Th
Pra ematic
ogrammers

gff amming

Software for a Concurrent World

Second Edition ‘

Joe Armstro
Edited by Susannah Davidson Pfa

www.EBooksWorld.ir

Early Praise for
Programming Erlang, Second Edition

This second edition of Joe’s seminal Programming Erlang is a welcome update,
covering not only the core language and framework fundamentals but also key
community projects such as rebar and cowboy. Even experienced Erlang program-
mers will find helpful tips and new insights throughout the book, and beginners
to the language will appreciate the clear and methodical way Joe introduces and
explains key language concepts.
» Alexander Gounares

Former AOL CTO, advisor to Bill Gates, and founder/CEO of Concurix Corp.

A gem; a sensible, practical introduction to functional programming.

» Gilad Bracha
Coauthor of the Java language and Java Virtual Machine specifications, creator
of the Newspeak language, member of the Dart language team

Programming Erlang is an excellent resource for understanding how to program
with Actors. It’s not just for Erlang developers, but for anyone who wants to
understand why Actors matters and why they are such an important tool in
building reactive, scalable, resilient, and event-driven systems.
» Jonas Bonér
Creator of the Akka Project and the AspectWerkz Aspect-Oriented Programming
(AOP) framework, co-founder and CTO of Typesafe

Programming Erlang, Second Edition

Software for a Concurrent World

Joe Armstrong

The Pragmatic Bookshelf

Dallas, Texas - Raleigh, North Carolina

Pr matic
ookshelf

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

Our Pragmatic courses, workshops, and other products can help you and your team create
better software and have more fun. For more information, as well as the latest Pragmatic
titles, please visit us at http://pragprog.com.

The team that produced this book includes:

Susannah Davidson Pfalzer (editor)
Potomac Indexing, LLC (indexer)
Kim Wimpsett (copyeditor)

David J Kelly (typesetter)

Janet Furlow (producer)

Juliet Benda (rights)

Ellie Callahan (support)

Copyright © 2013 Pragmatic Programmers, LLC.
All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or
transmitted, in any form, or by any means, electronic, mechanical, photocopying,
recording, or otherwise, without the prior consent of the publisher.

Printed in the United States of America.

ISBN-13: 978-1-937785-53-6

Encoded using the finest acid-free high-entropy binary digits.

Book version: P1.0—August 2013

http://pragprog.com

Contents

Introduction

Part | — Why Erlang?

Introducing Concurrency .

1.1 Modeling Concurrency

1.2 Benefits of Concurrency

1.3 Concurrent Programs and Parallel Computers

1.4 Sequential vs. Concurrent Programming Languages

A Whirlwind Tour of Erlang

2.1 The Shell

2.2 Processes, Modules, and Compilation
2.3 Hello, Concurrency

Part Il — Sequential Programming

Basic Concepts
3.1 Starting and Stopping the Erlang Shell
3.2 Simple Integer Arithmetic

3.3 Variables

3.4 Floating-Point Numbers

3.5 Atoms
3.6 Tuples
3.7 Lists
3.8 Strings

3.9 Pattern Matching Again

Modules and Functions . . .
4.1 Modules Are Where We Store Code
4.2 Back to Shopping

xiii

o o W W

11
13
15

25
25
27
28
32
33
34
37
39
41

43
43
50

4.3 Funs: The Basic Unit of Abstraction
4.4 Simple List Processing

4.5 List Comprehensions

4.6 BIFs

4.7 Guards

4.8 case and if Expressions

4.9 Building Lists in Natural Order
4.10 Accumulators

Records and Maps

5.1 When to Use Maps or Records

5.2 Naming Tuple Items with Records
5.3 Maps: Associative Key-Value Stores

Error Handling in Sequential Programs

6.1 Handling Errors in Sequential Code
6.2 Trapping an Exception with try...catch
6.3 Trapping an Exception with catch

6.4 Programming Style with Exceptions
6.5 Stack Traces

6.6 Fail Fast and Noisily, Fail Politely

Binaries and the Bit Syntax

7.1 Binaries

7.2 The Bit Syntax

7.3 Bitstrings: Processing Bit-Level Data

The Rest of Sequential Erlang

8.1 apply
8.2 Arithmetic Expressions
8.3 Arity

8.4 Attributes

8.5 Block Expressions

8.6 Booleans

8.7 Boolean Expressions

8.8 Character Set

8.9 Comments

8.10 Dynamic Code Loading

8.11 Erlang Preprocessor

8.12 Escape Sequences

8.13 Expressions and Expression Sequences

Contents ® vi

52
57
59
63
64
68
70
71

75
75
76
79

87
88
89
92
93
95
96

99
99
101
110

113
115
116
116
117
120
120
121
122
122
122
126
126
127

10.

11.

12.

8.14
8.15
8.16
8.17
8.18
8.19
8.20
8.21
8.22
8.23
8.24
8.25
8.26

Types

9.1
9.2
9.3
9.4
9.5

Function References
Include Files

List Operations ++ and - -
Macros

Match Operator in Patterns
Numbers

Operator Precedence

The Process Dictionary

References

Short-Circuit Boolean Expressions
Term Comparisons

Tuple Modules

Underscore Variables

Specifying Data and Function Types
Erlang Type Notation

A Session with the Dialyzer

Type Inference and Success Typing
Limitations of the Type System

Compiling and Running Your Program

10.1
10.2
10.3
10.4
10.5
10.6

Modifying the Development Environment
Different Ways to Run Your Program
Automating Compilation with Makefiles
When Things Go Wrong

Getting Help

Tweaking the Environment

Part lll — Concurrent and Distributed Programs

Real-World Concurrency

Concurrent Programming

12.1
12.2
12.3
12.4
12.5
12.6

The Concurrency Primitives
Introducing Client-Server
Processes Are Cheap
Receive with a Timeout
Selective Receive
Registered Processes

Contents ® vii

128
128
129
129
131
132
133
134
135
135
136
137
137

141
141
143
148
152
155

159
159
161
166
169
172
173

177

181
182
184
189
191
193
194

12.7
12.8

A Word About Tail Recursion
Spawning with MFAs or Funs

13. Errors in Concurrent Programs .

13.1
13.2
13.3
13.4
13.5
13.6
13.7
13.8

Error Handling Philosophy

Error Handling Semantics

Creating Links

Groups of Processes That All Die Together
Setting Up a Firewall

Monitors

Error Handling Primitives

Programming for Fault Tolerance

14. Distributed Programming

14.1
14.2
14.3
14.4
14.5
14.6

Two Models for Distribution
Writing a Distributed Program
Building the Name Server

Libraries and BIFS for Distributed Programming

The Cookie Protection System
Socket-Based Distribution

Part IV — Programming Libraries and Frameworks

15. Interfacing Techniques .

15.1 How Erlang Communicates \mth External Programs
15.2 Interfacing an External C Program with a Port

15.3
15.4

Calling a Shell Script from Erlang
Advanced Interfacing Techniques

16. Programming with Files

16.1
16.2
16.3
16.4
16.5
16.6

Modules for Manipulating F11es
Ways to Read a File

Ways to Write a File

Directory and File Operations
Bits and Pieces

A Find Utility

17. Programming with Sockets .

17.1
17.2
17.3

Using TCP
Active and Passive Sockets
Error Handling with Sockets

Contents ® viii

196
197

199
199
202
203
204
205
205
206
207

211
212
213
213
219
222
224

231
232
234
240
240

243
243
244
251
255
258
258

263
263
272
275

17.4
17.5
17.6

UDP
Broadcasting to Multiple Machines
A SHOUTcast Server

18. Browsing with Websockets and Erlang

19.

20.

21.

18.1
18.2
18.3
18.4
18.5
18.6
18.7

Creating a Digital Clock

Basic Interaction

An Erlang Shell in the Browser
Creating a Chat Widget

IRC Lite

Graphics in the Browser

The Browser Server Protocol

Storing Data with ETS and DETS

19.1
19.2
19.3
19.4
19.5
19.6

Types of Table

ETS Table Efficiency Considerations
Creating an ETS Table

Example Programs with ETS
Storing Tuples on Disk

What Haven’'t We Talked About?

Mnesia: The Erlang Database

20.1
20.2
20.3
20.4
20.5
20.6
20.7
20.8

Creating the Initial Database

Database Queries

Adding and Removing Data in the Database
Mnesia Transactions

Storing Complex Data in Tables
Table Types and Location

The Table Viewer

Digging Deeper

Profiling, Debugging, and Tracing

21.1
21.2
21.3
21.4
21.5
21.6
21.7
21.8
21.9

Tools for Profiling Erlang Code

Testing Code Coverage

Generating Cross-References

Compiler Diagnostics

Runtime Diagnostics

Debugging Techniques

The Erlang Debugger

Tracing Messages and Process Execution
Frameworks for Testing Erlang Code

Contents ® ix

276
280
281

287
288
291
292
293
295
299
301

305
306
308
309
310
315
318

321
321
322
326
328
332
333
336
337

339
340
341
342
343
346
347
350
352
355

22.

23.

24.

25.

26.

Contents ® x

Introducing OTP

22.1 The Road to the Generlc Server
22.2 Getting Started with gen_server
22.3 The gen_server Callback Structure
22.4 Filling in the gen_server Template
22.5 Digging Deeper

Making a System with OTP .
23.1 Generic Event Handling
23.2 The Error Logger

23.3 Alarm Management

23.4 The Application Servers
23.5 The Supervision Tree
23.6 Starting the System

23.7 The Application

23.8 File System Organization
23.9 The Application Monitor
23.10 How Did We Make That Prime?
23.11 Digging Deeper

Part V — Building Applications

Programming Idioms .

24.1 Maintaining the Erlang View of the World
24.2 A Multipurpose Server

24.3 Stateful Modules

24.4 Adapter Patterns

24.5 Intentional Programming

Third-Party Programs

25.1 Making a Shareable Archlve and Managmg Your Code Wlth
Rebar

25.2 Integrating External Programs with Our Code

25.3 Making a Local Copy of the Dependencies

25.4 Building Embedded Web Servers with Cowboy

Programming Multicore CPUs .

26.1 Good News for Erlang Programmers

26.2 How to Make Programs Run Efficiently on a Multicore
CPU

26.3 Parallelizing Sequential Code

359
360
368
372
376
377

381
382
384
392
394
396
400
403
405
406
407
409

413
413
416
418
419
422

425

425
428
430
431

439
440

441
445

27.

Al.

A2,

A3.

26.4 Small Messages, Big Computations

26.5 Parallelizing Computations with mapreduce

Sherlock’s Last Case .
27.1 Finding Similarities in Data
27.2 A Session with Sherlock

27.3 The Importance of Partitioning the Data

27.4 Adding Keywords to the Postings
27.5 Overview of the Implementation
27.6 Exercises

27.7 Wrapping Up

OTP Templates . . e
Al.1 The Generic Server Template
Al.2 The Supervisor Template
A1.3 The Application Template

A Socket Application

A2.1 An Example

A2.2 How lib_chan Works
A2.3 The lib_chan Code

A Simple Execution Environment

A3.1 How Erlang Starts

A3.2 Running Some Test Programs in SEE
A3.3 The SEE API

A3.4 SEE Implementation Details

A3.5 How Code Gets Loaded in Erlang

Index

Contents ® xi

447
451

457
458
458
463
464
467
469
470

471
471
474
475

477
477
479
483

493
494
496
499
500
508

511

Introduction

New hardware is increasingly parallel, so new programming languages must
support concurrency or they will die.

“The way the processor industry is going is to add more and more cores, but
nobody knows how to program those things. I mean, two, yeah; four, not really;
eight, forget it.” —Steve Jobs, Apple '

Well, Steve was wrong; we do know how to program multicores. We program
them in Erlang, and many of our programs just go faster as we add more
cores.

Erlang was designed from the bottom up to program concurrent, distributed,
fault-tolerant, scalable, soft, real-time systems. Soft real-time systems are
systems such as telephone exchanges, banking systems, and so on, where
rapid response times are important but it’s not a disaster if the odd timing
deadline is missed. Erlang systems have been deployed on a massive scale
and control significant parts of the world’s mobile communication networks.

If your problem is concurrent, if you are building a multiuser system, or if
you are building a system that evolves with time, then using Erlang might
save you a lot of work, since Erlang was explicitly designed for building such
systems.

“It’'s the mutable state, stupid.” —Brian Goetz, Java Concurrency in Practice

Erlang belongs to the family of functional programming languages. Functional
programming forbids code with side effects. Side effects and concurrency
don’t mix. In Erlang it’s OK to mutate state within an individual process but
not for one process to tinker with the state of another process. Erlang has no
mutexes, no synchronized methods, and none of the paraphernalia of shared
memory programiming,.

1. http://bits.blogs.nytimes.com/2008/06/10/apple-in-parallel-turning-the-pc-world-upside-down/

http://bits.blogs.nytimes.com/2008/06/10/apple-in-parallel-turning-the-pc-world-upside-down/
http://pragprog.com/titles/jaerlang2/errata/add
http://forums.pragprog.com/forums/jaerlang2

Introduction ® xiv

Processes interact by one method, and one method only, by exchanging
messages. Processes share no data with other processes. This is the reason
why we can easily distribute Erlang programs over multicores or networks.

When we write an Erlang program, we do not implement it as a single process
that does everything; we implement it as large numbers of small processes
that do simple things and communicate with each other.

What's This Book About?

It's about concurrency. It's about distribution. It’s about fault tolerance. It's
about functional programming. It’s about programming a distributed concur-
rent system without locks and mutexes but using only pure message passing.
It's about automatically speeding up your programs on multicore CPUs. It's
about writing distributed applications that allow people to interact with each
other. It’s about design patterns for writing fault-tolerant and distributed
systems. It's about modeling concurrency and mapping those models onto
computer programs, a process I call concurrency-oriented programming.

Who Is This Book For?

The target audience for this book ranges from the experienced Erlang program-
mer who wants to learn more about Erlang internals and the philosophy
behind Erlang to the absolute beginner. The text has been reviewed by pro-
grammers at all levels, from expert to beginner. One of the major differences
between the second and first editions has been the addition of a large amount
of explanatory material especially targeted at the beginner. Advanced Erlang
programmers can skip over the introductory material.

A second goal has been to demystify functional, concurrent, and distributed
programming and present it in a way that is appropriate to an audience that
has no prior knowledge of concurrency or functional programming. Writing
functional programs and parallel programs has long been regarded as a “black
art”; this book is part of an ongoing attempt to change this.

While this book assumes no specific knowledge of either functional or concur-
rent programming, it is addressed to somebody who already is familiar with
one or two programming languages.

When you come to a new programming language, it’s often difficult to think
of “problems that are suitable for solution in the new language.” The exercises
give you a clue. These are the kind of problems that are suitably solved in
Erlang.

http://pragprog.com/titles/jaerlang2/errata/add
http://forums.pragprog.com/forums/jaerlang2

New in This Edition ® xv

New in This Edition

First, the text has been brought up-to-date to reflect all the changes made to
Erlang since the first edition of the book was published. We now cover all
official language changes and describe Erlang version R17.

The second edition has been refocused to address the needs of beginners,
with more explanatory text than in the first edition. Material intended for
advanced users, or that might change rapidly, has been moved to online
repositories.

The programming exercises proved so popular in the first edition that exercises
now appear at the end of each chapter. The exercises vary in complexity, so
there’s something for both beginner users and advanced users.

In several completely new chapters, you'll learn about the Erlang type system
and the Dialyzer, maps (which are new to Erlang, as of R17), websockets,
programming idioms, and integrating third-party code. A new appendix
describes how to build a minimal stand-alone Erlang system.

The final chapter, “Sherlock’s Last Case,” is a new chapter that gives you an
exercise in processing and extracting meaning from a large volume of text.
This is an open-ended chapter, and I hope that the exercises at the end of
this chapter will stimulate future work.

Road Map

You can’t run until you can walk. Erlang programs are made up from lots of
small sequential programs running at the same time. Before we can write
concurrent code, we need to be able to write sequential code. This means we
won't get into the details of writing concurrent programs until Chapter 11,
Real-World Concurrency, on page 177.

e PartI has a short introduction to the central ideas of concurrent program-
ming and a whirlwind tour of Erlang.

e Part II covers sequential Erlang programming in detail and also talks
about types and methods for building Erlang programs.

e Part III is the core of the book where we learn about how to write concur-
rent and distributed Erlang programs.

e Part IV covers the major Erlang libraries, techniques for tracing and
debugging, and techniques for structuring Erlang code.

e Part V covers applications. You'll learn how to integrate external software
with the core Erlang libraries and how to turn your own code into open

http://pragprog.com/titles/jaerlang2/errata/add
http://forums.pragprog.com/forums/jaerlang2

Introduction ® xvi

source contributions. We'll talk about programming idioms and how to
program multicore CPUs. And finally, Sherlock Holmes will analyze our
thoughts.

At the end of each chapter, you'll find a selection of programming exercises.
These are to test your knowledge of the chapter and to challenge you. The
problems vary from easy to difficult. The most difficult problems would be
suitable research projects. Even if you don't try to solve all the problems, just
thinking about the problems and how you would solve them will enhance
your understanding of the text.

The Code in This Book

Most of the code snippets come from full-length, running examples that you
can download.” To help you find your way, if a code listing in this book can
be found in the download, there’ll be a bar above the snippet (just like the
one here):

shop1.erl

-module(shopl).
-export([total/1]).

total([{What, N}|T]) -> shop:cost(What) * N + total(T);
total([]) -> 0.

This bar contains the path to the code within the download. If you're reading
the ebook version of this book and your ebook reader supports hyperlinks,
you can click the bar, and the code should appear in a browser window.

Help! It Doesn’t Work

Learning new stuff is difficult. You will get stuck. When you get stuck, rule
1 is to not silently give up. Rule 2 is to get help. Rule 3 is to ask Sherlock.

Rule 1 is important. There are people who have tried Erlang, gotten stuck
and given up, and not told anybody. If we don’t know about a problem, we
can'’t fix it. End of story.

The best way to get help is to first try Google; if Google can’t help, send mail
to the Erlang mailing list.®> You can also try #erlounge or #erlang at irc.freenode.net
for a faster response.

Sometimes the answer to your question might be in an old posting to the
Erlang mailing list but you just can’t find it. In Chapter 27, Sherlock’s Last

2. http://www.pragprog.com/titles/jaerlang2/source code
3. erlang-questions@erlang.org

http://media.pragprog.com/titles/jaerlang2/code/shop1.erl
http://www.pragprog.com/titles/jaerlang2/source_code
mailto:erlang-questions@erlang.org
http://pragprog.com/titles/jaerlang2/errata/add
http://forums.pragprog.com/forums/jaerlang2

Acknowledgments ® xvii

Case, on page 457, there’s a program you can run locally that can perform
sophisticated searches on all the old postings to the Erlang mailing list.

So, without further ado, I'll thank the good folks who helped me write this
book (and the first edition), and you can skip on to Chapter 1, where we’ll
take a lightning tour of Erlang.

Acknowledgments

First Edition

Many people helped in the preparation of this book, and I'd like to thank them
all here.

First, Dave Thomas, my editor: Dave taught me to write and subjected me to
a barrage of never-ending questions. Why this? Why that? When I started the
book, Dave said my writing style was like “standing on a rock preaching.” He
said, “I want you to talk to people, not preach.” The book is better for it.
Thanks, Dave.

Next, I had a little committee of language experts at my back. They helped
me decide what to leave out. They also helped me clarify some of the bits that
are difficult to explain. Thanks here (in no particular order) to Bjorn Gustavs-
son, Robert Virding, Kostis Sagonas, Kenneth Lundin, Richard Carlsson, and
Ulf Wiger.

Thanks also to Claes Vikstrom who provided valuable advice on Mnesia, to
Rickard Green who gave information on SMP Erlang, and to Hans Nilsson for
the stemming algorithm used in the text-indexing program.

Sean Hinde and Ulf Wiger helped me understand how to use various OTP
internals, and Serge Aleynikov explained active sockets to me so that I could
understand.

Helen Taylor (my wife) proofread several chapters and provided hundreds of
cups of tea at appropriate moments. What’s more, she put up with my rather
obsessive behavior for seven months. Thanks also to Thomas and Claire; and
thanks to Bach and Handel, my cats Zorro and Daisy, and my Sat Nav Doris,
who helped me stay sane, purred when stroked, and got me to the right
addresses.

Finally, to all the readers of the beta book who filled in errata requests: I have
cursed you and praised you. When the first beta went out, I was unprepared
for the entire book to be read in two days and for you to shred every page
with your comments. But the process has resulted in a much better book

http://pragprog.com/titles/jaerlang2/errata/add
http://forums.pragprog.com/forums/jaerlang2

Introduction ® xviii

than I had imagined. When (as happened several times) dozens of people said,
“I don’t understand this page,” then I was forced to think again and rewrite
the material concerned. Thanks for your help, everybody.

Second Edition

First, my new editor, Susannah Pfalzer, helped a lot in suggesting new ways
to reorganize and refocus the book. It was great working with you; you've
taught me a lot.

Kenneth Lundin and the guys in the OTP group worked hard to deliver the
new language features described in the second edition.

Many readers of the first edition provided feedback on things they didn’t
understand, so I hope these are now rectified.

The design of maps is inspired by the work of Richard A. O’Keefe (who called
them frames). Richard has championed the cause of frames on the Erlang
mailing list for many years. Thanks, Richard, for all your comments and
suggestions.

Kostis Sagonas provided lots of helpful feedback on the treatment of the type
system.

I'd also like to thank Loic Hoguin for his permission to use some examples
from the cowboy web server from Nine Nines and the guys from Basho who
wrote the code for BitLocker. I'd also like to thank Dave Smith for his work
with rebar.

A number of people helped me by reviewing various drafts of the second edi-
tion. I'd like to thank all of them; they made this a better book. So, thanks
to Erik Abefelt, Paul Butcher, Mark Chu-Carroll, Ian Dees, Henning Diedrich,
Jeremy Frens, Loic Hoguin, Andy Hunt, Kurt Landrus, Kenneth Lundin, Evan
Miller, Patrik Nyblom, Tim Ottinger, Kim Shrier, and Bruce Tate for your help.

Helen Taylor (Twitter @mrsjoeerl) made countless cups of tea and cheered me
up when I thought the book would never get finished.

Gustav Mahler, Sergei Rachmaninoff, Richard Wagner, and George Frideric
Handel composed music (and Bob Dylan and few other guys...) that I played
in the background while writing much of this book.

http://pragprog.com/titles/jaerlang2/errata/add
http://forums.pragprog.com/forums/jaerlang2

Part I

Why Erlang?

We introduce concurrency and talk about the differ-
ence between concurrency and parallelism. You'll
learn about the benefits of writing concurrent
programs and take a whirlwind tour of Erlang,
introducing the main features of the language.

1.1

CHAPTER 1

Introducing Concurrency

Let’s forget about computers for a moment; I'm going to look out of my window
and tell you what I see.

I see a woman taking a dog for a walk. I see a car trying to find a parking
space. I see a plane flying overhead and a boat sailing by. All these things
happen in parallel. In this book, we will learn how to describe parallel activities
as sets of communicating parallel processes. We will learn how to write con-
current programs.

In everyday language, words like concurrent, simultaneous, and parallel mean
almost the same thing. But in programming languages, we need to be more
precise. In particular, we need to distinguish between concurrent and parallel
programs.

If we have only a single-core computer, then we can never run a parallel
program on it. This is because we have one CPU, and it can do only one thing
at a time. We can, however, run concurrent programs on a single-core com-
puter. The computer time-shares between the different tasks, maintaining
the illusion that the different tasks run in parallel.

In the following sections, we’ll start with some simple concurrency modeling,
move on to see the benefits of solving problems using concurrency, and
finally look at some precise definitions that highlight the differences between
concurrency and parallelism.

Modeling Concurrency

We'll start with a simple example and build a concurrent model of an everyday
scene. Imagine I see four people out for a walk. There are two dogs and a large
number of rabbits. The people are talking to each other, and the dogs want
to chase the rabbits.

http://pragprog.com/titles/jaerlang2/errata/add
http://forums.pragprog.com/forums/jaerlang2

Chapter 1. Introducing Concurrency ® 4

To simulate this in Erlang, we’d make four modules called person, dog, rabbit,
and world. The code for person would be in a file called person.erl and might look
something like this:

-module(person). -
export([init/1]).

init(Name) -> ...

The first line, -module(person)., says that this file contains code for the module
called person. This should be the same as the filename (excluding the .erl file-
name extension). The module name must start with a small letter. Technically,
the module name is an atom; we’ll talk more about atoms in Section 3.5,
Atoms, on page 33.

Following the module declaration is an export declaration. The export declara-
tions tells which functions in the module can be called from outside the
module. They are like public declarations in many programming languages.
Functions that are not in an export declaration are private and cannot be
called from outside the module.

The syntax -export([init/1]). means the function init with one argument (that’s
what /1 means; it does not mean divide by one) can be called from outside the
module. If we want to export several functions, we’d use this syntax:

-export([FuncNamel/N1, FuncName2/N2, 1.

The square brackets [...] mean “list of,” so this declaration means we want
to export a list of functions from the module.

We’'d write similar code for dog and rabbit.

Starting the Simulation

To start the program, we’ll call world:start(). This is defined in a module called
world, which begins like this:

-module(world). -
export([start/0]).

start() ->
Joe = spawn(person, init, ["Joe"]),
Susannah = spawn(person, init, ["Susannah"]),
Dave = spawn(person, init, ["Dave"l),
Andy = spawn(person, init, ["Andy"l),
Rover = spawn(dog, init, ["Rover"l),
Rabbitl = spawn(rabbit, init, ["Flopsy"]),

http://pragprog.com/titles/jaerlang2/errata/add
http://forums.pragprog.com/forums/jaerlang2

Modeling Concurrency ® 5

spawn is an Erlang primitive that creates a concurrent process and returns a
process identifier. spawn is called like this:

spawn (ModName, FuncName, [Argl, Arg2, ..., ArgN])

When spawn is evaluated, the Erlang runtime system creates a new process
(not an operating system process but a lightweight process that is managed
by the Erlang system). Once the process has been created, it starts evaluating
the code specified by the arguments. ModName is the name of the module that
has the code we want to execute. FuncName is the name of the function in the
module, and [Argl, Arg2, ...] is a list containing the arguments to the function
that we want to evaluate. Thus, the following call means start a process that
evaluates the function person:init("Joe"):

spawn(person, init, ["Joe"])

The return value of spawn is a process identifier (PID) that can be used to
interact with the newly created process.

Modules in Erlang are like classes in an object-oriented programming language
(OOPL), and processes are like objects (or class instances) in an OOPL.

In Erlang, spawn creates a new process by running a function defined in a module. In
Java, new creates a new object by running a method defined in a class.

In an OOPL we can have one class but several thousand class instances. Similarly,
in Erlang we can have one module but thousands or even millions of processes that
execute the code in the module. All the Erlang processes execute concurrently and
independently and, if we had a million-core computer, might even run in parallel.

Sending Messages

Once our simulation has been started, we’ll want to send messages between
the different processes in the program. In Erlang, processes share no memory
and can interact only with each other by sending messages. This is exactly
how objects in the real world behave.

Suppose Joe wants to say something to Susannah. In the program we’d write
a line of code like this:

Susannah ! {self(), "Hope the dogs don't chase the rabbits"}

The syntax Pid ! Msg means send the message Msg to the process Pid. The self()
argument in the curly brackets identifies the process sending the message (in
this case Joe).

http://pragprog.com/titles/jaerlang2/errata/add
http://forums.pragprog.com/forums/jaerlang2

1.2

Chapter 1. Introducing Concurrency ® 6

Receiving Messages
For Susannah’s process to receive the message from Joe, we’d write this:

receive
{From, Message} ->

end

When Susannah’s process receives a message, the variable From will be bound
to Joe so that Susannah knows who the message came from, and the variable
Message will contain the message.

We could imagine extending our model by having the dogs send “woof woof
rabbits” messages to each other and the rabbits sending “panic go and hide”
messages to each other.

The key point we should remember here is that our programming model is
based on observation of the real world. We have three modules (person, dog,
and rabbit) because there are three types of concurrent things in our example.
The world module is needed for a top-level process to start everything off. We
created two dog processes because there are two dogs, and we created four
people processes because there were four people. The messages in the program
reflect the observed messages in our example.

Rather than extending the model, we’ll stop at this point, change gears, and
look at some of the characteristics of concurrent programs.

Benefits of Concurrency

Concurrent programming can be used to improve performance, to create
scalable and fault-tolerant systems, and to write clear and understandable
programs for controlling real-world applications. The following are some of
the reasons why this is true:

Performance
Imagine you have two tasks: A, which takes ten seconds to perform, and
B, which takes fifteen seconds. On a single CPU doing both, A and B will
take twenty-five seconds. On a computer with two CPUs that operate
independently, doing A and B will take only fifteen seconds. To achieve
this performance improvement, we have to write a concurrent program.

Until recently, parallel computers were rare and expensive, but today
multicore computers are commonplace. A top-end processor has sixty-
four cores, and we can expect the number of cores per chip to steadily
increase in the foreseeable future. If you have a suitable problem and a

http://pragprog.com/titles/jaerlang2/errata/add
http://forums.pragprog.com/forums/jaerlang2

Benefits of Concurrency ¢ 7

computer with sixty-four cores, your program might go sixty-four times
faster when run on this computer, but only if you write a concurrent
program.

One of the most pressing problems in the computer industry is caused
by difficulties in parallelizing legacy sequential code so it can run on a
multicore computer. There is no such problem in Erlang. Erlang programs
written twenty years ago for a sequential machine now just run faster
when we run them on modern multicores.

Scalability
Concurrent programs are made from small independent processes.
Because of this, we can easily scale the system by increasing the number
of processes and adding more CPUs. At runtime the Erlang virtual machine
automatically distributes the execution of processes over the available
CPUs.

Fault tolerance

Fault tolerance is similar to scalability. The keys to fault tolerance are
independence and hardware redundancy. Erlang programs are made up
of many small independent processes. Errors in one process cannot
accidentally crash another process. To protect against the failure of an
entire computer (or data center), we need to detect failures in remote
computers. Both process independence and remote failure detection are
built into the Erlang VM.

Erlang was designed for building fault-tolerant telecommunications sys-
tems, but the same technology can be applied equally well to building
fault-tolerant scalable web systems or cloud services.

Clarity
In the real world things happen in parallel, but in most programming
languages things happen sequentially. The mismatch between the paral-
lelism in the real world and the sequentiality in our programming
languages makes writing real-world control problems in a sequential
language artificially difficult.

In Erlang we can map real-world parallelism onto Erlang concurrency in
a straightforward manner. This results in clear and easily understood
code.

Now that you've seen these benefits, we’ll try to add some precision to the
notion of concurrency and parallelism. This will give us a framework to talk
about these terms in future chapters.

http://pragprog.com/titles/jaerlang2/errata/add
http://forums.pragprog.com/forums/jaerlang2

1.3

Chapter 1. Introducing Concurrency ® 8

Concurrent Programs and Parallel Computers

I'm going to be pedantic here and try to give precise meanings to terms such
as concurrent and parallel. We want to draw the distinction between a concur-
rent program, which is something that could potentially run faster if we had
a parallel computer, and a parallel computer that really has more than one
core (or CPU).

e A concurrent program is a program written in a concurrent programming
language. We write concurrent programs for reasons of performance,
scalability, or fault tolerance.

* A concurrent programming language is a language that has explicit lan-
guage constructs for writing concurrent programs. These constructs are
an integral part of the programming language and behave the same way
on all operating systems.

¢ A parallel computer is a computer that has several processing units (CPUs
or cores) that run at the same time.

Concurrent programs in Erlang are made from sets of communicating
sequential processes. An Erlang process is a little virtual machine that can
evaluate a single Erlang function; it should not be confused with an operating
system process.

To write a concurrent program in Erlang, you must identify a set of processes
that will solve your problem. We call this act of identifying the processes
modeling concurrency. This is analogous to the art of identifying the objects
that are needed to write an objected-oriented program.

Choosing the objects that are needed to solve a problem is recognized as being
a hard problem in object-oriented design. The same is true in modeling con-
currency. Choosing the correct processes can be difficult. The difference
between a good and bad process model can make or break a design.

Having written a concurrent program, we can run it on a parallel computer.
We can run on a multicore computer or on a set of networked computers or
in the cloud.

Will our concurrent program actually run in parallel on a parallel computer?
Sometimes it’s hard to know. On a multicore computer, the operating system
might decide to turn off a core to save energy. In a cloud, a computation might
be suspended and moved to a new computer. These are things outside our
control.

http://pragprog.com/titles/jaerlang2/errata/add
http://forums.pragprog.com/forums/jaerlang2

1.4

Sequential vs. Concurrent Programming Languages ® 9

We've now seen the difference between a concurrent program and a parallel
computer. Concurrency has to do with software structure; parallelism has to
do with hardware. Next we’ll look at the difference between sequential and
concurrent programming languages.

Sequential vs. Concurrent Programming Languages

Programming languages fall into two categories: sequential and concurrent.
Sequential languages are languages that were designed for writing sequential
programs and have no linguistic constructs for describing concurrent compu-
tations. Concurrent programming languages are languages that were designed
for writing concurrent programs and have special constructs for expressing
concurrency in the language itself.

In Erlang, concurrency is provided by the Erlang virtual machine and not by
the operating system or by any external libraries. In most sequential program-
ming languages, concurrency is provided as an interface to the concurrency
primitives of the host operating system.

The distinction between operating system- and language-based concurrency
is important because if you use operating system-based concurrency, then
your program will work in different ways on different operating systems.
Erlang concurrency works the same way on all operating systems. To write
concurrent programs in Erlang, you just have to understand Erlang; you
don’t have to understand the concurrency mechanisms in the operating
system.

In Erlang, processes and concurrency are the tools we can use to shape and
solve our problems. This allows fine-grained control of the concurrent structure
of our program, something that is extremely difficult using operating system
processes.

Wrapping Up

We've now covered the central themes of this book. We talked about concur-
rency as a means for writing performant, scalable, and fault-tolerant software,
but we did not go into any details as to how this can be achieved. In the next
chapter, we’ll take a whirlwind tour through Erlang and write our first con-
current program.

http://pragprog.com/titles/jaerlang2/errata/add
http://forums.pragprog.com/forums/jaerlang2

2.1

CHAPTER 2

A Whirlwind Tour of Erlang

In this chapter, we’ll build our first concurrent program. We’ll make a file
server. The file server has two concurrent processes; one process represents
the server, and the other represents the client.

We'll start with a small Erlang subset so we can show some broad principles
without getting bogged down with the details. At a minimum we have to
understand how to run code in the shell and compile modules. That’s all we
need to know to get started.

The best way to learn Erlang is to type in the examples into a live Erlang
system and see whether you can reproduce what’s in this book. To install
Erlang, refer to http://joearms.github.com/installing.html. We try to keep the install
instructions up-to-date. This is difficult since there are many different plat-
forms configured in many different ways. If the instructions fail or are not
up-to-date, please send a mail to the Erlang mailing list, and we’ll try to help.

The Shell

The Erlang shell is where you’ll spend most of your time. You enter an
expression, and the shell evaluates the expression and prints the result.

$ erl

Erlang R16B ...

Eshell V5.9 (abort with ~G)
1> 123456 * 223344.
27573156864

So, what happened? $ is the operating system prompt. We typed the command
erl, which started the Erlang shell. The Erlang shell responds with a banner and
the numbered prompt 1>. Then we typed in an expression, which was evaluated
and printed. Note that each expression must be finished with a dot followed by a
whitespace character. In this context, whitespace means a space, tab, or carriage
return character.

http://joearms.github.com/installing.html
http://pragprog.com/titles/jaerlang2/errata/add
http://forums.pragprog.com/forums/jaerlang2

Chapter 2. A Whirlwind Tour of Erlang * 12

Beginners often forget to finish expressions with the dot whitespace bit. Think
of a command as an English sentence. English sentences usually end with a
dot, so this is easy to remember.

The = operator

We can assign values to variables using the = operator (technically this is
called binding the variable to a value), like this:

2> X = 123.
123

3> X * 2.
246

If we try to change the value of a variable, something strange happens.

4> X = 999,
** exception error: no match of right hand side value 999

That’s the first surprise. We can’t rebind variables. Erlang is a functional
language, so once we've said X = 123, then X is 123 forever and cannot be
changed!

Don’t worry, this is a benefit, not a problem. Programs where variables can’t
be changed once they are set are far easier to understand than programs
where the same variable can acquire many different values during the life of
the program.

When we see an expression like X = 123, it looks as if it means “assign the
integer 123 to the variable X,” but this interpretation is incorrect. = is not an
assignment operator; it’s actually a pattern matching operator. This is described
in detail in Variable Bindings and Pattern Matching, on page 30.

As in functional programming languages, variables in Erlang can be bound
only once. Binding a variable means giving a variable a value; once it has
been bound, that value cannot be changed later.

This idea might seem strange to you if you're used to imperative languages.
In an imperative language, variables are really a disguised way of referring
to memory addresses. An X in a program is really the address of some data
item somewhere in memory. When we say X=12, we are changing the value of
memory location with address X, but in Erlang, a variable X represents a value
that can never be changed.

http://pragprog.com/titles/jaerlang2/errata/add
http://forums.pragprog.com/forums/jaerlang2

2.2

Processes, Modules, and Compilation ® 13

Syntax of Variables and Atoms

Note that Erlang variables start with uppercase characters. So, X, This, and
A long_name are all variables. Names beginning with lowercase letters—for
example, monday or friday—are not variables but are symbolic constants called
atoms.

If you ever see or write an expression like x = 123 (Note: x here is written with
a lowercase letter, in case you missed it), it’s almost certainly a mistake. If
you do this in the shell, the response is immediate.

1> abc=123.
** exception error: no match of right hand side value 123

But if a line like this was buried deeply in some code, it could crash your
program, so be warned. Most editors such as Emacs and the Eclipse editor
will color code atoms and variables with different colors, so the difference is
easy to see.

Before you read the next section, try starting the shell and entering a few
simple arithmetic expressions. At this stage, if things go wrong, just quit the
shell by typing Control+C followed by a (for abort) and then restart the shell
from the operating system prompt.

By now you should be familiar with starting and stopping the shell and using
it to evaluate simple expressions. We also saw one of the fundamental differ-
ences between a functional programming language and an imperative
programming language. In a functional language, variables can’t change, but
in an imperative language, variables can change.

Processes, Modules, and Compilation

Erlang programs are built from a number of parallel processes. Processes
evaluate functions that are defined in modules. Modules are files with the
extension .erl and must be compiled before they can be run. Having compiled
a module, we can evaluate the functions in the module from the shell or
directly from the command line in an operating system environment.

In the next sections, we’ll look at compiling modules and evaluating functions

in the shell and from the OS command line.

Compiling and Running “Hello World” in the Shell

Make a file called hello.erl with the following content:

http://pragprog.com/titles/jaerlang2/errata/add
http://forums.pragprog.com/forums/jaerlang2

Chapter 2. A Whirlwind Tour of Erlang * 14

hello.erl
-module(hello).
-export([start/0]).

start() ->
io:format("Hello world~n").

To compile and run this, we start the Erlang shell in the directory where we
stored hello.erl and do the following:

$ erl

Erlang R16B ...
1> c(hello).
{ok,hello}

2> hello:start().
Hello world

ok

3> halt().

$

The command c(hello) compiles the code in the file hello.erl. {ok, hello} means the
compilation succeeded. The code is now ready to be run. In line 2, we evalu-
ated the function hello:start(). In line 3, we stopped the Erlang shell.

The advantage of working in the shell is that this method of compiling and
running programs is known to work on all platforms where Erlang is support-
ed. Working from the operating system command line may not work identically
on all platforms.

Compiling Outside the Erlang Shell

Using the same code as before, we can compile and run our code from the
OS command line, as follows:

$ erlc hello.erl
$ erl -noshell -s hello start -s init stop
Hello world

erlc evokes the Erlang compiler from the command line. The compiler compiles
the code in hello.erl and produces an object code file called hello.beam.

The $erl -noshell ... command loads the module hello and evaluates the function
hello:start(). After this, it evaluates the expression init:stop(), which terminates
the Erlang session.

Running the Erlang compiler (erlc) outside the Erlang shell is the preferred
way of compiling Erlang code. We can compile modules inside the Erlang
shell, but to do so, we first have to start the Erlang shell. The advantage of

http://media.pragprog.com/titles/jaerlang2/code/hello.erl
http://pragprog.com/titles/jaerlang2/errata/add
http://forums.pragprog.com/forums/jaerlang2

2.3

Hello, Concurrency ¢ 15

using erlc is automation. We can run erlc inside rakefile or makefiles and
automate the build process.

When you start learning Erlang, it is advisable to use the Erlang shell for
everything; that way, you’ll get familiar with the details of compiling and
running code. More advanced users will want to automate compilation and
make lesser use of the Erlang shell.

Hello, Concurrency

We've seen how to compile a simple module. But what about writing a concur-
rent program? The basic unit of concurrency in Erlang is the process. A
process is a lightweight virtual machine that can communicate with other
processes only by sending and receiving messages. If you want a process to
do something, you send it a message and possibly wait for a reply.

The first concurrent program we’ll write is a file server. To transfer files
between two machines, we need two programs: a client that runs on one
machine and a server that runs on a second machine. To implement this,
we’ll make two modules called afile_client and afile_server.

The File Server Process

The file server is implemented in a module called afile_server. Just to remind
you, processes and modules are like objects and classes. The code for a pro-
cess is contained in a module, and to create a process, we call the primitive
spawn(...), which actually creates the process.

afile_server.erl
-module(afile server).
-export([start/1, loop/1l]).

start(Dir) -> spawn(afile server, loop, [Dir]).

loop(Dir) ->
receive
{Client, list dir} ->
Client ! {self(), file:list dir(Dir)};
{Client, {get file, File}} ->
Full = filename:join(Dir, File),
Client ! {self(), file:read file(Full)}
end,
loop(Dir).

This code has a very simple structure. If we omit most of the detail, it looks
like this:

http://media.pragprog.com/titles/jaerlang2/code/afile_server.erl
http://pragprog.com/titles/jaerlang2/errata/add
http://forums.pragprog.com/forums/jaerlang2

Chapter 2. A Whirlwind Tour of Erlang ® 16

loop(Dir) ->
%% wait for a command
receive
Command ->
. do something ...
end,
loop(Dir).

This is how we write an infinite loop in Erlang. The variable Dir contains the
current working directory of the file server. In the loop we wait to receive a
command; when we receive a command, we obey the command and then call
ourselves again to get the next command.

Just for the curious: Don’t worry about the fact that the last thing we do is to
call ourselves; we're not going to run out of stack space. Erlang applies a so-
called tail-call optimization to the code, which means that this function will
run in constant space. This is the standard way of writing a loop in Erlang.
Just call yourself as the last thing you do.

Another point to note is that loop is a function that never returns. In a
sequential programming language, we have to be extremely careful to avoid
infinite loops; we have only one thread of control, and if this thread gets stuck
in a loop, we're in trouble. In Erlang, there is no such problem. A server is
just a program that services requests in an infinite loop and that runs in
parallel with any other tasks that we want to perform.

Now let’s stare hard at the receive statement; to remind you, it looks like this:

afile_server.erl
receive
{Client, list dir} ->
Client ! {self(), file:list dir(Dir)};
{Client, {get file, File}} ->
Full = filename:join(Dir, File),
Client ! {self(), file:read file(Full)}
end,

This code says that if we receive the message {Client, list_dir}, we should reply
with a list of files, or if we receive the message {Client, {get_file, File}}, then reply
with the file. The variable Client becomes bound as part of the pattern matching
process that occurs when a message is received.

This code is very compact, so it's easy to miss the details of what’s going on.
There are three significant points that you should note about this code.

http://media.pragprog.com/titles/jaerlang2/code/afile_server.erl
http://pragprog.com/titles/jaerlang2/errata/add
http://forums.pragprog.com/forums/jaerlang2

Hello, Concurrency ® 17

Who to reply to
All the received messages contained the variable Client; this is the process
identifier of the process that sent the request and to whom the reply
should be sent.

If you want a reply to a message, you'd better say who the reply is to be
sent to. This is like including your name and address in a letter; if you
don’t say who the letter came from, you won’t ever get a reply.

Use of self{)
The reply sent by the server contains the argument self() (in this case self()
is the process identifier of the server). This identifier is added to the
message so that the client can check that the message the client received
came from the server and not some other process.

Pattern matching is used to select the message
The inside of the receive statement has two patterns. We just write them
like this:

receive
Patternl ->
Actionsl;
Pattern2 ->

Actions2 ->
end

The Erlang compiler and runtime system will correctly figure out how to
run the appropriate code when a message is received. We don’t have to
write any if-then-else or switch statements to work out what to do. This is
one of the joys of pattern matching, which will save you lots of work.

We can compile and test this code in the shell as follows:

1> c(afile_server).

{ok,afile server}

2> FileServer = afile_server:start(".").

<0.47.0>

3> FileServer ! {self(), list_dir}.

{<0.31.0>,list _dir}

4> receive X -> X end.

{<0.47.0>,

{ok, ["afile server.beam","processes.erl","attrs.erl","lib find.erl",

"dist demo.erl","datal.dat","scavenge urls.erl","testl.erl",
.13}

Let’s look at the details.

http://pragprog.com/titles/jaerlang2/errata/add
http://forums.pragprog.com/forums/jaerlang2

Chapter 2. A Whirlwind Tour of Erlang * 18

1> c(afile_server).
{ok,afile server}

We compile the module afile_server contained in the file afile_server.erl. Compilation
succeeds, so the return value of the “compile” function c is {ok, afile_server}.

2> FileServer = afile_server:start(".").
<0.47.0>

afile_server:start(Dir) calls spawn(afile_server, loop, [Dir]). This creates a new parallel
process that evaluates the function afile_server:loop(Dir) and returns a process
identifier that can be used to communicate with the process.

<0.47.0> is the process identifier of the file server process. It is displayed as
three integers separated by periods and contained within angle brackets.
Note: Every time you run this program, the process identifiers will change.
So, the numbers like <0.47.0> will differ from session to session.

3> FileServer ! {self(), list_dir}.
{<0.31.0>,list _dir}

This sends a {self(), list_dir} message to the file server process. The return value
of Pid ! Message is defined to be Message, so the shell prints out the value of {self(),
list_dir}, which is {<0.31.0>, list_dir}. <0.31.0> is the process identifier of the Erlang
shell itself; this is included in the message so that the file server knows who
to reply to.

4> receive X -> X end.

{<0.47.0>,

{ok,["afile server.beam", "processes.erl","attrs.erl","lib find.erl",
"dist demo.erl","datal.dat","scavenge urls.erl","testl.erl",

.1}

receive X -> X end receives the reply sent by the file server. It returns the tuple
{<0.47.0>, {0k, ...}. The first element in the tuple is <0.47.0>, which is the process
identifier of the file server. The second argument is the return value of the
function file:list_dir(Dir), which was evaluated inside the receive loop of the file
Server process.

The Client Code

The file server is accessed through a client module called afile_client. The main
purpose of this module is to hide the details of the underlying communication
protocol. The user of the client code can transfer files by calling the functions
Is and get file that are exported from the client module. This gives us the free-
dom to change the underlying protocols without changing the details of the
client code API.

http://pragprog.com/titles/jaerlang2/errata/add
http://forums.pragprog.com/forums/jaerlang2

Hello, Concurrency ® 19

afile_client.er
-module(afile client).
-export([ls/1, get file/2]).

ls(Server) ->
Server ! {self(), list dir},
receive
{Server, FilelList} ->
FilelList
end.

get_file(Server, File) ->
Server ! {self(), {get file, File}},
receive
{Server, Content} ->
Content
end.

If you compare the code for afile_client with afile_server, you’ll see a beautiful
symmetry. Where there is a send statement in the client Server ! ..., there is a
receive pattern in the server, and vice versa.

receive
{Client, Pattern} ->

end

Now we’ll restart the shell, recompile everything, and show the client and
server working together.

1> c(afile_server).

{ok,afile server}

2> c(afile_client).

{ok,afile client}

3> FileServer = afile_server:start(".").

<0.43.0>

4> afile_client:get_file(FileServer,"missing").
{error,enoent}

5> afile_client:get_file(FileServer,"afile_server.erl").
{ok,<<"-module(afile_server).\n-export([start/1])....}

The only difference between the code we ran in the shell and the previous
code is that we have abstracted out the interface routines and put them into
a separate module. We hide the details of the message passing between the
client and server, since no other program is interested in them.

What you've seen so far is the basis of a fully blown file server, but it is not
yet complete. There are a lot of details associated with starting and stopping
the server, connecting to a socket, and so on, which are not covered here.

http://media.pragprog.com/titles/jaerlang2/code/afile_client.erl
http://pragprog.com/titles/jaerlang2/errata/add
http://forums.pragprog.com/forums/jaerlang2

Chapter 2. A Whirlwind Tour of Erlang * 20

From the Erlang point of view, how we start and stop servers, connect to
sockets, recover from errors, and so on, are uninteresting details. The essence
of the problem has to do with creating parallel processes and sending and
receiving messages.

