
Pro
SQL Server 2019
Administration

A Guide for the Modern DBA
—
Second Edition
—
Peter A. Carter

www.allitebooks.com

http://www.allitebooks.org

Pro SQL Server 2019
Administration

A Guide for the Modern DBA

Second Edition

Peter A. Carter

www.allitebooks.com

http://www.allitebooks.org

Pro SQL Server 2019 Administration: A Guide for the Modern DBA

ISBN-13 (pbk): 978-1-4842-5088-4 ISBN-13 (electronic): 978-1-4842-5089-1
https://doi.org/10.1007/978-1-4842-5089-1

Copyright © 2019 by Peter A. Carter

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not
identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Jonathan Gennick
Development Editor: Laura Berendson
Coordinating Editor: Jill Balzano

Cover image designed by Freepik (www.freepik.com)

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 Spring Street,
6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-
sbm.com, or visit www.springeronline.com. Apress Media, LLC is a California LLC and the sole member
(owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a
Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit http://www.apress.com/
rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and
licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales
web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to
readers on GitHub via the book’s product page, located at www.apress.com/9781484250884. For more
detailed information, please visit http://www.apress.com/source-code.

Printed on acid-free paper

Peter A. Carter
SOUTHAMPTON, UK

www.allitebooks.com

https://doi.org/10.1007/978-1-4842-5089-1
http://www.allitebooks.org

This book is dedicated to Edward Carter.

www.allitebooks.com

http://www.allitebooks.org

v

About the Author ��xix

About the Technical Reviewer ��xxi

Acknowledgments ��xxiii

Introduction ���xxv

Table of Contents

Part I: Installation and Configuration ��� 1

Chapter 1: Planning the Deployment �� 3

Editions and License Models �� 3

Hardware Considerations �� 6

Specifying Strategic Minimum Requirements ��� 7

Storage �� 7

Operating Systems Considerations ��� 17

Configuring the Operating System �� 18

Setting the Power Plan �� 18

Optimizing for Background Services ��� 18

Assigning User Rights�� 19

Selecting Features �� 22

Database Engine Service ��� 23

Analysis Services �� 24

Machine Learning Server �� 24

Data Quality Client ��� 25

Client Connectivity Tools �� 25

Integration Services �� 25

Client Tools Backward Compatibility ��� 25

Client Tools SDK ��� 26

www.allitebooks.com

http://www.allitebooks.org

vi

Distributed Replay Controller ��� 26

Distributed Replay Client ��� 26

SQL Client Connectivity SDK �� 26

Master Data Services �� 27

Summary��� 27

Chapter 2: GUI Installation �� 29

Installation Center ��� 29

The Planning Tab ��� 29

The Installation Tab �� 31

The Maintenance Tab��� 32

The Tools Tab ��� 34

The Resources Tab �� 35

The Advanced Tab �� 36

The Options Tab ��� 39

Installing a Stand-Alone Database Engine Instance ��� 39

Preparation Steps �� 40

The Feature Selection Page ��� 45

The Instance Configuration Page ��� 48

Selecting Service Accounts ��� 50

Choosing the Collation ��� 53

Provisioning Instance Security �� 59

Configuring the Instance ��� 61

Configuring Distributed Replay �� 67

Completing the Installation �� 68

Summary��� 70

Chapter 3: Server Core Installation �� 73

Installing an Instance �� 73

Required Parameters ��� 74

Role Parameter �� 77

Basic Installation ��� 77

Table of ConTenTs

vii

Smoke Tests �� 79

Troubleshooting the Installation �� 82

Optional Parameters �� 85

Product Update �� 89

Using a Config File �� 91

Automatic Installation Routines �� 95

Enhancing the Installation Routine �� 96

Production Readiness �� 98

Summary��� 100

Chapter 4: Installation on Heterogeneous Operating Systems ����������������������������� 101

Installing SQL Server on Linux �� 101

Installing SQL Server Manually �� 102

Configuring SQL Server ��� 105

Unattended Installation�� 108

Installing SQL Server in a Docker Container ��� 111

Running a Microsoft-Supplied Docker Image �� 111

Creating a Simple Docker Image for SQL Server ��� 113

Creating a Configurable Docker Image for SQL Server �� 119

Kubernetes Support ��� 125

Summary��� 125

Chapter 5: Configuring the Instance ��� 127

Instance Configuration �� 127

Using sp_configure �� 127

Processor and Memory Configuration ��� 129

Trace Flags �� 141

Ports and Firewalls ��� 146

Process of Communication �� 146

Ports Required by SQL Server ��� 148

Configuring the Port That the Instance Will Listen On ��� 149

Table of ConTenTs

viii

System Databases �� 152

mssqlsystemresource (Resource) ��� 152

MSDB ��� 153

Master ��� 153

Model ��� 154

TempDB ��� 154

Buffer Pool Extension �� 159

Hybrid Buffer Pool ��� 161

Summary��� 162

Part II: Database Administration �� 163

Chapter 6: Database Configuration ��� 165

Data Storage ��� 165

Filegroups �� 166

FILESTREAM Filegroups �� 170

Memory-Optimized Filegroups �� 177

Strategies for Structured Filegroups ��� 180

Strategies for Memory-Optimized Filegroups ��� 182

File and Filegroup Maintenance �� 183

Adding Files ��� 183

Expanding Files ��� 186

Shrinking Files ��� 187

Database Scoped Configurations �� 190

Log Maintenance �� 191

Recovery Model ��� 192

Log File Count �� 193

Shrinking the Log �� 194

Log Fragmentation �� 195

Summary��� 202

Table of ConTenTs

ix

Chapter 7: Table Optimizations ��� 205

Table Partitioning �� 205

Partitioning Concepts �� 206

Implementing Partitioning ��� 209

Monitoring Partitioned Tables �� 216

Sliding Windows �� 218

Partition Elimination �� 221

Table Compression �� 223

Row Compression �� 224

Page Compression ��� 225

Columnstore Compression �� 227

Implementing Compression ��� 228

Memory-Optimized Tables �� 232

Durability ��� 233

Creating and Managing Memory-Optimized Tables ��� 233

Performance Profile ��� 236

Table Memory Optimization Advisor �� 240

Natively Compiled Objects ��� 241

Summary��� 244

Chapter 8: Indexes and Statistics ��� 245

Clustered Indexes ��� 245

Tables Without a Clustered Index �� 246

Tables with a Clustered Index �� 247

Clustering the Primary Key �� 248

Administering Clustered Indexes ��� 249

Nonclustered Indexes ��� 253

Covering Indexes ��� 254

Administering Nonclustered Indexes ��� 255

Filtered Indexes ��� 260

Table of ConTenTs

x

Indexes for Specialized Application �� 261

Columnstore Indexes ��� 261

Clustered Columnstore Indexes ��� 263

Nonclustered Columnstore Indexes ��� 265

In-Memory Indexes �� 266

Maintaining Indexes �� 272

Missing Indexes ��� 273

Index Fragmentation �� 275

Resumable Index Operations ��� 280

Partitioned Indexes �� 283

Statistics ��� 284

Filtered Statistics ��� 286

Incremental Statistics �� 287

Managing Statistics �� 287

Summary��� 290

Chapter 9: Database Consistency ��� 293

Consistency Errors �� 293

Understand Consistency Errors ��� 293

Detecting Consistency Errors �� 295

System Database Corruption ��� 304

DBCC CHECKDB ��� 308

Checking for Errors �� 308

Fixing Errors �� 313

Emergency Mode ��� 315

Other DBCC Commands for Corruption �� 318

Consistency Checks on VLDBs �� 323

DBCC CHECKDB with PHYSICAL_ONLY �� 324

Backing Up WITH CHECKSUM and DBCC CHECKALLOC ��� 324

Splitting the Workload ��� 324

Offloading to a Secondary Server �� 325

Summary��� 325

Table of ConTenTs

xi

Part III: Security, Resilience, and Scaling Workloads ��������������������������������� 327

Chapter 10: SQL Server Security Model �� 329

Security Hierarchy ��� 329

Implementing Instance-Level Security ��� 332

Server Roles �� 334

Logins �� 337

Granting Permissions �� 340

Implementing Database-Level Security �� 341

Database Roles �� 341

Schemas �� 345

Creating and Managing Contained Users �� 348

Implementing Object-Level Security ��� 351

Server Audit �� 352

Creating a Server Audit�� 353

Creating a Server Audit Specification �� 356

Enabling and Invoking Audits �� 358

Database Audit Specifications ��� 359

Auditing the Audit �� 364

Security Reports ��� 365

SQL Data Discovery and Classification �� 365

Vulnerability Assessment��� 367

Summary��� 369

Chapter 11: Encryption ��� 371

Encryption Hierarchy ��� 371

Encryption Concepts �� 371

SQL Server Encryption Concepts ��� 372

Transparent Data Encryption ��� 377

Implementing TDE ��� 378

Managing TDE �� 384

Table of ConTenTs

xii

Managing Cell-Level Encryption ��� 386

Accessing Encrypted Data ��� 391

Always Encrypted ��� 392

Implementing Always Encrypted ��� 394

Administering Keys �� 403

Summary��� 407

Chapter 12: Backups and Restores �� 409

Backup Fundamentals �� 409

Recovery Models ��� 409

Changing the Recovery Model ��� 412

Backup Types ��� 415

Backup Media �� 416

Backup Strategies ��� 418

Full Backup Only �� 419

Full and Transaction Log Backups ��� 419

Full, Differential, and Transaction Log Backups ��� 420

Filegroup Backups ��� 420

Partial Backup ��� 421

Backing Up a Database ��� 421

Backing Up in SQL Server Management Studio �� 421

Backing Up via T-SQL �� 424

Restoring a Database �� 431

Restoring in SQL Server Management Studio ��� 431

Restoring via T-SQL ��� 436

Restoring to a Point in Time �� 441

Restoring Files and Pages��� 445

Restoring a File�� 446

Restoring a Page ��� 448

Piecemeal Restores �� 451

Summary��� 454

Table of ConTenTs

xiii

Chapter 13: High Availability and Disaster Recovery Concepts ��������������������������� 457

Availability Concepts ��� 458

Level of Availability �� 458

Recovery Point Objective and Recovery Time Objective �� 461

Cost of Downtime �� 462

Classification of Standby Servers �� 463

High Availability and Recovery Technologies �� 464

AlwaysOn Failover Clustering �� 464

AlwaysOn Availability Groups �� 471

Log Shipping �� 477

Combining Technologies �� 480

Summary��� 483

Chapter 14: Implementing AlwaysOn Availability Groups ������������������������������������ 485

Implementing AlwaysOn Availability Groups ��� 486

Configuring SQL Server ��� 492

Creating the Availability Group �� 494

Availability Groups on Linux �� 508

Distributed Availability Groups �� 515

Managing AlwaysOn Availability Groups ��� 518

Failover �� 518

Synchronizing Uncontained Objects �� 524

Monitoring ��� 525

Other Administrative Considerations ��� 528

Summary��� 530

Chapter 15: Implementing Log Shipping �� 533

Implementing Log Shipping for DR ��� 533

GUI Configuration ��� 536

T-SQL Configuration ��� 546

Table of ConTenTs

xiv

Log Shipping Maintenance ��� 557

Failing Over Log Shipping �� 557

Switching Roles ��� 558

Monitoring ��� 564

Summary��� 566

Chapter 16: Scaling Workloads �� 569

Database Snapshots ��� 569

Implementing Database Snapshots ��� 572

Recovering Data from a Snapshot ��� 576

Replication �� 577

Replication Concepts ��� 577

Types of Replication �� 579

Implementing Transactional Replication �� 582

Adding AlwaysOn Readable Secondary Replicas �� 607

Benefits and Considerations �� 608

Implementing Readable Secondaries �� 608

Summary��� 618

Part IV: Performance and Maintenance �� 621

Chapter 17: SQL Server Metadata ��� 623

Introducing Metadata Objects ��� 623

Server-Level and Instance-Level Metadata �� 626

Exposing Registry Values �� 627

Exposing Service Details ��� 628

Analyzing Buffer Cache Usage �� 629

Metadata for Capacity Planning �� 631

Exposing File Stats �� 631

Using File Stats for Capacity Analysis ��� 635

Metadata for Troubleshooting and Performance Tuning ��� 639

Retrieving Perfmon Counters �� 639

Analyzing Waits ��� 644

Table of ConTenTs

xv

Database Metadata ��� 647

Metadata-Driven Automation �� 652

Dynamically Cycling Database Snapshots ��� 652

Rebuilding Only Fragmented Indexes �� 655

Summary��� 657

Chapter 18: Locking and Blocking �� 659

Understanding Locking ��� 659

Lock Granularity �� 659

Locking Behaviors for Online Maintenance ��� 661

Lock Compatibility ��� 666

Lock Partitioning �� 667

Understanding Deadlocks ��� 668

How Deadlocks Occur ��� 668

Minimizing Deadlocks ��� 670

Understanding Transactions �� 670

Transactional Properties �� 671

Transaction with In-Memory OLTP �� 681

Isolation Levels �� 682

Cross-Container Transactions �� 684

Retry Logic �� 686

Observing Transactions, Locks, and Deadlocks �� 687

Observing Transactions ��� 687

Observing Locks and Contention ��� 691

Observing Deadlocks ��� 695

Summary��� 696

Chapter 19: Extended Events �� 699

Extended Events Concepts �� 699

Packages ��� 700

Events �� 700

Targets ��� 701

Table of ConTenTs

xvi

Actions ��� 702

Predicates �� 702

Types and Maps ��� 702

Sessions �� 704

Creating an Event Session �� 704

Using the New Session Dialog Box �� 707

Using T-SQL ��� 713

Viewing the Collected Data ��� 717

Analyzing Data with Data Viewer ��� 717

Analyzing Data with T-SQL �� 723

Correlating Extended Events with Operating System Data �� 727

Correlating Events with Perfmon Data �� 727

Integrating Event Sessions with Operating System–Level Events �������������������������������������� 729

Summary��� 736

Chapter 20: Query Store ��� 739

Enabling and Configuring Query Store �� 739

Working with Query Store Data ��� 746

SSMS Reports �� 747

Query Store T-SQL Objects �� 751

Resolving Issues with Query Store ��� 756

Summary��� 757

Chapter 21: Distributed Replay ��� 759

Distributed Replay Concepts ��� 760

Distributed Replay Components �� 760

Distributed Replay Architecture ��� 761

Configuring the Environment �� 761

Configuring the Controller ��� 762

Configuring Clients �� 763

Configuring the Replay �� 765

Table of ConTenTs

xvii

Working with Distributed Replay ��� 768

Synchronizing the Target ��� 772

Creating a Trace ��� 773

Replaying the Trace ��� 803

Summary��� 807

Chapter 22: Automating Maintenance Routines ��� 809

SQL Server Agent �� 809

SQL Server Agent Concepts ��� 810

SQL Server Agent Security �� 814

Creating SQL Server Agent Jobs �� 817

Monitoring and Managing Jobs ��� 842

Creating Alerts ��� 845

Multiserver Jobs ��� 848

Configuring the MSX and TSX Servers �� 848

Creating Master Jobs �� 854

Managing Target Servers ��� 856

Summary��� 860

Chapter 23: Policy-Based Management �� 863

PBM Concepts ��� 863

Facets �� 863

Conditions �� 864

Targets ��� 864

Policies �� 865

Evaluation Modes �� 865

Central Management Servers ��� 866

Creating Policies ��� 874

Creating Simple Policies �� 874

Creating an Advanced Policy ��� 883

Table of ConTenTs

xviii

Managing Policies ��� 885

Importing and Exporting Policies ��� 886

Enterprise Management with Policies ��� 887

Evaluating Policies with PowerShell�� 889

Summary��� 890

Chapter 24: Resource Governor �� 893

Resource Governor Concepts �� 893

Resource Pool �� 893

Workload Group ��� 895

Classifier Function ��� 895

Implementing Resource Governor ��� 896

Creating Resource Pools ��� 896

Creating Workload Groups ��� 900

Creating a Classifier Function ��� 903

Testing the Classifier Function �� 908

Monitoring Resource Governor ��� 909

Monitoring with Performance Monitor �� 909

Monitoring with DMVs ��� 913

Summary��� 921

Index ��� 923

Table of ConTenTs

xix

About the Author

Peter A. Carter is a SQL Server expert with over 15 years of experience in developing,

administering, and architecting SQL Server platforms and data-tier applications. He

was awarded an MCC by Microsoft in 2011 to sit alongside his array of MCTS, MCITP,

MCSA, and MCSE certifications in SQL Server from version 2005 onward. Peter has

written a number of books across a variety of SQL Server topics, including security, high

availability, and automation.

xxi

About the Technical Reviewer

Ian Stirk is a freelance SQL Server consultant based in London. In addition to his day

job, he is an author, creator of software utilities, and technical reviewer who regularly

writes book reviews for www.i-programmer.info.

He covers every aspect of SQL Server and has a specialist interest in performance

and scalability. If you require help with your SQL Server systems, feel free to contact him

at ian_stirk@yahoo.com or www.linkedin.com/in/ian-stirk-bb9a31.

Ian would like to thank Peter Carter, Jonathan Gennick, and Jill Balzano for making

this book experience easier for him.

None of us stands alone, and with this in mind, Ian would like to thank these special

people: Mrs Neal, Miss Lister, Mrs Coulter, Mr Tucker, Mr Griffiths, Mr Holland,

Mrs Ransom, Mrs Denis, Mr Fisher, Mr Ridley, Mrs Page, Mrs Chalmers, Mr Powell,

Mr Cooper, Mrs Huller, Mr Jones, Mrs Amphlett, Mr Price, Mr Farmer, and Mr Galbraith.

Ian’s fee for his work on this book has been donated to: Train 50 women teachers in

Uganda to educate 1000s (www.globalgiving.org/projects/train50teachers/).

http://www.i-programmer.info/
http://www.linkedin.com/in/ian-stirk-bb9a31
http://www.globalgiving.org/projects/train50teachers/

xxiii

Acknowledgments

I want to extend my gratitude to Chris Dent, a leading automation expert, specializing in

PowerShell. He assisted me with enhancing the quality of PowerShell code used in some

chapters of this book.

xxv

Introduction

Pro SQL Server 2019 Administration is a book designed for DBAs who manage on-

premise SQL Server estates. The book starts by covering the installation of SQL Server

in both Windows and Linux environments. It also examines how to install and configure

SQL Server in containers, which I believe to be the future of hosting many data-tier

applications.

The book then moves on to discuss the configuration and maintenance aspects of

managing SQL Server. This includes optimizing tables, creating indexes, and running

data consistency checks. These are the core elements that every DBA should be

familiar with.

Next, we will look at ensuring the security and resilience of SQL Server. This is an

important topic, and we will dive into areas such as the SQL Server security model and

encryption. We will then look at how to provide high availability and disaster recovery

for your databases. This includes everything from taking backups (and restoring them)

through to implementing complex AlwaysOn topologies.

Finally, this book will guide you through many of the performance troubleshooting

and maintenance tasks that DBAs should understand. This ranges from understanding

locking and performing traces with Extended Events through to utilizing some really

great SQL Server features, such as the Query Store, Distributed Replay, and Policy-

Based Management (PBM). We will also explore how to use metadata to automate

maintenance routines and schedule these with SQL Server Agent.

When running code samples in this book, you should change the “personalized”

aspect of the code, such as folder structures and file names, to match your own

configuration.

PART I

Installation and
Configuration

3
© Peter A. Carter 2019
P. A. Carter, Pro SQL Server 2019 Administration, https://doi.org/10.1007/978-1-4842-5089-1_1

CHAPTER 1

Planning the Deployment
Planning a deployment of SQL Server 2019, in order to best support the business’s needs,

can be a complicated task. You should make sure to consider many areas, including

edition, licensing requirements, on-premises vs. cloud hosting, hardware considerations,

software configuration, and even if Windows is the best platform. For example, if your

new instance will be supporting a PHP web app, hosted on Linux, then maybe your

instance should also be hosted on Linux? And all of this is before you even start to

consider which features of SQL Server you may need to install to support the application.

This chapter will guide you through the key decisions that you should make when

you are planning your deployment. You will also learn how to perform some essential

operating system configurations, should you decide to host your instance on Windows

Server. This chapter will also give you an overview of the top-level features that you can

choose to install and discuss why selecting the appropriate features is important.

 Editions and License Models
Choosing the edition of SQL Server 2019 to support your data-tier application may

sound like a simple task, but in fact, you should spend time thinking about this decision

and consulting with both business stakeholders and other IT departments to bring

their opinions into this decision. The first thing to consider is that there are five editions

of SQL Server. These editions not only have different levels of functionality, but they

also have different license considerations. Additionally, from an operational support

perspective, you may find that the TCO (total cost of ownership) of the estate increases

if you allow data-tier applications to be hosted on versions of SQL Server that are not

deployed strategically within your estate.

A full discussion of feature and licensing considerations is beyond the scope of this

book; however, Table 1-1 details the available licensing models for each edition of SQL

Server, whereas Table 1-2 highlights the primary purpose of each edition.

4

Table 1-1. SQL Server Edition License Models

Edition License Model(s) Comments

Enterprise Per-core –

Standard • Per-core

• Server + CAL

–

Web Third-party hosting only –

Developer Free for noncommercial use Not for use in a production environment

Express Free edition of SQL Server Limited functionality and small capacity limits, such

as a 10GB database size, a 1GB limit on RAM, and a

CPU limit of one socket, or four cores

A CAL is a client access license, where a client can refer to either a user or a device.

You can choose whether to purchase user or device licenses based on which will be

cheapest for your environment.

For example, if your organization had a SQL Server that was supporting a call center

that had 100 computers, and it ran 24/7 with three 8-hour shifts, then you would have

100 devices and 300 users, so device CALs would be the most sensible option for you to

choose.

On the flip side, if your organization had a SQL Server that was supporting a sales

team of 25 who all connected to the sales application not only via their laptops but also

via their iPads, then you would have 25 users, but 50 devices, and therefore choosing

user CALs would be the more sensible option.

To summarize, if you have more users than devices, then you should choose device

CALs. If you have more devices than users, on the other hand, you should choose user

CALs. Microsoft also supplies a tool called Microsoft Assessment and Planning (MAP)

Toolkit for SQL Server, which will help you plan your licensing requirements. MAP

Toolkit can be downloaded from www.microsoft.com/en-gb/download/details.

aspx?id=7826.

ChAPTER 1 PLANNiNG ThE DEPLoyMENT

http://www.microsoft.com/en-gb/download/details.aspx?id=7826
http://www.microsoft.com/en-gb/download/details.aspx?id=7826

5

The version(s) of SQL Server that you choose to support in your Enterprise

applications will vary depending on the project’s requirements, your organization’s

requirements, and the underlying infrastructure. For example, if your organization hosts

its entire SQL Server estate within a private cloud, then you are likely to only support the

Enterprise edition, since you will be licensing the underlying infrastructure.

Alternatively, if your organization is predominantly utilizing physical boxes, then

you most likely need to support a mix of SQL Server versions, such as Enterprise and

Standard editions. This will give projects the flexibility to reduce their costs if they only

require a subset of features and are not expecting high volume workloads, and hence can

live with the caps that Standard edition imposes on RAM and CPU.

The next thing you should consider before choosing which edition you will use

is whether or not you will use a Windows Server Core installation of SQL Server.

Installations on Server Core can help improve security by reducing the attack surface of

your server. Server Core is a minimal installation, so there is less surface to attack and

fewer security vulnerabilities. It can also improve performance, because you do not have

the overhead of the GUI and because many resource-intensive applications cannot be

installed. If you do decide to use Server Core, then it is also important to understand the

impacts of doing so.

From the SQL Server perspective, the following features cannot be used:

• Reporting Services

• SQL Server Data Tools (SSDT)

Table 1-2. SQL Server Edition Overview

Edition Edition Overview

Enterprise Fully featured edition of SQL Server for Enterprise systems and critical apps

Standard Core database and Bi functionality, aimed at departmental level systems and

noncritical apps

Web is only available for service providers hosting public web sites that use SQL Server

Developer A fully featured edition, to the level of Enterprise edition, but meant for development

use and not allowed for use on production systems

Express A free, entry-level version of SQL Server geared toward small applications with

local data requirements

ChAPTER 1 PLANNiNG ThE DEPLoyMENT

6

• Client Tools Backward Compatibility

• Client Tools SDK

• SQL Server Books Online

• Distributed Replay Controller

• Master Data Services (MDS)

• Data Quality Services (DQS)

The following features can be used, but only from a remote server:

• Management Tools

• Distributed Replay Client

From the broader perspective of operational support, you will need to ensure that

all of your operational teams (DBAs, Windows Operations, etc.) are in a position to

support Server Core. For example, if your DBA team relies heavily on a third-party

graphical tool for interrogating execution plans, does this need to be installed locally on

the server? Is there an alternative tool that would meet their needs? From a Windows

operations perspective, does the team have the tools in place for remotely monitoring

and managing the server? Are there any third-party tools they rely on that would need to

be replaced?

You should also consider if your operations team has the skill set to manage systems

using predominantly command-line processes. If it does not, then you should consider

what training or upskilling may be required.

 Hardware Considerations
When you are planning the hardware requirements for your server, ideally, you

will implement a full capacity planning exercise so you can estimate the hardware

requirements of the application(s) that the server will support. When conducting this

exercise, make sure you take your company’s standard hardware lifecycle into account,

rather than planning just for today. Depending on your organization, this could be

between 1 and 5 years, but will generally be 3 years.

This is important in order to avoid undersizing or oversizing your server. Project

teams will generally want to oversize their servers in order to ensure performance.

Not only is this approach costly when scaled through the enterprise, but in some

ChAPTER 1 PLANNiNG ThE DEPLoyMENT

7

environments, it can actually have a detrimental effect on performance. An example

of this would be a private cloud infrastructure with shared resources. In this scenario,

oversizing servers can have a negative impact on the entire environment, including the

oversized server itself.

 Specifying Strategic Minimum Requirements
When specifying the minimum hardware requirements for SQL Server within your

environment, you may choose to specify the minimum requirements for installing SQL

Server—4GB RAM and a single 2GHz CPU (based on Enterprise edition). However, you

may be better served to think about operational supportability within your enterprise.

For example, if your environment consists predominantly of a private cloud

infrastructure, then you may wish to specify a minimum of 2 vCores and 4GB RAM +

(number of cores ∗ 1GB) since this may be in line with your enterprise standards.

On the other hand, if you have a highly dispersed enterprise, which has grown

organically, and you wish to help persuade projects to use a shared SQL Server farm,

you may choose to enforce much higher minimum specifications, such as 32GB RAM

and 2 sockets/4 cores. The reasoning here is that any projects without large throughput

requirements would be “forced” to use your shared farm to avoid the heavy costs

associated with an unnecessarily large system.

 Storage
Storage is a very important consideration for any SQL Server installation. The following

sections will discuss locally attached storage and SAN (storage area network) storage, as

well as considerations for file placement.

 Locally Attached Storage

If your server will use locally attached storage, then you should carefully consider file

layout. By its very nature, SQL Server is often input/output (IO) bound, and therefore,

configuring the IO subsystem is one of the critical aspects for performance. You first

need to separate your user databases’ data files and log files onto separate disks or arrays

and also to separate TempDB, which is the most heavily used system database. If all of

these files reside on a single volume, then you are likely to experience disk contention

while SQL Server attempts to write to all of them at the same time.

ChAPTER 1 PLANNiNG ThE DEPLoyMENT

8

Typically, locally attached storage will be presented to your server as RAID

(redundant array of inexpensive disks) arrays and various RAID levels are available.

There are many RAID levels available, but the most common are outlined in the

following sections, together with their advantages and disadvantages. Hopefully, this

will help you select the most appropriate RAID level, with the most appropriate balance

between performance and fault tolerance.

RAID 0

A RAID 0 volume consists of between two and n spindles, and the data bits are striped

across all of the disks within the array. This provides excellent performance; however, it

provides no fault tolerance. The loss of any disk within the array means that the whole

array will fail. This is illustrated in Figure 1-1.

Figure 1-1. The RAID 0 array provides no redundancy

Caution Because RAiD 0 provides no redundancy, it should not be used for
production systems.

ChAPTER 1 PLANNiNG ThE DEPLoyMENT

9

RAID 1

A RAID 1 volume will consist of two spindles, working together as a mirrored pair. This

provides redundancy in the event of failure of one of the spindles, but it comes at the

expense of write performance, because every write to the volume needs to be made

twice. This method of redundancy is illustrated in Figure 1-2.

Figure 1-2. RAID 1 provides redundancy by mirroring the disk

Note The formula for calculating the total ioPS (input/output per second) against
a RAiD 1 array is as follows: ioPS = Reads + (Writes * 2).

ChAPTER 1 PLANNiNG ThE DEPLoyMENT

10

RAID 5

A RAID 5 volume will consist of between three and n spindles and provides redundancy

of exactly one disk within the array. Because the blocks of data are striped across multiple

spindles, read performance of the volume will be very good, but again, this is at the

expense of write performance. Write performance is impaired because redundancy is

achieved by distributing parity bits across all spindles in the array. This means that there is

a performance penalty of four writes for every one write to the volume. This is regardless of

the number of disks in the array. The reason for this arbitrary penalty is because the parity

bits are striped in the same way the data is. The controller will read the original data and

the original parity and then write the new data and the new parity, without needing to read

all of the other disks in the array. This method of redundancy is illustrated in Figure 1-3.

It is worthy of note, however, that should a spindle within the array fail, performance

will be noticeably impaired. It is also worthy of note that rebuilding a disk from the parity

bits contained on its peers can take an extended amount of time, especially for a disk

with a large capacity.

ChAPTER 1 PLANNiNG ThE DEPLoyMENT

11

Note The formula for calculating total ioPS against a RAiD 5 array is as follows:
ioPS = Read + (Writes * 4). To calculate the expected ioPS per spindle, you can
divide this value for ioPS by the number of disks in the array. This can help you
calculate the minimum number of disks that should be in the array to achieve your
performance goals.

Figure 1-3. RAID 5 provides redundancy through parity bits

ChAPTER 1 PLANNiNG ThE DEPLoyMENT

12

RAID 10

A RAID 10 volume will consist of four to n disks, but it will always be an even number. It

provides the best combination of redundancy and performance. It works by creating a

stripe of mirrors. The bits are striped, without parity, across half of the disks within the

array, as they are for RAID 0, but they are then mirrored to the other half of the disks in

the array.

This is known as a nested or hybrid RAID level, and it means that half of the disks

within the array can be lost, providing that none of the failed disks are within the same

mirrored pair. This is illustrated in Figure 1-4.

Figure 1-4. RAID 10 provides redundancy by mirroring each disk within the stripe

ChAPTER 1 PLANNiNG ThE DEPLoyMENT

13

Note The formula for calculating total ioPS against a RAiD 10 array is as follows:
ioPS = Read + (Writes * 2). in the same way as for RAiD 5, in order to calculate
the expected ioPS per spindle, you can divide the value for ioPS by the number of
disks in the array. This can help you calculate the minimum number of disks that
should be in the array to achieve your performance goals.

 File Placement

It is generally accepted that RAID 0 should not be used for any SQL Server files. I have

known people to suggest that RAID 0 may be acceptable for TempDB files. The rationale

here is that a heavily used TempDB often requires very fast performance, and because

it is re-created every time the instance restarts, it does not require redundancy. This

sounds perfectly reasonable, but if you think in terms of uptime, you may realize why I

disagree with this opinion.

Your SQL Server instance requires TempDB in order to function. If you lose TempDB,

then your instance will go down, and if TempDB cannot be re-created, then you will not

be able to bring your instance back up. Therefore, if you host TempDB on a RAID 0 array

and one of the disks within that array fails, you will not be able to bring the instance back

up until you have performed one of the following actions:

 1. Wait for the storage team to bring the RAID 0 array back online.

 2. Start the instance in “minimal configuration mode” and use

SQLCMD to change the location of TempDB.

By the time either of these steps is complete, you may find that stakeholders are

jumping up and down, so you may find it best to avoid this option. For this reason,

TempDB is generally best placed on a RAID 10 array, whenever possible. This

will provide the best level of performance for the database, and because its size is

significantly smaller than the user database files, you do not have the same level of cost

implication.

In an ideal world, where money is no object, the data files of your user databases

will be stored on RAID 10 arrays, since RAID 10 provides the best combination of

redundancy and performance. In the real world, however, if the applications you are

supporting are not mission critical, this may not be justifiable. If this is the situation,

then RAID 5 can be a good choice, as long as your applications have a fairly high ratio of

ChAPTER 1 PLANNiNG ThE DEPLoyMENT

14

reads to writes. I would normally use a ratio of three to one in favor of reads as being a

good baseline, but of course, it can vary in every scenario.

If your databases are only using basic features of SQL Server, then you will likely find

that RAID 1 is a good choice for your log files. RAID 5 is not generally suitable, because of

the write-intensive nature of the transaction log. In some cases, I have even known RAID

1 to perform better than RAID 10 for the transaction log. This is because of the sequential

nature of the write activity.

However, some features of SQL Server can generate substantial read activity from the

transaction log. If this is the case, then you may find that RAID 10 is a requirement for

your transaction log as well as your data files. Features that cause transaction log reads

include the following:

• AlwaysOn Availability Groups

• Database mirroring

• Snapshot creation

• Backups

• DBCC CHECKDB

• Change data capture

• Log shipping (both backups, and also if restoring logs WITH STANDBY)

 Solid-State Drives (SSDs)

One common reason to use locally attached storage, as opposed to a storage area

network (SAN), is to optimize the performance of SQL Server components, which

require extremely fast IO. These components include TempDB and buffer cache

extensions. It is not uncommon to find that a database’s data and log files are stored on a

SAN, but TempDB and buffer cache extensions are stored on locally attached storage.

In this example, it would make good sense to use SSDs in the locally attached array.

Solid-state drives (SSDs) can offer very high IO rates, but at a higher cost, compared

to traditional disks. SSDs are also not a “magic bullet.” Although they offer a very high

number of IOPS for random disk access, they can be less efficient for sequential scan

activities, which are common in certain database workload profiles, such as data

warehouses. SSDs are also prone to sudden failure, as opposed to the gradual decline

of a traditional disk. Therefore, having a fault-tolerant RAID level and hot spares in the

array is a very good idea.

ChAPTER 1 PLANNiNG ThE DEPLoyMENT

15

 Working with a SAN

Storage area network are three words that can strike fear into the heart of a database

administrator (DBA). The modern DBA must embrace concepts such as SAN and

virtualization; however, although they pose fundamental change, they also ease the

overall manageability of the estate and reduce the total cost of ownership (TCO).

The most important thing for a DBA to remember about a SAN is that it changes

the fundamental principles of the IO subsystem, and DBAs must change their thinking

accordingly. For example, in the world of locally attached storage, the most fundamental

principle is to separate your data files, log files, and TempDB and to ensure that they are

all hosted on the most appropriate RAID level.

In the world of the SAN, however, you may initially be alarmed to find that your SAN

administrators do not offer a choice of RAID level, and if they do, they may not offer

RAID 10. If you find this to be the case, it is likely because the SAN is, behind the scenes,

actually stripping the data across every disk in the array. This means that although the

RAID level can still have some impact on throughput, the more important consideration

is which storage tier to choose.

Many organizations choose to tier the storage on their SAN, offering three or more

tiers. Tier 1 will be the highest tier and may well consist of a combination of SSDs and

small, highly performing Fiber Channel drives. Tier 2 will normally consist of larger

drives—potentially SATA (serial advanced technology attachment)—and Tier 3 will often

use near-line storage. Near-line storage consists of a large number of inexpensive disks,

such as SATA disks, which are usually stopped. The disks only spin up when there is a

requirement to access the data that they contain. As you have probably guessed, you

will want to ensure that any applications that require good performance will need to be

located on Tier 1 of your SAN. Tier 2 could possibly be an option for small, rarely used

databases with little or no concurrency, and Tier 3 should rarely, if ever, be used to store

SQL Server databases or logs.

Your real throughput will be determined by these factors, but also many others, such

as the number of network paths between your server and the SAN, how many servers are

concurrently accessing the SAN, and so on. Another interesting quirk of a SAN is that you

will often find that your write performance is far superior to your read performance. This

is because some SANs use a battery-backed write cache, but when reading, they need to

retrieve the data from the spindles.

ChAPTER 1 PLANNiNG ThE DEPLoyMENT

16

Next, consider that because all of your data may well be striped across all of the

spindles in the array—and even if it isn’t, the likelihood is that all files on a single server

will probably all reside on the same CPG (Common Provisioning Group)—you should

not expect to see an instant performance improvement from separating your data, log,

and TempDB files. Many DBAs, however, still choose to place their data, log, and TempDB

files on separate volumes for logical separation and consistency with other servers that

use locally attached storage. In some cases, however, if you are using SAN snapshots or

SAN replication for redundancy, you may be required to have the data and log files of a

database on the same volume. You should check this with your storage team.

 Disk Block Size

Another thing to consider for disk configuration, whether it is locally attached or on a

SAN, is the disk block size. Depending on your storage, it is likely that the default NTFS

(New Technology File System) allocation unit size will be set to 4KB. The issue is that

SQL Server organizes data into eight continuous 8KB pages, known as an extent. To get

optimum performance for SQL Server, the block sizes of the volumes hosting data, logs,

and TempDB should be aligned with this and set to 64KB.

You can check the disk block size by running the Windows PowerShell script in

Listing 1-1, which uses fsutil to gather the NTFS properties of the volume. The script

assumes that f: is the volume whose block size you wish to determine. Be sure to

change this to the drive letter that you wish to check. Also ensure that the script is run as

Administrator.

Listing 1-1. Determine Disk Block Size

Populate the drive letter you want to check

$drive = "f:"

Initialize outputarray

$outputarray = new-object PSObject

$outputarray | add-member NoteProperty Drive $drive

Initialize output

$output = (fsutil fsinfo ntfsinfo $drive)

ChAPTER 1 PLANNiNG ThE DEPLoyMENT

17

Split each line of fsutil into a seperate array value

foreach ($line in $output) {

 $info = $line.split(':')

 $outputarray | add-member NoteProperty $info[0].trim().Replace(' ','_')

$info[1].trim()

 $info = $null

}

Format and display results

$results = 'Disk Block Size for ' + $drive + ' ' + $outputarray.Bytes_Per_

Cluster/1024 + 'KB'

$results

 Operating Systems Considerations
SQL Server has support for many operating systems, including many versions of

Windows. It is unlikely, however, that you will want to allow SQL Server to be installed

on any version of any operating system that is supported. For example, within your

Windows estate, it is advisable to align a version of SQL Server with a specific version of

Windows. This gives you two benefits.

First, it drastically reduces the amount of testing that you need to perform to sign

off your build. For example, imagine that you decide you will only allow Enterprise

edition within your environment. In theory, you would still need to gain operational

sign-off on more than a dozen versions of Windows. In contrast, if you allow both SQL

Server Enterprise and Standard editions of SQL Server, but you align both editions with

Windows Server 2019 Standard edition, then you would only require sign-off once for

each of your supported editions of SQL Server.

The second benefit is related to end-of-life cycle (EOL) for your platforms. If you

allow SQL Server 2017 to be installed on Windows Server 2012, the end of mainstream

support for Windows is January 2015, as opposed to July 2021 for SQL. At best, this will

cause complexity and outage while you upgrade Windows, and at worst, it could lead to

extended support costs that you could have avoided.

ChAPTER 1 PLANNiNG ThE DEPLoyMENT

18

 Configuring the Operating System
Does your Windows administration team have a “gold build” for Windows Server 2019?

Even if they do, is it optimized for SQL Server? Unless they have produced a separate

build just for the purposes of hosting SQL Server, then the chances are that it will not

be. The exact customizations that you will need to make are dependent on how the

Windows build is configured, your environmental requirements, and the requirements

of the data-tier application that your server will be hosting. The following sections

highlight some of the changes that are often required.

Note A gold build is a predefined template for the operating system that
can be easily installed on new servers to reduce deployment time and enforce
consistency.

 Setting the Power Plan
It is important that you set your server to use the High Performance power plan. This is

because if the Balanced power plan is used, then your CPU may be throttled back during

a period of inactivity. When activity on the server kicks in again, you may experience a

performance issue.

You can set the power plan through the Windows GUI by opening the Power

Options console in Control Panel and selecting the High Performance or you can use

PowerShell/the command line. Listing 1-2 illustrates this by passing in the GUID of the

High Performance power plan as a value for the -setactive parameter of the powercfg

executable.

Listing 1-2. Set High Performance Power Plan with PowerShell

powercfg -setactive 8c5e7fda-e8bf-4a96-9a85-a6e23a8c635c

 Optimizing for Background Services
It is good practice to ensure that your server is configured to prioritize background

services over foreground applications. In practice, this means that Windows will adapt its

ChAPTER 1 PLANNiNG ThE DEPLoyMENT

19

context switching algorithm to allow background services, including those used by SQL

Server, to have more time on the processor than foreground applications have.

To ensure that Optimize for Background Service is turned on, enter the System

console in Control Panel and choose Advanced System Settings. In the System Properties

dialog box, select Settings within the Performance section.

Optimizing for background services can also be set by using PowerShell. Listing 1-3

demonstrates using the set-property command to update the Win32PrioritySeperation

key in the Registry. The script must be run as Administrator.

Listing 1-3. Setting Optimize for Background Services with Powershell

Set-ItemProperty -path HKLM:\SYSTEM\CurrentControlSet\Control\

PriorityControl -name Win32PrioritySeparation -Type DWORD -Value 24

 Assigning User Rights
Depending on the features of SQL Server that you wish to use, you may need to grant

the service account that will be running the SQL Server service user rights assignments.

These assignments allow security principles to perform tasks on a computer. In the case

of the SQL Server service account, they provide the permissions for enabling some SQL

Server functionality where that functionality interacts with the operating system. The

three most common user rights assignments, which are not automatically granted to the

service account during installation, are discussed in the following pages.

 Initializing the Instant File

By default, when you create or expand a file, the file is filled with 0s. This is a process

known as “zeroing out” the file, and it overwrites any data that previously occupied the

same disk space. The issue with this is that it can take some time, especially for large files.

It is possible to override this behavior, however, so that the files are not zeroed out.

This introduces a very small security risk, in the respect that the data that previously

existed within that disk location could still theoretically be discovered, but this risk is so

small that it is generally thought to be far outweighed by the performance benefits.

In order to use instant file initialization, the Perform Volume Maintenance Tasks

User Rights Assignment must be granted to the service account that is running the SQL

Server Database Engine. Once this has been granted, SQL Server will automatically use

instant file initialization. No other configuration is required.

