, the main issue I’ve run into with AutoMapper is the

complexity of getting set up to use the tool correctly in a project. Once you get past the

initial setup (correctly) and then learn a couple of quick tricks about how the tool syntax

works to automatically map identically named fields while providing ways to code for the

Chapter 9 LINQ for QuerIes aNd projeCtIoNs

http://www.nuget.org/packages/automapper/

358

exceptions to the rule (i.e., mapping fields that don’t have the same name), the value of

AutoMapper easily becomes worth the initial price point, which is free, with an ounce

of pain. By the time we complete this chapter, I imagine you will think of AutoMapper

as the friend that you don’t really want to talk to, but have to rely on in your most critical

times of need.

 Chapter 9 Activities: Using LINQ, decoupled
DTO classes, projections, anonymous types,
and AutoMapper
In the activities for this chapter, we’re going to build out a solution to use LINQ to

perform some more complex queries against the AdventureWorks database. We’ll then

see the differences between different approaches to working with LINQ with projections

to anonymous types while considering the performance implications of each choice we

make.

After getting through the more advanced interactions with LINQ, we’ll move back to

our inventory project, where we’ll set up AutoMapper.

We’ll then finish up with a look at using AutoMapper to project our data from one

type to another, making sure to spend some time working with directly and indirectly

mapped fields.

 Activity 0901: Working with LINQ in complex
queries
For our first activity, we’re going to dive a lot deeper into working with LINQ in our

projects. To this point, we’ve seen some of the really great features of LINQ with the

ability to quickly select IEnumerable or IQueryable result sets, and we’ve learned how

to chain commands to filter, sort, and apply other transformations. However, we’ve not

spent a lot of time working across table joins.

As we start joining tables, we’ll be bringing more data into the result sets than we’ll

likely need to send back for use by the calling program. As we then start working with

this data, not only will we need to combine the results of different tables, but we’ll want

to pare them down to contain only specific pieces of information.

Chapter 9 LINQ for QuerIes aNd projeCtIoNs

359

There are a couple of ways we can pare things down, with the first being that we can

just select everything and then manually transform that data in memory into some sort

of DTO object for transmission. The other option is we can limit our queries to get just

the right amount of information for our results and then send that information in some

sort of DTO object. As we’ve seen before, the more we can form our queries, the better

we can expect our performance to be.

 Step 1: Get set up
The easiest way to get going on this project is to just grab the starter files Activity_0901_

QueriesAndProjections_Starter.zip. After getting the files, make sure to confirm that

the connection strings are pointed to your local version of the AdventureWorks database,

and then build the project and run it. You’ll be prompted to view all salespeople, and

entering a “y” will show the results as seen in Figure 9-1.

Figure 9-1. The initial run of the activity files is shown, with no useful output

Chapter 9 LINQ for QuerIes aNd projeCtIoNs

360

As we can see, that’s not very useful.

Note, as an alternative to the starter pack, you could just create a new .Net Core

Console application and follow these steps to get your project to the same state as the

setup files:

 1. Get the EF_Activity001 project folder from the end of activity

0801 and place it in the same directory as your new solution, and

then reference the project in the new console application.

 2. Get the InventoryHelpers project folder from the end of activity

0801 and place it in the same directory as your new solution, and

then reference the project in the new console application.

 3. Use the NuGet Package Manager to ensure that the new console

project has a reference to each of the following NuGet packages:

 a. Microsoft.EntityFrameworkCore

 b. Microsoft.EntityFrameworkCore.Design

 c. Microsoft.EntityFrameworkCore.SqlServer

 d. Microsoft.Extensions.Configuration.FileExtensions

 e. Microsoft.Extensions.Configuration.Json

 4. Copy the appsettings.json file from the EF_Activity001 project

and place it in the folder with the new project. Make sure to set

the file as Build Action ➤ Content, Copy to Output Directory:

Copy if newer.

 5. Use the code that follows to set up the Program.cs file in your new

project:

class Program

{

 static IConfigurationRoot _configuration;

 static DbContextOptionsBuilder<AdventureWorksContext>

_optionsBuilder;

 static void BuildOptions()

 {

Chapter 9 LINQ for QuerIes aNd projeCtIoNs

361

 _configuration = ConfigurationBuilderSingleton.

ConfigurationRoot;

 _optionsBuilder = new DbContextOptionsBuilder<Adventure

WorksContext>();

_optionsBuilder.UseSqlServer(_configuration.GetConnectionString

("AdventureWorks"));

 }

 static void Main(string[] args)

 {

 BuildOptions();

 Console.WriteLine("Would you like to view all salespeople?

[y/n]");

 var input = Console.ReadLine();

 if (input.StartsWith("y", StringComparison.

OrdinalIgnoreCase))

 {

 ShowAllSalesPeople();

 }

 }

 private static void ShowAllSalesPeople()

 {

 using (var db = new AdventureWorksContext(_optionsBuilder.

Options))

 {

 var salesPeople = db.SalesPerson.Take(20).ToList();

 foreach (var sp in salesPeople)

 {

 Console.WriteLine(sp);

 }

 }

 }

}

Chapter 9 LINQ for QuerIes aNd projeCtIoNs

362

 Step 2: Start getting more useful results, and find some
limitations
Find the SalesPerson.cs file in the EF_Activity01 project, and add a new ToString

override method using the following code:

public override string ToString()

{

 return $"BID: {BusinessEntityId} | TID: {TerritoryId} | Quota:

{SalesQuota} | Bonus: {Bonus} | YTDSales: {SalesYtd}";

}

Run the project. The results are still not useful (review Figure 9-2).

Figure 9-2. Getting salesperson results with an overridden ToString method shows
more information but is still not very useful

Before we do this correctly, I want to highlight a way that works, but is not going to

be the best solution. Return to the Program.cs file and locate the ShowAllSalesPeople

method. Replace the original loop with the code as follows:

foreach (var sp in salesPeople)

{

 var x = db.Person.FirstOrDefault(x => x.BusinessEntityId ==

sp.BusinessEntityId);

Chapter 9 LINQ for QuerIes aNd projeCtIoNs

363

 if (x != null)

 {

 Console.WriteLine($"{sp} | {x.LastName}, {x.FirstName}");

 }

}

Run the code to see the output (see Figure 9-3).

Figure 9-3. The output with the sales person’s name included

Do you see the problem with the working solution? If not, recall our use of the SQL

Profiler in Chapter 8. Go ahead and turn on the profiler and watch your queries run for

the preceding code to see the issue with this solution (review Chapter 8 for information

on working with the SQL Profiler in SSMS). Figure 9-4 shows the output from this query

to help illuminate the problem.

Chapter 9 LINQ for QuerIes aNd projeCtIoNs

364

Reviewing the output shows what is known as an n+1 error where for each element

we are doing another query. If you reverse it, you might understand it more easily –

there is one query to get all results and then one more query for every result (n queries),

resulting in n + 1 total queries. Here, we limited the query to 20 results, so we had 21 total

queries. We need to fix this problem.

 Step 3: Use navigation properties to get results
As a code-first developer, our first approach should be to attempt to use navigation

properties to get more useful information. Therefore, let’s try to get the first and last

name of the SalesPerson using navigation properties. Because AdventureWorks has a lot

of stuff going on across multiple schemas, we need to be sure to double-check relations

to use navigations correctly. The SalesPerson navigation for BusinessEntity will

map to HumanResources.Employee, which also has a navigation for BusinessEntity to

Person, where the first and last name of the person can be found. Therefore, we go from

Figure 9-4. SQL Profiler shows that our previous solution is making too many
database calls

Chapter 9 LINQ for QuerIes aNd projeCtIoNs

365

SalesPerson to Employee to Person using the BusinessEntity property of each object.

Because of this, our code will look repetitive. Review the database diagram shown in

Figure 9-5.

With this knowledge, our navigation would look like

SalesPerson.BusinessEntity.BusinessEntity.FirstName

to get to the Person.FirstName from a SalesPerson object. This is not ideal, but it

works.

In the Program.cs file of the main project, in the ShowAllSalesPeople method,

replace the working loop with a new loop as defined in the following code:

foreach (var sp in salesPeople)

{

 Console.WriteLine($"{sp} | {sp.BusinessEntity.BusinessEntity.LastName}" +

 $", {sp.BusinessEntity.BusinessEntity.

FirstName}");

}

Run the program to see what happens (see Figure 9-6).

Figure 9-5. The SalesPerson is linked to the Person table via the Employee table
with three different schemas

Chapter 9 LINQ for QuerIes aNd projeCtIoNs

366

As we can see, this solution is not yet working. Since we never told our LINQ query

to populate the navigations for Employee and Person, they are both null. While we might

hope that EF would just let us do this and populate our results, it does not automagically

happen when we’ve coded a direct reference to this navigation.

Fortunately, we can tell LINQ up front that we will be using these navigations. Modify

the original query to the following code:

var salesPeople = db.SalesPerson

 .Include(x => x.BusinessEntity)

 .ThenInclude(y => y.BusinessEntity)

 .Take(20).ToList();

Now rerun the program to see results. The results should be the same as before (see

Figure 9-3). The difference now is that we have better performance.

Make sure to review the SQL Profiler to validate the improvement in our overall code

(for more information, see Figure 9-7).

Figure 9-7. The SQL Profiler shows that our code is now only running one query
to get all the results with related table information included

Figure 9-6. The navigation properties are not filled, so we get a null reference
exception

Chapter 9 LINQ for QuerIes aNd projeCtIoNs

367

This is looking much better. But is this the best solution available? Do we really need

all that information? Look more closely at the query, and take note of the fact that all

the fields from SalesPerson, Employee, and Person are being returned, even though

we aren’t using the majority of them. To get even more efficient results, we need to start

using projections.

 Step 4: Use projections to get more efficient queries
To start with the idea of projections, let’s consider what they are, and why they are going

to help us. Projections are just a way for us to use anonymous classes to model results

from a query. With LINQ, we can use the Select operator and then define the projection

right in our query. Before we do that, we should decide exactly what data we want to

return.

For our code, let’s get the salesperson’s first and last name and then their quota,

YTD sales, sales last year, and bonus. Let’s also get the BusinessEntityId from the

SalesPerson table, just in case we need that for modification or other purposes.

Add a new private static method in the Program.cs file called

ShowAllSalesPeopleUsingProjection:

private static void ShowAllSalesPeopleUsingProjection()

{

 using (var db = new AdventureWorksContext(_optionsBuilder.Options))

 {

 //code here...

 }

}

In the using statement, replace the comment //code here… with the following query:

var salesPeople = db.SalesPerson

 .Include(x => x.BusinessEntity)

 .ThenInclude(y => y.BusinessEntity)

 .Select(x => new {

 x.BusinessEntityId,

 x.BusinessEntity.BusinessEntity.FirstName,

 x.BusinessEntity.BusinessEntity.LastName,

 x.SalesQuota,

Chapter 9 LINQ for QuerIes aNd projeCtIoNs

368

 x.SalesYtd,

 x.SalesLastYear

 }).ToList();

After the query, use the following for loop to print out the information from the

anonymous type:

foreach (var sp in salesPeople)

{

 Console.WriteLine($"BID: {sp.BusinessEntityId} | Name: {sp.LastName}" +

 $", {sp.FirstName} | Quota: {sp.SalesQuota} | " +

 $"YTD Sales: {sp.SalesYtd} | SalesLastYear {sp.

SalesLastYear}");

}

In the main program, add a statement to get all the sales people using projections,

and respond to the user input, calling the method when directed:

Console.WriteLine("Would you like to view all salespeople using

projections? [y/n]");

input = Console.ReadLine();

if (input.StartsWith("y", StringComparison.OrdinalIgnoreCase))

{

 ShowAllSalesPeopleUsingProjection();

}

Run the program to see the output (review Figure 9-8).

Figure 9-8. The output using a projection

Chapter 9 LINQ for QuerIes aNd projeCtIoNs

369

Once again, let’s review the output in SQL Profiler to see if we’re in a better place

(results are shown in Figure 9-9).

Now that query looks a lot more like what I would write directly against the database.

No more call to the sp_executesql stored procedure, and only the fields we want are

selected. To be sure, run the program again and execute both of the queries. You should

see a substantial difference in the number of read operations between the two queries,

even if there is minimal performance difference.

One last thing to see before we move on. Go back to the query and remove the line

.Include(x => x.BusinessEntity).ThenInclude(y => y.BusinessEntity)

and then run the program again. What do you think will happen (see results in

Figure 9-10)?

Figure 9-9. Reviewing SQL Profiler for our latest run with the projection shows
quite a substantial improvement in our query

Figure 9-10. Projections let LINQ know what to include automagically

If you guessed that everything would still work, you were absolutely correct! By

using a projection, we’ve not only improved the efficiency of our query that is being

executed on our database, but we’ve also eliminated the need to manually define what

Chapter 9 LINQ for QuerIes aNd projeCtIoNs

370

will be included in relational data. Now we have a solid foundation for using LINQ with

projections and we understand when to perform the various transformations. Even so,

we are going to need to go just a bit deeper in the real world.

 Step 5: Getting deep relational data with filters
and sorting
For this final part of our activity, we are going to solve a real-world-like business

problem. Imagine your solution needs to get data for a manager that reports on

salesperson info (as discussed earlier), but also includes things like the territories that

the salesperson is in, the number of orders, and a count of products that the sales person

has sold. The manager also needs to sort by last name and then first name and needs to

be able to filter the list to only those who have hit a certain sales dollar amount.

This is some heavy lifting for sure and might be worthy of views and stored

procedures, depending on how much data and manipulation you truly need.

For our purposes, we’re going to use LINQ to define the information we need,

combined with everything else we’ve learned to this point.

There are things I want to focus on along the way, so rather than building this all at

once, let’s build from the top down and see a few things in action as we go.

Let’s start with the basics of the previous ask. We need to get a lot of the same

information we’ve already seen, but we also need a list of the territories, a count of

total orders, and a count of total products. Total products will be tricky because there

is a quantity in each order detail. Review Figure 9-11 to see the overall structure of the

database that we need to be aware of for our results to work as expected.

Chapter 9 LINQ for QuerIes aNd projeCtIoNs

371

With this in mind, let’s start by adding a method call in the Main method of the

Program.cs file called GenerateSalesReport. As with the other methods in this program,

wrap the call in an option to give the user an option to opt in or out of running the

method.

input = string.Empty;

Console.WriteLine("Would you like to view the sales report?");

input = Console.ReadLine();

if (input.StartsWith("y", StringComparison.OrdinalIgnoreCase))

{

 GenerateSalesReport();

}

Figure 9-11. The database diagram shows some critical relationships we’ll need
to consider in our query

Chapter 9 LINQ for QuerIes aNd projeCtIoNs

372

After creating the method call, let’s start by looking at how we can use LINQ to get

some more advanced data. As we build our skills, we’ll hone this query down to one call

and then use a projection. Start by writing the method as follows to get the territories for

a salesperson:

private static void GenerateSalesReport()

{

 using (var db = new AdventureWorksContext(_optionsBuilder.Options))

 {

 var salesReportDetails = db.SalesPerson.Select(sp => new

 {

 beid = sp.BusinessEntityId,

 sp.BusinessEntity.BusinessEntity.FirstName,

 sp.BusinessEntity.BusinessEntity.LastName,

 Territories = sp.SalesTerritoryHistory

 .Select(y => y.Territory.Name)

 }).Take(20).ToList();

 foreach (var srd in salesReportDetails)

 {

 Console.WriteLine($"{srd.beid}| {srd.LastName}, {srd.

FirstName}" +

 $"| {string.Join(',', srd.Territories)}");

 }

 }

}

In this code, we’ve used a projection to get the salesperson with details and all of

their territory names into an IEnumerable<string>. Since we are not going to need the

entire territory object, but just the name, we can use the Select to get the Name of each

Territory, and LINQ will place this into an IEnumerable<string> for us. To prevent too

many results, we’ll just get the top 20 results into our list.

Run the program to see the results, which should be similar to the output shown in

Figure 9-12.

Chapter 9 LINQ for QuerIes aNd projeCtIoNs

373

Next, let’s get their order counts. To do this, we’re going to need to get all the sales

orders and use those results. Add the following line of code to the query after the

declaration for the Territories in the projection:

OrderCount = sp.SalesOrderHeader.Count()

For clarity, your overall code with the OrderCount added should be

var salesReportDetails = db.SalesPerson.Select(sp => new

{

 beid = sp.BusinessEntityId,

 sp.BusinessEntity.BusinessEntity.FirstName,

 sp.BusinessEntity.BusinessEntity.LastName,

 Territories = sp.SalesTerritoryHistory

 .Select(y => y.Territory.Name),

 OrderCount = sp.SalesOrderHeader.Count()

}).Take(20).ToList();

Add the order count to the overall printout by adding a line in the loop of sales report

details:

$"| Order Count: {srd.OrderCount}"

Figure 9-12. The sales report generated with the salesperson details and their
territories

Chapter 9 LINQ for QuerIes aNd projeCtIoNs

374

This should create a foreach loop as follows:

foreach (var srd in salesReportDetails)

{

 Console.WriteLine($"{srd.beid}| {srd.LastName}, {srd.FirstName} |" +

 $"{string.Join(',', srd.Territories)} |" +

 $"Order Count: {srd.OrderCount}");

}

Run the program to see the results (review Figure 9-13).

Next, we need to get the total number of products sold. This is going to be more

difficult because of the setup of the tables and the fact that an order detail might have

multiple products in it based on quantity. To get this right, we need to get all of the order

details for each order header and then sum up the quantity of products sold across all of

those order details. To make this happen, we’ll leverage the power of SelectMany. The

SelectMany operator will allow us to instantly grab all the order details and use them as a

result set in our query. Add the following line of code to the projection in the query after

the call to get the OrderCount (don’t forget to add a comma after the sp.SalesHeader.

Count() statement):

Figure 9-13. The sales report with salesperson details, territories, and the number
of orders for that salesperson

Chapter 9 LINQ for QuerIes aNd projeCtIoNs

375

TotalProductsSold = sp.SalesOrderHeader

 .SelectMany(y => y.SalesOrderDetail)

 .Sum(z => z.OrderQty)

Next, add the total number of products sold to the printout by adding the following

line of code to the end of the output string (don’t forget to add a pipe delimiter after the

order count in the string):

$"Products Sold: {srd.TotalProductsSold}");

Figure 9-14 shows the expected results with the Products Sold in the output. Run the

program to compare your results.

Figure 9-14. The sales report with salesperson info, territories, order counts, and
total products sold

Now that we have this basic data, we can start to further refine our results. The report

wants to order by the salesperson name and then wants us to allow for filtering by total

sales (which we also still need to add to our query).

Add the following code to the query after the line:

sp.BusinessEntity.BusinessEntity.LastName,:

sp.SalesYtd

Next, we need to add a filter. At the start of the method, prompt the user to enter a

minimum dollar amount for SalesYtd.

Chapter 9 LINQ for QuerIes aNd projeCtIoNs

376

Place the following code at the start of the GenerateSalesReport method before the

using statement, making sure to just exit if the user enters malicious or incorrect data:

Console.WriteLine("What is the minimum amount of sales?");

var input = Console.ReadLine();

decimal filter = 0.0m;

if (!decimal.TryParse(input, out filter))

{

 Console.WriteLine("Bad input");

 return;

}

For clarity, the new code statement is shown in Figure 9-15 to make sure it is clear

where to place the statement.

Figure 9-15. The prompt to get a filter amount from the user

In the query chain, after completing the Select with projection, and before the call

to Take(20), add the following additional chained command:

}).Where(srds => srds.SalesYtd > filter)

 .OrderBy(srds => srds.LastName)

 .ThenBy(srds => srds.FirstName)

 .ThenByDescending(srds => srds.SalesYtd)

 .Take(20).ToList();

Here, we’ve set the filter to limit on SalesYtd based on the user input.

Chapter 9 LINQ for QuerIes aNd projeCtIoNs

377

For clarity, the entire query is shown in Figure 9-16.

Figure 9-17. The current sales report after modifications for filtering and sorting

Figure 9-16. The entire query to get the sales report data

Add a statement to the output to also print out the salesperson’s YTD sales. You

could place this statement right after the name and before the territory names.

$"YTD Sales: {srd.SalesYtd} |" +

Run the program to see the results, which should be similar to the output shown in

Figure 9-17 (your results may vary based on your sales amount filter).

The report is looking pretty good based on our original request. We could be content

at this point, but there is one more thing to consider, projections to a DTO.

Chapter 9 LINQ for QuerIes aNd projeCtIoNs

378

 Step 6: Finish the query by projecting to a DTO instead
of an anonymous class
Since we’re going to be getting a listing of results, let’s end by defining a DTO object to

hold those results. This will allow us to see one last point – that we can project into a pre-

defined object, not just into anonymous classes. This is highly useful in larger systems,

as the ability to communicate with a pre-defined object makes it much easier to transfer

data between layers.

Ordinarily I’d recommend putting DTOs in a separate project. For brevity, however,

we’ll just add them in a folder in the EF_Activity001 project.

Create a new method that will run along with the GenerateSalesReport called

GenerateSalesReportToDTO, and make the call in the Main method in the same block

as the call to GenerateSalesReport. This will double up our database calls for the sales

report, but we’ll get to see both in action this way. You could comment out the original if

you only want the last method to run.

input = string.Empty;

Console.WriteLine("Would you like to view the sales report?");

input = Console.ReadLine();

if (input.StartsWith("y", StringComparison.OrdinalIgnoreCase))

{

 GenerateSalesReport();

 GenerateSalesReportToDTO();

}

In the GenerateSalesReportToDTO method, copy and paste the code from the

GenerateSalesReport method. Extract the repeated code for prompting for a filter to a

new method called GetFilterFromUser.

private static decimal GetFilterFromUser()

{

 Console.WriteLine("What is the minimum amount of sales?");

 var input = Console.ReadLine();

 decimal filter = 0.0m;

Chapter 9 LINQ for QuerIes aNd projeCtIoNs

379

 if (!decimal.TryParse(input, out filter))

 {

 Console.WriteLine("Bad input");

 return 0.0m;

 }

 return filter;

}

Next, add a new DTO named SalesReportListingDto.cs in a new folder called

DTOs in the EF_Activity01 project. Add the following code to the new DTO:

public class SalesReportListingDto

{

 [Required]

 public int BusinessEntityId { get; set; }

 public string FirstName { get; set; }

 public string LastName { get; set; }

 public decimal? SalesYtd { get; set; }

 public IEnumerable<string> Territories { get; set; }

 public int TotalProductsSold { get; set; }

 public int TotalOrders { get; set; }

 public string DisplayName => $"{LastName}, {FirstName}";

 public string DisplayTerritories => string.Join(",", Territories);

 public override string ToString()

 {

 return $"BID: {BusinessEntityId} |{DisplayName,25}|

{DisplayTerritories,25}|" +

 $"{SalesYtd} | Orders: {TotalOrders} |" +

 $"Products Sold: {TotalProductsSold}";

 }

}

Chapter 9 LINQ for QuerIes aNd projeCtIoNs

380

In the GenerateSalesReportToDTO method, change the query to the following code:

var salesReportDetails = db.SalesPerson.Select(x => new

SalesReportListingDto

{

 BusinessEntityId = x.BusinessEntityId,

 FirstName = x.BusinessEntity.BusinessEntity.FirstName,

 LastName = x.BusinessEntity.BusinessEntity.LastName,

 SalesYtd = x.SalesYtd,

 Territories = x.SalesTerritoryHistory.Select(y => y.Territory.Name),

 TotalOrders = x.SalesOrderHeader.Count(),

 TotalProductsSold = x.SalesOrderHeader

 .SelectMany(y => y.SalesOrderDetail)

 .Sum(z => z.OrderQty)

}).Where(srds => srds.SalesYtd > filter)

 .OrderBy(srds => srds.LastName)

 .ThenBy(srds => srds.FirstName)

 .ThenByDescending(srds => srds.SalesYtd);

Finally, change the foreach loop to leverage the fact that the DTO has an overridden

ToString method in it:

foreach (var srd in salesReportDetails)

{

 Console.WriteLine(srd);

}

Run the program to see the final results. Make a note that I’ve commented out the

original call so only one sales report prints. In this implementation, we’ve also removed

the Take(20), which is fruitless since there are only 17 salespeople in the database.

Finally, we removed the call to .ToList(), since putting the object into a foreach loop

will implicitly call to the object for iteration, leveraging the fact that it is an IEnumerable.

The final results you get should look similar to what is shown in Figure 9-18.

Chapter 9 LINQ for QuerIes aNd projeCtIoNs

381

 Final thoughts on activity 0901
In this activity, we were able to take a much deeper dive into working with LINQ queries

to join data across tables. Additionally, we saw some good and bad ways to query the

data and used the SQL Profiler to prove the efficiency of our results. We finished up by

looking at projections, where we learned that we can cast data to an anonymous class or

a pre-defined class in the projection.

 Activity 0902: Setting up AutoMapper
In this second activity for our chapter, we’re going to set up AutoMapper in our custom

inventory project. After we get set up, we’ll do a quick check to see that things are in

place correctly for using AutoMapper.

 Step 1: Getting started
To begin this activity, either get a copy of the Activity0902_SettingUpAutomapper_

Starter.zip files, or just use your existing project as you left it from the end of Chapter 7,

after activity 0703. As with other setups, make sure that your database connections are

in place, that the project builds, that your database is up-to-date by running an update-

database command, and that the project runs as expected.

Figure 9-18. The final results of the sales report using the projection to the
SalesReportListingDto

Chapter 9 LINQ for QuerIes aNd projeCtIoNs

382

Finally, you could create your own starter project by creating a new console

application, bringing in and referencing the additional projects as they were at the end of

activity 0703, adding the appropriate NuGet packages, and then updating the Program.cs

file to match the file as of the end of activity 0703.

 Step 2: Get the package
In the Package Manager Console, set the project to Activity0902_SettingUpAutomapper

(or your main program project) and run the command Install-Package AutoMapper.

Alternatively, both packages could be installed through the NuGet Package Manager by

searching for AutoMapper (review Figure 9-19).

Figure 9-20. Installing the AutoMapper.Extensions.Microsoft.
DependencyInjection package

Figure 9-19. Installing the AutoMapper package to our solution

Next, install the dependency injection package by running the command Install-

Package AutoMapper.Extensions.Microsoft.DependencyInjection (see Figure 9-20).

Once these packages are installed, we’re done! Just kidding.

Chapter 9 LINQ for QuerIes aNd projeCtIoNs

383

 Step 3: Create the Inventory Mapper Profile
In order for AutoMapper to work correctly, we have to let it know what types we want

to map. We’re going to attempt to keep this really simple. However, if you’d like to learn

more about how AutoMapper is set up and how it works, review the README.md file

here: https://github.com/AutoMapper/AutoMapper. Additionally, more information

can also be found here: http://docs.automapper.org/en/latest/.

Let’s begin by adding a new class to handle our mapping declarations. We could just

do all the mapping in the main Program.cs file, but in the real world, you’re going to

want your mapping configuration to be separate from your program logic.

Add a new class to the main project called InventoryMapper.cs. This class needs

to inherit from a base class called Profile, which requires the using statement using

AutoMapper;. In theory, you can separate your various business unit mapping logic into

separate classes. We don’t have enough going on in our solution right now, so we’ll just

map everything in this new class. The nice thing about this class being an AutoMapper

profile is that it’s easier to put into the configuration this way for all maps in the profile.

In the constructor for the InventoryMapper class, add a method call named

CreateMaps. Then stub out the CreateMaps method. In the CreateMaps method, we’ll

place all of our inventory mapping logic. For now, even though it will not work correctly,

just add the following two lines of code (ItemDto and CategoryDto are not yet created):

CreateMap<Item, ItemDto>();

CreateMap<Category, CategoryDto>();

When that is all set up, your code should look like this:

public class InventoryMapper : Profile

{

 public InventoryMapper()

 {

 CreateMaps();

 }

 private void CreateMaps()

 {

 CreateMap<Item, ItemDto>();

 CreateMap<Category, CategoryDto>();

 }

}

Chapter 9 LINQ for QuerIes aNd projeCtIoNs

https://github.com/AutoMapper/AutoMapper
http://docs.automapper.org/en/latest/

384

As of right now, the code will not compile, so we need to create the two DTO classes

that don’t currently exist.

 Step 4: Create the DTO objects
In the last step, we mapped the Item and Category to matching DTO classes. To make

this work, in the InventoryModels project under the Dtos folder, add a new class

ItemDto.cs. In the ItemDto.cs, add two string fields – Name and Description.

public class ItemDto

{

 public string Name { get; set; }

 public string Description { get; set; }

}

For clarity, the position of the new file is shown in Figure 9-21.

Figure 9-21. The ItemDto class

Add a second class in the Dtos folder called CategoryDto.cs. Don’t worry about any

code in that DTO for now; just leave the default empty implementation (we need this so

our code will compile and run).

Chapter 9 LINQ for QuerIes aNd projeCtIoNs

385

public class CategoryDto

{

}

Save your changes, then go back to the InventoryMapper file in the main project, and

add the statement using InventoryModels.Dtos; to the top of the file. This fixes the

issue for the two DTO types in the mapping profile.

 Step 5: Modify the main program to set up AutoMapper
and configure the mappings
Back in the Main method in the Program.cs file, add a new method call to BuildMapper

right after the BuildOptions method. Add the method with a blank body for now.

Remember that the method must be static to work in the program (not because of

AutoMapper).

In the space between the class declaration and the Main method, following the

_optionsBuilder variable, add three static variables using the following code:

private static MapperConfiguration _mapperConfig;

private static IMapper _mapper;

private static IServiceProvider _serviceProvider;

Make sure to also add the using statement: using AutoMapper;.

Next, we need to set the configuration for AutoMapper, and we need to inject it using

a service collection and a service provider. This will set up our ability to use AutoMapper.

In the BuildMapper method, add the following code, and then add the using

statement using Microsoft.Extensions.DependencyInjection;:

_configuration = ConfigurationBuilderSingleton.ConfigurationRoot;

_optionsBuilder = new DbContextOptionsBuilder<InventoryDbContext>();

 _optionsBuilder.UseSqlServer(_configuration.GetConnectionString("InventoryM

anager"));

The earlier statement sets up a service collection to allow us to use dependency

injection where AutoMapper is concerned. The service collection then gets AutoMapper

and we inject the service profile assembly. If we had other assemblies, we could just add

them in the same call by using commas to separate the different assemblies.

Chapter 9 LINQ for QuerIes aNd projeCtIoNs

386

After adding the service, we need to set up the mapping configuration. Add the

following lines in the BuildMapper method after the three we just added previously:

_mapperConfig = new MapperConfiguration(cfg => {

 cfg.AddProfile<InventoryMapper>();

});

_mapperConfig.AssertConfigurationIsValid();

_mapper = _mapperConfig.CreateMapper();

These lines of code set up the configuration and tell AutoMapper to use the

InventoryMapper profile (which currently has two type mappings and will eventually

have more). Using the profile keeps this section much cleaner than manually adding all

of the maps directly to the configuration as inline code.

We then make sure that our configuration is valid and conclude by instantiating our

mapper using the CreateMapper call.

At this point, AutoMapper is set up correctly. If we run the program, we should not

get any errors, even though we aren’t implementing any concrete uses of AutoMapper

yet. For clarity, the finished BuildMapper method is shown in Figure 9-22.

Figure 9-22. The BuildMapper method is completed, and AutoMapper is now
configured with two type mappings from the InventoryMapper profile class

Chapter 9 LINQ for QuerIes aNd projeCtIoNs

387

 Step 6: Leverage AutoMapper
Now that we have AutoMapper in place, we can leverage it to see the power it gives us.

In the ItemDto class in the InventoryModels project Dtos folder, add an override for

ToString that just prints out the Name and Description with a nice padding effect as

follows:

public override string ToString()

{

 return $"{Name,25} | {Description}";

}

Back in the Program class, find the ListInventory method. In that method, add the

following line of code between the database call and the printout of the results:

var result = _mapper.Map<List<Item>, List<ItemDto>>(items);

Then change the output line to

result.ForEach(x => Console.WriteLine($"New Item: {x}"));

When completed, the ListInventory code should be

static void ListInventory()

{

 using (var db = new InventoryDbContext(_optionsBuilder.Options))

 {

 var items = db.Items.Take(5).OrderBy(x => x.Name).ToList();

 var result = _mapper.Map<List<Item>, List<ItemDto>>(items);

 result.ForEach(x => Console.WriteLine($"New Item: {x}"));

 }

}

Run the program to see AutoMapper in action. If you want, put a breakpoint on the

output statement to see how the result object was correctly mapped from the items list

(review Figure 9-23).

Chapter 9 LINQ for QuerIes aNd projeCtIoNs

388

And the overall output looks as expected as is shown in Figure 9-24.

 Final thoughts on activity 0902
In this activity, we were able to successfully set up AutoMapper to map one object type to

another. We created the mapping configuration by setting up the services in our project

to hold a single instance of AutoMapper.

We also set up an InventoryMapper profile where we can easily add and work with

the specific mappings for the inventory system.

Finally, when we created the configuration, we made sure to add the

InventoryMapper profile when instantiating the mapper for variable use in our system.

One thing to note is that AutoMapper does great when the field names line up

exactly with each other. Here, both classes, Item and ItemDto, had fields with identical

names – Name and Description.

Figure 9-23. The result is a list of ItemDto objects, correctly mapped from the
original list of items

Figure 9-24. The output with our new AutoMapper modifications

Chapter 9 LINQ for QuerIes aNd projeCtIoNs

389

When the field names don’t line up, then we need to do a bit more with AutoMapper

configurations to make things work as expected. We’ll see how to do that in our final

activity for this chapter.

 Activity 0903: Working with AutoMapper in system
In the final activity for our chapter, we’re going to continue working with AutoMapper

and LINQ so that we can solidify our knowledge of how to both work with LINQ in some

more advanced queries and also so that we can be in a good place to fully leverage the

power of AutoMapper in the future.

 Step 1: Get set up
For this activity, you can either continue where you left off on the last project, or you can

get a copy of the starter files Activity0903_WorkingWithAutomapper_Starter.zip. If

you choose the starter pack, as always, make sure that your database connection string

is configured correctly, then save and build the project, and run the update-database

command to make sure you don’t have any missing migrations. Finally, run the program

to ensure that it works correctly before proceeding.

 Step 2: Perform a more advanced query
In a previous activity, we created a stored procedure to get items for listing. Let’s add a

new call that will re-create the procedure results using LINQ and projections, now that

we’ve seen how to do that in our previous chapter.

Add a new method GetItemsForListingLinq, and call the method from the Main

method. In the GetItemsForListingLinq method, add the code as follows:

var minDateValue = new DateTime(2020, 1, 1);

var maxDateValue = new DateTime(2021, 1, 1);

using (var db = new InventoryDbContext(_optionsBuilder.Options))

{

Chapter 9 LINQ for QuerIes aNd projeCtIoNs

390

 var results = db.Items.Select(x => new

 {

 x.CreatedDate,

 CategoryName = x.Category.Name,

 x.Description,

 x.IsActive,

 x.IsDeleted,

 x.Name,

 x.Notes

 }).Where(x => x.CreatedDate >= minDateValue && x.CreatedDate <=

maxDateValue)

 .OrderBy(y => y.CategoryName).ThenBy(z => z.Name)

 .ToList();

 foreach (var item in results)

 {

 Console.WriteLine($"ITEM {item.CategoryName}| {item.Name}

- {item.Description}");

 }

}

One thing to note is that we can’t project into the DTO as we did in the stored

procedure because of the need to leverage the CreatedDate field from the Item. If we

wanted to fix that, we could just add the field to the DTO. Comment out all method calls

except the stored procedure and the new LINQ version of the get listings methods.

Running the program gives output similar to what is shown in Figure 9-25.

Figure 9-25. The display using the stored procedure and LINQ to get listings

Chapter 9 LINQ for QuerIes aNd projeCtIoNs

391

If your output doesn’t match mine exactly, that may be due to you having set

different genres and different items than what I have in my database. It’s always a good

idea to validate that your results match what is to be expected based on your data.

Imagine that in the original stored procedure, there exists a small error due to

including the join to the Genres and ItemGenres tables that could have been left

behind when we removed the Genre data from the stored procedure. With LINQ, we

avoid making the same type of mistake. This is where LINQ can really be a powerful

ally, mainly because it is more flexible than a stored procedure. To fix an issue with the

original procedure, we generally have to go through governance procedures to update a

stored procedure on the database server. With LINQ, we can just fix our mistake in the

code and then deploy a patch.

 Step 3: Update the DTO so that it maps to the correct type
In the previous run, we ended up with an anonymous type that we used for our output

due to the fact that we had to leverage the CreatedDate, and the CreatedDate is not part

of our DTO.

As mentioned previously in activity 0902, we can easily modify our DTO object to

include the CreatedDate, and then we can project directly to that type in our query.

However, this could lead to some complications in other areas of the code. Instead, let’s

create a new DTO that extends the original and adds the CreatedDate field.

Create a new class in the InventoryModels project in the Dtos folder called

GetItemsForListingWithDateDto.cs, and then inherit from the original

GetItemsForListingDto class. Add the property for the CreatedDate field. When

completed, your code should look as follows:

public class GetItemsForListingWithDateDto : GetItemsForListingDto

{

 public DateTime CreatedDate { get; set; }

}

For clarity, the code and placement are shown in Figure 9-26.

Chapter 9 LINQ for QuerIes aNd projeCtIoNs

392

After creating the new DTO, modify the original query so that it projects directly to a

new GetItemsForListingDto, rather than using an anonymous class:

var results = db.Items.Select(x => new GetItemsForListingWithDateDto

{

 CreatedDate = x.CreatedDate,

 CategoryName = x.Category.Name,

 Description = x.Description,

 IsActive = x.IsActive,

 IsDeleted = x.IsDeleted,

 Name = x.Name,

 Notes = x.Notes

}).Where(x => x.CreatedDate >= minDateValue && x.CreatedDate <=

maxDateValue)

 .OrderBy(y => y.CategoryName).ThenBy(z => z.Name).ToList();

And then run the program to make sure it still works, with no errors on the other

method(s). Your output should be the same as before and should be similar to what is

shown in Figure 9-27.

Figure 9-26. The new DTO is placed in the InventoryModels project, inherits from
the existing DTO, and adds one additional property

Chapter 9 LINQ for QuerIes aNd projeCtIoNs

393

 Step 4: Using AutoMapper to project results to a type
One of the more powerful features of AutoMapper is the ability to project directly to a type,

even if the query is returning another type. When we originally set up AutoMapper in the

previous activity, we saw that we were able to map an Item to an ItemDto. The ItemDto

was a much pared-down version of the Item, which will often be the case with DTOs.

The thing we didn’t leverage in that original example was the ability that

AutoMapper has to just project directly to the type we want, thereby combining the

query and the mapping into one statement.

If you commented out the ListInventory method, go ahead and uncomment it now

so that it will execute on the next run. Additionally, you could comment out both of the

GetItemsForListing… methods to clear up the output.

Add a new method called ListInventoryWithProjection to the Main method

following the original ListInventory method. In the new method, place the following

code:

using (var db = new InventoryDbContext(_optionsBuilder.Options))

{

 var items = db.Items.Take(5)

 .OrderBy(x => x.Name)

 .ProjectTo<ItemDto>(_mapper.ConfigurationProvider)

 .ToList();

 items.ForEach(x => Console.WriteLine($"New Item: {x}"));

}

Figure 9-27. The projected query works as expected

Chapter 9 LINQ for QuerIes aNd projeCtIoNs

394

Notice in this code that it is nearly identical to the original method, with the

exception of the call to .ProjectTo<T>(IConfigurationProvider). In this instance,

we were able to easily map to the ItemDTO from the result object at the same time

that we performed the query, saving the extra step of performing the mapping. To get

the code to compile, we also need to add the using statement using AutoMapper.

QueryableExtensions;.

 Step 5: Handling the times when the fields don’t line
up exactly
As we close up our look at AutoMapper and using projections with LINQ in our

codebase, I want to cover one last point. There are going to be times in the real world

where your database object and your DTO do not map property to property. Perhaps

your DTO is a combination of a couple of objects, or perhaps your DTO needs to

transform some of the data from the object and use that in its life cycle. Either way, a

one-to-one mapping of fields in DTOs to objects is likely an unreasonable expectation.

The great news is that AutoMapper allows for us to map the fields as we see fit.

Sometimes, we can tell AutoMapper to ignore the field altogether. Other times, we need

to map in both directions and sometimes just in one direction.

To show how this works, we’ll use a bit of a contrived example. Reviewing our data in

the inventory system, we have categories, and each category has a color. Additionally, we

have items that belong to one category and zero-to-many genres.

Suppose we want to get an output of our categories and their associated colors, but

instead of using the table fields Name, we’ll use Category and ColorValue will just be

Color. We can set all this up with a friendly DTO and a couple of tweaks in the mapping

configuration.

Begin by creating a new class called CategoryColorDto.cs in the Inventory Models

project in the Dtos folder. This DTO will map to the CategoryColor. In the new DTO, just

add the one field, Color, which will be a string that maps to ColorValue.

public class CategoryColorDto

{

 public string Color { get; set; }

}

Chapter 9 LINQ for QuerIes aNd projeCtIoNs

395

In the CategoryDto class that we created earlier in the activity, add two properties as

follows:

public string Category { get; set; }

public CategoryColorDto CategoryColor { get; set; }

Next, go into the InventoryMapper file in the main activity project to create and

modify the mappings.

For the first map, when mapping Category to CategoryDto, change the code to the

following:

CreateMap<Category, CategoryDto>()

 .ForMember(x => x.Category, opt => opt.MapFrom(y => y.Name))

 .ReverseMap()

 .ForMember(y => y.Name, opt => opt.MapFrom(x => x.Category));

And then add a new map for CategoryColor to CategoryColorDto as follows:

CreateMap<CategoryColor, CategoryColorDto>()

 .ForMember(x => x.Color, opt => opt.MapFrom(y => y.ColorValue))

 .ReverseMap()

 .ForMember(y => y.ColorValue, opt => opt.MapFrom(x => x.Color));

By reversing the map with the ReverseMap call and going in the other direction, it is

now possible to map one of the database objects to the corresponding DTO and also to

go from the DTO back to a database object.

If one of the classes had an extra field that didn’t map to anything, we could make a

statement like

.ForMember(x => x.AFieldNotMappable, opt => opt.Ignore())

Note that the use of the Ignore method tells AutoMapper to skip trying to match the

particular field to any field in the target object.

Finally, let’s do a quick query in the main program to see this in action.

Chapter 9 LINQ for QuerIes aNd projeCtIoNs

396

Add a new method in the Main method of the Program class called

ListCategoriesAndColors. In the ListCategoriesAndColors method, add the following

code:

using (var db = new InventoryDbContext(_optionsBuilder.Options))

{

 var results = db.Categories

 .Include(x => x.CategoryColor)

 .ProjectTo<CategoryDto>(_mapper.ConfigurationProvider).

