
Practical UI
Patterns for
Design Systems

Fast-Track Interaction Design for a
Seamless User Experience
—
Diana MacDonald

Practical UI Patterns
for Design Systems

Fast-Track Interaction Design
for a Seamless User Experience

Diana MacDonald

Practical UI Patterns for Design Systems

ISBN-13 (pbk): 978-1-4842-4937-6       ISBN-13 (electronic): 978-1-4842-4938-3 
https://doi.org/10.1007/978-1-4842-4938-3

Copyright © 2019 by Diana MacDonald
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or
part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way,
and transmission or information storage and retrieval, electronic adaptation, computer software,
or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos,
and images only in an editorial fashion and to the benefit of the trademark owner, with no
intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or not
they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal
responsibility for any errors or omissions that may be made. The publisher makes no warranty,
express or implied, with respect to the material contained herein.

Managing Director, Apress media LLC: Welmoed Spahr
Acquisitions Editor: Louise Corrigan
Development Editor: James Markham
Coordinating Editor: Nancy Chen

Cover designed by eStudioCalamar

Cover image designed by Freepik (www.freepik.com)

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233
Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail
orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a
California LLC and the sole member (owner) is Springer Science + Business Media Finance Inc
(SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit http://www.apress.
com/rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our Print
and eBook Bulk Sales web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available
to readers on GitHub via the book’s product page, located at www.apress.com/978-1-4842-4937-6.
For more detailed information, please visit http://www.apress.com/source-code.

Printed on acid-free paper

Diana MacDonald
Victoria, VIC, Australia

https://doi.org/10.1007/978-1-4842-4938-3

In loving memory of Phillip MacDonald. Thanks for
introducing me to the wild world of wordsmithing.

v

Table of Contents

Chapter 1: Introducing UI patterns��1

What’s a UI pattern?���1

Elements of a UI pattern��6

Other pattern details���9

Why care about patterns?��11

Design efficiently��11

Consistency and familiarity��12

Consistency and reuse���14

Communicating decisions��15

Communicating within teams and tools���16

Evidence-based solutions��18

Context-specific, tailored solutions��19

Content contributors without a web design background�������������������������������19

Learning from the experts��19

Learning how to improve experiences from patterns������������������������������������20

Summary���21

About the Author��xiii

About the Technical Reviewer���xv

Acknowledgments���xvii

Introduction��xix

vi

Chapter 2: Tap into patterns��23

Learning new patterns (sharpening the saw)��23

Pattern collections��24

Pattern galleries���25

Platform guidelines��26

UI frameworks��28

Pattern libraries, design systems, style guides, and anti-patterns����������������29

Inspiring visual style���29

Pattern: Walkthrough��30

Pattern: Playthrough���37

Pattern: Newsletter signup���43

Pattern: Validation feedback���48

Identifying relevant patterns��53

Searching for patterns���54

Pattern: Social signup���56

Pattern: Lazy signup���57

Competitive analysis��58

Learn from the best���60

Pattern: Notifications��61

Pattern: Good defaults��68

Pattern: Coachmarks��69

Implementing and tailoring patterns��73

Pattern: Progressive disclosure��74

Pattern: Staged disclosure���75

Pattern: Progressive reduction���79

Table of Contents

vii

Bringing it all together���81

Pattern: Login form���81

Example: Redesigning a login form��83

Summary���91

Chapter 3: Deciding which pattern to use and when��������������������������93

Context���93

Pattern: Autocomplete��94

Autosuggest��96

User context and performance���98

Pattern: Search filters��99

Information architecture��102

Multiple filters��104

Filter feedback��105

Choosing filters��107

Live filters���108

Batch filters��109

Error prevention and recovery���111

Pattern: Activity feed��112

Pattern: Favorites���115

A rose by any other name���117

Microcopy��119

Pattern: Pagination���120

Where to draw the line���121

Accessibility���122

Pattern: Infinite scroll���123

Principle of choices in action���125

Principle of disclosure in action���126

Table of Contents

viii

Inclusive design���127

Infinite scroll vs. pagination���128

Infinite scroll and favorites���128

Pattern: Follow���129

Pattern: Friend’s list���131

Friends and followers��132

Interaction and motion design���133

Triggers���134

Action���136

Feedback��136

When is a pattern a bad idea?���137

Example: Login form��137

Summary���142

Chapter 4: Patterns in design systems��143

What’s in a name? The devil is in the details���143

Pattern libraries��144

Design systems��144

Related design, code, and content resources��145

Editorial style guides��145

Brand guides��147

Design guidelines and visual language��149

Style guides relating to code��151

Templates and Content Management Systems (CMSs)��������������������������������158

Building design systems using patterns��158

When to use a design system���159

Framing��160

Workflows and design processes���162

Pattern previews��164

Table of Contents

ix

Code assets��176

Prototyping in the browser���176

Writing code���177

Converting design elements to code��178

Design assets���180

Writing and content��182

Documenting patterns or components��182

Extra design system features��183

Growing a design system���186

Kick off���186

Assembly��187

Versioning���188

Serving assets��191

Tools���191

Evolution���192

Summary���192

Chapter 5: Anti-patterns and dark patterns��������������������������������������193

What are anti-patterns?���193

Why care about anti-patterns?��195

Anti-pattern: Hamburger basement��196

What are dark patterns?���202

Manipulinks and Confirmshamers���203

Design smells���206

Too Much Information (TMI)��207

Table of Contents

x

Modals and pop-ups��209

Modal UI pattern���209

Modal design smell��213

Pop-up anti-pattern��214

“Overall pattern” design smell���219

The lifetime of a bad pattern��220

Chapter 6: Mixing and matching patterns���223

How to combine patterns successfully to build a more complex UI:
Scoped searches example���224

Reuse elements across patterns: Categories as search filters��������������������225

Cut duplicate content from combined patterns: Categories as
search terms��231

Efficiently combine patterns to avoid the need for others: Autosuggest
and thumbnails��233

Interstitial patterns: Autosuggest and navigable categories������������������������������236

Visually combine and distinguish patterns: Categories in tabbed navigation����243

Preserve or discard data in repeated use of patterns: Clearing filters on
new searches���249

Clarify repeated patterns: Inline tags���252

Evaluate resulting trade-offs: Infinite scroll���253

Other forms of scoped search��256

Favoriting becomes wish listing��256

Wish lists/wish listing���257

Combining wish listing and lazy signup���259

When and how to break away from patterns���260

Investigate design smells���260

Review pattern principles for identified usability problems�������������������������261

Review problem and context��262

Table of Contents

xi

Strive for predictability���263

Innovate��264

How to break the rules���265

When to break patterns in design systems��267

Summary���268

Chapter 7: Conclusion��271

Looking to the future��272

Appendix: Suggested reading��275

Chapter 2��� �275

Chapter 3��� �280

Chapter 4��� �281

Chapter 5��� �285

�Index��287

Table of Contents

xiii

About the Author

Diana MacDonald is a Melbourne product

designer, raised in the tropical north of

Australia. She has relished the tech industry for

over a decade, exploring the digital space with

progressive organizations like Culture Amp,

Bellroy, and SitePoint. At Culture Amp, she

led the new design systems team to accelerate

UI design and development. She values

inclusive and remarkable stories. You can find

out more about her on her LinkedIn profile (www.linkedin.com/

in/diana-macdonald-didoesdigital) and contact her via Twitter

(https://twitter.com/didoesdigital).  

http://www.linkedin.com/in/diana-macdonald-didoesdigital
http://www.linkedin.com/in/diana-macdonald-didoesdigital
https://twitter.com/didoesdigital

xv

About the Technical Reviewer

Katherine Joyce is a passionate designer and

developer with over 7 years of experience

having worked across the financial and

government sectors. She creates innovative,

intuitive customer experiences and is an

advocate of accessible design. As Lead UX/

UI Designer at Alt Labs, she is leading the

UX vision and crafting beautiful solutions

driven by user needs. In her previous role

she worked as a Senior UX/UI Designer for

Accenture, promoting accessible design in government services and

helping automate legacy processes to improve the customer journey. She

has also spent over 5 years with AXA Insurance as an Application Support

Software Developer where she fixed bugs in legacy financial systems,

debugged issues with browser compatibility, and suggested improvements

to customer-facing journeys. She is passionate about advocating accessible

design and mentoring those who would like to have a career in design or

development.  

xvii

Acknowledgments

Thanks to all the fabulous people involved in bringing this book to life,

including the friends and associates who encouraged me and gave me

feedback. Thanks to Simon Mackie and Darin Dimitroff in helping me start

this book. Thanks to Wesley Moore, who was with me through all of it.

Special thanks to the folks at Apress who made this book possible.

xix

Introduction

Right now, design systems are flourishing, evolving. Each product or web

site is no longer crafted in isolation, but as part of a larger conversation,

in a social web, among chatbots and machine learning. It is our duty

to ensure every piece of the system speaks to each other, from the

components to the people, fluently and eloquently. Thanks to the shift

toward “modular design,” we see harmonious experiences composed from

the ground up of independent modules, such as videos or articles that

stand well on their own and yet can also be arranged to fit cohesively into

a larger whole. This is only possible when we use a consistent language for

designing modules in a system so that every part delights and the whole

resonates.

Peacock feathers consist of fractal patterns, as you can see in Figure 0-1.

Figure 0-1.  Photo of a peacock displaying its train

xx

Here you can see the beauty of the peacock’s feathers emerges from

the repeated pattern presented together.

My hope is for this book to serve as a guide to designers and makers

toward strong foundations upon which we build. With a solid grounding,

we can spend more time remixing our ideas into tailored and personalized

experiences. We can spend more time exploring the cutting edge,

innovating, and crafting beautiful user experiences.

�Who should read this book
This book is for designers, developers, marketers, and makers familiar

with the basics of building the Web who want to produce better user

experiences in digital products. This book will help you learn how to

discern good from bad, build on existing communities of practice, and dig

deep into fundamentals.

�What you’ll find in this book
This book offers a concise guide to UI patterns: the tested, proven general

mechanisms for solving recurring user interface problems, so that you

don’t have to reinvent the wheel and can instead focus on designing

solutions to the unique problems in your business.

You’ll find a smattering of code samples or visual examples throughout

the book—only as much as is needed to demonstrate the idea and get you

started. You’ll also find

•	 Methods for discovering, evaluating, and implementing

patterns according to best practices

•	 Specific examples of real-world, business-critical UI

patterns, including onboarding new users, information

seeking and social sharing, as well as e-commerce

purchase journeys

Introduction

xxi

•	 Vocabulary to help you match solutions to problems

•	 Overview of the digital landscape and resources for

further learning

Chapters 2 and 3 explore user signup and onboarding to highlight the

process of discovering, evaluating, and understanding patterns through

the theme of finding, reading, and sharing information.

Chapters 4 and 5 will cover how to consistently apply solid patterns

through design systems and pattern libraries and how to avoid anti-patterns.

Finally, we’ll explore mixing and matching patterns for e-commerce

in depth. This is where the magic happens. Most of the book will focus on

potential solutions, so you can choose the right tool for your problems.

This chapter, however, will explore a specific problem space and apply

pattern solutions to these problems.

�What you won’t find in this book
In the digital space, there’s a lot of crossover among software engineering,

visual design, and information architecture. While these fields have

their own rich heritage and history behind them that can inform digital

interactions, we’ll be avoiding them because that’s far too much to cover in

one book. However, I strongly encourage everyone to pursue information

elsewhere to learn the history of their field of practice as well as the

relevant disciplines that came before. For example, while copywriters and

content strategists on the Web face uniquely digital challenges writing

blogs, RSS feeds, tweets, and cross-channel content, they can learn

immense amounts from journalists, librarians, and traditional marketers

as some challenges remain the same as those found in these preexisting

fields. I’ll touch on some copywriting practices for UI later on, but if you

spend most of your day writing, you’ll want to dig further into these fields.

Introduction

xxii

This book won’t cover exhaustive lists of available patterns for all

scenarios. There is no complete code library or complete collection of

design assets. I will only mention some particular resources, pattern

libraries, and showcases that will help you find further extensive

collections of patterns for different contexts. I’ll also point out common

names for patterns that differ across libraries.

�How to use this book
Patterns are neat because they elegantly package up all the things you

need to know about interface and interaction design. They help you grow

into the field. They are useful resources that you can refer back to (you

don’t need to memorize all of them from the start). If you have the general

gist of patterns available and instant access to all of them, all you need to

do is look up the pattern you need when it comes time to solve a problem.

If you know a handful of relevant, similar patterns, you can look them all

up and weigh them one by one.

Use this book to learn how to recognize traits across seemingly unrelated

patterns and how they similarly solve problems (e.g., continuous scrolling,

tabs, and pagination might have more in common than you think). Then you

can start with a problem space (whether driven by stakeholder engagement,

user research, or technology), clarify the problem according to real user

needs, validate them, then translate those needs into pattern solutions.

Use this book to learn how to communicate UI design solutions. Most

of this book will be more valuable to people new to the practice of web

and product design as they develop their vocabulary to discuss interface

patterns. It may, however, also help experts learn how to share their

solutions as they learn how to mentor.

This book will show you concrete examples of how to discover

UI patterns, evaluate patterns, and communicate solutions to design

problems and user needs. Use this book as a starting point for your journey

into making digital user interfaces.

Introduction

1© Diana MacDonald 2019
D. MacDonald, Practical UI Patterns for Design Systems,
https://doi.org/10.1007/978-1-4842-4938-3_1

CHAPTER 1

Introducing
UI patterns
To help you create intuitive products, this chapter will introduce UI

patterns and highlight why they’re important and valuable.

�What’s a UI pattern?
A pattern is a recurring solution to a problem in a context.

I like to think of patterns as models: a pattern has a structure and

can be easily used to help you solve a problem faster than building from

scratch. They have a consistent and recognizable form, as well as a method

of being referenced, such as a memorable name. In knitting, you might

choose a pattern from a book to help you make a sweater with good

sleeves, noting that some sweaters are more ornamentally complex than

others. In origami, you might use a folding pattern to produce a complex

sculpture from basic origami folds, such as the orizuru (折鶴) or paper

crane shown in Figure 1-1.

2

While you might create an orizuru using a proven solution, there are

many ways to fold a paper crane with varying levels of ornamentation, like

a flapping crane or consecutive cranes.

UI patterns (user interface patterns) are found in the digital sphere of

web sites, applications, native mobile apps, and other software or devices.

They provide a language for discussing interactive design. They suggest

function, interaction, and intent. UI patterns document reusable parts of

an interface that share a purpose.

To understand UI patterns (and how they differ from components),

let’s explore some ideas from the UI framework, Bootstrap. First, we’ll look

at the thumbnails component (https://getbootstrap.com/docs/3.4/

components/#thumbnails) from version 3 of the framework, as shown in

Figure 1-2, before circling back to what makes a UI pattern.

Figure 1-1.  Photo of paper cranes by Rebecca Freeman

Chapter 1 Introducing UI patterns

https://getbootstrap.com/docs/3.4/components/#thumbnails
https://getbootstrap.com/docs/3.4/components/#thumbnails

3

The thumbnails pattern presents small image previews in a collection

where each image is linked to a larger resource, such as a high-resolution

version of the image. If the thumbnail is a preview of a product, it will link

to the product detail page. If it is a thumbnail of a video, it will link to the

video player to watch the video. The key features of the thumbnails pattern

are as follows:

•	 Small images.

•	 Linked resources.

•	 It represents a collection.

Figure 1-2.  Screenshot of Bootstrap 3’s thumbnails component
default example

Chapter 1 Introducing UI patterns

4

You’ll frequently find images in this pattern shown alongside a title or

description, as shown in Figure 1-3.

In Bootstrap 4, however, you’ll find that this component’s been

replaced by the card component (https://getbootstrap.com/docs/4.3/

components/card/) using an image, title, text, and link, as shown in

Figure 1-4.

Figure 1-3.  Screenshot of Bootstrap 3’s thumbnails component with
custom content

Chapter 1 Introducing UI patterns

https://getbootstrap.com/docs/4.3/components/card/
https://getbootstrap.com/docs/4.3/components/card/
https://getbootstrap.com/docs/4.3/components/card/

5

This change more clearly separates the thumbnail’s purpose of

previewing visual content—a content pattern—from the card layout’s

purpose of segmenting content using repeating containers for images and

text—a display pattern. The shift toward the display pattern makes sense

for a flexible UI framework with built components. We’ll learn more about

components in Chapter 4.

UI patterns are more abstract than visual style. While patterns can

often be identified by visual similarity, these components demonstrate it’s

not always so easy: a pattern describes behavior, which can be divorced

from easily identifiable visual presentation. You can, for example, apply

a strong, dramatic visual style or a subtle, muted flavor to a thumbnail

collection.

Figure 1-4.  Screenshot of Bootstrap 4’s card component

Chapter 1 Introducing UI patterns

6

Note  You might also see reference to user flow patterns or
strategic patterns when a UI pattern spans multiple pages, like in
the lazy signup pattern in Chapter 2. Similarly, you might read about
behavioral patterns, persuasive patterns, or social patterns, where
the characteristic behavior presents information, shares a message, or
persuades a human, like in the good defaults pattern in Chapter 2.

�Elements of a UI pattern
A UI pattern is defined by three ingredients:

•	 A named solution describing what the pattern does

•	 The problem the user is facing or why this pattern

is needed

•	 The context for when to use the pattern

For our thumbnail example

•	 The named solution “thumbnails” suggests a collection

of small image previews linked to larger resources.

•	 The user’s problem is navigating a large collection of

content and selecting only the items they want.

•	 The context is when the user needs a preview

before deciding—before downloading a large file or

committing to watching an entire movie. You’ll often

find thumbnails on product range pages or search

result listings before you’ve decided which item to drill

in on. In contrast, product or detail pages need fewer

thumbnails because that product or item is what you

came to see so they can be shown in full without a

thumbnail.

Chapter 1 Introducing UI patterns

7

As you can see in Figure 1-5, Pinterest uses thumbnails in their visual

discovery product.

If Pinterest continuously loaded high-resolution images at their full

size instead of thumbnails, that would slow down an otherwise immersive

experience. Pinterest needs to present thumbnails to facilitate smooth

browsing to help people discover ideas.

In a large collection like that, you won’t know what image will appear

next or if it’s something you want to see in detail. By using thumbnails,

you can quickly browse a larger set of choices before zooming in on

particularly interesting items.

Figure 1-5.  Screenshot of Pinterest thumbnails

Chapter 1 Introducing UI patterns

8

Figure 1-6 shows an Adidas product with thumbnails.

Each small image (thumbnail) in this collection shows a preview of

a product photo, linking to a larger photo. Unlike the Pinterest example,

here the thumbnails are presented at the same time as the linked item.

Figure 1-6.  Screenshot of Adidas’s product images with
thumbnails

Chapter 1 Introducing UI patterns

9

The selected thumbnail is indicated by different styling (black borders

above and below), while the larger photo is shown.

Warby Parker glasses, on the other hand, need no thumbnails to flick

between product images, as shown in Figure 1-7.

These images are the main subject of the page. There are fewer images

to browse than most thumbnail collections (just three photos), so smaller

previews would not save you much time. You can also predict what the

next photo will be: the same glasses from another angle. You might as well

jump straight to it than fill up the page with tiny thumbnails. This is an

example of when you don’t need thumbnails.

�Other pattern details
When describing a UI pattern, some people also specify these details:

•	 Why?

•	 Explanation of how it solves the problem

•	 Supporting principles, such as usability principles

Figure 1-7.  Screenshot of Warby Parker’s product images with no
thumbnails

Chapter 1 Introducing UI patterns

10

•	 User research and other evidence

•	 Motivation

•	 Examples

•	 How it works

•	 Consequences

•	 Trade-offs and drawbacks

•	 Result context and expected improvements

•	 Implementation details

•	 Sample code or design assets

•	 Known uses “in the wild”

•	 Author or resident expert

•	 Related patterns

•	 Alternative names or aliases

•	 Links to more resources

These tend to be used to elaborate on the three main

components—solution, problem, and context. Particularly—and

importantly—it is common to suggest alternative, related patterns of

interest in the context part of a pattern to clarify when not to use the

pattern. I note these here so you may recognize them when you see them

elsewhere and can consider them for yourself if you find yourself writing a

pattern.

A specific collection of patterns for a project is often called a pattern
library. Pattern libraries give teams a common language to improve their

design processes. We’ll discuss pattern libraries further in Chapter 4.

Chapter 1 Introducing UI patterns

11

�Why care about patterns?
UI patterns compare approaches, distilling the considerations

and successes of designers before you. Knowing the patterns and

understanding the decisions that went into them let you take advantage

of the mounting wisdom of whole generations and industries that brought

about these patterns, without reinventing the wheel. The small, reusable

UI solutions found in these patterns can then be composed together to

build cohesive, intuitive experiences that resonate with people.

Let’s look at some of the other benefits of learning UI patterns.

�Design efficiently
Knowing patterns can help you design efficiently by quickly recognizing

the best tool for the job, understanding the value of different solutions,

and solving the largest number of problems at once. For example, an

autocomplete search box might help your site visitors navigate your site

content, recognize the term they’re looking for without knowing the exact

name or spelling, and select a result after only typing a few characters

without needing to waste energy typing in the full search term. By learning

about the autocomplete UI pattern, you’ll more quickly recognize when

you need to use it, and likewise with all UI patterns. For example, if you

need to redesign the navigation for a catalog of products by expanding the

existing horizontal dropdown menu into a multilevel one, you can see how

an autocomplete search box might solve the problem better. We’ll look at

autocomplete again in Chapter 3.

You can even recognize patterns across evolving technology.

Compare the hated “Clippy” (www.theatlantic.com/technology/

archive/2015/06/clippy-the-microsoft-office-assistant-is-the-

patriarchys-fault/396653/) Microsoft Office assistant to Slack’s chatbot

called Slackbot, shown in Figure 1-8.

Chapter 1 Introducing UI patterns

https://www.theatlantic.com/technology/archive/2015/06/clippy-the-microsoft-office-assistant-is-the-patriarchys-fault/396653/
https://www.theatlantic.com/technology/archive/2015/06/clippy-the-microsoft-office-assistant-is-the-patriarchys-fault/396653/
https://www.theatlantic.com/technology/archive/2015/06/clippy-the-microsoft-office-assistant-is-the-patriarchys-fault/396653/

12

As conversational UIs have developed, we’ve seen some drastic

changes in how we interact with technology; however, we’ve also noticed

some similarities. You can see some familiar patterns, including identity

and profile information, private chat, and feed updates. Increasing your

familiarity with diverse patterns will help you efficiently solve design

problems you face in new user interfaces, especially if you understand the

underlying usability principles and can adapt patterns to new contexts.

�Consistency and familiarity
Using familiar patterns lets you foster predictability. The familiar idea of

drag and drop lets you directly manipulate an object by dragging and

dropping it. A common use of drag and drop is to upload an image by

dragging it from your computer’s local file system to a target drop area in

the interface. Most to-do apps let you drag and drop to-do items to reorder

them or move them to different lists. The more pervasive drag and drop

interfaces become across the Web, the more likely people will understand

how to interact with them. GitHub, for example, makes it clear that you can

attach a file to a comment and that you can do this using several methods

(drag and drop, select, paste). In Figure 1-9, you can see GitHub’s rich text

editor for comments that lets you drag and drop images.

Figure 1-8.  Screenshot of Slackbot introducing itself

Chapter 1 Introducing UI patterns

13

A text description is provided that hints at the drag behavior. Once you

start dragging a file to the comment area, it is highlighted in green to reveal

the drop target area, as shown in Figure 1-10.

Consistent use of patterns within a web site will help visitors build

a mental model of how stuff works. If you can drag and drop files to this

comment, maybe you can do that elsewhere. Sure enough, you can attach

files to Pull Requests and Reviews as well, as shown in Figure 1-11.

Figure 1-9.  Screenshot of GitHub’s rich text editor for comments

Figure 1-10.  Screenshot of GitHub’s drag and drop shows the image
filename and highlights the drop target area in green

Chapter 1 Introducing UI patterns

14

You can use consistency to set your visitors’ expectations about

how your web site works, so they may quickly learn a new area or more

advanced tool by building on what they’ve learned already about your site.

�Consistency and reuse
By their recurring nature, patterns let you reuse design solutions both

visually and within code. Visual repetition lets you build consistency and

predictability into your interfaces, creating a learnable experience for your

users. Reusability in code also saves time, letting you refactor and improve

existing features instead of rebuilding new features every time (even

when something similar exists already). A pattern incorporates many

design decisions to solve a problem, while programming encodes those

decisions; patterns ensure you Don’t Repeat Yourself (DRY), making each

design decision only once. If the 548 unique colors and 261 declarations

of Facebook blue (www.lukew.com/ff/entry.asp?1469) have taught us

anything, it’s to maximize reuse by minimizing inconsistency.

Figure 1-11.  Screenshot of GitHub’s drag and drop on a Pull Request

Chapter 1 Introducing UI patterns

http://www.lukew.com/ff/entry.asp?1469
http://www.lukew.com/ff/entry.asp?1469
http://www.lukew.com/ff/entry.asp?1469

15

�Communicating decisions
As a communication tool, patterns let designers persuade stakeholders

and colleagues of the value of a solution. You can describe why your

solution is the best for a given context. You know the purpose of a pattern,

how it meets the users’ needs, the similar alternatives available, and how

to implement it for your brand.

Design patterns let you reference existing proven solutions, which

means you have support for your decisions. Agency designers working

with skeptical clients and in-house designers facing internal deadlocks

sometimes need to defend specific approaches or resolve roadblocks.

In these scenarios it might be useful to show how Apple use this pattern

to help customers connect with customer support or Amazon used that

pattern to improve conversions. This shows a concrete, tangible example

of the pattern executed in the real world and helps stakeholders and

colleagues visualize the desired result.

Even better than competitive contrasts, patterns can be backed by

user research. Use analytics, A/B testing, user testing, customer support

feedback, and survey info to show evidence for decisions. For example,

“we tested this with a sample of our most engaged customers and the

research shows that given the age and expertise of our visitors, the

dashboard pattern works better than table filters for directing attention to

desired metrics.”

Further, a well-documented pattern clearly describes the user needs

it meets and how it achieves that, giving you ready-made reasons to

share with your stakeholders. Referring to the strengths of a pattern and

consistently using patterns can relieve some of the pain points of design

by committee (www.w3.org/People/Bos/DesignGuide/committee.html)

where many people provide design input without a cohesive vision or

process to resolve details, producing lower-quality work. Figure 1-12 shows

a well-documented Alerts pattern.

Chapter 1 Introducing UI patterns

https://www.w3.org/People/Bos/DesignGuide/committee.html
https://www.w3.org/People/Bos/DesignGuide/committee.html
http://www.w3.org/People/Bos/DesignGuide/committee.html

16

�Communicating within teams and tools
There’s the joke that there are only two hard problems in computer

science (https://martinfowler.com/bliki/TwoHardThings.html): cache

invalidation and naming things. The joke exists because clarity through

language is challenging. Evocative names speed up discussion, increase

clarity, avoid mistakes, and make the underlying ideas easier to talk

about. Using standard names for patterns helps designers and developers

especially with talking to each other. “We might use an ‘accordion menu’.”

“Let’s test ‘infinite scrolling’ instead of ‘pagination’.” For developers, it

might help to consider that CSS classes are patterns. Your BEM (Block,

Element, Modifier) names (if you follow that convention) should describe

your patterns, how they’re used, and how variants are used. Similarly,

increasing the use of CSS or Sass variables (https://css-tricks.com/

sass-style-guide/#article-header-id-17) in your code should clarify

Figure 1-12.  Screenshot of U.S. Web Design Standards shows when to
use Alerts components and when to consider something else

Chapter 1 Introducing UI patterns

https://martinfowler.com/bliki/TwoHardThings.html
http://getbem.com/naming/
http://getbem.com/naming/
https://css-tricks.com/sass-style-guide/#article-header-id-17
https://css-tricks.com/sass-style-guide/#article-header-id-17

17

the intent, making it easier to understand the relationships between

objects (https://thoughtbot.com/blog/sass-variables). Figure 1-13

shows a “badge” pattern visually and in code.

Note  It’s worth noting that even though one benefit of patterns is
that they provide a shared vocabulary for people working together
across a business (including designers, developers, marketers,
customers, and so on), each person interprets terms using their own
background and experience, which can sometimes lead to confusion.
What a marketer might call a tracking pixel or tag, a developer might
call a third-party script. What a developer might call letter spacing, a
designer might call tracking. What a designer might call a pixel… you
see where I’m going.

Figure 1-13.  Screenshot of MailChimp badge pattern indicates
badges appear inline to provide additional context

Chapter 1 Introducing UI patterns

https://robots.thoughtbot.com/sass-variables
https://thoughtbot.com/blog/sass-variables

18

In UI patterns, an autocomplete pattern might be conflated with
an autosuggest pattern or described only as a “search box” or
“dropdown.” These discrepancies cause confusion when talking about
patterns. To work around this, you’ll find some patterns in this book
include alternative names, with the most prominent or unambiguous
name listed first. Generally, pattern names are more useful when
they describe the solution, for example, “good defaults,” instead of
the problem, for example, “blank slate.” We’ll look more at pattern
libraries as style guides and communication tools in Chapter 4.

�Evidence-based solutions
As patterns are recurring solutions, they are only developed through

repeated, successful use: if it didn’t work, we shouldn’t repeat it. Patterns

gather up best practices and principles refined by previous designers

but can also be compared with other solutions and tested with users.

Patterns are also framed in terms of how they solve a problem. In contrast,

a design principle like “give users control” is vague about how this solves

problems for users. Extending our earlier thumbnail example, you can see

how a collection of tiny, compressed images would be faster to download

than all the high-resolution resources, so the preview collection could be

perused in less time. If your images download faster, your users might stay

longer. You could review your site analytics to see if their time spent on

site is longer when you use thumbnails. This kind of evidence validates

the success of the solution. With evidence, more people end up using the

solution. This is how solutions become patterns.

You can use patterns to fast-track improvements by exploring how

designers have used them before. We’ll look at resources for patterns in

Chapter 2.

Chapter 1 Introducing UI patterns

19

�Context-specific, tailored solutions
Patterns are context-specific. Essentially they are tailored to the

precise problem. This makes them more useful than design principles

(www.interaction-design.org/literature/topics/design-principles),

which are excellent theories to fall back on if you need to develop a

solution from scratch but are far less practical than patterns.

�Content contributors without a web
design background
Relying on patterns lets content contributors who are unfamiliar with

the practice of web design use smart defaults. You don’t always need to

understand the details under the hood to get value out of existing patterns

and can skip the pain of finding out the hard way that rolling your own

from scratch means a lot of hard work. You can continue to specialize in

your own area without sinking too much time into details.

Additionally, patterns formed by diverse contributors may be more

effective and robust than, say, patterns only made by developers. More on

that in Chapter 4.

�Learning from the experts
Patterns let you leave the details of UI solutions to the experts in some

cases and provide excellent learning material in others.

For example, by using a search filter pattern, you might be reminded to

include a cancellation option to clear the filters to return to an unfiltered

search, whereas designing and building search filters without reference to

the pattern might leave you slowly figuring out these kinds of details one

by one. Patterns let you accelerate design and development processes.

Chapter 1 Introducing UI patterns

https://www.interaction-design.org/literature/topics/design-principles
http://www.interaction-design.org/literature/topics/design-principles

20

By using a standard solution, you’ll be able to chat about it

easily with expert communities like Stack Exchange’s Stack

Overflow (https://stackoverflow.com/) or User Experience

(https://ux.stackexchange.com/) Q&A communities. There’s also a

good chance there are resources available that show patterns in action,

sometimes demonstrating additional considerations. Let’s consider some

examples:

•	 Development frameworks like Bootstrap have already

considered accessibility details like role="tablist"

aria- multiselectable="true".

•	 The Devise (https://github.com/plataformatec/

devise) authentication solution for account

registration and sign in has already considered user

flow patterns like email confirmation tokens, revealing

valid usernames, and more.

•	 Payment companies like Stripe (https://stripe.com/)

have already considered how to balance usability and

security.

In each of these cases, you can either incorporate the expert’s

approach into your own or dig into it further. This helps if you trust that the

pattern has been executed well, but there are anti-patterns to look out for,

which we’ll see in Chapter 5.

�Learning how to improve experiences
from patterns
Patterns are a fantastic learning tool. They demonstrate reusable

components that have been proven and battle-tested—you can find real

examples on live sites. Patterns describe the user need that prompted

its existence in the first place, for example: “Our customers are nervous

Chapter 1 Introducing UI patterns

https://stackoverflow.com/
https://ux.stackexchange.com/
https://ux.stackexchange.com/
https://github.com/plataformatec/devise
https://github.com/plataformatec/devise
https://stripe.com/

21

about financial decisions because money is a massive stressor, so let’s

use reassuring words in our inline help hints, as well as live previews and

confirmation patterns to improve their confidence.”

They document the decisions that have been made by other designers

before you. They show you the forces or factors you need to consider in

your design decisions—how many size variants do we need? Contextual

colors? Should alert messages be dismissable? What’s the difference

between a link with a button style and a button with a link style?

We’ll look more at learning through patterns in Chapter 2.

�Summary
A UI pattern is a recurring digital solution to a problem, in a given context.

Learning and using patterns can help you

•	 Efficiently solve design problems across evolving

interfaces as technology changes

•	 Produce intuitive products through consistency and

familiarity

•	 Save time instead of repeating yourself

•	 Communicate design decisions

•	 Communicate within teams to solve problems

•	 Find evidence to support a solution

•	 Use tailored solutions for a context

•	 Use smart defaults without extensive product design

experience

•	 Stand on the shoulders of giants

•	 Learn how to improve a user’s experience

Chapter 1 Introducing UI patterns

23© Diana MacDonald 2019
D. MacDonald, Practical UI Patterns for Design Systems,
https://doi.org/10.1007/978-1-4842-4938-3_2

CHAPTER 2

Tap into patterns
The world is full of obvious things which nobody by any chance
ever observes.

—Sherlock Holmes, The Hound of the Baskervilles

In this chapter we’ll investigate how you can spot, and then learn,

new patterns. We’ll explore some tactics using a theme of signup and

onboarding—everything necessary to get a new customer started and

engaged.

�Learning new patterns (sharpening the saw)
I suggest learning about patterns—which ones exist, how to find

them—before learning them in depth. This lowers the learning curve and

ensures that when it comes time to apply the solution, you can see it in

practice, making it far more tangible and interesting to learn. At that stage

you can dig deeper into the pattern and explore the intricacies of all the

design decisions incorporated that you need to consider.

I consider this study sharpening the saw1—not to immediately solve

the problem in front of you but to sharpen your saw in preparation for the

real work later.

1�Brett and Kate McKay, “The 7 Habits: Sharpen the Saw,”
www.artofmanliness.com/articles/the-7-habits-sharpen-the-saw/.

http://www.artofmanliness.com/articles/the-7-habits-sharpen-the-saw/

24

So, where can you hear about new patterns? I suggest browsing and

skimming collections and galleries. The following types of resources can

help you develop your vocabulary, identify similarities and differences in

different contexts, and learn new concepts (many of them provide design

principles and philosophies as well). There’s a more comprehensive list in

the Appendix.

�Pattern collections
These are structured collections of patterns that categorize and clarify

patterns. It is an extremely helpful starting point for learning what

new patterns are called and the theories behind them. One modern,

comprehensive collection is UI patterns (http://ui-patterns.com/

patterns/), as shown in Figure 2-1.

Figure 2-1.  Screenshot of UI-patterns.com design patterns dealing
with data

Chapter 2 Tap into patterns

http://ui-patterns.com/patterns/
http://ui-patterns.com/patterns/
http://ui-patterns.com

25

�Pattern galleries
Pattern galleries show, rather than tell, using examples from all sorts of

web sites and apps. One example is pttrns (https://pttrns.com), as

shown in Figure 2-2.

There are also many domain-specific galleries that focus on a single

theme, like social interfaces or e-commerce. For example, see Mobile

Patterns (www.mobile-patterns.com) for mobile-first and native app

patterns, as shown in Figure 2-3.

Figure 2-2.  Screenshot of pttrns.com mobile design patterns

Chapter 2 Tap into patterns

https://pttrns.com
http://www.mobile-patterns.com
http://pttrns.com

26

�Platform guidelines
Platform guidelines are well-tailored to the device type (mobile, laptop,

wearables, etc.) and operating system (iOS, Android, Windows, etc.), more

closely matching context to your needs. They’re also built up from decades

of improvement, refinement, and lessons learned. Consider, for example,

Apple’s iOS Human Interface Guidelines shown in Figure 2-4.

Figure 2-3.  Screenshot of Mobile Patterns

Chapter 2 Tap into patterns

27

The stepper shown in Apple’s iOS guidelines is optimized for a touch

device with a small screen.

As UI patterns are only relevant to a specific domain or context,

these platform guidelines are only valuable insofar as they highlight the

differences between platforms. Technological changes demand some push

and pull, divergence and convergence, fragmentation and consolidation.

We might expect movement toward cohesive cross-platform guidelines

like Google’s Material Design guidelines (https://material.io/design/

guidelines-overview/) with more minimal guidance on platform

adaptation.2 For a striking example, the guidelines on edge swipes suggest

2�Google, “Cross-platform adaptation,” https://material.io/design/platform-
guidance/cross-platform-adaptation.html.

Figure 2-4.  Screenshot of Steppers in Apple developers’ iOS Human
Interface Guidelines

Chapter 2 Tap into patterns

https://material.io/design/guidelines-overview/
https://material.io/design/guidelines-overview/
https://material.io/design/platform-guidance/cross-platform-adaptation.html
https://material.io/design/platform-guidance/cross-platform-adaptation.html

28

“an edge swipe starts from outside of the screen to reveal off-screen

content,” and yet it might conflict with other swipe gestures, such as

horizontal swipes through pages. The guidelines further describe that when

there are no gesture conflicts, Android edge swipes from the left will reveal

off-screen content, while iOS will navigate back through an app’s hierarchy.

�UI frameworks
UI patterns wouldn’t be much without code to bring them to life. UI or

front-end frameworks offer invaluable starting points for developers

to consider the implementation of the archetypal pattern and its core

elements. Designers can also use these to explore all the different “states”

they need to design. Figure 2-5 shows the Tachyons (https://tachyons.io)

framework’s components section.