ChAPTER 1 PLANNiNG ThE DEPLoyMENT

20

To grant the assignment through Windows GUI, open the Local Security Policy from

Control Panel ➤ System and Security ➤ Administrative Tools, before drilling through

Local Policies ➤ User Rights Assignment. This will display a full list of assignments.

Scroll down until you find Perform Volume Maintenance Tasks. This is illustrated in

Figure 1-5.

Figure 1-5. Local Security Policy

Right-clicking the assignment and entering its properties will allow you to add your

service account.

 Locking Pages in Memory

If Windows is experiencing memory pressure, it will attempt to page data from RAM into

virtual memory on disk. This can cause an issue within SQL Server. In order to provide

acceptable performance, SQL Server caches recently used data pages in the buffer cache,

ChAPTER 1 PLANNiNG ThE DEPLoyMENT

21

which is an area of memory reserved by the Database Engine. In fact, all data pages

are read from the buffer cache, even if they need to be read from disk first. If Windows

decides to move pages from the buffer cache out to disk, the performance of your

instance will be severely impaired.

In order to avoid this occurrence, it is possible to lock the pages of the buffer cache in

memory, as long as you are using the Enterprise or Standard edition of SQL Server 2019.

To do this, you simply need to grant the service account that is running the Database

Engine the Lock Pages in Memory assignment using the same method as for Perform

Volume Maintenance Tasks.

Caution if you are installing SQL Server on a virtual machine, depending on the
configuration of your virtual platform, you may not be able to set Lock Pages in
Memory, because it may interfere with the balloon driver. The balloon driver is used
by the virtualization platform to reclaim memory from the guest operating system.
you should discuss this with your virtual platform administrator.

 SQL Audit to the Event Log

If you are planning to use SQL Audit to capture activity within your instance, you will

have the option of saving the generated events to a file, to the security log, or to the

application log. The security log will be the most appropriate location if your enterprise

has high security requirements.

In order to allow generated events to be written to the security log, the service

account that runs the Database Engine must be granted the Generate Security Audits

User Rights Assignment. This can be achieved through the Local Security Policy console.

An additional step, in order for SQL Server to be able to write audit events to

the security log, is to configure the Audit Application Generated setting. This can be

located in the Local Security Policy console, by drilling through Advanced Audit Policy

Configuration ➤ System Audit Policies ➤ Object Access. The properties of the Audit

Application Generated event can then be modified as illustrated in Figure 1-6.

ChAPTER 1 PLANNiNG ThE DEPLoyMENT

22

Caution you need to ensure that your policies are not overridden by policies
implemented at the GPo level. if this is the case, you should ask your AD (Active
Directory) administrator to move your servers into a separate oU (organizational
Unit) with a less restrictive policy.

 Selecting Features
When installing SQL Server, it may be tempting to install every feature in case you need

it at some point. For the performance, manageability, and security of your environment,

however, you should always adhere to the YAGNI (you aren’t going to need it) principle.

The YAGNI principle derives from extreme programming methodology, but it also holds

true for the platform. The premise is that you do the simplest thing that will work. This

will save you from issues related to complexity. Remember that additional features can

be installed later. The following sections provide an overview of the main features you

can select during an installation of SQL Server 2019 Enterprise edition.

Figure 1-6. Audit Application Generated Properties

ChAPTER 1 PLANNiNG ThE DEPLoyMENT

23

 Database Engine Service
The Database Engine is the core service within the SQL Server suite. It contains

the SQLOS (the part of the database engine responsible for tasks such as memory

management, scheduling, lock and deadlock management), the Storage Engine, and the

Relational Engine, as illustrated in Figure 1-7. It is responsible for securing, processing,

and optimizing access to relational data. It also contains replication components, in-

database machine learning services, full-text and semantic extractions for search, the

Polybase query service, and the DQS Server features, which can be selected optionally.

Replication is a set of tools that allows you to disperse data. In-database machine

learning services provide Python and R integration; semantic extractions allow you to

use full text to search for the meaning of words rather than just keywords themselves.

Polybase query service allows you to run T-SQL against Hadoop data sources. DQS

Server is a tool that allows you to easily find and cleanse inconsistent data. This book

focuses primarily on core Database Engine functionality.

Figure 1-7. Database Engine architecture

ChAPTER 1 PLANNiNG ThE DEPLoyMENT

24

 Analysis Services
SSAS (SQL Server Analysis Services) is a set of tools that can be harnessed for the

analytical processing and data mining of data. It can be installed in one of three modes:

• Multidimensional and data mining

• Tabular

• PowerPivot for SharePoint

Multidimensional and data mining mode will provide the capability to host

multidimensional cubes. Cubes offer the ability to store aggregated data, known as

measures, that can be sliced and diced across multiple dimensions, and provide the basis

of responsive, intuitive, and complex reports and pivot tables. Developers can query the

cubes by using the multidimensional expressions (MDX) language.

Tabular mode gives users the ability to host data in Microsoft’s BI semantic model.

This model uses xVelocity to provide in-memory analytics, offering integration between

relational and nonrelational data sources, and provides KPIs (key performance

indicators), calculations, and multilevel hierarchies. Instead of using dimensions and

measures, the tabular model uses tables, columns, and relationships.

PowerPivot is an extension for Excel, which, like the tabular model, uses xVelocity

to perform in-memory analytics and can be used for data sets up to 2GB in size. The

PowerPivot for SharePoint installation expands on this by running Analysis Services

in SharePoint mode, and it offers both server-side processing and browser-based

interaction with PowerPivot workbooks; it also supports Power View reports and Excel

workbooks through SharePoint Excel Services.

 Machine Learning Server
The Machine Learning Server is a service which provides support for the R and Python

languages. It also provides a combination of R packages, Python packages, interpreters,

and infrastructure, providing the ability to create both data science and machine

learning solutions. These solutions can then import, explore, and analyze heterogeneous

data sets.

ChAPTER 1 PLANNiNG ThE DEPLoyMENT

25

 Data Quality Client
The Data Quality Server is installed as an optional component of the Database Engine, as

mentioned earlier. The Data Quality Client, however, can be installed as a shared feature.

A shared feature is installed only once on a server and is shared by all instances of SQL

Server on that machine. The Client is a GUI that allows you to administer DQS as well as

perform data-matching and data-cleansing activities.

 Client Connectivity Tools
Client Connectivity Tools is a set of components for client/server communication. This

includes the OLEDB, ODBC, ADODB, and OLAP network libraries.

 Integration Services
Integration Services is a very powerful, graphical ETL (extract, transform, and load)

tool provided with SQL Server. From SQL Server 2012 onward, Integration Services is

incorporated into the Database Engine. Despite this, the Integration Services option still

needs to be installed for the functionality to work correctly, because it includes binaries

that the functionality relies on.

Integration Services packages comprise a control flow, which is responsible for

management and flow operations, including bulk inserts, loops, and transactions. The

control flow also contains zero or more data flows. A data flow is a set of data sources,

transformations, and destinations, which provides a powerful framework for merging,

dispersing, and transforming data.

Integration Services can be horizontally scaled out across multiple servers, with a

master and n workers. Therefore, in recent versions of SQL Server, you have the option to

install classic, stand-alone Integration Services or install a scale out master, or scale out

worker, on the server.

 Client Tools Backward Compatibility
Client Tools Backward Compatibility provides support for discontinued features of SQL

Server. Installing this feature will install SQL Distributed Management Objects and

Decision Support Objects.

ChAPTER 1 PLANNiNG ThE DEPLoyMENT

26

 Client Tools SDK
Installing the Client Tools SDK provides the SMO (Server Management Objects)

assemblies. This allows you to programmatically control SQL Server and Integration

Services from within .NET applications.

 Distributed Replay Controller
Distributed Replay is a feature that allows you to capture a trace and then replay it on

another server. This allows you to test the impact of performance tuning or software

upgrades. If this sounds familiar to functionality in Profiler that you may be used to, then

you are correct, there is some overlap. Distributed Replay has the following advantages,

however:

 1. Distributed Replay has a lower impact on resources than Profiler,

meaning that the servers you are tracing run less risk of suffering

performance issues while the trace is running.

 2. Distributed Replay allows you to capture workloads from multiple

servers (clients) and replay them on a single host.

Within a Distributed Replay topology, you need to configure one server as the

controller. It is the controller that will orchestrate the work against the client(s) and the

target server.

 Distributed Replay Client
As described earlier, multiple client servers can work together to create a workload to be

replayed against the target server. The Distributed Replay Client should be installed on

any servers that you wish to capture traces from using Distributed Replay.

 SQL Client Connectivity SDK
The Client Connectivity SDK provides a SDK for SQL Native Client to support application

development. It also provides other interfaces, such as support for stack tracing in client

applications.

ChAPTER 1 PLANNiNG ThE DEPLoyMENT

27

 Master Data Services
Master Data Services is a tool for managing master data within the enterprise. It allows

you to model data domains that map to business entities, and it helps you manage these

with hierarchies, business rules, and data versioning. When you select this feature,

several components are installed:

• A web console to provide administrative capability

• A configuration tool to allow you to configure your MDM databases

and the web console

• A web service, which provides extensibility for developers

• An Excel add-in, for creating new entities and attributes

Caution in SQL Server 2016 and above, management tools are not included
with the SQL Server installation media. instead, to install them, you can use the
install SQL Server Management Tools link, on the installation page of the SQL
Server installation Center. Reporting Services (SSRS) is also not included with
the installation media, in SQL Server 2019. This can be installed using the install
SQL Server Reporting Services link, in the installation page of the SQL Server
installation Center.

 Summary
Planning a deployment can be a complicated task that involves discussions with

business and technical stakeholders to ensure that your platform will meet the

application requirements and ultimately the business needs. There are many factors that

you should take into account.

Make sure you consider which is the appropriate version of SQL Server to install and

the associated licensing considerations for that version. You should consider the holistic

supportability of the estate when making this decision and not just the needs of the

specific application. You should also consider if an Azure hosting option may be right for

your application, or potentially even a hybrid approach, involving both on-premise and

cloud hosting.

ChAPTER 1 PLANNiNG ThE DEPLoyMENT

28

When planning a deployment, make sure to carry out thorough capacity planning.

Also think about the hardware requirements of the application. How much RAM and

how many processor cores you will need are important considerations, but perhaps the

main consideration is storage. SQL Server is usually an IO-bound application, so storage

can often prove to be the bottleneck.

You should also consider requirements for the operating system. This should not be

limited to the most appropriate version of Windows, but also to the configuration of the

operating system. Just because there is a Windows gold build available, does this mean

that it is configured optimally for your SQL Server installation?

Finally, consider which features you should select to install. Most applications

require only a small subset of features, and by carefully selecting which features you

require, you can reduce the security footprint of the installation and also reduce

management overheads.

ChAPTER 1 PLANNiNG ThE DEPLoyMENT

29
© Peter A. Carter 2019
P. A. Carter, Pro SQL Server 2019 Administration, https://doi.org/10.1007/978-1-4842-5089-1_2

CHAPTER 2

GUI Installation
You can invoke SQL Server’s Installation Center by running SQL Server’s setup.exe

application. The Installation Center provides many utilities that will help you install an

instance; these include links and tools to assist you with planning your deployment,

stand-alone and clustered installation capability, and advanced tools, which will allow

you to build instances using configuration files or based upon prepared images.

This chapter will provide an overview of the options available to you in the

Installation Center before guiding you through the process of installing SQL Server using

the graphical user interface (GUI). It will also offer real-world advice on decisions that

are critical to the ongoing supportability of your instance.

 Installation Center
The SQL Server Installation Center is a one-stop shop for all activity that relates to

planning, installing, and upgrading a SQL Server instance. It is the application that you

are greeted with when you run the SQL Server installation media. Installation Center

consists of seven tabs, and the following sections will describe the content of those tabs.

 The Planning Tab
The Planning tab is illustrated in Figure 2-1 and consists of numerous links to MSDN

(Microsoft Developer Network) pages, which provide you with important documentation

on SQL Server, such as a complete set of hardware and software requirements and

documentation for SQL Server’s security model.

30

In addition to accessing documentation with the links provided, you can also access

two tools. The first of these is the System Configuration Checker. This tool runs during

the installation process to determine if there are any conditions that will prevent SQL

Server from being installed. These checks include ensuring that the server is not already

configured as a domain controller and checking that the WMI (Windows Management

Instrumentation) service is running. When you run this tool before you begin installing

SQL Server, it can prewarn you of any issues that may cause the installation to fail so that

you can fix them before you begin installation. The System Configuration Checker is also

available on the Tools tab on the Installation Center.

The second tool (or more accurately, a link to its download page) is the Data

Migration Assistant. This tool can be used to detect compatibility issues when

upgrading to SQL Server 2019, as well as recommending performance and reliability

enhancements.

Figure 2-1. The Planning tab

Chapter 2 GUI InstallatIon

31

 The Installation Tab
As illustrated in Figure 2-2, the Installation tab of the Installation Center contains the

tools that you will use for installing a new instance of SQL Server, adding new features

to an existing instance, or upgrading an instance from SQL Server 2005, 2008, or 2012.

In order to install a stand-alone instance of SQL Server, you would select the New SQL

Server Stand-Alone Instance Or Add New Features To An Existing Instance option.

Figure 2-2. The Installation tab

In addition to installing a stand-alone instance, adding new features to an instance,

and upgrading an existing instance to the latest version, there are also options on this

screen for installing a SQL Server failover clustered instance and for adding a new node

to an existing failover cluster. A failover cluster is a system where between 2 and 64

servers work together to provide redundancy and protect against a failure that stops one

or more of the servers from functioning. Each server that participates in the cluster is

known as a node.

Chapter 2 GUI InstallatIon

32

The SQL Server Database Engine and the SQL Server Analysis Services are both

“cluster-aware” applications, meaning that they can be installed on a Windows cluster

and can make use of its failover capabilities. When installed on a failover cluster,

databases and transaction logs are located on shared storage, which any node in the

cluster can use, but the binaries are installed locally on each of the nodes.

There are also links to the download pages of SQL Server component, which are

no longer included with the database media. These include SQL Server Data Tools,

which is a studio for T-SQL and BI development, SQL Server Management Studio—an

administration and development interface for SQL Server and SQL Server Reporting

Services, which will allow the server to host and distribute reports.

Finally, this page contains the option to install a stand-alone instance of Machine

Learning Server. This does not require a SQL Server instance to be installed and provides

support for the R and Python languages. It also provides a combination of R packages,

Python packages, interpreters, and infrastructure—providing the ability to create both

data science and machine learning solutions. These solutions can then import, explore,

and analyze heterogeneous data sets.

 The Maintenance Tab
The Maintenance tab contains tools for performing an edition upgrade, repairing a

corrupt instance, and removing a node from a cluster; it also contains a link to run

Windows Update, as illustrated in Figure 2-3.

Chapter 2 GUI InstallatIon

33

You can use the Edition Upgrade option to upgrade an existing SQL Server 2019

instance from one edition to another; so, for example, you may wish to upgrade an

instance installed as Developer edition to Enterprise edition.

You can use the Repair option to attempt to resolve issues with a corrupt installation

of SQL Server. For example, you can use this tool if the Registry entries or binaries are

corrupt, preventing the instance from starting.

Tip this repair option won’t help if the Master database is corrupt and
preventing the instance from starting. In this instance, you should use setup.
exe from the command line, or powershell, with the ACTION parameter set to
REBUILDDATABASE.

Use the Remove Node From A SQL Server Failover Cluster option to remove SQL

Server from a node within a failover cluster. You can use this option as part of the process

for evicting a node. Unfortunately, the Installation Center has no functionality for

uninstalling an instance. You must do this through the Control Panel.

Figure 2-3. The Maintenance tab

Chapter 2 GUI InstallatIon

34

Not surprisingly, you can use the Launch Windows Update To Search For Product

Updates option to launch Windows Update. You can then choose to install the updates

and fixes that are available for SQL Server.

 The Tools Tab
The Tools tab contains a selection of tools that will assist you in installing SQL Server,

as illustrated in Figure 2-4. This includes the System Configuration Checker, which I

introduced earlier in this chapter; a discovery tool for SQL Server components already

installed on the local server and the Microsoft Assessment and Planning (MAP) tool.

Figure 2-4. The Tools tab

Chapter 2 GUI InstallatIon

35

Choose the Installed SQL Server Features Discovery Report option to analyze the

local server and return a list of all SQL Server features and components that are installed.

This will include features from all versions, from SQL Server 2005 on.

The Microsoft Assessment And Planning (MAP) Toolkit For SQL Server option will

provide you with a link from which you can download the MAP for SQL Server tool.

When you run this tool, it will perform a network-wide search for SQL Server, Oracle,

and MySQL installations. It will produce a detailed report, which, for SQL Server, will

include the name, version, and edition of the component. For Oracle, it will include the

size and usage of each schema, including complexity estimates for migration. You can

also use this tool to plan migration and consolidation strategies and to audit license

requirements across the enterprise.

 The Resources Tab
As illustrated in Figure 2-5, the Resources tab contains links to useful information

regarding SQL Server. This includes a link to SQL Server Books Online, the Developer

Center, and the SQL Server product evaluation site. Additionally, on this tab, you

will also find links to Microsoft’s privacy statement and the full SQL Server license

agreement. Another very useful link is one that directs you to the CodePlex samples site.

From this site, you can download the WideWorldImporters databases, which will aid you

in testing features of SQL Server with a precreated database.

Chapter 2 GUI InstallatIon

36

 The Advanced Tab
On the Advanced tab, illustrated in Figure 2-6, you will find tools for performing advanced

installations of SQL Server, both as a stand-alone instance and also as a cluster. These tools

include Install Based On Configuration File, Advanced Cluster Preparation, Advanced

Cluster Completion, Image Preparation Of A Stand-Alone Instance Of SQL Server, and

Image Completion Of A Stand-Alone Instance Of SQL Server.

Figure 2-5. The Resources tab

Chapter 2 GUI InstallatIon

37

When you are installing SQL Server, a configuration file will automatically be

created. It is also possible to create this configuration file manually. You can then

use this configuration file to install other instances of SQL Server with an identical

configuration. This can be useful for promoting consistency across the enterprise.

Once this configuration file has been created, you can use the Install Based On

Configuration File option to install further instances based on the precreated

configuration. Configuration files can also be useful for command-line installs, which

will be discussed in Chapter 3. Additionally, you can also use a configuration file for

cluster preparation.

Figure 2-6. The Advanced tab

Chapter 2 GUI InstallatIon

38

If you wish to use a configuration file for cluster preparation, then instead of

choosing to install the cluster via the New SQL Server Failover Cluster Installation

and Add Node To A SQL Server Failover Cluster wizards, which are available on the

Installation tab, you should choose the Advanced Cluster Preparation option on the

Advanced tab. You will initially run this on one of the cluster nodes that can be a

possible owner of the SQL Server instance, and a configuration file will be generated.

Subsequently running the Advanced Cluster Preparation wizard on all other nodes

of the cluster that can be possible owners will result in the configuration file being

used to ensure consistency of installation across the cluster. This approach will even

work for multi-subnet clusters (also known as geoclusters), since SQL Server will

automatically detect the relationship between the subnets and you will be prompted

to select an IP address for each subnet. The installation will then add each of the IP

addresses as dependencies to the cluster role, using the OR constraint, where each

node cannot be the possible owner of every IP address. Alternatively, it will use the

AND constraint, where each node can be the possible owner of every IP address.

Once you have run the Advanced Cluster Preparation wizard on every node that is a

possible owner of the clustered instance, you can run the Advanced Cluster Completion

wizard. You only have to run this wizard once, and you can run it on any of the nodes

that are possible owners. After this wizard has completed successfully, the clustered

instance will be fully functioning.

The Image Preparation Of A Stand-Alone Instance Of SQL Server option will use

Sysprep for SQL Server to install a vanilla instance of SQL Server, which is not configured

with account-, computer-, or network-specific information. It can be used in conjunction

with Windows Sysprep to build a complete template of Windows with prepared SQL

Server instances, which can then be used for deployments across the enterprise. This

helps enforce consistency. In SQL Server 2019, all features of a stand-alone instance are

supported by Sysprep; however, repairing an installation is not supported. This means

that if an installation fails during either the prepare phase or the complete phase of the

process, the instance must be uninstalled.

To finish the installation of a prepared image, you can use the Image Completion

Of A Prepared Stand-Alone Instance Of SQL Server option. This option will allow you to

complete the configuration of the instance by inputting the account-, computer-, and

network-specific information.

Chapter 2 GUI InstallatIon

39

 The Options Tab
As illustrated in Figure 2-7, the Options tab of the SQL Server Installation Center displays

the processor architecture that you can use to install SQL Server, based on the processor

type in your server. It also allows you to specify a path to the installation media. This can

be useful if you have a copy of the media stored locally on the server.

Figure 2-7. The Options tab

 Installing a Stand-Alone Database Engine Instance
As discussed in the preceding section, an instance of SQL Server can be installed in

various ways, including via the command line, by using Sysprep with an advanced

Chapter 2 GUI InstallatIon

40

installation using a configuration file, or by using the New SQL Server Stand-Alone

Installation Or Add Features To An Existing Installation option on the Installation

tab. It is the last of these options that we will use to install SQL Server in the following

demonstration. In the following sections, we will install a Database Engine instance

with features that will be examined in further detail throughout this book, including

FILESTREAM and Distributed Replay. We will also take an in-depth look at choosing the

correct collation and service account for the instance.

 Preparation Steps
When you choose to install a new instance of SQL Server, the first screen of the wizard

that you are presented with will prompt you to enter the product key for SQL Server, as

illustrated in Figure 2-8.

Figure 2-8. Product Key page

Chapter 2 GUI InstallatIon

41

If you do not enter a product key on this screen, you will only be able to install either

the Express edition of SQL Server, the Developer edition, or the Evaluation edition.

The Developer edition provides the same level of functionality as Enterprise, but is not

licensed for production use. The Evaluation edition has the same level of functionality as

the Enterprise edition, but it expires after 180 days.

The next screen of the wizard will ask you to read and accept the license terms

of SQL Server, as illustrated in Figure 2-9. A link provided on this screen will give you

further details of Microsoft’s privacy policy.

Figure 2-9. License Terms page

After you accept the license terms, SQL Server setup will run a rule check to ensure

that it can continue with the installation, as illustrated in Figure 2-10. This is the same

configuration check that you can run independently from the Planning tab of SQL Server

Installation Center, as discussed earlier in this chapter.

Chapter 2 GUI InstallatIon

42

Assuming that all checks pass successfully, the screen of the wizard illustrated

in Figure 2-11 will prompt you to choose if you want Microsoft Update to check for

SQL Server patches and hotfixes. The choice here will depend on your organization’s

patching policy. Some organizations implement a ridged patching regime for the testing

and acceptance of patches, followed by a patching cycle, which is often supported with

software such as WSUS (Windows Server Update Services). If such a regime exists in your

organization, then you should not select this option.

Note this screen will only appear if your server is not already configured to
receive product updates for sQl server.

Figure 2-10. Global Rules page

Chapter 2 GUI InstallatIon

43

The next screen of the wizard will attempt to scan for SQL Server updates to ensure

that you install the latest CUs (cumulative updates) and SPs (service packs) with your

installation. It will check the Microsoft Update service on the local server for these

updates and list any that are available. This is an extension of slipstream installation

functionality, which allows you to install updates at the same time as the installation of

the base binaries by specifying their location for setup, but it has now been deprecated.

The Product Updates page can also be configured to look for updates in local folders or

network locations. This functionality will be discussed in further detail in Chapter 3.

Note this screen will not appear if product updates are not found.

Figure 2-11. Microsoft Update page

Chapter 2 GUI InstallatIon

44

As setup moves to the next page of the wizard, which is illustrated in Figure 2-12,

the extraction and installation of the files required for SQL Server setup begins, and the

progress displays. This screen also displays the progress of the download and extraction

of any update packages that were found by Product Updates.

Figure 2-12. Install Setup Files page

As illustrated in Figure 2-13, the next screen of the wizard runs an installation rule

check and displays errors or warnings that you may need to address before installation

begins.

Chapter 2 GUI InstallatIon

45

In Figure 2-13, notice the warning being displayed for Windows Firewall. This will

not stop the installation from proceeding, but it does warn you that the server has

Windows Firewall switched on. By default, Windows Firewall is not configured to allow

SQL Server traffic, so rules must be created in order for client applications to be able to

communicate with the instance that you are installing. We will discuss SQL Server ports

and Firewall configuration in detail in Chapter 5.

Assuming no errors are discovered that need to be addressed before you continue,

the next page of the wizard will allow you to choose the feature that should be installed.

This is discussed in detail in the next section.

 The Feature Selection Page
The Feature Selection page of the setup wizard allows you to select the options that you

wish to install. An overview of each of the available options can be found in Chapter 1.

The Feature Selection page is illustrated in Figure 2-14.

Figure 2-13. Install Rules page

Chapter 2 GUI InstallatIon

46

We will select the following features, since they will be used for demonstrations and

discussions throughout this book.

• Database Engine Services

• SQL Server Replication

• Client Tools Connectivity

• Distributed Replay Controller

• Distributed Replay Client

Additionally, this page of the wizard requires you to specify folder locations for

the instance root directory and the shared features directory. You may want to move

these to a different drive in order to leave the C:\ drive for the operating system. You

may want to do this for space reasons or just to isolate the SQL Server binaries from

other applications. The instance root directory will typically contain a folder for each

Figure 2-14. Feature Selection page

Chapter 2 GUI InstallatIon

47

instance that you create on the server, and there will be separate folders for the Database

Engine, SSAS, and SSRS installations. A folder associated with the Database Engine

will be called MSSQL15.[InstanceName], where instance name is either the name of

your instance or MSSQLSERVER for a default instance. The number 15 in this folder

name relates to the version of SQL Server, which is 15 for SQL Server 2019. This folder

will contain a subfolder called MSSQL, which in turn will contain folders that will be

home to the files associated with your instance, including a folder called Binn, which

will contain the application files, application extensions, and XML configurations

associated with your instance; a folder called Backup, which will be the default location

for backups of databases; and a folder called Data, which will be the default location of

the system databases. The default folders for TempDB, user databases, and backups can

be modified later in the installation process, and splitting these databases into separate

volumes is a good practice in many environments, as discussed in Chapter 1. Other

folders will also be created here, including a folder called LOGS, which will be the default

location for the files for both the error logs and the default Extended Event health trace.

If you are installing SQL Server in a 64-bit environment, you will be asked to enter

folders for both 32- and 64-bit versions of the shared features directory. This is because

some SQL Server components are always installed as 32-bit processes. The 32- and

64-bit components cannot share a directory, so for installation to continue, you must

specify different folders for each of these options. The shared features directory becomes

a root level directory for features that are shared by all instances of SQL Server, such as

SDKs and management tools.

On the next page of the wizard, illustrated in Figure 2-15, an additional rule check

will be carried out to ensure that the features that you have selected can be installed.

Chapter 2 GUI InstallatIon

48

The rules that are checked will vary depending on the features that you have selected.

 The Instance Configuration Page
After successful completion of the rule check, the following screen of the wizard will

allow you to specify if you would like to install a default instance or a named instance, as

illustrated in Figure 2-16. The box in the lower half of the screen will give you details of

any other instances or shared features that are already installed on the server.

Figure 2-15. Feature Rules page

Chapter 2 GUI InstallatIon

49

The difference between a default instance and a named instance is that a default

instance takes the name of the server that it is installed on, whereas a named instance is

given an extended name. This has the obvious side effect that it is only possible to have

a single default instance of SQL Server on a server, but you can have multiple named

instances. With SQL Server 2019, up to 50 stand-alone instances can be hosted on a

single server. Naturally, these instances will share the server’s physical resources. For

failover clusters, this number stays the same if your data is hosted on an SMB file share,

but it reduces to 25 if you use a shared cluster disk for storage.

You are not required to install a default instance before installing a named instance.

It is a perfectly valid configuration to have only named instances on a server with no

default instance. Many DBA teams choose to only support named instances in their

environments so that they can enforce naming conventions that are meaningful at the

SQL Server layer, as opposed to relying on the naming conventions imposed by the

Figure 2-16. Instance Configuration page

Chapter 2 GUI InstallatIon

50

infrastructure teams who build the servers or VMs. The maximum length of an instance

name is 16 characters. By default, the InstanceID will be set to the instance name, or

MSSQLSERVER for a default instance. Although it is possible to change this ID, it is

bad practice to do so, because this ID is used to identify Registry keys and installation

directories.

 Selecting Service Accounts
The next screen of the wizard is separated into two tabs. The first tab will allow you to

specify service accounts for each of the SQL Server services, as illustrated in Figure 2-17,

and the second tab will allow you to specify the collation of your instance.

Figure 2-17. Service Accounts Configuration page

Chapter 2 GUI InstallatIon

51

SQL Server 2019 supports the use of local and domain accounts, built-in accounts,

virtual accounts, MSAs (managed service accounts), and gMSAs (group managed service

accounts) as the security context used to run a service. The service account model that

you choose is key to both the security and manageability of your environment.

Different organizations have different requirements for service account models,

and you may be constrained by compliance requirements and many other factors.

Essentially, the choice that you make is a trade-off between the security and operational

supportability of your environment. For example, the Microsoft best practice is to use

a separate service account for every service and to ensure that every server in your

environment uses a discrete set of service accounts, since this fully enforces the principle

of least privilege. The principle of least privilege states that each security context will

be granted the minimum set of permissions required for it to carry out its day-to-day

activities.

In reality, however, you will find that this approach introduces significant complexity

into your SQL Server estate, and it can increase the cost of operational support while also

risking increasing outage windows in disaster scenarios. On the flip side, I have worked

in organizations where the service account model is very coarse, to the point where there

is only a single set of SQL Server service accounts for each region. This approach can

also cause significant issues. Imagine that you have a large estate and the whole estate

uses the same service account. Now imagine that you have a compliance requirement to

change service account passwords on a 90-day basis. This means that you would cause

an outage to your entire SQL Server estate at the same time. This simply is not practical.

There is no right or wrong answer to this problem, and the solution will depend on

the requirements and constraints of individual organizations. For organizations that

use domain accounts as service accounts, however, I tend to recommend a distinct set

of service accounts for each data-tier application. So if you imagine an environment, as

shown in Figure 2-18, where your data-tier application consists of a two-node cluster

and an ETL server in a primary site, and two DR servers in a secondary site, this design

would involve a common set of service accounts used by all of these instances, but other

data-tier applications would not be allowed to use these accounts and would require

their own set.

Chapter 2 GUI InstallatIon

52

Of course, this model poses its own challenges. For example, you would need to

review and amend this policy if you were to start a process of consolidation. Because

of the challenges surrounding service account management, Microsoft introduced

virtual accounts and MSAs. Virtual accounts are local accounts that have no password

management requirements. They can access the domain by using the computer identity

of the server on which they have been created. Managed service accounts, on the other

hand, are domain-level accounts. They provide automatic password management within

AD (Active Directory) and also automatically maintain their Kerberos SPNs (service

principal names), as long as your domain is running at the functional level of Windows

Server 2008 R2 or higher.

Figure 2-18. Service account model by data-tier application

Chapter 2 GUI InstallatIon

53

Both of these types of account have a limitation, however. They can only be used on

a single server. As discussed earlier, this can introduce complexity into your SQL Server

estate, especially for highly available, multiserver applications. This issue has been

resolved by the introduction of group MSAs, which give you the ability to associate an

MSA with multiple servers within the domain. In order to use this functionality, however,

your forest needs to be running at the functional level of Windows Server 2012 or higher.

Additionally, on this page of the wizard, you can choose to grant the Perform Volume

Maintenance Tasks user rights assignment to the SQL Server service account. If you

select this option, then SQL Server will have the ability to create database files and grow

database files without the need to fill the empty space with zeros. This significantly

improves the performance of file creation and growth operations.

The trade-off is that it opens a very small security hole. If any data was stored on the

same area of the disk that the database file is created on, then with specialized tooling, it

is possible to retrieve that data, as it has not been overwritten. The chance of exploitation

of this security hole is so remote, however, that I always recommend granting this

privilege, in all but the most secure environments.

Note this functionality only applies to database files. the free space in transaction
log files always have to be filled with zeros when they are created, or when they grow.

 Choosing the Collation
The second tab of the Server Configuration page will allow you to customize your

collation, as illustrated in Figure 2-19.

Chapter 2 GUI InstallatIon

54

Collations determine how SQL Server will sort data and also define SQL Server’s

matching behavior, with regard to accents, kana, width, and case. You can also specify

that sorting and matching should be carried out on the binary or binary code point

representations.

If your collation is accent sensitive, then in comparison, SQL Server does not regard

è as the same character as e, whereas it will treat these characters as equal, if accent

insensitivity is specified. Kana sensitivity defines if the Japanese Hiragana character

set is equal to the Katakana character set. Width sensitivity defines if a single byte

representation of a character is equal to its two-byte equivalent.

Case sensitivity defines if a capital letter is equal to its lowercase equivalent during

comparison. For example, the code in Listing 2-1 will create and populate a temporary

table and then run the same query, but using two different collations.

Figure 2-19. Collation Configuration page

Chapter 2 GUI InstallatIon

55

Listing 2-1. Effect of Case Sensitivity of Matching

--Create a local temporary table

CREATE TABLE #CaseExample

(

 Name VARCHAR(20)

)

--Populate values

INSERT INTO #CaseExample

 VALUES('James'), ('james'), ('John'), ('john')

--Count the number of entries for James, with case sensitive collation

SELECT COUNT(*) AS 'Case Sensitive'

FROM #CaseExample

WHERE Name = 'John' COLLATE Latin1_General_CS_AI

--Count the number of entries for James, with case insensitive collation

SELECT COUNT(*) AS 'Case Insensitive'

FROM #CaseExample

WHERE Name = 'John' COLLATE Latin1_General_CI_AI

--DROP temporary table

DROP TABLE #CaseExample

You can see from the results in Figure 2-20 that the first query only found one

example of the word John, because it used a case-sensitive collation, but because the

second query uses a case-insensitive collation, it matched two results.

Figure 2-20. Results of case sensitivity example

Chapter 2 GUI InstallatIon

56

Although the effects of the various collation sensitivities may be fairly straightforward,

a slightly more confusing aspect is how collations can affect sort order. Surely there is

only one correct way to order data? Well, the answer to this question is no. There are

various ways that data can be correctly ordered. For example, while some collations

order data alphabetically, other collations may use nonalphabetic writing systems,

such as Chinese, which can be ordered using a method called radical and stroke

sorting. This system will identify common character components and then order

them by the number of strokes. An example of how collations can affect sort order is

demonstrated in Listing 2-2.

Listing 2-2. Effect of Collations on Sort Order

--Create a temporary table

CREATE TABLE #SortOrderExample

(

 Food VARCHAR(20)

)

--Populate the table

INSERT INTO #SortOrderExample

VALUES ('Coke'), ('Chips'), ('Crisps'), ('Cake')

--Select food using Latin1_General collation

SELECT Food AS 'Latin1_General collation'

FROM #SortOrderExample

ORDER BY Food

COLLATE Latin1_General_CI_AI

--Select food using Traditional_Spanish collation

SELECT Food AS 'Traditional_Spanish colation'

FROM #SortOrderExample

ORDER BY Food

COLLATE Traditional_Spanish_CI_AI

The results in Figure 2-21 show that the value Chips has been sorted differently using

the two collations. This is because in traditional Spanish, ch is regarded as a separate

character and is sorted after cz.

Chapter 2 GUI InstallatIon

57

Figure 2-21. Results of sort order example

There are two types of binary collation to choose from. The older style binary

collations are included for backward compatibility only and are identified with the

BIN suffix. If you choose to choose this type of binary collation, then characters will

be matched and sorted based on the bit patterns of each character. If you choose the

modern binary collations, which can be identified with a BIN2 suffix, then data will

be sorted and matched based on Unicode code points for Unicode data and the code

point of the relevant ANSI code page, for non-Unicode data. The example in Listing 2-3

demonstrates the behavior of a binary (BIN2) collation, compared to case-sensitive and

case-insensitive collations.

Listing 2-3. Binary Collation Sort Order

CREATE TABLE #CaseExample

(

 Name VARCHAR(20)

)

--Populate values

INSERT INTO #CaseExample

 VALUES('James'), ('james'), ('John'), ('john')

--Select all rows with a case sensitive collation

SELECT name as [Case Sensitive]

FROM #CaseExample

Order by Name COLLATE Latin1_General_CS_AI

Chapter 2 GUI InstallatIon

58

--Select all rows, with a case insensitive collation

SELECT name as [Case Insensitive]

FROM #CaseExample

Order by Name COLLATE Latin1_General_CI_AI

SELECT name as [binary]

FROM #CaseExample

Order by Name COLLATE Latin1_General_BIN2

--DROP temporary table

DROP TABLE #CaseExample

The results in Figure 2-22 show that because the data is ordered by code point rather

than alphabetically, the values beginning with capital letters are ordered before those

beginning with lowercase letters, since this matches the code points of the characters.

Figure 2-22. Binary collation sort order

Chapter 2 GUI InstallatIon

59

Collations can be challenging, and ideally you will maintain consistent collations

across the enterprise. This is not always possible in today’s global organizations, but

you should aspire to it. You should also be careful to select the correct collation for the

instance at the point of installation. Changing the collation afterward can be challenging,

because databases and columns within tables have their own collations, and a collation

cannot be changed if other objects depend on it. At a high level, a worst-case scenario

will involve the following actions to change your collation at a later date:

 1. Re-create all databases.

 2. Export all data into the newly created copies of the databases.

 3. Drop the original databases.

 4. Rebuild the Master database with the desired collation.

 5. Re-create the databases.

 6. Import the data back into your database from the copies that you created.

 7. Drop the copies of the databases.

Unless you have a specific backward compatibility requirement, you should avoid

using SQL collations and only use Windows collations. It is best practice to use Windows

collations because SQL collations are deprecated and are not all fully compatible

with Windows collations. Additionally, you should be mindful when selecting newer

collations, such as Norwegian or Bosnian_Latin. Although this new family of collations

map to code pages in Windows Server 2008 or above, they do not map to code pages in

older operating systems. So if you were to run a SELECT * query, against your instance

from an older operating system, such as Windows XP, the code page would not match,

and an exception would be thrown.

Note examples in this book, you should use latin1_General_CI_as.

 Provisioning Instance Security
The next page of the setup wizard allows you to configure the Database Engine. It

consists of six tabs. In the first tab, you can specify the authentication mode of the

instance and instance administrators, as illustrated in Figure 2-23. The second tab

Chapter 2 GUI InstallatIon

60

allows you to specify the folder that will be used as the default data directory, as well as

specific locations for user databases and TempDB. The third tab provides configuration

options for TempDB, while the fourth allows you to configure the maximum degree

of parallelism for the instance; the fifth allows for instance memory settings to be

configured, and the final tab will allow you to configure FILESTREAM.

Figure 2-23. The Server Configuration tab

Windows authentication mode means that the credentials that a user supplies

when logging into Windows will be passed to SQL Server, and the user does not require

any additional credentials to gain access to the instance. With mixed mode, although

Windows credentials can still be used to access the instance, users can also be given

second-tier credentials. If this option is selected, then SQL Server will hold its own

usernames and passwords for users inside the instance, and users can supply these, in

order to gain access, even if their Windows identity does not have permissions.

Chapter 2 GUI InstallatIon

61

For security best practice, it is a good idea to only allow Windows authentication

to your instance. This is for two reasons. First, with Windows authentication only, if

an attacker were to gain access to your network, then they would still not be able to

access SQL Server, since they would not have a valid Windows account with the correct

permissions. With mixed-mode authentication however, once inside the network,

attackers could use brute force attacks or other hacking methodologies to attempt

to gain access via a second-tier user account. Second, if you specify mixed-mode

authentication, then you are required to create an SA account. The SA account is a SQL

Server user account that has administrative privileges over the instance. If the password

for this account became compromised, then an attacker could gain administrative

control over SQL Server.

Mixed-mode authentication is a necessity in some cases, however. For example, you

may have a legacy application that does not support Windows authentication or a third-

party application that has a hard-coded connection that uses second-tier authentication.

These would be two valid reasons why mixed-mode authentication may be required.

Another valid reason would be if you have users that need to access the instance from a

nontrusted domain.

Caution Use mixed-mode authentication by exception only in order to reduce the
security footprint of sQl server.

 Configuring the Instance
On the Server Configuration tab, you will also need to enter at least one instance

administrator. You can use the Add Current User button to add your current Windows

security context or the Add button to search for Windows security principles, such as

users or groups. Ideally, you should select a Windows group, which contains all DBAs

that will require administrative access to the instance, since this simplifies security.

The Data Directories tab of Database Engine Configuration page is illustrated in

Figure 2-24.

Chapter 2 GUI InstallatIon

62

The Data Directories tab allows you to alter the default location of the data root

directory. On this screen, you can also change the default location for user databases and

their log files as well as specify where TempDB data and log files should be created. As

you may recall from Chapter 1, this is particularly important, because you will probably

wish to separate user data files from their logs and also from TempDB. Finally, this tab

allows you to specify a default location for backups of databases that will be taken.

The TempDB tab (Figure 2-25) allows you to configure file options for TempDB. The

number of files required for TempDB is important, as too few files can cause contention

on system pages, such as GAM (Global Allocation Map) and SGAM (Shared Global

Allocation Map). The optimal number of files can be calculated using the formula:

SMALLEST(Number of logical cores, 8). If your server has hyper-threading turned on,

then the number of logical cores will be the number of physical cores, multiplied by two.

On VMWare, the number of logical cores will be equal to the number of virtual cores.

Figure 2-24. The Data Directories tab

Chapter 2 GUI InstallatIon

63

When considering the initial size of the files, I usually work to the rule: SUM(Data

file size for all user databases) / 3 for busy OLTP systems, but this will vary,

based on your requirements and the workload profile of your user databases.

Figure 2-25. TempDB tab

The MaxDOP tab of the wizard, illustrated in Figure 2-26, allows you to configure

the maximum number of CPU cores that can be used by any single query. The setup

program calculates a default recommended value, but you can override this if required.

Please see Chapter 5 of this book for a detailed discussion of how MaxDOP should be

configured.

Chapter 2 GUI InstallatIon

64

Figure 2-27 illustrates the Memory tab. Here, you are able to specify if you would like

to use the default configuration, for the minimum and maximum amount of memory

that can be allocated to the instance; use the recommended values, calculated by the

setup wizard; or specify your own values. To specify your own preferred values, choose

the recommended option, enter your values, and check the Click here to accept the

recommended memory configurations for the SQL Server database engine check

box. This check box must also be used, if you wish to adhere to the setup program’s

recommendations. A detailed discussion of how best to configure minimum and

maximum memory settings for the database engine can be found in Chapter 5 of this

book.