ToList();

 foreach (var c in results)

 {

 Console.WriteLine($"{c.Category} | {c.CategoryColor.Color}");

 }

}

Running the program lets us see the results with the new projections mapping as

expected (see Figure 9-28).

Figure 9-28. The program works with projections even when field names are not
identical

Note that in this method, we did use the Include syntax as the original code is

grabbing categories and their colors. If we select the CategoryColor, AutoMapper will

not be able to make the projection correctly from the internal CategoryColorDto from a

Chapter 9 LINQ for QuerIes aNd projeCtIoNs

397

Figure 9-29. Using Select is not possible when there is a nested mapping

CategoryColor, and we cannot use an anonymous type with ProjectTo. Using Include

allows the selection of the data and then mapping is completed successfully.

If you want to see the error, change the .Include(x => x.CategoryColor) to

.Select(x => x.CategoryColor) and run the program. Figure 9-29 shows the error that

happens when trying to select and project.

And finally, if you must use Select, you’ll have to abandon AutoMapper and just

manually do the projections yourself. In this case, the code would look like this:

var results = db.Categories

 .Select(x => new CategoryDto

 {

 Category = x.Name,

 CategoryColor = new CategoryColorDto { Color = x.CategoryColor.

ColorValue }

 });

Chapter 9 LINQ for QuerIes aNd projeCtIoNs

398

 Final thoughts on activity 0903
In this final activity, we were able to see the real power of working with AutoMapper in

our EF queries. Once we have AutoMapper set up, and learn the syntax that is necessary

to create mappings, we can really start leveraging AutoMapper as a great tool to make

our queries more succinct and generally just as performant as if we had written them

without AutoMapper.

The added benefits of using AutoMapper include the fact that we can utilize the

.ProjectTo<T>() call to automatically map our results from one type to another. By

doing this, we don’t have to make manual calls to the mapper for object conversion.

Finally, using AutoMapper allows us to easily create configurations that set our

conversions in place throughout our system. This means we don’t have to spend any

time writing manual conversions of objects, field by field. Not having to do the manual

conversion also eliminates issues where we simply forget to map a field or accidentally

map to the wrong field.

 Final thoughts for this chapter
This chapter gave us a deep dive into using LINQ in complex queries. We were able to

see how important it is to write our queries correctly, so as to leverage the efficiency of

EF. This also reminds us that even as we develop, we should be running some sort of

analyzer tool in order to validate that our SQL queries generated by EF are working with

maximum efficiency.

After we took our deeper look at working with LINQ, we then moved into the

importance of working with AutoMapper in our systems. Without AutoMapper, we have

a lot of manual work that we must do when we layer our architecture and don’t just use

our base models throughout the system.

Although AutoMapper has a bit of an initial learning curve for both setup and a few

pieces of syntax for mapping fields, once these are taken care of, the tool becomes an

invaluable piece of our systems.

As we close this chapter, we are now in a really great place with our knowledge of EF

and working with LINQ in our systems. As we move forward, we’ll be hitting some more

common scenarios that you will likely encounter in your systems. We’ll start by looking

at data encryption in the next chapter.

Chapter 9 LINQ for QuerIes aNd projeCtIoNs

399
© Brian L. Gorman 2020
B. L. Gorman, Practical Entity Framework, https://doi.org/10.1007/978-1-4842-6044-9_10

CHAPTER 10

Encryption of Data

 Keeping your system’s data secure
You’ve implemented a system, and you’ve created the best database structure you can

architect. Your system is taking off, and you have hundreds or thousands of clients and

many gigabytes of customer data on your server. Things couldn’t be better, right? Then

you get a notification that something has gone wrong with your database. Somehow, a

malicious entity has gained information about all of your customers because you were

storing that information in your database in plain text. This nightmare scenario could be

you, if you don’t take at least some minimal measures to prevent it.

 Data at rest
In today’s world, it is essentially unacceptable to keep any personal customer data at

rest in your system in an unencrypted fashion. By having this data in plain text, you are

putting yourself and your company at risk for major lawsuits when a breech occurs. Even

storing your data off premises at a CSP (cloud service provider) like Microsoft Azure or

Amazon AWS is not going to be enough to protect you and your data.

 Encryption in the past vs. encryption today
In this chapter, we are going to dive into some of the tenets of encryption using Microsoft

SQL Server. Additionally, we’ll see how encryption of data at rest can be accomplished in

two different approaches by looking into a Transparent Data Encryption (TDE) solution

and an AlwaysEncrpyted solution. Both solutions in our activities will use EFCore.

https://doi.org/10.1007/978-1-4842-6044-9_10#DOI

400

Likely, when you think of encryption, the first thing you think of is passwords, so

let’s start by taking a look at how we can correctly protect user passwords, and then we’ll

move into looking at the other fields in our database tables.

 Passwords
Password mismanagement is probably the most egregious error a system developer can

commit. Today we have a number of options that can help with this issue. The simplest

option available is to use a single-sign-on solution via a third-party provider.

 SSO via social logins
Today we have many platforms available that provide tools to use their platform as a

means to identify users and allow for us to easily build a single-sign-on solution (SSO).

If you don’t like managing users, and you are building a noncorporate business solution,

there is very little reason to not just use the SSO capabilities of one or more of these

platforms.

Facebook, Google, Microsoft, LinkedIn, and others all provide solutions that

are easy to wire up into your applications. When doing this, you are able to let those

providers do the heavy work of managing the user’s passwords, and all you need to do

is associate the user in your system with the authentication information that comes

back from the provider, such as the validated email of a user as returned from the

third-party provider.

In general, to set up these third-party solutions, you would just go to the provider of

choice and create an application at their developer tools portal, which will give you the

app id and token secrets that you need in order to authenticate against the third-party

provider. Once the user has authenticated, the appropriate user information (such as

email or other identifiers) is handed back to you for your use in your system.

 ASP.Net built-in authentication
Another option you have that helps with preventing user password mismanagement

comes in the form of the IdentityDbContext, which is part of the AspNetCore.

Identity.EntityFramework namespace. ASP.Net with EF6 also had the same sort of

structure, with an IdentityDbContext.

Chapter 10 enCryption of Data

401

When using the IdentityDbContext, we are able to easily create a new solution

that handles user authentication for us. At inception, the system creates all the tables

necessary for users and roles, as well as identity claims. With all of this in place, we

simply needed to perform a few actions to register and/or authenticate users.

When registering users with built-in identity management, the user password

is automatically hashed and salted. This makes it impossible for us to get the user

password back to plain text. In this scenario, if a user loses their password, they need to

go through a validation process to reset the password to a new password.

 Salting and hashing
If you must create your own custom database user solution, you should follow a hashing

and salting pattern to make sure you hash and salt your user passwords. In case you are

not familiar with why this is important, let’s consider a couple of scenarios.

Please don’t even consider using a plain-text password storage solution for anything

past a simple demo MVP solution (and even then, using plain text should be avoided if

possible).

Now that you agree that storing passwords as plain text is a terrible idea, are you

thinking encryption alone is good enough? The answer, of course, is no. Encryption is a

two-way process. Anything that is encrypted can be decrypted if the common encryption

algorithm and key(s) are known. So, turning on AlwaysEncrypted on your fields only

scrambles them from being plain text, but does not make it impossible to reverse the

encryption (if it did, we couldn’t store user information like names, social security

numbers, and such in an always encrypted column).

With hashing, we use a unique algorithm to set the length of our data to a fixed

length. By combining the unique password with the hash and applying the hashing

algorithm during encryption, we get a value that is mathematically improbable to reverse

engineer. Storing this hash in the database table allows the password to be decrypted by

applying that hash to the password as entered by the user and using the same algorithm

to decrypt for authentication. Therefore, we are no longer storing the password, but are

storing a hash that when combined with user input can be encrypted with the hash and

compared to determine that the hashed results match.

What happens, though, when two users have the same password? Without anything

else, the hash value would be identical, and this could lead to a security issue. Although

it would still be tough to figure it out, a malicious user who has access to your data might

Chapter 10 enCryption of Data

402

be able to run common passwords and determine them from the identical hash values.

Additionally, if they know the hashed value of a particular password, and have proper

access, they could update the stored hash for all users to the known hash value and then

log in and impersonate anyone in the system, including your admin users.

In this contrived example, I have three users that have the same password, and

Figure 10-1 shows what it would look like if the exact same hash was used for each of

them when the password hash was generated.

Using a salt in addition to the hash allows us to create a unique hash for each user

that still maps correctly to a regenerated hash with salt and user input. The reason

this works is because the salt is going to be unique for the user based on some other

generation tactic, like a timestamp or a computer serial number or something else that

is unique. The password is then combined with the salt and then hashed, and therefore

every user, even users with the same password, generates a unique hashed password

value. Figure 10-2 shows users that are registered with the same password, but the hash

is generated with a salt so that the password hash is unique to all users.

Figure 10-1. A database with three users that have the same password generated
with the same hash

Figure 10-2. Three users with the same password have unique PasswordHash
values when a salt is used

Chapter 10 enCryption of Data

403

 Protecting sensitive user information
There are a couple of ways to implement encryption on data at rest using SQL Server.

If your SQL Server version is version 2016 or greater, the easiest way to implement

encryption is to use the AlwaysEncrypted functionality of SQL Server. If you are on a

previous version of SQL Server, encryption is still straightforward, but involves a more

manual interaction with the data.

 Encryption basics
In order to encrypt columns in the database, we need to have two keys. The first key is

the master key that protects the keys in the system. The second key is the individual key

to encrypt columns.

With AlwaysEncrypted, creation of the encryption keys is very easily accomplished

using SSMS to encrypt columns. If no master key exists, one is created. When a column

is encrypted, a column encryption key can be generated or, if one already exists, can be

reused.

When encrypting with the AlwaysEncrypted approach, two types of encryption can

be used. The first is Deterministic, and the second is Randomized. The main difference

here is that if you are going to be joining to the column or if you are going to use it

as a condition in a query, you will want to use the deterministic type. If you are just

encrypting the data and it isn’t going to be critical in a join or other queries, you can just

use the randomized type.

In SQL Server versions prior to 2016, or in current versions where you don’t want to

use AlwaysEncrypted, you can leverage the Transparent Data Encryption method (TDE).

To work with TDE in any SQL Server instance, you need to generate a certificate for

the server and then generate one or more keys to use when encrypting columns. To read

columns, you’ll need to use the encryption key as part of your transaction. Additionally,

you’ll use scripts for encryption of columns.

Since TDE requires more interaction, a general approach that works well is to

leverage stored procedures any time data from an encrypted column is queried or

transformed.

Chapter 10 enCryption of Data

404

 Which type to use
Each type of encryption has advantages and disadvantages. Let’s consider a couple of

things that are important considerations for anyone who is developing a secure system.

TDE is server-side encryption, so data is well encrypted on the server, but the

decryption also happens at the server, and then the raw data is sent over the pipe to

the UI. There are ways to enforce encryption on the pipe as well, but that requires

more configuration. Additionally, the keys for the encryption must be managed

at the database level, so they are based on the database and server where they are

generated.

The nice thing about TDE is that it can be more performant since the encryption and

decryption happen at the server. TDE also works on any version of SQL Server since

2008. One last thing about TDE is that since it is handled on the server, any database

admin with execution rights can decrypt the data and see the actual sensitive data as

stored in the table, and a compromised database likely means compromised keys.

AlwaysEncrypted is limited to being used from SQL Server 2016 and newer, so older

systems or any system with a SQL Server back end that is less than the 2016 version

cannot leverage AlwaysEncrypted. AlwaysEncrypted functionality is not database

specific, however. The encryption takes place on the client side of the operation, and

the encrypted data is passed on the pipe and directly stored in the database table.

This means that transmission of the data over the pipe is done with the data already

encrypted with no extra configuration needed.

This client-side encryption also means that any SQL Server admin cannot just

decrypt the information using server certificates without a client library. Of course, SSMS

can be easily configured to be the client library with a few tweaks on the connection, so

your data is still not secure from a malicious database administrator who has the right

server credentials.

As we’ll see in the upcoming activities, encrypting specific columns with

AlwaysEncrypted functionality is as easy as a few clicks, and this goes for tables with or

without data. In contrast, encrypting the data using TDE requires us to go through an

entire migration process. AlwaysEncrypted leverages client-side decryption, while TDE

sends the data plain text to and from the server. TDE makes up for its longer setup time

by generally performing better than AlwaysEncrypted would perform.

One final thought, which you can find more information on if you read more into the

topic of encryption, is that you are going to need to implement a good key-management

strategy. Consider your risk for a compromised key and how you might have a plan in

Chapter 10 enCryption of Data

405

place to migrate to a new key in case such an event does happen. Also consider and

test what happens with keys on backup and restore in the various scenarios, as well as

moving to a new database server.

Ultimately, it will be up to you to make sure that you mitigate the risk by managing

your keys well, and it’s also up to you to implement a risk management strategy to

handle scenarios where the keys are compromised, or the server fails.

 Chapter 10 Activities: Using Always Encrypted
with EFCore and using TDE with EFCore
In the activities for this chapter, we are going to cover two different ways to encrypt our

data at rest. We’ll start by implementing AlwaysEncrypted, and we’ll conclude with an

activity that implements TDE. We’ll do both solutions in EFCore, but you can be certain

that EF6 would be just as able to be used for these activities. In fact, it is probably more

likely you would see TDE in an EF6 (or older) implementation, mostly due to the fact that

TDE has been around a lot longer.

 Activity 1001: Using Always Encrypted in an EFCore
solution
In this first activity, we’re going to learn how to set up AlwaysEncrypted in our

InventoryManager database solution and then work with it in our codebase.

The great news about always encrypted is that we can use it in a greenfield solution,

in a legacy solution when creating new tables, or in tables that already exist, even if the

encrypted columns have data.

 Step 1: Get set up
To begin this activity, get a copy of the files Activity1001_Using_AlwaysEncrypted_

Starter.zip. Open the project, double-check the connection strings, and make sure to

run the update-database command to ensure your database is current at the start of the

activity. Alternative to getting the starter files, you could continue with the files as they

were at the end of Chapter 9, or just create a new project and follow these steps (skip

these steps if you are using existing files or the starter pack):

Chapter 10 enCryption of Data

406

 1. Create a new .Net Core Console app named appropriately.

 2. Get the project folders for the InventoryDatabaseCore,

InventoryDataMigrator, InventoryHelpers, and InventoryModels

projects. Add references to the InventoryDatabaseCore and

Inventoryhelpers project in your new console application project.

 3. Get the NuGet packages updated by building the solution, and

then use the NuGet Package Manager to ensure your new console

application project has the following NuGet packages referenced:

 a. Automapper

 b. Automapper.Extensions.Microsoft.DependencyInjection

 c. Microsoft.EntityFrameworkCore

 d. Microsoft.EntityFramewokCore.SqlServer

 e. Microsoft.EntityFrameworkCore.Design

 f. Microsoft.Extentions.Configuration.FileExtensions

 g. Microsoft.Extensions.Configuration.Json

 4. Get the InventoryMapper.cs file in place in the new console

application.

 5. Get the appsettings.json in place in the new console application,

making sure to set as Content ➤ Copy if newer.

 6. Get the code from the activity 0903 Program.cs file, and place in

the new Program.cs file in your new console project.

 7. Build the solution, and then run update-database in the PMC to

make sure everything is in place

With everything set up, run the program to see the initial results (review Figure 10-3).

if you are running code from the end of Chapter 9, some of your output may vary
based on what methods you have enabled and what methods are commented out.
the output in figure 10-3 is calling all methods in the constructor.

Chapter 10 enCryption of Data

407

Now that you’ve ensured the code is working as expected, we can encrypt some

columns. As a quick reminder, AlwaysEncrypted will not work if you are using a version

of SQL Server prior to SQL Server 2016.

 Step 2: Enable Always Encrypted
Open the inventory database in SSMS to view the tables. Expand the Items table to see

the columns, and run a query like SELECT TOP 1000 * FROM [InventoryManager].

[dbo].[Items]. The results of this query are shown in Figure 10-4.

Figure 10-3. The initial results yield items and categories with colors

Figure 10-4. The Items table without AlwaysEncrypted enabled

Chapter 10 enCryption of Data

408

In the real-world applications that you are building, you will need to determine

which columns you want to encrypt. For this application, let’s encrypt the Name,

Description, and Notes fields of the Items table.

Right-click the table and select Encrypt Columns, as shown in Figure 10-5.

When the Always Encrypted wizard starts, select Next (review Figure 10-6).

Figure 10-5. Select the Encrypt Columns option after right-clicking the table in
SSMS

Chapter 10 enCryption of Data

409

In the Column Selection window, select the three columns we are going to encrypt.

For this encryption, assume we might limit or search on Name and Description, but

not on Notes. Therefore, select the Deterministic option for Name and Description, and

select the Randomized option for Notes. See Figure 10-7 for clarity on the fields to mark

for processing and the selected encryption type for each of the targeted columns.

Figure 10-6. The first step of the Always Encrypted wizard

Chapter 10 enCryption of Data

410

Select Next to continue to the Master Key Configuration step in the Always Encrypted

wizard.

Leave the column master key set to auto-generated, and choose your place of

storage, either in your Windows certificate store or in an Azure Key Vault. Leave the

master key source set to the Current User for the certificate store, or log into Azure and

select the key vault to store the encryption master key (see Figure 10-8).

Figure 10-7. Selecting the columns for encryption

Figure 10-8. Configure the master key settings

Chapter 10 enCryption of Data

411

Select Next to continue to the Run Settings step of the wizard. At this step, either run

it now or generate a PowerShell script to do the encryption later. Go ahead and leave

this selected as Proceed to finish now, and then hit the Next button to move to the

summary step (for clarity, review Figure 10-9).

Review the summary screen, where it will tell you the database you are running

against and the keys that will be generated, along with the columns and encryption type

on each. The summary screen is shown in Figure 10-10.

Figure 10-9. Selecting the run settings for key generation and encryption

Chapter 10 enCryption of Data

412

Complete the wizard by hitting the Finish button, which will kick off the encryption

process (see Figure 10-11).

The encryption process will run to completion, barring any errors (as shown in

Figure 10-12).

Figure 10-11. The encryption is in process after hitting the Finish button

Figure 10-10. Review what will be encrypted when the wizard completes

Chapter 10 enCryption of Data

413

 Step 3: Review the data
Run the same query you ran in step 2 to see the data in the Items table. The results

should now include the encrypted fields as expected (see Figure 10-13).

When I ran this query, I didn’t have anything in the Notes column for any of the

entries. It is clear, however, that the Name and Description fields that were there are now

encrypted as expected. If your data is not showing as encrypted, it may be that the fields

are being decrypted by SSMS based on your settings. A quick rerun of the wizard would

validate the fields that are encrypted (don’t reapply the wizard if you do take a look).

Figure 10-12. The encryption process has completed successfully

Figure 10-13. The data is encrypted, even if data was already present

Chapter 10 enCryption of Data

414

 Step 4: Review the data in SSMS
Just to make sure our data is not corrupted, let’s go ahead and double-check by

configuring SSMS to be our client that will encrypt and decrypt the settings. Close your

current connection to the database to ensure a new one opens.

Open a new connection dialog to your SQL Server instance on SSMS, and then select

the Options << button (see Figure 10-14).

Figure 10-14. Connecting to SSMS with options

Chapter 10 enCryption of Data

415

Select the Always Encrypted tab, then check the Enable Always Encrypted

(column encryption) checkbox (see Figure 10-15). We are not using enclaves in our

solution, but if you were, you could set the enclave information here. Also note, if you are

on an older version of SSMS, you won’t have the always encrypted tab.

If you are on an older version, you will likely need to set the Additional Connection

Parameters. If you are on the latest versions of SQL Server and SSMS, you will not need

to. If you can’t connect with just the always encrypted setting enabled, add the statement

Column Encryption Setting=enabled

to your Additional Connection Parameters tab (see Figure 10-16 for clarity).

Figure 10-15. Enabling Always Encrypted

Chapter 10 enCryption of Data

416

Once you have established a new connection with the correct settings, run the query

to select the top 1000 Items. This time you’ll see the data decrypted as expected.

if you added parameters in the additional Connection parameters tab, you may see
a pop-up the first time you connect. allow the operation to proceed as expected.

One final note here is that you may need to restart SSMS for the new settings to
take effect.

Now that we’ve set up the always encrypted database fields, let’s see what happens

when we work with our application.

 Step 5: Run the application
Before running the solution, we need to change one thing. We need to set our database

connection string to let it know that it needs to decrypt data. To do this, add the

statement Column Encryption Setting=Enabled; to the end of your current connection

string in the appsettings.json file. For clarity, here is what my connection string looks

like once I’ve added the Column Encryption Setting:

Figure 10-16. Set the Connection Parameters, but only if on an older version of
SSMS

Chapter 10 enCryption of Data

417

"ConnectionStrings": {

 "InventoryManager": "Data Source=localhost;Initial Catalog=InventoryMan

ager;Trusted_Connection=True;Column Encryption Setting=Enabled;"

}

Make sure to update all connection strings to use this new setting across all projects.

Return to the activity files, then comment out all of the non-builder method calls
in the Main method except for ListInventoryWithProjection, and run the application

against our encrypted database. Do you think that it will work as is? The answer is

highlighted in Figure 10-17.

Here, we see an exception is thrown. The reason this happens is because

AlwaysEncrypted uses client-side decryption. In this case, we’re trying to work against

encrypted Item fields for Name and Description before decrypting them.

Figure 10-17. Using Projections on encrypted data does not work

Chapter 10 enCryption of Data

418

if we had set up our alwaysencrypted solution to also include enclaves, it might
be possible to continue using these projections, since more operations could be
handled on the server side.

This is going to be the biggest issue with using LINQ against AlwaysEncrypted

database columns when not using enclaves. We won’t be able to leverage these columns

without first decrypting the data. This is where using AlwaysEncrypted can take a big

performance hit.

In our current solution, we can still create a projection, but we can’t do any ordering,

sorting, paging, or filtering until the entire result set is decrypted on the client side.

Update the query for items to use the following code:

var items = db.Items.OrderBy(x => x.Name).Take(5)

 .Select(x => new ItemDto {

 Name = x.Name, Description = x.Description

 })

 .ToList();

If you try to run this code, you can see the ordering will not be applied in a way that

generates the results we would expect (review Figure 10-18).

This query result is clearly not ordered by Name, and does not get the two records that

start with “B” as part of the top five results in order.

Therefore, to this point, the only solution I’ve been able to come up with is to just

pull the Items using the standard query. If you think about this, it mostly makes sense,

because the data is first decrypted on the client side and then we can work with it after

decryption.

Figure 10-18. The output from the projection with ordering before getting to a
decrypted list shows that the ordering is happening on encrypted data

Chapter 10 enCryption of Data

419

Figure 10-19. The output is correct, but only when we first decrypt everything and
then perform the ordering and take operations

Comment out the call to the ListInventoryWithProjection method and create

a new method ListInventoryWithAlwaysEncrypted. In the new method, add the

following code:

 static void ListInventoryWithAlwaysEncrypted()

 {

 using (var db = new InventoryDbContext(_optionsBuilder.Options))

 {

 var theItems = db.Items.ToList().OrderBy(x => x.Name).Take(5);

 var items = _mapper.Map<List<ItemDto>>(theItems);

 items.ForEach(x => Console.WriteLine($"New Item: {x}"));

 }

 }

This code generates the following output when run (review Figure 10-19).

 Step 6: Fix the Method to Get the Items for Listing
using LINQ
Uncomment the GetItemsForListingLinq method, and run the application to reveal

that this method will also fail. To make the GetItemsForListingLinq method work,

we need to do a couple of things. First, we must get the Items to a list right away before

performing the Select. Once that works, we could run the application, but we’ll still see

an error. Any thoughts on what it might be?

The projection has Category information in it. In the original projection, we can get

the category information only when needed. With AlwaysEncrypted on, we first need to

get the information up front, and then we can project.

Chapter 10 enCryption of Data

420

So the two changes to this code are to include a call to ToList early, but also we

must include the Category with an Include statement. Change the results line in the

GetItemsForListingLinq method to the following code:

var results = db.Items.Include(x => x.Category).ToList().Select(x => new

GetItemsForListingWithDateDto

When executed, this query will include the category and get the data to the list, and

then we can work in memory with the decrypted objects to further project them. For

clarity, the new results query should look as is shown in Figure 10-20.

And running the solution gets us the results we are expecting without errors.

 Step 7: Turn on other method calls
To complete the coding portion of this activity, uncomment the code for all method

calls in the Main method except ListInventory, ListInventoryWithProjection, and

AllActiveItemsPipeDelimitedString. Run the program to get similar results to what is

shown in Figure 10-21.

Figure 10-20. The updated GetItemsForListingLinq method contains the Include
and ToList statements early in the LINQ query

Chapter 10 enCryption of Data

421

Figure 10-21. The final output with data being returned from the database,
decrypted, then projected, and ordered

You might have noted that we left a few methods out here. We’ll address other issues

as we do some cleanup later in the book. If you’re really wanting to clean them up, the

ListInventory and ListInventoryWithProjection methods would just require a call to

ToList early in the chain so that ordering and taking a limited number can happen as

expected. The stored procedure will not work in our current setup, so the options are

to not sort or filter in the stored procedure and handle it client side or just get the data

client side and handle sorting and filtering on the client.

 Final thoughts on activity 1001
In this activity, we saw how easy it was to set up the AlwaysEncrypted database

encryption on our InventoryManager database. Unfortunately, we also saw that once

we have set up the always encrypted database columns, we must work with our queries

Chapter 10 enCryption of Data

422

in a manner that first retrieves the results and decrypts them before performing any

ordering, filtering, or paging. As we’ve learned in previous chapters, this is not the most

efficient way to work with LINQ to generate result sets.

 Activity 1002: Using transparent data encryption
While it is more likely that you will encounter the need to use TDE in an older EF6

project, it is entirely possible to implement TDE in .Net Core as well. Therefore, we’ll be

using our .Net Core project that connects to the AdventureWorks database to complete

this activity. Regardless of the version of EF where we are implementing this solution, the

real meat of this activity will happen at the database level, with keys generated, column

changes (which could/will be a code-first change), and then the heavy use of stored

procedures to work with the data for read and write operations after fields are encrypted.

 A quick review of TDE vs. AlwaysEncrypted
As a review of what we’ve already covered, where AlwaysEncrypted worked in the

client side with encryption, sending encrypted data over the wire and simply storing

the encrypted values in the database, the TDE solution is going to be entirely server

side on the database; with keys specific to the database, encryption handled after data

is received before insert/update and before sending back to the client. All of the data

being decrypted at the database means plain-text values going across the wire without

additional configuration.

 How TDE can be a better choice for your solutions
Where TDE will really shine is going to be in overall performance, as compared to the

AlwaysEncrypted solution. In TDE, with the data encryption/decryption happening at

the database in procedures, everything will be in an execution plan, and there won’t be

any issues with projecting data on the client side as the data will already be well formed

before being sent back to the client – often as the exact shape of the Model or DTO that

the client needs.

Chapter 10 enCryption of Data

423

 Step 1: Get set up
To begin, grab a copy of the Activity1002_Using_Transparent_Data_Encryption_

Starter.zip files, extract them, double-check your connection string, and make sure

that you have the AdventureWorks database set up. Run an update-database command

to make sure the migrations are up to date on your machine. Additionally, it will likely be

a good idea to run an add-migration to make sure you don’t have any pending model/

database changes. If the migration is clear, just delete it. If not, consider just running it to

get your database set up. If you don’t have an implementation of AdventureWorks up and

running on your system, refer back to the opening chapters of this book for getting set up

with AdventureWorks.

As an alternative to using the starter files, it would be possible to continue working

with files as of the end of activity 0901. If you desire to build your own starter pack,

please use the EF_Activity001 and InventoryHelpers projects so you will be set up to

work against the AdventureWorks database with migrations.

Run the program to make sure it works as expected before proceeding. Output

should be similar to what is shown in Figure 10-22.

Figure 10-22. The initial output is similar to the output from the end of
activity 0901

Chapter 10 enCryption of Data

424

 Step 2: Discuss the TDE migration strategy, including
backup
This migration strategy will work for any database that has existing data where

you need to implement TDE to protect your data at rest. Our solution is an EFCore

implementation, and we have a lot of data. Your solution in the real world is likely

similar, even if it’s in an EF6 solution.

The steps we need to consider for migration of existing data to encrypted data at rest

with TDE are as follows:

• First, back up the existing data to another column to hold the data

during encryption procedures for each column to be encrypted.

• Second, back up all of the data that will eventually be encrypted.

• Third, create all of the keys and certificates necessary to encrypt and

decrypt data with TDE.

• Fourth, drop any constraints on the target columns.

• Fifth, change the column type for the columns to be encrypted to

varbinary(max). This will destroy the existing data in those columns.

Constraints will no longer be possible once the column is encrypted.

• Sixth, perform a transformation operation where the backup column

is encrypted and inserted into the original column.

• Seventh, delete the backup column(s) from the table. Before you do

this, make sure to fully document the column type and length. This

will be critical during decryption, and if you don’t keep a record of it,

you’ll have to review backups or go through the migrations or scripts

to see what they were before.

• Finally, for every operation around the table with encrypted data,

create the Insert, Update, and Read procedures that will be necessary

to work with plain-text data inserted to an encrypted column or

encrypted data returned to a plain-text result set.

Sounds fairly straightforward, right? It’s actually not too bad. We’ll walk through

these steps together. There is one final note to consider, however. If you are working

through the chapters of this book out of order, there are other chapters that depend on

Chapter 10 enCryption of Data

425

the AdventureWorks database to be set up and not have encrypted columns. While you

could likely just restore the database at any point from the original download, you may

wish to make a backup of the database before performing the remaining steps in this

activity to avoid conflicts with other chapters.

if you are working on an actual database for your work or personal projects, i
would recommend backing everything up before starting, in the off chance that
something goes awry.

If at any point you want to create a backup of your database, simply right-click the

database in SSMS and select Tasks ➤ Back Up (see Figure 10-23).

Perform a full, copy-only backup and store the file in a convenient location for easy

recovery (as shown in Figure 10-24).

Figure 10-23. Backing up the database

Chapter 10 enCryption of Data

426

Clicking OK will execute the backup (see Figure 10-25).

 Step 3: Begin the migration strategy
Referring to the preceding steps, the first thing we want to do is perform a migration to

add backup columns for every field we want to encrypt.

Figure 10-24. Perform a full, copy-only backup to the default file location for
backups

Figure 10-25. The backup is completed successfully

Chapter 10 enCryption of Data

427

While a real-world scenario would likely have many tables and columns to encrypt

or decrypt, we’re going to home in on the HumanResources.Employee table in the

AdventureWorks database. You should have no problem extrapolating what we learn

from this activity to other tables and fields if you want to practice more or when you

eventually are implementing your real-world solutions.

The columns we want to encrypt will be

• NationalIDNumber

• JobTitle

• BirthDate

• MaritalStatus

• Gender

• HireDate

We could do other fields and other tables, but this will be where we stop for this

activity. One bummer about these fields is that there isn’t a decimal field to encrypt/

decrypt in this result set, but the decryption strategy will be the same as the others, just

if you have a decimal field to encrypt/decrypt, don’t forget to convert to the correct type

and size as you decrypt.

For the first part of the strategy, let’s add the backup fields to the model. We could

do this by just writing a script and including it in the migration. The choice is yours on

how you would like to proceed. If using a script, another thing you could consider is just

selecting the whole table into a backup table and then encrypting from a select on that

table. There are many solutions available for the migration.

In our example, I’m going to use full database migrations so that there is a small

chance I could roll it back without too many issues. Again, you could write manual

rollback scripts and just use them to protect your data.

if you have not validated that you have no pending migrations, before continuing,
you should try to add a migration and make sure it is blank. if not blank, evaluate
and run if there are no issues. if the migration is blank as expected, run the
Remove-Migration command.

Chapter 10 enCryption of Data

428

Add the following code to the bottom of the HumanResources.Employee model (the

file is named Employee.cs and it’s located in the EF_Activity001 project. The file has

annotations for [Table("Employee", Schema = "HumanResources")]):

[StringLength(15)]

public string NationalIDNumberBackup { get; set; }

[StringLength(50)]

public string JobTitleBackup { get; set; }

[Column(TypeName = "date")]

public DateTime BirthDateBackup { get; set; }

[StringLength(1)]

public string MaritalStatusBackup { get; set; }

[Required]

[StringLength(1)]

public string GenderBackup { get; set; }

[Column(TypeName = "date")]

public DateTime HireDateBackup { get; set; }

Add a migration to update the table using the command add-migration

EncryptionMigration_Step1. After the migration runs, validate that it only contains

the expected fields. When the migration generates, some of the fields may be set to

nullable: false and have a default value set on them. As long as the field we are

backing up is also not nullable, this should not be an issue. If the field that is being

backed up allows null, but the backup field does not, then override the definition in the

migration to set the value to nullable: true and remove the default value. For example, in

my version, BirthDate, Gender, and HireDate are all required fields. Figure 10-26 shows a

sample of what the migration should look like.

Chapter 10 enCryption of Data

429

if you were running this process against an ef6 implementation, the migration
would look a bit more succinct, but would still accomplish the same goal of adding
columns.

Run the update-database command to add the backup columns to the database as

shown in Figure 10-27.

Figure 10-26. The first migration is adding columns to store the original field data
to ensure we don’t lose data during this process

Chapter 10 enCryption of Data

430

 Step 4: Run a script to back up the data for the target
columns
Begin by adding a new migration using the command add-migration

EncryptionMigration_Step2_BackupData.

Once the migration is created, either add some inline T-SQL to back up the table data

or you could also implement a file-management solution like we’ve seen earlier in the

text. For this activity, and for purposes of brevity, we’ll just do our scripting within the

migration files.

In the Up method of the migration, add the following code:

migrationBuilder.Sql(@"UPDATE [HumanResources].[Employee]

 SET [NationalIDNumberBackup] = [NationalIDNumber]

 ,[JobTitleBackup] = [JobTitle]

 ,[BirthDateBackup] = [BirthDate]

 ,[MaritalStatusBackup] = [MaritalStatus]

 ,[GenderBackup] = [Gender]

 ,[HireDateBackup] = [HireDate]"

);

For this migration, there is nothing to do in the down method. If we need to roll back,

we’ll have to manually intervene to save our data.

Next, run the update-database command to execute the script (see Figure 10-28).

Figure 10-27. The database is updated to have the backup columns

Chapter 10 enCryption of Data

431

Finally, double-check your database table to make sure that the data migrated as

expected. Use a query similar to the following to validate your data was copied correctly

during the migration:

SELECT [NationalIDNumber],[NationalIDNumberBackup],

 [JobTitle] ,[JobTitleBackup],

 [BirthDate] ,[BirthDateBackup],

 [MaritalStatus] ,[MaritalStatusBackup],

 [Gender],[GenderBackup],

 [HireDate],[HireDateBackup]

FROM [AdventureWorks].[HumanResources].[Employee]

For clarity, the results should look similar to what is shown in Figure 10-29.

Figure 10-28. Updating the database runs the script

Figure 10-29. Verifying the data was backed up successfully

Chapter 10 enCryption of Data

432

 Step 5: Create a new script to generate the database keys
In order to make the database keys successfully, you’ll need to have three things. First,

you’ll need a certificate. Second, you’ll need to create the symmetric keys. Finally, you’ll

need a place to back up your keys. You’ll also need a strong password that can be used

for the keys. An important note is that anyone that is executing the migration to create

the scripts will need to make sure to have the hard-coded file path in place for storage of

local backup certificates and keys. Another consideration would be a personal KeyVault

at Azure.

Make sure to validate that the physical drive contains the proper folder for storing
backups of the certificates and keys generated by the migration script for creating
encryption keys.

Begin by validating the folder for backup. For this activity, a suggestion could be

C:\Data\DatabaseKeys. In the real world, you’ll want to do something with them

to keep them secure after generation. Create the folder C:\Data\DatabaseKeys or a

similar folder of your choosing for storing the physical key files (review Figure 10-30).

Once the storage location is in place, create a new migration by running the

command add-migration EncryptionMigration_Step3_CertsAndKeysGeneration.

Figure 10-30. The folder to store the database keys after generation

Chapter 10 enCryption of Data

433

After the migration is created, we need to add four statements for execution into the

Up method, in the exact order listed as follows (you should use a better password, but

make sure you can remember it):

migrationBuilder.Sql(@"IF NOT EXISTS (SELECT *

 FROM sys.symmetric_keys WHERE symmetric_key_id = 101)

 BEGIN

 CREATE MASTER KEY ENCRYPTION BY PASSWORD = 'Password#123'

 END");

migrationBuilder.Sql(@"CREATE CERTIFICATE AW_tdeCert

 WITH SUBJECT = 'AdventureWorks TDE Certificate'");

migrationBuilder.Sql(@"BACKUP CERTIFICATE AW_tdeCert TO

 FILE = 'C:\Data\DatabaseKeys\AW_tdeCert.crt'

 WITH PRIVATE KEY

 (

 FILE = 'C:\Data\DatabaseKeys\AW_tdeCert_PrivateKey.crt',

 ENCRYPTION BY PASSWORD = 'Password#123'

)");

migrationBuilder.Sql(@"CREATE SYMMETRIC KEY AW_ColumnKey

 WITH ALGORITHM = AES_256

 ENCRYPTION BY CERTIFICATE AW_tdeCert;

 ");

Once again, we won’t be doing anything in the Down method for this migration.

With all of this in place, run the update-database command to execute the certificate

generation (as in Figure 10-31).

Figure 10-31. The migration is applied as expected

Chapter 10 enCryption of Data

434

Now validate that the keys are generated in the database and in the file store.

To validate, open SSMS and expand the Security folder under the database, and then

look at Certificates and Symmetric Keys. The keys we created should be there. You may

need to refresh your database if you already had SSMS open. Provided the migration

worked as expected, your database should look similar to what is shown in Figure 10-32.

Next, look at the folder on the physical drive to see that the key and cert are backed

up as expected (review Figure 10-33).

Figure 10-32. The keys are generated after the migration is applied

Chapter 10 enCryption of Data

435

Store your keys somewhere secure.

 Step 6: Drop the constraints and indexes on the target
columns
Now that we’re ready to encrypt data and we have our target column data backed up, we

need to set the columns that we’re using in our database to store the encrypted data.

First, we must drop all the constraints and indexes on the fields that will be changing.

We can do that easily with a script.

if you miss one along the way, just update your script file, and then run the drop
manually. otherwise, make sure to change this script to be idempotent.

Add a new migration with the command add-migration EncryptionMigration_

Step4_DropConstraints. In this migration, add a SQLResource to script the constraints

for dropping. We have a bunch of check constraints to drop on each of these columns.

You may want to keep a record of what they do as you may want to enforce these

constraints in the procedures that insert and/or update data in the future.

In the migration’s Up command, we need to add drop statements to get rid of all

constraints on the fields we are encrypting. For this reason, open your HumanResources.

Employee table in SSMS and review the Constraints folder. Your constraints will have

a unique name, so you will not simply be able to use the same script as me for three of

your statements. Review Figure 10-34 for more information.

Figure 10-33. The certificates are backed up on the physical drive as expected

Chapter 10 enCryption of Data

436

Add the following migration builder statements to your Up method to remove the

constraints and indexes on fields we will be encrypting:

migrationBuilder.Sql(@"ALTER TABLE[HumanResources].[Employee]

 DROP CONSTRAINT[CK_Employee_MaritalStatus]");

migrationBuilder.Sql(@"ALTER TABLE[HumanResources].[Employee]

 DROP CONSTRAINT[CK_Employee_HireDate]");

migrationBuilder.Sql(@"ALTER TABLE[HumanResources].[Employee]

 DROP CONSTRAINT[CK_Employee_Gender]");

Figure 10-34. The constraints on the Employee table have some unique identifiers
that will be unique to your database implementation

Chapter 10 enCryption of Data

437

migrationBuilder.Sql(@"ALTER TABLE[HumanResources].[Employee]

 DROP CONSTRAINT[CK_Employee_BirthDate]");

migrationBuilder.DropIndex(

 name: "AK_Employee_NationalIDNumber",

 schema: "HumanResources",

 table: "Employee");

Technically, we should put the scripts in place to recreate these indexes in the Down

method. For brevity, we’ll skip it this time. If you want to do this correctly, just right-click

each constraint and index we are dropping, script as create to a new query window, and

use that generated script in migrationBuilder.Sql(@"code"); statements. Remember

to set a new statement anytime a GO command is encountered.

Run the update-database command to update the database and then validate that

the constraints have been dropped from the database by refreshing your database in

SSMS and reviewing the existing constraints (see Figure 10-35).

Figure 10-35. Validating that the constraints are gone

Chapter 10 enCryption of Data

438

 Step 7: Change the data type for target columns
to varbinary(max) byte[]
For the next change, we’re going to modify the data for the employees table. We need

to change all fields to varbinary(max) in the database that will hold encrypted data.

When we do this, the data will be lost from these target columns. Since we’re going to be

performing destructive changes on the table, it is critical that you have previously run the

step where data was backed up to another field. If for some reason you skipped that step,

go back now and back up your data.

Return to the HumanResources.Employee model, and change the DataType for all

of the targeted columns we’re encrypting to byte[] and remove any length constraints

and column type mappings from the columns (keep required constraints, and

remember if any fields in your solution are mapped such as NationalIdNumber =>

NationalIDNumber as you may wish to restore those mappings in the scripts you will use

later to get the data):

[Required]

public byte[] NationalIdnumber { get; set; }

//other fields left alone here

[Required]

public byte[] JobTitle { get; set; }

public byte[] BirthDate { get; set; }

[Required]

public byte[] MaritalStatus { get; set; }

[Required]

public byte[] Gender { get; set; }

public byte[] HireDate { get; set; }

if you aren’t using migrations in your solution, simply create a script at this step
that alters the table to set all the target columns to be type varbinary(max).

Look into the AdventureWorksContext. Find the line of code modelBuilder.

Entity<Employee>(entity => . Under this entity, remove the mapping that demands an

index for the national id number if it still exists.

Chapter 10 enCryption of Data

439

entity.HasIndex(e => e.NationalIdnumber)

 .HasName("AK_Employee_NationalIDNumber")

 .IsUnique();

If you don’t remove this, but it was already removed from the database, your next

migration may not run correctly.

Next, add a new migration with the command add-migration Encryption_Step5_

ChangeColumnDataTypes.

If the first statement of the generated migration is still trying to drop the index AK_

Employee_NationalIDNumber, then go into SSMS and run the following statement to

ensure the index does not exist:

DROP INDEX [AK_Employee_NationalIDNumber] ON [HumanResources].[Employee]

Then manually remove the statement to drop the index from your migration.

After the migration is created as expected, run the update-database command to

change the data types on the table. This will also rename the NationalIDNumber column

to NationalIdNumber since we removed the mapping in the model.

Also remember at this point, if your solution relies on these columns, everything

that touches them will need to be modified after this operation to restore your system to

working order.