Figure 2-5.  Screenshot of Tachyons components

Chapter 2 Tap into patterns

https://tachyons.io

29

Of course, you should lean on your framework if you’re already using

one, but sometimes you might draw from others to fill in the gaps. For

example, Zurb Foundation framework3 provides styled switch and slider

components that Bootstrap does not, while Bootstrap provides inline

forms that Foundation does not (at the time of writing).

�Pattern libraries, design systems, style guides,
and anti-patterns
Public pattern libraries and style guides from other companies and brands

help demonstrate how they solved specific problems for their specific

market. Design systems often include component libraries that bring

patterns to life. We’ll explore those further in Chapter 4. If you really want

a head start, check out the Adele repository of publicly available design

systems and pattern libraries (https://adele.uxpin.com).

Similarly, sometimes you can learn by counterexample—what not to

do. Learn more in Chapter 5 on anti-patterns.

�Inspiring visual style
Pattern solutions are more abstract than their exact appearance in a

particular scenario, but they cannot be divorced from their visual style or

real-world behavior. Visual style web sites can give you insight into the

moods and trends of the design community in interpreting and remixing

patterns. They provide wonderful inspiration for how a pattern may be

executed to good effect. After identifying patterns that you’re interested in,

I suggest exploring these resources for visual style inspiration:

•	 Site Inspire (www.siteinspire.com)

•	 Hover States (www.hoverstat.es)

•	 Dribbble (https://dribbble.com)

3�Zurb, “Foundation,” https://foundation.zurb.com/sites/docs/.

Chapter 2 Tap into patterns

https://adele.uxpin.com
http://www.siteinspire.com
http://www.hoverstat.es
https://dribbble.com
https://foundation.zurb.com/sites/docs/

30

Some folk are concerned about the dribbblisation of design4—the

phenomenon of designs created to look good rather than solve real

problems. I tend to believe the problem with dribbble5 is what we make

of it. It’s only a platform; how we use it is up to us. It can be effective when

used to test and stretch visual skills, encouraging designers to showcase

and refine their visual designs as well as push the boundaries of what’s

possible. Being removed from the constraints of real problems might help

you design an efficient and satisfying experience.6 This can help drive

innovation.

Seeing designs in action provokes you to consider cohesive

experiences, seamless integration of patterns, and patterns done well.

These galleries show you patterns used in award-winning designs, highly

regarded within design communities:

•	 Awwwards (www.awwwards.com)

•	 IXDA (http://awards.ixda.org/entries/)

•	 Front-end awards (https://thefwa.com)

Next, we’ll explore some specific patterns helpful to onboarding to give

you a feel for what they look like.

�Pattern: Walkthrough
A walkthrough is a guided tour or demo of a feature or product. It’s

presented in a specific order to every new user to introduce complex

workflows or concepts.

4�Paul Adams, “The dribbblisation of design,” https://blog.intercom.com/
the-dribbblisation-of-design/.

5�Tobias van Schneider, “The Problem With Dribbble,” https://medium.
com/%40vanschneider/the-problem-with-dribbble-8fd1627fd7d0.

6�For an example, see Fantasy Interactive’s future of the airline case study
(http://w.fantasy-interactive.com/fi/airlines/).

Chapter 2 Tap into patterns

http://www.awwwards.com
http://awards.ixda.org/entries/
https://thefwa.com
https://blog.intercom.com/the-dribbblisation-of-design/
https://blog.intercom.com/the-dribbblisation-of-design/
https://medium.com/%40vanschneider/the-problem-with-dribbble-8fd1627fd7d0
https://medium.com/%40vanschneider/the-problem-with-dribbble-8fd1627fd7d0
http://w.fantasy-interactive.com/fi/airlines/

31

The digital product design platform, InVision, makes heavy use of

walkthroughs in their products, as you can see in Figure 2-6.

Figure 2-6.  Screenshot of InVision’s walkthrough welcome

The crux of the walkthrough pattern is to literally walk the user through

each step of their core task and then to direct their focus to only one step at

a time and only steps critical to completing their task.

Show the actual features or steps—for example, using screenshots—to

concretely identify them in the product so the user doesn’t need to

remember what the feature was called and go looking for where that label

might appear in the product. You needn’t explore every detail of how to

use a feature, but at least indicate what the important features are and how

they fit within the landscape. Each step needs to instruct and inform users

so they can make decisions about whether and how to use your product.

Figure 2-7 shows InVision’s prompt to add more screens.

Chapter 2 Tap into patterns

32

This walkthrough prompt lets users know that prototypes are “best

with two or more” screens, encouraging them to add at least one more,

while reminding them where the button is to upload and sync screens.

By letting users navigate backward and forward through a

walkthrough, as well as dismiss it, they can directly access the information

of most interest to them. While your user is in the walkthrough, show a

progress bar or indicator to represent where they are in the process. They

may wish to be assured that it’s a short process containing only two more

steps or otherwise keep track of which pieces of information they’ve seen

already. For mission-critical walkthroughs that the user needs to see, such

as a change in terms of use, password recovery, or recovery from a security

compromise, you may need to ditch the additional navigation options.

Figure 2-7.  Screenshot of InVision’s walkthrough prompt to add
another screen

Chapter 2 Tap into patterns

33

Walkthroughs are a natural fit for first-time use. They’re handy for

introducing new or complex concepts or workflows, so it’s important to

make them available on the first page load, first site visit, first app open,

and so on, considering if the user could have already seen the walkthrough

on a different platform. A useful rule of thumb for when to employ a

walkthrough is whenever the user may have doubts about the product.

�Workflow walkthroughs

If your product is optimized for a specific workflow, introducing that

workflow early on serves as signposting to help users understand how to

navigate through the product and find more information when they need

it. In Figure 2-8 you’ll find InVision make it clear what the different modes

are in their product and where they can be found, so that you can switch

through the modes at your leisure later, even though they are presented in

the intended order:

Chapter 2 Tap into patterns

34

�Concept walkthroughs

If your product’s value proposition is disruptive and counterintuitive, use

a walkthrough to break down the relevant concepts. For example, Airbnb

needed to introduce their users to the share economy concept of renting

out homes and apartments instead of using hotels. This brought a host of

concerns for guests, such as if the place will be safe, and for hosts, such

as if the property will be kept in good condition. To ease users’ concerns,

Airbnb needed to guide new users through the concepts with reassuring

illustrations and address specific friction points, as you can see in Figure 2-9.

Figure 2-8.  Screenshot of InVision’s walkthrough demo prototype
project screen

Chapter 2 Tap into patterns

35

To assure guests, Airbnb describes their online and offline safety

measures, including risk scoring, watchlist and background checks, and

preparedness safety workshops and free smoke detectors. Similarly,

you can see in Figure 2-10 how Airbnb introduces hosts to their hosting

process.

Figure 2-9.  Screenshot of Airbnb’s page about safety by design,
showing three illustrations and supporting descriptions

Chapter 2 Tap into patterns

36

Airbnb first addresses how the host might be feeling: “sharing your

space or passions with someone you’ve never met can feel like a leap of

faith.” The prospective host can then see very clearly numbered steps to

guide them through the process, with important explanatory details along

the way.

A useful idea here is Nielsen Norman Group’s mental models7—what

users believe about a system that might differ from the designer’s model.

A user’s beliefs will affect how they use a product, so you might use a

concept walkthrough to update the user’s mental model to bring it closer

to how the system actually works.

7�Jakob Nielsen, “Mental Models,” www.nngroup.com/articles/mental-models/,
October 2010.

Figure 2-10.  Screenshot of Airbnb hosts, showing numbered steps
with a brightly colored first step to draw attention

Chapter 2 Tap into patterns

http://www.nngroup.com/articles/mental-models/

37

Reserve walkthroughs for complex workflows and concepts. Instead

of a walkthrough, see if you can break up the workflow further so that it’s

simpler and more self-explanatory, or consider a playthrough instead.

�Pattern: Playthrough
A playthrough is an interactive tutorial or warm up that lets a user learn by

doing, in a safe environment such as a sandbox.

Figure 2-11 shows an example of TeuxDeux’s homepage playthrough.

TeuxDeux is a task management app. Their homepage playthrough

shows a callout enticing visitors to resize the example app. The example

app contains explicit instructions in its to-do items to click, hover, drag,

and double-click different items, so you can “try before you buy.”

When a user wants to try your product’s features that are new to

them, a playthrough provides a forgiving interface to let them explore

safely and make mistakes without fear of repercussions. By stepping them

Figure 2-11.  Screenshot of TeuxDeux’s homepage playthrough

Chapter 2 Tap into patterns

38

through the product slowly, you can introduce features as needed and

let them immediately play with them. There are two main scenarios for a

playthrough: setup and sandbox.

�Setup playthrough

Sometimes a playthrough is used as part of a setup process, for example,

asking for a name, showing where it will be displayed, letting the user

provide their name, then moving onto the next logical step in the product.

In Figure 2-12 you can see an empty state before the user has uploaded

a cover image on their Facebook profile page.

Figure 2-13 shows an onboarding prompt to add a cover photo.

Figure 2-12.  Screenshot of Facebook profile cover image playthrough
empty state

Figure 2-13.  Screenshot of Facebook profile cover image playthrough
instruction

Chapter 2 Tap into patterns

39

After the user adds a cover, Figure 2-14 shows an instruction to

reposition the image with a live preview of how it will look to other users.

This illustrates how a user plays through the app to set up their profile.

�Sandbox playthrough

A sandbox playthrough provides sample resources with instructions on

how to use them. For example, TeuxDeux starts new users with a few pre-

filled tasks that teach you how to use the app, just like their homepage.

Apple’s Swift Playgrounds epitomizes the playthrough pattern. It’s a

whole app dedicated to being a sandboxed interactive tutorial to learning

Swift, as shown in Figure 2-15.

Figure 2-14.  Screenshot of Facebook profile cover image playthrough
preview and reposition

Chapter 2 Tap into patterns

40

�When to use a playthrough

Playthroughs let users immediately interact with the core tasks. This aspect

in particular separates playthroughs from walkthroughs, demos, and other

instructional content. It’s an excellent opportunity to demonstrate the

value of the feature without delay. Likewise, interactivity can improve the

learning experience, so it feels easy.

Using this pattern to provide a sandbox can be handy when your

product’s user wants to avoid “breaking real data.” For example, see

InVision’s Freehand tutorial in Figure 2-16.

Figure 2-15.  Screenshot of Apple’s Swift Playgrounds

Chapter 2 Tap into patterns

41

Figure 2-16.  Screenshot of InVision’s Freehand tutorial with a
pending instruction

Chapter 2 Tap into patterns

42

This lets people draw with wild abandon. They may be free from

concern of losing their own work by trying out new Freehand features

in the tutorial. You can see the user has an opportunity to ask for help to

complete the step if they want to move on.

Once the user has completed the step (tried the feature), they’re given

an option to move to the next step, as shown in Figure 2-17.

Figure 2-17.  Screenshot of InVision’s Freehand tutorial with a
successful step done

Chapter 2 Tap into patterns

43

As with Walkthroughs, some people might want to navigate through

your product via unexpected paths, so consider if you need to show an

easy exit, such as a “Skip all” link or links to navigate backward through

previous steps. In InVision’s Freehand example, there’s an option on every

step to “Skip tutorial,” and on every Freehand, there’s an option to “Review

tutorial.”

After a new user has played through your product’s features, make

it easy to take off the training wheels. They’ve learned what they need to

know, so provide an easy method to remove any unwanted sample data.

It can be frustrating to find that sample data contributes to account limits,

like the number of projects you’re allowed to have before upgrading.

In InVision’s Freehand example, the tutorial lets the user play without

creating a Freehand that could clutter up their account.

This pattern demonstrates how the context of the user’s place in their

journey drastically changes the relevance of the pattern. If they were an

expert user, these playthrough experiences might be infuriating. This is a

reminder that patterns are solutions to problems in a context.

Playthroughs can be overkill when the consequences of exploring

unguided are minimal. Avoid them if users can make trivial mistakes and

recover from them without guidance. For example, the consequences of

searching for the “wrong” term in a search function might result in useless

results, but the user can easily type in a new search term—no guidance is

needed.

�Pattern: Newsletter signup
A newsletter signup is a form that allows users to subscribe to a list. They

may then be sent email news about the product to keep them informed

about regularly changing content.

Chapter 2 Tap into patterns

44

Figure 2-18 shows an example of a newsletter signup.

Figure 2-18.  Screenshot of Web Animation Weekly signup

Chapter 2 Tap into patterns

45

There are strong conventions across the Web for email newsletter

signup forms. Let’s look at their key elements.

Label: Most newsletters provide an explicit “Email

Address” label element to identify the component.

Sometimes, it implied through a call to action.

For example, on the newsletter signup section on

the Bellroy web site for carry goods, there is the line:

“Being In The Know Feels Great: Signup here for

news and updates,” which you can see in Figure 2-19.

Input: Your visitor needs somewhere to provide

an email address. In code, this is generally a

standard HTML input element. It’s also common

to use the attribute type="email" to ensure the

correct keyboard appears on mobile devices (one

that shows an “@” symbol to make it easy to type

the email address) and to assist browser autofill

behavior.

Submit button: Your visitor also needs a means of

confirming and sending the email address when

they’re finished typing. For example, you could use

a submit button, press the Return/Enter key on a

keyboard, or tap the “Go” button on mobile devices.

Figure 2-19.  Screenshot of Bellroy newsletter signup

Chapter 2 Tap into patterns

46

“Submit” can be a jargon term though, so consider

another label for your button that describes the

action being taken, such as “Signup.”

List: When your visitor subscribes to your

newsletter, you’ll need to add their email address

to a list. This might seem obvious enough, but what

happens next can vary wildly. Many email service

providers will automatically send a “double opt-in”

confirmation email to your visitor’s email address

that they must confirm before being permanently

added to the list. In another scenario, if it’s a

manually collected and stored list, you’ll need to

know how to pull this list of email addresses later

into your email service provider app when it comes

time to send your newsletter.

Validation: You’ll likely want to validate the email

address input provided to you. For example, it

is common to reject email addresses without an

“@” symbol. Many products use a CAPTCHA

(Completely Automated Public Turing test to tell

Computers and Humans Apart) to weed out bots

and other fake signups by presenting a test that is

easy for a human and challenging for a computer to

answer.8 You can learn more about form validation

in the validation feedback section ahead. For a

deeper look at forms, I recommend the book,

Designing UX: Forms by Jessica Enders.

8�CAPTCHAs www.usertesting.com/blog/2014/04/09/think-your-site-needs-
captcha-try-these-user-friendly-alternatives/.

Chapter 2 Tap into patterns

https://www.usertesting.com/blog/2014/04/09/think-your-site-needs-captcha-try-these-user-friendly-alternatives/
http://www.usertesting.com/blog/2014/04/09/think-your-site-needs-captcha-try-these-user-friendly-alternatives/
http://www.usertesting.com/blog/2014/04/09/think-your-site-needs-captcha-try-these-user-friendly-alternatives/

47

Legal: When providing personal information, your

users need to know how their information will be

used. Either provide details inline or a link to further

information about your privacy policy or terms

and conditions. Critically, ensure your users know

exactly what they are signing up for. When signing

up for a free O’Reilly ebook, you’re also given an

optional checkbox to subscribe to their newsletter

while the button says “Get the free ebook,” so you

know exactly what to expect. You can also follow the

link “We protect your privacy,” to see the privacy

policy, shown in Figure 2-20.

Figure 2-20.  Screenshot of O’Reilly Design Newsletter

Chapter 2 Tap into patterns

48

Use the newsletter signup pattern the first time a user wants to access

email news. If they’ve already subscribed to your newsletter, avoid using

this pattern. You can check if they’ve already subscribed before showing

the signup form by examining their user account (if they are logged in) or

by seeing if they have just come to your site by your newsletter. You can do

this by or looking at the URL in the address bar (or in code by inspecting

the HTML referer path9) to see if it includes tracking links from your

newsletter such as /?utm_medium=email&utm_campaign=newsletter. If a

visitor comes from your newsletter, don’t show the signup form.

Another time to avoid this pattern is if user’s email address is not

subscribed to the newsletter list, but you already have their address for

other reasons (such as account login). In this case, you could show an

opt-in checkbox instead of asking them to type in their address again.

Let’s see another first-time signup pattern commonly seen with

newsletter subscription: validation feedback.

�Pattern: Validation feedback
Validation feedback is information shown to your user after they’ve

provided data and you’ve processed it. The feedback might be a warning

or suggestion, an error preventing further progress until it’s been fixed, or

confirmation that the data was complete and correct. Validation feedback

most often appears on forms.

Figure 2-21 shows validation feedback with a warning.

9�Wikipedia, “HTTP referer,” https://en.wikipedia.org/wiki/HTTP_referer.

Chapter 2 Tap into patterns

https://en.wikipedia.org/wiki/HTTP_referer

49

Figure 2-21.  Screenshot of a newsletter warning validation feedback

Chapter 2 Tap into patterns

50

This example suggests the “Email address should follow the format

user@domain.com.” Often a validation warning lets the user continue at

their own peril.

Figure 2-22 shows validation feedback with an error.

This example shows the error message: “This email address looks fake

or invalid. Please enter a real email address.” Usually an error prevents any

further progress until it’s been corrected.

Figure 2-23 shows validation feedback indicating a soft confirmation.

Figure 2-22.  Screenshot of a newsletter warning with an error

Figure 2-23.  Screenshot of successful subscription

This example says, “Thank you! You will receive a request to confirm

your subscription.”, encouraging further action to be taken to finish the

process.

Chapter 2 Tap into patterns

51

Finally, Figure 2-24 shows validation feedback indicating confirmation

of a successfully completed process.

This kind of validation feedback assures the user that their work is

done and celebrates the effort they’ve put in.

Validating user input and providing feedback about it give them an

opportunity to correct the input. If it’s likely you’ll receive incomplete or

incorrect information that is needed for your visitor to use your product,

help them recover using this pattern.

To prevent exasperating your users, clarify the validation rules they

need to meet in order to complete the process, so they don’t need to figure

Figure 2-24.  Screenshot of Atlassian’s confirmation message

Chapter 2 Tap into patterns

52

them out by trial and error. One method to do this is to provide a tailored

message for each validation rule that affects the user. For each message

	 1.	 Use plain language, front-load keywords, and omit

needless words.

	 2.	 Indicate any problems using concrete, specific, and

precise nouns.

	 3.	 Suggest next steps or solutions using positive,

active verbs.

Another convenient method to assist your user is to preserve all their

input during and after validation. Imagine your user says their date of birth

is a date in the future yet to pass. You might be tempted to validate the date

of birth against the current date, show feedback that the provided date is in

the future and therefore needs to be changed, and clear the provided date,

asking them to type in a new one. It is likely easier, however, for your user

to adjust the year by one digit from 2091 to 2001 than to start all over again

filling out the day, month, and year. Preserve their data. You might then

draw attention to which part is incorrect by highlighting the year visually

and providing a specific message to review the year.

Use the validation feedback pattern when it’s important to you to have

accurate data. For a newsletter, having a lot of fake signups on your list can

be costly if you are paying an email service provider per email address.

Using the validation feedback pattern lets you increase the user’s

confidence that they’ve taken the right action (positive feedback) or

help them recover from errors (negative feedback). For clarity, provide

your feedback as close in proximity and time as possible to the action the

user took.

In addition to warnings, errors, and confirmations, one

underappreciated form of feedback is a gentle suggestion that hints at

better steps rather than prevents further progress. One instance where it

can help is inspecting phone numbers. Validating international phone

Chapter 2 Tap into patterns

53

numbers is a notoriously difficult task due to the wild variation in

acceptable formats globally as well as how people format their numbers

when they provide them. When asking for an optional phone number, you

might include a validation warning or suggestion when the user provides a

number that looks like it might be wrong, encouraging the visitor to check

it, but avoid showing a validation error that prevents task completion. The

visitor can then proceed with a fake or badly formatted phone number, but

you’ve prompted them to check it twice for their own benefit. For example,

consider this message:

Enter your phone number to help fast delivery of your order.

�Identifying relevant patterns
You can identify further relevant patterns in addition to this book using a

few jump-off points:

•	 In a collection, look at patterns in the same category.

•	 In a pattern, look at “Related patterns.”

•	 Competitive analysis (more on that ahead).

One more is good ol’ fashioned brainstorming. Starting with one

pattern, snowball your way to other relevant solutions. One time I faced an

unusual design problem: radiologists wanted to see patient case imaging

results on a web site. They needed to see a specific medical condition

across a stack of images (e.g., a CT scan of a brain with a stack of images

showing the brain at different slices with different parts of the tumor

present in each slice). While this might look like an unusual and complex

UI problem, even here we can find relevant ideas to inform us:

•	 Image viewing

•	 Image editing

Chapter 2 Tap into patterns

54

•	 Image annotation

•	 Map annotation

•	 Map regions

•	 Videos

•	 Video annotation

•	 Flick books

In this way, I found some existing “best practices” for a seemingly

new issue.

Useful patterns describe how they solve the problem, including salient

details on why it works the way it does. These patterns can inform you even

when the problem is actually slightly different.

This is how patterns may actually foster creativity—remixing existing

solutions for new problems—rather than constrain creativity as they are

sometimes blamed for doing.

�Searching for patterns
The resources in this chapter highlight many available patterns to use. It’s

helpful to see them in large collections like these, with similar patterns side

by side, but sometimes specific patterns for unusual areas are harder to

find. For example, admin interfaces pose their own interesting challenges.

While UI patterns might have taught you about the existence of table

filters, sort by column, and search filters, it may be challenging to bring all

those patterns together effectively, and they’re far from comprehensive.

A quick Internet search for “Admin design patterns” reveals Magento’s

excellent Admin Design Pattern Library (https://devdocs.magento.com/

guides/v2.3/pattern-library/bk-pattern.html). They also include a

signup form pattern that highlights the different states the form can be

in—initial, error, password retrieval, confirmation of password retrieval,

error of password retrieval, and successful sign out. As a designer,

Chapter 2 Tap into patterns

https://devdocs.magento.com/guides/v2.3/pattern-library/bk-pattern.html
https://devdocs.magento.com/guides/v2.3/pattern-library/bk-pattern.html

55

Figure 2-25.  Screenshot of Magento signup form initial state style

this suggests all the different mockups you might need to assemble.

As a developer, this suggests all the validation types required and possible

states an account can be in. You can see this example in Figure 2-25.

By knowing the standard and alternative names of many patterns, you

can find interesting information about patterns. Outside of “patterns,” you

might add “UX” or “best practices” to your search queries to find more

design considerations to explore. By having the vocabulary, you can ask

concise questions about a pattern.

Let’s see some examples of discovering and learning new patterns

using the resources and techniques in this book.

Chapter 2 Tap into patterns

56

�Pattern: Social signup
Let’s say you’ve perused the pattern collections and found mention of a

social login in UI pattern’s account registration pattern.10 To learn more

about it, you might search for more information. To demonstrate, using the

resources included in the Appendix you could discover

•	 A detailed social signup pattern in UIPatterns.io’s social

login pattern (http://uipatterns.io/social-login)

•	 Real-world examples in Pttrns’s signups (https://

pttrns.com/?scid=9)

•	 A social signup pattern in the specific domain of social

interfaces: Designing Social Interfaces’ Signup or

Registration pattern (www.designingsocialinterfaces.

com/patterns/Sign_Up_or_Registration)

From here, we learn that a social signup pattern uses integration with

a visitor’s existing social media accounts to signup to a product without

creating a new username or password, fast-tracking the signup process.

Digging even further, a search for “social login pattern” and “social

signup pattern” finds these additional useful resources:

•	 Mobiscroll: Social login pattern (https://blog.

mobiscroll.com/social-login-pattern/)

•	 Nic Werner’s Product Pattern: Social login (https://

medium.com/product-labs/product-pattern-social-

login-3b50eb7e8db3#.oxs34buo3)

•	 Six Revisions: A Guide to Social Logins (http://

sixrevisions.com/web-development/social-logins/)

10�UI-Patterns, “Account Registration,” http://ui-patterns.com/patterns/
AccountRegistration.

Chapter 2 Tap into patterns

http://uipatterns.io/social-login
https://pttrns.com/?scid=9
https://pttrns.com/?scid=9
http://www.designingsocialinterfaces.com/patterns/Sign_Up_or_Registration
http://www.designingsocialinterfaces.com/patterns/Sign_Up_or_Registration
https://blog.mobiscroll.com/social-login-pattern/
https://blog.mobiscroll.com/social-login-pattern/
https://medium.com/product-labs/product-pattern-social-login-3b50eb7e8db3#.oxs34buo3
https://medium.com/product-labs/product-pattern-social-login-3b50eb7e8db3#.oxs34buo3
https://medium.com/product-labs/product-pattern-social-login-3b50eb7e8db3#.oxs34buo3
http://sixrevisions.com/web-development/social-logins/
http://sixrevisions.com/web-development/social-logins/
http://ui-patterns.com/patterns/AccountRegistration
http://ui-patterns.com/patterns/AccountRegistration

57

Now we know a good deal about social signups. As we progress

through the book, we’ll learn more about how to put patterns like this into

practice.

�Pattern: Lazy signup
Suppose you’ve also browsed the pattern collections and discovered

the lazy signup pattern (http://ui-patterns.com/patterns/

LazyRegistration) in UI pattern’s account registration pattern that lets

visitors “access a limited set of features, functionality, or content before

or without registering.” Here you learn it’s also called immediate

immersion or gradual engagement. From UIPatterns.io’s lazy signup

pattern (http://uipatterns.io/lazy-signup), we learn that while this

user flow pattern suggests delaying the account registration or signup

process, once that becomes necessary, you can use the social signup or

simple account registration pattern. Using the pattern resources listed in

the Appendix to explore further, we can find

•	 Real-world examples in UXArchive’s signing up tasks

(http://uxarchive.com/tasks/signing_up)

•	 A social signup pattern in the specific

domain of social interfaces: Designing Social

Interfaces’ Signup or Registration pattern

(www.designingsocialinterfaces.com/patterns/

Sign_Up_or_Registration)

•	 Mobile-specific signup patterns in mobile patterns

signup flows (www.mobile-patterns.com/search/

patterns?q=sign-up-flows%3Asubtags)

•	 Code example in Tachyons (http://tachyons.io/

components/forms/sign-up/index.html)

Chapter 2 Tap into patterns

http://ui-patterns.com/patterns/LazyRegistration
http://ui-patterns.com/patterns/LazyRegistration
http://uipatterns.io/lazy-signup
http://uxarchive.com/tasks/signing_up
http://www.designingsocialinterfaces.com/patterns/Sign_Up_or_Registration
http://www.designingsocialinterfaces.com/patterns/Sign_Up_or_Registration
http://www.mobile-patterns.com/search/patterns?q=sign-up-flows:subtags
http://www.mobile-patterns.com/search/patterns?q=sign-up-flows:subtags
http://tachyons.io/components/forms/sign-up/index.html
http://tachyons.io/components/forms/sign-up/index.html

58

•	 Code samples and examples under the “Signup”

tag in Zurb’s pattern tap and building blocks library

(https://zurb.com/library/)

•	 Delightful signup examples in LittleBigDetails

(http://littlebigdetails.com/search/signup)

A search for “Gradual engagement” also reveals these handy articles:

•	 UXBooth’s lesson in gradual engagement

(www.uxbooth.com/articles/a-lesson-in-

gradual-engagement/).

•	 Luke Wroblewski on A List Apart talks about

gradual engagement in Signup Forms Must Die

(https://alistapart.com/article/signupforms).

I’d also suggest exploring other onboarding patterns,11 such as

paywalls/signup walls. Something outside your initial ideas might be just

right for your needs.

Great, now we know what a signup might look like and the kinds of

design decisions we need to make. Next, let’s explore competitive analysis

and learning from the best.

�Competitive analysis
Continuing our research into patterns in the real world, we’ve reviewed

successful visual concepts for patterns. It’s also useful to review patterns

through the lens of business viability. Seeing patterns implemented by

highly successful companies can give you extra reassurance that you’re on

the right track. Likewise finding missed opportunities by your competitors

can set your designs apart.

11�UI-Patterns, “Onboarding,” http://ui-patterns.com/patterns/onboarding/
list.

Chapter 2 Tap into patterns

https://zurb.com/library/
http://littlebigdetails.com/search/signup
http://www.uxbooth.com/articles/a-lesson-in-gradual-engagement/
http://www.uxbooth.com/articles/a-lesson-in-gradual-engagement/
https://alistapart.com/article/signupforms
http://ui-patterns.com/patterns/onboarding/list
http://ui-patterns.com/patterns/onboarding/list

59

A solid place to start is by reviewing your direct competitors. Read

your competitors’ customer reviews, support forums, and social media.

Frequently you’ll find gripes about a product interface that highlight failed

solutions, which can indicate

•	 A custom solution or “innovation” where an existing

pattern could work better

•	 Poorly selected patterns, ineffective for the problem at

hand

•	 Poorly executed patterns, deviating from effective

pattern usage

Sometimes you’ll find delighted comments on ease of use, showing

where a pattern has worked effectively.

Beyond your direct competitors, you can find useful research sources

among indirect competitors:

•	 Largest Internet companies

•	 Largest tech companies

•	 Fortune 500 companies by revenue

•	 Alexa top 500 sites on the Web by traffic

•	 Industry leaders in your vertical market

•	 The best web sites in your space: informational /

e-commerce / NGO or non-profit / government / social

Seeing patterns used by larger brands also reveals some evidence that

the solution has worked on a meaningful scale.

Chapter 2 Tap into patterns

60

�Learn from the best
When improving your skills, it’s best to draw guidance from the

experts—both for learning efficient methods of achieving effective results

and for gaining feedback on your own progress. When deconstructing

a new skill12 you want to learn, interviewing an expert or reversing

an expert’s final results lets you break down complex solutions into

manageable pieces to study. Once you have a pattern you’d like to learn

more about, see if there’s a specialist that can teach you more.

There are experts in specific niches that can help with particular

qualities of the pattern your working on, such as Medium for reading

experiences and typography13 or Apple for design-centric products and

web sites (pro-tip: they do localization well too).

More broadly, you can also learn from experts in related industries that

have a longer history than modern web and product design. Here are some

examples:

•	 Animation, cinema, entertainment for motion design

•	 Editorial magazines for blogs

•	 Journals for article content sites

•	 Stock market for displaying real-time data

•	 Information architecture for navigation and search

Seek inspiration outside your own circles whenever you can. This

provides diverse perspectives, resulting in stronger designs.

Let’s see some examples of how to bring patterns to life in your product.

12�Richard Feloni, “Tim Ferriss explains how the ‘DiSSS’ system can be used to
learn any skill,” www.businessinsider.com.au/tim-ferriss-disss-system-to-
learn-anything-2015-3, March 2015.

13�Marcin Wichary, “Death to typewriters,” https://medium.design/death-to-
typewriters-9b7712847639#.q55st6v5w, February 2015.

Chapter 2 Tap into patterns

http://www.businessinsider.com.au/tim-ferriss-disss-system-to-learn-anything-2015-3
http://www.businessinsider.com.au/tim-ferriss-disss-system-to-learn-anything-2015-3
https://medium.design/death-to-typewriters-9b7712847639#.q55st6v5w
https://medium.design/death-to-typewriters-9b7712847639#.q55st6v5w

61

�Pattern: Notifications
A notification is a message object that presents timely information,

including alerts, errors, reminders, cookie warnings, and requests.

When you need to provide time-sensitive, contextual information to

a user, use a notification that appears close to the user’s point of focus or

current task.

Figure 2-26 shows an example of a notification.

In this example, the Commonwealth Bank of Australia shows an upsell

notification immediately after finishing a related task (making a payment)

and immediately below that task.

An important design decision for notifications is whether and how it

can be dismissed. A simple rule of thumb is asking yourself, “If the user

dismisses the notification, does the page still make sense?” For example,

Figure 2-26.  Screenshot of Commonwealth Bank’s post-task upsell
notification

Chapter 2 Tap into patterns

62

Semantic UI’s Nag (https://semantic-ui.com/modules/nag.html)

notifications “are used to present a user with a one-time message which

will persist until a user acknowledges the message. This can be used

for providing notices like the site’s use of cookies, an important change

to a site like a security breach.” In this case, you’ll need to make a note

somewhere in your system when they’ve acknowledged and dismissed the

notification, in a cookie, session, or user account records. Then don’t show

the notification again.

Another consideration is if you’ll need consecutive notifications and if

they should fade away automatically. For example, snackbars14 and toasts15

provide transient messages that automatically time out and disappear. Only

one is ever shown at a time, removing previous messages as they appear.

Furthermore, should the notification appear the next time the page

or screen is visited or when the user next logs in? Figure 2-27 shows an

example of a notification presented when a user logs in.

14�Google, “Snackbars,” https://material.io/design/components/snackbars.html.
15�Yan Zhu, “Toasts - Components - Spectre.css CSS Framework,” https://
picturepan2.github.io/spectre/components/toasts.html.

Figure 2-27.  Screenshot of Airbnb’s cookie notification

Chapter 2 Tap into patterns

https://semantic-ui.com/modules/nag.html
https://material.io/design/components/snackbars.html
https://picturepan2.github.io/spectre/components/toasts.html
https://picturepan2.github.io/spectre/components/toasts.html

63

This notification informs the user how cookies are used, what the user

is agreeing to, and where to learn more or manage “Cookie Preferences.”

�Containers for notifications

When presenting a notification, you’ll likely need to pair it with a content

container pattern.

For a task-specific notification, consider an inline panel, such as

Foundation’s Callout16 or Bootstrap’s Alert,17 immediately next to the task

itself. Figure 2-28 shows an inline panel related to the task that was just

completed.

For messages that extend to the entire system or are likely to stick

around after returning to a page or screen, use overarching screen

elements, such as Foundation’s Sticky navigation18 or Bootstrap’s fixed

Navbar.19 Figure 2-29 shows a fixed notification at the top of the page.

16�Zurb, “Callout,” http://foundation.zurb.com/sites/docs/callout.html.
17�Bootstrap, “Alerts,” http://getbootstrap.com/components/#alerts.
18�Zurb, “Sticky,” http://foundation.zurb.com/sites/docs/sticky.html.
19�Bootstrap, “Navbar placement,” https://getbootstrap.com/docs/4.3/
components/navbar/#placement.

Figure 2-28.  Screenshot of GitLab’s task-related notification

Chapter 2 Tap into patterns

http://foundation.zurb.com/sites/docs/callout.html
http://getbootstrap.com/components/#alerts
http://foundation.zurb.com/sites/docs/sticky.html
https://getbootstrap.com/docs/4.3/components/navbar/#placement
https://getbootstrap.com/docs/4.3/components/navbar/#placement

64

When triggering an alert according to some user action like logging

in after an extended period, try overlay components, such as Spectre’s

modal,20 Semantic UI’s dimmer,21 Bootstrap’s popover,22 or Foundation’s

tooltip.23 Figure 2-30 shows a modal containing a notification after

logging in.

20�Yan Zhu, “Modals - Components - Spectre.css CSS Framework,” https://
picturepan2.github.io/spectre/components.html#modals.

21�Semantic UI, “Dimmer,” https://semantic-ui.com/modules/dimmer.html.
22�Bootstrap, “Popovers,” http://getbootstrap.com/javascript/#popovers.
23�Zurb, “Tooltip,” http://foundation.zurb.com/sites/docs/tooltip.html.

Figure 2-29.  Screenshot of GitHub’s reload session banner

Chapter 2 Tap into patterns

https://picturepan2.github.io/spectre/components.html#modals
https://picturepan2.github.io/spectre/components.html#modals
https://semantic-ui.com/modules/dimmer.html
http://getbootstrap.com/javascript/#popovers
http://foundation.zurb.com/sites/docs/tooltip.html

65

Using one visual style for all of your notifications lets you establish a

cohesive and predictable experience for your customers or visitors. On the

other hand, adapting notifications to more precisely fit in close proximity

to their trigger can provide more clarity. When a notification appears near

the action that triggered it, the relationship is clear, and the user can figure

out what steps to take next. The value of these trade-offs varies—as you

might expect—by product or web site.

If there’s complex information needed to understand or resolve the

notification, include links to further information or a reference of where to

Figure 2-30.  Screenshot of Digital Ocean’s new feature notification
for returning visitor

Chapter 2 Tap into patterns

66

find this information in the future. Figure 2-31 shows an error that might

be confusing to some people.

Next to the form field, there’s a link labeled “What’s this?” to learn

more, as well as supplementary text below the form elaborating on how to

find the data needed to enter into the form and proceed.

Figure 2-31.  Screenshot of GitHub’s two-factor authentication
with error

Chapter 2 Tap into patterns

67

In most cases, you’ll want to include a clear call to action in your

notification, such as a button to acknowledge the message (“Got it!”), a

button to enable permissions (“Turn on notifications”), or a link to a task

to take further action (“Go to Your Account Settings”).

�The opportune moment

When making a request to enable permissions, wait until the user has

requested the feature that needs extra permissions. This is an example of

the Kairo pattern of waiting until the opportune moment to communicate,

so that you improve the chances of your user making the change you

want.24 In contrast, requesting desktop notifications for a first-time visitor

to your site before they’ve read any of your content is unlikely to succeed

compared to asking after they’ve read and shared your content.

Notifications are best used for short, time-sensitive messages. Don’t

use them when inline copy would be better, or the message can wait until a

better moment.

Using what we’ve learned so far and the pattern resources in the

Appendix, we can quickly find some notifications in action:

•	 FWA’s Outside case study (https://thefwa.com/

cases/outside) shows setting a push notification for

weather forecasts.

•	 Andrew McKay’s Atlassian notifications illustration

animation (https://dribbble.com/shots/2518631-

Notifications-Illustration-Animation) shows

an animation for Atlassian’s notification to “turn on

notifications” for first use.

24�UI-Patterns, “Kairos,” http://ui-patterns.com/patterns/Kairos.

Chapter 2 Tap into patterns

https://thefwa.com/cases/outside
https://thefwa.com/cases/outside
https://dribbble.com/shots/2518631-Notifications-Illustration-Animation
https://dribbble.com/shots/2518631-Notifications-Illustration-Animation
http://ui-patterns.com/patterns/Kairos

68

�Pattern: Good defaults
Good defaults for any information a user might need to provide can make

it easier or faster for the user to provide it.

Figure 2-32 shows an example of replying to a message using a single

button tap of one of three possible pre-canned messages, taking the hard

work out of composing a response.