Figure 2-26. MaxDOP tab

Chapter 2 GUI InstallatIon

65

The FILESTREAM tab of the Database Engine Configuration page allows you to

enable and configure the level of access for SQL Server FILESTREAM functionality,

as illustrated in Figure 2-28. FILESTREAM must also be enabled if you wish to use the

FileTable feature of SQL Server. FILESTREAM and FileTable provide the ability to store

data in an unstructured manner within the Windows folder structure while retaining the

ability to manage and interrogate this data from SQL Server.

Figure 2-27. Memory tab

Chapter 2 GUI InstallatIon

66

Selecting Enable FILESTREAM For Transact-SQL Access will enable FILESTREAM,

but the data can only be accessed from inside SQL Server. Additionally, selecting Enable

FILESTREAM For File I/O Access enables applications to access the data directly from

the operating system, bypassing SQL Server. If this option is selected, then you will

also need to provide the name of a preexisting file share, which will be used for direct

application access. The Allow Remote Clients Access To FILESTREAM Data option

makes the data available to remote applications. The three options build on top of each

other, so it is not possible to select Enable FILESTREAM For File I/O Access without first

selecting Enable FILESTREAM For Transact-SQL Access, for example. FILESTREAM and

FileTable will be discussed further in Chapter 6.

Figure 2-28. The FILESTREAM tab

Chapter 2 GUI InstallatIon

67

 Configuring Distributed Replay
As illustrated in Figure 2-29, the next page of the wizard will prompt you to specify the

users who will be given access to the Distributed Replay Controller service. In the same

fashion that you grant administrative permissions to the instance, you can use the Add

Current User button to add your current security context or you can use the Add button

to browse for Windows users and groups.

Figure 2-29. The Distributed Replay Controller page

On the next page of the wizard, you can configure the Distributed Replay client, as

illustrated in Figure 2-30. The Working Directory is the folder on the client where the

dispatch files are saved. The Results Directory is the folder on the client where the trace

file will be saved. The files in both of these locations will be overwritten each time a

trace is run. If you have an existing Distributed Replay Controller configured, then you

should enter its name in the Controller Name field. However, if you are configuring

Chapter 2 GUI InstallatIon

68

a new controller, then this field should be left blank and then amended later in the

DReplayClient.config configuration file. The configuration and use of Distributed Replay

will be discussed in Chapter 21.

Figure 2-30. The Distributed Replay Client page

 Completing the Installation
The Ready to Install page of the wizard is the final page before installation commences,

and it is illustrated in Figure 2-31. This screen gives you a summary of the features

that will be installed, but possibly the most interesting component of this page is the

Configuration File Path section. This gives you the path to a configuration file that you

can reuse to install further instances with an identical configuration. Configuration files

will be discussed further in Chapter 3.

Chapter 2 GUI InstallatIon

69

The setup wizard will display a progress bar during the installation. When

installation is complete, a summary screen will be displayed, as shown in Figure 2-32.

You should check to ensure that each of the components being installed has a status of

Succeeded. The SQL Server installation is then complete.

Figure 2-31. The Ready to Install page

Chapter 2 GUI InstallatIon

70

 Summary
SQL Server’s Installation Center provides many useful tools and links for guiding and

assisting you in the installation process. You can use the Installation Center to install

failover clustered instances as well as stand-alone instances of SQL Server. There are also

tools to assist in advanced installation requirements, such as prepared images of SQL

Server and installations based on configuration files.

In addition to using the SQL Server 2019 Setup wizard to install an instance of the

Database Engine, you can also use the same tool to install the tools within the BI and

ETL suite, such as Analysis Services, Integration Services, Data Quality Services, and

Master Data Services. If you use the wizard to install Analysis Services, then the tool can

be configured with the multidimensional model or tabular model.

Figure 2-32. Completion page

Chapter 2 GUI InstallatIon

71

Although you can install SQL Server successfully using default values, for the

ongoing supportability of your instance, and indeed your estate, make sure you consider

many aspects of the installation. This applies especially to collations, service accounts,

and other security considerations, such as the most appropriate administrators group to

add and the authentication model to implement.

Chapter 2 GUI InstallatIon

73
© Peter A. Carter 2019
P. A. Carter, Pro SQL Server 2019 Administration, https://doi.org/10.1007/978-1-4842-5089-1_3

CHAPTER 3

Server Core Installation
Because SQL Server does not support remote installations and because Windows Server

Core provides only a command-line interface (CLI) and no graphical user interface

(GUI), you must perform installation of SQL Server on Windows Server Core as a

command-line operation. You can also use a configuration file to produce consistent,

repeatable installations.

In this chapter, we will review the considerations for installing SQL Server on

Windows Server Core before demonstrating how to perform an installation on this

platform. We will also discuss using configuration files and how you can use them to

simplify future installations and enforce consistency.

In Chapter 1, you may remember that we discussed the limitations of SQL Server on

Windows Server Core and how some features, such as Reporting Services, Master Data

Services, and Data Quality Services, are not supported, whereas other features, such as

Management Tools and Distributed Replay Client, are only supported remotely. You

should also ensure that you have operational supportability across various competencies

within your organization, including proficiency in PowerShell and the compatibility of

operational tooling.

 Installing an Instance
Installing SQL Server in Windows Server Core involves running setup.exe from the

PowerShell terminal. Setup.exe can be found in the root directory of the SQL Server

installation media. When running setup.exe from the PowerShell terminal, you can use

switches and parameters to pass in values, which will be used to configure the instance.

Note You can follow the same process to install SQL Server on a GUI-based
version of Windows, if required.

74

 Required Parameters
Although many switches and parameters are optional, some must always be included.

When you are installing a stand-alone instance of the Database Engine, the parameters

listed in Table 3-1 are always required.

Table 3-1. Required Parameters

Parameter Usage

/IACCEPTSQLSERVERLICENSETERMS Confirms that you accept the SQL Server license terms

/ACTION Specifies the action that you want to perform, such as

Install or Upgrade

/FEATURES or /ROLE Specifies the features that you wish to install

/INSTANCENAME The name to be assigned to the instance

/SQLSYSADMINACCOUNTS The Windows security context(s) that will be given

administrative permissions in the instance of the

Database Engine

/AGTSVCACCOUNT The account that will be used to run the SQL Server

Agent Service

/SQLSVCACCOUNT The account that will be used to run the Database Engine

Service

/qs Performs an unattended install. This is required on

Windows Server Core since the installation wizard is not

supported

 IACCEPTSQLSERVERLICENSETERMS Switch

Because /IACCEPTSQLSERVERLICENSETERMS is a simple switch that indicates your

acceptance of the license terms, it does not require any parameter value be passed.

ChAPTEr 3 SErvEr CorE InSTALLATIon

75

 ACTION Parameter

When you perform a basic installation of a stand-alone instance, the value passed to the

/ACTION parameter will be install; however a complete list of possible values for the

/ACTION parameter is shown in Table 3-2.

Table 3-2. Values Accepted by the /ACTION Parameter

Value Usage

install Installs a stand-alone instance

PrepareImage Prepares a vanilla stand-alone image, with no account-,

computer-, or network-specific details

CompleteImage Completes the installation of a prepared stand-alone image by

adding account, computer, and network details

Upgrade Upgrades an instance from SQL Server 2012, 2014, 2017, or 2019

EditonUpgrade Upgrades a SQL Server 2019 from a lower edition (such as

Developer edition) to a higher edition (such as Enterprise)

Repair repairs a corrupt instance

RebuildDatabase rebuilds corrupted system databases

Uninstall Uninstalls a stand-alone instance

InstallFailoverCluster Installs a failover clustered instance

PrepareFailoverCluster Prepares a vanilla clustered image with no account-, computer-,

or network-specific details

CompleteFailoverCluster Completes the installation of a prepared clustered image by

adding account, computer, and network details

AddNode Adds a node to a failover cluster

RemoveNode removes a node from a failover cluster

 FEATURES Parameter

As shown in Table 3-3, the /FEATURES parameter is used to specify a comma-delimited

list of features that will be installed by setup, but not all features can be used on Windows

Server Core.

ChAPTEr 3 SErvEr CorE InSTALLATIon

76

Table 3-3. Acceptable Values of the /FEATURES Parameter

Parameter Value Use on Windows Core Description

SQL no Full SQL Engine, including Full Text,

replication, and Data Quality Server

SQLEngine YES Database Engine

FullText YES Full Text search

Replication YES replication components

DQ no Data Quality Server

PolyBase YES PolyBase components

AdvancedAnalytics YES Machine Learning Solutions and In-Database

r Services

SQL_INST_MR YES r Packages for Machine Learning

SQL_INST_MPY YES Anaconda and Python Packages for Machine

Learning

AS YES Analysis Services

DQC no Data Quality Client

IS YES Integration Services

MDS no Master Data Services

Tools no All client tools

BC no Backward compatibility components

Conn YES Connectivity components

DREPLAY_CTLR no Distributed replay Controller

DREPLAY_CLT no Distributed replay Client

SNAC_SDK no Client Connectivity SDK

SDK no Client Tools SDK

LocalDB YES An execution mode of SQL Server express,

which is used by application developers

ChAPTEr 3 SErvEr CorE InSTALLATIon

77

Note If you choose to install other SQL Server features, such as Analysis Services
or Integration Services, then other parameters will also become required.

 Role Parameter
Instead of specifying a list of features to install, with the /FEATURES parameter, it is

possible to install SQL Server in a predefined role, using the /ROLE parameter. The roles

supported by the /ROLE parameter are detailed in Table 3-4.

Table 3-4. Available Values for the /ROLE Parameter

Parameter Value Description

SPI_AS_ExistingFarm Installs SSAS as a PowerPivot instance in an existing

SharePoint farm

SPI_AS_NewFarm Installs the Database Engine and SSAS as a PowerPivot

instance in a new and unconfigured SharePoint farm

AllFeatures_WithDefaults Installs all features of SQL Server and its components. I do not

recommend using this option, except in the most occasional

circumstances, as installing more features than are actually

required increases the security and resource utilization

footprints of SQL Server

 Basic Installation
When you are working with command-line parameters for setup.exe, you should observe

the rules outlined in Table 3-5 with regard to syntax.

ChAPTEr 3 SErvEr CorE InSTALLATIon

78

Tip For text parameters, the quotation marks are only required if the value
contains spaces. however, it is considered good practice to always include them.

Assuming that you have already navigated to the root directory of the installation

media, then the command in Listing 3-1 provides PowerShell syntax for installing the

Database Engine, Replication, and Client Connectivity components. It uses default

values for all optional parameters, with the exception of the collation, which we will set

to the Windows collation Latin1_General_CI_AS.

Tip When Windows Server Core boots, the interface you see is the command
prompt, not the PowerShell prompt. Type powershell to enter a PowerShell prompt.

Listing 3-1. Installing SQL Server from PowerShell

.\SETUP.EXE /IACCEPTSQLSERVERLICENSETERMS /ACTION="Install"

/FEATURES=SQLEngine,Replication,Conn

/INSTANCENAME="PROSQLADMINCORE2"

/SQLSYSADMINACCOUNTS="Administrator"

/SQLCOLLATION="Latin1_General_CI_AS" /qs

Note If using the command prompt, instead of PowerShell, the leading .\
characters are not required.

Table 3-5. Syntax Rules for Command-Line Parameters

Parameter Type Syntax

Simple switch /SWITCH

True/False /PARAMETER=true/false

Boolean /PARAMETER=0/1

Text /PARAMETER="Value"

Multivalued text /PARAMETER="Value1" "Value2"

/FEATURES parameter /FEATURES=Feature1,Feature2

ChAPTEr 3 SErvEr CorE InSTALLATIon

79

In this example, a SQL Server instance named PROSQLADMINCORE will be

installed. Both the Database Engine and the SQL Agent services will run under the

SQLServiceAccount1 account, and the Windows group called SQLDBA will be made

administrator. When installation begins, a pared down, noninteractive version of the

installation wizard will appear to keep you updated on progress.

 Smoke Tests
After installing an instance on Windows Server Core, where you have no summary

screen at the end of installation, it is always a good idea to perform some smoke tests. In

this context, smoke tests refer to quick, high-level tests that ensure that the services are

running and the instance is accessible.

The code in Listing 3-2 will use the PowerShell Get-Service cmdlet, to ensure that

the services relating to the PROSQLADMINCORE instance exist and to check their

status. This script uses asterisks as wildcards to return all services that contain our

instance name. This, of course, means that services such as SQL Browser will not be

returned.

Listing 3-2. Checking Status of Services

Get-Service -displayname *PROSQLADMINCORE2* | Select-Object name,

displayname, status

The results are displayed in Figure 3-1. You can see that both the SQL Server and SQL

Agent services have been installed. You can also see that the SQL Server service is started

and the SQL Agent service is stopped. This aligns with our expectations, because we did

not use the startup mode parameters for either service. The default startup mode for the

SQL Server service is automatic, whereas the default startup mode for the SQL Agent

service is manual.

ChAPTEr 3 SErvEr CorE InSTALLATIon

80

The second recommended smoke test is to use invoke-sqlcmd to run a T-SQL

statement which returns the instance name. To use the invoke-sqlcmd cmdlet (or any

other SQL Server PowerShell cmdlets), the sqlserver PowerShell module needs to be

installed. This module replaces the deprecated SQLPS module and contains many more

cmdlets.

If you are running Windows Server with Desktop Experience, then the sqlserver

module is included when you install SQL Server Management Studio, which can be

downloaded from https://docs.microsoft.com/en-us/sql/ssms/download-sql-

server-management-studio-ssms. If you are using Windows Server in core mode,

however (or if you simply don’t choose to install SSMS), then the sqlserver module can

be downloaded from the PowerShell Gallery. Alternatively, if your server has Internet

access, the script in Listing 3-3 will firstly find the latest version of the module, before

downloading and installing it.

Figure 3-1. Results of check service status smoke test

ChAPTEr 3 SErvEr CorE InSTALLATIon

https://docs.microsoft.com/en-us/sql/ssms/download-sql-server-management-studio-ssms
https://docs.microsoft.com/en-us/sql/ssms/download-sql-server-management-studio-ssms

81

Listing 3-3. Install the sqlserver Module

#Locate and list the current version of the sqlserver module

Find-Module sqlserver

#Download and install the sqlserver module

Install-Module sqlserver

Tip The first time you run Find-Module, you will be prompted to install the nuGet
provider.

Once the sqlserver module has been installed, the script in Listing 3-4 can be used to

return the name of the instance.

Note This is also the query that is used by the IsAlive test, which is performed by
a cluster. It has little system impact and just checks that the instance is accessible.

Listing 3-4. Checking If Instance Is Accessible

Invoke-Sqlcmd –serverinstance "localhost\PROSQLADMINCORE2" -query

"SELECT @@SERVERNAME"

In this example, the -serverinstance switch is used to specify the instance name

that you will connect to, and the -query switch specifies the query that will be run. The

results of this smoke test are illustrated in Figure 3-2. As you can see, the query resolved

successfully and returned the name of the instance.

ChAPTEr 3 SErvEr CorE InSTALLATIon

82

 Troubleshooting the Installation
If an error occurs during the installation of the instance, or if your smoke tests fail,

then you will need to troubleshoot the installation. With no GUI, this may seem like

a daunting task, but luckily the SQL Server installation process provides a full set of

verbose logs, which you can use to identify the issue. The most useful of these logs are

listed in Table 3-6.

Figure 3-2. Results of check instance accessible smoke test

Table 3-6. SQL Server Installation Logs

Log File Location

Summary.txt %programfiles%\Microsoft SQL Server\150\

Setup Bootstrap\Log\

Detail.txt %programfiles%\Microsoft SQL Server\150\

Setup\Bootstrap\Log\<YYYYMMDD_HHMM>\

SystemConfigurationCheck_report.htm %programfiles%\Microsoft SQL Server\150\

Setup Bootstrap\Log\<YYYYMMDD_HHMM>\

ChAPTEr 3 SErvEr CorE InSTALLATIon

83

 Summary.txt

Summary.txt will normally be your first point of call when you troubleshoot SQL Server

installation issues. It provides basic information regarding the installation and can often

be used to determine the issue. The sample in Figure 3-3, for example, clearly shows

in exit message that the installation of an instance failed because the instance name

specified was too long.

Figure 3-3. Summary.txt

In addition to returning high-level information, such as the exit code, exit message,

and start and end time of the installation, summary.txt will also provide you with details

about the OS environment. Additionally, it will detail the components that setup tried to

install with the status of each MSI (Microsoft Installer) that was executed, and it will list

any command-line parameters that were specified. At the end of the file, you will also

find an exception summary, which includes a stack trace.

You can use Notepad to open a text file in Windows Server Core. So, assuming that

you had already navigated to the %programfiles%\Microsoft SQL Server\150\Setup

Bootstrap\Log\ folder, you could use the command notepad summary.txt to open

this file.

 Detail.txt

If summary.txt does not provide the granular detail that you need, then your next stop

will be detail.txt. This is a verbose log of actions performed by the installation, which are

ChAPTEr 3 SErvEr CorE InSTALLATIon

84

organized by the time at which the execution occurred, rather than by the component

that executed them. To find errors in this log, you should search for the strings error and

exception.

 SystemConfigurationCheck_Report.htm

The SystemConfigurationCheck_Report.htm file provides a description and the status

of each of the rule checks that happened during the installation in a web page format.

Unfortunately, Windows Server Core has no support for rendering HTML. Therefore, in

order to view this file, you have two options. The first is to view it in Notepad, which will

give you the detail you are looking for, but it will be buried in between HTML tags, with

no intuitive formatting. This pretty much misses the point of Microsoft providing the

information in a user-friendly format.

The second option is to open the file remotely from a machine that has a GUI

installed. This sounds like a much better option, and indeed it is, as long as you have a

share created on the server that you can drop the file into and from which you can access

it quickly. If this is not the case, however, and if your environment does not provide the

capability to quickly move this file onto another machine, you may not want to spend too

much time on this—especially since the only reason you would normally be accessing

it is because your installation has just failed and you are likely to have project teams

requesting that you resolve the issue quickly.

 Other Log Files

Many additional log files are produced by the SQL Server setup routine, including a

folder named Datastore, which contains a series of XML files, each of which represent

individual settings that have been configured. Also of interest, you will find a copy on the

configuration file that setup generated and a file called settings.xml. This file defines the

metadata for the configuration options, including the source of where the value of the

configuration was contained, such as a default value or user specified.

A verbose log will also be created for every MSI that was run during the setup

process. The quantity of these logs will of course depend on the features that you have

chosen to install. On Windows Server Core, as long as you are not performing an SSAS-

only installation, at a minimum, there will be a .log file relating to the SQL Engine. These

.log files can provide even more granular detail regarding their specific MSI, which can

assist you in troubleshooting.

ChAPTEr 3 SErvEr CorE InSTALLATIon

85

Using the MSI logs is not totally straightforward, however, since you may find many

errors that are caused by a preceding error, as opposed to being the root cause of the

issue. To use these log files, you should order them by the time that they were created.

You can then work through them backward. The last error that you find will be the root

cause issue. To search these files for errors, search for the string Return value 3. It can get

even more complicated, however, because not all Return value 3 occurrences will relate

to unexpected errors. Some of them may be expected results.

 Optional Parameters
There are many switches and parameters that can optionally be used to customize the

configuration of the instance that you are installing. The optional switches and parameters

that you can use for the installation of the Database Engine are listed in Table 3-7.

Tip Account passwords should not be specified if the account being used is a
MSA/gMSA. This includes the accounts for the Database Engine and SQL Server
Agent services, which are otherwise mandatory.

Table 3-7. Optional Parameters

Parameter Usage

/AGTSVCSTARTUPTYPE Specifies the startup mode of the SQL Agent service. This can

be set to Automatic, Manual, or Disabled.

/BROWSERSVCSTARTUPTYPE Specifies the startup mode of the SQL Browser service. This

can be set to Automatic, Manual, or Disabled.

/CONFIGURATIONFILE Specifies the path to a configuration file, which contains a list

of switches and parameters, so that they do not have to be

specified inline, when running setup.

/ENU Dictates that the English version of SQL Server will be used.

Use this switch if you are installing the English version of SQL

Server on a server with localized settings and the media contains

language packs for both English and the localized operating system.

(continued)

ChAPTEr 3 SErvEr CorE InSTALLATIon

86

Table 3-7. (continued)

Parameter Usage

/FILESTREAMLEVEL Used to enable FILESTrEAM and set the required level of

access. This can be set to 0 to disable FILESTrEAM, 1 to allow

connections via SQL Server only, 2 to allow Io streaming, or

3 to allow remote streaming. The options from 1 to 3 build on

each other, so by specifying level 3, you are implicitly specifying

levels 1 and 2 as well.

/FILESTREAMSHARENAME Specifies the name of the Windows file share where

FILESTrEAM data will be stored. This parameter becomes

required when /FILESTREAMLEVEL is set to a value of 2 or 3.

/FTSVCACCOUNT The account used to run the Full-Text filter launcher service.

/FTSVCPASSWORD The password of the account used to run the Full-text filter

launcher service.

/HIDECONSOLE Specifies that the console should be hidden.

/INDICATEPROGRESS When this switch is used, the setup log is piped to the screen

during installation.

/IACCEPTPYTHONLICENSETERMS Must be specified if installing the Anaconda Python package,

using /q or /qs.

/IACCEPTROPENLICENSETERMS Must be specified when installing Microsoft r package,

using /q or /qs.

/INSTANCEDIR Specifies a folder location for the instance.

/INSTANCEID Specifies an ID for the instance. It is considered bad practice to

use this parameter, as discussed in Chapter 2.

/INSTALLSHAREDDIR Specifies a folder location for 64-bit components that are

shared between instances.

/INSTALLSHAREDWOWDIR Specifies a folder location for 32-bit components that are

shared between instances. This location cannot be the same as

the location for 64-bit shared components.

/INSTALLSQLDATADIR Specifies the default folder location for instance data.

(continued)

ChAPTEr 3 SErvEr CorE InSTALLATIon

87

Table 3-7. (continued)

Parameter Usage

/NPENABLED Specifies if named pipes should be enabled. This can be set to

0 for disabled or 1 for enabled.

/PID Specifies the PID for SQL Server. Unless the media is pre-

pidded, failure to specify this parameter will cause Evaluation

edition to be installed.

/PBENGSVCACCOUNT Specifies the account that will be used to run the Polybase

service.

/PBDMSSVCPASSWORD Specifies the password for the account that will run the

Polybase service.

/PBENGSVCSTARTUPTYPE Specifies the startup mode of the Polybase. This can be set to

Automatic, Manual, or Disabled.

/PBPORTRANGE Specifies a range of ports for the PolyBase service to listen on.

Must contain a minimum of six ports.

/PBSCALEOUT Specifies if the Database Engine is part of a PolyBase scale-out

group.

/SAPWD Specifies the password for the SA account. This parameter is

used when /SECURITYMODE is used to configure the instance

as mixed-mode authentication. This parameter becomes

required if /SECURITYMODE is set to SQL.

/SECURITYMODE Use this parameter, with a value of SQL, to specify mixed mode.

If you do not use this parameter, then Windows authentication

will be used.

/SQLBACKUPDIR Specifies the default location for SQL Server backups.

/SQLCOLLATION Specifies the collation the instance will use.

/SQLMAXDOP Specifies a maximum degree of parallelism for queries run

against the instance.

/SQLMAXMEMORY Specifies the maximum amount of rAM that should ever be

allocated to the database engine.

(continued)

ChAPTEr 3 SErvEr CorE InSTALLATIon

88

Table 3-7. (continued)

Parameter Usage

/SQLMINMEMORY Specifies the minimum amount of memory that should ever

be allocated to the database engine. When the instance starts,

the database engine will immediately consume this amount of

memory.

/SQLSVCSTARTUPTYPE Specifies the startup mode of the Database Engine Service.

This can be set to Automatic, Manual, or Disabled.

/SQLTEMPDBDIR Specifies a folder location for TempDB data files.

/SQLTEMPDBLOGDIR Specifies a folder location for TempDB log files.

/SQLTEMPDBFILECOUNT Specifies the number of TempDB data files that should be

created.

/SQLTEMPDBFILESIZE Specifies the size of each TempDB data file.

/SQLTEMPDBFILEGROWTH Specifies the growth increment for TempDB data files.

/SQLTEMPDBLOGFILESIZE Specifies the initial size for the TempDB log file.

/SQLTEMPDBLOGFILEGROWTH Specifies the growth increment for TempDB log files.

/SQLUSERDBDIR Specifies a default location for the data files or user databases.

/SQLUSERDBLOGDIR Specifies the default folder location for log files or user databases.

/SQMREPORTING Specifies if SQL reporting will be enabled. Use a value of 0 to

disable or 1 to enable.

/SQLSVCINSTANTFILEINIT Specifies that the Database Engine Service account should

be granted the Perform volume Maintenance Tasks privilege.

Acceptable values are true or false.

/TCPENABLED Specifies if TCP will be enabled. Use a value of 0 to disable or 1

to enable.

/UPDATEENABLED Specifies if Product Update functionality will be used. Pass a

value of 0 to disable or 1 to enable.

/UPDATESOURCE Specifies a location for Product Update to search for updates. A

value of MU will search Windows Update, but you can also pass

a file share or UnC.

ChAPTEr 3 SErvEr CorE InSTALLATIon

89

 Product Update
The Product Update functionality replaces the deprecated slipstream installation

functionality of SQL Server and provides you with the ability to install the latest CU

(cumulative update) or GDR (General Distribution Release—a hotfix for security issues)

at the same time you are installing the SQL Server base binaries. This functionality can

save DBAs the time and effort associated with installing the latest update immediately

after installing a SQL Server instance and can also help provide consistent patching

levels across new builds.

Tip From SQL Server 2017 onward, service packs are no longer released. All
updates are either CUs or GDrs.

In order to use this functionality, you must use two parameters during the

command-line install. The first of these is the /UPDATEENABLED parameter. You should

specify this parameter with a value of 1 or True. The second is the /UPDATESOURCE

parameter. This parameter will tell setup where to look for the product update. If you

pass a value of MU into this parameter, then setup will check Microsoft Update, or a WSUS

service, or alternatively, you can supply a relative path to a folder or the UNC (Uniform

Naming Convention) of a network share.

In the following example, we will examine how to use this functionality to install SQL

Server 2019, with CU1 included, which will be located in a network share. When you

download a GDR or CU, they will arrive wrapped in a self-extracting executable. This is

extremely useful, because even if WSUS is not in use in your environment, once you have

signed off on a new patching level, you can simply replace the CU within your network

share; when you do, all new builds can receive the latest update, without you needing to

change the PowerShell script that you use for building new instances.

The PowerShell command in Listing 3-5 will install an instance of SQL Server, named

PROSQLADMINCU1, and install CU1 at the same time, which is located on a file server.

Note The account that you are using to run the installation will require
permissions to the file share.

ChAPTEr 3 SErvEr CorE InSTALLATIon

90

Listing 3-5. Installing CU During Setup

.\SETUP.EXE / IACCEPTSQLSERVERLICENSETERMS /ACTION="Install"

/FEATURES=SQLEngine,Replication,Conn

/INSTANCENAME="PROSQLADMINCU1"

/SQLSVCACCOUNT="MyDomain\SQLServiceAccount1" /SQLSVCPASSWORD="Pa$$w0rd"

/AGTSVCACCOUNT="MyDomain\SQLServiceAccount1" /AGTSVCPASSWORD="Pa$$w0rd"

/SQLSYSADMINACCOUNTS="MyDomain\SQLDBA" /UPDATEENABLED=1

/UPDATESOURCE="\\192.168.183.1\SQL2019_CU1\" /qs

The code in Listing 3-6 demonstrates how you can interrogate the difference

between the two instances. The code uses invoke-sqlcmd to connect to the

PROSQLADMINCORE2 instance and return the systems variable that contains the full

version details of the instance, including the build number. The name of the instance is

also included to help us easily identify the results.

Listing 3-6. Determining Build Version of Each Instance

$parameters = @{

 ServerInstance = 'localhost\PROSQLADMINCORE2'

 Query = "

 SELECT

 @@SERVERNAME

 , @@VERSION

 "

}

Invoke-sqlcmd @parameters

In this example, we have used a PowerShell technique called splatting. This allows

us to make our code more readable, by defining the parameters in advance. Because we

can use multiple splatting groups in our invoke-sqlcmd statement, we could also use

splatting to make our code reusable. For example, we could have our query in a separate

splatting group to the other parameters, meaning that each invocation of invoke-sqlcmd

could use the same parameter set. The results are shown in Figure 3-4.

ChAPTEr 3 SErvEr CorE InSTALLATIon

91

We can see from the results that PROSQLADMINCORE2 is running on SQL Server

build version 15.0.1100.94, which is the build number of SQL Server 2019 CTP 2.1.

 Using a Config File
We have touched on using configuration files to produce consistent builds at several

points already in this book. The sample in Listing 3-7 is the content of a configuration

file, which has been populated with all of the required parameters that are needed

to install an instance named PROSQLADMINCONF1 on Windows Server Core. It

also contains the optional parameters to enable named pipes and TCP/IP, enables

FILESTREAM at the access level where it can only be accessed via T-SQL, sets the SQL

Agent service to start automatically, and configures the collation to be Latin1_General_

CI_AS. In this .ini file, comments are defined with a semicolon at the beginning of

the line.

Figure 3-4. PROSQLADMINCORE2 version details

ChAPTEr 3 SErvEr CorE InSTALLATIon

92

Listing 3-7. Configuration File for SQLPROSQLADMINCONF1

; SQL Server 2019 Configuration File

[OPTIONS]

; Accept the SQL Server License Agreement

IACCEPTSQLSERVERLICENSETERMS

; Specifies a Setup work flow, like INSTALL, UNINSTALL, or UPGRADE.

; This is a required parameter.

ACTION="Install"

; Setup will display progress only, without any user interaction.

QUIETSIMPLE="True"

; Specifies features to install, uninstall, or upgrade.

FEATURES=SQLENGINE,REPLICATION,CONN

; Specify a default or named instance. MSSQLSERVER is the default instance for

; non-Express editions and SQLExpress is for Express editions. This parameter is

; required when installing the SQL Server Database Engine (SQL), Analysis

; Services (AS)

INSTANCENAME="PROSQLADMINCONF1"

; Agent account name

AGTSVCACCOUNT="MyDomain\SQLServiceAccount1"

; Agent account password

AGTSVCPASSWORD="Pa$$w0rd"

; Auto-start service after installation.

AGTSVCSTARTUPTYPE="Automatic"

; Level to enable FILESTREAM feature at (0, 1, 2 or 3).

FILESTREAMLEVEL="1"

ChAPTEr 3 SErvEr CorE InSTALLATIon

93

; Specifies a Windows collation or an SQL collation to use for the Database

; Engine.

SQLCOLLATION="Latin1_General_CI_AS"

; Account for SQL Server service: Domain\User or system account.

SQLSVCACCOUNT="MyDomain\SQLServiceAccount1"

; Password for the SQL Server service account.

SQLSVCPASSWORD="Pa$$w0rd"

; Windows account(s) to provision as SQL Server system administrators.

SQLSYSADMINACCOUNTS="MyDomain\SQLDBA"

; Specify 0 to disable or 1 to enable the TCP/IP protocol.

TCPENABLED="1"

; Specify 0 to disable or 1 to enable the Named Pipes protocol.

NPENABLED="1"

Tip If you use a configuration file created by a previous SQL Server installation
as a template for your own config file, you will notice that the following
parameters are specified: MATrIXCMBrICKCoMMPorT, MATrIXCMSErvErnAME,
MATrIXnAME, CoMMFABrICEnCrYPTIon, CoMMFABrICnETWorKLEvEL, and
CoMMFABrICPorT. These parameters are intended for internal use by Microsoft
only and should be ignored. They have no effect on the build.

Assuming that this configuration file had been saved as c:\SQL2019\configuration1.ini,

then the code in Listing 3-8 could be used to run setup.exe from PowerShell.

Listing 3-8. Installing SQL Server Using a Configuration File

.\setup.exe /CONFIGURATIONFILE="c:\SQL2019\Configuration1.ini"

ChAPTEr 3 SErvEr CorE InSTALLATIon

94

Although this is a perfectly valid use of a configuration file, you can actually be a little

bit more sophisticated and use this approach to create a reusable script, which can be

run on any server, to help you introduce a consistent build process. Essentially, you are

using a scripted version of a prepared stand-alone image for Windows Server Core. This

is particularly useful if your Windows operational teams have not adopted the use of

Sysprep or use other methods to build servers.

In Listing 3-9, you will see another configuration file. This time, however, it only

includes the static parameters that you expect to be consistent across your estate.

Parameters that will vary for each installation, such as instance name and service

account details, have been omitted.

Listing 3-9. Configuration File for PROSQLADMINCONF2

;SQL Server 2019 Configuration File

[OPTIONS]

; Accept the SQL Server License Agreement

IACCEPTSQLSERVERLICENSETERMS

; Specifies a Setup work flow, like INSTALL, UNINSTALL, or UPGRADE.

; This is a required parameter.

ACTION="Install"

; Setup will display progress only, without any user interaction.

QUIETSIMPLE="True"

; Specifies features to install, uninstall, or upgrade.

FEATURES=SQLENGINE,REPLICATION,CONN

; Auto-start service after installation.

AGTSVCSTARTUPTYPE="Automatic"

; Level to enable FILESTREAM feature at (0, 1, 2 or 3).

FILESTREAMLEVEL="1"

; Specifies a Windows collation or an SQL collation to use for the Database Engine.

ChAPTEr 3 SErvEr CorE InSTALLATIon

95

SQLCOLLATION="Latin1_General_CI_AS"

; Windows account(s) to provision as SQL Server system administrators.

SQLSYSADMINACCOUNTS="MyDomain\SQLDBA"

; Specify 0 to disable or 1 to enable the TCP/IP protocol.

TCPENABLED="1"

; Specify 0 to disable or 1 to enable the Named Pipes protocol.

NPENABLED="1"

This means that to successfully install the instance, you will need to use a mix of

parameters from the configuration file and also inline with the command that runs

setup.exe, as demonstrated in Listing 3-10. This example assumes that the configuration

in Listing 3-9 has been saved as C:\SQL2019\Configuration2.ini and will install an

instance named PROSQLADMINCONF2.

Listing 3-10. Installing SQL Server Using a Mix of Parameters and a

Configuration File

.\SETUP.EXE /INSTANCENAME="PROSQLADMINCONF2"

/SQLSVCACCOUNT="MyDomain\SQLServiceAccount1"

/SQLSVCPASSWORD="Pa$$w0rd"

/AGTSVCACCOUNT="MyDomain\SQLServiceAccount1"

/AGTSVCPASSWORD="Pa$$w0rd"

/CONFIGURATIONFILE="C:\SQL2019\Configuration2.ini"

 Automatic Installation Routines
This approach gives us the benefit of having a consistent configuration file that we do

not need to modify every time we build out a new instance. This idea can be taken even

further, however. If we were to save our PowerShell command as a PowerShell script,

then we could run the script and pass in parameters, rather than rewrite the command

each time. This will give a consistent script for building new instances, which we can

place under change control. The code in Listing 3-11 demonstrates how to construct a

parameterized PowerShell script, which will use the same configuration file. The script

assumes D:\ is the root folder of the installation media.

ChAPTEr 3 SErvEr CorE InSTALLATIon

96

Listing 3-11. PowerShell Script for Auto-install

param(

[string] $InstanceName,

[string] $SQLServiceAccount,

[string] $SQLServiceAccountPassword,

[string] $AgentServiceAccount,

[string] $AgentServiceAccountPassword

)

D:\SETUP.EXE /INSTANCENAME=$InstanceName

/SQLSVCACCOUNT=$SQLServiceAccount

/SQLSVCPASSWORD=$SQLServiceAccountPassword

/AGTSVCACCOUNT=$AgentServiceAccount

/AGTSVCPASSWORD=$AgentServiceAccountPassword

/CONFIGURATIONFILE="C:\SQL2019\Configuration2.ini"

Assuming that this script is saved as SQLAutoInstall.ps1, the command in Listing 3-12

can be used to build an instance named PROSQLADMINAUTO1. This command runs the

PowerShell script, passing in parameters, which are then used in the setup.exe command.

Listing 3-12. Running SQLAutoInstall.ps1

./SQLAutoInstall.ps1 -InstanceName 'PROSQLADMIN1' -SQLServiceAccount

'MyDomain\SQLServiceAccount1' -SQLServiceAccountPassword

'Pa$$w0rd' -AgentServiceAccount 'MyDomain\SQLServiceAccount1'

-AgentServiceAccountPassword 'Pa$$w0rd'

Tip Because I have specified the parameter’s names, they do not need to be
specified in the order they are declared in the script. It also makes the code more
readable.

 Enhancing the Installation Routine
You could also extend the SQLAutoInstall.ps1 script further and use it to incorporate the

techniques that you learned in Chapter 1 for the configuration of operating system

components and the techniques that you learned earlier in this chapter for performing

smoke tests.

ChAPTEr 3 SErvEr CorE InSTALLATIon

97

After installing an instance, the amended script in Listing 3-13, which we will refer

to as SQLAutoInstall2.ps1, uses powercfg to set the High Performance power plan and

set-ItemProperty to prioritize background services over foreground applications. It then

runs smoke tests to ensure that the SQL Server and SQL Agent services are both running

and that the instance is accessible.

Listing 3-13. Enhanced PowerShell Auto-install Script

param(

[string] $InstanceName,

[string] $SQLServiceAccount,

[string] $SQLServiceAccountPassword,

[string] $AgentServiceAccount,

[string] $AgentServiceAccountPassword

)

Initialize ConnectionString variable

$ServerName = $env:computername

$ConnectionString = $ServerName + '\' + $InstanceName

#Install the instance

./SETUP.EXE /INSTANCENAME=$InstanceName

/SQLSVCACCOUNT=$SQLServiceAccount

/SQLSVCPASSWORD=$SQLServiceAccountPassword

/AGTSVCACCOUNT=$AgentServiceAccount

/AGTSVCPASSWORD=$AgentServiceAccountPassword

/CONFIGURATIONFILE="C:\SQL2019\Configuration2.ini"

Configure OS settings

powercfg -setactive 8c5e7fda-e8bf-4a96-9a85-a6e23a8c635c

Set-ItemProperty -path HKLM:\SYSTEM\CurrentControlSet\Control\

PriorityControl -name Win32PrioritySeparation -Type DWORD -Value 24

Run smoke tests

Get-service -displayname *$InstanceName*

Invoke-sqlcmd -Serverinstance $ConnectionString -Query "SELECT @@SERVERNAME"

ChAPTEr 3 SErvEr CorE InSTALLATIon

98

As well as passing variables into the setup.exe command, this script also uses the

$InstanceName parameter as input for the smoke tests. The parameter can be passed

straight into to get-service cmdlet, with wildcards on either side. For invoke-sqlcmd,

however, we need to do a little extra work. Invoke-sqlcmd requires the full name of the

instance, including the server name, or local, assuming that the script is always run

locally. The script pulls the name of the server from the ComputerName environmental

variable and then concatenates this with the $InstanceName variable, placing a \

between the two. This concatenated value populates the $ConnectionString variable,

which can then be passed into the -Serverinstance switch.

 Production Readiness
Finally, you may wish to add some defensive coding to your script in order to make it

production ready. Although PowerShell has try/catch functionality due to setup.exe

being an external application, which will generate its own messages and errors, the

most effective technique for ensuring the smooth running of this script is to enforce

mandatory parameters.

The code in Listing 3-14 is a modified version of the script, which we will refer to as

SQLAutoInstall3.ps1. This version of the script uses the Parameter keyword to set the

Mandatory attribute to true for each of the parameters. This is important, because if the

person running this script were to omit any of the parameters, or if there was a typo in

the parameter name, the installation would fail. This provides a fail-safe by ensuring that

all of the parameters have been entered before allowing the script to run. The additional

change that we have made in this script is to add annotations before and after each step,

so that if the script does fail, we can easily see where the error occurred.

Listing 3-14. Auto-install Script with Defensive Code

param(

[Parameter(Mandatory=$true)]

[string] $InstanceName,

[Parameter(Mandatory=$true)]

[string] $SQLServiceAccount,

[Parameter(Mandatory=$true)]

[string] $SQLServiceAccountPassword,

[Parameter(Mandatory=$true)]

ChAPTEr 3 SErvEr CorE InSTALLATIon

99

[string] $AgentServiceAccount,

[Parameter(Mandatory=$true)]

[string] $AgentServiceAccountPassword

)

Initialize ConnectionString variable

$ServerName = $env:computername

$ConnectionString = $ServerName + '\' + $InstanceName

"Initialize variables complete..."

#Install the instance

./SETUP.EXE /INSTANCENAME=$InstanceName

/SQLSVCACCOUNT=$SQLServiceAccount

 /SQLSVCPASSWORD=$SQLServiceAccountPassword

/AGTSVCACCOUNT=$AgentServiceAccount

/AGTSVCPASSWORD=$AgentServiceAccountPassword

/CONFIGURATIONFILE="C:\SQL2019\Configuration2.ini"

"Instance installation complete..."

Configure OS settings

powercfg -setactive 8c5e7fda-e8bf-4a96-9a85-a6e23a8c635c

"High Performance power plan configured..."

Set-ItemProperty -path HKLM:\SYSTEM\CurrentControlSet\Control\

PriorityControl -name Win32PrioritySeparation -Type DWORD -Value 24

"Optimize for background services configured..."

Run smoke tests

Get-service -displayname *$InstanceName* -ErrorAction Stop

"Service running check complete..."

Invoke-sqlcmd -Serverinstance $ConnectionString -Query "SELECT @@SERVERNAME"

"Instance accessibility check complete..."

ChAPTEr 3 SErvEr CorE InSTALLATIon

100

The SQLAutoInstall3.ps1 script has been run, but without any parameters specified.

In previous versions of the script, PowerShell would have gone ahead and executed

the code, only for setup.exe to fail, since no values were specified for the required

parameters. In this version, however, you can see that you will be prompted to enter a

value for each parameter in turn.

When running the script, you will notice that after each phase of the script execution,

our annotations are shown. This can aid you in responding to errors, because you can

easily see which command caused an issue before you even begin to decipher any error

messages that may be displayed.