At this point, we get an error for not being able to convert an nvarchar field to

a binary field. The error tells us to fix it, we need to use the CONVERT function (see

Figure 10-36).

To fix this, we need to do a manual update of our migration. It’s not ideal, but it does

work.

Figure 10-36. The migration fails to convert

Chapter 10 enCryption of Data

440

In the migration, for every field that was currently nvarchar, we need to do a temp

column and then convert that to the real column as binary. It will look like this:

migrationBuilder.AddColumn<byte[]>(

 name: "NationalIdnumberTemp",

 schema: "HumanResources",

 table: "Employee",

 nullable: true,

 comment: "Unique national identification number such as a social

security number.");

migrationBuilder.Sql(@"UPDATE HumanResources.Employee SET

NationalIdnumberTemp = CONVERT(varbinary, NationalIdNumber)");

migrationBuilder.DropColumn("NationalIdNumber", "Employee",

"HumanResources");

migrationBuilder.RenameColumn(

 name: "NationalIdnumberTemp",

 schema: "HumanResources",

 table: "Employee",

 newName: "NationalIdnumber");

Where the first step is to add a temp column, then convert the existing column into

the temp column. Then drop the original column, and finally, rename the temp column

to the original column. Do the same for Gender, MaritalStatus, and JobTitle.

Marital Status:

migrationBuilder.AddColumn<byte[]>(

 name: "MaritalStatusTemp",

 schema: "HumanResources",

 table: "Employee",

 nullable: true,

 comment: "M = Married, S = Single");

migrationBuilder.Sql(@"UPDATE HumanResources.Employee SET MaritalStatusTemp

= CONVERT(varbinary, MaritalStatus)");

migrationBuilder.DropColumn("MaritalStatus", "Employee", "HumanResources");

migrationBuilder.RenameColumn(

 name: "MaritalStatusTemp",

 schema: "HumanResources",

Chapter 10 enCryption of Data

441

 table: "Employee",

 newName: "MaritalStatus");

Job Title:

migrationBuilder.AddColumn<byte[]>(

 name: "JobTitleTemp",

 schema: "HumanResources",

 table: "Employee",

 nullable: true,

 comment: "Work title such as Buyer or Sales Representative.");

migrationBuilder.Sql(@"UPDATE HumanResources.Employee SET JobTitleTemp =

CONVERT(varbinary, JobTitle)");

migrationBuilder.DropColumn("JobTitle", "Employee", "HumanResources");

migrationBuilder.RenameColumn(

 name: "JobTitleTemp",

 schema: "HumanResources",

 table: "Employee",

 newName: "JobTitle");

Gender:

migrationBuilder.AddColumn<byte[]>(

 name: "GenderTemp",

 schema: "HumanResources",

 table: "Employee",

 nullable: true,

 comment: "M = Male, F = Female");

migrationBuilder.Sql(@"UPDATE HumanResources.Employee SET GenderTemp =

CONVERT(varbinary, Gender)");

migrationBuilder.DropColumn("Gender", "Employee", "HumanResources");

migrationBuilder.RenameColumn(

 name: "GenderTemp",

 schema: "HumanResources",

 table: "Employee",

 newName: "Gender");

Chapter 10 enCryption of Data

442

The DateTime columns will also throw errors, as would other types, so make sure to

update them to use the same swap operations as well:

HireDate:

migrationBuilder.AddColumn<byte[]>(

 name: "HireDateTemp",

 schema: "HumanResources",

 table: "Employee",

 nullable: true,

 comment: "Employee hired on this date.");

migrationBuilder.Sql(@"UPDATE HumanResources.Employee SET HireDateTemp =

CONVERT(varbinary, HireDate)");

migrationBuilder.DropColumn("HireDate", "Employee", "HumanResources");

migrationBuilder.RenameColumn(

 name: "HireDateTemp",

 schema: "HumanResources",

 table: "Employee",

 newName: "HireDate");

BirthDate:

migrationBuilder.AddColumn<byte[]>(

 name: "BirthDateTemp",

 schema: "HumanResources",

 table: "Employee",

 nullable: true,

 comment: "Date of birth.");

migrationBuilder.Sql(@"UPDATE HumanResources.Employee SET BirthDateTemp =

CONVERT(varbinary, BirthDate)");

migrationBuilder.DropColumn("BirthDate", "Employee", "HumanResources");

migrationBuilder.RenameColumn(

 name: "BirthDateTemp",

 schema: "HumanResources",

 table: "Employee",

 newName: "BirthDate");

Chapter 10 enCryption of Data

443

Furthermore, it is likely the Down method won’t work for us at this point, so let’s

comment the code out rather than spend time remapping all of the data types.

If you wanted to ensure that works, you could try to reverse the process of going from

a byte[] back to the original type. This would require a similar swapping algorithm.

Run the update-database command. This should work as expected (review

Figure 10-37).

And validation of the columns in the database shows that we have gotten our data

columns migrated to store encrypted data as shown in Figure 10-38.

Figure 10-37. The migration updates as expected

Figure 10-38. The columns are converted as expected

Chapter 10 enCryption of Data

444

One last thing at this step is to run another add-migration to make sure that we

don’t have any bleed from our last migration since we did alter it overall. Run the add-

migration make-sure-no-bleed command. Once that comes up empty, go ahead and

run the command remove-migration.

Use SSMS to validate that data columns are showing as encrypted by running the

query SELECT * FROM HumanResources.Employee. Some fields should have cryptic

values like 0x430068006900650066002000450078006500630075007400690076006500.

Further validate that the data is not yet ready by running the following script in a new

query window:

OPEN SYMMETRIC KEY AW_ColumnKey

DECRYPTION BY CERTIFICATE AW_tdeCert;

SELECT BusinessEntityID, LoginID,

ISNULL(CONVERT(nvarchar(15), decryptbykey([NationalIDNumber])), '')

[NationalIdNumber], [NationalIDNumberBackup],

ISNULL(CONVERT(nvarchar(50), decryptbykey([JobTitle])), '') [JobTitle],

[JobTitleBackup],

ISNULL(CONVERT(DateTime, decryptbykey([BirthDate])), null) [BirthDate],

[BirthDateBackup],

ISNULL(CONVERT(nvarchar(1), decryptbykey([MaritalStatus])),'')

[MaritalStatus] ,[MaritalStatusBackup],

ISNULL(CONVERT(nvarchar(1), decryptbykey([Gender])),'')

[Gender],[GenderBackup],

ISNULL(CONVERT(datetime, decryptbykey([HireDate])), null)

HireDate,[HireDateBackup]

FROM [AdventureWorks].[HumanResources].[Employee]

CLOSE ALL SYMMETRIC KEYS

The script we just ran shows that we have successfully encrypted the columns, but

we did lose the data. Good thing we have everything backed up. Now we just need to

encrypt the data into the correct columns.

Chapter 10 enCryption of Data

445

 Step 8: Encrypt the backup data into the new columns
For this step, we’re going to run a migration that will encrypt the varchar data and

datetime data that we’ve stored in backup columns and put it into the varbinary

columns that are now holding the encrypted data.

Create a new migration using the command add-migration EncryptionMigration_

Step6_EncryptBackupDataIntoOriginalColumns.

In the Up method of the migration, we’re going to run some custom SQL to move our

backup data into the destination columns. To do this, we’re going to need to encrypt the

data.

The important moving pieces of this process will be to first open the symmetric

key to allow the encryption process to take place, as well as naming the certificate to

use for decryption. In the quick check we did at the end of the last step, we used the

same process. We also set the decryption to take place using a built-in function called

decryptByKey. In this method, we’ll do the inverse where we’re encrypting, using a

function called encryptByKey.

The simple commands to open and close the keys wrap the statements are OPEN

SYMMETRIC KEY AW_ColumnKey

DECRYPTION BY CERTIFICATE AW_tdeCert; to open the encryption and CLOSE ALL

SYMMETRIC KEYS to end the ability to use the keys for encryption and decryption.

To get our script in place, go to the Up method in the migration and add the

following code:

migrationBuilder.Sql(@"OPEN SYMMETRIC KEY AW_ColumnKey

 DECRYPTION BY CERTIFICATE AW_tdeCert;

 UPDATE [HumanResources].[Employee]

 SET [NationalIDNumber] = encryptByKey(Key_GUID('AW_ColumnKey'),

CONVERT(varbinary(max), [NationalIDNumberBackup]))

 ,[JobTitle] = encryptByKey(Key_GUID('AW_ColumnKey'),

CONVERT(varbinary(max), [JobTitleBackup]))

 ,[BirthDate] = encryptByKey(Key_GUID('AW_ColumnKey'),

CONVERT(varbinary(max), [BirthDateBackup]))

 ,[MaritalStatus] = encryptByKey(Key_GUID('AW_ColumnKey'),

CONVERT(varbinary(max), [MaritalStatusBackup]))

Chapter 10 enCryption of Data

446

 ,[Gender] = encryptByKey(Key_GUID('AW_ColumnKey'),

CONVERT(varbinary(max), [GenderBackup]))

 ,[HireDate] = encryptByKey(Key_GUID('AW_ColumnKey'),

CONVERT(varbinary(max), [HireDateBackup]))

 CLOSE ALL SYMMETRIC KEYS; ");

Note that the function encryptByKey(Key_GUID('keyname'),) allows us to use

the symmetric encryption keys. Also note that the first part of the script opens the key by

certificate and the last part just closes all the keys. We will have to use similar commands

in SSMS and stored procedures to get data or insert/update data.

Run the migration using the update-database command.

Now let’s verify our data.

Using the same symmetric-key-open-and-close pattern that we used for the update

script and in the script at the end of part 7, run to see that the data has been successfully

added to our encrypted columns (review Figure 10-39).

Figure 10-39. Viewing the decrypted data

Chapter 10 enCryption of Data

447

 Step 9: Delete the backup columns
The final step that remains for the encryption migration is to just go back to the Employee

model and delete our backup columns. To keep them in the final solution, I’m just

commenting them out. You would do well to just delete them from your code.

After deleting the backup columns from the model, add a final migration using the

command add-migration EncryptionMigration_Step7_DeleteBackupColumns.

This migration should scaffold and work as expected to remove the backup columns

from the table.

Run the migration with the command to update-database. Then validate that the

columns are removed from your table in SSMS.

as an alternative to removing the columns from your model, you could just
set them all as NotMapped and potentially rename them to something like
FieldNameValue and set the type. this would be one way to allow the decrypted
data to be brought through the system in the default model.

 Final thoughts on activity 1002
In this activity, we were able to see both what it takes to use TDE encryption in SQL

server and how we could perform a migration for columns in the database that we want

to encrypt at rest.

If we were to continue working with this system, we would need to write stored

procedures for all of the read and write operations against the encrypted columns where

we could then inject the use of the symmetric keys as we did in our sample queries in

this activity.

Furthermore, we would need some sort of DTO or ViewModel that housed the actual

field data to be able to send the data around in our system once it is decrypted.

While it would be interesting to complete this activity with those activities, all of the

tools that you would need to do this are available in the samples we’ve already worked

through.

Chapter 10 enCryption of Data

448

 Final thoughts for this chapter
Now that we’ve worked through this chapter, we’ve seen how we can work with both

AlwaysEncrypted and TDE Encryption in our solutions. We’ve also seen what it takes to

modify our systems so that we can work against the encrypted data.

Although the overall encryption is not necessarily using EF – as most is done through

the server or through settings on the server and a required client library – the fact

remains that once the data is encrypted, we need to be able to work with it.

In each of the activities, we were able to see some of the trickier aspects and issues

that could arise in our real-world solutions as we implement or need to migrate and

implement encryption at rest on our data.

In our next chapter, we’re going to dive into how we can set up our solutions to test

our Entity Framework and database code with unit and integration tests.

Chapter 10 enCryption of Data

PART III

Enhancing the Data
Solution

451
© Brian L. Gorman 2020
B. L. Gorman, Practical Entity Framework, https://doi.org/10.1007/978-1-4842-6044-9_11

CHAPTER 11

Repository and
Unit of Work Patterns
In this chapter, we are going to talk in detail about two critical patterns that exist and

that should be on the radar of every database developer, whether we are using Entity

Framework or not. The good news is that EF actually handles a lot of the unit of work

(UoW) and repository (repo) work for us. The bad news is that EF is sometimes not

exactly what we need when implementing our solutions.

To learn more about these patterns and how we can work with them, we’ll start this

chapter by discussing each pattern and why they are important, and then we’ll finish

the chapter by reworking our inventory system so that it is layered with our own simple

repository for working with Items. After we layer the solution, we’ll have the ability to

implement a simple UoW pattern on top of working with Entity Framework.

 The repository pattern
The repository pattern is one of the more popular patterns when working with databases.

If you aren’t using a full repository pattern, you are likely using something that is very

close to the repository pattern. If not, you’re likely writing a lot of redundant code around

the operations to interact with your data.

 The sources of information are plentiful
There are many resources that discuss the repository pattern, but almost all of them

point back to Martin Fowler’s definition as defined in the book Patterns of Enterprise

Application Architecture. Microsoft has a great write-up on the repository pattern,

https://doi.org/10.1007/978-1-4842-6044-9_11#DOI

452

which can be found here: https://docs.microsoft.com/en-us/dotnet/

architecture/microservices/microservice-ddd-cqrs-patterns/infrastructure-

persistence- layer-design.

If you want all the official definitions and more in-depth discussions of the pattern, I

recommend you take a look at those two resources.

 The repository pattern abstracts the database plumbing
code from the implementation
That being said, the reason we want to work with the repo pattern is to make our life

a lot easier when it comes to working with our database. The way the pattern works is

that the repository puts a layer in place that allows the programmer to write common

code operations and rely on the repository to handle the plumbing that is necessary to

connect and perform operations against the database.

Ever since generics and expressions were added to .Net, it’s been possible to write

custom repository patterns. It would even be possible without these tools, albeit not as

convenient. However, before Entity Framework, it was commonplace to write code that

created a connection and then added a command to the connection. After adding the

command, we’d set the command type and give it text – either the name of the stored

procedure or the actual SQL command. Then we’d add parameters if necessary.

After getting that all set up, we’d fill a reader or a dataset, and then we’d have to work

with that dataset line by line and field by field in order to hydrate our objects for us in

code. And that was just for one of our operations. Click repeat on this for the next entity

or call to any read or write operation.

 Entity Framework’s built-in repository
Entity Framework with its implemented repository abstracted all of that out of our sight.

Instead of creating a new connection and setting up the command for every call we want

to make, we wire up EF, then just ask for one of the repositories to the DBSet<T> objects,

and, with ease, can Add, Update, Remove, and perform many other actions.

In the end, this is the essence of the repository pattern. We are no longer writing the

plumbing that is needed to build and execute commands. We can generally get a result

and map it or push it directly into our matching type object, without having to loop row

by row and field by field to get the data from our call into our business layer object.

Chapter 11 repository and Unit of Work patterns

https://docs.microsoft.com/en-us/dotnet/architecture/microservices/microservice-ddd-cqrs-patterns/infrastructure-persistence-layer-design
https://docs.microsoft.com/en-us/dotnet/architecture/microservices/microservice-ddd-cqrs-patterns/infrastructure-persistence-layer-design
https://docs.microsoft.com/en-us/dotnet/architecture/microservices/microservice-ddd-cqrs-patterns/infrastructure-persistence-layer-design

453

Additionally, using the EF repository gives us the tracking changes that we need

in order to easily just push an object change back into the database. As we’ve seen in

previous chapters, there are good and bad ways to go about working with these calls, but

EF has implemented the repository to make those basic database operations obscure.

 The unit of work pattern
In addition to the repository pattern, EF also implements a unit of work pattern. As with

the repo pattern, the roots of the UoW pattern can also be traced back to Martin Fowler’s

book on Patterns of Enterprise Application Architecture.

 Using a unit of work
Inserting data, updating data, and deleting data are three manipulation operations that

are common to most systems when working with the database. Every time we make a

call, however, there is some overhead. Additionally, sometimes we don’t want one of the

calls to be committed if subsequent calls fail.

The unit of work pattern gives the ability to group these operations. Everything that

needs to be done when the operations are ready is tracked and/or managed by the unit

of work. When the unit is completed, all of the tracked operations are applied to get the

database to match the current state of the objects in memory. Generally, if one part of

the unit fails during a unit of work operation, the entire unit is rolled back.

 Combining the repository and the unit of work
Now that we’re somewhat aware of what both of these patterns are, let’s talk about why

putting them together as EF does is such a powerful tool.

 The one-two punch
As we’ve seen, the repository pattern abstracts the lower-level operations for interacting

with the database from the business code. With EF, we don’t have to create connections

and commands directly. We design the system by putting DBSet<T> into the context.

Then we can just call against those DBSet<T> objects to add, remove, update, and

otherwise manipulate the data.

Chapter 11 repository and Unit of Work patterns

454

While the repository portion of EF is working, the unit of work portion of EF is

also in play. We encounter this in the fact that every time we start doing work with the

repositories, we ultimately need to make a call to SaveChanges to get the changes to be

applied and committed to the database.

Ultimately, what is going on is that EF serves up objects in memory to mimic the

state of the database and keeps track of their previous state. When we tell EF it is time to

save changes, EF can use the modified state of the object to determine what calls need to

be made. The calls are then run just as if we had written the code to connect and execute

commands ourselves.

 A couple of drawbacks
Using EF is a great tool for almost all scenarios we encounter; however, the nature of how

both the repo and UoW patterns are applied can lead to a few issues and drawbacks.

One major concern that a lot of developers share is general overhead. As we’ve seen

in previous chapters, and as we understand with the UoW as we’ve discussed here,

tracking the state of every entity in memory can lead to some performance issues. For

this reason, EF has exposed the ability to avoid tracking the object against the database

with the AsNoTracking statement.

Another concern that we’ll encounter as a developer will be related to concurrency.

What happens to my changes if another user applies their changes first? With EF,

generally if an error like this happens, the operation will have to be retried, sometimes

at the expense of refreshing data. This can get a bit expensive in a system where lots of

transactions are taking place.

A third concern is that it can be tricky to apply partial changes, or partial changes

may be applied even if the transaction fails. For example, if we’re solely working with

EF and we need to perform a number of operations, perhaps we only want to save

some changes but not all of them. Calling save changes on the context will save all of

the changes as performed in memory by the UoW, not just some of the changes. In

the opposite direction, if some of the operations make mutating change calls to stored

procedures and those procedures are executed, it may be impossible to rely on EF to

roll those changes back, as the procedure may have already run against the database. In

cases such as this, we often have to make sure that EF is not applying transactions on the

procedure calls, or determine some way to ensure that our database is restored to the

proper state even if untracked changes are applied.

Chapter 11 repository and Unit of Work patterns

455

Finally, not only is there risk when multiple operations may have taken place to

make it so your change can’t be applied; there is risk when using transactions that either

you can get a dirty read, which is the case when you pull data from the database but

that data is in process of being changed by another user, or you might get a situation

where your operations are causing deadlocks in the system. A deadlock in this case is

a situation where you start a transaction and perform a read of data from any table. As

you are using a transaction, that table becomes locked for read/write operations to other

users until you commit your changes.

 In general, rely on EF
With everything that EF does provide, it is generally a good idea to rely on what EF is

doing around these two patterns (repo and UoW). Implementing our own solutions can

look like the right solution, but may introduce a lot of risk.

Always remember that EF is going to apply changes as a unit of work for you, so you

can generally rely on it rolling back correctly on failure, as well as trust that applying

changes will only be allowed when the data is clean and in the proper state to be

committed.

 Separation of concerns
A final topic that we need to discuss in this chapter is the idea of separation of concerns.

Separation of concerns (SoC) is a well-known principle in computer science. The overall

idea is that you want to keep minimal functionality in its own layer and area of concern,

rather than tightly coupling everything together. We already do a lot of programming

with SoC implicit as we build out separate classes for modeling our objects. While they

may be relational, we don’t often make a class that contains multiple objects in it.

For example, when we programmed our solution, we didn’t put the properties for

Genre in the Item class. We used a many-to-many relationship so that Genres could be

their own concern and so that Items could have the ability to be separate from Genres

and Categories. This is basic separation of concerns.

Chapter 11 repository and Unit of Work patterns

456

 Logical separation of concerns
To make our solution robust, it would be ideal to not only separate the concerns

across objects but also to separate concerns across layers. In this manner, we can

make functional units or components that can more easily be interchanged with new

components or logic as the needs arise. This makes our overall solution easier to

maintain.

Another benefit of separation of concerns into layers is that we can then start

correctly using dependency injection to inject the dependent components into other

layers. By doing this, as long as the components are coded to a common interface, the

business layer doesn’t care what the database layer is doing nor how, just as long as the

data is returned as expected.

 Final benefits of separating our concerns
The final benefit of separating our layers into individual components that are not tightly

coupled will be to facilitate ease of testing.

As the system stands as of the end of Chapter 10, it would be very difficult to unit

test our solution. We could likely put some integration testing into place in the solution,

but there wouldn’t be a good way to just test the service layer without connecting to an

actual database.

With all of this in mind, it’s time to work through these concepts in our solution.

 Chapter 11 Activities
To continue making our project more robust, the activities in this chapter are going

to take the time to layer our solution into a more robust solution that is more loosely

coupled. We will not be completely uncoupled, but we will get to a much more SOLID

place with our code. Additionally, we’ll be ready for unit testing and integration testing

our solution which we’ll do in the next chapter.

To kick off our activities for this chapter, we’ll start with an activity to layer our

solution. By the end of the first activity, our code will have a functioning database

layer and a functioning business/service layer, and each layer will be coded against an

interchangeable and injectable interface.

Chapter 11 repository and Unit of Work patterns

457

We’ll finish the chapter by using our solution to implement our own custom units of

work around batching on insert, update, and delete operations. To make this happen,

we’ll once again implement the operations to manipulate the database data in the

database layer. We’ll use transactions to wrap the units of work.

With all of that in mind, let’s get started.

 Activity 1101: Layering our solution
In this first activity, we are going to work through layering our solution. To be clear, this is

less of a database activity and more of an architecture exercise. Therefore, if you are not

interested in this activity, you should feel free to skip it. That being said, I do feel like this

is a great exercise in understanding how we can set up layering and position the solution

for full dependency injection and testing in the future.

 Uncoupling this solution
As it stands right now, the solution is very tightly coupled, in that there is database

code in the UI layer (our console). Ideally, we want to separate the layers out for a

number of reasons, mostly involving SOLID architecture, robustness, maintenance,

and testing.

Additionally, separating this solution into layers is going to give us a great ability

to rework different pieces of the application in the future without having to rewrite the

entire application. Operations like switching or implementing a new user interface will

be easily possible, as will changing out the database if needed.

By the end of this activity, we are going to have a much more robust solution with

a layered architecture that is decoupled at each layer via interfaces and segregation

of work.

 Step 1: Getting set up
To begin, grab a copy of the Activity1101_LayeringOurSolution_Starter.zip files,

extract them, double-check your connection string, and make sure that you have the

InventoryManager database setup. Run an update-database command to make sure

the migrations are up to date on your machine for this activity. Run the starter console

Chapter 11 repository and Unit of Work patterns

458

project to make sure the solution works out of the box. Alternatively, you could continue

working with your ongoing solution that you’ve been building throughout the project.

The activity 1101 files and projects in the solution are the same as the final version of

activity 1001.

Additionally, I am working from the assumption that the database has

AlwaysEncrypted enabled on the Items table as per the activities in Chapter 10. It should

not matter if you do or do not have AlwaysEncrypted on; however, my decisions and

code are entirely the result of refactoring based on encryption.

Running the initial solution should produce output similar to what is shown in

Figure 11-1 and does depend on which method calls you have or have not enabled in the

Main method.

 Step 2: Adding the database layer project
In general, I like to work from the bottom up, so for this activity, we’ll start with the

database and work back to the UI. If you are more comfortable, you can work in the

other direction or piece it together as we go. It’s ultimately up to you how you want to

implement your own solutions.

Figure 11-1. Running the starter project works as expected

Chapter 11 repository and Unit of Work patterns

459

Create a new project in the solution by right-clicking the solution and selecting

Add ➤ New Project as shown in Figure 11-2.

The new project needs to be a Class Library (.Net Core). If you are having

trouble finding the Class Library (.Net Core), remember to use the filters for project

type (review Figure 11-3).

Figure 11-2. Adding a new project to the solution

Chapter 11 repository and Unit of Work patterns

460

Name the project InventoryDatabaseLayer when prompted, and make sure to save

it in the same folder as your overall solution (it should default to this location). Your

input form should be similar to what is shown in Figure 11-4.

Hit the Create button to create the new project.

Figure 11-4. Naming and creating the project

Figure 11-3. Creating a new Class Library (.Net Core)

Chapter 11 repository and Unit of Work patterns

461

Rename the default Class1.cs file by right-clicking the file and selecting Rename.

Name the file InventoryDatabaseRepo.cs and select Yes when prompted to rename

dependent objects (see Figure 11-5).

Add a new class file to the project called IInventoryDatabaseRepo.cs. This will be

our layer’s interface, and we’ll implement the interface in the file we just renamed.

public interface IInventoryDatabaseRepo

{

}

Make sure to implement the interface on the InventoryDatabaseRepo class:

public class InventoryDatabaseRepo : IInventoryDatabaseRepo

{

}

Figure 11-5. Renaming the default file

Chapter 11 repository and Unit of Work patterns

462

 Step 3: Add the business layer project
Repeat the previous steps, but create a project named InventoryBusinessLayer.

As with the database project, include the two files, one as an interface and one as a

class that implements the interface. Name the class ItemsService and the interface

IItemsService. For clarity, the overall structure is shown in Figure 11-6.

 Step 4: Add AutoMapper to the two-layer projects
In the solution, I am going to make the mapper available in both layers. We’ll ultimately

inject both the mapper and the database context into the layers. To make this happen,

we need to add references to the AutoMapper packages to both layers. Use the Tools ➤

NuGet Package Manager ➤ Manage NuGet Packages for Solution to add AutoMapper

and the AutoMapper Extensions to both the service and database layer projects.

 Step 5: Create database operations in the database layer
To make the database layer work, first we need to reference an existing projects.

Right-click the project and select Add ➤ Reference. Select the

InventoryDatabaseCore project (see Figure 11-7).

Figure 11-6. The Inventory Business Layer project is stubbed out

Chapter 11 repository and Unit of Work patterns

463

After adding the reference, note that the InventoryModels project is referenced

through the InventoryDatabaseCore project. Once you’ve validated references, add the

following code into the IInventoryDatabaseRepo interface:

public interface IInventoryDatabaseRepo

{

 List<ItemDto> ListInventory();

 List<GetItemsForListingWithDateDto> GetItemsForListingLinq(DateTime

minDateValue, DateTime maxDateValue);

 List<GetItemsForListingDto> GetItemsForListingFromProcedure(DateTime

dateDateValue, DateTime maxDateValue);

 List<GetItemsTotalValueDto> GetItemsTotalValues(bool isActive);

 List<ItemsWithGenresDto> GetItemsWithGenres();

 List<CategoryDto> ListCategoriesAndColors();

}

Figure 11-7. Selecting the InventoryDatabaseCore project for reference in the
database layer project

Chapter 11 repository and Unit of Work patterns

464

Don’t forget to add the appropriate using statements so the code will compile.

Implement the methods in the InventoryDatabaseRepo class by hovering on the

class and selecting Implement interface (see Figure 11-8).

At the end of this operation, you’ll have six methods that are throwing a new

NotImplementedException stubbed out in your InventoryDatabaseRepo class.

 Step 6: Implement the database operations
In this step, we’re going to implement all six methods, one by one. Let’s start with the

ListInventory method. Note that the auto-generated methods are in alphabetical order,

but the interface methods are not. I recommend making sure to keep your interface and

your class methods lined up, and you can choose which one you want to reorder. I’m

going to reorder the interface to make it alphabetical, even though that will not be the

order of use in the program.

In the ListInventory method, replace the line for throwing a new

NotImplementedException with the following code (it is expected that this code will not

yet compile due to using variables that we haven’t added):

var items = _context.Items.AsEnumerable().OrderBy(x => x.Name).ToList();

return _mapper.Map<List<ItemDto>>(items);

Immediately we see that the code is asking for a context and the mapper. Instead of

creating them in this layer, we’re going to inject them. Additionally, we’ve added a call

that requires the using statement for LINQ.

Figure 11-8. Implementing the interface

Chapter 11 repository and Unit of Work patterns

465

Create a constructor for the InventoryDatabaseRepo class, and take in the two

parameters. Additionally, create two private read-only parameters to store the context

and mapper objects.

private readonly InventoryDbContext _context;

private readonly IMapper _mapper;

public InventoryDatabaseRepo(InventoryDbContext context, IMapper mapper)

{

 _context = context;

 _mapper = mapper;

}

Always remember to add any missing using statements when possible to ensure the

code will compile.

At this point, the ListInventory method should compile and the project should

build. This ListInventory method is our default method to just get all of the items

ordered by name.

Next, let’s update the GetItemsForListingLinq method. In this method, add the

following code:

return _context.Items.Include(x => x.Category).AsEnumerable()

 .Select(x => new GetItemsForListingWithDateDto

{

 CreatedDate = x.CreatedDate,

 CategoryName = x.Category.Name,

 Description = x.Description,

 IsActive = x.IsActive,

 IsDeleted = x.IsDeleted,

 Name = x.Name,

 Notes = x.Notes

}).Where(x => x.CreatedDate >= minDateValue && x.CreatedDate <=

maxDateValue)

 .AsQueryable().OrderBy(y => y.CategoryName).ThenBy(z => z.Name).

ToList();

This GetItemsForListingLinq method will get the Items and select them into the

DTO, and then order by CategoryName and then by Name.

Chapter 11 repository and Unit of Work patterns

466

For the next implementation, we’ll look at using the stored procedure. For the

GetItemsForListingFromProcedure method, implement the following code:

var minDateParam = new SqlParameter("minDate", dateDateValue);

var maxDateParam = new SqlParameter("maxDate", maxDateValue);

return _context.ItemsForListing

 .FromSqlRaw("EXECUTE dbo.GetItemsForListing @minDate, @maxDate"

 , minDateParam, maxDateParam)

 .ToList();

Here, we’ve leveraged the GetItemsForListing stored procedure with a data range.

Next, we’ll leverage the function to get the Items with their total values. Add the

following code to the GetItemsTotalValues Method:

var isActiveParm = new SqlParameter("IsActive", 1);

return _context.GetItemsTotalValues

 .FromSqlRaw("SELECT * from [dbo].[GetItemsTotalValue]

(@IsActive)", isActiveParm)

 .ToList();

This is the code to leverage the table-valued function.

For the GetItemsWithGeneres method, just make a call to return everything from

the view:

return _context.ItemsWithGenres.ToList();

Finally, implement the code for the ListCategoriesAndColors method. Use this

code to complete the class (as highlighted in Figure 11-9):

return _context.Categories

 .Include(x => x.CategoryColor)

 .ProjectTo<CategoryDto>(_mapper.

ConfigurationProvider).ToList();

Chapter 11 repository and Unit of Work patterns

467

With all of this code in place, we’ve implemented our items database operations

that we’ll leverage in the program. In a real-world scenario, we’d also want to do some

inserting and updating in this layer. For more practice, feel free to implement Insert,

Update, and Delete methods.

 Step 7: Create operations in the service layer
For our purposes, all but one of the service layer methods are going to be simple pass-

throughs. The overall idea is that the service exposes operations and could further

manipulate the data that is returned from the data layer.

Begin by adding a project reference to the InventoryDatabaseLayer project in the

InventoryBusinessLayer project. Note that through the InventoryDatabaseLayer

reference, the InventoryBusinessLayer project will have nested references to the

InventoryModels project (see Figure 11-10 for clarity).

Figure 11-9. The ListCategoriesAndColors method is implemented

Chapter 11 repository and Unit of Work patterns

468

Next, implement the following code in the IItemsService interface:

List<GetItemsForListingWithDateDto> GetItemsForListingLinq(DateTime

minDateValue, DateTime maxDateValue);

List<GetItemsForListingDto> GetItemsForListingFromProcedure(DateTime

minDateValue, DateTime maxDateValue);

AllItemsPipeDelimitedStringDto GetItemsPipeDelimitedString(bool isActive);

List<GetItemsTotalValueDto> GetItemsTotalValues(bool isActive);

List<ItemsWithGenresDto> GetItemsWithGenres();

List<CategoryDto> ListCategoriesAndColors();

List<ItemDto> ListInventory();

Note that while the interface is mostly a one-to-one implementation of the same

methods from the database layer, it certainly would not need to be. Additionally, there

is one more method added to get the pipe-delimited string. The scalar function for the

pipe-delimited string no longer works due to AlwaysEncrypted.

Figure 11-10. The indirect and direct references are added to the Inventory
Business Layer project

Chapter 11 repository and Unit of Work patterns

469

Now that the methods are defined in the service interface, implement the methods

in the service class. As before, just use the auto-defined interface implementation.

Next, we’ll add a constructor to the service method using the following code:

private readonly IInventoryDatabaseRepo _dbRepo;

public ItemsService(InventoryDbContext dbContext, IMapper mapper)

{

 _dbRepo = new InventoryDatabaseRepo(dbContext, mapper);

}

Note that we’re just passing the context and the mapper on, and we’re going to build

our business layer around the database layer.

 Step 8: Implement the service layer operations
Now that we’ve stubbed out the methods, we need to implement them. For every

method other than the pipe-delimited string method, we’re just going to return a call to

the database layer for the method with the same name.

In the GetItemsForListingFromProcedure method, add the following code:

return _dbRepo.GetItemsForListingFromProcedure(minDateValue, maxDateValue);

And in the GetItemsForListingLinq method, add the following:

return _dbRepo.GetItemsForListingLinq(minDateValue, maxDateValue);

In the GetItemsTotalValues method, add this line of code:

return _dbRepo.GetItemsTotalValues(isActive);

In the GetItemsWithGenres, add the following line:

return _dbRepo.GetItemsWithGenres();

In the ListCategoriesAndColors method, call through to the database layer on the

same method name:

return _dbRepo.ListCategoriesAndColors();

Chapter 11 repository and Unit of Work patterns

470

And in the ListInventory method, add the following:

return _dbRepo.ListInventory();

Finally, we need to work out the solution for the GetItemsPipeDelimitedString

method. In the original code, this was a call to a scalar function. With encryption as set

up in the activities in Chapter 10, we are no longer able to get decrypted data on the

server, so we’ll just get the items into memory and then use a StringBuilder to create

the pipe-delimited list.

Use the following code to generate all items as a pipe-delimited string of their names:

var items = ListInventory();

var sb = new StringBuilder();

foreach (var item in items)

{

 if (sb.Length > 0)

 {

 sb.Append("|");

 }

 sb.Append(item.Name);

}

var output = new AllItemsPipeDelimitedStringDto();

output.AllItems = sb.ToString();

return output;

 Step 9: Rework the console program
In this final step, we’re going to rework the console program to bring in the layers as

needed and be able to make the calls to get the data. We will still inject the mapper and the

database context from this program. In real-world applications, we would have the builders

in place so that any UI layer could be used with the injection still working as expected.

Begin by deleting all the method calls other than BuildOptions and BuildMapper

from the Main method. We’ll add them back shortly.

Additionally, add a reference to the BusinessLayer project into the main Activity1101_

LayeringOurSolution project, and remove the direct reference to the InventoryDatabaseCore

project. From now on, all data will come via the service layer project.

Chapter 11 repository and Unit of Work patterns

471

Once the reference is in place, create a new using statement after the BuildMapper

call that creates and wraps an inventory database context. Inside the using statement,

create a new service layer object. Right before the using statement, create two DateTime

variables for minDate and maxDate. Set the minDate variable to the beginning of this

year and the maxDate to the beginning of next year.

BuildOptions();

BuildMapper();

var minDate = new DateTime(2020, 1, 1);

var maxDate = new DateTime(2021, 1, 1);

using (var db = new InventoryDbContext(_optionsBuilder.Options))

{

 var svc = new ItemsService(db, _mapper);

}

Inside the using statement, add the following code to leverage all of the service

methods that directly or indirectly leverage the database layer:

var svc = new ItemsService(db, _mapper);

Console.WriteLine("List Inventory");

var inventory = svc.ListInventory();

inventory.ForEach(x => Console.WriteLine($"New Item: {x}"));

Console.WriteLine("List inventory with Linq");

var items = svc.GetItemsForListingLinq(minDate, maxDate);

items.ForEach(x => Console.WriteLine($"ITEM| {x.CategoryName}|

{x.Name} - {x.Description}"));

Console.WriteLine("List Inventory from procedure");

var procItems = svc.GetItemsForListingFromProcedure(minDate, maxDate);

procItems.ForEach(x => Console.WriteLine($"ITEM| {x.Name} -

{x.Description}"));

Console.WriteLine("Item Names Pipe Delimited String");

var pipedItems = svc.GetItemsPipeDelimitedString(true);

Console.WriteLine(pipedItems.AllItems);

Chapter 11 repository and Unit of Work patterns

472

Console.WriteLine("Get Items Total Values");

var totalValues = svc.GetItemsTotalValues(true);

totalValues.ForEach(item => Console.WriteLine($"New Item] {item.Id,-10}" +

 $"|{item.Name,-50}" +

 $"|{item.Quantity,-4}" +

 $"|{item.TotalValue,-5}"));

Console.WriteLine("Get Items With Genres");

var itemsWithGenres = svc.GetItemsWithGenres();

itemsWithGenres.ForEach(item => Console.WriteLine($"New Item] {item.Id,-10}" +

 $"|{item.Name,-50}" +

 $"|{item.Genre?.ToString().PadLeft(4)}"));

Console.WriteLine("List Categories And Colors");

var categoriesAndColors = svc.ListCategoriesAndColors();

categoriesAndColors.ForEach(c => Console.WriteLine($"{c.Category} |

{c.CategoryColor.Color}"));

Run the program to validate it works (results should be similar to what is shown in

Figure 11-11).

Figure 11-11. The program works as expected

Chapter 11 repository and Unit of Work patterns

473

Finally, remove all the original method calls in the console app program file which

have zero references, as they are no longer going to be used.

 Final thoughts on activity 1101 – layering our solution
At this point, we’ve completed the layering portion of our activity. We implemented a

database layer with a repo of actions that is modeled in an interface. We then created

a service layer to expose operations to a UI layer. Because both layers we created

implemented an interface, we can inject different implementations of these layers in the

future if desired.

After creating the business and data layers, we then refactored the program to

leverage the layers instead of implementing database code directly in the program.

Now that we have our code refactored to a layered approach, we can add a few more

methods to complete CRUD operations and then implement a custom unit of work

pattern to close out the chapter.

 Activity 1102: Rolling our own UoW
In this second activity for this chapter, we are going to create our own unit of work using

transactions in our Inventory Database Manager solution.

 Transactions are easy and effective
Entity Framework itself has built-in transactions, but sometimes you want to make sure

that a number of operations complete before saving the entire unit of work. Even though

the individual calls to SaveChanges are transactional, when you need a group of these

operations to work together and save on success, you also will want them all to roll back

in the case when something fails.

As we work to further create our custom repository, we can create methods that

leverage their own unit of work by wrapping the operations for each unit of work in

transactions.

As a last and final statement on this matter, I will again urge you to use caution when

using transactions in a highly volatile environment with high traffic volumes. Working

with transactions on your own could lead to many scenarios that end in deadlock,

Chapter 11 repository and Unit of Work patterns

474

resulting in users having long load times on different pages in the solution. Therefore, if

you must use transactions, I remind you to look into the different transaction isolation

levels, as well as fully test your system under load of multiple concurrent users to ensure

you have not created a deadlock in your solution.

 Use the using statement for transaction life cycles
When it comes to working with transactions, just like when we connect and work

with the database context, we can rely on the fact that the transaction implements

IDisposable. With that knowledge, we know that we can wrap the transaction in a using

statement, making it very easy to handle the overall unit of work.

For our activity, we’re going to do a couple of simple CRUD operations that will

simply call the context to savechanges and rely on its underlying unit of work.

We’ll then create a somewhat contrived example where we want to make sure that

we can insert, update, or delete an entire group of items. If any of the operations fail in

the group, then we will roll back the entire transaction. This will be our custom unit of

work implementation.

 Step 1: Steps
To begin, grab a copy of the Activity1102_TransactionsAndUnitOfWork_Starter.

zip files, extract them, double-check your connection string, and make sure that you

have the InventoryManager database set up. Run an update-database command to

make sure the migrations are up to date on your machine. We’re picking up where we

left off after activity 1101, but we’re going to change a number of things in order to fully

implement our desired solution. Run the program to make sure it works as expected.

Alternatively, continue working with your project after having completed activity 1101.

 Step 2: Modify the database interface and project
For this activity, we are going to use our database layer like a full database repo as

provided by Entity Framework. We are going to use our service layer to manage calls to

that database layer. Additionally, we’re going to create some methods that have units of

work in them, where we will start a transaction and keep the transaction open until all

changes have completed.

Chapter 11 repository and Unit of Work patterns

475

To start our development process, we are going to work from the database up to the

UI program layer. To make our solution work as expected, first we need to fix a couple of

things that we would likely have caught if we had good unit and integration tests.

First, we’ll change the ListInventory method in the InventoryDatabaseRepo file

in the InventoryDatabaseLayer project. For this method, let’s return a full Item class

instead of the ItemDto (the service layer will do the mapping). Let’s also include the

Category with the Item, and let’s finish the method by making sure to only return non-

deleted entities. Change the ListInventory method to use the following code:

public List<Item> ListInventory()

{

 return _context.Items.Include(x => x.Category)

 .AsEnumerable()

 .Where(x => !x.IsDeleted)

 .OrderBy(x => x.Name).ToList();

}

Make sure to modify the signature of the ListInventory method in the interface file

IInventoryDatabaseRepo to also return a List<Item> instead of a List<ItemDto> by

replacing the original code with this code: List<Item> ListInventory();.

Additionally, changing the signature to the full model will likely require you to

update your using statements. Go ahead and make sure to do that now.

at this point, the solution will no longer build. this is expected since we’ve
modified the interface signature and have not responded to this change elsewhere
in the code. We will get this fixed later in the activity.

Next, we need to add four new method signatures for create, update, and delete

operations to the IInventoryDatabaseRepo interface as follows:

int InsertOrUpdateItem(Item item);

void InsertOrUpdateItems(List<Item> items);

void DeleteItem(int id);

void DeleteItems(List<int> itemIds);

After defining the methods in the interface, we need to implement them.