For onboarding new users to an interface, use good defaults that

demonstrate value, like delighting users with examples of the most

common use case for the product. For example, a photo sharing site

could use selfies. Similarly, to avoid boring empty states for new users,

use placeholders that illustrate how the interface might look after the

user refines it with their personalized choices. One option is to pre-fill

applications with sample items and guide the user on how to interact with

them as we saw in playthroughs.

Good defaults require some understanding of what data has a better

than even chance of being selected, so user research is important here. You

might use defaults chosen from data provided by the majority of existing

users to pre-fill empty fields. In other cases, you could pre-fill empty fields

using existing data known about the current user, such as their location

(determined using IP address), screen size, time they are using the site,

and so on.

Figure 2-32.  Screenshot of LinkedIn’s good defaults

Chapter 2 Tap into patterns

69

To use good defaults effectively, it’s useful to support

•	 Browser or device autofill by using the correct HTML

labels and input types

•	 Password managers for their own autofill behavior as

well as password generation

•	 Filling out profiles using existing info from elsewhere

such as importing contacts from other address books

Good defaults are especially helpful when a new user has empty data

sets or other empty states—avoid blank slates that paralyze users with

ambiguity because they don’t know where to start.

You can also use good defaults when requesting information, including

for any form, to make the process of providing information faster. Balance

this with the tendency for people to skip fields that look complete already.

You could do this by asking for confirmation or visually treating it as

incomplete. Skip using good defaults completely if there are negative

consequences for a field being incorrect and overlooked. For example, a

phone case size selector could default to “iPhone X” because it’s the most

popular choice, but the user still needs to consciously choose the correct

size to match their phone or risk costly returns processes when receiving

the wrong case.

�Pattern: Coachmarks
A coachmark is instructional overlay content placed close to new features

to help new users learn difficult interfaces.

For example, see Pinterest’s first-use animated coachmarks, shown in

Figure 2-33.

Chapter 2 Tap into patterns

70

Pinterest would highlight new features in blue until the user had tried

them, as you can see in Figure 2-34.

Figure 2-34.  Screenshot of Pinterest’s animated coachmarks

Figure 2-33.  Screenshot of Pinterest’s animated coachmarks

Chapter 2 Tap into patterns

71

This uses motion to draw your attention and a blue outline to highlight

its newness, separating it from other, existing features. This style goes away

as soon as you’ve acknowledged the feature.

To use coachmarks effectively, show tiny snippets of microcopy near

important features to draw user’s attention and explain and visually

indicate the “modality”—that is, indicate whether or not interaction

with the coached feature will be impeded by the coachmark until you’ve

dismissed it. You can use a transparent overlay over the rest of the page.

You might consider automatically dismissing the coachmark when the

user is interacting with the page. Figure 2-35 shows an example of how

LinkedIn introduced people to the Enter key behavior in messages using a

coachmark.

Figure 2-35.  Screenshot of LinkedIn’s Enter key notification

Chapter 2 Tap into patterns

72

Because coachmarks draw attention, use them in moderation (don’t

fill the page with coachmarks). Only use them when new users need

assistance but providing the content inline would hamper the majority

usage by return users. Figure 2-36 shows an example of a coachmark for

introducing a new feature that only needs to be explained once.

It would likely be unnecessary to clutter the interface with that

explanatory text all the time, so it can be reserved for a coachmark.

Coachmarks and walkthroughs can be tricky. Imagine installing an

app on a new device, logging into the same account as usual, and being

forced through a lengthy collection of coachmarks explaining features

you’ve used a thousand times before you can use them again. This is an

opportunity for interface reduction. For any user account notifications,

Figure 2-36.  Screenshot of SoundCloud use coachmarks to introduce
Stations

Chapter 2 Tap into patterns

73

record the user’s acknowledgment of the message when they dismiss it,

and never show it again. Figure 2-37 shows a notification that would be

superfluous for many repeat visitors.

�Implementing and tailoring patterns
After learning new patterns, clarifying your design problem, and

identifying patterns relevant to your interests, how might you tailor a

pattern precisely to your needs? It’s not enough to name the solution

to your problem in the given context; you need to flesh out all the

implementation details. Many patterns will describe the list of things you

need to think about (see Chapter 1). It’s also important to use your own user

research—like the user journeys and personas we’ll look at in Chapter 3.

Sometimes, you’ll need to specify how the pattern is implemented and how

it might vary across your product—learn more in Chapter 4. Sometimes

you’ll need to avoid them turning into anti-patterns—see Chapter 5. Finally,

see Chapter 6 to string them altogether in your product.

One important thing is that you do user research. Test. Prototype. Test

some more.

Figure 2-37.  Screenshot of ListenOnRepeat’s coachmark lets visitors
know they can search without interrupting their current video

Chapter 2 Tap into patterns

74

�Pattern: Progressive disclosure
A previous version of Apple’s MacOS Human Interface Guidelines defined

Apple’s “User Control” design principle as “The principle of user control

presumes that the user, not the computer, should initiate and control

actions.” Further, Apple described progressive disclosure as “hiding

additional information or more complex UI until the user needs or

requests it” to “help you provide the right level of user control.”25

For example, see MailChimp’s disclosure element (https://

ux.mailchimp.com/patterns/forms#disclosure) shown in Figure 2-38.

To progressively disclose information, hide the extended information

by default and provide a trigger that lets the user activate visibility of the

hidden content, such as a link. After activation, bring more content into

view in direct proportion to the user’s desire for more content.

25�Apple, “Design Principles,” http://web.archive.org/web/20161012234942/
https://developer.apple.com/library/content/documentation/
UserExperience/Conceptual/OSXHIGuidelines/DesignPrinciples.html.

Figure 2-38.  Screenshot of MailChimp’s disclosure element

Chapter 2 Tap into patterns

https://ux.mailchimp.com/patterns/forms#disclosure
https://ux.mailchimp.com/patterns/forms#disclosure
http://web.archive.org/web/20161012234942/https://developer.apple.com/library/content/documentation/UserExperience/Conceptual/OSXHIGuidelines/DesignPrinciples.html
http://web.archive.org/web/20161012234942/https://developer.apple.com/library/content/documentation/UserExperience/Conceptual/OSXHIGuidelines/DesignPrinciples.html
http://web.archive.org/web/20161012234942/https://developer.apple.com/library/content/documentation/UserExperience/Conceptual/OSXHIGuidelines/DesignPrinciples.html

75

Use progressive disclosure when most users do not need all the

information and some users will need more information at some point

in time.

Many common user interface components incorporate this technique

by default, including

•	 Accordions

•	 Tooltips

•	 “View all” links (e.g., on comment threads or product

ranges)

•	 Read more links for inline content expansion

�Pattern: Staged disclosure
Similar to progressive disclosure, staged disclosure presents additional

information in steps (or stages) according to the user’s direct request.

In contrast, however, staged disclosure refers to a linear flow tunneling

through a larger process. It advances the distance through a process rather

than the depth into optional information.

For example, see Apple’s iPhone 8 product selection flow that provides

three steps—choosing model, finish, and capacity shown in Figure 2-39.

Chapter 2 Tap into patterns

76

This pattern is commonly used in signup, setup, purchase flows, and

workflows.

To stage disclosure of information, chunk extended information into

smaller, logical groups and present one at a time. Similar to progressive

disclosure, provide a trigger to navigate to the next step, but also back

links as needed, and consider pairing staged disclosure with a progress

indicator.

Use staged disclosure when providing all the information at once

would be overwhelming—focus users on one task or piece of information

at a time.

Figures 2-40 to 2-44 show Dropbox’s staged disclosure for introducing

two-factor authentication concepts.

Figure 2-39.  Screenshot of Apple’s multistep process

Chapter 2 Tap into patterns

77

Figure 2-40.  Screenshot of Dropbox two-factor authentication
introduction

Figure 2-41.  Screenshot of Dropbox two-factor authentication
introducing generator app

Chapter 2 Tap into patterns

78

Figure 2-42.  Screenshot of Dropbox two-factor authentication
generated code input

Figure 2-43.  Screenshot of Dropbox two-factor authentication phone
number input

Chapter 2 Tap into patterns

79

�Pattern: Progressive reduction
Finally, in contrast to progressive disclosure, rather than expanding

on information as a user needs it, progressive reduction is the practice

of reducing detail as a user no longer needs it. Expert users of an

interface—loyal, repeat visitors, power users, subject matter experts,

specialists—can learn an interface and no longer want the additional help

provided to new users. You might reduce coachmarks and help tips after

first use or start shrinking and removing labels on buttons. Expert users

no longer need training wheels so stop cluttering the interface is with

unnecessary information.

To progressively reduce information, remove coachmarks, tutorials,

and feature explanations when they are no longer needed and help the

expert focus on new content. Restore these extras when the user has not

accessed the feature recently. Provide explicit user-initiated links to reduce

interface noise, such as “Skip tutorial,” “OK, got it,” “Not now,” “Later |

Close,” and “Hide this.” You might consider pairing progressive reduction

with a temporary notification (as described previously) or an inline hint

(http://ui-patterns.com/patterns/inline-hints) to indicate where

the content may be found in the future, such as a reference guide or user

settings. Alternatively, progressively reduce the visibility of features based

Figure 2-44.  Screenshot of Dropbox two-factor authentication
success message

Chapter 2 Tap into patterns

http://ui-patterns.com/patterns/inline-hints

80

on recency and frequency of use alone, without intervention from the user.

This takes control away from the user, so use with caution.

Use progressive reduction when expert users get tired of seeing the

same messages that they no longer need, specifically when the user has

recently and frequently engaged with a feature.

Examples of progressive reduction include

•	 “Remember me” checkboxes to stop asking for

usernames and passwords.

•	 “Don’t ask me again” checkboxes to stop asking

questions every time a user initiates an action like

deleting a file or dismissing a survey.

•	 Reducing notifications as a user starts ignoring them.

Code learning app, Enki, for example, turns off

notifications if their daily reminders are ignored for

too long.

•	 Hiding old feed activity. If it’s been a long time since

a Twitter user has looked at their feed, for example,

Twitter will show the last tweet the user saw and fold

away all the old activity that has passed since then in

favor of showing recent content. The user, however, can

tap a link to immediately restore the hidden content.

I think a direct comparison between progressive disclosure and

reduction means that the reduction should directly support the user’s level

of control—it should be user initiated. Slack, for example, automatically

turns off email notifications for new users when they turn on push

notifications to the mobile app. Technically this is not user initiated but

system initiated. Slack does, however, provide a link to the user’s settings,

so they may turn the emails back on if they wish. They delicately walk the

line of giving the user control as well as making smart guesses at actions to

take for the user.

Chapter 2 Tap into patterns

81

Finally, my favorite example of progressive reduction is apps

remembering windows I’ve collapsed and hidden in the past to let me

clear up the interface and focus on my task uninhibited.

�Bringing it all together
From here you can begin to recognize patterns across the Internet. Within

your own products, you can recognize patterns and where pages differ,

which can give you hints about opportunities to consolidate and refine

inconsistencies. You’ve seen how to navigate resources for learning more

patterns. Now we’ll wrap up how to make the most of pattern resources

with an example task of redesigning a login form.

�Pattern: Login form
A login form (or sign in) asks for an identifier, such as a username or email

address, and authentication information, usually a password, to access a

user account containing private, personalized information.

Figure 2-45 shows an example of a login form, asking for an email

address and password.

Chapter 2 Tap into patterns

82

Show a login form to visitors when they need to access their content,

either right before performing an action that needs an account (such as

following or friending a person) or when directly accessing a “log in” link.

When a user submits the login form, you need to check their details,

and if they are incorrect, show validation feedback and help them

recover—it’s common to include a password recovery link in a login form.

After successfully logging in, return the user to the content they requested

before presenting the login form.

Using an email address as a username is an effective usability hack

that’s extremely memorable. It also doubles as a unique identifier for the

account and a communication channel, so you may contact the user about

the account. In this way, a telecommunications company might use a

phone number as a username to minimize the number of details the user

Figure 2-45.  Screenshot of Litmus’s login form

Chapter 2 Tap into patterns

83

needs to remember. Alternatively, an identifier could also be a socially

recognizable username like a twitter handle, for example, @lara_hogan.

Naturally, you won’t need to use a login form if you don’t have account

registration or if you use the social signup pattern where you’d need to

connect to another service instead.

�Example: Redesigning a login form
Given the task of redesigning an existing modal, you can explore the modal

pattern to inform your design.

Figure 2-46 shows a fictional login form.

Figure 2-46.  You’ve been tasked with redesigning this login form

Chapter 2 Tap into patterns

84

�From the pattern

From the details of the login form pattern we’ve just seen, we can see that

we have design decisions to make about when to show the form, how to

help people recover from errors, and what to use as an identifier.

Suppose the login form is for an information site that lets you save

articles. When you save an article, you need to be logged in so that you can

be shown that saved article again in the future. So we’ll add some details.

Figure 2-47 shows an amendment to include the text, “To save this article,

you must sign in to your account.”

Figure 2-47.  A reason to log in

Chapter 2 Tap into patterns

85

Now you can see why you need to log in to your account and that you

can tap a closing “×” to leave.

To help people recover from errors, we’ll add a password reset link

(“Forgot password?”), as shown in Figure 2-48.

Finally, for a login identifier, we’ll use email address. Figure 2-49 shows

“Email address” for the form field label and placeholder text, “e.g. jane.

smith@example.com”.

Figure 2-48.  Password recovery

Chapter 2 Tap into patterns

86

�Pattern resources

By researching our pattern resources, we find a few UI frameworks suggest

a “Remember me” checkbox to help users stay signed in. Figure 2-50

shows the new checkbox.

Figure 2-49.  Email address as an identifier

Chapter 2 Tap into patterns

87

This approach can help users avoid frequently needing to log in.

There’s a risk though if your users are accessing your product on shared

devices, such as in a university, library, or corporate network: other people

may see their content when they leave the device. For this example, we’ll

assume the majority of users are accessing the product privately on their

own personal devices.

Figure 2-50.  Remember me checkbox

Chapter 2 Tap into patterns

88

�Searching for patterns

To learn more about the login form pattern, we could look for “login” or

“sign in” to expand our results. By searching for “login form best practices,”

you can find 3 Rules for Painless Account UX: Login by Jessica Enders

(www.sitepoint.com/3-rules-painless-account-ux-login-screens/),

which suggests changing “Remember me” to tell the user exactly what will

happen. For example, “Stay signed in on this device.” Figure 2-51 shows

update text for the checkbox label, “Stay signed in on this device.”

Figure 2-51.  Stay signed in on this device checkbox

Our login form is complete.

Chapter 2 Tap into patterns

http://www.sitepoint.com/3-rules-painless-account-ux-login-screens/

89

�Competitive analysis

For competitive analysis, we might consider Medium, as it’s a high-traffic

web site that lets you save articles. Interestingly, Medium shuns the login

form pattern in favor of password-free accounts using email (https://

blog.medium.com/signing-in-to-medium-by-email-aacc21134fcd), as

shown in Figure 2-52.

Figure 2-52.  Screenshot of Medium asking only for your email address

Chapter 2 Tap into patterns

https://blog.medium.com/signing-in-to-medium-by-email-aacc21134fcd
https://blog.medium.com/signing-in-to-medium-by-email-aacc21134fcd

90

When you need to sign in, Medium will send a magic link to your email

address, as shown in Figure 2-53.

This means that your email account becomes the main point of failure

for security. For our example, we’ll stick with the simple login form.

Innovation can occasionally make patterns redundant, so maybe in the

future login forms won’t exist anymore.

�Learning from the best

At the time of writing, Facebook is the virtual community with the largest

number of user accounts in the world at over 2 billion.26 To learn from

Facebook, we can look at their own login form as well as their login best

26�Wikipedia, “List of virtual communities with more than 1 million users,”
https://en.wikipedia.org/wiki/List_of_virtual_communities_with_
more_than_1_million_users.

Figure 2-53.  Screenshot of Medium telling you they sent you a link to
sign in

Chapter 2 Tap into patterns

https://en.wikipedia.org/wiki/List_of_virtual_communities_with_more_than_1_million_users
https://en.wikipedia.org/wiki/List_of_virtual_communities_with_more_than_1_million_users

91

practices (https://developers.facebook.com/docs/facebook-login/

best-practices). In their best practices, they suggest you “provide a

glimpse of the content available to people prior to logging in.” For products

with visually compelling content, showing a glimpse of what’s to come in a

background image could be enticing. For our example of logging in to save

an article though, there’s not a lot to show. We’re done for now.

�Summary
We’ve talked about how to discover new patterns and find examples of

them in the wild. We’ve also learned about these new patterns:

•	 Walkthrough

•	 Playthrough

•	 Newsletter signup

•	 Validation feedback

•	 Social signup

•	 Lazy signup

•	 Notifications

•	 Good defaults

•	 Coachmarks

•	 Progressive reduction

•	 Progressive disclosure

•	 Staged disclosure

Now that you’ve seen these patterns, be careful to avoid treating them

like hammers; not everything is a nail. Next, we’ll explore how users find,

read, and share content, as a lens for analyzing patterns in depth and

deciding which pattern to use and when, so you might see when a pattern

is the right tool for the job.

Chapter 2 Tap into patterns

https://developers.facebook.com/docs/facebook-login/best-practices
https://developers.facebook.com/docs/facebook-login/best-practices

93© Diana MacDonald 2019
D. MacDonald, Practical UI Patterns for Design Systems,
https://doi.org/10.1007/978-1-4842-4938-3_3

CHAPTER 3

Deciding which pattern
to use and when

Hitting the right note includes knowing when not to strike.

In this chapter, we’ll look at considering the context of your design

problem so that you can evaluate a pattern’s suitability; not every pattern

is appropriate to every problem. For context, we’ll consider user needs,

technical challenges, and business implications for patterns. We’ll explore

principles for evaluating the effectiveness of patterns.

Throughout the chapter, we’ll see patterns for finding, reading,

collecting, and sharing content.

�Context
There are a few particular aspects you may consider to define the context

of design problems: user journeys, user tasks, personas, constraints, and

content or data.

User journeys or customer journeys (https://conversionxl.com/

customer-journey-maps/) are the story of how a user navigates your

product, including how they perceive your product at every touch point

on their way toward their goal. They describe the setting and sequence of

events. Journeys encompass discovery and awareness of your brand,

https://conversionxl.com/customer-journey-maps/
https://conversionxl.com/customer-journey-maps/

94

first use of your product, conversation across channels including social

media, loyal engagement, and actions taken with your product.

User tasks or Jobs to be Done (https://blog.intercom.com/

finding-jobs-your-product-is-used-for/) establish what your user is

trying to accomplish, such as find a restaurant’s opening hours, play to kill

time waiting for a train, update social status, or crop unwanted details out

of a photo.

User groups or personas (www.nngroup.com/articles/persona/) can

be used to describe the identities and experiences of your users. A person’s

interaction with your product is influenced deeply by their personality,

motivations, expertise, location, mood, etc., and that’s not even touching

on their demographics.

Constraints include all the limitations set on a solution. This ranges

from the user’s environment including their devices (phone, TV, watch),

Internet connection (fast, patchy, filtered), and input mechanism (track

pad, keyboard, voice, touch screen) to your technology, business,

and design needs. There might be ethical, legal, resource, or security

constraints that influence your design choices.

Content and data include all the substance of your product. Content

usually means copy (text), images, video, and all other media and

information, including user-generated content like photos on social

media. Data often describes information about the user or product like

search results, current address, or filenames.

In the following text, we’ll see how each of these factors influences

when a pattern is appropriate.

�Pattern: Autocomplete
The autocomplete pattern automatically completes typed user input with

matching results from a larger data set.

Chapter 3 Deciding which pattern to use and when

https://blog.intercom.com/finding-jobs-your-product-is-used-for/
https://blog.intercom.com/finding-jobs-your-product-is-used-for/
http://www.nngroup.com/articles/persona/

95

As human beings, as flawed, mere mortals, your site visitors cannot

always recall the full name of what they’re searching for, or how it is

spelled, or even what you happen to call it. As such, autocomplete lets your

system match your visitor’s first few key strokes with possible solutions.

Autocomplete will usually attempt to finish the word you have started, like

in predictive text on mobile phones, saving you keystrokes and time, while

efficiently finishing the task. This is extremely convenient when accurately

typing a phrase is difficult, such as on mobile phones, graphic tablets,

voice control, and so on.

Figure 3-1 shows the SwiftKey keyboard, which will let you

autocomplete the previously typed text “de” with “design,” “dev,” or

“development” in a single tap.

Figure 3-1.  Screenshot of the SwiftKey keyboard

Chapter 3 Deciding which pattern to use and when

96

In search, autocomplete is often used to promote popular results, such

as Apple matching “iph” to “iPhone” and specific results like “iPhone XR”

and “iPhone 8 and iPhone 8 Plus,” as shown in Figure 3-2.

�Autosuggest
Similar to traditional “autocomplete,” “autosuggest” breaks beyond the

input provided to suggest alternative, relevant answers. It might even

suggest results from multiple data sets. For example, after the United

Kingdom voted to leave the EU, it’s been suggested that afterward many

people in that country began searching Google for “What is the EU?”

Figure 3-2.  Screenshot of Apple’s autocomplete search that suggests
quick links to specific products and suggested searches to related
products like cases

Chapter 3 Deciding which pattern to use and when

97

and “What is brexit?”.1 As you can see in Figure 3-3, Google lets you

autocomplete the words “what is the europea” with “what is the european

union,” showing the text that you can autocomplete by pressing the Tab

key (“n union”) in light gray text in the search input field.

Google also blends autocomplete and autosuggest by letting you

autocomplete the whole sentence using other noun phrases, showing

additional results below the search input field (emphasizing the available

autocomplete text with strong, bold text).

In Figure 3-4, you can see Google also autosuggests similar phrases,

such as “what is europe saying about brexit,” that can be quite different

from the text you’ve typed so far, “What is Brexit EU?”.

1�Alina Selyukh, “After Brexit Vote, Britain Asks Google: ‘What Is The EU?’,” www.
npr.org/sections/alltechconsidered/2016/06/24/480949383/britains-
google-searches-for-what-is-the-eu-spike-after-brexit-vote, June 2016.

Figure 3-4.  Screenshot of Google’s autosuggest that proposes
alternative queries that might be relevant

Figure 3-3.  Screenshot of Google’s autocomplete highlights the
differences in text that you can complete

Chapter 3 Deciding which pattern to use and when

http://www.npr.org/sections/alltechconsidered/2016/06/24/480949383/britains-google-searches-for-what-is-the-eu-spike-after-brexit-vote
http://www.npr.org/sections/alltechconsidered/2016/06/24/480949383/britains-google-searches-for-what-is-the-eu-spike-after-brexit-vote
http://www.npr.org/sections/alltechconsidered/2016/06/24/480949383/britains-google-searches-for-what-is-the-eu-spike-after-brexit-vote

98

Another occasion to use autocomplete is when you might use a

different name for the same idea, like showing “autosuggest” in results for

“autocomplete.”

Immediately showing results the moment a user asks for them is

necessary to provide feedback about how the system behaves. Without

snappy feedback, the user might see no results at all and be unable to access

what they need. If you’ve typed an entire phrase before the autocomplete

presents results, you might miss the functionality completely. If you

searched for “iPhone 77” without seeing any autocomplete results, you’d

miss the result linking directly to the “iPhone 7” product, see regular search

results, as shown in Figure 3-5, and never know the autocomplete existed.

�User context and performance
There are any number of reasons your autocomplete might be too slow.

Both the processing needed to find matches and the rendering of results

take time. If there’s any search-side processing performed (for large data

sets), your user’s patchy Internet connection on the train home might be

a problem. If there are complex results to show like product images, your

Figure 3-5.  Screenshot of a search for “iPhone 77” that shows the
iPhone 7 as one of two results

Chapter 3 Deciding which pattern to use and when

99

user’s old mobile device with a poor CPU and dying battery might have

insufficient power to render results quickly. Figure 3-6 shows images in

autocomplete search results that might have performance considerations.

In these contexts, autocomplete is probably a poor solution.

To otherwise help users navigate a large set of results, you might instead

use pagination and search filters, which we’ll look at shortly. To be

forgiving of a user’s misspellings, you might use spell check or present

alternative (correctly spelled) results after they’ve finished typing.

To learn more about autocomplete pattern design, see Baymard

Institute’s 8 Design Patterns for Autocomplete Suggestions (https://

baymard.com/blog/autocomplete-design).

�Pattern: Search filters
Search filters reduce search results by excluding irrelevant information

using contextual filters to refine initial results.

Figure 3-6.  Screenshot of Warby Parker’s site presenting product
photos with their names in autocomplete search results

Chapter 3 Deciding which pattern to use and when

https://baymard.com/blog/autocomplete-design
https://baymard.com/blog/autocomplete-design

100

Figure 3-7 shows an example of search filters.

Search results can be massive. The typical Google search produces

millions of results, and most of the results will not be seen. To find a needle

in a haystack like that, a searcher might try a different search term with

fewer results, or you could provide search filters through which your user

can indicate which aspect of the results they are most interested in.

Search filters are great when the searcher doesn’t know exactly

what they’re looking for but have some criteria in mind by which they’ll

recognize the right result when they see it. For example, your user knows

they want to see a new movie and they don’t know which movie yet, but

they do know what genres they like, directors or actors they admire, which

cinemas nearby they’d like to see a movie at, and what time of day they can

Figure 3-7.  Screenshot of Ugmonk searches, which can be filtered by
style, color, and material

Chapter 3 Deciding which pattern to use and when

101

see a movie. In this scenario, your user can make their preferences known

by using your filters to narrow the full list of currently showing movies

down to those that fit their needs.

Using search filters, your users can dynamically update results with

contextual options that they may not have even considered before to

narrow down the search. See, for example, Birdsnest’s (www.birdsnest.

com.au/womens/dresses) rarer filtering options, such as “body shape,”

shown in Figure 3-8.

Figure 3-8.  Screenshot of Birdsnest’s search filters that include body
shape, occasion, and personality

Chapter 3 Deciding which pattern to use and when

http://www.birdsnest.com.au/womens/dresses
http://www.birdsnest.com.au/womens/dresses

102

Use the search filter pattern when traits are obvious like media

type (maps, images, books), price, and size. Avoid this pattern when

categorization is hard, when there are very few results, or when clear

navigation and hierarchy is more suitable.

Search filter patterns are often seen with scoped search, where you

first choose some larger exclusive category, like dresses or jeans, before

showing search filters relevant to their results, like maxi dresses or straight

cut jeans. We’ll look more at mixing and matching patterns and their

implications in Chapter 6.

Using a filter is basically a crutch for being unable to instantly divine

what the visitor is looking for. Ideally, you’d immediately present their

exact desires. You might find alternatives to search filters for discerning

their needs, such as seeing they’ve come to your site from an ad for blue

hats, and instead of showing a search listing filtered to “hats” that are

“blue,” show only a result listing containing blue hats. No clutter, no

distractions. This illustrates how the user journey and task could prove the

search filter pattern irrelevant in this context.

�Information architecture
Information architecture is the structure of your product’s

information—how it’s organized and labeled. Organizing your product

effectively helps users find content by its grouping and relationships. Dan

Brown suggests eight principles of information architecture:2

	 1.	 Principle of objects: Treat content as a living,

breathing thing with a lifecycle, behaviors, and

attributes.

2�Dan Brown, “Eight Principles of Information Architecture,”
www.designprinciplesftw.com/collections/eight-principles-of-
information-architecture.

Chapter 3 Deciding which pattern to use and when

http://www.designprinciplesftw.com/collections/eight-principles-of-information-architecture
http://www.designprinciplesftw.com/collections/eight-principles-of-information-architecture

103

	 2.	 Principle of choices: Create pages that offer

meaningful choices to users, keeping the range of

choices available focused on a particular task.

	 3.	 Principle of disclosure: Show only enough

information to help people understand what kinds

of information they’ll find as they dig deeper.

	 4.	 Principle of exemplars: Describe the contents of

categories by showing examples of the contents.

	 5.	 Principle of front doors: Assume at least half of the

web site’s visitors will come through some page

other than the homepage.

	 6.	 Principle of multiple classification: Offer users

several different classification schemes to browse

the site’s content.

	 7.	 Principle of focused navigation: The principle of

focused navigation—don’t mix apples and oranges in

your navigation scheme.

	 8.	 Principle of growth: Assume the content you have

today is a small fraction of the content you will have

tomorrow.

These are solid foundations for evaluating patterns. The search filter

pattern itself embodies the principles of choices and multiple classification.

In applying the pattern, consider how the search filter labels might

exemplify the items within each filter. Filter by “category” or “type” gives

you no indication of whether these filters will help a user in their search.

Alternatively, filter by “weather” or “color” gives them a sense of what they

might find underneath. By considering the principle of growth, you might

Chapter 3 Deciding which pattern to use and when

104

conclude that while your horizontal filter toolbar design3 looks fine now

with just four filters, as the number of results grows, you might not fit the

extra filters needed to sufficiently winnow the results. Conversely, as the

collection grows, you might need to be more judicious in only showing the

most valuable filters, occasionally culling some.

This brings us back to considering the context of your data and the

user’s journey. For example, Airbnb shared in a video about search at

Airbnb4 that filtering by price and deal-breakers were in the top four most

important aspects to their users’ searches, and so they prioritized the

price filter as well as easy access to the many deal-breaker filters (like pet-

friendliness) in their design.

�Multiple filters
Sometimes search filters let you select multiple filters at the same time.

To clarify how two filters work together, you can show the matching criteria

in the results. For example, using Birdsnest’s search filters, you can select

items that are less than $30 or more than $150. In the results you can then

see the prices and which products match each of these criteria, as shown

in Figure 3-9.

3�Christian Holst, Baymard Institute, “ Filtering UI: A Horizontal Toolbar Can
Outperform the Traditional Sidebar,” https://baymard.com/blog/horizontal-
filtering-sorting-design, May, 2015.

4�Airbnb on YouTube, “Search @ Airbnb,” https://youtu.be/l2ywLWyRjA8?t=312.

Chapter 3 Deciding which pattern to use and when

https://baymard.com/blog/horizontal-filtering-sorting-design
https://baymard.com/blog/horizontal-filtering-sorting-design
https://youtu.be/l2ywLWyRjA8?t=312

105

It might seem obvious for “price” that a dress is only one price, so

selecting two price ranges (less than $30 and more than $150) should find

products priced in both ranges rather than no results, but it’s less obvious if

choosing “Casual chic” and “Classic” will find products in both those styles

or only products that are classic and casual chic. Feedback is needed to

clarify filter functionality.

�Filter feedback
To give users more feedback when they interact with your filters, you

can subtly reinforce filter behavior, without cluttering results by using

matching images. Here you can see in Figure 3-10 product images with the

models’ arms shown when you filter by the “Show Off Arms” body shape.

Figure 3-9.  Screenshot of Birdsnest’s search filters, which let you
choose several filters

Chapter 3 Deciding which pattern to use and when

106

There’s no need to add text to each result to say “shows off arms” when

it can be seen from the photos. In contrast, the price needs to be shown as

text next to each item.

Another method to give feedback about search filters is using tags to

show the selected filters, as you can see in Figure 3-11. This is particularly

helpful on smaller screens where you may be unable to show filters and

results at the same time and therefore unable to indicate which filters are

selected in the filters themselves. If the tags were not shown here, you

would be unable to see that the results are filtered at all.

Figure 3-10.  Screenshot of Birdsnest where product images
match filters

Chapter 3 Deciding which pattern to use and when

107

�Choosing filters
The filters offered must meaningfully classify and describe the results. To

illustrate, a filter for “good movies” will be challenging because the criteria

for deciding what’s good are highly subjective, so it will be unclear what

results are in each filter. If, however, you clarified the filter as “BAFTA

award-winning films,” some clear criteria for “good” are being used, and

the results will be more predictable.

Figure 3-11.  Screenshot of Harvard Business Review, which shows
the refined search results are case studies about the technology
industry

Chapter 3 Deciding which pattern to use and when

108

In Figure 3-12, you can see a search term and a search filter for “what”

kind of job, a filter for “where,” as well as further options to refine the

search, including salary bands.

�Live filters
Refining results in real time using “live” filters—instantly updating

results—lets your users directly manipulate the results and gives them

control to respond to feedback: each set of new results lets them know

whether they need to add another filter to find content right for them.

For example, if your user’s first refinement still shows millions of results,

they know they need to keep filtering. During the process of updating the

results, you can convey what’s happening to your users by presenting a

loading state and then a completed state. The loading state might animate

the old results out and new results in to draw attention to their changes.

The completed state might cease all movement or add a visible detail to

the filter after results are loaded, which indicates it’s “on.” For tiny screens,

you might be unable to fit the results next to the filters, requiring a different

approach to how you present the loading state. Instead, you might batch

filters.

Figure 3-12.  Screenshot of Seek’s filters, which show available filter
options, selected filter options, and the number of results

Chapter 3 Deciding which pattern to use and when

109

�Batch filters
You might let your users batch together their filter choices by selecting

a few filters at once and choosing “Search,” “Apply,” or “Done” before

presenting any results. This is particularly useful if your product has

a lot of data. Otherwise, your user might be frustrated by irrelevant,

distracting information until they’ve added the final filter necessary to

produce the results they want. Google Analytics updated their UI in early

2016 to let users navigate different reports, select “data granularity,” and

add additional dimensions before updating the results. Previously, any

selection would immediately block all subsequent interaction until the

results had updated (a time-consuming activity) before you could select

anything else needed to actually filter the data to the results you wanted.

Figure 3-13 shows Airbnb’s batch filters.

Chapter 3 Deciding which pattern to use and when

110

These filters let you select the number of rooms and beds, toggle

“superhosts,” choose amenities, and tap “See homes” before processing

results.

Figure 3-13.  Screenshot of Airbnb’s batch filters

Chapter 3 Deciding which pattern to use and when

111

�Error prevention and recovery
Nobody likes zero results, so nudge the user toward successful searches.

This will depend a lot on the shape of the data. Show the most important

filter first. Show how many results will be available with subsequent filters,

or prevent access to additional conflicting filters. Avoid filters that only

match single items. Figure 3-14 shows Airbnb’s price filter.

Figure 3-14.  Screenshot of Airbnb’s price filter

This filter shows results at each price point using a miniature bar chart

and a range slider, indicating areas that would produce zero results.

Using a “clear filters” option provides people with an emergency exit

when the results are bad so they can abandon their choices so far and

start over.

Chapter 3 Deciding which pattern to use and when

112

�Pattern: Activity feed
An activity feed shows recent activity in a timeline—a list of events in

chronological order. Activity feeds help users keep up to date on changing

events and information that are important to them. They’re common

staples of social media sites.

Figure 3-15 shows an example of an activity feed.

Figure 3-15.  Screenshot of Asana’s activity feed, which shows tasks
assigned to you by other members, the projects they belong to, and by
whom

It can be difficult sometimes to keep up with everything that’s

happening. Within a product, there might be a whole community and

ecosystem of activity and countless events occurring at any moment. By

using an activity feed, you can help people identify events that matter to

them in a sea of noise, and then engage further with that event and your

product. This is particularly helpful when a lot can happen between the

times a user engages with your product, such as reading the world news in

the morning and catching up on the last day’s events.

Chapter 3 Deciding which pattern to use and when

113

As activity feeds are used to enable users to look through information,

scannability is a high priority. You can segment activity into digestible little

chunks, where the visitor may then leap off into further related action on

an activity, if they wish. Alternatively, they might continue on consuming

the stream without acting on events.

To aid scanability, think about

•	 Showing when an event occurred (more on that in the

following text).

•	 Exactly what happened—What’s the nature of the

event? A photo uploaded? A status update? Money

sent? An item shared? A new task to do?

•	 Clearly indicating who initiated an event, such as

prominently showing a user’s display photo and name

or handle in a social media activity feed.

•	 If there are multiple parties involved, visually

demonstrate the relationships between them,

such as listing an individual user as well as the

organization they belong to.

To show events over time, it’s important to make the time the event

occurred visible, relevant, and useful. Your product will determine what’s

“relevant,” but here are some examples.

•	 For a blog or news site, show the day, month, and year. Is

the exact time a post was published useful to your users?

•	 In a real-time social media feed like Twitter, where

drama can unfold quickly, show the date and time

down to the minute and maybe even seconds.

Chapter 3 Deciding which pattern to use and when

114

•	 For a health and fitness app, show today’s events or this

week’s progress. While the year’s summary might be

useful, it’s unlikely each event like a workout or meal

eaten is interesting in a timeline of that period.

Instead of absolute dates and times like “1 January, 3:24PM,” it’s

sometimes more pertinent to show relative times like “3 minutes ago” or

time between milestones, such as “While you were away” or “Yesterday.”

The older content is, the more likely it should be archived in away in a

larger category like “Older than 5 years ago.”

Once a user finds something of particular interest in an activity feed,

you might let them take further action, like

•	 Follow a link to read more. For example, follow a news

teaser to the full article.

•	 Save the event. For example, bookmark a shared social

object.

•	 Manipulate or interact with the event. For example,

comment on an event, complete a task, remove from

the feed.

Given the repetition of these available actions for a large number of

items in a feed, you might hide the actions a user can take until they interact

with the event, such as showing “share buttons” and other controls on hover

for nontouch devices or after tapping to select the event on touch devices.

To help users track recent events that matter to them, an activity feed

needs to effectively manage the volume of activities. Too little activity

might mean your product isn’t providing enough value and appears

quiet or boring. Too much activity and the user might be overwhelmed,

defeating the purpose of the feed. For high volumes of activities, some

clustering may be needed. For example, you might collapse all of “Sam’s”

recent activity—sharing hundreds of photos—into a single “Sam” photo

album event.

Chapter 3 Deciding which pattern to use and when

115

Further, you might offer separate views of the same feed, such as

Facebook providing a main feed as well as notifications for a particular

activity you’re interested in, such as activity by certain people.

Note  Facebook kicked up a stink when they stopped showing
content chronologically and started presenting information according
to its perceived importance. This had the unfortunate side effect
that conversations became difficult to follow when comments
weren’t presented in order. Usually, activity feeds are shown in order
according to time the event occurred. Conversely, Reddit masterfully
elevates highly voted content in its comment activity feeds,
making an effort to clearly show the filtering that’s happening and
maintaining coherence.

An activity feed may be a poor choice when your most interesting

content is not the most recent.

�Pattern: Favorites
A list of favorites is a personalized, curated list of preferred items, stored

for later use.

Chapter 3 Deciding which pattern to use and when

116

Figure 3-16 shows an example of favorites, labeled as “Likes.”