In Erlang we use processes to structure the solutions to our problems.
Thinking about the process structure (in other words, which processes know
about each other) and thinking about the messages that are sent between
processes and what information the messages contain are central to our way
of thinking and our way of programming.

Improving the File Server

The file server that we have developed involves two communicating processes
running on the same machine and illustrates several of the building blocks
needed to write concurrent programs. In a real server, the client and server
would run on different machines, so somehow we have to arrange that inter-
process messages can pass not only between processes in the same Erlang
node but between Erlang processes located on physically separated machines.

In Chapter 17, Programming with Sockets, on page 263, we’ll see how to use a
TCP transport layer for process communication, and in The File Server
Revisited, on page 221, we’ll see how to implement the file server directly in
distributed Erlang.

In this chapter we saw how to perform some simple operations in the shell,
compile a module, and create a simple concurrent program with two processes
using three primitives: spawn, send, and receive.

This concludes Part I of the book. In Part II we’ll go through sequential pro-
gramming in a lot more detail, and we’ll return to concurrent programming
in Chapter 12, Concurrent Programming, on page 181. In the next chapter, we’ll
start learning sequential programming by looking at the shell, pattern
matching, and the primitive Erlang data types in a lot of detail.

Exercises

Now might be a good time to check your understanding of what we have done
so far.

1. Start and stop the Erlang shell.

2. Type in a few commands in the Erlang shell. Remember to finish the
commands with dot whitespace.

http://pragprog.com/titles/jaerlang2/errata/add
http://forums.pragprog.com/forums/jaerlang2

Hello, Concurrency ® 21

Make some small modifications to hello.erl. Compile and run them in the
shell. If things go wrong, abort from the Erlang shell and restart the shell.

Run the file client and server code. Add a command called put _file. What
messages do you need to add? Find out how to consult manual pages.
Consult the manual pages for the file module.

http://pragprog.com/titles/jaerlang2/errata/add
http://forums.pragprog.com/forums/jaerlang2

Part II

Sequential Programming

In this part, you’ll learn to write sequential Erlang
programs. We'll cover all of sequential Erlang and
also talk about ways of compiling and running your
programs and using the type system to describe
the types of Erlang functions and to statically detect
programming errors.

3.1

CHAPTER 3

Basic Concepts

This chapter sets the scene for Erlang programming. All Erlang programs,
parallel or sequential, use pattern matching, single-assignment variables,
and the basic types that Erlang uses to represent data.

In this chapter, we’ll use the Erlang shell to experiment with the system and
see how it behaves. We'll start with the shell.

Starting and Stopping the Erlang Shell

On a Unix system (including Mac OS X), you start the Erlang shell from a
command prompt; on a Windows system, click the Erlang icon in the Windows
Start menu.

$ erl

Erlang R16B (erts-5.10.1) [source] [64-bit] [smp:4:4] [async-threads:10]
[hipe] [kernel-poll:false]

Eshell v5.10.1 (abort with "G)

1>

This is the Unix command to start the Erlang shell. The shell responds with
a banner telling you which version of Erlang you are running. The easiest
way to stop the system is just to press Ctrl+C (Windows Ctrl+Break) followed
by a (short for abort), as follows:

BREAK: (a)bort (c)ontinue (p)roc info (i)nfo (1)oaded
(v)ersion (k)ill (D)b-tables (d)istribution

a

$

Typing a will immediately stop the system and may result in some data cor-
ruption. For a controlled shutdown, you can type q() (short for quit).
1> q().

ok
$

http://pragprog.com/titles/jaerlang2/errata/add
http://forums.pragprog.com/forums/jaerlang2

Chapter 3. Basic Concepts ® 26

This stops the system in a controlled manner. All open files are flushed and
closed, databases are stopped (if running), and all applications are closed
down in an ordered manner. () is a shell alias for the command init:stop().

To immediately stop the system, evaluate the expression erlang:halt().

If none of these methods works, read Stopping Erlang, on page 169.

Evaluating Commands in the Shell

When the shell is ready to accept an expression, it prints the command

prompt.
1> X = 20.
20

You'll see that this dialogue starts at command 1 (that is, the shell printed
1>). This means we have started a new Erlang shell. Every time you see a
dialogue in this book that starts with 1>, you’ll have to start a new shell if
you want to exactly reproduce the examples in the book. When an example
starts with a prompt number that is greater than 1, this implies that the shell
session is continued from the previous examples, so you don’'t have to start
a new shell.

At the prompt we typed an expression. The shell evaluated the expression
and printed the result.

2> X + 20. % and this is a comment
40

The shell printed out another prompt, this time for expression 2 (because the
command number increases each time a new expression is entered).

In line 2, the percent (%) character indicates the start of a comment. All the
text from the percent sign to the end of line is treated as a comment and is
ignored by the shell and the Erlang compiler.

Now might be a good time to experiment with the shell. Enter the expressions
in the examples exactly as they appear in the text, and check you get the
same results as in the book. Some command sequences can be entered sev-
eral times, but others can be only once since they depend upon previous
commands. If anything goes wrong, the best approach is to abort the shell
and try again with a freshly started shell.

Things That Can Go Wrong

You can’t type everything you read in this book into the shell. The syntactic
Jforms in an Erlang module are not expressions and are not understood by the

http://pragprog.com/titles/jaerlang2/errata/add
http://forums.pragprog.com/forums/jaerlang2

3.2

Simple Integer Arithmetic ® 27

shell. In particular, you can’t enter annotations into the shell; these are things
that start with a hyphen (such as -module, -export, and so on).

Something that might have gone wrong is that you've started to type something
that is quoted (that is, starts with a single or double quote mark) but have
not yet typed a matching closing quote mark that should be the same as the
open quote mark.

If any of these happen, then the best thing to do is type an extra closing quote,
followed by dot whitespace to complete the command.

Advanced: You can start and stop multiple shells. For details, see The Shell
Isn't Responding, on page 170.

Command Editing in the Erlang Shell

The Erlang shell contains a built-in line editor. It understands a subset of
the line-editing commands used in the popular Emacs editor. Previous lines
can be recalled and edited in a few keystrokes. The available commands are
shown next (note that ~Key means you should press Ctrl+Key):

Command Description

~A Beginning of line

~D Deletes current character
~E End of line

~F or right arrow Forward character

~B or left arrow Backward character

~P or up arrow Previous line

~“N or down arrow Next line

T Transposes last two characters

Tab Tries to expand current module or function name

As you get more experienced, you'll learn that the shell is a really powerful
tool. Best of all, when you start writing distributed programs, you will find
that you can attach a shell to a running Erlang system on a different Erlang
node in a cluster or even make a secure shell (ssh) connection directly to an
Erlang system running on a remote computer. Using this, you can interact
with any program on any node in a system of Erlang nodes.

Simple Integer Arithmetic

Let’s evaluate some arithmetic expressions.

http://pragprog.com/titles/jaerlang2/errata/add
http://forums.pragprog.com/forums/jaerlang2

33

Chapter 3. Basic Concepts ® 28

1>2 + 3 * 4.
14

2> (2 + 3) * 4.
20

You'll see that Erlang follows the normal rules for arithmetic expressions, so
2+ 3*4 means 2 + (3*4) and not (2 + 3) *4.

Erlang uses arbitrary-sized integers for performing integer arithmetic. In
Erlang, integer arithmetic is exact, so you don’t have to worry about arithmetic
overflows or not being able to represent an integer in a certain word size.

Why not try it? You can impress your friends by calculating with very large
numbers.

3> 123456789 * 987654321 * 112233445566778899 * 998877665544332211.
13669560260321809985966198898925761696613427909935341

You can enter integers in a number of ways (for details, see Integers, on page
132). Here’s an expression that uses base 16 and base 32 notation:

4> 16#cafe * 32#sugar.
1577682511434

Variables
We can store the result of a command in a variable.

1> X = 123456789.
123456789

In the first line we gave a value to the variable X; in the next line the shell
prints the value of the variable.

Note that all variable names must start with an uppercase letter.

If you want to see the value of a variable, just enter the variable name.

2> X.
123456789

Now that X has a value, you can use it.

3> X*X*X*X.
232305722798259244150093798251441

However, if you try to assign a different value to the variable X, you'll get an
error message.

4> X = 1234.
** exception error: no match of right hand side value 1234

http://pragprog.com/titles/jaerlang2/errata/add
http://forums.pragprog.com/forums/jaerlang2

Variables ¢ 29

When I went to school, my math teacher said, “If there’s an X in several different
parts in the same equation, then all the Xs mean the same thing.” That’'s how we can
solve equations: if we know that X+Y=10 and X-Y=2, then X will be 6 and Y will be 4
in both equations.

But when I learned my first programming language, we were shown stuff like this:
X=X+1

Everyone protested, saying “You can’t do that!” But the teacher said we were wrong,
and we had to unlearn what we learned in math class.

In Erlang, variables are just like they are in math. When you associate a value with
a variable, you're making an assertion—a statement of fact. This variable has that
value. And that’s that.

To explain what happened here, I'm going to have to shatter two assumptions
you have about the simple statement X = 1234.

e First, X is not a variable, not in the sense that you're used to in languages
such as Java and C.

e Second, = is not an assignment operator; it’s a pattern matching operator.

This is probably one of the trickiest areas when you're new to Erlang, so let’s
dig deeper.

Erlang Variables Do Not Vary

Erlang has single-assignment variables. As the name suggests, they can be
given a value only once. If you try to change the value of a variable once it
has been set, then you’ll get an error (in fact, you'll get the badmatch error
we just saw). A variable that has had a value assigned to it is called a bound
variable; otherwise, it is called an unbound variable.

When Erlang sees a statement such as X = 1234 and X has not been bound
before, then it binds the variable X to the value 1234. Before being bound, X
could take any value: it’s just an empty slot waiting to be filled. However,
once it gets a value, it keeps it forever.

At this point, you're probably wondering why we use the name variables. This
is for two reasons.

e They are variables, but their value can be changed only once (that is, they
change from being unbound to having a value).

http://pragprog.com/titles/jaerlang2/errata/add
http://forums.pragprog.com/forums/jaerlang2

Chapter 3. Basic Concepts ® 30

e They look like variables in conventional programming languages, so when
we see a line of code that starts like this:

X= ...

o°

% '...' means 'Code I'm not showing'

then our brains say, “Aha, I know what this is; X is a variable, and = is
an assignment operator.” And our brains are almost right: X is almost a
variable, and = is almost an assignment operator.

In fact, = is a pattern matching operator, which behaves like assignment when
X is an unbound variable.

Finally, the scope of a variable is the lexical unit in which it is defined. So, if
X is used inside a single function clause, its value does not “escape” to outside
the clause. There are no such things as global or private variables shared by
different clauses in the same function. If X occurs in many different functions,
then all the values of X are unrelated.

Variable Bindings and Pattern Matching

In Erlang, variables acquire values as the result of a successful pattern
matching operation.

In most languages, = denotes an assignment statement. In Erlang, however,
= is a pattern matching operation. Lhs = Rhs really means this: evaluate the
right side (Rhs), and then match the result against the pattern on the left side
(Lhs).

A variable, such as X, is a simple form of pattern. As we said earlier, variables
can be given a value only once. The first time we say X = SomeExpression, Erlang
says to itself, “What can I do to make this statement true?” Because X doesn’t
yet have a value, it can bind X to the value of SomeExpression, the statement
becomes valid, and everyone is happy.

If at a later stage we say X = AnotherExpression, the match will succeed only if
SomeExpression and AnotherExpression are identical. Here are some examples of
this:

1> X = (2+4).
6

Before this statement X had no value, so the pattern match succeeds and X
is bound to 6.

2> Y = 10.
10

Similarly, Y is bound to 10.

http://pragprog.com/titles/jaerlang2/errata/add
http://forums.pragprog.com/forums/jaerlang2

Variables ¢ 31

3> X = 6.
6

This is subtly different from line 1; before this expression was evaluated, X
was 6, so the match succeeds, and the shell prints out the value of the
expression, which is 6.

4> X =Y.
** exception error: no match of right hand side value 10

Before this expression is evaluated, X is 6 and Y is 10. 6 is not equal to 10, so
an error message is printed.

5> Y = 10.
10

The pattern match succeeds because Y is 10.

6> Y = 4.
** exception error: no match of right hand side value 4

This fails since Y is 10.

At this stage, it may seem that I am belaboring the point. All the patterns to
the left of the = are just variables, either bound or unbound, but as we’ll see
later, we can make arbitrarily complex patterns and match them with the =
operator. I'll be returning to this theme after we have introduced tuples and
lists, which are used for storing compound data items.

The technical term for memory areas that can be modified is mutable state. Erlang
is a functional programming language and has immutable state.

Later in the book we’ll look at how to program multicore CPUs and see that the con-
sequences of having immutable state are enormous.

If you use a conventional programming language such as C or Java to program a
multicore CPU, then you will have to contend with the problem of shared memory.
In order not to corrupt shared memory, the memory has to be locked while it is
accessed. Programs that access shared memory must not crash while they are
manipulating the shared memory.

In Erlang, there is no mutable state, there is no shared memory, and there are no
locks. This makes it easy to parallelize our programs.

http://pragprog.com/titles/jaerlang2/errata/add
http://forums.pragprog.com/forums/jaerlang2

34

Chapter 3. Basic Concepts ® 32

Why Single Assignment Improves Our Programs

In Erlang a variable is just a reference to a value—in the Erlang implementa-
tion, a bound variable is represented by a pointer to an area of storage that
contains the value. This value cannot be changed.

The fact that we cannot change a variable is extremely important and is unlike
the behavior of variables in imperative languages such as C or Java.

Using immutable variables simplifies debugging. To understand why this is
true, we must ask ourselves what an error is and how an error makes itself
known.

One rather common way that we discover that a program is incorrect is when
we find that a variable has an unexpected value. Once we know which variable
is incorrect, we just have to inspect the program to find the place where the
variable was bound. Since Erlang variables are immutable, the code that
produced the variable must be incorrect. In an imperative language, variables
can be changed many times, so every place where the variable was changed
might be the place where the error occurred. In Erlang there is only one place
to look.

At this point, you might be wondering how it’s possible to program without
mutable variables. How can we express something like X = X + 1 in Erlang?
The Erlang way is to invent a new variable whose name hasn’t been used
before (say X1) and to write X1 = X + 1.

Floating-Point Numbers

Let’s try doing some arithmetic with floating-point numbers.

1> 5/3.
1.6666666666666667

In line 1 the number at the end of the line is the integer 3. The period signifies
the end of the expression and is not a decimal point. If I had wanted a floating-
point number here, I'd have written 3.0.

When you divide two integers with /, the result is automatically converted to
a floating-point number; thus, 5/3 evaluates to 1.6666666666666667.

2> 4/2.
2.0

Even though 4 is exactly divisible by 2, the result is a floating-point number
and not an integer. To obtain an integer result from division, we have to use
the operators div and rem.

http://pragprog.com/titles/jaerlang2/errata/add
http://forums.pragprog.com/forums/jaerlang2

35

Atoms * 33

3> 5 div 3.
1
4> 5 rem 3.
2
5> 4 div 2.
2

N div M divides N by M and discards the remainder. Nrem M is the remainder left
after dividing N by M.

Internally, Erlang uses 64-bit IEEE 754-1985 floats, so programs using floats
will have the same kind of rounding or precision problems associated with
floats that you would get in a language like C.

Atoms
In Erlang, atoms are used to represent constant values.

If you are used to enumerated types in C or Java, or symbols in Scheme or
Ruby, then you will have already used something very similar to atoms.

C programmers will be familiar with the convention of using symbolic con-
stants to make their programs self-documenting. A typical C program will
define a set of global constants in an include file that consists of a large
number of constant definitions; for example, there might be a file glob.h con-
taining this:

#define OP_READ 1

#define OP_WRITE 2
#define OP_SEEK 3

#define RET_SUCCESS 223

Typical C code using such symbolic constants might read as follows:

#include "glob.h"

int ret;
ret = file_operation(OP_READ, buff);
if(ret == RET_SUCCESS) { ... }

In a C program, the values of these constants are not interesting; they're
interesting here only because they are all different and they can be compared
for equality. The Erlang equivalent of this program might look like this:
Ret = file operation(op read, Buff),
if

Ret == ret success ->

http://pragprog.com/titles/jaerlang2/errata/add
http://forums.pragprog.com/forums/jaerlang2

3.6

Chapter 3. Basic Concepts ® 34

In Erlang, atoms are global, and this is achieved without the use of macro
definitions or include files.

Suppose we want to write a program that manipulates the days of the week.
To do this, we’'d represent the days using the atoms monday, tuesday,

Atoms start with lowercase letters, followed by a sequence of alphanumeric
characters or the underscore () or at (@) sign, for example, red, december, cat,
meters, yards, joe@somehost, and a_long_name.

Atoms can also be quoted with a single quotation mark (). Using the quoted
form, we can create atoms that start with uppercase letters (which otherwise
would be interpreted as variables) or that contain nonalphanumeric characters,
for example, 'Monday', Tuesday', '+', '*', 'an atom with spaces'. You can even quote
atoms that don’t need to be quoted, so 'a' means exactly the same as a. In
some languages, single and double quotes can be used interchangeably. This
is not the case in Erlang. Single quotes are used as shown earlier; double
quotes delimit string literals.

The value of an atom is just the atom. So, if we give a command that is just
an atom, the Erlang shell will print the value of that atom.

1> hello.
hello

It may seem slightly strange to talk about the value of an atom or the value
of an integer. But because Erlang is a functional programming language,
every expression must have a value. This includes integers and atoms that
are just extremely simple expressions.

Tuples

Suppose we want to group a fixed number of items into a single entity. For
this we’'d use a tuple. We can create a tuple by enclosing the values we want
to represent in curly brackets and separating them with commas. So, for
example, if we want to represent someone’s name and height, we might use
{joe, 1.82}. This is a tuple containing an atom and a floating-point number.

Tuples are similar to structs in C, with the difference that they are anonymous.
In C, a variable P of type point might be declared as follows:

struct point {
int x;
int y;

P

http://pragprog.com/titles/jaerlang2/errata/add
http://forums.pragprog.com/forums/jaerlang2

Tuples ® 35

We’d access the fields in a C struct using the dot operator. So, to set the x
and y values in the point, we might say this:

P.x = 10; P.y = 45;

Erlang has no type declarations, so to create a “point,” we might just write
this:

P = {10, 45}

This creates a tuple and binds it to the variable P. Unlike C structs, the fields
of a tuple have no names. Since the tuple itself contains just a couple of
integers, we have to remember what it’s being used for. To make it easier to
remember what a tuple is being used for, it's common to use an atom as the
first element of the tuple, which describes what the tuple represents. So, we’'d
write {point, 10, 45} instead of {10, 45}, which makes the program a lot more
understandable. This way of tagging a tuple is not a language requirement
but is a recommended style of programming.

Tuples can be nested. Suppose we want to represent some facts about a
person—their name, height, foot size, and eye color. We could do this as
follows:

1> Person = {person, {name, joe}, {height, 1.82},
{footsize, 42}, {eyecolour, brown}}.
{person, {name, joe}, {height, 1.82}, {footsize, 42}, {eyecolour, brown}}

Note how we used atoms both to identify the field and (in the case of name
and eyecolour) to give the field a value.

Creating Tuples

Tuples are created automatically when we declare them and are destroyed
when they can no longer be used.

Erlang uses a garbage collector to reclaim all unused memory, so we don’t
have to worry about memory allocation.

If we use a variable in building a new tuple, then the new tuple will share the
value of the data structure referenced by the variable. Here’s an example:

2> F = {firstName, joe}.

{firstName, joe}

3> L = {lastName, armstrong}.
{lastName,armstrong}

4> P = {person, F, L}.

{person, {firstName, joe}, {lastName,armstrong}}

http://pragprog.com/titles/jaerlang2/errata/add
http://forums.pragprog.com/forums/jaerlang2

Chapter 3. Basic Concepts ® 36

If we try to create a data structure with an undefined variable, then we’ll get
an error.

5> {true, Q, 23, Costs}.
** 1: variable 'Q' is unbound **

This just means that the variable Q is undefined.

Extracting Values from Tuples

Earlier, we said that =, which looks like an assignment statement, was not
actually an assignment statement but was really a pattern matching operator.
You might wonder why we were being so pedantic. Well, it turns out that
pattern matching is fundamental to Erlang and it’s used for lots of different
tasks. It’s used for extracting values from data structures, and it’s also used
for flow of control within functions and for selecting which messages are to
be processed in a parallel program when we send messages to a process.

If we want to extract some values from a tuple, we use the pattern matching
operator =.

Let’s go back to our tuple that represents a point.

1> Point = {point, 10, 45}.
{point, 10, 45}.

Supposing we want to extract the fields of Point into the two variables X and
Y, we do this as follows:

2> {point, X, Y} = Point.

{point, 10,45}

3> X.

10

4> Y.

45

In command 2, X is bound to 10 and Y to 45. The value of the expression Lhs =
Rhs is defined to be Rhs, so the shell prints {point,10,45}.

As you can see, the tuples on both sides of the equal sign must have the same
number of elements, and the corresponding elements on both sides must
bind to the same value.

Now suppose we had entered something like this:

5> {point, C, C} = Point.
** exception error: no match of right hand side value {point, 10,45}

http://pragprog.com/titles/jaerlang2/errata/add
http://forums.pragprog.com/forums/jaerlang2

3.7

Lists ® 37

The pattern {point, C, C} does not match {point, 10, 45} since C cannot be simul-
taneously 10 and 45. Therefore, the pattern matching fails, and the system
prints an error message.

Here’s an example where the pattern {point, C, C} does match:

6> Pointl = {point,25,25}.
{point, 25,25}

7> {point, C, C} = Pointl.
{point, 25,25}

8> C.

25

If we have a complex tuple, then we can extract values from the tuple by
writing a pattern that is the same shape (structure) as the tuple and that
contains unbound variables at the places in the pattern where we want to
extract values.

To illustrate this, we’ll first define a variable Person that contains a complex
data structure.

1> Person={person,{name, joe,armstrong}, {footsize,42}}.
{person, {name, joe,armstrong}, {footsize,42}}

Now we’ll write a pattern to extract the first name of the person.

2> {_,{_,Who,_},_} = Person.
{person, {name, joe,armstrong}, {footsize,42}}

And finally we’ll look at the value of Who.

3> Who.

joe

Note that in the previous example we wrote _as a placeholder for variables
that we're not interested in. The symbol _ is called an anonymous variable.
Unlike regular variables, several occurrences of _ in the same pattern don’t
have to bind to the same value.

Lists

Lists are used to store arbitrary numbers of things. We create a list by
enclosing the list elements in square brackets and separating them with
commas.

Suppose we want to represent a drawing. If we assume that the drawing is
made up of triangles and squares, we could represent the drawing as a list.

1> Drawing = [{square,{10,10},10}, {triangle, {15,10},{25,10},{30,40}},
|

http://pragprog.com/titles/jaerlang2/errata/add
http://forums.pragprog.com/forums/jaerlang2

Chapter 3. Basic Concepts ® 38

Each of the individual elements in the drawing list are fixed-size tuples (for
example, {square, Point, Side} or {triangle, Point1, Point2, Point3}), but the drawing itself
can contain an arbitrary number of things and so is represented by a list.

The individual elements of a list can be of any type, so, for example, we could
write the following:

2> [1+7,hello,2-2,{cost, apple, 30-20},3].
[8,hello,0,{cost,apple, 10}, 3]

Terminology

We call the first element of a list the head of the list. If you imagine removing
the head from the list, what's left is called the tail of the list.

For example, if we have a list [1,2,3,4,5], then the head of the list is the integer
1, and the tail is the list [2,3,4,5]. Note that the head of a list can be anything,
but the tail of a list is usually also a list.

Accessing the head of a list is a very efficient operation, so virtually all list-
processing functions start by extracting the head of a list, doing something
to the head of the list, and then processing the tail of the list.

Defining Lists
If T is a list, then [H|T] is also a list with head H and tail T. The vertical bar (|)
separates the head of a list from its tail. [] is the empty list.

Note for LISP programmers: [H|T] is a CONS cell with CAR H and CDR T. In a
pattern, this syntax unpacks the CAR and CDR. In an expression, it constructs
a CONS cell.

Whenever we construct a list using a [...|T] constructor, we should make sure
that T is a list. If it is, then the new list will be “properly formed.” If T is not a
list, then the new list is said to be an “improper list.” Most of the library
functions assume that lists are properly formed and won’t work for improper
lists.

We can add more than one element to the beginning of T by writing [E1,E2,...En|T].
So, for example, if we start by defining ThingsToBuy as follows:

3> ThingsToBuy = [{apples, 10}, {pears,6},{milk,3}].
{apples, 10}, {pears,6},{milk,3}]

then we can extend the list by writing this:

4> ThingsToBuyl = [{oranges, 4}, {newspaper,1}|ThingsToBuy].
[{oranges, 4}, {newspaper,1},{apples, 10}, {pears,6}, {milk,3}]

http://pragprog.com/titles/jaerlang2/errata/add
http://forums.pragprog.com/forums/jaerlang2

3.8

Strings * 39

Extracting Elements from a List

As with everything else, we can extract elements from a list with a pattern
matching operation. If we have the nonempty list L, then the expression [X|Y]
=L, where X and Y are unbound variables, will extract the head of the list into
X and the tail of the list into Y.

So, were at the store, and we have our shopping list ThingsToBuyl—the first
thing we do is unpack the list into its head and tail.

5> [Buyl|ThingsToBuy2] = ThingsToBuyl.
[{oranges, 4}, {newspaper, 1}, {apples, 10}, {pears, 6}, {milk,3}]

This succeeds with bindings Buyl = {oranges,4} and ThingsToBuy2 = [{newspaper,1},
{apples,10}, {pears,6}, {milk,3}]. We go and buy the oranges, and then we could
extract the next couple of items.

6> [Buy2,Buy3|ThingsToBuy3] = ThingsToBuy2.
[{newspaper, 1}, {apples, 10}, {pears, 6}, {milk,3}]

This succeeds with Buy2 = {newspaper,1}, Buy3 = {apples,10}, and ThingsToBuy3 =
[{pears,6},{milk,3}].

Strings

Strictly speaking, there are no strings in Erlang. To represent a string in
Erlang, we can choose between representing the string as a list of integers or
as a binary (for a discussion of binaries, see Section 7.1, Binaries, on page
99). When a string is represented as a list of integers, each element in the list
Epresents a Unicode codepoint.

We can create such a list by using a string literal. A string literal is just a
sequence of characters enclosed in double quotation marks ("), so, for example,
we can write this:

1> Name = "Hello".
"Hello"

"Hello" is just shorthand for the list of integer character codes that represent
the individual characters in that string.

Note: In some programming languages, strings can be quoted with either
single or double quotes. In Erlang, we must use double quotes.

When the shell prints the value of a list, it prints it as a string literal if all the
integers in the list represent printable characters; otherwise, it prints it in
list notation (for character set issues, see Section 8.8, Character Set, on page
122).

http://pragprog.com/titles/jaerlang2/errata/add
http://forums.pragprog.com/forums/jaerlang2

Chapter 3. Basic Concepts ® 40

2> [1,2,3].

[1,2,3]

3> [83,117,114,112,114,105,115,101].
"Surprise"

4> [1,83,117,114,112,114,105,115,101].
[1,83,117,114,112,114,105,115,101].

In expression 2, the list [1,2,3] is printed without any conversion. This is
because 1, 2, and 3 are not printable characters.

In expression 3, all the items in the list are printable characters, so the list
is printed as a string literal.

Expression 4 is just like expression 3, except that the list starts with a 1,
which is not a printable character. Because of this, the list is printed without
conversion.

We don’t need to know which integer represents a particular character. We
can use the “dollar syntax” for this purpose. So, for example, $a is actually
the integer that represents the character a, and so on.

5> I = $s.

115

6> [I'3zrulrl prrl $ir $S,$e] .
"Surprise"

When we use lists to represent strings, the individual integers in the list
represent Unicode characters. We have to use a special syntax to enter some
of the characters and choose the correct formatting conventions when we
print the list. This is best explained with an example.

1> X = "a\x{221le}b".
[97,8734,98].

2> io:format("~ts~n", [X]).
acch

In the line 1, we created a list of three integers. The first integer, 97, is the
ASCII and Unicode code for the character a. The notation \x{221e} was used
to input a hexadecimal integer (8734) that represents the Unicode INFINITY
character. Finally, 98 is the ASCII and Unicode code for the character b. The
shell prints this in list notation ([97,8734,98]); this is because 8734 is not a
printable Latinl character code. In line 2 we used a formatted I/0 statement
to print the string using the correct character glyph for the infinity character.

If the shell prints a list of integers as a string but you really wanted it printed
as a list of integers, then you’ll have to use a formatted write statement, as
in the following:

http://pragprog.com/titles/jaerlang2/errata/add
http://forums.pragprog.com/forums/jaerlang2

3.9

Pattern Matching Again ® 41

1> X = [97,98,99].

llabcll

2> io:format("~w~n",["abc"]).
[97,98,99]

Pattern Matching Again
To round off this chapter, we’ll go back to pattern matching one more time.

The following table has some examples of patterns and terms; all the variables
in the patterns are assumed unbound. A termis just an Erlang data structure.
The third column of the table, marked Result, shows whether the pattern
matched the term and, if so, the variable bindings that were created. Read
through the examples, and make sure you really understand them.

Pattern = Term Result

{X,abc} = {123,abc} Succeeds with X = 123

{X\y,z} = {222,def,"cat"} Succeeds with X = 222, Y = def, and Z = "cat"
{X,Y} = {333,ghi,"cat"} Fails—the tuples have different shapes

X = true Succeeds with X = true

{X,YX} = {{abc,12},42,{abc,12}} Succeeds with X = {abc,12} and Y = 42

{XYX} = {{abc,12},42,true} Fails—X cannot be both {abc,12} and true
[H|T] = [1,2,345] Succeeds with H=1 and T=1[2,3,4,5]

[H|T] = ‘cat" Succeeds with H=99 and T = "at"

[ABC|T] = [ab,cdefl Succeeds with A=a, B=b, C=¢, and T=[d,ef]

If you're unsure about any of these, then try entering a Pattern = Term expression
into the shell to see what happens.

Here’s an example:

1> {X, abc} = {123, abc}.
{123,abc}.

2> X.

123

3> f().

ok

4> {X,Y,Z} = {222,def,"cat"}.
{222,def,"cat"}.

5> X.

222

6> Y.

def

http://pragprog.com/titles/jaerlang2/errata/add
http://forums.pragprog.com/forums/jaerlang2

Chapter 3. Basic Concepts ® 42

Note: The command f() tells the shell to forget any bindings it has. After this
command, all variables become unbound, so the X in line 4 has nothing to
do with the X in lines 1 and 2.

Now that we're comfortable with the basic data types and with the ideas of
single assignment and pattern matching, we can step up the tempo and see
how to define modules and functions. We’ll do this in the next chapter.

Exercises

1. Take a quick look at Command Editing in the Erlang Shell, on page 27;
then test and memorize the line-editing commands.

2. Give the command help() in the shell. You'll see a long list of commands.
Try some of the commands.

3. Try representing a house using a tuple and a street using a list of houses.
Make sure you can pack and unpack the data in the representations.

http://pragprog.com/titles/jaerlang2/errata/add
http://forums.pragprog.com/forums/jaerlang2

4.1

CHAPTER4

Modules and Functions

Modules and functions are the basic units from which sequential and parallel
programs are built. Modules contain functions, and the functions can be run
sequentially or in parallel.

This chapter builds upon the ideas of pattern matching from the previous
chapter and introduces all the control statements we need for writing code.
We'll be talking about higher-order functions (called funs) and how they can
be used to create your own control abstractions. Also, we’ll talk about list
comprehensions, guards, records, and case expressions and show how they
are used in small fragments of code.

Let’s get to work.

Modules Are Where We Store Code

Modules are the basic units of code in Erlang. Modules are contained in files
with .erl extensions and must be compiled before the code in the modules can
be run. Compiled modules have the extension .beam.

Before we write our first module, we’ll remind ourselves about pattern matching.
All we're going to do is create a couple of data structures representing a rectangle
and a square. Then we're going to unpack these data structures and extract the
sides from the rectangle and the square. Here’s how:

1> Rectangle = {rectangle, 10, 5}.
{rectangle, 10, 5}.

2> Square = {square, 3}.

{square, 3}

3> {rectangle, Width, Height} = Rectangle.
{rectangle, 10,5}

4> Width.

10

5> Height.

5

http://pragprog.com/titles/jaerlang2/errata/add
http://forums.pragprog.com/forums/jaerlang2

Chapter 4. Modules and Functions ¢ 44

6> {square, Side} = Square.
{square, 3}

7> Side.

3

In lines 1 and 2 we created a rectangle and square. In lines 3 and 6 we
unpacked the fields of the rectangle and square using pattern matching. In
lines 4, 5, and 7 we printed the variable bindings that were created by the
pattern matching expressions. After line 7 the variable bindings in the shell
are Width = 10, Height = 5, and Side = 3.

Going from pattern matching in the shell to pattern matching in functions is an
extremely small step. Let’'s start with a function called area that computes the
areas of rectangles and squares. We'll put this in a module called geometry and
store the module in the file called geometry.erl. The entire module looks like this:

geometry.erl
-module (geometry).
-export([area/l1]).

area({rectangle, Width, Height}) -> Width * Height;
area({square, Side}) -> Side * Side.

The first line in the file is a module declaration. The name of the module in
the declaration must be the same as the base name of the file where the
module is stored.

The second line is an export declaration. The notation Name/N means a function
called Name with N arguments; N is called the arity of the function. The argu-
ment to export is a list of Name/N items. Thus, -export([area/l]) means that the
function area with one argument can be called from outside this module.

Functions that are not exported from a module can be called only from within
a module. Exported functions are equivalent to public methods in an object-
oriented programming language (OOPL); nonexported functions are equivalent
to private methods in an OOPL.

The function area consists of two clauses. The clauses are separated by a
semicolon, and the final clause is terminated by dot whitespace. Each clause
has a head and a body separated by an arrow (->). The head consists of a
function name followed by zero or more patterns, and the body consists of a
sequence of expressions (expressions are defined in Section 8.13, Expressions
and Expression Sequences, on page 127), which are evaluated if the pattern in
the head is successfully matched against the calling arguments. The clauses
are tried in the order they appear in the function definition.

http://media.pragprog.com/titles/jaerlang2/code/geometry.erl
http://pragprog.com/titles/jaerlang2/errata/add
http://forums.pragprog.com/forums/jaerlang2

Modules Are Where We Store Code ® 45

Note how the patterns that we used in the shell example have become part
of the area function definition. Each pattern corresponds to exactly one clause.
The first clause of the area function:

area({rectangle, Width, Height}) -> Width * Height;

tells us how to compute the area of a rectangle. When we evaluate the function
geometry:area({rectangle, 10, 5}), the first clause in area/l matches with bindings
Width = 10 and Height = 5. Following the match, the code following the arrow ->
is evaluated. This is just Width * Height, which is 10*5, or 50. Note that the
function has no explicit return statement; the return value of the function is
simply the value of the last expression in the body of the clause.

Now we’ll compile the module and run it.

1> c(geometry).

{ok,geometry}

2> geometry:area({rectangle, 10, 5}).
50

3> geometry:area({square, 3}).

9

In line 1 we give the command c(geometry), which compiles the code in the file
geometry.erl. The compiler returns {ok,geometry}, which means that the compila-
tion succeeded and that the module geometry has been compiled and loaded.
The compiler will create an object code module called geometry.beam in the
current directory. In lines 2 and 3 we call the functions in the geometry module.
Note how we need to include the module name together with the function
name in order to identify exactly which function we want to call.

Common Errors

A word of warning: commands like c(geometry). (used earlier) work only in the
shell and cannot be put into modules. Some readers have mistakenly typed
into the shell fragments of code contained in the source code listings. These
are not valid shell commands, and you'll get some very strange error message
if you try to do this. So, don’t do this.

If you accidentally choose a module name that collides with one of the system
modules, then when you compile your module, you’ll get a strange message
saying that you can’t load a module that resides in a sticky directory. Just
rename the module, and delete any .beam file that you might have made when
compiling your module.

http://pragprog.com/titles/jaerlang2/errata/add
http://forums.pragprog.com/forums/jaerlang2

Chapter 4. Modules and Functions ¢ 46

Directories and Code Paths

If you download the code examples in this book or want to write your own
examples, you have to make sure that when you run the compiler from the
shell, you are in the right directory so that the system can find your files.

The Erlang shell has a number of built-in commands to see and change the
current working directory.

e pwd() prints the current working directory.
e |s() lists the names of the files in the current working directory.
e cd(Dir) changes the current working directory to Dir.

Adding Tests to Your Code

At this stage, we can add some simple tests to our module. Let’s rename the
module to geometryl.erl and add some test code.

geometry1.erl
-module(geometryl).
-export([test/0, area/l]).

test() -
12 = area({rectangle, 3, 4}),
144 = area({square, 12}),
tests worked.

\

area({rectangle, Width, Height}) -> Width * Height;
area({square, Side}) -> Side * Side.

1> c(geometryl).
{ok,geometryl}

2> geometryl:test().
tests_worked

The line of code 12 = area({rectangle, 3, 4}) is a test. If area({rectangle, 3, 4}) had not
returned 12, the pattern match would fail and we'd get an error message.
When we evaluate geometryl:test() and see the result tests worked, we can conclude
that all the tests in the body of test/0 succeeded.

We can easily add tests and perform test-driven development without any
additional tools. All we need is pattern matching and =. While this is sufficient
for quick-and-dirty testing, for production code it is better to use a fully fea-
tured test framework, such as the common or unit test framework; for details,
read the test section of the Erlang documentation.’

1. http://www.erlang.org/doc

http://media.pragprog.com/titles/jaerlang2/code/geometry1.erl
http://www.erlang.org/doc
http://pragprog.com/titles/jaerlang2/errata/add
http://forums.pragprog.com/forums/jaerlang2

Modules Are Where We Store Code ® 47

Extending the Program

Now suppose we want to extend our program by adding a circle to our geo-
metric objects. We could write this:

area({rectangle, Width, Height}) -> Width * Height;

area({square, Side}) -> Side * Side;
area({circle, Radius}) -> 3.14159 * Radius * Radius.
or this:

area({rectangle, Width, Height}) -> Width * Height;
area({circle, Radius}) -> 3.14159 * Radius * Radius;
area({square, Side}) -> Side * Side.

Note that in this example, the order of the clauses doesn’t matter; the program
means the same no matter how the clauses are ordered. This is because the
patterns in the clause are mutually exclusive. This makes writing and
extending programs very easy—we just add more patterns. In general, though,
clause order does matter. When a function is entered, the clauses are pattern
matched against the calling arguments in the order they are presented in the
file.

Before going any further, you should note the following about the way the
area function is written:

e The function area consists of several different clauses. When we call the
function, execution starts in the first clause that matches the call
arguments.

e Our function does not handle the case where no pattern matches—our
program will fail with a runtime error. This is deliberate. This is the way
we program in Erlang.

Many programming languages, such as C, have only one entry point per
function. If we had written this in C, the code might look like this:

enum ShapeType { Rectangle, Circle, Square };

struct Shape {
enum ShapeType kind;

union {
struct { int width, height; } rectangleData;
struct { int radius; } circleData;
struct { int side;} squareData;

} shapeData;
}

http://pragprog.com/titles/jaerlang2/errata/add
http://forums.pragprog.com/forums/jaerlang2

Chapter 4. Modules and Functions ¢ 48

double area(struct Shape* s) {
if(s->kind == Rectangle) {
int width, ht;
width = s->shapeData.rectangleData.width;
ht = s->shapeData.rectangleData.height;
return width * ht;
} else if (s->kind == Circle) {

The C code performs what is essentially a pattern matching operation on the
argument to the function, but the programmer has to write the pattern
matching code and make sure that it is correct.

In the Erlang equivalent, we merely write the patterns, and the Erlang com-
piler generates optimal pattern matching code, which selects the correct entry
point for the program.

The following shows what the equivalent code would look like in Java:®

abstract class Shape {
abstract double area();

}

class Circle extends Shape {
final double radius;
Circle(double radius) { this.radius = radius; }
double area() { return Math.PI * radius*radius; }

}

class Rectangle extends Shape {
final double ht;
final double width;
Rectangle(double width, double height) {
this.ht = height;
this.width = width;
}

double area() { return width * ht; }
}

class Square extends Shape {
final double side;
Square(double side) {
this.side = side;

}

double area() { return side * side; }

2. http://java.sun.com/developer/Books/shiftintojava/pagel.html

http://java.sun.com/developer/Books/shiftintojava/page1.html
http://pragprog.com/titles/jaerlang2/errata/add
http://forums.pragprog.com/forums/jaerlang2

Modules Are Where We Store Code * 49

If you compare the Erlang code with Java code, you'll see that in the Java
program the code for area is in three places. In the Erlang program, all the
code for area is in the same place.

Where to Put the Semicolons

Before we leave our geometry example, we’ll take one more look at the code,
this time looking at the punctuation. This time stare hard at the code and
look for the placement of commas, semicolons, and periods.

geometry.erl
-module(geometry).
-export([area/l1]).

area({rectangle, Width, Height}) -> Width * Height;
area({square, Side}) -> Side * Side.

You'll see the following:

e Commas (,) separate arguments in function calls, data constructors, and
patterns.

* Semicolons (;) separate clauses. We find clauses in several contexts,
namely, in function definitions and in case, if, try..catch, and receive
expressions.

e Periods (.) (followed by whitespace) separate entire functions and expres-
sions in the shell.

There’s an easy way to remember this—think of English. Full stops separate
sentences, semicolons separate clauses, and commas separate subordinate
clauses. A comma is a short-range symbol, a semicolon is a medium-range
symbol, and a period a long-range symbol.

Whenever we see sets of patterns followed by expressions, we’ll see semicolons
as separators. Here’s an example:

case f(...) of

Patternl ->
Expressionsl;

Pattern2 ->
Expressions2;

LastPattern ->
LastExpression
end

http://media.pragprog.com/titles/jaerlang2/code/geometry.erl
http://pragprog.com/titles/jaerlang2/errata/add
http://forums.pragprog.com/forums/jaerlang2

4.2

Chapter 4. Modules and Functions ¢ 50

Note that the last expression (that which immediately precedes the end key-
word) has no semicolon.

That’s enough theory for now. Let’s continue with some code; we’ll get back
to control structures later.

Back to Shopping
In Defining Lists, on page 38, we had a shopping list that looked like this:

[{oranges, 4}, {newspaper, 1}, {apples, 10}, {pears, 6}, {milk,3}]

Now suppose that we’d like to know what our shopping costs. To work this
out, we need to know how much each item in the shopping list costs. Let’s
assume that this information is computed in a module called shop, defined as
follows:

shop.erl
-module(shop).
-export([cost/1]).

cost(oranges) > 5;
cost(newspaper) -> 8;
cost(apples) > 2;
cost(pears) > 9;
cost(milk) > 7.

The function cost/1 is made up from five clauses. The head of each clause
contains a pattern (in this case a very simple pattern that is just an atom).
When we evaluate shop:cost(X), then the system will try to match X against each
of the patterns in these clauses. If a match is found, the code to the right of
the -> is evaluated.

Let’s test this. We'll compile and run the program in the Erlang shell.

1> c(shop).

{ok, shop}

2> shop:cost(apples).

2

3> shop:cost(oranges).

5

4> shop:cost(socks).

** aexception error: no function clause matching shop:cost(socks)
(shop.erl, line 4)

In line 1 we compiled the module in the file shop.erl. In lines 2 and 3, we asked
how much apples and oranges cost (the results 2 and 5 are in cost units). In line
4 we asked what socks cost, but no clause matched, so we got a pattern

http://media.pragprog.com/titles/jaerlang2/code/shop.erl
http://pragprog.com/titles/jaerlang2/errata/add
http://forums.pragprog.com/forums/jaerlang2

Back to Shopping ¢ 51

matching error, and the system printed an error message containing the
filename and line number where the error occurred.

Back to the shopping list. Suppose we have a shopping list like this:

1> Buy = [{oranges,4}, {newspaper,1}, {apples,10}, {pears,6}, {milk,3}].
[{oranges, 4}, {newspaper, 1}, {apples, 10}, {pears, 6}, {milk,3}]

and want to calculate the total value of all the items in the list. One way to
do this is to define a function shopl:total/l as follows:

shop1.erl
-module(shopl).
-export([total/1]).

total([{What, N}|T]) -> shop:cost(What) * N + total(T);
total([]) -> 0.

Let’s experiment with this:

2> c(shopl).
{ok,shopl}

3> shopl:total([]).
0

This returns 0 because the second clause of total/l is total([]) -> 0.
Here’s a more complex query:

4> shopl:total([{milk,3}]).
21

This works as follows. The call shopl:total([{milk,3}]) matches the following clause
with bindings What = milk, N=3, and T =[]

total([{What,N}|T]) -> shop:cost(What) * N + total(T);

Following this, the code in the body of the function is evaluated, so we have
to evaluate the expression.

shop:cost(milk) * 3 + total([]);
shop:cost(milk) is 7 and total([]) is 0, so the final return value is 21.
We can test this with an even more complex argument.

5> shopl:total([{pears,6},{milk,3}]).
75

Again, line 5 matches the first clause of total/l with bindings What = pears, N =
6, and T = [{milk,3}].

total([{What,N}|T]) -> shop:cost(What) * N + total(T);

http://media.pragprog.com/titles/jaerlang2/code/shop1.erl
http://pragprog.com/titles/jaerlang2/errata/add
http://forums.pragprog.com/forums/jaerlang2

4.3

Chapter 4. Modules and Functions ¢ 52

The variables What, N, and T are substituted into the body of the clause, and
shop:cost(pears) * 6 + total([{milk,3}]) is evaluated, which reduces to 9 * 6 +
total([{milk,3}1).

But we worked out before that total([{milk,3}]) was 21, so the final result is
9%6 + 21 = 75.

Finally:

6> shopl:total(Buy).
123

Before we leave this section, we should take a more detailed look at the
function total. total(L) works by a case analysis of the argument L. There are
two possible cases; L is a nonempty list, or L is an empty list. We write one
clause for each possible case, like this:

total([Head|Taill) ->

some_function of(Head) + total(Tail);
total([]) ->

0.

In our case, Head was the pattern {What,N}. When the first clause matches a
nonempty list, it picks out the head from the list, does something with the
head, and then calls itself to process the tail of the list. The second clause
matches when the list has been reduced to an empty list ([]).

The function total/l actually did two different things. It looked up the prices
of each of the elements in the list, and then it summed all the prices multiplied
by the quantities of items purchased. We can rewrite total in a way that sepa-
rates looking up the values of the individual items and summing the values.
The resulting code will be clearer and easier to understand. To do this, we'll
write two small list-processing functions called sum and map. To write map, we
have to introduce the idea of funs. After this, we’ll write an improved version
of total in the module shop2.erl that you can find near the end of Section 4.4,
Simple List Processing, on page 57.

Funs: The Basic Unit of Abstraction

Erlang is a functional programming language. Among other things this means
that functions can be used as arguments to functions and that functions can
return functions. Functions that manipulate functions are called higher-order
Jfunctions, and the data type that represents a function in Erlang is called a

Jun.

Higher-order functions are the very essence of functional programming lan-
guages—not only can functional programs manipulate regular data structures,

http://pragprog.com/titles/jaerlang2/errata/add
http://forums.pragprog.com/forums/jaerlang2

Funs: The Basic Unit of Abstraction ¢ 53

they can also manipulate the functions that transform the data. Once you've
learned to use them, you’ll love them. We'll see a lot more of them in the
future.

Funs can be used in the following ways:

¢ To perform the same operation on every element of a list. In this case, we
pass funs as arguments to functions like lists:map/2, lists:filter/2, and so on.
This usage of funs is extremely common.

¢ To create our own control abstractions. This technique is extremely useful.
Erlang has, for example, no for loop. But we can easily create our own for
loop. The advantage of creating our own control abstractions is that we
can make them do exactly what we want them to do rather than rely on
a predefined set of control abstractions that might not behave exactly as
we want.

¢ To implement things like reentrant parsing code, parser combinators, or
lazy evaluators. In this case, we write functions, which return funs. This
is a very powerful technique but can lead to programs that are difficult
to debug.

funs are “anonymous” functions. They are called this because they have no
name. You might see them referred to as lambda abstractions in other pro-
gramming languages. Let’s start experimenting; first we’ll define a fun and
assign it to a variable.