 Summary
Installing SQL Server on Windows Server Core can be as simple as running a single

command from PowerShell and passing in the appropriate parameters. However, for

consistency across the enterprise and to reduce manual effort, you may wish to automate

your build process. You can do this by using a configuration file, but you can also expand

this process out to fully automate the installation, including OS configuration. You will

then be able to keep a PowerShell script under change control and simply run it, passing

parameters, every time you wish to build a new instance.

After installing an instance, you should run smoke tests to ensure that the services

are running and that the instance is accessible. This will highlight any show-stopping

issues. If you do need to troubleshoot a build, then your starting point should be to check

the summary.txt log file and if you need to, the detail.txt log file.

In addition to installing the base binaries, you can use SQL Server’s Product Update

functionality to install the latest cumulative update at the same time. Product Update

can be configured to check Microsoft Update, a folder location, or network folder. If

you store the latest fully tested update on a network share, then you can use this when

installing any instance on the network, and when you wish to increase the level of

update that you support, you can simply replace the update file on the network share.

ChAPTEr 3 SErvEr CorE InSTALLATIon

101
© Peter A. Carter 2019
P. A. Carter, Pro SQL Server 2019 Administration, https://doi.org/10.1007/978-1-4842-5089-1_4

CHAPTER 4

Installation
on Heterogeneous
Operating Systems
The last two major releases of SQL Server have focused heavily on providing capability

to install SQL Server in a variety of nontraditional environments. In this chapter, we will

explore how to install SQL Server on Linux and how to build and run Docker images and

containers that include SQL Server.

Tip The commands used to install and configure SQL Server on Linux vary
slightly between distributions. This chapter focused on Ubuntu, as it is arguably
the friendliest, for Windows-based DBAs and this chapter’s intent is to familiarize
you with the concepts and process. Microsoft provides quick start guides for each
distribution, at https://docs.microsoft.com/en-us/sql/linux/sql-
server- linux-setup?view=sql-server-2019.

 Installing SQL Server on Linux
Table 4-1 details the distributions and versions of Linux, on which SQL Server is

supported. The version is important as, for example, the current version of Ubuntu,

at the time of writing, is 19.4.1. SQL Server is supported on version 16.4. In my own

personal tests, SQL Server could be successfully installed on Ubuntu 19.4.1, but the

Pacemaker and PCS services (at the time of writing) could not be installed on this

version, meaning it is not possible to configure AlwaysOn Availability Groups, for HA/

DR, on this version of Ubuntu.

https://docs.microsoft.com/en-us/sql/linux/sql-server-linux-setup?view=sql-server-2019
https://docs.microsoft.com/en-us/sql/linux/sql-server-linux-setup?view=sql-server-2019

102

In the following sections, we will look at how to install SQL Server manually on Linux

and how to create an unattended install.

 Installing SQL Server Manually
Unlike the installation of SQL Server on Windows, where you specify the way in which you

would like your instance to be configured, prior to the installation, on Linux the reverse is

true. You initially install a base version of SQL Server, and then configure the instance, post

deployment. In this section, we will review the process of manually installing SQL Server

on a Linux platform. For this demonstration, we will use Ubuntu 16.4.

The first step in installing SQL Server is to import the public gpg keys, which will

give us access to the SQL Server repo (repository). This can be achieved using the bash

command in Listing 4-1.

Listing 4-1. Import the Public GPG Key

wget -qO- https://packages.microsoft.com/keys/microsoft.asc | sudo apt-key add –

If we break this command down, we are using the wget command to pull the

keys from Microsoft’s web site. wget is a command that is used to get web content.

We then use the | operator to pass the key into the apt-key command, which is a key

management tool. The add command adds the key to a list of trusted keys. Once the SQL

Server package is authenticated using the trusted key, the package will become trusted.

Using sudo is similar to the principle of Run As Administrator on a Windows platform.

It is used to elevate the user’s permissions to that of root (which is the equivalent of the

Windows administrator).

Table 4-1. Supported Linux Distributions and Versions

Distribution Supported Version(s)

Red Hat Enterprise 7.3–7.6

SUSE Enterprise Server V12 SP2

Ubuntu 16.4

CHAPTER 4 InSTALLATIon on HETERogEnEoUS oPERATIng SySTEMS

103

The next step is to register the SQL Server repository. This can be done using the

bash command in Listing 4-2. This command uses the add-apt-repository script,

to add an external repository. The embedded wget command pulls the package from

Microsoft’s web site.

Listing 4-2. Register the SQL Server Repository

sudo add-apt-repository "$(wget -qO- https://packages.microsoft.com/config/

ubuntu/16.04/mssql-server-2019.list)"

Next, we will use the apt-get, which is the Linux package manager, to pull a list of

packages from the package repos and update these lists, with the most recent versions of

the packages. Listing 4-3 demonstrates this.

Listing 4-3. Update Repo Package Lists

sudo apt-get update

In Listing 4-4, we will use apt-get again, this time with the install command, to

install the SQL Server package. The -y switch is used to provide automatic acceptance

on user prompts.

Listing 4-4. Install the SQL Server Package

sudo apt-get install -y mssql-server

When package installation is complete, the output will prompt you to run sudo

/opt/mssql/bin/mssql-conf setup which is the SQL Server configuration tool that will

allow you to configure the instance. Running mssql-conf setup tool will be prompted

to select the edition of SQL Server that you wish to use, as illustrated in Figure 4-1. Use

numbers 1 through to 8 to make your selection.

CHAPTER 4 InSTALLATIon on HETERogEnEoUS oPERATIng SySTEMS

104

Next, you will be asked to accept the SQL Server license terms, as illustrated in

Figure 4-2. They can be accepted by typing Yes.

Figure 4-1. Selecting the edition

Figure 4-2. Accept license terms

As illustrated in Figure 4-3, you will next need to select your language, using

numbers 1 through to 11.

Figure 4-3. Language selection

CHAPTER 4 InSTALLATIon on HETERogEnEoUS oPERATIng SySTEMS

105

Tip The languages that have not rendered correctly in Figure 4-3 are
multicharacter languages, such as Chinese.

You will now be prompted to enter and confirm the password for the sa account, as

shown in Figure 4-4.

Figure 4-4. Adding the sa password

Your instance is now configured and you can connect to it, either using sqlcmd

(which is installed on the Linux server as part of the SQL Server Tools package—

discussed in the “Unattended Installation” section of this chapter) or remotely, by using

SSMS (SQL Server Management Studio).

 Configuring SQL Server
Although SQL Server is now installed and basic configuration has been performed, there

are many configuration aspects that may need to be addressed, at both the operating

system and instance levels, to make the instance fully functional for your requirements.

In this section, we will explore some of the common configuration requirements that

may need to be performed in a Linux environment.

The main tool for configuring the SQL Server instance is mssql-conf, the same tool

that we used during the installation process, to configure the edition and language

as well as to set the password for the sa account. This tool also offers many other

parameters that can be configured, and these parameters are detailed in Table 4-2.

CHAPTER 4 InSTALLATIon on HETERogEnEoUS oPERATIng SySTEMS

106

Table 4-2. mssql-conf Parameters

Parameter Description

Agent Enables or disables SQL Server Agent

Collation Sets the instance collation

Customer feedback Specifies if customer feedback is sent to Microsoft. This is on by

default and cannot be turned off for free editions

Database Mail profile Sets the Database Mail profile that is used for e-mail alerts

Default data directory Sets the default directory for user database files

Default log directory Sets the default directory for user database’s transaction log files

Default Master database directory Sets the directory for Master database data and log files

Default Master database file name Changes the name of the database files for the Master database

Default dump directory Sets the directory to be used for memory dump files

Default error log directory Sets the directory to be used for new SQL Server error log,

Default Profiler Trace, System Health Session XE, and Hekaton

Session XE files

Default backup directory Sets the directory to be used for new backups

Dump type Specifies the type of memory dump file to capture. Allows full

dumps to be captured in addition to mini dumps. Also allows

you to specify the type of dump file (mini, miniplus, filtered,

and full)

High availability Enables or disables Alwayson Availability groups

Local Audit directory Sets the directory to be used for Local Audit files

Locale Sets the locale for the SQL Server instance

Memory limit Sets the amount of physical memory available to the SQL Server

instance

TCP port Sets the port, on which SQL Server will listen for connections

TLS Used to configure various networking aspects of the SQL Server

instance, including forceencryption, tlscert, tlskey, tlsprotocols,

tlsciphers, and the kerberoskeytabfile

Traceflags Sets global trace flags on the instance

CHAPTER 4 InSTALLATIon on HETERogEnEoUS oPERATIng SySTEMS

107

Probably the most common configuration requirement is to start SQL Server Agent.

This can be achieved using the Agent parameter, as shown in Listing 4-5.

Listing 4-5. Start Server Agent

sudo /opt/mssql/bin/mssql-conf set sqlagent.enabled true

Another good example of how to use the tool is the TCP port parameter. Just as in

a Windows environment, TCP 1433 is used as the default port number for SQL Server.

There are reasons why you would want to change this, however, such as in high security

environments, to avoid a well-known port number that can be attacked.

The command in Listing 4-6 will configure the SQL Server instance to listen on Port

50001. 50001-500xx is a port range I often use, as it is not reserved.

Listing 4-6. Configure the Port

sudo /opt/mssql/bin/mssql-conf set network.tcpport 50001

For the setting to take effect, we will first need to restart the SQL Server service. This

can be achieved using the systemctl, which is a Linux tool for managing services. The

command in Listing 4-7 will restart the SQL Server service.

Listing 4-7. Restart the SQL Server Service

sudo systemctl restart mssql-server

The systemctl tool can also be used to check if a service is running, as demonstrated

in Listing 4-8.

Listing 4-8. Check a Service Is Running

sudo systemctl status mssql-server

Now that we have configured SQL Server to listen on Port 50001, we also need

to configure the local Firewall, to allow traffic through this port. The local Firewall is

managed using a tool called ufw (Uncomplicated Firewall). The script in Listing 4-9

illustrates how to install ufw, set default rules, allow traffic through port 50001, and then

reset it, for the rules to take effect. Finally, the script will display the configured rules.

CHAPTER 4 InSTALLATIon on HETERogEnEoUS oPERATIng SySTEMS

108

Listing 4-9. Working with ufw

#Install ufw

sudo apt-get install ufw

#Start ufw

sudo systemctl start ufw

#Enable ufw

sudo systemctl enable ufw

#Set default Firewall Rules

sudo ufw default allow outgoing

sudo ufw default deny incoming

#Add A Rule For SQL

sudo ufw allow 50001/tcp

#Restart ufw

sudo ufw reload

#Show ufw Status

sudo ufw status

Note In SQL Server 2019, TempDB will automatically be configured with one
data file per core, to a maximum of eight files. For previous versions, however, only
a single data file will be created during setup.

 Unattended Installation
Because Bash is a scripting language, the SQL Server installation can be scripted, in the

same way that you can use PowerShell to script installation in a Windows environment.

To do this, we will first create a text file, with the text editor, vi. The command in Listing 4-10

will create and open a file called sqlconfig.sh. sh is a commonly used extension for

bash scripts.

CHAPTER 4 InSTALLATIon on HETERogEnEoUS oPERATIng SySTEMS

109

Listing 4-10. Create a Bash Script with Vi

vi sqlconfig.sh

A full discussion of vi commands is beyond the scope of this book. To insert text,

however, use the i command. When finished, use ESC to return to command mode.

Here, :q! will exit vi without saving, or :wq will save and exit.

The script in Listing 4-11 can be added to the bash script. The first line of the file

indicates that it is executable. You will also notice that we are installing full-text indexing

for this instance and configuring both a trace flag and a maximum memory limit for SQL

Server.

Possibly the most interesting thing to note, however, is that we are also installing

a package called mssql-tools. This package contains the command-line tools for SQL

Server on Linux, including sqlcmd. We will use this to create a new user and add them to

the sysadmins fixed server role, at the end of the script.

Tip Microsoft is working on a new multiplatform command-line interface for SQL
Server, called mssql-cli. This tool can be used on Linux, Windows, and Mac. At the
time of writing, the tool was in preview, but further information can be found at
https://github.com/dbcli/mssql-cli.

Listing 4-11. Scripted SQL Server Installation

#! /bin/bash

MSSQL_SA_PASSWORD='Pa££w0rd'

MSSQL_PID='developer'

SQL_USER='SQLAdmin'

SQL_USER_PASSWORD='Pa££w0rd'

wget -qO- https://packages.microsoft.com/keys/microsoft.asc | sudo apt-key add -

sudo add-apt-repository "$(wget -qO- https://packages.microsoft.com/config/

ubuntu/16.04/mssql-server-2019.list)"

CHAPTER 4 InSTALLATIon on HETERogEnEoUS oPERATIng SySTEMS

https://github.com/dbcli/mssql-cli

110

sudo add-apt-repository "$(wget -qO- https://packages.microsoft.com/config/

ubuntu/16.04/prod.list)"

sudo apt-get update -y

sudo apt-get install -y mssql-server

sudo ACCEPT_EULA=Y apt-get install -y mssql-tools unixodbc-dev

sudo MSSQL_SA_PASSWORD=$MSSQL_SA_PASSWORD \

 MSSQL_PID=$MSSQL_PID \

 /opt/mssql/bin/mssql-conf -n setup accept-eula

sudo /opt/mssql/bin/mssql-conf set sqlagent.enabled true

sudo /opt/mssql/bin/mssql-conf set memory.memorylimitmb 2048

sudo /opt/mssql/bin/mssql-conf traceflag 3226 on

sudo apt-get install -y mssql-server-fts

sudo systemctl restart mssql-server

/opt/mssql-tools/bin/sqlcmd \

 -S localhost \

 -U SA \

 -P $MSSQL_SA_PASSWORD \

 -Q " CREATE LOGIN [$SQL_USER] WITH PASSWORD=N'$SQL_INSTALL_PASSWORD';

ALTER SERVER ROLE [sysadmin] ADD MEMBER [$SQL_USER]"

The command in Listing 4-12 will grant the execute permission on the script.

Listing 4-12. Grant Execute Permissions

chmod +x sqlconfig.sh

The script can be executed using the command in Listing 4-13.

Listing 4-13. Execute the Installation

sh sqlconfig.sh

CHAPTER 4 InSTALLATIon on HETERogEnEoUS oPERATIng SySTEMS

111

 Installing SQL Server in a Docker Container
Containers are isolated, lightweight units, which can be used to run applications.

Unlike virtual machines, which emulate hardware, containers sit on top of an operating

system and emulate the kernel. Kernel emulation with containers is referred to as

containerization. Containers are becoming popular in organizations of all sizes, because

they are efficient and portable. The portability of containers also simplifies deployment

processes and makes them very popular in DevOps environments.

Docker is the application platform that is used to run containers. It was originally

developed for Linux but is now also supported on Windows. This means that SQL Server

can utilize containers, regardless of the required base operating system.

A Docker image is a single file, which contains a fully packaged application. So,

in terms of SQL Server, a Docker image may be built on an operating system such as

Windows Server 2019 Core and the SQL Server binaries. Your instance would be fully

configured, following your best practices, so that every time you create a container from

your image, it will be ready to use.

Caution An important consideration, when containerizing SQL Server, is that
containers are stateless. one of their advantages is that you can drop a container
and spin it up again, very quickly and easily, and it will be exactly the same as it
was originally. A side effect of this is that if you have data files inside a container,
when you drop the container, the data files are also destroyed. For this reason, user
data files and msdb data files should be stored outside of the container. I usually
recommend keeping the data files for master inside the container, as this database
stores many of your instance configuration details, but in certain circumstances,
you may wish to store these outside of the container as well.

 Running a Microsoft-Supplied Docker Image
Microsoft supply a small number of Docker images for SQL Server. For example, at the

time of writing, there is a SQL Server 2017 for Ubuntu 16.4 and a Windows Server Core

2016 image, running SQL Server 2017 Developer edition. In the following example, we

will configure containers for Windows Server 2016 Core and deploy the standard SQL

Server 2017 Developer edition container.

CHAPTER 4 InSTALLATIon on HETERogEnEoUS oPERATIng SySTEMS

112

Our first step will be to install the containers feature and restart the computer. This

can be done by running the PowerShell script in Listing 4-14.

Listing 4-14. Install Containers Feature

Install-WindowsFeature -name Containers

Restart-Computer -Force

We now need to install the Docker engine and the Microsoft Docker provider. This

can be achieved with the script in Listing 4-15.

Listing 4-15. Install Docker Engine

Install-Module -Name DockerMsftProvider -Repository PSGallery -Force

Install-Package -Name docker -ProviderName DockerMsftProvider -Force

Tip The script in Listing 4-15 will prompt you to install the nuget provider, if
it’s not already installed. you should accept this, as nuget is a package manager
required for installing other packages, such as Docker.

The final step in Docker installation is to start the Docker service. Using PowerShell,

this can be achieved with the command in Listing 4-16.

Listing 4-16. Start the Docker Service

Start-Service docker

We can now pull the image from the Microsoft Container Registry (MCR). This is

a repository of base Windows containers. The Docker Hub is the default repository for

container images, but even though Windows images are listed on Docker Hub, they are

stored on the MCR. We can pull the image using the command in Listing 4-17.

Listing 4-17. Pull the Docker Image

Docker image pull microsoft/mssql-server-windows-developer

CHAPTER 4 InSTALLATIon on HETERogEnEoUS oPERATIng SySTEMS

113

Finally, we will need to start the container. We can start our container using the

command in Listing 4-18. In this example, the -d switch is used to denote that the

container should be detached. This means that the container will run as a background

process, as opposed to interactively. We are also using -p to publish the containers

port to the host and -e to set the environment variables. In this case, we are setting the

password for the sa account and accepting the SQL Server license terms.

Listing 4-18. Run the Container

docker run -d -p 1433:1433 -e sa_password=Pa££w0rd -e ACCEPT_EULA=Y

microsoft/mssql-server-windows-developer

 Creating a Simple Docker Image for SQL Server
While the Microsoft image may be suitable for some purposes, in most cases, you will

need to create your own Docker image, with your own required configuration. In this

section, we will explore how to use a Docker file to create an image that will install SQL

Server 2019 and SQL Server command-line tools on Windows Server Core.

Tip In this section, we will use a Windows Server 2019 host, which has had
the containers feature, Docker module, and Microsoft Docker provider installed.
Details of how to perform these preparation steps can be found in the “Running a
Microsoft-Supplied Docker Image” section of this chapter.

A Docker file is a deployment script, which specifies how the container image should be

built. The file consists of a set of instructions. The instructions that are most relevant to

creating SQL Server containers based on Windows are detailed in Table 4-3.

CHAPTER 4 InSTALLATIon on HETERogEnEoUS oPERATIng SySTEMS

114

The first step in creating our own container image is to pull the Windows Server 2019

Core image from the MCR. This is the image that we will use as a base for our image. We

can do this with PowerShell by using the command in Listing 4-19.

Listing 4-19. Pull the Base Image

docker pull mcr.microsoft.com/windows/servercore:ltsc2019

Our next step will be to create a simple folder structure on the host. Firstly, we will

create a folder called C:\DockerBuild. This folder will store our build scripts. We will

also create a folder underneath, called C:\DockerBuild\SQL2019. This folder should

contain the SQL Server 2019 installation media.

We will now need to create two scripts, both of which we will place in the

C:\DockerBuild folder. The first of these files is the Docker file. This file must be called

Dockerfile and have no extension.

Tip When saving dockerfile, ensure that your text/code editor has not
automatically appended a default file extension to the file. If it has, then the build of
the image will fail.

The script in Listing 4-20 contains the contents of the Docker file we will use.

Table 4-3. Docker File Instructions

Instruction Description

FRoM The container image, on which your new image should be based

RUn Specifies a command that should be run

CoPy Copies files from the host to the container image

ADD Similar to CoPy, but allows files to be copied from a remote source

WoRKDIR Specifies the working directory, for other Docker instructions

CMD Sets a default command to run, when an instance of the container image is deployed

VoLUME Creates a mount point

CHAPTER 4 InSTALLATIon on HETERogEnEoUS oPERATIng SySTEMS

115

Listing 4-20. Dockerfile

#Use the Server Core base image

FROM mcr.microsoft.com/windows/servercore:ltsc2019

#Make temp folders for the SQL Server and SQL Command Line Utilities media

RUN powershell -Command (mkdir C:\SQL2019)

#Copy the SQL Server media into the container

COPY \SQL2019 C:/SQL2019

#Install SQL Server

RUN C:/SQL2019/SETUP.exe /Q /ACTION=INSTALL /FEATURES=SQLENGINE

/INSTANCENAME=MSSQLSERVER \

/SECURITYMODE=SQL /SAPWD="Passw0rd" /SQLSVCACCOUNT="NT AUTHORITY\System" \

/AGTSVCACCOUNT="NT AUTHORITY\System" /SQLSYSADMINACCOUNTS="BUILTIN\

Administrators" \

/IACCEPTSQLSERVERLICENSETERMS=1 /TCPENABLED=1 /UPDATEENABLED=False

#Install Chocolatey and SQL Server Command Line Utilities

RUN @"%SystemRoot%\System32\WindowsPowerShell\v1.0\powershell.exe"

-NoProfile -InputFormat None -ExecutionPolicy Bypass -Command "iex

((New- Object System.Net.WebClient).DownloadString('https://chocolatey.org/

install.ps1'))" && SET "PATH=%PATH%;%ALLUSERSPROFILE%\chocolatey\bin"

RUN choco install sqlserver-cmdlineutils -y

#Set SQL Server to start automaticaly

RUN powershell -Command (Set-Service MSSQLSERVER -StartupType Automatic)

#Remove the installation media

RUN powershell -Command (Remove-Item -Path C:/SQL2019 -Recurse -Force)

#Create a mountpoint for data files

VOLUME C:/DataFiles

CHAPTER 4 InSTALLATIon on HETERogEnEoUS oPERATIng SySTEMS

116

#Copy start.ps1 to container

COPY \start.ps1 /

WORKDIR /

CMD powershell -Command (.\start.ps1)

Working through the contents of the file, even without experience of Docker, it is

fairly easy to see what is happening. Our first statement indicates that our build will be

based upon the Windows Server 2019 Core build, supplied by Microsoft. We then use the

RUN and COPY instructions to copy the SQL Server media to the container.

After this, we move straight into the installation of SQL Server. Installing SQL Server

via PowerShell is discussed in Chapter 3. There is no difference in this code as to when

you install SQL Server on a traditional server running Windows Server Core. The only

interesting thing to note is that because the command spans multiple lines, we have

used the \ at the end of each line, to let Docker know that it is a single instruction.

The next part of the script is quite interesting. We are installing Chocolatey.

Chocolatey is a package manager for Windows, which has a large gallery of prepackaged

applications. In this case, it is helpful, because it allows us to easily install SQL Server

Command Line Utilities, which is available on the Chocolatey gallery.

Tip Chocolatey can also be used to package your own SQL Server builds.
I did this for a client recently, and it fits very nicely into a Devops/configuration
management style of operations.

Next, we use the RUN instruction, to run PowerShell commands, which will clean

up our installation files and ensure that the Database Engine Service is started. Our next

step is to use the VOLUME instruction to create a mount point for DataFiles. When we

run an instance of the container, we will be able to map this to a folder on our host, to

allow our data to be persisted.

Finally, we copy a file called Start.ps1 to our container and run it. The content of

Start.ps1 is shown in Listing 4-21. This script is used to run an infinite loop. If we did not

do this, then the container would stop, as soon as the last instruction was sent.

CHAPTER 4 InSTALLATIon on HETERogEnEoUS oPERATIng SySTEMS

117

Listing 4-21. Start.ps1

$lastCheck = (Get-Date).AddSeconds(-2)

while ($true)

{

 $lastCheck = Get-Date

 Start-Sleep -Seconds 2

}

After saving both of these files in the C:\DockerBuild folder of the host, we can build

the image, by running the command in Listing 4-22. We use the -t switch to tag the build.

I have used the major.minor notation to indicate a build version.

Tip Make sure you are in the C:\DockerBuild folder before running the command.

Listing 4-22. Build the Image

docker build -t sql2019:1.0 .

Once the build has completed, we can create an instance of the container, by using

the command in Listing 4-23.

Listing 4-23. Run a Docker Container

docker run -p 1433:1433 --name sql-2019 -d --volume c:\Datafiles:c:\

datafiles sql2019:1.0

In this command, we are using -p to expose a port to the host machine and -d to

run the container as a background process. We are also using –-name to identify the

container. Most interestingly, we are using --volume to map the mount point in the

container to a folder on our host. This takes the format source:target.

We have not specified an IP address for the container, so we can check the IP address

that it has been assigned, by using the command in Listing 4-24. This is using the Docker

inspect command to pull out a specific node from the JSON-based configuration,

followed by the name of the container that you are interested in.

CHAPTER 4 InSTALLATIon on HETERogEnEoUS oPERATIng SySTEMS

118

Listing 4-24. Obtain the Container’s IP Address

docker inspect --format "{{ .NetworkSettings.Networks.nat.IPAddress }}" sql-2019

We can now connect to the instance, from outside of the container, using SSMS (or

other SQL client) using the IP address.

Let’s use the script in Listing 4-25 to create a database on the mounted volume.

Listing 4-25. Create a Database

CREATE DATABASE PersistedData

ON PRIMARY

(NAME = N'PersistedData', FILENAME = N'C:\Datafiles\PersistedData.mdf' ,

SIZE = 8192KB , FILEGROWTH = 65536KB)

 LOG ON

(NAME = N'PersistedData_log', FILENAME = N'C:\Datafiles\PersistedData.ldf' ,

SIZE = 8192KB , FILEGROWTH = 65536KB)

GO

If we now destroy the container, then the data will persist. We can drop the container

using the script in Listing 4-26. This script first stops the container and then removes it.

Listing 4-26. Remove the Container

docker stop sql-2019

docker rm sql-2019

If you now re-create the container using the script in Listing 4-23 and obtain the new

IP address by using the script in Listing 4-24, you will notice, when you connect to the

instance, that the PersistedData database is no longer on the instance. This is because

the database is not attached during the build. Because the files are stored on the host,

however, then you can simply reattach the database, using the command in Listing 4-27.

Listing 4-27. Reattach the Database

CREATE DATABASE PersistedData ON

(FILENAME = N'C:\datafiles\PersistedData.mdf'),

(FILENAME = N'C:\datafiles\PersistedData.ldf')

 FOR ATTACH

GO

CHAPTER 4 InSTALLATIon on HETERogEnEoUS oPERATIng SySTEMS

119

 Creating a Configurable Docker Image for SQL Server
While the build discussed in the “Creating a Simple Docker Image for SQL Server”

section was easy to follow, it was also rather inflexible. Everything was hard-coded and

there was no means of attaching databases during the build process. Therefore, in the

following demonstration, we will make a major change to our build, which allows us to

parameterize it, making the build a lot more useable in real-world scenarios.

Following the same process as before and using the same folder structure on the

host, let’s first create a new Docker file. The contents of Dockerfile that we will use can

be found in Listing 4-28. The file is similar, but you will notice a few changes. Firstly,

we have removed the code which installs SQL Server Command Line Utilities. This is

because we will be using the sqlserver PowerShell provider instead.

We have also changed the hard-coded sa password in the SQL Server installation

step, to be TempPassw0rd. This is because when we run an instance of the container, we

will pass in the password that we want to use.

Most significantly, you will notice that the call to Start.ps1 has been expanded to

pass in parameters. In this build, Start.ps1 is where all of the magic happens. You will

notice that we are passing environment variables to each of the script’s parameters.

Listing 4-28. Dockerfile

#Use the Server Core base image

FROM mcr.microsoft.com/windows/servercore:ltsc2019

#Make temp folders for the SQL Server and SQL Command Line Utilities media

RUN powershell -Command (mkdir C:\SQL2019)

#Copy the SQL Server media into the container

COPY \SQL2019 C:/SQL2019

#Install SQL Server

RUN C:/SQL2019/SETUP.exe /Q /ACTION=INSTALL /FEATURES=SQLENGINE

/INSTANCENAME=MSSQLSERVER \

/SECURITYMODE=SQL /SAPWD="TempPassw0rd" /SQLSVCACCOUNT="NT AUTHORITY\System" \

/AGTSVCACCOUNT="NT AUTHORITY\System" /SQLSYSADMINACCOUNTS="BUILTIN\

Administrators" \

/IACCEPTSQLSERVERLICENSETERMS=1 /TCPENABLED=1 /UPDATEENABLED=False

CHAPTER 4 InSTALLATIon on HETERogEnEoUS oPERATIng SySTEMS

120

#Set SQL Server to start automaticaly

RUN powershell -Command (Set-Service MSSQLSERVER -StartupType Automatic)

#Remove the installation media

RUN powershell -Command (Remove-Item -Path C:/SQL2019 -Recurse -Force)

#Create a mountpoint for data files

VOLUME C:/DataFiles

#Switch shell to PowerShell

#SHELL ["powershell", "-Command", "$ErrorActionPreference = 'Stop';

$ProgressPreference = 'SilentlyContinue';"]

#Copy start.ps1 to container

COPY \start.ps1 /

WORKDIR /

CMD powershell -Command (.\start.ps1 -saPassword $env:saPassword -databases

$env:databases -agentStartupType $env:agentStartupType)

Our next step will be to create a new Start.ps1 file. This time, the file, which can be

seen in Listing 4-29, is a lot more complex. The script accepts three parameters, which

allow us to pass in a password for the sa account, an array of databases that should exist

on the instance, and the required startup type of the SQL Server Agent service.

The first command in the script is used to install the sqlserver PowerShell module,

from the PowerShell Gallery. This allows us to use the Invoke-SqlCmd cmdlet. The

script then runs a query against the SQL instance, authenticating using the temporary

password of the sa account, and changes the password to the one passed in.

The next section of the script is the most complicated. This section checks to see if

each database in the array of database names that was passed exists on the instance. If it

doesn’t, it attempts to attach the database from the mounted volume. If no database files

exist, it will check to see if there is a backup file in the mounted volume and restore the

database. Finally, if all else fails, a new database will be created.

CHAPTER 4 InSTALLATIon on HETERogEnEoUS oPERATIng SySTEMS

121

Tip This version of the script relies heavily on naming conventions of database
and backup files. It also assumes that there will only ever be an .mdf and .ldf
file. you can, of course, edit this script, however, to add support for .ndf files or
your own naming conventions or application requirements.

The next command in the script will alter the SQL Server Agent service to use the

startup type that has been passed to the script. Finally, the script enters the same infinite

loop as in the previous example. This stops the container from stopping, after the last

instruction is passed.

Listing 4-29. Start.ps1

param(

[Parameter(Mandatory=$true)]

[string]$saPassword,

[Parameter(Mandatory=$false)]

[string]$databases,

[Parameter(Mandatory=$false)]

[String]$agentStartupType

)

#Install SQL Server PowerShell Provider

If(-not(Get-InstalledModule SQLServer -ErrorAction silentlycontinue)){

 Install-Module SQLServer -Confirm:$False -Force

}

#Update sa Password

$params = @{

 ServerInstance = "localhost"

 Username = "sa"

 Password = "TempPassw0rd"

 Query = "ALTER LOGIN [sa] WITH PASSWORD='{0}'; ALTER LOGIN sa ENABLE ;"

-f $saPassword

}

CHAPTER 4 InSTALLATIon on HETERogEnEoUS oPERATIng SySTEMS

122

Invoke-Sqlcmd @params

#Shred the database array

$databasesClean = $databases -split ","

#Create each database

ForEach ($database in $databasesClean) {

 $params = @{

 ServerInstance = "localhost"

 Username = "sa"

 Password = $saPassword

 Variable = "dbName='{0}'" -f $database

 Query = " SELECT COUNT(*) AS dbExists FROM sys.databases WHERE name

= `$(dbName)"

 }

 $dbExists = Invoke-Sqlcmd @params

 if ($dbexists.dbExists -eq 0) {

 $mdf = "C:\DataFiles\{0}.mdf" -f $database

 if (Test-Path $mdf) {

 $params = @{

 ServerInstance = "localhost"

 Username = "sa"

 Password = $saPassword

 Variable = "dbName='{0}'" -f $database

 Query = "DECLARE @SQL NVARCHAR(MAX) = 'CREATE DATABASE [' +

`$(dbName) + '] ON (FILENAME = N"C:\datafiles\' +

`$(dbName) + '.mdf"),(FILENAME = N"C:\datafiles\'

+ `$(dbName) + '.ldf") FOR ATTACH'; EXEC(@SQL)"

 }

 Invoke-Sqlcmd @params

 } else {

 $bak = "C:\DataFiles\{0}.bak" -f $database

 if (Test-Path $bak) {

 $params = @{

CHAPTER 4 InSTALLATIon on HETERogEnEoUS oPERATIng SySTEMS

123

 ServerInstance = "localhost"

 Username = "sa"

 Password = $saPassword

 Variable = "dbName='{0}'" -f $database

 Query = " DECLARE @SQL NVARCHAR(MAX) = 'RESTORE DATABASE

[' + `$(dbName) + '] FROM DISK = N"C:\

Datafiles\' + `$(dbName) + '.bak";'; EXEC(@SQL)"

 }

 Invoke-Sqlcmd @params

 } else {

 $params = @{

 ServerInstance = "localhost"

 Username = "sa"

 Password = $saPassword

 Variable = "dbName='{0}'" -f $database

 Query = " DECLARE @SQL NVARCHAR(MAX) = 'CREATE DATABASE

[' + `$(dbName) + ']' EXEC(@SQL)"

 }

 Invoke-Sqlcmd @params

 }

 }

 }

}

#Set Agent service startup type

Set-Service SQLSERVERAGENT -StartupType $agentStartupType

#Start infinite loop

$lastCheck = (Get-Date).AddSeconds(-2)

while ($true)

{

 $lastCheck = Get-Date

 Start-Sleep -Seconds 2

}

CHAPTER 4 InSTALLATIon on HETERogEnEoUS oPERATIng SySTEMS

124

Tip Environment variables do not support arrays. Therefore, we need to pass the
list of databases as a comma-separated string. We then use Split in PowerShell to
create the array.

We can now build the image, using the command in Listing 4-30. Notice that I have

incremented the major version number.

Listing 4-30. Build the Docker Image

docker build -t sql-2019:2.0 .

Finally, we can run the container, as demonstrated in Listing 4-31. Notice that we are

using -e switches, to create the environment variables in the container.

Listing 4-31. Run the Container

docker run -p 1433:1433 --name sql-2019 -e "saPassword=PermPassw0rd" -e

"databases=test,persisteddata" -e "agentStartupType=Automatic" -d --volume

c:\Datafiles:c:\datafiles sql-2019:2.0

Tip The possibilities for automation with containers are worthy of a book in its
own right, and I would encourage you to experiment. For example, you could try
wrapping the command that runs the container in a PowerShell script, where you
pass the required name of the container. The script could then create a folder on
the host, which includes the container name, making it unique. The container’s
mounted volume could then map to a unique folder name. you should also
experiment with passing the sa password as a path to an encrypted file, as passing
it in an environment variable is not secure for a production environment. you could
also experiment with adding a gMSA to the container. This will allow SQL Server to
interact with AD, despite domain join not being supported for containers.

CHAPTER 4 InSTALLATIon on HETERogEnEoUS oPERATIng SySTEMS

125

 Kubernetes Support
Kubernetes is a container orchestrator. It allows for containers to be run on a cluster of

servers, providing high availability for containers. With the latest version of Kubernetes,

Windows Server 2019 servers can be added to a cluster, alongside Linux servers.

SQL Server 2019 has far from ignored this fact and has introduced a new technology

called Big Data Clusters. This technology harnesses the power of Kubernetes to deploy a

scalable cluster of SQL Server, Spark, and HDFS containers. Big Data Clusters are beyond

the scope of this book, but further details can be found at https://docs.microsoft.

com/en-us/sql/big-data-cluster/big-data-cluster-overview.

Additionally, from SQL Server 2019, AlwaysOn Availability Groups can also be used

in containers orchestrated with Kubernetes, to provide HA and DR for databases hosted

containers. This works with the concept of a SQL Server Kubernetes operator, which is

an application-specific software that extends the Kubernetes API. In this case, the result

is an operator that assists in packaging, deploying, and managing AlwaysOn containers

within the cluster. Building Availability Groups inside a Kubernetes cluster is beyond

the scope of this book, but further details can be found at https://docs.microsoft.

com/en-us/sql/linux/sql-server-linux-kubernetes-deploy. Here, you will find a

walkthrough of configuring Availability Groups, using Azure’s managed Kubernetes

service.

 Summary
SQL Server can now be installed not just on Windows but also on Linux and inside

containers. This provides much more flexibility for database architects to host SQL

Server on the platform that is most appropriate for their application’s needs.

SQL Server can be installed on Ubuntu, Red Hat, and Suse Linux distributions. When

planning the deployment, you should ensure that you are using a supported version as

well as a supported distribution of Linux.

SQL Server can be installed on both Windows and Linux containers. Microsoft

supplies some basic Docker images, but for most purposes, you will need to build your

own, custom Docker image for deploying SQL Server. In addition to stand-alone Docker

containers, SQL Server 2019 also introduces support for Kubernetes, with Big Data

Clusters and a SQL Server Kubernetes operator, which allows for AlwaysOn Availability

Groups to be installed within a Kubernetes cluster.

CHAPTER 4 InSTALLATIon on HETERogEnEoUS oPERATIng SySTEMS

https://docs.microsoft.com/en-us/sql/big-data-cluster/big-data-cluster-overview
https://docs.microsoft.com/en-us/sql/big-data-cluster/big-data-cluster-overview
https://docs.microsoft.com/en-us/sql/linux/sql-server-linux-kubernetes-deploy
https://docs.microsoft.com/en-us/sql/linux/sql-server-linux-kubernetes-deploy

127
© Peter A. Carter 2019
P. A. Carter, Pro SQL Server 2019 Administration, https://doi.org/10.1007/978-1-4842-5089-1_5

CHAPTER 5

Configuring the Instance
The installation and configuration of your SQL Server instance does not end when

setup successfully completes. There are many other considerations that you should

take into account, both inside the database engine and outside of it, using tools such as

SQL Server Configuration Manager. In this chapter, we will discuss many of the most

important instance-level configuration options, including SQL Server’s new buffer pool

extension technology and important configuration choices for system databases. We will

also look at how your instance can configure SQL Server to work with your firewall.

 Instance Configuration
At the instance level, there are countless settings and flags that can be configured. In

the following sections, we will look at viewing and configuring these settings using tools

such as sp_configure, sys.configurations, DBCC TRACEON, and ALTER SERVER.

 Using sp_configure
You can change many of the settings that you can configure at the instance level using

the system stored procedure sp_configure. You can use the sp_configure procedure

to both view and change instance-level settings. This procedure will be used in many

examples throughout this book, so it is important that you understand how it works.

If a procedure is the first statement in the batch, you can run it without the EXEC

keyword, but you must use the EXEC keyword if there are any preceding statements.

If the procedure is run with no parameters, then it will return a five-column result set.

The meaning of these columns is detailed in Table 5-1.

128

If you wish to use sp_configure to change the value of a setting, as opposed to just

viewing it, then you must run the procedure with two parameters being passed in. The

first of these parameters is called configname and is defined with a VARCHAR(35) data

type. This parameter is used to pass the name of the setting that you wish to change. The

second parameter is called configvalue and is defined as an integer. This parameter

is used to pass the new value for the setting. After you have changed an instance-level

setting using sp_configure, it will not immediately take effect. To activate the setting,

you will need to either restart the Database Engine Service or reconfigure the instance.

There are two options for reconfiguring the instance. The first is a command

called RECONFIGURE. The second is a command called RECONFIGURE WITH OVERRIDE.

The RECONFIGURE command will change the running value of the setting as long as

the newly configured value is regarded as “sensible” by SQL Server. For example,

RECONFIGURE will not allow you to disable contained databases when they exist on the

instance. If you use the RECONFIGURE WITH OVERRIDE command, however, this action

would be allowed, even though your contained databases will no longer be accessible.

Even with this command, however, SQL Server will still run checks to ensure that the

value you have entered is between the Min and Max values for the setting. It will also not

allow you to perform any operations that will cause serious errors. For example, it will

not allow you to configure the Min Server Memory (MB) setting to be higher than the

Max Server Memory (MB) setting, since this would cause a fatal error in the Database

Engine.

Table 5-1. Result Set Returned by sp_configure

Column Description

Name The name of the instance-level setting.

Minimum The minimum value that is acceptable for this setting.

Maximum The maximum value that is accepted for this setting.

Config_value The value that has been configured for this value. If this value differs from

the value in the Run_value column, then the instance will need to be either

restarted or reconfigured for this configuration to take effect.

Run_value The value that is currently being used for this setting.

ChapTer 5 ConfIgurIng The InsTanCe

129

The first time you run the sp_configure stored procedure with no parameters in

SQL Server 2019, it will return 18 rows. These rows contain the basic configuration

options for the instance. One of the options is called Show Advanced Options. If you

turn on this option and then reconfigure the instance, as demonstrated in Listing 5-1,

then an additional 52 advanced settings will be displayed when you run the procedure.

If you try to change the value of one of the advanced options before turning on the Show

Advanced Options setting, then the command will fail.

Listing 5-1. Showing Advanced Options

EXEC sp_configure 'show advanced options', 1

RECONFIGURE

As an alternative to viewing these settings with sp_configure, you can also retrieve

the same information by querying sys.configurations. If you use sys.configurations

to return the information, then two additional columns will be returned. One of these

columns is called is_dynamic, and it designates if the option can be configured with

the RECONFIGURE command (1) or if the instance needs to be restarted (0). The other

column is called is_Advanced, and it indicates if the setting is configurable without Show

Advanced Options being turned on.

 Processor and Memory Configuration
When configuring your instance, one of your first considerations should be the

configuration of processor and memory resources. There are two main considerations

that you should give to the processor. One is processor affinity and the other is MAXDOP

(maximum degree of parallelism).

 Processor Affinity

By default, your instance will be able to use all of the processor cores within your server.

(A physical processor, also known as a socket, or CPU, consists of multiple cores, which are

individual processors). If you use processor affinity, however, specific processor cores will

be aligned with your instance, and these will be the only cores that the instance has access

to. There are two main reasons for limiting your instance in this way. The first is when you

have multiple instances running on the same server. With this configuration, you may find

that the instances are competing for the same processor resources and therefore blocking

each other. Processor affinity is controlled via a setting called affinity mask.

ChapTer 5 ConfIgurIng The InsTanCe

130

Imagine you had a server with four physical processors, each of which had two cores.