Favorites serve two primary functions. Firstly, users can return to

content they adored in the past. Secondly, users can find favorited content

recommended by others; favorites reveal exceptional and remarkable

content in a saturated environment.

Note I n rare cases, favorites are private. This is akin to
e-commerce “wish listing” when a user is shortlisting candidates or
saving a product for later, such as when they’ve saved up enough
money.

Figure 3-16.  Screenshot of Twitter’s likes, which create a shorter feed
of happy content

Chapter 3 Deciding which pattern to use and when

117

�A rose by any other name
The favorite pattern can go by many different names, while the behavior

underpinning stays the same. Pinterest, for example, lets you “save” a pin

to mark it as a favorite. Twitter, by contrast, lists a user’s favorite tweets

under “liked” tweets. Notably, both of these products have changed their

naming conventions and features over the years to pare back and simplify

their UIs. Pinterest experimented with both a “like” and a “save” button

before retiring like as a redundant option next to the more powerful “save”

that let users categorize their favorites. Twitter renamed their previously

existing “favorites” as “likes,” which suits its more generic behavior. A liked

tweet could have all sorts of social implications, according to personal use

and behavior in particular circles. Some people treat it only as a reaction

and never refer back to their likes.

To use the favorite pattern, you’ll need to let people mark an item as

a favorite as well as refer back to the collection of favorites. You can let

people add an item to their favorites by providing a button on or next

to the critical items in your product, such as articles, photos, or activity.

You can let your user—and in some cases, other users—refer back to the

collection of favorites by keeping them all in one place and linking to each

individual favorited item.

While it’s common to store all of a user’s favorites in a single list, if your

users want to show why they added an item to their favorites, you could let

them group and name their favorites in several named lists like Pinterest’s

“boards,” as shown in Figure 3-17.

Chapter 3 Deciding which pattern to use and when

https://newsroom.pinterest.com/en/post/goodbye-like-button

118

On the other hand, housing favorites together in one list with a single

name makes them more a versatile feature: a favorite could be a read receipt

to acknowledge you’ve seen it, it could be a bookmark of bad content you

want to fix later, it could literally be your single most loved item.

Favorites are often accompanied by a metaphor and iconography

such as heart, star, thumbs up, or “+1” to like, love, promote, or collect an

item. For usability, ensure consistency and standards are used instead

of switching between a heart here and a star there. Likewise, showing

both the icon and label in all the places a favorite appears can avoid the

Figure 3-17.  Screenshot of a product design board on Pinterest with
21 saved pins

Chapter 3 Deciding which pattern to use and when

119

confusion of an unlabeled heart shown in one place and an ambiguous

label like “saved” with no matching icon elsewhere. If for some reason you

use both a thumbs up for favorites and a “+1” for up-voting content (e.g., in

a democratic system promoting crowdsourced ratings), make it clear what

the distinction is between them.

It’s worth considering how the favorite pattern is different from similar

features.

Favorites tend to reflect particular affection toward an item and are

usually shared, making it a social experience, distinguishing favorites from

traditional browser “bookmark” or “save for later” features, which are

personal and unremarkable. Further, bookmarks usually grab a whole page

instead of one specific object within the page.

Favorites are also collected unlike reactions, such as a “like” on

Facebook or “comments,” which are more ephemeral and transactional in

nature, often forgotten, and rarely referred back to. In the case of Twitter, a

user’s “likes” list is prominently displayed on their profile.

A favorited item also offers only a single indicator of a user’s general

preference for it rather than showing on a scale just how much it matters

to them. By contrast, “ratings” let a user specifically rate an item using,

for example, an overall number out of 5 or on particular attributes like

Airbnb’s “cleanliness” and “value” ratings.

Favorites and activity feeds are shaped around bite-sized, shareable

content. As such, it’s easy for search engines to identify highly influential

content produced from within these patterns. Here you can see how some

patterns naturally support search engine optimization (SEO).

�Microcopy
Throughout all of these patterns, you’ll find most have important interface

text guiding the user. Microcopy alludes to the smaller snippets of text in

Chapter 3 Deciding which pattern to use and when

120

an interface used to guide and reassure a user, as opposed to long-form

copy like a blog post. Some common microcopy examples include

•	 Link text, button text, headings, and navigation

labels that help people find their way about, usually

front-loaded with important, skimmable keywords

•	 Validation feedback, inline help text, tags, labels, and

tooltips, oriented around user tasks, suggesting specific

solutions or next steps

Microcopy is necessary for people to navigate and complete tasks, as

well as being useful in inspiring trust and credibility. Clear microcopy may

also reduce customer support queries by addressing people’s concerns

before they ask. As proof of the potential impact of these tiny words, read

about The $300 Million Button by Jared M. Spool (https://articles.

uie.com/three_hund_million_button/), wherein 35 words increased

the number of customers purchasing by 45%, by replacing the “Register”

button with a “Continue” button and the message: “You do not need to

create an account to make purchases on our site. Simply click Continue to

proceed to checkout. To make your future purchases even faster, you can

create an account during checkout.”

As with validation feedback (described in Chapter 2), good microcopy

is concrete, precise, active, and positive and suggests solutions. It is also

more important than ever to cull needless words.

�Pattern: Pagination
Pagination separates large bodies of content into separate pages, accessed

by a shared index of links.

Chapter 3 Deciding which pattern to use and when

https://articles.uie.com/three_hund_million_button/
https://articles.uie.com/three_hund_million_button/

121

Figure 3-18 shows an example of pagination.

When navigating large data sets, it can be overwhelming to view a

large quantity of data at once. Pagination can be used to reduce the results

down to easy-to-digest chunks. In some cases, this has the added benefit

of improving page performance and preventing data download issues.

Each page shows some set number of results like 10 search results or 20

products.

Pagination is often combined with tools to customize display options

like sorting, choosing number of results per page, and adapting content.

We’ll look more at mixing and matching patterns and the resulting

confusion in Chapter 6.

�Where to draw the line
Pagination needs to adapt to the size of the results to effectively chunk

content. For 1–5 pages, you might show a direct link to each page: 1, 2, 3,

4, 5. For 100 pages, you might collapse the index down to Start, Previous,

Current, Next, End, or 1, 2, [...] 99, 100. For 1–5 results (larger items like

products in a range), you might opt for “Previous: <Product name>” and

“Next: <Product name>” (similarly for relevant articles: “Next: 10 things

you didn’t know you were doing wrong with pagination”). For this latter

example, you might also let touch devices swipe between paged results.

Figure 3-18.  Screenshot of WordPress pagination, which shows the
number of items, the current page, the total number of pages, and
navigation buttons

Chapter 3 Deciding which pattern to use and when

122

Finally, you might consider a canonical “view all” page5 for medium data

sets where you can display all items at once without melting your visitor’s

device, but you start by showing a limited set. These little labels drastically

change the clarity of the pattern.

Pagination is sometimes forced upon users to increase ad views per

article, rather than user-centered reasons. To make sure pagination adds

value to the experience, consider paginating where a user might want to

bookmark or share a specific, digestible subsection in a longer piece. One

benefit to pagination is its accessibility.

�Accessibility
Accessible digital content has these traits:

•	 Perceivable (people can become aware of it)

•	 Operable (people can use it)

•	 Understandable (it naturally makes sense)

•	 Robust (can withstand evolving technology and still be

perceivable, operable, and understandable)

If you’re using semantic elements like links to navigate to different

pages within your paginated content, you don’t need to do much extra to

make it perceivable and operable.

Sometimes UI patterns are implemented with components using

Accessible Rich Internet Applications (ARIA) attributes6 that give more

information to Assistive Technologies to increase accessibility.

Let’s explore a related pattern with different accessibility challenges.

5�Google Webmaster Central Blog, “View-all in search results,” https://
webmasters.googleblog.com/2011/09/view-all-in-search-results.html,
September 2011.

6�Mozilla Developer Network, “ARIA,” https://developer.mozilla.org/en-US/
docs/Web/Accessibility/ARIA.

Chapter 3 Deciding which pattern to use and when

https://webmasters.googleblog.com/2011/09/view-all-in-search-results.html
https://webmasters.googleblog.com/2011/09/view-all-in-search-results.html
https://developer.mozilla.org/en-US/docs/Web/Accessibility/ARIA
https://developer.mozilla.org/en-US/docs/Web/Accessibility/ARIA

123

�Pattern: Infinite scroll
Infinite scroll, sometimes more accurately called “continuous scroll,”

loads and presents more results as you scroll without interruption in a

single stream (seemingly forever, hence the moniker “infinite scroll”).

The content is loaded exactly in proportion to the user’s scroll effort,

disclosing only as much information as they’re interested in and giving a

hint of what’s to come, as we saw in the progressive disclosure pattern in

Chapter 2. We can reduce clutter and minimize cognitive load on users

with a minimal interface and give them control to expand it as they choose.

By presenting the most relevant content first, the user may then

continue for as long as they are interested. As they approach the end

of the currently displayed content, you can start to load more in the

background. To avoid a user ever having to wait for content (knowingly,

impatiently), you can pull in more items each time you load a set and start

loading before they’ve reached the bottom, while they’re still reading other

items. This means never seeing the dreaded “loading spinner.” If your

user does reach the bottom before you’ve pulled in new content, you can

show a stylized placeholder dummy image (a “loading skeleton”) to set

expectations about what’s happening (loading) and what will happen

(an item of about this size and shape will load). An example of this is

shown in Figure 3-19.

Chapter 3 Deciding which pattern to use and when

124

Infinite scroll is ideal when your visitor wants to keep consuming your

content for extended periods, with limited deviations or engagement. Use

this pattern when the user wants ever more content, such as social news

feeds (e.g., Facebook, Twitter) and photostreams (e.g., Instagram, Google

image searches). Unlike search results, you are not filtering for an exact

place to stop, you are only looking for “more.”

Check out Etsy’s case study where continuous scroll ruined their user

engagement (http://danwin.com/2013/01/infinite-scroll-fail-etsy/)

because no one would leave their infinite scroll to commit to a particular

product to buy for Fear Of Missing Out (FOMO) on better things yet to

be seen.

There are limited use cases where infinite scroll is appropriate, such

as photostreams. Avoid infinite scroll when you want to bookmark, save,

or share specific content in the stream. If you want to support that in an

infinite scroll, you might take extra care to offer a “save for later” feature or

Figure 3-19.  Screenshot of Facebook’s placeholder story hints at
content to come

Chapter 3 Deciding which pattern to use and when

http://danwin.com/2013/01/infinite-scroll-fail-etsy/

125

a link that will take you directly to that item. Avoid it when you need to stop

and engage with results like favoriting (see the favorites section ahead).

Avoid infinite scroll when visitors need to compare items or find specific

items. Avoid when visitors need to see your site footer.

As you can see, the task the user wants to accomplish shapes how

appropriate infinite scroll is in a design problem’s context. Further, infinite

scroll is notoriously challenging to implement well technically,7 so your

technical resources and time may make this a poor choice. The success of

infinite scroll is also heavily influenced by the context of what content and

data you have. If there’s only one additional set of results to load, there’s

little value to using the pattern.

�Principle of choices in action
One design consideration for infinite scroll is how to offer a reader choices

in navigating the content; they might want to skip a section of content

and jump to another section further along. Twitter will hide old Tweets

if you’ve been away awhile, so you can then choose either to skip to new

Tweets or tap to expand more Tweets, seeing older, previously collapsed

Tweets. If your user wants to jump to a specific section in your content

like “results starting with U,” pagination indexed by letters might be more

effective. See pagination earlier.

Note that as infinite scroll keeps loading more content, it can be

difficult to reach the footer of a site (it will be pushed out of sight just as

you arrive). You might handle this by removing the site footer on pages

that use infinite scroll or offering adjacent links to skip to footer and stop

loading content.

7�Surma and Robert Flack, “Complexities of an Infinite Scroller,” https://
developers.google.com/web/updates/2016/07/infinite-scroller.

Chapter 3 Deciding which pattern to use and when

https://developers.google.com/web/updates/2016/07/infinite-scroller
https://developers.google.com/web/updates/2016/07/infinite-scroller

126

�Principle of disclosure in action
A variation on infinite scroll is lazy-loading content on demand. That is,

instead of scrolling to indicate your user wants more content, they can tap

a button like “Show more results” to start loading more. Your user has a

taste of what’s to come before choosing to disclose more.

Figure 3-20 shows an example of the principle of disclosure in action in

an infinite scrolling blog.

This distinction is important: it’s almost a pagination “Next” button

that lets people access the site footer but sacrifices the ease and non-

committal nature of scrolling. Imagine choosing to open another bag of

cookies (a conscious decision) vs. continuously snacking from a very large

bowl that’s constantly being topped up. There’s a decision point.

Figure 3-20.  Screenshot of InVision’s load more button, which leaves
space for more content to load inline

Chapter 3 Deciding which pattern to use and when

127

�Inclusive design
One tactic for ensuring an accessible interface is to practice inclusive

design. Inclusive design practices can ensure a functional, usable,

and desirable experience for more people. Infinite scroll can impact

accessibility,8 making it hard to design an infinite scroll that supports a

wide variety of users and input mechanisms like keyboards.9 To design an

inclusive infinite scroll, you can

•	 Announce changes in the main content area where

new content is loaded to screen readers using ARIA

live regions (https://developer.mozilla.org/en-US/

docs/Web/Accessibility/ARIA/ARIA_Live_Regions).

•	 If you use a loading spinner or skeleton, ensure its

content is perceivable by diverse users. You might, for

example, announce the loading information to screen

readers using the same aria-live method.

•	 Manage content focus for users with keyboards or

screen readers. If you offer an explicit button to load

more content in your pagination component, you’ll

need to move the user’s focus to the new content.

You might use JavaScript to focus the first element

of the newly loaded content and apply an attribute—

tabindex="-1"—to the element if it’s not normally

interactive, such as a static text heading.

8�Level Access, “Infinite Scrolling – Impact on Accessibility Series: #1 Common
Issues,” www.levelaccess.com/infinite-scrolling-impact-on-assistive-
technologies-series-1/.

9�Ana Crespo, “Infinite scrolling is probably not a good idea for your website,”
www.nomensa.com/blog/2015/infinite-scrolling-probably-not-good-idea-
your-website, May 2015.

Chapter 3 Deciding which pattern to use and when

https://developer.mozilla.org/en-US/docs/Web/Accessibility/ARIA/ARIA_Live_Regions
https://developer.mozilla.org/en-US/docs/Web/Accessibility/ARIA/ARIA_Live_Regions
http://www.levelaccess.com/infinite-scrolling-impact-on-assistive-technologies-series-1/
http://www.levelaccess.com/infinite-scrolling-impact-on-assistive-technologies-series-1/
http://www.nomensa.com/blog/2015/infinite-scrolling-probably-not-good-idea-your-website
http://www.nomensa.com/blog/2015/infinite-scrolling-probably-not-good-idea-your-website

128

To learn about implementing design patterns accessibly, check out

The A11Y Project (http://a11yproject.com/). For an in depth reference, I

refer you to Heydon Pickering’s book, Inclusive Design Patterns.

�Infinite scroll vs. pagination
Infinite scroll and pagination patterns both segment large collections of

content. In both cases, users want to browse some smaller proportion

of the total content available. In contrast, using neither of these patterns

would mean loading huge amounts of content on one page (imagine

Pinterest loading all its billions of images at once). Infinite scroll might

make it feel like all the content is there, even though you know it’s loaded

a chunk at a time, while pagination makes it clear you’re viewing just one

segment at a time. The context for your design problem will suggest when

each solution is a fine or frightful fit. If your user is a teenager casually

indulging in photos to pass the time, infinite scroll is likely better. If your

user is a nurse scavenging for an answer to a question, pagination may be

the superior choice. In assessing these patterns for your case, explore how

the user groups and personas, tasks, and constraints build the context.

�Infinite scroll and favorites
As we saw in the section on favorites, it’s useful to refer back to favorited

items. Twitter’s web site (at time of writing) offers no native ways to search

your Twitter favorites and lists liked tweets on an infinite scrolling page. If

you want to refer back to an older favorited item, you need to keep rapidly

scrolling, nudging the bottom of the page, and waiting for more tweets to

load until you find the one you were looking for.

Figure 3-21 shows a loading spinner at the bottom of Twitter’s infinite

scrolling “likes” feed.

Chapter 3 Deciding which pattern to use and when

http://a11yproject.com/

129

To avoid this clunky search behavior, you might use pagination instead

or consider pairing your infinite scroll with search and filters. We’ll talk

more about this in Chapter 6, on mixing and matching patterns.

�Pattern: Follow
The follow pattern lets people subscribe to receive a stream of frequently

updating content of interest to them, either around a certain topic or from

an individual or organization.

Figure 3-22 shows an example of the follow pattern on Medium.

Figure 3-22.  Screenshot of Follow Sarah Drasner on Medium

Figure 3-21.  Screenshot of the bottom of Twitter’s infinite scrolling
“likes” feed

The primary objective is to let people curate their information

consumption, only hearing highly tailored, relevant news.

Chapter 3 Deciding which pattern to use and when

130

This lets followers consume content at their leisure, like trawling

through a Twitter feed on the bus. Following also indicates which content

a follower is interested in, so they might only receive updates about a

specific person, organization, or topic. A fan might find following your

Facebook page easier than checking your blog every day to see what’s new.

In order to make use of this pattern, your users need to follow enough

topics or people to see as much content as they desire. To help users find

people to follow, you can make recommendations based on previous

activity, other similar users, or similar topics and people. Pinterest

asks users up front what topics they’re interested in during the signup

playthrough, shown in Figure 3-23.

Figure 3-23.  Screenshot of Pinterest asks you about five topics to
customize your home feed

Chapter 3 Deciding which pattern to use and when

131

As you can see, followed entities can be used to populate activity feeds.

Use the follow pattern to increase engagement when you have evolving

on-site content where a particular author or topic may be of interest while

vast swathes of other content are not interesting to the follower.

Unlike the friend’s list pattern (ahead), there is no expectation that a

followed party will follow someone back.

�Pattern: Friend’s list
Similar to the follow pattern, the friend’s list pattern lets users signup to

receive updates about other people’s content, as well as connect directly.

Both parties must agree to be friends to share content. This helps people

connect through their mutual interests.

Figure 3-24 shows an example of the friend’s list pattern.

Figure 3-24.  Screenshot of Goodreads friendships, which tell you
what your friends are currently reading

Chapter 3 Deciding which pattern to use and when

132

It is necessary for each friend to confirm the relationship; therefore,

it must be possible for users to find each other (potentially by searching

for an address, name, username, or other identifier) and for one party to

initiate the connection (usually by “adding a friend”). After connecting, the

friend’s list pattern provides greater access to each friend to communicate

and share content.

Use this pattern when social interaction between users is critical to

the product. If connection between users is incidental to the product,

then it might be better to support connections on another platform, such

as helping users find each other via following your product on LinkedIn,

rather than creating a redundant friend ecosystem.

The context for assessing the suitability of the friend’s list pattern

includes consideration for where each party is in the user journey. Social

networks often make friend suggestions for you to connect with people

when they receive signals that you might have already met, such as sharing

mutual acquaintances, attending similar events, and so on.

�Friends and followers
As you can see, there is a lot of similarity between the friend’s list and

follow patterns. They may also co-exist in a blended way within the

one product or platform. For example, Twitter previously let you follow

someone with no expectation of them following back, but then let you

share direct messages only if you “friend” each other (by both following

each other). In contrast, if you connect with a friend on Facebook, you

mutually recognize the friendship, but it’s also possible to “unfollow” them

to stop seeing their posts but stay friends, letting you both send direct

messages and still access posts via your profiles.

We’ll look more at mixing and matching patterns in Chapter 6.

Chapter 3 Deciding which pattern to use and when

133

�Interaction and motion design
Beyond the foundations of exploring patterns by context, it’s useful to

consider the interactivity of patterns. Human–computer interaction has

a long history. Fitts’s Law—which states the time to reach a target area is

related to the distance and size of the target—has been around since the

1950s. In interaction design, it’s used to optimize interfaces by minimizing

travel between targets or activities and increasing the size of targets, such

as the clickable area of a link, so that users may perform tasks efficiently.

For some rules of thumb about usability, check out Jakob Nielsen’s

10 Usability Heuristics for User Interface Design (www.nngroup.com/

articles/ten-usability-heuristics/). Likewise, for interaction design

heuristics, see First Principles of Interaction Design by Bruce “Tog”

Tognazzini (https://asktog.com/atc/principles-of-interaction-

design/).

Animation on the Web, or motion design as it’s increasingly called,

is only now growing into a mature field. Importantly, it can be used to

orient and direct attention, improving user satisfaction through superior

feedback and by expressing tone, as discussed in Navigating the World of

UX Motion Design.

Note  For an approachable and comprehensive lesson in motion
design, Val Head’s book Designing Interface Animation shares
concrete examples of purposeful design, driven by user needs, built
using modern performance and progressive techniques.

For use in evaluating patterns, let’s look at the triggers, action, and

feedback of interaction.

Chapter 3 Deciding which pattern to use and when

https://www.nngroup.com/articles/ten-usability-heuristics/
http://www.nngroup.com/articles/ten-usability-heuristics/
http://www.nngroup.com/articles/ten-usability-heuristics/
https://asktog.com/atc/principles-of-interaction-design/
https://asktog.com/atc/principles-of-interaction-design/
https://medium.com/minitheory-design/navigating-the-world-of-ux-motion-design-c2c1e9bb11b8
https://medium.com/minitheory-design/navigating-the-world-of-ux-motion-design-c2c1e9bb11b8

134

�Triggers
Every interaction must be initiated by some trigger, such as a button. That

is, a trigger uses a visual or social signifier that some action will take place

and, when triggered, will start the process.

Effective triggers are recognizable with a clear relationship between

what they look like and what they do. For example, when using the favorite

pattern, the trigger to favorite an item might be a heart button with the

word favorite placed closely together with the item. A high-five emoji with

no text might be less clear as a trigger to favoriting some content.

Some interactions have no visible signifiers to signify their existence.

For example, when you pinch to zoom in on an image, there’s usually

no visible evidence that this interaction is possible. Mostly these triggers

are taught socially, and expectations are set through convention (picture

galleries on phones can frequently be navigated by swiping). And yet you

can hint at available behaviors using subtle signifiers, such as overlaying

images with a magnifying glass to suggest zooming is possible.

Figure 3-25 shows when tapping Vermont’s map of Gant stores using one

finger, they use an overlay to tell you to use two fingers to move the map.

Chapter 3 Deciding which pattern to use and when

135

This lets you both scroll the page—without being “caught” in a

map—and pan the map with a different gesture if you want to traverse it.

Triggers can be reinforced with positive results to associate the

trigger with good things and, in turn, encourage more interaction with

the trigger. With this in mind, consider spending more time on designing

triggers that are used with high frequency to ensure they’re satisfying

and delightful. Twitter, for example, fill their gray heart icons with red on

hover and animate their hearts with sparkles (https://css-tricks.com/

recreating-the-twitter-heart-animation/) when tapped so that the

trigger itself is considered enjoyable.

Figure 3-25.  Screenshot of Vermont Gant’s store locator showing
“Use two fingers to move the map” on touch

Chapter 3 Deciding which pattern to use and when

https://css-tricks.com/recreating-the-twitter-heart-animation/
https://css-tricks.com/recreating-the-twitter-heart-animation/

136

�Action
The action itself should be close to effortless. There’s no need for a drag

and drop interface if there’s only ever one drop target area—a click/tap will

do there.

Minimize the amount of coordinated movement needed; “scrubbing”

back and forth through a video or audio player or using a slider should let

you clumsily drag the marker about rather than require precision to reach

the desired place. For this interaction, you might

•	 Use well-spaced “steps” to ensure a price slider lands

easily on $100 instead of $98.2

•	 Provide keyboard shortcuts

•	 Include “skip forward”/”skip backward” buttons with

defined increments

•	 Control scrubbing speed with upward/downward

touch or mouse movement

�Feedback
For feedback, keep the results of an action as close to the trigger as

possible to keep the user’s attention and give them a sense of direct control

or manipulation over the object they are interacting with. If the results

need to be some distance away, as in the case of search filters, for example,

you can use timing and animation to reinforce the relationship. You might

provide additional contextual feedback, such as validation feedback or a

notification (see Chapter 2).

This feedback is an opportunity to thank and reward the user for

their effort. As with the Twitter heart animation example, you can jazz up

the trigger itself or you can introduce the results with personality using

delightful microcopy or animations that float, jiggle, or fade.

Chapter 3 Deciding which pattern to use and when

137

�When is a pattern a bad idea?
Patterns are the natural result of successful, proven methods for solving

user interface problems. In turn, a pattern is a poor choice when you’re

faced with a totally novel problem that’s yet to be solved. While you might

lean on the principles we’ve discussed in this chapter to evaluate a new

user flow or interface solution, it’s a bad idea to shoehorn old solutions

into new problems. We take a deeper look at breaking away from patterns

in Chapter 6.

I’d also suggest not trying to use a pattern when you haven’t yet

defined the problem! It might be tempting to reach for the comfort of

a pattern when faced with the uncertainty of an ill-defined problem.

Hold off until you can clearly articulate who your audience is, what their

motivations are, and what they’re trying to achieve with your product.

Finally, patterns are useful as named solutions to clarify and

communicate about user interfaces. If you find yourself splitting hairs

trying to distinguish between very similar patterns, they’re no longer

communicating the way patterns are supposed to.

�Example: Login form
To expand on our example from Chapter 1, let’s see how we can use what

we’ve learned in this chapter to make some changes.

Firstly, our user journey shows that our user has just arrived at the

login form from reading an article. Using more precise microcopy, we’ll

tailor the form to include a link back to the article. Figure 3-26 shows the

added text “back to article.”

Chapter 3 Deciding which pattern to use and when

138

By using a text link to return to the article, we now have a descriptive

label for the cross icon. Instead of adding an aria-label for "back to

article" on a cross icon, we can use an aria-hidden attribute so the

cross isn’t misread to screen readers. If we didn’t use aria-hidden, the

full link might read as “back to article times operator.” Note that we’ve

also updated the button’s call to action to match the title and avoided the

jargon of “submit,” which can sound mechanical.

Using the information architecture principle of front doors—at least

half of your visitors will come through a backdoor (or some page other

than the homepage)—we can check that our login form makes sense when

Figure 3-26.  The precise label used is “back to article”

Chapter 3 Deciding which pattern to use and when

139

you’ve arrived from different places. When you’ve come from an article,

you’ll see three clues to give you a sense of where you are and what to do

next: “Sign in,” “Back to article,” and “To save this article, you must sign in

to your account.” If you had clicked directly a “log in” link, we could hide

the back link and help text, and the form would still make sense.

For users accessing this form on their mobile devices, it could be

difficult to write out their full email address. We could use the HTML

input type=email attribute to ensure the “@” symbol is shown on mobile

keyboards. Figure 3-27 shows the changed keyboard.

Figure 3-27.  Example of the email keyboard on iOS devices include
an easy-to-access at symbol (@) and a full stop (.)

Chapter 3 Deciding which pattern to use and when

140

The user task underpinning our example login is that the user

wishes to save their article. If we are using the favorite pattern, we could

be more explicit about what impact the action of logging in will have.

Figure 3-28 shows more text to explain: “To add this article to your public

list of favorites, you must sign in to your account.”

It’s a little wordy though. To balance the usability of a minimal

aesthetic, we might simplify it a bit, as shown in Figure 3-29: “To like this

article, you must sign in to your account.”

Figure 3-28.  Example of login form with more explicit impact
described

Chapter 3 Deciding which pattern to use and when

141

Finally, in considering motion design and feedback in interactions, if a

user submits the login form with an empty email address, we might jiggle

the email input field to draw the user’s attention to it.

We’ve used our analysis of patterns to make a few tiny improvements.

Achieving many tiny improvements can lead to big results.

Figure 3-29.  Example of login form with balanced microcopy and
minimal aesthetic

Chapter 3 Deciding which pattern to use and when

142

�Summary
Now you know how to discover new patterns as well as how to analyze

them. To kick off your analysis, you’ve seen how to clarify your design

problem’s context in terms of journeys, tasks, personas, and constraints.

We’ve also covered these patterns:

•	 Autocomplete

•	 Search filters

•	 Infinite scroll

•	 Pagination

•	 Activity feed

•	 Favorites

•	 Follow

•	 Friend’s list

Next, we’ll dive into internal pattern libraries where patterns are

tailored to the context of your organization.

Chapter 3 Deciding which pattern to use and when

143© Diana MacDonald 2019
D. MacDonald, Practical UI Patterns for Design Systems,
https://doi.org/10.1007/978-1-4842-4938-3_4

CHAPTER 4

Patterns in design
systems

There is a saying that every nice piece of work needs the right
person in the right place at the right time.

—Benoit Mandelbrot

In this chapter, we’ll clarify some terms around patterns and design

systems, look at growing a design system, and along the way we’ll discuss

some decisions you might need to make.

�What’s in a name? The devil is in the details
A word of warning: language is a fickle thing and some people will attribute

different meaning to one word, some people will use different words to

describe one idea, and the meaning of all those words will evolve. This is

particularly relevant in a young industry like digital design with rapidly

changing technology and norms. We haven’t yet settled on a consistent

understanding of patterns and design systems as an industry. Given that,

I’ll do my best to paint a picture for you and discuss these ideas in terms of

how you can use them, regardless of what you call them.

144

�Pattern libraries
A pattern library is a collection of patterns, used to communicate and

improve design decisions. This includes reusable solutions to problems

focused around interaction and UX components. In a broad sense, a

pattern library is a collection of abstract UI patterns, such as you would

find in the pattern collections I mentioned in Chapter 2’s resources,

including UI-patterns.com and UIPatterns.io. In these, you’ll find a single

pattern might be illustrated with dozens of varied examples of its use in

the wild.

Popularly though, you’ll find the term “pattern library” used to

describe an internal library within a single organization, which is often

more specific—tailored to the one entity’s needs. Here, you would find

each pattern has only one main visual representation as it is applied to the

organization (where it has a visual representation at all).

Note  In instances where you find more than one visual
representation of a pattern in a library, you’ll usually find that the
style is the same, and only subtle variations are shown. For example,
there might be light and dark themes of the pattern to be used in
different parts of the product.

�Design systems
A design system is a single source of truth for shared parts and processes,

such as components, patterns, and guidelines, to build consistent

products. It’s the ecosystem in which the design process occurs and the

output of design thinking reaches its intended audience. The term can

encompass all of the design, code, and content resources we’ll discuss

shortly. Design systems are tailored to organizational needs.

Chapter 4 Patterns in design systems

http://ui-patterns.com

145

Additionally, design systems reflect the culture, team values, and visual

language of an organization. Likewise, they address matters of “scaling”

design quality. That is, design systems ensure high standards of design

quality are maintained in a large and growing organization instead of

falling into chaotic, splintered customizations. In large systems, they may

inform design with user research.

That said, sometimes people use the term “design system” to refer to

narrower definitions of design guidelines or visual language, which we’ll

examine next.

�Related design, code, and content resources
As a digital practitioner, you might be familiar with other design and code

resources in the world related to patterns: style guides, style manuals,

brand manuals, identity guidelines, front-end style guides, templates, and

so on. In many cases, they’re complementary ideas that work well together.

In other cases, you’ll find these housed together under one name (whether

a “pattern library,” a “design system,” or something else). In order to know

when and how to use each of these resources, you’ll need to understand

the finer differences between them.

Let’s explore what you might use or encounter out in the world.

�Editorial style guides
Style guides, style manuals, or tone of voice guidelines focus on the

written word to set standards about communication styles to ensure

consistency in tone, choice of words, punctuation, grammar, and other

language decisions. You may recognize the more famous standards set

by Chicago Manual of Style or The Oxford Style Manual. To differentiate

style guides from other resources, you might consider them “editorial

style guides.” Sometimes, style guides may also include material around

content, such as imagery and laying it out.

Chapter 4 Patterns in design systems

146

Figure 4-1 shows an example of an editorial style guide.

If your organization has a lot of text-heavy user-generated content, you

may need publicly accessible editorial style guide content. Wikipedia, for

example, is written collaboratively by more than 69,000 active contributors,

providing a Manual of Style1 and a Simplified Manual of Style2 to help

“editors write articles with consistent and precise language, layout, and

formatting, making Wikipedia easier and more intuitive for users.”

Meanwhile, if your organization has a lot of text-heavy content created

by many internal employees and contractors, such as a knowledge base

or help documentation, you may need to provide a privately accessible

resource covering how to communicate with your customers or audience.

1�Wikipedia, “Manual of Style,” https://en.wikipedia.org/wiki/
Wikipedia:Manual_of_Style.

2�Wikipedia, “Simplified Manual of Style,” https://en.wikipedia.org/wiki/
Wikipedia:Simplified_Manual_of_Style.

Figure 4-1.  Screenshot of Monash University’s editorial style guide

Chapter 4 Patterns in design systems

https://en.wikipedia.org/wiki/Wikipedia:Manual_of_Style
https://en.wikipedia.org/wiki/Wikipedia:Manual_of_Style
https://en.wikipedia.org/wiki/Wikipedia:Simplified_Manual_of_Style
https://en.wikipedia.org/wiki/Wikipedia:Simplified_Manual_of_Style

147

These considerations may dictate whether or not your editorial style

content is part of your design system. Atlassian’s design system (https://

atlassian.design/) takes the rare approach of including both public and

restricted content including their public Voice and Tone guide,3 linking

to their public Language & grammar page4 and their restricted page for

“Writing error messages.”

�Brand guides
Brand guides, brand kits, or visual style guides lean toward visual

matters of a brand’s identity, including logos and icons, color palettes,

typography, and photography. They are sometimes mixed in with editorial

style guides. One key difference between editorial and brand/visual style

guides is that branding guidelines can be used by external parties, such

as Instagram’s brand guidelines (https://en.instagram-brand.com/)

that suggest how you may use their logo, when to request permission,

and respecting their trademarks. Figure 4-2 shows one guideline from

Instagram’s brand guidelines to “Balance the Instagram Brand with

your brand.”

3�Atlassian, “Voice and Tone,” https://atlassian.design/guidelines/
voiceAndTone/personas.

4�Atlassian, “Language & grammar,” https://atlassian.design/guidelines/
voiceAndTone/language-grammar.

Chapter 4 Patterns in design systems

https://atlassian.design/
https://atlassian.design/
https://en.instagram-brand.com/
https://atlassian.design/guidelines/voiceAndTone/personas
https://atlassian.design/guidelines/voiceAndTone/personas
https://atlassian.design/guidelines/voiceAndTone/language-grammar
https://atlassian.design/guidelines/voiceAndTone/language-grammar

148

For a business such as Instagram’s, it’s likely that people will want to

show off their presence on Instagram in highly visible broadcast media

such as film and television. They have a great incentive to help people

use their brand assets correctly as well as respect their brand and its

contributing members.

For brand material in your design system, consider including

•	 Downloadable assets such as logo files in vector

formats and high-resolution bitmap formats

•	 Specifications for colors and typography

Figure 4-2.  Screenshot of one of Instagram’s brand guidelines

Chapter 4 Patterns in design systems

149

•	 Usage and attribution guidelines for names, taglines,

photography, and icons

•	 How to make requests for permission to use any

element of a brand or access to assets

These might also be linked from a “media” or “press” page on your site.

Note  For more examples of brand assets and guides, check out
Find Guidelines (http://findguidelin.es/).

�Design guidelines and visual language
Design guidelines describing visual language as distinct from brand or

visual style guides usually address conceptual topics. Material Design, for

example, defines a consistent metaphor to use throughout designs in the

Material Design style.

Material is the metaphor

Material Design is inspired by the physical world and its tex-
tures, including how they reflect light and cast shadows.
Material surfaces reimagine the mediums of paper and ink.

—Material Design’s Principles (https://material.io/
design/introduction/#principles)

Chapter 4 Patterns in design systems

http://findguidelin.es/
https://material.io/design/introduction/#principles
https://material.io/design/introduction/#principles

150

Figure 4-3 shows Material Design’s design guide to the visual language.

Note T o learn more about the material metaphor, watch Google’s
design video about Making Material Design (https://design.
google.com/videos/making-material-design/).

Dan Mall asserts in Researching Design Systems (http://

v3.danielmall.com/articles/researching-design-systems/) that

design systems should have guidelines for perspective, point of view, and

extending creative direction. What’s different about your organization?

“Otherwise, we all might as well use Material Design and call it a day.”

On a similar note, Matthew Ström wrote What makes a good design

principle? (https://matthewstrom.com/writing/principles.html)

about thinking about design principles at The Wall Street Journal.

Figure 4-3.  Screenshot of the goals of Material Design

Chapter 4 Patterns in design systems

https://design.google.com/videos/making-material-design/
https://design.google.com/videos/making-material-design/
http://v3.danielmall.com/articles/researching-design-systems/
http://v3.danielmall.com/articles/researching-design-systems/
https://matthewstrom.com/writing/principles.html

151

He describes a shortcut that is one of my favorites for using with teams:

format design principles as “Even Over” statements, such as “Accessibility

even over aesthetics.” This is a great method for establishing meaningfully

polarizing design principles that sets your organization apart from

others as well as highlighting differences in what each designer in your

organization values.

�Style guides relating to code
Each of the following are extremely similar and tightly coupled forms of

design resources touching code, but each is worth mentioning and some

distinction can be useful.

�Front-end style guides

Front-end style guides are kind of like patterns in action for an

organization, shipped with code snippets, design assets, and anything else

necessary to actually complete day-to-day design and development tasks

affecting the front-end of product.

Figure 4-4 shows Salesforce’s Lightning Design System

(www.lightningdesignsystem.com/guidelines/overview/), initiated by

Jina Anne.

Chapter 4 Patterns in design systems

http://www.lightningdesignsystem.com/guidelines/overview/

152

The design tokens for “Text Color” in the Lightning Design System

include several examples of describing and showing colors, useful to day-

to-day decision-making for designers and developers.

In her book, Front-End Style Guides (www.maban.co.uk/projects/

front-end-style-guides/), Anna Debenham describes a front-end style

guide’s purpose: “to make building and maintaining a website easier.” Her

book has a strong focus on development tools and processes to maintain a

web site that adheres to intended styles. In her view, a front-end style guide

is written in the same markup and uses the same CSS that is used on the

“real” web site, and “grows organically with a site throughout its lifetime,

acting as a reference and preventing duplication of code and design

patterns.” These are useful distinctions from other resources and suggest

a consideration for any design system: does the design system site need to

be built using the same foundations as the product?