1> Double = fun(X) -> 2*X end.
#Fun<erl eval.6.56006484>

When we define a fun, the Erlang shell prints #Fun<...> where the ... is some
weird number. Don’t worry about this now.

There’s only one thing we can do with a fun, and that is to apply it to an
argument, like this:

2> Double(2).
4

Funs can have any number of arguments. We can write a function to compute
the hypotenuse of a right-angled triangle, like this:

3> Hypot = fun(X, Y) -> math:sqrt(X*X + Y*Y) end.

#Fun<erl eval.12.115169474>

4> Hypot(3,4).
5.0

If the number of arguments is incorrect, you'll get an error.

http://pragprog.com/titles/jaerlang2/errata/add
http://forums.pragprog.com/forums/jaerlang2

Chapter 4. Modules and Functions ¢ 54

5> Hypot(3).
** exception error: interpreted function with arity 2 called with one argument

The error message tells us that Hypot expects two arguments but we have
supplied only one. Remember that arity is the number of arguments a function
accepts.

Funs can have several different clauses. Here’s a function that converts
temperatures between Fahrenheit and Centigrade:
6> TempConvert = fun({c,C}) -> {f, 32 + C*9/5};

6> ({f,F}) -> {c, (F-32)*5/9}

6> end.

#Fun<erl eval.6.56006484>

7> TempConvert({c,100}).

{f,212.0}

8> TempConvert({f,212}).

{c,100.0}

9> TempConvert({c,0}).

{f,32.0}

Note: The expression in line 6 spans several lines. As we enter this expression,
the shell repeats the prompt 6> every time we enter a new line. This means
the expression is incomplete and the shell wants more input.

Functions That Have Funs As Their Arguments

The module lists, which is in the standard libraries, exports several functions
whose arguments are funs. The most useful of all these is lists:map(F, L). This
is a function that returns a list made by applying the fun F to every element
in the list L.

1e> L = [1,2,3,4].

[1,2,3,4]

11> lists:map(fun(X) -> 2*X end, L).
[2,4,6,8]

Another useful function is lists:filter(P, L), which returns a new list of all the
elements E in L such that P(E) is true.

Let’s define a function Even(X) that is true if X is an even number.

12> Even = fun(X) -> (X rem 2) =:= 0 end.
#Fun<erl eval.6.56006484>

Here X rem 2 computes the remainder after X has been divided by 2, and =:=
is a test for equality. Now we can test Even, and then we can use it as an
argument to map and filter.

http://pragprog.com/titles/jaerlang2/errata/add
http://forums.pragprog.com/forums/jaerlang2

Funs: The Basic Unit of Abstraction ¢ 55

13> Even(8).

true

14> Even(7).

false

15> lists:map(Even, [1,2,3,4,5,6,8]).
[false,true,false, true,false, true,truel
16> lists:filter(Even, [1,2,3,4,5,6,8]).
[2,4,6,8]

We refer to operations such as map and filter that do something to an entire
list in one function call as list-at-a-time operations. Using list-at-a-time oper-
ations makes our programs small and easy to understand; they are easy to
understand because we can regard each operation on the entire list as a
single conceptual step in our program. Otherwise, we have to think of each
individual operation on the elements of the list as single steps in our program.

Functions That Return Funs

Not only can funs be used as arguments to functions (such as map and filter),
but functions can also return funs.

Here’s an example—suppose I have a list of something, say fruit:

1> Fruit = [apple,pear,orange].
[apple,pear,orange]

Now I can define a function MakeTest(L) that turns a list of things (L) into a test
function that checks whether its argument is in the list L.

2> MakeTest = fun(L) -> (fun(X) -> lists:member(X, L) end) end.
#Fun<erl eval.6.56006484>

3> IsFruit = MakeTest(Fruit).

#Fun<erl_eval.6.56006484>

lists:member(X, L) returns true if X is a member of the list L; otherwise, it returns
false. Now that we have built a test function, we can try it.

4> IsFruit(pear).
true

5> IsFruit(apple).
true

6> IsFruit(dog).
false

We can also use it as an argument to lists:filter/2.

7> lists:filter(IsFruit, [dog,orange,cat,apple,bear]).
[orange,apple]

http://pragprog.com/titles/jaerlang2/errata/add
http://forums.pragprog.com/forums/jaerlang2

Chapter 4. Modules and Functions ® 56

The notation for funs that return funs takes a little getting used to, so let’s
dissect the notation to make what’s going on a little clearer. A function that
returns a “normal” value looks like this:

1> Double = fun(X) -> (2 * X) end.

#Fun<erl_eval.6.56006484>

2> Double(5).
10

The code inside the parentheses (in other words, 2 * X) is clearly the “return
value” of the function. Now let’s try putting a fun inside the parentheses.

Remember the thing inside the parentheses is the return value.

3> Mult = fun(Times) -> (fun(X) -> X * Times end) end.
#Fun<erl_eval.6.56006484>

The fun inside the parentheses is fun(X) -> X * Times end; this is just a function
of X. Times is the argument of the “outer” fun.

Evaluating Mult(3) returns fun(X) -> X * 3 end, which is the body of the inner fun
with Times substituted with 3. Now we can test this.

4> Triple = Mult(3).

#Fun<erl eval.6.56006484>

5> Triple(5).
15

So, Mult is a generalization of Double. Instead of computing a value, it returns
a function, which when called will compute the required value.

Defining Your Own Control Abstractions

So far, we haven’'t seen any if statements, switch statements, for statements, or
while statements, and yet this doesn’t seem to matter. Everything is written
using pattern matching and higher-order functions.

If we want additional control structures, we can make our own. Here’s an
example; Erlang has no for loop, so let’s make one:

lib_misc.erl
for(Max, Max, F) -> [F(Max)];
for(I, Max, F) -> [F(I)|for(I+1, Max, F)].

So, for example, evaluating for(1,10,F) creates the list [F(1), F(2), ..., F(10)].

Now we have a simple for loop. We can use it to make a list of the integers
from 1 to 10.

1> lib_misc:for(1,10,fun(I) -> I end).
[1I2I3I4I5I6I7I8I9I19]

http://media.pragprog.com/titles/jaerlang2/code/lib_misc.erl
http://pragprog.com/titles/jaerlang2/errata/add
http://forums.pragprog.com/forums/jaerlang2

4.4

Simple List Processing ¢ 57

Or we can compute the squares of the integers from 1 to 10.

2> lib_misc:for(1,10, fun(I) -> I*I end).
[1,4,9,16,25,36,49,64,81,100]

As you become more experienced, you'll find that being able to create your
own control structures can dramatically decrease the size of your programs
and sometimes make them a lot clearer. This is because you can create
exactly the right control structures that are needed to solve your problem
and because you are not restricted by a small and fixed set of control struc-
tures that came with your programming language.

Simple List Processing

Now that we've introduced funs, we can get back to writing sum and map, which
we’ll need for our improved version of total (which I'm sure you haven't forgotten
about!).

We'll start with sum, which computes the sum of the elements in a list.

mylists.erl
sum([H|T]) -> H + sum(T);
sum([]) -> 0.

Note that the order of the two clauses in sum is unimportant. This is because
the first clause matches a nonempty list and the second an empty list, and
these two cases are mutually exclusive. We can test sum as follows:

1> c(mylists). %% <-- Last time I do this

{ok, mylists}

2> L =[1,3,10].

[1,3,10]

3> mylists:sum(L).

14

Line 1 compiled the module mylists. From now on, I'll often omit the command
to compile the module, so you’ll have to remember to do this yourself. It's
pretty easy to understand how this works. Let’s trace the execution.

1. sum([1,3,10])

2. sum([1,3,10]) = 1 + sum([3,10]) (by @)
3. =1+3+sum([10]) (by @)

4, =1+3+10+sum([]) (by @)

5. =1+3+10+0 (by ©)

6. =14

Finally, let’s look at map/2, which we met earlier. Here’s how it’s defined:

http://media.pragprog.com/titles/jaerlang2/code/mylists.erl
http://pragprog.com/titles/jaerlang2/errata/add
http://forums.pragprog.com/forums/jaerlang2

-1

Chapter 4. Modules and Functions ¢ 58

mylists.erl
map(_, [1) -> [1;
map(F, [H|T]) -> [F(H)|map(F, T)].

©® The first clause says what to do with an empty list. Mapping any function
over the elements of an empty list (there are none!) just produces an
empty list.

©® The second clause is a rule for what to do with a list with a head H and
tail T. That’s easy. Just build a new list whose head is F(H) and whose tail
is map(F, T).

Note: The definition of map/2 is copied from the standard library module lists
to mylists. You can do anything you like to the code in mylists.erl. Do not under
any circumstance try to make your own module called lists—if you make any
mistakes in lists, you could easily seriously damage the system.

We can run map using a couple of functions that double and square the ele-
ments in a list, as follows:

1> 1L =[1,2,3,4,5].

[1,2,3,4,5]

2> mylists:map(fun(X) -> 2*X end, L).
[2,4,6,8,10]

3> mylists:map(fun(X) -> X*X end, L).
[1,4,9,16,25]

Later, we’ll show an even shorter version of map written using list comprehensions,
and in Section 26.3, Parallelizing Sequential Code, on page 445, we’ll show how we
can compute all the elements of the map in parallel (which will speed up our
program on a multicore computer)—but this is jumping too far ahead. Now that
we know about sum and map, we can rewrite total using these two functions:

shop2.erl

-module(shop2).
-export([total/1]).
-import(lists, [map/2, sum/1]).

total(L) ->
sum(map (fun({What, N}) -> shop:cost(What) * N end, L)).

We can see how this function works by looking at the steps involved.

1> Buy = [{oranges, 4}, {newspaper, 1}, {apples, 10}, {pears,6},{milk,3}].
[{oranges, 4}, {newspaper, 1}, {apples, 10}, {pears, 6}, {milk,3}]

2> Ll=lists:map(fun({What,N}) -> shop:cost(What) * N end, Buy).
[20,8,20,54,21]

3> lists:sum(L1l).

123

http://media.pragprog.com/titles/jaerlang2/code/mylists.erl
http://media.pragprog.com/titles/jaerlang2/code/shop2.erl
http://pragprog.com/titles/jaerlang2/errata/add
http://forums.pragprog.com/forums/jaerlang2

4.5

List Comprehensions ® 59

When I'm writing a program, my approach is to “write a bit” and then “test a bit.” I
start with a small module with a few functions, and then I compile it and test it with
a few commands in the shell. Once I'm happy with it, I write a few more functions,
compile them, test them, and so on.

Often I haven't really decided what sort of data structures I'll need in my program,
and as I run small examples, I can see whether the data structures I have chosen
are appropriate.

I tend to “grow” programs rather than think them out completely before writing them.
This way I don’t tend to make large mistakes before I discover that things have gone
wrong. Above all, it’s fun, I get immediate feedback, and I see whether my ideas work
as soon as I have typed in the program.

Once I've figured out how to do something in the shell, I usually then go and write a
makefile and some code that reproduces what I've learned in the shell.

Note also the use of the -import and -export declarations in the module.

e The declaration -import(lists, [map/2, sum/1]). means the function map/2 is
imported from the module lists, and so on. This means we can write map(Fun,
...) instead of lists:map(Fun, ...). cost/1 was not declared in an import declaration,
so we had to use the “fully qualified” name shop:cost.

¢ The declaration -export([total/1]) means the function total/l can be called from
outside the module shop2. Only functions that are exported from a module
can be called from outside the module.

By this time you might think that our total function cannot be further improved,
but you'd be wrong. Further improvement is possible. To do so, we’ll use a
list comprehension.

List Comprehensions

List comprehensions are expressions that create lists without having to use
funs, maps, or filters. This makes our programs even shorter and easier to
understand.

We'll start with an example. Suppose we have a list L.

1> = [1,2,3,4,5].
[1'2'3'4'5]

And say we want to double every element in the list. We've done this before,
but I'll remind you.

http://pragprog.com/titles/jaerlang2/errata/add
http://forums.pragprog.com/forums/jaerlang2

Chapter 4. Modules and Functions ® 60

2> lists:map(fun(X) -> 2*X end, L).
[2,4,6,8,10]

But there’s a much easier way that uses a list comprehension.

4> [2*X || X <- L 1.
[2,4,6,8,10]

The notation [F(X) || X <- L] means “the list of F(X) where X is taken from the list
L.” Thus, [2*X || X <- L] means “the list of 2*X where X is taken from the list L.”

To see how to use a list comprehension, we can enter a few expressions in
the shell to see what happens. We start by defining Buy.

1> Buy=[{oranges, 4}, {newspaper, 1}, {apples, 10}, {pears, 6}, {milk,3}].
[{oranges, 4}, {newspaper, 1}, {apples, 10}, {pears, 6}, {milk,3}]

Now let’s double the number of every item in the original list.

2> [{Name, 2*Number} || {Name, Number} <- Buy].
[{oranges, 8}, {newspaper,2},{apples, 20}, {pears,12},{milk,6}]

Note that the tuple {Name, Number} to the right side of the (||) sign is a pattern
that matches each of the elements in the list Buy. The tuple to the left side,
{Name, 2*Number}, is a constructor.

Suppose we want to compute the total cost of all the elements in the original
list; we could do this as follows. First replace the name of every item in the
list with its price.

3> [{shop:cost(A), B} || {A, B} <- Buy].
[{5,4},{8,1},{2,10},{9,6},{7,3}]

Now multiply the numbers.

4> [shop:cost(A) * B || {A, B} <- Buyl.
[20,8,20,54,21]

Then sum them.

5> lists:sum([shop:cost(A) * B || {A, B} <- Buyl).
123

Finally, if we wanted to make this into a function, we would write the following:

total(L) ->
lists:sum([shop:cost(A) * B || {A, B} <- L]).

List comprehensions will make your code really short and easy to read. For
example, we can define an even shorter version of map.

map(F, L) -> [F(X) || X <- LJ.

http://pragprog.com/titles/jaerlang2/errata/add
http://forums.pragprog.com/forums/jaerlang2

List Comprehensions ® 61

The most general form of a list comprehension is an expression of the following
form:

[X || Qualifierl, Qualifier2, ...]

X is an arbitrary expression, and each qualifier is either a generator, a bitstring
generator, or a filter.

e Generators are written as Pattern <- ListExpr where ListExpr must be an
expression that evaluates to a list of terms.

e Bitstring generators are written as BitStringPattern <= BitStringExpr where
BitStringExpr must be an expression that evaluates to a bitstring. More
information about bitstring patterns and generators can be found in the
Erlang Reference Manual.”

e Filters are either predicates (functions that return true or false) or boolean
expressions.

Note that the generator part of a list comprehension works like a filter; here’s
an example:

1> [X || {a, X} <- [{a,1},{b,2},{c,3},{a,4},hello, "wow"]].
[1,4]

We'll finish this section with a few short examples.

Quicksort
Here’s how to write a sort algorithm using two list comprehensions:

lib_misc.erl

gsort([1) -> [1;

gsort([Pivot|T]) ->
gsort([X || X <- T, X < Pivot])
++ [Pivot] ++
gsort([X || X <- T, X >= Pivot]).

Note that ++ is the infix append operator. This code is shown for its elegance
rather than its efficiency. Using ++ in this way is not generally considered
good programming practice. See Section 4.9, Building Lists in Natural Order,
on page 70, for more information.

1> L=[23,6,2,9,27,400,78,45,61,82,14].
[23,6,2,9,27,400,78,45,61,82,14]

2> lib_misc:qsort(L).
[2,6,9,14,23,27,45,61,78,82,400]

3. http://www.erlang.org/doc/pdf/otp-system-documentation.pdf

http://media.pragprog.com/titles/jaerlang2/code/lib_misc.erl
http://www.erlang.org/doc/pdf/otp-system-documentation.pdf
http://pragprog.com/titles/jaerlang2/errata/add
http://forums.pragprog.com/forums/jaerlang2

Chapter 4. Modules and Functions ¢ 62

To see how this works, we’ll step through the execution. We start with a list
L and call gsort(L). The following matches the second clause of gsort with bindings
Pivot - 23 and T — [6,2,9,27,400,78,45,61,82,14]:

3> [Pivot|T] = L.
[23,6,2,9,27,400,78,45,61,82,14]

Now we split T into two lists, one with all the elements in T that are less than

Pivot, and the other with all the elements greater than or equal to Pivot.

4> Smaller = [X || X <- T, X < Pivot].
[6,2,9,14]

5> Bigger = [X || X <- T, X >= Pivot].
[27,400,78,45,61,82]

Now we sort Smaller and Bigger and combine them with Pivot.

gsort([6,2,9,14]) ++ [23] ++ gsort([27,400,78,45,61,82])
= [2,6,9,14] ++ [23] ++ [27,45,61,78,82,400]

= [2,6,9,14,23,27,45,61,78,82,400]

Pythagorean Triplets

thagorean triplets are sets of integers {A,B,C} where A% +B2=C2
Pythag p g

The function pythag(N) generates a list of all integers {A,B,C} where A%+ B?=
C? and where the sum of the sides is less than or equal to N.

lib_misc.erl
pythag(N) ->
[{A,B,C} [|

A <- lists:seq(1,N
B <- lists:seq(1,N),
C <- lists:seq(1,N
A+B+C =< N,
A*A+B*B =:= C*C

1.

Just a few words of explanation: lists:seq(1, N) returns a list of all the integers
from 1 to N. Thus, A <- lists:seq(1, N) means that A takes all possible values from
1 to N. So, our program reads, “Take all values of A from 1 to N, all values of
B from 1 to N, and all values of C from 1 to N such that A + B + C is less than
or equal to N and A*A + B*B = C*C.”

1> lib_misc:pythag(16).

[{3,4,5},{4,3,5}]

2> lib_misc:pythag(30).
[{3,4,5},{4,3,5},{5,12,13},6,8,10}, {8,6,10},{12,5,13}]

http://media.pragprog.com/titles/jaerlang2/code/lib_misc.erl
http://pragprog.com/titles/jaerlang2/errata/add
http://forums.pragprog.com/forums/jaerlang2

4.6

BIFs * 63

Anagrams

If you're interested in English-style crossword puzzles, you'll often find yourself
figuring out anagrams. Let’s use Erlang to find all the permutations of a string
using the beautiful little function perms.

lib_misc.erl

perms([]) -> [[1];
perms(L) -> [[H|T] || H<- L, T <- perms(L--[H])].

1> lib_misc:perms("123").
["123", "132","213","231","312","321"]
2> lib_misc:perms("cats").

["CatS", "CaS‘t", "CtaS”, "Ctsa", ”CSat", "CSta", "aCtS", "aCS‘t",
"atcs", "atsc", "asct", "astc", "tcas", "tcsa", "tacs", "tasc",
"tsca”, "‘tsaC", “SCat", "SCta", "SaCt", "Sa‘tC", ”Stca", ustacu]

X - -Y is the list subtraction operator. It subtracts the elements in Y from X;
there’s a more precise definition in Section 8.16, List Operations ++ and - -,
on page 129.

perms is pretty neat. It works as follows: Assume we want to compute all per-
mutations of the string "cats". First we isolate the first character of the string,
which is ¢, and compute all permutations of the string with the character c
removed. "cats" with ¢ removed is the string "ats", and all the permutations of
"ats" are the strings ["ats", "ast", "tas", "tsa", "sat", "sta"]. Next we append the c to the
beginning of each of these strings, forming ["cats", "cast", "ctas", "ctsa", "csat", "csta"].
Then we repeat the algorithm isolating the second character, and so on.

This is exactly what the perms function does.
[[H|T] || H<- L, T <- perms(L -- [H]) 1

This means take H from L in all possible ways and then take T from perms(L - - [H])
(that is, all permutations of the list L with H removed) in all possible ways and
return [H|T].

BIFs

A BIF is a built-in function; BIFs are functions that are defined as part of the
Erlang language. Some BIFs are implemented in Erlang, but most are imple-
mented as primitive operations in the Erlang virtual machine.

BIFs provide interfaces to the operating system or perform operations that
are impossible or very inefficient to program in Erlang. For example, it's
impossible to turn a list into a tuple or to find the current time and date. To
perform such an operation, we call a BIF.

http://media.pragprog.com/titles/jaerlang2/code/lib_misc.erl
http://pragprog.com/titles/jaerlang2/errata/add
http://forums.pragprog.com/forums/jaerlang2

4.7

Chapter 4. Modules and Functions ® 64

For example, the BIF list_to_tuple/1 converts a list to a tuple, and time/0 returns
the current time of day in hours, minutes, and seconds.

1> list_to_tuple([12,cat,"hello"]).
{12,cat,"hello"}

2> time().

{20,0,3}

All BIFs behave as if they belong to the module erlang, though the most common
BIFs (such as list_to_tuple) are autoimported, so we can call list_to_tuple(...) instead
of erlang:list_to_tuple(...).

You'll find a full list of all BIFs in the erlang manual page in your Erlang distri-
bution or online at http:/www.erlang.org/doc/man/erlang.html. Throughout the
remainder of the book I'll introduce only the BIFs that are necessary to
understand a particular section in the book. There are actually more BIFs in
the system than those that I describe in the book, so I recommend printing
the manual page and trying to learn what all the BIFs are.

Guards

Guards are constructs that we can use to increase the power of pattern
matching. Using guards, we can perform simple tests and comparisons on
the variables in a pattern. Suppose we want to write a function max(X, Y) that
computes the max of X and Y. We can write this using a guard as follows:

max(X, Y) when X > Y -> X;
max(X, Y) -> Y.

The first clause matches when X is greater than Y and the result is X.

If the first clause doesn’t match, then the second clause is tried. The second
clause always returns the second argument Y. Y must be greater than or equal
to X; otherwise, the first clause would have matched.

You can use guards in the heads of function definitions where they are
introduced by the when keyword, or you can use them at any place in the
language where an expression is allowed. When they are used as expressions,
they evaluate to one of the atoms true or false. If the guard evaluates to true,
we say that the evaluation succeeded; otherwise, it fails.

Guard Sequences

A guard sequence is either a single guard or a series of guards, separated by
semicolons (;). The guard sequence G1; G2; ...; Gn is true if at least one of the
guards—Gl, G2, ...—evaluates to true.

http://www.erlang.org/doc/man/erlang.html
http://pragprog.com/titles/jaerlang2/errata/add
http://forums.pragprog.com/forums/jaerlang2

Guards ® 65

A guard is a series of guard expressions, separated by commas (,). The guard
GuardExprl, GuardExpr2, ..., GuardExprN is true if all the guard expressions—GuardExprl,
GuardExpr2, ...—evaluate to true.

The set of valid guard expressions is a subset of all valid Erlang expressions.
The reason for restricting guard expressions to a subset of Erlang expressions
is that we want to guarantee that evaluating a guard expression is free from
side effects. Guards are an extension of pattern matching, and since pattern
matching has no side effects, we don’t want guard evaluation to have side
effects.

In addition, guards cannot call user-defined functions, since we want to
guarantee that they are side effect free and terminate.

The following syntactic forms are legal in a guard expression:
e The atom true

e Other constants (terms and bound variables); these all evaluate to false
in a guard expression

e Calls to the guard predicates in Table 1, Guard predicates, on page 66
and to the BIFs in Table 2, Guard built-in _functions, on page 66

e Term comparisons (Table 6, Term comparisons, on page 137)

e Arithmetic expressions (Table 3, Arithmetic expressions, on page 116)

e Boolean expressions (Section 8.7, Boolean Expressions, on page 121)

e Short-circuit boolean expressions (Section 8.23, Short-Circuit Boolean
Expressions, on page 135)

Note: When reading Guard predicates and Guard built-in functions, you will
find references to data types that we have not yet discussed. They are
included in these tables for completeness.

When evaluating a guard expression, the precedence rules described in Section
8.20, Operator Precedence, on page 133 are used.

Guard Examples

We've talked about the syntax of guards, which can be fairly complex; here
are a few examples:

f(X,Y) when is integer(X), X >Y, Y <6 -> ...

This means “When X is an integer, X is greater than Y, and Y is less than 6.”
The comma, which separates the test in the guard, means “and.”

http://pragprog.com/titles/jaerlang2/errata/add
http://forums.pragprog.com/forums/jaerlang2

Predicate
is_atom(X)
is_binary(X)
is_constant(X)
is_float(X)
is_function(X)
is_function(X, N)
is_integer(X)
is_list(X)
is_map(X)
is_number(X)
is_pid(X)
is_pmod(X)
is_port(X)
is_reference(X)
is_tuple(X)
is_record(X,Tag)
is_record(X,Tag,N)

Chapter 4. Modules and Functions ® 66

Meaning

X is an atom.

X is a binary.

X is a constant.

X is a float.

X is a fun.

X is a fun with N arguments.

X is an integer.

X is a list.

X is a map.

X is an integer or a float.

X is a process identifier.

X is an instance of a parameterized module.
X is a port.

X is a reference.

X is a tuple.

X is a record of type Tag.

X is a record of type Tag and size N.

Table 1—Guard predicates

Function
abs(X)
byte_size(X)
element(N, X)
float(X)

hd(X)
length(X)
node()
node(X)

Meaning

Absolute value of X.
The number of bytes in X. X must be a bitstring or a binary.
Element N of X. Note X must be a tuple.
Converts X, which must be a number, to a float.
The head of the list X.
The length of the list X.
The current node.

The node on which X was created. X can be a process, an identifier, a reference,

or a port.

round(X)
self()

size(X)
trunc(X)
tI(X)
tuple_size(T)

Converts X, which must be a number, to an integer.
The process identifier of the current process.
The size of X. X can be a tuple or a binary.
Truncates X, which must be a number, to an integer.
The tail of the list X.
The size of the tuple T.

Table 2—Guard built-in functions

http://pragprog.com/titles/jaerlang2/errata/add
http://forums.pragprog.com/forums/jaerlang2

Guards ® 67

is tuple(T), tuple size(T) =:= 6, abs(element(3, T)) > 5
element (4, X) =:= hd(L)

The first line means T is a tuple of six elements, and the absolute value of the
third element of T is greater than 5. The second line means that element 4 of
the tuple X is identical to the head of the list L.

X =:= dog; X =:= cat
is integer(X), X > Y ; abs(Y) < 23

The first guard means X is either a cat or a dog, and the semicolon (;) in the
guard means “or.” The second guard means that X is an integer and is greater
than Y or the absolute value of Y is less than 23.

Here are some examples of guards that use short-circuit boolean expressions:

A >= -1.0 andalso A+l > B
is atom(L) orelse (is list(L) andalso length(L) > 2)

The reason for allowing boolean expressions in guards is to make guards
syntactically similar to other expressions. The reason for the orelse and andalso
operators is that the boolean operators and/or were originally defined to evaluate
both their arguments. In guards, there can be differences between (and and
andalso) or between (or and orelse). For example, consider the following two
guards:

f(X) when (X == 0) or (1/X > 2) ->
g(X) when (X == 0) orelse (1/X > 2) ->

The guard in f(X) fails when X is zero but succeeds in g(X).

In practice, few programs use complex guards, and simple () guards suffice
for most programs.

Use of the true Guard

You might wonder why we need the true guard at all. The reason is that atom
true can be used as a “catchall” guard at the end of an if expression, like this:
if

Guard -> Expressions;

Guard -> Expressions;

true -> Expressions
end

http://pragprog.com/titles/jaerlang2/errata/add
http://forums.pragprog.com/forums/jaerlang2

4.8

Chapter 4. Modules and Functions ® 68

if will be discussed in if Expressions, on page 69.

The following tables list all the guard predicates (that is, guards that return
booleans) and all the guard functions.

case and if Expressions

So far, we've used pattern matching for everything. This makes Erlang code
small and consistent. But sometimes defining separate function clauses for
everything is rather inconvenient. When this happens, we can use case or if
expressions.

case Expressions
case has the following syntax:

case Expression of
Patternl [when Guardl] -> Expr_seql;
Pattern2 [when Guard2] -> Expr_seq2;

end

case is evaluated as follows: First, Expression is evaluated; assume this evaluates
to Value. Thereafter, Value is matched in turn against Patternl (with the optional
guard Guardl), Pattern2, and so on, until a match is found. As soon as a match
is found, then the corresponding expression sequence is evaluated—the result
of evaluating the expression sequence is the value of the case expression. If
no pattern matches, then an exception is raised.

Earlier, we used a function called filter(P, L); it returns a list of all those elements
X in L for which P(X) is true. Using case we can define filter as follows:

filter(P, [H|T]) ->
case P(H) of
true -> [H|filter(P, T)I;
false -> filter(P, T)
end;
filter(P, []) ->
[1.

Strictly speaking, case is unnecessary. This is how filter would have been defined
using pure pattern matching:

filter(P, [H|T]) -> filterl(P(H), H, P, T);
filter(P, [1) -> [].

filterl(true, H, P, T) -> [H|filter(P, T)I];
filterl(false, H, P, T) -> filter(P, T).

http://pragprog.com/titles/jaerlang2/errata/add
http://forums.pragprog.com/forums/jaerlang2

case and if Expressions ® 69

If you come across some old Erlang code written a few years ago, the names of the
guard tests were different. Old code used guard tests called atom(X), constant(X), float(X),
integer(X), list(X), number(X), pid(X), port(X), reference(X), tuple(X), and binary(X). These tests have
the same meaning as the modern tests named is_atom(X).... The use of old names in
modern code is frowned upon.

This definition is rather ugly; we have to invent an additional function (called
filterl) and pass it all of the arguments of filter/2.

if Expressions
A second conditional primitive, if, is also provided. Here is the syntax:

if
Guardl ->
Expr_seql;
Guard2 ->
Expr_seq2;

end

This is evaluated as follows: First Guardl is evaluated. If this evaluates to true,
then the value of if is the value obtained by evaluating the expression sequence
Expr seql. If Guardl does not succeed, Guard2 is evaluated, and so on, until a
guard succeeds. At least one of the guards in the if expression must evaluate
to true; otherwise, an exception will be raised.

Often the final guard in an if expression is the atom true, which guarantees
that the last form in the expression will be evaluated if all other guards have
failed.

One point that can lead to confusion is the use of a final true guard in an if
expression. If you come from a language like C, you can write an if statement
that does not have an else part, like this:
if(a>0) {

do_this();
}

So, you might be tempted to write the following in Erlang:

if
A>0 ->
do_this()
end

http://pragprog.com/titles/jaerlang2/errata/add
http://forums.pragprog.com/forums/jaerlang2

4.9

Chapter 4. Modules and Functions ¢ 70

This might lead to a problem in Erlang because if is an expression, and all
expressions are supposed to have values. In the case where A is less or equal
to zero, the if expression has no value. This would be an error in Erlang and
cause the program to crash. But it would not be an error in C.

To avoid a possible exception, the Erlang programmer will often add a true
guard at the end of an if expression. Or course, if they want an exception to
be generated, then they omit the additional true guard.

Building Lists in Natural Order

The most efficient way to build a list is to add the elements to the head of an
existing list, so we often see code with this kind of pattern:

some_function([H|T], ..., Result, ...) ->
H1 = ... H ...,
some_function(T, ..., [H1|Result], ...);
some_function([], ..., Result, ...) ->
{..., Result, ...}.

This code walks down a list extracting the head of the list H and computes
some value based on this function (we can call this H1); it then adds H1 to the
output list Result. When the input list is exhausted, the final clause matches,
and the output variable Result is returned from the function.

The elements in Result are in the opposite order as the elements in the original
list, which may or may not be a problem, but if they are in the wrong order,
they can easily be reversed in the final step.

The basic idea is fairly simple.
1. Always add elements to a list head.

2. Taking the elements from the head of an InputList and adding them head
first to an OutputList results in the OutputList having the reverse order of
the InputList.

3. If the order matters, then call lists:reverse/1, which is highly optimized.
4. Avoid going against these recommendations.

Note: Whenever you want to reverse a list, you should call lists:reverse and
nothing else. If you look in the source code for the module lists, you’ll find a
definition of reverse. However, this definition is simply used for illustration.
The compiler, when it finds a call to lists:reverse, calls a more efficient internal
version of the function.

http://pragprog.com/titles/jaerlang2/errata/add
http://forums.pragprog.com/forums/jaerlang2

4.10

Accumulators ® 71

If you ever see code like the following, it should set warning bells sounding
in your brain—this is very inefficient and acceptable only if List is short:

List ++ [H]

Even though ++ might lead to inefficient code, there is a trade-off between
clarity and performance. Using ++ might lead to a clearer program without
performance problems. The best thing to do is first write your programs as
clearly as possible and then, if there are performance problems, measure
before making any optimizations.

Accumulators

Often we want to return two lists from a function. For example, we might
want to write a function that splits a list of integers into two lists that contain
the even and odd integers in the original list. Here’s one way of doing it:

lib_misc.erl

odds_and evensl(L) ->
0dds = [X || X <- L, (X rem 2) =:= 1],
Evens = [X || X <- L, (X rem 2) =:= 0],

{0dds, Evens}.

5> lib misc:odds and evens1([1,2,3,4,5,6]).
{I1,3,5]1,12,4,6]}

The problem with this code is that we traverse the list twice—this doesn’t
matter when the list is short, but if the list is very long, it might be a problem.

To avoid traversing the list twice, we can re-code this as follows:

lib_misc.erl
odds_and_evens2(L) ->
odds_and evens_acc(L, []1, []).

odds and evens acc([H|T], 0dds, Evens) ->
case (H rem 2) of
1 -> odds_and evens_acc(T, [H|0dds], Evens);
0 -> odds _and evens _acc(T, 0dds, [H|Evens])
end;
odds_and _evens _acc([], 0dds, Evens) ->
{0dds, Evens}.

Now this traverses the list only once, adding the odd and even arguments
onto the appropriate output lists (which are called accumulators). This code
also has an additional benefit, which is less obvious; the version with an
accumulator is more space efficient than the version with the [H || filter(H)] type
construction.

http://media.pragprog.com/titles/jaerlang2/code/lib_misc.erl
http://media.pragprog.com/titles/jaerlang2/code/lib_misc.erl
http://pragprog.com/titles/jaerlang2/errata/add
http://forums.pragprog.com/forums/jaerlang2

Chapter 4. Modules and Functions ¢ 72

If we run this, we get almost the same result as before.

1> lib misc:odds and evens2([1,2,3,4,5,6]).
{[5,3,11,[6,4,2]}

The difference is that the order of the elements in the odd and even lists is
reversed. This is a consequence of the way that the list was constructed. If
we want the list elements in the same order as they were in the original, all
we have to do is reverse the lists in the final clause of the function by
changing the second clause of odds_and_evens2 to the following:

odds_and _evens _acc([], 0dds, Evens) ->
{lists:reverse(0dds), lists:reverse(Evens)}.

You now know enough to write and understand a significant amount of Erlang
code. We've covered the basic structure of modules and functions and most
of the control structures and programming techniques we need to write
sequential programs.

Erlang has two more data types called records and maps. Both are used for
storing complex data types. Records are used to give names to the elements
of a tuple. This is useful when the number of elements in a tuple is large.
Records and maps are the subject of the next chapter.

Exercises

Find the manual page for the erlang module. You'll see it lists a large number
of BIFs (far more than we've covered here). You’'ll need this information to
solve some of the following problems:

1. Extend geometryerl. Add clauses to compute the areas of circles and right-
angled triangles. Add clauses for computing the perimeters of different
geometric objects.

2. The BIF tuple_to list(T) converts the elements of the tuple T to a list. Write a
function called my tuple_to_list(T) that does the same thing only not using
the BIF that does this.

3. Look up the definitions of erlang:now/0, erlang:date/0, and erlang:time/0. Write a
function called my_time_func(F), which evaluates the fun F and times how
long it takes. Write a function called my_date_string() that neatly formats the
current date and time of day.

4. Advanced: Look up the manual pages for the Python datetime module. Find
out how many of methods in the Python datetime class can be implemented
using the time-related BIFs in the erlang module. Search the erlang manual
pages for equivalent routines. Implement any glaring omissions.

http://pragprog.com/titles/jaerlang2/errata/add
http://forums.pragprog.com/forums/jaerlang2

Accumulators ® 73

Write a module called math_functions.erl, exporting the functions even/l1 and
odd/1. The function even(X) should return true if X is an even integer and
otherwise false. odd(X) should return true if X is an odd integer.

Add a higher-order function to math_functions.erl called filter(F, L), which returns
all the elements X in L for which F(X) is true.

Add a function split(L) to math_functions.erl, which returns {Even, Odd} where
Even is a list of all the even numbers in L and 0dd is a list of all the odd
numbers in L. Write this function in two different ways using accumulators
and using the function filter you wrote in the previous exercise.

http://pragprog.com/titles/jaerlang2/errata/add
http://forums.pragprog.com/forums/jaerlang2

5.1

CHAPTER 5

Records and Maps

So far we have talked about two containers for data, namely, tuples and lists.
Tuples are used to store a fixed number of elements, and lists are used for a
variable number of elements.

This chapter introduces records and maps. Records are really just tuples in
disguise. Using records we can associate a name with each element in a tuple.

Maps are associative collections of key-value pairs. The key can be any Erlang
term. In Perl and Ruby they are called hashes; in C++ and Java they are called
maps, in Lua they are called tables, and in Python they are called dictionaries.

Using records and maps makes programming easier; instead of remembering
where a data item is stored in a complex data structure, we just use the name
of the item and the system figures out where the data is stored. Records use
a fixed and predefined set of names; maps can add new names dynamically.

When to Use Maps or Records

Records are just tuples in disguise, so they have the same storage and perfor-
mance characteristics as tuples. Maps use more storage than tuples and have
slower lookup properties. On the other hand, maps are far more flexible than
tuples.

Records should be used in the following cases:

e When you can represent your data using a fixed number of predetermined
atoms

e When the number of elements in the record and the names of the elements
will not change with time

e When storage is an issue, typically when you have a large array of tuples
and each tuple has the same structure

http://pragprog.com/titles/jaerlang2/errata/add
http://forums.pragprog.com/forums/jaerlang2

5.2

Chapter 5. Records and Maps ® 76

Maps are appropriate for the following cases:

¢ Representing key-value data structures where the keys are not known in
advance

e Representing data with large numbers of different keys

e As a ubiquitous data structure where efficiency is not important but
convenience of use is

e For “self-documenting” data structures, that is, data structures where
the user can make a good guess at the meaning of the value of a key from
the key name

¢ For representing key-value parse trees such as XML or configuration files

¢ For communication with other programming languages, using JSON

Naming Tuple Items with Records

In a small tuple, remembering what the individual elements represent is rarely
a problem, but when there are a large number of elements in the tuple, it
becomes convenient to name the individual elements. Once we have named
the elements, we will be able to refer to them using the name and not have
to remember what position they had in the tuple.

To name the elements in a tuple, we use a record declaration that has the
following syntax:
-record(Name, {

%% the next two keys have default values

keyl = Defaultl,
key2 = Default2,

%% The next line is equivalent to

3.

Warning: record is not a shell command (use rr in the shell; see the description
that comes later in this section). Record declarations can be used only in
Erlang source code modules and not in the shell.

In the previous example, Name is the name of the record. keyl, key2, and so on,
are the names of the fields in the record; they must always be atoms. Each
field in a record can have a default value that is used if no value for this
particular field is specified when the record is created.

http://pragprog.com/titles/jaerlang2/errata/add
http://forums.pragprog.com/forums/jaerlang2

Naming Tuple Items with Records * 77

For example, suppose we want to manipulate a to-do list. We start by defining
a todo record and storing it in a file (record definitions can be included in
Erlang source code files or put in files with the extension .hrl, which are then
included by Erlang source code files).

Note that file inclusion is the only way to ensure that several Erlang modules
use the same record definitions. This is similar to the way common definitions
are defined in .h files in C and included by source code files. Details of the
include directive can be found in Section 8.15, Include Files, on page 128.

records.hrl
-record(todo, {status=reminder,who=joe,text}).

Once a record has been defined, instances of the record can be created.

To do this in the shell, we have to read the record definitions into the shell
before we can define a record. We use the shell function rr (short for read
records) to do this.

1> rr("records.hrl").
[todo]

Creating and Updating Records
Now we're ready to define and manipulate records.

2> #todo{}.
#todo{status = reminder,who = joe,text = undefined}
3> X1 = #todo{status=urgent, text="Fix errata in book"}.

#todo{status = urgent,who = joe,text = "Fix errata in book"}
4> X2 = Xl#todo{status=done}.
#todo{status = done,who = joe,text = "Fix errata in book"}

In lines 2 and 3 we created new records. The syntax #todo{keyl=Vall, ...,
keyN=VaIN} is used to create a new record of type todo. The keys are all atoms
and must be the same as those used in the record definition. If a key is
omitted, then a default value is assumed for the value that comes from the
value in the record definition.

In line 4 we copied an existing record. The syntax X1#todo{status=done} says to
create a copy of X1 (which must be of type todo), changing the field value status
to done. Remember, this makes a copy of the original record; the original record
is not changed.

Extracting the Fields of a Record

To extract several fields of a record in one operation, we use pattern matching.

http://media.pragprog.com/titles/jaerlang2/code/records.hrl
http://pragprog.com/titles/jaerlang2/errata/add
http://forums.pragprog.com/forums/jaerlang2

Chapter 5. Records and Maps ® 78

5> #todo{who=W, text=Txt} = X2.

#todo{status = done,who = joe,text = "Fix errata in book"}
6> W.

joe

7> Txt.

"Fix errata in book"

On the left side of the match operator (=), we write a record pattern with the
unbound variables W and Txt. If the match succeeds, these variables get bound
to the appropriate fields in the record. If we want just one field of a record,
we can use the “dot syntax” to extract the field.

8> X2#todo.text.
"Fix errata in book"

Pattern Matching Records in Functions

We can write functions that pattern match on the fields of a record and that
create new records. We usually write code like this:
clear status(#todo{status=S, who=W} = R) ->

% Inside this function S and W are bound to the field
values in the record

o o
o°

o°
o°

R is the *entire* record
R#todo{status=finished}

%

oP
o°

of

To match a record of a particular type, we might write the function definition.

do_something(X) when is_record(X, todo) ->

[}
IS

This clause matches when X is a record of type todo.

Records Are Tuples in Disguise
Records are just tuples.

9> X2.
#todo{status = done,who = joe,text = "Fix errata in book"}

Now let’s tell the shell to forget the definition of todo.

10> rf(todo).

ok

11> X2.

{todo,done, joe, "Fix errata in book"}

In line 10 the command rf(todo) told the shell to forget the definition of the todo
record. So, now when we print X2, the shell displays X2 as a tuple. Internally

http://pragprog.com/titles/jaerlang2/errata/add
http://forums.pragprog.com/forums/jaerlang2

5.3

Maps: Associative Key-Value Stores ¢ 79

there are only tuples. Records are a syntactic convenience, so you can refer
to the different elements in a tuple by name and not position.

Maps: Associative Key-Value Stores
Maps were made available from version R17 of Erlang.
Maps have the following properties:

e The syntax of maps is similar to that of records, the difference being that
the record name is omitted and the key-value separator is either => or

e Maps are associative collections of key-value pairs.

e The keys in a map can be any fully ground Erlang term (fully grounded
means that there are no unbound variables in the term).

¢ The elements in a map are ordered by the keys.

e Updating a map where the keys are not changed is a space-efficient
operation.

¢ Looking up the value of a key in a map is an efficient operation.
e Maps have a well-defined order.

We'll look at maps in more detail in the following sections.

The Semantics of Maps
Map literals are written with the following syntax:
#{ Keyl Op Vall, Key2 Op Val2, ..., KeyN Op ValN }

This has a similar syntax to records, but there is no record name following
the hash symbol, and Op is one of the symbols => or :=.

The keys and values can be any valid Erlang terms. For example, suppose
we want to create a map with two keys, a and b.

1>Fl=#{ a=>1, b => 2 }.
#{ a =1, b = 2 }.

Or suppose we want to create a map with nonatomic keys.

2> Facts = #{ {wife,fred} => "Sue", {age, fred} => 45,
{daughter, fred} => "Mary",
{likes, jim} => [...]}.

#{ {age, fred} => 45, {daughter,fred} => "Mary", ...}

http://pragprog.com/titles/jaerlang2/errata/add
http://forums.pragprog.com/forums/jaerlang2

Chapter 5. Records and Maps * 80

Internally the map is stored as an ordered collection and will be always
printed using the sort order of the keys, irrespective of how the map was
created. Here’s an example:

3>F2=#b =2, a=11}.

#{ a=>1, b=>21}.

4> F1 = F2.

#{ a=>1, b == 2 }.

To update a map based on an existing map, we use the following syntax where
Op (the update operator) is => or :=:

NewMap = OldMap # { K1 Op V1,...Kn Op Vn }

The expression K =>V is used for two purposes, either to update the value of
an existing key K with a new value V or to add a completely new KV pair to
the map. This operation always succeeds.

The expression K :=V is used to update the value of an existing key K with a
new value V. This operation fails if the map being updated does not contain the
kcey K.

5> F3 = F1#{ ¢ => xx }.

#{ a => xx, b =2, c = xx}

6> F4 = F1#{ c := 3}

** exception error: bad argument

key c does not exist in old map

There are two good reasons for using the := operator. First, if we misspell the
name of the new key, we want an error to occur. If we create a map Var =
#{keypos =>1, ...} and later update it with Var #{key pos:=2}, then we have almost
certainly spelled the keyname incorrectly and we want to know about it. The
second reason has to do with efficiency. If we use only the := operator in a
map update operation, then we know that the old and new maps have an
identical set of keys and thus can share the same key descriptor. If we had,
for example, a list with a few million maps, all with the same keys, then the
space savings would be significant.

The best way to use maps is to always use Key => Val the first time a key is
defined and use Key := Val each time the value of a specific key is changed.

Pattern Matching the Fields of a Map

The => syntax we used in a map literal can also be used as a map pattern.
As before, the keys in a map pattern cannot contain any unbound variables,
but the value can now contain variables that become bound if the pattern
match succeeds.

http://pragprog.com/titles/jaerlang2/errata/add
http://forums.pragprog.com/forums/jaerlang2

Maps: Associative Key-Value Stores ® 81

Note that maps in Erlang work in a very different manner than the equivalent con-
structs in many other programming languages. To illustrate this, we can take a look
at what happens in JavaScript.

Suppose we do the following in JavaScript:

var x = {status:'old', task:'feed cats'};
var y = Xx;
y.status = 'done';

The value of y is the object {status:'done’, task:'feed cats'}. No surprises here. But surprise,
surprise, x has changed to {status:'done’, task:'feed cats'}. This comes as a great surprise
to an Erlang programmer. We managed to change the value of one of the fields of the
variable x, not by referring to x but by assigning a value to a field of the variable y.
Changing x through an aliased pointer leads to many kinds of subtle errors that can
be very difficult to debug.

The logically equivalent Erlang code is as follows:

{status=>0ld, task=>'feed cats'},
D1#{status := done},

D1 =
D2 =
In the Erlang code, the variables D1 and D2 never change their initial values. D2 behaves
exactly as if it were a deep copy of D1. In fact, a deep copy is not made; the Erlang
system copies only those parts of the internal structures necessary to maintain the
illusion that a copy has been created, so creating what appears to be deep copies of
an object is an extremely lightweight operation.

1> Henry8 = #{ class => king, born => 1491, died => 1547 }.
#{ born => 1491, class=> king, died => 1547 }.

2> #{ born => B } = Henrys8.

#{ born => 1491, class=> king, died => 1547 }.

3> B.

1491

4> #{ D => 1547 }.

* 4: variable 'D' unbound

In line 1 we create a new map containing information about Henry VIII. In
line 2 we create a pattern to extract the value associated with the born key
from the map. The pattern matching succeeds and the shell prints the value
of the entire map. In line 3 we print the value of the variable B.

In line 4 we tried to find some unknown key (D) whose value was 1547. But
the shell prints an error since all keys in a map must be fully ground terms
and D is undefined.

http://pragprog.com/titles/jaerlang2/errata/add
http://forums.pragprog.com/forums/jaerlang2

Chapter 5. Records and Maps ® 82

Note that the number of keys in the map pattern can be less than the number
of keys in the map being matched.

We can use maps containing patterns in function heads, provided that all
the keys in the map are known. For example, we can define a function
count_characters(Str) that returns a map of the number of times a particular
character occurs in a string.

count characters(Str) ->
count characters(Str, #{}).

count_characters([H|T], #{ H => N }=X) ->
count characters(T, X#{ H := N+1 });
count_characters([H|T], X) ->
count_characters(T, X#{ H =>1 });
count characters([], X) ->
X.

Here’s an example:

1> count_characters("hello").
#{101=>1,104=>1,108=>2,111=>1}

So, the character h (ASCII, 101) occurred once, and so on. There are two
things to note about count_characters/2. In the first clause, the variable H inside
the map is also defined outside the map and thus is bound (as required). In
the second clause, we used map_extend to add a new key to the map.