Chapter 11 repository and Unit of Work patterns

476

In the database project, stub out the four methods by using the auto-generated

method implementations. Optionally, move them to the bottom of the class and break

the alphabetical listing so they are easy to find. The code can be generated, but it should

be similar to the following:

public int InsertOrUpdateItem(Item item)

{

 throw new NotImplementedException();

}

public void InsertOrUpdateItems(List<Item> items)

{

 throw new NotImplementedException();

}

public void DeleteItem(int id)

{

 throw new NotImplementedException();

}

public void DeleteItems(List<int> itemIds)

{

 throw new NotImplementedException();

}

In the InsertOrUpdateItem(Item item) method, add code to call to update if the

item id is greater than zero, or just insert if the id is not greater than zero.

public int InsertOrUpdateItem(Item item)

{

 if (item.Id > 0)

 {

 return UpdateItem(item);

 }

 return CreateItem(item);

}

Chapter 11 repository and Unit of Work patterns

477

Next, create the two methods, one for CreateItem and one for UpdateItem as private

methods using the following code:

private int CreateItem(Item item)

{

 _context.Items.Add(item);

 _context.SaveChanges();

 var newItem = _context.Items.ToList()

 .FirstOrDefault(x => x.Name.ToLower()

 .Equals(item.Name.ToLower()));

 if (newItem == null) throw new Exception("Could not Create the item as

expected");

 return newItem.Id;

}

private int UpdateItem(Item item)

{

 var dbItem = _context.Items.FirstOrDefault(x => x.Id == item.Id);

 dbItem.CategoryId = item.CategoryId;

 dbItem.CurrentOrFinalPrice = item.CurrentOrFinalPrice;

 dbItem.Description = item.Description;

 dbItem.IsActive = item.IsActive;

 dbItem.IsDeleted = item.IsDeleted;

 dbItem.IsOnSale = item.IsOnSale;

 dbItem.Name = item.Name;

 dbItem.Notes = item.Notes;

 dbItem.PurchasedDate = item.PurchasedDate;

 dbItem.PurchasePrice = item.PurchasePrice;

 dbItem.Quantity = item.Quantity;

 dbItem.SoldDate = item.SoldDate;

 _context.SaveChanges();

 return item.Id;

}

Chapter 11 repository and Unit of Work patterns

478

For the InsertOrUpdateItems(List<Item> items) method, we’re going to use

a transaction to batch our unit of work around all items for create or update. In this

manner, if one of the operations in the batch fails, the whole transaction will be

rolled back.

Implement the method with code as follows:

public void InsertOrUpdateItems(List<Item> items)

{

 using (var transaction = _context.Database.BeginTransaction())

 {

 try

 {

 foreach (var item in items)

 {

 var success = InsertOrUpdateItem(item) > 0;

 if (!success) throw new Exception($"Error saving the item

{item.Name}");

 }

 transaction.Commit();

 }

 catch (Exception ex)

 {

 //log it:

 Debug.WriteLine(ex.ToString());

 transaction.Rollback();

 throw ex;

 }

 }

}

Notice that this method uses the using statement to wrap the batch execution into a

transaction. When all operations complete successfully, the transaction is committed. If

any of the iterations fail to save correctly, then the exception is thrown and logged, and

the entire transaction is rolled back.

Chapter 11 repository and Unit of Work patterns

479

The really nice thing to note is that even though we are calling to the context to save

changes on each iteration, we are still able to roll the entire transaction back. This can

also be useful in an insert and then update scenario, where you need to get an item

inserted, then get the id of that item, and use it to update some other piece of the system.

Finally, let’s follow this same pattern to implement the two Delete methods:

public void DeleteItem(int id)

{

 var item = _context.Items.FirstOrDefault(x => x.Id == id);

 if (item == null) return;

 item.IsDeleted = true;

 _context.SaveChanges();

}

public void DeleteItems(List<int> itemIds)

{

 using (var transaction = _context.Database.BeginTransaction())

 {

 try

 {

 foreach (var itemId in itemIds)

 {

 DeleteItem(itemId);

 }

 transaction.Commit();

 }

 catch (Exception ex)

 {

 //log it:

 Debug.WriteLine(ex.ToString());

 transaction.Rollback();

 throw ex; //make sure it is known that the transaction failed

 }

 }

}

Chapter 11 repository and Unit of Work patterns

480

This will complete our database layer for now. Next, we’ll move up to the service

layer. Keep in mind that as of right now, the solution is still not able to be built, but the

InventoryDatabaseLayer project can be built individually if you would like to check

your code for accuracy and/or errors.

 Step 3: Modify the ItemsService interface and implemen-
tation in the InventoryBusinessLayer project
The service layer (InventoryBusinessLayer.ItemsService) will now need to respond to

the new methods in the database layer, as well as do some mapping for Item to ItemDto

to get our code back to a buildable and working state.

Begin by adding four new methods to the service layer interface as follows:

int InsertOrUpdateItem(CreateOrUpdateItemDto item);

void InsertOrUpdateItems(List<CreateOrUpdateItemDto> item);

void DeleteItem(int id);

void DeleteItems(List<int> itemIds);

We’ll also need to add the CreateOrUpdateItemDto class to be able to compile this

code and get it to a working state. In the InventoryModels project, under the Dtos folder,

create a new file called CreateOrUpdateItemDto.cs, and add the following code to the

file:

public class CreateOrUpdateItemDto

{

 public int Id { get; set; }

 public string Name { get; set; }

 public string Description { get; set; }

 public string Notes { get; set; }

 public int CategoryId { get; set; }

 public bool IsActive { get; set; }

 public bool IsDeleted { get; set; }

}

Implement the four methods as defined in the IItemsService interface, and

optionally move them to the bottom of the ItemsService code file to make it easy to find

them all.

Chapter 11 repository and Unit of Work patterns

481

The first thing we need to do is to be able to list the inventory and return it as an

ItemDto. This will require the mapper implementation to be in the ServiceLayer.

At the top of the ItemsService class, add the line of code private read-only

IMapper _mapper; after the line for creating the read-only dbRepo. Then add the

instantiation _mapper = mapper; into the constructor method. Figure 11-12 highlights

the instantiation of the mapper into the constructor.

In the ListInventory method, change the statement to

return _mapper.Map<List<ItemDto>>(_dbRepo.ListInventory());

This change should resolve any issues that existed with the ListInventory method.

Next, implement the code to get the data from the database layer. We are going to

again be just doing mostly a pass-through at this service layer.

public int InsertOrUpdateItem(CreateOrUpdateItemDto item)

{

 if (item.CategoryId <= 0)

 {

 throw new ArgumentException("Please set the category id before

insert or update");

 }

 return _dbRepo.InsertOrUpdateItem(_mapper.Map<Item>(item));

}

Figure 11-12. Leveraging the mapper in the service layer requires a reference to it

Chapter 11 repository and Unit of Work patterns

482

public void InsertOrUpdateItems(List<CreateOrUpdateItemDto> items)

{

 _dbRepo.InsertOrUpdateItems(_mapper.Map<List<Item>>(items));

}

public void DeleteItem(int id)

{

 if (id <= 0)

 {

 throw new ArgumentException("Please set a valid item id before

deleting");

 }

 _dbRepo.DeleteItem(id);

}

public void DeleteItems(List<int> itemIds)

{

 try

 {

 _dbRepo.DeleteItems(itemIds);

 }

 catch (Exception ex)

 {

 //TODO: better logging/not squelching

 Console.WriteLine($"The transaction has failed: {ex.Message}");

 }

}

The interesting things to note here are that we’ll make sure to have a couple of guard

clauses in place to prevent issues as well as handle the cases when the transactions

don’t succeed. In the real world, we’d also want to implement better logging to avoid just

squelching issues.

Another interesting point is that our mapper now needs to go in both directions

between Item and ItemDto. Therefore, we will also need a mapping for the new

CreateOrUpdateDto.

Chapter 11 repository and Unit of Work patterns

483

In the Main activity project, in the InventoryMapper.cs file, add the command

.ReverseMap() to the map item for the mapping of Item to ItemDto to make the map go

in both directions:

CreateMap<Item, ItemDto>().ReverseMap();

Then add a new mapping for Item to CreateOrUpdateItemDto as follows to the

CreateMaps method, making sure to ignore the Category after reversing the mapping:

CreateMap<Item, CreateOrUpdateItemDto>()

 .ReverseMap()

 .ForMember(x => x.Category, opt => opt.Ignore());

For clarity, please review Figure 11-13.

Now that our layers are done, we need to add some code to run the program. At this

point, the solution should build successfully. Go ahead and build the solution to verify

your code is in place and ensure there are no compiler errors before proceeding.

Figure 11-13. The updated InventoryMapper class

Chapter 11 repository and Unit of Work patterns

484

 Step 4: Build the insert logic
Start implementing the user layer by updating the Main method in the Program.cs file to

allow for inserting new items.

After the call to list out the categories and colors, add the following code:

Console.WriteLine("Would you like to create items?");

var createItems = Console.ReadLine().StartsWith("y", StringComparison.

OrdinalIgnoreCase);

if (createItems)

{

 Console.WriteLine("Adding new Item(s)");

 CreateMultipleItems(svc);

 Console.WriteLine("Items added");

 inventory = svc.ListInventory();

 inventory.ForEach(x => Console.WriteLine($"Item: {x}"));

}

Next, add the CreateMultipleItems code as a private static method:

private static void CreateMultipleItems(IItemsService svc)

{

 Console.WriteLine("Would you like to create items as a batch?");

 bool batchCreate = Console.ReadLine().StartsWith("y", StringComparison.

OrdinalIgnoreCase);

 var allItems = new List<CreateOrUpdateItemDto>();

 bool createAnother = true;

 while (createAnother == true)

 {

 var newItem = new CreateOrUpdateItemDto();

 Console.WriteLine("Creating a new item.");

 Console.WriteLine("Please enter the name");

 newItem.Name = Console.ReadLine();

 Console.WriteLine("Please enter the description");

 newItem.Description = Console.ReadLine();

 Console.WriteLine("Please enter the notes");

Chapter 11 repository and Unit of Work patterns

485

 newItem.Notes = Console.ReadLine();

 Console.WriteLine("Please enter the Category [B]ooks, [M]ovies,

 [G]ames");

 newItem.CategoryId = GetCategoryId(Console.ReadLine().Substring(0,

1).ToUpper());

 if (!batchCreate)

 {

 svc.InsertOrUpdateItem(newItem);

 }

 else

 {

 allItems.Add(newItem);

 }

 Console.WriteLine("Would you like to create another item?");

 createAnother = Console.ReadLine().StartsWith("y",

StringComparison.OrdinalIgnoreCase);

 if (batchCreate && !createAnother)

 {

 svc.InsertOrUpdateItems(allItems);

 }

 }

}

Make sure to add the missing using statements for System.Collections.Generic

and InventoryModels.Dtos so the code would compile once we add the missing

GetCategoryId method.

There are a couple of interesting things happening in this method. First, we’re taking

user input to validate if they want to do a one-off insert or use a batched approach on

the insert. We then gather the details from the user until they are done, and each time

through we either add the new item to the database and save changes or we add the new

item to a list of items to add later in a batch.

Either way, when the user has completed their operations, they have either entered

multiple items and saved each item entry, or they have added multiple items and then

saved them all in a batch of operations within a transaction.

Chapter 11 repository and Unit of Work patterns

486

Also notice that in this method is a call to a common method called GetCategoryId

to get the Category so that we can assign the correct category id to the item as we add

it. Let’s add that common GetCategoryId method next as another private static method

that returns an integer.

private static int GetCategoryId(string input)

{

 switch (input)

 {

 case "B":

 return _categories.FirstOrDefault(x => x.Category.ToLower().

Equals("books"))?.Id ?? -1;

 case "M":

 return _categories.FirstOrDefault(x => x.Category.ToLower().

Equals("movies"))?.Id ?? -1;

 case "G":

 return _categories.FirstOrDefault(x => x.Category.ToLower().

Equals("games"))?.Id ?? -1;

 default:

 return -1;

 }

}

As you may have noticed, we now have to have a reference for all of the categories in

the system. At the top of the method, with the other class-level variable declarations, add

this line:

private static List<CategoryDto> _categories;

Then set the categories in the Main method for use in our insert and update logic.

Right above the place in the Main method where we just added the create items logic,

add the line of code to set the static categories variable to the result of the call to

ListCategoriesAndColors:

_categories = categoriesAndColors;

For clarity, the new code is shown in place in Figure 11-14.

Chapter 11 repository and Unit of Work patterns

487

Update any missing references, including System.Linq, and then note that we also

still need to add the Id property to the CategoryDto object. Back in the InventoryModels

project in the CategoryDto object, add the Id property as follows:

public int Id { get; set; }

We can now run the program and add some items. On the first run, add a single item.

You don’t have to copy me, of course, but a sample run might look like what is shown in

Figure 11-15.

Figure 11-14. Setting the categories

Chapter 11 repository and Unit of Work patterns

488

After the first item is added, run the program again and add items as a batch. Feel

free to put a debugger break in the database layer to see the operations in action as you

are running them.

By the end of the exercise, try to have three or four disposable items to play with

for the remaining parts of this activity (see Figure 11-16 for sample output after the

operation is completed).

Figure 11-15. Adding a new movie to the inventory database

Figure 11-16. Adding items as a batch, ending up with three new items total

Chapter 11 repository and Unit of Work patterns

489

 Step 5: Build the update logic
Now that the code is in place to insert the Items, we need to be able to update the Items.

To do this, we need to add the logic to prompt the user for input as we did in the Insert

method. Add the following code in the Main program after the insert logic calls (following

the end of the if (createItems) block):

Console.WriteLine("Would you like to update items?");

var updateItems = Console.ReadLine().StartsWith("y", StringComparison.

OrdinalIgnoreCase);

if (updateItems)

{

 Console.WriteLine("Updating Item(s)");

 UpdateMultipleItems(svc);

 Console.WriteLine("Items updated");

 inventory = svc.ListInventory();

 inventory.ForEach(x => Console.WriteLine($"Item: {x}"));

}

Then add the UpdateMultipleItems method after the GetCategoryId method using

the following code:

public static void UpdateMultipleItems(IItemsService svc)

{

 Console.WriteLine("Would you like to update items as a batch?");

 bool batchUpdate = Console.ReadLine().StartsWith("y", StringComparison.

OrdinalIgnoreCase);

 var allItems = new List<CreateOrUpdateItemDto>();

 bool updateAnother = true;

 while (updateAnother == true)

 {

 Console.WriteLine("Items");

 Console.WriteLine("Enter the ID number to update");

 Console.WriteLine("*******************************");

 var items = svc.ListInventory();

 items.ForEach(x => Console.WriteLine($"ID: {x.Id} | {x.Name}"));

Chapter 11 repository and Unit of Work patterns

490

 Console.WriteLine("*******************************");

 int id = 0;

 if (int.TryParse(Console.ReadLine(), out id))

 {

 var itemMatch = items.FirstOrDefault(x => x.Id == id);

 if (itemMatch != null)

 {

 var updItem = _mapper.Map<CreateOrUpdateItemDto>(_mapper.

Map<Item>(itemMatch));

 Console.WriteLine("Enter the new name [leave blank to keep

existing]");

 var newName = Console.ReadLine();

 updItem.Name = !string.IsNullOrWhiteSpace(newName) ?

newName : updItem.Name;

 Console.WriteLine("Enter the new desc [leave blank to keep

existing]");

 var newDesc = Console.ReadLine();

 updItem.Description = !string.IsNullOrWhiteSpace(newDesc) ?

newDesc : updItem.Description;

 Console.WriteLine("Enter the new notes [leave blank to keep

existing]");

 var newNotes = Console.ReadLine();

 updItem.Notes = !string.IsNullOrWhiteSpace(newNotes) ?

newNotes : updItem.Notes;

 Console.WriteLine("Toggle Item Active Status? [y/n]");

 var toggleActive = Console.ReadLine().Substring(0, 1).

Equals("y", StringComparison.OrdinalIgnoreCase);

 if (toggleActive)

 {

 updItem.IsActive = !updItem.IsActive;

 }

 Console.WriteLine("Enter the category - [B]ooks, [M]ovies,

[G]ames, or [N]o Change");

 var userChoice = Console.ReadLine().Substring(0, 1).

ToUpper();

Chapter 11 repository and Unit of Work patterns

491

 updItem.CategoryId = userChoice.Equals("N",

StringComparison.OrdinalIgnoreCase) ? itemMatch.CategoryId

 : GetCategoryId(userChoice);

 if (!batchUpdate)

 {

 svc.InsertOrUpdateItem(updItem);

 }

 else

 {

 allItems.Add(updItem);

 }

 }

 }

 Console.WriteLine("Would you like to update another?");

 updateAnother = Console.ReadLine().StartsWith("y",

StringComparison.OrdinalIgnoreCase);

 if (batchUpdate && !updateAnother)

 {

 svc.InsertOrUpdateItems(allItems);

 }

 }

}

Note that this method gives the user a chance to perform a single update and save or

to batch the updates into one transaction.

We also need to add the Id to the ItemDto. In the InventoryModels projects in the

Dtos folder, locate the ItemDto.cs file and add the Id property to it using this line of

code: public int Id { get; set; }. Then add an additional property for CategoryId

as public int CategoryId { get; set; }.

Chapter 11 repository and Unit of Work patterns

492

For clarity, review Figure 11-17 to see the completed implementation of the

ItemDto class:

Run the program and update with the single update and then run again and update

as a batch. Feel free to put a breakpoint in the business or database layer to see the code

in action. Figure 11-18 shows what it might look like to add an item.

Figure 11-17. The ItemDto class after updating to contain the two new properties

Chapter 11 repository and Unit of Work patterns

493

The last part of the program needs to be able to delete the items.

 Step 6: Build the delete logic
For this final part of the program, we’ll follow the same logic we’ve followed earlier to

delete either one item at a time or a batch of items.

Update the Main method to include logic for deleting Items, and also add a statement

that lets the user know the program is done executing. Following the if (updateItems)

block of code we just added in the previous step, add the following code to complete the

Main method:

 Console.WriteLine("Would you like to delete items?");

 var deleteItems = Console.ReadLine().StartsWith("y", StringComparison.

OrdinalIgnoreCase);

Figure 11-18. Updating a single item

Chapter 11 repository and Unit of Work patterns

494

 if (deleteItems)

 {

 Console.WriteLine("Deleting Item(s)");

 DeleteMultipleItems(svc);

 Console.WriteLine("Items Deleted");

 inventory = svc.ListInventory();

 inventory.ForEach(x => Console.WriteLine($"Item: {x}"));

 }

}

Console.WriteLine("Program Complete");

After implementing this logic in the Main method, add the code to delete multiple

items in a method called DeleteMultipleItems(IItemsService svc). As you can see,

the method should have an injectable ItemsService object.

public static void DeleteMultipleItems(IItemsService svc)

{

 Console.WriteLine("Would you like to delete items as a batch?");

 bool batchDelete = Console.ReadLine().StartsWith("y", StringComparison.

OrdinalIgnoreCase);

 var allItems = new List<int>();

 bool deleteAnother = true;

 while (deleteAnother == true)

 {

 Console.WriteLine("Items");

 Console.WriteLine("Enter the ID number to delete");

 Console.WriteLine("*******************************");

 var items = svc.ListInventory();

 items.ForEach(x => Console.WriteLine($"ID: {x.Id} | {x.Name}"));

 Console.WriteLine("*******************************");

 if (batchDelete && allItems.Any())

 {

 Console.WriteLine("Items scheduled for delete");

 allItems.ForEach(x => Console.Write($"{x},"));

 Console.WriteLine();

 Console.WriteLine("*******************************");

 }

Chapter 11 repository and Unit of Work patterns

495

 int id = 0;

 if (int.TryParse(Console.ReadLine(), out id))

 {

 var itemMatch = items.FirstOrDefault(x => x.Id == id);

 if (itemMatch != null)

 {

 if (batchDelete)

 {

 if (!allItems.Contains(itemMatch.Id))

 {

 allItems.Add(itemMatch.Id);

 }

 }

 else

 {

 Console.WriteLine($"Are you sure you want to delete the

item {itemMatch.Id}-{itemMatch.Name}");

 if (Console.ReadLine().StartsWith("y",

StringComparison.OrdinalIgnoreCase))

 {

 svc.DeleteItem(itemMatch.Id);

 Console.WriteLine("Item Deleted");

 }

 }

 }

 }

 Console.WriteLine("Would you like to delete another item?");

 deleteAnother = Console.ReadLine().StartsWith("y",

StringComparison.OrdinalIgnoreCase);

 if (batchDelete && !deleteAnother)

 {

 Console.WriteLine("Are you sure you want to delete the

following items: ");

 allItems.ForEach(x => Console.Write($"{x},"));

Chapter 11 repository and Unit of Work patterns

496

 Console.WriteLine();

 if (Console.ReadLine().StartsWith("y", StringComparison.

OrdinalIgnoreCase))

 {

 svc.DeleteItems(allItems);

 Console.WriteLine("Items Deleted");

 }

 }

 }

}

Run the program to see it all in action. Make sure to test the ability to delete a single

item and a batch of items. Figure 11-19 shows a sample run where I deleted one entry:

Figure 11-19. Deleting an Item from the inventory database

Chapter 11 repository and Unit of Work patterns

497

 Step 7: Update the transaction scope
The program is completed, but we’d be missing out if we didn’t pay attention to one last

detail. That detail is transaction scope.

Right now, we have a couple of batch methods that just use transactions in a using

statement. When working with transactions, we’ll need to make sure to put our code

into scope instead of just running a plain transaction. By doing this, we can ensure

control over the transaction’s isolation level. If we don’t set the isolation level, in a busy

application, we’ll likely run into issues with deadlocks and/or concurrency conflicts.

Return to the InventoryDatabaseLayer project and find the method for

InsertOrUpdateItems in the InventoryDatabaseRepo.cs file. Change the

InsertOrUpdateItems method to use a scope instead of a raw transaction by changing

the using statement with the following code:

using (var scope = new TransactionScope(TransactionScopeOption.Required

 , new TransactionOptions

 { IsolationLevel = IsolationLevel.ReadUncommitted }))

{

 try

 { //leave the rest of the code as is.

After updating the code, change the calls for transaction.Commit() to scope.

Complete() and just remove the call for transaction.Rollback().

For clarity, review Figure 11-20, which shows the updated code in its entirety.

Chapter 11 repository and Unit of Work patterns

498

To finish up, also change the delete method’s transaction to use a similar transaction

scope, and then run the program to make sure it still works as expected. Review

Figure 11-21 for clarity.

Figure 11-20. Using a scope to set isolation level on a transaction to avoid
deadlocks

Chapter 11 repository and Unit of Work patterns

499

 Final thoughts on activity 1102
In activity 1102, we were able to build out our own repository and then implement

a couple of units of work in the solution. As we’ve discussed, EF itself has built-in

repository and unit of work patterns, and, in most cases, we should just leverage the

built-in features of EF.

However, even with the abilities of EF, there are times when we want to take more

control of the logic and, along with that, how and what is applied to the database. In

these cases, using our own versions of the repository and unit of work patterns on top of

what EF offers can generally work to meet our needs.

Figure 11-21. Using the TransactionScope in the DeleteItems method

Chapter 11 repository and Unit of Work patterns

500

 Final thoughts for this chapter
This chapter gave us a chance to really build out our solution to make it very robust.

Additionally, we had a chance in this chapter to discuss the two major patterns in any

database object-relational mapper (ORM).

The first pattern – the repository pattern – allows us to work with any entity using the

same default signatures for each operation. EF has a great repository pattern built in,

where we can generally leverage the context and start adding, deleting, updating, and

listing data with just a few simple calls and not a lot of work on our part.

The second pattern we discussed was the unit of work pattern. In the UoW pattern,

we want to make sure that our solution is robust across an entire business process.

While EF has a built-in unit of work, waiting to save changes may not always be the most

performant solution and/or may lead to a lot of frustration if operations are consistently

rejected or don’t work as expected due to small or unforeseen errors.

To overcome any limitations we encounter, we saw how to easily create our own

repositories for managing the business and data relationship. We also learned how to use

transactions to allow the completion of our own custom units of work to save changes or

roll back the changes if any part of the transaction fails.

Now that our solution is layered for separation of concerns, robust with our database

and operations that we’ve built out, and we have the knowledge we need, we could

consider releasing this code to production. However, shipping the code as is right now

would be extremely risky, because we haven’t set up unit and integration tests. In the

next chapter, we’ll add unit and integration tests so that we can modify our code in the

future without fear, as well as have confidence that the system is ready to ship.

Chapter 11 repository and Unit of Work patterns

501
© Brian L. Gorman 2020
B. L. Gorman, Practical Entity Framework, https://doi.org/10.1007/978-1-4842-6044-9_12

CHAPTER 12

Unit Testing, Integration
Testing, and Mocking
 Testing your code is a must-have, not a
nice-to- have
Your system has thousands of lines of code. There is at least one user interface (UI) that

connects to your business layer, and your system has multiple user interfaces, from Web

to device to desktop to scanners to monitors, and more. And now it’s time to change

some code. Perhaps that code has been around for a while. Chances are, you didn’t write

the code. The system certainly has some extremely risky scenarios where broken code

can mean loss of revenue (even millions), or, in an even more high-risk scenario, lives

might hang in the balance.

 The code needs to be changed
The directive to make some modifications to the code has been passed to you. As a

result, you will be changing code deep in the core components of one of the pillars of the

system, and you need to ensure that all the other pieces of the system remain functional

after these changes.

Also, as if this task wasn’t already sufficiently risky, there aren’t any resources

available to help you perform a full regression test on the other business layer

components or the UI for each of the supported devices. Like it or not, this is bound to

happen to you and maybe already has at some point in your career.

https://doi.org/10.1007/978-1-4842-6044-9_12#DOI

502

 The database is the lifeblood of the application
Even though the UI often defines how the users see and interact with the data, the

database is the place where the roots of the system live. Without the database, without

the business layer transformations, and without the robustness of your overall domain

design, the UI would just be a form on a page that pretends to do something for the user.

 Testing saves your sanity and protects the system
In the previous scenario, having a full suite of automated tests that can be run would

be the ideal place to be. Our book will not go into automated UI testing solutions

like Selenium or Cypress.IO, but as the back-end developer or full-stack developer

responsible for the business and database layers of the application, we do need some

solutions.

There are many different layers of testing that could be used, however; so how much

testing is enough testing, and how does each type work? Furthermore, what does it mean

to mock and what are the various reasons for using each type of testing.

 Two different approaches leading to the ability
to test changes
In this chapter, we are going to take some time to examine two ways in which we can test

the database portion of our code. While taking these various approaches to testing, we’ll

see what the differences are between unit tests and integration tests.

 Unit testing
The first approach to testing our code is likely one you’ve heard of before – unit testing.

Unit testing is the ability to run tests against the codebase that are simple, repeatable,

and are not dependent on other portions of the system – i.e., single units under test.

Furthermore, unit tests do not require a connection to any database or other data storage

mechanisms. In some instances, files might be used in unit tests, but only as an aid to

test the system under test.

Chapter 12 Unit testing, integration testing, and MoCking

503

There are many different approaches to writing unit tests. Most developers agree

on two basic patterns for writing tests, which really come down to one overall testing

strategy. We will use both approaches in conjunction with each other in our unit tests.

The first approach is a simple red-green-refactor approach, where you write the test

and ensure the test fails if the code is bad, then you write the code to pass the test, and

then you refactor your tests to eliminate any duplicated code.

The second approach is using the arrange-act-assert approach. In this approach, for

each unit test you write, start by arranging the data for the test, then perform the single

act that needs to be tested, and finish the test with assertions to validate the data is in

place as expected.

For more information on unit testing, including the AAA pattern and how to write

unit tests in Visual Studio, please review this link from Microsoft: https://docs.

microsoft.com/en-us/visualstudio/test/unit-test-basics?view=vs-2019.

 Libraries utilized
While performing our unit tests, we’ll also need to mock data. To accomplish mocking,

we’ll be using one of the more popular mocking libraries: Moq. For our unit testing, we’ll

also use the Shouldly library.

 Integration testing
The second form of testing we’ll be looking at is integration testing. For integration

testing, we will be leveraging the .Net in-memory database instance to generate an in-

memory version of our database, and then we’ll write our integration tests against that

database.

The nice thing about this implementation will be that it will be lightweight and

portable to any development environment. Additionally, the use of the in-memory

database means that we never have to be concerned with data being out of sync in our

integration tests based on other users or some test database state. With integration

testing, we also have no fear that we might screw up a shared test database or even a

local development database, since we’ll not be connecting to the actual databases.

One drawback to using in-memory database solutions might be that they are not

fully functioning, or they might just not be robust enough. Therefore, if your solution has

a lot of stored procedures integrated into the solution, or a number of database-heavy

Chapter 12 Unit testing, integration testing, and MoCking

https://docs.microsoft.com/en-us/visualstudio/test/unit-test-basics?view=vs-2019
https://docs.microsoft.com/en-us/visualstudio/test/unit-test-basics?view=vs-2019

504

operations using functions, you should consider just pointing your integration tests at

a database hosted in a local test database specifically for testing on your development

machine.

Of course, the other solution to not having access to functions and procedures is just

to mock the results of your stored procedures, but that sort of defeats the purpose of an

integration test.

 Chapter 12 Activities: Unit and Integration Testing
For our learning in this chapter, we’re going to cover two different types of unit tests in

two different activities and apply them to our homegrown inventory system solution.

Each activity will cover aspects of unit testing as we build our solutions. While this

simple work will not make us testing experts, it should provide us with the foundation to

become a testing expert through trial and error in the future.

The first activity we’ll do is going to implement some simple unit tests against the

business layer in our system. While we will keep these activities simple, this unit testing

solution will show us how we can mock some data and work with it in our unit tests to

ensure the system is functioning correctly at the business layer without being coupled to

the database layer or connected to an actual database.

The second activity we will do will show us what it takes to set up our integration

testing and will also show us how to ensure that our database is working as expected

with the code we are writing.

By having the fully functioning data-integration tests, we can see the operation of our

system from start to finish with real data, not just fabricated expected data.

By implementing each of these solutions, we’ll see the differences in the two

approaches. We’ll also learn why both have their place in our system. Additionally,

seeing all of this in action will set us up to have the peace of mind that we desire in the

future when it’s time to modify the system.

 Activity 1201: Unit testing with mocking
In this first activity, we’ll set up our solution and then set the unit tests in place that will

help us to determine that our code is functioning correctly at the business layer level as

expected.

Chapter 12 Unit testing, integration testing, and MoCking

505

 Mocking for our tests
As we set up these unit tests, we’ll see how the data can be mocked and used in the unit

tests to show the solution working as expected in both good- and bad-data scenarios.

 Step 1: Get set up

To begin, grab a copy of the Activity1201_UnitTestingWithMocking_Starter.zip

files, and get them going on your machine. As before, make sure to set connections and

run database migrations to ensure your code and database are up to date and that there

are no issues. Run the program to make sure it works. You should see the regular output

from our program as per the output at the end of Chapter 11. Alternatively, you could

continue working with your own existing code that you’ve been building through the

book around the inventory system. As a reminder, as of the end of Chapter 11, we have

the ability to do basic CRUD actions against our database (review Figure 12-1 for sample

output).

Figure 12-1. The project runs as expected

Chapter 12 Unit testing, integration testing, and MoCking

506

 Step 2: Add the unit testing project to the solution

Right-click the Solution and select Add ➤ New Project (as shown in Figure 12-2).

Use the filter to select a Test project, and then select the MSTest Test Project for

.Net Core (review Figure 12-3).

Figure 12-2. Adding a new project to the solution

Figure 12-3. Creating a new MSTest Project

Chapter 12 Unit testing, integration testing, and MoCking

507

Name the project InventoryManagerUnitTests and then create it (see Figure 12-4).

Next, update the NuGet packages for the testing framework. Open the NuGet

Package Manager and select the Updates tab. There will likely be four new package

updates that you should get for the testing project. Check the box to select all packages,

and then hit the Update button to get everything up to date. Figure 12-5 shows an

overview of taking care of these updates for clarity.

Figure 12-4. Create the InventoryManagerUnitTests project

Figure 12-5. Updating the NuGet packages in our new Testing project

Chapter 12 Unit testing, integration testing, and MoCking

508

After updating the packages, rename UnitTest1.cs to InventoryManagerUnitTests.

cs. Select Yes when it asks you to rename other references (review Figure 12-6).

 Step 3: Write the first unit test

We’re going to need to bring in a bunch of references and libraries to make everything

work, so let’s start with creating a reference to the service project.

Right-click the unit testing project and select Add Reference. Then choose the

service layer project (InventoryBusinessLayer) as a reference (as shown in Figure 12-7).

Figure 12-6. Renaming the default class

Figure 12-7. Adding the Business Layer project to the unit tests

Remember that the ultimate goal for these unit tests is just to test the service layer

and not to test the actual database code. We’ll get to the database code in the next

activity for integration tests.

Chapter 12 Unit testing, integration testing, and MoCking

509

Also, please remember that this solution is simple, so the mocking may seem

redundant and somewhat tedious for not a lot of gain. It is my hope that you will see the

value and then take what you learn here and apply it to your more advanced real-world

scenarios.

Using the code that follows, add a private instance of the IItemsService to the class

and follow that with a method that will run before every test using the [TestInitialize]

attribute:

private IItemsService _serviceLayer;

[TestInitialize]

public void testBeforeTestRuns()

{

 _serviceLayer = new ItemsService();

}

Add the using statement for the InventoryBusinessLayer project so that the

IItemsService object will be defined.

We’ll note that the ItemsService won’t work as constructed here and come back to

fix that in a moment. We need a context in order for the ItemsService to work.

Next, rename the default test to TestGetItems() and then place code in the method

as follows (or simply just replace the TestMethod1 with this code):

[TestMethod]

public void TestGetItems()

{

 var result = _serviceLayer.ListInventory();

 Assert.IsNotNull(result);

 Assert.IsTrue(result.Count > 0);

}

 Step 4: Add Moq to the test project

Next, we need to add the Moq library to our unit testing project. Temporarily comment

out the broken service layer line of code so that the projects will build as expected. Then

use the NuGet Package Manager to Manage NuGet Packages for the Solution.

Browse for Moq and then add it to the InventoryManagerUnitTests project using the

Install button (see Figure 12-8 for clarity).

Chapter 12 Unit testing, integration testing, and MoCking

510

After adding Moq, the next thing we need to do is create a mock of our service layer so

that we can understand how this works.

The first step when authoring any unit tests is identifying what exactly is your system

under test. Our system under test will be the service layer project. Before we do that,

however, let’s just see a simple instance of Moq in action to get a feeling for how using Moq

works.

Under the private IItemsService _serviceLayer line of code, add a new

line of code: private Mock<IItemsService> _mockServiceLayer;. In the

TestInitialize method, instantiate a new version of this object with the line of code:

_mockServiceLayer = new Mock<IItemsService>();. Additionally, add the using

statement for Moq to make sure that the Mock object is defined. For clarity, the expected

code to this point is shown in Figure 12-9.

Figure 12-8. Adding Moq to the project

Chapter 12 Unit testing, integration testing, and MoCking

511

Next, in the GetItems test, change the method to reference the mock service layer

object and call to ListInventory with the following code:

var result = _mockServiceLayer.Object.ListInventory();

With that in place, we are ready to run our test. Use the key chord ctrl+r and then

ctrl+t to run the test. When running, we get an error, as shown in Figure 12-10.

Figure 12-9. Initializing a mocked version of the service layer and the current code
in our unit test to this point

Chapter 12 Unit testing, integration testing, and MoCking

512

The reason this result is null is because we need to actually set up our test to return

results. Moq works by injecting values into the mocked object for you to use when you are

testing. Simply calling the method is not sufficient to mock your result. You actually need

to define it and what its value will be when called.

In the initialize method, add a new list of ItemDto, using whatever you want for the

text of each item:

var items = new List<ItemDto>() {

 new ItemDto() { Id = 1, Name="Star Wars IV: A New Hope"

 , Description = "Luke's Friends", CategoryId = 2 },

 new ItemDto() { Id = 2, Name="Star Wars V: The Empire Strikes Back"

 , Description = "Luke's Dad", CategoryId = 2 },

 new ItemDto() { Id = 3, Name="Star Wars VI: The Return of the Jedi"

 , Description = "Luke's Sister", CategoryId = 2}

};

Next, set up the mock service layer to return that list when the method for listing

inventory is found. Make sure to also add the using statement for InventoryModels.

Figure 12-10. The first test is failing for being null when expected values should
exist

Chapter 12 Unit testing, integration testing, and MoCking

513

Dtos so the code will compile. After the line of code that creates the new

Mock<IItemsService>, add the following line of code:

_mockServiceLayer.Setup(m => m.ListInventory()).Returns(items);

Now run the unit test as before. It should be no surprise that the test is now passing.

Here is the bad news. This test is absolutely useless. Figure 12-11 shows what the passing

test looks like in the Test Explorer. If you can’t currently see the Test Explorer, you can

open it from the View ➤ Test Explorer menu item or via the key-chord combination of

ctrl+E, T.

Figure 12-11. The test passes and results are shown in the Test Explorer window

The reason this test is useless is because we told the test exactly how to pass. Nothing

was really tested. Now, I don’t know about you, but I surely don’t want to write code for

the sake of code and green checkmarks.

Don’t fret, however, because there was value in this part of the activity. That value

was seeing how Moq works.

• First, you create an instance of the thing you don’t really want to

instantiate that you need.

• Then you tell the thing what to return when its methods are called.

• Finally, you can use that to enhance your unit testing for your system

under test without coupling to other dependencies.

Now we are armed with the knowledge to make sure we actually do some good

testing.

Chapter 12 Unit testing, integration testing, and MoCking

514

We want our system under test to be the service layer. In order to make it work, we

need a mapper and we need a mocked database layer instance. However, the one thing

we do not want in our unit test is an actual database context, so we need to be able to

create a mock on the database layer.

 Step 5: Mocking the injectable types, then testing the service
layer

Comment out or remove the code for mocking the items service. We no longer need it.

I’ll leave it in my final solution for reference purposes only.

At this point, you should have the private class variable for the _serviceLayer, the

instantiation that doesn’t work in the initialization method (uncomment it now if you

didn’t already), and set the TestGetItems back to using the service layer we actually

want to test. The current code for your class should now be as follows:

private IItemsService _serviceLayer;

[TestInitialize]

public void testBeforeTestRuns()

{

 _serviceLayer = new ItemsService();

 var items = new List<ItemDto>() {

 new ItemDto() { Id = 1, Name="Star Wars IV: A New Hope"

 , Description = "Luke's Friends",

CategoryId = 2 },

 new ItemDto() { Id = 2, Name="Star Wars V: The Empire Strikes Back"

 , Description = "Luke's Dad", CategoryId = 2 },

 new ItemDto() { Id = 3, Name="Star Wars VI: The Return of the Jedi"

 , Description = "Luke's Sister", CategoryId = 2}

 };

}

[TestMethod]

public void TestGetItems()

{

Chapter 12 Unit testing, integration testing, and MoCking

515

 var result = _serviceLayer.ListInventory();

 Assert.IsNotNull(result);

 Assert.IsTrue(result.Count > 0);

}

Currently, the line for serviceLayer = new ItemsService() will not work. We’ll fix

this soon.

To make this work, we need to set up the AutoMapper mappings. We’ll use the

same code we’ve used for the Program project. We also need to add the references to

AutoMapper into our test project.

Start by bringing in AutoMapper using the NuGet Package Manager. I assume that is

an operation you are in command of by now. If not, refer to the previous example, only

this time use the Installed tab, and then select the two AutoMapper projects and install

them both to the InventoryManagerUnitTests project (see Figure 12-12).

Figure 12-12. Adding AutoMapper to the test project

Add a new class InventoryMapper.cs to the project, and then copy and paste the

code from the program’s InventoryMapper.cs file to this test project file. For our simple

project, it is not worth building a new library to keep from sharing just a few lines of

code (review Figure 12-13 for clarity – remember that this is the exact same code from

InventoryMapper in the main activity project).

Chapter 12 Unit testing, integration testing, and MoCking

516

Next, we’ll use the ClassInitialize attribute to make sure the mapper is set

up when the test harness is instantiated. The ClassInitialize method needs a

TestContext.

Add the class-level variables following the declaration of the _serviceLayer so that

the mapper will work as expected:

private static MapperConfiguration _mapperConfig;

private static IMapper _mapper;

private static IServiceProvider _serviceProvider;

public TestContext TestContext { get; set; }

Add the code from the Program’s BuildMapper method and the new Initializer

method in the InventoryManagerUnitTests file as follows:

[ClassInitialize]

public static void BeforeAllTests(TestContext testContext)

{

 var services = new ServiceCollection();

 services.AddAutoMapper(typeof(InventoryMapper));

Figure 12-13. The InventoryMapper class in the testing project using the exact
same code as in the main Activity project, copied and pasted for simplicity

Chapter 12 Unit testing, integration testing, and MoCking

517

 _serviceProvider = services.BuildServiceProvider();

 _mapperConfig = new MapperConfiguration(cfg =>

 {

 cfg.AddProfile<InventoryMapper>();

 });

 _mapperConfig.AssertConfigurationIsValid();

 _mapper = _mapperConfig.CreateMapper();

}

Next, we need to get our database layer mocked. To do this, we need to create

another variable to hold the IInventoryDatabaseRepo mock. Add the call to create a

mocked database layer project as follows: private Mock<IInventoryDatabaseRepo>

_mockInventoryDatabaseRepo;. And then use the TestInitialize method to

set up the mocking object as the first line in the testBeforeTestRuns method: _

mockInventoryDatabaseRepo= new Mock<IInventoryDatabaseRepo>();.

Also add a method to set up the inventory database repo mock layer and stub

it out. Name the method SetupDbRepoMock. Add a line after the creation of the

_mockInventoryDatabaseRepo to call the SetupDbRepoMock method. We’ll fill the

SetupDbRepoMock method in after a while. Make sure to bring in any missing using

statements.

For clarity, the current code for the testBeforeTestRuns and SetupDbRepoMock

methods is shown in Figure 12-14.

Chapter 12 Unit testing, integration testing, and MoCking

518

Now that we have a mocked DBRepoLayer, let’s create a constructor on the service

layer that takes an injectable repo layer object. In this way, we don’t care about the

context specifically. Additionally, we’ll need to pass the mapper in so that mapping

can happen in the service layer as expected. In the ItemsService.cs file in the

InventoryBusinessLayer project, add the following explicit constructor code:

public ItemsService(IInventoryDatabaseRepo dbRepo, IMapper mapper)

{

 _dbRepo = dbRepo;

 _mapper = mapper;

}

For clarity, review Figure 12-15 to see the two explicit constructors as they should

now exist in your ItemsService class.

Figure 12-14. The mocking of the InventoryDatabaseRepo is now able to be
compiled, but we still can’t create a new service layer

Chapter 12 Unit testing, integration testing, and MoCking

519

As you might imagine, the second constructor is a better way to code so that we

can decouple the data layer from the service layer. To clean up, therefore, we should

remove the original constructor and rework our UI code to make sure it is only passing

in composite versions of the interface, rather than a tightly coupled database layer. Unit

testing is already pointing out simple ways to improve the code. Go ahead and remove

the original constructor now.

Then make sure to instantiate and then inject the repo into the service layer in the

main Program.cs file (you can run it to validate that nothing is broken by doing this).