Figure 4-4.  Screenshot of Lightning Design System Design Tokens

Chapter 4 Patterns in design systems

http://www.maban.co.uk/projects/front-end-style-guides/
http://www.maban.co.uk/projects/front-end-style-guides/

153

Note T he pioneers of UX, Nielsen Norman Group, propose 25
common UI components you’ll likely find in a front-end style guide
(www.nngroup.com/articles/front-end-style-guides/).

�Living style guides

Living style guides refer to guides that are in sync with the production

environment; change an element in a living style guide and it will change

in production across your entire web site (or other digital products).

They’re designed to give you space to share your design thinking about

elements like typography decisions, but also keep guidelines in line with

its actual execution. This avoids teams updating branding guidelines but

having the development re-brand work to meet the new guideline falling

behind.

In many living style guides, the style guide is built straight from the

style source code.5 This can mean that the style guidelines are led by

developers. In some cases, that may be prohibitive to designers and

other parties wishing to contribute that are not working in the code base.

That friction has potential to limit the growth of an organization’s design

maturity.6 In other cases, however, that approach may be fine because

design is “well integrated in the product development process,” indicating

reasonable design maturity. Potentially, some designers and contributors

may be comfortable working with markup and styles in code, so this

approach could even help with collaboration in some organizations. This

is a useful consideration for establishing processes in a design system.

5�For advice on this, see Ben Robertson’s “Build a Style Guide Straight from Sass”
(https://css-tricks.com/build-style-guide-straight-sass/).

6�To learn more, see Stephanie Gonzalez’s “Design Maturity:
Yesterday vs. today” (https://medium.com/@InVisionApp/
design-maturity-yesterday-vs-today-654f6495c5b2).

Chapter 4 Patterns in design systems

http://www.nngroup.com/articles/front-end-style-guides/
https://css-tricks.com/build-style-guide-straight-sass/
https://medium.com/@InVisionApp/design-maturity-yesterday-vs-today-654f6495c5b2
https://medium.com/@InVisionApp/design-maturity-yesterday-vs-today-654f6495c5b2

154

Note Y ou may use UI development environments, such as
Storybook (https://storybook.js.org/), to build components
separately from production code bases so that front-end
development can move ahead of back-end development. Combined
with a living style guide as in React styleguidist (https://react-
styleguidist.js.org/), this becomes a powerful workflow.

�Code style guides

Code style guides or code standards often focus on the code formatting

and naming conventions of a software engineering team, such as whether

they use tabs or spaces to indent code and how they name methods. One

example is the formalized standard “PSR-2” for PHP.7

Code style guides are often quite divorced from design matters. As

such, they’re often stored separately from design-oriented style guides and

design system resources, housed in a code base README page or a code

repository’s wiki. Typically, only developers have access to these.

There might, however, be some crossover. For example, imagine if the

brand guide proposes a color of #fe6481 that is referred to as the brand’s

“primary brand color,” and yet the code style guide specifies a named Sass

variable, $brink-pink: #fe6481; as per Name that Color.8 This discrepancy

may lead to mis-communications when designers and developers are

talking to each other about colors.

7�PHP Framework Interoperability Group, “PSR-2 for PHP,” www.php-fig.org/psr/
psr-2/.

8�Chirag Mehta, “Name that Color,” http://chir.ag/projects/
name-that-color/#FE6481.

Chapter 4 Patterns in design systems

https://storybook.js.org/
https://react-styleguidist.js.org/
https://react-styleguidist.js.org/
http://www.php-fig.org/psr/psr-2/
http://www.php-fig.org/psr/psr-2/
http://chir.ag/projects/name-that-color/#FE6481
http://chir.ag/projects/name-that-color/#FE6481

155

Google Style Guides,9 for example, specify their conventions for

writing code. Their HTML and CSS guide10 specifies that CSS class

names should not be “presentational” like .button-green, but they can

be specific like .video. Meanwhile, Google’s Material Design design

guidelines include presentational components like “cards” and “dividers.”

This difference in attitude might not cause any issues if they’re used in

different environments by different people, though there’s a chance they

could cause conflict. One area it could produce an issue is when striving

for matching names between design components and code components

to improve communication and being limited by conflicting guidance on

naming conventions.

You might consider sharing access to these resources, linking them to

each other, or potentially storing them together in the one design system.

�Component libraries

Component libraries, UI libraries, or code libraries provide front-

end code for UI components (a.k.a. widgets, modules, chunks, blocks).

Internally, you might use a component library as a shared collection of

UI snippets implementing patterns that anyone in the organization can

contribute to building. Check out the U.S. Web Design System’s open-

source UI component library (https://designsystem.digital.gov/

components/). Unlike UI frameworks such as Bootstrap, component

libraries are tailored to specific purposes, like an internal brand.

9�Google, “Google Style Guides,” https://github.com/google/styleguide.
10�Google, “Google HTML/CSS Style Guide,” https://google.github.io/
styleguide/htmlcssguide.html.

Chapter 4 Patterns in design systems

https://designsystem.digital.gov/components/
https://designsystem.digital.gov/components/
https://github.com/google/styleguide
https://google.github.io/styleguide/htmlcssguide.html
https://google.github.io/styleguide/htmlcssguide.html

156

An internal component library comes with many of the same

challenges that open-source projects do, including matters of versioning

and deployment. They also come with product marketing and

management challenges, such as roadmap planning, release planning,

adoption challenges, and product announcement communication

challenges.11

Note T here is an interesting relationship between component
libraries and developing design patterns. Pure UI (https://
rauchg.com/2015/pure-ui) lets you edit the width and height of
a tooltip on the page and watch the tooltip adapt to the new sizes in
real time, as illustrated in Figure 4-5.

11�To learn more about design systems with component libraries as products,
I suggest reading The Design System Product by Charlotte Jackson (https://
medium.com/ansarada-thinking/a-design-system-product-cebb3a0b3f1e)
and Nathan Curtis’s series on Releasing Design Systems (https://medium.com/
eightshapes-llc/releasing-design-systems-57fca91a23f6).

Chapter 4 Patterns in design systems

https://rauchg.com/2015/pure-ui
https://rauchg.com/2015/pure-ui
https://medium.com/ansarada-thinking/a-design-system-product-cebb3a0b3f1e
https://medium.com/ansarada-thinking/a-design-system-product-cebb3a0b3f1e
https://medium.com/eightshapes-llc/releasing-design-systems-57fca91a23f6
https://medium.com/eightshapes-llc/releasing-design-systems-57fca91a23f6

157

By putting real data (such as desired width and height values) in a

component library preview, you might start to see the limitations of a

component for the problem you’re trying to solve. For example, if you

want to display a lot of copy and imagery inside the tooltip pictured, that

could suggest that you don’t really want a tooltip—which typically contains

optional, supplementary information—and what you really want is a

thumbnail. If the available components don’t support the behavior you

need, you might be prompted to consider the patterns behind them and

what different patterns and new components would fulfill your need.

Figure 4-5.  Screenshot of Pure UI with live editable components

Chapter 4 Patterns in design systems

158

�Templates and Content Management
Systems (CMSs)
Templates and CMSs help content contributors that write copy, produce

imagery, and so on independently produce content without needing

extensive design knowledge or technical expertise. A template is a kind

of boilerplate, a bunch of preset layouts, elements, configurations that let

you duplicate an existing solution and swap out specific copy and media

for new instances of the template. CMSs let you create, view, edit, or delete

content in a system using a predictable, repeatable system process, where

each article can use a template.

To use templates effectively, your contributors might use guidance in

your design system to suggest which patterns they need to use for the kind

of content they’re working with.

Note P roducts like Asana provide customers with templates
(https://asana.com/templates) within their sites and products
as “good defaults” (like we saw in Chapter 2) to help them get the
most out of the product without learning good patterns of behavior
and interaction from scratch by trial and error. Instead, these
customers can lean on the expertise of Asana and others that have
worked with countless organizations to discover best practices.

�Building design systems using patterns
So we have a better idea now of the finer differences between different

design, code, and content resources and how they’re used. Given that,

what might motivate you to build a design system? How could you use a

design system and what would you need to include?

Chapter 4 Patterns in design systems

https://asana.com/templates

159

Design systems aim to help teams communicate and improve

design processes. Specifically, they help to document, share, and spark

conversations around design decisions as well as to streamline workflows

that maximize consistency and save time. These objectives in turn mean

that for many smaller organizations that do not have rapidly changing

products, a complete design system with encoded patterns is often

unnecessary. A 10-minute conversation in a small team to review a new

design element can provide clarity and share approaches faster than a

designer can write down all the thinking around it, let alone everyone

finding time to reading about it. With this in mind, let’s consider the

factors affecting the appropriateness of a design system with patterns and

components for a team or organization.

�When to use a design system
Use a design system when

•	 There are so many people involved that conversations

are inefficient or impossible

•	 There are other challenges to fluid conversations like

teams working across time zones, parents leaving early

to pick up kids, part-time employees, or limited times

allocated to the project

•	 Handing over to another team, such as an agency

building an inspirational pattern library for an in-house

team

•	 Onboarding new employees quickly, so they can

understand what’s available, what decisions have been

made in the past, and what the organization values

Chapter 4 Patterns in design systems

160

•	 You have many content contributors writing copy,

developing images, editing videos, and curating

content from diverse teams

•	 You have the time, skills, and resources to build a

design system

•	 Names for UI patterns are undecided and causing

confusion

•	 You want to have a single source of truth to ensure

consistent design

If you decide that a few of the preceding factors apply to you and you

want to build a design system, where do you start? Let’s have a look.

�Framing
Framing a design system can be useful to let people know how to engage

with it; consider the context, audience, and purpose of the design system.

�Context

You might need to establish whether your design system guidelines take

a practical stance or an inspirational stance. A practical system prioritizes

speed and functionality. You would use it as lightweight documentation,

covering the bare minimum to jot decisions down, share code snippets,

and reuse components. An inspirational system motivates team members

to create beautiful products, surfacing brand values, and encouraging

cohesion in the user experience, even at the expense of efficient and

consistent development.12

12�Read more about these approaches in Andy Clarke’s article about
“Designing Imaginative Style Guides” (https://24ways.org/2016/
designing-imaginative-style-guides/).

Chapter 4 Patterns in design systems

https://24ways.org/2016/designing-imaginative-style-guides/
https://24ways.org/2016/designing-imaginative-style-guides/

161

�Audience

Consider who will use your design system, including designers,

developers, writers, third-party plug-in creators, teams from other

companies within your company group, other agencies, and other

government organizations. For example, Salesforce’s Lightning Design

System supports not only their internal contributors but anyone working

on a custom application using the Salesforce platform,13 which has far

greater reach than their internal teams. Similarly, the U.S. Web Design

System provides patterns and design principles for all government

organizations across the United States.

Beyond the size and shape of teams using your design system, you’ll

need to think about their skills, tools, environments, and what tasks

they might need to perform. For example, the Salesforce folk use rapid

prototyping in the browser (https://github.com/salesforce-ux/design-

system-starter-kit) to iterate quickly and test UI ideas. They describe this

as being necessary to scaling their design process (https://medium.com/

salesforce-ux/the-salesforce-team-model-for-scaling-a-design-

system-d89c2a2d404b). On the other hand, the design team at Airbnb

demand synced Sketch assets and React components (https://airbnb.

design/painting-with-code/) and thus have an elaborate design system

to handle this. One key aspect of their design system is Airbnb’s React

Sketch.app (http://airbnb.io/react-sketchapp/) that uses a shared

system to keep React (code) and Sketch (design) assets perfectly in sync.

�Purpose

While there may be many benefits to using a design system, establishing

the primary purpose will give clarity to how to design your design

system. Efficiency and speed in design and development might focus on

13�Salesforce Developers, “Salesforce Platform,” https://developer.salesforce.
com/platform.

Chapter 4 Patterns in design systems

https://github.com/salesforce-ux/design-system-starter-kit
https://github.com/salesforce-ux/design-system-starter-kit
https://medium.com/salesforce-ux/the-salesforce-team-model-for-scaling-a-design-system-d89c2a2d404b
https://medium.com/salesforce-ux/the-salesforce-team-model-for-scaling-a-design-system-d89c2a2d404b
https://medium.com/salesforce-ux/the-salesforce-team-model-for-scaling-a-design-system-d89c2a2d404b
https://airbnb.design/painting-with-code/
https://airbnb.design/painting-with-code/
http://airbnb.io/react-sketchapp/
https://developer.salesforce.com/platform
https://developer.salesforce.com/platform

162

sharing vocabulary and integrating design and development processes.

Consistency may mean facilitating reuse above all else.

Once you have this information in mind, it’s time to gather buy in

and spark interest in the design system. Most people can get behind a

movement to improve the quality of a product, but committing time

and resources to it can be another story. Framing the vision of the

design system, what it will achieve, how it will be used, and how it will

be developed can build awareness among affected parties, desire to

contribute and engage with it, and knowledge of how to proceed. It can be

useful to build a sense of urgency about the drivers for a design system (“if

we don’t do something now, at this rate our CSS will increase 10X by end

of year, and page performance will suffer, losing a fifth of our customers for

every second of lag introduced”).

In order for people to grow the ability needed to use the design system

well, you’ll need to examine the workflow.

�Workflows and design processes
At what point in the design and development process of a product will

your team use the design system? How will they engage with it and grow it?

Here are some examples of times a team might use a design system:

•	 Writing design specifications for a new feature to be

developed. You can include the pattern to be used,

linking to an existing reference and saving time.

•	 During design reviews. To settle a debate about the use

of a particular pattern, you might refer to documented

design decisions in the system.

•	 Prototyping or mocking up using existing design and

code assets for patterns or components.

Chapter 4 Patterns in design systems

163

•	 Code testing.

•	 Visual regression testing14 ensures code changes don’t

affect designs over time. Learn more about testing with

style guides (https://tinnedfruit.com/

articles/are-you-writing-legacy-css-code.html).

•	 Performance testing by measuring the size of style

and script assets in your style guide as a proxy for

site performance means you don’t need to track

your whole site.

•	 For more details, check out Jim Newbery’s

comprehensive guide to pattern library testing

(https://tinnedfruit.com/articles/why-and-

how-to-test-your-pattern-library.html).

•	 For onboarding new employees, a design system might

be an interesting insight into what the brand values and

how processes work, so include your design system in

onboarding documentation.

•	 During a design share where different designers in a

team respectively showcase and discuss their new

design work with the team. If you’re running regular

design shares, integrating a design system will slide

into the process seamlessly. Any newly designed

components that haven’t existed before can be added

to a “new” section of the design system. If it’s never

used more than twice, it’s not really a “recurring

solution,” so it may not be worth documenting

thoroughly or refining. When a new component is

14�For a comprehensive list of resources on visual regression testing, see Visual
Regression Testing (https://visualregressiontesting.com/).

Chapter 4 Patterns in design systems

https://tinnedfruit.com/articles/are-you-writing-legacy-css-code.html
https://tinnedfruit.com/articles/are-you-writing-legacy-css-code.html
https://tinnedfruit.com/articles/why-and-how-to-test-your-pattern-library.html
https://tinnedfruit.com/articles/why-and-how-to-test-your-pattern-library.html
https://visualregressiontesting.com/

164

used a few times or several similar components are

created, they can undergo more thorough design and

code reviews to refine a single component for reuse.

Note that regular design shares can also identify

inconsistencies if a “new” component is added where

an existing one should have been reused. Read more

about developing a process for making changes to

patterns in Brad Frost’s book Atomic Design (http://

atomicdesign.bradfrost.com/chapter-5/#making-

changes-to-patterns).

•	 Hand over. For example, design a mockup first and

provide a .sketch file and a.png preview inside the

design system but provide no code samples. Then a

developer can build it out there in the library before

using it in the product.

As we continue, we’ll explore further how to optimize your design

system for each of the preceding different touch points.

For some people, the word “processes” sends shivers up their spine,

associating it with unwanted changes and burdensome overhead. This

is what you want to avoid when integrating a design system into a team

making products.

�Pattern previews
Now we’re getting to the guts of your design system. For each pattern,

you’ll need a preview or demo to show what it looks like so you and your

team can recognize and find patterns quickly. The pattern itself needs to

be visually distinct from the page that houses it. For example, previews in

Culture Amp’s Kaizen Design System include a checkerboard background

style—like Photoshop’s transparency grid—to distinguish the live

component preview from the page it’s inside, as shown in Figure 4-6.

Chapter 4 Patterns in design systems

http://atomicdesign.bradfrost.com/chapter-5/#making-changes-to-patterns
http://atomicdesign.bradfrost.com/chapter-5/#making-changes-to-patterns
http://atomicdesign.bradfrost.com/chapter-5/#making-changes-to-patterns

165

To further illustrate the use of this grid background, Figure 4-7 shows

Culture Amp’s primary reversed button on a solid color background.

Figure 4-6.  Screenshot of Culture Amp’s primary button

Figure 4-7.  Screenshot of Culture Amp’s primary reversed button on
a solid background

Chapter 4 Patterns in design systems

166

This is particularly valuable when presenting components that

concern layout such as nav bars, so keep an eye out.

�Interactive previews

When combined with a living style guide, previews can be live, interactive

examples of the pattern’s component in action. Figure 4-9 shows an

example of one of MailChimp’s pattern previews.

Finally, for a full-width button, Figure 4-8 shows how a full-width

button would fill the space on a small screen.

Figure 4-8.  Screenshot of Culture Amp’s full-width button on a
small screen

Chapter 4 Patterns in design systems

167

In MailChimp’s pattern library (https://ux.mailchimp.com/

patterns), you can interact with the patterns, so a dropdown in a table will

actually drop down when you click it.

This approach provides the highest level of fidelity in illustrating how a

pattern operates. This needs work from developers (unlike a static image),

which means building the library is more than a tweak to an existing workflow

without a design system, but an actual piece of work. This may or may not be

feasible within your constraints, so it’s something to bear in mind.

This approach is excellent for practical pattern libraries. It allows

you to perform rapid prototyping in the browser. It also means you

can more deeply understand the states and behavior of the element,

such as seeing and feeling how hover styles appear and elements move

when you interact.

Figure 4-9.  Screenshot of MailChimp’s Interactive Table Pattern

Chapter 4 Patterns in design systems

https://ux.mailchimp.com/patterns
https://ux.mailchimp.com/patterns

168

Note Y ou might be familiar with prototyping using different levels of
fidelity from a lo-fi sketch to a hi-fi interactive prototype to simulate
real behavior. The main trade-offs are the speed you gain producing
lo-fi prototypes vs. the realism you achieve with hi-fi prototypes.
Each realistic detail removed from a prototype introduces a risk that
it’s an inaccurate test. Realism in your design system carries similar
trade-offs where you may not convey as much information in a static
image as you could with motion and interaction.

One challenge to this approach is writing enough code to make it

genuinely interactive without having real data to fill a component or

destinations for links. For example, if you wanted to present a notification

component containing an image and realistic text with a link, you would

need to really upload an image and create a working link to somewhere.

You may need to write extra code to handle when a component that

needs data, such as a data table component, doesn’t have it (because it’s

presented in the design system) as well as when it does (in actual product

usage). Similarly, if a form component normally submits data when you

click the submit button, not having that data might blow up in your design

system preview unless you take special care to handle that. You may also

need to use dummy data, which can cause confusion about what’s a part of

the pattern and what’s a part of the demo.

A shortcut to achieving interactive previews might be to link to code

demos on the Internet, such as a Codepen for morphing buttons

(https://codepen.io/angeliastefani/pen/WOozVx), if you cannot

include your own interactive patterns.

Chapter 4 Patterns in design systems

https://codepen.io/angeliastefani/pen/WOozVx

169

�Live markup and styling

Instead of an interactive example, however, you might include the markup

and styling needed to present a pattern preview illustrating the core of the

pattern, but leave out interactive details that would integrate it on a real

product page. For example, FutureLearn’s feed item (https://design-

system.futurelearn.com/molecules/feed-item) in Figure 4-10 shows

you how a feed item looks on mobile, tablet, laptop, and desktop devices,

but while in the design system you cannot follow the links in the feed item

or add the feed item to your favorites.

Figure 4-10.  Screenshot of FutureLearn’s feed item preview and link
to live examples

Chapter 4 Patterns in design systems

https://design-system.futurelearn.com/molecules/feed-item
https://design-system.futurelearn.com/molecules/feed-item

170

If you follow the live examples link, however, it will take you to an

instance of the component in use within the app.

FutureLearn’s “feed item” looks like our activity feed pattern in action.

They describe it in this way:

Feed item is a unit of social activity or timely information.

It contains a distinguishing element (an avatar or an icon),
heading, and content. Optionally it can include a secondary
heading, metadata, and user actions.

In addition to a single example, they describe modifiers—compact,

indented, alt, and bordered. As you can see, this is a little more precise

than our abstract activity feed, giving you detail about using it with visual

content such as avatars or icons. Seeing how individuals and organizations

execute patterns can give you fascinating insights into their flexibility and

limitations, such as how a distinguishing avatar can make each feed item

more interesting and valuable.

As another example of live markup and styling without an interactive

preview, Walmart’s web style guide (http://walmartlabs.github.io/

web-style-guide/) shows a flyout pattern using the pattern’s actual

markup and styling to present each variant (flying out in each of four

available directions). You can see in Figure 4-11, each variant is presented

statically in their final state.

Chapter 4 Patterns in design systems

http://walmartlabs.github.io/web-style-guide/
http://walmartlabs.github.io/web-style-guide/

171

This approach lets you see all variations of a pattern side by side.

If you make any style changes, you’ll see how it affects each version.

The downside is that it might introduce some ambiguity. Can a flyout be

trigged by hover alone or must you tap the toggle button?

�Static images, animations, and videos

To create a preview or demo, one option is that you show an image of it

without any real code behind it. Material Design’s notification (https://

material.io/design/platform-guidance/android-notifications.

html#anatomy-of-a-notification), for example, provides a static image

using example apps and videos for animated elements.

Figure 4-11.  Screenshot of Walmart’s Flyout pattern

Chapter 4 Patterns in design systems

https://material.io/design/platform-guidance/android-notifications.html#anatomy-of-a-notification
https://material.io/design/platform-guidance/android-notifications.html#anatomy-of-a-notification
https://material.io/design/platform-guidance/android-notifications.html#anatomy-of-a-notification

172

Figure 4-12 shows a static image using an example app for the preview.

Figure 4-13 shows a video where a static image would be insufficient to

convey the concept.

Figure 4-12.  Screenshot of Material Design’s notification static
example image

Chapter 4 Patterns in design systems

173

Interestingly, Material Design used to also have abstract mockups like

the notification skeleton shown in Figure 4-14, but no longer includes any

previews in this style. This might be a hint that it was insufficient to convey

the idea.

Figure 4-13.  Screenshot of Material Design’s notification video

Chapter 4 Patterns in design systems

174

Using static images and pre-recorded videos for previews means that

you need not write any code and more people may be able to easily update

your design system without spending time coding.

Additionally, it makes it possible to demonstrate larger and more

interactive elements within a design system that might otherwise

be tricky. For example, Lightning’s Loading guidelines (www.

lightningdesignsystem.com/guidelines/loading/) show loading

spinners and what they call “stencils” (a.k.a. skeleton screens), illustrated

in Figure 4-15.

Figure 4-14.  Screenshot of Material Design’s abstract notification
visual

Chapter 4 Patterns in design systems

http://www.lightningdesignsystem.com/guidelines/loading/
http://www.lightningdesignsystem.com/guidelines/loading/

175

If they had presented a real stencil to preview the pattern, you’d only

have a split second or so to see it before it loaded the full data, which limits

the illustrative ability of it. Similarly, imagine chasing down an infinite

scrolling page just to see the loading spinner.

This approach is excellent for inspirational pattern libraries.

The trade-off, however, is that more time may be spent on content

creation whenever the tiniest detail changes and the preview assets need

to be updated.

Figure 4-15.  Screenshot of Lightning’s loading spinners and stencils

Chapter 4 Patterns in design systems

176

�Code assets
For a practical pattern library to help teams achieve their product goals,

you can provide direct access to the code needed to use patterns right next

to them. To truly tailor these helpers to the team that will use the patterns,

however, you’ll need to consider the tasks they might be doing. This next

section includes more code than the rest of the book. If that’s not your cup

of tea, feel free to skip over it.

�Prototyping in the browser
For a UI engineer or designer that wants to prototype in the browser,

including a code snippet of raw HTML with functional, utility classes would

let them rapidly assemble patterns together in the browser’s developer

tools elements inspector. Further, for complex interactive patterns,

exposing JavaScript methods to initialize functions would let UI engineers

prototype interactive features. For example, imagine you were prototyping

with a JavaScript-driven tooltip. Given this tooltip HTML code snippet:

<button

class="btn btn-primary"

data-toggle="tooltip"

title="Add item to favorites">

 <span

 class="glyphicon glyphicon-heart"

 aria-hidden="true">

</button>

You could mock up an icon button, but you’d be unable to produce

a tooltip on hover. If the design system also included $('[data-

toggle="tooltip"]').tooltip(), you could initialize the tooltip in your

prototype and have it behave like a normal one.

Chapter 4 Patterns in design systems

177

�Writing code
Your design system might also provide boilerplate code to be used

directly from a design system in the final code base. In this case, your

code snippets need to be in the format that your code base uses, such as

template processor like Slim15 or Haml.16 For example:

.activity-feed

 .activity-feed-event

 h1.activity-feed-event-name Name verb noun

 small.activity-feed-event-date M minutes ago

 p.activity-feed-event-description

 Paragraph describing event

 a.btn.btn-primary.activity-feed-event-share

 Share call to action

Further, if a component requires a “presenter,” you can provide that

code as well. A presenter might show repeating elements like each feed

item in an activity feed for a set of feed items by calling one presenter code

snippet. For example:

<div class="activity-feed">

 <%= ActivityFeed.new(events, user, options).markup %>

</div>

Finally, if there are variants, show those too. In this example, you

can add activity-feed--featured to style the feed differently for more

important content:

<div class="activity-feed activity-feed--featured">

 <%= ActivityFeed.new(events, user, options).markup %>

</div>

15�“Slim,” http://slim-lang.com/.
16�“Haml,” http://haml.info/.

Chapter 4 Patterns in design systems

http://slim-lang.com/
http://haml.info/

178

�Converting design elements to code
In addition to patterns, design systems will often extend the elements of

living style guides and brand guidelines that help makers build products

efficiently. Icons, colors, typography, logos, and fonts, for example, will be

included in a manner that helps developers use them in their workflows,

even though they’re visual elements rather than patterns per se.

To weave these elements into workflows, design systems often include

the following foundational design guidance.

•	 Icons:

•	 Names to reference them in code, such as an

icon-heart produce a heart icon from an icon

image sprite.17

•	 Accessibility usage, such as adding aria-label=""

to describe unlabeled icon buttons and when to use

aria-hidden="true" to hide icons from screen readers

where a label would provide redundant information

on a labeled icon button. Alternatively, you might add

a <title> element to an SVG icon to describe the

visual content.

•	 Utilities for sizing, coloring, etc., such as .icon

.icon-small .icon-brand-red .icon-heart to

indicate a small, red heart icon.

•	 Sprite preparation, such as a script to run to collate

existing and new icons into a single sprite image for

serving quickly to users’ browsers.

17�Mozilla Developer Network, “Implementing image sprites in CSS,”
https://developer.mozilla.org/en-US/docs/Web/CSS/CSS_Images/
Implementing_image_sprites_in_CSS.

Chapter 4 Patterns in design systems

https://developer.mozilla.org/en-US/docs/Web/CSS/CSS_Images/Implementing_image_sprites_in_CSS
https://developer.mozilla.org/en-US/docs/Web/CSS/CSS_Images/Implementing_image_sprites_in_CSS

179

•	 Colors:

•	 Brand colors in different formats, such as hex

values (#ff0000) or rgba(255, 0, 0, 0.8).

•	 Sass variables and functions, for example, $state-

danger-bg: lighten($brand-danger, 25%);.

•	 Appropriate text colors on different background colors

that are legible and aesthetically pleasing, meeting

accessibility needs such as contrast requirements.

•	 Typography:

•	 Vertical rhythm18 and typography scale

specification in Sass variables,19 for example, h1 {

font-size: $type-scale(3); }.

•	 Logos:

•	 How to reference SVG logo images, for example,

<svg class="logo"><use xlink:href="path/

to/logo.svg#lockup"></use></svg> or in React

<Logo />.20

•	 Class names to indicate which color and

arrangement of the logo to use, for example, <svg

class="logo logo-reverse logo-stacked"> ...

</svg> for a stacked, reversed logo on a solid fill

background.

18�Shelly Wilson, “4 Simple Steps to Vertical Rhythm,” http://typecast.com/
blog/4-simple-steps-to-vertical-rhythm.

19�David Khourshid, “Aesthetic Sass 3: Typography and Vertical Rhythm,” https://
scotch.io/tutorials/aesthetic-sass-3-typography-and-vertical-rhythm.

20�To learn more, see Creating an SVG Icon System with React (https://css-
tricks.com/creating-svg-icon-system-react/) by Sarah Drasner.

Chapter 4 Patterns in design systems

http://typecast.com/blog/4-simple-steps-to-vertical-rhythm
http://typecast.com/blog/4-simple-steps-to-vertical-rhythm
https://scotch.io/tutorials/aesthetic-sass-3-typography-and-vertical-rhythm
https://scotch.io/tutorials/aesthetic-sass-3-typography-and-vertical-rhythm
https://css-tricks.com/creating-svg-icon-system-react/
https://css-tricks.com/creating-svg-icon-system-react/

180

•	 Fonts:

•	 Font stacks including the main brand font as well

as fall back fonts, for example, font-family:

'Crimson Text', 'Lora', serif;

�Design assets
To use a design system for design tasks, you’ll likely need to know color

values in different formats, like hexadecimal (#), RGB (Red, Green, Blue),

or HSL (Hue, Saturation, Lightness). For example, see Shopify’s Polaris

Color Palette (https://polaris.shopify.com/design/colors#section-

color-palette). Figure 4-16 shows the palette presented in the Hex

format.

Figure 4-16.  Screenshot of Shopify’s Polaris Hex colors

Chapter 4 Patterns in design systems

https://polaris.shopify.com/design/colors#section-color-palette
https://polaris.shopify.com/design/colors#section-color-palette

181

Figure 4-17 shows the palette presented in SCSS (a CSS pre-processor)

functions.

Figure 4-17.  Screenshot of Shopify’s Polaris SCSS colors

You’ll also likely need other standard information (often found in

branding guidelines) like display and body font faces, and swatch files

for design applications, such as Adobe Swatch Exchange files (.ase) for

Illustrator and other Adobe products.

This is also a handy place to link directly to other design asset files like

icon SVGs and UI source files like .sketch or .psd files or wireframing

and prototyping assets like Axure or Omnigraffle files. That said, it’s also

a great place for design assets that do not require design specific tools

and licenses for folk other than designers in the organization, like public

relations professionals. You might include high-resolution exported

images and slide deck templates.

For an example of design assets in design systems, check out U.S.

Web Design System’s designer resources (https://designsystem.

digital.gov/documentation/designers/) or Shopify’s Polaris UI Kit and

other resources (https://polaris.shopify.com/resources/resources).

Chapter 4 Patterns in design systems

https://designsystem.digital.gov/documentation/designers/
https://designsystem.digital.gov/documentation/designers/
https://polaris.shopify.com/resources/resources

182

�Writing and content
As your patterns and components will undoubtedly include text, the

library is a good place to link to or include editorial style resources,

especially as they pertain to digital products. For example, a traditional

editorial style guide may not mention whether to use “Title Case” or

“Sentence case” on buttons or how to localize interfaces into different

languages.

When developing your internal library patterns, your copywriter

can write good defaults into all the components like a clear and helpful

validation feedback messages in your form components to streamline

good copy practices and ensure interface microcopy is not missed.

For an example of this, check out Shopify’s Polaris Content Grammar

and Mechanics section (https://polaris.shopify.com/content/

grammar-and-mechanics#basics).

�Documenting patterns or components
In practice, rather than creating pattern libraries and documenting patterns

from scratch, individual organizations create design systems that encode

patterns with a specific visual design language in component libraries with

documentation. Sometimes they link to tools and resources that speak to

the broader pattern but rarely do they describe an abstract pattern; they

describe a specific execution of a pattern in their specific domain.

Nathan Curtis suggests that “Our Community, not Companies, Should

Build Pattern Libraries.”21 He also suggests that most organizations would

only need to craft their own patterns (rather than components) for “the

most essential patterns unique to their customer experience,” such as

21�Nathan Curtis, “Patterns ≠ Components,” https://medium.com/
eightshapes-llc/patterns-components-2ce778cbe4e8.

Chapter 4 Patterns in design systems

https://polaris.shopify.com/content/grammar-and-mechanics#basics
https://polaris.shopify.com/content/grammar-and-mechanics#basics
https://medium.com/eightshapes-llc/patterns-components-2ce778cbe4e8
https://medium.com/eightshapes-llc/patterns-components-2ce778cbe4e8

183

“A bank’s pattern to move money from one account to another.” In many

cases, the product’s unique value proposition can be encapsulated by this

one, most essential pattern.

When it comes to creating and documenting new patterns in your

design system, I suggest focusing your efforts on that one most essential

pattern to your business, or the patterns that cause the most contention in

your organization. Popular areas for arguments among digital practitioners

outside the scope of their unique business include: when to use a link or a

button,22 when to use target=“blank”23 to force a link to open in a new tab,

and what cursor for a button or link.24

For more information on documenting UI patterns in your design

system, Nathan Curtis again provides us with an excellent series on

Documenting Components (https://medium.com/eightshapes-llc/

documenting-components-9fe59b80c015).

�Extra design system features
To help navigate the design system, you could provide an overview, a table

of contents, or an autocomplete search as we saw in Chapter 2. Figure 4-18

shows an example of autocomplete search to find components regardless

of the section they live in.

22�Marcy Sutton, “Links vs. Buttons in Modern Web Applications,” https://
marcysutton.com/links-vs-buttons-in-modern-web-applications.

23�Chris Coyier, “When to use target=”_blank”,” https://css-tricks.com/
use-target_blank/.

24�Roman Komarov, “Correct Cursor on Active Elements,” www.kizu.ru/
cursor-pointer/.

Chapter 4 Patterns in design systems

https://medium.com/eightshapes-llc/documenting-components-9fe59b80c015
https://medium.com/eightshapes-llc/documenting-components-9fe59b80c015
https://marcysutton.com/links-vs-buttons-in-modern-web-applications
https://marcysutton.com/links-vs-buttons-in-modern-web-applications
https://css-tricks.com/use-target_blank/
https://css-tricks.com/use-target_blank/
http://www.kizu.ru/cursor-pointer/
http://www.kizu.ru/cursor-pointer/

184

Figure 4-18.  Screenshot of Lightning Design System’s autocomplete
search

As you can see in Figure 4-19, Walmart’s style guide includes clickable

anchors next to each example’s heading so you can link directly to a

pattern on a long page.

Chapter 4 Patterns in design systems

185

Using this method, you can include links directly in project

management tools for describing upcoming feature specifications or to

share in discussions over email or instant messaging. This is especially

useful for distributed and remote teams.

A common enhancement you’ll find in mature front-end style guides

is a button to “copy to clipboard” to copy code snippets, as shown in

Figure 4-20.

Figure 4-19.  Screenshot of Walmart’s Chapter Paginator
pattern

Figure 4-20.  Screenshot of Lightning Design System developer
guidelines including a copy to clipboard button

Chapter 4 Patterns in design systems

186

�Growing a design system
�Kick off
How do you kick off a new design system? One method is to use Nathan

Curtis’s design system worksheet approach.25 This uses a workshop

approach to collaboratively tackling the problem of which parts of a design

system to solve (including whether a design system is even a priority),

all of the products or digital “properties” (such as a web site, web app,

social media presence) to consider, and the people needed to make it all

happen—the individual contributors, influential leads, and distant leaders

like directors. This approach builds consensus while actually solving the

issues of how to build a design resource.

Alternatively, to instigate conversations, you might start with the

compelling interface inventory26 to screenshot and collect all the different,

inconsistent interface elements actually in use in your products. This

identifies patterns already in use and the scope of the work ahead, but may

also be used to highlight the severity of inconsistencies in your products. If

your priority is in improving consistency, this is a useful starting point.

Once you’ve identified all the pieces, you can start to clarify

•	 Which patterns exist that are successfully solving

problems. This is the basis of your design system.

•	 Which components are almost solving a problem that

could be addressed with a standard pattern.

•	 Where there’s wild variation in behavior and usage of

components.

25�Nathan Curtis, “Picking Parts, Products & People,” https://medium.com/
eightshapes-llc/picking-parts-products-people-a06721e81742.

26�Brad Frost, “Interface Inventory,” http://bradfrost.com/blog/post/
interface-inventory/.

Chapter 4 Patterns in design systems

https://medium.com/eightshapes-llc/picking-parts-products-people-a06721e81742
https://medium.com/eightshapes-llc/picking-parts-products-people-a06721e81742
http://bradfrost.com/blog/post/interface-inventory/
http://bradfrost.com/blog/post/interface-inventory/

187

•	 What’s actively having a negative impact. We’ll look at

anti-patterns in Chapter 5.

•	 Where there are special snowflakes that are never

reused. Sometimes these represent unique, delightful,

or signature experiences. Other times they highlight

unnecessary customizations that could be removed.

Use these to discuss your product’s UI patterns with your team and

start naming them.

�Assembly
Once you have a rough draft of all your patterns, you can work on

presenting them. An effective design system is informed by diverse

contributors. That is, imagine how a designer might feel about developers

using a design system when it is ugly and untouched by the designers

that would have the skills to ensure their usability. Likewise, imagine how

a developer might feel about being forced to depend on a UI Kit that’s

constantly out of sync with production styles where some elements are out

of date and some aren’t ready to be rolled out yet. As such, it’s necessary

that all parties using the system can contribute to and effectively use it.

Some options for storage might include

•	 A wiki: While it might lack requisite tech details,

anyone can write to it.

•	 A Dropbox folder: It might lack versioning, but could be

easily accessed and easily include a mix of design and

development assets like Photoshop or Sketch source

files and exports as well as code specifications.

Chapter 4 Patterns in design systems

188

•	 A code repository: This might ensure versions are

controlled, but be inaccessible to folk that don’t know

how to read or write code. This could be augmented

with a social coding interface like GitHub, where anyone

can leave comments, raise issues, and attach files.