BIFs That Operate on Maps

A number of additional functions operate on maps. They are some of the
functions in the module maps.

maps:new() -> #{}
Return a new empty map.

erlang:is_map(M) -> bool()
Return true if M is a map; otherwise, return false. This can be used as a
guard test or in a function body.

maps:to_list(M) -> [{K1,V1},..., {Kn,Vn}]
Convert the keys and values in the map M to a list of keys and values.
The keys in the resulting list are in strict ascending order.

maps:from_list([{K1,V1},...,{Kn,Vn}]) -> M
Convert a lists of pairs to a map M. If the same key occurs more than once,
then the value associated with first key in the list will be used, and any
subsequent values will be ignored.

http://pragprog.com/titles/jaerlang2/errata/add
http://forums.pragprog.com/forums/jaerlang2

Maps: Associative Key-Value Stores ® 83

maps:map_size(Map) -> NumberOfEntries
Return the number of entries in the map.

maps:is_key(Key, Map) -> bool()
Return true if the map contains an item with key Key; otherwise, return
false.

maps:get(Key, Map) -> Val
Return the value associated with Key from the map; otherwise, raise an
exception.

maps:find(Key, Map) -> {ok, Value} | error
Return the value associated with Key from the map; otherwise, return error.

maps:keys(Map) -> [Key1,..KeyN]
Return a list of keys, in ascending order, that are in the map.

maps:remove(Key, M) -> M1
Return a new map M1 that is the same as M except that the item with key
Key (if present) has been removed.

maps:without([Key1l, ..., KeyN], M) -> M1
Return a new map M1 that is a copy of M but with any elements having
keys in the list [Keyl,..., KeyN] removed.

maps:difference(M1, M2) -> M3
M3 is equivalent to M1 with any elements having the same keys as the
elements in M2 removed.

This behaves as if it had been defined as follows:

maps:difference(M1, M2) ->
maps:without(maps:keys(M2), M1).

Ordering of Maps

Maps are compared by comparing first their size and then their keys and
values in the sort order of their keys.

If A and B are maps, then A < B if maps:size(A) < maps:size(B).
If A and B are maps of equal size, then A < B if maps:to_list(A) < maps:to_list(B).

So, for example, A = #{age => 23, person => "jim"} is less than B = # {email =>
"sue@somplace.com”, name => "sue"}. This is because the smallest key in A (age) is
smaller than the smallest key in B (email).

http://pragprog.com/titles/jaerlang2/errata/add
http://forums.pragprog.com/forums/jaerlang2

Chapter 5. Records and Maps * 84

When comparing maps with other Erlang terms, maps are viewed as being
“more complex” than lists or tuples, and thus a map is always considered
greater than a list or tuple.

Maps can be output with the ~p option in io:format and read with io:read or
file:consult.

The JSON Bridge

Those of you who are familiar with JSON will notice the similarity between
maps and JSON terms. Two BIFS convert between maps and JSON terms.

maps:to_json(Map) -> Bin

Converts a map to a binary containing the JSON representation of the
map. Binaries are discussed in Chapter 7, Binaries and the Bit Syntax,
on page 99. Note that not all maps can be converted to JSON terms. All
the values in the map must be objects that can be represented in JSON.
So, for example, values cannot include objects such as funs, PIDs, refer-
ences, and so on. maps:to_json fails if any of the keys or values cannot be
represented in JSON.

maps:from_json(Bin) -> Map
Converts a binary containing a JSON term to a map.

maps:safe_from_json(Bin) -> Map
Converts a binary containing a JSON term to a map. Any atoms in Bin
must exist before the BIF is called; otherwise, an exception will be raised.
The reason for this is to avoid creating large numbers of new atoms. For
reasons of efficiency, Erlang does not garbage collect atoms, so continu-
ously adding new atoms will, after a very long time, kill the Erlang VM.

In both the previous definitions Map must be an instance of the type json_map(),
which is defined as follows (type definitions will be introduced later in Chapter
9, Types, on page 141):

-type json map() = [{json_key(), json value()}].
Where:

-type json key() =
atom() | binary() | io list()

and:

-type json value() =
integer() | binary() | float() | atom() | [json value()] | json map()

The mapping between JSON objects and Erlang values is as follows:

http://pragprog.com/titles/jaerlang2/errata/add
http://forums.pragprog.com/forums/jaerlang2

Maps: Associative Key-Value Stores ¢ 85

e JSON numbers are represented as Erlang integers or floats.

* JSON strings are represented as Erlang binaries.

e JSON lists are represented as Erlang lists.

e JSON true and false are represented as Erlang atoms true and false.

* JSON objects are represented as Erlang maps, with the restriction that
the keys in the map must be atoms, strings, or binaries, and the values
must be representable as JSON terms.

When we convert to and from JSON terms, we should be aware of certain
limitations of the conversion. Erlang provides integers with unlimited precision.
So, Erlang will happily convert a bignum in a map into a bignum in a JSSON
term; this may or may not be understandable by the program that decodes
the JSON term.

In Chapter 18, Browsing with Websoclcets and Erlang, on page 287, you'll find
out how to use maps combined with JSON terms and websockets to provide
a simple method of communicating with an application running inside a web
browser.

We've now covered all the ways there are of creating compound data structures
in Erlang. We know about lists as containers for a variable number of items
and tuples as containers for a fixed number of items. Records are used to
add symbolic names to the elements of a tuple, and maps are used as asso-
ciative arrays.

In the next chapter, we’ll look at error handling. After this, we’ll get back to
sequential programming and then look at binaries and the bit syntax that
we've omitted up to now.

Exercises

1. Configuration files can be conveniently represented as JSON terms. Write
some functions to read configuration files containing JSON terms and
turn them into Erlang maps. Write some code to perform sanity checks
on the data in the configuration files.

2. Write a function map _search pred(Map, Pred) that returns the first element
{Key,Value} in the map for which Pred(Key, Value) is true.

3. Advanced: Look up the manual pages for the Ruby hash class. Make a
module of the methods in the Ruby class that you think would be appro-
priate to Erlang.

http://pragprog.com/titles/jaerlang2/errata/add
http://forums.pragprog.com/forums/jaerlang2

CHAPTER 6

Error Handling in Sequential Programs

Erlang was originally designed for programming fault-tolerant systems, sys-
tems that in principle should never stop. This means that dealing with errors
at runtime is crucially important. We take error handling very seriously in
Erlang. When errors occur, we need to detect them, correct them, and
continue.

Typical Erlang applications are composed of dozens to millions of concurrent
processes. Having large numbers of processes changes how we think about
error handling. In a sequential language with only one process, it is crucially
important that this process does not crash. If we have large numbers of pro-
cesses, it is not so important if a process crashes, provided some other process
can detect the crash and take over whatever the crashed process was supposed
to be doing.

To build really fault-tolerant systems, we need more than one computer; after
all, the entire computer might crash. So, the idea of detecting failure and
resuming the computation elsewhere has to be extended to networked
computers.

To fully understand error handling, we first need to look at error handling in
sequential programs and then, having understood this, see how to handle
errors in collections of parallel processes. This chapter looks at the former
problem. Handling errors in parallel processes is dealt with in Chapter 13,
Errors in Concurrent Programs, on page 199, and building sets of processes
that collaborate to correct errors is the subject of Section 23.5, The Supervision
Tree, on page 396.

http://pragprog.com/titles/jaerlang2/errata/add
http://forums.pragprog.com/forums/jaerlang2

6.1

Chapter 6. Error Handling in Sequential Programs ¢ 88

Handling Errors in Sequential Code

Every time we call a function in Erlang, one of two things will happen: either
the function returns a value or something goes wrong. We saw examples of
this in the previous chapter. Remember the cost function?

shop.erl

cost(oranges) > 5;
cost(newspaper) -> 8;
cost(apples) > 2;
cost(pears) > 9;
cost(milk) > 7.

This is what happened when we ran it:

1> shop:cost(apples).

2

2> shop:cost(socks).

** exception error: no function clause matching
shop:cost(socks) (shop.erl, line 5)

When we called cost(socks), the function crashed. This happened because none
of the clauses that define the function matched the calling arguments.

Calling cost(socks) is pure nonsense. There is no sensible value that the function
can return, since the price of socks is undefined. In this case, instead of
returning a value, the system raises an exception—this is the technical term
for “crashing.”

We don'’t try to repair the error because this is not possible. We don’t know
what socks cost, so we can’t return a value. It is up to the caller of cost(socks)
to decide what to do if the function crashes.

Exceptions are raised by the system when internal errors are encountered or
explicitly in code by calling throw(Exception), exit(Exception), or error(Exception). When
we evaluated cost(socks), a pattern matching error occurred. There was no
clause defining the cost of socks, so the system automatically generated an
€rror.

Typical internal errors that raise exceptions are pattern matching errors (no
clauses in a function match) or calling BIFs with incorrectly typed arguments
(for example, calling atom_to_list with an argument that is an integer) or calling
a BIF with an incorrect value of an argument (for example, trying to divide a
number by zero).

Note: Many languages say you should use defensive programming and check
the arguments to all functions. In Erlang, defensive programming is built-in.
You should describe the behavior of functions only for valid input arguments;

http://media.pragprog.com/titles/jaerlang2/code/shop.erl
http://pragprog.com/titles/jaerlang2/errata/add
http://forums.pragprog.com/forums/jaerlang2

6.2

Trapping an Exception with try...catch * 89

all other arguments will cause internal errors that are automatically detected.
You should never return values when a function is called with invalid argu-
ments. You should always raise an exception. This rule is called “Let it crash.”

We can explicitly generate an error by calling one of the following BIFs:

exit(Why)
This is used when you really want to terminate the current process. If
this exception is not caught, the signal {'EXIT',Pid,Why} will be broadcast to
all processes that are linked to the current process. We haven’t met signals
yet, but we’ll say a lot more about this in Section 13.3, Creating Links,
on page 203. Signals are almost like error messages, but I won’t dwell on
the details here.

throw(Why)
This is used to throw an exception that a caller might want to catch. In
this case, we document that our function might throw this exception. The
user of this function has two alternatives: you can program for the com-
mon case and blissfully ignore exceptions, or you can enclose the call in
a try...catch expression and handle the errors.

error(Why)
This is used for denoting “crashing errors.” That is, something rather
nasty has happened that callers are not really expected to handle. This
is on par with internally generated errors.

Erlang has two methods of catching an exception. One is to enclose the call
to the function that raised the exception within a try...catch expression. The
other is to enclose the call in a catch expression.

Trapping an Exception with try...catch

If you're familiar with Java, then you’ll have no difficulties understanding the
try...catch expression. Java can trap an exception with the following syntax:

try {
block

} catch (exception type identifier) {
block

} catch (exception type identifier) {
block

}o...

finally {
block

}

Erlang has a remarkably similar construct, which looks like this:

http://pragprog.com/titles/jaerlang2/errata/add
http://forums.pragprog.com/forums/jaerlang2

Chapter 6. Error Handling in Sequential Programs ¢ 90

try FuncOrExpressionSeq of
Patternl [when Guardl] -> Expressionsl;
Pattern2 [when Guard2] -> Expressions2;

catch
ExceptionTypel: ExPatternl [when ExGuardl] -> ExExpressionsl;
ExceptionType2: ExPattern2 [when ExGuard2] -> ExExpressions2;

after
AfterExpressions
end

try...catch Has a Value

Remember, everything in Erlang is an expression, and all expressions have
values. We talked about this earlier in if Expressions, on page 69, when dis-
cussing why the if expression didn’'t have an else part. This means the
expression try...end also has a value. So, we might write something like this:

f(...) ->
X = try ... end,
Y = g(X),

More often, we don’t need the value of the try...catch expression. So, we just
write this:

f(...) ->

try ... end,

Notice the similarity between the try...catch expression and the case expression.

case Expression of
Patternl [when Guardl] -> Expressionsl;
Pattern2 [when Guard2] -> Expressions2;

end

try...catch is like a case expression on steroids. It’'s basically a case expression
with catch and after blocks at the end.

try...catch works as follows: First FuncOrExpessionSeq is evaluated. If this finishes
without raising an exception, then the return value of the function is pattern
matched against the patterns Patternl (with optional guard Guardl), Pattern2, and
so on, until a match is found. If a match is found, then the value of the entire

http://pragprog.com/titles/jaerlang2/errata/add
http://forums.pragprog.com/forums/jaerlang2

Trapping an Exception with try...catch ® 91

try...catch is found by evaluating the expression sequence following the
matching pattern.

If an exception is raised within FuncOrExpressionSeq, then the catch patterns
ExPatternl, and so on, are matched to find which sequence of expressions should
be evaluated. ExceptionType is an atom (one of throw, exit, or error) that tells us
how the exception was generated. If ExceptionType is omitted, then the value
defaults to throw.

Note: Internal errors that are detected by the Erlang runtime system always
have the tag error.

The code following the after keyword is used for cleaning up after FuncOrExpres-
sionSeq. This code is guaranteed to be executed, even if an exception is raised.
The code in the after section is run immediately after any code in Expressions in
the try or catch section of the expression. The return value of AfterExpressions is
lost.

If you're coming from Ruby, all of this should seem very familiar. In Ruby,
we’'d write a similar pattern.

begin

rescue

ensure

end.

The keywords are different, but the behavior is similar.
Shortcuts

We can omit several of the parts of a try...catch expression. This:

try F
catch

end

means the same as this:

try F of

Val -> Val
catch
end

Also, the after section can be omitted.

http://pragprog.com/titles/jaerlang2/errata/add
http://forums.pragprog.com/forums/jaerlang2

6.3

Chapter 6. Error Handling in Sequential Programs ¢ 92

Programming Idioms with try...catch

When we design applications, we often make sure that the code that catches
an error can catch all the errors that a function can produce.

Here’s a pair of functions illustrating this. The first function generates three
different types of an exception and has two ordinary return values.

try_test.erl

generate exception(l) -> a;

generate exception(2) -> throw(a);
generate exception(3) -> exit(a);
generate exception(4) -> {'EXIT', a};
generate exception(5) -> error(a).

Now we’ll write a wrapper function to call generate_exception in a try...catch
expression.

try_test.erl
demol() ->
[catcher(I) || I <- [1,2,3,4,5]11.

catcher(N) ->

try generate exception(N) of
Val -> {N, normal, Val}

catch
throw:X -> {N, caught, thrown, X};
exit:X -> {N, caught, exited, X};
error:X -> {N, caught, error, X}

end.

Running this we obtain the following:

> try test:demol().
[{1,normal,a},
{2, caught, thrown,a},
{3,caught,exited,a},
{4,normal,{'EXIT',a}},
{5,caught,error,a}]

This shows that we can trap and distinguish all the forms of exception that
a function can raise.

Trapping an Exception with catch

The other way to trap an exception is to use the primitive catch. The catch
primitive is not the same as the catch block in the try..catch statement (this is
because the catch statement was part of the language long before try...catch was
introduced).

http://media.pragprog.com/titles/jaerlang2/code/try_test.erl
http://media.pragprog.com/titles/jaerlang2/code/try_test.erl
http://pragprog.com/titles/jaerlang2/errata/add
http://forums.pragprog.com/forums/jaerlang2

6.4

Programming Style with Exceptions ¢ 93

When an exception occurs within a catch statement, it is converted into an
{'EXIT", ...} tuple that describes the error. To demonstrate this, we can call
generate_exception within a catch expression.

try_test.erl
demo2() ->
[{I, (catch generate exception(I))} || I <- [1,2,3,4,5]].

Running this we obtain the following:

2> try_test:demo2().
[{1,a},
{2,a},
{3, {'EXIT',a}},
{4,{'EXIT',a}},
{5, {'EXIT',
{a, [{try_test,generate exception,l1,
[{file,"try test.erl"},{line,9}1},
{try test,'-demo2/0-1c$"0/1-0-',1,
[{file,"try test.erl"},{line,28}]},
{try_test,'-demo2/0-1c$"0/1-0-',1,
[{file,"try test.erl"},{line,28}1},
{erl eval,do apply,6,[{file,"erl eval.erl"},{line,576}1},
{shell,exprs,7,[{file,"shell.erl"},{line,668}1},
{shell,eval exprs,7,[{file,"shell.erl"},{line,623}]},
{shell,eval loop,3,[{file,"shell.erl"},{line,608}]1}1}}}]

If you compare this with the output from the try...catch section, you’ll see that
the two methods provide differing amounts of debug information. The first
method summarized the information. The second provided a detailed stack
trace.

Programming Style with Exceptions
Handling exceptions is not rocket science; the following sections contain some
frequently occurring code patterns that we can reuse in our programs.

Improving Error Messages

One use of the error/1 BIF is to improve the quality of error messages. If we
call math:sqrt(X) with a negative argument, we’ll see the following:

1> math:sqrt(-1).
** exception error: bad argument in an arithmetic expression
in function math:sqrt/1

called as math:sqrt(-1)

We can write a wrapper for this, which improves the error message.

http://media.pragprog.com/titles/jaerlang2/code/try_test.erl
http://pragprog.com/titles/jaerlang2/errata/add
http://forums.pragprog.com/forums/jaerlang2

Chapter 6. Error Handling in Sequential Programs ¢ 94

lib_misc.erl
sqrt(X) when X < 0 ->
error({squareRootNegativeArgument, X});
sqrt(X) ->
math:sqrt(X).

2> lib_misc:sqrt(-1).
** exception error: {squareRootNegativeArgument, -1}
in function 1lib misc:sqrt/1

Code Where Error Returns Are Common

If your function does not really have a “common case,” you should probably
return something like {ok, Value} or {error, Reason}, but remember that this forces
all callers to do something with the return value. You then have to choose
between two alternatives; you either write this:

case f(X) of
{ok, Val} ->
do_some thing with(Val);

{error, Why} ->
%% ... do something with the error ...
end,

which takes care of both return values, or write this:

{ok, Val} = f(X),
do_some thing with(Val);

which raises an exception if f(X) returns {error, ...}.

Code Where Errors Are Possible but Rare

Typically you should write code that is expected to handle errors, as in this
example:

try my func(X)
catch
throw: {thisError, X} -> ...
throw: {someOtherError, X} -> ...
end

And the code that detects the errors should have matching throws as follows:

http://media.pragprog.com/titles/jaerlang2/code/lib_misc.erl
http://pragprog.com/titles/jaerlang2/errata/add
http://forums.pragprog.com/forums/jaerlang2

6.5

Stack Traces ® 95

my func(X) ->
case ... of

. throw({thisError, ...})
. throw({someOtherError, ...})

Catching Every Possible Exception

If we want to catch every possible error, we can use the following idiom (which
uses the fact that _ matches anything):

try Expr
catch
-> ... Code to handle all exceptions

end

If we omit the tag and write this:

try Expr

catch
_ -> ... Code to handle all exceptions
end

then we won’t catch all errors, since in this case the default tag throw is
assumed.

Stack Traces

When an exception is caught, we can find the latest stack trace by calling
erlang:get_stacktrace(). Here’s an example:

try_test.erl
demo3() ->
try generate exception(5)
catch
error:X ->
{X, erlang:get stacktrace()}
end.

1> try_test:demo3().

{a, [{try_test,generate exception,l,[{file,"try test.erl"},{line,9}1},
{try test,demo3,0,[{file,"try test.erl"},{line,33}1},
{erl eval,do apply,6,[{file,"erl eval.erl"},{line,576}1},
{shell,exprs,7,[{file,"shell.erl"},{line,668}1},
{shell,eval exprs,7,[{file,"shell.erl"},{line,623}]},
{shell,eval loop,3,[{file,"shell.erl"},{line,608}]1}1}

http://media.pragprog.com/titles/jaerlang2/code/try_test.erl
http://pragprog.com/titles/jaerlang2/errata/add
http://forums.pragprog.com/forums/jaerlang2

6.6

Chapter 6. Error Handling in Sequential Programs ® 96

The previous trace shows what happened when we tried to evaluate
try_test:demo3(). It shows that our program crashed in the function generate_excep-
tion/1, which was defined in line 9 of the file try test.erl.

The stack trace contains information about where the current function (which
crashed) would have returned to had it succeeded. The individual tuples in
the stack trace are of the form {Mod,Func,Arity,Info}. Mod, Func, and Arity denote a
function, and Info contains the filename and line number of the item in the
stack trace.

So, try_test:generate_exception/1 would have returned to try test:demo3(), which would
have returned to erl_eval:do_apply/6, and so on. If a function was called from the
middle of a sequence of expressions, then the site of the call and the place to
which the function will return are almost the same. If the function that was
called was the last function in a sequence of expressions, then information
about where the function was called from is not retained on the stack. Erlang
applies a last-call optimization to such code, so the stack trace will not record
where the function was called from, only where it will return to.

Examining the stack trace gives us a good indication of where the program
was executing at the time when the error occurred. Normally the top two
entries on the stack trace give you enough information to locate the place
where the error occurred.

Now we know about handling errors in sequential programs. The important
thing to remember is to let it crash. Never return a value when a function is
called with an incorrect argument; raise an exception. Assume that the caller
will fix the error.

Fail Fast and Noisily, Fail Politely

We need to consider two key principles when coding for errors. First, we
should fail as soon as an error occurs, and we should fail noisily. Several
programming languages adopt the principle of failing silently, trying to fix up
the error and continuing; this results in code that is a nightmare to debug.
In Erlang, when an error is detected internally by the system or is detected
by program logic, the correct approach is to crash immediately and generate
a meaningful error message. We crash immediately so as not to make matters
worse. The error message should be written to a permanent error log and be
sufficiently detailed so that we can figure out what went wrong later.

Second, fail politely means that only the programmer should see the detailed
error messages produced when a program crashes. A user of the program
should never see these messages. On the other hand, the user should be

http://pragprog.com/titles/jaerlang2/errata/add
http://forums.pragprog.com/forums/jaerlang2

Fail Fast and Noisily, Fail Politely ® 97

alerted to the fact that an error has occurred and be told what action they
can take to remedy the error.

Error messages are gold dust for programmers. They should never scroll up
the screen to vanish forever. They should go to a permanent log file that can
be read later.

At this point, we have covered errors only in sequential programs. In Chapter
13, Errors in Concurrent Programs, on page 199, we’ll look at how errors can
be managed in concurrent programs, and in Section 23.2, The Error Logger,
on page 384, we’ll see how to log errors permanently so we never lose them.

In the next chapter, we’ll look at binaries and the bit syntax. The bit syntax
is unique to Erlang and extends pattern matching over bit fields, which sim-
plifies writing programs that manipulate binary data.

Exercises

1. file:read file(File) returns {ok, Bin} or {error, Why}, where File is the filename and
Bin contains the contents of the file. Write a function myfile:read(File) that
returns Bin if the file can be read and raises an exception if the file cannot
be read.

2. Rewrite the code in try_test.erl so that it produces two error messages: a
polite message for the user and a detailed message for the developer.

http://pragprog.com/titles/jaerlang2/errata/add
http://forums.pragprog.com/forums/jaerlang2

7.1

CHAPTER 7

Binaries and the Bit Syntax

A binary is a data structure designed for storing large quantities of raw data
in a space-efficient manner. The Erlang VM is optimized for the efficient input,
output, and message passing of binaries.

Binaries should be used whenever possible for storing the contents of large
quantities of unstructured data, for example large strings or the contents of
files.

In most circumstances, the number of bits in a binary will be exactly divisible
by 8 and thus corresponds to a sequence of bytes. If the number of bits is
not exactly divisible by 8, we use the name bitstring to refer to the data. When
we say bitstring, it is to emphasize the fact that the number of bits in the
data is not an exact multiple of 8.

Binaries, bitstrings, and bit-level pattern matching were introduced in Erlang
to simplify network programming where we often want to probe into the bit-
and byte-level structure of protocol packets.

In this chapter, we’ll first take a detailed look at binaries. Most of the opera-
tions on binaries work in the same way on bitstrings, so after understanding
binaries, we’ll look at bitstrings emphasizing where they differ from binaries.

Binaries

Binaries are written and printed as sequences of integers or strings, enclosed
in double less-than and greater-than brackets. Here’s an example:

1> <<5,10,20>>.
<<5,10,20>>

2> <<"hello">>.
<<"hello">>

3> <<65,66,67>>
<<"ABC">>

http://pragprog.com/titles/jaerlang2/errata/add
http://forums.pragprog.com/forums/jaerlang2

Chapter 7. Binaries and the Bit Syntax ® 100

When you use integers in a binary, each must be in the range 0 to 255. The
binary <<"cat'>> is shorthand for <<99,97,116>>; that is, the binary is made
from the ASCII character codes of the characters in the string.

As with strings, if the content of a binary is a printable string, then the shell
will print the binary as a string; otherwise, it will be printed as a sequence of
integers.

We can build a binary and extract the elements of a binary using a BIF, or
we can use the bit syntax (see Section 7.2, The Bit Syntax, on page 101). In
this section, we’ll look only at the BIFs that manipulate binaries.

Working with Binaries

We can manipulate binaries using BIFs or with functions from the binary
module. Many of the functions exported from binary are implemented as native
code. Here are some of the most important:

list to_binary(L) -> B
list_to_binary returns a binary constructed by flattening (flattening means
removing all the list parentheses) all the elements in the iolist L. An iolist
is defined recursively as a list whose elements are integers in 0..255,
binaries, or iolists.

1> Binl = <<1,2,3>>.

<<1,2,3>>

2> Bin2 = <<4,5>>,
<<4,5>>

3> Bin3 = <<6>>.
<<6>>

4> list_to_binary([Binl1,1,[2,3,Bin2],4|Bin3]).
<<1,2,3,1,2,3,4,5,4,6>>

Note: The space surrounding the equals sign in line 1 is necessary.
Without this space, the second symbol seen by the Erlang tokenizer would
be the atom '=<', which is the equal-to-or-less-than operator. Sometimes
we have to put spaces or parentheses around binary literals to avoid
syntax errors.

split_binary(Bin, Pos) -> {Binl, Bin2}
This splits the binary Bin into two parts at position Pos.

1> split_binary(<<1,2,3,4,5,6,7,8,9,10>>, 3).
{<<1,2,3>>,<<4,5,6,7,8,9,10>>}

term_to_binary(Term) -> Bin
This converts any Erlang term into a binary.

http://pragprog.com/titles/jaerlang2/errata/add
http://forums.pragprog.com/forums/jaerlang2

7.2

The Bit Syntax ® 101

The binary produced by term_to binary is represented in the so-called
external term format. Terms that have been converted to binaries using
term_to_binary can be stored in files, sent in messages over a network, and
so on, and the original term from which they were made can be recon-
structed later. This is extremely useful for storing complex data structures
in files or sending complex data structures to remote machines.

binary_to_term(Bin) -> Term
This is the inverse of term_to_binary.

1> B = term_to_binary({binaries,"are", useful}).
<<131,104,3,100,0,8,98,105,110,97,114,105,101,115,107,
0,3,97,114,101,100,0,6,117,115,101,102,117,108>>

2> binary_to_term(B).

{binaries, "are",useful}

byte_size(Bin) -> Size
This returns the number of bytes in the binary.

1> byte_size(<<1,2,3,4,5>>).
5

Of all these, term_to_binary and binary to_term are my absolute favorites. They are
incredibly useful. term_to_binary turns any term into a binary. Inside the binary
(if you peeked), you'll find data stored in “the Erlang external term format”
(defined in the Erlang documentation).! Once we have converted a term to a
binary, we can send the binary in a message over a socket or store it in a file.
This is the basic underlying method used for implementing distributed Erlang
and is used internally in many databases.

The Bit Syntax

The bit syntax is a notation used for extracting and packing individual bits
or sequences of bits in binary data. When you're writing low-level code to
pack and unpack binary data at a bit level, you’ll find the bit syntax incredibly
useful. The bit syntax was developed for protocol programming (something
that Erlang excels at) and produces highly efficient code for manipulating
binary data.

Suppose we have three variables—X, Y, and Z—that we want to pack into a 16-bit
memory area. X should take 3 bits in the result, Y should take 7 bits, and Z should
take 6. In most languages this involves some messy low-level operations involving
bit shifting and masking. In Erlang, we just write the following:

M = <<X:3, Y:7, Z:6>>

1. http://erlang.org/doc/apps/erts/erl_ext dist.html

http://erlang.org/doc/apps/erts/erl_ext_dist.html
http://pragprog.com/titles/jaerlang2/errata/add
http://forums.pragprog.com/forums/jaerlang2

Chapter 7. Binaries and the Bit Syntax ® 102

This creates a binary and stores it in the variable M. Note: M is of type binary
since the total bit length of the data is 16 bits, which is exactly divisible by
8. If we change the size of X to 2 bits and write this:

M= <<X:2, Y:7, Z:6>>

then the total number of bits in M is 15, so the resulting data structure is of
type bitstring.

The full bit syntax is slightly more complex, so we’ll go through it in small
steps. First we’ll look at some simple code to pack and unpack RGB color
data into 16-bit words. Then we’ll dive into the details of bit syntax expres-
sions. Finally we’ll look at three examples taken from real-world code that
uses the bit syntax.

Packing and Unpacking 16-Bit Colors

We'll start with a very simple example. Suppose we want to represent a 16-
bit RGB color. We decide to allocate 5 bits for the red channel, 6 bits for the
green channel, and 5 bits for the blue channel. (We use one more bit for the
green channel because the human eye is more sensitive to green light.)

We can create a 16-bit memory area Mem containing a single RGB triplet as
follows:

1> Red = 2.

2

2> Green = 61.

61

3> Blue = 20.

20

4> Mem = <<Red:5, Green:6, Blue:5>>.
<<23,180>>

Note in expression 4 we created a 2-byte binary containing a 16-bit quantity.
The shell prints this as <<23,180>>.

To pack the memory, we just wrote the expression <<Red:5, Green:6, Blue:5>>.

To unpack the binary into integer variables, R1, G1, and B1, we write a pattern.

5> <<R1l:5, G1:6, Bl:5>> = Mem.
<<23,180>>

6> R1.

2

7> Gl.

61

8> Bl.

20

http://pragprog.com/titles/jaerlang2/errata/add
http://forums.pragprog.com/forums/jaerlang2

The Bit Syntax ® 103

That was easy. If you don’t believe me, try doing that using bitshifts and log-
ical ands and ors in your favorite programming language.

We can actually do far more with the bit syntax than this simple example
suggests, but first we need to master a rather complex syntax. Once we've
done this, we’ll be able to write remarkably short code to pack and unpack
complex binary data structures.

Bit Syntax Expressions

Bit syntax expressions are used to construct binaries or bitstrings. They have
the following form:

<<>>
<<El1l, E2, ..., En>>

Each element Ei specifies a single segment of the binary or bitstring. Each
element Ei can have one of four possible forms.
Ei = Value |

Value:Size |

Value/TypeSpecifierList |
Value:Size/TypeSpecifierList

If the total number of bits in the expression is evenly divisible by 8, then this
will construct a binary; otherwise, it will construct a bitstring.

When you construct a binary, Value must be a bound variable, a literal string,
or an expression that evaluates to an integer, a float, or a binary. When used
in a pattern matching operation, Value can be a bound or unbound variable,
integer, literal string, float, or binary.

Size must be an expression that evaluates to an integer. In pattern matching,
Size must be an integer or a bound variable whose value is an integer. Size
must be a bound variable, at the point in the pattern where the value is
needed. The value of the Size can be obtained from earlier pattern matches in
the binary. For example, the following:

<<Size:4, Data:Size/binary, ...>>

is a legal pattern, since the value of Size is unpacked from the first four bits
of the binary and then used to denote the size of the next segment in the
binary.

The value of Size specifies the size of the segment. The default value depends on
the type. For an integer it is 8, for a float it is 64, and for a binary it is the size of
the binary. In pattern matching, this default value is valid only for the very last
element. If the size of a segment is not specified, a default value will be assumed.

http://pragprog.com/titles/jaerlang2/errata/add
http://forums.pragprog.com/forums/jaerlang2

Chapter 7. Binaries and the Bit Syntax * 104

TypeSpecifierList is a hyphen-separated list of items of the form End-Sign-Type-Unit.
Any of the previous items can be omitted, and the items can occur in any
order. If an item is omitted, then a default value for the item is used.

The items in the specifier list can have the following values:

End is big | little | native
This specifies the endianess of the machine. native is determined at run-
time, depending upon the CPU of your machine. The default is big, which
is also known as network byte order. The only significance of this has to
do with packing and unpacking integers and floats from binaries. When
packing and unpacking integers from binaries on different endian
machines, you should take care to use the correct endianess.

When writing bit syntax expressions, some experimentation may be nec-
essary. To assure yourself that you are doing the right thing, try the
following shell command:

1> {<<16#12345678:32/big>>,<<16#12345678:32/1little>>,
<<16#12345678:32/native>>,<<16#12345678:32>>}.

{<<18,52,86,120>>,<<120,86,52,18>>,
<<120,86,52,18>>,<<18,52,86,120>>}

The output shows you exactly how integers are packed in a binary using
the bit syntax.

In case you're worried, term_to_binary and binary_to_term “do the right thing”
when packing and unpacking integers. So, you can, for example, create
a tuple containing integers on a big-endian machine. Then use
term_to_binary to convert the term to a binary and send this to a little-endian
machine. On the little-endian, you do binary_to_term, and all the integers in
the tuple will have the correct values.

Sign is signed | unsigned
This parameter is used only in pattern matching. The default is unsigned.

Type is integer | float | binary | bytes | bitstring | bits | utf8 | utf16 | utf32
The default is integer.

Unit is written unit:1|2 | ... 256
The default value of Unit is 1 for integer, float, and bitstring and is 8 for binary.
No value is required for types utf8, utfl6, and utf32.

The total size of the segment is Size x Unit bits long. A segment of type
binary must have a size that is evenly divisible by 8.

http://pragprog.com/titles/jaerlang2/errata/add
http://forums.pragprog.com/forums/jaerlang2

The Bit Syntax ® 105

If you've found the bit syntax description a bit daunting, don’t panic. Getting
the bit syntax patterns right can be pretty tricky. The best way to approach
this is to experiment in the shell with the patterns you need until you get it
right, then cut and paste the result into your program. That’s how I do it.

Real-World Bit Syntax Examples

Learning the bit syntax is a bit of extra effort, but the benefits are enormous.
This section has three examples from real life. All the code here is cut and
pasted from real-world programs.

The first example looks for synchronization points in MPEG audio data. This
example shows the power of bit syntax pattern matching; the code is very
easy to understand and has a clear correspondence to the MPEG header
frame specification. The second example was used to build binary data files
in the Microsoft Common Object File Format (COFF) format. Packing and
unpacking binary data files (like COFF) is typically performed using binaries
and binary pattern matching. The final example shows how to unpack an
IPv4 datagram.

Finding the Synchronization Frame in MPEG Data

Suppose we want to write a program that manipulates MPEG audio data. We
might want to write a streaming media server in Erlang or extract the data
tags that describe the content of an MPEG audio stream. To do this, we need
to identify and synchronize with the data frames in an MPEG stream.

MPEG audio data is made up from a number of frames. Each frame has its
own header followed by audio information—there is no file header, and in
principle, you can cut an MPEG file into pieces and play any of the pieces.
Any software that reads an MPEG stream is supposed to find the header
frames and thereafter synchronize the MPEG data.

An MPEG header starts with an 11-bit frame sync consisting of eleven consec-
utive 1 bits followed by information that describes the data that follows:

AAAAAAAA AAABBCCD EEEEFFGH IIJJKLMM

AAAAAAAAAAA The sync word (11 bits, all 1s).

BB 2 bits is the MPEG Audio version ID.
cc 2 bits is the layer description.
D 1 bit, a protection bit.

And so on....

http://pragprog.com/titles/jaerlang2/errata/add
http://forums.pragprog.com/forums/jaerlang2

Chapter 7. Binaries and the Bit Syntax ® 106

The exact details of these bits need not concern us here. Basically, given
knowledge of the values of A to M, we can compute the total length of an MPEG
frame.

To find the sync point, we first assume that we are correctly positioned at the
start of an MPEG header. We then try to compute the length of the frame.
Then one of the following can happen:

e Our assumption was correct, so when we skip forward by the length of
the frame, we will find another MPEG header.

¢ Our assumption was incorrect; either we are not positioned at a sequence
of 11 consecutive 1 bits that marks the start of a header or the format of
the word is incorrect so that we cannot compute the length of the frame.

e Our assumption was incorrect, but we are positioned at a couple of bytes
of music data that happen to look like the start of a header. In this case,
we can compute a frame length, but when we skip forward by this length,
we cannot find a new header.

To be really sure, we look for three consecutive headers. The synchronization
routine is as follows:

mp3_sync.erl
find sync(Bin, N) ->
case is _header(N, Bin) of
{ok, Lenl, } ->
case is header(N + Lenl, Bin) of
{ok, Len2, } ->
case is header(N + Lenl + Len2, Bin) of

{ok, , } ->
{ok, N};
error ->
find sync(Bin, N+1)
end;
error ->
find sync(Bin, N+1)
end;
error ->

find sync(Bin, N+1)
end.

find_sync tries to find three consecutive MPEG header frames. If byte N in Bin is
the start of a header frame, then is_header(N, Bin) will return {ok, Length, Info}. If
is_header returns error, then N cannot point to the start of a correct frame.

We can do a quick test in the shell to make sure this works.

http://media.pragprog.com/titles/jaerlang2/code/mp3_sync.erl
http://pragprog.com/titles/jaerlang2/errata/add
http://forums.pragprog.com/forums/jaerlang2

The Bit Syntax ® 107

1> c(mp3_sync).

{ok, mp3_sync}

2> {ok, Bin} = file:read_file("/home/joe/music/mymusic.mp3").
{ok,<<73,68,51,3,0,0,0,0,33,22,84,73,84,50,0,0,0,28, ...>>
3> mp3_sync:find_sync(Bin, 1).

{ok,4256}

This uses file:read_file to read the entire file into a binary (see Reading the Entire
File into a Binary, on page 248). Now for is_header:

mp3_sync.erl
is_header(N, Bin) ->
unpack header(get word(N, Bin)).

get word(N, Bin) ->
{_,<<C:4/binary, /binary>>} = split_binary(Bin, N),
C.

unpack header(X) ->
try decode header(X)
catch
_ -> error
end.

This is slightly more complicated. First we extract 32 bits of data to analyze
(this is done by get word); then we unpack the header using decode_header. Now
decode_header is written to crash (by calling exit/1) if its argument is not at the
start of a header. To catch any errors, we wrap the call to decode_header in a
try...catch statement (read more about this in Section 6.1, Handling Errors in
Sequential Code, on page 88). This will also catch any errors that might be
caused by incorrect code in framelength/4. decode_header is where all the fun starts.

mp3_sync.erl
decode header(<<2#11111111111:11,B:2,C:2, D:1,E:4,F:2,G:1,Bits:9>>) ->
Vsn = case B of
0 -> {2,5};
1 -> exit(badVsn);
2 -> 2;
3 ->1
end,
Layer = case C of
0 -> exit(badLayer);
1 ->3;
2 -> 2;
3 ->1
end,
%% Protection = D,
BitRate = bitrate(Vsn, Layer, E) * 1000,
SampleRate = samplerate(Vsn, F),

http://media.pragprog.com/titles/jaerlang2/code/mp3_sync.erl
http://media.pragprog.com/titles/jaerlang2/code/mp3_sync.erl
http://pragprog.com/titles/jaerlang2/errata/add
http://forums.pragprog.com/forums/jaerlang2

Chapter 7. Binaries and the Bit Syntax * 108

Padding = G,
FrameLength = framelength(Layer, BitRate, SampleRate, Padding),
if

FrameLength < 21 ->
exit(frameSize);
true ->
{ok, FrameLength, {Layer,BitRate,SampleRate,Vsn,Bits}}

end;
decode header() ->
exit(badHeader).

The magic lies in the amazing expression in the first line of the code.
decode header(<<2#11111111111:11,B:2,C:2, D:1,E:4,F:2,G:1,Bits:9>>) ->

2#11111111111 is a base 2 integer, so this pattern matches eleven consecutive
1 bits, 2 bits into B, 2 bits into C, and so on. Note that the code exactly follows
the bit-level specification of the MPEG header given earlier. More beautiful
and direct code would be difficult to write. This code is beautiful and also
highly efficient. The Erlang compiler turns the bit syntax patterns into highly
optimized code that extracts the fields in an optimal manner.

Unpacking COFF Data

A few years ago I decided to write a program to make stand-alone Erlang
programs that would run on Windows—I wanted to build a Windows
executable on any machine that could run Erlang. Doing this involved
understanding and manipulating the Microsoft Common Object File Format
(COFF)-formatted files. Finding out the details of COFF was pretty tricky, but
various APIs for C++ programs were documented. The C++ programs used
the type declarations DWORD, LONG, WORD, and BYTE; these type declarations
will be familiar to programmers who have programmed Windows internals.

The data structures involved were documented, but only from a C or C++
programmer’s point of view. The following is a typical C typedef:

typedef struct IMAGE RESOURCE DIRECTORY {
DWORD Characteristics;
DWORD TimeDateStamp;
WORD MajorVersion;
WORD MinorVersion;
WORD NumberOfNamedEntries;
WORD NumberOfIdEntries;
} IMAGE RESOURCE DIRECTORY, *PIMAGE RESOURCE DIRECTORY;

To write my Erlang program, I first defined four macros that must be included
in the Erlang source code file.

http://pragprog.com/titles/jaerlang2/errata/add
http://forums.pragprog.com/forums/jaerlang2

The Bit Syntax ® 109

-define
-define
-define
-define

DWORD, 32/unsigned-little-integer).
LONG, 32/unsigned-little-integer).
WORD, 16/unsigned-little-integer).
BYTE, 8/unsigned-little-integer).

—_ o~~~

Note: Macros are explained in Section 8.17, Macros, on page 129. To expand
these macros, we use the syntax ?DWORD, ?LONG, and so on. For example, the
macro ?DWORD expands to the literal text 32/unsigned-little-integer.

These macros deliberately have the same names as their C counterparts.
Armed with these macros, I could easily write some code to unpack image
resource data into a binary.

unpack image resource directory(Dir) ->

<<Characteristics : ?DWORD,
TimeDateStamp : ?DWORD,
MajorVersion : ?WORD,
MinorVersion : ?WORD,
NumberOfNamedEntries : ?WORD,
NumberOfIdEntries : ?WORD, /binary>> = Dir,

If you compare the C and Erlang code, you’'ll see that they are pretty similar.
So, by taking care with the names of the macros and the layout of the Erlang
code, we can minimize the semantic gap between the C code and the Erlang
code, something that makes our program easier to understand and less likely
to have errors.

The next step was to unpack data in Characteristics, and so on.

Characteristics is a 32-bit word consisting of a collection of flags. Unpacking
these using the bit syntax is extremely easy; we just write code like this:

<<ImageFileRelocsStripped:1, ImageFileExecutableImage:1, ...>> =
<<Characteristics:32>>

The code <<Characteristics:32>> converted Characteristics, which was an integer,
into a binary of 32 bits. Then the following code unpacked the required bits
into the variables ImageFileRelocsStripped, ImageFileExecutablelmage, and so on:

<<ImageFileRelocsStripped:1, ImageFileExecutableImage:1, ...>> = ...

Again, I kept the same names as in the Windows API in order to keep the
semantic gap between the specification and the Erlang program to a minimum.

Using these macros made unpacking data in the COFF format...well, I can’t
really use the word easy, but the code was reasonably understandable.

http://pragprog.com/titles/jaerlang2/errata/add
http://forums.pragprog.com/forums/jaerlang2

7.3

Chapter 7. Binaries and the Bit Syntax ® 110

Unpacking the Header of an IPv4 Datagram

This example illustrates parsing an Internet Protocol version 4 (IPv4) datagram
in a single pattern-matching operation:

-define(IP VERSION, 4).
-define(IP_MIN HDR LEN, 5).

DgramSize = byte_size(Dgram),
case Dgram of
<<?IP VERSION:4, HLen:4, SrvcType:8, TotLen:16,
ID:16, Flags:3, Frag0ff:13,
TTL:8, Proto:8, HdrChkSum:16,
SrcIP:32,
DestIP:32, RestDgram/binary>> when HLen >= 5, 4*HLen =< DgramSize ->
OptsLen = 4*(HLen - ?IP MIN HDR LEN),
<<0pts:0OptsLen/binary,Data/binary>> = RestDgram,

This code matches an IP datagram in a single pattern-matching expression.
The pattern is complex and illustrates how data that does not fall on byte
boundaries can easily be extracted (for example, the Flags and FragOff fields
that are 3 and 13 bits long, respectively). Having pattern matched the IP
datagram, the header and data part of the datagram are extracted in a second
pattern matching operation.

We've now covered bit field operations on binaries. Recall that binaries must
be a multiple of eight bits long. The next section covers bitstrings, which are
used to store sequences of bits.

Bitstrings: Processing Bit-Level Data

Pattern matching on bitstrings works at a bit level, so we can pack and unpack
sequences of bits into a bitstring in a single operation. This is extremely
useful when writing code that needs to manipulate bit-level data, such as
with data that is not aligned to 8-bit boundaries, or variable-length data,
where the data length is expressed in bits rather than bytes.

We can illustrate bit-level processing in the shell.

1> Bl = <<1:8>>.
<<1>>

2> byte_size(Bl).

1

3> is_binary(Bl).
true

4> is_bitstring(Bl).
true

http://pragprog.com/titles/jaerlang2/errata/add
http://forums.pragprog.com/forums/jaerlang2

Bitstrings: Processing Bit-Level Data ® 111

5> B2 = <<1:17>>.

<<0,0,1:1>>

6> is_binary(B2).
false

7> is_bitstring(B2).
true

8> byte_size(B2).

3

9> bit_size(B2).

17

In most programming languages, the least addressable unit of storage is typically 8
bits wide. Most C compilers, for example, define a char (the least addressable unit of
storage) to be 8 bits wide. Manipulating bits within a char is complicated, since to
access individual bits, they have to masked out and shifted into registers. Writing
such code is tricky and error-prone.

In Erlang the least addressable unit of storage is a bit, and individual sequences of
bits within a bitstring can be accessed directly without any shifting and masking
operations.

In the previous example, Bl is a binary, but B2 is a bitstring since it is 17 bits
long. We construct B2 with the syntax <<1:17>>, and it is printed as <<0,0,1:1>>,
that is, as a binary literal whose third segment is a bitstring of length 1. The
bit size of B2 is 17, and the byte size is 3 (this is actually the size of the binary
that contains the bitstring).

Working with bitstrings is tricky. We can’t, for example, write a bitstring to
a file or socket (which we can do with a binary), since files and sockets work
in units of bytes.

We'll conclude this section with a single example, which extracts the individ-
ual bits of a byte. To do so, we’ll make use of a new construct called a bit
comprehension. Bit comprehensions are to binaries what list comprehensions
are to lists. List comprehensions iterate over lists and return lists. Bit com-
prehensions iterate over binaries and produce lists or binaries.

This example shows how to extract the bits from a byte:

1> B = <<16#5f>>.
<<" ">>
2> [X || <<X:1>> <= B].
[6,1,0,1,1,1,1,1]

3> << <<X>> || <<X:1>> <= B >>,

<<0,1,0,1,1,1,1,1>>

http://pragprog.com/titles/jaerlang2/errata/add
http://forums.pragprog.com/forums/jaerlang2

Chapter 7. Binaries and the Bit Syntax ® 112

In line 1 we made a binary that contains a single byte. 16#5f is a hexadecimal
constant. The shell prints this as <<" ">> since 16#f5 is the ASCII code for the
_ character. In line 2, the syntax <<<X:1>> is a pattern representing one bit.
The result is a list of the bits in the byte. Line 3 is similar to line 2, only we
construct a binary from the bits instead of a list.

The syntax of bit comprehensions is not described here but can be found in
the Erlang Reference Manual.> More examples of bitstring processing can be
found in the paper “Bit-Level Binaries and Generalized Comprehensions in
Erlang.”

Now we know about binaries and bitstrings. Binaries are used internally in
the Erlang system whenever we want to manage large amounts of unstructured
data. In later chapters we’ll see how binaries can be sent in messages over
sockets and stored in files.

We’re almost done with sequential programming. What remains are a number
of small topics; there’s nothing really fundamental or exciting, but they're
useful subjects to know.

Exercises

1. Write a function that reverses the order of bytes in a binary.

2. Write a function term_to_packet(Term) -> Packet that returns a binary consisting
of a 4-byte length header N followed by N bytes of data produced by calling
term_to_binary(Term).

3. Write the inverse function packet_to_term(Packet) -> Term that is the inverse of
the previous function.

4. Write some tests in the style of Adding Tests to Your Code, on page 46, to
test that the previous two functions can correctly encode terms into
packets and recover the original terms by decoding the packets.

5. Write a function to reverse the bits in a binary.

2. http://www.erlang.org/doc/reference_manual/users guide.html
3. http://user.it.uu.se/~pergu/papers/erlang05.pdf

http://www.erlang.org/doc/reference_manual/users_guide.html
http://user.it.uu.se/~pergu/papers/erlang05.pdf
http://pragprog.com/titles/jaerlang2/errata/add
http://forums.pragprog.com/forums/jaerlang2

CHAPTER 8

The Rest of Sequential Erlang

What remains to sequential Erlang are a number of small odds and ends that
you have to know but that don't fit into any of the other topics. There’s no
particular logical order to these topics, so they are just presented in alphabetic
order for ease of reference. The topics covered are as follows:

Apply
This computes the value of a function from its name and arguments when
the function and module name are computed dynamically.