Assuming that hyper-threading is turned off for the purpose of this example, there would

be a total of eight cores available to SQL Server. If you had four instances on the server,

then to avoid the instances competing for resources, you could align cores 0 and 1 with

instance 1, cores 2 and 3 with instance 2, cores 4 and 5 with instance 3, and cores 6 and 7

with instance 4. Of course, the disadvantage of this is CPU resources not being utilized, if

an instance is idle.

If you have other services running on the server, such as SQL Server Integration

Services (SSIS), you may wish to leave a core available for Windows and other

applications, which cannot be used by any of the instances. In this case, you may have

identified that instance 4 uses less processor resources than the other instances. It may

be an instance dedicated to ETL (extract, transform, and load), for example, and be

used primarily for hosting the SSIS Catalog. In this case, you may align instance 4 with

core 6 only. This would leave core 7 free for other purposes. This design is illustrated in

Figure 5-1.

Note ssIs is incorporated into the Database engine. however, when ssIs
packages run, they run in a separate DTshost process and are, therefore, not
aligned with the processor and memory configuration of the instance.

Figure 5-1. Processor affinity diagram

ChapTer 5 ConfIgurIng The InsTanCe

131

When using processor affinity, it is important for performance to align an instance

with cores on the same NUMA (non-uniform memory access) node. This is because if a

processor needs to remotely access the memory of a different NUMA node, it needs to

go via an interconnect, which is a lot slower than accessing the local NUMA node. In the

example shown in Figure 5-1, if we had aligned instance 1 with cores 0 and 7, then we

would have breached the NUMA boundary and performance would have been impaired.

Caution although it is not recommended for sQL server, some virtual
environments use a technique called over-subscribed processors. This means that
more cores are allocated to guests than actually exist on the physical hosts. When
this is the case, you should not use processor affinity because nuMa boundaries
will not be respected.

The affinity mask reducing contention also holds true for clustered environments.

Imagine you have a two-node cluster with an active/active configuration. Each node of

the cluster is hosting a single instance. It may be important for your business that you

can guarantee consistent performance in the event of a failover. In this case, assuming

that each of your nodes has eight cores, then on node 1, you could configure instance

1 to use cores 0, 1, 2, and 3. On node 2, you could configure instance 2 to use cores 4,

5, 6, and 7. Now, in the event of failover, your instances will continue to use the same

processor cores and not fight for resources.

The second reason for using processor affinity is to avoid the overhead associated

with threads being moved between processors at the operating system level. When your

instance is under heavy load, you may see a performance improvement by aligning

SQL Server threads with specific cores. In this scenario, it would be possible to separate

standard SQL Server tasks from SQL Server IO-related tasks.

Imagine that you have a server with a single processor, which has two cores. Hyper-

threading is turned off and you have a single instance installed. You may choose to align

tasks associated with IO affinity, such as Lazy Writer, with core 0 while aligning other

SQL Server threads with core 1. To align IO tasks with specific processors, you need to

use an additional setting, called Affinity I/O Mask. When this setting is enabled, a hidden

scheduler is created, which is used purely for Lazy Writer. Therefore, it is important that

you do not align the affinity and Affinity I/O Masks with the same core. Otherwise, you

will inadvertently create the contention that you are trying to avoid.

ChapTer 5 ConfIgurIng The InsTanCe

132

Caution It is very rare that affinity I/o Mask is required. To align workloads from
multiple instances, affinity Mask is sufficient. It is normally only appropriate for
very large databases running on 32-bit systems. With 64-bit systems with larger
amounts of raM, Io churn is less; hence there is less context switching.

Both Affinity Mask and Affinity I/O Mask can be set through the GUI in SQL Server

Management Studio by selecting the Processors tab in the Instance Properties dialog

box, as shown in Figure 5-2.

Figure 5-2. The Processors tab

ChapTer 5 ConfIgurIng The InsTanCe

133

Processor affinity works based on bitmaps. Therefore, if you wish to use

sp_configure to set processor affinity, then you first need to calculate the integer

representation of the bitmap value. This is made more complex because the INT data

type is a 32-bit signed integer, meaning that some of the representations will be negative

numbers. The value assigned to each processor is listed in Table 5-2.

Tip Many free calculators are available on the Internet that will assist you in
converting binary to signed integer.

Table 5-2. Processor Affinity Bitmaps

Processor Number Bit Mask Signed Integer
Representation

0 0000 0000 0000 0000 0000 0000 0000 0001 1

1 0000 0000 0000 0000 0000 0000 0000 0010 2

2 0000 0000 0000 0000 0000 0000 0000 0100 4

3 0000 0000 0000 0000 0000 0000 0000 1000 8

4 0000 0000 0000 0000 0000 0000 0001 0000 16

5 0000 0000 0000 0000 0000 0000 0010 0000 32

6 0000 0000 0000 0000 0000 0000 0100 0000 64

7 0000 0000 0000 0000 0000 0000 1000 0000 128

8 0000 0000 0000 0000 0000 0001 0000 0000 256

9 0000 0000 0000 0000 0000 0010 0000 0000 512

10 0000 0000 0000 0000 0000 0100 0000 0000 1024

11 0000 0000 0000 0000 0000 1000 0000 0000 2028

12 0000 0000 0000 0000 0001 0000 0000 0000 4096

13 0000 0000 0000 0000 0010 0000 0000 0000 8192

14 0000 0000 0000 0000 0100 0000 0000 0000 16384

15 0000 0000 0000 0000 1000 0000 0000 0000 32768

(continued)

ChapTer 5 ConfIgurIng The InsTanCe

134

On a 32-core server, there are 2.631308369336935e+35 possible combinations for

processor affinity, but a few examples are included in Table 5-3.

Table 5-2. (continued)

Processor Number Bit Mask Signed Integer
Representation

16 0000 0000 0000 0001 0000 0000 0000 0000 65536

17 0000 0000 0000 0010 0000 0000 0000 0000 131072

18 0000 0000 0000 0100 0000 0000 0000 0000 262144

19 0000 0000 0000 1000 0000 0000 0000 0000 524288

20 0000 0000 0001 0000 0000 0000 0000 0000 1048576

21 0000 0000 0010 0000 0000 0000 0000 0000 2097152

22 0000 0000 0100 0000 0000 0000 0000 0000 4194304

23 0000 0000 1000 0000 0000 0000 0000 0000 8388608

24 0000 0001 0000 0000 0000 0000 0000 0000 16777216

25 0000 0010 0000 0000 0000 0000 0000 0000 33554432

26 0000 0100 0000 0000 0000 0000 0000 0000 67108864

27 0000 1000 0000 0000 0000 0000 0000 0000 134217728

28 0001 0000 0000 0000 0000 0000 0000 0000 268435456

29 0010 0000 0000 0000 0000 0000 0000 0000 536870912

30 0100 0000 0000 0000 0000 0000 0000 0000 1073741824

31 1000 0000 0000 0000 0000 0000 0000 0000 -2147483648

ChapTer 5 ConfIgurIng The InsTanCe

135

Table 5-3. Examples of Affinity Masks

Aligned Processors Bit Mask Signed Integer
Representation

0 and 1 0000 0000 0000 0000 0000 0000 0000 0011 3

0, 1, 2, and 3 0000 0000 0000 0000 0000 0000 0000 1111 15

8 and 9 0000 0000 0000 0000 0000 0011 0000 0000 768

8, 9, 10, and 11 0000 0000 0000 0000 0000 1111 0000 0000 3840

30 and 31 1100 0000 0000 0000 0000 0000 0000 0000 -1073741824

28, 29, 30, and 31 1111 0000 0000 0000 0000 0000 0000 0000 -268435456

Because of the nature of the affinity mask and the integer data type having a

maximum range of 2^32, if your server has between 33 and 64 processors, then you will

also need to set the Affinity64 Mask and Affinity64 I/O Mask settings. These will provide

the masks for the additional processors.

The settings discussed in this section can all be configured using sp_configure. The

example in Listing 5-2 demonstrates aligning the instance with cores 0 to 3.

Listing 5-2. Setting Processor Affinity

EXEC sp_configure 'affinity mask', 15

RECONFIGURE

Even with the 64-bit masks, there is still a limitation of aligning the first 64 cores

using this method, and SQL Server will support up to 256 logical processors. For this

reason, newer versions of SQL Server have introduced an enhanced method of setting

processor affinity. This is through a command called ALTER SERVER CONFIGURATION.

Listing 5-3 demonstrated two ways that this command can be used. The first aligns

the instance with specific processors in the way that we have seen up until now. In this

example, the alignment is with CPUs 0, 1, 2, and 3. The second aligns the instance with

all processors within two NUMA nodes, in this case, nodes 0 and 4. Just as when you

make changes using sp_configure, changes made using ALTER SERVER CONFIGURATION

will be reflected in sys.configurations.

ChapTer 5 ConfIgurIng The InsTanCe

136

Listing 5-3. ALTER SERVER CONFIGURATION

ALTER SERVER CONFIGURATION

 SET PROCESS AFFINITY CPU=0 TO 3

ALTER SERVER CONFIGURATION

 SET PROCESS AFFINITY NUMANODE=0, 4

 MAXDOP

MAXDOP will set the maximum number of cores that will be made available to each

individual execution of a query. The thought of this may initially sound counterintuitive.

Surely you would want every query to be parallelized as much as possible? Well, this is

not always the case.

Although some data warehousing queries may benefit from high levels of

parallelization, many OLTP (online transaction processing) workloads may perform

better with a lower degree of parallelization. This is because if a query executes over

many parallel threads, and one thread takes much longer than the others to complete,

then the other threads may sit waiting for the final thread to finish so that their streams

can be synchronized. If this is occurring, you are likely to see a high number of waits with

the wait type CXPACKET.

In many OLTP systems, high levels of parallelization being chosen by the Query

Optimizer actually indicate issues such as missing or highly fragmented indexes or

out-of-date statistics. Resolving these issues will improve performance far more than

running queries with a high degree of parallelism.

For instances that support heavy data warehousing workloads, different MAXDOP

configurations should be tested and set accordingly, with the understanding that

MAXDOP can also be set at the query level, through the use of a query hint, if a handful

of queries would benefit from a different setting to the majority of the instance’s

workload. In the vast majority of cases, however, the instance-level setting for MAXDOP

should be configured to the lowest of the following three values:

• 8

• Number of cores available to the instance (the default value for

MAXDOP)

• The number of cores within a NUMA node

ChapTer 5 ConfIgurIng The InsTanCe

137

The default value for MAXDOP is 0, which means that queries are only limited by the

number of cores that are visible to the instance. You can configure MAXDOP via the GUI

by configuring the Max Degree of Parallelism setting on the Advanced tab of the Server

Properties. Figure 5-3 illustrates this setting being configured to 8.

Figure 5-3. The Advanced tab

You can also configure MAXDOP using sp_configure. Listing 5-4 demonstrates

using sp_configure to set MAXDOP to a value of 8.

ChapTer 5 ConfIgurIng The InsTanCe

138

Listing 5-4. Configuring MAXDOP with sp_configure

EXEC sys.sp_configure max degree of parallelism', 8

RECONFIGURE

An adjunct to lowering the MAXDOP setting is to increase the threshold at which the

Query Optimizer will choose a parallel plan over a serial plan. The default setting for this

is an estimated serial execution time of 5 seconds, but you can configure this to anything

between 0 and 32767 seconds. A practical limit in many environments is around 30

seconds, but of course, this is workload specific and should always be tested. The cost

threshold for the parallelism option will be ignored, however, if you have MAXDOP

configured to 1, or if there is only one core available to the instance. The script in

Listing 5-5 will increase the cost threshold for parallelism to 10 seconds.

Listing 5-5. Configuring Cost Threshold for Parallelism

EXEC sp_configure 'cost threshold for parallelism', 10

RECONFIGURE

 Min and Max Server Memory

The Min Server Memory (MB) and Max Server Memory (MB) settings are used to control

how much memory SQL Server has available for its memory pool. The memory pool

contains many components. Some of the largest components are detailed in Table 5-4.

ChapTer 5 ConfIgurIng The InsTanCe

139

In many environments, it is likely that you will want to provide the same value

for both Min and Max Server Memory. This will avoid the overhead of SQL Server

dynamically managing the amount of memory it has reserved.

If you have multiple instances, however, then dynamic memory management may

be beneficial so that the instance with the heaviest workload at any given time can

consume the most resources. You must give extra consideration if your instances are

hosted on an active/active cluster. I have seen one example of a client turning on Lock

Pages In Memory and then configuring the min and max memory for the instances on

each node as if they were stand-alone boxes. At the point of failover, the remaining node

crashed, because there was not enough RAM to support the memory requirements of all

instances on one box.

No matter how your environment is configured, you will always want to leave enough

memory for the operating system. Assuming that you have one instance and no other

Table 5-4. SQL Server Memory Pool

Component Description

Buffer cache The buffer cache stores data and index pages before and after being read

from or written to disk. even if the pages your query requires are not in the

cache, they will still be written to the buffer cache first and then retrieved from

memory, as opposed to being written directly from disk.

procedure cache The procedure cache contains execution plans, not just for stored procedures

but also for ad hoc queries, prepared statements, and triggers. When sQL

server begins to optimize a query, it first checks this cache to see if a suitable

plan already exists.

Log cache The log cache stores log records before they are written to the transaction log.

Log pool a hash table that allows ha/Dr and data distribution technologies, such as

alwayson, Mirroring, and replication, to quickly access required log records.

CLr CLr refers to .neT code that is used inside the instance. In older versions of

sQL server, CLr sat outside of the main memory pool, as the memory pool only

dealt with single, 8KB page allocations. from sQL server 2012 onward, the

memory pool now deals with both single and multipage allocations, so CLr has

been brought in.

ChapTer 5 ConfIgurIng The InsTanCe

140

applications, such as SSIS packages, running on the server, you would normally set both

the min and max memory setting to be the lowest value from the following:

• RAM - 2GB

• (RAM / 8) ∗ 7

If you have multiple instances, you would, of course, divide this number

appropriately between the instances, depending on their requirements. If you have other

applications running on the server, then you must also take their memory requirements

into account and add those to the operating system requirements.

Min Server Memory (MB) and Max Server Memory (MB) can both be configured by

using the Memory tab in the Server Properties dialog box, as shown in Figure 5-4.

Figure 5-4. The Memory tab

ChapTer 5 ConfIgurIng The InsTanCe

141

You can also configure both the settings through T-SQL by using the sp_configure

stored procedure. Listing 5-6 demonstrates this.

Listing 5-6. Configuring Min and Max Server Memory

DECLARE @MemOption1 INT = (SELECT physical_memory_kb/1024 - 2048 FROM sys.

dm_os_sys_info)

DECLARE @MemOption2 INT = (SELECT ((physical_Memory_kb/1024)/8) * 7 FROM

sys.dm_os_sys_info)

IF @MemOption1 <= 0

BEGIN

 EXEC sys.sp_configure 'min server memory (MB)', @MemOption2

 EXEC sys.sp_configure 'max server memory (MB)', @MemOption2

 RECONFIGURE

END

ELSE IF @MemOption2 < @MemOption1

BEGIN

 EXEC sys.sp_configure 'min server memory (MB)', @MemOption2

 EXEC sys.sp_configure 'max server memory (MB)', @MemOption2

 RECONFIGURE

END

ELSE

BEGIN

 EXEC sys.sp_configure 'min server memory (MB)', @MemOption1

 EXEC sys.sp_configure 'max server memory (MB)', @MemOption1

 RECONFIGURE

END

 Trace Flags
Trace flags are switches within SQL Server that can be used to toggle functionality on

and off. Within the instance, they can be set at the session level, or they can be applied to

the instance globally, using a DBCC command called DBCC TRACEON. Not all trace flags

can be set at the session level due to their nature. An example of this is trace flag 634.

Setting this flag turns off the background thread responsible for periodically compressing

rowgroups within columnstore indexes. Obviously, this would not apply to a specific

ChapTer 5 ConfIgurIng The InsTanCe

142

session. The sample in Listing 5-7 uses DBCC TRACEON to set trace flag 634 globally. It

also turns on 1211 for the current session only. Trace flag 1211 disables lock escalation

based on memory pressure or number of locks. The script then uses DBCC TRACESTATUS

to show the status of the flags before finally using DBCC TRACEOFF to toggle the behavior

back to default. You can see that to specify the global scope, we use a second parameter

of -1. The default is to set the flag at the session level.

Listing 5-7. Setting Trace Flags with DBCC TRACEON

DBCC TRACEON(634, -1)

DBCC TRACEON(1211)

DBCC TRACESTATUS

DBCC TRACEOFF(634, -1)

DBCC TRACEOFF(1211)

Caution Trace flag 1211 is used here for the purpose of demonstrating DBCC
TRACEON. however, it may cause an excessive number of locks and should be
used with extreme caution. It may even cause sQL server to throw errors due to
lack of memory for allocating locks.

Figure 5-5 shows the results screen that is produced from running this script,

assuming that no other trace flags have currently been toggled away from their default

setting. There are no results to display from the DBCC TRACEON and DBCC TRACEOFF

commands. The messages windows, however, will display execution completed

messages or inform you of any errors.

Figure 5-5. DBCC TRACESTATUS results

ChapTer 5 ConfIgurIng The InsTanCe

143

The limitation of using DBCC TRACEON, even with a global scope, is that the settings

are transient and will not be persisted after the instance has been restarted. Therefore, if

you wish to make permanent configuration changes to your instance, then you must use

the -T startup parameter on the SQL Server service.

Startup parameters can be configured in SQL Server Configuration Manager.

Expanding Service in the left hand window will display a list of all SQL Server–related

services on the server. Entering the properties for the Database Engine Service and

selecting the Startup Parameters tab will then allow you to add or remove startup

parameters. Figure 5-6 illustrates setting trace flag 809. (Please refer to the “Hybrid Buffer

Pool” section of this chapter to understand the effect of this trace flag.)

Figure 5-6. Startup parameters

ChapTer 5 ConfIgurIng The InsTanCe

144

If your instance is running on Windows Server Core, or if you want to script the

configuration on a GUI-based server, then you could achieve the same results by running

the PowerShell script in Listing 5-8. This script allows you to specify the instance

name and trace flag to be configured in the top two variables. These could also be

parameterized if you wish to create a reusable script. Similarly, the script could be added

to the automatic installation script that we created in Chapter 3.

The PowerShell script works by determining the Registry path to the startup

parameters and then by counting the number of arguments that already exist. Counting

the arguments allows the next argument number in sequence to be determined. It then

adds the new argument, specifying the required trace flag.

Listing 5-8. Configuring Trace Flags on Windows Server Core

Define initial variables

$InstanceName = "PROSQLADMINCORE"

$TraceFlag = "809"

Configure full service name to be inserted into Registry path

$Instance = "MSSQL12.$InstanceName"

#Create full registry path

$RegistryPath = "HKLM:\SOFTWARE\Microsoft\Microsoft SQL Server\

MSSQL12.$InstanceName\MSSQLServer\Parameters"

Gather all properties from the Registry path

$Properties = Get-ItemProperty $RegistryPath

Count the number of SQLArg properties that already exist so that the next

number in sequence can be determined

$Arguments = $Properties.psobject.properties | ?{$_.Name -like 'SQLArg*'} |

select Name, Value

Create the name of the new argument based on the next argument number in

sequence

$NewArgument = "SQLArg"+($Arguments.Count)

ChapTer 5 ConfIgurIng The InsTanCe

145

Construct the complete value of the argument

$FullTraceFlag = "-T$TraceFlag"

Set the trace flag

Set-ItemProperty -Path $RegistryPath -Name $NewArgument -Value $FullTraceFlag

Many trace flags can be specified as startup parameters, and the vast majority of

them are only helpful in very specific circumstances. There are a few that stand out,

however, as having the potential for more widespread use. These trace flags are detailed

in the following sections.

Note Two often configured trace flags, in older versions of sQL server, were
T1117 and T1118, which, respectively, caused all files with a filegroup to grow at
the same rate and caused all extents (even for small tables) to be uniform. These
features are now documented, database-level options, however. Therefore T1117
and T1118 have no effect and should not be used.

 Trace Flag 3042

When you are performing backups using backup compression in SQL Server, a

preallocation algorithm is used to allocate a defined percentage of the database size to

the backup file. This gives you a performance advantage over growing the size of the

backup file, as required, on the fly. On the flip side, however, if you need to preserve disk

space on your backup volume and use only the minimum amount of space required,

then you can use trace flag 3042 to turn off this behavior and grow the file as required.

 Trace Flag 3226

By default, every time you take a backup, a message will be recorded in the SQL Server

log. If you take frequent log backups, however, then this can very quickly cause so

much “noise” in the log that troubleshooting issues can become more difficult and

time-consuming. If this is the case, then you can turn on trace flag 3226. This will cause

successful backup messages to be suppressed in the log, resulting in a smaller, more

manageable log. Another method of avoiding noise would be to create a script, which

uses the sys.xp_readerrorlog system stored procedure to read the log. You can write

the results to a table and filter them, for “interesting” events.

ChapTer 5 ConfIgurIng The InsTanCe

146

 Trace Flag 3625

SQL Server enforces tight controls on the visibility of metadata. Users can only view

metadata for objects they own or where they have explicitly been granted permissions to

view metadata. This method of protection is still fallible, however, and a skilled attacker

could still gain information. One way in which they could achieve this is by manipulating

the order of precedence in queries in order to produce error messages.

In order to mitigate this risk, you can set trace flag 3625. This trace flag will limit the

amount of metadata visible in error messages by masking certain data with asterisks. The

downside of this defensive tactic, however, is that error messages become less meaningful

and harder to understand. This can make troubleshooting issues more difficult.

 Ports and Firewalls
In modern enterprise topologies, it is likely that your SQL Server instance will need to

communicate through at least two firewalls. One of these will be a hardware firewall and

the other will be the Windows Firewall, also known as the local firewall. In order for your

instance to communicate with other interfaces—whether those are applications or other

instances on the network—while still maintaining the security provided by a firewall,

ports will need to be opened so that SQL Server can communicate through those ports.

 Process of Communication
In order to understand which ports will need to be opened to allow SQL Server traffic,

you must first understand how clients communicate with SQL Server. Figure 5-7

illustrates the process flow for TCP/IP connections. This example assumes that the

instance is listening on Port 1433—this will be discussed in more detail later in this

chapter. It also assumes that the client is running on Windows Vista/Windows Server

2008 or higher.

ChapTer 5 ConfIgurIng The InsTanCe

147

If you wish clients to access the instance via named pipes, as opposed to TCP/IP,

then SQL Server will communicate over port 445. This is the same port used by file and

printer sharing.

Figure 5-7. Communication process flow

ChapTer 5 ConfIgurIng The InsTanCe

148

 Ports Required by SQL Server
If you install a default instance of SQL Server, then setup will automatically assign port

1433, which is the port registered for SQL Server in IANA (Internet Assigned Numbers

Authority). Many DBAs choose to change this port number, however, for enhanced

security. An attacker will know that you are likely to have instances running on port 1433

and will therefore know which port to attack. In smaller estates, unless you are confident

of the security of your network, using nonstandard port numbers may be a good idea

to add an extra layer of obfuscation. In larger enterprises, however, you will need to

consider the impact on operational supportability. For example, if each instance has a

different port number, you will need a method of recording and very quickly obtaining

the port number for a given instance in case of failure of the browser service. This will

be less of a concern in environments where multiple named instances are permitted on

each server, since you will already have the inventory tooling for recording these port

numbers.

Note Iana, the Internet assigned numbers authority, is responsible for
coordinating the allocation of Internet protocol resources, such as Ip addresses,
domain names, protocol parameters, and port numbers of network services. Its
web site is www.internetassignednumbersauthority.org/.

If you install a named instance of SQL Server, then setup will configure the instance

to use dynamic ports. When dynamic ports are configured, then every time the instance

starts, it will request a port number from the operating system. The OS will then assign

it a random available port from the dynamic range, which is from 49152 to 65535,

assuming that you are running on Windows Server 2008 or above. In earlier versions of

Windows, the dynamic port range was from 1024 to 5000, but Microsoft changed this in

Windows Vista and Windows Server 2008 to comply with IANA.

If your instance is configured to use dynamic ports, then configuring firewalls can be

challenging. At the Windows Firewall level, it is possible to configure a specific service

to communicate on any port, but this can be hard to replicate at the hardware firewall

level. Alternatively, you need to keep the full dynamic port range open bidirectionally.

Therefore, I recommend that the instance is configured to use a specific port.

ChapTer 5 ConfIgurIng The InsTanCe

http://www.internetassignednumbersauthority.org/

149

It is important to remember that SQL Server uses many other ports for various

features. The full set of ports that may be required by the Database Engine is listed in

Table 5-5. If you install features outside of the Database Engine, such as SSAS or SSRS,

then additional ports will be required. There will also be additional requirements if you

plan to use additional services with your instance, such as IPSec for encryption, MSDTC

(Microsoft Distributed Transaction Coordinator) for distributed transactions, or SCOM

(System Center Operations Manager) for monitoring.

Table 5-5. Ports Required by the Database Engine

Feature Port

Browser service uDp 1433.

Instance over TCp/Ip TCp 1433, dynamic or static configured.

Instance over named pipes TCp 445.

DaC (Dedicated administrator

Connection)

TCp 1434. If TCp 1434 is already in use, the port will be

printed to the sQL server log during instance startup.

service Broker TCp 4022 or as per configuration.

alwayson availability groups TCp 5022 or as per configuration.

Merge replication with Web sync TCp 21, TCp 80, uDp 137, uDp 138, TCp 139, TCp 445.

T-sQL Debugger TCp 135.

 Configuring the Port That the Instance Will Listen On
As mentioned earlier in this chapter, if you have a named instance, then before configuring

your firewall, it is likely that you will want to configure a static port for the instance. The

port can be configured within the TCP/IP Properties dialog box of the TCP/IP protocol

in SQL Server Configuration Manager. To navigate to this dialog box, drill down through

SQL Server Network Configuration ➤ Protocols for INSTANCENAME (where INSTANCENAME

is the name of your instance) in the left hand pane of SQL Server Configuration Manager.

Entering TCP/IP in the right hand pane will display the dialog box.

On the Protocol tab, you will notice a setting named Listen All, which has a default

value of Yes, as shown in Figure 5-8. The significance of this setting will become apparent

shortly.

ChapTer 5 ConfIgurIng The InsTanCe

150

In the IP Addresses tab, you will notice that there are configuration details for

multiple IP addresses. Because the Listen All setting is set to Yes, however, SQL Server

will ignore all of these configurations. Instead, it will look solely at the settings specified

for IP All at the very bottom of the dialog box. The TCP Dynamic Ports field will display

the random port that has been assigned by the operating system and the TCP Port field

will be blank, as illustrated in Figure 5-9. To assign a static port number, we need to flip

this around. We will need to clear the TCP Dynamic Ports field and populate the TCP

Port field with 1433, which is our chosen port number. The SQL Server service will need

to be restarted before this change can take effect.

Tip remember that the default instance will take port 1433 by default. Therefore,
if a default instance already exists on the server, when you create the named
instance, you must use a different port.

Figure 5-8. The Protocol tab

ChapTer 5 ConfIgurIng The InsTanCe

151

We could achieve the same result from PowerShell by running the script in

Listing 5-9. This script has two variables at the top where you should insert the

name of your instance and the port number you want to assign. These could also be

parameterized to create a reusable script. The script loads the relevant SMO assembly.

It then creates a new SMO object and connects to the TCP properties of the object to

configure the port. The script must be run as Administrator.

Listing 5-9. Assigning a Static Port

Initialize variables

$Instance = "PROSQLADMIN"

$Port = "1433"

Figure 5-9. IP Addresses tab

ChapTer 5 ConfIgurIng The InsTanCe

152

Load SMO Wmi.ManagedComputer assembly

[System.Reflection.Assembly]::LoadWithPartialName("Microsoft.SqlServer.

SqlWmiManagement") | out-null

Create a new smo object

$m = New-Object ('Microsoft.SqlServer.Management.Smo.Wmi.ManagedComputer')

#Disable dynamic ports

$m.ServerInstances[$Instance].ServerProtocols['Tcp'].IPAddresses['IPAll'].

IPAddressProperties['TcpDynamicPorts'].Value = ""

Set static port

$m.ServerInstances[$Instance].ServerProtocols['Tcp'].IPAddresses['IPAll'].

IPAddressProperties['TcpPort'].Value = "$Port"

Reconfigure TCP

$m.ServerInstances[$Instance].ServerProtocols['Tcp'].Alter()

 System Databases
SQL Server maintains five system databases, each of which is important to the efficient

running of your instance. The following sections describe each of these databases and

detail any special considerations for configuring them.

 mssqlsystemresource (Resource)
Although referred to as Resource, the full name of the Resource database is

mssqlsystemresource. It is the physical repository used to store the system objects that

appear within the sys schema of every database. It is read-only and should never be

modified, except under guidance from Microsoft. It is not visible within Management

Studio, and if you try to connect to it from a query window, it will fail, unless you are in

single user mode. There are no considerations for configuring Resource.

ChapTer 5 ConfIgurIng The InsTanCe

153

 MSDB
MSDB is used as a metadata repository for many SQL Server features, including Server

Agent, Backup/Restore, Database Mail, Log Shipping, Policies, and more. Although this

is obviously a critical and useful database, there are no specific configuration options to

consider. That being said, in a very large instance consisting of a very large number of

databases, all with frequent log backups, the database can grow very large. This means

that you will need to purge old data and sometimes consider indexing strategies. Historic

backup data can be purged using the sp_deletebackuphistory stored procedure or the

History Cleanup Task in a Maintenance Plan. Automating routine maintenance tasks will

be discussed in more detail in Chapter 22.

 Master
Master is the system database that contains metadata for instance-level objects, such as

logins, linked servers, TCP endpoints, and master keys and certificates for implementing

encryption. The biggest consideration for the Master database is the backup policy.

Although it does not need to be backed up as frequently as user databases do, you should

always ensure that you do have a current backup. At a minimum, the database should

be backed up after creating or altering logins, linked servers, and system configurations;

creating or altering keys and certificates; or after creating or dropping user databases.

Many people select a weekly, full backup schedule for Master, but this will depend on

your operational requirements, such as how often you create new users.

Note Logins and users will be discussed in Chapter 9, backups will be discussed
in Chapter 15, and keys and certificates will be discussed in Chapter 10.

Although technically possible, it is considered bad practice to store user objects in

the Master database. I have seen clients implement this for stored procedures that need

to be shared by all databases on the instance, but it adds complexity, because they are

fragmenting the storage of user objects and also increasing the frequency with which

they must backup Master.

ChapTer 5 ConfIgurIng The InsTanCe

154

Tip Because developers often do not set a default database, they end up creating
stored procedures in the Master database by mistake. You should check for this
issue as part of your code deployment process.

 Model
Model is used as a template for all new databases that are created on the instance. This

means that spending some time configuring this database can save you time and reduce

human error when you are creating user databases. For example, if you set the recovery

model to be Full on the Model database, then all new user databases will automatically

be configured in the same way. You still have the option to override this in your CREATE

DATABASE statement. Additionally, if you need a specific object to exist in all databases,

such as a maintenance-stored procedure or a database role, then creating this in Model

will mean that the object will automatically be created inside every new database. Model

is also used for creating TempDB every time the instance starts. This means that if you

create objects in the Model database, they will automatically be added to TempDB when

the instance restarts.

Tip When you are configuring or adding new objects to Model, existing databases
will not be updated. Changes will only apply to new databases that you create
subsequently.

 TempDB
TempDB is a workspace used by SQL Server when it needs to create temporary objects.

This applies to temporary tables created by users, and less commonly known, it also

applies to table variables. Table variables always cause an object to be created in

TempDB, but data is only spooled to disk if it breaches size thresholds. There are also

many internal reasons why SQL Server will require temporary objects to be created.

Some of the key reasons are as follows:

• Sorting and spooling data

• Hashing data, such as for joins and aggregate grouping

ChapTer 5 ConfIgurIng The InsTanCe

155

• Online index operations

• Index operations where results are sorted in TempDB

• Triggers

• DBCC commands

• The OUTPUT clause of a DML statement

• Row versioning for snapshot isolation, read-committed snapshot

isolation, queries over MARS, and so on

Because TempDB is responsible for so many tasks, in high-volume instances, it is

likely to have a very high throughput. For this reason, it is the system database that you

should spend the most time configuring in order to ensure the best performance for your

data-tier applications.

The first thing you should consider is the size of TempDB. Ideally, TempDB will be

subject to capacity planning for large or highly transactional instances. A full discussion

of capacity planning is beyond the scope of this book, but ideally, this will involve using a

test server to expand all of the user databases on the instance out to the size that they are

expected to grow to, discovered through their own capacity planning exercises. You would

then run representative workloads through those databases and monitor the usage of

TempDB. Additionally, you should also perform administrative tasks against the databases

that you have expanded to their expected size. Specifically, this would include activities

such as rebuilding indexes so that you can examine the usage profile of TempDB during

these activities. There are a number of DMVs (dynamic management views) that can help

you with this planning. Some of the most useful are described in Table 5-6.

ChapTer 5 ConfIgurIng The InsTanCe

156

Table 5-6. DMVs for TempDB Capacity Planning

DMV Description

sys.dm_db_session_space_usage Displays the number of pages allocated for each current

session. This will include page counts for the following

objects:

• user and system tables

• user and system indexes

• Temporary tables

• Temporary indexes

• Table variables

• Tables returned by functions

• Internal objects for sorting and hashing operations

• Internal objects for spools and large object operations

sys.dm_db_task_space_usage Displays the number of pages allocated by tasks. This

will include page counts from the same object types as

sys.dm_db_session_space_usage.

sys_dm_db_file_space_usage Displays full usage information for all files in the

database, including page counts and extent counts. To

return data for TempDB, you must query this DMV from

the context of the TempDB database, since it can also

return data from user databases.

sys.dm_tran_version_store returns a row for every record within the version store.

You can view this data raw or aggregate it to get size

totals.

sys.dm_tran_active_snapshot_

database_transactions

returns a row for every current transaction that may

need to access the version store, due to isolation level,

triggers, Mars (Multiple active result sets), or online

index operations.

ChapTer 5 ConfIgurIng The InsTanCe

157

 Optimizing TempDB

In addition to the size of TempDB, you should also carefully consider the number of

files that you will require. This is important because due to the nature of many objects

being very rapidly created and dropped, if you have too few files, then you can suffer

contention of the GAM and SGAM pages. If you have too many files, on the other hand,

you may experience increased overhead. This is because SQL Server allocates pages

to each file within the filegroup in turn in order to maintain proportional fill. With a

large number of files, there will be an extra synchronization effort to determine if the

allocation weighting for each file should be altered.

Tip some sQL server experts suggest that temp tables should not be
explicitly dropped and should be cleaned up by the garbage collector thread.
personally, while I see the benefits of this, I feel it needs to be traded off against
other considerations, such as code quality, especially in large, complex stored
procedures.

The current, general recommendation is that you should have one TempDB file

for every core available to the instance, with a minimum of two files and a maximum

of eight files. You should only add more than eight files if you specifically witness

GAM/SGAM contention. This will manifest itself as PAGELATCH waits occurring against

TempDB. You will find a discussion of how to add files and alter their size in Chapter 6.

Tip PAGEIOLATCH waits indicate a different issue than PAGELATCH waits. If
you see PAGEIOLATCH waits against TempDB, this indicates that the underlying
storage is the bottleneck. Wait types will be discussed in more detail in Chapter 17.

SQL Server 2019 introduces a new optimization for TempDB, called Memory-

Optimized TempDB Metadata. As its name suggests, this feature stores the system

tables that are responsible for managing TempDB metadata in non-durable memory-

optimized tables.

Tip please see Chapter 7 for further details of memory-optimized tables.

ChapTer 5 ConfIgurIng The InsTanCe

158

This is an important new feature, which increases the scalability of SQL Server, by

removing the contention bottleneck, on TempDB system pages. It does not come without

a cost, however, and before implementing the feature, you must be aware that a single

transaction cannot access memory-optimized tables across multiple databases. This

may cause issues if you have scripts which perform activities such as custom monitoring.

For example, you may have a script which records the script in Listing 5-10. The

first section of the script creates the Chapter5 database. The CaptureTempTableCount

procedure inserts a count of temp tables into a memory-optimized table. Imagine that this

procedure is configured to run once a minute with SQL Server Agent (see Chapter 22).

You then use the TempTableCount table in your ongoing capacity planning endeavors.

Listing 5-10. Using Memory-Optimized Tables with TempDB

--Create The Chapter5 Database

CREATE DATABASE Chapter5

GO

USE Chapter5

GO

--Add a memory-optimized filegroup

ALTER DATABASE Chapter5 ADD FILEGROUP memopt

 CONTAINS MEMORY_OPTIMIZED_DATA;

ALTER DATABASE Chapter5 ADD FILE (

 name='memopt1', filename='c:\data\memopt1'

) TO FILEGROUP memopt ;

ALTER DATABASE Chapter5

 SET MEMORY_OPTIMIZED_ELEVATE_TO_SNAPSHOT = ON ;

GO

CREATE TABLE TempTableCount (

 ID INT IDENTITY(1,1) NOT NULL

 PRIMARY KEY NONCLUSTERED,

 TableCount INT NOT NULL,

 DateTime DateTime2 NOT NULL

) WITH(MEMORY_OPTIMIZED=ON) ;

GO

ChapTer 5 ConfIgurIng The InsTanCe

159

CREATE PROCEDURE CaptureTempTableCount

AS

BEGIN

 BEGIN TRANSACTION

 INSERT INTO TempTableCount (TableCount, DateTime)

 SELECT COUNT(*) As TableCount, SYSDATETIME() AS DateTime

 FROM tempdb.sys.tables t

 WHERE type = 'U'

 COMMIT

END

GO

If you test this procedure, you will see that it works as expected. But now, let’s turn on

Memory-Optimized TempDB Metadata, using the command in Listing 5-11.

Listing 5-11. Enable Memory-Optimized TempDB MetaData

ALTER SERVER CONFIGURATION SET MEMORY_OPTIMIZED TEMPDB_METADATA = ON ;

If you test the procedure again, you will notice that it now fails, because it is attempting

to access memory-optimized tables in multiple databases. To work around this issue,

you would need to use a disk-based table, rather than a memory-optimized table.

 Buffer Pool Extension
As already mentioned, the buffer pool is an area of memory that SQL Server uses to

cache pages before they are written to disk and after they have been read from disk.

There are two distinct types of pages that exist in the buffer cache: clean pages and

dirty pages. A clean page is a page to which no modifications have been made. Clean

pages usually exist in the cache because they have been accessed by read operations,

such as SELECT statements. Once in the cache, they can support all statements. For

example, a DML statement can access the clean page, modify it, and then update its

dirty page marker.

Dirty pages are pages that have been modified by statements such as INSERT, UPDATE,

and DELETE, among others. These pages need to have their associated log record written

to disk and, subsequently, the dirty pages themselves will be flushed to disk, before they

are regarded as clean. The process of writing the log record first is known as WAL

ChapTer 5 ConfIgurIng The InsTanCe

160

(write- ahead logging), and it is how SQL Server ensures that no committed data can ever

be lost, even in the event of a system failure.

Dirty pages are always kept in the cache until they are flushed to disk. Clean pages,

on the other hand, are kept in cache for as long as possible, but are removed when space

is required for new pages to be cached. SQL Server evicts pages based on a least recently

used policy. This means that read-intensive workloads can rapidly start to suffer from

memory pressure if the buffer cache is not correctly sized.

The issue here is that RAM is expensive, compared to storage, and it may not be

possible to keep throwing more and more memory at the problem. In order to address

this, Microsoft introduced a technology in SQL Server 2014 called buffer pool extensions.

A buffer pool extension is designed to be used with very fast SSDs, which will

normally be locally attached to the server, as opposed to being located on a SAN. In

short, the storage needs to operate as fast as possible. The extension will then become a

secondary cache for clean pages only. When clean pages are evicted from the cache, they

will be moved to the buffer pool extension, where they can be retrieved faster than by

going back to the main IO subsystem.

This is a very useful feature, but it is not a magic bullet. First, it is important to

remember that the buffer pool extension will never be able to provide the same

performance improvement as a correctly sized buffer cache will without an extension.

Second, the performance gain that you will experience from using a buffer pool

extension is workload specific. For example, a read-intensive OLTP workload will

probably benefit substantially from buffer pool extensions, whereas a write-intensive

workload will see little benefit at all. This is because dirty pages cannot be flushed to

the extension. Large data warehouses are also unlikely to benefit dramatically from

buffer pool extensions. This is because the tables are likely to be so large that a full table

scan, which is common with this workload scenario, is likely to consume the majority of

both the cache and the extension. This means that it will wipe out other data from the

extension and will be unlikely to benefit subsequent queries.

It is sensible to use a resilient SSD volume such as a RAID 10 stripe. This is because if

the volume were to fail, with no resilience, your server would immediately see a drop in

performance. In the event that the SSD drive that your extension is stored on fails, SQL

Server will automatically disable the extension. It can be re-enabled manually, or it will

automatically attempt to re-enable itself when the instance is restarted.

ChapTer 5 ConfIgurIng The InsTanCe

161

I also recommend that you size the extension between four and eight times the size of

your Max Server Memory setting in order to obtain optimum performance. The maximum

possible size of the extension is 32 times the size of the Max Server Memory setting.

Buffer pool extension can be enabled using the statement shown in Listing 5-12.

This script assumes that the SSD drive that you wish to use is mapped as the S:\ volume.

It also assumes that we have 32GB set as the Max Server Memory setting, so we will

configure the extension to be 128GB, which is four times the size.

Listing 5-12. Enable Buffer Pool Extension

ALTER SERVER CONFIGURATION

SET BUFFER POOL EXTENSION ON

(FILENAME = 'S:\SSDCache.BPE', SIZE = 128 GB)

If required, the buffer pool extension can be disabled by using the command in

Listing 5-13. Be warned, however, that removing a buffer pool extension is likely to result

in a sudden drop in performance.

Listing 5-13. Disable Buffer Pool Extension

ALTER SERVER CONFIGURATION

SET BUFFER POOL EXTENSION OFF

 Hybrid Buffer Pool
SQL Server 2019 introduces the Hybrid Buffer Pool, offering support for PMEM

(persistent memory). PMEM is also known as SCM (storage class memory). A PMEM

device resides on the memory bus and is solid-state and byte-addressable. This makes

it faster than flash disks and cheaper than DRAM. The data stored on a PMEM device

persists, after the server has been powered off.

When formatting a PMEM device in Windows (PMEM devices are supported by

Windows Server 2016 and higher) for use with a Hybrid Buffer Pool, you should enable

DirectAccess and use an allocation unit size of 2MB on Windows Server 2019, or the

largest available size, on other versions of Windows Server.