•	 An internal web site with commenting features: Tech

folk may directly build the site itself, while non-tech

folk can write info about the patterns on the site.

�Versioning
The designs, code, and underlying UI patterns will change over time. It’s

not always possible to roll out every relevant change at the same time,

such as moving a web site from one front-end framework to another, more

powerful framework. As such, your design system might have multiple

versions: one using the old framework for most patterns and one using the

new framework for enhanced interactions. Like any software package, you

could use semantic versioning (https://semver.org/) to denote patches,

minor changes, and major breaking changes in your design system.

For example, Walmart’s style guide suggests the “Display Price”

component, shown in Figure 4-21, has been deprecated in favor of the

more generic “Price” component.

Chapter 4 Patterns in design systems

https://semver.org/

189

Figure 4-21.  Screenshot of Walmart’s Display Price component with
deprecation warning

Chapter 4 Patterns in design systems

190

You’ll notice with UI frameworks such as Bootstrap that you can still

use and find documentation for older versions.27 The more people using

your library, the more care you’ll need to take supporting the constraints

they’re working with that might limit them from keeping up with you.

27�“BootstrapDocs,” https://bootstrapdocs.com/.

Figure 4-22 shows the “Price” component.

Figure 4-22.  Screenshot of Walmart’s Price component with far more
detail and variations

Chapter 4 Patterns in design systems

https://bootstrapdocs.com/

191

�Serving assets
If you’ve created a public-facing design system as part of product web

site, be sure to avoid delivering unnecessary code to their browsers. For

example, only serve the extra code needed to present the library to people

visiting that library page instead of shipping it with the rest of your style

and script assets for regular site visitors using the product. For the most

part, if you’re using neatly encapsulated components, you won’t require

much additional code. Effective code splitting and delivery can also help.

�Tools
In your library, link to any tools that help people assess, use, and refine

patterns. For example, try these:

•	 Color contrast, legibility, and color blindness testing tools

•	 Accessibility testing tools

•	 Performance testing or otherwise tracking the weight

of files (such as your CSS) over time or number of files

included (such as number of icons or font files used)

•	 Readability testing tools, such as Hemingway app for

highlighting reading levels and clear language

•	 Helpers, such as Lonely Planet’s Closest Color tool

(https://rizzo.lonelyplanet.com/styleguide/

design-elements/ui-colours) for pasting in a hex

value and returning the closest UI color in their design

system as a hex value or Sass variable

•	 Extra assets like a Sketch UI kit or React components28

28�See, for example, Shopify’s Polaris design system resource page (https://
polaris.shopify.com/resources/resources).

Chapter 4 Patterns in design systems

https://rizzo.lonelyplanet.com/styleguide/design-elements/ui-colours
https://rizzo.lonelyplanet.com/styleguide/design-elements/ui-colours
https://polaris.shopify.com/resources/resources
https://polaris.shopify.com/resources/resources

192

�Evolution
No doubt everyone will love your design system and want to be involved.

Okay, this might be an optimistic view in some cases, but if your design

system is ticking along smoothly, you might find more good ideas pouring

in than you have time to process and address. You can triage all of the

suggestions using a standard “issue tracker” like GitHub’s issues or even a

customer support tool.

When changes are made to your design system, you’ll want to share

everything and let people know what’s changed. This is an opportunity to

celebrate progress so be sure to call out the effort people have made and

how valuable that contribution is to the organization’s mission. Following

another programming habit, you might use a “change log” to keep a log of

changes made between design system versions, and share “release notes”

to highlight the significant differences, including screenshots of what’s new.

For a list of design system resources, see the suggested reading in the

Appendix.

�Summary
Design systems include all manner of design communication

documentation, such as internal pattern libraries, public pattern libraries,

brand guides, editorial style guides, design guidelines, front-end style

guides, and component libraries.

We’ve reviewed the varied uses of design systems and pattern libraries,

especially for their abilities to clarify design decisions.

Finally, we’ve seen when a design system might be an appropriate tool

to use (usually when design reviews aren’t possible).

Chapter 4 Patterns in design systems

193© Diana MacDonald 2019
D. MacDonald, Practical UI Patterns for Design Systems,
https://doi.org/10.1007/978-1-4842-4938-3_5

CHAPTER 5

Anti-patterns
and dark patterns

Healthy skepticism is often the best way to glean the value of
what’s being presented—challenge it; prove it wrong, if you can.
That creates engagement, which is the key to understanding.

—David Allen, Getting Things Done

�What are anti-patterns?
Anti-patterns are recurring solutions that create more problems than they

solve. On the surface, they may seem appealing as solutions to your design

problems, but dig a little deeper and you’ll find there’s more pain than

promise. As with the three ingredients of a UI pattern we saw in Chapter 1,

here are the details of an anti-pattern:

•	 A named “solution” or approach describing what the

anti-pattern does, including the symptoms, where

there are more bad consequences than good.

•	 A tempting reason why you might be seduced into

using the anti-pattern, including the user problem it

sought to address.

194

•	 Some missing context for when it could have been viable.

This usually suggests alternative, suitable UI patterns.

•	 Some recovery steps explaining how to recover,

including alternative patterns that exist and are

successful. Sometimes, there are preventative

measures too.

Let’s look at an example. Mystery meat navigation describes links

that do not have a clear destination. The user needs to hover over the link

to reveal the link’s destination or follow it blindly, making your product

harder to understand and operate. Like mystery meat—processed meats

with unidentified sources—mystery meat navigation is clear to the creator

but not to the consumer.

A common example of mystery meat navigation is the infamous

“click here” link. These poorly labeled links are confusing when read

out of context, for example, by a screen reader or someone scanning a

page quickly for specific information. The user is forced to hover over

or touch and hold the link for the browser to show the link target, and

even then, a URL doesn’t explain the content of the link target. Another

example of mystery meat navigation is unlabeled icons. The symptoms of

mystery meat navigation include decreased click confidence, wayfinding

challenges, longer task completion times, and potentially abandonment.

Anti-pattern names typically take on a more humorous or memorable

name to call out the absurdity of using it and draw attention to its flaws.

Otherwise you might (reasonably) refer to mystery meat navigation links as

“click here” links, hiding their nefarious nature. By having a sharper name,

you can recognize its true nature.

When crafting link text, it might be tempting to use “click here” because

it’s a common staple of the early Web and it’s explicit about what you want

the user to do next. It’s especially tempting when you start a sentence with

“To learn more”: “To learn more about bees, click here.” Instead, you could

link the subject itself, for example, “Learn more about bees.”

Chapter 5 Anti-patterns and dark patterns

195

Similarly, it might be tempting to use unlabeled icons to save space,

reduce visual clutter, and avoid translating text. One time when it might

be worth keeping the unlabeled icons is when you have extremely

experienced, highly engaged users using a limited number of unlabeled

icons with high frequency. For example, a Facebook user that checks in

every day may not need labels for the primary navigation items they use

habitually. Instead of unlabeled icons, you might add labels to icons or

replace them with text alone.

�Why care about anti-patterns?
Learning anti-patterns helps you recognize them more quickly and learn

how to untangle yourself from one that’s already in use. When uncovering

anti-patterns, it’s useful to assume positive intent by the designer using

the anti-pattern in attempting to solve their problem. It’s rare that people

set out to create impenetrable user interfaces and anti-patterns can be

deceptively appealing.

There will be at least some appeal to the anti-pattern solution:

•	 The approach is useful in the short term but will have

negative consequences in the long term. The long-term

consequences might seem acceptable or be overlooked.

•	 The approach might be intended as a stop-gap

solution, but lingers for unexpected reasons, such

as the development team being out sick delaying

additional work.

•	 The solution would be suitable in a slightly different

context, but it’s been mismatched to the situation at hand.

•	 There are other forces at play outside of the design

problem, such as management issues (like the mythical

man month we saw earlier).

Chapter 5 Anti-patterns and dark patterns

196

Patterns may also suggest shortcomings in your environment like

the technology available. For example, displaying a login form might

be unnecessary in an iOS app that uses a thumb print to authenticate a

known user. The thumb print authentication makes the username and

password fields of a login form redundant. Without thumb print access,

however, the login form pattern would be suitable.

Uncovering the failure mode of an anti-pattern helps in understanding

why interfaces fail and may assist in seeing problems in advance when

new design trends come around.

Note  UI anti-patterns aren’t just bad UI design. Unlike poor UI
choice, anti-patterns seem like good solutions on the surface. Further,
the scope of the problem in an anti-pattern is often larger than just
the UI: the root cause of an anti-pattern might be the governance
and business processes that surround how a web site component
is updated. UI anti-patterns develop from a combination of people,
parts, and processes.

Even when a bad pattern falls out of favor (owing to its many

drawbacks), that doesn’t mean it’s never the right solution; only that

the odds are lower. Even a good UI pattern can become an anti-pattern

if its solution depends on a specific context, like an era of web design,

conventions, and technology, and it’s misapplied to a new and different

context.

�Anti-pattern: Hamburger basement
As a UI pattern, this was originally called the hamburger menu: three

lines indicating a “hamburger” button in the top-left or top-right corner

of an interface that opened and closed a menu, usually containing links to

different parts of a product.

Chapter 5 Anti-patterns and dark patterns

197

Giving it a more ridiculous name that highlights the flaws of it, the

hamburger basement anti-pattern stashes options away behind the

hamburger button leading to fewer people using them.

Figure 5-1 shows a hamburger button.

The problem that this anti-pattern was attempting to solve was

managing primary navigation on tiny screens. In the pursuit of prioritizing

content to create an immersive experience and balancing this pursuit with

access to primary navigation, the community sought to shrink navigation

Figure 5-1.  Screenshot of Wikipedia’s article about the hamburger
button on a page with a hamburger button

Chapter 5 Anti-patterns and dark patterns

198

down to one thumb-sized link so it’s there when you need it but stays out

of the way. Unfortunately this creates other issues:

•	 Decreased discoverability: It’s harder for users to

stumble upon other great features in your product.

•	 Decreased location signalling: Users will find it harder

to identify where they are if you remove another source

of you-are-here navigation.1

•	 Increased cost of interaction: The menu requires an

additional tap to access it compared to immediately

accessible links.

•	 Increased thumb stretching: Hamburger menu icons

are kept in the hardest-to-reach locations on tiny

screens for your users’ thumbs.

•	 A form of mystery meat navigation: Users won’t know

what’s in the menu behind the icon until they tap it.

•	 Increased analysis paralysis: A long list of links in

the menu with little context about their destinations

makes it hard to select an item. If the user chooses

the wrong link, they need to start the time-consuming

process of trial-and-error tapping each link behind the

hamburger button again.

•	 Decreased click confidence: Users hesitate with

unlabeled icons.

•	 Increased context switching: It can be unclear where the

menu came from and how it relates to the current page,

especially if it appears suddenly without a transition.

1�Susan Farrell, “Navigation: You Are Here,” www.nngroup.com/articles/
navigation-you-are-here/.

Chapter 5 Anti-patterns and dark patterns

http://www.nngroup.com/articles/navigation-you-are-here/
http://www.nngroup.com/articles/navigation-you-are-here/

199

•	 Increased confusion across platforms: Users don’t

understand or recognize the hamburger at all on

desktop web sites and might find the icon in unusual

locations on native iOS apps where the platform

reserves the top-left corner for existing navigation

elements like “back” arrows or “exit” crosses. In this

case, the solution used doesn’t fit the context.

As it turns out, hidden navigation cuts discoverability in half and

destroys engagement.2 Beyond the hamburger basement, this gives us

clues about what to look for in the future when new “patterns” arise that

turn out to be anti-patterns. If you see hidden navigation elements leading

to poor navigation within your product, you will be able to recognize this

familiar trap and nip it in the bud.

It’s not all bad news for hamburger menus though. To change a

“basement” to a “menu,” there are some steps you can take:

•	 Only keep secondary navigation elements or

infrequently accessed features in the hamburger menu,

such as about pages, history, settings, permissions,

copyright, privacy policies, sponsorship, advertising,

affiliates, disclaimers, cookie policies, licensing, help,

security, terms, and so on.

•	 For secondary navigation elements included in

a hamburger menu, examine the information

architecture of your navigation menu to establish clear

labels, categories, and order to your links.

2�Luke Wroblewski, “Obvious Always Wins,” www.lukew.com/ff/entry.asp?1945,
April 2015.

Chapter 5 Anti-patterns and dark patterns

http://www.lukew.com/ff/entry.asp?1945

200

•	 Extract primary navigation elements from the

hamburger menu and expose them in the main

interface instead of hidden behind a click. For this you

might use, for example, a bottom tab nav bar with the

current nav item clearly selected.

•	 Move the menu button to a thumb-friendly region.

•	 Aggressively prioritize content so that primary

navigation is correctly identified and easily accessible.

The hamburger basement can be a clue that you’ve

failed to prioritize as aggressively as possible.

•	 Increase clickability signifiers like surrounding the

hamburger icon with a border to look like a button or

giving it a “menu” label.

•	 Label your icons.

•	 Avoid use on desktop.

•	 Increase content links.

Figure 5-2 shows one alternative to the hamburger basement.

Chapter 5 Anti-patterns and dark patterns

201

These steps don’t necessarily mean you will completely kill off the

hamburger menu, only that you can make it less of a dank, scary basement

by mitigating some of the worst effects of it.

What else can we learn from the hamburger basement anti-pattern?

In the hamburger basement, we can see some of the basic tenets of UX

violated. When considering new UI patterns, we must be on the look out

to identify the trade-offs we’re making when we employ them. Given how

undiscoverable the hamburger menu is, what makes us think sideways

scrolling nav will be any better?

Figure 5-2.  Screenshot of Thick studio using a fixed “Menu” button
in the thumb zone

Chapter 5 Anti-patterns and dark patterns

202

Figure 5-3 shows an example of a horizontal scrolling navigation bar.

Similar to the hamburger menu pattern and hamburger basement

anti-pattern, the overflow menu3 has been branded a junk drawer.4 This

example shows us a similar tempting reasons to use a “solution” that

brings more bad consequences than good when used in a context that

doesn’t fit.

�What are dark patterns?
Another way that UI design can go awry is through the use of dark
patterns or evil design (sometimes referred to as “black hat UX”):

deceptive patterns that benefit the creator more than the user. They often

persuade users into performing an action they didn’t intend, such as

3�Daniel Burka, “Stop the overuse of overflow menus,” https://medium.
freecodecamp.org/stop-the-overuse-of-overflow-menus-5caa4b54e843,
July 2016.

4�Jakob Nielsen and Page Laubheimer, “Top 10 Application-Design Mistakes,”
www.nngroup.com/articles/top-10-application-design-mistakes/,
February 2019.

Figure 5-3.  Screenshot of Designer News where tapping the
hamburger button reveals a sideways scrolling nav bar

Chapter 5 Anti-patterns and dark patterns

https://medium.freecodecamp.org/stop-the-overuse-of-overflow-menus-5caa4b54e843
https://medium.freecodecamp.org/stop-the-overuse-of-overflow-menus-5caa4b54e843
http://www.nngroup.com/articles/top-10-application-design-mistakes/

203

subscribing to a long contract with hidden fees. Sometimes they dissuade

people from performing their intended action, such as unsubscribing.

Commonly, the use of dark patterns is seen as being in pursuit of the

bottom line—getting the sale no matter the cost to the user.

Design, by its nature, is used to communicate with and persuade

people. Dark patterns, however, deceive people to achieve that goal.

Note T o learn more about dark patterns and the gray area,
check out:

•	 Dark Patterns (https://darkpatterns.org/)

•	 Evil By Design (http://evilbydesign.info/)

�Manipulinks and Confirmshamers
A manipulink is a link with manipulative link text. The term combines

“manipulative” and “link.” Unlike links with well-crafted microcopy that is

precise and concrete, manipulinks make users feel bad by forcing them to

click a link with irrelevant text to actual the task: dismissing a notification

or modal (they usually replace “cancel,” “close,” or “dismiss” as link text).

The irrelevant link text requires the users to make an identity statement

about their values aligning with some negative quality like, “No thanks,

I prefer not making money,” “No, I prefer paying full price,” or “No thanks,

I don’t like cute babies.”5

5�“confirmshaming,” http://confirmshaming.tumblr.com/image/161394731642.

Chapter 5 Anti-patterns and dark patterns

https://darkpatterns.org/
http://evilbydesign.info/
http://confirmshaming.tumblr.com/image/161394731642

204

Figure 5-4 shows an example of a manipulink.

Manipulinks are sometimes called

•	 “declineshamers” because they’re often used to decline

an offer

•	 “confirmshamers” as they ask users to confirm

something potentially shameful about themselves to

remove the obstacle

•	 “painful buttons” to make the opt-out button less

passive and more painful to users

Confirmshamers frequently appear on “exit-intent pop-ups,” which are

modals that pop up when a user indicates their intent to leave by moving

their mouse toward the close button of a tab or back button of a browser.

These are used in a few different ways:

•	 If the organization identifies a user as a shopper needing

further incentive to make a decision, they may offer

the user a discount on their purchase or use principles

like scarcity and urgency to push the user over the line

(“Only 5 items left!”, “Offer ends in 3 days!”).

Figure 5-4.  Screenshot of Gmail’s dismissal link microcopy that says,
“I don’t want smarter email”

Chapter 5 Anti-patterns and dark patterns

205

•	 If the organization identifies the user as needing more

information, they then attempt to offer more assistance

such as live chat with customer support to address their

concerns, particularly on e-commerce checkout pages.

•	 Failing all of that, the organization may settle for lead

generation and attempt to capture your email address

or social media accounts to market to you more later.

Before the user can leave, however, they must click a negatively worded

link on that pop-up.

On the surface, manipulinks might seem like an effective use of

compelling microcopy to increase conversions. As Kate Meyer and Kim

Flaherty at Nielsen Norman Group point out, however, the short-term

increase in leads might not be worth the long-term impact of lower Net

Promoter Scores, negative brand perception, and loss of credibility and

users’ trust.6

As a label for a control, these manipulinks even fail at the basic task

of describing what clicking the link will do: will it dismiss the modal or

automatically email all my contacts that I prefer dumb email? The link text

gives no clue about its actual behavior. Using this link text alone, a user

with an assistive device like a screen reader may find it challenging to figure

out how to operate the modal, to close it and return to their original task.

Beyond the bottom line, this dark pattern risks putting words in someone’s

mouth, encouraging negative self-talk that can affect mental health.7

To wind your way back from a manipulink, you might consider

Copyhackers’ opt-out boxes with consequences.8 In addition to including a

6�Kate Moran and Kim Flaherty, “Stop Shaming Your Users for Micro Conversions,”
www.nngroup.com/articles/shaming-users/.

7�healthdirect, “Self talk,” www.healthdirect.gov.au/self-talk.
8�Joanna Wiebe, “Choices, Consequences and the Reason Every Pop-Up Box
Needs 2 Buttons: Opt In, and Opt Out,” https://copyhackers.com/2015/05/
choices-consequences-opt-in-boxes/.

Chapter 5 Anti-patterns and dark patterns

http://www.nngroup.com/articles/shaming-users/
http://www.healthdirect.gov.au/self-talk
https://copyhackers.com/2015/05/choices-consequences-opt-in-boxes/
https://copyhackers.com/2015/05/choices-consequences-opt-in-boxes/

206

subscribe button in a newsletter signup pattern as we saw in

Chapter 2, Copyhackers suggest using an explicit opt-out link so users make

a conscious decision to accept the consequences of opting out rather than

deferring or delaying the decision by dismissing the question. By using the

phrase “No, I reject the persuasion guide,” they are offering their users a

clearly expressed action that accurately describes what the user is doing.

Tip T here’s a whole Tumblr about confirmshaming (http://
confirmshaming.tumblr.com/).

�Design smells
A bad smell or a code smell is a term commonly used in the software
development community to describe symptoms in a product that

possibly indicate a deeper problem. To borrow the concept, design smells

are design issues that possibly indicate a deeper problem. You might think

of them as the smoke you see before you spot the fire. If you don’t find the

fire and put it out in time, your whole product might go up in flames. On

the other hand, while design smells might indicate a deeper problem, they

might also be traced back to nothing sinister at all. Your smoke might come

from a smoke machine, having exactly the intended effect.

When you see a design smell, it’s useful to understand it to avoid

growing problems in the future. It might be the source of accumulating
design debt: borrowing against the future to quickly solve a problem now.

For example, rolling out a new look and feel to key parts of a product to get

it in the hands of users faster, with the intention to finish cleaning up the

stragglers later. After a dozen such short-term decisions, the product could

start to look like a Frankenstein monster. The problem here is that the

Chapter 5 Anti-patterns and dark patterns

http://confirmshaming.tumblr.com/
http://confirmshaming.tumblr.com/

207

longer it takes to start paying off design debt, the more costly and difficult it

is to handle. This risk of design debt needs to be balanced against the need

to iteratively deliver value to users. Design smells can help you identify

when you’re starting to take on too much design debt.

�Too Much Information (TMI)
This design smell is noticeable when content is bursting at the seams, such

as a listing containing 500 items and no method for users to find relevant

items within the list. Unsorted, unchunked, unrelated items bundled

together in something generic like “Settings” and no way for users to find

the setting they want when they need it. In these cases we can refer back

to our patterns from Chapter 3 for finding, reading, collecting, and sharing

content, like autocomplete, pagination, filtering, and autocomplete. For an

example of Too Much Information, Figure 5-5 shows multiple, scrollable

pages of settings in Chrome Dev Tools.

Figure 5-5.  Screenshot of Chrome’s Developer Tools with an
extraordinary number of settings for their power users

Chapter 5 Anti-patterns and dark patterns

208

Given this huge number of settings, the folks at Google introduced

a searchable command menu9 that can be opened from any tab in the

developer tools using Cmd+Shift+P (or Ctrl+Shift+P) to autocomplete

tools, including settings, as shown in Figure 5-6.

Another sign of TMI is the pagination pattern being stretched, as

shown in Figure 5-7.

9�Paul Bakaus, “DevTools Digest: More Power with the New Command Menu,”
https://developers.google.com/web/updates/2016/04/devtools-digest-
command-menu, April 2016.

Figure 5-6.  Screenshot of autocomplete dev tools

Figure 5-7.  Screenshot of pagination with hundreds and thousands
of pages probably doesn’t lead to relevant content

Chapter 5 Anti-patterns and dark patterns

https://developers.google.com/web/updates/2016/04/devtools-digest-command-menu
https://developers.google.com/web/updates/2016/04/devtools-digest-command-menu

209

If the number of pages gets too high, this is a design smell that further

refinement is needed through, for example, search filtering. Meanwhile,

Google’s approach to the decreasing relevance of search results is a design

that suggests that there are only ever 10 pages, as shown in Figure 5-8.

Figure 5-8.  Screenshot of Google’s pagination only shows 10 pages

The reality is that navigating to page 10 reveals that there actually are

more pages, as shown in Figure 5-9.

Figure 5-9.  Screenshot of Google’s pagination has more than 10 pages

�Modals and pop-ups
�Modal UI pattern
A modal (or “modal window,” “dialog,” “overlay,” or “lightbox,” sometimes

described as a “pop-up”) is an overlay that places the system in another

mode, temporarily displaying different content.

Chapter 5 Anti-patterns and dark patterns

210

Figure 5-10 shows an example of a modal.

Figure 5-10.  Screenshot of Google’s lightbox content modal that tells
you more about specific items

Modals contain smaller pieces of new content, while the rest of the

screen is covered with a transparent overlay. When using a modal, provide

an exit mechanism like closing × symbols, “Close” links, or clicking the

transparent overlay. Figure 5-11 shows an example of a closing × symbol to

dismiss the modal.

Chapter 5 Anti-patterns and dark patterns

211

If there is a destructive action in the modal (e.g., it’s a confirmation

modal for deleting content) and the destructive action cannot be undone

easily, it is safer to make the default “Enter” key action a cancellation

option.

For titles and buttons, a brief verb and noun pair like “Create project”

or “Send invitation” clarifies the reason for the interruption from regular

content and what you’re expected to do next. For a person to efficiently

navigate your modal, they can almost make a decision about what to do

by reading only the button—helpful for people that compulsively dismiss

Figure 5-11.  Screenshot of a property modal to edit profile settings
in Asana

Chapter 5 Anti-patterns and dark patterns

212

modals without reading. Figure 5-12 shows an example of a well-labeled

button in a modal that people might otherwise fail to read properly.

You can use a modal when you need to change the flow of content or

interaction. While a common staple of the Internet, modals often cause

more problems than they solve and need to be handled carefully, lest they

become an anti-pattern.

Figure 5-13 shows an unprompted bulletin modal changing the flow of

content or interaction from the activity the user was performing.

Figure 5-12.  Screenshot of LinkedIn shows a functional modal to
configure your invitation before sending it

Chapter 5 Anti-patterns and dark patterns

213

�Modal design smell
The primary purpose of a modal—disrupting the flow to temporarily

change mode—suggests that there’s a deeper root cause underlying what’s

wrong with the UI. Why would you need to disrupt the flow? The existing

flow must be somehow insufficient to the task at hand. It is, however, only

a smell; a modal might be the best option for the context.

Figure 5-13.  Screenshot of Asana’s bulletin modal advertising a new
feature in a premium product

Chapter 5 Anti-patterns and dark patterns

214

�Pop-up anti-pattern
Modals are occasionally referred to as pop-ups. The original “pop-ups,”

however, used specific browser behavior to intrusively pop up without any

warning and are typically blocked in modern browsers. As an exaggerated,

evil-twin anti-pattern name for modals though, “pop-ups” is suitable

enough: they often pop up to a user’s great annoyance.

The problem the pop-up is trying to solve is how to draw a user’s

attention to a Call To Action. This happens a lot on web sites with a strong

content marketing focus. That is, they draw people in with their “free”

content, then “ask” for something else, like a newsletter subscription to

generate leads or signup to a subscription service for monthly sales. As

such, including this Call To Action beside or after the content might not

give it enough attention.

The symptoms of a misused modal pop-up are as follows:

•	 Unless particular care is taken and testing performed,

pop-ups are frequently highly confusing and difficult
to operate for people using keyboards, screen readers,

or assistive devices.

•	 On smaller screens such as a mobile phone, pop-ups

disrupt the flow completely by covering the entire
screen. In this case, it would make more sense to defer

the content to a subsequent page. If there is so little

content in the pop-up that it has room to spare, then

a pop-up is overkill and might be replaced with inline

content (under a collapsible, disclosure element, for

example).

Chapter 5 Anti-patterns and dark patterns

215

•	 When system-generated rather than user-initiated,

pop-ups are highly disruptive, working against user
expectations. Some folk use proxies for determining

the user’s intent like moving the mouse cursor to the

close tab button to indicate intention to leave. When

the “intent” is not captured properly, the disruptive

effect of the intrusion is aggravated. For example,

scrolling down is no guarantee that a user has read the

article and now wants to share it. Finally, these pop-ups

obscure the content the user actually intended to read.

•	 Thanks to habituation, many people dismiss pop-ups
instinctively without considering their content.

•	 Scrollable pop-ups are difficult to navigate. For

example, on a mobile device if a pop-up has a large

margin around it, there might be only a small touchable

area for scrolling. To scroll within the pop-up, the user

might accidentally dismiss it or click a button inside it.

•	 Zooming in on images in lightbox pop-ups can

do weird, unexpected things, distorting the UI and

obscuring the image.

•	 “Mode errors” occur when the user is not in the mode

they expect, leading them to go down the wrong path.

For example, you’re typing away writing your password

into a login form when a newsletter signup form

appears, causing you to type your password into that

field instead.

•	 Cascading pop-ups—one over the top of the

other—disrupt the user even further from their original

task, clutter the interface, and are difficult to manage.

Chapter 5 Anti-patterns and dark patterns

216

Figure 5-14 shows an example of cascading pop-ups.

There are several alternatives you can use to replace modal pop-ups

completely:

•	 Immediately present actions inline (e.g., display a

button group instead of a modal with options).

•	 Display content inline (e.g., expand a collapsible

“disclosure” element to house the new content).

•	 Defer the content completely to another page.

•	 Use tooltips (that respond to positioning near screen

edges, otherwise you’ll still have issues on tiny screens).

•	 Use one of the notifications we saw in Chapter 2, like the

snackbars, toasts, or page-wide fixed notification bars.

Figure 5-14.  Screenshot of Asana’s cascading pop-ups, leading away
from the main page

Chapter 5 Anti-patterns and dark patterns

217

Short of that, what steps can you take to minimize the impact of the

annoying modal pop-up?

•	 Always avoid stealing focus. If a user is typing

elsewhere, they probably don’t mean to be typing in

your pop-up.

•	 Let the user initiate the modal on demand (practicing

progressive disclosure).

•	 Provide easy exits like hitting the escape key, clicking

on the overlay, and a well-labeled “Close” link.

•	 Make it accessible. At a minimum, you probably

want role="dialog", aria-labelledby, and aria-

describedby attributes, as well as using JavaScript to

move focus to the modal when the user triggers it and

restore focus after it’s dismissed.10

•	 Ensure relevant content is still in view.

Figure 5-15 shows an example of a modal with a tab bar and internal

scrolling. It’s possible this much content would be better served in its own

space, keeping all of the relevant content in view at once.

10�Learn more about accessible modal dialogs from Marco’s Accessibility Blog
(www.marcozehe.de/2015/02/05/advanced-aria-tip-2-accessible-modal-
dialogs/).

Chapter 5 Anti-patterns and dark patterns

http://www.marcozehe.de/2015/02/05/advanced-aria-tip-2-accessible-modal-dialogs/
http://www.marcozehe.de/2015/02/05/advanced-aria-tip-2-accessible-modal-dialogs/

218

Note T ab closed; didn’t read (http://tabcloseddidntread.com/)
is a gallery site calling out organizations that obscure content and
provides browser extensions to people to streamline the process of
tweeting at organizations to express discontent. This says something
about how much frustration pop-ups can cause to some people.

Figure 5-15.  Screenshot of Asana using a scrollable modal

Chapter 5 Anti-patterns and dark patterns

http://tabcloseddidntread.com/

219

�“Overall pattern” design smell
When creating or documenting patterns in a design system, if you see

an overall pattern or a “parent pattern,” that’s a design smell. Using our

modal pattern as an example, modals are sometimes categorized into

different types, such as “property, function, process, and bulletin” dialog

boxes as described in About Face by Alan Cooper.11 These can be useful

and meaningful distinctions. As they appear in a design system, however,

this categorization might not be meaningful to an engineer implementing

them if they’re all styled the same and have the same interactions and

behaviors. Bundling different patterns under one overall pattern is a smell.

In the world of software patterns, Martin Fowler suggests “that you often

have choices between turning two related concepts into separate patterns,

or combining them as variations of a single pattern” and that “if you do

split them, don’t try to have an overall pattern too.” While this risks some

duplicated documentation across each variant, you avoid the challenges of

an overall pattern being stretched ineffectively to serve too many purposes.12

You might be better off splitting similar concepts into named variants

like a “benefits modal”13 without a mutual parent. If that doesn’t make

sense for your situation, the other possible problem from this design smell

is that the variations are too small and not meaningful, which suggests that

you have an undesirable inconsistency in your product. Instead of a parent

“modal” pattern and a few children variation modal patterns, you might

need to consolidate the differences into one modal, producing a more

consistent and predictable experience for end users as well as designers

11�Alan Cooper, “About Face,” http://shop.oreilly.com/product/
9781118766576.do.

12�Martin Fowler, “Writing Software Patterns,” www.martinfowler.com/articles/
writingPatterns.html.

13�Atlassian Design, “Benefits modal” https://atlassian.design/guidelines/
product/patterns/user-value-modals.

Chapter 5 Anti-patterns and dark patterns

http://shop.oreilly.com/product/9781118766576.do
http://shop.oreilly.com/product/9781118766576.do
http://www.martinfowler.com/articles/writingPatterns.html
http://www.martinfowler.com/articles/writingPatterns.html
https://atlassian.design/guidelines/product/patterns/user-value-modals
https://atlassian.design/guidelines/product/patterns/user-value-modals

220

and developers navigating your design system. Alternatively, what you

might be looking at is actually different options and states for a single

modal. One modal pattern might be executed in a component with options

for positive information styling vs. warning styling for destructive actions,

but the pattern stays the same.

�The lifetime of a bad pattern
While anti-patterns and dark patterns tend to prioritize short-term gain or

superficial wins, within a few years it becomes evident to both consumers

and the design community that a pattern is not worth it and it falls out

of fashion. Consumers become savvier about the negative impact dark

patterns have on them and revolt. They vote with their dollars by switching

to products that are easier to use and more trustworthy, so businesses

scramble to adapt and strive for creating positive user experiences as

a competitive advantage. Designers start to see the long-term costs of

the seemingly useful solutions, and so stop using these patterns in new

projects. UI design patterns usually have a clear visual component to

help people recognize them and have measurable impact on usability in

UX metrics like engagement that give visibility to the drawbacks of anti-

patterns over time.

As each new dark pattern arises, governments start to ban them,

corporations start to penalize them, and legal action can be brought

against them. For example, an EU consumer directive outlaws “Sneak into

Basket” opt-out add-on purchases, among other dark patterns.14 Similarly,

14�90 Percent of Everything, “Some Dark Patterns now illegal in UK – interview with
Heather Burns,” www.90percentofeverything.com/2014/08/26/some-dark-
patterns-now-illegal-in-uk-interview-with-heather-burns/.

Chapter 5 Anti-patterns and dark patterns

http://www.90percentofeverything.com/2014/08/26/some-dark-patterns-now-illegal-in-uk-interview-with-heather-burns/
http://www.90percentofeverything.com/2014/08/26/some-dark-patterns-now-illegal-in-uk-interview-with-heather-burns/

221

Google penalizes intrusive interstitial ads15 and LinkedIn settled a $13M

class-action law suit for spamming friends of users.16

In the future, we’ll see fewer and fewer!

15�Jacob Kastrenakes, “Google will punish sites that use annoying pop-up ads,” www.
theverge.com/2016/8/23/12610890/google-search-punish-pop-ups-
interstitial-ads.

16�John Brownlee, “After Lawsuit Settlement, LinkedIn’s Dishonest Design Is Now
A $13 Million Problem,” www.fastcompany.com/3051906/after-lawsuit-
settlement-linkedins-dishonest-design-is-now-a-13-million-problem.

Chapter 5 Anti-patterns and dark patterns

http://www.theverge.com/2016/8/23/12610890/google-search-punish-pop-ups-interstitial-ads
http://www.theverge.com/2016/8/23/12610890/google-search-punish-pop-ups-interstitial-ads
http://www.theverge.com/2016/8/23/12610890/google-search-punish-pop-ups-interstitial-ads
http://www.fastcompany.com/3051906/after-lawsuit-settlement-linkedins-dishonest-design-is-now-a-13-million-problem
http://www.fastcompany.com/3051906/after-lawsuit-settlement-linkedins-dishonest-design-is-now-a-13-million-problem

223© Diana MacDonald 2019
D. MacDonald, Practical UI Patterns for Design Systems,
https://doi.org/10.1007/978-1-4842-4938-3_6

CHAPTER 6

Mixing and
matching patterns

If you have literally tried every possible variation, you will
have come across the best solution.

—Julie Zhuo

Now it’s time to weave together patterns into a cohesive whole. We have

individual UI patterns under our belt, knowledge of how to learn more, and

knowledge of how to develop a design system. We know what anti-patterns

and dark patterns look like, so we can avoid them. In this chapter, we’ll bring

together everything we’ve learned so far, check out how to mix and match

patterns effectively, and explore when and how to break away from patterns.

We’ll concentrate on the familiar and practical domain of e-commerce.

To begin, we’ll explore a common feature of e-commerce products:

scoped searches.

224

�How to combine patterns successfully
to build a more complex UI: Scoped
searches example
I’m going to share with you eight approaches to combining patterns

successfully to build complex user interfaces.

In previous chapters, we explored search filters, autocomplete,

pagination, infinite scroll, and thumbnail patterns. We’re now going to see

how to combine these concepts into one feature: scoped search.

Scoped search isn’t exactly a pattern, as the context and details of

the solution are completely different rather than recurring. The only

recurring part is the problem. The majority of e-commerce stores share a

common usability challenge: how to help shoppers swiftly find products

they want to buy. Within a large product range of hundreds or thousands

of items, the number of choices to be made can be paralyzing, and the

task of navigating them can be overwhelming. In many cases, you’ll find

categories of products that trim down the total possible search space of

items by removing entire groups of products. Instead of searching all of

Amazon, for example, you might explore just “horror” movies. This is the

idea behind scoped searches.

We’ll explore a few variations on how scoped search can appear and

function. This will demonstrate how patterns vary in the wild and how

combining them in different ways can produce different results and give

you ideas around the kinds of forces that influence the appropriateness of

each approach.

Chapter 6 Mixing and matching patterns

225

�Reuse elements across patterns: Categories
as search filters
Initially, let’s consider one particular kind of filter: categories. As an

example, Nordstrom lets shoppers navigate directly to categories and

subcategories	 of content via their dropdown mega menu, shown in

Figure 6-1.

Each category and subcategory is a link.

Figure 6-1.  Screenshot of Nordstorm’s mega menu

Chapter 6 Mixing and matching patterns

226

In Figure 6-2, you can see that when the shopper has navigated

specifically to “Pumps,” that text is shown in the breadcrumb trail in the

top–left of the page.

These categories group content together in a useful manner and let

shoppers navigate through a hierarchical structure to find the collection

of products of most interest to them. In addition to drilling down through

Figure 6-2.  Screenshot of Nordstrom’s breadcrumb trail showing the
hierarchy of this subcategory

Chapter 6 Mixing and matching patterns

227

the hierarchy of categories and subcategories, each category is accessible

within the filter menu itself as a search filter dimension, as shown in

Figure 6-3.

Within categories, Nordstrom provide category-specific filters, such as

“Pump Style.” In Figure 6-4, you can see the “Kitten Heel” filter is selected

for the “Pump Style” filter dimension.

Figure 6-3.  Screenshot of “Pumps” in the breadcrumb trail as well as
the selected filter dimension

Chapter 6 Mixing and matching patterns

228

These category-specific filters are unavailable from other, higher-

level categories. In Figure 6-5, you can see there’s a “Heel Height” filter

dimension for “Women’s Designer Shoes.”