Arithmetic expressions
All legal arithmetic expressions are defined here.

Arity
The arity of a function is a number of arguments that a function accepts.

Attributes

This section covers the syntax and interpretation of the Erlang module
attributes.

Block expressions
These are expressions using begin and end.

Booleans
These are things represented by the atoms true or false.

Boolean expressions
This section covers all the boolean expressions.

Character set
This is the character set that Erlang uses.

Comments
This section covers the syntax of comments.

http://pragprog.com/titles/jaerlang2/errata/add
http://forums.pragprog.com/forums/jaerlang2

Chapter 8. The Rest of Sequential Erlang * 114

Dynamic code loading
This section covers how dynamic code loading works.

The Erlang preprocessor
This section covers what happens before Erlang is compiled.

Escape sequences
This section covers the syntax of the escape sequences used in strings
and atoms.

Expressions and expression sequences
This section covers how expressions and expression sequences are defined.

Function references
This section covers how to refer to functions.

Include files
This section covers how to include files at compile time.

List addition and subtraction operators
These are ++ and - -.

Macros
This section covers the Erlang macro processor.

Match operator in patterns
This section covers how the match operator = can be used in patterns.

Numbers
This section covers the syntax of numbers.

Operator precedence
This section covers the priority and associativity of all the Erlang operators.

The process dictionary
Each Erlang process has a local area of destructive storage, which can
be useful sometimes.

References
References are unique symbols.

Short-circuit boolean expressions
These are boolean expressions that are not fully evaluated.

Term comparisons
This section covers all the term comparison operators and the lexical
ordering of terms.

http://pragprog.com/titles/jaerlang2/errata/add
http://forums.pragprog.com/forums/jaerlang2

8.1

apply ® 115

Tuple modules
These provide a method of creating “stateful” modules.

Underscore variables
These are variables that the compiler treats in a special way.

I suggest you just skim through these topics, not reading them in detail; just
put the information into the back of your mind for later reference.

apply
The BIF apply(Mod, Func, [Argl, Arg2, ..., ArgN]) applies the function Func in the module
Mod to the arguments Argl, Arg2, ... ArgN. It is equivalent to calling this:

Mod:Func(Argl, Arg2, ..., ArgN)

apply lets you call a function in a module, passing it arguments. What makes
it different from calling the function directly is that the module name and/or
the function name can be computed dynamically.

All the Erlang BIFs can also be called using apply by assuming that they belong
to the module erlang. So, to build a dynamic call to a BIF, we might write the
following:

1> apply(erlang, atom_to_list, [hellol]).
"hello"

Warning: The use of apply should be avoided if possible. When the number of
arguments to a function is known in advance, it is much better to use a call
of the form M:F(Argl, Arg2, ... ArgN) than apply. When calls to functions are built
using apply, many analysis tools cannot work out what is happening, and
certain compiler optimizations cannot be made. So, use apply sparingly and
only when absolutely needed.

The Mod argument to apply does not have to be an atom; it can also be a tuple.
If we call this:

{Mod, P1, P2, ..., Pn}:Func(Al, A2, ..., An)
then what actually gets called is the following function:
Mod:Func(Al, A2, ..., An, {Mod, P1, P2, ..., Pn})

This technique is discussed in detail in Section 24.3, Stateful Modules, on
page 418.

http://pragprog.com/titles/jaerlang2/errata/add
http://forums.pragprog.com/forums/jaerlang2

8.2

8.3

Chapter 8. The Rest of Sequential Erlang ® 116

Arithmetic Expressions

All the possible arithmetic expressions are shown in the following table. Each
arithmetic operation has one or two arguments—these arguments are shown
in the table as Integer or Number (Number means the argument can be an
integer or a float).

Op Description Arg. Type Priority
+X +X Number 1
-X -X Number 1
X*Y X*Y Number 2
X/Y X /'Y (floating-point division) Number 2
bnot X Bitwise not of X Integer 2
XdivY Integer division of X and Y Integer 2
XremY Integer remainder of X divided by Y Integer 2
X band Y Bitwise and of XandY Integer 2
X+Y X+Y Number 3
X-Y X-Y Number 3
XborY Bitwiseor of XandY Integer 3
X bxor'Y Bitwise xor of X and Y Integer 3
X bslN Arithmetic bitshift left of X by N bits Integer 3
X bsr N Arithmetic bitshift right of X by N bits Integer 3

Table 3—Arithmetic expressions

Associated with each operator is a priority. The order of evaluation of a complex
arithmetic expression depends upon the priority of the operator: all operations
with priority 1 operators are evaluated first, then all operators with priority
2, and so on.

You can use parentheses to change the default order of evaluation—any
parenthesized expressions are evaluated first. Operators with equal priorities
are treated as left associative and are evaluated from left to right.

Arity

The arity of a function is the number of arguments that the function has. In
Erlang, two functions with the same name and different arity in the same
module represent entirely different functions. They have nothing to do with
each other apart from a coincidental use of the same name.

http://pragprog.com/titles/jaerlang2/errata/add
http://forums.pragprog.com/forums/jaerlang2

8.4

Attributes ® 117

By convention Erlang programmers often use functions with the same name
and different arities as auxiliary functions. Here’s an example:

lib_misc.erl
sum(L) -> sum(L, 0).

sum([], N) -> N;
sum([H|T], N) -> sum(T, H+N).

What you see here are two different functions, one with arity 1 and the second
with arity 2.

The function sum(L) sums the elements of a list L. It makes use of an auxiliary
routine called sum/2, but this could have been called anything. You could have
called the auxiliary routine hedgehog/2, and the meaning of the program would
be the same. sum/2 is a better choice of name, though, since it gives the reader
of your program a clue as to what’s going on and since you don’t have to
invent a new name (which is always difficult).

Often we “hide” auxiliary functions by not exporting them. So, a module
defining the sum(L) would export only sum/1 and not sum/2.

Attributes

Module attributes have the syntax -AtomTag(...) and are used to define certain
properties of a file. (Note: -record(...) and -include(...) have a similar syntax but are
not considered module attributes.) There are two types of module attributes:
predefined and user-defined.

Predefined Module Attributes

The following module attributes have predefined meanings and must be placed
before any function definitions:

-module(modname).
The module declaration. modname must be an atom. This attribute must
be the first attribute in the file. Conventionally the code for modname should
be stored in a file called modname.erl. If you do not do this, then automatic
code loading will not work correctly; see Section 8.10, Dynamic Code
Loading, on page 122 for more details.

-import(Mod, [Namel/Arityl, Name2/Arity2,...]).
The import declaration specifies which functions are to be imported into
a module. The previous declaration means that the functions Namel with
Arityl arguments, Name2 with Arity2 arguments, and so on, are to be
imported from the module Mod.

http://media.pragprog.com/titles/jaerlang2/code/lib_misc.erl
http://pragprog.com/titles/jaerlang2/errata/add
http://forums.pragprog.com/forums/jaerlang2

Chapter 8. The Rest of Sequential Erlang ® 118

Once a function has been imported from a module, then calling the
function can be achieved without specifying the module name. Here’s an
example:

-module(abc).
-import(lists, [map/2]).

f(L) ->
L1 = map(fun(X) -> 2*X end, L),
lists:sum(L1).

The call to map needs no qualifying module name, whereas to call sum we
need to include the module name in the function call.

-export([Namel/Arityl, Name2/Arity2, ...]).
Export the functions Namel/Arityl, Name2/Arity2, and so on, from the current
module. Only exported functions can be called from outside a module.
Here’s an example:

abc.erl

-module(abc).
-export([a/2, b/1]).
Y) -> c(X) + a(Y).

(

X.
X.
X.

o
V V. V —«—

w X N

The export declaration means that only a/2 and b/l can be called from
outside the module abc. So, for example, calling abc:a(5) from the shell
(which is outside the module) will result in an error because a/l is not
exported from the module.

1> abc:a(1,2).

7

2> abc:b(12).

144

3> abc:a(5).
** exception error: undefined function abc:a/l

The error message might cause confusion here. The call to abc:a(5) failed
because the function concerned is undefined. It is actually defined in the
module, but it is not exported.

-compile(Options).
Add Options to the list of compiler options. Options is a single compiler option
or a list of compiler options (these are described in the manual page for
the module compile).

http://media.pragprog.com/titles/jaerlang2/code/abc.erl
http://pragprog.com/titles/jaerlang2/errata/add
http://forums.pragprog.com/forums/jaerlang2

Attributes ® 119

Note: The compiler option -compile(export_all). is often used while debugging
programs. This exports all functions from the module without having to
explicitly use the -export annotation.

-vsn(Version).
Specify a module version. Version is any literal term. The value of Version
has no particular syntax or meaning, but it can be used by analysis pro-
grams or for documentation purposes.

User-Defined Attributes
The syntax of a user-defined attribute is as follows:

-SomeTag(Value).

SomeTag must be an atom, and Value must be a literal term. The values of the
module attributes are compiled into the module and can be extracted at
runtime. Here’s an example of a module containing some user-defined
attributes:

attrs.erl

-module(attrs).

-vsn(1234).
-author({joe,armstrong}).
-purpose("example of attributes").
-export([fac/1]).

fac(l) -> 1;
fac(N) -> N * fac(N-1).

We can extract the attributes as follows:

1> attrs:module_info().
[{exports, [{fac,1},{module info,0},{module info,1}]},
{imports,[1},
{attributes, [{vsn,[1234]},
{author, [{joe,armstrong}]},
{purpose, "example of attributes"}1},
{compile, [{options,[]1},
{version,"4.8"},
{time, {2013,5,3,7,36,55}},
{source, "/Users/joe/jaerlang2/code/attrs.erl"}1}]

The user-defined attributes contained in the source code file reappear as a
subterm of {attributes, ...}. The tuple {compile, ...} contains information that was
added by the compiler. The value {version,"4.5.5"} is the version of the compiler
and should not be confused with the vsn tag defined in the module attributes.
In the previous example, attrs:module_info() returns a property list of all the

http://media.pragprog.com/titles/jaerlang2/code/attrs.erl
http://pragprog.com/titles/jaerlang2/errata/add
http://forums.pragprog.com/forums/jaerlang2

8.5

8.6

Chapter 8. The Rest of Sequential Erlang ® 120

metadata associated with a compiled module. attrs:module_info(X), where X is one
of exports, imports, attributes, or compile, returns the individual attribute associated
with the module.

Note that the functions module_info/0 and module_info/1 are automatically created
every time a module is compiled.

To run attrs:module_info, we have to load the beam code for the module attrs into
the Erlang VM. We can extract the same information without loading the
module by using the module beam_lib.

3> beam_1lib:chunks("attrs.beam", [attributes]).

{ok,{attrs, [{attributes, [{author, [{joe,armstrong}]},
{purpose, "example of attributes"},
{vsn, [1234]}]}1}}

beam_lib:chunks extracts the attribute data from a module without loading the
code for the module.

Block Expressions

Block expressions are used when the Erlang syntax requires a single
expression, but we want to have a sequence of expressions at this point in
the code. For example, in a list comprehension of the form [E || ...], the syntax
requires E to be a single expression, but we might want to do several things
in E.
begin

Exprl,

ExprN
end

You can use block expressions to group a sequence of expressions, similar
to a clause body. The value of a begin ... end block is the value of the last
expression in the block.

Booleans

There is no distinct boolean type in Erlang; instead, the atoms true and false
are given a special interpretation and are used to represent boolean literals.

Sometimes we write functions that return one of two possible atomic values.
When this happens, it’s good practice to make sure they return a boolean.
It’s also a good idea to name your functions to make it clear that they return
a boolean.

http://pragprog.com/titles/jaerlang2/errata/add
http://forums.pragprog.com/forums/jaerlang2

8.7

Boolean Expressions ¢ 121

For example, suppose we write a program that represents the state of some
file. We might find ourselves writing a function file_state(File) that returns open
or closed. When we write this function, we could think about renaming the
function and letting it return a boolean. With a little thought we could rewrite
our program to use a function called is_file_open(File) that returns true or false.

The reason for using booleans instead of choosing two different atoms to
represent the status is simple. There are a large number of functions in the
standard libraries that work on functions that return booleans. So, if we make
sure all our functions return booleans, then we’ll be able to use them
together with the standard library functions.

For example, suppose we have a list of files L and we want to partition this
into a list of open files and a list of closed files. Using the standard libraries,
we could write the following:

lists:partition(fun is file open/1, L)

But using our file_state/l1 function, we’d have to write a conversion function
before we call the library routine.

lists:partition(fun(X) ->
case file state(X) of

open -> true;
closed -> false
end, L)

Boolean Expressions
There are four possible boolean expressions.

e not Bl: Logical not

¢ Bl and B2: Logical and
e Bl orB2: Logical or

e Bl xor B2: Logical xor

In all of these, B1 and B2 must be boolean literals or expressions that evaluate
to booleans. Here are some examples:

1> not true.

false
2> true and false.
false
3> true or false.
true

4> (2 > 1) or (3 > 4).
true

http://pragprog.com/titles/jaerlang2/errata/add
http://forums.pragprog.com/forums/jaerlang2

8.8

8.9

8.10

Chapter 8. The Rest of Sequential Erlang * 122

Character Set

Since Erlang version R16B, Erlang source code files are assumed to be
encoded in the UTF-8 character set. Prior to this, the ISO-8859-1 (Latin-1)
character set was used. This means all UTF-8 printable characters can be
used in source code files without using any escape sequences.

Internally Erlang has no character data type. Strings don’t really exist but
instead are represented by lists of integers. Unicode strings can be represented
by lists of integers without any problems.

Comments

Comments in Erlang start with a percent character (%) and extend to the end
of line. There are no block comments.

Note: You'll often see double percent characters (%%) in code examples.
Double percent marks are recognized in the Emacs erlang-mode and enable
automatic indentation of commented lines.

% This is a comment
my function(Argl, Arg2) ->
case f(Argl) of
{yes, X} -> % it worked

Dynamic Code Loading

Dynamic code loading is one of the most surprising features built into the
heart of Erlang. The nice part is that it just works without you really being
aware of what’s happening in the background.

The idea is simple: every time we call someModule:someFunction(...), we’ll always
call the latest version of the function in the latest version of the module, even
if we recompile the module while code is running in this module.

If a calls b in a loop and we recompile b, then a will automatically call the new
version of b the next time b is called. If many different processes are running and
all of them call b, then all of them will call the new version of b if b is recompiled.
To see how this works, we'll write two little modules: a and b. b is very simple.

b.erl
-module(b).
-export([x/0]1).

x() -> 1.

Now we’ll write a.

http://media.pragprog.com/titles/jaerlang2/code/b.erl
http://pragprog.com/titles/jaerlang2/errata/add
http://forums.pragprog.com/forums/jaerlang2

Dynamic Code Loading * 123

a.erl
-module(a).
-compile(export all).

start(Tag) ->
spawn(fun() -> loop(Tag) end).

loop(Tag) ->
sleep(),
Val = b:x(),
io:format("Vsnl (~p) b:x() = ~p~n",[Tag, Vall),
loop(Tag) .

sleep() ->
receive
after 3000 -> true
end.

Now we can compile a and b and start a couple of a processes.

1> c(b).
{ok, b}
2> c(a).
{ok, a}
3> a:start(one).
<0.41.0>

Vsnl (one) b:x()
4> a:start(two).
<0.43.0>
Vsnl (one
Vsnl (two
Vsnl (one
Vsnl (two

I
Jun

b:
b:
b:
b:

AAAA
1}
Sl

)
)
)
)

The a processes sleep for three seconds, wake up and call b:x(), and then print the
result. Now we’ll go into the editor and change the module b to the following:

-module(b).
-export([x/0]1).

x() -> 2.
Then we recompile b in the shell. This is what happens:

5> c(b).
{ok,b}
Vsnl (one
Vsnl (two
Vsnl (one
Vsnl (two

1]
N NDNN

http://media.pragprog.com/titles/jaerlang2/code/a.erl
http://pragprog.com/titles/jaerlang2/errata/add
http://forums.pragprog.com/forums/jaerlang2

Chapter 8. The Rest of Sequential Erlang * 124

The two original versions of a are still running, but now they call the new
version of b. So, when we call b:x() from within the module a, we really call
“the latest version of b.” We can change and recompile b as many times as we
want, and all the modules that call it will automatically call the new version
of b without having to do anything special.

Now we've recompiled b, but what happens if we change and recompile a?
We'll do an experiment and change a to the following:

-module(a).
-compile(export_all).

start(Tag) ->
spawn(fun() -> loop(Tag) end).

loop(Tag) ->
sleep(),
Val = b:x(),
io:format("Vsn2 (~p) b:x() = ~p~n",[Tag, Vall]),
loop(Tag) .

sleep() ->
receive
after 3000 -> true
end.

Now we compile and start a.

6> c(a).

{ok,a}

Vsnl (one) b:x() =2
Vsnl (two) b:x() = 2

7> a:start(three).
<0.53.0>

Vsnl (b

Vsnl (two) b:

()

b

Vsn2
Vsnl (one)
Vsnl (two) b:
Vsn2 (three)

I~

NN NN

)

)
X (
)

)
X

Something funny is going on here. When we start the new version of a, we
see that new version running. However, the existing processes running the
first version of a are still running that old version of a without any problems.

Now we could try changing b yet again.

http://pragprog.com/titles/jaerlang2/errata/add
http://forums.pragprog.com/forums/jaerlang2

Dynamic Code Loading ® 125

-module(b).
-export([x/0]).

x() -> 3.

We'll recompile b in the shell. Watch what happens.

8> c(b).
{ok,b}
Vsnl (one) b:x()
Vsnl (two) b:x() =
Vsn2 (three) b:x()

n w w

Now both the old and new versions of a call the latest version of b.
Finally, we’ll change a again (this is the third change to a).

-module(a).
-compile(export_all).

start(Tag) ->
spawn(fun() -> loop(Tag) end).

loop(Tag) ->
sleep(),
Val = b:x(),
io:format("Vsn3 (~p) b:x() = ~p~n",[Tag, Vall),
loop(Tag) .

sleep() ->
receive
after 3000 -> true
end.

Now when we recompile a and start a new version of a, we see the following:

9> c(a).
{ok,a}
Vsn2 (three) b:x() =3

10> a:start(four).
<0.106.0>

Vsn2 (three) b:x(
Vsn3 (four) b:x()
Vsn2 (three) b:x(
Vsn3 (four) b:x()

) =3
=3
) =3
=3

The output contains strings generated by the last two versions of a (versions
2 and 3); the processes running version 1 of a’s code have died.

http://pragprog.com/titles/jaerlang2/errata/add
http://forums.pragprog.com/forums/jaerlang2

8.11

8.12

Chapter 8. The Rest of Sequential Erlang ® 126

Erlang can have two versions of a module running at any one time, the current
version and an old version. When you recompile a module, any process run-
ning code in the old version is killed, the current version becomes the old
version, and the newly compiled module becomes the current version. Think
of this as a shift register with two versions of the code. As we add new code,
the oldest version is junked. Some processes can run old versions of the code
while other processes can simultaneously run new versions of the code.

Read the purge module documentation' for more details.

Erlang Preprocessor

Before an Erlang module is compiled, it is automatically processed by the
Erlang preprocessor. The preprocessor expands any macros that might be in
the source file and inserts any necessary include files.

Ordinarily, you won’t need to look at the output of the preprocessor, but in
exceptional circumstances (for example, when debugging a faulty macro), you
might want to save the output of the preprocessor. To see the result of prepro-
cessing the module some_module.erl, give the OS shell command.

$ erlc -P some module.erl

This produces a listing file called some_module.P.

Escape Sequences

Within strings and quoted atoms, you can use escape sequences to enter any
nonprintable characters. All the possible escape sequences are shown in Table
4, Escape sequences, on page 127.

Let’s give some examples in the shell to show how these conventions work.
(Note: ~w in a format string prints the list without any attempt to pretty print
the result.)

%% Control characters

1> io:format("~w~n", ["\b\d\e\f\n\r\s\t\v"]).
[8,127,27,12,10,13,32,9,11]

ok

%% Octal characters in a string

2> io:format("~w~n", ["\123\12\1"]).
[83,10,1]

ok

%% Quotes and escapes in a string

3> io:format("~w~n", ["\'\"\\"]).

[39,34,92]

1. http://www.erlang.org/doc/man/erlang.html#purge_module/1

http://www.erlang.org/doc/man/erlang.html#purge_module/1
http://pragprog.com/titles/jaerlang2/errata/add
http://forums.pragprog.com/forums/jaerlang2

8.13

Expressions and Expression Sequences ® 127

ok

%% Character codes

4> io:format("~w~n", ["\a\z\A\Z"]).

[97,122,65,90]

ok

Escape Sequence Meaning Integer Code

\b Backspace 8

\d Delete 127

\e Escape 27

\f Form feed 12

\n New line 10

\r Carriage return 13

\s Space 32

\t Tab 9

\v Vertical tab 11

\x{...} Hexadecimal characters (... are hexadecimal
characters)

\Ya.\"zor\"A.\"Z Ctrl+A to Ctrl+Z 1 to 26

\' Single quote 39

\" Double quote 34

\\ Backslash 92

\C The ASCII code for C (C is a character) (An integer)

Table 4—Escape sequences

Expressions and Expression Sequences

In Erlang, anything that can be evaluated to produce a value is called an
expression. This means things such as catch, if, and try...catch are expressions.
Things such as record declarations and module attributes cannot be evaluated,
so they are not expressions.

Expression sequences are sequences of expressions separated by commas.
They are found all over the place immediately following an -> arrow. The value
of the expression sequence El, E2, ..., En is defined to be the value of the last
expression in the sequence. This is computed using any bindings created
when computing the values of E1, E2, and so on. This is equivalent to progn in
LISP.

http://pragprog.com/titles/jaerlang2/errata/add
http://forums.pragprog.com/forums/jaerlang2

Chapter 8. The Rest of Sequential Erlang * 128

8.14 Function References

8.15

Often we want to refer to a function that is defined in the current module or
in some external module. You can use the following notation for this:

fun LocalFunc/Arity
This is used to refer to the local function called LocalFunc with Arity argu-
ments in the current module.

fun Mod:RemoteFunc/Arity
This is used to refer to an external function called RemoteFunc with Arity
arguments in the module Mod.

Here’s an example of a function reference in the current module:

-module(x1).
-export([square/1l, ...]).

square(X) -> X * X.
double(L) -> lists:map(fun square/1l, L).

If we wanted to call a function in a remote module, we could refer to the
function as in the following example:

-module(x2).
double(L) -> lists:map(fun x1l:square/1, L).
fun x1:square/l means the function square/l in the module x1.

Note that function references that include the module name provide switch-
over points for dynamic code upgrade. For details, read Section 8.10,
Dynamic Code Loading, on page 122.

Include Files
Files can be included with the following syntax:
-include(Filename).

In Erlang, the convention is that include files have the extension .hrl. The
FileName should contain an absolute or relative path so that the preprocessor
can locate the appropriate file. Library header files can be included with the
following syntax:

-include_lib(Name).
Here’s an example:

-include_lib("kernel/include/file.hrl").

http://pragprog.com/titles/jaerlang2/errata/add
http://forums.pragprog.com/forums/jaerlang2

8.16

8.17

List Operations ++ and - - ® 129

In this case, the Erlang compiler will find the appropriate include files. (kernel,
in the previous example, refers to the application that defines this header
file.)

Include files usually contain record definitions. If many modules need to share
common record definitions, then the common record definitions are put into
include files that are included by all the modules that need these definitions.

List Operations ++ and - -
++ and -- are infix operators for list addition and subtraction.
A ++ B adds (that is, appends) A and B.

A--B subtracts the list B from the list A. Subtraction means that every element
in B is removed from A. Note that if some symbol X occurs only K times in B,
then only the first K occurrences of X in A will be removed.

Here are some examples:

1> [1,2,3] ++ [4,5,6].

[1,2,3,4,5,6]

2> [a,b,c,1,d,e,1,x,y,1] -- [1].
[a,b,c,d,e,1,x,y,1]

3> [a,b,c,1,d,e,1,x,y,1] -- [1,1].
[a,b,c,d,e,x,y,1]

4> [a,b,c,1,d,e,1,x,y,1] -- [1,1,1].
[a,b,c,d,e,x,y]

5> [a,b,c,1,d,e,1,x,y,1] -- [1,1,1,1].
[a,b,c,d,e,x,y]

++ can also be used in patterns. When matching strings, we can write patterns
such as the following:

f("begin" ++ T) -> ...
f("end" ++ T) -> ...

The pattern in the first clause is expanded into [$b,$e,$g,$i,$n|T].

Macros
Erlang macros are written as shown here:

-define(Constant, Replacement).
-define(Func(Varl, Var2,.., Var), Replacement).

Macros are expanded by the Erlang preprocessor epp when an expression of
the form ?MacroName is encountered. Variables occurring in the macro definition
match complete forms in the corresponding site of the macro call.

http://pragprog.com/titles/jaerlang2/errata/add
http://forums.pragprog.com/forums/jaerlang2

Chapter 8. The Rest of Sequential Erlang ® 130

-define(macrol(X, Y), {a, X, Y}).

foo(A) ->
?macrol(A+10, b)

That expands into this:

foo(A) ->

{a,A+10,b}.
In addition, a number of predefined macros provide information about the
current module. They are as follows:

* ?FILE expands to the current filename.
e ?MODULE expands to the current module name.
¢ 7LINE expands to the current line number.

Control Flow in Macros

Inside a module, the following directives are supported; you can use them to
control macro expansion:

-undef(Macro).
Undefines the macro; after this you cannot call the macro.

-ifdef(Macro).
Evaluates the following lines only if Macro has been defined.

-ifndef(Macro).
Evaluates the following lines only if Macro is undefined.

-else.
Allowed after an ifdef or ifndef statement. If the condition was false, the
statements following else are evaluated.

-endif.
Marks the end of an ifdef or ifndef statement.

Conditional macros must be properly nested. They are conventionally grouped
as follows:

-ifdef (<FlagName>) .
-define(...).
-else.
-define(...).
-endif.

We can use these macros to define a DEBUG macro. Here’s an example:

http://pragprog.com/titles/jaerlang2/errata/add
http://forums.pragprog.com/forums/jaerlang2

8.18

Line 1

Match Operator in Patterns ® 131

m1.erl
-module(ml).
-export([loop/1]).

-ifdef(debug flag).

-define (DEBUG(X), io:format("DEBUG ~p:~p ~p~n",[?MODULE, ?LINE, X])).
-else.

-define (DEBUG(X), void).

-endif.

loop(0) ->
done;

loop(N) ->
?DEBUG(N),
loop(N-1).

Note: io:format(String, [Args]) prints the variables in [Args] in the Erlang shell
according to the formatting information in String. The formatting codes are
preceded by a ~ symbol. ~p is short for pretty print, and ~n produces a newline.
io:format understands an extremely large number of formatting options; for
more information, see Writing a List of Terms to a File, on page 251.

To enable the macro, we set the debug_flag when we compile the code. This is

done with an additional argument to ¢/2 as follows:
1> c¢(ml, {d, debug_flag}).

{ok,ml1}

2> ml:loop(4).

DEBUG ml1:13 4

DEBUG ml1:13 3

DEBUG ml1:13 2

DEBUG m1:13 1

done

If debug_flag is not set, the macro just expands to the atom void. This choice of
name has no significance; it’s just a reminder to you that nobody is interested
in the value of the macro.

Match Operator in Patterns
Let’'s suppose we have some code like this:

funcl([{tagl, A, B}|T]) ->

.: f(..., {tagl, A, B}, ...)

In line 1, we pattern match the term {tagl, A, B}, and in line 3, we call f with
an argument that is {tagl, A, B}. When we do this, the system rebuilds the term

http://media.pragprog.com/titles/jaerlang2/code/m1.erl
http://pragprog.com/titles/jaerlang2/errata/add
http://forums.pragprog.com/forums/jaerlang2

8.19

Chapter 8. The Rest of Sequential Erlang * 132

{tagl, A, B}. A much more efficient and less error-prone way to do this is to
assign the pattern to a temporary variable, Z, and pass this into f, like this:

funcl([{tagl, A, B}=Z|T]) ->

f(... 2z, ...)

The match operator can be used at any point in the pattern, so if we have
two terms that need rebuilding, such as in this code:

funcl([{tag, {one, A}, B}|T]) ->

f(..., {tag, {one,A}, B}, ...),
g(..., {one, A}), ...)

then we could introduce two new variables, Z1 and 72, and write the following:

funcl([{tag, {one, A}=Z1, B}=72|T]) ->

N

ooty 22, ...,
g(..., 721, ...),
Numbers

Numbers in Erlang are either integers or floats.

Integers

Integer arithmetic is exact, and the number of digits that can be represented
in an integer is limited only by available memory.

Integers are written with one of three different syntaxes.

Conventional syntax
Here integers are written as you expect. For example, 12, 12375, and -23427
are all integers.

Base K integers
Integers in a number base other than ten are written with the syntax
K#Digits; thus, we can write a number in binary as 2#00101010 or a number
in hexadecimal as 16#af6bfa23. For bases greater than ten, the characters
abc... (or ABC..) represent the numbers 10, 11, 12, and so on. The highest
number base is 36.

S syntax
The syntax $C represents the integer code for the ASCII character C. Thus,
$a is short for 97, $1 is short for 49, and so on.

http://pragprog.com/titles/jaerlang2/errata/add
http://forums.pragprog.com/forums/jaerlang2

8.20

Operator Precedence * 133

Immediately after the $ we can also use any of the escape sequences
described in Table 4, Escape sequences, on page 127. Thus, $\n is 10, $\"c
is 3, and so on.

Here are some examples of integers:
0 -65 2#010001110 -8#377 16#fe34 16#FE34 36#wow
(Their values are 0, -65, 142, -255, 65076, 65076, and 42368, respectively.)

Floats

A floating-point number has five parts: an optional sign, a whole number
part, a decimal point, a fractional part, and an optional exponent part.

Here are some examples of floats:
1.0 3.14159 -2.3e+6 23.56E-27

After parsing, floating-point numbers are represented internally in IEEE 754
64-bit format. Real numbers with absolute value in the range 102 to 10°%®
can be represented by an Erlang float.

Operator Precedence

Table 5, Operator precedence, on page 133 shows all the Erlang operators in
order of descending priority together with their associativity. Operator
precedence and associativity are used to determine the evaluation order in

unparenthesized expressions.

Operators Associativity

#

(unary) +, (unary) -, bnot, not

/, *, div, rem, band, and Left associative
+, -, bor, bxor, bsl, bsr, or, xor Left associative
++, -- Right associative
==, [=, =<, <, >=, >, ==, =[=

andalso

orelse

=1 Right associative
catch

Table 5—Operator precedence

http://pragprog.com/titles/jaerlang2/errata/add
http://forums.pragprog.com/forums/jaerlang2

8.21

Chapter 8. The Rest of Sequential Erlang * 134

Expressions with higher priority (higher up in the table) are evaluated first,
and then expressions with lower priority are evaluated. So, for example, to
evaluate 3+4*5+6, we first evaluate the subexpression 4*5, since (*) is higher
up in the table than (+). Now we evaluate 3+20+6. Since (+) is a left-associative
operator, we interpret this as meaning (3+20)+6, so we evaluate 3+20 first,
yielding 23; finally we evaluate 23+6.

In its fully parenthesized form, 3+4*5+6 means ((3+(4*5))+6). As with all program-
ming languages, it is better to use parentheses to denote scope than to rely
upon the precedence rules.

The Process Dictionary

Each process in Erlang has its own private data store called the process dic-
tionary. The process dictionary is an associative array (in other languages
this might be called a map, hashmap, or hash table) composed of a collection
of keys and values. Each key has only one value.

The dictionary can be manipulated using the following BIFs:

put(Key, Value) -> OldValue.
Add a Key, Value association to the process dictionary. The value of put is
OldValue, which is the previous value associated with Key. If there was no
previous value, the atom undefined is returned.

get(Key) -> Value.
Look up the value of Key. If there is a Key, Value association in the dictionary,
return Value; otherwise, return the atom undefined.

get() -> [{Key,Value}].
Return the entire dictionary as a list of {Key,Value} tuples.

get_keys(Value) -> [Key].
Return a list of keys that have the values Value in the dictionary.

erase(Key) -> Value.
Return the value associated with Key or the atom undefined if there is no
value associated with Key. Finally, erase the value associated with Key.

erase() -> [{Key,Value}].
Erase the entire process dictionary. The return value is a list of {Key,Value}
tuples representing the state of the dictionary before it was erased.

Here’s an example:

http://pragprog.com/titles/jaerlang2/errata/add
http://forums.pragprog.com/forums/jaerlang2

8.22

8.23

References * 135

1> erase().

[1

2> put(x, 20).
undefined

3> get(x).

20

4> get(y).
undefined

5> put(y, 40).
undefined

6> get(y).

40

7> get().
[{y,40},{x,20}]
8> erase(x).
20

9> get().
[{y,40}]

As you can see, variables in the process dictionary behave pretty much like
conventional mutable variables in imperative programming languages. If you
use the process dictionary, your code will no longer be side effect free, and
all the benefits of using nondestructive variables that we discussed in Erlang
Variables Do Not Vary, on page 29, do not apply. For this reason, you should
use the process dictionary sparingly.

Note: 1 rarely use the process dictionary. Using the process dictionary can
introduce subtle bugs into your program and make it difficult to debug. One
form of usage that I do approve of is to use the processes dictionary to store
“write-once” variables. If a key acquires a value exactly once and does not
change the value, then storing it in the process dictionary is sometimes
acceptable.

References

References are globally unique Erlang terms. They are created with the BIF
erlang:make_ref(). References are useful for creating unique tags that can be
included in data and then at a later stage compared for equality. For example,
a bug-tracking system might add a reference to each new bug report in order
to give it a unique identity.

Short-Circuit Boolean Expressions

Short-circuit boolean expressions are boolean expressions whose arguments
are evaluated only when necessary.

There are two “short-circuit” boolean expressions.

http://pragprog.com/titles/jaerlang2/errata/add
http://forums.pragprog.com/forums/jaerlang2

8.24

Chapter 8. The Rest of Sequential Erlang ® 136

Exprl orelse Expr2
This first evaluates Exprl. If Exprl evaluates to true, Expr2 is not evaluated.
If Exprl evaluates to false, Expr2 is evaluated.

Exprl andalso Expr2
This first evaluates Exprl. If Exprl evaluates to true, Expr2 is evaluated. If
Exprl evaluates to false, Expr2 is not evaluated.

Note: In the corresponding boolean expressions (A or B; A and B), both the
arguments are always evaluated, even if the truth value of the expression can
be determined by evaluating only the first expression.

Term Comparisons

There are eight possible term comparison operations, shown in Table 6, Term
comparisons, on page 137.

For the purposes of comparison, a total ordering is defined over all terms.
This is defined so that the following is true:

number < atom < reference < fun < port < pid < tuple (and record) < map < list < binary

This means that, for example, a number (any number) is defined to be
smaller than an atom (any atom), that a tuple is greater than an atom, and
so on. (Note that for the purposes of ordering, ports and PIDs are included
in this list. We’ll talk about these later.)

Having a total order over all terms means we can sort lists of any type and
build efficient data access routines based on the sort order of the keys.

All the term comparison operators, with the exception of =:= and =/=, behave
in the following way if their arguments are numbers:

e If one argument is a integer and the other is a float, then the integer is
converted to a float before the comparison is performed.

¢ If both arguments are integers or if both arguments are floats, then the
arguments are used “as is,” that is, without conversion.

You should also be really careful about using == (especially if you're a C or
Java programmer). In 99 out of 100 cases, you should be using =:=. == is
useful only when comparing floats with integers. =:= is for testing whether
two terms are identical.

Identical means having the same value (like the Common Lisp EQUAL). Since
values are immutable, this does not imply any notion of pointer identity. If
in doubt, use =:=, and be suspicious if you see ==. Note that a similar comment

http://pragprog.com/titles/jaerlang2/errata/add
http://forums.pragprog.com/forums/jaerlang2

8.25

8.26

Tuple Modules * 137

applies to using /= and =/=, where /= means “not equal to” and =/= means “not
identical.”

Note: In a lot of library and published code, you'll see == used when the
operator should have been =:=. Fortunately, this kind of error does not often
result in an incorrect program, since if the arguments to == do not contain
any floats, then the behaviors of the two operators are the same.

You should also be aware that function clause matching always implies exact
pattern matching, so if you define a fun F = fun(12) -> ... end, then trying to
evaluate F(12.0) will fail.

Operator Meaning

X>Y X is greater than V.

X<Y X is less than Y.

X=<Y X is equal to or less than Y.
X>=Y X is greater than or equal to Y.
X== X is equal to Y.

X/=Y X is not equal to Y.

X==Y X is identical to Y.
X=/=Y X is not identical to Y.

Table 6—Term comparisons

Tuple Modules

When we call M:f(Argl, Arg2, ..., ArgN), we have assumed that M is a module name.
But M can also be a tuple of the form {Modl, X1, X2, ... Xn}, in which case the
function Mod1:f(Argl, Arg2, ..., Arg3, M) is called.

This mechanism can be used to create “stateful modules,” which is discussed
in Section 24.3, Stateful Modules, on page 418, and to create “adapter patterns,”
discussed in Section 24.4, Adapter Patterns, on page 419.

Underscore Variables

There’s one more thing to say about variables. The special syntax VarName is
used for a normal variable, not an anonymous variable. Normally the compiler
will generate a warning if a variable is used only once in a clause since this
is usually the sign of an error. If the variable is used only once but starts with
an underscore, the warning message will not be generated.

Since _Var is a normal variable, very subtle bugs can be caused by forgetting
this and using it as a “don’t care” pattern. In a complicated pattern match,

http://pragprog.com/titles/jaerlang2/errata/add
http://forums.pragprog.com/forums/jaerlang2

Chapter 8. The Rest of Sequential Erlang * 138

it can be difficult to spot that, for example, _Int is repeated when it shouldn’t
have been, causing the pattern match to fail.

There are two main uses of underscore variables.

e To name a variable that we don’t intend to use. That is, writing open(File,
_Mode) makes the program more readable than writing open(File, _).

e For debugging purposes. For example, suppose we write this:

some_func(X) ->
{P, Q} = some other func(X),
io:format("Q = ~p~n", [Q]),
P.

This compiles without an error message.

Now comment out the following format statement:

some_func(X) ->
{P, Q} = some_other func(X),
%% 1o0:format("Q = ~p~n", [Q]),
P.

If we compile this, the compiler will issue a warning that the variable Q
is not used.

If we rewrite the function like this:

some_func(X) ->
{P, Q} = some other func(X),
io:format(" Q = ~p~n", [Ql),
P.

then we can comment out the format statement, and the compiler will
not complain.

Now we're actually through with sequential Erlang.

In the next two chapters we’ll round off Part II of the book. We'll start with
the type notation that is used to describe the types of Erlang functions and
talk about a number of tools that can be used to type check Erlang code. In
the final chapter of Part II, we’ll look at different ways to compile and run
your programs.

Exercises

1. Reread the section about Mod:module_info() in this chapter. Give the command
dict:module_info(). How many functions does this module return?

http://pragprog.com/titles/jaerlang2/errata/add
http://forums.pragprog.com/forums/jaerlang2

Underscore Variables ® 139

The command code:all_loaded() returns a list of {Mod,File} pairs of all modules
that have been loaded into the Erlang system. Use the BIF Mod:module_info()
to find out about these modules. Write functions to determine which
module exports the most functions and which function name is the most
common. Write a function to find all unambiguous function names, that
is, function names that are used in only one module.

http://pragprog.com/titles/jaerlang2/errata/add
http://forums.pragprog.com/forums/jaerlang2

9.1

CHAPTER 9

Types

Erlang has a type notation that we can use to define new data types and add
type annotations to our code. The type annotations make the code easier to
understand and maintain and can be used to detect errors at compile time.

In this chapter we’ll introduce the type notation and talk about two programs
that can be used to find errors in our code.

The programs we’ll discuss are called dialyzer and typer and are included in the
standard Erlang distribution. Dialyzer stands for “DIscrepancy AnalLYZer for
ERlang programs,” and it does precisely that which is implied by its name:
it finds discrepancies in Erlang code. typer provides information about the
types used in your programs. Both the dialyzer and typer work perfectly well
with no type annotations at all, but if you add type annotations to your pro-
gram, the quality of the analysis performed by these tools will be improved.

This is a fairly complex chapter, so we’ll start with a simple example, and
then we’ll go a bit deeper and look at the type grammar; following this, we’ll
have a session with the dialyzer. We'll talk about a workflow we should use
with the dialyzer and about the kind of errors that the dialyzer cannot find.
We'll wrap up with a little theory of how the dialyzer works, which will help
us understand the errors that the dialyzer finds.

Specifying Data and Function Types

We are going on a walking tour and are lucky enough to have a module that
we can use to plan our walks. The module starts like this:

walks.erl
-module(walks).
-export([plan_route/2]).

-spec plan_route(point(), point()) -> route().

http://media.pragprog.com/titles/jaerlang2/code/walks.erl
http://pragprog.com/titles/jaerlang2/errata/add
http://forums.pragprog.com/forums/jaerlang2

Chapter 9. Types ® 142

-type direction() :: north | south | east | west.
-type point() 11 {integer(), integer()}.
-type route() 11 [{go,direction(),integer()}].

This module exports a function called plan_route/2. The input and return types
for the function are specified in a type specification, and three new types are
defined using type declarations. These are interpreted as follows:

-spec plan_route(point(), point()) -> route().
Means that if the function plan_route/2 is called with two input arguments,
both of type point(), then it will return an object of type route().

-type direction() :: north | south | east | west.
Introduces a new type called direction() whose value is one of the atoms
north, south, east, or west.

-type point() :: {integer(), integer()}.
Means that the type point() is a tuple of two integers (integer() is a predefined
type).

-type route() :: [{go, direction(), integer()}].
Defines the type route() to be a list of 3-tuples, where each tuple contains
the atom go, an object of type direction, and an integer. The notation [X]
means a list of type X.

From the type annotations alone we can imagine evaluating plan_route and
seeing something like this:
> walks:plan_route({1,10}, {25, 57}).

[{go, east, 24},
{go, north, 47},

]

Of course, we have no idea if the function plan_route will return anything at all;
it might just crash and not return a value. But if it does return a value, the
returned value should be of type route() if the input arguments were of type
point(). We also have no idea what the numbers in the previous expression
mean. Are they miles, kilometers, centimeters, and so on? All we know is
what the type declaration tells us, that is, that they are integers.

To add expressive power to the types, we can annotate them with descriptive
variables. For example, we could change the specification of plan_route to the
following:

-spec plan_route(From:: point(), To:: point()) -> ...

http://pragprog.com/titles/jaerlang2/errata/add
http://forums.pragprog.com/forums/jaerlang2

9.2

Erlang Type Notation ® 143

The names From and To in the type annotation give the user some idea as to
the role these arguments play in the function. They are also used to link the
names in the documentation to the variables in the type annotations. The
official Erlang documentation uses strict rules for writing type annotations
so that the names in the type annotations correspond to the names used in
the corresponding documentation.

Saying that our route starts at from and that From is a pair of integers may or
may not be sufficient to document the function; it depends upon the context.
We could easily refine the type definitions by adding more information. For
example, by writing this:

-type angle() :: {Degrees::0..360, Minutes::0..60, Seconds::0..60}.
-type position() 11 {latitude | longitude, angle()}.
-spec plan_routel(From::position(), To::position()) -> ...

the new form gives a lot more information but again invites guesswork. We
might guess that units of the angles are in degrees, since the range of allowed
values is 0 to 360, but they might just be in radians, and we would have
guessed wrongly.

As the type annotations become longer, we might end up being more precise
at the expense of increased verbosity. The increased size of the annotations
might make the code more difficult to read. Writing good type annotations is
as much of an art as writing good clear code—something that is very difficult
and takes years of practice. It’s a form of zen meditation: the more you do it,
the easier it becomes and the better you get!

We've seen a simple example of how to define types; the next section formalizes
the type notation. Once we're happy with the type notation, we’ll have a session
with the dialyzer.

Erlang Type Notation

So far, we have introduced types through informal descriptions. To make full
use of the type system, we need to understand the type grammar so we can
read and write more precise type descriptions.

The Grammar of Types

Types are defined informally using the following syntax:
T1::A|B]|C...

This means that T1 is defined to be one of A, B, or C.

Using this notation, we can define a subset of Erlang types as follows:

http://pragprog.com/titles/jaerlang2/errata/add
http://forums.pragprog.com/forums/jaerlang2

Chapter 9. Types ® 144

Type :: any() | none() | pid() | port() | reference() | []
| Atom | binary() | float() | Fun | Integer | [Type] |
| Tuple | Union | UserDefined

Union :: Typel | Type2 |

Atom :: atom() | Erlang Atom
Integer :: integer() | Min .. Max
Fun :: fun() | fun((...) -> Type)
Tuple :: tuple() | {T1, T2, ... Tn}

In the previous example, any() means any Erlang term, X() means an Erlang
object of type X, and the token none() is used to denote the type of a function
that never returns.

The notation [X] denotes a list of type X, and {T1, T2, ..., Tn} denotes a tuple of
size n whose arguments are of type T1, T2, ... Tn.

New types can be defined with the following syntax:
-type NewTypeName(TVarl, TVar2, ... TVarN) :: Type.
TVarl to TVarN are optional type variables, and Type is a type expression.

Here are some examples:

-type onOff() 11 on | off.

-type person() :: {person, name(), age()}.
-type people() 11 [person()].

-type name() 11 {firstname, string()}.
-type age() 11 integer().

-type dict(Key,Val) :: [{Key,Val}].

These rules say that, for example, {firstname, "dave"} is of type name(), and [{person,
{firstname,"john"}, 35}, {person, {firstname,"mary"}, 26}] is of type people(), and so on.
The type dict(Key,Val) shows the use of type variables and defines a dictionary
type to be a list of {Key, Val} tuples.

Predefined Types
In addition to the type grammar, the following type aliases are predefined:

-type term() :: any().

-type boolean() :: true | false.

-type byte() :: 0..255.

-type char() :: 0..16#10ffff.

-type number() :: integer() | float().

http://pragprog.com/titles/jaerlang2/errata/add
http://forums.pragprog.com/forums/jaerlang2

Erlang Type Notation ® 145

-type list() :: [any()].

-type maybe improper list() :: maybe improper list(any(), any()).

-type maybe improper list(T) :: maybe improper list(T, any()).

-type string() :: [char()].

-type nonempty string() :: [char(),...].

-type iolist() :: maybe improper list(byte() | binary() | iolist(),
binary() | [1).

-type module() :: atom().

-type mfa() :: {atom(), atom(), atom()}.

-type node() :: atom().

-type timeout() :: infinity | non neg integer().
-type no return() :: none().

maybe_improper list is used to specify the types of lists whose ultimate tail is
non-nil. Such lists are rarely used, but it is possible to specify their types!

There are also a small number of predefined types. non_neg_integer() is a non-
negative integer, pos_integer() is a positive integer, and neg_integer() is a negative
integer. Finally, the notation [X,...] means a non-empty list of type X.

Now that we can define types, let’s move on to function specifications.

Specifying the Input and Output Types of a Function

Function specifications say what the types of the arguments to a function are
and what the type of the return value of the function is. A function specifica-
tion is written like this:

-spec functionName(T1l, T2, ..., Tn) -> Tret when
Ti :: Typei,
Tj :: Typej,
Here T1, T2, ..., Tn describe the types of the arguments to a function, and Tret

describes the type of the return value of the function. Additional type variables
can be introduced if necessary after the optional when keyword.

We'll start with an example. The following type specification:

-spec file:open(FileName, Modes) -> {ok, Handle} | {error, Why} when

FileName :: string(),
Modes :: [Model],

Mode 1: read | write |
Handle 11 file handle(),
Why 11 error_term().

says that if we open the file FileName, we should get a return value that is either
{ok, Handle} or {error, Why}. FileName is a string, Modes is a list of Mode, and Mode is
one of read, write, and so on.

http://pragprog.com/titles/jaerlang2/errata/add
http://forums.pragprog.com/forums/jaerlang2

Chapter 9. Types ® 146

The previous function specification could have been written in a number of
equivalent ways; for example, we might have written the following and not
used a when qualifier:

-spec file:open(string(), [read|write|...] -> {ok, Handle} | {error, Why}

The problems with this are, first, that we lose the descriptive variables FileName
and Modes, and so on, and, second, that the type specification becomes a lot
longer and is consequently more difficult to read and format in printed docu-
mentation. In the documentation that ideally follows the program we have no
way to refer to the arguments of the function if they are not named.