Reference the following code and make the update back in the original Main method for

the main activity project:

using (var db = new InventoryDbContext(_optionsBuilder.Options))

{

 //decouple the database from the service layer using the

 //dbRepo interface

 var dbRepo = new InventoryDatabaseRepo(db, _mapper);

 var svc = new ItemsService(dbRepo, _mapper);

 Console.WriteLine("List Inventory");

Figure 12-15. Creating a new constructor on the ServiceLayer to allow an
injectable repo

Chapter 12 Unit testing, integration testing, and MoCking

520

For clarity, review Figure 12-16.

Return to the unit testing project. Fix the creation of the service layer to use the

mocked database repository layer and the AutoMapper object by modifying the line of

code setting the _serviceLayer = new ItemsService(…) to the following:

_serviceLayer = new ItemsService(_mockInventoryDatabaseRepo.Object, _

mapper);

Run the unit test. It should fail since we haven’t told the _

mockInventoryDatabaseRepo object how to respond to calls yet (see Figure 12-17).

Figure 12-16. The Items Service is built with a prebuilt Database Repo layer for
further decoupling of the layers

Figure 12-17. The service and repo layers work, but no data is returned

Chapter 12 Unit testing, integration testing, and MoCking

521

depending on your settings, you may not see this pop up. if you do not see it, you
can easily review the test results in the test explorer to see that the assert.istrue
failed message is thrown as expected.

Even though the data worked, our test failed because the result count was zero. This

is to be expected since we haven’t set any data. Let’s add that data in to see the magic

start to happen.

 Step 6: Setting up the database layer repo data

To fully test the solution, we need Items, Categories, CategoryColors, Genres, and the

ability to get all of that from our mock database repository layer object.

Let’s start with basic Items, giving them Categories with Colors.

Ordinarily, you would write your test and then refactor. To save time, remember

that we’re going to want access to this data for testing at some point. Create your lists of

Items, Categories, and Category colors outside of the method.

At the top of the InventoryManagerUnitTests class, add the following class-level

variables:

private List<Item> _allItems;

private List<CategoryColor> _allColors;

private List<Category> _allCategories;

private const string COLOR_BLUE = "Blue";

private const string COLOR_RED = "Red";

private const string COLOR_GREEN = "Green";

private const string CAT1_NAME = "CAT1 Books";

private const string CAT2_NAME = "CAT2 Movies";

private const string CAT3_NAME = "CAT3 Music";

private const string ITEM1_NAME = "Item 1 Name";

private const string ITEM2_NAME = "Item 2 Name";

private const string ITEM3_NAME = "Item 3 Name";

private const string ITEM1_DESC = "Item 1 DESC";

private const string ITEM2_DESC = "Item 2 DESC";

private const string ITEM3_DESC = "Item 3 DESC";

private const string ITEM1_NOTES = "Item 1 Notes Good";

Chapter 12 Unit testing, integration testing, and MoCking

522

private const string ITEM2_NOTES = "Item 2 Notes Fair";

private const string ITEM3_NOTES = "Item 3 Notes Poor";

Then modify the SetupDbRepoMock method to contain the following code:

_allColors = new List<CategoryColor>() {

 new CategoryColor(){ Id = 1, ColorValue = COLOR_BLUE },

 new CategoryColor() { Id = 2, ColorValue = COLOR_RED },

 new CategoryColor() { Id = 3, ColorValue = COLOR_GREEN}

};

var color1 = _allColors.Single(x => x.Id == 1);

var color2 = _allColors.Single(x => x.Id == 2);

var color3 = _allColors.Single(x => x.Id == 3);

_allCategories = new List<Category>() {

 new Category() {Id = 1, CategoryColorId = 1, CategoryColor = color1

 , IsDeleted = false, IsActive = true, Name = CAT1_NAME },

 new Category() {Id = 2, CategoryColorId = 2, CategoryColor = color2

 , IsDeleted = false, IsActive = true, Name = CAT2_NAME },

 new Category() {Id = 3, CategoryColorId = 3, CategoryColor = color3

 , IsDeleted = false, IsActive = true, Name = CAT3_NAME

}

};

var category1 = _allCategories.Single(x => x.Id == 1);

var category2 = _allCategories.Single(x => x.Id == 2);

var category3 = _allCategories.Single(x => x.Id == 3);

_allItems = new List<Item>() {

 new Item() { Id = 1, CategoryId = 1, Category= category1, IsDeleted =

false

 , IsActive = true, Name = ITEM1_NAME, Description =

ITEM1_DESC

 , Notes = ITEM1_NOTES },

 new Item() { Id = 2, CategoryId = 2, Category= category2, IsDeleted =

false

 , IsActive = true, Name = ITEM2_NAME, Description =

ITEM2_DESC

 , Notes = ITEM2_NOTES },

Chapter 12 Unit testing, integration testing, and MoCking

523

 new Item() { Id = 3, CategoryId = 3, Category= category3, IsDeleted =

false

 , IsActive = true, Name = ITEM3_NAME, Description =

ITEM3_DESC

 , Notes = ITEM3_NOTES }

};

mockInventoryDatabaseRepo.Setup(x => x.ListInventory()).Returns(

allItems);

Now that we have our mocking in place, let’s try running the test again. Your results

should be similar to what is shown in Figure 12-18.

Figure 12-18. This time our test works

 Step 7: Make the test more robust using Shouldly

To finish up this first test activity, let’s test for actual values. One way we can do this is to

use normal, built-in Microsoft testing.

Next, we should get Shouldly in place. To do this, add the appropriate NuGet package

for Shouldly using methods already discussed in this chapter (see Figure 12-19).

Chapter 12 Unit testing, integration testing, and MoCking

524

With Shouldly in place, return to the test we have written.

Leave the original tests as is, but add the following lines of code and then add the

missing using statements for Shouldly as needed:

result.ShouldNotBeNull();

result.Count.ShouldBeGreaterThan(0);

result.Count.ShouldBe(3);

result.First().Name.ShouldBe(ITEM1_NAME);

result.First().CategoryId.ShouldBe(1);

Here, we see that Shouldly just gives a much nicer way to test than using Assert all the

time.

Run the test in debugger to see the code work as expected and pass each Shouldly

test. For clarity, the final version of the TestGetItems method is shown in Figure 12-20.

Figure 12-19. Add Shouldly to the test project

Chapter 12 Unit testing, integration testing, and MoCking

525

 Final thoughts on activity 1201 – unit testing with mocking

We have clearly not implemented every test that we need at this point for the service

layer to be fully tested; however, I will leave the rest of that to you for your practice.

By taking a look at mocking in this activity, we have seen that we can inject objects

into our system under test so that we can easily determine if that step of the process is

working as expected without having to couple that layer to an implementation.

Mocking in our unit tests is extremely useful to us as we can see that the service layer,

although small in this project, is performing as expected provided it is given the correct

data.

If we were to go deeper, we would need to add, update, and remove items in our

testing by manipulating the data returned by the mocking objects. That may be a bit of

overkill, however. If you can count on your data mapping correctly and getting items

correctly and passing the correct information to the database, the manipulation of the

underlying data is really made up until you test it in an integration test.

In the next activity, we’ll see what it takes to get going for testing our solution with an

integration test against an actual database implementation.

Figure 12-20. All Shouldly Tests are passing

Chapter 12 Unit testing, integration testing, and MoCking

526

 Activity 1202: Integration testing with the .Net
in- memory database
In this second activity for Chapter 12, we’ll set up our solution and then set the

integration tests in place that will help us to determine that our code is functioning

properly at the database level as expected.

 Using an in-memory database solution
As we set up these integration tests, we’ll see how we can leverage an in-memory

database solution to perform actual data operations, thereby validating that the database

is functioning properly as expected.

 Step 1: Get set up

To begin, grab a copy of the Activity1202_InMemoryIntegrationTesting_Starter.zip

files, and get them going on your machine. As before, make sure to set connections and

run database migrations to ensure your code and database are up to date and that there

are no issues. Run the program to make sure it works. You should see the regular output

from our program. Alternatively, you could just continue with the files from activity 1201

and proceed with this activity.

 Step 2: Add a new XUnit test project

In this activity, we’ll be building out our integration tests. To further our study, we’ll be

using XUnit instead of the default Microsoft Test suite. I think you’ll agree this is worth

the move when you see it in action.

To start, add a new XUnit testing project to the solution (refer to Figure 12-21).

Chapter 12 Unit testing, integration testing, and MoCking

527

Name the test InventoryManagerIntegrationTests and create the project. This will

bring up the default test that uses the [Fact] Attribute. A fact is a test that runs one

time and takes no parameters.

XUnit also has a second type of test, the [Theory]. The theory test uses inline data to

set conditions and uses parameters to allow a single test to be run multiple times.

In order to do anything, we’re going to need to get access to the database. To

do this, in the InventoryManagerIntegrationTests project, add a reference to the

InventoryDatabaseLayer project (see Figure 12-22).

Figure 12-21. Adding a new XUnit Test Project to the solution

Figure 12-22. Adding a reference to the InventoryDatabaseLayer project

After adding the reference to the project, let’s set up the things we need in order to

make this test work as an integration test.

Chapter 12 Unit testing, integration testing, and MoCking

528

The default file and class name that was generated during project creation is UnitTest1.

Let’s change that to the same name as the project, InventoryManagerIntegrationTests.

When prompted, select Yes for renaming the other references.

Let’s add a constructor that sets up our data. In the constructor, call a method

SetupOptions and then stub out the method as a private void method.

public class InventoryManagerIntegrationTests

{

 public InventoryManagerIntegrationTests()

 {

 SetupOptions();

 }

 private void SetupOptions()

 {

 }

 [Fact]

 public void Test1()

 {

 }

}

Our project is also going to need references to EntityFramework, AutoMapper, and

Shouldly. Add the following references from the NuGet Package Manager:

Automapper

Automapper.Extensions.Microsoft.DependencyInjection

Microsoft.EntityFrameworkCore

Microsoft.EntityFrameworkCore.SqlServer

Microsoft.EntityFrameworkCore.Tools

Microsoft.Net.Test.SdkShouldly

xunit

xunit.runner.visualstudio

coverlet.collector

Additionally, we need a new package called Microsoft.EntityFrameworkCore.

InMemory (as shown in Figure 12-23).

Chapter 12 Unit testing, integration testing, and MoCking

529

Figure 12-23. Add the EntityFramework packages to the integration testing
project, including the EntityFrameworkCore.InMemory package

Additionally, make sure to run the updates for all packages so that you have the latest

version of all of the packages, but be careful you do not update to the .Net 5 version of

things (we’re working in .Net Core 3.1.x).

In the SetupOptions method, we’ll create our database. Add a class-level variable to

store the options at the top of the class file as DbContextOptions<InventoryDbContext>

_options;

Then add the code to instantiate the in-memory database in the setup method:

private void SetupOptions()

{

 _options = new DbContextOptionsBuilder<InventoryDbContext>()

 .UseInMemoryDatabase(databaseName: "InventoryManagerTest")

 .Options;

}

For clarity, the code for the SetupOptions method is shown in Figure 12-24.

Chapter 12 Unit testing, integration testing, and MoCking

530

Next, we need to set up the mapper, just as we’ve done in the previous activity. Create a

file called InventoryMapper.cs in the project and copy the code from the InventoryMapper

class from the main activity project or from the InventoryManagerUnitTests project.

Once the Inventory mapper is in place, add three class-level variables to

the InventoryManagerIntegrationTests class, right after the declaration of the

DbContextOptions:

private static MapperConfiguration _mapperConfig;

private static IMapper _mapper;

private static IServiceProvider _serviceProvider;

Next, set up the mapping configuration and mapper by adding the following code in

the SetupOptions method following the initialization of the _options variable:

var services = new ServiceCollection();

services.AddAutoMapper(typeof(InventoryMapper));

_serviceProvider = services.BuildServiceProvider();

_mapperConfig = new MapperConfiguration(cfg =>

{

 cfg.AddProfile<InventoryMapper>();

});

_mapperConfig.AssertConfigurationIsValid();

_mapper = _mapperConfig.CreateMapper();

Make sure to add any using statements that are needed to ensure the code will compile.

Finally, add a class-level variable to be used for creating a new version of the

InventoryDatabaseRepo object in tests:

private IInventoryDatabaseRepo _dbRepo;

Figure 12-24. The SetupOptions method creates the in-memory database for us to
use

Chapter 12 Unit testing, integration testing, and MoCking

531

For clarity, the current code from the InventoryManagerIntegrationTests project is

shown in Figure 12-25.

Figure 12-25. The class is set up with options and the mapper objects to inject into
the database layer for operational integration testing

Chapter 12 Unit testing, integration testing, and MoCking

532

Finally, bring all the constants in from the InventoryManagerUnitTests project.

We will reuse these to build actual data in this project. Add them to the top of the

InventoryManagerIntegrationTests class.

private const string COLOR_BLUE = "Blue";

private const string COLOR_RED = "Red";

private const string COLOR_GREEN = "Green";

private const string CAT1_NAME = "CAT1 Books";

private const string CAT2_NAME = "CAT2 Movies";

private const string CAT3_NAME = "CAT3 Music";

private const string ITEM1_NAME = "Item 1 Name";

private const string ITEM2_NAME = "Item 2 Name";

private const string ITEM3_NAME = "Item 3 Name";

private const string ITEM1_DESC = "Item 1 DESC";

private const string ITEM2_DESC = "Item 2 DESC";

private const string ITEM3_DESC = "Item 3 DESC";

private const string ITEM1_NOTES = "Item 1 Notes Good";

private const string ITEM2_NOTES = "Item 2 Notes Fair";

private const string ITEM3_NOTES = "Item 3 Notes Poor";

Now that we have most of the framework in place, let’s set the default data.

 Step 3: Setting the default data for our integration tests

Change the default Test1 test method name to TestListInventory. In the method, add

a using statement and instantiate the context. Then use the context and the mapper to

instantiate a dbRepo. Additionally, add a method call before the using statement to call

to BuildDefaults. Stub out the BuildDefaults method. All of this can be accomplished

with the following code:

[Fact]

public void TestListInventory()

{

 //arrange

 BuildDefaults();

 using (var context = new InventoryDbContext(_options))

 {

Chapter 12 Unit testing, integration testing, and MoCking

533

 //act

 //assert

 }

}

private void BuildDefaults()

{

}

In the BuildDefaults method, add code to create the three Colors, Categories, and

Items. Additionally, add code to prevent creation if the database already exists with the

default items.

using (var context = new InventoryDbContext(_options))

{

 //skip creation if items already exist:

 var item1Detail = context.Items.SingleOrDefault(x => x.Name.

Equals(ITEM1_NAME));

 var item2Detail = context.Items.SingleOrDefault(x => x.Name.

Equals(ITEM2_NAME));

 var item3Detail = context.Items.SingleOrDefault(x => x.Name.

Equals(ITEM3_NAME));

 if (item1Detail != null && item2Detail != null && item3Detail != null)

return;

 var color1 = new CategoryColor() { ColorValue = COLOR_BLUE };

 var color2 = new CategoryColor() { ColorValue = COLOR_RED };

 var color3 = new CategoryColor() { ColorValue = COLOR_GREEN };

 var cat1 = new Category() { CategoryColor = color1, IsActive = true,

IsDeleted = false

 , Name = CAT1_NAME };

 var cat2 = new Category() { CategoryColor = color2, IsActive = true,

IsDeleted = false

 , Name = CAT2_NAME };

 var cat3 = new Category() { CategoryColor = color3, IsActive = true,

IsDeleted = false

 , Name = CAT3_NAME };

Chapter 12 Unit testing, integration testing, and MoCking

534

 context.Categories.Add(cat1);

 context.Categories.Add(cat2);

 context.Categories.Add(cat3);

 context.SaveChanges();

 var category1 = context.Categories.Single(x => x.Name.Equals(CAT1_NAME));

 var category2 = context.Categories.Single(x => x.Name.Equals(CAT2_NAME));

 var category3 = context.Categories.Single(x => x.Name.Equals(CAT3_NAME));

 var item1 = new Item() { Name = ITEM1_NAME, Description = ITEM1_DESC,

Notes = ITEM1_NOTES

 , IsActive = true, IsDeleted = false,

CategoryId = category1.Id };

 context.Items.Add(item1);

 var item2 = new Item() { Name = ITEM2_NAME, Description = ITEM2_DESC,

Notes = ITEM2_NOTES

 , IsActive = true, IsDeleted = false,

CategoryId = category2.Id };

 context.Items.Add(item2);

 var item3 = new Item() { Name = ITEM3_NAME, Description = ITEM3_DESC,

Notes = ITEM3_NOTES

 , IsActive = true, IsDeleted = false,

CategoryId = category3.Id };

 context.Items.Add(item3);

 context.SaveChanges();

}

Now we’re ready to create and run our first integration test.

 Step 4: Writing the integration test

In the TestListInventory test, inside the context using block, create a new

DatabaseRepo object and then get the inventory items. Add the following code in the

“act” portion of the test:

_dbRepo = new InventoryDatabaseRepo(context, _mapper);

var items = _dbRepo.ListInventory();

Chapter 12 Unit testing, integration testing, and MoCking

535

Assert that the inventory items are as expected from the database by adding the

following code in the “assert” portion of the TestListInventory method (don’t forget to

bring in the using statement for Shouldly):

items.ShouldNotBeNull();

items.Count.ShouldBe(3);

var first = items.First();

first.Name.ShouldBe(ITEM1_NAME);

first.Description.ShouldBe(ITEM1_DESC);

first.Notes.ShouldBe(ITEM1_NOTES);

first.Category.Name.ShouldBe(CAT1_NAME);

Run the test and debug to see it in action. The test should pass as expected (as shown

in Figure 12-26).

Figure 12-26. The integration test for listing the inventory works as expected

At this point, we have everything in place to finish writing our integration tests. In

each remaining scenario, we’d just need to map out the data and make sure it exists in

the database as expected.

 Step 5: Using a theory to create multiple runs of the same test
with parameters

With XUnit, we can create a theory that will let us run a test multiple times. Consider

the listing of the items as we ran before. With three items, the last part of the code could

list each one individually. However, what if we could write the code once and test all the

items?

Chapter 12 Unit testing, integration testing, and MoCking

536

For this test, let’s test all the categories and colors, but test them with only one test.

Add the following test method as a theory with three inline-data setups, one for each

category:

[Theory]

[InlineData(CAT1_NAME, COLOR_BLUE)]

[InlineData(CAT2_NAME, COLOR_RED)]

[InlineData(CAT3_NAME, COLOR_GREEN)]

public void TestCategoryColors(string name, string color)

{

 //arrange

 BuildDefaults();

 using (var context = new InventoryDbContext(_options))

 {

 //act

 _dbRepo = new InventoryDatabaseRepo(context, _mapper);

 var catcolors = _dbRepo.ListCategoriesAndColors();

 catcolors.ShouldNotBeNull();

 catcolors.Count.ShouldBe(3);

 var item = catcolors.FirstOrDefault(x => x.Category.Equals(name));

 item.ShouldNotBeNull();

 item.CategoryColor.Color.ShouldBe(color);

 }

}

Let’s move BuildDefaults from all test methods and place the call in the

InventoryManagerIntegrationTests constructor. We have code in place to guard

against creating the data if it already exists.

Run the TestListInventory method to make sure that it did not break with this

refactoring.

Then run the TestCategoryColors tests. They should all pass at this point.

Chapter 12 Unit testing, integration testing, and MoCking

537

 Final thoughts on activity 1202

In this second activity, we created the ability to run integration tests in memory using the

EFCore built-in, in-memory database.

Running integration tests gives us the ability to test actual data from the database.

After setting up the database, we were able to add our items, categories, and colors to the

database by working directly with the context.

With data in place, we are able to test any of the available inventory methods that are

performed with LINQ against the DBContext.

At the end of this activity, we’ve only tested two of the methods. If you would like

more practice, spend some time testing the insert, update, and delete methods.

One last thought is to remember that with the in-memory version of the database,

we don’t have access to stored procedures, so they will need to be tested outside of your

integration tests to make sure they work as expected.

Final thoughts for this chapter
In this chapter, we covered two of the ways that we can write tests against our database

and solution code. The first testing strategy is to write unit tests. The second testing

strategy is to use integration tests.

 Unit tests
Unit tests are great for testing the layered code outside of the actual database

implementation. We saw this in action when we mocked the database layer and told it

what to return so that we could test the functionality of our service layer.

 Integration tests
Integration tests are critical when you want to test the overall functionality of an actual

database with your code. Integration tests provide assurance that we can rely on our

database layer and DBContext to function as expected.

Chapter 12 Unit testing, integration testing, and MoCking

538

 Shouldly and XUnit
In addition to the two types of tests, we also saw the differences between MSTest and

XUnit Tests. We also pulled the Shouldly library in so that we could easily test our code

using a more user-friendly syntax.

 Dependencies and injection to decouple layers
In order to test a system, dependencies must be injectable. We spent a lot of time in the

last two chapters working to decouple the system and code to an interface so that we

could get to this point.

With our system layered out and tested with both unit and integration tests, we can

start to feel much more confident in our architecture, as well as have more peace of mind

during maintenance operations.

In the next chapter, we are going to look at what it takes to work with Entity

Framework and a lightweight ORM called Dapper. Using these two solutions together

can be extremely powerful and efficient.

Chapter 12 Unit testing, integration testing, and MoCking

539
© Brian L. Gorman 2020
B. L. Gorman, Practical Entity Framework, https://doi.org/10.1007/978-1-4842-6044-9_13

CHAPTER 13

Alternatives to Entity
Framework: Dapper
In a book about Entity Framework, it might surprise you to find a chapter that is not

about Entity Framework. However, there are times when Entity Framework might not be

the best choice for you. Additionally, it would be an error to not mention that there are

alternatives available, especially when many professionals agree that it would be nice to

know about and use alternatives in various scenarios.

In this chapter, we’re going to briefly walk away from EF to discuss other options for

working against our database as a way to enhance our toolkit. Don’t worry, we’re not

going to walk far enough that EF is out of sight.

 Lightweight ORMs
Sometimes a fully functional ORM is overkill. The overhead that comes with fully tracked

entities and lazy loading might hurt your application’s performance.

Perhaps all you are doing is just fetching data to show to a screen, without any

possibility of updating that data.

Perhaps you don’t want to keep everything relational at all times or track the data

changes because you will just send the updated entity and re-fetch the entity anyway.

Perhaps you have thousands of lines of data, and you want to be able to skip working

with LINQ and just write raw SQL queries to gain performance for searches.

Perhaps you have an extremely complex query that is difficult to formulate in LINQ

and, even if you do get it to work, is just not the way you would have written that SQL

statement. Maybe you just need to do a massive amount of processing in a CRON job

and don’t want to wire up the entire ORM.

In any event, there are many reasons that using a lightweight ORM can help you with

some of these situations and should be considered.

https://doi.org/10.1007/978-1-4842-6044-9_13#DOI

540

 Entity Framework is likely sufficient, if you use it
correctly
Before we go diving into Dapper (or another lightweight ORM), it would be prudent of

us to remember that a lot of the gain we get from an ORM can also be accomplished

with EF.

For example, if we remember back a few chapters ago, we covered how to pull

queries with the AsNoTracking extension. When we add that extension into our queries,

we can disconnect the data from the database, at least for purposes of tracking.

Additionally, if we have massive table joins or other operations that might not

perform well in LINQ, we can consider using views and stored procedures.

Therefore, before we go all in on leveraging a lightweight ORM, we should make sure

that we have paid due diligence to examining the features in EF.

 Benefits of using a lightweight ORM
Even with everything that EF can do, a lightweight ORM can generally offer some

benefits over EF. These benefits are usually related to simplicity, maintenance, and/or

performance.

The first performance gain that a lightweight ORM can offer is that you get direct

access to writing the SQL queries you will use, whereas EF generally relies on you to set

up a LINQ query which then translates that into SQL for execution. With an ORM, you are

generally writing the direct SQL you want to call. We know that we can profile the LINQ-

generated SQL, but sometimes doing multiple table joins with LINQ can get a bit muddy.

Another way that you can benefit from using a lightweight ORM could be with

execution plans. Remember from our previous chapters how LINQ does not cache an

execution plan? As it turns out, some lightweight ORMs can actually cache your call for

you. This means that the second and consecutive calls made in the ORM can potentially

benefit from this caching. For example, Dapper uses a ConcurrentDictionary to store

queries with parameter information (see the documentation at https://github.com/

StackExchange/Dapper#limitations-and-caveats).

Chapter 13 alternatives to entity Framework: Dapper

https://github.com/StackExchange/Dapper#limitations-and-caveats
https://github.com/StackExchange/Dapper#limitations-and-caveats

541

 Drawbacks with Dapper
As with any solution, there are good and bad things that must be considered. Working

with Dapper can be extremely effective in the right situation, but in the wrong situation,

you may find yourself wanting a different approach.

 Flat data
When working with Dapper, you do get the control you want when working with SQL,

but the end result is generally a flat set of data. Where EF offers navigation properties,

Dapper does not. So, this means that any data you need to include from joined tables

needs to be manually hydrated.

Therefore, if you are just pulling data for a view or flat data from a single table,

Dapper is an excellent choice. When needing to do things with joined data, such as our

Items with CategoryName and our Categories with CategoryColors, it becomes a bit

more costly. Even with the cost, Dapper is still highly performant, as we’ll see in our

upcoming activity.

 Learning curve
Most of us are probably very comfortable with LINQ by now and have a generally useful

understanding of getting the data exactly as we need it. Hopefully the previous chapters

where we discussed efficiency of queries have also grown our skillset in this area.

With Dapper, we have yet another tool to learn. While this is not a bad thing, it

becomes more to add to the maintenance plan for the system, as well as another thing

that developers will need to know to work with the solution.

If the developer is not very familiar with T-SQL, this can also add to the learning

curve.

In the end, we’ll be using Dapper with SlapperAutomapper to help when working

with data. Therefore, the approach we are taking in this solution means developers

would need to not only know EF but also Dapper, SlapperAutomapper, and T-SQL.

Chapter 13 alternatives to entity Framework: Dapper

542

 Implementing a hybrid solution
Since you will want to keep your EF Implementation around the CRUD operations for

creating, updating, and deleting, but may want to get some enhanced performance

on read operations, implementing a hybrid solution can be an excellent architectural

choice.

A couple of drawbacks to a hybrid solution are that your dev team now needs to

know all of the tools in the stack, not just EF and LINQ or Dapper, SlapperAutomapper,

and T-SQL, but all of them combined. Additionally, implementing a hybrid solution

might lead to messy code where some developers query with LINQ and EF and others

query with Dapper and SlapperAutomapper. As such, you’ll want to be clear about

your policy around when, where, and how to use each piece when developing a hybrid

approach. A lot of that confusion can be cleared up just by discussing the reasons,

benefits, and drawbacks of each of the implemented ORMs.

To complete this chapter, we’re going to implement Dapper and SlapperAutomapper

in our solution for use as a hybrid option for querying our data. We aren’t going to

learn everything about Dapper and SlapperAutomapper, so if you want to dive deeper

after reading this chapter and working the activity, make sure to check out the official

documentation. The documentation will also give you more information about how and

when Dapper might be the right choice for your solutions.

You can find the official documentation here:

https://github.com/StackExchange/Dapper

Additional information about SlapperAutomapper can be found here:

https://github.com/SlapperAutoMapper/Slapper.AutoMapper

 Activity 1301: Implementing a hybrid solution
with Dapper
As we’ve discussed in this chapter, using a lightweight ORM can provide benefits for our

solutions, especially related to performance. For that reason, in this activity, we are going

to implement a hybrid solution with Dapper with SlapperAutomapper and EFCore.

Chapter 13 alternatives to entity Framework: Dapper

https://github.com/StackExchange/Dapper
https://github.com/SlapperAutoMapper/Slapper.AutoMapper

543

 Providing a read-only data layer alternative
In order to make our solution work well and be architected for success, we’ll provide

implementations for our data layer at the read and write level. In this way, we can inject a

new read object that implements Dapper while still keeping the fully functioning version

of our EF implementation in place.

 Step 1: Steps

To begin, grab a copy of the Activity1301_DapperAndEFCoreHybrid_Starter.zip

files, extract them, double-check your connection string, and make sure that you have

the InventoryManager database set up. Run an update-database command to make

sure the migrations are up to date on your machine. Once that is completed, run the

application to make sure it is working as expected. Alternatively, you could continue

with the InventoryManager project you have been working with on your own machine.

Additionally, you could run any unit and integration tests to validate that they are also

working as expected. Once the project runs, your output should be similar to what is

shown in Figure 13-1.

Figure 13-1. The starter project is up and running as expected

Chapter 13 alternatives to entity Framework: Dapper

544

 Step 2: Implement the Dapper and SlapperAutomapper libraries

In order to work efficiently with Dapper, we’re going to need to implement both the

Dapper and SlapperAutomapper libraries.

Open the Manage NuGet Packages for Solution dialog, and select the Browse tab.

Enter Dapper to search for the Dapper library.

Once you locate the Dapper library, select it and add it to the

InventoryDatabaseLayer project (see Figure 13-2).

Figure 13-2. Using NuGet Package Manager to get Dapper into the
InventoryDatabaseLayer project

At the time of this writing, the Slapper.Automapper package v.2.0.0.9 is in beta,

but we need that to work with the .Net Core framework. It is currently not listed in the

Packages when browsing in the Package Manager Console.

If we look on NuGet.Org, we can find the package, as is shown in Figure 13-3.

Chapter 13 alternatives to entity Framework: Dapper

545

Perhaps by the time you are reading this, it will be an official package. Until

then, the best way to get it is to select the InventoryDatabaseLayer project in the

PackageManagerConsole and then run the command as listed on the NuGet.Org page.

Open the PMC, then select the InventoryDatabaseLayer Project, and then run the

command:

Install-Package Slapper.AutoMapper -Version 2.0.0.9-beta

Review Figure 13-4 for clarity.

Figure 13-3. Finding Slapper.Automapper v2.0.0.9 -beta on NuGet.Org

Figure 13-4. Running the command in the PMC against the InventoryDatabaseLayer
project to get the beta version of Slapper.Automapper installed

Once everything is installed, you can validate that it was installed by building the

project and reviewing the packages in the NuGet Package Manager (as seen in Figure 13-5).

Chapter 13 alternatives to entity Framework: Dapper

546

Additionally, reviewing the InventoryDatabaseLayer.csproj file reveals

the correctly referenced packages. Figure 13-6 shows a possible version of your

InventoryDatabaseLayer.csproj file and clarifies that all of the expected packages are

listed as package references.

Figure 13-5. Reviewing the NuGet Package Manager to see that the correct
libraries are installed

Figure 13-6. Reviewing the InventoryDatabaseLayer.csproj file to see the
referenced packages

If you haven’t already, make sure everything builds as expected with no errors.

Chapter 13 alternatives to entity Framework: Dapper

547

 Step 3: Create the new interfaces and implementations
in the InventoryDatabaseLayer project

In order to create a new repository to leverage Dapper, we’re going to refactor our

database and business layer interfaces. One of the principles of SOLID design is interface

segregation. To make our solution a bit more robust, we should isolate read and write

into their own implementations. We’re going to do that now.

In the InventoryDatabaseLayer project, in the IInventoryDatabaseRepo

class, add two new empty interfaces, IInventoryDatabaseRepoReadOnly and

IInventoryDatabaseRepoWriteOnly, using the following code:

public interface IInventoryDatabaseRepoReadOnly

{

}

public interface IInventoryDatabaseRepoWriteOnly

{

}

Next, move the methods associated with read operations into the

IInventoryDatabaseRepoReadOnly interface. Cut and paste the following methods from

the IInventoryDatabaseRepo into the IInventoryDatabaseRepoReadOnly interface:

List<Item> ListInventory();

List<GetItemsForListingWithDateDto> GetItemsForListingLinq(DateTime

minDateValue, DateTime maxDateValue);

List<GetItemsForListingDto> GetItemsForListingFromProcedure(DateTime

dateDateValue, DateTime maxDateValue);

List<GetItemsTotalValueDto> GetItemsTotalValues(bool isActive);

List<ItemsWithGenresDto> GetItemsWithGenres();

List<CategoryDto> ListCategoriesAndColors();

Chapter 13 alternatives to entity Framework: Dapper

548

And then move the methods associated with writing by cutting and

pasting the following methods from the IInventoryDatabaseRepo into the

IInventoryDatabaseRepoWriteOnly interface:

int InsertOrUpdateItem(Item item);

void InsertOrUpdateItems(List<Item> items);

void DeleteItem(int id);

void DeleteItems(List<int> itemIds);

Finally, implement both interfaces in the full-version IInventoryDatabaseRepo

interface, by simply adding the implements operator and the two interface names to the

IInventoryDatabaseRepo declaration:

public interface IInventoryDatabaseRepo : IInventoryDatabaseRepoReadOnly,

IInventoryDatabaseRepoWriteOnly

{

}

Make sure to run all the build the solution and run unit tests now to ensure that

nothing that was currently implemented was broken by this refactoring.

For clarity, the overall code for this repo after refactoring is shown in Figure 13-7.

Chapter 13 alternatives to entity Framework: Dapper

549

 Step 4: Create the new interfaces and implementations
in the InventoryBusinessLayer project

Next, we need to do the same type of refactoring in the InventoryBusinessLayer project

for the IItemsService interface, which will create a similar separation of concerns for

reading and writing to and from the data layer.

Figure 13-7. The IInventoryDatabaseRepo interface hierarchy contains the ability
to segregate read and write operations by interface if desired

Chapter 13 alternatives to entity Framework: Dapper

550

As in step 3, begin by creating two new interfaces, then cut and paste the appropriate

methods to each interface for implementation, and finally set the default interface to

implement both read and write interfaces. The refactored code should look as follows:

public interface IItemsServiceReadOnly

{

 List<GetItemsForListingWithDateDto> GetItemsForListingLinq(DateTime

minDateValue, DateTime maxDateValue);

 List<GetItemsForListingDto> GetItemsForListingFromProcedure(DateTime

minDateValue, DateTime maxDateValue);

 AllItemsPipeDelimitedStringDto GetItemsPipeDelimitedString(bool

isActive);

 List<GetItemsTotalValueDto> GetItemsTotalValues(bool isActive);

 List<ItemsWithGenresDto> GetItemsWithGenres();

 List<CategoryDto> ListCategoriesAndColors();

 List<ItemDto> ListInventory();

}

public interface IItemsServiceWriteOnly

{

 int InsertOrUpdateItem(CreateOrUpdateItemDto item);

 void InsertOrUpdateItems(List<CreateOrUpdateItemDto> item);

 void DeleteItem(int id);

 void DeleteItems(List<int> itemIds);

}

public interface IItemsService : IItemsServiceReadOnly,

IItemsServiceWriteOnly

{

}

For clarity, the refactored code is also shown in Figure 13-8.

Chapter 13 alternatives to entity Framework: Dapper

551

Once again, it is a good idea to run the unit tests to make sure that nothing is broken

by this refactoring.

 Step 5: Get SQLite in the integration testing project

We’re going to be implementing a Dapper repo soon, but before we do that, we’re going

to need to have the ability to work with an actual database connection for Dapper.

Therefore, we need to use SQLite for our in-memory solution. Perhaps in the future,

the EFCore In-Memory solution will work as expected. Perhaps I just haven’t set it

up correctly, but when I try to use it, I continually get an error about not being able

to establish a connection. SQLite fills the gaps nicely for us for use in our integration

testing. Additionally, even Microsoft has issued warnings against relying on the

operation of the EFCore In-Memory database, so SQLite is a great choice for testing our

Dapper operations.

Figure 13-8. The refactored IItemsService hierarchy

Chapter 13 alternatives to entity Framework: Dapper

552

Return to the NuGet Package Manager for the solution, and browse to find

Microsoft.Data.Sqlite.Core, and install it to the InventoryManagerIntegrationTests

project. Along with that search, you should see three other packages that we want.

They are Microsoft.Data.Sqlite.Core, Microsoft.EntityFrameworkCore.Sqlite,

and Microsoft.EntityFrameworkCore.Sqlite.Core. The version number should

match your EFCore version. Figure 13-9 shows a closer look at installation of the four

packages. Figure 13-9 was taken when version 3.1.4 was the latest version of EFCore. You

should continue to use the most recent version, and your version should match your

implementation of EFCore (i.e., 3.1.x).

Figure 13-9. Installing the four packages to get SQLite into our testing project

Now that we have SQLite in the testing project, let’s add the methods we’ll need in

order to create an instance of SQLite to run during testing.

In the InventoryManagerIntegrationTests, add a method to SetupSqlite in the

class, add three private class-level variables at the top of the class, and call the setup

method from the constructor. Use the following code as a guide (and don’t forget to add

any missing using statements):

//DAPPER Testing

private const string sqlLiteConnectionString = "DataSource=:memory:";

private SqliteConnection _connection;

private InventoryDbContext _context;

Chapter 13 alternatives to entity Framework: Dapper

553

public InventoryManagerIntegrationTests()

{

 SetupOptions();

 BuildDefaults();

 SetupSqlite();

}

private void SetupSqlite()

{

}

Next, implement the method to set up the tests for running SQLite. Additionally,

we’ll make a call to a method that we’ll write next to seed the data.

private void SetupSqlite()

{

 _connection = new SqliteConnection(sqlLiteConnectionString);

 _connection.Open();

 var options = new DbContextOptionsBuilder<InventoryDbContext>()

 .UseSqlite(_connection)

 .Options;

 _context = new InventoryDbContext(options);

 _context.Database.EnsureCreated();

 BuildSqliteData();

}

Always remember to bring in any missing using statements if you haven’t already.

After creating the instance, we need to seed some data for testing.

While there is likely a way we could refactor the setup to work with both our EFCore

In-Memory solution and SQLite, to just get this test project working with data, let’s create

a new method and implement the setup specifically for SQLite.

Chapter 13 alternatives to entity Framework: Dapper

554

Use the following code to implement the BuildSqliteData method for seeing our

test data:

private void BuildSqliteData()

{

 //skip creation if items already exist:

 var item1Detail = _context.Items.SingleOrDefault(x => x.Name.

Equals(ITEM1_NAME));

 var item2Detail = _context.Items.SingleOrDefault(x => x.Name.

Equals(ITEM2_NAME));

 var item3Detail = _context.Items.SingleOrDefault(x => x.Name.

Equals(ITEM3_NAME));

 if (item1Detail != null && item2Detail != null && item3Detail != null)

return;

 var color1 = new CategoryColor() { ColorValue = COLOR_BLUE };

 var color2 = new CategoryColor() { ColorValue = COLOR_RED };

 var color3 = new CategoryColor() { ColorValue = COLOR_GREEN };

 var cat1 = new Category()

 {

 CategoryColor = color1,

 IsActive = true,

 IsDeleted = false,

 Name = CAT1_NAME

 };

 var cat2 = new Category()

 {

 CategoryColor = color2,

 IsActive = true,

 IsDeleted = false,

 Name = CAT2_NAME

 };

 var cat3 = new Category()

 {

 CategoryColor = color3,

 IsActive = true,

Chapter 13 alternatives to entity Framework: Dapper

555

 IsDeleted = false,

 Name = CAT3_NAME

 };

 _context.Categories.Add(cat1);

 _context.Categories.Add(cat2);

 _context.Categories.Add(cat3);

 _context.SaveChanges();

 //with sql lite, need to build out the id for the category.

categorycolorid for mappings

 var catColor1 = _context.CategoryColors.Single(x => x.ColorValue.

Equals(COLOR_BLUE));

 var catColor2 = _context.CategoryColors.Single(x => x.ColorValue.

Equals(COLOR_RED));

 var catColor3 = _context.CategoryColors.Single(x => x.ColorValue.

Equals(COLOR_GREEN));

 var category1 = _context.Categories.Single(x => x.Name.Equals(CAT1_NAME));

 var category2 = _context.Categories.Single(x => x.Name.Equals(CAT2_NAME));

 var category3 = _context.Categories.Single(x => x.Name.Equals(CAT3_NAME));

 category1.CategoryColorId = catColor1.Id;

 category2.CategoryColorId = catColor2.Id;

 category3.CategoryColorId = catColor3.Id;

 _context.SaveChanges();

 var item1 = new Item()

 {

 Name = ITEM1_NAME,

 Description = ITEM1_DESC,

 Notes = ITEM1_NOTES,

 IsActive = true,

 IsDeleted = false,

 CategoryId = category1.Id

 };

Chapter 13 alternatives to entity Framework: Dapper

556

 _context.Items.Add(item1);

 var item2 = new Item()

 {

 Name = ITEM2_NAME,

 Description = ITEM2_DESC,

 Notes = ITEM2_NOTES,

 IsActive = true,

 IsDeleted = false,

 CategoryId = category2.Id

 };

 _context.Items.Add(item2);

 var item3 = new Item()

 {

 Name = ITEM3_NAME,

 Description = ITEM3_DESC,

 Notes = ITEM3_NOTES,

 IsActive = true,

 IsDeleted = false,

 CategoryId = category3.Id

 };

 _context.Items.Add(item3);

 _context.SaveChanges();

}

The first part of the BuildSqliteData method is going to be exactly the same as the

setup for our original testing. The second part of the method requires that we ensure

the category color id is set for each category, which we did not have to do in the original

testing.

With SQLite setup, run the tests to make sure nothing is broken to this point, even

though we aren’t leveraging the SQLite instance yet.

 Step 6: Add the Dapper Layer, and test it

Now we are ready to build our read-only Dapper repo. To do this, we can follow standard

TDD procedures. First, implement two tests in the IntegrationTests project.

Chapter 13 alternatives to entity Framework: Dapper

557

[Fact]

public void TestDapperListInventory()

{

}

[Theory]

[InlineData(CAT1_NAME, COLOR_BLUE)]

[InlineData(CAT2_NAME, COLOR_RED)]

[InlineData(CAT3_NAME, COLOR_GREEN)]

public void TestDapperCategoryColors(string name, string color)

{

}

With those tests in place, add the following code to the top of each test method:

var repo = new InventoryDatabaseDapperRepo(_context.Database.

GetDbConnection(), _mapper);

To make this compile, we need to create the implementation of

InventoryDatabaseDapperRepo. Note that we are passing in a database connection and

our previously built mapper object, in case we need to use it eventually.

In the InventoryDatabaseLayer project, add a new class file called

InventoryDatabaseDapperRepo.cs. Add the constructor and class-level

variables to the class as shown in the following, and make sure to implement the

IInventoryDatabaseRepoReadOnly interface, and bring in any missing using statements:

public class InventoryDatabaseDapperRepo : IInventoryDatabaseRepoReadOnly

{

 private readonly IDbConnection _connection;

 private readonly IMapper _mapper;

 public InventoryDatabaseDapperRepo(IDbConnection connection, IMapper

mapper)

 {

 _connection = connection;

 _mapper = mapper;

 if (_connection.State == ConnectionState.Closed)

 {

Chapter 13 alternatives to entity Framework: Dapper

558

 _connection.Open();

 }

 }

For clarity, the initial work for creating the Dapper repo is shown in Figure 13-10. Note

that currently the code will not compile because the interface is not yet implemented

correctly.