Once the drive has been created, SQL Server transaction logs can be stored on the

device. SQL Server will then use memory-mapped IO (also known as enlightenment)

when reading clean pages from the buffer pool. This mitigates the need to copy the page

into DRAM, before accessing it, therefore reducing IO latency.

ChapTer 5 ConfIgurIng The InsTanCe

162

Enlightenment can only be used for clean pages. If a page becomes dirty, then it will

be written to DRAM, before finally being flushed back to the PMEM device.

To enable PMEM support in SQL Server, running on a Windows operating system,

simply enable Trace Flag 809 on the SQL Server service. For SQL Server running on

Linux, Trace Flag 3979 must be enabled on the SQL Server service. (Please see the “Trace

Flags” section of this chapter for information on how to enable a trace flag.)

 Summary
You should consider how you should configure your processor and memory for the

instance. With regard to the processor, these considerations should include affinity mask

settings for multiple instances, or avoiding context switching during IO operations. You

should also consider the appropriate settings for MAXDOP in your environment.

With regard to memory, you should consider the most appropriate usage of Min and

Max Server Memory and if it is appropriate to configure these to the same value. You

should also consider if buffer pool extensions would help your system performance, and

if so, you should use Max Server Memory as the base for calculating the correct size of

this warm cache.

Trace flags toggle settings on and off, and adding them as startup parameters will

ensure that your instance is always configured as you require it to be. Many trace flags

are for very specific purposes, but some have more generic usage, such as 3226, which

will suppress successful backup messages to avoid noise in the logs masking issues.

For your SQL Server instance to be able to communicate with applications and other

instances on the network, you should configure the instance port and local firewall

appropriately. It is generally considered bad practice to use a dynamic port for SQL

Server connections, so you should configure the instance to use a specific TCP port.

All five of the system databases are critical to the proper functioning of the

instance. In terms of configuration, however, you should give most consideration to

TempDB. TempDB is heavily used by many SQL Server features, and therefore it can

quickly become a bottleneck in busy systems. You should ensure that you have the

correct number of files and that they are sized correctly.

Uninstalling an instance or removing features from an instance can be done either

from Control Panel or from the command line. You should be mindful of the fact that

even after an instance is uninstalled, there will still be a residue left in the file system and

also in the Registry.

ChapTer 5 ConfIgurIng The InsTanCe

PART II

Database Administration

165
© Peter A. Carter 2019
P. A. Carter, Pro SQL Server 2019 Administration, https://doi.org/10.1007/978-1-4842-5089-1_6

CHAPTER 6

Database Configuration
Within a database, data is stored in one or more data files. These files are grouped into

logical containers called filegroups. Every database also has at least one log file. Log files

sit outside of filegroup containers and do not follow the same rules as data files. This

chapter begins by discussing filegroup strategies that database administrators (DBAs)

can adopt before it looks at how DBAs can maintain data and log files.

 Data Storage
Before considering which filegroup strategies to adopt, it is important that you

understand how SQL Server stores data. The diagram in Figure 6-1 illustrates the storage

hierarchy within a database.

Figure 6-1. How SQL Server stores data

166

A database always consists of at least one filegroup, which contains a minimum of

one file. The first file in the database is known as the primary file. This file is given an

.mdf file extension by default. You can, however, change this extension if you wish. This

file can be used to store data, but it is also used to store metadata that provides database

startup information and pointers to other files within the database. The filegroup that

contains the primary file is called the primary filegroup.

If additional files are created within the database, they are known as secondary files

and are given the .ndf extension by default. You can, however, change this extension

if you wish. These files can be created in the primary filegroup and/or in secondary

filegroups. Secondary files and filegroups are optional, but they can prove very useful to

database administrators, as we will discuss later in this chapter.

Tip It is a good idea to keep default file extensions. There are no real benefits in
using different extensions and doing so adds extra complexity. For example, not
only do you need to remember what extensions you used, but also, if your antivirus
software uses file extensions for its exclusions list, you could suddenly see a nasty
drop in performance.

 Filegroups
Tables and indexes are stored on a filegroup, as opposed to a specific file within the

container. This means that for filegroups containing more than one file, you have no

control over which file is used to store the object. In fact, because SQL Server allocates

data to files using a round-robin approach, each object stored in the filegroup has a very

high chance of being split over every file within the filegroup.

To witness this behavior, run the script in Listing 6-1. This script creates a database

that has a single filegroup that contains three files. A table is then created on the

filegroup and populated. Finally, %%physloc%% is used to determine where each of the

rows within the table is stored. The script then counts the number of rows in each file.

Tip Change the file paths to match your own preferred locations.

ChapTer 6 DaTabase ConFIguraTIon

167

Listing 6-1. SQL Server Round-Robin Allocation

USE Master

GO

--Create a database with three files in the primary filegroup.

CREATE DATABASE [Chapter6]

 CONTAINMENT = NONE

 ON PRIMARY

(NAME = N'Chapter6', FILENAME = N'F:\MSSQL\MSSQL15.PROSQLADMIN\MSSQL\DATA\

Chapter6.mdf'),

(NAME = N'Chapter6_File2',

 FILENAME = N'F:\MSSQL\MSSQL15.PROSQLADMIN\MSSQL\DATA\Chapter6_

File2.ndf'),

(NAME = N'Chapter6_File3',

 FILENAME = N'F:\MSSQL\MSSQL15.PROSQLADMIN\MSSQL\DATA\Chapter6_

File3.ndf')

 LOG ON

(NAME = N'Chapter6_log',

 FILENAME = N'E:\MSSQL\MSSQL15.PROSQLADMIN\MSSQL\DATA\Chapter6_log.ldf');

GO

IF NOT EXISTS (SELECT name FROM sys.filegroups WHERE is_default=1 AND

name = N'PRIMARY')

 ALTER DATABASE [Chapter6] MODIFY FILEGROUP [PRIMARY] DEFAULT;

GO

USE Chapter6

GO

--Create a table in the new database. The table contains a wide, fixed-

length column

--to increase the number of allocations.

ChapTer 6 DaTabase ConFIguraTIon

168

CREATE TABLE dbo.RoundRobinTable

(

 ID INT IDENTITY PRIMARY KEY,

 DummyTxt NCHAR(1000),

);

GO

--Create a Numbers table that will be used to assist the population of the table.

DECLARE @Numbers TABLE

(

 Number INT

)

--Populate the Numbers table.

;WITH CTE(Number)

AS

(

 SELECT 1 Number

 UNION ALL

 SELECT Number +1

 FROM CTE

 WHERE Number <= 99

)

INSERT INTO @Numbers

SELECT *
FROM CTE;

--Populate the example table with 100 rows of dummy text.

INSERT INTO dbo.RoundRobinTable

SELECT 'DummyText'

FROM @Numbers a

CROSS JOIN @Numbers b;

--Select all the data from the table, plus the details of the row’s

physical location.

ChapTer 6 DaTabase ConFIguraTIon

169

--Then group the row count.

--by file ID

SELECT b.file_id, COUNT(*) AS [RowCount]

FROM

(

 SELECT ID, DummyTxt, a.file_id

 FROM dbo.RoundRobinTable

 CROSS APPLY sys.fn_PhysLocCracker(%%physloc%%) a

) b

GROUP BY b.file_id;

The results displayed in Figure 6-2 show that the rows have been distributed evenly

over the three files within the filegroup. If the files are different sizes, then the file with

the most space receives more of the rows due to the proportional fill algorithm, which

attempts to weigh the allocations to each file in order to evenly distribute data across

each of the files.

Tip You may notice that there are no rows returned for File 2. This is because
file_id 2 is always the transaction log file (or first transaction log file if you have
more than one). file_id 1 is always the primary database file.

Figure 6-2. Evenly distributed rows

ChapTer 6 DaTabase ConFIguraTIon

170

Caution The physloc functions are undocumented. Therefore, Microsoft will not
provide support for their use.

Standard data and indexes are stored in a series of 8KB pages; these are made up of a

96-byte header that contains metadata about the page and 8096 bytes for storing the data

itself. These 8KB pages are then organized into units of eight continuous pages, which

together are called an extent. An extent is the smallest unit the SQL Server can read

from disk.

 FILESTREAM Filegroups
FILESTREAM is a technology that allows you to store binary data in an unstructured

manner. Binary data is often stored in the operating system, as opposed to the database,

and FILESTREAM gives you the ability to continue this while at the same time offering

transactional consistency between this unstructured data and the structured metadata

stored in the database. Using this technology will allow you to overcome SQL Server’s

2GB maximum size limitation for a single object. You will also see a performance

improvement for large binary objects over storing them in the database. If files are over

1MB in size, the read performance is likely to be faster with FILESTREAM.

You do need to bear in mind, however, that objects stored with FILESTREAM use

Windows cache instead of the SQL Server buffer cache. This has the advantage that you

do not have large files filling up your buffer cache causing other data to be flushed to

either the buffer cache extension or to disk. On the flip side, it means that when you are

configuring the Max Server Memory setting for the instance, you should remember that

Windows requires extra memory if you plan to cache the objects, because the binary

cache in Windows is used, as opposed to SQL Server’s buffer cache.

Separate filegroups are required for FILESTREAM data. Instead of containing files,

these filegroups point to folder locations in the operating system. Each of these locations

is called a container. FILESTREAM must be enabled on the instance in order to create a

FILESTREAM filegroup. You can do this during the setup of the instance, as discussed

in Chapter 2, or you can configure it in the properties of the instance in SQL Server

Management Studio.

ChapTer 6 DaTabase ConFIguraTIon

171

We can add a FILESTREAM filegroup to our Chapter6 database by using the Add

Filegroup button on the Filegroups tab of the Database Properties dialog box and then

adding a name for the filegroup in the Name field, as shown in Figure 6-3.

We can then use the Files tab of the Database Properties dialog box to add the

container. Here, we need to enter a name for the container and specify the file type

as FILESTEAM data. We are then able to select our FILESTREAM filegroup from the

Filegroup drop-down box, as illustrated in Figure 6-4.

Figure 6-3. The Filegroups tab

ChapTer 6 DaTabase ConFIguraTIon

172

We can achieve the same results by running the T-SQL commands in Listing 6-2. The

script creates a FILESTREAM filegroup and then adds a container. You should change

the directories in the script to match your own configuration.

Listing 6-2. Adding a FILESTREAM Filegroup

ALTER DATABASE [Chapter6] ADD FILEGROUP [Chapter6_FS_FG] CONTAINS FILESTREAM;

GO

ALTER DATABASE [Chapter6] ADD FILE (NAME = N'Chapter6_FA_File1',

FILENAME = N'F:\MSSQL\MSSQL15.PROSQLADMIN\MSSQL\DATA\Chapter6_FA_File1')

TO FILEGROUP [Chapter6_FS_FG];

GO

Figure 6-4. The Files tab

ChapTer 6 DaTabase ConFIguraTIon

173

In order to explore the folder structure of a FILESTREAM container, we first need to

create a table and populate it with data. The script in Listing 6-3 creates a table, which

consists of a unique identifier—which is required for all tables that contain FILESTREAM

data—a text description of the binary object, and a VARBINARY(MAX) column that we will

use to store the illustration from Figure 6-1, earlier in this chapter. The file that we have

used is unimportant, so to run the script yourself, change the name and location of the

file being imported to a file on your system.

Listing 6-3. Creating a Table with FILESTREAM Data

USE Chapter6

GO

CREATE TABLE dbo.FilestreamExample

(

 ID UNIQUEIDENTIFIER ROWGUIDCOL NOT NULL UNIQUE,

 PictureDescription NVARCHAR(500),

 Picture VARBINARY(MAX) FILESTREAM

);

GO

INSERT INTO FilestreamExample

 SELECT NEWID(), 'Figure 6-1. Diagram showing the SQL Server storage

hierachy.', * FROM

 OPENROWSET(BULK N'c:\Figure_6-1.jpg', SINGLE_BLOB) AS import;

Note We have used a UNIQUE constraint, as opposed to a primary key, since
a guID is not usually a good choice as a primary key. If the table must have a
primary key, it may be more sensible to add an additional integer column with the
IDENTITY property specified. We have used a guID and set the ROWGUIDCOL
property, since this is required by sQL server to map to the FILesTreaM objects.

ChapTer 6 DaTabase ConFIguraTIon

174

If we now open the location of the container in the file system, we can see that

we have a folder, which has a GUID as its name. This represents the table that we

created. Inside this folder is another folder that also has a GUID as its name. This folder

represents the FILESTREAM column that we created. Inside this folder, we will find a

file, which is the picture that we inserted into the column. This file’s name is the log

sequence number from when the file was created. It is theoretically possible to change

the extension of this file to its original extension and then open it. This is certainly not

recommended, however, because it may have undesirable effects within SQL Server.

At the root level of the container, you will also find a file called filestream.hdr, which

contains the metadata for the container and a folder called $FSLog. This folder contains

a series of files that make up the FILESTREAM equivalent of the transaction log. This

folder hierarchy is illustrated in Figure 6-5.

Tip The sQL server service account is automatically granted file system
permissions on the FILESTREAM container. It is considered bad practice to grant
any other user permissions to this folder structure. If you try to access the folder
with a Windows administrator account, you are given a permissions warning,
stating that if you continue, you will be permanently granting yourself permissions
to the folder.

ChapTer 6 DaTabase ConFIguraTIon

175

FileTable is a technology that builds on top of FILESTREAM and allows data to

be stored in the file system. Therefore, to use it, you must enable FILESTREAM with

streaming access. Unlike FILESTREAM, however, FileTable allows nontransactional

access to the data. This means that you can move data so it is stored in the SQL Engine

rather than in the operating system without needing to modify existing applications. You

can also open and modify the files through Windows Explorer like any other files in the

operating system.

To achieve this, SQL Server enables Windows applications to request a file handle

without having a transaction. Because of this functionality, you need to specify, at the

Figure 6-5. FILESTREAM folder hierarchy

ChapTer 6 DaTabase ConFIguraTIon

176

database level, what level of nontransactional access applications may request. You can

configure the following access levels:

• NONE (Default—Only transactional access is permitted.)

• READ_ONLY (The object in the file system can be viewed but not

modified.)

• FULL (The object in the file system can be viewed and modified.)

• IN_TRANSITION_TO_READ_ONLY (Transitioning to READ_ONLY)

• IN_TRANSITION_TO_OFF (Transitioning to NONE)

You also need to specify the root directory for the FileTable container. Both of these

tasks can be performed with the same ALTER DATABASE statement, as demonstrated in

Listing 6-4.

Listing 6-4. Setting the Nontransactional Access Level

ALTER DATABASE Chapter6

 SET FILESTREAM (NON_TRANSACTED_ACCESS = FULL, DIRECTORY_NAME =

N'Chapter6_FileTable');

SQL Server now creates a share, which has the same name as your instance. Inside

this share, you will find a folder with the name you specified. When you create a

FileTable, you can again specify a directory name. This creates a subfolder with the name

you specify. Because FileTables do not have a relational schema, and the metadata that is

stored about the files is fixed, the syntax for creating them includes only the name of the

table, the directory, and the collation to use. The code in Listing 6-5 demonstrates how to

create a FileTable called Chapter6_FileTable.

Listing 6-5. Creating a FileTable

USE Chapter6

GO

CREATE TABLE dbo.ch06_test AS FILETABLE

 WITH

 (

 FILETABLE_DIRECTORY = 'Chapter6_FileTable',

ChapTer 6 DaTabase ConFIguraTIon

177

 FILETABLE_COLLATE_FILENAME = database_default

);

GO

To load files into the table, you can simply copy or move them into the folder

location, or developers can use the System.IO namespace within their applications. SQL

Server will update the metadata columns of the FileTable accordingly. In our example,

the file path to the container where the FileTable files can be found is \\127.0.0.1\

prosqladmin\Chapter6_FileTable\Chapter6_FileTable. Here, 127.0.0.1 is the

loopback address of our server, prosqladmin is the share that was created based on our

instance name, and Chapter6_FileTable\Chapter6_FileTable FILESTREAM\FileTable

is the container.

 Memory-Optimized Filegroups
SQL Server 2014 introduced a feature called memory-optimized tables. These tables

are stored entirely in memory; however, the data is also written to files on disk. This is

for durability. Transactions against in-memory tables have the same ACID (Atomic,

Consistent, Isolated, and Durable) properties as traditional disk-based tables. We will

discuss in-memory tables further in Chapter 7 and in-memory transactions in Chapter 18.

Because in-memory tables require a copy of the data to be stored on disk, in order to

be durable, we have the memory-optimized filegroup. This type of filegroup is similar to

a FILESTREAM filegroup but with some subtle differences. First, you can only create one

memory-optimized filegroup per database. Second, you do not need to explicitly enable

FILESTREAM unless you are planning to use both features.

In-memory data is persisted on disk through the use of two file types. One is a Data

file and the other a Delta file. These two file types always operate in pairs and cover a

specific range of transactions, so you should always have the same amount. The Data

file is used to track inserts that are made to in-memory tables, and the Delta file is used

to track deletions. Update statements are tracked via a combination of the two files,

because the update is tracked as a delete and an insert. The files are written sequentially

and are table agnostic, meaning that each file may contain data for multiple tables.

We can add an in-memory-optimized filegroup to our database in the Filegroups tab

of the Database Properties dialog box by using the Add Filegroup button in the Memory

Optimized Data area of the screen and by specifying a name for the filegroup. This is

illustrated in Figure 6-6.

ChapTer 6 DaTabase ConFIguraTIon

178

We can then add the container to the filegroup by using the Add File button in the

Files tab of the Database Properties dialog box. Here we need to specify the logical name

of our file and select the FILESTREAM file type. We will then be able to choose to add the

file to our in-memory filegroup by using the drop-down box, as shown in Figure 6-7.

Figure 6-6. Adding the in-memory filegroup

ChapTer 6 DaTabase ConFIguraTIon

179

Alternatively, we can achieve the same results by using the T-SQL script in

Listing 6- 6. Make sure to change the file location to match your directory structure.

Listing 6-6. Adding an In-Memory Filegroup and Container

ALTER DATABASE [Chapter6] ADD FILEGROUP [Chapter6_InMemory] CONTAINS

MEMORY_OPTIMIZED_DATA;

GO

ALTER DATABASE [Chapter6] ADD FILE (NAME = N'InMemory', FILENAME = N'F:\

MSSQL\MSSQL15.PROSQLADMIN\MSSQL\DATA\InMemory') TO FILEGROUP [Chapter6_

InMemory];

GO

Figure 6-7. Adding an in-memory container

ChapTer 6 DaTabase ConFIguraTIon

180

 Strategies for Structured Filegroups
A DBA can adopt different filegroup strategies to assist with requirements such as

performance, backup time, recovery time objectives, and tiered storage offerings. The

following sections explore those strategies.

 Performance Strategies

When designing a filegroup strategy for performance, consider object placement in

relation to joins performed by the application’s queries. Imagine, for example, a large

data warehouse. You have a wide fact table, with hundreds of thousands of rows, which

joins to two dimension tables, each with millions of rows. If you placed all three of these

objects on the same filegroup, then you can distribute the IO by using multiple files,

placing each file on a different spindle. The issue here, however, is that even though the

IO can be distributed, you do not have granular control over which tables are placed

on which LUNs (logical unit numbers). As demonstrated earlier in this chapter, all

objects will be stripped evenly, using a combination of round-robin and proportional

fill algorithms, across each of the files. Therefore, it is possible to gain a performance

advantage by splitting these tables into three separate filegroups, each of which would be

created on separate LUNs. This may allow SQL Server to improve the parallelization of

the table scans.

Alternatively, another scenario may be that you have a massive data warehouse, in

the tens of terabytes (TBs), and a very large server, with a balanced throughput, such as

a server built using the Fast Track Data Warehouse Reference Architecture (details of

which can be found on the MSDB library); in this case, you may get the best performance

by creating filegroups over every single disk available. This gives the server the best

performance in terms of IO throughput and helps prevent the IO subsystem from

becoming the bottleneck.

Also consider the placement of tables that are subject to horizontal partitioning.

Imagine a very large table where data is partitioned by month. If your application’s

workload means that several months of data are often being read at the same time, then

you may see a performance improvement if you split each month out into separate

filegroups, each of which uses a discrete set of spindles, in a similar way to the join

example, mentioned earlier. There will be a full discussion on partitioning in Chapter 7.

ChapTer 6 DaTabase ConFIguraTIon

181

Caution The downside to this approach is that placing partitions on separate
filegroups prevents you from using partitioning functions, such as SWITCH.

 Backup and Restore Strategies

SQL Server allows you to back up at the file and filegroup level as well as at the database

level. You are subsequently able to perform what is known as a piecemeal restore. A

piecemeal restore allows you to bring your database online in stages. This can be very

useful for large databases that have a very low recovery time objective.

Imagine that you have a large database that contains a small amount of very critical

data that the business cannot be without for more than a maximum of 2 hours. The

database also contains a large amount of historic data that the business requires access

to on a daily basis for the purpose of reporting, but it is not critical that it is restored

within the 2-hour window. In this scenario, it is good practice to have two secondary

filegroups. The first contains the critical data and the second contains the historic

data. In the event of a disaster, you can then restore the primary filegroup and the first

secondary filegroup. At this point, you can bring the database online and the business

will have access to this data. Subsequently, the filegroup containing the historic

reporting data could be brought online.

Filegroups can also assist with backup strategies. Imagine a scenario where you have

a large database that takes 2 hours to back up. Unfortunately, you have a long-running

ETL process and only a 1-hour window in which the database can be backed up nightly.

If this is the case, then you can split the data between two filegroups. The first filegroup

can be backed up on Monday, Wednesday, and Friday, and the second filegroup can be

backed up on Tuesday, Thursday, and Saturday. Backups and restores are discussed fully

in Chapter 12.

 Storage-Tiering Strategies

Some organizations may decide that they want to implement storage tiering for large

databases. If this is the case, then you will often need to implement this by using

partitioning. For example, imagine that a table contains 6 years’ worth of data. The data

for the current year is accessed and updated many times a day. Data for the previous 3

years is accessed in monthly reports, but other than that is rarely touched. Data as far

ChapTer 6 DaTabase ConFIguraTIon

182

back as 6 years must be available instantly, if it is needed for regulatory reasons, but in

practice, it is rarely accessed.

In the scenario just described, partitioning could be used with yearly partitions. The

filegroup containing the current year’s data could consist of files on locally attached

RAID 10 LUNs for optimum performance. The partitions holding data for years 2 and 3

could be placed on the premium tier of the corporate SAN device. Partitions for data

older than 3 years could be placed on near-line storage within the SAN, thus satisfying

regulatory requirements in the most cost-effective manner.

Some organizations have also introduced automated storage tiering, such as

AO (Adaptive Optimization). Although automated storage tiering technology works

extremely well in some environments, its implementation for SQL Server can sometimes

prove problematic. This is because it works in two phases. The first is an analysis phase,

which decides which tier each block or file should reside on for the best trade-off

between cost and expense. The second phase will actually move the data to the most

appropriate tier.

The issue is that the window where data is being moved tends to reduce the

performance of the SAN. Therefore, running analysis followed by moving the data

frequently (i.e., hourly) can cause unacceptable performance degradation. On the

flip side, however, running analysis less frequently (such as during business hours)

and moving data overnight sometimes do not tally with SQL Server usage profiles. For

example, imagine a reporting application that needs optimum performance, but where

the weekly reports are generated on a Friday. Because the last analysis window before

this peak period was Thursday, when not a lot was happening, the data is likely to

reside on a slower, more cost-effective tier, meaning that performance will be impaired.

When Saturday arrives, however, and the application is virtually idle again, the data will

reside on the premium tier, because of the analysis window, during Friday’s peak usage.

For this reason, automated storage tiering often works best in environments where

databases have set hours of operation, with little day-to-day variance in usage profiles.

 Strategies for Memory-Optimized Filegroups
Just like structured filegroups, memory-optimized filegroups will use a round-robin

approach to allocating data between containers. It is common practice to place these

multiple containers on separate spindles in order to maximize IO throughput. The issue

is, however, that if you place one container on spindle A and one container on spindle B,

ChapTer 6 DaTabase ConFIguraTIon

183

then the round-robin approach will place all of the Data files on one volume and all of

the Delta files on the other volume.

To avoid this issue, it is good practice to place two containers on each of the volumes

that you wish to use for your memory-optimized filegroup. This will ensure that you get

a balanced distribution of IO, as illustrated in Figure 6-8. This is in line with Microsoft’s

recommended best practice.

 File and Filegroup Maintenance
During the lifecycle of a data-tier application, at times you may need to perform

maintenance activities on your database files and filegroups for reasons such as

performance or capacity management. The following sections will describe how to add,

expand, and shrink files.

 Adding Files
You may need to add files to a filegroup for both capacity and performance reasons.

If your database grows past your capacity estimates and the volume that hosts your data

files cannot be resized, then you can add additional files to the filegroup, which is hosted

on different LUNs.

You may also need to add additional files to the filegroup in order to increase the

IO throughput if the storage subsystem becomes a bottleneck for your application.

We could add an additional file to our Chapter6 database by using the Files tab of the

Database Properties dialog box. Here, we will use the Add button and then specify the

Figure 6-8. Balanced IO distribution for memory-optimized filegroups

ChapTer 6 DaTabase ConFIguraTIon

184

logical name of the file, the filegroup that we want the file to reside in, the initial size of

the file, the autogrowth settings, the maximum size of the file, and the physical path to

where the file will be stored.

Alternatively, we could use the script in Listing 6-7 to achieve the same results. You

should change the directory path in the script to match your own directory structure.

Listing 6-7. Adding a New File Using T-SQL

ALTER DATABASE [Chapter6] ADD FILE (NAME = N'Chapter6_File4', FILENAME =

N'G:\DATA\Chapter6_File4.ndf' , SIZE = 5120KB , FILEGROWTH = 1024KB) TO

FILEGROUP [PRIMARY];

GO

In this scenario, however, it is important to remember the proportional fill algorithm.

If you add files to a filegroup, then SQL Server will target the empty files first, until they

have the same amount of free space remaining as the original files. This means that if

you create them with the same size as the original files, you may not receive the benefit

that you are expecting. You can witness this behavior by running the script in Listing 6-8.

This script uses the same technique we used when we initially created and populated

the RoundRobin table to generate an additional 10,000 rows and then identify how many

rows are in each file.

Listing 6-8. Adding Additional Rows to the RoundRobin Table

--Create a Numbers table that will be used to assit the population of the table

DECLARE @Numbers TABLE

(

 Number INT

)

--Populate the Numbers table

;WITH CTE(Number)

AS

(

 SELECT 1 Number

 UNION ALL

 SELECT Number +1

ChapTer 6 DaTabase ConFIguraTIon

185

 FROM CTE

 WHERE Number <= 99

)

INSERT INTO @Numbers

SELECT *
FROM CTE;

--Populate the example table with 10000 rows of dummy text

INSERT INTO dbo.RoundRobinTable

SELECT 'DummyText'

FROM @Numbers a

CROSS JOIN @Numbers b;

--Select all the data from the table, plus the details of the rows'

physical location.

--Then group the row count

--by file ID

SELECT b.file_id, COUNT(*)

FROM

(

 SELECT ID, DummyTxt, a.file_id

 FROM dbo.RoundRobinTable

 CROSS APPLY sys.fn_PhysLocCracker(%%physloc%%) a

) b

GROUP BY b.file_id;

You can see from the results in Figure 6-9 that the proportional fill algorithm used

the new file exclusively until it was full and then restarted the round-robin allocation

between each file. After restarting the proportional fill algorithm, however, an

autogrowth event has occurred on the first file in the filegroup. This means that the first

file now has a lot more empty space than the other files and has received most of the

remaining new rows.

ChapTer 6 DaTabase ConFIguraTIon

186

The workaround for the new file being filled up first would be to either create smaller

files or increase the size of the existing files. Either of these approaches would level

out the amount of free space left in each file and make SQL Server distribute the writes

evenly.

The other alternative is to use a database scoped configuration, to force all files

within the filegroup to grow every time an autogrowth event occurs. This will be

discussed further in the “Database Scoped Configurations” section of this chapter.

Tip We have discussed the implications for adding new files on the round-robin
algorithm. It is also worth mentioning, however, that when you initially create your
filegroup, you should create the files within that filegroup, with equal sizes, to take
advantage of the algorithm.

 Expanding Files
If you had added files using the GUI, rather than a script, then you may have noticed

that the initial sizes, indicated next to each of our files, were 11MB, 6MB, and 7MB,

respectively, as opposed to the 5MB that we configured for them earlier in this chapter.

This is because a more accurate name for the Initial Size field would actually be Current

Size. Because we have configured autogrowth for the files, as they have become full, SQL

Server has automatically grown the files for us.

Figure 6-9. Row allocations to new file

ChapTer 6 DaTabase ConFIguraTIon

187

This is a very useful fail-safe feature, but ideally we should use it as just that—a fail-

safe. Growing files uses resources and also causes locks to be taken out, blocking other

processes. It is therefore advisable to presize the database files in line with capacity

estimates, as opposed to starting with a small file and relying on autogrow.

For the same reason, when specifying a file’s autogrowth settings, you should shy

away from the default value of 1MB and specify a much larger value. If you don’t, if your

file becomes full and autogrowth kicks in, your files will grow in very tiny increments,

which is likely to impair performance, even if you are using instant file initialization.

The value that you should set your files to grow by will depend on your environment.

You should take into account, for example, the amount of free space that is available

on the volume and the number of other databases that share the volume. You can see

how much space is left in a file by using the sys.dm_db_file_space_usage dynamic

management view (DMV). This DMV will return a column named unallocated_extent_

page_count, which will tell us how many free pages there are left to be allocated. We can

use this to calculate the remaining free space in each file, as demonstrated in Listing 6-9.

Listing 6-9. Calculating Free Space in Each File

SELECT

 file_id

 ,unallocated_extent_page_count * 1.0 / 128 'Free Space (MB)'

FROM sys.dm_db_file_space_usage;

If we want to expand a file, we do not need to wait for autogrowth to kick in. We can

expand the file manually by changing the value of the Initial Size field in the Files tab

of the Database Properties dialog box or by using the ALTER DATABASE command. The

command in Listing 6-10 will resize the newest file in our Chapter6 database to be 20MB.

Listing 6-10. Expanding a File

ALTER DATABASE [Chapter6] MODIFY FILE (NAME = N'Chapter6_File4',

SIZE = 20480KB);

 Shrinking Files
Just as you can expand database files, you can also shrink them. There are various

methods for achieving this, including shrinking a single file, shrinking all files within a

database including the log, or even setting an Auto Shrink option at the database level.

ChapTer 6 DaTabase ConFIguraTIon

188

To shrink an individual file, you need to use the DBCC SHRINKFILE command. When

you use this option, you can specify either the target size of the file or you can specify the

EMPTYFILE option. The EMPTYFILE option will move all data within the file to other files

within the same filegroup. This means that you can subsequently remove the file from

the database.

If you specify a target size for the database, then you can choose to specify either

TRUNCATEONLY or NOTRUNCATE. If you select the former, then SQL Server will start at the

end of the file and reclaim space until it reaches the last allocated extent. If you choose

the latter, then beginning at the end of the file, SQL Server will begin a process of moving

allocated extents to the first free space at the start of the file.

To remove the unused space at the end of our expanded Chapter6_File4 file, we

could use the Shrink File screen in SQL Server Management Studio, which can be found

by right-clicking the database and drilling through Tasks ➤ Shrink ➤ Files. In the Shrink

File screen, we can select the appropriate file from the File Name drop-down box and

then ensure that the Release Unused Space radio button is selected. This option enforces

TRUNCATEONLY.

We could also achieve the same result by running the command in Listing 6-11.

Listing 6-11. Shrinking a File with TRUNCATEONLY

USE [Chapter6]

GO

DBCC SHRINKFILE (N'Chapter6_File4' , 0, TRUNCATEONLY);

If we wanted to reclaim the unused space at the end of all files in the database, we

could right-click the database and drill down through Tasks ➤ Shrink ➤ Database. We

would then ensure that the Reorganize Files Before Releasing Unused Space option is

not selected and click OK.

We could achieve the same result via T-SQL by running the command in Listing 6-12.

Listing 6-12. Shrinking a Database via T-SQL

USE [Chapter6]

GO

DBCC SHRINKDATABASE(N'Chapter6');

ChapTer 6 DaTabase ConFIguraTIon

189

There are very few occasions when it is acceptable to shrink a database or even an

individual file. There is a misconception that large, empty files take longer to back up,

but this is a fallacy. In fact, I have had only one occasion in my career when I needed to

shrink data files. This instance happened after we removed several hundred gigabytes

of archive data from a database and were approaching our 2TB LUN limit, but this was

an exceptional circumstance. Generally speaking, you should not look to shrink your

database files, and you should certainly never ever use the Auto Shrink option on a

database.

In the event that you do have to shrink a database, be prepared for the process to be

slow. It is a single-threaded operation and will consume resources while running. You

should also never consider using the NOTRUNCATE option. As described earlier, this will

cause extents to be moved around inside the file and will lead to massive fragmentation

issues like those you can see using the script in Listing 6-13. This script first creates a

clustered index on our RoundRobin table. It then uses the sys.dm_db_index_physical_

stats DMV to examine the level of fragmentation at the leaf level of the clustered index.

Subsequently, it shrinks the database and then reexamines the level of fragmentation of

the leaf level of our clustered index.

Listing 6-13. Fragmentation Caused by Shrinking

USE Chapter6

GO

--Create a clustered index on RoundRobinTable

CREATE UNIQUE CLUSTERED INDEX CIX_RoundRobinTable ON dbo.

RoundRobinTable(ID);

GO

--Examine Fragmentation on new index

SELECT * FROM

sys.dm_db_index_physical_stats(DB_ID('Chapter6'),OBJECT_ID('dbo.RoundRobinT

able'),1,NULL,'DETAILED')

WHERE index_level = 0;

--Shrink the database

DBCC SHRINKDATABASE(N'Chapter6', NOTRUNCATE);

GO

ChapTer 6 DaTabase ConFIguraTIon

190

--Re-examine index fragmentation

SELECT * FROM

sys.dm_db_index_physical_stats(DB_ID('Chapter6'),OBJECT_ID('dbo.RoundRobinT

able'),1,NULL,'DETAILED')

WHERE index_level = 0;

GO

As you can see from the results shown in Figure 6-10, the fragmentation of the leaf

level of the index has increased from 0.08% to a massive 71.64%, which will severely

impact queries run against the index. Indexes and fragmentation will be discussed in

detail in Chapter 8.

Note The fragmentation level may vary depending on the layout of extents within
your file(s).

Figure 6-10. Results of fragmentation

 Database Scoped Configurations
Prior to SQL Server 2016, Trace Flags could be configured on the SQL Server service

(see Chapter 5), which changed the default behavior of how SQL Server stored data and

performed autogrowth events. The first of these was T1117, which was used to make all

files within a filegroup grow at the same time, which was helpful for distributing data

evenly, especially in data warehousing scenarios. The other was T1118, which was used

to force uniform extents to be used exclusively—essentially turning off mixed extents

(where different pages within an extent can be allocated to different tables). T1118

was useful for optimizing TempDB, but could also prove useful in data warehousing

scenarios.

ChapTer 6 DaTabase ConFIguraTIon

191

From SQL Server 2016 onward, T1117 and T1118 have no effect, if they are turned

on. They have been replaced by database scoped configurations, which have two

main benefits. Firstly, database scoped configurations are configured at the database

level, instead of the instance level. This means that a single consolidated instance can

easily support databases with different workload profiles. Secondly, database scoped

configurations are documented and supported by Microsoft. While T1117 and T1118

were well known and well used, they had no official support from Microsoft.

Note The equivalent behavior of T1117 and T1118 is assumed by default on the
TempDb database. For user databases, however, the traditional default behavior is
assumed.

We could assume the equivalent of T1117 for the Primary filegroup, in the Chapter6

database, by using the command in Listing 6-14.

Listing 6-14. Turn On Autogrow All Files

ALTER DATABASE Chapter6 MODIFY FILEGROUP [Primary] AUTOGROW_ALL_FILES

The command in Listing 6-15 will assume the equivalent behavior of T1118 for the

Chapter6 database.

Listing 6-15. Turn Off Mixed Page Allocations

ALTER DATABASE Chapter6 SET MIXED_PAGE_ALLOCATION OFF

 Log Maintenance
The transaction log is a vital tool in SQL Server’s armory; it provides recovery

functionality but also supports many features, such as AlwaysOn Availability Groups,

transactional replication, change data capture, and many more.

Internally, the log file is split down into a series of VLFs (virtual log files). When the

final VLF in the log file becomes full, SQL Server will attempt to wrap around to the

first VLF at the beginning of the log. If this VLF has not been truncated and cannot be

reused, then SQL Server will attempt to grow the log file. If it is not able to expand the file

due to lack of disk space or max size settings, then a 9002 error will be thrown and the

ChapTer 6 DaTabase ConFIguraTIon

192

transaction will be rolled back. Figure 6-11 illustrates the structure of the log file and its

circular usage.

The amount of VLFs inside a log file is determined by the size of the log when it was

initially created and also the size that it is expanded by each time it grows. If the log file

is created at or grows in increments of less than 64MB, then 4 VLFs will be added to the

file. If it is created at or grows in increments between 64MB and 1GB, then 8 VLFs will be

added to the file. If it is created at or grows by more than 1GB, then 16 VLFs will be added.

The transaction log is a fairly low-maintenance component of the SQL Server stack.

There will be times, however, when maintenance scenarios occur; these are discussed in

the following sections.

 Recovery Model
The recovery model is a database-level property that controls how transactions are

logged and, therefore, it has an impact on transaction log maintenance. The three

recovery models within SQL Server are described in Table 6-1.

Figure 6-11. Log file structure

ChapTer 6 DaTabase ConFIguraTIon

193

Table 6-1. Recovery Models

Recovery Model Description

SIMPLE In the SIMPLE recovery model, it is not possible to back up the transaction log.

Transactions are minimally logged and the log will automatically be truncated.

In SIMPLE recovery model, the transaction log only exists to allow transactions

to be rolled back. It is incompatible with several haDr (high availability/disaster

recovery) technologies, such as alwayson availability groups, Log shipping,

and database mirroring. This model is appropriate for reporting databases

where updates only occur on an infrequent basis. This is because point-in-time

recovery is not possible. The recovery point objective will be the time of the last

FULL or DIFFERENTIAL backup.

FULL In the FULL recovery model, transaction log backups must be taken. The log will

only be truncated during the log backup process. Transactions are fully logged

and this means that point-in-time recovery is possible. It also means that you

must have a complete chain of log file backups to restore a database to the

most recent point.

BULK LOGGED The BULK_LOGGED recovery model is meant to be used on a temporary basis

when you are using the FULL recovery model but need to perform a large BULK

INSERT operation. When you switch to this mode, BULK INSERT operations

are minimally logged. You then switch back to FULL recovery model when the

import is complete. In this recovery model, you can restore to the end of any

backup, but not to a specific point in time between backups.

Note recovery models will be discussed further in Chapter 12.

 Log File Count
Several times I have witnessed a misconception that having multiple log files can

improve the performance of a database. This is a fallacy. The idea is driven by the belief

that if you have multiple log files on separate drives, you can distribute IO and relieve the

log as a bottleneck.

ChapTer 6 DaTabase ConFIguraTIon

194

The truth is that the transaction log is sequential, and even if you add multiple log

files, SQL Server treats them as if they are a single file. This means that the second file

will only be used after the first file becomes full. As a result, no performance benefit can

be gained from this practice. In fact, the only possible reason that you would ever need

more than one transaction log file is if you ran out of space on the LUN that was hosting

the log, and for some reason it cannot be moved elsewhere and the volume can’t be

expanded. In my professional career, although I have encountered multiple log files on

several occasions, I have never encountered a valid reason for having them.

 Shrinking the Log
Shrinking your log file should never be part of your standard maintenance routines.

There is no benefit to adopting this policy. There are some occasions, however, when

you may have to shrink a log file, and, thankfully, it does not come with the same hazards

as shrinking a data file.

The usual reason for needing to shrink your log file is when an atypical activity

occurs in your database, such as an initial data population or a one-time ETL load.

If this is the case, and your log file expands past the point where space thresholds on

your volume are being breached, then reducing the size of the file is likely to be the

best course of action, as opposed to expanding the volume that is hosting it. In this

eventuality, however, you should carefully analyze the situation to ensure that it really

is an atypical event. If it seems like it could occur again, then you should consider

increasing capacity to deal with it.

To shrink a log file, you can use the Shrink File dialog box. Here, select Log in the

File Type drop-down box. This causes the Filegroup drop-down box to be grayed out

and, assuming you only have one log file, it will automatically be selected in the File

Name drop-down. If you have multiple transaction log files, you will be able to select

the appropriate file from the drop-down list. As with shrinking a data file, choosing the

Release Unused Space option will cause TRUNCATEONLY to be used.

Alternatively, you can use the script in Listing 6-16 to achieve the same results. It

is important to note, however, that shrinking the log file may not actually result in any

space being reclaimed. This happens if the last VLF in the file cannot be reused. A full list

of reasons why it may not be possible to reuse a VLF is included later in this chapter.

ChapTer 6 DaTabase ConFIguraTIon

195

Listing 6-16. Shrinking a Log with TRUNCATEONLY

USE [Chapter6]

GO

DBCC SHRINKFILE (N'Chapter6_log' , 0, TRUNCATEONLY);

GO

Tip because shrinking the transaction log always involves reclaiming space from
the end of the log, until the first active VLF is reached, it is sensible to take a log
backup and place the database in single user mode before performing this activity.

 Log Fragmentation
When the log is truncated because of a backup in the FULL Recovery model or a

checkpoint operation in the SIMPLE Recovery model, what actually happens is that any

VLFs that can be reused are truncated. Reasons why a VLF may not be able to be reused

include VLFs containing log records associated with active transactions, or transactions

that have not yet been sent to other databases in Replication or AlwaysOn topologies. In

a similar fashion, if you shrink the log file, then VLFs will be removed from the end of the

file until the first active VLF is reached.

There is no hard and fast rule for the optimum number of VLFs inside a log file, but

I try to maintain approximately two VLFs per GB for large transaction logs, in the tens-

of- gigabytes range. For smaller transaction logs, it is likely the ratio will be higher. If you

have too many VLFs, then you may witness performance degradation of any activity that

uses the transaction log. On the flip side, having too few VLFs can also pose a problem.