In the first way of writing the specification, we wrote the following:

-spec file:open(FileName, Modes) -> {ok, Handle} | {error, Why} when
FileName :: string(),

So, any documentation of this function could unambiguously refer to the file
that was being opened by using the name FileName. If we said this:

-spec file:open(string(), [read|write|...) -> {ok, Handle} | {error, Why}.

and dropped the when qualifier, then the documentation would have to refer
to the file that was being opened as “the first argument of the open function,”
a circumlocution that is unnecessary in the first way of writing the function
specification.

Type variables can be used in arguments, as in the following examples:

-spec lists:map(fun((A) -> B), [A]) -> [B].
-spec lists:filter(fun((X) -> bool()), [X]) -> [X].

This means that map takes a function from type A to B and list of objects of
type A and returns a list of type B objects, and so on.

Exported and Local Types

Sometimes we want the definition of a type to be local to the module where
the type is defined; in other circumstances, we want to export the type to
another module. Imagine two modules a and b. Module a produces objects of
type rich_text, and module b manipulates these objects. In module a, we make
the following annotations:

-module(a).
-type rich text() :: [{font(), char()}].
-type font() 11 integer().

-export_type([rich text/0, font/0]).

http://pragprog.com/titles/jaerlang2/errata/add
http://forums.pragprog.com/forums/jaerlang2

Erlang Type Notation ® 147

Not only do we declare a rich text and font type, we also export them using
an -export_type(...) annotation.

Suppose module b manipulates instances of rich text; there might be some
function rich_text_length that computes the length of a rich-text object. We could
write the type specification for this function as follows:

-module(b).

-spec rich text length(a:rich text()) -> integer().

The input argument to rich_text_length uses the fully qualified type name,
arrich_text(), which means the type rich_text() exported from the module a.

Opaque Types

In the previous section, two modules, a and b, cooperate by manipulating the
internal structure of the object that represents rich text. We may, however,
want to hide the internal details of the rich-text data structure so that only
the module that creates the data structure knows the details of the type. This
is best explained with an example.

Assume module a starts like this:

-module(a) .
-opaque rich text() :: [{font(), char()}].
-export_type([rich text/0]).

-export([make text/1l, bounding box/1]).
-spec make text(string()) -> rich text().
-spec bounding box(rich text()) -> {Height::integer(), Width::integer()}.

The following statement:
-opaque rich text() :: [{font(), char()}].

creates an opaque types called rich_text(). Now let’s look at some code that tries
to manipulate rich-text objects:

-module(b).

do_this() ->
X = a:make text("hello world"),
{W, H} = a:bounding box(X)

http://pragprog.com/titles/jaerlang2/errata/add
http://forums.pragprog.com/forums/jaerlang2

9.3

Chapter 9. Types ® 148

The module b never needs to know anything about the internal structure of
the variable X. X is created inside the module a and is passed back into a when
we call bounding_box(X).

Now suppose we write code that makes use of some knowledge about the
shape of the rich_text object. For example, suppose we create a rich-text object
and then ask what fonts are needed to render the object. We might write this:

-module(c).

fonts_in(Str) ->
X = a:make text(Str),
[F] {F,_} <- XI.

In the list comprehension we “know” that X is list of 2-tuples. In the module
a we declared the return type of make_text to be an opaque type, which means
we are not supposed to know anything about the internal structure of the
type. Making use of the internal structure of the type is called an abstraction
violation and can be detected by the dialyzer if we correctly declare the visibil-
ity of the types in the functions involved.

A Session with the Dialyzer

The first time you run the dialyzer you need to build a cache of all the types
in the standard libraries that you intend to use. This is a once-only operation.
If you launch the dialyzer, it tells you what to do.

$ dialyzer

Checking whether the PLT /Users/joe/.dialyzer plt is up-to-date...
dialyzer: Could not find the PLT: /Users/joe/.dialyzer plt

Use the options:

--build plt to build a new PLT; or

--add _to plt to add to an existing PLT

For example, use a command like the following:
dialyzer --build plt --apps erts kernel stdlib mnesia

PLT is short for persistent lookup table. The PLT should contain a cache of all
the types in the standard system. Building the PLT takes a few minutes. The
first command we give builds the PLT for erts, stdlib, and kernel.

$ dialyzer --build_plt --apps erts kernel stdlib

Compiling some key modules to native code... done in 0m59.78s
Creating PLT /Users/joe/.dialyzer plt ...

Unknown functions:

compile:file/2

compile:forms/2

http://pragprog.com/titles/jaerlang2/errata/add
http://forums.pragprog.com/forums/jaerlang2

A Session with the Dialyzer ® 149

compile:noenv_forms/2
compile:output generated/1
crypto:des3 cbc decrypt/5
crypto:start/0

Unknown types:
compile:option/0

done in 4m3.86s

done (passed successfully)

Now that we have built the PLT, we are ready to run the dialyzer. The warnings
about unknown functions occur because the functions referred to are in
applications outside the three we have chosen to analyze.

The dialyzer is conservative. If it complains, then there really is an inconsis-
tency in the program. One of the goals of the project that produced the dialyzer
was to eliminate false warning messaging, that is, messages that warn for
errors that are not real errors.

In the following sections, we’ll give examples of incorrect programs; we’ll run
the dialyzer on these programs and illustrate what kind of errors we can
expect to be reported by the dialyzer.

Incorrect Use of a BIF Return Value

dialyzer/test1.erl
-module(testl).
-export([f1/0]).

f1() ->
X = erlang:time(),
seconds (X) .

seconds({ Year, Month, Day, Hour, Min, Sec}) ->
(Hour * 60 + Min)*60 + Sec.

> dialyzer testl.erl
Checking whether the PLT /Users/joe/.dialyzer plt is up-to-date... yes
Proceeding with analysis...
testl.erl:4: Function f1/0 has no local return
testl.erl:6: The call testl:seconds(X::
{non_neg integer(),non neg integer(),non _neg integer()})
will never return since it differs in the 1lst argument
from the success typing arguments: ({ , , ,number(),number(),number()})
testl.erl:8: Function seconds/1 has no local return
testl.erl:8: The pattern { Year, Month, Day, Hour, Min, Sec} can never
match the type {non neg integer(),non neg integer(),non neg integer()}
done in 0m0.41s

http://media.pragprog.com/titles/jaerlang2/code/dialyzer/test1.erl
http://pragprog.com/titles/jaerlang2/errata/add
http://forums.pragprog.com/forums/jaerlang2

Chapter 9. Types ® 150

This rather scary error message is because erlang:time() returns a 3-tuple called
{Hour, Min, Sec} and not a 6-tuple as we expected. The message “Function f1/0
has no local return” means f1/0 will crash. The dialyzer knows that the return
value of erlang:time() is an instance of the type {non_neg_integer(), non_neg_integer(),
non_neg_integer()}) and so will never match the 6-tuple pattern, which is the
argument to seconds/1.

Incorrect Arguments to a BIF

We can use the dialyzer to tell us when we call a BIF with incorrect arguments.
Here is an example of this:

dialyzer/test2.erl
-module(test2).
-export([f1/0]).

f1() ->
tuple_size(list_to_tuple({a,b,c})).

$ dialyzer test2.erl

test2.erl:4: Function f1/0 has no local return

test2.erl:5: The call erlang:list to tuple({'a','b','c'})

will never return since it differs in the 1st argument from the
success typing arguments: ([any()])

This tells us that list_to_tuple expects an argument of type [any()] and not {'a','b",'c'}.

Incorrect Program Logic
The dialyzer can also detect faulty program logic. Here’s an example:

dialyzer/test3.erl
-module(test3).
-export([test/0, factorial/1l]).

test() -> factorial(-5).

factorial(0) -> 1;
factorial(N) -> N*factorial(N-1).

$ dialyzer test3.erl

test3.erl:4: Function test/0 has no local return

test3.erl:4: The call test3:factorial(-5) will never return since
it differs in the 1st argument from the success typing

arguments: (non _neg integer())

This is actually pretty remarkable. The definition of factorial is incorrect. If
factorial is called with a negative argument, the program will enter an infinite
loop, eating up stack space, and eventually Erlang will run out of memory

http://media.pragprog.com/titles/jaerlang2/code/dialyzer/test2.erl
http://media.pragprog.com/titles/jaerlang2/code/dialyzer/test3.erl
http://pragprog.com/titles/jaerlang2/errata/add
http://forums.pragprog.com/forums/jaerlang2

A Session with the Dialyzer ¢ 151

and die. The dialyzer has deduced that the argument to factorial is of type
non_neg_integer(), and therefore, the call to factorial(-5) is an error.

The dialyzer does not print out the inferred types of the function, so we’ll ask
typer what the types were.

$ typer test3.erl
-spec test() -> none().
-spec factorial(non neg integer()) -> pos_integer().

Typer has deduced that the type of factorial is (non_neg_integer()) -> pos_integer() and
that the type of test() is none().

The programs have reasoned as follows: the base case of the recursion is
factorial(0), and so for the argument of factorial to be zero, the call factorial(N-1)
must eventually reduce to zero; therefore N must be greater or equal to one,
which is the reason for the type of factorial. This is very clever.

Working with the Dialyzer

Using the dialyzer to check your programs for type errors involves a particular
workflow. What you should not do is write the entire program with no type
annotations and then, when you think that it is ready, go back and add type
annotations to everything and then run the dialyzer. If you do this, you will
probably get a large number of confusing errors and not know where to start
looking to fix the errors.

The best way to work with the dialyzer is to use it at every stage of develop-
ment. When you start writing a new module, think about the types first and
declare them before you write your code. Write type specifications for all the
exported functions in your module. Do this first before you start writing the
code. You can comment out the type specs of the functions that you have not
yet implemented and then uncomment them as you implement the functions.

Now write your functions, one at a time, and check after you have written
each new function to see whether the dialyzer can find any errors in your
program. Add type specifications if the function is exported. If the function
is not exported, then add type specifications if you think this will help the
type analysis or help us understand the program (remember, type annotations
provide good documentation of the program). If the dialyzer finds any errors,
then stop and think and find out exactly what the error means.

Things That Confuse the Dialyzer

The dialyzer can get easily confused. We can help prevent this by following a
few simple rules.

http://pragprog.com/titles/jaerlang2/errata/add
http://forums.pragprog.com/forums/jaerlang2

9.4

Chapter 9. Types ® 152

* Avoid using -compile(export_all). If you export all functions in the module, the
dialyzer might not be able to reason about some of the arguments to some
of your exported functions; they could be called from anywhere and have
any type. The values of these arguments can propagate to other functions
in the module and give confusing errors.

* Provide detailed type specifications for all the arguments to the exported
functions in the module. Try to tightly constrain the arguments to
exported functions as much as possible. For example, at first sight you
might reason that an argument to a function is an integer, but after a
little more thought, you might decide that the argument is a positive
integer or even a bounded integer. The more precise you can be about
your types, the better results you will get with the dialyzer. Also, add
precise guard tests to your code if possible. This will help with the program
analysis and will often help the compiler generate better-quality code.

e Provide default arguments to all elements in a record definition. If you
don’t provide a default, the atom undefined is taken as the default, and this
type will start propagating through the program and might produce strange
type errors.

e Using anonymous variables in arguments to a function often results in
types that are far less specific than you had intended; try to constrain
variables as much as possible.

Type Inference and Success Typing

Some of the errors the dialyzer produces are pretty strange. To understand
these errors, we have to understand the process by which the dialyzer derives
the types of Erlang functions. Understanding this will help us interpret these
cryptic error messages.

Type inference is the process of deriving the types of a function by analyzing
the code. To do this, we analyze the program looking for constraints; from the
constraints, we build a set of constraint equations, and then we solve the
equations. The result is a set of types that we call the success typing of the
program. Let’s look at a simple module and see what it tells us.
dialyzer/types1.erl

-module(typesl).
-export([fl/1, f2/1, f3/1]1).

f1({H,M,5}) ->
(H+M*60) *60+S.

http://media.pragprog.com/titles/jaerlang2/code/dialyzer/types1.erl
http://pragprog.com/titles/jaerlang2/errata/add
http://forums.pragprog.com/forums/jaerlang2

Type Inference and Success Typing ® 153

f2({H,M,S}) when is_integer(H) ->
(H+M*60) *60+S .

f3({H,M,S}) ->
print(H,M,S),
(H+M*60) *60+S .

print(H,M,S) ->

Str = integer_to_list(H) ++ ":" ++ integer_to_list(M) ++ ":" ++
integer_to_list(S),
io:format("~s", [Str]).

Before reading the next section, take a moment to stare hard at the code and
try to work out the types of the variables that occur in the code.

This is what happens when we run the dialyzer:

$ dialyzer typesl.erl

Checking whether the PLT /Users/joe/.dialyzer plt is up-to-date... yes
Proceeding with analysis... done in 0m0.41s

done (passed successfully)

The dialyzer found no type errors in the code. But this does not mean that
the code is correct; it means only that all the data types in the program are
used consistently. When converting hours, minutes, and seconds to seconds,
I wrote (H+M*60)*60+S, which is plain wrong—it should have been (H*60+M)*60+S.
No type system will detect this. Even if you have a well-typed program, you
still have to provide test cases.

Running the typer on the same program produces the following;:

$ typer typesl.erl
%% File: "typesl.erl"

o0
%% ------------eeenan

-spec fl({number(),number(),number()}) -> number().
-spec f2({integer(),number(),number()}) -> number().
-spec f3({integer(),integer(),integer()}) -> integer().
-spec print(integer(),integer(),integer()) -> 'ok'.

typer reports the types of all the functions in the module that it analyzes. typer
says that the type of the function f1 is as follows:

-spec fl({number(),number(),number()}) -> number().
This is derived by looking at the definition of f1, which was as follows:

f1({H,M,5}) ->
(H+M*60) *60+S.

This function provides us with five different constraints. First the argument
to f1 must be a tuple of three elements. Each arithmetic operator provides an

http://pragprog.com/titles/jaerlang2/errata/add
http://forums.pragprog.com/forums/jaerlang2

Chapter 9. Types ® 154

additional constraint. For example, the subexpression M*60 tells us that M
must be of type number() since both the arguments of a multiplication operator
must be numbers. Similarly, ...+S tells us that S must be an number.

Now consider the function f2. Here is the code and the inferred type of the
function:

f2({H,M,S}) when is_integer(H) ->
(H+M*60) *60+S .

-spec f2({integer(),number(),number()}) -> number().

The addition of the is_integer(H) guard added the additional constraint that H
must be an integer, and this constraint changes the type of the first element
of the tuple argument to f2 from number() to the more precise type integer().

Note that to be strictly correct we should really say “added the additional
constraint that if the function succeeds, then H must have been an integer.”
This is why we call the inferred type of the function the success typing—it
literally means “the types that the arguments in a function had to have in
order for the function evaluation to succeed.”

Now let’s move to the final function in typesl.erl.

f3({H,M,S}) ->
print(H,M,S),
(H+M*60) *60+S .

print(H,M,S) ->

Str = integer_to_list(H) ++ ":" ++ integer_to_list(M) ++ ":" ++
integer_to_list(S),
io:format("~s", [Str]).

The inferred types were as follows:

-spec f3({integer(),integer(),integer()}) -> integer().
-spec print(integer(),integer(),integer()) -> 'ok'.

Here you can see how calling integer to_list constrains the type of its argument
to be an integer. This constraint that occurs in the function print propagates
into the body of the function f3.

As we have seen, type analysis proceeds in two stages. First we derive a set
of constraint equations; then we solve these equations. When the dialyzer
finds no errors, it is saying that the set of constraint equations is solvable,
and the typer prints out the solutions to these equations. When the equations
are inconsistent and cannot be solved, the dialyzer reports an error.

http://pragprog.com/titles/jaerlang2/errata/add
http://forums.pragprog.com/forums/jaerlang2

9.5

Limitations of the Type System ® 155

Now we’ll make a small change to the previous program and introduce an
error to see what effect it has on the analysis.
dialyzer/types1_bug.erl

-module(typesl bug).
-export([f4/1]).

f4({H,M,S}) when is_float(H) ->
print(H,M,S),
(H+M*60) *60+S.

print(H,M,S) ->

Str = integer_to_list(H) ++ ":" ++ integer_to_list(M) ++ ":" ++
integer_to_list(S),
io:format("~s", [Str]).

We'll run typer first.

$ typer typesl_bug.erl
-spec f4(_) -> none().
-spec print(integer(),integer(),integer()) -> 'ok'.

Typer says that the return type of f4 is none(). This is a special type that means
“this function will never return.”

When we run the dialyzer, we see the following:

$ dialyzer typesl_bug.erl

typesl bug.erl:4: Function f4/1 has no local return

typesl bug.erl:5: The call typesl bug:print(H::float(),M::any(),S::any())
will never return since it differs in the 1st argument from the
success typing arguments: (integer(),integer(),integer())

typesl bug.erl:8: Function print/3 has no local return

typesl bug.erl:9: The call erlang:integer to list(H::float())
will never return since it differs in the 1st argument from the
success typing arguments: (integer())

Now look back at the code for a moment. The guard test is_float(H) tells the
system that H must be a float. But H gets propagated into the function print,
and inside print the function call integer_to_list(H) tells the system that H must
be an integer. Now the dialyzer has no idea which of these two statements is
correct, so it assumes that both are wrong. This is why it says “Function
print/3 has no local return value.” This is one of the limitations of type sys-
tems; all they can say is that the program is inconsistent and then leave it
up to the programmer to figure out why.

Limitations of the Type System

Let’s look at what happens when we add type specifications to code. We'll
start with the well-known boolean and function. and is true if both its arguments

http://media.pragprog.com/titles/jaerlang2/code/dialyzer/types1_bug.erl
http://pragprog.com/titles/jaerlang2/errata/add
http://forums.pragprog.com/forums/jaerlang2

Chapter 9. Types ® 156

are true, and it is false if any of its arguments are false. We'll define a function
myandl (which is supposed to work like and) as follows:

typesi.erl

myandl(true, true) -> true;

myandl(false,) -> false;
myandl(, false) -> false.

Running typer on this, we see the following:

$typer typesl.erl
-spec myandl(,) -> boolean().

The inferred type of myandl is (_,_) -> boolean(), which means that each of the
arguments to myandl can be anything you like, and the return type will be
boolean. It infers that the arguments to myandl can be anything because of the
underscores in the argument positions. For example, the second clause of
myandl is myandl(false,) -> false, from which it infers that the second argument
can be anything.

Now suppose we add an incorrect function bugl to the module as follows:

typesi.erl
bugl(X, Y) ->
case myandl(X, Y) of
true ->
X+Y
end.

Then we ask typer to analyze the module.

$ typer typesl.erl
-spec myandl(,) -> boolean().
-spec bugl(number(), number()) -> number().

typer knows that + takes two numbers as arguments and returns a number,
so it infers that both X and Y are numbers. It also has inferred that the argu-
ments to myandl can be anything, which is consistent with both X and Y being
numbers. If we run the dialyzer on this module, no errors will be returned.
typer thinks that calling bugl with two number arguments will return a number,
but it won’t. It will crash. This example shows how under-specification of the
types of the arguments (that is, using _ as a type instead of boolean()) led to
errors that could not be detected when the program was analyzed.

We now know all we need to know about types. In the next chapter, we’ll wrap
up Part II of the book by looking at a number of ways to compile and run your
programs. A lot of what we can do in the shell can be automated, and we’ll

http://media.pragprog.com/titles/jaerlang2/code/types1.erl
http://media.pragprog.com/titles/jaerlang2/code/types1.erl
http://pragprog.com/titles/jaerlang2/errata/add
http://forums.pragprog.com/forums/jaerlang2

Limitations of the Type System ® 157

look at ways of doing this. By the time you have finished the next chapter,
you’ll know all there is to know about building and running sequential Erlang
code. After that, we can turn to concurrent programming, which is actually
the main subject of the book, but you have to learn to walk before you can
run and to write sequential programs before you can write concurrent

programs.

Exercises

1. Write some very small modules that export a single function. Write type
specifications for the exported functions. In the functions make some type
errors; then run the dialyzer on these programs and try to understand
the error messages. Sometimes you’ll make an error but the dialyzer will
not find the error; stare hard at the program to try to work out why you
did not get the error you expected.

2. Look at the type annotations in the code in the standard libraries. Find
the source code for the module lists.erl and read all the type annotations.

3. Why is it a good idea to think about the types of a function in a module
before you write the module? Is this always a good idea?

4. Experiment with opaque types. Create two modules; the first should export

an opaque type. The second module should use the internal data struc-
tures of the opaque type exported by the first module in such a way as
to cause an abstraction violation. Run the dialyzer on the two modules
and make sure you understand the error messages.

http://pragprog.com/titles/jaerlang2/errata/add
http://forums.pragprog.com/forums/jaerlang2

10.1

cHAPTER 10

Compiling and Running Your Program

In the previous chapters, we didn’t say much about compiling and running
your programs—we just used the Erlang shell. This is fine for small examples,
but as your programs become more complex, you'll want to automate the
process in order to make life easier. That’s where makefiles come in.

There are actually three different ways to run your programs. In this chapter,
we’ll look at all three so you can choose the best method for any particular
occasion.

Sometimes things will go wrong: makefiles will fail, environment variables
will be wrong, and your search paths will be incorrect. We’'ll help you deal
with these issues by looking at what to do when things go wrong.

Modifying the Development Environment

When you start programming in Erlang, you’ll probably put all your modules
and files in the same directory and start Erlang from this directory. If you do
this, then the Erlang loader will have no trouble finding your code. However,
as your applications become more complex, you'll want to split them into
manageable chunks and put the code into different directories. And when
you include code from other projects, this external code will have its own
directory structure.

Setting the Search Paths for Loading Code

The Erlang runtime system makes use of a code autoloading mechanism. For
this to work correctly, you must set a number of search paths in order to find
the correct version of your code.

The code-loading mechanism is actually programmed in Erlang—we talked
about this earlier in Section 8.10, Dynamic Code Loading, on page 122. Code
loading is performed “on demand.”

http://pragprog.com/titles/jaerlang2/errata/add
http://forums.pragprog.com/forums/jaerlang2

Chapter 10. Compiling and Running Your Program ¢ 160

When the system tries to call a function in a module that has not been loaded,
an exception occurs, and the system tries to find an object code file for the
missing module. If the missing module is called myMissingModule, then the code
loader will search for a file called myMissingModule.beam in all the directories that
are in the current load path. The search stops at the first matching file, and
the object code in this file is loaded into the system.

You can find the value of the current load path by starting an Erlang shell
and giving the command code:get_path(). Here’s an example:

1> code:get_path().

.,
"/usr/local/lib/erlang/lib/kernel-2.15/ebin",
"/usr/local/lib/erlang/lib/stdlib-1.18/ebin",
"/home/joe/installed/proper/ebin",
"/usr/local/lib/erlang/lib/xmerl-1.3/ebin",
"/usr/local/lib/erlang/lib/wx-0.99.1/ebin",
"/usr/local/lib/erlang/1lib/webtool-0.8.9.1/ebin",
"/usr/local/lib/erlang/lib/typer-0.9.3/ebin",
"/usr/local/lib/erlang/lib/tv-2.1.4.8/ebin",
"/usr/local/lib/erlang/lib/tools-2.6.6.6/ebin",
.|

The two most common functions that we use to manipulate the load path are
as follows:

-spec code:add_patha(Dir) => true | {error, bad_directory}
Add a new directory, Dir, to the start of the load path.

-spec code:add_pathz(Dir) => true | {error, bad_directory}
Add a new directory, Dir, to the end of the load path.

Usually it doesn’t matter which you use. The only thing to watch out for is if
using add_patha and add_pathz produces different results. If you suspect an
incorrect module was loaded, you can call code:all_loaded() (which returns a list
of all loaded modules) or code:clash() to help you investigate what went wrong.

There are several other routines in the module code for manipulating the path,
but you probably won’'t ever need to use them, unless you're doing some
strange system programming.

The usual convention is to put these commands in a file called .erlang in your
home directory.

Alternatively, you can start Erlang with a command like this:

$ erl -pa Dirl -pa Dir2 ... -pz DirKl -pz Dirk2

http://pragprog.com/titles/jaerlang2/errata/add
http://forums.pragprog.com/forums/jaerlang2

10.2

Different Ways to Run Your Program * 161

The -pa Dir flag adds Dir to the beginning of the code search path, and -pz Dir
adds the directory to the end of the code path.

Executing a Set of Commands When the System Is Started

We saw how you can set the load path in your .erlang file in your home direc-
tory. In fact, you can put any Erlang code in this file—when you start Erlang,
it first reads and evaluates all the commands in this file.

Suppose your .erlang file is as follows:

io:format("Hi, I'm in your .erlang file~n").

Then when we start the system, we’ll see the following output:

$ erl

Hi, I'm in your .erlang file
Eshell V5.9 (abort with ~G)
1>

If there is a file called .erlang in the current directory when Erlang is started,
then it will take precedence over the .erlang in your home directory. This way,
you can arrange that Erlang will behave in different ways depending upon
where it is started. This can be useful for specialized applications. In this
case, it's probably a good idea to include some print statements in the startup
file; otherwise, you might forget about the local startup file, which could be
very confusing.

Tip: In some systems, it’s not clear where your home directory is, or it might
not be where you think it is. To find out where Erlang thinks your home
directory is, do the following:

1> init:get_argument (home).
{ok, [["/home/joe"]1}

From this we can infer that Erlang thinks that my home directory is /homefjoe.

Different Ways to Run Your Program

Erlang programs are stored in modules. Once you have written your program,
you have to compile it before you can run it. Alternatively, you can run your
program directly without compiling it by running an escript.

The next sections show how to compile and run a couple of programs in a
number of ways. The programs are slightly different, and the ways in which
we start and stop them differ.

http://pragprog.com/titles/jaerlang2/errata/add
http://forums.pragprog.com/forums/jaerlang2

Chapter 10. Compiling and Running Your Program ¢ 162

The first program, hello.erl, just prints “Hello world.” It’s not responsible for
starting or stopping the system, and it does not need to access any command-
line arguments. By way of contrast, the second program, fac, needs to access
the command-line arguments.

Here’s our basic program. It writes the string containing “Hello world” followed
by a newline (~n is interpreted as a newline in the Erlang io and io_lib modules).

hello.erl
-module(hello).
-export([start/0]).

start() ->
io:format("Hello world~n").

Let’s compile and run it three ways.

Compile and Run in the Erlang Shell
We begin by starting the Erlang shell.
$ erl

i;.c(hello).

{ok, hello}

2> hello:start().

Hello world
ok

Often we want to be able to execute an arbitrary Erlang function from the OS command
line. The -eval argument is very handy for quick scripting.

Here’s an example:

erl -eval 'io:format("Memory: ~p~n", [erlang:memory(total)]).'\
-noshell -s init stop

Compile and Run from the Command Prompt

Compiling a program can be done directly from the command prompt. This
is the easiest way to do things if you just want to compile some code but not
run it. This is done as follows:

$ erlc hello.erl

$ erl -noshell -s hello start -s init stop
Hello world

$

http://media.pragprog.com/titles/jaerlang2/code/hello.erl
http://pragprog.com/titles/jaerlang2/errata/add
http://forums.pragprog.com/forums/jaerlang2

Different Ways to Run Your Program * 163

Note: All shell commands in this chapter assume that the user has installed
a suitable shell on their system and that commands erl, erlc, and so on, can
be executed directly in the shell. Details of how to configure the system are
system specific and change with time. Up-to-date details can be found on the
Erlang website' and in the Readme files on the main development archive.”

The first line, erlc hello.erl, compiles the file hello.erl, producing an object code
file called hello.beam. The second command has three options.

-noshell Starts Erlang without an interactive shell (so you don’t get the Erlang
“banner,” which ordinarily greets you when you start the system).

-s hello start Runs the function hello:start(). Note: When using the -s Mod ... option,
the Mod must have been compiled.

-s init stop Stops the system by evaluating the function init:stop() after the previous
command has finished.

The command erl -noshell ... can be put in a shell script, so typically we’d make
a shell script to run our program that sets the path (with -pa Directory) and
launches the program.

In our example, we used two -s.. commands. We can have as many functions
as we like on the command line. Each -s ... command is evaluated with an
apply statement, and when it has run to completion, the next command is
evaluated.

Here’s an example that launches hello.erl:

hello.sh

#!/bin/sh

erl -noshell -pa /home/joe/2012/book/JAERLANG/Book/code\
-s hello start -s init stop

Note: This script needs an absolute path that points to the directory containing
the file hello.beam. So although this script works on my machine, you'll have
to edit it to get it to run on your machine.

To run the shell script, we chmod the file (only once), and then we can run the
script.

$ chmod u+x hello.sh
$./hello.sh
Hello world

1. http://www.erlang.org
2. https://github.com/erlang/otp

http://media.pragprog.com/titles/jaerlang2/code/hello.sh
http://www.erlang.org
https://github.com/erlang/otp
http://pragprog.com/titles/jaerlang2/errata/add
http://forums.pragprog.com/forums/jaerlang2

Chapter 10. Compiling and Running Your Program ® 164

Run As an Escript

Using an escript, you can run your programs directly as scripts—there’s no
need to compile them first. To run hello as an escript, we create the following
file:

hello
#!/usr/bin/env escript

main(Args) ->
io:format("Hello world~n").

The file must contain a function main(Args). When called from an operating
system shell, Args will contain a list of the command-line arguments represent-
ed as atoms. On a Unix system, we can run this immediately and without
compilation as follows:

$ chmod u+x hello
$./hello
Hello world

Note: The file mode for this file must be set to “executable” (on a Unix system,
give the command chmod u+x File)—you have to do this only once, not every
time you run the program.

When you're developing code, it can be a bit of a pain to have to be continually adding
and removing export declarations to your program just so that you can run the
exported functions in the shell.

The special declaration -compile(export_all). tells the compiler to export every function in
the module. Using this makes life much easier when you're developing code.

When you're finished developing the code, you should comment out the export_all
declaration and add the appropriate export declarations. This is for two reasons.
First, when you come to read your code later, you'll know that the only important
functions are the exported functions. All the other functions cannot be called from
outside the module, so you can change them in any way you like, provided the
interfaces to the exported functions remain the same. Second, the compiler can pro-
duce much better code if it knows exactly which functions are exported from the
module.

Note that using -compile(export_all). will make analyzing code with the dialyzer a lot more
difficult.

http://media.pragprog.com/titles/jaerlang2/code/hello
http://pragprog.com/titles/jaerlang2/errata/add
http://forums.pragprog.com/forums/jaerlang2

Different Ways to Run Your Program ® 165

Programs with Command-Line Arguments

“Hello world” had no arguments. Let’s repeat the exercise with a program that
computes factorials. It takes a single argument.

First, here’s the code:

fac.erl
-module(fac).
-export([fac/1]).

fac(0) -> 1;
fac(N) -> N*fac(N-1).

We can compile fac.erl and run it in the Erlang shell like this:

$ erl

1> c(fac).

{ok, fac}

2> fac:fac(25).
15511210043330985984000000

If we want to be able to run this program from the command line, we’ll need
to modify it to take command-line arguments.

facl.erl
-module(facl).
-export([main/1]).

main([A]) ->
I = list_to_integer(atom_to_list(A)),
F = fac(I),
io:format("factorial ~w = ~w~n",[I, F]),
init:stop().

fac(0) -> 1;
fac(N) -> N*fac(N-1).

We can then compile and run it.

$ erlc facl.erl
$ erl -noshell -s facl main 25
factorial 25 = 15511210043330985984000000

Note: The fact that the function is called main has no significance; it can be
called anything. The important thing is that the function name and the name
on the command line agree.

Finally, we can run it as an escript.

http://media.pragprog.com/titles/jaerlang2/code/fac.erl
http://media.pragprog.com/titles/jaerlang2/code/fac1.erl
http://pragprog.com/titles/jaerlang2/errata/add
http://forums.pragprog.com/forums/jaerlang2

10.3

Chapter 10. Compiling and Running Your Program ® 166

factorial
#!/usr/bin/env escript
main([A]) ->
I = list_to_integer(A),
F = fac(I),
io:format("factorial ~w = ~w~n",[I, F]).

fac(0) -> 1;
fac(N) ->
N * fac(N-1).

No compilation is necessary; just run it, like so:

$./factorial 25
factorial 25 = 15511210043330985984000000

Automating Compilation with Makefiles

When I'm writing a large program, I like to automate as much as possible.
There are two reasons for this. First, in the long run, it saves typing—typing
the same old commands over and over again as I test and retest my program
takes a lot of keystrokes, and I don’t want to wear out my fingers.

Second, I often suspend what I'm working on and go work on some other
project. It can be months before I return to a project that I have suspended,
and when I return to the project, I've usually forgotten how to build the code
in my project. make to the rescue!

make is the utility for automating my work—I use it for compiling and distribut-
ing my Erlang code. Most of my makefiles® are extremely simple, and I have
a simple template that solves most of my needs.

I'm not going to explain makefiles in general. Instead, I'll show the form that
I find useful for compiling Erlang programs. In particular, we’ll look at the
makefiles accompanying this book so you'll be able to understand them and
build your own makefiles.

A Makefile Template
Here’s the template that I base most of my makefiles on:

Makefile.template
leave these lines alone
.SUFFIXES: .erl .beam .yrl

.erl.beam:
erlc -W $<

3. http://en.wikipedia.org/wiki/Make

http://media.pragprog.com/titles/jaerlang2/code/factorial
http://media.pragprog.com/titles/jaerlang2/code/Makefile.template
http://en.wikipedia.org/wiki/Make
http://pragprog.com/titles/jaerlang2/errata/add
http://forums.pragprog.com/forums/jaerlang2

Automating Compilation with Makefiles ® 167

.yrl.erl:
erlc -W $<

ERL = erl -boot start_clean
Here's a list of the erlang modules you want compiling
If the modules don't fit onto one line add a | character
to the end of the line and continue on the next line
Edit the lines below
MODS = modulel module2 \
module3 ... speciall ...\
moduleN
The first target in any makefile is the default target.
If you just type "make" then "make all" is assumed (because
"all" is the first target in this makefile)
all: compile
compile: ${MODS:%=%.beam} subdirs

special compilation requirements are added here

speciall.beam: speciall.erl
${ERL} -Dflagl -WO speciall.erl

run an application from the makefile

applicationl: compile
${ERL} -pa Dirl -s applicationl start Argl Arg2

the subdirs target compiles any code in
sub-directories

subdirs:
cd dirl; $(MAKE)
cd dir2; $(MAKE)

remove all the code

clean:
rm -rf *.beam erl crash.dump
cd dirl; $(MAKE) clean
cd dir2; $(MAKE) clean

http://pragprog.com/titles/jaerlang2/errata/add
http://forums.pragprog.com/forums/jaerlang2

Chapter 10. Compiling and Running Your Program * 168

The makefile starts with some rules to compile Erlang modules and files with
the extension .yrl (these are files containing parser definitions for the Erlang
parser generator program). The Erlang parser generator is called yecc (an
Erlang version of yacc, which is short for yet another compiler compiler; see
the online tutorial® for more details).

The important part is the line starting like this:

MODS = modulel module2
This is a list of all the Erlang modules that I want to compile.

Any module in the MODS list will be compiled with the Erlang command
erlc Mod.erl. Some modules might need special treatment (for example the
module speciall in the template file), so there is a separate rule to handle this.

Inside a makefile there are a number of targets. A target is an alphanumeric
string starting in the first column and terminated by a colon (:). In the
makefile template, all, compile, and speciall.beam are all targets. To run the
makefile, you give the shell command.

$ make [Target]

The argument Target is optional. If Target is omitted, then the first target in the
file is assumed. In the previous example, the target all is assumed if no target
is specified on the command line.

If I wanted to build all my software and run applicationl, then I'd give the com-
mand make applicationl. If I wanted this to be the default behavior, which happens
when I just give the command make, then I'd move the lines defining the target
applicationl so that they were the first target in the makefile.

The target clean removes all compiled Erlang object code files and the file
erl_crash.dump. The crash dump contains information that can help debug an
application. See Erlang Has Crashed and You Want to Read the Crash Dump,
on page 172, for details.

Specializing the Makefile Template

I'm not a fan of clutter in my software, so what I usually do is start with the
template makefile and remove all lines that aren’t relevant to my application.
This results in makefiles that are shorter and easier to read. Alternatively,
you could have a common makefile that is included by all makefiles and that
is parameterized by the variables in the makefiles.

4. http://www.erlang.org/contrib/parser tutorial-1.0.tgz

http://www.erlang.org/contrib/parser_tutorial-1.0.tgz
http://pragprog.com/titles/jaerlang2/errata/add
http://forums.pragprog.com/forums/jaerlang2

10.4

When Things Go Wrong ® 169

Once I'm through with this process, I'll end up with a much simplified
makefile, something like the following:

.SUFFIXES: .erl .beam

.erl.beam:
erlc -W $<

ERL = erl -boot start clean
MODS = modulel module2 module3

all: compile
${ERL} -pa '/home/joe/.../this/dir' -s modulel start

compile: ${MODS:%=%.beam}

clean:
rm -rf *.beam erl crash.dump

When Things Go Wrong

This section lists some common problems (and their solutions).

Stopping Erlang

Erlang can sometimes be difficult to stop. Here are a number of possible
reasons:

¢ The shell is not responding.
e The Ctrl+C handler has been disabled.

e Erlang has been started with the -detached flag, so you may not be aware
that it is running.

e Erlang has been started with the -heart Cmd option. This option causes an
OS monitor process to be set up that watches over the Erlang OS process.
If the Erlang OS process dies, then Cmd is evaluated. Often Cmd will simply
restart the Erlang system. This is one of the tricks we use when making
fault-tolerant nodes—if Erlang itself dies (which should never happen), it
just gets restarted. The trick here is to find the heartbeat process (use ps
on Unix-like systems and the Task Manager on Windows) and kill it before
you kill the Erlang process.

¢ Something might have gone seriously wrong and left you with a detached
zombie Erlang process.

http://pragprog.com/titles/jaerlang2/errata/add
http://forums.pragprog.com/forums/jaerlang2

Chapter 10. Compiling and Running Your Program ¢ 170

Undefined (Missing) Code

If you try to run code in a module that the code loader cannot find (because
the code search path was wrong), you'll be met with an undef error message.
Here’s an example:

1> glurk:oops(1,23).
** aexception error: undefined function glurk:oops/2

Actually, there is no module called glurk, but that’s not the issue here. The
thing you should be concentrating on is the error message. The error message
tells us that the system tried to call the function oops with two arguments in
the module glurk. So, one of four things could have happened.

¢ There really is no module glurk—nowhere, not anywhere. This is probably
because of a spelling mistake.

e There is a module glurk, but it hasn’t been compiled. The system is looking
for a file called glurk.beam somewhere in the code search path.

e There is a module glurk and it has been compiled, but the directory con-
taining glurk.beam is not one of the directories in the code search path. To
fix this, you’ll have to change the search path.

e There are several different versions of glurk in the code load path, and
we've chosen the wrong one. This is a rare error, but it can happen.

If you suspect this has happened, you can run the code:clash() function,
which reports all duplicated modules in the code search path.

If you forget the semicolons between the clauses in a function or put periods there
instead, you’ll be in trouble—real trouble.

If you're defining a function foo/2 in line 1234 of the module bar and put a period
instead of a semicolon, the compiler will say this:

bar.erl:1234 function foo/2 already defined.

Don’t do it. Make sure your clauses are always separated by semicolons.

The Shell Isn’t Responding

If the shell is not responding to commands, then a number of things might
have happened. The shell process itself might have crashed, or you might
have issued a command that will never terminate. You might even have

http://pragprog.com/titles/jaerlang2/errata/add
http://forums.pragprog.com/forums/jaerlang2

When Things Go Wrong ® 171

forgotten to type a closing quote mark or forgotten to type dot-carriage-return at
the end of your command.

Regardless of the reason, you can interrupt the current shell by pressing
Ctrl+G and proceeding as in the following example:

1> receive foo -> true end.

~G

User switch command

--> h

¢ [nn] - connect to job

i [nn] - interrupt job

k [nn] - kill job

J - list all jobs

s - start local shell
r [node] - start remote shell
q - quit erlang

71 h - this message
-->j

1* {shell,start,[init]}

-=> S

->

1 {shell,start,[init]}

2* {shell,start,[]}

-=>Cc 2

Eshell V5.5.1 (abort with ~G)
1> init:stop().

ok

2> $

©® Here we told the shell to receive a foo message. But since nobody ever
sends the shell this message, the shell goes into an infinite wait. We
entered the shell by pressing Ctrl+G.

©® The system enters “shell JCL” (Job Control Language) mode. We typed h
for some help.

©® Typing jlisted all jobs. Job 1 is marked with a star, which means it is the
default shell. All the commands with an optional argument [nn] use the
default shell unless a specific argument is supplied.

O Typing the command s started a new shell, followed by j again. This time
we can see there are two shells marked 1 and 2, and shell 2 has become
the default shell.

© We typed c 2, which connected us to the newly started shell 2; after this,
we stopped the system.

http://pragprog.com/titles/jaerlang2/errata/add
http://forums.pragprog.com/forums/jaerlang2

10.5

Chapter 10. Compiling and Running Your Program ¢ 172

As we can see, we can have many shells in operation and swap between them
by pressing Ctrl+G and then the appropriate commands. We can even start
a shell on a remote node with the r command.

My Makefile Doesn’t Make

What can go wrong with a malkefile? Well, lots, actually. But this isn’t a book
about makefiles, so I'll deal only with the most common errors. Here are the
two most common errors that I make:

* Blanks in the makefile: Makefiles are extremely persnickety. Although you
can't see them, each of the indented lines in the makefile (with the
exception of continuation lines, where the previous line ends with a \
character) should begin with a tab character. If there are any spaces there,
make will get confused, and you’ll start seeing errors.

* Missing erlang file: If one of the modules declared in MODS is missing, you'll
get an error message. To illustrate this, assume that MODS contains a
module name glurk but that there is no file called glurk.erl in the code
directory. In this case, make will fail with the following message:

$ make
make: *** No rule to make target “glurk.beam',
needed by “compile'. Stop.

Alternatively, there is no missing module, but the module name is spelled
incorrectly in the makefile.

Erlang Has Crashed and You Want to Read the Crash Dump

If Erlang crashes, it leaves behind a file called erl_crash.dump. The contents of
this file might give you a clue as to what has gone wrong. To analyze the crash
dump, there is a web-based crash analyzer. To start the analyzer, give the
following command:

1> crashdump_viewer:start().

WebTool is available at http://localhost:8888/

Or http://127.0.0.1:8888/
ok

Then point your browser at http://localhost:8888/. You can then happily surf the
error log.

Getting Help

On a Unix system, we can access the man pages as follows:

http://localhost:8888/
http://pragprog.com/titles/jaerlang2/errata/add
http://forums.pragprog.com/forums/jaerlang2

10.6

Tweaking the Environment ® 173

$ erl -man erl
NAME
erl - The Erlang Emulator

DESCRIPTION

The erl program starts the Erlang runtime system.

The exact details (e.g. whether erl is a script

or a program and which other programs it calls) are system-dependent.

We can also get help about individual modules as follows:

$ erl -man lists
MODULE
lists - List Processing Functions

DESCRIPTION
This module contains functions for 1list processing.
The functions are organized in two groups:

Note: On a Unix system, the manual pages are not installed by default. If the
command erl-man ... does not work, then you need to install the manual pages.
All the manual pages are in a single compressed archive.’ The manual pages
should be unpacked in the root of the Erlang installation directory (usually
Jusr/local/lib/erlang).

The documentation is also downloadable as a set of HTML files. On Windows
the HTML documentation is installed by default and accessible through the
Erlang section of the Start menu.

Tweaking the Environment

The Erlang shell has a number of built-in commands. You can see them all
with the shell command help().

1> help().
** shell internal commands **

b() -- display all variable bindings

e(N) -- repeat the expression in query <N>
() -- forget all variable bindings

f(X) -- forget the binding of variable X
h() -- history

All these commands are defined in the module shell_default.

5. http://www.erlang.org/download.html

http://www.erlang.org/download.html
http://pragprog.com/titles/jaerlang2/errata/add
http://forums.pragprog.com/forums/jaerlang2

Chapter 10. Compiling and Running Your Program ® 174

If you want to define your own commands, just create a module called
user_default. Here’s an example:

user_default.erl
-module(user default).

-compile(export_all).

hello() ->
"Hello Joe how are you?".

away(Time) ->
io:format("Joe is away and will be back in ~w minutes~n",
[Time]) .

Once this has been compiled and is placed somewhere in your load path,
then you can call any of the functions in user_default without giving a module
name.

1> hello().

"Hello Joe how are you?"

2> away(10).

Joe is away and will be back in 10 minutes
ok

Now we're through with the nuts-and-bolts stuff, so we can begin to look at
concurrent programs. This is where the fun really starts.

Exercises

1. Create a new directory and copy the makefile template in the chapter to
this directory. Write a small Erlang program and save it in this directory.
Add commands to the makefile and to the Erlang code to automatically
run a set of unit tests (see Adding Tests to Your Code, on page 46) on the
code when you type make.

http://media.pragprog.com/titles/jaerlang2/code/user_default.erl
http://pragprog.com/titles/jaerlang2/errata/add
http://forums.pragprog.com/forums/jaerlang2

Part III

Concurrent and Distributed Programs

This part covers concurrent and distributed Erlang.
Building on sequential Erlang, you’ll learn how to
write concurrent programs and how to run these
on distributed networks of computers.

CHAPTER 11

Real-World Concurrency

Let’s forget about programming for a while and think about what happens in
the real world.

We understand concurrency.
A deep understanding of concurrency is hardwired into our brains. We
react to stimulation extremely quickly, using a part of the brain called
the amygdala. Without this reaction, we would die. Conscious thought
is just too slow; by the time the thought “hit the brakes” has formed itself,
we have already done it.

http://pragprog.com/titles/jaerlang2/errata/add
http://forums.pragprog.com/forums/jaerlang2

Chapter 11. Real-World Concurrency ® 178

While driving on a major road, we mentally track the positions of dozens,
or perhaps hundreds, of cars. This is done without conscious thought. If
we couldn’t do this, we would probably be dead.

The world is parallel.
If we want to write programs that behave as other objects behave in the
real world, then these programs will have a concurrent structure.

This is why we should program in a concurrent programming language.

And yet most often we program real-world applications in sequential
programming languages. This is unnecessarily difficult.

Use a language that was designed for writing concurrent applications,
and concurrent development becomes a lot easier.

Erlang programs model how we think and interact.
We don’t have shared memory. I have my memory. You have yours. We
have two brains, one each. They are not joined. To change your memory,
I send you a message: I talk, or I wave my arms.

You listen, you see, and your memory changes; however, without asking
you a question or observing your response, I do not know that you have
received my messages.

This is how it is with Erlang processes. Erlang processes have no shared
memory. Each process has its own memory. To change the memory of
some other process, you must send it a message and hope that it receives
and understands the message.

To confirm that another process has received your message and changed
its memory, you must ask it (by sending it a message). This is exactly
how we interact.

Sue: Hi, Bill, my telephone number is 345-678-1234.
Sue: Did you hear me?
Bill: Sure, your number is 345-678-1234.
These interaction patterns are well known to us. From birth onward we

learn to interact with the world by observing it and by sending it messages
and observing the responses.

People function as independent entities who communicate by

sending messages.
That's how Erlang processes work, and that’s how we work, so it's easy
to understand an Erlang program.

http://pragprog.com/titles/jaerlang2/errata/add
http://forums.pragprog.com/forums/jaerlang2

Chapter 11. Real-World Concurrency ® 179

An Erlang program consists of dozens, thousands, or even hundreds of
thousands of small processes. All these processes operate independently.
They communicate with each other by sending messages. Each process
has a private memory. They behave like a huge room of people all chatter-
ing away to each other.

This makes Erlang programs inherently easy to manage and scale. Sup-
pose we have ten people (processes) and they have too much work to do.
What can we do? Get more people. How can we manage these groups of
people? It’'s easy—just shout instructions at them (broadcasting).

Erlang processes don’t share memory, so there is no need to lock the
memory while it is being used. Where there are locks, there are keys that
can get lost. What happens when you lose your keys? You panic and don’t
know what to do. That’s what happens in software systems when you lose
your keys and your locks go wrong.

Distributed software systems with locks and keys always go wrong.
Erlang has no locks and no keys.

If somebody dies, other people will notice.
If I'm in a room and suddenly keel over and die, somebody will probably
notice (well, at least I hope so). Erlang processes are just like people—
they can on occasion die. Unlike people, when they die, they shout out
in their last breath exactly what they have died from.

Imagine a room full of people. Suddenly one person keels over and dies.
Just as they die, they say “I'm dying of a heart attack” or “I'm dying of an
exploded gastric wobbledgog.” That’s what Erlang processes do. One
process might die saying “I'm dying because I was asked to divide by zero.”
Another might say, “I'm dying because I was asked what the last element
in an empty list was.”