Figure 13-10. Setting up the Dapper Repo instance

Next, use the built-in generation tools to implement the interface with the default

exception implementations. When completed, the following code should have been

added into your class, and the solution should be buildable:

public List<GetItemsForListingDto> GetItemsForListingFromProcedure(DateTime

dateDateValue, DateTime maxDateValue)

{

 throw new NotImplementedException();

}

Chapter 13 alternatives to entity Framework: Dapper

559

public List<GetItemsForListingWithDateDto> GetItemsForListingLinq(DateTime

minDateValue, DateTime maxDateValue)

{

 throw new NotImplementedException();

}

public List<GetItemsTotalValueDto> GetItemsTotalValues(bool isActive)

{

 throw new NotImplementedException();

}

public List<ItemsWithGenresDto> GetItemsWithGenres()

{

 throw new NotImplementedException();

}

public List<CategoryDto> ListCategoriesAndColors()

{

 throw new NotImplementedException();

}

public List<Item> ListInventory()

{

 throw new NotImplementedException();

}

Return to the InventoryManagerIntegrationTests project and add code to the

TestDapperListInventory test as follows:

var repo = new InventoryDatabaseDapperRepo(_context.Database.

GetDbConnection(), _mapper);

var result = repo.ListInventory();

result.ShouldNotBeNull();

result.Count.ShouldBe(3);

var one = result.Single(x => x.Name == ITEM1_NAME);

one.ShouldNotBeNull();

one.Name.ShouldBe(ITEM1_NAME);

one.Description.ShouldBe(ITEM1_DESC);

Chapter 13 alternatives to entity Framework: Dapper

560

one.Notes.ShouldBe(ITEM1_NOTES);

one.Category.Name.ShouldBe(CAT1_NAME);

var two = result.Single(x => x.Name == ITEM2_NAME);

two.ShouldNotBeNull();

two.Name.ShouldBe(ITEM2_NAME);

two.Description.ShouldBe(ITEM2_DESC);

two.Notes.ShouldBe(ITEM2_NOTES);

two.Category.Name.ShouldBe(CAT2_NAME);

var three = result.Single(x => x.Name == ITEM3_NAME);

three.ShouldNotBeNull();

three.Name.ShouldBe(ITEM3_NAME);

three.Description.ShouldBe(ITEM3_DESC);

three.Notes.ShouldBe(ITEM3_NOTES);

three.Category.Name.ShouldBe(CAT3_NAME);

Ordinarily, we’d run the test to see that it is currently broken, fix the test, then move

on, and then run it to see that it is working (i.e., red-green-refactor). For brevity, add the

following code to the TestDapperCategoryColors test:

var catcolors = repo.ListCategoriesAndColors();

catcolors.ShouldNotBeNull();

catcolors.Count.ShouldBe(3);

var item = catcolors.SingleOrDefault(x => x.Category.Equals(name));

item.ShouldNotBeNull();

item.CategoryColor.Color.ShouldBe(color);

Run the tests; all Dapper tests should fail as expected. Figure 13-11 shows the

expected output in the Test Explorer window.

Chapter 13 alternatives to entity Framework: Dapper

561

Go back to the Dapper repo, and add the following code into the ListInventory

method:

var sql = $"SELECT i.Id, i.Name, i.Description, i.Notes, i.IsDeleted,

i.CategoryId " +

 ", c.Name as CategoryName" +

 " FROM Items i INNER JOIN Categories c on i.CategoryId = c.Id" +

 " WHERE i.IsDeleted = @isDeleted";

var result = _connection.Query<dynamic>(sql, new { isDeleted = 0 });

Slapper.AutoMapper.Configuration.AddIdentifiers(typeof(Item), new

List<string> { "Id" });

Slapper.AutoMapper.Configuration.AddIdentifiers(typeof(Category), new

List<string> { "CategoryId" });

Figure 13-11. The Dapper Repo tests fail as expected

Chapter 13 alternatives to entity Framework: Dapper

562

var output = (Slapper.AutoMapper.MapDynamic<Item>(result) as

IEnumerable<Item>).OrderBy(x => x.Name).ToList();

//have to hydrate the relationship:

foreach (var item in output)

{

 item.Category = _connection.Query<Category>("SELECT * FROM Categories

where ID = " + item.CategoryId).First();

}

return output;

Also add the using statements for Dapper and Linq so the code will compile.

There are a few things we need to notice about this code.

First of all, we wrote a direct T-SQL statement in code. This is one of the powers of

Dapper. You can directly implement the T-SQL code you want and execute it.

A second point of interest is that we used the simple call

var result = _connection.Query<dynamic>(sql, new { isDeleted = 0 });

to make a query that returned a dynamic result since we are joining data and

flattening it. If we were directly calling to just get Item without Category info, we could

have used the Item type instead of dynamic type.

The third interesting piece of code is using the Slapper.Automapper library to define

the relationships and then casting the data back into our C# class objects:

Slapper.AutoMapper.Configuration.AddIdentifiers(typeof(Item), new

List<string> { "Id" });

 Slapper.AutoMapper.Configuration.AddIdentifiers(typeof(Category),

new List<string> { "CategoryId" });

 var output = (Slapper.AutoMapper.MapDynamic<Item>(result) as

IEnumerable<Item>).OrderBy(x => x.Name).ToList();

Also note that we first pulled the data and then mapped it, then ordered it, and sent it

to a list.

Finally, since the data is flat, and our code needs to show the Category name, we

need to hydrate that data with a loop. This is obviously a bit of a code smell. Ideally, we

would use Dapper to only get the flat data, not needing to worry about relationships.

Chapter 13 alternatives to entity Framework: Dapper

563

//have to hydrate the relationship:

foreach (var item in output)

{

 item.Category = _connection.Query<Category>("SELECT * FROM Categories

where ID = " + item.CategoryId).First();

}

return output;

Run the tests to make sure the inventory test works as expected with our updated

code.

To complete our testing, add the following code to the ListCategoriesAndColors

method in the Dapper repo:

public List<CategoryDto> ListCategoriesAndColors()

{

 var sql = "SELECT c.Id, c.Name, cc.Id as CategoryColorId, cc.ColorValue " +

 "FROM Categories c " +

 "INNER JOIN CategoryColors cc " +

 "ON c.CategoryColorId = cc.Id";

 var result = _connection.Query<dynamic>(sql);

 Slapper.AutoMapper.Configuration.AddIdentifiers(typeof(Category), new

List<string> { "Id" });

 Slapper.AutoMapper.Configuration.AddIdentifiers(typeof(CategoryColor),

new List<string> { "CategoryColorId" });

 /*

 map

 */

 var output = (Slapper.AutoMapper.MapDynamic<Category>(result) as

IEnumerable<Category>).ToList();

 foreach (var category in output)

 {

 category.CategoryColor = _connection.Query<CategoryColor>

("SELECT * FROM CategoryColors where ID = "

Chapter 13 alternatives to entity Framework: Dapper

564

 + category.CategoryColorId).First();

 }

 return _mapper.Map<List<CategoryDto>>(output);

}

Once again, run the tests to see that all of them are now passing as expected (see

Figure 13-12).

Figure 13-12. All tests that are written are passing

 Step 7: Implement the Readonly Items service

Our database layer is complete, but we need to write the service layer in order to expose

the Dapper database layer.

In the InventoryBusinessLayer project, add a new file called

ItemsServiceReadOnly.cs. Implement the IItemsServiceReadOnly interface, and

generate the interface implementations so the code will compile. When completed, the

ItemsServiceReadOnly class should look like this:

Chapter 13 alternatives to entity Framework: Dapper

565

public class ItemsServiceReadOnly : IItemsServiceReadOnly

{

 public List<GetItemsForListingDto> GetItemsForListingFromProcedure(Date

Time minDateValue, DateTime maxDateValue)

 {

 throw new NotImplementedException();

 }

 public List<GetItemsForListingWithDateDto>

GetItemsForListingLinq(DateTime minDateValue, DateTime maxDateValue)

 {

 throw new NotImplementedException();

 }

 public AllItemsPipeDelimitedStringDto GetItemsPipeDelimitedString(bool

isActive)

 {

 throw new NotImplementedException();

 }

 public List<GetItemsTotalValueDto> GetItemsTotalValues(bool isActive)

 {

 throw new NotImplementedException();

 }

 public List<ItemsWithGenresDto> GetItemsWithGenres()

 {

 throw new NotImplementedException();

 }

 public List<CategoryDto> ListCategoriesAndColors()

 {

 throw new NotImplementedException();

 }

Chapter 13 alternatives to entity Framework: Dapper

566

 public List<ItemDto> ListInventory()

 {

 throw new NotImplementedException();

 }

}

Create two class-level variables and a constructor for the ItemsServiceReadOnly

class with the following code (don’t forget to add the missing using statements):

private readonly InventoryDatabaseDapperRepo _dbRepo;

private readonly IMapper _mapper;

public ItemsServiceReadOnly(InventoryDatabaseDapperRepo dbRepo, IMapper

mapper)

{

 _dbRepo = dbRepo;

 _mapper = mapper;

}

We’ve only implemented a couple of the methods in the actual repo, but we could

still do all the simple pass-through methods in this class. For purposes of brevity,

we’ll only do the two we have tested and are going to use in this activity. Feel free to

implement the rest for practice if you desire.

Both implemented methods are going to just pass through the call to the database

layer. In the ListInventory method, add the following code:

return _mapper.Map<List<ItemDto>>(_dbRepo.ListInventory());

Then, in the ListCategoriesAndColors method, add this code:

return _dbRepo.ListCategoriesAndColors();

For clarity, the implementations are illustrated in Figure 13-13.

Chapter 13 alternatives to entity Framework: Dapper

567

 Step 8: Work with the Dapper implementation in code

Now that the solution is working as expected in test, and we have the read-only service in

place to call to the Dapper repo, let’s implement the two methods in the Main program of

the main activity project to see it play out with a real database.

In the Main method of the Program.cs file, comment out or remove all the code

except the two calls to the original database repo for ListInventory (lines 41–43) and

ListCategoriesAndColors (lines 69–72). For simplicity, I’ve removed the code so you

can see exactly what I’m asking you to do (the final solution files will still contain all

original code).

static void Main(string[] args)

{

 BuildOptions();

 BuildMapper();

 var minDate = new DateTime(2020, 1, 1);

 var maxDate = new DateTime(2021, 1, 1);

 using (var db = new InventoryDbContext(_optionsBuilder.Options))

 {

 var dbRepo = new InventoryDatabaseRepo(db, _mapper);

 var svc = new ItemsService(dbRepo, _mapper);

Figure 13-13. Implementing the two pass-through methods from the new read-
only service to the Dapper database repo

Chapter 13 alternatives to entity Framework: Dapper

568

 Console.WriteLine("List Inventory");

 var inventory = svc.ListInventory();

 inventory.ForEach(x => Console.WriteLine($"New Item: {x}"));

 /*** commmented code here ***/

 Console.WriteLine("List Categories And Colors");

 var categoriesAndColors = svc.ListCategoriesAndColors();

 categoriesAndColors.ForEach(c => Console.WriteLine($"{c.Category} |

{c.CategoryColor.Color}"));

 /*** commented code here ***/

 }

 Console.WriteLine("Program Complete");

}

Run the program to make sure you have only the two methods being called (review

Figure 13-14).

Figure 13-14. Current code that is executing only runs the List Inventory and List
Categories and Colors methods

With the program limited, it will be easier to see our Dapper database layer working.

At the end of the using block for the InventoryDbContext, add the following code:

//Read only dapper

var dbDapperRepo = new InventoryDatabaseDapperRepo(db.Database.

GetDbConnection(), _mapper);

var svc2 = new ItemsServiceReadOnly(dbDapperRepo, _mapper);

Console.WriteLine("List Inventory from Dapper");

var dapperInventory = svc2.ListInventory();

Chapter 13 alternatives to entity Framework: Dapper

569

dapperInventory.ForEach(x => Console.WriteLine($"New Item: {x}"));

Console.WriteLine("List Categories And Colors From Dapper");

var dapperCategoriesAndColors = svc2.ListCategoriesAndColors();

dapperCategoriesAndColors.ForEach(c => Console.WriteLine($"{c.Category} |

{c.CategoryColor.Color}"));

With this code, there are a couple of things to note. The main thing to note is that

we create a new version of the Dapper repository using the context that is already in

scope to ultimately get to the database connection string. We could have loaded it via

the appsettings.json file and just created a new connection. However, since we have

everything in place already for the existing context, this is an easier approach.

In addition to the database connection, we also pass the instantiated AutoMapper

object through to the read- only methods.

Once the repo is set up, we then create a version of the service by injecting our repo

and the instantiated AutoMapper object.

With the service in place, we just need to make the calls and print the results as is

done in the original calls for the full service.

Once all of this is in place, we’ve seen how to leverage both EF and Dapper in the

same solution, and we could easily apply what we’ve learned here to make our own

solutions more robust.

Run the program to see the Dapper repo versions working in the Main method.

Figure 13-15 shows the final results.

Figure 13-15. The Dapper repository is leveraged through the service layer via the
Main method

Chapter 13 alternatives to entity Framework: Dapper

570

 Final thoughts on activity 1301

In this activity, we implemented a hybrid solution that combined EF and Dapper. By using

the Dapper lightweight ORM, we can achieve some performance gains and write SQL

directly for some of our complex queries. Adding the Slapper.Automapper tool to enhance

Dapper allows us to easily integrate with C# types after retrieving results from Dapper.

Final thoughts for this chapter
In this chapter, we’ve walked through using a lightweight ORM to supplement our

database activities. We started by talking about the various benefits and drawbacks

that we might encounter when using both EF as the only database solution and when

implementing a lightweight ORM to provide some performance enhancements.

 Dapper with Slapper.Automapper
For our solution, as we implemented the Dapper library with the Slapper.Automapper

library, we saw that Dapper is a powerful tool that allows for quick and efficient access to

the database. One of the main benefits outside of performance is also the ability to write

and use our own T-SQL commands directly against the database from code.

 Cached queries and direct access
We also discussed the benefit of caching the queries that are executed as implemented

with Dapper. The performance benefits of a direct access to the database along with

these cached queries can really pay off in large systems.

 Multiple table joins, flat, and relational data
Using Dapper is not necessarily something that should be done in every project,

however. Certainly, there are situations where using EF is a better choice. In cases where

we are doing multiple table joins and need more than just flat data, Dapper falls a bit

short. This is by design. The concession here is that getting data with Dapper is going to

be more efficient, but part of that efficiency means that relational data is not preserved.

Adding Slapper.Automapper gives the ability to quickly map the data as returned from

Dapper into the expected output data types.

Chapter 13 alternatives to entity Framework: Dapper

571

 Interface segregation and inversion of control
Finally, we saw the benefits in this solution of having our layered architecture with

decoupled constructors. By coding to the interface implementations, we can easily inject

either type of service or repository as needed going forward.

While we didn’t end up implementing every individual method, this solution gave us

a great chance to see the use of a third-party, lightweight ORM in our solution.

 We are positioned well for success
At this point, we’ve covered almost all of the main aspects of a solution that is

implementing Entity Framework and working with MS SQL to create robust solutions.

While there are a few methods that are incomplete, we have the tools we need to work

with EF in a professional setting. There are just a few more things that are important to

know as we continue to grow as EF developers.

In our final chapter, we’ll finish the book by focusing on the changes that EFCore has

brought us, asynchronous operations, and where we are going to go from here with EF

into the future.

Chapter 13 alternatives to entity Framework: Dapper

PART IV

Recipes for Success

575
© Brian L. Gorman 2020
B. L. Gorman, Practical Entity Framework, https://doi.org/10.1007/978-1-4842-6044-9_14

CHAPTER 14

Asynchronous Data
Operations and Multiple
Database Contexts
In this chapter, we’ll cover two final critical concepts, as we discuss asynchronous

operations and using multiple database contexts in our solutions.

At the end of this chapter, we’ll have seen how we can implement the database layer

while leveraging the power of multiple cores in our computers. We’ll also have taken a

look at how it is possible to use more than one database context in our solutions.

 Asynchronous operations
The first concept we need to talk about is working with asynchronous operations. To this

point, we’ve done everything with all methods being synchronous. However, in most

practical applications, we’ll be leveraging the power of asynchronous programming.

 Multithreaded programming
As our computer architectures changed from being processor speed oriented as the metric

of superiority to processor speed plus core count oriented, multithreaded programming

became much more popular and much more important in our day-to-day work.

The main problem with multithreaded programming is that it is difficult. There are

many issues to consider before diving into multithreaded programming. Race conditions

lead to your asynchronous code executing processes or methods out of order. Thread

pools run out of available threads and can still cause pieces of your program to become

unresponsive. In a worst-case scenario, threads get locked in an infinite loop and your

entire application becomes unresponsive.

https://doi.org/10.1007/978-1-4842-6044-9_14#DOI

576

Because of the overall difficulty of asynchronous programming, the original rate

of adoption was not that high. In fact, the main use prior to the TaskParallelLibrary

(TPL) being introduced for most developers was likely just to keep desktop forms from

appearing to be locked while processes ran in the background after pressing a button.

I even wrote a blog post in 2009 on how to use events, delegates, and threads to avoid

running into that specific problem.

Because of the difficulty of multithreaded programming, and the various technical

problems associated with it, the .Net Framework was expanded to make our lives a

whole lot better.

 Async, await, and the TaskParallelLibrary
In the .Net world, async and await keywords first showed up in the .Net 3.0 Framework,

but didn’t become widely adopted and useable until the TaskParallelLibrary (TPL)

was introduced in .Net 4.

The TPL gave all of us the ability to specify the Task operations with return types that

we have come to rely on in our asynchronous code. With the TPL, we can also rely on

the fact that issues with concurrency are handled correctly. For example, using the await

operator or requesting to get the result of a parallel operation gives us the assurance that

our code will not continue to execute until the threaded operation has completed.

 Responsive solutions for the end user
To put this more into perspective, think of websites from the early 2000s through about

2010. Perhaps you’ve even heard the term Web 2.0. Prior to Web 2.0 and other initiatives

that happened at the end of the 2000s into the 2010s, websites were mostly one user

doing one thing for themselves, or essential duties that they would perform, or were just

simple, static files. Web 2.0 really grasped the idea that there should be multiple users

interacting in the same systems and that each user should see information in real time.

With Web 2.0, it was more common to expect your changes to be immediately

reflected to other users of the same system. This led to new approaches to web services

and a movement into REST APIs, as well as things like the AjaxControlToolkit and

SignalR, to provide an ability to abstract programmers from having to work directly

with websockets. In the end, real-time dashboards as part of partial pages were able to

immediately display results to the end user. Where a single-threaded approach would

Chapter 14 asynChronous Data operations anD Multiple Database Contexts

577

need to load all of the page data and then render it, and also get all of the page data from

the server to re-render even the smallest changes, Web 2.0 essentially moved us to having

multithreaded web pages with various portions responding to different threads and no

longer having to reload the whole page to see a simple change on one metric.

All of this brings us to the place where we want to land for our database as well. If you

create a dashboard that requires ten different pieces of information from the database,

you don’t want the database calls to stop the page from working, and you don’t want the

page to wait to respond until all ten different calls have completed.

By placing our database calls into asynchronous operations, our web solutions can

also remain asynchronous, and the overall responsiveness of the site appears to be much

better, even if there are still calls that bottleneck the process.

 Asynchronous database operations
With the TPL and the ability to define a return type that is based on a threaded operation,

we can leverage our processor architecture. Using async and await with our operations

obfuscates the need to do the heavy lifting of multithreading ourselves, and we can get to

a much more responsive solution with less concern about the underlying issues involved

with multithreading.

Programming the database operations to also happen in an asynchronous manner

thereby gives us the full power to leverage the TPL and the async and await keywords.

In other words, by using asynchronous database operations, we’ll get to keep

programming as if we are working with commands in a synchronous manner, while

leveraging the power of our multiple-core processors and the underlying multithreading

that is available to us. Utilizing asynchronous database operations ultimately helps us

to keep our applications responsive while querying the database in the most efficient

manner possible.

 Basic asynchronous syntax
Without going into a lot of detail here, setting our methods to use asynchronous

operations is very straightforward. We will cover all of this in detail in our first activity

later in this chapter.

To sum up what it takes to implement asynchronous operations, the main changes

will require us to

Chapter 14 asynChronous Data operations anD Multiple Database Contexts

578

• Rework all methods to be async Task operations

• Change all database calls to happen with the built-in async

abilities of EF

• Refactor any queries that don’t work as written in an asynchronous

pattern

• Use the async/await pattern throughout the application

• Show how to execute an async operation from a synchronous context

 Multiple database contexts
In most applications, a single database context can handle your needs. However, while

it is not necessary and should ultimately be used with caution, there will be times when

using multiple contexts can be beneficial.

 Single sign on (SSO)
The most common reason I can conceive that you would want to have multiple database

contexts would be in a company where you have a suite of applications and you want

to provide custom sign-on capabilities to users (outside of Azure AD or an on-premises

Active Directory).

In this solution, rather than require your users register for all of your applications,

you can have an SSO solution where once a user is registered with one of your

applications, the same user and password combination can be used for all of them.

It’s certainly true that you could replicate the data in the tables for user management

across all of your applications with a background process. However, if all applications

connect to and use the same database for identity, you can do much less work and have

much less of a chance for error.

Chapter 14 asynChronous Data operations anD Multiple Database Contexts

579

 Business units
Another solution that might lend itself to multiple contexts would be a situation where

you want to separate units within your corporation into their own database solutions

while providing a single application to interact with the data.

For example, consider a large banking corporation that has units of work around

accounting practices, customer management, financial investment operations,

marketing, insurance, lending, and collections.

In this corporation, certain employees would likely need access to pieces of

information in all units, such as a customer account with balance and perhaps payment

and balance history in combination with mortgage and credit card information. Other

business unites might only need access to one or two of the pieces of information. For

example, marketing employees might only need access to customer name and address

information. Furthermore, some information might be entirely confidential, and, due

to regulations, knowing that information could lead to a potential violation of federal

law (such as a fairness in lending act), so it may be critical to keep a clear separation of

concerns to provide boundaries that cannot be circumvented.

When a case such as this exists, you’ll likely need to expose certain shared data

across line-of-business applications, or you may need to have directly created contexts to

leverage only the parts of each system that should be accessible. Again, the choice here

is which is better for your company – from background jobs to sync your data on some

time interval to direct immediate access to the most valid dataset that you can provide,

the choices and implementations will be your responsibility as the developer.

 Multiple contexts require a bit more work
If our solution is going to use multiple contexts, there are a few things we’ll need to be

aware of.

The first thing to be certain to address is the injection of the context and the creation

of the context at startup. Most applications will inject their context at startup, but you’ll

be required to also include any additional contexts. Using the additional contexts also

generally requires a shared library that can leverage the shared contexts.

The second critical piece of information that is important when working with

multiple contexts is the knowledge of the commands to run in the package manager

console. With a single context, a simple add-migration or update-database command

Chapter 14 asynChronous Data operations anD Multiple Database Contexts

580

can be run at will. Once you have introduced a second context into the solution, the PMC

will need you to explicitly specify which context to use when running these commands.

Finally, using multiple contexts requires that everyone is on the same page as to

the standards and approaches used in unit testing and interface segregation. While you

could get by without this, it will be nice to know that any library developed around a

context is fully unit and integration tested. Additionally, if there are security concerns,

the ability to get just a read-only version of the context without much work should be

readily available.

 Putting it into practice
We’ve now done a good deal of talking about asynchronous operations and the database,

as well as using multiple contexts.

For the remainder of the chapter, we’ll work through these scenarios to see what it

takes to get set up, as well as learn about how to work with commands and code when

making asynchronous calls or trying to add or update the database from the code-first

approach to database development.

 Activity 1401: Asynchronous database operations
In our first activity, we are going to rework our inventory database library to use

asynchronous operations.

 Leveraging async and await
The main purpose of this activity is to give us the ability to implement calls that rely on

the async/await pattern. By doing this, we should be able to free up our applications

to continue processing as well as optimize the performance of our own database

operations to leverage the power of multithreading without all the heavy lifting.

As mentioned previously, there will be a few things we have to refactor, and the

changes will ripple up all the way to our program. This also means we’ll have to refactor

our tests. In the end, this solution will be much more like what we’ll encounter in any

real-world application going forward.

Chapter 14 asynChronous Data operations anD Multiple Database Contexts

581

 Step 1: Steps

To begin, grab a copy of the Activity1401_AsynchronousDatabaseOperations_Starter.

zip files, extract them, build the project, double-check your connection string, and make

sure that you have the InventoryManager database set up. Run an update- database

command to make sure the migrations are up to date on your machine. Additionally, you

could run an add-migration command to ensure that you don’t have any pending changes.

Assuming there are none, you could then just run the remove- migration command to

clean up the empty migration. If you have pending changes, consider just updating the

database to match the current solution using the update- database command.

Alternatively, you could just continue using your InventoryManager solution that

you’ve been building through the previous chapters in this book, with your code in the

same state as it was at the end of Chapter 13.

 Step 2: Begin at the database level

To make the changes work, we’re going to have to touch most of the layers in some way

or another, including the tests. We’ll start by reworking all of the database calls and move

up the layers from there. Along the way, we’ll see how to make calls with async/await, as

well as see the ability to run from a synchronous method when we get to the program.

Starting in the InventoryDatabaseLayer, open the IInventoryDatabaseRepo

interface. In the interface, change all of the methods to be asynchronous by wrapping

each return type with Task<T>. When the method is void, simply change the method

to be a Task. Make sure to add the using statement using System.Threading.Tasks;.

When the code is updated, it should look as follows:

public interface IInventoryDatabaseRepoReadOnly

{

 Task<List<GetItemsForListingDto>> GetItemsForListingFromProcedure

(DateTime dateDateValue, DateTime maxDateValue);

 Task<List<GetItemsForListingWithDateDto>> GetItemsForListingLinq

(DateTime minDateValue, DateTime maxDateValue);

 Task<List<GetItemsTotalValueDto>> GetItemsTotalValues(bool isActive);

 Task<List<ItemsWithGenresDto>> GetItemsWithGenres();

 Task<List<CategoryDto>> ListCategoriesAndColors();

 Task<List<Item>> ListInventory();

}

Chapter 14 asynChronous Data operations anD Multiple Database Contexts

582

public interface IInventorDatabaseRepoWriteOnly

{

 Task<int> InsertOrUpdateItem(Item item);

 Task InsertOrUpdateItems(List<Item> items);

 Task DeleteItem(int id);

 Task DeleteItems(List<int> itemIds);

}

public interface IInventoryDatabaseRepo : IInventoryDatabaseRepoReadOnly,

IInventorDatabaseRepoWriteOnly

{

}

Build the project. There will be a number of errors, as should be expected (review

Figure 14-1).

Figure 14-1. Reworking the interface causes a number of expected build errors

We can use the errors to work out the problems going forward as a road map. We

already know that we changed the interface that is implemented by two classes. The next

step is to rework the two implementations. Do not select “implement interface,” or you’ll

get a number of duplicated methods. Instead, let’s fix the methods and the code that

goes with them.

In the InventoryDatabaseRepo, begin by fixing the method signatures to match

the methods in the interface. This is done by once again wrapping the return types

with Task<T> or setting the return type to Task when the method is void. Additionally,

each method needs to be declared as an async method. For example, the public

List<GetItemsForListingDto> GetItemsForListingFromProcedure(...)

method becomes public async Task<List<GetItemsForListingDto>>

GetItemsForListingFromProcedure(...).

Chapter 14 asynChronous Data operations anD Multiple Database Contexts

583

Make sure to add the using statement for System.Threading.Tasks.

After fixing all the signatures, a number of errors will be created. We’ll now walk

through each method and fix the internal code.

Make note that some methods don’t have an error, but only have a green squiggly

line under the method name. Hovering on the name of the method reveals the issue (see

Figure 14-2).

Figure 14-2. Methods that are asynchronous expect to await within the method

While you can have an async method that does not have an await operation in

it and still have valid execution, the warning here is to remind you that you made an

asynchronous method without an await operation. We want to await the database call.

To do this, we need to make a couple of changes.

Begin by adding the keyword await between return and _context.

ItemsForListing.... This change will highlight the operation with a red-squiggly

underline. The error created is that the List<GetItemsForListingDto> does not contain

a definition for awaiter. To fix this, we need to change .ToList() to .ToListAsync():

public async Task<List<GetItemsForListingDto>> GetItemsForListingFromProced

ure(DateTime dateDateValue, DateTime maxDateValue)

{

 var minDateParam = new SqlParameter("minDate", dateDateValue);

 var maxDateParam = new SqlParameter("maxDate", maxDateValue);

 return await _context.ItemsForListing

 . FromSqlRaw("EXECUTE dbo.GetItemsForListing

@minDate, @maxDate", minDateParam, maxDateParam)

 .ToListAsync();

}

Chapter 14 asynChronous Data operations anD Multiple Database Contexts

584

Next, let’s fix the GetItemsForListingLinq method. This fix will be more involved.

Because of the way this query is built and because of the database encryption we have

implemented, we have to get the list back sooner than would be ideal. Making this

method asynchronous will force us to rework the ordering a bit as well.

Begin by creating a new variable called result and set it to await the call to get the

items with the included category and select into the GetItemsForListingWithDateDto

using the where limitations, but then direct the results ToListAsync() at this point.

var result = await _context.Items.Include(x => x.Category)

 .Select(x => new GetItemsForListingWithDateDto

 {

 CreatedDate = x.CreatedDate,

 CategoryName = x.Category.Name,

 Description = x.Description,

 IsActive = x.IsActive,

 IsDeleted = x.IsDeleted,

 Name = x.Name,

 Notes = x.Notes

 })

 . Where(x => x.CreatedDate >= minDateValue && x.CreatedDate

<= maxDateValue)

 .ToListAsync();

Then use the return statement to return that list with ordering as expected:

return result.OrderBy(y => y.CategoryName).ThenBy(z => z.Name).ToList();

This change will allow us to get the list in an asynchronous manner and then we

have to do the ordering. The IOrderedEnumerable will not work asynchronously as the

code is written, so, while not ideal, at least we got the limited results with the query. If

we wanted, we could get the query as an AsyncEnumerable, which would allow for async

enumeration of the results, but here we’ll just fetch the results with the await operation

and then order the resulting list in memory.

For clarity, the completed GetItemsForListingLinq method is illustrated in

Figure 14-3.

Chapter 14 asynChronous Data operations anD Multiple Database Contexts

585

Now let’s move on to the GetItemsTotalValues method. This method is another

simple fix where we just need to make the method async Task<T>, then add the await

operator to the database call, and complete by changing the ToList call to ToListAsync.

Since we’re here, also fix the parameter declaration to use the passed in parameter

instead of the hard-coded value of 1. The reworked method should be as follows:

public async Task<List<GetItemsTotalValueDto>> GetItemsTotalValues

(bool isActive)

{

 var isActiveParm = new SqlParameter("IsActive", isActive);

 return await _context.GetItemsTotalValues

 . FromSqlRaw("SELECT * from [dbo].[GetItemsTotalValue]

(@IsActive)", isActiveParm)

 .ToListAsync();

}Continuing down the code, the ListCategoriesAndColors method is another

simple fix - making the method async Task<T> and then adding the await operator and

changing ToList to ToListAsync. The method GetItemsWithGenres is similar. The two

completed methods should look as follows:

public async Task<List<CategoryDto>> ListCategoriesAndColors()

{

 return await _context.Categories

 .Include(x => x.CategoryColor)

Figure 14-3. The reworked GetItemsForListingLinq method is now asynchronous

Chapter 14 asynChronous Data operations anD Multiple Database Contexts

586

. ProjectTo<CategoryDto>(_mapper.ConfigurationProvider).ToListAsync();

}

public async Task<List<ItemsWithGenresDto>> GetItemsWithGenres()

{

 return await _context.ItemsWithGenres.ToListAsync();

}

The ListInventory() method is next, and it will require a few changes. For this

method, we’ll again start by getting results with await and ToListAsync and then change

to include the OrderBy. To see the error we would get without proper refactoring,

just add await and change the return of ToList to ToListAsync. We’ll see the error

is regarding the fact that the IOrderedEnumerable does not allow a ToListAsync call

(review Figure 14-4).

Figure 14-4. The IOrderedEnumerable does not allow a ToListAsync() operation

Refactor the code for the ListInventory method as follows:

public async Task<List<Item>> ListInventory()

{

 var result = await _context.Items.Include(x => x.Category)

 .Where(x => !x.IsDeleted).ToListAsync();

 return result.AsEnumerable().OrderBy(x => x.Name).ToList();

}

In the InsertOrUpdateItem method, add await statements before each call to

Update or Create an item:

public async Task<int> InsertOrUpdateItem(Item item)

{

 if (item.Id > 0)

 {

Chapter 14 asynChronous Data operations anD Multiple Database Contexts

587

 return await UpdateItem(item);

 }

 return await CreateItem(item);

}

In the InsertOrUpdateItems method, change the method to async Task and then

simply add an await statement before the call to InsertOrUpdateItems:

var success = await InsertOrUpdateItem(item) > 0;

For the CreateItem method, we get to see our first save. Here, we’ll add await

operations to the first two lines. Additionally, we’ll change the Add method to AddAsync

and the SaveChanges method to SaveChangesAsync.

private async Task<int> CreateItem(Item item)

{

 await _context.Items.AddAsync(item);

 await _context.SaveChangesAsync();

 var newItem = _context.Items.ToList()

 .FirstOrDefault(x => x.Name.ToLower()

 .Equals(item.Name.ToLower()));

 if (newItem == null) throw new Exception("Could not Create the item as

expected");

 return newItem.Id;

}

For the get of the new item, we need to just make the call to get the items, but this

time limit to single or default async:

private async Task<int> CreateItem(Item item)

{

 await _context.Items.AddAsync(item);

 await _context.SaveChangesAsync();

 var newItem = await _context.Items.SingleOrDefaultAsync(x => x.Name.ToLower()

 .Equals(item.Name.ToLower()));

 if (newItem == null) throw new Exception("Could not Create the item as

expected");

Chapter 14 asynChronous Data operations anD Multiple Database Contexts

588

 return newItem.Id;

}

For the UpdateItem method, we need to make a couple of similar changes.

Add await to the call to get Items, and also change the FirstOrDefault call to

SingleOrDefaultAsync.

using FirstOrDefaultAsync would also work here, but we should never get
more than one result on a unique id, so it would be more accurate to use SingleO
rDefault/SingleOrDefaultAsync for this call.

var dbItem = await _context.Items.SingleOrDefaultAsync(x => x.Id == item.Id);

Additionally, add the await operator and change SaveChanges to SaveChangesAsync

right before returning the item id:

await _context.SaveChangesAsync();

When complete, the UpdateItem should look as follows:

private async Task<int> UpdateItem(Item item)

{

 var dbItem = await _context.Items.SingleOrDefaultAsync(x => x.Id == item.Id);

 dbItem.CategoryId = item.CategoryId;

 dbItem.CurrentOrFinalPrice = item.CurrentOrFinalPrice;

 dbItem.Description = item.Description;

 dbItem.IsActive = item.IsActive;

 dbItem.IsDeleted = item.IsDeleted;

 dbItem.IsOnSale = item.IsOnSale;

 dbItem.Name = item.Name;

 dbItem.Notes = item.Notes;

 dbItem.PurchasedDate = item.PurchasedDate;

 dbItem.PurchasePrice = item.PurchasePrice;

 dbItem.Quantity = item.Quantity;

 dbItem.SoldDate = item.SoldDate;

 await _context.SaveChangesAsync();

 return item.Id;

}

Chapter 14 asynChronous Data operations anD Multiple Database Contexts

589

For the DeleteItem method, add the await and change the call to

SingleOrDefaultAsync for the query to get the matching item. Also add the await and

change the SaveChanges call to SaveChangesAsync.

public async Task DeleteItem(int id)

{

 var item = await _context.Items.SingleOrDefaultAsync(x => x.Id == id);

 if (item == null) return;

 item.IsDeleted = true;

 await _context.SaveChangesAsync();

}

Finally, change the DeleteItems method to await the call to DeleteItem method:

try

{

 foreach (var itemId in itemIds)

 {

 await DeleteItem(itemId);

 }

 scope.Complete();

}

To complete this portion of the activity, we need to also refactor the Dapper

implementation.

To do this, once again change all the method signatures on each method to

match the asynchronous changes as defined in the interface. Most of these methods

are unimplemented, so we can just leave them. They will have a green squiggly line

indicating that they do not implement an await operator, but that will not break the

compiler or the program execution, even if the method had other synchronous code in it.

For clarity, I’ve collapsed all of the methods and am including a screenshot (see

Figure 14-5) so that you can see what the method signatures should look like in the

InventoryDatabaseDapperRepo class.

Chapter 14 asynChronous Data operations anD Multiple Database Contexts

590

To complete the code changes in the InventoryDatabaseDapperRepo, we need to

fix the two methods that are implemented. Beginning with ListCategoriesAndColors,

change the code for the first var result = _connection.Query... to var result =

await _connection.QueryAsync<dynamic>(sql);.

Then change the code in the foreach method call to get the first match with an

asynchronous call:

category.CategoryColor = await _connection.QueryFirstAsync<CategoryColor>

("SELECT * FROM CategoryColors where ID = "+ category.CategoryColorId);

After completing these changes, the entire method should look like the following

code:

Figure 14-5. The InventoryDatabaseDapperRepo class with methods changed to
implement asynchronous operations. For brevity, method bodies are not shown in
the image but do exist in the code

Chapter 14 asynChronous Data operations anD Multiple Database Contexts

591

public async Task<List<CategoryDto>> ListCategoriesAndColors()

{

 var sql = "SELECT c.Id, c.Name, cc.Id as CategoryColorId, cc.ColorValue " +

 "FROM Categories c " + "INNER JOIN CategoryColors cc " +

"ON c.CategoryColorId = cc.Id";

 var result = await _connection.QueryAsync<dynamic>(sql);

 Slapper.AutoMapper.Configuration.AddIdentifiers(typeof(Category),

new List<string> { "Id" });

 Slapper.AutoMapper.Configuration.AddIdentifiers(typeof(CategoryColor),

new List<string> { "CategoryColorId" });

 /*

 map

 */

 var output = (Slapper.AutoMapper.MapDynamic<Category>(result) as

IEnumerable<Category>).ToList();

 foreach (var category in output)

 {

 category.CategoryColor = await _connection

 . QueryFirstAsync<CategoryColor>("SELECT * FROM

CategoryColors where ID = "

 + category.CategoryColorId);

 }

 return _mapper.Map<List<CategoryDto>>(output);

}

Complete similar changes to the two _connection.Query calls in the ListInventory

method. The code should look as follows when you complete the refactor:

public async Task<List<Item>> ListInventory()

{

 var sql = $"SELECT i.Id, i.Name, i.Description, i.Notes, i.IsDeleted,

i.CategoryId " + ", c.Name as CategoryName" +

 " FROM Items i INNER JOIN Categories c on i.CategoryId = c.Id" +

 " WHERE i.IsDeleted = @isDeleted";

Chapter 14 asynChronous Data operations anD Multiple Database Contexts

592

 var result = await _connection.QueryAsync<dynamic>(sql, new { isDeleted = 0 });

 Slapper.AutoMapper.Configuration.AddIdentifiers(typeof(Item), new

List<string> { "Id" });

 Slapper.AutoMapper.Configuration.AddIdentifiers(typeof(Category), new

List<string> { "CategoryId" });

 var output = (Slapper.AutoMapper.MapDynamic<Item>(result) as

IEnumerable<Item>).OrderBy(x => x.Name).ToList();

 //have to hydrate the relationship:

 foreach (var item in output)

 {

 item.Category = await _connection

 . QueryFirstAsync<Category>("SELECT * FROM Categories

where ID = "+ item.CategoryId);

 }

 return output;

}

This will complete our refactor operations on the InventoryDatabaseLayer project.

Build the project to get the next set of errors (see Figure 14-6).

Figure 14-6. Errors in the BusinessLayer and in the integration tests now exist

 Step 3: Update the integration tests to use asynchronous
database operations

Now that our database layer is fully updated, we need to begin the next layer of fixes by

first fixing the integration tests and making sure they still work as expected.

Open the InventoryManagerIntegrationTests class file in the

IntegrationManagerTests project.

Begin by changing the four methods that have Fact or Theory attributes to be

asynchronous. This is easily accomplished by simply changing the keyword void to be

async Task. Yes, it is really that easy (see Figure 14-7 for reference).

Chapter 14 asynChronous Data operations anD Multiple Database Contexts

593

Make sure to add the using statement for System.Threading.Tasks so that the code

will compile.

In the each of the four methods identified in Figure 14-7, simply find any calls to

the _dbRepo objects and add the await operator to allow for the methods to operate

asynchronously. For example, in TestListInventory, change var items = _dbRepo.

ListInventory(); to var items = await _dbRepo.ListInventory();

Figure 14-7. The four test methods are changed to become asynchronous tests

Chapter 14 asynChronous Data operations anD Multiple Database Contexts

594

There should be four calls to await added to the test project when this is completed:

In TestListInventory

var items = await _dbRepo.ListInventory();

In TestCategoryColors

var catcolors = await _dbRepo.ListCategoriesAndColors();

In TestDapperListInventory()

var result = await repo.ListInventory();

In TestDapperCategoryColors

var catcolors = await repo.ListCategoriesAndColors();

Rebuild the project. There are still errors for the InventoryBusinessLayer that need

to be fixed. However, we can run the integration tests. Run them now to validate that our

asynchronous code is working as expected (see Figure 14-8 for sample test output).

Figure 14-8. The integration tests should all be passing at this point

Chapter 14 asynChronous Data operations anD Multiple Database Contexts

595

 Step 4: Update the business layer

The next step in refactoring our code is to refactor the business layer. This will be a fairly

easy and quick operation, now that the deeper database layer is already refactored and

validated to be working via the integration tests.