In such a case where each VLF is GBs in size, when each VLF is truncated, it will take

a substantial amount of time to clear, and you could witness a system slowdown while

this takes place. Therefore, for large log files, it is recommended that you grow your

transaction log in 8GB chunks to maintain the optimum number and size of VLFs.

To demonstrate this phenomenon, we will create a new database called

Chapter6LogFragmentation, which has a single table on the primary filegroup, called

Inserts, and then populate it with 1 million rows using the script in Listing 6-17. This

will cause a large number of VLFs to be created, which will have a negative impact on

performance.

ChapTer 6 DaTabase ConFIguraTIon

196

Listing 6-17. Creating the Chapter6LogFragmentation Database

--Create Chapter6LogFragmentation database

CREATE DATABASE [Chapter6LogFragmentation]

 CONTAINMENT = NONE

 ON PRIMARY

(NAME = N'Chapter6LogFragmentation', FILENAME = N'F:\MSSQL\MSSQL15.

PROSQLADMIN\MSSQL\DATA\Chapter6LogFragmentation.mdf' , SIZE = 5120KB ,

FILEGROWTH = 1024KB)

 LOG ON

(NAME = N'Chapter6LogFragmentation_log', FILENAME = N'E:\MSSQL\MSSQL15.

PROSQLADMIN\MSSQL\DATA\Chapter6LogFragmentation_log.ldf' , SIZE = 1024KB ,

FILEGROWTH = 10%);

GO

USE Chapter6LogFragmentation

GO

--Create Inserts table

CREATE TABLE dbo.Inserts

(ID INT IDENTITY,

DummyText NVARCHAR(50)

);

--Create a Numbers table that will be used to assit the population of the

table

DECLARE @Numbers TABLE

(

 Number INT

)

--Populate the Numbers table

;WITH CTE(Number)

AS

(

ChapTer 6 DaTabase ConFIguraTIon

197

 SELECT 1 Number

 UNION ALL

 SELECT Number +1

 FROM CTE

 WHERE Number <= 99

)

INSERT INTO @Numbers

SELECT *
FROM CTE;

--Populate the example table with 100 rows of dummy text

INSERT INTO dbo.Inserts

SELECT 'DummyText'

FROM @Numbers a

CROSS JOIN @Numbers b

CROSS JOIN @Numbers c;

You can review the size of your transaction log and see how many VLFs are in your

log by running the script in Listing 6-18.

Listing 6-18. Size of Log and Number of VLFs

--Create a variable to store the results of DBCC LOGINFO

DECLARE @DBCCLogInfo TABLE

(

RecoveryUnitID TINYINT

,FieldID TINYINT

,FileSize BIGINT

,StartOffset BIGINT

,FseqNo INT

,Status TINYINT

,Parity TINYINT

,CreateLSN NUMERIC

);

ChapTer 6 DaTabase ConFIguraTIon

198

--Populate the table variable with the results of DBCC LOGINFO

INSERT INTO @DBCCLogInfo

EXEC('DBCC LOGINFO');

--Display the size of the log file, combined with the number of VLFs and a

VLFs to GB ratio

SELECT

 name

 ,[Size in MBs]

 ,[Number of VLFs]

 ,[Number of VLFs] / ([Size in MBs] / 1024) 'VLFs per GB'

FROM

(

 SELECT

 name

 ,size * 1.0 / 128 'Size in MBs'

 ,(SELECT COUNT(*)

 FROM @DBCCLogInfo) 'Number of VLFs'

 FROM sys.database_files

 WHERE type = 1

) a;

The results of running this script inside the Chapter6LogFragmentation database

are displayed in Figure 6-12. You can see that there are 61 VLFs, which is an excessive

amount given the log size is 345MB.

Figure 6-12. VLFs per GB

ChapTer 6 DaTabase ConFIguraTIon

199

Caution DBCC LOGINFO is undocumented, so it will not be supported by
Microsoft. For example, in sQL server 2012, Microsoft added a column to the
output named RecoverUnitID, but they have never made its description public.

The meaning of each column returned by DBCC LOGINFO is described in Table 6-2.

Table 6-2. DBCC LOGINFO Columns

Column Description

FileID The ID of the physical file. assuming that you only have one file, this should

always return the same value.

FileSize The size of the VLF in bytes.

StartOffset how many bytes there are from the beginning of the physical file until the start of

the VLF.

FSeqNo Defines the current usage order of the VLFs. The highest FSeqNo indicates the

VLF that is currently being written to.

Status a status of 2 means that the VLF is currently active. a status of 0 means that it is

not and can therefore be reused.

Parity parity starts at 0. When a VLF is initially used, it is set to 64. subsequently, it can

be set to either 64 or 128. each time a VLF is reused, this flag is switched to the

opposite value.

CreateLSN CreateLSN indicates the log sequence number that was used to create the VLF.

With an understanding of the columns, we can identify several interesting facts

about the results shown earlier. First, because the first four VLFs have a CreateLSN value

of 0, we know that these were the VLFs that were initially created when the log file itself

was generated. The rest have been created by the log expanding, rather than cycling. We

can also see that the final ten VLFs in the results have not yet been used, because they

have a Parity of 0. The VLF with an FSeqNo of 83 is the VLF where records are currently

being written, since it has the highest FSeqNo.

Most interestingly, for the purpose of this example, we can see that the first 51 VLFs

are marked as active, meaning that they cannot be reused. This means that if we attempt

ChapTer 6 DaTabase ConFIguraTIon

200

to shrink our log file, only ten VLFs can be removed and the file would only shrink by the

sum of their file sizes.

The reason that our log was growing and could not be cycled was because all the

space was used during the course of a single transaction and, of course, our log has

not been backed up. The query in Listing 6-19 will enable you to determine if there are

any other reasons why your transaction log is growing. The query interrogates the sys.

databases catalog view and returns the last reason that a VLF could not be reused.

Listing 6-19. sys.databases

SELECT log_reuse_wait_desc

FROM sys.databases

WHERE name = 'Chapter6LogFragmentation';

The log reuse waits that are still used in SQL Server 2019 and that are not for

Microsoft’s internal use only are described in Table 6-3. It is important to understand

that the log reuse wait applies to the point when the log attempts to cycle and may still

not be valid at the point you query sys.databases. For example, if there was an active

transaction at the point that the last log cycle was attempted, it will be reflected in

sys.databases, even though you may not currently have any active transactions at the

point when you query sys.databases.

Table 6-3. Log Reuse Waits

Log_reuse_wait Log_reuse_wait_description Description

0 NOTHING The log was able to cycle on its last

attempt.

1 CHECKPOINT normally indicates that a CHECKPOINT

has not occurred since the last time the log

was truncated.

2 LOG_BACKUP The log cannot be truncated until a log

backup has been taken.

3 ACTIVE_BACKUP_OR_RESTORE a backup or restore operation is currently

in progress on the database.

(continued)

ChapTer 6 DaTabase ConFIguraTIon

201

Log_reuse_wait Log_reuse_wait_description Description

4 ACTIVE_TRANSACTION There is a long-running or deferred

transaction. Deferred transactions will be

discussed in Chapter 18.

5 DATABASE_MIRRORING either an asynchronous replica is still

synchronizing or mirroring has been

paused.

6 REPLICATION There are transactions in the log that have

not yet been received by the distributor.

7 DATABASE_SNAPSHOT_CREATION a database snapshot is currently being

created. Database snapshots will be

discussed in Chapter 16.

8 LOG_SCAN a log scan operation is in progress.

9 AVAILABILITY_REPLICA secondary replicas are not fully

synchronized or the availability group has

been paused.

13 OLDEST_PAGE The oldest page of the database is older

than the checkpoint Lsn. This occurs when

indirect checkpoints are being used.

16 XPT_CHECKPOINT a memory-optimized CHECKPOINT is

required before the log can be truncated.

Table 6-3. (continued)

In our scenario, in order to mark the VLFs as reusable, we need to back up our

transaction log. Theoretically, we could also switch to the SIMPLE recovery model, but

this would break our log chain. Before we do this, we need to take a full backup. This is

because all backup sequences must begin with a full backup. (Backups and restores will

be discussed in Chapter 12.) This will leave only the VLF with an FSeqNo of 83 as active

and the others will be marked as reusable.

In order to improve log fragmentation, we need to shrink the log file and then

expand it again, with a larger increment. So in our case, we would shrink the log as far as

possible, which will be to VLF FSeqNo 83, because this is the last active VLF in the file. We

then expand it back to 500MB. We can perform these tasks with the script in Listing 6-20.

ChapTer 6 DaTabase ConFIguraTIon

202

Listing 6-20. Defragmenting the Transaction Log

USE Chapter6LogFragmentation

GO

DBCC SHRINKFILE ('Chapter6LogFragmentation _log' , 0, TRUNCATEONLY);

GO

ALTER DATABASE Chapter6LogFragmentation MODIFY FILE (NAME =

'Chapter6LogFragmentation _log', SIZE = 512000KB);

GO

Finally, we run the query in Listing 6-18 again so that we can examine the

differences. Figure 6-13 shows that despite growing the log by around 155GB, we have

fewer VLFs than we started with.

Figure 6-13. Log fragmentation after shrinking and expanding

 Summary
Filegroups are logical containers for data files. Special filegroups also exist for

FILESTREAM/FileTable data and for memory-optimized data. When tables and indexes

are created, they are created on a filegroup as opposed to a file, and the data in the object

is distributed evenly across the files within that filegroup.

You can adopt various strategies for filegroups to assist with performance, backup/

restore activities, or even storage tiering. For performance, you can either choose to

place frequently joined objects into separate filegroups or distribute all objects across all

spindles on the server in order to maximize IO throughput.

ChapTer 6 DaTabase ConFIguraTIon

203

To support backups of very large databases when there is a limited maintenance

window, you can split data across filegroups and you can back up those filegroups on

alternate nights. To improve recovery times for critical data, you can isolate critical data

in a separate filegroup and then restore it before other filegroups.

To support manual storage tiering, implement table partitioning so that each

partition is stored on a separate filegroup. You can then place the files within each

filegroup on an appropriate storage device.

Both FILESTREAM and memory-optimized filegroups point to folders in the

operating system, as opposed to containing files. Each folder location is known as a

container. For memory-optimized filegroups, consider having two containers for each

disk array you use in order to evenly distribute IO.

You can expand and shrink data files. Shrinking files, especially auto-shrink,

however, is considered bad practice and can result in serious fragmentation issues,

which lead to performance problems. When expanding files, you should use larger

increments to reduce repeated overhead.

You can also expand and shrink log files, although it is rare that you need to shrink

them. Expanding log files in small increments can lead to log fragmentation, which is

where your log file contains a vast amount of VLFs. You can resolve log fragmentation by

shrinking the log and then growing it again in larger increments.

ChapTer 6 DaTabase ConFIguraTIon

205
© Peter A. Carter 2019
P. A. Carter, Pro SQL Server 2019 Administration, https://doi.org/10.1007/978-1-4842-5089-1_7

CHAPTER 7

Table Optimizations
During the lifecycle of your data-tier applications, you may need to perform a number

of maintenance tasks and performance optimizations against the tables that hold your

application’s data. These operations may include partitioning a table, compressing a

table, or migrating data to a memory-optimized table. In this chapter, we will explore

these three concepts in detail.

 Table Partitioning
Partitioning is a performance optimization for large tables and indexes that splits the

object horizontally into smaller units. When the tables or indexes are subsequently

accessed, SQL Server can perform an optimization called partition elimination,

which allows only the required partitions to be read, as opposed to the entire table.

Additionally, each partition can be stored on a separate filegroup; this allows you to

store different partitions on different storage tiers. For example, you can store older, less

frequently accessed data on less expensive storage. Figure 7-1 illustrates how a large

Orders table may be structured.

206

 Partitioning Concepts
Before drilling into the technical implementation of partitioning, it helps if you

understand the concepts, such as partitioning keys, partition functions, partition schemes,

and partition alignment. These concepts are discussed in the following sections.

 Partitioning Key

The partitioning key is used to determine in which partition each row of the table should

be placed. If your table has a clustered index, then the partitioning key must be a subset

of the clustered index key. All other UNIQUE indexes on the table, including the primary

key (if this differs from the clustered index), also need to include the partitioning key.

The partitioning key can consist of any data type, with the exception of TEXT, NTEXT,

IMAGE, XML, TIMESTAMP, VARCHAR(MAX), NVARCHAR(MAX), and VARBINARY(MAX). It also

cannot be a user-defined CLR Type column or a column with an alias data type. It can,

however, be a computed column, as long as this column is persisted. Many scenarios

will use a date or datetime column as the partitioning key. This allows you to implement

sliding windows based on time. We discuss sliding windows later in this chapter. In

Figure 7-1, the OrderData column is being used as the partitioning key.

Figure 7-1. Partitioning structure

Chapter 7 table OptimizatiOns

207

Because the column is used to distribute rows between partitions, you should use

a column that will enable an even distribution of rows in order to gain the most benefit

from the solution. The column you select should also be a column that queries will use

as a filter criterion. This will allow you to achieve partition elimination.

 Partition Function

You use boundary points to set the upper and lower limits of each partition. In

Figure 7- 1, you can see that the boundary points are set as 1st Jan 2019 and 1st Jan 2017.

These boundary points are configured in a database object called the partition function.

When creating the partition function, you can specify if the range should be left or right.

If you align the range to the left, then any values that are exactly equal to a boundary

point value will be stored in the partition to the left of that boundary point. If you align

the range with the right, then values exactly equal to the boundary point value will be

placed in the partition to the right of that boundary point. The partition function also

dictates the data type of the partitioning key.

 Partition Scheme

Each partition can be stored on a separate filegroup. The partition scheme is an object

that you create to specify which filegroup each partition will be stored on. As you can see

from Figure 7-1, there is always one more partition than there is boundary point. When

you create a partition scheme, however, it is possible to specify an “extra” filegroup. This

will define the next filegroup that should be used if an additional boundary point is

added. It is also possible to specify the ALL keyword, as opposed to specifying individual

filegroups. This will force all partitions to be stored on the same filegroup.

 Index Alignment

An index is considered aligned with the table if it is built on the same partition function

as the table. It is also considered aligned if it is built on a different partition function, but

the two functions are identical, in that they share the same data type, the same number

of partitions, and the same boundary point values.

Because the leaf level of a clustered index consists of the actual data pages of the

table, a clustered index is always aligned with the table. A nonclustered index, however,

can be stored on a separate filegroup to the heap or clustered index. This extends to

partitioning, where either the base table or nonclustered indexes can be independently

Chapter 7 table OptimizatiOns

208

partitioned. If nonclustered indexes are stored on the same partition scheme or an

identical partition scheme, then they are aligned. If this is not the case, then they are

nonaligned.

Aligning indexes with the base table is good practice unless you have a specific

reason not to. This is because aligning indexes can assist with partition elimination.

Index alignment is also required for operations such as SWITCH, which will be discussed

later in this chapter.

 Partitioning Hierarchy

Objects involved in partitioning work in a one-to-many hierarchy, so multiple tables can

share a partition scheme and multiple partition schemes can share a partition function,

as illustrated in Figure 7-2.

Tip While graph databases are beyond the scope of this book, it is worth
mentioning that sQl server 2019 introduces support for partitioning graph
database tables and indexes, which divides the data into units, which can be
spread across multiple filegroups.

Figure 7-2. Partitioning hierarchy

Chapter 7 table OptimizatiOns

209

 Implementing Partitioning
Implementing partitioning involves creating the partition function and partition scheme

and then creating the table on the partition scheme. If the table already exists, then you

will need to drop and re-create the table’s clustered index. These tasks are discussed in

the following sections.

 Creating the Partitioning Objects

The first object that you will need to create is the partition function. This can be created

using the CREATE PARTITION FUNCTION statement, as demonstrated in Listing 7-1. This

script creates a database called Chapter7 and then creates a partition function called

PartFunc. The function specifies a data type for partitioning keys of DATE and sets

boundary points for 1st Jan 2019 and 1st Jan 2017. Table 7-1 details how dates will be

distributed between partitions.

Listing 7-1. Creating the Partition Function

USE Master

GO

--Create Database Chapter7 using default settings from Model

CREATE DATABASE Chapter7 ;

GO

USE Chapter7

GO

--Create Partition Function

Table 7-1. Distribution of Dates

Date Partition Notes

6th June 2015 1

1st Jan 2016 1 if we had used RANGE RIGHT, this value would be in partition 2.

11th October 2017 2

1st Jan 2018 2 if we had used RANGE RIGHT, this value would be in partition 3.

9th may 2019 3

Chapter 7 table OptimizatiOns

210

CREATE PARTITION FUNCTION PartFunc(Date)

AS RANGE LEFT

FOR VALUES('2017-01-01', '2019-01-01') ;

The next object that we need to create is a partition scheme. This can be created

using the CREATE PARTITION SCHEME statement, as demonstrated in Listing 7-2. This

script creates a partition scheme called PartScheme against the PartFunc partition

function and specifies that all partitions will be stored on the PRIMARY filegroup.

Although storing all partitions on the same filegroup does not allow us to implement

storage tiering, it does enable us to automate sliding windows.

Listing 7-2. Creating the Partition Scheme

CREATE PARTITION SCHEME PartScheme

AS PARTITION PartFunc

ALL TO ([PRIMARY]) ;

 Creating a New Partitioned Table

Now that we have a partition function and partition scheme in place, all that remains

is to create our partitioned table. The script in Listing 7-3 creates a table called Orders

and partitions it based on the OrderDate column. Even though OrderNumber provides a

natural primary key for our table, we need to include OrderDate in the key so that it can

be used as our partitioning column. Obviously, the OrderDate column is not suitable for

the primary key on its own, since it is not guaranteed to be unique.

Listing 7-3. Creating the Partition Table

CREATE TABLE dbo.Orders

 (

 OrderNumber int NOT NULL,

 OrderDate date NOT NULL,

 CustomerID int NOT NULL,

 ProductID int NOT NULL,

 Quantity int NOT NULL,

 NetAmount money NOT NULL,

 TaxAmount money NOT NULL,

 InvoiceAddressID int NOT NULL,

Chapter 7 table OptimizatiOns

211

 DeliveryAddressID int NOT NULL,

 DeliveryDate date NULL

) ON PartScheme(OrderDate) ;

GO

ALTER TABLE dbo.Orders ADD CONSTRAINT

 PK_Orders PRIMARY KEY CLUSTERED

 (

 OrderNumber,

 OrderDate

) WITH(STATISTICS_NORECOMPUTE = OFF, IGNORE_DUP_KEY = OFF,

 ALLOW_ROW_LOCKS = ON, ALLOW_PAGE_LOCKS = ON) ON

PartScheme(OrderDate) ;

GO

The important thing to notice in this script is the ON clause. Normally, you would

create a table “on” a filegroup, but in this case, we are creating the table “on” the

partition scheme and passing in the name of the column that will be used as the

partitioning key. The data type of the partitioning key must match the data type specified

in the partition function.

 Partitioning an Existing Table

Because the clustered index is always aligned with the base table, the process of moving

a table to a partition scheme is as simple as dropping the clustered index and then

re- creating the clustered index on the partition scheme. The script in Listing 7-4 creates

a table called ExistingOrders and populates it with data.

Listing 7-4. Creating a New Table and Populating It with Data

--Create the ExistingOrders table

CREATE TABLE dbo.ExistingOrders

 (

 OrderNumber int IDENTITY NOT NULL,

 OrderDate date NOT NULL,

 CustomerID int NOT NULL,

 ProductID int NOT NULL,

Chapter 7 table OptimizatiOns

212

 Quantity int NOT NULL,
 NetAmount money NOT NULL,
 TaxAmount money NOT NULL,
 InvoiceAddressID int NOT NULL,
 DeliveryAddressID int NOT NULL,
 DeliveryDate date NULL
) ON [PRIMARY] ;
GO

ALTER TABLE dbo.ExistingOrders ADD CONSTRAINT
 PK_ExistingOrders PRIMARY KEY CLUSTERED
 (
 OrderNumber,
 OrderDate
) WITH(STATISTICS_NORECOMPUTE = OFF, IGNORE_DUP_KEY = OFF,
 ALLOW_ROW_LOCKS = ON, ALLOW_PAGE_LOCKS = ON) ON [PRIMARY] ;

GO

--We will now populate the data with data so that we can view the storage
properties
--and then partition the table when the data already exists.

--Build a numbers table for the data population

DECLARE @Numbers TABLE
(
 Number INT
)

;WITH CTE(Number)
AS
(
 SELECT 1 Number
 UNION ALL
 SELECT Number + 1
 FROM CTE
 WHERE Number < 20

)

INSERT INTO @Numbers

Chapter 7 table OptimizatiOns

213

SELECT Number FROM CTE ;

--Populate ExistingOrders with data

INSERT INTO dbo.ExistingOrders

SELECT

 (SELECT CAST(DATEADD(dd,(SELECT TOP 1 Number

 FROM @Numbers

 ORDER BY NEWID(), a.Number, b.Number),GETDATE()) AS DATE)),

 (SELECT TOP 1 Number -10 FROM @Numbers ORDER BY NEWID()),

 (SELECT TOP 1 Number FROM @Numbers ORDER BY NEWID()),

 (SELECT TOP 1 Number FROM @Numbers ORDER BY NEWID()),

 500,

 100,

 (SELECT TOP 1 Number FROM @Numbers ORDER BY NEWID()),

 (SELECT TOP 1 Number FROM @Numbers ORDER BY NEWID()),

 (SELECT CAST(DATEADD(dd,(SELECT TOP 1 Number - 10

 FROM @Numbers

 ORDER BY NEWID(), a.Number, b.Number),GETDATE()) as DATE))

FROM @Numbers a

CROSS JOIN @Numbers b ;

As shown in Figure 7-3, by looking at the Storage tab of the Table Properties dialog

box, we can see that the table has been created on the PRIMARY filegroup and is not

partitioned.

Chapter 7 table OptimizatiOns

214

The script in Listing 7-5 now drops the clustered index of the ExistingOrders table

and re-creates it on the PartScheme partition scheme. Again, the key line to note is the

ON clause, which specifies PartScheme as the target partition function and passes in

OrderDate as the partitioning key.

Listing 7-5. Moving the Existing Table onto the Partition Scheme

--Drop Clustered Index

ALTER TABLE dbo.ExistingOrders DROP CONSTRAINT PK_ExistingOrders ;

GO

--Re-created clustered index on PartScheme

Figure 7-3. Table properties nonpartitioned

Chapter 7 table OptimizatiOns

215

ALTER TABLE dbo.ExistingOrders ADD CONSTRAINT PK_ExistingOrders PRIMARY

KEY CLUSTERED

(

 OrderNumber ASC,

 OrderDate ASC

)WITH (PAD_INDEX = OFF, STATISTICS_NORECOMPUTE = OFF, SORT_IN_TEMPDB = OFF,

 IGNORE_DUP_KEY = OFF, ONLINE = OFF, ALLOW_ROW_LOCKS = ON,

 ALLOW_PAGE_LOCKS = ON) ON PartScheme(OrderDate) ;

GO

In Figure 7-4, you can see that if you look again at the Storage tab of the Table

Properties dialog box, you find that the table is now partitioned against the PartScheme

partition scheme.

Figure 7-4. Table properties partitioned

Chapter 7 table OptimizatiOns

216

 Monitoring Partitioned Tables
You may wish to keep track of the number of rows in each partition of your table. Doing

so allows you to ensure that your rows are being distributed evenly. If they are not, then

you may wish to reassess you partitioning strategy to ensure you get the full benefit

from the technology. There are two methods that you can use for this: the $PARTITION

function and the Disk Usage by Partition SSMS Report.

 $PARTITION Function

You can determine how many rows are in each partition of your table by using the

$PARTITION function. When you run this function against the partition function, it

accepts the column name of your partitioning key as a parameter, as demonstrated in

Listing 7-6.

Listing 7-6. Using the $PARTITION Function

SELECT

 COUNT(*) 'Number of Rows'

 ,$PARTITION.PartFunc(OrderDate) 'Partition'

FROM dbo.ExistingOrders

GROUP BY $PARTITION.PartFunc(OrderDate) ;

From the results in Figure 7-5, you can see that all of the rows in our table sit in the

same partition, which pretty much defies the point of partitioning and means that we

should reassess our strategy.

Figure 7-5. The $PARTITION function run against a partitioned table

Chapter 7 table OptimizatiOns

217

We can also use the $PARTITION function to assess how a table would be partitioned

against a different partition function. This can help us plan to resolve the issue with our

ExistingOrders table. The script in Listing 7-7 creates a new partition function, called

PartFuncWeek, which creates weekly partitions for the month of November 2019. It

then uses the $PARTITION function to determine how the rows of our ExistingOrders

table will be split if we implemented this strategy. For the time being, we do not need to

create a partition scheme or repartition the table. Before running the script, change the

boundary point values so they are based upon the date when you run the script. This is

because the data in the table is generated using the GETDATE() function.

Listing 7-7. $PARTITION Function Against a New Partition Function

--Create new partition function

CREATE PARTITION FUNCTION PartFuncWeek(DATE)

AS RANGE LEFT

FOR VALUES ('2019-03-7','2019-03-14','2019-03-21','2019-03-28') ;

--Assess spread of rows

SELECT

 COUNT(*) 'Number of Rows'

 ,$PARTITION.PartFuncWeek(OrderDate) 'Partition'

FROM dbo.ExistingOrders

GROUP BY $PARTITION.PartFuncWeek(OrderDate) ;

The results in Figure 7-6 show that the rows of the ExistingOrders table are fairly

evenly distributed among the weekly partitions, so this may provide a suitable strategy

for our table.

Figure 7-6. $PARTITION function against a new partition function

Chapter 7 table OptimizatiOns

218

 Sliding Windows
Our weekly partitioning strategy seems to work well, but what about when we reach

December? As it currently stands, all new order placed after 28th November 2019 will

all end up in the same partition, which will just grow and grow. To combat this issue,

SQL Server provides us with the tools to create sliding windows. In our case, this means

that each week, a new partition will be created for the following week and the earliest

partition will be removed.

To achieve this, we can use the SPLIT, MERGE, and SWITCH operations. The SPLIT

operation adds a new boundary point, thus creating a new partition. The MERGE

operation removes a boundary point, thus merging two partitions together. The SWITCH

operation moves a partition into an empty table or partition.

In our scenario, we create a staging table, called OldOrdersStaging. We use this

table as a staging area to hold the data from our earliest partition. Once in the staging

table, you can perform whatever operations or transformation may be required. For

example, your developers may wish to create a script, to roll the data up, and to transfer

it to a historical Orders table. Even though the OldOrdersStaging table is designed as a

temporary object, it is important to note that you cannot use a temporary table. Instead,

you must use a permanent table and drop it at the end. This is because temporary tables

reside in TempDB, which means that they will be on a different filegroup, and SWITCH

will not work. SWITCH is a metadata operation, and therefore, both partitions involved

must reside on the same filegroup.

The script in Listing 7-8 implements a sliding window. First, it creates a staging table

for the older orders. The indexes and constraints of this table must be the same as those

of the partitioned table. The table must also reside on the same filegroup in order for

the SWITCH operation to succeed. It then determines the highest and lowest boundary

point values in the partitioned table, which it will use as parameters for the SPLIT and

MERGE operations. It then uses the ALTER PARTITION FUNCTION command to remove the

lowest boundary point value and add in the new boundary point. Finally, it reruns the

$PARTITION function to display the new distribution of rows and interrogates the sys.

partition_functions and sys.partition_range_values catalog views to display the

new boundary point values for the PartFuncWeek partition function. The script assumes

that the PartSchemeWeek partition scheme has been created and the ExistingOrders

table has been moved to this partition scheme.

Chapter 7 table OptimizatiOns

219

Listing 7-8. Implementing a Sliding Window

--Create the OldOrders table

CREATE TABLE dbo.OldOrdersStaging(

 [OrderNumber] [int] IDENTITY(1,1) NOT NULL,

 [OrderDate] [date] NOT NULL,

 [CustomerID] [int] NOT NULL,

 [ProductID] [int] NOT NULL,

 [Quantity] [int] NOT NULL,

 [NetAmount] [money] NOT NULL,

 [TaxAmount] [money] NOT NULL,

 [InvoiceAddressID] [int] NOT NULL,

 [DeliveryAddressID] [int] NOT NULL,

 [DeliveryDate] [date] NULL,

 CONSTRAINT PK_OldOrdersStaging PRIMARY KEY CLUSTERED

(

 OrderNumber ASC,

 OrderDate ASC

)WITH (PAD_INDEX = OFF, STATISTICS_NORECOMPUTE = OFF, IGNORE_DUP_KEY = OFF,

 ALLOW_ROW_LOCKS = ON, ALLOW_PAGE_LOCKS = ON)

) ;

GO

--Calculate the lowest boundary point value

DECLARE @LowestBoundaryPoint DATE = (

SELECT TOP 1 CAST(value AS DATE)

 FROM sys.partition_functions pf

 INNER JOIN sys.partition_range_values prv

 ON pf.function_id = prv.function_id

 WHERE pf.name = 'PartFuncWeek'

 ORDER BY value ASC) ;

--Calculate the newest boundary point value

DECLARE @HighestboundaryPoint DATE = (

SELECT TOP 1 CAST(value AS DATE)

Chapter 7 table OptimizatiOns

220

 FROM sys.partition_functions pf

 INNER JOIN sys.partition_range_values prv

 ON pf.function_id = prv.function_id

 WHERE pf.name = 'PartFuncWeek'

 ORDER BY value DESC) ;

--Add 7 days to the newest boundary point value to determine the new

boundary point

DECLARE @NewSplitRange DATE = (

 SELECT DATEADD(dd,7,@HighestboundaryPoint)) ;

--Switch the oldest partition to the OldOrders table

ALTER TABLE ExistingOrders

 SWITCH PARTITION 1 TO OldOrdersStaging PARTITION 2 ;

--Remove the oldest partition

ALTER PARTITION FUNCTION PartFuncWeek()

 MERGE RANGE(@LowestBoundaryPoint) ;

--Create the new partition

ALTER PARTITION FUNCTION PartFuncWeek()

 SPLIT RANGE(@NewSplitRange) ;

GO

--Re-run $PARTITION to assess new spread of rows

SELECT

 COUNT(*) 'Number of Rows'

 ,$PARTITION.PartFuncWeek(OrderDate) 'Partition'

FROM dbo.ExistingOrders

GROUP BY $PARTITION.PartFuncWeek(OrderDate) ;

SELECT name, value FROM SYS.partition_functions PF

INNER JOIN SYS.partition_range_values PFR ON PF.function_id = PFR.function_id

WHERE name = 'PARTFUNCWEEK' ;

Chapter 7 table OptimizatiOns

221

The results displayed in Figure 7-7 show how the partitions have been realigned.

When you are using the SWITCH function, there are several limitations. First, all

nonclustered indexes of the table must be aligned with the base table. Also, the empty

table or partition that you move the data into must have the same indexing structure. It

must also reside on the same filegroup as the partition that you are switching out. This is

because the SWITCH function does not actually move any data. It is a metadata operation

that changes the pointers of the pages that make up the partition.

You can use MERGE and SPLIT with different filegroups, but there will be a

performance impediment. Like SWITCH, MERGE and SPLIT can be performed as metadata

operations if all partitions involved reside on the same filegroup. If they are on different

filegroups, however, then physical data moves need to be performed by SQL Server,

which can take substantially longer.

 Partition Elimination
One of the key benefits of partitioning is that the Query Optimizer is able to access only the

partitions required tosatisfy the results of a query, instead of the entire table. For partition

elimination to be successful, the partitioning key must be included as a filter in the WHERE

clause. We can witness this functionality by running the query in Listing 7-9 against our

ExistingOrders table and choosing the option to include the actual execution plan.

Figure 7-7. New partition alignment

Chapter 7 table OptimizatiOns

222

Listing 7-9. Query Using Partition Elimination

SELECT OrderNumber, OrderDate

FROM dbo.ExistingOrders

WHERE OrderDate BETWEEN '2019-03-01' AND '2019-03-07' ;

If we now view the execution plan and examine the properties of the Index Scan

operator through Management Studio, we see that only one partition has been accessed,

as shown in Figure 7-8.

The partition elimination functionality can be a little fragile, however. For example,

if you are manipulating the OrderDate column in any way, as opposed to just using it

for evaluation, then partition elimination cannot occur. For example, if you cast the

OrderDate column to the DATETIME2 data type, as demonstrated in Listing 7-10, then all

partitions would need to be accessed. This issue can also impact partitioned indexes.

Listing 7-10. Query Not Using Partition Elimination

SELECT OrderNumber, OrderDate

FROM dbo.ExistingOrders

WHERE CAST(OrderDate AS DATETIME2) BETWEEN '2019-03-01' AND '2019-03-31' ;

Figure 7-9 illustrates the same properties of the Index Scan operator, viewed through

Management Studio. Here you can see that all partitions have been accessed, as opposed

to just one.

Figure 7-8. Index Scan operator properties with partition elimination

Figure 7-9. Index Scan properties, no partition elimination

Chapter 7 table OptimizatiOns

223

 Table Compression
When you think of compression, it is natural to think of saving space at the expense of

performance. However, this does not always hold true for SQL Server table compression.

Compression in SQL Server can actually offer a performance benefit. This is because

SQL Server is usually an IO-bound application, as opposed to being CPU bound.

This means that if SQL Server needs to read dramatically fewer pages from disk, then

performance will increase, even if this is at the expense of CPU cycles. Of course, if your

database is, in fact, CPU bound because you have very fast disks and only a single CPU

core, for example, then compression could have a negative impact, but this is atypical.

In order to understand table compression, it helps to have insight into how SQL Server

stores data within a page. Although a full discussion of page internals is beyond the

scope of this book, Figure 7-10 gives you a high-level view of the default structure of an

on-disk page and row.

Figure 7-10. Structure of a page

Within the row, the row metadata contains details such as whether or not versioning

information exists for the row and if the row has NULL values. The fixed-length column

metadata records the length of the fixed-length portion of the page. The variable-length

metadata includes a column offset array for the variable-length columns so that SQL

Server can track where each column begins in relation to the beginning of the row.

Chapter 7 table OptimizatiOns

224

 Row Compression
On an uncompressed page, as just described, SQL Server stores fixed-length columns

first, followed by variable-length columns. The only columns that can be variable length

are columns with a variable-length data type, such as VARCHAR or VARBINARY. When

row compression is implemented for a table, SQL Server uses the minimum amount

of storage for other data types as well. For example, if you have an integer column that

contains a NULL value in row 1, a value of 50 in row 2, and a value of 40,000 in row 3, then

in row 1, the column does not use any space at all; it uses 1 byte in row 2, because it will

store this value as a TINYINT; and it uses 4 bytes in row 3, because it will need to store this

value as an INT. This is opposed to an uncompressed table using 4 bytes for every row,

including row 1.

In addition, SQL Server also compresses Unicode columns so that characters that

can be stored as a single byte only use a single byte, as opposed to 2 bytes, as they would

in an uncompressed page. In order to achieve these optimizations, SQL Server has to use

a different page format, which is outlined in Figure 7-11.

Note a short column is 8 bytes or less.

In Figure 7-11, the first area of row metadata contains details such as whether or not

there is versioning information about the row and if any long data columns exist. The

column descriptor contains the number of short columns and the length of each long

Figure 7-11. Page structure with row compression

Chapter 7 table OptimizatiOns

225

column. The second area of metadata contains details such as versioning information

and forwarding pointers for heaps.

 Page Compression
When you implement page compression, row compression is implemented first. Page

compression itself is actually comprised of two different forms of compression. The first

is prefix compression and the second is dictionary compression. These compression types

are outlined in the following sections.

 Prefix Compression

Prefix compression works by establishing a common prefix for a column across rows

within a page. Once the best prefix value has been established, SQL Server chooses the

longest value that contains the full prefix as the anchor row and stores all other values

within the column, as a differential of the anchor row, as opposed to storing the values

themselves. For example, Table 7-2 details the values that are being stored within a

column and follows this with a description of how SQL Server will store the values using

prefix compression. The value Postfreeze has been chosen as the anchor value, since it

is the longest value that contains the full prefix of Post, which has been identified. The

number in <> is a marker of how many characters of the prefix are used.

Table 7-2. Prefix Compression Differentials

Column A Value Column A Storage Column B Value Column B Storage

Postcode <4>code Teethings (Anchor) —

Postfreeze (Anchor) — Teacher <2>acher

Postpones <4>pones Teenager <3>nager

Postilion <4>ilion Teeth <5>

Imposters <0>Imposters Tent <2>nt

Poacher <2>acher Rent <0>Rent

Chapter 7 table OptimizatiOns

http://www.morewords.com/word/poacher/

226

 Dictionary Compression

Dictionary compression is performed after all columns have been compressed using

prefix compression. It looks across all columns within a page and finds values that

match. The matching is performed using the binary representation of a value, which

makes the process data type agnostic. When it finds duplicate values, it adds them to a

special dictionary at the top of the page, and in the row, it simply stores a pointer to the

value’s location in the dictionary. Table 7-3 expands on the previous table to give you an

overview of this.

Table 7-3. Dictionary Compression Pointers

Column A Value Column A Storage Column B Value Column B Storage

Postcode <4>code Teethings

(Anchor)

—

Postfreeze (Anchor) — Teacher [Pointer1]

Postpones <4>pones Teenager <3>nager

Postilion <4>ilion Teeth <5>

Imposters <0>Imposters Tent <2>nt

Poacher [Pointer1] Rent <0>Rent

Here, you can see that the value <2>acher, which appeared in both columns in the

previous table, has been replaced with a pointer to the dictionary where the value is

stored.

 Page Compression Structure

In order to facilitate page compression, a special row is inserted in the page immediately

after the page header, which contains the information regarding the anchor record and

dictionary. This row is called the compression information record, and it is illustrated in

Figure 7-12.

Chapter 7 table OptimizatiOns

http://www.morewords.com/word/poacher/

227

The row metadata for the compression information record specifies if the record

contains an anchor record and a dictionary. The change count records how many

changes have been made to the page, which may affect the usefulness of the anchor and

dictionary. When a table is rebuilt, SQL Server can use this information to determine

if the page should be rebuilt. The offsets contain the start and end locations of the

dictionary, from the beginning of the page. The anchor record contains each column’s

prefix value and the dictionary contains the duplicate values for which pointers have

been created.

 Columnstore Compression
Columnstore indexes are always compressed, automatically. This means that if you

create a clustered columnstore index on your table, your table is also compressed,

and this cannot be combined with row or page compression. There are two types of

columnstore compression available to you; COLUMNSTORE, which was introduced in SQL

Server 2012, and COLUMNSTORE_ARCHIVE, which was introduced in SQL Server 2014.

You can think of COLUMNSTORE as the standard compression type for columnstore

indexes, and you should only use the COLUMNSTORE_ARCHIVE algorithm for data that

is infrequently accessed. This is because this compression algorithm breaks the rules

for SQL Server data compression as far as performance goes. If you implement this

algorithm, expect a very high compression ratio, but prepare for it to be at the expense of

query performance.

Figure 7-12. Page structure with page compression

Chapter 7 table OptimizatiOns

228

 Implementing Compression
The planning and implementation of row and page compression is a fairly

straightforward process, and it is discussed in the following sections.

 Selecting the Compression Level

As you probably realized from the earlier descriptions of row and page compression,

page compression offers a higher compression ratio than row compression, which

means better IO performance. However, this is at the expense of CPU cycles, both when

the table is being compressed and again when it is being accessed. Therefore, before

you start compressing your tables, make sure you understand how much each of these

compression types will reduce the size of your table by so that you can assess how much

IO efficiency you can achieve.

You can accomplish this by using a system stored procedure called sp_estimate_

data_compression_savings. This procedure estimates the amount of space that you

could save by implementing compression. It accepts the parameters listed in Table 7-4.

Table 7-4. sp_estimate_data_compression_savings Parameters

Parameter Comments

@schema_name the name of the schema, which contains the table that you want to run

the procedure against.

@object_name the name of the table that you want to run the procedure against.

@index_ID pass in NULL for all indexes. For a heap, the index iD is always 0 and a

clustered index always has an iD of 1.

@partition_number pass in NULL for all partitions.

@data_compression pass in ROW, PAGE, COLUMNSTORE, COLUMNSTORE_ARCHIVE, or NONE

if you want to assess the impact of removing compression from a table

that is already compressed.

The two executions of the sp_estimate_data_compression_savings stored

procedure in Listing 7-11 assess the impact of row and page compression, respectively,

on all partitions of our ExistingOrders table.

Chapter 7 table OptimizatiOns

229

Listing 7-11. Sp_estimate_data_compression_savings

EXEC sp_estimate_data_compression_savings @schema_name = 'dbo', @object_

name = 'ExistingOrders',

 @index_id = NULL, @partition_number = NULL, @data_compression ='ROW' ;

EXEC sp_estimate_data_compression_savings @schema_name = 'dbo', @object_

name = 'ExistingOrders',

 @index_id = NULL, @partition_number = NULL, @data_compression ='PAGE' ;

The results in Figure 7-13 show that for the two partitions that are currently in use,

page compression will have no additional benefit over row compression. Therefore, it

is pointless to add the extra CPU overhead associated with page compression. This is

because row compression is always implemented on every row of every page in the table.

Page compression, on the other hand, is assessed on a page-by-page basis, and only

pages that will benefit from being compressed are rebuilt. Because of the random nature

of the largely numeric data that we inserted into this table, SQL Server has determined

that the pages of our table will not benefit from page compression.

Figure 7-13. Results of sp_estimate_data_compression_savings

Tip sQl server 2019 introduces support for Columnstore indexes into
sp_estimate_data_compression_savings. the compression types COlUmnstOre
and COlUmnstOre_arChiVe can now be used as both a source object and a
compression type. Columnstore compression is discussed in the “Columnstore
Compression” section of this chapter.

Chapter 7 table OptimizatiOns

230

 Compressing Tables and Partitions

We determined that row compression reduces the size of our table, but we can’t gain any

further benefits by implementing page compression. Therefore, we can compress our

entire table using the command in Listing 7-12.

Listing 7-12. Implementing Row Compression on the Entire Table

ALTER TABLE ExistingOrders

 REBUILD WITH (DATA_COMPRESSION = ROW) ;

If we look more closely at the results, however, we can see that, in fact, only partition 1

benefits from row compression. Partition 2 remains the same size. Therefore, it is not

worth the overhead to compress partition 2. Running the ALTER TABLE statement in

Listing 7-13 will rebuild only partition 1. It will then remove compression from the entire

table by rebuilding it with DATA_COMPRESSION = NONE.