Figure 6-4.  Screenshot of Nordstrom’s “Pump Style” filter options

Chapter 6 Mixing and matching patterns

229

While in the “Women’s Designer Shoes” category, there’s no “Pump

Style” filter dimension, which is specific to the “Pumps” subcategory.

While categories and filters are usually two sides of the same coin, the

ability to have category-specific filters provides a useful distinction between

what should be a visually prioritized category filter and what should be a

regular search filter. That is, if a group of products can have its own special

filters that don’t apply to other groups of products, it can be a category.

Figure 6-5.  Screenshot of “Women’s Designer Shoes” without a
“Pump Style” filter

Chapter 6 Mixing and matching patterns

230

Nordstrom also let shoppers search for products using an autosuggest

form of autocomplete that specifies the category of different results, as

shown in Figure 6-6.

Here, the search term “shoes” shows results for different groups of

products including “shoes for women” and “shoes for men” as well as just

“shoes.”

In this Nordstrom example of scoped search, you can see elements

reused across patterns. Categories are used as regular hierarchical

categories to browse content as well as search filters. Nordstrom uses

subcategories as search filters of categories. The “Pumps” category

element is used as the category for browsing and a search filter for filtering

the “Designer Shoes” category.

In Chapter 3, we studied the search filter pattern’s context, problem,

and solution. The shopper problem in the Nordstrom example fits the

search filter pattern problem: there are lots of items, and the shopper

Figure 6-6.  Screenshot of Nordstrom’s autosuggest categories,
subcategories, and featured results

Chapter 6 Mixing and matching patterns

231

needs to reduce them so they can find the product that fits their criteria.

It also fits the context of when to use this solution: there are thousands of

items, and filter facets are straightforward.

�Cut duplicate content from combined patterns:
Categories as search terms
Pinterest treats search terms as categories, offering more categories as you

drill down. In Figure 6-7, you can see the search term “wine rack” shows

suggested categories, such as “Under Stairs.”

Figure 6-8 shows what happens when you select the “Under Stairs”

category: the text is added to your previous search query.

Figure 6-7.  Screenshot of Pinterest’s category suggestions

Chapter 6 Mixing and matching patterns

232

This reinforces the relationship between search and categories in

Pinterest’s world.

As you hover over a category, you see a tooltip, “Search for “small wine

rack under stairs”.” Without this additional clue, sighted users might infer

the relationship between the search term and the category by their visual

proximity and prior familiarity with the search filters pattern. With the

tooltip, however, sighted users can confirm that selecting this category

is drilling deeper into the “wine rack” journey, instead of leaving wine

rack for a new “Under Stairs” search. This text may be even more useful

to visually impaired people navigating the page using a screen reader,

potentially lacking the visual information to otherwise infer the behavior.

This text might even be useful to alternative “user agents,” such as search

engine bots to make sense of the page.

Elsewhere in the wild, you might find something similar to this but

with more repetition. Pinterest could, for example, have included the

text “Search results for wine rack” under the categories. They could have

shown “wine rack DIY,” “wine rack ideas,” and so on, repeating “wine rack”

Figure 6-8.  Screenshot of Pinterest’s amended search query

Chapter 6 Mixing and matching patterns

233

in every option. They could have shown “Search for “wine rack”” and the

category name for every category. They could have shown “wine rack >” in

a breadcrumb trail. Instead, Pinterest’s approach to combining patterns is

minimalist, cutting any potential duplicate content.

In the Pinterest example of scoped search, duplicate content is cut

instead of repeating shared element across patterns. This makes sense for

their business’s context. As a visual discovery tool that focuses on content1

and inclusive design,2 this minimal and accessible approach to scoped

search is predictable for their product. In the Nordstrom example, we saw

more repeated text in details such as the breadcrumb trails than in the

Pinterest example. Pinterest’s approach suits its visual nature and endless

discovery.

�Efficiently combine patterns to avoid
the need for others: Autosuggest
and thumbnails
Similar to the Nordstrom example, Zomato autosuggests results from

different categories before visitors type in any search queries, as you can

see in Figure 6-9.

1�Andreas Pihlström, “Redesigning Pinterest, block by block,” https://medium.
com/@suprb/redesigning-pinterest-block-by-block-6040a00d80a3, July 2016.

2�Long Cheng, Pinterest Engineering, “Seven best practices for inclusive product
design,” https://medium.com/@Pinterest_Engineering/seven-best-
practices-for-inclusive-product-design-9476c61f1e17, April 2018.

Chapter 6 Mixing and matching patterns

https://medium.com/@suprb/redesigning-pinterest-block-by-block-6040a00d80a3
https://medium.com/@suprb/redesigning-pinterest-block-by-block-6040a00d80a3
https://medium.com/@Pinterest_Engineering/seven-best-practices-for-inclusive-product-design-9476c61f1e17
https://medium.com/@Pinterest_Engineering/seven-best-practices-for-inclusive-product-design-9476c61f1e17

234

After starting to type in a search query, Zomato autosuggests results

from various categories, including a suburb, a “Collection,” a “Cuisine,”

and a “Dish,” as shown in Figure 6-10.

Figure 6-9.  Screenshot of Zomato autosuggesting trending searches
and meal time categories before you search for anything

Chapter 6 Mixing and matching patterns

235

In that example, the results that show a photo link to specific results

whereas the results with a search icon link to a search results page with

more filtering options.

In contrast to Nordstrom, Zomato helps visitors visualize different

categories and results using thumbnails (illustrations, photographs, and

icons) to preview upcoming results. If there were no thumbnails, it might

be harder for people to visualize the content and understand what each

means. To discover what they mean, the user might need to go through

a process of trial and error to test each one and see if it matches their

desires or not. In that scenario, each time the user returned to the search,

they’d need a method for restoring their previous search text and a way

of knowing which items they’d tried already. That might lead to a “recent

searches” feature or “visited links” styling. Using thumbnails could mean

you don’t need to build these other elements.

Figure 6-10.  Screenshot of Zomato’s autosuggest results from a
variety of categories

Chapter 6 Mixing and matching patterns

236

This search is also scoped to “Melbourne” from the location category.

The thumbnails here are useful to preview a small number of items (up to

ten) before choosing one. Without limiting the suggestions to ten items, there

might be too many items to preview with thumbnails, requiring pagination

or infinite scrolling in the autocomplete, which could be awkward.

In the Zomato example of scoped search, we see that thumbnails in

autosuggest (rather than thumbnails in results as we saw with Pinterest)

make it unnecessary to employ infinite scrolling, pagination, “recent

searches,” or “visited link” styling. This is an efficient combination of

patterns that achieves user goals while avoiding alternative technical work

to build features that achieve fewer benefits.

We examined thumbnails in Chapter 1 and autocomplete in

Chapter 3. Zomato’s example of scoped search aligns with the context of

both patterns. Thumbnails are appropriate for previewing visual content

in a collection of linked resources. Autocomplete is appropriate when you

can quickly present matching results from a larger data set using common

search terms that fit the search context. Together, they solve the problem of

scoping searches.

Zomato’s approach of using thumbnails in autocomplete wouldn’t

make as much sense for Pinterest. A single concept like “wine rack under

stairs” could have thousands of visual representations. Using a single

thumbnail to preview what will be found in that category’s level of detail

might be misleading.

�Interstitial patterns: Autosuggest
and navigable categories
In addition to autosuggest with thumbnails, you might consider navigable

categories with thumbnails.

RS is a distributor of electronics, electromechanical, and industrial

components. Components companies often exhibit excellent search

Chapter 6 Mixing and matching patterns

237

filtering behavior because their shoppers often need precise results—

highly specified products where no substitute will do. Here, you can see

a search for “Cherry switch” on RS’s Australian web site first suggests that

you choose a category for the results that can quickly remove irrelevant

results, as shown in Figure 6-11.

Figure 6-11.  Screenshot of RS search results includes available
categories for the searched term as well as a result listing

Using a category selection, a shopper can narrow the results from 14

down to 4 by selecting “Keyboard Switches” as the category of interest, as

shown in Figure 6-12.

Chapter 6 Mixing and matching patterns

238

This is important when an e-commerce store has a highly diverse

product range, because there’s a higher chance of overlap in terms used in

multiple categories that are completely irrelevant to others. The shopper

may not think of their desired product as a “Sensor & Switch Magnet,” but

indicating the different categories using imagery lets shoppers quickly

identify the one that’s relevant to them through immediate recognition

and ignore the other categories. If this category selection wasn’t available,

they may not recognize irrelevant results as quickly in the table listing

itself when they’re all jumbled up together, leaving them to wade through

more noise.

From the category, the shopper can see clearly by the H1 page title

that they are within the “Keyboard Switches” category now rather than

the search page they were previously. The search term is still applicable

though as evidenced by: the results themselves as well as “Cherry switch”

shown in the breadcrumbs trail (after the “Keyboard Switches” category

Figure 6-12.  Screenshot of RS’s categorized search results

Chapter 6 Mixing and matching patterns

239

and within “Switches” and “Keyboard Switches & Accessories”). Now the

shopper can further filter the available results to only switches with an

operating force of “45N,” as shown in Figure 6-13.

After filtering, the shopper can see that there is one match from

filtering, that filters are applied, that the “Operating Force” filter dimension

is applied, and that the filter dimension is filtered to results with a value of

“45 N,” as shown in Figure 6-14.

Figure 6-13.  Screenshot of RS’s filtering options for categorized
search results

Chapter 6 Mixing and matching patterns

240

The shopper can then remove one filter at a time or all of them at once

(which in this case has the same result).

Alternatively, the shopper could visit the “Keyboard Switches” category

itself, as shown in Figure 6-15, without filtering the results by a search.

Figure 6-14.  Screenshot of RS’s filtered results

Chapter 6 Mixing and matching patterns

241

This lets shoppers discover other content within the same section

starting with something they know.

As another option, the shopper could use the available autosuggest

search to navigate directly to the “Cherry” brand index page, as shown in

Figure 6-16.

Figure 6-15.  Screenshot of RS’s category browsing

Chapter 6 Mixing and matching patterns

242

As you can see, categories, filters, and searches each refine the total

available results by the shopper’s needs using different methods. They can

complement each other or be used independently to navigate content via

different paths.

In the RS example of scoped search, there is a step in between the

search and showing the full results listing—to present thumbnails for

categories. These categories further scoped the search results using

the thumbnail pattern. The shopper can then further refine results

using standard search filters without thumbnails. This interstitial use of

thumbnail categories might be used only when the primary path would

lead to too many search results or mixed results that are difficult to

understand.

Figure 6-16.  Screenshot of RS’s brand index page

Chapter 6 Mixing and matching patterns

243

The use of interstitial thumbnails for categories here fits the context of

RS’s customer base and extensive product range. If a Nordstrom shopper

searched for “shoes” and selected “shoes” instead of “shoes for men,”

they’d still be in a good position to apply the “Men’s Shoes” search filter

afterward and know what to expect about the appearance of men’s shoes.

There’s less risk that they won’t understand what the other items are when

they see women’s shoes in the results. They might intentionally want to

see men’s and women’s shoes together and use other filters like price and

color to reduce results. RS’s visual categories can help explain results and

remove irrelevant ones. An intervening step like RS’s to show category

thumbnails on Nordstrom’s site may just distract from the results without

adding clarity.

�Visually combine and distinguish patterns:
Categories in tabbed navigation
A popular remix of search filters and categories includes tabbed

navigation.

When combining search and categories, it’s useful to lean on

classic design principles such as hierarchy and unity to demonstrate

the relationship between the search terms and categories. For example,

Google’s Search product lets you search for a term, such as “Melbourne,”

and see “All” results, as shown in the tab navigation bar, as shown in

Figure 6-17.

Chapter 6 Mixing and matching patterns

244

Here, Google shows a mix of content types, highlighting what might be

the most relevant content across sections.

After this, you can then limit your results to a single category using the

tab navigation, as shown in Figure 6-18.

Figure 6-17.  Screenshot of Google’s “All” results search scope

Chapter 6 Mixing and matching patterns

245

If you’re logged in, you can further tailor your results using an

additional “Personal” category, which includes information from Gmail, as

shown in Figure 6-19.

Figure 6-18.  Screenshot of Google’s “Videos” search scope

Chapter 6 Mixing and matching patterns

246

By showing the search input first, followed by the categories in the

tab navigation underneath, Google reveals that the tab navigation groups

content within the search. This works really well because Google provides

sufficient content within each category that a visitor will rarely find a tab

without any results (more likely millions of results).

Let’s consider another example. Coles supermarket chain shows the

search input and additional tabbed navigation in the same logical order

as Google’s search and categories. In Figure 6-20, you can see a specific,

selected category (a list of favorites).

Figure 6-19.  Screenshot of Google’s “Personal” search scope

Chapter 6 Mixing and matching patterns

247

Note  Coles shows the number of results contained within each
category and within each filter and disables all filters with 0 results.

In this instance, the shopper has navigated directly to this category.

When the shopper then performs their first search for something that

happens to be excluded from the filtered category, they find disappointing

results, as shown in Figure 6-21.

Figure 6-20.  Screenshot of Coles “Fav fruit and vegetables” list category

Chapter 6 Mixing and matching patterns

248

Because the shopper has used the filters as navigation first (instead

of search before filters), they might be disoriented by the lack of results

without recognizing that the new search did not clear the selected category

filter. Imagine instead that the categories tab navigation appeared before

the search input: it would then appear that the category was being filtered

by the search results (rather than the search filtered by categories),

more closely matching the shopper’s mental model formed by their user

journey. As such, they might realize before searching for “tissues” that

they’ll need to navigate out of this category.

In this scenario, Coles helpfully provides a Call To Action button

on this category’s zero results screen to inspire shoppers to expand

their search results by leaving this category and filtering instead by the

“Everything” category, which shows all results for the “tissues” search. This

is a good default to use instead of a blank slate, helping visitors recover

Figure 6-21.  Screenshot of Coles “Fav fruit and vegetables” when
searching for “tissues”

Chapter 6 Mixing and matching patterns

249

from dead ends. Alternatively, to avoid zero results screens, you might

suggest alternate words or spellings.

The tabbed navigation and scoped search examples illustrate two

particular considerations to the category approach. One is that you can

provide a smoother experience with fewer points of friction by avoiding

zero results screens if search results can be found for all category filters.

Secondly, depending on the path your user has taken, the relationship

between search and category filters can be confusing. We’ll see more on

establishing these relationships in a Flickr example in the section ahead.

In the Google search and Coles shopping examples of scoped search,

we see how tabs can be used to indicate categories and filters used to refine

searches. The intersection of these two elements can lead to confusion if

they’re not visually distinguished with paths provided out of each.

Even though these companies are of quite a different scale, there is

enough similarity in the context of their visitors’ and shoppers’ needs

that a scoped search using tabbed navigation makes sense for both. The

execution of each approach, however, changes to suit their business.

�Preserve or discard data in repeated
use of patterns: Clearing filters on new
searches
When using these extra search filters and related features, you might

consider the effect of clearing filters. Again, leaning on classic UI

design principles, it’s often useful to preserve user’s data from previous

interactions, but it’s necessary to balance that against the risk of dead ends

produced by scoped searches.

On Harvard Business Review’s (HBR) web site, if you search for

“Design systems,” you can then apply a filter for “Innovation” to reduce

results, as shown in Figure 6-22.

Chapter 6 Mixing and matching patterns

250

If you then search for “Design products,” the search results listing

clears the previous filters for the new search, as shown in Figure 6-23.

Figure 6-22.  Screenshot of HBR search for “Design systems” filtered
by “Innovation” showing 3,026 results

Chapter 6 Mixing and matching patterns

251

Unlike the Coles example, HBR opts to make every search a new

search, clearing previous filters. This approach reduces the chances of

zero results screens and clarifies the relationship between search and

filters (where search trumps filters) but runs the risk that with a lot of filters

selected, any change to the search query will undo the visitor’s hard work

refining results.

In the HBR example of scoped search, subsequent uses of the search

clear any search filters, starting over. Coles chooses to preserve all filters

until the user makes an explicit choice to remove them.

Figure 6-23.  Screenshot of HBR search for “Design products” without
“Innovation” filter showing 14,331 results

Chapter 6 Mixing and matching patterns

252

�Clarify repeated patterns: Inline tags
For yet another spin on scoped search, here’s an example from Flickr. In

their UI, Flickr scopes search by category in a tab nav bar, as shown in

Figure 6-24.

Once you’ve navigated to a “person” page on Flickr, you can use the

inline search icon on the page within “Photostream” to limit searches to

this person’s photostream. By clicking that search icon, the main search

bar is focused and an inline “input tag” is used to show the scope, “Airbnb

Community | Photos,” as shown in Figure 6-25.

Figure 6-25.  Screenshot of Flickr’s scoped search with inline input tags

Figure 6-24.  Screenshot of Flickr’s search that lets you scope a search
for “airbnb” by Photos, People, or Groups

Chapter 6 Mixing and matching patterns

253

This way, Flickr can provide just one search bar and yet preserve the

in-page selections, such as “Airbnb Community” and “Photostream” in the

example shown.

In the Flickr example of scoped search, you can clarify the

relationships between patterns and steps in user interactions by repeating

information and subtly adding additional cues to educate the user about

what happened and how to interact with the pattern’s components.

�Evaluate resulting trade-offs: Infinite scroll
In Chapter 3, we saw the drawbacks of using an infinite scrolling favorites

list in the Twitter example. It can be difficult or impossible to reach the

footer on a long infinite scrolling page if it keeps scrolling away from you as

new content loads. It can also be difficult to find a specific piece of content

in a long page loading one section at a time. One method for mitigating

the impact of these challenges can be seen in L.L.Bean’s clothing range

UI. Without filtering, 24 products are shown at a time in an infinite

scrolling results list (loading in more as you approach the footer), as shown

in Figure 6-26.

Chapter 6 Mixing and matching patterns

254

However, most categories have fewer than 100 products, limiting the

number of times a shopper waits for the lazy loaded content to 4 times.

In addition, the web site clearly prioritizes search and filtering features,

and applying just one filter is enough to reduce the list to a manageable

amount of content that infinite scrolling is no longer required, as shown in

Figure 6-27.

Figure 6-26.  Screenshot of L.L.Bean infinite scroll starting to load
more content

Chapter 6 Mixing and matching patterns

255

By contrast, if L.L.Bean shoppers instead typically paged through

dozens of infinite scrolling sections of results, the balance of filtering and

scrolling might be off, suggesting the filters weren’t effective enough at

reducing results.

In the L.L.Bean example of scoped search, we see how the

combination of infinite scrolling and search filters is balanced. The content

and interaction path means infinite scrolling usually isn’t necessary so it

isn’t shown. It’s only brought to light when the primary path has failed to

reduce search space enough to make a decision.

Reflecting back on the Twitter example, infinite scrolling for favorites

might have a small conflict in certain contexts. If favorites are used to store

content for later and infinite scrolling is used to discover endless new

content, the combination be a poor fit. This depends on who is using the

Figure 6-27.  Screenshot of L.L.Bean where one filter reduces the list
of results dramatically

Chapter 6 Mixing and matching patterns

256

favorites list. If the Twitter user is referencing their own favorites, search

filters and pagination without infinite scrolling might help them find

content more quickly, but if a user is exploring someone else’s favorites,

an infinite list of surprising new items could be ideal. The infinite scrolling

feed is also consistent with every other kind of content on Twitter, making

it predictable. L.L.Bean’s context is quite different from Twitter’s, so the

trade-offs to evaluate are also quite different.

�Other forms of scoped search
We’ve seen a variety of scoped search approaches here, mixing and

matching patterns we’ve explored in detail in previous chapters. It’s

important to note how the intersection of patterns in each approach affects

the overall experience. As with patterns, the context to each solution is

critical to its success.

You’ll discover there are myriad variations out in the wild. It’s worth

keeping an eye out and noticing when you see a different take on a pattern

and try to understand the reasons behind an unusual remix. Often, you’ll

find there’s something particular about the brand, content, constraints, or

user context that compels a new design.

�Favoriting becomes wish listing
In Chapter 3 we saw how to use favorites to help users track specific,

excellent content. Now we’ll look at a specific variant of favorites in the

world of e-commerce: wish lists. Together, you can drive user behavior and

create experiences tailored to your product.

Chapter 6 Mixing and matching patterns

257

�Wish lists/wish listing
A wish list is a personalized, curated list of preferred items, stored for later

purchase. The subsequent purchase may be made by the wish lister or for

the wish lister by their friends and family.

Figure 6-28 shows an example of wishing listing using a dropdown

menu for adding items to a list of your choosing, including a “Wish List.”

Figure 6-28.  Screenshot of Amazon’s Add to List options

On Amazon, once you’ve added an item to a wish list, you might “view

your list” or “continue shopping.” You can also navigate to the wish list via

your “Account & Lists” dropdown menu. Figure 6-29 shows the item on the

wish list.

Chapter 6 Mixing and matching patterns

258

Unlike favorites, wish lists are typically used only by the wish lister

and their direct connections. It is rarer for shoppers to browse strangers’

wish lists. As I mentioned in Chapter 3, wish lists are also more likely than

favorites to be private.

As wish lists are sometimes used by a user’s friends to figure out what

to buy as a gift, wish lists frequently offer alternative purchasing options

such as gift cards. You see this in digital book stores such as iBooks where

you may gift a book (such as this one!) to a friend.

Use wish lists when people may not make a purchase in the first visit,

but keeping track of their top candidates for purchase increases their

chance of purchase in a later visit.

If you don’t have a wish list, you might find that people treat the

shopping cart as a wish list anyway and hold items there until they’re ready

to make a decision.

Note A n astute reader may notice the “overall pattern” design
smell here that we discussed in Chapter 5: Are we treating “favorites”
as an “overall pattern” containing “wish lists”? If you’re using both
wish lists and favorites in your product, you’d do well to clarify their
differences and document them separately.

Figure 6-29.  Screenshot of Amazon’s wish list containing one item

Chapter 6 Mixing and matching patterns

259

�Combining wish listing and lazy signup
In Chapter 2 we investigated the lazy signup pattern. Let’s bring that into

action with wish listing.

You can offer a wish list without account registration for a single

shopping session. Using the wish list, the shopper can gather their top

candidates of similar items for purchasing before making a decision on

which or how many items they want to buy together. If they cannot make a

final decision within a single session, you can provide optional registration

to keep the wish list for later using lazy signup.

Figure 6-30 shows an example of a wish list with lazy signup.

Figure 6-30.  Screenshot of Saint Laurent’s wish list

Chapter 6 Mixing and matching patterns

260

Here, you can add items to your wish list and view your wish list

without creating an account. If you choose “Save wish list,” you’ll be

prompted to log in or register an account.

As you can see, the wish list and lazy signup patterns work seamlessly

together without any changes or amendments. This is actually the ninth

approach for combining patterns: do nothing special at all.

Next, we’ll explore what to do when patterns are the wrong approach.

�When and how to break away from patterns
To reiterate our definition from Chapter 1, UI patterns are recurring

solutions to UI problems in a context. They are recurring because they

usually work and are therefore often quite reliable for designers and

predictable for users. This does not, however, mean that they’re the only or

best solutions. Even if they were, sometimes reality just doesn’t match up.

In this section we’ll look at how you might know when it’s time to

break from convention and what to do when you do decide to steer clear of

patterns.

�Investigate design smells
In Chapter 5, we discussed design smells that may or may not be

symptoms of deeper problem. If you’ve noticed a design smell in your

product, such as the heavy use of modals, you might do some quick

research to validate if there’s a real problem or not.

Using analytics (www.uxbooth.com/articles/complete-beginners-

guide-to-web-analytics-and-measurement/) for measuring aspects of

user experience, you can see if this area is affecting your product’s desired

outcomes. For example, if the checkout process of your e-commerce site

presents the payment form in a modal and your analytics show that the

payment step of your checkout has the biggest drop off in your sales funnel

Chapter 6 Mixing and matching patterns

http://www.uxbooth.com/articles/complete-beginners-guide-to-web-analytics-and-measurement/
http://www.uxbooth.com/articles/complete-beginners-guide-to-web-analytics-and-measurement/

261

(i.e., it’s the biggest contributor to cart abandonment), that suggests your

hunch about the modal smell might be right. Then it’s time to investigate

why that is the case, validating your quantified usability problem with

qualitative research to get the information needed to make a decision

about it.

You might then perform some usability testing with three diverse

representatives from your target audience. Suppose two of your testers sail

through the test flawlessly and one stumbles because the payment form

shows an alarmingly high shipping fee for their remote location. We can

then circle back to our quantitative data to see if this could be the cause of

the cart abandonment. Let’s imagine this shipping destination accounts

for only 0.05% of your site traffic—this couldn’t explain the volume of cart

abandonment. It’s worth considering, but let’s also test with two more

people.

This time, we find the modal content isn’t scaling well and doesn’t fit

on iPhone screens making it hard to scroll and navigate. This time we see

iPhone accounts for 40% of site traffic. Sure enough, when we slice our

traffic by device, we see 70% of cart abandonment at the payment step is

on iPhone. Now we know it’s time to reconsider our modal.

In this way, we’ve followed the symptoms of a design smell to discover

our misused modal has become a popup anti-pattern. Next, we’ll consider

what to do with our identified problem.

�Review pattern principles for identified
usability problems
You might reconsider a pattern when you’ve identified a usability problem

in its execution. Once you’ve identified it, you have a few options for

addressing it.

You might be thinking that this usability problem doesn’t mean the

modal is a poor choice, just that this modal is poorly done.

Chapter 6 Mixing and matching patterns

262

This moment is a useful prompt to reconsider if we’ve correctly aligned

the problem and context with the modal solution. A modal is a disruption

to a normal flow. Does is make sense to distract the shopper from the

task of purchasing an item in a checkout by a change in flow? Possibly. A

Baymard Institute study on checkout usability3 showed that people had a

higher degree of trust in payment forms that were visually distinguished

from the rest of the checkout, as if it is a more sensitive task so it needs a

more “secure” design (even though that’s not really how security works). A

modal might be a suitable method for visually distinguishing the payment

form. So, updating the modal design and improving the engineering

execution might be the best path forward to provide a better experience

and improve conversions.

On the other hand, let’s revisit our modal pattern’s details and what

other patterns we could use instead. A payment form rules out using a

notification or tooltip. While we could display the form inline, it might be

better to defer the payment form to another page, styled to engender trust

in its security.

So, what would it take to update our modal’s visual style and

implementation vs. replacing it with a new page? Are there other benefits

to be gained from either approach? If you’re undecided, you might test a

prototype of each approach before building either. Based on principles

alone, you might decide to try the page. In that particular case, you might

A/B test the new page on a small subset of your audience before rolling it

out to everyone.

�Review problem and context
One reason that usability problems might arise using perfectly reasonable

patterns is that we sometimes fail to clarify the user problem in the first place.

3�https://baymard.com/blog/perceived-security-of-payment-form.

Chapter 6 Mixing and matching patterns

https://baymard.com/blog/perceived-security-of-payment-form

263

In Chapter 3 we looked at a few methods for establishing the context in

a design problem. Suppose the payment form had failed because it didn’t

include a gift card redemption option and the true context of the situation

was that the shopper was in fact a gift card recipient cashing in their gift

from a friend. The challenge is not that your payment form solution was a

poor fit for the problem (making a payment) but that the problem (sending

money) didn’t match the context (redeeming a gift card instead of sending

money).

When you’ve identified a usability problem, you may wish to clarify the

context before assuming the solution is a bad fit.

With effective user research and collaboration within your

organization, you can accurately identify all relevant aspects of the context

that affect decision. These include the user journeys, user tasks, personas,

constraints, content, and data we considered in Chapter 3. The very real

business and technical constraints of your organization might prevent the

use of a particular solution: sometimes reliable infinite scrolling just isn’t

feasible.

Another scenario to consider which might lead to misaligned context

and problem is the “but that’s what Google do” situation. You are not

Google (https://blog.bradfieldcs.com/you-are-not-google-

84912cf44afb). Sometimes a pattern used by a big player in the industry

might be relevant to their business in a way that it just can’t be to yours.

Conversely, just because they’re doing it doesn’t mean it’s the best

choice—big companies can be at risk of inertia through bureaucracy, even

when they’ve identified their own usability problems.

�Strive for predictability
One of the strengths of using the proven solutions found in patterns is

that they are familiar to users and therefore predictable. What happens

then when there’s tension between external conventions and internal

consistency?

Chapter 6 Mixing and matching patterns

https://blog.bradfieldcs.com/you-are-not-google-84912cf44afb
https://blog.bradfieldcs.com/you-are-not-google-84912cf44afb

264

Sometimes as designers we need to make a choice between the

industry-leading approach and the internally consistent approach,

particularly if we have lots of design debt holding us back. If we choose

to push one part of a product forward with modern styles and proven

patterns, while the rest of the product continues to have awkward, old

styles and behaviors, our users might find it even harder to use because

it’s inconsistent. On the other hand, sticking to weird, old quirks in the UI

might be easier for repeat users once they’ve figured out how it works.

One way to address this problem is to update whole pages and sections

of your product at a time with a new look and feel along with the new

patterns. Your users might then be able to predict the product’s behavior

by considering which part they’re in. Continuing in this way, you might

avoid updating only one component in a page at a time. Leaving one part

behaving the old way and another part in a different way could lead to

more confusion overall.

�Innovate
Sometimes the best path is the road less traveled. When you need your

product to stand out in a crowded market, innovating away from the

standard solutions to problems might help. In these cases, you can

benchmark and user test your alternative solutions.

Back in 2017, before Snapchat’s controversial 2018 redesign,4 it

was a multi-billion dollar company with an inscrutable design that

may have earned its success because of its controversial UI. In her article,

4�Kurt Wagner and Rani Molla, “Why Snapchat is shrinking,” www.vox.com/2018/8/
7/17661756/snap-earnings-snapchat-q2-instagram-user-growth.

Chapter 6 Mixing and matching patterns

http://www.vox.com/2018/8/7/17661756/snap-earnings-snapchat-q2-instagram-user-growth
http://www.vox.com/2018/8/7/17661756/snap-earnings-snapchat-q2-instagram-user-growth

265

“Did Snapchat succeed because of its controversial UI?” (www.figma.com/

blog/did-snapchat-succeed-because-of-its-controversial-ui/),

Carmel DeAmicis declared Snapchat a “design pioneer”:

Despite the interface’s insanity, some Snapchat features were
major breakthroughs in design. It was the first big social app
to open directly to the camera. That unconventional choice
encouraged people to actually create their own content,
instead of just consume others’ posts.

She also quotes Airbnb designer Ben Wilkins saying “The reason

people love this is because it requires some level of tribal knowledge.” It

gives millennials “their own walled garden that their parents can’t reach.”

For the target audience in question, impenetrable design choices

and rejecting standard patterns had an unusually positive effect on their

product.

One particular and relevant quote I enjoyed was this:

“Some designers resent its success because it doesn’t follow
patterns we were taught to follow,” said Tara Mann, a mobile
designer at Basecamp, a project management tool.

Sometimes it’s OK to break the rules. The only way to know for sure

though is to actually test the difference. By benchmarking your product’s

UI, you’ll be able to find out if an innovation improves or detracts from the

original experience.

�How to break the rules
If you’ve decided that you want to try something more adventurous, first,

you have to know the rules to break them. Before throwing out the rule

book, consider the strengths of the patterns to date and understand them

in all their detail.

Chapter 6 Mixing and matching patterns

http://www.figma.com/blog/did-snapchat-succeed-because-of-its-controversial-ui/
http://www.figma.com/blog/did-snapchat-succeed-because-of-its-controversial-ui/

266

Next, consider how ambitious your alternative approach is. When

choosing between incremental and radical design improvements (www.

nngroup.com/articles/radical-incremental-redesign/), breaking

patterns are more radical changes, so you want to achieve a greater

margin of improvement over a smaller, incremental change. Your radical

innovation needs to achieve a 30% improvement in your measurable

outcomes. Julio Zhuo, a product designer at Facebook, proposes a more

conservative figure in her article, “Good Design” (https://medium.com/

the-year-of-the-looking-glass/good-design-a89c15136ba6):

Obviousness comes from conforming to people’s existing men-
tal models. Don’t waste time reinventing common UI patterns
or paradigms unless they are at least 2x better, or you have
some critical brand reason to do so.

—Julie Zhuo

She cites Microsoft OneNote product founder, Chris Pratley:

You know you have a good design when you show it to people
and they say, “oh, yeah, of course,” like the solution was
obvious.

—Chris Pratley

In these examples you can see the appeal of conservative adherence

to conventions and design patterns. Even then, one yardstick of a new

approach’s success might be if people still say, “oh, yeah, of course.” Like

the solution was obvious.

One sign that a successful radical innovation may be available is a

change in technology. As voice-user interfaces become more reliable,

we’re likely to see greater shifts in interaction as new opportunities

become available. Maybe this is the time to quash hamburger basements

and instead ask the web page to access standard menu items, such as the

“About page,” or simply ask, “tell me about this company.”

Chapter 6 Mixing and matching patterns

http://www.nngroup.com/articles/radical-incremental-redesign/
http://www.nngroup.com/articles/radical-incremental-redesign/
https://medium.com/the-year-of-the-looking-glass/good-design-a89c15136ba6
https://medium.com/the-year-of-the-looking-glass/good-design-a89c15136ba6

267

Before embarking on this adventure, you might evaluate how

much slack you have in your system to shoulder the cost of any risky

experiments. Can you afford to lose $1.3 billion of market share5 if it goes

wrong? If you cannot bear the impact, you might mitigate the risk by

running smaller experiments or isolating smaller parts of the innovation to

test. For example, you might independently validate UI copy out of context,

test user flow using paper prototypes, and test usability in an interactive

prototype before building a new alternative to a design pattern.

As I mentioned before, when you’re about to implement radical

innovations, user test the UI before and after. If you have no prior

UI to benchmark because you’re creating a new product, consider

benchmarking a competitor’s product. You can also track the impact of

your radical design changes on your key measurable outcomes, such as

sales and conversion rates. In this way you can prove that the alternative

is better for key outcomes as well as qualitative perceived experience and

satisfaction.

�When to break patterns in design systems
In a design system, there’s typically one execution of a pattern. A button, for

example, is usually done one way, on purpose, to achieve consistent and

predictable UI. How then does an individual UX designer engaged with a

design system make the decision to break from the mold? In three cases:

•	 When consistency isn’t achieving predictability, break

the pattern.

•	 When consistency is detrimental, break the pattern.

•	 When behavior is different, elements should look

different—this demands a different pattern.

5�Dottie Schrock, “Snapchat: Our Take on the Design Kylie Called ‘So Sad’,”
 www.leanplum.com/blog/app-engagement-snapchat/, March 2018.

Chapter 6 Mixing and matching patterns

http://www.leanplum.com/blog/app-engagement-snapchat/

268

Conversely, when should a designer stick to the system? When you see

either of these two signs:

•	 When inconsistency is inconspicuous, causing users

to ask “why” something looks different in one place

to another, even though they behave the same (or too

similarly)

•	 When the behavior is identical

For a rule of thumb, aim to be cohesive not consistent. Context trumps

consistency when the design is still clearly in line with the spirit of the

system, giving the impression of consistency and predictability, even with

slight differences. Strong principles can help you here. If you have a design

principle like “Insightful even over efficient,” you might choose a data

visualization that brings to light new information, even over the standard

visualization in your product that is faster to navigate.

That wraps up the main reasons to ditch a pattern and how to move

ahead when you do. These won’t address every design system or solve

every debate, but they can help guide decisions.

�Summary
In this chapter we explored how to blend multiple patterns together into

a seamless interaction experience by finding complementary patterns,

minimizing duplication of shared elements across patterns when

combining them, and finding large functional combinations of patterns

with a bigger scope than the patterns we’ve seen in previous chapters.

These larger functional “patterns” tend to appear less often in design

systems and especially rarely in built component libraries as they often

appear only once or twice in a single product.

Chapter 6 Mixing and matching patterns

269

We examined the unique impact specific applications of patterns

might have, such as wish lists and how they relate to favorites. As we

discussed in Chapter 5, the “Overall pattern” is a design smell, and you’ll

likely find more value from separately describing your wish list pattern and

favorite pattern rather than treating favorites as a parent to the wish list

pattern in the unlikely event you have both in your design system.

Beyond mixing and matching patterns, we saw how to validate

breaks from convention with user testing. You can identify a successful

departure from convention when your audience still reports that it “feels

obvious,” “easy,” or “intuitive.” You can identify the need for breaking from

convention when an identified usability problem proves the pattern is

failing you in its current form.

Altogether, this chapter has highlighted nine approaches to mix and

match patterns and when to break away from them, including in design

systems, all through the lens of modern e-commerce products and

contemporary digital design.

Chapter 6 Mixing and matching patterns

271© Diana MacDonald 2019
D. MacDonald, Practical UI Patterns for Design Systems,
https://doi.org/10.1007/978-1-4842-4938-3_7

CHAPTER 7

Conclusion
Thanks for coming along on the journey with me exploring the wild world

of UI patterns and their place in design systems. I’ve thoroughly enjoyed

writing, researching, and sharing everything in this book. My hope is that

you’ll come away a sharper digital professional, with a new understanding

of UI patterns—recurring solutions to digital interface problems in a

context.

You’ve learned how to

•	 Find a pattern you can apply to a given UI problem

•	 Deconstruct patterns to understand them in depth,

including their constraints

•	 Build design systems using practical UI patterns

•	 Spot anti-patterns and dark patterns and question

design smells

•	 Mix and match patterns and break from convention in

the right way

This will help you

•	 Produce intuitive products through consistency and

familiarity

•	 Save time instead of starting from scratch

272

•	 Communicate design decisions with evidence to

support solutions

•	 Use smart defaults without extensive product design

experience

•	 Improve your users’ experiences

•	 Scale growing business with design

As a professional, you’ve

	 1.	 Gained an understanding of product design

foundations through seeing design processes

brought to light, especially as they apply to growing

organizations with evolving design systems

	 2.	 Learned how to fast-track design work via practical

examples of patterns for a variety of real-world

purposes

	 3.	 Leveled up the breadth of your skills and

understanding through the illumination of user

experience design concepts, such as usability,

accessibility, microcopy, motion design, and

information architecture

�Looking to the future
I wanted to write this book to guide motivated, growing web designers.

I also wanted to help improve the state of the industry, letting the web

community spend more time at the cutting edge instead of reinventing the

wheel of proven solutions. If this book has helped you, it would mean the

world to me if you reached out to let me know.