As with the interface for the database layer, refactor all method signatures in the

IItemsService file to be configured for asynchronous operations. Don’t forget to also

add the using statement for System.Threading.Tasks. When completed, the code for

the interfaces in the IItemsService.cs file should be as follows:

public interface IItemsServiceReadOnly

{

 Task<List<GetItemsForListingWithDateDto>>

GetItemsForListingLinq(DateTime minDateValue, DateTime maxDateValue);

 Task<List<GetItemsForListingDto>> GetItemsForListingFromProcedure(DateT

ime minDateValue, DateTime maxDateValue);

 Task<AllItemsPipeDelimitedStringDto> GetItemsPipeDelimitedString(bool

isActive);

 Task<List<GetItemsTotalValueDto>> GetItemsTotalValues(bool isActive);

 Task<List<ItemsWithGenresDto>> GetItemsWithGenres();

 Task<List<CategoryDto>> ListCategoriesAndColors();

 Task<List<ItemDto>> ListInventory();

}

public interface IItemsServiceWriteOnly

{

 Task<int> InsertOrUpdateItem(CreateOrUpdateItemDto item);

 Task InsertOrUpdateItems(List<CreateOrUpdateItemDto> item);

 Task DeleteItem(int id);

 Task DeleteItems(List<int> itemIds);

}

public interface IItemsService : IItemsServiceReadOnly,

IItemsServiceWriteOnly

{

}

Chapter 14 asynChronous Data operations anD Multiple Database Contexts

596

In the ItemsService implementation, make sure to modify all method signatures

to be asynchronous, and then simply add the await keyword before any call to the repo

object. As always, don’t forget to add the necessary using statements into the file. For

example, the GetItemsForListingFromProcedure looks as follows after being refactored:

public async Task<List<GetItemsForListingDto>> GetItemsForListingFromProced

ure(DateTime minDateValue, DateTime maxDateValue)

 {

 return await _dbRepo.GetItemsForListingFromProcedure(minDateValue,

maxDateValue);

 }

The only other change that needs to be made that will be different from all the

other methods is any call to the ListInventory method and a major change in the

ListInventory method. In that method, since we’re mapping, first get the result, and

then map as follows:

public async Task<List<ItemDto>> ListInventory()

{

 var result = await _dbRepo.ListInventory();

 return _mapper.Map<List<ItemDto>>(result);

}

Make sure to also update any calls in other methods to the ListInventory method to

include an await operator, i.e., var items = await ListInventory(); such as in the

GetItemsPipeDelimitedString method.

Each of the following code snippets will highlight the changes to the ItemsService

class as it should be at completion:

//GetItemsForListingFromProcedure

public async Task<List<GetItemsForListingDto>> GetItemsForListingFromProced

ure(DateTime minDateValue, DateTime maxDateValue)

{

 return await _dbRepo.GetItemsForListingFromProcedure(minDateValue,

maxDateValue);

}

Chapter 14 asynChronous Data operations anD Multiple Database Contexts

597

//GetItemsForListingLinq:

public async Task<List<GetItemsForListingWithDateDto>>

GetItemsForListingLinq(DateTime minDateValue, DateTime maxDateValue)

{

 return await _dbRepo.GetItemsForListingLinq(minDateValue, maxDateValue);

}

GetItemsPipeDelimitedString:

public async Task<AllItemsPipeDelimitedStringDto> GetItemsPipeDelimited

String(bool isActive)

{

 var items = await ListInventory();

 var sb = new StringBuilder();

 foreach (var item in items)

 {

 if (sb.Length > 0)

 {

 sb.Append("|");

 }

 sb.Append(item.Name);

 }

 var output = new AllItemsPipeDelimitedStringDto();

 output.AllItems = sb.ToString();

 return output;

}

//GetItemsPipeDelimitedString

public async Task<AllItemsPipeDelimitedStringDto> GetItemsPipeDelimited

String(bool isActive)

{

 var items = await ListInventory();

 var sb = new StringBuilder();

 foreach (var item in items)

 {

 if (sb.Length > 0)

 {

Chapter 14 asynChronous Data operations anD Multiple Database Contexts

598

 sb.Append("|");

 }

 sb.Append(item.Name);

 }

 var output = new AllItemsPipeDelimitedStringDto();

 output.AllItems = sb.ToString();

 return output;

}

//GetItemsTotalValues:

public async Task<List<GetItemsTotalValueDto>> GetItemsTotalValues(bool isActive)

{

 return await _dbRepo.GetItemsTotalValues(isActive);

}

//GetItemsWithGenres:

public async Task<List<ItemsWithGenresDto>> GetItemsWithGenres()

{

 return await _dbRepo.GetItemsWithGenres();

}

//ListCategoriesAndColors

public async Task<List<CategoryDto>> ListCategoriesAndColors()

{

 return await _dbRepo.ListCategoriesAndColors();

}

//ListInventory

public async Task<List<ItemDto>> ListInventory()

{

 var result = await _dbRepo.ListInventory();

 return _mapper.Map<List<ItemDto>>(result);

}

//InsertOrUpdateItem

public async Task<int> InsertOrUpdateItem(CreateOrUpdateItemDto item)

{

 if (item.CategoryId <= 0)

 {

Chapter 14 asynChronous Data operations anD Multiple Database Contexts

599

 throw new ArgumentException("Please set the category id before

insert or update");

 }

 return await _dbRepo.InsertOrUpdateItem(_mapper.Map<Item>(item));

}

//InsertOrUpdateItems

public async Task InsertOrUpdateItems(List<CreateOrUpdateItemDto> items)

{

 await _dbRepo.InsertOrUpdateItems(_mapper.Map<List<Item>>(items));

}

//DeleteItem and DeleteItems:

public async Task DeleteItem(int id)

{

 if (id <= 0) throw new ArgumentException("Please set a valid item id

before deleting");

 await _dbRepo.DeleteItem(id);

}

public async Task DeleteItems(List<int> itemIds)

{

 try

 {

 await _dbRepo.DeleteItems(itemIds);

 }

 catch (Exception ex)

 {

 Console.WriteLine($"The transaction has failed: {ex.Message}");

 }

}

Now that our ItemsService is updated, we also need to update the ItemsServiceReadOnly

to use asynchronous operations.

Chapter 14 asynChronous Data operations anD Multiple Database Contexts

600

Once again, update all of the method signatures to be asynchronous in nature and

add the using statement for System.Threading.Tasks. As most of these methods

are not implemented, we only need to update the ones that are; in this case, ListCategories

AndColors and ListInventory. As with the previous operations, we’ll need to return the

ListInventory into a variable and then map it, but these two implementations are very

easy. The code for the two methods that need to be altered is as follows:

public async Task<List<CategoryDto>> ListCategoriesAndColors()

{

 return await _dbRepo.ListCategoriesAndColors();

}

public async Task<List<ItemDto>> ListInventory()

{

 var items = await _dbRepo.ListInventory();

 return _mapper.Map<List<ItemDto>>(items);

}

The remaining methods aren’t implemented, so just make sure they have the correct

signatures as shown in Figure 14-9.

Figure 14-9. The remaining methods just need the updated signatures for
asynchronous operations

Chapter 14 asynChronous Data operations anD Multiple Database Contexts

601

This completes our refactoring of the business layer. Rebuild the project to see the

next set of errors, which will be in the InventoryManagerUnitTests and the overall

program itself.

 Step 5: Update the unit tests

Now that the business layer is in place, we need to update the unit tests. Open the

InventoryManagerUnitTests file in the InventoryManagerUnitTests project.

There won’t be a lot to change in this project since we just have the one test. For

the setup however, we need to do something a bit different. Since we are going to be

mocking an asynchronous return, we need to get the _allItems object as the result of a

Task. To do this, we can simply use the call Task.FromResult(_allItems).

In the SetupDbRepoMock, change the _mockInventoryDatabaseRepo.Setup(...) call

to be:

_mockInventoryDatabaseRepo.Setup(x => x.ListInventory())

 .Returns(Task.FromResult(_allItems));

Next, change the TestGetItems method to be async Task, and await the

_serviceLayer.ListInventory call:

[TestMethod]

public async Task TestGetItems()

{

 //var result = _mockServiceLayer.Object.ListInventory();

 var result = await _serviceLayer.ListInventory();

 Assert.IsNotNull(result);

 Assert.IsTrue(result.Count > 0);

 result.ShouldNotBeNull();

 result.Count.ShouldBeGreaterThan(0);

 result.Count.ShouldBe(3);

 result.First().Name.ShouldBe(ITEM1_NAME);

 result.First().CategoryId.ShouldBe(1);

}

This completes our refactor for the unit tests. Build the project and see the next set of

errors which should all relate to the program itself. Run the unit tests to make sure that it

passes as expected. Figure 14-10 shows the output of the unit tests running successfully.

Chapter 14 asynChronous Data operations anD Multiple Database Contexts

602

All that remains is to fix the main program.

 Step 6: Update the Program

To complete the system and allow it to work, we need to update the Program. In this part

of the activity, we have all the code turned on and just need to get the calls to work with

the new asynchronous code.

One thing that will happen is that there are a number of calls to ListInventory. For

this reason, the first thing we should do is create a helper method to get the Inventory

List. This will also give us a chance to see how to run an asynchronous piece of code

from within a synchronous context.

Add the following code to the Program class after the Main method and before the

CreateMultipleItems method:

private static List<ItemDto> GetInventoryList(IItemsService svc)

{

 return Task.Run(() => svc.ListInventory()).Result;

}

Make sure to also add the using statement for.

Figure 14-10. The Unit tests are now passing as expected

Chapter 14 asynChronous Data operations anD Multiple Database Contexts

603

In this code, we see the call to Task.Run(() => ...).Result; That line of code

allows us to tell the system to run a command and then use a lambda to inject the

asynchronous code to run. Since our method is not asynchronous, we cannot await the

result. Therefore, we add the call to .Result at the end of the statement, which tells the

system to wait until a result is returned.

Now that we have our common code for getting inventory, let’s fix the rest of the code.

To begin, replace any calls in the code to svc.ListInventory with the new method

call to GetInventoryList(svc). There should be six places to replace and the one result

that we just created with our new method. For example, the line var inventory = svc.

ListInventory(); becomes var inventory = GetInventoryList(svc);.

Using the find and replace tool of ctrl + H, enter the svc.ListInventory() search

term and replace all but the new method with GetInventoryList(svc).

After completion, run another find operation to validate you have six method calls to

GetInventoryList(svc) as illustrated in Figure 14-11.

Figure 14-11. A simple find can help validate that we have successfully replaced
all six calls to get the items

Chapter 14 asynChronous Data operations anD Multiple Database Contexts

604

Rebuild the solution to see further errors. Each issue revolves around the fact that

the method went from being synchronous to asynchronous. To fix the rest of the calls,

look for a call to the business layer and then initiate the call using the Task.Run syntax

learned previously.

For example:

var items = svc.GetItemsForListingLinq(minDate, maxDate);

becomes

var items = Task.Run(() => svc.GetItemsForListingLinq(minDate, maxDate)).

Result;

Make sure to just leave the Dapper service call to get inventory as is and wrap with a

Task.Run operation, as the interface type is not interchangeable as written:

var dapperInventory = Task.Run(() => svc2.ListInventory()).Result;

When this is completed, the code for the Main method with all code uncommented

should be as follows (note, for a complete version of the code, see the Activity1401_

AsynchronousDatabaseOperations_Final.zip files):

static void Main(string[] args)

{

 BuildOptions();

 BuildMapper();

 var minDate = new DateTime(2020, 1, 1);

 var maxDate = new DateTime(2021, 1, 1);

 using (var db = new InventoryDbContext(_optionsBuilder.Options))

 {

 //decouple the database from the service layer using the

 //dbRepo interface

 var dbRepo = new InventoryDatabaseRepo(db, _mapper);

 var svc = new ItemsService(dbRepo, _mapper);

 Console.WriteLine("List Inventory");

 var inventory = GetInventoryList(svc);

 inventory.ForEach(x => Console.WriteLine($"New Item: {x}"));

Chapter 14 asynChronous Data operations anD Multiple Database Contexts

605

 Console.WriteLine("List inventory with Linq");

 var items = Task.Run(() => svc.GetItemsForListingLinq(minDate,

maxDate)).Result;

 items.ForEach(x => Console.WriteLine($"ITEM| {x.CategoryName}|

{x.Name} - {x.Description}"));

 Console.WriteLine("List Inventory from procedure");

 var procItems = Task.Run(() => svc.GetItemsForListingFromProcedure(

minDate, maxDate)).Result;

 procItems.ForEach(x => Console.WriteLine($"ITEM| {x.Name} -

{x.Description}"));

 Console.WriteLine("Item Names Pipe Delimited String");

 var pipedItems = Task.Run(() => svc.GetItemsPipeDelimitedString

(true)).Result;

 Console.WriteLine(pipedItems.AllItems);

 Console.WriteLine("Get Items Total Values");

 var totalValues = Task.Run(() => svc.GetItemsTotalValues(true)).

Result;

 totalValues.ForEach(item => Console.WriteLine($"New Item] {item.

Id,-10}" + $"|{item.Name,-50}" + $"|{item.Quantity,-4}" + $"|{item.

TotalValue,-5}"));

 Console.WriteLine("Get Items With Genres");

 var itemsWithGenres = Task.Run(() => svc.GetItemsWithGenres()).

Result;

 itemsWithGenres.ForEach(item => Console.WriteLine($"New Item]

{item.Id,-10}" + $"|{item.Name,-50}" + $"|{item.Genre?.ToString().

PadLeft(4)}"));

 Console.WriteLine("List Categories And Colors");

 var categoriesAndColors = Task.Run(() => svc.ListCategoriesAndColors()).

Result;

 categoriesAndColors.ForEach(c => Console.WriteLine($"{c.Category} |

{c.CategoryColor.Color}"));

Chapter 14 asynChronous Data operations anD Multiple Database Contexts

606

 _categories = categoriesAndColors;

 Console.WriteLine("Would you like to create items?");

 var createItems = Console.ReadLine().StartsWith("y", StringComparison.

OrdinalIgnoreCase);

 if (createItems)

 {

 Console.WriteLine("Adding new Item(s)");

 CreateMultipleItems(svc);

 Console.WriteLine("Items added");

 inventory = GetInventoryList(svc);

 inventory.ForEach(x => Console.WriteLine($"Item: {x}"));

 }

 Console.WriteLine("Would you like to update items?");

 var updateItems = Console.ReadLine().StartsWith("y", StringComparison.

OrdinalIgnoreCase);

 if (updateItems)

 {

 Console.WriteLine("Updating Item(s)");

 UpdateMultipleItems(svc);

 Console.WriteLine("Items updated");

 inventory = GetInventoryList(svc);

 inventory.ForEach(x => Console.WriteLine($"Item: {x}"));

 }

 Console.WriteLine("Would you like to delete items?");

 var deleteItems = Console.ReadLine().StartsWith("y", StringComparison.

OrdinalIgnoreCase);

 if (deleteItems)

 {

 Console.WriteLine("Deleting Item(s)");

 DeleteMultipleItems(svc);

 Console.WriteLine("Items Deleted");

Chapter 14 asynChronous Data operations anD Multiple Database Contexts

607

 inventory = GetInventoryList(svc);

 inventory.ForEach(x => Console.WriteLine($"Item: {x}"));

 }

 //Read only dapper

 var dbDapperRepo = new InventoryDatabaseDapperRepo(db.Database.

GetDbConnection(), _mapper);

 var svc2 = new ItemsServiceReadOnly(dbDapperRepo, _mapper);

 Console.WriteLine("List Inventory from Dapper");

 var dapperInventory = Task.Run(() => svc2.ListInventory()).Result;

 dapperInventory.ForEach(x => Console.WriteLine($"New Item: {x}"));

 Console.WriteLine("List Categories And Colors From Dapper");

 var dapperCategoriesAndColors = Task.Run(() => svc2.

ListCategoriesAndColors()).Result;

 dapperCategoriesAndColors.ForEach(c => Console.WriteLine($"{c.

Category} | {c.CategoryColor.Color}"));

 }

 Console.WriteLine("Program Complete");

}

We also need to update the create and update methods. In each method, look for

any calls to the service layer (svc.), and replace them with a Task.Run operation. After

rework, the CreateMultipleItems method looks like what follows:

private static void CreateMultipleItems(IItemsService svc)

{

 Console.WriteLine("Would you like to create items as a batch?");

 bool batchCreate = Console.ReadLine().StartsWith("y", StringComparison.

OrdinalIgnoreCase);

 var allItems = new List<CreateOrUpdateItemDto>();

 bool createAnother = true;

 while (createAnother == true)

 {

 var newItem = new CreateOrUpdateItemDto();

 Console.WriteLine("Creating a new item.");

Chapter 14 asynChronous Data operations anD Multiple Database Contexts

608

 Console.WriteLine("Please enter the name");

 newItem.Name = Console.ReadLine();

 Console.WriteLine("Please enter the description");

 newItem.Description = Console.ReadLine();

 Console.WriteLine("Please enter the notes");

 newItem.Notes = Console.ReadLine();

 Console.WriteLine("Please enter the Category [B]ooks, [M]ovies,

[G]ames");

 newItem.CategoryId = GetCategoryId(Console.ReadLine().Substring

(0, 1).ToUpper());

 if (!batchCreate)

 {

 Task.Run(() => svc.InsertOrUpdateItem(newItem));

 }

 else

 {

 allItems.Add(newItem);

 }

 Console.WriteLine("Would you like to create another item?");

 createAnother = Console.ReadLine().StartsWith("y", StringComparison.

OrdinalIgnoreCase);

 if (batchCreate && !createAnother)

 {

 Task.Run(() => svc.InsertOrUpdateItems(allItems));

 }

 }

}

In the update multiple items method, set the svc call for two lines of code to use

the Task.Run(...) operation. First, find and set svc.InsertOrUpdateItem(updItem) to

Task.Run(() => svc.InsertOrUpdateItem(updItem));. Then find and set the

svc.InsertOrUpdateItems(allItems) method to Task.Run(() => svc.InsertOr

UpdateItems(allItems));.

Chapter 14 asynChronous Data operations anD Multiple Database Contexts

609

Note that a void method does not need to await the result. For clarity and brevity,

review Figure 14-12 to see these two lines of code that need to be altered in the

UpdateMultipleItems method.

Figure 14-12. The Update Multiple Items method is reworked

Finally, fix up the DeleteMultipleItems by also fixing the two calls to the service

layer in the code:

svc.DeleteItem(itemMatch.Id);

This becomes

Task.Run(() => svc.DeleteItem(itemMatch.Id));

Also

svc.DeleteItems(allItems);

becomes

Task.Run(() => svc.DeleteItems(allItems));

Use a find and replace operation to implement the code changes from the previous

discussion. When completed, your code should look similar to what is shown in

Figure 14-13.

Chapter 14 asynChronous Data operations anD Multiple Database Contexts

610

Build and run the program. Everything should work as expected now that we

have fixed up the code. Figure 14-14 shows the program in action with asynchronous

operations.

remember, if you are having problems getting the program to run, don’t hesitate to
just leverage the code in the final version of the files to see the completed version
of these reworked method calls.

Figure 14-13. The Delete Multiple Items method is refactored

Chapter 14 asynChronous Data operations anD Multiple Database Contexts

611

This concludes the activity on asynchronous database operations.

 Final thoughts on activity 1401

In this first activity for our chapter, we were able to work through getting the database

operations into an asynchronous pattern. We started by changing out the lower-level

database layer calls to leverage the context with async and await calls.

After working through each layer, we saw how easy it was to refactor the solution for

asynchronous operations. In the end, our program remained as a synchronous method,

and therefore we used the Task.Run(() => somecode).Result call to get the results of

an asynchronous operation from a synchronous context.

In the next activity, we’ll see what it takes to work with multiple contexts and how

having the power to work with asynchronous commands can really help a solution be

more responsive.

Figure 14-14. The Program in action, now completely reworked for asynchronous
database operations

Chapter 14 asynChronous Data operations anD Multiple Database Contexts

612

 Activity 1402: Multiple database contexts
In our second activity, we are going to leverage a shared database context for single-sign-

on solutions to manage user identities. To simplify this operation, we’ll create a new web

solution and integrate the inventory context into the solution.

 The identity context
To handle the authentication and authorization in a .Net web application, the system

allows for the solution to quickly generate all necessary role and user information in the

IdentityContext.

If we were going to create a suite of applications, the ideal approach would be to

generate out this identity context and place it in its own library which could then be

easily leveraged in the console application and other solutions.

For purposes of brevity, I will leave that to you if you desire to do so.

 Step 1: Get the files we created in Chapter 6

We created a new web application all the way back in Chapter 6. To complete this activity,

we’ll be starting where we left off in that activity. In the event you didn’t complete those

activities, you can just get the Activity1402_Multiple_Database_Contexts_Starter.

zip files and extract them to use on your local development machine.

You may need to update the connection string in the appSettings.json file, as the

default connection for the web app is just going to leverage the localdb. This simulates a

situation where you have an application that connects to two different databases on two

different servers.

Once up and running, make sure you can register users and log in to validate the fact

that we have a prebuilt identity schema in place for managing user authentication and

authorization.

Additionally, you’ll need to put a few categories into the category table. This will not

be the same as our inventory system, so feel free to enter anything you want.

Since I’m creating the starter pack and activity 0601 was not a long activity, I’m just

running with new files. You could do the same if you so desired.

Finally, in the event you wanted to just set a few categories and ensure your users,

please use the following script on your localdb or other connections after you have the

website up and running and you have registered a user:

Chapter 14 asynChronous Data operations anD Multiple Database Contexts

613

--validate your username

SELECT * from AspNetUsers

--if you can't login, run this with your username

UPDATE AspNetUsers

SET EmailConfirmed = 1

WHERE Id = (

 SELECT [Id]

 FROM [dbo].[AspNetUsers]

 WHERE UserName = 'brian@brian.com' --put your username here

)

--if you want to quickly add categories:

/*WARNING: running more than once will create duplicates */

INSERT INTO Categories ([Name])

VALUES ('Books')

INSERT INTO Categories ([Name])

VALUES ('Movies')

INSERT INTO Categories ([Name])

VALUES ('Games')

select * from categories

A copy of this script is also available in the Resources folder in the starter pack files.

 Step 2: Bring the inventory libraries into the project

Once you’ve validated that the project works as expected, bring the libraries for

the InventoryDbContext into the solution (copy the project folders from your

activity 1401; the starter pack has them in the folder, they are just not referenced).

For this minimal implementation, we don’t need the InventoryHelpers or the

InventoryDatabaseMigrator project. They are available in the starter pack if you do

want to add them at a later point. Add the projects by right-clicking the solution and

selecting “Add Existing Project” and then selecting the project file for each of the projects

listed here (at minimum):

InventoryBusinessLayer

InventoryDatabaseCore

InventoryDatabaseLayer

Chapter 14 asynChronous Data operations anD Multiple Database Contexts

614

InventoryManagerIntegrationTests

InventoryManagerUnitTests

InventoryModels

For clarity, review Figure 14-15 to see the projects in the solution.

Figure 14-15. Importing existing projects

Once the projects are in place, add a reference to the InventoryBusinessLayer in

the main project. All other references will be added via the dependency chain in the

projects (see Figure 14-16 for clarity).

Chapter 14 asynChronous Data operations anD Multiple Database Contexts

615

Grab the connection string for the InventoryManagerDb out of the

InventoryDatabaseCore appsettings.json file, and put the connection string into the

web project’s appsettings.json file, which should be something like this:

{

 "ConnectionStrings": {

 " DefaultConnection": "Server=(localdb)\\mssqllocaldb;Database=aspnet-

Activity1402_MultipleDatabaseContexts- B0C284AA-03F8-4103-86A4-

D55D9116B10F;Trusted_Connection=True;MultipleActiveResultSets=true",

 " InventoryManager": "Data Source=localhost;Initial Catalog=InventoryMan

ager;Trusted_Connection=True;Column Encryption Setting=Enabled;",

 },

 "Logging": {

 ...

 },

 ...

}

The important thing to note is to not forget that you may need to update that

connection string to point to the correct local database instance, whether it’s in

SQLExpress or SQLDeveloper edition.

Figure 14-16. Adding references to the InventoryBusinessLayer project

Chapter 14 asynChronous Data operations anD Multiple Database Contexts

616

Build the solution and run it. There shouldn’t be any issues. If for some reason you

get an issue, you may just need to make sure all of your NuGet packages are updated to

the latest versions.

 Step 3: Add the context to the injection for the web application

With the InventoryManager libraries ready to go, it’s time to inject the context into the

project so that we can use it in our web solution.

Locate the Startup.cs file in the web application. Notice the ConfigureServices

method. This is where the context injection will be added. Note that there is already a

statement to add the DBContext for the ApplicationDbContext – the default context that

contains identity.

We need to add another AddDbContext statement, and we need to leverage the

connection string that we copied in the previous step.

Copy the lines for services.AddDbContext<....."DefaultConnection")));

Paste them immediately after the first three original lines, and change the

context to the InventoryDbContext and the connection string to match whatever you

named your connection string in the appsettings.json file for the web project (i.e.,

InventoryManager). The new version of the method should be as follows:

public void ConfigureServices(IServiceCollection services)

{

 services.AddDbContext<ApplicationDbContext>(options =>

 options.UseSqlServer(

 Configuration.GetConnectionString("DefaultConnection")));

 services.AddDbContext<InventoryDbContext>(options =>

 options.UseSqlServer(

 Configuration.GetConnectionString("InventoryManager")));

 services.AddDefaultIdentity<IdentityUser>(options => options.SignIn.

RequireConfirmedAccount = true)

 .AddEntityFrameworkStores<ApplicationDbContext>();

 services.AddControllersWithViews();

 services.AddRazorPages();

}

For clarity, the code from the ConfigureServices method is shown in Figure 14-17.

Chapter 14 asynChronous Data operations anD Multiple Database Contexts

617

note that there is no reason we must use a different database. as long as the two
contexts do not conflict with one another, you can put them both into the same
database.

Run the solution to make sure there are no issues. Everything should still work as

before.

 Step 4: Generate Inventory controllers and views for Items

Now that we’ve brought our InventoryDBContext into the solution, let’s generate some

CRUD operations around the Inventory items in the web solution.

Right-click the Controllers folder and select Add ➤ Controller (see Figure 14-18).

Figure 14-17. Injecting the InventoryDBContext into the solution

Figure 14-18. Adding a new controller

Select MVC Controller with views, using Entity Framework, and then hit Add (review

Figure 14-19).

Chapter 14 asynChronous Data operations anD Multiple Database Contexts

618

Next, change the context to the InventoryDbContext and select the Item model

from InventoryModels. Note that the controller will be Items1Controller. Change that

default name to InventoryItemsController. Figure 14-20 shows what the form should

look like before hitting “Add” to scaffold the views.

Figure 14-19. Use the views and Entity Framework

Figure 14-20. Setting up the scaffolding operation for Inventory Items

Chapter 14 asynChronous Data operations anD Multiple Database Contexts

619

Add the controller and let the scaffolded views be created by default.

Our inventory context is leveraged, but not our service and database layer that we’ve

tested. By default, the solution is putting direction operations against the DBContext into

the controller.

Let’s run it to validate that things are working the way we would expect. Run the

project and navigate to https://localhost:<yourport>/InventoryItems.

You should see whatever was in your inventory listed in the table (output should be

similar to Figure 14-21).

Figure 14-21. The inventory Items context is wired up as expected

Make sure you can also view, create, edit, and delete items.

this is not a book on web development. therefore, we aren’t going to spend
any time making the web page nicer at this point. Clearly, this page is not
production- ready.

Chapter 14 asynChronous Data operations anD Multiple Database Contexts

620

A couple of final thoughts. We directly leveraged the context and injected it. To

make this solution work more like a production system, it would be a good idea to set up

AutoMapper and instantiate it at the services level (like we did for the context, similar to

how we set everything up in the console app). Then, in the InventoryItems Controller,

instantiate an ItemsService object, and only use that object to get data.

After refactoring to set the ItemsService in the controller, also refactor the views to

use the DTO objects instead of the full-blown models.

Finally, you’d want to make sure that your drop-down list shows the CategoryName,

not the Id so that the user could know which category they are selecting.

The amount of work it would take to do this is outside of the scope of this activity, but

is a worthy endeavor to continue your learning.

 Step 5: Add a new model to the web application context, add
the migration, and update the database

With everything in place, let’s see what it takes to add a new model and migration to

our solution. To make sure that we just do this easily, let’s add a new model to the web

application’s ApplicationDbContext. As this is a contrived example, let’s just add a class

file to create a Model for States in the activity 1402 ➤ Models folder. In the State class,

have an Id, a Name, and an Abbreviation.

public class State

{

 public int Id { get; set; }

 public string Name { get; set; }

 public string Abbreviation { get; set; }

}

With the new State model added to the solution, add the State model to

the ApplicationDBContext so it can be leveraged in code. Add the line public

DbSet<State> States { get; set; } to the ApplicationDbContext. You can add

the code anywhere in the class, but I generally stack my properties and then do the

constructors and then other methods. For this instance, I put the States DbSet property

after the Categories property and before the Constructor.

Chapter 14 asynChronous Data operations anD Multiple Database Contexts

621

Now try to add the migration using our expected add-migration command in the

PMC (make sure that the drop-down for the default project is pointing to the main

activity project that contains the ApplicationDbContext file):

add-migration CreatedStatesTable

Even though the contexts are in different projects, EF still needs us to explicitly name

the context to run the migration against. The error we get in this situation is shown in

Figure 14-22.

Figure 14-22. Can’t add a migration when there are multiple contexts

Trying to run the migration in this situation generates an error due to having

multiple contexts in the solution. To remedy that, the suggestion is to use the -Context

flag. In EF6, we leveraged the -ConfigurationTypeName flag.

one other important note here. When using multiple database contexts, you should
make sure they are in different namespaces, and then when you reference them,
use the fully qualified name, including the namespace. this will ensure the correct
migrations are associated with the correct contexts.

Add the -Context flag with the namespace and context name to the add-migration

command:

add-migration CreatedStatesTable -Context Activity1402_

MultipleDatabaseContexts.Data.ApplicationDbContext

When the command add-migration <name> -Context <NameSpace>.<ClassName>

is used, the migration generates as expected.

Chapter 14 asynChronous Data operations anD Multiple Database Contexts

622

Now we just need to run update-database, right? You probably guessed by now that

just running update-database will have the same problem as add- migration. Instead, run

the command update-database -Context Activity1402_MultipleDatabaseContexts.

Data.ApplicationDbContext.

If we wanted, we could generate the controller and views for the State model to

see that it works as expected in the database. Additionally, we could go on to add

more entities to the InventoryManager system. In that case, the database for the

InventoryManager would reflect the migrations.

When running the update-database command, it is not as important to fully qualify
with the namespace, because the program is not generating anything but is
executing. in the preceding command, we could have simply run the command
update-database -context ApplicationDbContext.

In the rare instance that you are using multiple contexts against the same database,

just remember that you can’t have conflicts in naming between the two contexts. Once

one of them has a model that is leveraged, named States, for example, the other one

would not be able to add it since they both exist in the same database. However, when

multiple databases are used in conjunction with contexts, then the model names do not

need to be unique and can be reused, such as Item was reused in both of our contexts for

this activity.

 Final thoughts on activity 1402

In this second activity for our chapter, we were able to see what it would take to leverage

multiple database contexts in the same solution.

The main takeaway is that it is possible, and this opens the door for sharing data

across solutions, such as sharing the user identity management portion of a suite of

solutions within one database context that can be shared.

Additionally, using multiple contexts opens the door to both sharing the same

database and having separate implementations, perhaps even across vendors. There is

nothing stopping us from having one context connecting to SQL Server and another to

Oracle.

Chapter 14 asynChronous Data operations anD Multiple Database Contexts

623

The real difference in the way we have to work when using multiple contexts is that

we have to remember to explicitly name the context in the PMC as we run commands.

The command in .Net Core is simple: -Context. The command in EF6 was a bit less

intuitive and was named -ConfigurationTypeName.

In general, working with multiple contexts should be discouraged, but it is not

impossible. There is added complexity that comes into play with multiple contexts.

However, there are definite benefits in clear boundaries between things like users and

application data, as well as potential segregation of business units.

Final thoughts for this chapter
In this chapter, we’ve covered a couple of very critical aspects of working with Entity

Framework in our applications.

Perhaps we should have talked about asynchronous operations earlier in the book,

perhaps not. Even so, using asynchronous operations will likely be the normal solution

that you encounter in your day-to-day work. The benefits of leveraging multithreading

without having to wire up and manage the underlying code are extremely useful.

Having our database operations working in an async/await pattern allows us to write

our solutions in a more responsive manner. By using async and await, we can still write

our code in a synchronous manner and not have to worry about concurrency or race

conditions.

We also talked about another common issue when we discussed using multiple

contexts. In most cases, as mentioned previously, I would recommend staying away from

multiple contexts. That being said, it is still entirely possible for us to use this approach

and beneficial in certain situations.

In our second activity for the chapter, we were able to leverage multiple contexts to

prove that an application can use both an identity context that is shared among solutions

and other database contexts as well. By having all of this in place, we can make a suite

of applications that can easily share data. We can also segregate certain parts of our

exposed surface so that users only get the access they need to specific pieces of data.

In the next and final chapter of our book, we’ll discuss the changes that are coming

with .Net 5 and likely are in place by the time you are reading this book. As EF has

continued to evolve, our lives have gotten substantially better. The latest version of the

.Net Framework/.Net Core architecture is a recombination of each platform into one

platform to rule them all - .Net 5.

Chapter 14 asynChronous Data operations anD Multiple Database Contexts

625
© Brian L. Gorman 2020
B. L. Gorman, Practical Entity Framework, https://doi.org/10.1007/978-1-4842-6044-9_15

CHAPTER 15

.Net 5 and Entity
Framework
In this chapter, we’re going to have a brief discussion about the latest version of the .Net

ecosystem: .Net 5. This new (at the time of this book writing and publication) version is

slated for release in the last quarter of 2020. As such, we need to be ready to adapt to any

changes that this framework will bring us.

 One framework to rule them all
One thing of note is that with the .Net 5 release, there will be no more .Net Framework,

and there will be no more .Net Core. Everything will be housed in the same place, and

all of the moving pieces should work together from this point on. As a .Net developer, we

should be able to have a similar development experience to what we are used to, even

after .Net 5 is released.

 A combination of the best parts of everything
According to the official blog posts and statements about .Net 5 from Microsoft’s Richard

Lander, the goals of .Net 5 will be to “improve .Net in a few key ways” (such as):

• Produce a single .NET runtime and framework that can be used

everywhere and that has uniform behaviors and developer experiences

• Expand the capabilities of .NET by taking the best of .NET Core, .Net

Framework, Xamarin and Mono.

https://doi.org/10.1007/978-1-4842-6044-9_15#DOI

626

• Build that product out of a single code-base that developers (Microsoft

and the community) can work on and expand together and that

improves all scenarios.

—Lander, 2019

As you can imagine, this is a great thing for all of us. As Microsoft continues to

expand into the future, we will be able to run our projects on any machine architecture or

in containers, and we will be able to also develop from any machine. Additionally, it won’t

matter what we are building; our development experience will be the same. In the blog

post, Richard goes on to mention

This new project and direction are a game-changer for .NET. With .NET 5,
your code and project files will look and feel the same, no matter which type
of app you’re building. You’ll have access to the same runtime, API and
language capabilities with each app. This includes new performance
improvements

—Lander, 2019
(references from https://devblogs.microsoft.com/dotnet/introducing-net-5/)

 EF6, EFCore, and .NET 5
With the direction of .NET 5 being the wave of the future, we need to know what that will

do to our current EF6 and EFCore applications. The really good news for us is that we

should be able to keep working with our solutions.

.Net Core 3.0+ gave us the ability to use an EF6 implementation. The .Net Framework

also runs EF6. .NET 5 is bringing all of this together, so both EFCore and EF6 should work

as expected in .NET 5.

 EFCore5
As .NET 5 is coming out, the next version of Entity framework is also being released. The

next version of EF is currently referred to as EFCore5. This is going to confuse a lot of

people, since it would seem that EF5 has already been released prior to EF6.

Chapter 15 .Net 5 aNd eNtity Framework

https://devblogs.microsoft.com/dotnet/introducing-net-5/

627

 Core is going away, right?
Even more confusion with this vNext name for EF might be caused since the Core

moniker is slated to go away with the .NET 5 release in November.

All of this to really just say that we might see a name change of this product, or we

might not. Either way, what we can rely on is that the vNext EF – EFCore5 - is out and ready

to be used and will work in the .NET 5 release that happens at the end of 2020. The good

news is that it also works on the latest release of EFCore. That means that even if you don’t

upgrade your current production apps out of the .Net Core 3.1 release, you will likely still

be able to use EFCore5.

 Changes with EFCore5
I really want to talk about some of the new and useful things we can do with the vNext

release – EFCore5. Likely, the things I’m talking about here won’t be the only things that

you’ll get with the new version, but this is what I know about as of the time of this book

being published. Additional information can be found here: https://docs.microsoft.

com/en-us/ef/core/what-is-new/ef-core-5.0/plan. What follows is a summary of a

few of the new features I think you’ll be glad to be aware of.

 Many-to-many navigation properties
https://github.com/dotnet/efcore/issues/19003

To be honest, I can see why this was so heavily requested to be added to the new version.

In a nutshell, when working with many-to-many relationships in the past, we would create

the navigation properties, and then to load the data we need to use along with appropriate

includes to bring the data into our query results.

Consider our relationship between Items and Genres, which takes place through the

ItemGenre table. If we are writing a query to get our Genre info included when we are

getting Items, we have to do something like this:

var items = _context.Items

 .Include(x => x.ItemGenres)

 .ThenInclude(y => y.Genre)

 .ToList();

Chapter 15 .Net 5 aNd eNtity Framework

https://docs.microsoft.com/en-us/ef/core/what-is-new/ef-core-5.0/plan
https://docs.microsoft.com/en-us/ef/core/what-is-new/ef-core-5.0/plan
https://github.com/dotnet/efcore/issues/19003

628

With the new EFCore5 MTM navigation properties, the query will be reduced to the

following:

_context.Items.Where(i => i.ItemGenres

 .Select(g => g.Name)).ToList();

Not having to directly include the join in the query will make it quite a bit more

concise and will seem more readable.

 Table-per-type (TPT) inheritance mapping
Table per type is a pattern that, when implemented, works exactly how it sounds. With

TPT, as you build out an object hierarchy with inheritance, each new type gets its own

table. Contrast this with TPH – table per hierarchy – where the entire set of objects are

stored in one table.

So here is the interesting thing. TPT is already able to be implemented in EFCore 3.1.

However, there are a few hoops to jump through and you end up with one table (much

like TPH) that has all types in it with a simple differentiator field. As you might imagine,

this can quickly become non-performant in a high-volume database. First you have to

select by differentiator, and then filter the results further to get the subset of the specific

type that you need for your operation. Sure, you can put indexes on things, but it still

means your table grows exponentially as more types are added.

With EFCore5, we’ll get true TPT capabilities. Unfortunately, as per the documentation

on the plan, this may come with some breaking changes that would require rework from

an existing solution moving into EFCore5.

 Filtered include
Another feature that will surely help our day-to-day operations is the ability to filter an

include statement. As of now, if you try to add a filter on an include, you get an exception

and the query won’t execute.

The filtered include will provide the ability to select only the subset of joined table

rows that match based on the filter.

Chapter 15 .Net 5 aNd eNtity Framework

629

 Rationalize ToTable, ToQuery, ToView, FromSql
In the operation of EF, there are different things that can happen, whether a query

is executed, a migration generates a table definition change, and views exist with or

without keys. All of this working together has led to a place where you really need to

know the specific way it works for each operation.

It seems that the EFCore5 release will be working to try to make these operations

standard for each To or From call so that the developer won’t have to know some of the

internal nuances of the build or update pipeline to get the results they need.

For example, a situation might exist where specific operations like Create, Update,

and Read need to happen against a physical table, but perhaps the Read comes from

a procedure result or a view. In those cases, the goal would be to correctly get objects

created in the migration so that the system will work as planned.

Another goal of this work is to get the mappings to other objects working in a new

way that should be easier for developers, for example, trying to get the mapping to stored

procedures for your Create, Update, and Delete operations, or allowing the ability to

execute raw SQL for defining objects from a query.

 Migrations and deployment experience
For code-first developers, this area has consistently been one where the experience is

not always ideal. If you’ve worked in EF6, you know that even the date of the migration is

important. Each migration needs to run in order according to the date on the migration.

This leads to a lot of migration conflicts where one developer beats another developer to

production, and the second developer must set their database correctly by rolling back

their migration, delete their migration, get the new code, update the database, and then

finish by re-creating their original migration with the new timestamp and model snapshot.

This problem is especially painful when a migration conflict happens on the

production database. As such, both development and deployment have been troubled

by migration conflicts. This experience is vastly improved in EFCore and will continue to

be improved in EFCore5.

With EFCore5, one goal will be to create a better team experience, presumably

by mitigating even more of these migration conflicts and even being smart enough to

handle situations that would cause a conflict.

Chapter 15 .Net 5 aNd eNtity Framework

630

Another major change will be that the ability to run migrations across all platforms

should exist. As a result of being able to run migrations on any platform in EFCore5, the

overall experience should be especially improved for Linux and Mac users.

 EFCore platforms experience
As mentioned at the start of the chapter, an overarching goal of .NET 5 will be the ability

to have a similar experience on all types of projects, from Xamarin to Blazor to ASP.Net

web applications.

As such, another goal of the EFCore5 release will be an improved experience working

with EF for all of the major platforms, not just ASP.Net.

 Performance
As EF has iterated through the years, each version has added performance

improvements. EFCore definitely has improved performance over EF6 on just about

every metric.

I would expect that EFCore5 will continue to improve on the performance of all

operations. Additionally, the documentation points out that there is a plan for a new

batching API to allow multiple statements to be batched for increased performance.

Final thoughts for this chapter
In this chapter, we talked about the future of .Net with the upcoming release of .NET 5.

We also discussed the fact that EFCore5 is already available and can be used within

EFCore 3.1.

Likely, by the time you are reading this book, .NET 5 will be out of preview and

EFCore5 will be fully implemented.

Even in the new version, things we’ve covered in this book will remain incredibly

relevant. While there may be improvements to things like View creation and interaction

or mapped stored procedures for CRUD operations, the same concepts around

migrations, models, and general development of code-first databases will remain.

We concluded this chapter, and ultimately this book, with a look at the new features

that will be available in EFCore5. A couple of the key features are

Chapter 15 .Net 5 aNd eNtity Framework

631

• Table-per-type (TPT) implementation

• Many-to-many navigation properties

• Filtered include statements

• An improved migration and deployment experience

• An overall uniform and improved experience for all development

efforts regardless of platform

There will definitely be more features than we’ve talked about here implemented in

EFCore5, so make sure to review the documentation to know exactly what is available to

utilize in your solutions.

 Conclusion
I hope you have enjoyed reading and working through this book as much as I’ve enjoyed

creating it for you. Alas, the end is nigh.

Our time together doesn’t have to be over, however. Please don’t hesitate to connect

with me on LinkedIn or Twitter. I would love to hear your story and get your thoughts on

how this book has helped you in your day-to-day work.

I wish you all the best in your development endeavors. May you have peace, joy, and

abundance in your life.

Chapter 15 .Net 5 aNd eNtity Framework

633
© Brian L. Gorman 2020
B. L. Gorman, Practical Entity Framework, https://doi.org/10.1007/978-1-4842-6044-9

 APPENDIX A

Troubleshooting
There are a number of activities in this book, and, while I’ve tried to keep them

consistent, I am certain there may be times where things are a bit difficult. Therefore, I

wanted to put together a quick reference to help in case something goes wrong during

your application of the activities from the book.

 Migrations
As you are likely aware, troubleshooting migrations can be very painful if things don’t

work as expected. From cryptic error messages to things that really should work not

working, a lot of hair can get pulled out.

If you start working with your own solution, but then switch to one of the starter

packs, you could run into some issues with conflicts, simply because my dates are clearly

going to be different than yours. Keep this in mind as you build out your activities and

solutions.