Now in our room full of people, we might imagine there are specially
assigned people whose job it is to clear away the bodies. Let’'s imagine
two people, Jane and John. If Jane dies, then John will fix any problems
associated with Jane’s death. If John dies, then Jane will fix the problems.
Jane and John are linked with an invisible agreement that says that if
one of them dies, the other will fix up any problems caused by the death.

That’s how error detection in Erlang works. Processes can be linked. If
one of the processes dies, the other process gets an error message saying
why the first process died.

http://pragprog.com/titles/jaerlang2/errata/add
http://forums.pragprog.com/forums/jaerlang2

Chapter 11. Real-World Concurrency * 180

That’s basically it.
That’s how Erlang programs work.
Here’s what we've learned so far:

¢ Erlang programs are made of lots of processes. These processes can send
messages to each other.

* These messages may or may not be received and understood. If you want
to know whether a message was received and understood, you must send
the process a message and wait for a reply.

¢ Pairs of processes can be linked. If one of the processes in a linked pair
dies, the other process in the pair will be sent a message containing the
reason why the first process died.

This simple model of programming is part of a model I call concurrency-oriented
programming.

In the next chapter, we’ll start writing concurrent programs. We need to learn
three new primitives: spawn, send (using the ! operator), and receive. Then we
can write some simple concurrent programs.

When processes die, some other process notices if they are linked. This is the
subject of Chapter 13, Errors in Concurrent Programs, on page 199.

As you read the next two chapters, think of people in a room. The people are
the processes. The people in the room have individual private memories; this
is the state of a process. To change your memory, I talk to you, and you listen.
This is sending and receiving messages. We have children; this is spawn. We
die; this is a process exit.

http://pragprog.com/titles/jaerlang2/errata/add
http://forums.pragprog.com/forums/jaerlang2

CHAPTER 12

Concurrent Programming

Writing concurrent programs is easy once we know sequential Erlang. All we
need are three new primitives: spawn, send, and receive. spawn creates a parallel
process. send sends a message to a process, and receive receives messages.

Erlang concurrency is based on processes. These are small, self-contained
virtual machines that can evaluate Erlang functions.

I'm sure you've met processes before, but only in the context of operating
systems. In Erlang, processes belong to the programming language and not the
operating system. This means that Erlang processes will have the same logical
behavior on any operating system, so we can write portable concurrent code
that can run on any operating system that supports Erlang.

In Erlang:
e Creating and destroying processes is very fast.
* Sending messages between processes is very fast.
¢ Processes behave the same way on all operating systems.
e We can have very large numbers of processes.
¢ Processes share no memory and are completely independent.
e The only way for processes to interact is through message passing.

For these reasons Erlang is sometimes called a pure message passing
language.

If you haven’'t programmed with processes before, you might have heard
rumors that it is rather difficult. You've probably heard horror stories of
memory violations, race conditions, shared-memory corruption, and the like.
In Erlang, programming with processes is easy.

http://pragprog.com/titles/jaerlang2/errata/add
http://forums.pragprog.com/forums/jaerlang2

Chapter 12. Concurrent Programming ® 182

12.1 The Concurrency Primitives

Everything we've learned about sequential programming is still true for con-
current programming. All we have to do is to add the following primitives:

Pid = spawn(Mod, Func, Args)
Creates a new concurrent process that evaluates apply(Mod, Func, Args). The
new process runs in parallel with the caller. spawn returns a Pid (short for
process identifier). You can use a Pid to send messages to the process.
Note that the function Func with arity length(Args) must be exported from
the module Mod.

When a new process is created, the latest version of the module defining
the code is used.

Pid = spawn(Fun)
Creates a new concurrent process that evaluates Fun(). This form of spawn
always uses the current value of the fun being evaluated, and this fun
does not have to be exported from the module.

The essential difference between the two forms of spawn has to do with
dynamic code upgrade. How to choose between the two forms of spawn is
discussed later in Section 12.8, Spawning with MFAs or Funs, on page
197.

Pid ! Message
Sends Message to the process with identifier Pid. Message sending is asyn-
chronous. The sender does not wait but continues with what it was doing.
I is called the send operator.

Pid ! M is defined to be M. Because of this, Pidl ! Pid2 ! ...! Msg means send the
message Msg to all the processes Pidl, Pid2, and so on.

receive ... end
Receives a message that has been sent to a process. It has the following

syntax:
receive
Patternl [when Guardl] ->
Expressionsl;
Pattern2 [when Guard2] ->
Expressions2;
end

When a message arrives at the process, the system tries to match it against
Pattern1 (with possible guard Guardl); if this succeeds, it evaluates Expressionsl.

http://pragprog.com/titles/jaerlang2/errata/add
http://forums.pragprog.com/forums/jaerlang2

The Concurrency Primitives ® 183

If the first pattern does not match, it tries Pattern2, and so on. If no pattern
matches, the message is saved for later processing, and the process waits
for the next message. This is described in more detail in Section 12.5,
Selective Receive, on page 193.

The patterns and guards used in a receive statement have exactly the
same syntactic form and meaning as the patterns and guards that we
use when we define a function.

That’s it. You don’t need threading and locking and semaphores and artificial
controls.

So far we have glossed over exactly how spawn, send, and receive work. When a
spawn command is executed, the system creates a new process. Each process
has an associated mailbox that is also created when the process is created.

When you send a message to a process, the message is put into the mailbox
of the process. The only time the mailbox is examined is when your program
evaluates a receive statement.

Using these three primitives, we can recast the area/l function in Section 4.1,
Modules Are Where We Store Code, on page 43 into a process. Just to remind
you, the code that defined the area/1 function looked like this:

geometry.erl
area({rectangle, Width, Height}) -> Width * Height;
area({square, Side}) -> Side * Side.

Now we’ll rewrite the same function as a process. To do this, we take the two
patterns that were the arguments to the area function and rearrange them to
form the patterns in a receive statement.

area_serverO.erl
-module(area server0).
-export([loop/0]).

loop() ->
receive
{rectangle, Width, Ht} ->
io:format("Area of rectangle is ~p~n",[Width * Ht]),

loop();

{square, Side} ->
io:format("Area of square is ~p~n", [Side * Sidel),
Loop()

end.

We can create a process that evaluates loop/0 in the shell.

http://media.pragprog.com/titles/jaerlang2/code/geometry.erl
http://media.pragprog.com/titles/jaerlang2/code/area_server0.erl
http://pragprog.com/titles/jaerlang2/errata/add
http://forums.pragprog.com/forums/jaerlang2

12.2

Chapter 12. Concurrent Programming ® 184

1> Pid = spawn(area_server0, loop, []).
<0.36.0>

2> Pid ! {rectangle, 6, 10}.

Area of rectangle is 60
{rectangle,6,10}

3> Pid ! {square, 12}.

Area of square is 144

{square, 144}

In line 1 we created a new parallel process. spawn(area_server, loop, []) creates a
parallel process that evaluates area_server:loop(); it returns Pid, which is printed
as <0.36.0>.

In line 2 we sent a message to the process. This message matches the first
pattern in the receive statement in loop/0:
loop() ->
receive
{rectangle, Width, Ht} ->
io:format("Area of rectangle is ~p~n",[Width * Ht]),
loop()

Having received a message, the process prints the area of the rectangle.
Finally, the shell prints {rectangle, 6, 10}. This is because the value of Pid ! Msg
is defined to be Msg.

Introducing Client-Server

Client-server architectures are central to Erlang. Traditionally, client-server
architectures have involved a network that separates a client from a server.
Most often there are multiple instances of the client and a single server. The
word server often conjures up a mental image of some rather heavyweight
software running on a specialized machine.

In our case, a much lighter-weight mechanism is involved. The client and
server in a client-server architecture are separate processes, and normal
Erlang message passing is used for communication between the client and
the server. Both client and server can run on the same machine or on two
different machines.

The words client and server refer to the roles that these two processes have;
the client always initiates a computation by sending a request to the server.
The server computes a reply and sends a response to the client.

Let’s write our first client-server application. We’'ll start by making some small
changes to the program we wrote in the previous section.

http://pragprog.com/titles/jaerlang2/errata/add
http://forums.pragprog.com/forums/jaerlang2

Introducing Client-Server * 185

In the previous program, all that we needed was to send a request to a process
that received and printed that request. Now, what we want to do is send a
response to the process that sent the original request. The trouble is we do
not know to whom to send the response. To send a response, the client has
to include an address to which the server can reply. This is like sending a
letter to somebody—if you want to get a reply, you had better include your
address in the letter!

So, the sender must include a reply address. This can be done by changing
this:

Pid ! {rectangle, 6, 10}

to the following:

Pid ! {self(),{rectangle, 6, 10}}

self() is the PID of the client process.

To respond to the request, we have to change the code that receives the
requests from this:
loop() ->
receive
{rectangle, Width, Ht} ->
io:format("Area of rectangle is ~p~n",[Width * Ht]),
loop()

to the following:

loop() ->
receive
{From, {rectangle, Width, Ht}} ->
From ! Width * Ht,
loop();

Note how we now send the result of our calculation back to the process
identified by the From parameter. Because the client set this parameter to its
own process ID, it will receive the result.

The process that sends requests is usually called a client. The process that
receives requests and replies to the client is called a server.

In addition, it’s good practice to make sure every message sent to a process
is actually received. If we send a message to the process that doesn’t match
one of the two patterns in the original receive statement, then this message
will end up in the mailbox of the process and never be received. To deal with

http://pragprog.com/titles/jaerlang2/errata/add
http://forums.pragprog.com/forums/jaerlang2

Chapter 12. Concurrent Programming ® 186

this, we add a clause at the end of the receive statement that is guaranteed
to match any message that is sent to the process.

Finally, we add a small utility function called rpc (short for remote procedure call)
that encapsulates sending a request to a server and waiting for a response.

area_serverl.erl
rpc(Pid, Request) ->
Pid ! {self(), Request},
receive
Response ->
Response
end.

Putting all of this together, we get the following:

area_serverl.erl
-module(area serverl).
-export([loop/0, rpc/2]).
rpc(Pid, Request) ->

Pid ! {self(), Request},

receive
Response ->
Response
end.
loop() ->
receive

{From, {rectangle, Width, Ht}} ->
From ! Width * Ht,
loop();

{From, {circle, R}} ->
From ! 3.14159 * R * R,
loop();

{From, Other} ->
From ! {error,Other},
loop()

end.

We can experiment with this in the shell.

1> Pid = spawn(area_serverl, loop, []).

<0.36.0>

2> area_serverl:rpc(Pid, {rectangle,6,8}).
48

3> area_serverl:rpc(Pid, {circle,6}).
113.097

4> area_serverl:rpc(Pid, socks).
{error,socks}

There’s a slight problem with this code. In the function rpc/2, we send a request
to the server and then wait for a response. But we do not wait _for a response

http://media.pragprog.com/titles/jaerlang2/code/area_server1.erl
http://media.pragprog.com/titles/jaerlang2/code/area_server1.erl
http://pragprog.com/titles/jaerlang2/errata/add
http://forums.pragprog.com/forums/jaerlang2

Introducing Client-Server * 187

Jfrom the server; we wait for any message. If some other process sends the
client a message while it is waiting for a response from the server, it will
misinterpret this message as a response from the server. We can correct this
by changing the form of the receive statement to this:

loop() ->
receive
{From, ...} ->
From ! {self(), ...}
Loop()
end.

and by changing rpc to the following:

rpc(Pid, Request) ->
Pid ! {self(), Request},
receive
{Pid, Response} ->
Response
end.

When we call the rpc function, Pid is bound to some value, so in the pattern
{Pid, Response}, Pid is bound, and Response is unbound. This pattern will match
only a message containing a two-element tuple where the first element is Pid.
All other messages will be queued. (receive provides what is called selective
receive, which I'll describe after this section.) With this change, we get the
following:

area_server2.erl
-module(area server2).
-export([loop/0, rpc/2]).
rpc(Pid, Request) ->

Pid ! {self(), Request},

receive
{Pid, Response} ->
Response
end.
loop() ->
receive

{From, {rectangle, Width, Ht}} ->
From ! {self(), Width * Ht},
loop();

{From, {circle, R}} ->
From ! {self(), 3.14159 * R * R},
loop();

{From, Other} ->
From ! {self(), {error,Other}},
loop()

end.

http://media.pragprog.com/titles/jaerlang2/code/area_server2.erl
http://pragprog.com/titles/jaerlang2/errata/add
http://forums.pragprog.com/forums/jaerlang2

Chapter 12. Concurrent Programming ® 188

This works as expected.

1> Pid = spawn(area_server2, loop, []).
<0.37.0>

2> area_server2:rpc(Pid, {circle, 5}).
78.5397

There’s one final improvement we can make. We can hide the spawn and
rpc inside the module. Note that we also have to export the argument of spawn
(that is, loop/0) from the module. This is good practice because we will be able
to change the internal details of the server without changing the client code.
Finally, we get this:

area_server_final.erl
-module(area_server final).
-export([start/0, area/2, loop/0]).

start() -> spawn(area server final, loop, []).

area(Pid, What) ->
rpc(Pid, What).
rpc(Pid, Request) ->
Pid ! {self(), Request},

receive
{Pid, Response} ->
Response
end.
loop() ->
receive

{From, {rectangle, Width, Ht}} ->
From ! {self(), Width * Ht},
loop();

{From, {circle, R}} ->
From ! {self(), 3.14159 * R * R},
loop();

{From, Other} ->
From ! {self(), {error,0ther}},
Loop()

end.

To run this, we call the functions start/0 and area/2 (wWhere before we called spawn
and rpc). These are better names that more accurately describe what the
server does.

1> Pid = area_server_final:start().

<0.36.0>

2> area_server_final:area(Pid, {rectangle, 10, 8}).
80

3> area_server_final:area(Pid, {circle, 4}).
50.2654

http://media.pragprog.com/titles/jaerlang2/code/area_server_final.erl
http://pragprog.com/titles/jaerlang2/errata/add
http://forums.pragprog.com/forums/jaerlang2

12.3

Processes Are Cheap * 189

So now we've built a simple client-server module. All we needed were the three
primitives, spawn, send, and receive. This pattern will repeat over and over again
in major and minor variations, but the underlying ideas are always the same.

Processes Are Cheap

At this point, you might be worried about performance. After all, if we're cre-
ating hundreds or thousands of Erlang processes, we must be paying some
kind of penalty. Let’s find out how much.

We'll do a bunch of spawns, create loads of processes, and time how long it
takes. Here’s the program; note that here we use spawn(Fun) and that the
function being spawned does not have to be exported from the module:

processes.erl
-module(processes).

-export([max/1]).
%% max(N)

%% Create N processes then destroy them
%% See how much time this takes

max(N) ->
Max = erlang:system_info(process limit),
io:format("Maximum allowed processes:~p~n",[Max]),
statistics(runtime),
statistics(wall clock),
L = for(1, N, fun() -> spawn(fun() -> wait() end) end),
{_, Timel} = statistics(runtime),
{ , Time2} = statistics(wall clock),
lists:foreach(fun(Pid) -> Pid ! die end, L),
Ul = Timel * 1000 / N,
U2 = Time2 * 1000 / N,
io:format("Process spawn time=~p (~p) microseconds~n",

[ul, U2]).
wait() ->
receive
die -> void
end.

for(N, N, F) -> [F()];
for(I, N, F) -> [F()|for(I+1, N, F)].

Here are the results I obtained on the computer I'm using at the moment, a
2.90GHz Intel Core i7 dual core with 8GB memory running Ubuntu:

http://media.pragprog.com/titles/jaerlang2/code/processes.erl
http://pragprog.com/titles/jaerlang2/errata/add
http://forums.pragprog.com/forums/jaerlang2

Chapter 12. Concurrent Programming ¢ 190

1> processes:max(20000) .

Maximum allowed processes:262144

Process spawn time=3.0 (3.4) microseconds
2> processes:max(300000).

Maximum allowed processes:262144

=ERROR REPORT==== 14-May-2013::09:32:56 ===
Too many processes

** exception error: a system limit has been reached

Spawning 20,000 processes took an average of 3.0 us/process of CPU time
and 3.4 us of elapsed (wall-clock) time.

Note that I used the BIF erlang:system info(process limit) to find the maximum
allowed number of processes. Some of these processes are reserved, so your
program cannot actually use this number. When we exceed the system limit,
the system refuses to start any more processes and produces an error report
(command 2).

The system limit is set to 262,144 processes; to exceed this limit, you have
to start the Erlang emulator with the +P flag as follows:

$ erl +P 3000000

1> processes:max(500000) .

Maximum allowed processes:4194304

Process spawn time=2.52 (2.896) microseconds
ok

2> processes:max(1000000).

Maximum allowed processes:4194304

Process spawn time=3.65 (4.095) microseconds
ok

3> processes:max(2000000) .

Maximum allowed processes:4194304

Process spawn time=4.02 (8.0625) microseconds
ok

6> processes:max(3000000).

Maximum allowed processes:4194304

Process spawn time=4.048 (8.624) microseconds
ok

In the previous example, the actual value chosen is the next highest power
of two that is greater than the supplied argument. The actual value can be
obtained by calling erlang:system_info(process_limit). We can see that the process
spawn time increases as we increase the number of processes. If we continue
to increase the number of processes, we will reach a point where we run out

http://pragprog.com/titles/jaerlang2/errata/add
http://forums.pragprog.com/forums/jaerlang2

12.4

Receive with a Timeout ® 191

of physical memory, and the system will start swapping physical memory to
disk and run dramatically slower.

If you're writing a program that uses a large number of processes, it's a good
idea to find out how many processes can fit into physical memory before the
system starts swapping memory to disk and to make sure that your program
will run in physical memory.

As you can see, creating large numbers of processes is pretty fast. If you're
a C or Java programmer, you might hesitate to use a large number of process-
es, and you would have to take care managing them. In Erlang, creating
processes simplifies programming instead of complicating it.

Receive with a Timeout

Sometimes a receive statement might wait forever for a message that never
comes. This could be for a number of reasons. For example, there might be
a logical error in our program, or the process that was going to send us a
message might have crashed before it sent the message. To avoid this problem,
we can add a timeout to the receive statement. This sets a maximum time
that the process will wait to receive a message. The syntax is as follows:

receive
Patternl [when Guardl] ->
Expressionsl;
Pattern2 [when Guard2] ->
Expressions2;

after Time ->
Expressions
end

If no matching message has arrived within Time milliseconds of entering the
receive expression, then the process will stop waiting for a message and
evaluate Expressions.

Receive with Just a Timeout

You can write a receive consisting of only a timeout. Using this, we can define
a function sleep(T), which suspends the current process for T milliseconds.

lib_misc.erl
sleep(T) ->
receive
after T ->
true
end.

http://media.pragprog.com/titles/jaerlang2/code/lib_misc.erl
http://pragprog.com/titles/jaerlang2/errata/add
http://forums.pragprog.com/forums/jaerlang2

Chapter 12. Concurrent Programming ® 192

Receive with Timeout Value of Zero

A timeout value of 0 causes the body of the timeout to occur immediately, but
before this happens, the system tries to match any patterns in the mailbox.
We can use this to define a function flush_buffer, which entirely empties all
messages in the mailbox of a process.

lib_misc.erl
flush _buffer() ->
receive
_Any ->
flush buffer()
after 0 ->
true
end.

Without the timeout clause, flush_buffer would suspend forever and not return
when the mailbox was empty. We can also use a zero timeout to implement
a form of “priority receive,” as follows:

lib_misc.erl
priority receive() ->
receive
{alarm, X} ->
{alarm, X}
after 0 ->
receive
Any ->
Any
end
end.

If there is not a message matching {alarm, X} in the mailbox, then priority receive
will receive the first message in the mailbox. If there is no message at all, it
will suspend in the innermost receive and return the first message it receives.
If there is a message matching {alarm, X}, then this message will be returned
immediately. Remember that the after section is checked only after pattern
matching has been performed on all the entries in the mailbox.

Without the after 0 statement, the alarm message would not be matched first.

Note: Using large mailboxes with priority receive is rather inefficient, so if
you're going to use this technique, make sure your mailboxes are not too
large.

receive with Timeout Value of Infinity

If the timeout value in a receive statement is the atom infinity, then the timeout
will never trigger. This might be useful for programs where the timeout value

http://media.pragprog.com/titles/jaerlang2/code/lib_misc.erl
http://media.pragprog.com/titles/jaerlang2/code/lib_misc.erl
http://pragprog.com/titles/jaerlang2/errata/add
http://forums.pragprog.com/forums/jaerlang2

12.5

Selective Receive * 193

is calculated outside the receive statement. Sometimes the calculation might
want to return an actual timeout value, and other times it might want to have
the receive wait forever.

Implementing a Timer

We can implement a simple timer using receive timeouts.

The function stimer:start(Time, Fun) will evaluate Fun (a function of zero arguments)
after Time ms. It returns a handle (which is a PID), which can be used to
cancel the timer if required.

stimer.erl
-module(stimer).
-export([start/2, cancel/1]).

start(Time, Fun) -> spawn(fun() -> timer(Time, Fun) end).
cancel(Pid) -> Pid ! cancel.
timer(Time, Fun) ->
receive
cancel ->
void
after Time ->
Fun()
end.

We can test this as follows:

1> Pid = stimer:start(5000, fun() -> io:format("timer event~n") end).
<0.42.0>
timer event

Here I waited more than five seconds so that the timer would trigger. Now I'll
start a timer and cancel it before the timer period has expired.

2> Pidl = stimer:start(25000, fun() -> io:format("timer event~n") end).
<0.49.0>

3> stimer:cancel(Pidl).
cancel

Timeouts and timers are central to the implementation of many communica-
tion protocols. When we wait for a message, we don’t want to wait forever, so
we add a timeout as in the examples.

Selective Receive

The receive primitive is used to extract messages from the process mailbox,
but it does more than simple pattern matching; it also queues unmatched
messages for later processing and manages timeouts. The following statement:

http://media.pragprog.com/titles/jaerlang2/code/stimer.erl
http://pragprog.com/titles/jaerlang2/errata/add
http://forums.pragprog.com/forums/jaerlang2

12.6

Chapter 12. Concurrent Programming ® 194

receive

Patternl [when Guardl] ->
Expressionsl;

Pattern2 [when Guard2] ->
Expressions2;

after

end

Time ->
ExpressionsTimeout

works as follows:

1.

When we enter a receive statement, we start a timer (but only if an after
section is present in the expression).

Take the first message in the mailbox and try to match it against Patternl,
Pattern2, and so on. If the match succeeds, the message is removed from
the mailbox, and the expressions following the pattern are evaluated.

If none of the patterns in the receive statement matches the first message
in the mailbox, then the first message is removed from the mailbox and
put into a “save queue.” The second message in the mailbox is then tried.
This procedure is repeated until a matching message is found or until all
the messages in the mailbox have been examined.

If none of the messages in the mailbox matches, then the process is sus-
pended and will be rescheduled for execution the next time a new message
is put in the mailbox. When a new message arrives, the messages in the
save queue are not rematched; only the new message is matched.

As soon as a message has been matched, then all messages that have
been put into the save queue are reentered into the mailbox in the order
in which they arrived at the process. If a timer was set, it is cleared.

If the timer elapses when we are waiting for a message, then evaluate the
expressions ExpressionsTimeout and put any saved messages back into the
mailbox in the order in which they arrived at the process.

Registered Processes

If we want to send a message to a process, then we need to know its PID, but
when a process is created, only the parent process knows the PID. No other
process in the system knows about the process. This is often inconvenient
since the PID has to be sent to all processes in the system that want to com-
municate with this process. On the other hand, it’s very secure; if you don’t
reveal the PID of a process, other processes can’t interact with it in any way.

http://pragprog.com/titles/jaerlang2/errata/add
http://forums.pragprog.com/forums/jaerlang2

Registered Processes ® 195

Erlang has a method for publishing a process identifier so that any process
in the system can communicate with this process. Such a process is called
a registered process. There are four BIFs for managing registered processes.

register(AnAtom, Pid)
Register the process Pid with the name AnAtom. The registration fails if
AnAtom has already been used to register a process.

unregister(AnAtom)
Remove any registrations associated with AnAtom.

Note: If a registered process dies, it will be automatically unregistered.

whereis(AnAtom) -> Pid | undefined
Find out whether AnAtom is registered. Return the process identifier Pid, or
return the atom undefined if no process is associated with AnAtom.

registered() -> [AnAtom::atom()]
Return a list of all registered processes in the system.

Using register, we can revise the example in the code on page 183, and we can
try to register the name of the process that we created.

1> Pid = spawn(area_server0, loop, []).
<0.51.0>

2> register(area, Pid).

true

Once the name has been registered, we can send it a message like this:

3> area ! {rectangle, 4, 5}.
Area of rectangle is 20
{rectangle, 4,5}

We can use register to make a registered process that represents a clock.

clock.erl
-module(clock).
-export([start/2, stop/0]).

start(Time, Fun) ->
register(clock, spawn(fun() -> tick(Time, Fun) end)).
stop() -> clock ! stop.
tick(Time, Fun) ->
receive
stop ->
void
after Time ->
Fun(),
tick(Time, Fun)
end.

http://media.pragprog.com/titles/jaerlang2/code/clock.erl
http://pragprog.com/titles/jaerlang2/errata/add
http://forums.pragprog.com/forums/jaerlang2

Chapter 12. Concurrent Programming ® 196

The clock will happily tick away until you stop it.

3> clock:start(5000, fun() -> io:format("TICK ~p~n",[erlang:now()]) end).
true

TICK {1164,553538,392266}

TICK {1164,553543,393084}

TICK {1164,553548,394083}

TICK {1164,553553,395064}

4> clock:stop().

stop

12.7 A Word About Tail Recursion

Take a look at the receive loop in the area server that we wrote earlier:

area_server_final.erl
loop() ->
receive
{From, {rectangle, Width, Ht}} ->
From ! {self(), Width * Ht},
loop();
{From, {circle, R}} ->
From ! {self(), 3.14159 * R * R},
loop();
{From, Other} ->
From ! {self(), {error,0ther}},
loop()
end.

If you look carefully, you’ll see that every time we receive a message, we pro-
cess the message and then immediately call loop() again. Such a procedure is
called tail-recursive. A tail-recursive function can be compiled so that the last
function call in a sequence of statements can be replaced by a simple jump
to the start of the function being called. This means that a tail-recursive
function can loop forever without consuming stack space.

Suppose we wrote the following (incorrect) code:

Line1 loop() ->
receive
{From, {rectangle, Width, Ht}} ->
- From ! {self(), Width * Ht},
5 loop(),
- someOtherFunc();
{From, {circle, R}} ->
From ! {self(), 3.14159 * R * R},
loop();

end
- end

http://media.pragprog.com/titles/jaerlang2/code/area_server_final.erl
http://pragprog.com/titles/jaerlang2/errata/add
http://forums.pragprog.com/forums/jaerlang2

12.8

Spawning with MFAs or Funs ¢ 197

A Concurrent Program Template

When I write a concurrent program, I almost always start with something like this:

-module(ctemplate) .
-compile(export all).

start() ->
spawn (?MODULE, loop, [1).

rpc(Pid, Request) ->
Pid ! {self(), Request},
receive
{Pid, Response} ->
Response
end.

loop(X) ->
receive
Any ->
io:format("Received:~p~n", [Any]),
loop (X)
end.

The receive loop is just any empty loop that receives and prints any message that I
send to it. As I develop the program, I'll start sending messages to the processes.
Because I start with no patterns in the receive loop that match these messages, I'll
get a printout from the code at the bottom of the receive statement. When this hap-
pens, I add a matching pattern to the receive loop and rerun the program. This
technique largely determines the order in which I write the program: I start with a
small program and slowly grow it, testing it as I go along.

In line 5, we call loop(), but the compiler must reason that “after I've called
loop(), I have to return to here, since I have to call someOtherFunc() in line 6.” So,
it pushes the address of someOtherFunc onto the stack and jumps to the start
of loop. The problem with this is that loop() never returns; instead, it just loops
forever. So, each time we pass line 5, another return address gets pushed
onto the control stack, and eventually the system runs out of space.

Avoiding this is easy; if you write a function F that never returns (such as
loop()), make sure you never call anything after calling F, and don’t use F in a
list or tuple constructor.

Spawning with MFAs or Funs

Spawning a function with an explicit module, function name, and argument
list (called an MFA) is the proper way to ensure that our running processes
will be correctly updated with new versions of the module code if it is compiled
while it is being used. The dynamic code upgrade mechanism does not work

http://pragprog.com/titles/jaerlang2/errata/add
http://forums.pragprog.com/forums/jaerlang2

Chapter 12. Concurrent Programming ® 198

with spawned funs. It works only with explicitly named MFAs. For more
details, read Section 8.10, Dynamic Code Loading, on page 122.

If you don’t care about dynamic code upgrade or you are certain that your
program will never be changed in the future, use the spawn(Fun) form of spawn.
If in doubt, use spawn(MFA).

That’s it—you can now write concurrent programs!

Next we’ll look at error recovery and see how we can write fault-tolerant con-
current programs using three more concepts: links, signals, and trapping
process exits. That's what we’ll find in the next chapter.

Exercises

1.

Write a function start(AnAtom, Fun) to register AnAtom as spawn(Fun). Make sure
your program works correctly in the case when two parallel processes
simultaneously evaluate start/2. In this case, you must guarantee that one
of these processes succeeds and the other fails.

Measure the process spawning time on your machine, using the program
in Section 12.3, Processes Are Cheap, on page 189. Plot a graph of the
number of processes against the process creation time. What can you
deduce from the graph?

Write a ring benchmark. Create N processes in a ring. Send a message
round the ring M times so that a total of N *M messages get sent. Time
how long this takes for different values of N and M.

Write a similar program in some other programming language you are
familiar with. Compare the results. Write a blog, and publish the results
on the Internet!

http://pragprog.com/titles/jaerlang2/errata/add
http://forums.pragprog.com/forums/jaerlang2

13.1

CHAPTER 13

Errors in Concurrent Programs

Handling errors in concurrent programs involves a completely different way
of thinking than handling errors in sequential programs. In this chapter, we’ll
build upon the principles you learned about in Chapter 6, Error Handling in
Sequential Programs, on page 87, extending the ideas to concurrent programs.

We'll look at the underlying philosophy of error handling and at the details
of how errors are propagated between processes and trapped by other process-
es. Finally we’ll round off with some small examples that form a basis for
programming fault-tolerant software.

Imagine a system with only one sequential process. If this process dies, we
might be in deep trouble since no other process can help. For this reason,
sequential languages have concentrated on the prevention of failure and an
emphasis on defensive programming.

In Erlang we have a large number of processes at our disposal, so the failure
of any individual process is not so important. We usually write only a small
amount of defensive code and instead concentrate on writing corrective code.
We take measures to detect the errors and then correct them after they have
occurred.

Error Handling Philosophy

Error handling in concurrent Erlang programs is based on the idea of remote
detection and handling of errors. Instead of handling an error in the process
where the error occurs, we let the process die and correct the error in some
other process.

When we design a fault-tolerant system, we assume that errors will occur,
that processes will crash, and that machines will fail. Our job is to detect the
errors after they have occurred and correct them if possible. Users of the

http://pragprog.com/titles/jaerlang2/errata/add
http://forums.pragprog.com/forums/jaerlang2

Chapter 13. Errors in Concurrent Programs ® 200

system should not notice any failures or suffer any loss of service while the
error is being fixed.

Since we concentrate on cure rather than prevention, our systems have very
little defensive code; instead, we have code to clean up the system after errors
have occurred. This means we will concentrate on how to detect errors, how
to identify what has gone wrong, and how to keep the system in a stable state.

Detecting errors and finding out why something failed is built into the Erlang
VM at a very low level and is part of the Erlang programming language.
Building groups of processes that observe each other and take corrective
action when errors are detected is provided in the standard OTP libraries and
is described in Section 23.5, The Supervision Tree, on page 396. This chapter
is about the language aspects of error detection and recovery.

The Erlang philosophy for building fault-tolerant software can be summed
up in two easy-to-remember phrases: “Let some other process fix the error”
and “Let it crash.”

Let Some Other Process Fix the Error

Processes are arranged to monitor each other for health. If a process dies,
some other process can observe this and perform corrective actions.

For one process to observe another, we must create a link or monitor between the
processes. If the linked or monitored processes dies, the observing process is
informed.

Observing processes work transparently across machine boundaries, so a
process running on one machine can monitor the behavior of a process run-
ning on a different machine. This is the basis for programming fault-tolerant
systems. We cannot make fault-tolerant systems on one machine since the
entire machine might crash, so we need at least two machines. One machine
performs computations, and the other machines observe the first machine
and take over if the first machine crashes.

This can be thought of as an extension to handling errors in sequential code.
We can, after all, catch exceptions in sequential code and try to correct the
error (this was the subject of Chapter 6, Error Handling in Sequential Programs,
on page 87), but if this fails or if the entire machine fails, we let some other

process fix the error.

Let It Crash

This will sound very strange to you if you come from a language like C. In C
we are taught to write defensive code. Programs should check their arguments

http://pragprog.com/titles/jaerlang2/errata/add
http://forums.pragprog.com/forums/jaerlang2

Error Handling Philosophy ® 201

and not crash. There is a very good reason for this in C: writing multiprocess
code is extremely difficult and most applications have only one process, so if
this process crashes the entire application, you're in big trouble. Unfortunately,
this leads to large quantities of error checking code, which is intertwined with
the non-error-checking code.

In Erlang we do exactly the opposite. We build our applications in two parts:
a part that solves the problem and a part that corrects errors if they have
occurred.

The part that solves the problem is written with as little defensive code as
possible; we assume that all arguments to functions are correct and the
programs will execute without errors.

The part that corrects errors is often generic, so the same error-correcting
code can be used for many different applications. For example, in database
transactions if something goes wrong in the middle of a transaction, we simply
abort the transaction and let the system restore the database to the state it
was in before the error occurred. In an operating system, if a process crashes,
we let the operating system close any open files or sockets and restore the
system to a stable state.

This leads to a clean separation of issues. We write code that solves problems
and code that fixes problems, but the two are not intertwined. This can lead
to a dramatic reduction in code volume.

Why Crash?

Crashing immediately when something goes wrong is often a very good idea;
in fact, it has several advantages.

* We don’t have to write defensive code to guard against errors; we just
crash.

e We don’t have to think about what to do; we just crash, and somebody
else will fix the error.

e We don’'t make matters worse by performing additional computations
after we know that things have gone wrong.

e We can get very good error diagnostics if we flag the first place where an
error occurs. Often continuing after an error has occurred leads to even
more errors and makes debugging even more difficult.

e When writing error recovery code, we don’t need to bother about why
something crashed; we just need to concentrate on cleaning up afterward.

http://pragprog.com/titles/jaerlang2/errata/add
http://forums.pragprog.com/forums/jaerlang2

13.2

Chapter 13. Errors in Concurrent Programs ® 202

¢ It simplifies the system architecture, so we can think about the application
and error recovery as two separate problems, not as one interleaved
problem.

That’s enough of the philosophy. Now let’s start drilling down into the details.

Letting somebody else fix an error rather than doing it yourself is a good idea and
encourages specialization. If I need surgery, I go to a doctor and don't try to operate
on myself.

If something trivial in my car goes wrong, the car’s control computer will try to fix it.
If this fails and something big goes wrong, I have to take the car to the garage, and
some other guy fixes it.

If something trivial in an Erlang process goes wrong, I can try to fix it with a catch or
try statement. But if this fails and something big goes wrong, I'd better just crash and
let some other process fix the error.

Error Handling Semantics

In this section, you'll learn about the semantics of interprocess error handling.
You'll see some new terms that you’ll come across later in the chapter. The
best way to understand error handing is to quickly read through the definitions
and then skip to the next sections for a more intuitive understanding of the
concepts involved. You can always refer to this section if you need to do so.

Processes
There are two types of processes: normal processes and system processes.
spawn creates a normal process. A normal process can become a system
process by evaluating the BIF process_flag(trap_exit, true).

Links
Processes can be linked. If the two processes A and B are linked and A
terminates for any reason, an error signal will be sent to B and the other
way around.

Link sets
The link set of a process P is the set of processes that are linked to P.

Monitors
Monitors are similar to links but are one-directional. If A monitors B and
if B terminates for any reason, a “down” message will be sent to A but not
the other way around.

http://pragprog.com/titles/jaerlang2/errata/add
http://forums.pragprog.com/forums/jaerlang2

13.3

Creating Links ¢ 203

Messages and error signals
Processes collaborate by exchanging messages or error signals. Messages
are sent using the send primitive. Error signals are sent automatically
when a process crashes or when a process terminates. The error signals
are sent to the link set of the process that terminated.

Receipt of an error signal
When a system process receives an error signal, the signal is converted
into a message of the form {'EXIT', Pid, Why}. Pid is the identity of the process
that terminated, and Why is the reason for termination (sometimes called
the exit reason). If the process terminates without an error, then Why will
be the atom normal; otherwise, Why describes the error.

When a normal process receives an error signal, it will terminate if the
exit reason is not normal. When it terminates, it also broadcasts an exit
signal to its link set.

Expilicit error signals
A process that evaluates exit(Why) will terminate (if this code is not executing
within the scope of a catch or try primitive) and broadcast an exit signal
with the reason Why to its link set.

A process can send a “fake” error signal by evaluating exit(Pid, Why). In this
case, Pid will receive an exit signal with the reason Why. The process that
called exit/2 does not die (this is deliberate).

Untrappable exit signals
When a system process receives a kill signal, it terminates. Kill signals
are generated by calling exit(Pid, kill). This signal bypasses the normal error
signal processing mechanism and is not converted into a message. The
exit kill signal should be reserved for rogue processes that refuse to die
using any of the other error handling mechanisms.

These definitions might look complicated, but a detailed understanding of
how the mechanisms work is usually not necessary to write fault-tolerant
code. The default behavior of the system tries to do “the right thing” as regard
to error handling.

The next sections use a series of diagrams to illustrate how the error mecha-
nisms work.

Creating Links

Imagine we have a set of unrelated processes; this is shown on the left side
of the following figure. The links are represented by dashed lines.

http://pragprog.com/titles/jaerlang2/errata/add
http://forums.pragprog.com/forums/jaerlang2

13.4

Chapter 13. Errors in Concurrent Programs ® 204

~

. vy . vy

To create links, we call the primitive link(Pid), which creates a link between the
calling process and Pid. So, if P1 calls link(P3), a link is created between P1 and
P3.

After P1 calls link(P3), P3 calls link(P10), and so on, we arrive at the situation
shown on the right side of the figure. Note that the link set of P1 has one ele-
ment (P3), the link set of P3 has two elements (P1 and P10), and so on.

Groups of Processes That All Die Together

Often you’ll want to create groups of processes that all die together. This is
a very useful invariant for arguing about the behavior of a system. When
processes collaborate to solve a problem and something goes wrong, we can
sometimes recover, but if we can’t recover, we just want to stop everything
we were doing. This is rather like the notion of a transaction: either the pro-
cesses do what they were supposed to do or they are all killed.

Assume we have some linked processes and that one of the linked processes
dies. For example, see P9 in the following figure. The left side of the figure
shows how the processes are linked before P9 dies. The right side shows which
process are still alive after P9 has crashed and all error signals have been
processed.

http://pragprog.com/titles/jaerlang2/errata/add
http://forums.pragprog.com/forums/jaerlang2

13.5

13.6

Setting Up a Firewall ® 205

When P9 dies, an error signal is sent to processes P4 and P10. P4 and P10 also
die because they are not system processes, and error signals are sent to any
processes they are linked to. Ultimately, the error signals propagate to all the
linked processes, and the entire group of linked processes dies.

Now if any of the processes P1, P3, P4, P9, or P10 die, they all die.

Setting Up a Firewall

Sometimes we don’t want all our linked process to die, and we want to stop
the propagation of errors through the system. The following figure illustrates
this; here all linked process up to P3 die:

\.

To achieve this, assume that P3 has evaluated process flag(trap_exit, true) and
become a system process (meaning that it can trap exit signals). This is shown
with a double-circle border on the right side of the figure. After P9 crashed,
the propagation of errors stopped at P3, so P1 and P3 did not die. This is shown
on the right side of the figure.

P3 functions as a firewall, stopping errors from propagating to other processes
in the system.

Monitors
Monitors are similar to links but with several significant differences.

¢ Monitors are unidirectional. If A monitors B and B dies, then A will be sent
an exit message but not the other way around (recall that links were
bidirectional, so if A and B were linked, the death of either process would
result in the other process being informed).

e When a monitored process dies, a “down” message and not an exit signal
is sent to the monitoring process. This means that the monitoring process
does not have to become a system process in order to handle errors.

http://pragprog.com/titles/jaerlang2/errata/add
http://forums.pragprog.com/forums/jaerlang2

Chapter 13. Errors in Concurrent Programs ® 206

Monitors are used when you want asymmetry in error handling; links are
used when you want symmetric error handling. Monitors are typically used
by servers to monitor the behavior of clients.

The next section explains the semantics of the BIFs that manipulate links
and monitors.

13.7 Error Handling Primitives

The primitives for manipulating links and monitors and for trapping and
sending exit signals are as follows:

-spec spawn_link(Fun) -> Pid

-spec spawn_link(Mod, Fnc, Args) -> Pid
This behaves like spawn(Fun) or spawn(Mod,Func,Args) and also creates a link
between the parent and child processes.

-spec spawn_monitor(Fun) -> {Pid, Ref}

-spec spawn_monitor(Mod, Func, Args) -> {Pid, Ref}
This is like spawn_link, but it creates a monitor rather than a link. Pid is the
process identifier of the newly created process, and Ref is a reference to
the process. If the process dies with the reason Why, then the message
{'DOWN',Ref,process,Pid, Why} will be sent to the parent process.

-spec process_flag(trap_exit, true)
This turns the current process into a system process. A system process
is a process that can receive and process error signals.

-spec link(Pid) -> true
This creates a link to the process Pid. Links are symmetric. If a process A
evaluates link(B), then it will be linked to B. The net effect is the same as
if B had evaluated link(A).

If the process Pid does not exist, then an exit noproc exception is raised.

If A is already linked to B and evaluates link(B) (or vice versa), the call is
ignored.

-spec unlink(Pid) -> true
This removes any link between the current process and the process Pid.

-spec erlang:monitor(process, Item) -> Ref
This sets up a monitor. Item is a Pid or a registered name of a process.

-spec demonitor(Ref) -> true
This removes a monitor with reference Ref.

http://pragprog.com/titles/jaerlang2/errata/add
http://forums.pragprog.com/forums/jaerlang2

13.8

Line 1

0 N OB A WwWN

Programming for Fault Tolerance * 207

-spec exit(Why) -> none()
This causes the current process to terminate with the reason Why. If the
clause that executes this statement is not within the scope of a catch
statement, then the current process will broadcast an exit signal, with
argument Why to all processes to which it is currently linked. It will also
broadcast a DOWN message to all processes that are monitoring it.

-spec exit(Pid, Why) -> true
This sends an exit signal with the reason Why to the process Pid. The pro-
cess executing this BIF does not itself die. This can be used to “fake” exit
signals.

We can use these primitives to set up networks of processes that monitor
each other, which then provide a basis for building fault-tolerant software.

Programming for Fault Tolerance

In this section, you'll learn a few simple techniques that can be used to make
fault-tolerant code. This is not the whole story of how to make a fault-tolerant
system, but it is the start of a story.

Performing an Action When a Process Dies

The function on_exit(Pid, Fun) watches the process Pid and evaluates Fun(Why) if
the process exits with the reason Why.

lib_misc.erl
on exit(Pid, Fun) ->
spawn(fun() ->
Ref = monitor(process, Pid),
receive
{'DOWN', Ref, process, Pid, Why} ->
Fun(Why)
end

end) .

monitor(process, Pid) (line 3) creates a monitor to Pid. When the process dies, a
DOWN message is received (line 5) and calls Fun(Why) (line 6).

To test this, we’ll define a function F that waits for a single message X and
then computes list_to_atom(X).

1> F = fun() ->
receive
X -> list_to_atom(X)
end
end.
#Fun<erl eval.20.69967518>

http://media.pragprog.com/titles/jaerlang2/code/lib_misc.erl
http://pragprog.com/titles/jaerlang2/errata/add
http://forums.pragprog.com/forums/jaerlang2

Chapter 13. Errors in Concurrent Programs ® 208

Once upon a time Erlang had two primitives, spawn and link, and spawn_link(Mod, Func,
Args) was defined like this:

spawn_link(Mod, Func, Args) ->
Pid = spawn(Mod, Fun, Args),
link(Pid),
Pid.

Then an obscure bug occurred. The spawned process died before the link statement
was called, so the process died but no error signal was generated. This bug took a
long time to find. To fix this, spawn_link was added as an atomic operation. Even simple-
looking programs can be tricky when concurrency is involved.

We'll spawn this:

2> Pid = spawn(F).
<0.61.0>

And we’ll set up an on_exit handler to monitor it.

3> lib_misc:on_exit(Pid,
fun(Why) ->
io:format(" ~p died with:~p~n",[Pid, Why])
end).
<0.63.0>

If we send an atom to Pid, the process will die (because it tries to evaluate
list_ to_atom of a nonlist), and the on_exit handler will be called.

4> Pid ! hello.

hello

5>

=ERROR REPORT==== 14-May-2013::10:05:42 ===

Error in process <0.36.0> with exit value:
{badarg, [{erlang,list to atom, [hello],[]}]}

The function that is invoked when the process dies can, of course, perform
any computation it likes: it can ignore the error, log the error, or restart the
application. The choice is up to the programmer.

Making a Set of Processes That All Die Together

Suppose we want to create several worker processes that are used to solve
some problem. They evaluate the functions F1, F2, and so on. If any process
dies, we want them all to die. We can do this by calling start([F1,F2, ...]).

http://pragprog.com/titles/jaerlang2/errata/add
http://forums.pragprog.com/forums/jaerlang2

Programming for Fault Tolerance * 209

start(Fs) ->
spawn (fun() ->
[spawn_link(F) || F <- Fs],
receive
after
infinity -> true
end
end) .

start(Fs) spawns a process, which spawns and links the worker processes and
then waits for an infinite time. If any worker process dies, they all die.

If we want to know whether the processes have all died, we can add an on_exit
handler to the start process.

Pid = start([F1, F2, ...1),
on_exit(Pid, fun(Why) ->
. the code here runs if any worker
. process dies
end)

Making a Process That Never Dies

To wind up this chapter, we’ll make a keep-alive process. The idea is to make
a registered process that is always alive—if it dies for any reason, it will be
immediately restarted.

We can use on_exit to program this.

lib_misc.erl
keep alive(Name, Fun) ->
register(Name, Pid = spawn(Fun)),
on_exit(Pid, fun(Why) -> keep alive(Name, Fun) end).

This makes a registered process called Name that evaluates spawn(Fun). If the
process dies for any reason, then it is restarted.

There is a rather subtle error in on_exit and keep_alive. If we stare hard at the
following two lines of code:

Pid = register(...),
on _exit(Pid, fun(X) -> ..),

we see that there is a possibility that the process dies in the gap between
these two statements. If the process dies before on_exit gets evaluated, then a
link will be not be created, and the on_exit process will not work as you
expected. This could happen if two programs try to evaluate keep_alive at the
same time and with the same value of Name. This is called a race condition—
two bits of code (this bit) and the code section that performs the link operation

http://media.pragprog.com/titles/jaerlang2/code/lib_misc.erl
http://pragprog.com/titles/jaerlang2/errata/add
http://forums.pragprog.com/forums/jaerlang2

Chapter 13. Errors in Concurrent Programs ® 210

inside on_exit are racing each other. If things go wrong here, your program
might behave in an unexpected manner.

I'm not going to solve this problem here—I'll let you think about how to do
this yourself. When you combine the Erlang primitives spawn, spawn_monitor,
register, and so on, you must think carefully about possible race conditions
and write your code in such a way that race conditions cannot happen.

Now you know all there is to know about error handling. Errors that cannot
be trapped in sequential code flow out of the processes where they occurred,
following links to other processes that can be programmed to take care of the
errors. All the mechanisms we have described (the linking process and so on)
work transparently across machine boundaries.

Crossing machine boundaries leads us to distributed programming. Erlang
processes can spawn new processes on other physical machines in the network,
making it easy to write distributed programs. Distributed programming is the
subject of the next chapter.

Exercises

1. Write a function my_spawn(Mod, Func, Args) that behaves like spawn(Mod, Func,
Args) but with one difference. If the spawned process dies, a message
should be printed saying why the process died and how long the process
lived for before it died.

2. Solve the previous exercise using the on_exit function shown earlier in this
chapter.

3. Write a function my spawn(Mod, Func, Args, Time) that behaves like spawn(Mod,
Func, Args) but with one difference. If the spawned process lives for more
than Time seconds, it should be killed.