Chapter 7 Conclusion

273

When you’re considering what’s next, I suggest you signup to these:

•	 Design on Medium (https://medium.com/topic/

design)

•	 Design Systems on Slack (http://design.systems/

slack/)

•	 Design Systems News (http://news.design.systems/)

As a community, we can help each other by sharing what we’ve

learned along the way. If you and your organization have established a

new UI pattern, I invite you to write or speak about it. Share what you’ve

learned and how you’ve proven a solution’s effectiveness in your design’s

context. Together, we’ll build a better experience for everyone.

Chapter 7 Conclusion

https://medium.com/topic/design
https://medium.com/topic/design
http://design.systems/slack/
http://design.systems/slack/
http://news.design.systems/

275© Diana MacDonald 2019
D. MacDonald, Practical UI Patterns for Design Systems,
https://doi.org/10.1007/978-1-4842-4938-3

APPENDIX

�Suggested reading
�Chapter 2
To learn more about the patterns and ideas in Chapter 2, here are some

additional resources.

Newsletter signup:

•	 Think Your Site Needs CAPTCHA? Try These User-

Friendly Alternatives (www.usertesting.com/blog/

think-your-site-needs-captcha-try-these-user-

friendly-alternatives/)

•	 Design the Email Newsletter SignUp Box That Works

(http://rafaltomal.com/email-newsletter-signup-

box-that-works/)

Validation feedback:

•	 Apple human interface guidelines for data entry

(https://developer.apple.com/design/human-

interface-guidelines/macos/user-interaction/

data-entry/)

•	 Microsoft errors (https://docs.microsoft.com/en-

gb/windows/desktop/uxguide/mess-error)

https://doi.org/10.1007/978-1-4842-4938-3
http://www.usertesting.com/blog/think-your-site-needs-captcha-try-these-user-friendly-alternatives/
http://www.usertesting.com/blog/think-your-site-needs-captcha-try-these-user-friendly-alternatives/
http://www.usertesting.com/blog/think-your-site-needs-captcha-try-these-user-friendly-alternatives/
http://rafaltomal.com/email-newsletter-sign-up-box-that-works/
http://rafaltomal.com/email-newsletter-sign-up-box-that-works/
https://developer.apple.com/design/human-interface-guidelines/macos/user-interaction/data-entry/
https://developer.apple.com/design/human-interface-guidelines/macos/user-interaction/data-entry/
https://developer.apple.com/design/human-interface-guidelines/macos/user-interaction/data-entry/
https://docs.microsoft.com/en-gb/windows/desktop/uxguide/mess-error
https://docs.microsoft.com/en-gb/windows/desktop/uxguide/mess-error

276

•	 Material Design text field errors (https://material.

io/design/components/text-fields.html#anatomy)

•	 Strunk and White’s, The Elements of Style

(www.gutenberg.org/ebooks/37134)

Competitive analysis:

•	 Largest Internet companies (https://en.wikipedia.

org/wiki/List_of_largest_Internet_companies)

•	 Largest tech companies (https://en.wikipedia.

org/wiki/List_of_the_largest_information_

technology_companies)

•	 Fortune 500 companies by revenue (http://fortune.

com/rankings/)

•	 Alexa top 500 sites on the Web by traffic (www.alexa.

com/topsites)

Notifications:

•	 Google’s Android permissions (https://material.io/

design/platform-guidance/android-permissions.html)

•	 Apple’s Requesting Permission (https://developer.

apple.com/design/human-interface-guidelines/

ios/app-architecture/requesting-permission/)

Progressive reduction:

•	 The Characteristics of Minimalism in Web Design

(www.nngroup.com/articles/characteristics-

minimalism/)

For each of the types of resources introduced in Chapter 2, here are

some specific resources.

Appendix Suggested reading

https://material.io/design/components/text-fields.html#anatomy
https://material.io/design/components/text-fields.html#anatomy
http://www.gutenberg.org/ebooks/37134
https://en.wikipedia.org/wiki/List_of_largest_Internet_companies
https://en.wikipedia.org/wiki/List_of_largest_Internet_companies
https://en.wikipedia.org/wiki/List_of_the_largest_information_technology_companies
https://en.wikipedia.org/wiki/List_of_the_largest_information_technology_companies
https://en.wikipedia.org/wiki/List_of_the_largest_information_technology_companies
http://fortune.com/rankings/
http://fortune.com/rankings/
http://www.alexa.com/topsites
http://www.alexa.com/topsites
https://material.io/design/platform-guidance/android-permissions.html
https://material.io/design/platform-guidance/android-permissions.html
https://developer.apple.com/design/human-interface-guidelines/ios/app-architecture/requesting-permission/
https://developer.apple.com/design/human-interface-guidelines/ios/app-architecture/requesting-permission/
https://developer.apple.com/design/human-interface-guidelines/ios/app-architecture/requesting-permission/
http://www.nngroup.com/articles/characteristics-minimalism/
http://www.nngroup.com/articles/characteristics-minimalism/

277

Pattern collections:

•	 UI Patterns (http://ui-patterns.com/patterns/)

•	 UIPatterns.io (http://uipatterns.io/)

•	 Welie Patterns in Interaction Design (www.welie.com/

patterns/index.php)

Pattern galleries:

•	 pttrns (https://pttrns.com/)

•	 Nicely Done (http://nicelydone.club/patterns/)

•	 InspirationUI > All Patterns (http://inspirationui.com/)

•	 Pattern Tap > Type (http://patterntap.com/

patterntap)

•	 UXArchive > Tasks (http://uxarchive.com/)

•	 Interfaces Pro (https://interfaces.pro/product-page/)

Domain-specific galleries:

•	 Mobile:

•	 Mobile Patterns (www.mobile-patterns.com/)

•	 11 User Input Patterns for Mobile (https://

designmodo.com/user-input-patterns-mobile/)

•	 Email:

•	 Really Good Emails (http://reallygoodemails.com/)

•	 E-commerce:

•	 Baymard Institute (https://baymard.com/)

Appendix Suggested reading

http://ui-patterns.com/patterns/
http://uipatterns.io/
http://www.welie.com/patterns/index.php
http://www.welie.com/patterns/index.php
https://pttrns.com/
http://nicelydone.club/patterns/
http://inspirationui.com/
http://patterntap.com/patterntap
http://patterntap.com/patterntap
http://uxarchive.com/
https://interfaces.pro/product-page/
http://www.mobile-patterns.com/
https://designmodo.com/user-input-patterns-mobile/
https://designmodo.com/user-input-patterns-mobile/
http://reallygoodemails.com/
https://baymard.com/

278

•	 Onboarding:

•	 User onboarding (www.useronboard.com/how-

slack-onboards-new-users/)

•	 Empty states (http://emptystat.es/)

•	 UXArchive (http://uxarchive.com/tasks/

onboarding)

•	 First-time UX (http://firsttimeux.tumblr.com/)

•	 Interaction design:

•	 LittleBigDetails (http://littlebigdetails.com/)

•	 Codrops blueprints (https://tympanus.net/

codrops/category/blueprints/)

•	 Codepen Collections (https://codepen.io/

topics/ui-pattern)

•	 Social:

•	 Yahoo Design Pattern Library > Social via the

Wayback Machine (https://web.archive.org/

web/20160728011421/https:/developer.yahoo.

com/ypatterns/)

•	 Designing Social Interfaces (www.

designingsocialinterfaces.com/patterns.

wiki/index.php?title=Main_Page)

•	 UI-Patterns > Social (http://ui-patterns.com/

patterns/social/list)

Appendix Suggested reading

http://www.useronboard.com/how-slack-onboards-new-users/
http://www.useronboard.com/how-slack-onboards-new-users/
http://emptystat.es/
http://uxarchive.com/tasks/onboarding
http://uxarchive.com/tasks/onboarding
http://firsttimeux.tumblr.com/
http://littlebigdetails.com/
https://tympanus.net/codrops/category/blueprints/
https://tympanus.net/codrops/category/blueprints/
https://codepen.io/topics/ui-pattern
https://codepen.io/topics/ui-pattern
https://web.archive.org/web/20160728011421/https://developer.yahoo.com/ypatterns/
https://web.archive.org/web/20160728011421/https://developer.yahoo.com/ypatterns/
https://web.archive.org/web/20160728011421/https:/developer.yahoo.com/ypatterns/
https://web.archive.org/web/20160728011421/https:/developer.yahoo.com/ypatterns/
https://web.archive.org/web/20160728011421/https:/developer.yahoo.com/ypatterns/
http://www.designingsocialinterfaces.com/patterns.wiki/index.php?title=Main_Page
http://www.designingsocialinterfaces.com/patterns.wiki/index.php?title=Main_Page
http://www.designingsocialinterfaces.com/patterns.wiki/index.php?title=Main_Page
http://ui-patterns.com/patterns/social/list
http://ui-patterns.com/patterns/social/list

279

•	 Search:

•	 Peter Morville’s Flickr Search Patterns

(www.flickr.com/photos/morville/

collections/72157603785835882/) for

Search Patterns (http://shop.oreilly.com/

product/9780596802288.do)

Platform guidelines:

•	 Human Interface Guidelines (https://en.wikipedia.

org/wiki/Human_interface_guidelines), such as

•	 Apple’s iOS guidelines (https://developer.apple.

com/design/human-interface-guidelines/)

•	 Elementary’s guidelines (https://elementary.

io/docs/human-interface-guidelines#human-

interface-guidelines)

•	 Google’s Material Design guidelines (https://

material.io/design/)

•	 Microsoft’s windows guidelines (https://docs.

microsoft.com/en-gb/windows/desktop/uxguide/

guidelines)

UI frameworks:

•	 Bootstrap (http://getbootstrap.com/components/)

•	 Zurb Foundation (http://foundation.zurb.com/

sites/docs/kitchen-sink.html)

•	 Tachyons (http://tachyons.io/components/)

•	 Semantic UI (https://semantic-ui.com/

introduction/glossary.html)

Appendix Suggested reading

http://www.flickr.com/photos/morville/collections/72157603785835882/
http://www.flickr.com/photos/morville/collections/72157603785835882/
http://shop.oreilly.com/product/9780596802288.do
http://shop.oreilly.com/product/9780596802288.do
https://en.wikipedia.org/wiki/Human_interface_guidelines
https://en.wikipedia.org/wiki/Human_interface_guidelines
https://developer.apple.com/design/human-interface-guidelines/
https://developer.apple.com/design/human-interface-guidelines/
https://elementary.io/docs/human-interface-guidelines#human-interface-guidelines
https://elementary.io/docs/human-interface-guidelines#human-interface-guidelines
https://elementary.io/docs/human-interface-guidelines#human-interface-guidelines
https://material.io/design/
https://material.io/design/
https://docs.microsoft.com/en-gb/windows/desktop/uxguide/guidelines
https://docs.microsoft.com/en-gb/windows/desktop/uxguide/guidelines
https://docs.microsoft.com/en-gb/windows/desktop/uxguide/guidelines
http://getbootstrap.com/components/
http://foundation.zurb.com/sites/docs/kitchen-sink.html
http://foundation.zurb.com/sites/docs/kitchen-sink.html
http://tachyons.io/components/
https://semantic-ui.com/introduction/glossary.html
https://semantic-ui.com/introduction/glossary.html

280

•	 Spectre (https://picturepan2.github.io/spectre/

components.html)

•	 Element (http://element.eleme.io/)

•	 Skeleton (http://getskeleton.com/)

•	 Bit (https://bit.dev/components)

Inspiring visual style:

•	 Site Inspire (www.siteinspire.com/)

•	 Httpster (http://httpster.net/)

•	 Dribbble (https://dribbble.com/)

•	 Awwwards (www.awwwards.com/)

•	 IXDA (http://awards.ixda.org/entries/)

•	 Front-end awards (https://thefwa.com/)

•	 Page Flows (https://pageflows.com/flow/

onboarding)

•	 One Page Love (https://onepagelove.com/)

•	 Land-book (https://land-book.com/)

•	 Collect UI (http://collectui.com/)

•	 Design Snips (http://designsnips.com/category/

inspiration/)

�Chapter 3
To learn more about SEO and UI, see Moz’s Beginner’s Guide to SEO

(https://moz.com/beginners-guide-to-seo).

For a straightforward, practical guide to improving interface

microcopy, see Effective Writing For Your UI: Things to Avoid by Nick

Appendix Suggested reading

https://picturepan2.github.io/spectre/components.html
https://picturepan2.github.io/spectre/components.html
http://element.eleme.io/
http://getskeleton.com/
https://bit.dev/components
http://www.siteinspire.com/
http://httpster.net/
https://dribbble.com/
http://www.awwwards.com/
http://awards.ixda.org/entries/
https://thefwa.com/
https://pageflows.com/flow/onboarding
https://pageflows.com/flow/onboarding
https://onepagelove.com/
https://land-book.com/
http://collectui.com/
http://designsnips.com/category/inspiration/
http://designsnips.com/category/inspiration/
https://moz.com/beginners-guide-to-seo

281

Babich (https://uxplanet.org/effective-writing-for-your-ui-

things-to-avoid-f6084e94e009).

To learn about implementing design patterns accessibly, check out The

A11Y Project (http://a11yproject.com/). For an in-depth reference, I

refer you to Heydon Pickering’s book, Inclusive Design Patterns.

�Chapter 4
For your inspiration, here are some pattern library and design system

resources, loosely grouped into the types of guides they are.

Editorial style guides:

•	 The Guardian and Observer Style Guide (www.

theguardian.com/info/series/guardian-and-

observer-style-guide)

•	 MailChimp Content Style Guide (http://styleguide.

mailchimp.com/)

•	 Intuit QuickBooks: Voice and tone guide (https://

designsystem.quickbooks.com/voice-and-tone/)

Brand guides:

•	 Website Style Guide Resources (http://styleguides.io/)

•	 Style guides (https://designschool.canva.com/

blog/50-meticulous-style-guides-every-startup-

see-launching/)

•	 Brand style guides (https://saijogeorge.com/brand-

style-guide-examples/)

•	 Lonely Planet style guide (https://rizzo.lonelyplanet.

com/styleguide/design-elements/colours)

•	 Ubuntu’s brand guidelines (https://design.ubuntu.

com/brand)

Appendix Suggested reading

https://uxplanet.org/effective-writing-for-your-ui-things-to-avoid-f6084e94e009
https://uxplanet.org/effective-writing-for-your-ui-things-to-avoid-f6084e94e009
http://a11yproject.com/
http://www.theguardian.com/info/series/guardian-and-observer-style-guide
http://www.theguardian.com/info/series/guardian-and-observer-style-guide
http://www.theguardian.com/info/series/guardian-and-observer-style-guide
http://styleguide.mailchimp.com/
http://styleguide.mailchimp.com/
https://designsystem.quickbooks.com/voice-and-tone/
https://designsystem.quickbooks.com/voice-and-tone/
http://styleguides.io/
https://designschool.canva.com/blog/50-meticulous-style-guides-every-startup-see-launching/
https://designschool.canva.com/blog/50-meticulous-style-guides-every-startup-see-launching/
https://designschool.canva.com/blog/50-meticulous-style-guides-every-startup-see-launching/
https://saijogeorge.com/brand-style-guide-examples/
https://saijogeorge.com/brand-style-guide-examples/
https://rizzo.lonelyplanet.com/styleguide/design-elements/colours
https://rizzo.lonelyplanet.com/styleguide/design-elements/colours
https://design.ubuntu.com/brand
https://design.ubuntu.com/brand

282

Design guidelines and visual language:

•	 Find Guidelines (http://findguidelin.es/)

•	 Apple’s design principles (https://developer.apple.

com/ios/human-interface-guidelines/overview/

design-principles/)

•	 IBM’s Design Language (www.ibm.com/design/

language/)

•	 Wikimedia design style guide (https://design.

wikimedia.org/style-guide/index.html)

Pattern libraries or front-end style guides:

•	 Hillary Clinton’s internal Pantsuit pattern library

(https://medium.com/git-out-the-vote/pantsuit-

the-hillary-clinton-ui-pattern-library-

238e9bf06b54), which is not publicly accessible

•	 MailChimp’s pattern library (https://ux.mailchimp.

com/patterns)

•	 Walmart’s web style guide (http://walmartlabs.

github.io/web-style-guide/)

•	 Yelp (www.yelp.com/styleguide)

•	 Buzzfeed’s CSS style guide like BassCSS (http://

solid.buzzfeed.com/)

•	 Code for America (https://style.codeforamerica.org/)

Appendix Suggested reading

http://findguidelin.es/
https://developer.apple.com/ios/human-interface-guidelines/overview/design-principles/
https://developer.apple.com/ios/human-interface-guidelines/overview/design-principles/
https://developer.apple.com/ios/human-interface-guidelines/overview/design-principles/
http://www.ibm.com/design/language/
http://www.ibm.com/design/language/
https://design.wikimedia.org/style-guide/index.html
https://design.wikimedia.org/style-guide/index.html
https://medium.com/git-out-the-vote/pantsuit-the-hillary-clinton-ui-pattern-library-238e9bf06b54
https://medium.com/git-out-the-vote/pantsuit-the-hillary-clinton-ui-pattern-library-238e9bf06b54
https://medium.com/git-out-the-vote/pantsuit-the-hillary-clinton-ui-pattern-library-238e9bf06b54
https://ux.mailchimp.com/patterns
https://ux.mailchimp.com/patterns
http://walmartlabs.github.io/web-style-guide/
http://walmartlabs.github.io/web-style-guide/
http://www.yelp.com/styleguide
http://solid.buzzfeed.com/
http://solid.buzzfeed.com/
https://style.codeforamerica.org/

283

Living style guides:

•	 Living Style Guide generator gem

(https://livingstyleguide.org/)

•	 KSS (Knyle Style Sheets) (https://warpspire.com/kss/)

•	 Living style guide and pattern library generators

(https://github.com/davidhund/styleguide-

generators)

Code style guides:

•	 Mozilla Developer Network: Coding style (https://

developer.mozilla.org/en-US/docs/Mozilla/

Developer_guide/Coding_Style)

•	 Code Guide by @mdo (Mark Otto) for HTML and CSS

(http://codeguide.co/)

•	 CSS Guidelines by Harry Roberts (https://

cssguidelin.es/)

•	 Google’s Style Guides (https://github.com/google/

styleguide)

Component libraries:

•	 Awesome React components (https://github.com/

brillout/awesome-react-components)

•	 Pure UI (https://rauchg.com/2015/pure-ui)

•	 U.S. Web Design System (https://designsystem.

digital.gov/components/)

•	 Pivotal UI (http://styleguide.cfapps.io/index.html)

•	 Shopify’s Polaris components (https://polaris.

shopify.com/components/get-started)

Appendix Suggested reading

https://livingstyleguide.org/
https://warpspire.com/kss/
https://github.com/davidhund/styleguide-generators
https://github.com/davidhund/styleguide-generators
https://developer.mozilla.org/en-US/docs/Mozilla/Developer_guide/Coding_Style
https://developer.mozilla.org/en-US/docs/Mozilla/Developer_guide/Coding_Style
https://developer.mozilla.org/en-US/docs/Mozilla/Developer_guide/Coding_Style
http://codeguide.co/
https://cssguidelin.es/
https://cssguidelin.es/
https://github.com/google/styleguide
https://github.com/google/styleguide
https://github.com/brillout/awesome-react-components
https://github.com/brillout/awesome-react-components
https://rauchg.com/2015/pure-ui
https://designsystem.digital.gov/components/
https://designsystem.digital.gov/components/
http://styleguide.cfapps.io/index.html
https://polaris.shopify.com/components/get-started
https://polaris.shopify.com/components/get-started

284

Design systems:

•	 Salesforce’s Lightning Design System (www.

lightningdesignsystem.com/guidelines/overview/)

•	 Google’s Material Design (https://material.io/

guidelines/material-design/introduction.html)

•	 Shopify’s Polaris design system (https://polaris.

shopify.com/)

•	 Atlassian’s design system (https://atlassian.design/)

•	 GE’s Predix design system (www.predix-ui.com/#/home)

•	 FutureLearn’s design system (www.futurelearn.com/

pattern-library)

•	 Intuit’s QuickBooks design system

(https://designsystem.quickbooks.com/)

•	 BBC’s Global Experience Language (www.bbc.co.uk/gel)

•	 GOV.UK service manual (www.gov.uk/service-manual)

Other design system resources:

•	 Adele, UXPin’s “repository of publicly available

design systems and pattern libraries” (https://adele.

uxpin.com/)

•	 Design Systems Repo (https://designsystemsrepo.

com/design-systems/)

•	 Awesome Design Systems on GitHub (https://

github.com/alexpate/awesome-design-systems/

blob/master/README.md)

Appendix Suggested reading

http://www.lightningdesignsystem.com/guidelines/overview/
http://www.lightningdesignsystem.com/guidelines/overview/
https://material.io/guidelines/material-design/introduction.html
https://material.io/guidelines/material-design/introduction.html
https://polaris.shopify.com/
https://polaris.shopify.com/
https://atlassian.design/
http://www.predix-ui.com/#/home
http://www.futurelearn.com/pattern-library
http://www.futurelearn.com/pattern-library
https://designsystem.quickbooks.com/
http://www.bbc.co.uk/gel
http://www.gov.uk/service-manual
https://adele.uxpin.com/
https://adele.uxpin.com/
https://designsystemsrepo.com/design-systems/
https://designsystemsrepo.com/design-systems/
https://github.com/alexpate/awesome-design-systems/blob/master/README.md
https://github.com/alexpate/awesome-design-systems/blob/master/README.md
https://github.com/alexpate/awesome-design-systems/blob/master/README.md

285

•	 Design Systems Handbook: Building Design Systems

(www.designbetter.co/design-systems-handbook/

building-design-system)

•	 Clarity Conference (www.clarityconf.com/)

•	 Government design systems (http://government.

github.io/best-practices/design-systems/)

•	 Airbnb’s design system (http://airbnb.design/the-

way-we-build/)

•	 Design systems are for people by Jina Anne

(https://publication.design.systems/design-

systems-are-for-people-a484620b6988)

�Chapter 5
Hamburger menus or hamburger basements make for a fascinating case

study of anti-patterns. Here are some suggested readings to learn more.

•	 When To Use a Hamburger Menu (http://babich.

biz/hamburger-good-ux/)

•	 Top 3 IA Questions about Navigation Menus

(www.nngroup.com/articles/ia-questions-

navigation-menus/)

•	 The Thumb Zone: Designing For Mobile Users

(www.smashingmagazine.com/2016/09/the-thumb-

zone-designing-for-mobile-users/)

•	 Why Content Reigns Supreme In UX Design

(www.fastcodesign.com/3054090/why-content-

reigns-supreme-in-ux-design)

Appendix Suggested reading

http://www.designbetter.co/design-systems-handbook/building-design-system
http://www.designbetter.co/design-systems-handbook/building-design-system
http://www.clarityconf.com/
http://government.github.io/best-practices/design-systems/
http://government.github.io/best-practices/design-systems/
http://airbnb.design/the-way-we-build/
http://airbnb.design/the-way-we-build/
https://publication.design.systems/design-systems-are-for-people-a484620b6988
https://publication.design.systems/design-systems-are-for-people-a484620b6988
http://babich.biz/hamburger-good-ux/
http://babich.biz/hamburger-good-ux/
http://www.nngroup.com/articles/ia-questions-navigation-menus/
http://www.nngroup.com/articles/ia-questions-navigation-menus/
http://www.smashingmagazine.com/2016/09/the-thumb-zone-designing-for-mobile-users/
http://www.smashingmagazine.com/2016/09/the-thumb-zone-designing-for-mobile-users/
http://www.fastcodesign.com/3054090/why-content-reigns-supreme-in-ux-design
http://www.fastcodesign.com/3054090/why-content-reigns-supreme-in-ux-design

286

•	 Long-Term Exposure to Flat Design: How the Trend

Slowly Decreases User Efficiency (www.nngroup.com/

articles/flat-design-long-exposure/)

•	 The Ultimate Guide to the Hamburger Menu and

Its Alternatives (https://uxplanet.org/the-

ultimate-guide-to-the-hamburger-menu-and-its-

alternatives-e2da8dc7f1db)

•	 Are Users Ready for the Desktop Hamburger Icon?

(www.sitepoint.com/are-users-ready-for-the-

desktop-hamburger-icon/)

•	 Why Users Click Content Links More Than Menus

(https://uxmovement.com/navigation/why-users-

click-content-links-more-than-menus/)

Appendix Suggested reading

http://www.nngroup.com/articles/flat-design-long-exposure/
http://www.nngroup.com/articles/flat-design-long-exposure/
https://uxplanet.org/the-ultimate-guide-to-the-hamburger-menu-and-its-alternatives-e2da8dc7f1db
https://uxplanet.org/the-ultimate-guide-to-the-hamburger-menu-and-its-alternatives-e2da8dc7f1db
https://uxplanet.org/the-ultimate-guide-to-the-hamburger-menu-and-its-alternatives-e2da8dc7f1db
http://www.sitepoint.com/are-users-ready-for-the-desktop-hamburger-icon/
http://www.sitepoint.com/are-users-ready-for-the-desktop-hamburger-icon/
https://uxmovement.com/navigation/why-users-click-content-links-more-than-menus/
https://uxmovement.com/navigation/why-users-click-content-links-more-than-menus/

287© Diana MacDonald 2019
D. MacDonald, Practical UI Patterns for Design Systems,
https://doi.org/10.1007/978-1-4842-4938-3

Index

A
A11Y Project, 128, 281
Accessibility, 122
Accessible Rich Internet

Applications (ARIA),
122, 127

Activity feed
events time, 113, 114
scannability, 113
separate views, 115
social media, 112
track events, 114

Adobe Swatch Exchange files, 181
Airbnb, 104
Airbnb’s batch filters, 109, 110
Airbnb’s React Sketch.app, 161
Anti-patterns

bad patterns, lifetime, 220–221
dark, 202
definition, 193, 194
hamburger basement

basement to menu, 199, 200
button, 197
create issues, 198, 199
Menu button, 201, 202

manipulinks
buttons, 206

Chrome Dev tools, 207, 208
Confirmshamers, 204, 205
definition, 203
design smells, 206
example, 204
Google’s pagination, 209

modal design smell, 213
modal UI pattern, 209, 211, 213
mystery meat navigation, 194
pop-up

annoying modal, 217
Asana’s cascading, 216
design smell, 219
misused modal, 214, 215
problem, 214
replace modal, 216
scrollable modal, 218

solution, 195, 196
aria-live method, 127
Asana, 158, 211
Autocomplete pattern

autosuggest, 96–98
defined, 94
feedback, 98
Google autosuggests, 97
performance, 98, 99
popular results, 96
SwiftKey keyboard, 95

https://doi.org/10.1007/978-1-4842-4938-3

288

B
Brand guides, 147–149
Browser prototype

code, writing, 177
colors, 179
fonts, 180
HTML, 176
icons, 178
logos, 179
presenter, 177
tooltip, 176
typography, 179

C
Coachmarks pattern, 69

ListenOnRepeat’s, 73
modality, 71
Pinterest’s animated, 70
SoundCloud, 72

Code repository, 188
Competitive analysis, 58–59,

89–90, 276
Content Management Systems

(CMSs), 158

D
Dark patterns, 202–203
Design assets

color values, 180
icon SVGs, 181
SCSS palette, 181
UI source files, 181

Design guidelines
material design, 150
principles, 151
visual language, 149, 150

Design problems
constraints, 94
content and data, 94
user groups, 94
user journeys, 93
user tasks, 94

Design system, 144
Design system, build

aim, 159
code assets, 176
design share, 163
design specifications, 162
documenting patterns, 182, 183
extra features

autocomplete search, 183, 184
clickable anchors, 184
copy to clipboard button, 185

framing (see Framing)
internal library patterns, 182
performance testing, 163
uses, 159, 160

Design system, grows
assembly

storage options, 187, 188
UI Kit, 187

evolution, 192
interface inventory, 186
patterns, 186
serving assets, 191
tools, 191

INDEX

289

versions
bootstrap, 190
new framework, 188
old framework, 188
price component, 188, 190

workshop approach, 186
Design tokens, 152
Domain-specific galleries, 25, 277
Dropbox folder, 187

E
Editorial style guides, 145–147

F
Favorites pattern, 115

add an item, 117
functions, 116
iconography, 118
liked tweet, 117
Pinterest, 117, 118
read receipt, 118
single indicator, 119
Twitter, 117
unlike reactions, 119

Fear Of Missing Out (FOMO), 124
Fitts’s Law, 133
Follow pattern

on-site content, 131
recommendations, 130
Twitter feed, 130

Framing
audience, 161

inspirational system, 160
practical system, 160
purpose, 161, 162

Friends list pattern
follow patterns, 132
share content, 131
social interaction, 132
social networks, 132

G
Google Style guides, 155

H
Hamburger basements, 197,

285, 286
Hemingway app, 191
Horizontal filter toolbar, 104

I, J, K
Inclusive infinite scroll

ARIA, 127
design, 127
and favorites, 128, 129
vs. pagination, 128

Infinite scroll pattern, 127
cognitive load, 123
content and data, 125
continuous scroll, 123
dummy image, 123
FOMO, 124
photostreams, 124

INDEX

290

principle of choices, 125
principle of disclosure, 126
save for later feature, 124
social news feeds, 124

Information architecture
batch filters, 109, 110
choose filters, 107
clear filters option, 111
eight principles, 102, 103
filter feedback, 105–107
live filters, 108
multiple filters, 104, 105
search filter, 103

Interaction
action, 136
design, 133
feedback, 136
trigger, 134, 135

Interstitial patterns
RS search

autosuggest, 236
brand index page, 242
category browsing, 241
category selection, 237,

238, 240
filtering options, 239
thumbnails, 243

L
Lazy signup pattern, 57
Lightning design system, 151, 152
Login form

add to public list, 140
aria-hidden attribute, 138
back to article text, 137, 138
keyboards, 139
log in link, 139
microcopy, 137
motion design, 141
sign in, 140, 141

M
Microcopy, 71, 119–120, 203
Motion design, 60, 133, 141

N, O
Nathan Curtis’s design system

worksheet approach, 186
Newsletter signup pattern, 43

Bellroy, 45
elements, 45
input, 45
legal, 47
list, 46
O’Reilly Design, 47, 48
Submit button, 45
validation, 46
Web Animation, 43

Notification pattern, 61
error, 66
overlay components, 64
permissions, 67
Semantic UI’s Nag, 62
task-specific, 63

Infinite scroll pattern (cont.)

INDEX

291

P, Q, R
Pagination pattern, 120

bookmark, 122
easy-to-digest chunks, 121
results size, 121

Pattern
break away

design smells, 260, 261
design system, 267, 268
innovate, 264, 265
predictability, 263, 264
rules, 265–267
usability problem, 261–263

coachmarks, 69
competitors, 58, 59
find relevant ideas, 53
galleries, 25
good defaults, 68, 69
lazy signup, 57, 58
libraries, 29
login form, 81–83
Magento signup, 55
newsletter signup (see

Newsletter signup pattern)
notification, 61
opportune moment, 67
playthrough (see Playthrough

pattern)
progressive disclosure, 74, 75,

79, 80
redesigning login form

competitive analysis, 89, 90

fictional, 83
resources, 86, 87
searching for, 88

social signup, 56, 57
staged disclosure, 75–79
structured collections, 24
Tachyons components, 28, 29
validation feedback, 48, 50–53
visual style inspiration, 29, 30
walkthrough (see Walkthrough

pattern)
Pattern galleries, 277
Pattern library, 10, 144, 281–285
Pattern, poor choice, 137
Pattern previews

full-width button, 166
grid background, 165
interactive

dummy data, 168
MailChimp’s pattern, 166, 167
practical pattern libraries, 167
shortcut, 168

Lightning’s Loading guidelines,
174, 175

live component, 164
live markup and styling

feed item, 169
Walmart’s web style

guide, 170
material design, 173, 174
pre-recorded videos, 174
static image, 172

INDEX

292

Playthrough pattern
InVision’s Freehand, 40, 41, 43
sandbox, 39, 40
setup process, 38, 39
TeuxDeux, 37

Progressive disclosure, 74–75
Progressive reduction, 79, 276
Pure UI, 156, 157

S
Sandbox playthrough, 39
Scoped search

autosuggests, 233–235
categories, 231–233
category-specific filters,

228–230
HBR, design products, 251
HBR, design systems, 249, 250
infinite scrolling, 253, 254, 256
inline tags, 252, 253
Nordstrom’s breadcrumb,

226, 227
reuse elements, 225
tabbed navigation, 243–249
thumbnails, 236
wish list

lazy signup, 259, 260
listing items, 257, 258

Search engine optimization
(SEO), 119

Search filters
contextual filters, 99
Google search, 100

media type, 102
scoped search, 102
user preferences, 101

Slackbot, 11, 12
Social signup pattern, 56–57
Staged disclosure, 75–79
Style guides

code style or code standards,
154, 155

component libraries, 155, 157
front-end style guides, 151, 152
living style, 153

T
Tachyons framework’s

components, 28
Template, 158
Thumbnails pattern, 3
Trigger

positive results, 135
subtle signifiers, 134
visual or social signifier, 134

U
UI pattern

Bootstrap 4’s card component, 5
communication tool, 15, 16
consistency, 12–14
content contributors, 19
context-specific, 19
definition, 2
design efficiency, 11, 12

INDEX

293

elements, 6, 7, 9
evidence based solutions, 18
expert’s approach, 19, 20
MailChimp badge, 16, 17
origami folds, 1
problems, 9, 10
recurring solutions, 272
reusable components, 20, 21
reuse, 14
thumbnail, 3, 4

User flow patterns/strategic
patterns, 6

V
Validation feedback, 275
Visual regression testing, 163

W, X, Y, Z
Walkthrough pattern, 31
Airbnb page, 34, 36
defined, 30
InVision’s, 31–33
workflow, 33, 34

INDEX

	Table of Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Introduction
	Chapter 1: Introducing UI patterns
	What’s a UI pattern?
	Elements of a UI pattern
	Other pattern details

	Why care about patterns?
	Design efficiently
	Consistency and familiarity
	Consistency and reuse
	Communicating decisions
	Communicating within teams and tools
	Evidence-based solutions
	Context-specific, tailored solutions
	Content contributors without a web design background
	Learning from the experts
	Learning how to improve experiences from patterns

	Summary

	Chapter 2: Tap into patterns
	Learning new patterns (sharpening the saw)
	Pattern collections
	Pattern galleries
	Platform guidelines
	UI frameworks
	Pattern libraries, design systems, style guides, and anti-patterns
	Inspiring visual style
	Pattern: Walkthrough
	Workflow walkthroughs
	Concept walkthroughs

	Pattern: Playthrough
	Setup playthrough
	Sandbox playthrough
	When to use a playthrough

	Pattern: Newsletter signup
	Pattern: Validation feedback

	Identifying relevant patterns
	Searching for patterns
	Pattern: Social signup
	Pattern: Lazy signup

	Competitive analysis
	Learn from the best
	Pattern: Notifications
	Containers for notifications
	The opportune moment

	Pattern: Good defaults
	Pattern: Coachmarks

	Implementing and tailoring patterns
	Pattern: Progressive disclosure
	Pattern: Staged disclosure
	Pattern: Progressive reduction

	Bringing it all together
	Pattern: Login form
	Example: Redesigning a login form
	From the pattern
	Pattern resources
	Searching for patterns
	Competitive analysis
	Learning from the best

	Summary

	Chapter 3: Deciding which pattern to use and when
	Context
	Pattern: Autocomplete
	Autosuggest
	User context and performance

	Pattern: Search filters
	Information architecture
	Multiple filters
	Filter feedback
	Choosing filters
	Live filters

	Batch filters
	Error prevention and recovery
	Pattern: Activity feed
	Pattern: Favorites
	A rose by any other name

	Microcopy
	Pattern: Pagination
	Where to draw the line

	Accessibility
	Pattern: Infinite scroll
	Principle of choices in action
	Principle of disclosure in action

	Inclusive design
	Infinite scroll vs. pagination
	Infinite scroll and favorites

	Pattern: Follow
	Pattern: Friend’s list
	Friends and followers
	Interaction and motion design
	Triggers
	Action
	Feedback

	When is a pattern a bad idea?
	Example: Login form
	Summary

	Chapter 4: Patterns in design systems
	What’s in a name? The devil is in the details
	Pattern libraries

	Design systems
	Related design, code, and content resources
	Editorial style guides
	Brand guides
	Design guidelines and visual language
	Style guides relating to code
	Front-end style guides
	Living style guides
	Code style guides
	Component libraries

	Templates and Content Management Systems (CMSs)

	Building design systems using patterns
	When to use a design system
	Framing
	Context
	Audience
	Purpose

	Workflows and design processes
	Pattern previews
	Interactive previews
	Live markup and styling
	Static images, animations, and videos

	Code assets
	Prototyping in the browser
	Writing code
	Converting design elements to code

	Design assets
	Writing and content
	Documenting patterns or components
	Extra design system features
	Growing a design system
	Kick off
	Assembly
	Versioning
	Serving assets
	Tools
	Evolution

	Summary

	Chapter 5: Anti-patterns and dark patterns
	What are anti-patterns?
	Why care about anti-patterns?
	Anti-pattern: Hamburger basement
	What are dark patterns?

	Manipulinks and Confirmshamers
	Design smells
	Too Much Information (TMI)

	Modals and pop-ups
	Modal UI pattern
	Modal design smell
	Pop-up anti-pattern
	“Overall pattern” design smell

	The lifetime of a bad pattern

	Chapter 6: Mixing and matching patterns
	How to combine patterns successfully to build a more complex UI: Scoped searches example
	Reuse elements across patterns: Categories as search filters
	Cut duplicate content from combined patterns: Categories as search terms

	Efficiently combine patterns to avoid the need for others: Autosuggest and thumbnails
	Interstitial patterns: Autosuggest and navigable categories
	Visually combine and distinguish patterns: Categories in tabbed navigation
	Preserve or discard data in repeated use of patterns: Clearing filters on new searches
	Clarify repeated patterns: Inline tags
	Evaluate resulting trade-offs: Infinite scroll
	Other forms of scoped search
	Favoriting becomes wish listing
	Wish lists/wish listing
	Combining wish listing and lazy signup

	When and how to break away from patterns
	Investigate design smells
	Review pattern principles for identified usability problems
	Review problem and context
	Strive for predictability
	Innovate
	How to break the rules
	When to break patterns in design systems

	Summary

	Chapter 7: Conclusion
	Looking to the future

	Appendix: Suggested reading
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5

	Index