The overall goal would be that you would work on your own files the entire way

through the book and only reference mine as a reference. However, you may wish to skip

around or just have a fresh start at some point, so it is more than likely you will need or

want to leverage one of the prefabricated project files.

 Objects exist/objects don’t exist
One of the major issues you may run into is that the initial migrations are not

idempotent. Therefore, if your database already has an Items table, and you pick up

my starter pack and point at your database, you’ll likely get an error that the “update-

database” command cannot be applied because the Items table already exists.

https://doi.org/10.1007/978-1-4842-6044-9#DOI

634

In this case, you could easily do one of the recommended actions, such as comment

out the code in my migration, manually insert a record into the EFMigrations table to

attempt to make EF think the migration has already executed and been applied, or, in a

worst-case scenario, you could just point to a new database that is clean to avoid these

conflicts. Our data solutions are minimal and there are tools to quickly get you reset if

you start with a fresh database.

If you try to run a migration and an object is missing, you might be able to simply

add the object and try again. Another thought here could be to find the activity where the

object was created and use that to build out the object and then come back to where you

were in your current project.

 Comment out code
One solution that we use in this text is to create a migration and then just comment out

the code. This is not a recommended solution, but it works in a jam. For example, if you

already created the Items table, then I have a migration that also wants to do the same

thing; just comment mine out and let it execute with no effect on the schema or data in

your database. Use this sparingly, but know that it can be done.

 Manual insert to the database
If an object is missing, you could insert it manually with a script. This might be handy

for a missing function or view or procedure.Another thing to note here is that you

can attempt to make EF think that a migration has executed by simply performing an

insert into the __EFMigrationsHistory table. Simply insert the migration id and product

version, and the next time you run update-database, EF should skip your conflicting

migration.

Additionally, if something goes horribly wrong and a migration is idempotent, you

could potentially force a reset by deleting a MigrationId from the table to make EF think

it still needs to run that migration.

 Change DB connection
Probably one of the easiest things you could do if things are off kilter is just to change the

name of the database in the connection string or point to a different server where the

database doesn’t exist. In this way, no conflicts could possibly exist. Also, no data exists.

Appendix A TroubleshooTing

635

After about Chapter 7 or 8, there are seed methods and a migration project. In the event

you are in the latter part of the book and you need to just point to a new database, set the

db connection to the new database and then run the migrator project by right-clicking

and selecting Debug ➤ Start New Instance. This will ensure the database and then apply

the migrations, as well as run a quick seed as seen in the text.

Feel free to use multiple databases, as well as multiple db servers. Just remember

that your connection string holds all the power here. For example, the first time I went

through this material, all my database work was on SQLExpress. The second time I used

SQLDeveloper (localhost). There is nothing preventing you from switching servers.

 Starter packs
Every activity except the first has an accompanying starter pack. If something isn’t

working or you just want to jump around, leverage the starter packs.

 General starter pack creation
Rather than keep working with the same files, I chose to do a unique project for each

activity. As you might imagine, this added a bit of work. In general, if you want to roll

your own starter packs, you could follow a similar process. Here are the steps I took on

generally every new project:

 1. Create a new .Net Core Console application.

 2. Copy and paste the existing project folders for all of the class

libraries that are needed for the activity.

 3. Add each class library to the solution, and build the project to

restore NuGet packages.

 4. Get the list of NuGet packages from the previous solution (the last

completed activity) from the project file, and copy/paste that into

the new activity .csproj file. This is much faster than doing them

one by one in NuGet Package Manager.

 5. Copy/paste the appsettings.json file from dbcore into the new

activity project, add it as content, or copy if newer.

Appendix A TroubleshooTingTroubleshooTing

636

 6. Set project references on the new activity to appropriate class

libraries.

 7. Build and run.

 8. Copy/paste the code from the program file of the previous activity

into the program file of the new activity (be careful – just get

the methods, not the class or the namespace). Then add all the

missing using statements, and run the project.

 9. In some instances, I may do an update-database earlier, but I

generally do it here to make sure there are no pending migrations.

 10. Finally, if in doubt, add a new migration called test to ensure that

there are no pending changes. This is only important if the activity

is going to be adding new migrations.

 What you should do every time
When you get a starter pack, make sure that you do the same thing at the start, every

time.

First, build the project. Once it builds, set the connection string to point to the

correct database. Then run an update-database to make sure there are no pending

migrations. If the activity has migrations in it, then run an add-migration command

to make sure that you don’t have any untracked pending changes that could get in the

way. If you do, consider just updating the database if the changes are not going to hurt

anything. If no pending operations exist and you get a blank migration, just run the

remove-migration command.

Finally, after all of that, make sure that the main activity project is set as the startup

project and then run the project to see that it is working as expected.

 Final packs
Final packs are exactly what they sound like. This is the finished version of the code as it

was on my machine after the activity was completed.

Appendix A TroubleshooTing

637

 Review your solution
In general, the final pack should be used as a “check your answer” solution only. If

something is unclear from the text, the final pack will likely have the answer. Things like

“where does this code go?” or “how did he do that?” or “I’m completely lost” can often

be quickly resolved just by comparing what you have to what is in the final pack.

 Use a diff tool like GitHub, VSCode, or WinMerge
A neat trick you can do (as long as your files are named the same as mine) is that you

could just use a tool to do a diff on files. For example, I’ll often use the built-in capability

to compare files in VSCode. In rare instances when things are really off track, I might

check in my code and push to GitHub, then create a branch and drop the final pack code

in, and push to GitHub and create a pull request. This gives me a great tool to easily see

the differences in files. Finally, other tools like WinMerge or Perforce or even GitKraken

might be enough to help you see the differences in your code from the final pack.

Appendix A TroubleshooTing

639
© Brian L. Gorman 2020
B. L. Gorman, Practical Entity Framework, https://doi.org/10.1007/978-1-4842-6044-9

Index

A
add-migration command, 159, 164
add-migration UpdateProc_

GetItemsForListing_
ExplicitColumnNames, 292

ADO.Net, 4, 5
AdventureWorks

downloading latest version, 27, 28
Entity Framework, 27
restoring (see Restore database)

AlwaysEncrypted
client-side decryption, 404
functionality, 404
InventoryManager database solution

(see InventoryManager database
solution)

key-management strategy, 404
SQL Server 2016, 404
SSMS, 404
TDE, 404

.AsNoTracking() statement, 349
Async/await pattern

build errors, 582
BusinessLayer, 592
create and update methods, 607
DeleteItem method, 589
Delete Multiple Items

method, 610
foreach method, 590

GetItemsForListingLinq
method, 584, 585

IInventoryDatabaseRepo
interface, 581, 582

integration tests, 592–594
InventoryManager database

set up, 581
Main method, 604, 605, 607
method signatures, 582
Program in action, 611
reworked method, 585
Task.Run syntax, 604
ToListAsync() operation, 584, 586
unit tests updation, 601, 602
update business layer, 595–600
UpdateItem method, 588
valid execution, 583

Asynchronous operations
async and await (see Async/await

pattern)
concurrency/race conditions, 623
database operations, 577
leveraging the power, 575
lower-level database, 611
multithreading

programming, 575, 623
responsive solutions, 576, 577
single-threaded approach, 576
syntax, 577
TPL, 576

https://doi.org/10.1007/978-1-4842-6044-9#DOI

640

Auto-generated methods, 464
AutoMapper

Category and ColorValue, 394
configurations, 398
CreatedDate field, 391
custom inventory project (see Custom

inventory project)
GetItemsForListingLinq

method, 389, 390
initial learning curve, 398
initial price point, 358
InventoryModels project, 392
leveraging, 398
LINQ queries, 357
ListCategoriesAndColors

method, 396
ListInventory method, 393
nested mapping, 397
pared-down version, 393
projected query, 393
projections mapping, 396
ReverseMap call, 395
stored procedure/LINQ, 390
translates objects, 357
update-database

command, 389
Automated auditing

active flag and description
field, 186–188

cleanup data, 176–178
CreatedTime column data, 175
EF, 174
entity state, 180–183
objects, 173
SaveChanges method,

intercept, 178–180
setting up context, 173
UpdateItems, 184, 185

B
BuildDefaults method, 533
BuildItems.cs method, 315
BuildMapper method, 385

C
CategoryColorDto.cs class, 394
CategoryColor entity, 226
C# Console application

ADO.Net entity data model, 63, 65
choosing data source, 66
connect/display data, 73–75
creation, 57
EDMX file, 71
EF6, existing database, 75
naming models, 70
naming selecting location, 58
setting connection properties, 67
setting connection string, 69
t4 templates, 73
testing, 68
update model, 72

Client-side encryption, 404
Cloud service provider (CSP), 399
Code-first approach

auto-generated models, 79
database changes, 80, 81
declarative to imperative database

programming, 82, 83
development process, 77
EFCore (see EFCore, code-first project)
EF migrations, 81, 82
greenfield project, 77
legacy system, 77
line-of-business applications, 79
losing data, mature database, 78
migration, 78

Index

641

model-based approach, 78
new database, 80
organizational restrictions, 78
personal preference, 78
reverse-engineered database, 78
running, simple command, 80

Complex data
class explosion, 355
code-first approach, 354
DBContext, 354

Complex queries, LINQ
activity files, 359
anonymous types, 358
critical relationships, database

diagram, 371
database diagram, SalesPerson, 365
DTO, 378–381
filter amount, 376
GenerateSalesReport, 371, 372
getting sales report data, 377
IEnumerable or IQueryable

result sets, 358
navigation properties, 364
.Net Core Console application, 360
NuGet Package Manager, 360
null reference exception, 366
OrderCount, 374
Program.cs file, 360, 361
projections, 367–369
real-world-like business

problem, 370
result, 374
salesperson details and their

territories, 373
sales person’s name, 363
ShowAllSalesPeople method, 362
SQL profiler, 364, 366
stored procedures, 370

Composite key, 194
Constraining the data

data annotations, 193
default value, 192
size limitations, 190, 191
value constraints, 192

CreateItem method, 57CreateMaps
method, 383, 483

CreateMultipleItems method, 602, 603,
607, 608

Create, Read, Update, and Delete (CRUD)
(see Data access)

Custom inventory project
console application, 382
creating Inventory Mapper

profile, 383, 384
DTO objects, 384, 385
installing, AutoMapper

package, 382
ItemDto class, 384
leverage AutoMapper, 387, 388
modify main program to set up

AutoMapper, 385, 386
Package Manager Console, 382

D
Dapper, 538

cached queries, 570
definition, 540
drawbacks, 541
hybrid solution, read only data

(see Read-only data layer)
interface segregation/inversion

control, 571
multiple joins/falt/relational

data, 570
Slapper.Automapper library, 570

Index

642

Data access
common commands, 246, 247
DbSet<T> objects, 246
LINQ, 245
scaffaloded contollers, 247

Data annotation, 192
Database-first approach

C# Console application (see C#
Console application)

EF6/.Net Framework space, 56
DBContext, 145

auditing (see Automated auditing)
constructors, 151, 152
EF, 149
extensions, 157
item modification

adding fields, 162, 163
add migration, 163–165
auditing fields, create, 166–168
building out solution, 160
EF6 code-first approach, 172
FullAuditModel class, 169, 171
review database, 165, 166

methods, 156, 157
DBContextOptionsBuilder, methods/

extensions, 157, 158
models, 158, 159
vs. ObjectContext, 150
properties

DBContextOptions, 154, 155
DbContextOptionsBuilder, 153

repository pattern, 151
UOW pattern, 150

DBContext object, 16
DbSet<T>, 145
DeleteItems method, 499
Domain models, 355
Down method, 283, 306

DTOs
business/view logic, 355
map fields, 355
pre-defined object, 356, 357

E
EF6 code-first approach, 172
EF6 code-first implementation

classic ADO.Net, 123
connection string, 130
data access layer library, 125, 127
database option, 129
DBContext, 132
delete, previous migrations

table, 126
EFCore activities, 124
Entity Framework, 125
final ouput, 144
migration (see Initial migration, EF6)
new data model, creation, 128
pre-activity setup, 124
pseudo-legacy application, 124
selecting database objects, 131
startup project, 142
using statement, 143

EFCore5
Create, Update, and Read, 629
include statement, filter, 628
key features, 630
many-to-many navigation

properties, 627
migration/deployment

experience, 629, 630
performance improvements, 630
platform experience, 630
TPT, 628
vNext release, 627

Index

643

EFCore, code-first approach
Activity0302_EFCoreNewDb_Starter, 97
adding initial migration, 115
adding new project, 101
adding reference, 103, 104
appsettings.json file, 109
class library, 113
configuration, 100
ConfigurationBuilder

Singleton.cs, 109–111
connection string, 111
class library, 113
.csproj file, 106
DB Project name and folder location, 103
DbSet<Item>, 115
default constructor, 116
InventoryDatabaseCore library, 114
InventoryDbContext, 107
inventory items, 98
library template, 102
model classes, 123
.Net Core Console project, 99
new project creation, 98
NuGet Packages, 105
OnConfiguring method, 117
OnConfiguring override method, 118
output, 122
package references, 107
update-database command, 119, 120

Encryption
AlwaysEncrypted, 403
ASP.Net built-in authentication, 400
deterministic type, 403
hashing and salting pattern, 401, 402
password mismanagement, 400
randomized type, 403
real-world solutions, 448
risk management strategy, 405

SSO, 400
TDE, 403

EnsureAndRunMigrations, 310
Entity Framework (EF)

ADO.Net, 4
C#.Net Core Class Library selection, 10
core, 7
DBContext object, implementation,

16–19
latest version, 12, 13
LINQ, 5
.NET Core project creation, 9
.Net Framework, 7
PMC, 14, 15
storage location selection, 10–12

Entity Framework Profiler, 328

F
FilteredPeople method, 343
Final pack

check final answer, 637
VSCode, 637
WinMerge/Perfornce, 637

First-normal form (1NF), 195, 196
Fluent API, 277, 278
FullAuditModel.cs, 168
Functions

AllActiveItemsPipeDelimitedString, 303
custom migration, 308–311, 313, 314
Fluent API, seeding data, 307, 308
items builder, create, 315, 317–320
mapped entity, result set, 303
migration/update database, 302
scalar-valued, 300, 302
set up, 300
table-valued, 304, 306, 307
types, 272

Index

644

G
GenerateSalesReport method, 376
GenerateSalesReportToDTO method, 378
GetCategoryId method, 486
GetItemsForListing method, 291, 296
GetItemsForListingDto class, 391
GetItemsForListingLinq method, 389, 419
GetItemsPipeDelimitedString method, 470
GetItemsTotalValue, 304

H
Hard-delete approach, 230

I, J, K
Identity context

adding controller, 617
add-migration command, 621
ApplicationDBContext, 620
appsettings.json file, 612, 615
-Context flag, 621
importing existing projects, 614
injection, web solution, 616, 617
InventoryBusinessLayer project, 615
inventory Items context, 619
inventory libraries, 613
InventoryManager system, 622
scaffolding operation, 618
views/Entity Framework, 618

Initial migration, EF6
application config file, 134
AWEFDataAccessLayer project, 136
configuration file, 136
copying connection string, 135
EF data access layer library, 133
Entity Framework entries, 135
Microsoft SqlServer Types library, 138

remove, down method, 140
setting provider, 139
spatial types geography error, 137
Up() method, 139
updating database, 141

InsertOrUpdateItems method, 497
Integration testing (see .Net iIn- memory

database)
InventoryManager database solution

Always Encrypted wizard, 409
appsettings.json file, 416
Azure Key Vault, 410
columns selection, 410
configuring SSMS, 414, 416
database columns, 421
Encrypt Columns option, 408
encrypted data, 413
finish button, 412
GetItemsForListingLinq

method, 419, 420
initial results yield items, 407
Item table, 407
key generation/encryption, 411
ListInventory methods, 421
ListInventoryWithProjection

methods, 421
master key settings, 410
process completed, 413
projections, 417–419
starter files, 405
update-database command, 405

InventoryMapper.cs. class, 383
Item model

add length constraints, 204–207
add migration, 210–213
create migration, 207, 208
create the migration, 217
database updation, 209

Index

645

default value, 215, 216
fields required, 215
Id field, 214, 215
quantity/price fields, 210
range limitations, 213, 214
update-database, 217, 218

ItemObjects, 194
ItemsWithGenresDto.cs, 322

L
Language Integrated Query (LINQ), 245

complex queries (see Complex
queries, LINQ)

issues/solutions
data disconnecting, 329
IEnumerable vs. IQueryable, 331
pre-fetching results, 329

problem, 327
profiler/tool, 328
vs. stored procedures, 353, 354

ListCategoriesAndColors method, 396
ListInventory method, 387, 393, 464
ListPeopleThenOrderAndTake method, 334

M
Many-to-many relationships, 202, 203
Microsoft Azure or Amazon AWS, 399
Migration strategy, TDE

backing up, database, 425
constraints and indexes, 435, 437
default file location, 426
encrypted data, 424
HumanResources.Employee

table, 427, 428
Up command, 430
update-database command, 429
verifying data, 431

Mocking, 503
MSTest/XUnit Tests, 538
Multiple database contexts

business units, 579
-ConfigurationTypeName, 623
identity (see Identity context)
injection/creation, 579
package manager console, 579
SSO, 578
unit testing and interface

segregation, 580
user identity management, 622

N
.Net 5

development experience, 625
EF6, 626
EFCore5, 626, 627
official blog posts and statements, 625

.Net Core Entity Framework (EFCore), 25

.Net in-memory database
default data, 532–534
get set up, 526
TestListInventory test, 534, 535
theory, parameters, 535, 536
XUnit testing project, 526–530, 532

.Net Web application template, 269
Non-clustered index, 194
Non-clustered index

code-first approach, 230
create the migration, 235, 236
FluentAPI, 239, 240

add the migration, 241
declarations, 241
update-database, 242

Genre entity, 230, 231, 234
hard-delete approach, 230

Index

646

ItemGenre table, 237, 238
update-database, 231–233

Non-unicode characters, 191
NuGet packages, 507

O
Object Linking and Embedding Database

Object (OLEDb), 3
Object-relational mapper (ORM), 500
OnConfiguring method, 179
One-to-many relationship, 201, 202

create the migration, 222, 223
creation, 219–221
set up, 219
table entity, 220
update-database, 223, 224

One-to-one relationship
color entity, 225
create the migration, 227, 228
creation, 225, 227
update-database, 228, 229

One-to-one relationships, 200, 201
OnModelCreating method, 241, 308

P
Package Manager

Console (PMC), 14, 50, 164
pipe-delimited string method, 469
Preexisting database

AdventureWorks (see AdventureWorks)
SSMS, 27

Q
QueryPeopleOrderedToListAndTake

method, 334, 335

R
Read-only data layer

Dapper repo, 556–558, 560–564
get SQLite, 551–553, 555, 556
IItemsServiceReadOnly

interface, 564–567
implementation, 567–569
InventoryBusinessLayer

project, 547, 550, 551
set up, 543
SlapperAutomapper libraries, 544–546

Real-time dashboards, 576
Relational data

many-to-many relationships, 202, 203
normalization, 203
1NF, 195, 196
one-to-many relationships, 201, 202
one-to-one relationships, 200, 201
2NF, 196–198
3NF, 198–200

Repository pattern
database plumbing code, 452
definition, 451
drawbacks, 454, 455
enterprise application

architecture, 451
entity framework, 452
layering/solutions, uncoupling, 457

AutoMapper packages, 462
console program, 470–472
database layer work, 458–467
getting set up, 457, 458
InventoryBusinessLayer, 462
service layer methods, 467–470

UoW, 453, 454
Restore database

backup location, 31
changing name, 33

Non-clustered index (cont.)

Index

647

default backup folder, 32
dialog box, 30
operation completed, 34
potential restore operation, 33
reviewing AdventureWorks, SSMS, 35
SSMS, 28, 29

Reverse-engineered database
ActivityXXXX-Name_Starter or

ActivityXXXX-Name_Final, 36
adding existing project, 38
application, 27
appsettings.json file, 49
BuildConfiguration, 51, 53
BuildOptions method, 54
console app, creation, 36
data annotations, 48
EDMX file, 26
EF6, 25
EFcore, 55
EFCore/EFvNext, 25
folder structure, 37
installing Entity Framework

tools, 40, 41
NuGet packages, 50
output, 55
Package Manager Console, 41
Person DbSet, 54
program class, 52
project structure, 40
reference, EFCore packages, 41, 42
regenerating code, 26
repository, 26
scaffold operation

context, 43
database generation, 44
deleting files, 45, 46
EntityFrameworkCore.Design

package, 43

generated model class, 47
PMC, 43, 44

selecting project to reference, 39
serverless approach, 25

S
SaveChanges method, 178
Scaffaloded contollers

activity, 269
adding controller, 260–262, 264
build application, update

database, 253, 254
couple categories, adding, 268
create model, migration, 257–260
delete action, 267
read, 264, 265
review database, 255–257
set up, 248–252
update, 266

Scalar and table-valued
functions, 272

Scalar-valued function, 300
Second-normal form (2NF), 196–198
seed method, 307
Separation of concerns (SoC), 455, 456
Server analysis

code, breakpoints, 339
eraser button, 338, 339
queries, 340, 341
SQLExpress database, 337
SQL Server Profiler, 336
SSMS query, 342
trace, 337, 338

SetupDbRepoMock method, 517, 522
SetupOptions method, 529
ShowAllSalesPeople method, 365
Single sign on (SSO), 400, 578

Index

648

Sorting, paging, and filtering
comparing queries, 334–336
disconnecting result sets, 349
results, filtering, 343, 344, 346
results, paging, 347, 349
server analysis, perform (see Server

analysis)
set up, 332–334

Spaghetti code approach, 4
SqlResource method, 283
SQL Server Management

Studio (SSMS), 27, 165
Stackify Prefix, 328
Starter packs

add-migration command, 636
creation, 635, 636

Stored procedure
activities, 279
advantages, 272
create migration, 280–283
database objects, 279
execution, 291–294
Fluent API, mapping, 294–297
MigrationBuilder extension, 283–290
script, 274–277
scripted database objects, 299
set up, 279
SQL Injection attack, 298

T
Table-per-type (TPT) inheritance

mapping, 628
TaskParallelLibrary (TPL), 576
Third-normal form (3NF), 198–200
Transparent data encryption (TDE)

AdventureWorks database, 423
back up, 432

certificate, 432
create path, 432
database keys, 432
delete backup columns, 447
DTO/ViewModel, 447
EF6 project, 422
encrypt backup data into new

columns, 445, 446
physical drive, 434, 435
projecting data, 422
stored procedures, 422
symmetric keys, 432
Up method, 433
update-database command, 433
varbinary(max) byte[], 438–444
vs. AlwaysEncrypted, 422

Transparent Data Encryption (TDE), 399
Troubleshooting migrations

comment out code, 634
cryptic error messages, 633
DB connection, change, 635
manual insert, 634
objects exist/objects don’t exist, 633

U
Unicode characters, 191
Unit of work (UoW) pattern

transaction life cycles
database interface, 475–479
delete logic, 493–496
insert logic, build, 484–488
service layer interface, 480–483
steps, 474
transactions scope, 497, 498
update logic, 489–493

transactions, 473
Unit testing, 502, 537

Index

649

Unit testing, mocking
Business Layer project, 508, 509
database layer, repo data, 523
get set up, 505
implementation, 525
Moq library, 509–513
service layer, 514–518, 520, 521
Shouldly test, 523, 524
solution, 506, 508

update-database command, 159
Update Multiple Items method, 609

V, W, X, Y, Z
Views

benefits, 273
DTO/InventoryDbContext, 322
Fluent API,

update, 322
method call, 324
migration, create, 323
script, add, 321
set up, 321

Index

	Table of Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Introduction
	Part I: Getting Started
	Chapter 1: Introduction to Entity Framework
	One, two, three versions? Oh my!
	When it all began
	OLEDb and Spaghetti Database access
	ADO.Net – A better tool for application database interaction

	A brief note about ADO.Net

	Entity Framework makes its debut
	Entity Framework and LINQ

	A new direction and a new visionary leader
	Microsoft goes all in for all developers
	A new vision requires a new path
	The state of the union

	The future
	Activity 0101: Getting started with Entity Framework
	Create a new project and add the EF packages
	Step 1: Create a new .Net Core project
	Step 2: Search and select Class Library (.Net Core)
	Step 3: Name your project and select the storage location
	Step 4: Determine the latest version of Entity Framework
	Step 5: Add the Entity Framework libraries to your project
	Step 6: Create a DBContext
	Step 7: Alter your context to implement DbContext correctly

	Activity summary
	Activity supplemental information

	Chapter summary
	Important takeaways
	Closing thoughts

	Chapter 2: Working with an Existing Database
	Reverse engineering or database first
	Why would we approach Entity Framework in this manner?
	Database-first or reverse-engineered solutions
	Keeping everything in sync
	Interacting with the existing database

	Working with a preexisting database activities
	Download the backup file for the latest version of AdventureWorks
	Step 1: Download the latest version of AdventureWorks DB
	Step 2: Restore the AdventureWorks database to your local SQL instance

	Activity 0201: Creating a reverse-engineered database in Entity Framework Core
	Step 1: Create the project and solution
	Step 2: Reference the code for the EFCore Library created in Chapter 1, Activity 0101
	Step 3: Install Entity Framework tools
	Step 4: Install Entity Framework for SQL Server
	Step 5: Reference all of the EF packages in the startup project
	Step 6: Scaffold a new context using the Scaffold-Context command
	Step 7: Repeat the scaffold operation but change parameters
	Step 8: Creating the final context and configuration files for connection
	Step 9: Connecting to the database and showing results
	Final thoughts

	Activity 0202: Creating a database-first project in Entity Framework 6
	Step 1: Create the project and solution
	Step 2: Reference the code for the .Net Framework with EF6 Library created in Chapter 1, Activity Supplemental Information
	Step 3: Use the ADO.Net Entity Data Model to create a DBContext
	Step 4: Connect and display data
	EF6 from an existing database: Final thoughts

	Final thoughts for this chapter
	Overall things we learned
	Moving forward

	Chapter 3: Entity Framework: Code First
	Code first doesn’t always mean code first
	When not to use the code-first approach
	When to use the code-first approach
	Code first in an existing project
	Code first in a new project against a mature database
	Code first in a new project with a new database

	The benefits of a well-executed code-first development effort
	Ability to get up and running quickly
	A complete record of database changes in source control
	Agility when needing to revert to a previous state
	Shifting from declarative to imperative database programming

	It’s time to see code-first database programming in action
	Activity 0301: Creating a new code-first implementation against an existing database project in EFCore
	Use the starter files, or your project from Chapter 2
	Step 1: Setup and getting started
	Step 2: Make sure EF is ready to scaffold migrations
	Step 3: Create the initial migration
	Step 4: Review the migration
	Step 5: Comment out the code in the “Up” method and delete Down method code
	Step 6: Examine the database
	Step 7: Add another migration to see what happens
	Step 8: Remove the blank migration
	Final thoughts

	Activity 0302: Creating a new code-first project in EFCore
	What are we building?
	Step 1: Set up and use a new project
	Step 2: Make sure your project is set up correctly
	Step 3: Add a reusable library for our database models – the “code” of code first
	Step 4: Reference the library in an entity DbSet
	Step 5: Add a new migration
	Step 6: Updating the database
	Step 7: Insert and retrieve a set of items
	Final thoughts

	Activity 0303: Creating a code-first project in EF6
	Why not a new project?
	Using an existing project to implement an EF6 code-first approach
	Pre-activity setup
	Step 1: Configure the connection if necessary and run the project
	Step 2: Create a new library and add the Entity Framework libraries
	Step 3: Delete the EFMigrations History table from the AdventureWorks database
	Step 4: Create the code-first implementation
	Step 5: Enable migrations
	Step 6: Create the initial migration
	Step 8: Comment all “Up” code, delete all “Down” code, update the database
	Step 9: Leverage the new context from the startup app
	Final thoughts

	Final thoughts for this chapter
	Final thoughts on section 1

	Part II: Building the Data Solution
	Chapter 4: Models and the Data Context
	What is the database context, and why do we need it?
	DBContext vs. ObjectContext
	What is the DBContext?
	Constructing a new DBContext

	Critical properties and methods available when working with the DBContext
	Important properties on the DbContextOptions Builder object
	Important properties on the DBContextOptions object
	Important properties on the DBContext object
	Methods available on the DBContext
	Methods and extensions on the DBSet<T> object
	Methods and extensions for the DBContextOptions Builder object

	Working with models
	Two immediate benefits of code-first models
	Building a database entity model
	A final thought about models

	Activity 0401: Modifying the Item
	Practical application for your daily routine
	Building out the solution
	Step 1: Getting started
	Step 2: Adding fields to the Item class
	Step 3: Add a new migration to get the fields into the database
	Step 4: Review the database directly
	Step 5: Add the auditing class for easily creating auditing fields
	Step 6: Extend the FullAuditModel base class on Item, add the migration, and update the database
	Final thoughts about modifying the models in our solution

	Activity 0402: Using the ChangeTracker to inject some automated auditing
	Setting up the context
	Common critical underlying objects
	The ChangeTracker is the lifeblood of our interaction with the Entity Framework
	Implementing automated auditing on our entities
	Step 1: Getting started
	Step 2: Check out the current situation
	Step 3: Clean up the data
	Step 4: Intercept save changes to see the change tracker in action
	Step 5: Respond to the entity state in the change tracker
	Step 6: Create an update method to prove out our auditing
	Step 7: Update the Insert to set all items as active, add Notes and Description
	Final thoughts about working with the DBContext

	Final thoughts for this chapter

	Chapter 5: Constraints, Keys, and Relationships
	Constraining our data to enhance our solutions
	Size limitations
	Value constraints
	Default values
	Other data annotations

	Using keys in database tables for unique and relational results
	Working with relational data
	First-, second-, and third-normal form
	First-normal form (1NF)
	Second-normal form (2NF)
	Third-normal form (3NF)
	Types of relationships
	One-to-one relationships
	One-to-many relationships
	Many-to-many relationships
	Some final thoughts about relationships and normalization

	Activities for this chapter
	Activity 0501: Add length, range, and other constraints to the Item model
	Step 1: Get started
	Affecting the length of columns
	Step 2: Add length constraints to the strings on the Item class
	Step 3: Create the migration
	Step 4: Update the database

	Creating a range on numeric fields
	Step 5: Add range values to the quantity and price fields
	Step 6: Add the migration
	Step 7: Run the migration to add the check constraints to match the range limitations in our data annotations

	Ensuring a field is a Key, making fields required, and setting default values on a column
	Step 8: Add the [Key] annotation to the Id field
	Step 9: Making some fields required
	Step 10: Adding a default value to a field
	Step 11: Create the migration
	Step 12: Update the database and review

	Key takeaways from activity 0501

	Activity 0502: Setting up relationships
	Creating a one-to-many relationship
	Step 1: Get set up
	Step 2: Create the Categories table entity
	Step 3: Create the one-to-many relationship
	Step 4: Create the migration
	Step 5: Update the database

	Creating a one-to-one relationship
	Step 6: Create the Color entity
	Step 7: Create the one-to-one relationship
	Step 8: Create the migration
	Step 9: Update the database

	Key takeaways from activity 0502

	Activity 0503: Using a non-clustered unique index
	Soft delete or hard delete, either way, just make sure it works
	Step 1: Set up and getting started
	Step 2: Add the Genre entity
	Step 3: Add the migration and update the database
	Step 4: Add the ItemGenre entity
	Step 5: Make sure to reference the join table in the Item and Genre entities
	Step 6: Create the migration

	Adding a unique, non-clustered index to the ItemGenre table to make sure that the joins are unique
	Using the Fluent API
	Step 7: Adding the unique index in the Fluent API
	Step 8: Add the migration
	Step 9: Update the database and review the table
	Final thoughts on activity 0503

	Final thoughts for this chapter

	Chapter 6: Data Access (Create, Read, Update, Delete)
	CRUD
	LINQ

	Basic Interactions
	Leverage the DbSet<T> objects
	Common commands

	Activity 0601: Quick CRUD with scaffolded controllers
	Step 1: Set up
	Step 2: Build the application, update the database, run the web application
	Step 3: Review the database
	Step 4: Create a model, then a migration
	Step 5: Scaffold the controller
	Step 6: Review the controller – Read
	Step 7: Review the controller – Create
	Step 8: Review the controller – Update
	Step 9: Review the Controller – Delete
	Step 10: Set a couple of categories, then run the application
	Key takeaways from activity 0602

	Chapter summary

	Chapter 7: Stored Procedures, Views, and Functions
	Understanding stored procedures, views, and functions
	Stored procedures
	Functions
	Views

	Setting up the database to run scripts efficiently
	The problem
	The solution

	Fluent API
	Working with the database objects
	Activities
	Activity 0701: Working with stored procedures
	Step 1: Set up
	Step 2: Create a new migration for a simple stored procedure
	Step 3: Create the MigrationBuilder extension
	Step 4: Execute and use the results from the stored procedure
	Step 5: Use the Fluent API to map out a result set entity for the stored procedure
	Step 6: Use parameters to avoid SQL Injection attacks
	Final thoughts

	Activity 0702: Working with functions and seed data
	Step 1: Set up
	Step 2: Script out a new scalar-valued function
	Step 3: Add a new migration and update the database
	Step 4: Get the result set from the function into a mapped entity with no defined key
	Step 5: Make the program changes to execute the function and get the results
	Step 7: Create a new table-valued function
	Step 8: Seeding data with the Fluent API
	Step 9: Rolling our own custom migrator
	Step 10: Create an Items builder
	Final thoughts

	Activity 0703: Working with views
	Step 1: Set up
	Step 2: Add the view as a script
	Step 3: Add the view DTO and set the view in the InventoryDbContext
	Step 4: Update the Fluent API for the view
	Step 5: Create the migration
	Step 6: Make the call and get the data from the new view
	Final thoughts

	Conclusion

	Chapter 8: Sorting, Filtering, and Paging
	It’s time to learn LINQ
	LINQ is not the problem
	Use a profiler or another tool

	Issues and solutions
	Issue #1: Pre-fetching results, then iterating to filter
	Issue #2: Not disconnecting your data
	Issue #3: IEnumerable vs. IQueryable

	Practical application
	Activity 0801: Sorting, paging, and filtering
	Step 1: Get the starter files for setup
	Step 2: Comparing two queries
	Step 3: Perform a server analysis on the code we just wrote
	Step 4: Filtering our results
	Step 5: Paging the filtered results
	Step 6: Disconnecting the result sets
	Final thoughts

	Final thoughts for this chapter

	Chapter 9: LINQ for Queries and Projections
	Data in the real world
	LINQ vs. stored procedures
	Complex data and the code-first approach

	DTOs, view models, or domain models
	Decoupling your business or view logic from the database
	Sometimes, a pre-defined object is overkill

	One tool to rule them all
	AutoMapper

	Chapter 9 Activities: Using LINQ, decoupled DTO classes, projections, anonymous types, and AutoMapper
	Activity 0901: Working with LINQ in complex queries
	Step 1: Get set up
	Step 2: Start getting more useful results, and find some limitations
	Step 3: Use navigation properties to get results
	Step 4: Use projections to get more efficient queries
	Step 5: Getting deep relational data with filters and sorting
	Step 6: Finish the query by projecting to a DTO instead of an anonymous class
	Final thoughts on activity 0901

	Activity 0902: Setting up AutoMapper
	Step 1: Getting started
	Step 2: Get the package
	Step 3: Create the Inventory Mapper Profile
	Step 4: Create the DTO objects
	Step 5: Modify the main program to set up AutoMapper and configure the mappings
	Step 6: Leverage AutoMapper
	Final thoughts on activity 0902

	Activity 0903: Working with AutoMapper in system
	Step 1: Get set up
	Step 2: Perform a more advanced query
	Step 3: Update the DTO so that it maps to the correct type
	Step 4: Using AutoMapper to project results to a type
	Step 5: Handling the times when the fields don’t line up exactly
	Final thoughts on activity 0903

	Final thoughts for this chapter

	Chapter 10: Encryption of Data
	Keeping your system’s data secure
	Data at rest
	Encryption in the past vs. encryption today
	Passwords
	SSO via social logins
	ASP.Net built-in authentication
	Salting and hashing

	Protecting sensitive user information
	Encryption basics
	Which type to use

	Chapter 10 Activities: Using Always Encrypted with EFCore and using TDE with EFCore
	Activity 1001: Using Always Encrypted in an EFCore solution
	Step 1: Get set up
	Step 2: Enable Always Encrypted
	Step 3: Review the data
	Step 4: Review the data in SSMS
	Step 5: Run the application
	Step 6: Fix the Method to Get the Items for Listing using LINQ
	Step 7: Turn on other method calls
	Final thoughts on activity 1001

	Activity 1002: Using transparent data encryption
	A quick review of TDE vs. AlwaysEncrypted
	How TDE can be a better choice for your solutions
	Step 1: Get set up
	Step 2: Discuss the TDE migration strategy, including backup
	Step 3: Begin the migration strategy
	Step 4: Run a script to back up the data for the target columns
	Step 5: Create a new script to generate the database keys
	Step 6: Drop the constraints and indexes on the target columns
	Step 7: Change the data type for target columns to varbinary(max) byte[]
	Step 8: Encrypt the backup data into the new columns
	Step 9: Delete the backup columns
	Final thoughts on activity 1002

	Final thoughts for this chapter

	Part III: Enhancing the Data Solution
	Chapter 11: Repository and Unit of Work Patterns
	The repository pattern
	The sources of information are plentiful
	The repository pattern abstracts the database plumbing code from the implementation
	Entity Framework’s built-in repository

	The unit of work pattern
	Using a unit of work

	Combining the repository and the unit of work
	The one-two punch

	A couple of drawbacks
	In general, rely on EF

	Separation of concerns
	Logical separation of concerns
	Final benefits of separating our concerns

	Chapter 11 Activities
	Activity 1101: Layering our solution
	Uncoupling this solution
	Step 1: Getting set up
	Step 2: Adding the database layer project
	Step 3: Add the business layer project
	Step 4: Add AutoMapper to the two-layer projects
	Step 5: Create database operations in the database layer
	Step 6: Implement the database operations
	Step 7: Create operations in the service layer
	Step 8: Implement the service layer operations
	Step 9: Rework the console program
	Final thoughts on activity 1101 – layering our solution

	Activity 1102: Rolling our own UoW
	Transactions are easy and effective
	Use the using statement for transaction life cycles
	Step 1: Steps
	Step 2: Modify the database interface and project
	Step 3: Modify the ItemsService interface and implementation in the InventoryBusinessLayer project
	Step 4: Build the insert logic
	Step 5: Build the update logic
	Step 6: Build the delete logic
	Step 7: Update the transaction scope
	Final thoughts on activity 1102

	Final thoughts for this chapter

	Chapter 12: Unit Testing, Integration Testing, and Mocking
	Testing your code is a must-have, not a nice-to-have
	The code needs to be changed
	The database is the lifeblood of the application
	Testing saves your sanity and protects the system

	Two different approaches leading to the ability to test changes
	Unit testing
	Libraries utilized
	Integration testing

	Chapter 12 Activities: Unit and Integration Testing
	Activity 1201: Unit testing with mocking
	Mocking for our tests
	Step 1: Get set up
	Step 2: Add the unit testing project to the solution
	Step 3: Write the first unit test
	Step 4: Add Moq to the test project
	Step 5: Mocking the injectable types, then testing the service layer
	Step 6: Setting up the database layer repo data
	Step 7: Make the test more robust using Shouldly
	Final thoughts on activity 1201 – unit testing with mocking

	Activity 1202: Integration testing with the .Net in-memory database
	Using an in-memory database solution
	Step 1: Get set up
	Step 2: Add a new XUnit test project
	Step 3: Setting the default data for our integration tests
	Step 4: Writing the integration test
	Step 5: Using a theory to create multiple runs of the same test with parameters
	Final thoughts on activity 1202

	Final thoughts for this chapter
	Unit tests
	Integration tests
	Shouldly and XUnit
	Dependencies and injection to decouple layers

	Chapter 13: Alternatives to Entity Framework: Dapper
	Lightweight ORMs
	Entity Framework is likely sufficient, if you use it correctly

	Benefits of using a lightweight ORM
	Drawbacks with Dapper
	Flat data
	Learning curve

	Implementing a hybrid solution
	Activity 1301: Implementing a hybrid solution with Dapper
	Providing a read-only data layer alternative
	Step 1: Steps
	Step 2: Implement the Dapper and SlapperAutomapper libraries
	Step 3: Create the new interfaces and implementations in the InventoryDatabaseLayer project
	Step 4: Create the new interfaces and implementations in the InventoryBusinessLayer project
	Step 5: Get SQLite in the integration testing project
	Step 6: Add the Dapper Layer, and test it
	Step 7: Implement the Readonly Items service
	Step 8: Work with the Dapper implementation in code
	Final thoughts on activity 1301

	Final thoughts for this chapter
	Dapper with Slapper.Automapper
	Cached queries and direct access
	Multiple table joins, flat, and relational data
	Interface segregation and inversion of control
	We are positioned well for success

	Part IV: Recipes for Success
	Chapter 14: Asynchronous Data Operations and Multiple Database Contexts
	Asynchronous operations
	Multithreaded programming
	Async, await, and the TaskParallelLibrary
	Responsive solutions for the end user
	Asynchronous database operations
	Basic asynchronous syntax

	Multiple database contexts
	Single sign on (SSO)
	Business units
	Multiple contexts require a bit more work
	Putting it into practice

	Activity 1401: Asynchronous database operations
	Leveraging async and await
	Step 1: Steps
	Step 2: Begin at the database level
	Step 3: Update the integration tests to use asynchronous database operations
	Step 4: Update the business layer
	Step 5: Update the unit tests
	Step 6: Update the Program
	Final thoughts on activity 1401

	Activity 1402: Multiple database contexts
	The identity context
	Step 1: Get the files we created in Chapter 6
	Step 2: Bring the inventory libraries into the project
	Step 3: Add the context to the injection for the web application
	Step 4: Generate Inventory controllers and views for Items
	Step 5: Add a new model to the web application context, add the migration, and update the database
	Final thoughts on activity 1402

	Final thoughts for this chapter

	Chapter 15: .Net 5 and Entity Framework
	One framework to rule them all
	A combination of the best parts of everything
	EF6, EFCore, and .NET 5

	EFCore5
	Core is going away, right?

	Changes with EFCore5
	Many-to-many navigation properties
	Table-per-type (TPT) inheritance mapping
	Filtered include
	Rationalize ToTable, ToQuery, ToView, FromSql
	Migrations and deployment experience
	EFCore platforms experience
	Performance

	Final thoughts for this chapter
	Conclusion

	Appendix A:Troubleshooting
	Migrations
	Objects exist/objects don’t exist
	Comment out code
	Manual insert to the database
	Change DB connection

	Starter packs
	General starter pack creation
	What you should do every time

	Final packs
	Review your solution
	Use a diff tool like GitHub, VSCode, or WinMerge

	Index