4. Write a function that creates a registered process that writes out "I'm still
running" every five seconds. Write a function that monitors this process
and restarts it if it dies. Start the global process and the monitor process.
Kill the global process and check that it has been restarted by the monitor
process.

5. Write a function that starts and monitors several worker processes. If any
of the worker processes dies abnormally, restart it.

6. Write a function that starts and monitors several worker processes. If any
of the worker processes dies abnormally, kill all the worker processes and
restart them all.

http://pragprog.com/titles/jaerlang2/errata/add
http://forums.pragprog.com/forums/jaerlang2

CHAPTER 14

Distributed Programming

Writing distributed programs in Erlang is only a small step from writing
concurrent programs. In distributed Erlang, we can spawn processes on
remote nodes and machines. Having spawned a remote process, we’ll see that
all the other primitives, send, receive, link, and so on, work transparently over
a network in the same way as they worked on a single node.

In this chapter, we’ll introduce the libraries and Erlang primitives that we’ll
use to write distributed Erlang programs. Distributed programs are programs
that are designed to run on networks of computers and that can coordinate
their activities only by message passing.

Here are some reasons why we might want to write distributed applications:

Performance
We can make our programs go faster by arranging that different parts of
the program are run in parallel on different machines.

Reliability
We can make fault-tolerant systems by structuring the system to run on
several machines. If one machine fails, we can continue on another machine.

Scalability
As we scale up an application, sooner or later we will exhaust the capabil-
ities of even the most powerful machine. At this stage, we have to add
more machines to add capacity. Adding a new machine should be a simple
operation that doesn’t require large changes to the application architecture.

Intrinsically distributed application
Many applications are inherently distributed. If we write a multiuser game
or chat system, different users will be scattered all over the globe. If we
have a large number of users in a particular geographic location, we want
to place the computation resources near the users.

http://pragprog.com/titles/jaerlang2/errata/add
http://forums.pragprog.com/forums/jaerlang2

14.1

Chapter 14. Distributed Programming ® 212

Fun
Most of the fun programs that I want to write are distributed. Many of
these involve interaction with people and machines all over the world.

Two Models for Distribution
In this book we’ll talk about two main models of distribution.

Distributed Erlang In distributed Erlang, programs are written to run on
Erlang nodes. A node is a self-contained Erlang system containing a
complete virtual machine with its own address space and own set of
processes.

We can spawn a process on any node, and all the message passing and
error handling primitives we talked about in previous chapters work as
in the single node case.

Distributed Erlang applications run in a trusted environment—since any
node can perform any operation on any other Erlang node, a high degree
of trust is involved. Typically distributed Erlang applications will be run
on clusters on the same LAN and behind a firewall, though they can run
in an open network.

Socket-based distribution Using TCP/IP sockets, we can write distributed
applications that can run in an untrusted environment. The programming
model is less powerful than that used in distributed Erlang but more
secure. In Section 14.6, Socket-Based Distribution, on page 224, we'll see
how to make applications using a simple socket-based distribution
mechanism.

If you think back to the previous chapters, you'll recall that the basic unit
that we construct programs from is the process. Writing a distributed Erlang
program is easy; all we have to do is spawn our processes on the correct
machines, and then everything works as before.

We are all used to writing sequential programs. Writing distributed programs
is usually a lot more difficult. In this chapter, we’ll look at a number of tech-
niques for writing simple distributed programs. Even though the programs
are simple, they are very useful.

We'll start with a number of small examples. To do this, we’ll need to learn
only two things; then we can make our first distributed program. We’ll learn
how to start an Erlang node and how to perform a remote procedure call on
a remote Erlang node.

http://pragprog.com/titles/jaerlang2/errata/add
http://forums.pragprog.com/forums/jaerlang2

14.2

14.3

Writing a Distributed Program ¢ 213

Writing a Distributed Program

When I develop a distributed application, I always work on the program in a
specific order, which is as follows:

1. I write and test my program in a regular nondistributed Erlang session.
This is what we've been doing up to now, so it presents no new challenges.

2. 1 test my program on two different Erlang nodes running on the same
computer.

3. Itest my program on two different Erlang nodes running on two physically
separated computers either in the same local area network or anywhere
on the Internet.

The final step can be problematic. If we run on machines within the same
administrative domain, this is rarely a problem. But when the nodes involved
belong to machines in different domains, we can run into problems with
connectivity, and we have to ensure that our system firewalls and security
settings are correctly configured.

To illustrate these steps, we’ll make a simple name server. Specifically, we
will do the following:

e Stage 1: Write and test the name server in a regular undistributed Erlang
system.

e Stage 2: Test the name server on two nodes on the same machine.

e Stage 3: Test the name server on two different nodes on two different
machines on the same local area network.

e Stage 4: Test the name server on two different machines belonging to two
different domains in two different countries.

Building the Name Server

A name server is a program that, given a name, returns a value associated
with that name. We can also change the value associated with a particular
name.

Our first name server is extremely simple. It is not fault tolerant, so all the
data it stores will be lost if it crashes. The point of this exercise is not to make
a fault-tolerant name server but to get started with distributed programming
techniques.

http://pragprog.com/titles/jaerlang2/errata/add
http://forums.pragprog.com/forums/jaerlang2

Line 1

Chapter 14. Distributed Programming ® 214

Stage 1: A Simple Name Server

Our name server kvs is a simple Key — Value, server. It has the following inter-
face:

-spec kvs:start() -> true
Start the server; this creates a server with the registered name kvs.

-spec kvs:store(Key, Value) -> true
Associate Key with Value.

-spec kvs:lookup(Key) -> {ok, Value} | undefined
Look up the value of Key, and return {ok, Value} if there is a value associated
with Key; otherwise, return undefined.

The key-value server is implemented using the process dictionary get and put
primitives, as follows:

socket_dist/kvs.erl
-module(kvs).

- -export([start/0, store/2, lookup/1]).

- start() -> register(kvs, spawn(fun() -> loop() end)).

- store(Key, Value) -> rpc({store, Key, Value}).

- lookup(Key) -> rpc({lookup, Key}).

rpc(Q) ->
kvs ! {self(), Q},
receive
{kvs, Reply} ->
Reply

end.

- loop() ->
receive

20

25

{From, {store, Key, Value}} ->
put(Key, {ok, Value}),
From ! {kvs, true},
loop();

{From, {lookup, Key}} ->
From ! {kvs, get(Key)},
loop()

end.

Store messages are sent in line 6 and received in line 19. The main server
starts in the loop function in line 17; it calls receive and waits for a store or
lookup message and then just saves or retrieves the requested data from the

http://media.pragprog.com/titles/jaerlang2/code/socket_dist/kvs.erl
http://pragprog.com/titles/jaerlang2/errata/add
http://forums.pragprog.com/forums/jaerlang2

Building the Name Server ¢ 215

local process dictionary and sends a reply back to the client. We'll start by
testing the server locally to see that it works correctly.

1> kvs:start().

true

2> kvs:store({location, joe}, "Stockholm").
true

3> kvs:store(weather, raining).

true

4> kvs:lookup(weather).

{ok, raining}

5> kvs:lookup({location, joe}).
{ok,"Stockholm"}

6> kvs:lookup({location, jane}).
undefined

So far, we get no unpleasant surprises. On to step 2. Let’s distribute the
application.

Stage 2: Client on One Node, Server on Second Node but Same Host

Now we'll start two Erlang nodes on the same computer. To do this, we need
to open two terminal windows and start two Erlang systems.

First, we fire up a terminal shell and start a distributed Erlang node in this
shell called gandalf; then, we start the server:

$ erl -sname gandalf
(gandalf@localhost) 1> kvs:start().
true

The argument -sname gandalf means “start an Erlang node with name gandalf on
the local host.” Note how the Erlang shell prints the name of the Erlang node
before the command prompt. The node name is of the form Name@Host. Name
and Host are both atoms, so they will have to be quoted if they contain any
nonatomic characters.

Important Note: If you run the previous command on your system, the node
name might not be gandolf@localhost. It might be gandolf@H where H is your local
hostname. This will depend upon how your system is configured. If this is
the case, then you’ll have to use the name H instead of localhost in all the
examples that follow.

Next we start a second terminal session and start an Erlang node called bilbo.
Then we can call the functions in kvs using the library module rpc. (Note that
rpc is a standard Erlang library module, which is not the same as the rpc
function we wrote earlier.)

http://pragprog.com/titles/jaerlang2/errata/add
http://forums.pragprog.com/forums/jaerlang2

Chapter 14. Distributed Programming ® 216

$ erl -sname bilbo

(bilbo@localhost) 1> rpc:call(gandalf@localhost,
kvs,store, [weather, fine]).

true

(bilbo@localhost) 2> rpc:call(gandalf@localhost,
kvs, lookup, [weather]).

{ok, fine}

Now it may not look like it, but we've actually performed our first-ever dis-
tributed computation! The server ran on the first node that we started, and
the client ran on the second node.

The call to set the value of weather was made on the bilbo node; we can swap
back to gandalf and check the value of the weather.

(gandalf@localhost) 2> kvs:lookup(weather).
{ok, fine}

rpc:call(Node, Mod, Func, [Argl, Arg2, ..., ArgN]) performs a remote procedure call on
Node. The function to be called is Mod:Func(Argl, Arg2, ..., ArgN).

As we can see, the program works as in the nondistributed Erlang case; now
the only difference is that the client is running on one node and the server is
running on a different node.

The next step is to run the client and the server on different machines.

Stage 3: Client and Server on Different Machines on the Same LAN

Were going to use two nodes. The first node is called gandalf on
doris.myerl.example.com, and the second is called bilbo on george.myerl.example.com.
Before we do this, we start two terminals using something like ssh or vnc on
the two different machines. We'll call these two windows doris and george.
Once we've done this, we can easily enter commands on both machines.

Step 1 is to start an Erlang node on doris.

doris $ erl -name gandalf -setcookie abc
(gandalf@doris.myerl.example.com) 1> kvs:start().
true

Step 2 is to start an Erlang node on george and send some commands to gandalf.

george $ erl -name bilbo -setcookie abc

(bilbo@george.myerl.example.com) 1> rpc:call(gandalf@doris.myerl.example.com,
kvs,store, [weather,cold]).

true

(bilbo@george.myerl.example.com) 2> rpc:call(gandalf@doris.myerl.example.com,
kvs,lookup, [weather]).

{ok,cold}

http://pragprog.com/titles/jaerlang2/errata/add
http://forums.pragprog.com/forums/jaerlang2

Building the Name Server ¢ 217

Things behave exactly as in the case with two different nodes on the same

machine.

Now for this to work, things are slightly more complicated than in the case
where we ran two nodes on the same computer. We have to take four steps.

1.

Start Erlang with the -name parameter. When we have two nodes on the
same machine, we use “short” names (as indicated by the -sname flag), but
if they are on different networks, we use -name.

We can also use -sname on two different machines when they are on the
same subnet. Using -sname is also the only method that will work if no
DNS service is available.

Ensure that both nodes have the same cookie. This is why both nodes
were started with the command-line argument -setcookie abc. We’ll talk more
about cookies later in this chapter in Section 14.5, The Cookie Protection

System, on page 222. Note: When we ran two nodes on the same machine,
both nodes could access the same cookie file, $HOME/.erlang.cookie, which is
why we didn’t have to add the cookie to the Erlang command line.

Make sure the fully qualified hostnames of the nodes concerned are
resolvable by DNS. In my case, the domain name myerl.example.com is
purely local to my home network and is resolved locally by adding an
entry to /etc/hosts.

Make sure that both systems have the same version of the code and the
same version of Erlang. If you don’t do this, you might get serious and
mysterious errors. The easiest way to avoid problems is to have the same
versions of Erlang running everywhere. Different versions of Erlang can
run together, but there is no guarantee that this will work, so it’s a good
idea to check. In our case, the same version of the code for kvs has to be
available on both systems. There are several ways of doing this.

¢ In my setup at home, I have two physically separated computers with
no shared file systems; here I physically copy kvs.erl to both machines
and compile it before starting the programs.

¢ On my work computer we use workstations with a shared NFS disk.
Here I merely start Erlang in the shared directory from two different
workstations.

e Configure the code server to do this. I won’t describe how to do this
here. Take a look at the manual page for the module erl_prim_loader.

http://pragprog.com/titles/jaerlang2/errata/add
http://forums.pragprog.com/forums/jaerlang2

Chapter 14. Distributed Programming ® 218

e Use the shell command nl(Mod). This loads the module Mod on all con-
nected nodes.

Note: For this to work, you have to make sure that all the nodes are
connected. Nodes become connected when they first try to access each
other. This happens the first time you evaluate any expression
involving a remote node. The easiest way to do this is to evaluate
net_adm:ping(Node) (see the manual page for net_adm for more details).

Success! We're running on two servers, on the same local area network. The
next step is to move these onto two computers connected through the Internet.

Stage 4: Client and Server on Different Hosts in the Internet

In principle, this is the same as in stage 3, but now we have to be much more
concerned with security. When we run two nodes on the same LAN, we
probably don’t have to worry too much about security. In most organizations,
the LAN is isolated from the Internet by a firewall. Behind the firewall we are
free to allocate IP addresses in a haphazard manner and generally misconfigure
our machines.

When we connect several machines in an Erlang cluster on the Internet, we
can expect to run into problems with firewalls that do not permit incoming
connections. We will have to correctly configure our firewalls to accept
incoming connections. There is no way to do this in a generic manner, since
every firewall is different.

To prepare your system for distributed Erlang, you will have to take the fol-
lowing steps:

1. Make sure that port 4369 is open for both TCP and UDP traffic. This port
is used by a program called epmd (short for the Erlang Port Mapper
Daemon).

2. Choose a port or range of ports to be used for distributed Erlang, and
make sure these ports are open. If these ports are Min and Max (use Min =
Max if you want to use only one port), then start Erlang with the following
command:

$ erl -name ... -setcookie ... -kernel inet_dist_listen_min Min \
inet_dist_listen_max Max

We've now seen how to run programs on sets of Erlang nodes and how to run
them on the same local area network or over the Internet. Next we’ll look at
primitives that deal with nodes.

http://pragprog.com/titles/jaerlang2/errata/add
http://forums.pragprog.com/forums/jaerlang2

Libraries and BIFS for Distributed Programming ® 219

14.4 Libraries and BIFS for Distributed Programming

When we write distributed programs, we very rarely start from scratch. In
the standard libraries, there are a number of modules that can be used to
write distributed programs. These modules are written using the distribution
BIFs, but they hide a lot of the complexity from the programmer.

Two modules in the standard distribution cover most needs.
¢ rpc provides a number of remote procedure call services.

e global has functions for the registration of names and locks in a distributed
system and for the maintenance of a fully connected network.

The single most useful function in the module rpc is the following:

call(Node, Mod, Function, Args) -> Result | {badrpc, Reason}
This evaluates apply(Mod, Function, Args) on Node and returns the result Result
or {badrpc, Reason} if the call fails.

The primitives that are used for writing distributed programs are as follows
(for a fuller description of these BIFs, see the manual page for the erlang
module'):

-spec spawn(Node, Fun) -> Pid
This works exactly like spawn(Fun), but the new process is spawned on Node.

-spec spawn(Node, Mod, Func, ArgList) -> Pid
This works exactly like spawn(Mod, Func, ArgList), but the new process is
spawned on Node. spawn(Mod, Func, Args) creates a new process that evaluates
apply(Mod, Func, Args). It returns the PID of the new process.

Note: This form of spawn is more robust than spawn(Node, Fun). spawn(Node,
Fun) can break when the distributed nodes are not running exactly the
same version of a particular module.

-spec spawn_link(Node, Fun) -> Pid
This works exactly like spawn_link(Fun), but the new process is spawned on
Node.

-spec spawn_link(Node, Mod, Func, ArgList) -> Pid
This works like spawn(Node, Mod, Func, ArgList), but the new process is linked
to the current process.

-spec disconnect_node(Node) -> bool() | ignored
This forcibly disconnects a node.

1. http://www.erlang.org/doc/man/erlang.html

http://www.erlang.org/doc/man/erlang.html
http://pragprog.com/titles/jaerlang2/errata/add
http://forums.pragprog.com/forums/jaerlang2

Chapter 14. Distributed Programming ® 220

-spec monitor_node(Node, Flag) -> true
If Flag is true, monitoring is turned on; if Flag is false, monitoring is turned
off. If monitoring has been turned on, then the process that evaluated
this BIF will be sent {nodeup, Node} and {nodedown, Node} messages if Node
joins or leaves the set of connected Erlang nodes.

-spec node() -> Node
This returns the name of the local node. nonode@nohost is returned if the
node is not distributed.

-spec node(Arg) -> Node
This returns the node where Arg is located. Arg can be a PID, a reference,
or a port. If the local node is not distributed, nonode@nohost is returned.

-spec nodes() -> [Node]
This returns a list of all other nodes in the network to which we are con-
nected.

-spec is_alive() -> bool()
This returns true if the local node is alive and can be part of a distributed
system. Otherwise, it returns false.

In addition, send can be used to send messages to a locally registered process
in a set of distributed Erlang nodes. The following syntax:

{RegName, Node} ! Msg

sends the message Msg to the registered process RegName on the node Node.

An Example of Remote Spawning

As a simple example, we can show how to spawn a process on a remote node.
We'll start with the following program:

dist_demo.erl
-module(dist demo).

-export([rpc/4, start/1]).

start(Node) ->
spawn (Node, fun() -> loop() end).

rpc(Pid, M, F, A) ->
Pid ! {rpc, self(), M, F, A},
receive
{Pid, Response} ->
Response
end.

http://media.pragprog.com/titles/jaerlang2/code/dist_demo.erl
http://pragprog.com/titles/jaerlang2/errata/add
http://forums.pragprog.com/forums/jaerlang2

Libraries and BIFS for Distributed Programming * 221

loop() ->
receive
{rpc, Pid, M, F, A} ->
Pid ! {self(), (catch apply(M, F, A))},
loop()
end.

Then we start two nodes; both nodes have to be able to load this code. If both
nodes are on the same host, then this is not a problem. We merely start two
Erlang nodes from the same directory.

If the nodes are on two physically separated nodes with different file systems,
then the program must be copied to all nodes and compiled before starting
both the nodes (alternatively, the .beam file can be copied to all nodes). In the
example, I'll assume we’ve done this.

On the host doris, we start a node named gandalf.

doris $ erl -name gandalf -setcookie abc
(gandalf@doris.myerl.example.com) 1>

And on the host george, we start a node named bilbo, remembering to use the
same cookie.

george $ erl -name bilbo -setcookie abc
(bilbo@george.myerl.example.com) 1>

Now (on bilbo), we can spawn a process on the remote node (gandalf).

(bilbo@george.myerl.example.com) 1> Pid =
dist_demo:start('gandalf@doris.myerl.example.com').
<5094.40.0>

Pid is now a process identifier of the process on the remote node, and we can
call dist_demo:rpc/4 to perform a remote procedure call on the remote node.

(bilbo@george.myerl.example.com) 2> dist_demo:rpc(Pid, erlang, node, [1).
'gandalf@doris.myerl.example.com'

This evaluates erlang:node() on the remote node and returns the value.

The File Server Revisited

In The File Server Process, on page 15, we built a simple file server with the
promise that we would return to it later. Well, now is later. The previous
section in this chapter showed how to set up a simple remote procedure call
server, which we can use to transfer files between two Erlang nodes.

The following continues the example of the previous section:

http://pragprog.com/titles/jaerlang2/errata/add
http://forums.pragprog.com/forums/jaerlang2

14.5

Chapter 14. Distributed Programming ® 222

(bilbo@george.myerl.example.com) 1> Pid =
dist_demo:start('gandalf@doris.myerl.example.com').
<6790.42.0>
(bilbo@george.myerl.example.com) 2>
dist_demo:rpc(Pid, file, get_cwd, []).
{ok, "/home/joe/projects/book/jaerlang2/Book/code"}
(bilbo@george.myerl.example.com) 3>
dist_demo:rpc(Pid, file, list_dir, ["."]).
{ok, ["adapter dbl.erl","processes.erl",
"counter.beam","attrs.erl","lib find.erl",...]}
(bilbo@george.myerl.example.com) 4>
dist_demo:rpc(Pid, file, read_file, ["dist_demo.erl"]).
{ok,<<"-module(dist demo).\n-export([rpc/4, start/1]).\n\n...>>}

On gandalf I started a distributed Erlang node in the code directory where I
store the code examples for this book. On bilbo 'm making requests that result
in remote procedure calls to the standard libraries on gandalf. I'm using three
functions in the file module to access the file system on gandalf. file:get cwd()
returns the current working directory of the file server, file:list_dir(Dir) returns
a list of the files in Dir, and file:read file(File) reads the file File.

If you reflect for a moment, you'll realize that what we've just done is pretty
amazing. We've made a file server without writing any code; we've just reused
the library code in the module file and made it available through a simple
remote procedure call interface.

A few years ago I had to transfer a number of files between two networked machines
with different operating systems. My first thought was to use FTP, but I needed an
FTP server on one machine and an FTP client on the other. I couldn’t find an FTP
server for my server machine, and I didn’t have root privileges on the server machine
to install an FTP server. But I did have distributed Erlang running on both machines.

I then used exactly the technique I described here. It turned out to be quicker to write
my own file server than to search for and install an FTP server.

If you're interested, I blogged® about it at the time.

a. http://armstrongonsoftware.blogspot.com/2006/09/why-i-often-implement-things-from.html

The Cookie Protection System

Access to a single node or set of nodes is secured by a cookie system. Each
node has a single cookie, and this cookie must be the same as the cookies of
any nodes to which the node talks. To ensure this, all nodes in a distributed

http://armstrongonsoftware.blogspot.com/2006/09/why-i-often-implement-things-from.html
http://pragprog.com/titles/jaerlang2/errata/add
http://forums.pragprog.com/forums/jaerlang2

The Cookie Protection System ¢ 223

Erlang system must have been started with the same magic cookie or have
their cookie changed to the same value by evaluating erlang:set_cookie.

The set of connected nodes having the same cookie defines an Erlang cluster.

For two distributed Erlang nodes to communicate, they must have the same
magic cookie. We can set the cookie in three ways.

Important: The cookie protection system was designed for building distributed
systems that run on a local area network (LAN) where the LAN itself was
protected from the Internet by a firewall. Distributed Erlang applications
running across the Internet should first set up secure connections between
hosts and then use the cookie protection system.

e Method 1: Store the same cookie in the file $HOME/.erlang.cookie. This file
contains a random string and is automatically created the first time Erlang
is run on your machine.

This file can be copied to all machines that we want to participate in a
distributed Erlang session. Alternatively, we can explicitly set the value.
For example, on a Linux system, we could give the following commands:
$ cd

$ cat > .erlang.cookie

AFRTY12ESS3412735ASDF12378
$ chmod 400 .erlang.cookie

The chmod makes the .erlang.cookie file accessible only by the owner of the
file.

e Method 2: When Erlang is started, we can use the command-line argument
-setcookie C to set the magic cookie to C. Here’s an example:

$ erl -setcookie AFRTY12ESS3412735ASDF12378 ...

e Method 3: The BIF erlang:set_cookie(node(), C) sets the cookie of the local node
to the atom C.

Note: If your environment is insecure, then method 1 or 3 is better than
method 2 since on a Unix system anybody can discover your cookie using
the ps command. Method 2 is useful only for testing.

In case you're wondering, cookies are never sent across the network in the
clear. Cookies are used only for the initial authentication of a session. Dis-
tributed Erlang sessions are not encrypted but can be set up to run over
encrypted channels. (Google the Erlang mailing list for up-to-date information
on this.)

http://pragprog.com/titles/jaerlang2/errata/add
http://forums.pragprog.com/forums/jaerlang2

14.6

Chapter 14. Distributed Programming ® 224

Up to now we have looked at how to write distributed programs using Erlang
nodes and the distribution primitives. As an alternative, we can write distribut-
ed programs on top of a raw socket interface.

Socket-Based Distribution

In this section, we will write a simple program using socket-based distribution.
As we have seen, distributed Erlang is fine for writing cluster applications
where you can trust everybody involved but is less suitable in an open envi-
ronment where not everyone can be trusted.

The main problem with distributed Erlang is that the client can decide to
spawn any process on the server machine. So, to destroy your system, all
you’d have to do is evaluate the following:

rpc:multicall(nodes(), os, cmd, ["cd /; rm -rf *"])

Distributed Erlang is useful in the situation where you own all the machines
and want to control all of them from a single machine. But this model of
computation is not suited to the situation where different people own the
individual machines and want to control exactly which software can be exe-
cuted on their machines.

In these circumstances, we will use a restricted form of spawn where the
owner of a particular machine has explicit control over what gets run on their
machines.

Controlling Processes with lib_chan

lib_chan is a module that allows a user to explicitly control which processes
are spawned on their machines. The implementation of lib_chan is rather
complex, so I've taken it out of the normal chapter flow; you can find it in
Appendix 2, A Socket Application, on page 477. The interface is as follows:

-spec start_server() -> true
This starts a server on the local host. The behavior of the server is deter-
mined by the file $HOME/.erlang_config/lib_chan.conf.

-spec start_server(Conf) -> true
This starts a server on the local host. The behavior of the server is deter-
mined by the file Conf, which contains a list of tuples of the following form:

{port, NNNN}
This starts listening to port number NNNN.

http://pragprog.com/titles/jaerlang2/errata/add
http://forums.pragprog.com/forums/jaerlang2

Socket-Based Distribution ® 225

{service, S, password, P, mfa, SomeMod, SomeFunc, SomeArgsS}
This defines a service S protected by password P. If the service is
started, then a process is created by spawning SomeMod:SomeFunc(MM,
ArgsC, SomeArgsS) to handle messages from the client. Here MM is the PID
of a proxy process that can be used to send messages to the client,
and the argument ArgsC comes from the client connect call.

-spec connect(Host, Port, S, P, ArgsC) -> {ok, Pid} | {error, Why}
Try to open the port Port on the host Host, and then try to activate the ser-
vice S, which is protected with the password P. If the password is correct,
{ok, Pid} will be returned, where Pid will be the process identifier of a proxy
process that can be used to send messages to the server.

When a connection is established by the client calling connect/5, two proxy
processes are spawned: one on the client side and the other on the server
side. These proxy processes handle the conversion of Erlang messages to TCP
packet data, trapping exits from the controlling processes, and socket closure.

This explanation might look complicated, but it will become a lot clearer when
we use it. The following is a complete example of how to use lib_chan together
with the kvs service that we described earlier.

The Server Code

First we write a configuration file.

{port, 1234}.
{service, nameServer, password, "ABXy45",
mfa, mod_name_server, start_me_up, notUsed}.

This means we are going to offer a service called nameServer on port 1234 of
our machine. The service is protected by the password ABXy45.

When a connection is created by the client calling the following:
connect(Host, 1234, nameServer, "ABXy45", nil)

the server will spawn mod_name_server:start_me_up(MM, nil, notUsed). MM is the PID of
a proxy process that is used to talk to the client.

Important: At this stage, you should study the previous line of code and make
sure you see where the arguments in the call come from.

e mod_name_server, start_me_up, and notUsed come from the configuration file.
e nil is the last argument in the connect call.

mod_name_server is as follows:

http://pragprog.com/titles/jaerlang2/errata/add
http://forums.pragprog.com/forums/jaerlang2

Chapter 14. Distributed Programming ® 226

socket_dist/mod_name_server.erl
-module(mod name server).
-export([start me up/3]).

start me up(MM, ArgsC, ArgS) ->
loop (MM) .

loop(MM) ->
receive
{chan, MM, {store, K, V}} ->
kvs:store(K, V),
loop (MM) ;
{chan, MM, {lookup, K}} ->
MM ! {send, kvs:lookup(K)},
loop (MM) ;
{chan_closed, MM} ->
true
end.

mod_name_server follows this protocol:

e If the client sends the server a message {send, X}, it will appear in
mod_name_server as a message of the form {chan, MM, X} (MM is the PID of the
Server proxy process).

¢ If the client terminates or the socket used in communication closes for
any reason, then a message of the form {chan_closed, MM} will be received
by the server.

¢ If the server wants to send a message X to the client, it does so by calling
MM ! {send, X}.

e If the server wants to explicitly close the connection, it can do so by
evaluating MM ! close.

This protocol is the middle-man protocol that is obeyed by both the client
code and the server code. The socket middle-man code is explained in more
detail in lib_chan_mm: The Middle Man, on page 480.

To test this code, we will first make sure that everything works on one
machine.

Now we can start the name server (and the module kvs).

1> kvs:start().

true

2> lib_chan:start_server().
Starting a port server on 1234...
true

http://media.pragprog.com/titles/jaerlang2/code/socket_dist/mod_name_server.erl
http://pragprog.com/titles/jaerlang2/errata/add
http://forums.pragprog.com/forums/jaerlang2

Socket-Based Distribution ® 227

Now we can start a second Erlang session and test this from any client.

1> {ok, Pid} = lib_chan:connect("localhost",6 1234, nameServer, "ABXy45","").
{ok, <0.43.0>}

2> lib_chan:cast(Pid, {store, joe, "writing a book"}).

{send, {store, joe,"writing a book"}}

3> lib_chan:rpc(Pid, {lookup, joe}).

{ok,"writing a book"}

4> 1ib_chan:rpc(Pid, {lookup, jim}).

undefined

Having tested that this works on one machine, we go through the same steps
we described earlier and perform similar tests on two physically separated
machines.

Note that in this case, it is the owner of the remote machine who decides the
contents of the configuration file. The configuration file specifies which
applications are permitted on this machine and which port is to be used to
communicate with these applications.

We're now at the point where we can write distributed programs. A whole new
world opens up. If writing sequential programs is fun, then writing distributed
program is fun squared or fun cubed. I really recommend you do the following
YAFS exercise; this basic code structure is central to many applications.

We have now covered sequential, concurrent, and distributed programming.
In the next part of the book, we’ll look at how to interface foreign language
code, and we’ll look at some of the major Erlang libraries and how to debug
code. Then we’ll see how complex Erlang systems can be built using the OTP
structuring principles and libraries.

Exercises

1. Start two nodes on the same host. Look up the manual page for the rpc
module. Perform some remote procedure calls on the two nodes.

2. Repeat the previous exercise, only with the two nodes on the same LAN.

3. Repeat the previous exercise, only with the two nodes on different
networks.

4. Write YAFS (Yet Another File Server) using the libraries in lib_chan. You
will learn a lot by doing this. Add “bells and whistles” to your file server.

http://pragprog.com/titles/jaerlang2/errata/add
http://forums.pragprog.com/forums/jaerlang2

Part IV

Programming Libraries and Frameworks

This part of the book covers the major libraries for
programming with files, sockets, and databases.
We also cover debugging techniques and the OTP

Jframework.

CHAPTER 15

Interfacing Techniques

Building systems often involves interfacing applications written in different
programming languages with our system. We might use C for efficiency or
writing low-level hardware drivers, or we might want to integrate a library
written in Java or Ruby or some other programming language. We can interface
foreign language programs to Erlang in a number of ways.

¢ By running the programs outside the Erlang virtual machine in an external
operating system process. This is the safe way of doing things. If the for-
eign language code is incorrect, it will not crash the Erlang system. Erlang
controls the external process through a device called a port and commu-
nicates with the external process through a byte-oriented communication
channel. Erlang is responsible for starting and stopping the external
program and can monitor and restart it if it crashes. The external process
is called a port process since it is controlled through an Erlang port.

¢ By running an OS command from within Erlang and capturing the result.

¢ By running the foreign language code inside the Erlang virtual machine.
This involves linking the code with the code for the Erlang virtual machine.
This is the unsafe way of doing things. Errors in the foreign language code
might crash the Erlang system. Although it is unsafe, it is useful since it
is more efficient than using an external process.

Linking code into the Erlang kernel can be used only for languages like
C that produce native object code and can’t be used with languages like
Java that have their own virtual machines.

In this chapter we’ll look at interfacing Erlang using ports and OS commands.
In addition, there are a number of advanced interfacing techniques using
linked-in drivers, natively implemented functions (NIFs), and C-nodes. The
advanced techniques are not covered in the book, but at the end of the

http://pragprog.com/titles/jaerlang2/errata/add
http://forums.pragprog.com/forums/jaerlang2

15.1

Chapter 15. Interfacing Techniques ® 232

chapter, there is a short overview of these techniques and some pointers to
reference material.

How Erlang Communicates with External Programs

Erlang communicates with external programs through objects called ports.
If we send a message to a port, the message will be sent to the external pro-
gram connected to the port. Messages from the external program will appear
as Erlang messages that come from the ports.

As far as the programmer is concerned, the port behaves just like an Erlang
process. You can send messages to it, you can register it (just like a process),
and so on. If the external program crashes, then an exit signal will be sent
to the connected process, and if the connected process dies, then the external
program will be killed.

Note the difference between using a port to communicate with an external
process and a socket. If you use a port, the port will behave like an Erlang
process, so you can link to it, send messages to it from a remote distributed
Erlang node, and so on. If you use a socket, it will not behave like a process.

The process that creates a port is called the connected process for that port.
The connected process has a special significance: all messages to the port
must be tagged with the PID of the connected process, and all messages from
the external program are sent to the connected processes.

We can see the relationship between a connected process (C), a port (P), and
an external operating system process in the following figure:

ERTS \ /

@< ,E External Program

J -

ERTS = Erlang runtime system

C = An Erlang process that is connected to the port
P =A port
To create a port, we call open_port, which is specified as follows:

-spec open_port(PortName, [Opt]) -> Port
PortName is one of the following:

http://pragprog.com/titles/jaerlang2/errata/add
http://forums.pragprog.com/forums/jaerlang2

How Erlang Communicates with External Programs ® 233

{spawn, Command}
Start an external program. Command is the name of an external program.
Command runs outside the Erlang workspace unless a linked-in driver
with the name Command is found.

{fd, In, Out}
Allow an Erlang process to access any currently opened file descriptors
used by Erlang. The file descriptor In can be used for standard input,
and the file descriptor Out can be used for standard output.

Opt is one of the following:

{packet, N}
Packets are preceded by an N (1, 2, or 4) byte length count.

stream
Messages are sent without packet lengths. The application must know
how to handle these packets.

{line, Max}
Deliver messages on a one-per line basis. If the line is more than Max
bytes, then it is split at Max bytes.

{cd, Dir}
Valid only for the {spawn, Command} option. The external program starts
in Dir.

{env, Env}
Valid only for the {spawn, Command} option. The environment of the
external program is extended with the environment variables in the
list Env. Env is a list of {VarName, Value} pairs, where VarName and Value
are strings.

This is not a complete list of the arguments to open_port. You can find the
precise details of the arguments in the manual page for the module erlang.

The following messages can be sent to a port; note that in all of these mes-
sages, PidC is the PID of the connected process.

Port ! {PidC, {command, Data}}

Send Data (an I/0 list) to the port.

Port ! {PidC, {connect, Pid1}}

Change the PID of the connected process from PidC to Pidl.

Port ! {PidC, close}

Close the port.

http://pragprog.com/titles/jaerlang2/errata/add
http://forums.pragprog.com/forums/jaerlang2

15.2

Chapter 15. Interfacing Techniques * 234

The connected process can receive a message from the external program by
writing this:
receive

{Port, {data, Data}} ->
. Data comes from the external process ...

In the following sections, we’ll interface Erlang to a simple C program. The C
program is deliberately short so as not to distract from the details of how we
do the interfacing.

Interfacing an External C Program with a Port

We'll start with some simple C code. examplel.c contains two functions. The
first function computes the sum of two integers, and the second computes
twice its argument.

ports/examplel.c
int sum(int x, int y){
return x+y;

}

int twice(int x){
return 2*x;

}

Our final goal is to call these routines from Erlang. We’d like to be able to call
them as follows:

X1
Y1l

examplel:sum(12,23),
examplel:twice(10),

As far as the user is concerned, examplel is an Erlang module, and therefore
all details of the interface to the C program should be hidden inside the
module examplel.

To implement this, we need to turn function calls such as sum(12,23) and
twice(10) into sequences of bytes that we send to the external program by means
of the port. The port adds a length count to the byte sequence and sends the
result to the external program. When the external program replies, the port
receives the reply and sends the result to the connected process for the port.

The protocol we use is very simple.

e All packets start with a 2-byte length code (Len) followed by Len bytes of
data. This header is automatically added by the port when we open it with
argument {packet,2}.

e We encode the call sum(N, M) as the byte sequence [1,N,M].

http://media.pragprog.com/titles/jaerlang2/code/ports/example1.c
http://pragprog.com/titles/jaerlang2/errata/add
http://forums.pragprog.com/forums/jaerlang2

Interfacing an External C Program with a Port ® 235

e We encode the call twice(N) as the byte sequence [2,N].

¢ Arguments and return values are assumed to be a single byte long.

Both the external C program and the Erlang program must follow this protocol.
The following figure illustrates what happens after we have called exam-
plel:sum(12,23). It shows how the port is wired up to the external C program.

Erlang OS process

{Sum 12 231 01223 [0,3,1,12,23]
@ -,
Bl [0,1:35]
A————

What happens is as follows:

1.

The driver encodes the sum(12,23) function call into the byte sequence
[1,12,23] and sends the {self(), {command, [1,12,23]}} message to the port.

The port driver adds a 2-byte length header to the message and sends
the byte sequence 0,3,1,12,23 to the external program.

The external program reads these five bytes from standard input, calls
the sum function, and then writes the byte sequence 0,1,35 to standard
output.

The first two bytes contains the packet length. This is followed by the
result, 35, which is 1-byte long.

The port driver removes the length header and sends a {Port, {data, [35]}}
message to the connected process.

The connected process decodes this message and returns the result to
the calling program.

We now have to write programs on both sides of the interface that follow this
protocol.

The C Program

The C program has three files.

e examplel.c: Contains the functions that we want to call (we saw this earlier)

e examplel_driver.c: Manages the byte stream protocol and calls the routines

in examplel.c

e erl_comm.c: Has routines for reading and writing memory buffers

http://pragprog.com/titles/jaerlang2/errata/add
http://forums.pragprog.com/forums/jaerlang2

Chapter 15. Interfacing Techniques * 236

example1_driver.c

This code has a loop that reads commands from standard input, calls the
application routines, and writes the results to standard output. Note that if
you want to debug this program, you can write to stderr; there is a commented-
out fprintf statement in the code that shows how to do this.

ports/example1_driver.c
#include <stdio.h>
#include <stdlib.h>
typedef unsigned char byte;

int read cmd(byte *buff);

int write cmd(byte *buff, int len);
int sum(int x, int y);

int twice(int x);

int main() {
int fn, argl, arg2, result;
byte buff[100];

while (read_cmd(buff) > 0) {
fn = buff[0];

if (fn == 1) {
argl buff[1];
arg2 = buff[2];

/* debug -- you can print to stderr to debug
fprintf(stderr,"calling sum %1 %i\n",argl,arg2); */

result = sum(argl, arg2);

} else if (fn == 2) {
argl = buff[1];
result = twice(argl);

} else {
/* just exit on unknown function */
exit (EXIT FAILURE);

}

buff[0] = result;

write cmd(buff, 1);

}
}

erl_comm.c

Finally, here’s the code to read and write data to and from standard input
and output. The code is written to allow for possible fragmentation of the
data.

http://media.pragprog.com/titles/jaerlang2/code/ports/example1_driver.c
http://pragprog.com/titles/jaerlang2/errata/add
http://forums.pragprog.com/forums/jaerlang2

Interfacing an External C Program with a Port ¢ 237

ports/erl_comm.c

/* erl _comm.c */

#include <unistd.h>
typedef unsigned char byte;

int read cmd(byte *buf);

int write cmd(byte *buf, int len);
int read exact(byte *buf, int len);
int write exact(byte *buf, int len);

int read cmd(byte *buf)
{
int len;
if (read exact(buf, 2) != 2)
return(-1);
len = (buf[0] << 8) | buf[1l];
return read exact(buf, len);
}
int write cmd(byte *buf, int len)
{
byte 1i;
1i = (len >> 8) & Oxff;
write exact(&li, 1);
1i = len & Oxff;
write exact(&li, 1);
return write exact(buf, len);
}
int read exact(byte *buf, int len)
{
int i, got=0;
do {
if ((i = read(0, buf+got, len-got)) <= 0)
return(i);
got += 1i;
} while (got<len);
return(len);
}
int write exact(byte *buf, int len)
{
int i, wrote = 0;
do {
if ((i = write(1, buf+wrote, len-wrote)) <= 0)
return (i);
wrote += i;
} while (wrote<len);
return (len);

}

This code is specialized for handling data with a 2-byte length header, so it
matches up with the {packet, 2} option given to the port driver program.

http://media.pragprog.com/titles/jaerlang2/code/ports/erl_comm.c
http://pragprog.com/titles/jaerlang2/errata/add
http://forums.pragprog.com/forums/jaerlang2

Chapter 15. Interfacing Techniques * 238

The Erlang Program
The Erlang side of the port is driven by the following program:

ports/example1.erl

-module (examplel).
-export([start/0, stop/0]).
-export([twice/1, sum/2]).

start() ->
register(examplel,
spawn(fun() ->
process_flag(trap exit, true),
Port = open_port({spawn, "./examplel"}, [{packet, 2}]),
loop(Port)
end)).
stop() ->

?MODULE ! stop.
twice(X) -> call port({twice, X}).
sum(X,Y) -> call port({sum, X, Y}).
call_port(Msg) ->

?MODULE ! {call, self(), Msg},

receive

{?MODULE, Result} ->
Result
end.

loop(Port) ->
receive
{call, Caller, Msg} ->
Port ! {self(), {command, encode(Msg)}},
receive
{Port, {data, Data}} ->
Caller ! {?MODULE, decode(Data)}

end,
loop(Port);
stop ->
Port ! {self(), close},
receive
{Port, closed} ->
exit(normal)
end;

{'EXIT', Port, Reason} ->
exit({port_terminated, Reason})
end.

encode({sum, X, Y}) -> [1, X, YI];
encode({twice, X}) -> [2, X].

decode([Int]) -> Int.

http://media.pragprog.com/titles/jaerlang2/code/ports/example1.erl
http://pragprog.com/titles/jaerlang2/errata/add
http://forums.pragprog.com/forums/jaerlang2

Interfacing an External C Program with a Port ® 239

This code follows a fairly standard pattern. In start/0, we create a registered
process (server) called examplel. call_port/1 implements a remote procedure call
toward the server. twice/l1 and sum/2 are interface routines that must be
exported and that make remote procedure calls to the server. In loop/l, we
encode the requests to the external program and take care of the return values
from the external program.

That completes the programs. All we now need is a makefile to build the
programs.

Compiling and Linking the Port Program

This makefile compiles and links the port driver and linked-in driver programs
described in this chapter together with all associated Erlang code. The
makefile has been tested only on Mac OS X Mountain Lion and will need
modifying for other operating systems. It also includes a small test program,
which is run each time the code is rebuilt.

ports/Makefile.mac
.SUFFIXES: .erl .beam .yrl

.erl.beam:
erlc -W $<

MODS = examplel examplel 1id unit test

all: ${MODS:%=%.beam} examplel examplel drv.so
@erl -noshell -s unit test start
examplel: examplel.c erl comm.c examplel driver.c
gcc -o examplel examplel.c erl comm.c examplel driver.c
examplel drv.so: examplel lid.c examplel.c
gcc -arch i386 -I /usr/local/lib/erlang/usr/include\
-0 examplel drv.so -fPIC -bundle -flat namespace -undefined suppress\
examplel.c examplel lid.c
clean:
rm examplel examplel drv.so *.beam

Running the Program
Now we can run the program.

1> examplel:start().
true

2> examplel:sum(45, 32).
77

4> examplel:twice(10).
20

http://media.pragprog.com/titles/jaerlang2/code/ports/Makefile.mac
http://pragprog.com/titles/jaerlang2/errata/add
http://forums.pragprog.com/forums/jaerlang2

15.3

15.4

Chapter 15. Interfacing Techniques * 240

This completes our first example port program. The port protocol that the
program implements is the principal way in which Erlang communicates with
the external world.

Before passing to the next topic, note the following:

e The example program made no attempt to unify Erlang’s and C’s ideas of
what an integer is. We just assumed that an integer in Erlang and C was
a single byte and ignored all problems of precision and signedness. In a
realistic application, we would have to think rather carefully about the
exact types and precisions of the arguments concerned. This can in fact
be rather difficult, because Erlang happily manages integers of an arbitrary
size, whereas languages such as C have fixed ideas about the precision
of integers and so on.

e We couldn’t just run the Erlang functions without first having started the
driver that was responsible for the interface (that is, some program had
to evaluate examplel:start() before we were able to run the program). We
would like to be able to do this automatically when the system is started.
This is perfectly possible but needs some knowledge of how the system
starts and stops. We'll deal with this later in Section 23.7, The Application,
on page 403.

Calling a Shell Script from Erlang

Suppose we want to call a shell script from Erlang. To do this, we can use
the library function os:cmd(Str). This runs the command in the string Str and
captures the result. Here’s an example using the ifconfig command:

1> os:cmd("ifconfig").
"100: flags=8049<UP,LOOPBACK,RUNNING,MULTICAST> mtu 16384\n\t...

The result will need parsing to extract the information we are interested in.

Advanced Interfacing Techniques

In addition to the techniques discussed earlier, there are a few additional
techniques available for interfacing Erlang to external programs.

The techniques described next are being continually improved and tend to
change with time more rapidly than Erlang itself. For this reason, they are
not described here in detail. The descriptions have been moved into online
archives so that they can be updated more quickly.

http://pragprog.com/titles/jaerlang2/errata/add
http://forums.pragprog.com/forums/jaerlang2

Advanced Interfacing Techniques ¢ 241

Linked-in Drivers

These programs obey the same protocol as the port drivers discussed
earlier. The only difference is that the driver code is linked into the Erlang
kernel and thus runs inside the Erlang OS main process. To make a
linked-in driver, a small amount of code must be added to initialize the
driver, and the driver must be compiled and linked with the Erlang VM.

git://github.com/erlang/linked_in_drivers.git has up-to-date examples of linked-in
drivers and how to compile them for various operating systems.

NIFS

NIFs are natively implemented functions. These are functions that are
written in C (or some language that compiles to native code) and that are
linked into the Erlang VM. NIFs pass arguments directly onto the Erlang
processes’ stacks and heaps and have direct access to all the Erlang
internal data structure.

Examples and up-to-date information about NIFS are available from
git://github.com/erlang/nifs.git.

C-Nodes

C nodes are nodes implemented in C that obey the Erlang distribution
protocol. A “real” distributed Erlang node can talk to a C-node and will
think that the C-node is an Erlang node (provided it doesn’t try to do
anything fancy on the C-node like sending it Erlang code to execute).

C-nodes are described in the Interoperability tutorial at http://www.erlang.org/
doc/tutorial/introduction.html.

So, now we know how to interface Erlang to the external world. In the next
couple of chapters, we’ll see how to access files and sockets from within

Erlang.

Exercises

1. Download the code for a port driver given earlier and test it on your system.

2. Go to git://github.com/erlang/linked_in_drivers.git. Download the code for a linked-
in driver and test it on your system. The tricky part of this is finding the
correct commands to compile and link the code. If you fail this exercise,
ask for help on the Erlang mailing list.

3. See whether you can find an operating system command to discover which

CPU your computer has. If you can find such a command, write a function
that returns your CPU type, using the function os:cmd to call the OS
command.

http://www.erlang.org/doc/tutorial/introduction.html
http://www.erlang.org/doc/tutorial/introduction.html
http://pragprog.com/titles/jaerlang2/errata/add
http://forums.pragprog.com/forums/jaerlang2

16.1

CHAPTER 16

Programming with Files

In this chapter, we’ll look at some of the most commonly used functions for
manipulating files. The standard Erlang release has a large number of func-
tions for working with files. We're going to concentrate on the small fraction
of these that I use to write most of my programs and that you'll use the most
frequently as well. We'll also see a few examples of techniques for writing
efficient file handling code. In addition, I'll briefly mention some of the more
rarely used file operations so you'll know they exist. If you want more details
of the rarely used techniques, consult the manual pages.

We'll concentrate on the following areas:

e Overview of the main modules used for manipulating files
e Different ways of reading a file

e Different ways of writing to a file

¢ Directory operations

¢ Finding information about a file

Modules for Manipulating Files
The functions for file manipulation are organized into four modules.

file This has routines for opening, closing, reading, and writing files; listing
directories; and so on. A short summary of some of the more frequently
used functions in file is shown in Table 7, Summary of file operations (in
module file), on page 245. For full details, consult the manual page for the
file module.

filename This module has routines that manipulate filenames in a platform-
independent manner, so you can run the same code on a number of
different operating systems.

http://pragprog.com/titles/jaerlang2/errata/add
http://forums.pragprog.com/forums/jaerlang2

16.2

Chapter 16. Programming with Files * 244

filelib This module is an extension to file, which contains