Listing 7-13. Implementing Row Compression for Specific Partitions

--Compress partition 1 with ROW compression

ALTER TABLE ExistingOrders

 REBUILD PARTITION = 1 WITH (DATA_COMPRESSION = ROW) ;

GO

--Remove compression from the whole table

ALTER TABLE ExistingOrders

 REBUILD WITH (DATA_COMPRESSION = NONE) ;

 Data Compression Wizard

The Data Compression Wizard can be reached via the context menu of a table by drilling

down through Storage ➤ Manage Compression. It provides a graphical user interface

(GUI) for managing compression. The main page of the wizard is illustrated in

Figure 7- 14. On this screen, you can utilize the Use Same Compression Type For All

Partitions option to implement one type of compression uniformly across the table.

Alternatively, you can specify different compression types for each individual partition.

Chapter 7 table OptimizatiOns

231

The Calculate button runs the sp_estimate_data_compression_savings stored

procedure and displays the current and estimated results for each partition.

On the final page of the wizard, you can choose to run the process immediately,

script the action, or schedule it to run using SQL Server Agent.

 Maintaining Compression on Heaps

When new pages are added to a heap (a table without a clustered index), they are

not automatically compressed with page compression. This means that rebuilding a

compressed table should be part of your standard maintenance routines when it does

not have a clustered index. To rebuild the compression on a table, you should remove

compression and then reimplement it.

Figure 7-14. The Data Compression Wizard

Chapter 7 table OptimizatiOns

232

Tip new heap pages will be compressed if they are inserted using INSERT
INTO...WITH (TABLOCK) or if they are inserted as part of a bulk insert where
optimizations have been enabled.

 Maintaining Compressed Partitions

In order to use the SWITCH operation with partitions, both partitions must have the

same level of compression selected. If you use MERGE, then the compression level of

the destination partition is used. When you use SPLIT, the new partition inherits its

compression level from the original partition.

Just like with a nonpartitioned table, if you drop the clustered index of a table, then

the heap inherits the compression level of the clustered index. However, if you drop the

clustered index as part of an exercise to modify the partition scheme, then compression

is removed from the table.

 Memory-Optimized Tables
In-Memory OLTP is a feature of SQL Server, which can offer significant performance

improvements by storing all of the table’s data in memory. This, of course, can

dramatically reduce IO, despite the fact that the tables are also saved to disk for

durability. This is because the disk-based version of the tables is stored in an

unstructured format, outside of the database engine, using a FILESTREAM-based

technology. Also, memory-optimized checkpoints happen a lot more frequently. An

automatic checkpoint is taken after the transaction log has grown by 512MB since the

last time an automatic checkpoint occurred. This removes IO spikes that are associated

with checkpoint activity. IO contention on transaction logs can also be reduced with

memory-optimized tables since less data is logged. It is also worth mentioning that only

table changes are logged, not index changes.

In addition to minimizing IO, In-Memory OLTP can also reduce CPU overhead.

This is because natively compiled stored procedures can be used to access the data,

as opposed to traditional, interpreted code. Natively compiled stored procedures use

significantly fewer instructions, meaning less CPU time. Memory-optimized tables do

not help reduce network overhead, however, because the same amount of data still

needs to be communicated to the client.

Chapter 7 table OptimizatiOns

233

By their very nature, memory-optimized tables increase memory pressure as

opposed to reducing it, because even if you never use the data, it still sits in memory,

reducing the amount of space available in which traditional resources can be cached.

This means that in-memory functionality is designed for OLTP workloads as opposed to

data warehousing workloads. The expectation is that fact and dimension tables within a

data warehouse are too large to reside in memory.

As well as lower resource usage, memory-optimized tables can also help reduce

contention. When you access data in a memory-optimized table, SQL Server does not

take out a latch. This means that both latch and spinlock contention is automatically

removed. Blocking between read and write transactions can also be reduced because of

a new optimistic concurrency method for implementing isolation levels. Transactions

and isolation levels, including memory optimized, are discussed in Chapter 18.

 Durability
When creating memory-optimized tables, you can specify either SCHEMA_AND_DATA or

SCHEMA_ONLY as the durability setting. If you select SCHEMA_AND_DATA, then all of the

table’s data is persisted to disk and transactions are logged. If you select SCHEMA_ONLY,

however, then data is not persisted, and transactions are not logged. This means that

after the SQL Server service is restarted, the structure of the table will remain intact, but

it will contain no data. This can be useful for transient processes, such as data staging

during an ETL load.

 Creating and Managing Memory-Optimized Tables

Tip at first glance, it may be tempting to use memory-optimized tables
throughout your database. they have many limitations, however, and, in fact, you
should only use them on an exception basis. these limitations will be discussed
later in this section.

Before you can create a memory-optimized table, a memory-optimized filegroup

must already exist. Memory-optimized filegroups are discussed in Chapter 6.

Chapter 7 table OptimizatiOns

234

You create memory-optimized tables using the CREATE TABLE T-SQL statement,

as you would for a disk-based table. The difference is that you must specify a WITH clause,

which specifies that the table will be memory optimized. The WITH clause is also used to

indicate the level of durability that you require.

Memory-optimized tables must also include an index. We fully discuss indexes,

including indexes for memory-optimized tables, in Chapter 8, but for now, you should

know that memory-optimized tables support the following types of indexes:

• Nonclustered hash index

• Nonclustered index

Hash indexes are organized into buckets, and when you create them, you must

specify a bucket count using the BUCKET_COUNT parameter. Ideally, your bucket count

should be two times the number of distinct values within the index key. You will

not always know how many distinct values you have; in such cases, you may wish to

significantly increase the BUCKET_COUNT. The trade-off is that the more buckets you have,

the more memory the index consumes. Once you have created the table, the index will

be a fixed size and it is not possible to alter the table or its indexes.

The script in Listing 7-14 creates a memory-optimized table called OrdersMem with

full durability and populates it with data. It creates a nonclustered hash index on the ID

column with a bucket count of 2,000,000, since we will be inserting 1,000,000 rows. The

script assumes that the memory-optimized filegroup has already been created.

Listing 7-14. Creating a Memory-Optimized Table

USE [Chapter7]

GO

CREATE TABLE dbo.OrdersMem(

 OrderNumber int IDENTITY(1,1) NOT NULL PRIMARY KEY NONCLUSTERED HASH

 WITH (BUCKET_COUNT= 2000000),

 OrderDate date NOT NULL,

 CustomerID int NOT NULL,

 ProductID int NOT NULL,

 Quantity int NOT NULL,

 NetAmount money NOT NULL,

 TaxAmount money NOT NULL,

Chapter 7 table OptimizatiOns

235

 InvoiceAddressID int NOT NULL,

 DeliveryAddressID int NOT NULL,

 DeliveryDate date NULL,

)WITH (MEMORY_OPTIMIZED = ON, DURABILITY = SCHEMA_AND_DATA) ;

DECLARE @Numbers TABLE

(

 Number INT

)

;WITH CTE(Number)

AS

(

 SELECT 1 Number

 UNION ALL

 SELECT Number + 1

 FROM CTE

 WHERE Number < 100

)

INSERT INTO @Numbers

SELECT Number FROM CTE ;

--Populate ExistingOrders with data

INSERT INTO dbo.OrdersMem

SELECT

 (SELECT CAST(DATEADD(dd,(SELECT TOP 1 Number

 FROM @Numbers

 ORDER BY NEWID()),getdate())as DATE)),

 (SELECT TOP 1 Number -10 FROM @Numbers ORDER BY NEWID()),

 (SELECT TOP 1 Number FROM @Numbers ORDER BY NEWID()),

 (SELECT TOP 1 Number FROM @Numbers ORDER BY NEWID()),

 500,

 100,

 (SELECT TOP 1 Number FROM @Numbers ORDER BY NEWID()),

 (SELECT TOP 1 Number FROM @Numbers ORDER BY NEWID()),

 (SELECT CAST(DATEADD(dd,(SELECT TOP 1 Number - 10

Chapter 7 table OptimizatiOns

236

 FROM @Numbers

 ORDER BY NEWID()),getdate()) as DATE))

FROM @Numbers a

CROSS JOIN @Numbers b

CROSS JOIN @Numbers c ;

 Performance Profile
While memory-optimized tables were in development, they were known as Hekaton,

which is a play on words, meaning 100 times faster. So let’s see how performance

compares for different query types between in-memory and disk-based tables. The code

in Listing 7-15 creates a new table, called OrdersDisc, and populates it with the data

from OrdersMem so that you can run fair tests against the two tables.

Note For this benchmarking, the tests are running on a Vm, with 2×2 Core
vCpUs, 8Gb ram, and a hybrid sshD (solid state hybrid technology) sata disk.

Listing 7-15. Creating a Disk-Based Table and Populating It with Data

USE [Chapter7]

GO

CREATE TABLE dbo.OrdersDisc(

 OrderNumber int NOT NULL,

 OrderDate date NOT NULL,

 CustomerID int NOT NULL,

 ProductID int NOT NULL,

 Quantity int NOT NULL,

 NetAmount money NOT NULL,

 TaxAmount money NOT NULL,

 InvoiceAddressID int NOT NULL,

 DeliveryAddressID int NOT NULL,

 DeliveryDate date NULL,

 CONSTRAINT [PK_OrdersDisc] PRIMARY KEY CLUSTERED

Chapter 7 table OptimizatiOns

237

(

 [OrderNumber] ASC,

 [OrderDate] ASC

)

) ;

INSERT INTO dbo.OrdersDisc

 SELECT *
 FROM dbo.OrdersMem ;

First, we will run the most basic test—a SELECT * query from each table. The script in

Listing 7-16 runs these queries after tearing down the plan cache and the buffer cache to

ensure a fair test.

Listing 7-16. The SELECT * Benchmark

SET STATISTICS TIME ON

--Tear down the plan cache

DBCC FREEPROCCACHE

--Tear down the buffer cache

DBCC DROPCLEANBUFFERS

--Run the benchmarks

SELECT *
FROM dbo.OrdersMem ;

SELECT *
FROM dbo.OrdersDisc ;

From the results in Figure 7-15, you can see that the memory-optimized table

returned the results just under 4.5% faster.

Chapter 7 table OptimizatiOns

238

Tip naturally, the results you see may vary based on the system on which
you run the scripts. For example, if you have ssDs, then the queries against the
disk- based tables may be more comparable. also, be aware that this test uses cold
data (not in the buffer cache). if the data in the disk-based tables is warm (in the
buffer cache), then you can expect the results to be comparable, or in some cases,
the query against the disk-based table may even be slightly faster.

Figure 7-15. SELECT ∗ benchmark results

In the next test, we see what happens if we add in an aggregation. The script in

Listing 7-17 runs COUNT(*) queries against each of the tables.

Listing 7-17. The COUNT(*) Benchmark

SET STATISTICS TIME ON

--Tear down the plan cache

DBCC FREEPROCCACHE

--Tear down the buffer cache

DBCC DROPCLEANBUFFERS

--Run the benchmarks

SELECT COUNT(*)

FROM dbo.OrdersMem ;

SELECT COUNT(*)

FROM dbo.OrdersDisc ;

Chapter 7 table OptimizatiOns

239

From the results in Figure 7-16, we can see that this time, the memory-optimized

table performed considerably better than the disk-based table, offering us a 340%

performance improvement over the disk-based table.

Figure 7-16. COUNT(∗) benchmark results

It is also interesting to see how memory-optimized tables compare to disk-based

tables when there is a filter on the OrderNumber column, since this column is covered

by an index on both tables. The script in Listing 7-18 adds the data in the NetAmount

column, but it also filters on the OrderNumber column so that only OrderNumbers over

950,000 are considered.

Listing 7-18. Primary Key Filter Benchmark

SET STATISTICS TIME ON

--Tear down the plan cache

DBCC FREEPROCCACHE

--Tear down the buffer cache

DBCC DROPCLEANBUFFERS

--Run the benchmarks

SELECT SUM(NetAmount)

FROM dbo.OrdersMem

WHERE OrderNumber > 950000 ;

SELECT SUM(NetAmount)

FROM dbo.OrdersDisc

WHERE OrderNumber > 950000 ;

Chapter 7 table OptimizatiOns

240

In this instance, because the memory-optimized table was scanned but the clustered

index on the disk-based table was able to perform an index seek, the disk-based table

performed approximately ten times faster than the memory-optimized table. This is

illustrated in Figure 7-17.

Note We would have received a far superior performance for the final query
on the memory-optimized table if we had implemented a nonclustered index
as opposed to a nonclustered hash index. We completely discuss the impact of
indexes in Chapter 8.

 Table Memory Optimization Advisor
The Table Memory Optimization Advisor is a wizard that can run against an existing

disk-based table, and it will walk you through the process of migration. The first page

of the wizard checks your table for incompatible features, such as sparse columns and

foreign key constraints against disk-based tables.

The following page provides you with a warning having to do with which features

are not available for memory-optimized tables, such as distributed transactions and

TRUNCATE TABLE statements.

The Migration Options page of the wizard allows you to specify the durability level of

the table. Checking the box causes the table to be created with DURABILITY = SCHEMA_

ONLY. On this screen, you can also choose a new name for the disk-based table that you

are migrating, since obviously, the new object cannot share the name of the existing

Figure 7-17. SUM filtering on primary key benchmark results

Chapter 7 table OptimizatiOns

241

object. Finally, you can use the check box to specify if you want the data from the existing

table to be copied to the new table.

The Primary Key Migration page allows you to select the columns that you wish

to use to form the primary key of the table as well as the index that you want to create

on your table. If you choose a nonclustered hash index, you need to specify the bucket

count, whereas if you choose a nonclustered index, you need to specify the columns

and order.

The Summary screen of the wizard provides an overview of the activities that will be

performed. Clicking the Migrate button causes the table to be migrated.

Caution While the compatibility of memory-optimized tables with the sQl server
feature set has improved dramatically over the last few releases, there are still
a number of features that memory-optimized tables do not support. a full list of
nonsupported t-sQl constructs can be found at https://docs.microsoft.
com/en-us/sql/relational-databases/in-memory-oltp/transact-
sql- constructs-not-supported-by-in-memory-oltp?view=sql-
server- ver15.

 Natively Compiled Objects
In-Memory OLTP introduces native compilation, for both memory-optimized tables and

for stored procedures. The following sections discuss these concepts.

 Natively Compiled Tables

When you create a memory-optimized table, SQL Server compiles the table to a DLL

(dynamic link library) using native code and loads the DLL into memory. You can

examine these DLLs by running the query in Listing 7-19. The script examines

the dm_os_loaded_modules DMV and then joins to sys.tables using the object_id of

the table, which is embedded in the file name of the DLL. This allows the query to return

the name of the table.

Chapter 7 table OptimizatiOns

https://docs.microsoft.com/en-us/sql/relational-databases/in-memory-oltp/transact-sql-constructs-not-supported-by-in-memory-oltp?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/in-memory-oltp/transact-sql-constructs-not-supported-by-in-memory-oltp?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/in-memory-oltp/transact-sql-constructs-not-supported-by-in-memory-oltp?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/in-memory-oltp/transact-sql-constructs-not-supported-by-in-memory-oltp?view=sql-server-ver15

242

Listing 7-19. Viewing DLLs for Memory-Optimized Tables

SELECT

 m.name DLL

 ,t.name TableName

 ,description

FROM sys.dm_os_loaded_modules m

INNER JOIN sys.tables t

 ON t.object_id =

(SELECT SUBSTRING(m.name, LEN(m.name) + 2 - CHARINDEX('_', REVERSE(m.name)),

len(m.name) - (LEN(m.name) + 2 - CHARINDEX('_', REVERSE(m.name)) + 3)))

WHERE m.name like '%xtp_t_' + cast(db_id() as varchar(10)) + '%' ;

For security reasons, these files are recompiled based on database metadata every

time the SQL Server service starts. This means that if the DLLs are tampered with, the

changes made will not persist. Additionally, the files are linked to the SQL Server process

to prevent them from being modified.

SQL Server automatically removes the DLLs when they are no longer needed. After

a table has been dropped and a checkpoint has subsequently been issued, the DLLs are

unloaded from memory and physically deleted from the file system, either when the

instance is restarted or when the databases are taken offline or dropped.

 Natively Compiled Stored Procedures

In addition to natively compiled memory-optimized tables, SQL Server 2019 also

supports natively compiled stored procedures. As mentioned earlier in this chapter,

these procedures can reduce CPU overhead and offer a performance benefit over

traditionally interpreted stored procedures because fewer CPU cycles are required

during their execution.

The syntax for creating a natively compiled stored procedure is similar to the syntax

for creating an interpreted stored procedure, but there are some subtle differences.

First, the procedure must start with a BEGIN ATOMIC clause. The body of the procedure

must include precisely one BEGIN ATOMIC clause. The transaction within this block will

commit when the block ends. The block must terminate with an END statement. When

you begin the atomic block, you must specify the isolation level and the language to use.

Chapter 7 table OptimizatiOns

243

You will also notice that the WITH clause contains NATIVE_COMPILATION,

SCHEMABINDING, and EXECUTE AS options. SCHEMABINDING must be specified for natively

compiled procedures. This prevents the objects on which it depends from being altered.

You must also specify the EXECUTE AS clause because the default value for EXECUTE AS is

Caller, but this is not a supported option for native compilation. This has implications

if you are looking to migrate your existing interpreted SQL to natively compiled

procedures, and it means that you should reassess your security policy as a prerequisite

to code migration. The option is fairly self-explanatory.

You can see an example of creating a natively compiled stored procedure in

Listing 7-20. This procedure can be used to update the OrdersMem table.

Listing 7-20. Creating a Natively Compiled Stored Procedure

CREATE PROCEDURE UpdateOrdersMem

 WITH NATIVE_COMPILATION, SCHEMABINDING, EXECUTE AS OWNER

AS

BEGIN ATOMIC WITH (TRANSACTION ISOLATION LEVEL = SNAPSHOT, LANGUAGE = 'English')

 UPDATE dbo.OrdersMem

 SET DeliveryDate = DATEADD(dd,1,DeliveryDate)

 WHERE DeliveryDate < GETDATE()

END ;

When planning a code migration to natively compiled procedures, you should advise

your development teams that there are many limitations, and they will not be able to use

features including table variables, CTEs (Common Table Expressions), subqueries, the

OR operator in WHERE clauses, and UNION.

Like memory-optimized tables, DLLs are also created for natively compiled stored

procedures. The modified script in Listing 7-21 displays a list of DLLs associated with

natively compiled procedures.

Listing 7-21. Viewing DLLs for Natively Compiled Procedures

SELECT

 m.name DLL

 ,o.name ProcedureName

 ,description

FROM sys.dm_os_loaded_modules m

Chapter 7 table OptimizatiOns

244

INNER JOIN sys.objects o

 ON o.object_id =

(SELECT SUBSTRING(m.name, LEN(m.name) + 2 - CHARINDEX('_', REVERSE(m.name)),

len(m.name) - (LEN(m.name) + 2 - CHARINDEX('_', REVERSE(m.name)) + 3)))

WHERE m.name like '%xtp_p_' + cast(db_id() as varchar(10)) + '%' ;

 Summary
SQL Server offers many features for optimizing tables. Partitioning allows tables to

be split down into smaller structures, which means that SQL Server can read fewer

pages in order to locate the rows that it needs to return. This process is called partition

elimination. Partitioning also allows you to perform storage tiering by storing older, less

frequently accessed data on inexpensive storage.

SWITCH, SPLIT, and MERGE operations will help you implement sliding windows for

your partitioned tables. SWITCH allows you to move data from its current partition to an

empty partition or table as a metadata operation. SPLIT and MERGE allow you to insert

and remove boundary points in a partition function.

Two compression options are available for row-based tables. These types of

compression are designed as a performance enhancement, because they allow SQL

Server to reduce the amount of IO it needs to read all of the required rows from a

table. Row compression works by storing numeric and Unicode values in the smallest

space required, rather than the largest space required, for any acceptable value. Page

compression implements row compression and also prefix and dictionary compression.

This provides a higher compression ratio, meaning even less IO, but at the expense of CPU.

Columnstore indexes have two compression methods. COLUMNSTORE is the

standard compression type. COLUMNSTORE_ARCHIVE should only be used for infrequently

accessed data.

Memory-optimized tables are a feature of SQL Server, which enable massive

performance gains by keeping an entire table resident in memory. This can significantly

reduce IO pressure. You can use such tables in conjunction with natively compiled

stored procedures, which can also increase performance, by interacting directly with the

natively compiled DLLs of the memory-optimized tables and by reducing the CPU cycles

required, as compared to interpreted code.

Chapter 7 table OptimizatiOns

245
© Peter A. Carter 2019
P. A. Carter, Pro SQL Server 2019 Administration, https://doi.org/10.1007/978-1-4842-5089-1_8

CHAPTER 8

Indexes and Statistics
Recent versions of SQL Server support many different types of index that are used to

enhance query performance. These include traditional clustered and nonclustered

indexes, which are built on B-tree (balanced-tree) structures and enhance read

performance on disk-based tables. There are also indexes that support complex data

types, such as XML, JSON, and Geospatial data types. These advanced data type

indexes are beyond the scope of this book, but a full discussion can be found in the

Apress title SQL Server Advanced Data Types, which can be found at www.apress.com/

gp/book/9781484239001. DBAs can also create Columnstore indexes to support data

warehouse–style queries, where analysis is performed on very large tables. SQL Server

also supports in-memory indexes, which enhance the performance of tables that are

stored using In-Memory OLTP. This chapter discusses many of the available index types

inside the Database Engine.

SQL Server maintains statistics on index and table columns to enhance query

performance by improving cardinality estimates. This allows the Query Optimizer to an

efficient query plan. This chapter also discusses how to use and maintain statistics.

 Clustered Indexes
A B-tree is a data structure you can use to organize key values so a user can search for

the data they are looking for much more quickly than if they had to read the entire table.

It is a tree-based structure where each node is allowed more than two child nodes. The

tree is balanced, meaning there will always be the same number of steps to retrieve any

single row of data.

A clustered index is a B-tree structure that causes the data pages of a table to be

logically stored in the order of the clustered index key. The clustered index key can be a

single column or a set of columns that enforce uniqueness of each row in the table. This

key is often the table’s primary key, and although this is the most typical usage, in some

http://www.apress.com/gp/book/9781484239001
http://www.apress.com/gp/book/9781484239001

246

circumstances, you will want to use a different column. This is discussed in more detail

later in this chapter.

 Tables Without a Clustered Index
When a table exists without a clustered index, it is known as a heap. A heap consists of

an IAM (index allocation map) page(s) and a series of data pages that are not linked

together or stored in order. The only way SQL Server can determine the pages of the

table is by reading the IAM page(s). When a table is stored as a heap, without an index,

then every time the table is accessed, SQL Server must read every single page in the

table, even if you only want to return one row. The diagram in Figure 8-1 illustrates how a

heap is structured.

Figure 8-1. Heap structure

When data is stored on a heap, SQL Server needs to maintain a unique identifier

for each row. It does this by creating a RID (row identifier). A RID has a format

of FileID: Page ID: Slot Number, which is a physical location. Even if a table has

nonclustered indexes, it is still stored as a heap, unless there is a clustered index.

When nonclustered indexes are created on a heap, the RID is used as a pointer so that

nonclustered indexes can link back to the correct row in the base table.

Chapter 8 Indexes and statIstICs

247

 Tables with a Clustered Index
When you create a clustered index on a table, a B-tree structure is created. This B-tree is

based on the values of the clustered key, and if the clustered index is not unique, it also

includes a uniquifier. A uniquifier is a value used to identify rows if their key values are

the same. This allows SQL Server to perform more efficient search operations by creating

a tiered set of pointers to the data, as illustrated in Figure 8-2. The page at the top level

of this hierarchy is called the root node. The bottom level of the structure is called the

leaf level, and with a clustered index, the leaf level consists of the actual data pages of the

table. B-tree structures can have one or more intermediate levels, depending on the size

of the table.

Figure 8-2. Clustered index structure

Figure 8-2 shows that although the leaf level is the data itself, the levels above contain

pointers to the pages below them in the tree. This allows SQL Server to perform a seek

operation, which is a very efficient method of returning a small number of rows. It works

by navigating its way down the B-tree, using the pointers, to find the row(s) it requires. In

this figure, we can see that, if required, SQL Server can still scan all pages of the table in

order to retrieve the required rows—this is known as a clustered index scan. Alternatively,

Chapter 8 Indexes and statIstICs

248

SQL Server may decide to combine these two methods to perform a range scan. Here,

SQL Server seeks the first value of the required range and then scans the leaf level until it

encounters the first value that is not required. SQL Server can do this because the table

is ordered by the index key, which means that it can guarantee that no other matching

values appear later in the table.

 Clustering the Primary Key
The primary key of a table is often the natural choice for the clustered index, because

many OLTP applications access 99% of data through the primary key. In fact, by default,

unless you specify otherwise, or unless a clustered index already exists on the table,

creating a primary key automatically generates a clustered index on that key. There are

circumstances when the primary key is not the correct choice for the clustered index.

An example of this that I have witnessed is a third-party application that requires the

primary key of the table to be a GUID.

Creating a clustered index on a GUID introduces two major problems if the clustered

index is to be built on the primary key. The first is size. A GUID is 16 bytes long. When a

table has nonclustered indexes, the clustered index key is stored in every nonclustered

index. For unique nonclustered indexes, it is stored for every row at the leaf level,

and for nonunique nonclustered indexes, it is also stored at every row in the root and

intermediate levels of the index. When you multiply 16 bytes by millions of rows, this

drastically increases the size of the indexes, making them less efficient.

The second issue is that when a GUID is generated, it is a random value. Because the

data in your table is stored in the order of the clustered index key for good performance,

you need the values of this key to be generated in sequential order. Generating random

values for your clustered index key results in the index becoming more and more

fragmented every time you insert a new row. Fragmentation is discussed later in this

chapter.

There is a workaround for the second issue, however. SQL Server has a function

called NEWSEQUENTIALID(). This function always generates a GUID value that is higher

than previous values generated on the server. Therefore, if you use this function in the

default constraint of your primary key, you can enforce sequential inserts.

Chapter 8 Indexes and statIstICs

249

Caution after the server has been restarted, NEWSEQUENTIALID() can start
with a lower value. this may lead to fragmentation.

If the primary key must be a GUID or another wide column, such as a Social Security

Number, or if it must be a set of columns that form a natural key, such as Customer ID,

Order Date, and Product ID, then it is highly recommended that you create an additional

column in your table. You can make this column an INT or BIGINT, depending on the

number of rows you expect the table to have, and you can use either the IDENTITY property

or a SEQUENCE in order to create a narrow, sequential key for your clustered index.

Tip remember a narrow clustered key is important because it will be included in
all other indexes on the table.

 Administering Clustered Indexes
You can create a clustered index by using the CREATE CLUSTERED INDEX statement, as

shown in Listing 8-1. Other methods you can use to create a clustered index are using

the ALTER TABLE statement with a PRIMARY KEY clause and using the INDEX clause in the

CREATE TABLE statement, as long as you are using SQL Server 2014 or higher. This script

creates a database called Chapter8 and then a table called CIDemo. Finally, it creates a

clustered index on the ID column of this table.

Note remember to change the file locations to match your own configuration.

Chapter 8 Indexes and statIstICs

250

Listing 8-1. Creating a Clustered Index

--Create Chapter8 Database

CREATE DATABASE Chapter8

 ON PRIMARY

(NAME = N'Chapter8', FILENAME =

 N'F:\Program Files\Microsoft SQL Server\MSSQL15.PROSQLADMIN\MSSQL\DATA\

Chapter8.mdf'),

 FILEGROUP [MEM] CONTAINS MEMORY_OPTIMIZED_DATA DEFAULT

(NAME = N'MEM', FILENAME = N'H:\DATA\CH08')

 LOG ON

(NAME = N'Chapter8_log', FILENAME =

 N'E:\Program Files\Microsoft SQL Server\MSSQL15.PROSQLADMIN\MSSQL\DATA\

Chapter8_log.ldf') ;

GO

USE Chapter8

GO

--Create CIDemo table

CREATE TABLE dbo.CIDemo

(

 ID INT IDENTITY,

 DummyText VARCHAR(30)

) ;

GO

--Create clustered index

CREATE UNIQUE CLUSTERED INDEX CI_CIDemo ON dbo.CIDemo([ID]) ;

GO

When creating an index, you have a number of WITH options that you can specify.

These options are outlined in Table 8-1.

Chapter 8 Indexes and statIstICs

251

Table 8-1. Clustered Index WITH Options

Option Description

MAXDOP specifies how many cores are used to build the index. each core that is

used builds its own portion of the index. the trade-off is that a higher

MAXOP builds the index faster, but a lower MAXDOP means the index is

built with less fragmentation.

FILLFACTOR specifies how much free space should be left in each page of the leaf

level of the index. this can help reduce fragmentation caused by inserts

at the expense of having a wider index, which requires more IO to read.

For a clustered index, with a nonchanging, ever-increasing key, always

set this to 0, which means 100% full minus enough space for one row.

PAD_INDEX applies the fill factor percentage to the intermediate levels of the B-tree.

STATISTICS_

NORECOMPUTE

turns on or off the automatic updating of distribution statistics. statistics

are discussed later in this chapter.

SORT_IN_TEMPDB specifies that the intermediate sort results of the index should be stored

in tempdB. When you use this option, you can offload IO to the spindles

hosting tempdB, but this is at the expense of using more disk space.

Cannot be On if resUMaBLe is On.

STATISTICS_

INCREMENTAL

specifies if statistics should be created per partition. Limitations to this

are discussed later in this chapter.

DROP_EXISTING Used to drop and rebuild the existing index with the same name.

IGNORE_DUP_KEY When you enable this option, an INSERT statement that tries to insert a

duplicate key value into a unique index will not fail. Instead, a warning is

generated and only the rows that break the unique constraint fail.

ONLINE Can be set as On or OFF, with a default of OFF. specifies if the entire

table and indexes should be locked for the duration of the index build or

rebuild. If On, then queries are still able to access the table during the

operation. this is at the expense of the time it takes to build the index.

For clustered indexes, this option is not available if the table contains

LOB data.*

(continued)

Chapter 8 Indexes and statIstICs

252

As mentioned earlier in this chapter, if you create a primary key on a table, then

unless you specify the NONCLUSTERED keyword, or a clustered index already exists, a

clustered index is created automatically to cover the column(s) of the primary key. Also,

remember that at times you may wish to move the clustered index to a more suitable

column if the primary key is wide or if it is not ever-increasing.

In order to achieve this, you need to drop the primary key constraint and then re-

create it using the NONCLUSTERED keyword. This forces SQL Server to cover the primary

key with a unique nonclustered index. Once this is complete, you are able to create the

clustered index on the column of your choosing.

If you need to remove a clustered index that is not covering a primary key, you can

do so by using the DROP INDEX statement, as demonstrated in Listing 8-2, which drops

the clustered index that we created in the previous example.

Listing 8-2. Dropping the Index

DROP INDEX CI_CIDemo ON dbo.CIDemo ;

Table 8-1. (continued)

Option Description

OPTIMIZE_FOR_

SEQUENTIAL_KEY

Optimizes high concurrency inserts, where the index key is sequential.

Introduced in sQL server 2019, this feature is designed for indexes that

suffer from last-page insert contention.

RESUMABLE Can be set as On or OFF, with a default of OFF. specifies if the index

creation or build can be paused and resumed or can be resumed after a

failure. Can only be set to On if OnLIne is set to On.

MAX_DURATION specifies, in minutes, the maximum duration that an index rebuild or

rebuild will execute for, before pausing. Can only be specified if OnLIne

is set to On and resUMaBLe is set to On.

ALLOW_ROW_LOCKS specifies that you can take row locks out when accessing the table. this

does not mean that they definitely will be taken.

ALLOW_PAGE_LOCKS specifies that you can take page locks out when accessing the table.

this does not mean that they definitely will be taken.

*Spatial data is regarded as LOB data.

Chapter 8 Indexes and statIstICs

253

 Nonclustered Indexes
A nonclustered index is based on a B-tree structure in the same way that a clustered

index is. The difference is that the leaf level of a nonclustered index contains pointers to

the data pages of the table, as opposed to being the data pages of the table, as illustrated

in Figure 8-3. This means that a table can have multiple nonclustered indexes to support

query performance.

Figure 8-3. Nonclustered index structure

Just like a clustered index, a nonclustered index supports seek, scan, and range scan

operations in order to find the required data. If the index key of the nonclustered index

includes all columns that need to be accessed during a query, then you do not need

for SQL Server to access the underlying table. This also holds true if the only columns

accessed are in the nonclustered index and the clustered index key. This is because the

leaf level of a nonclustered index always contains the clustered index key. This is referred

to as an index covering the query, which is discussed in the next section.

If the query needs to return columns that are not included in the nonclustered index

or clustered index key, SQL Server needs to find the matching rows in the base table.

This is done through a process called a key lookup. A key lookup operation accesses the

Chapter 8 Indexes and statIstICs

254

rows required from the base table using either the clustered index key value or the RID if

the table does not have a clustered index.

This can be efficient for a small number of rows, but it quickly becomes expensive

if many rows are returned by the query. This means that if many rows will be returned,

SQL Server may decide that it is less expensive to ignore the nonclustered index and use

the clustered index or heap instead. This decision is known as the tipping point of the

index. The tipping point varies from table to table, but it is generally between 0.5% and

2% of the table.

 Covering Indexes
Although having all required columns within the nonclustered index means that you

do not have to retrieve data from the underlying table, the trade-off is that having many

columns within a nonclustered index can lead to very wide, inefficient indexes. In order

to gain a better balance, SQL Server offers you the option of included columns.

Included columns are included at the leaf level of the index only, as opposed to the

index key values, which continue to be included at every level of the B-tree. This feature

can help you cover your queries while maintaining the narrowest index keys possible.

This concept is illustrated in Figure 8-4. This diagram illustrates that the index has been

built using Balance as the index key, but the FirstName and LastName columns have also

been included at the leaf level. You can see that CustomerID has also been included at

all levels; this is because CustomerID is the clustered index key. Because the clustered

index key is included at all levels, this implies that the index is not unique. If it is unique,

then the clustered key is only included at the leaf level of the B-tree. This means that

unique, nonclustered indexes are always narrower than their nonunique equivalents.

This index is perfect for a query that filters on Balance in the WHERE clause and returns

the FirstName and LastName columns. It also covers queries that returned CustomerID in

the results.

Chapter 8 Indexes and statIstICs

255

Tip If both the clustered and nonclustered indexes are nonunique, each level of the
nonclustered B-tree includes the clustering uniquifier as well as the clustered key.

You can also use the index illustrated in Figure 8-4 to cover queries that filter on

FirstName or LastName in the WHERE clause providing that other columns from the table

are not returned. To process the query, however, SQL Server needs to perform an index

scan, as opposed to an index seek or range scan, which is, of course, less efficient.

 Administering Nonclustered Indexes
You can create nonclustered indexes using the CREATE NONCLUSTERED INDEX T-SQL

statement. The script in Listing 8-3 creates a table called Customers and a table called

Orders within the Chapter8 database. It then creates a foreign key constraint on the

CustomerID column. Finally, a nonclustered index is created on the Balance column

of the Customers table. Clustered indexes are created automatically on the primary key

columns of each table.

Figure 8-4. Nonclustered index with included columns

Chapter 8 Indexes and statIstICs

256

Listing 8-3. Creating Tables and Then Adding a Nonclustered Index

USE Chapter8

GO

--Create and populate numbers table

DECLARE @Numbers TABLE

(

 Number INT

)

;WITH CTE(Number)

AS

(

 SELECT 1 Number

 UNION ALL

 SELECT Number + 1

 FROM CTE

 WHERE Number < 100

)

INSERT INTO @Numbers

SELECT Number FROM CTE ;

--Create and populate name pieces

DECLARE @Names TABLE

(

 FirstName VARCHAR(30),

 LastName VARCHAR(30)

) ;

INSERT INTO @Names

VALUES('Peter', 'Carter'),

 ('Michael', 'Smith'),

 ('Danielle', 'Mead'),

 ('Reuben', 'Roberts'),

 ('Iris', 'Jones'),

Chapter 8 Indexes and statIstICs

257

 ('Sylvia', 'Davies'),

 ('Finola', 'Wright'),

 ('Edward', 'James'),

 ('Marie', 'Andrews'),

 ('Jennifer', 'Abraham') ;

--Create and populate Customers table

CREATE TABLE dbo.CustomersDisk

(

 CustomerID INT NOT NULL IDENTITY PRIMARY KEY,

 FirstName VARCHAR(30) NOT NULL,

 LastName VARCHAR(30) NOT NULL,

 BillingAddressID INT NOT NULL,

 DeliveryAddressID INT NOT NULL,

 CreditLimit MONEY NOT NULL,

 Balance MONEY NOT NULL

) ;

SELECT * INTO #CustomersDisk

FROM

 (SELECT

 (SELECT TOP 1 FirstName FROM @Names ORDER BY NEWID()) FirstName,

 (SELECT TOP 1 LastName FROM @Names ORDER BY NEWID()) LastName,

 (SELECT TOP 1 Number FROM @Numbers ORDER BY NEWID())

BillingAddressID,

 (SELECT TOP 1 Number FROM @Numbers ORDER BY NEWID())

DeliveryAddressID,

 (SELECT TOP 1

 CAST(RAND() * Number AS INT) * 10000

 FROM @Numbers

 ORDER BY NEWID()) CreditLimit,

 (SELECT TOP 1

 CAST(RAND() * Number AS INT) * 9000

 FROM @Numbers

 ORDER BY NEWID()) Balance

Chapter 8 Indexes and statIstICs

258

 FROM @Numbers a

 CROSS JOIN @Numbers b

) a ;

INSERT INTO dbo.CustomersDisk

SELECT * FROM #CustomersDisk ;

GO

--Create Numbers table

DECLARE @Numbers TABLE

(

 Number INT

)

;WITH CTE(Number)

AS

(

 SELECT 1 Number

 UNION ALL

 SELECT Number + 1

 FROM CTE

 WHERE Number < 100

)

INSERT INTO @Numbers

SELECT Number FROM CTE ;

--Create the Orders table

CREATE TABLE dbo.OrdersDisk

 (

 OrderNumber INT NOT NULL IDENTITY PRIMARY KEY,

 OrderDate DATE NOT NULL,

 CustomerID INT NOT NULL,

 ProductID INT NOT NULL,

 Quantity INT NOT NULL,

 NetAmount MONEY NOT NULL,

Chapter 8 Indexes and statIstICs

259

 DeliveryDate DATE NULL

) ON [PRIMARY] ;

--Populate Orders with data

SELECT * INTO #OrdersDisk

FROM

 (SELECT

 (SELECT CAST(DATEADD(dd,(SELECT TOP 1 Number

 FROM @Numbers

 ORDER BY NEWID()),GETDATE())as DATE)) OrderDate,

 (SELECT TOP 1 CustomerID FROM CustomersDisk ORDER BY NEWID())

CustomerID,

 (SELECT TOP 1 Number FROM @Numbers ORDER BY NEWID()) ProductID,

 (SELECT TOP 1 Number FROM @Numbers ORDER BY NEWID()) Quantity,

 (SELECT TOP 1 CAST(RAND() * Number AS INT) +10 * 100

 FROM @Numbers

 ORDER BY NEWID()) NetAmount,

 (SELECT CAST(DATEADD(dd,(SELECT TOP 1 Number - 10

 FROM @Numbers

 ORDER BY NEWID()),GETDATE()) as DATE)) DeliveryDate

 FROM @Numbers a

 CROSS JOIN @Numbers b

 CROSS JOIN @Numbers c

) a ;

INSERT INTO OrdersDisk

SELECT * FROM #OrdersDisk ;

--Clean-up Temp Tables

DROP TABLE #CustomersDisk ;

DROP TABLE #OrdersDisk ;

--Add foreign key on CustomerID

Chapter 8 Indexes and statIstICs

260

ALTER TABLE dbo.OrdersDisk ADD CONSTRAINT

 FK_OrdersDisk_CustomersDisk FOREIGN KEY

 (

 CustomerID

) REFERENCES dbo.CustomersDisk

 (

 CustomerID

) ON UPDATE NO ACTION

 ON DELETE NO ACTION ;

--Create a nonclustered index on Balance

CREATE NONCLUSTERED INDEX NCI_Balance ON dbo.CustomersDisk(Balance) ;

We can change the definition of the NCI_Balance index to include the FirstName and

LastName columns by using the CREATE NONCLUSTERED INDEX statement and specifying

the DROP_EXISTING option as demonstrated in Listing 8-4.

Listing 8-4. Altering the Index to Include Columns

CREATE NONCLUSTERED INDEX NCI_Balance ON dbo.CustomersDisk(Balance)

 INCLUDE(LastName, FirstName)

 WITH(DROP_EXISTING = ON) ;

You can drop the index in the same way that we dropped the clustered index earlier

in this chapter—using a DROP INDEX statement. In this case, the full statement would be

DROP INDEX NCI_Balance ON dbo.CustomersDisk.

 Filtered Indexes
A filtered index is an index built on a subset of the data stored within a table, as opposed

to one that is built on all of the data in the table. Because the indexes are smaller, they

can lead to improved query performance and reduced storage cost. They also have

the potential to cause less overhead for DML operations, since they only need to be

updated if the DML operation affects the data within the index. For example, if an index

was filtered on OrderDate >= '2019-01-01' AND OrderDate <= '2019-12-31' and

Chapter 8 Indexes and statIstICs

261

subsequently updated all rows in the table where the OrderDate >= '2020-01-01', then

the performance of the update would be the same as if the index did not exist.

Filtered indexes are constructed by using a WHERE clause on index creation. There

are many things that you can do in the WHERE clause, such as filter on NULL or NOT NULL

values; use equality and inequality operators, such as =, >, <, and IN; and use logical

operators, such as AND and OR. There are also limitations, however. For example, you

cannot use BETWEEN, CASE, or NOT IN. Also, you can only use simple predicates; for

example, using a date/time function is prohibited, so creating a rolling filter is not

possible. You also cannot compare a column to other columns.

The statement in Listing 8-5 creates a filtered index on DeliveryDate, where the

value is NULL. This allows you to make performance improvements on queries that are

run to determine which orders are yet to have their delivery scheduled.

Listing 8-5. Creating Filtered Index

CREATE NONCLUSTERED INDEX NonDeliveredItems ON dbo.OrdersDisk(DeliveryDate)

 WHERE DeliveryDate IS NULL ;

 Indexes for Specialized Application
In addition to traditional B-tree indexes, SQL Server also provides several types of special

indexes to help query performance against memory-optimized tables and Columnstore

indexes that help query performance in data warehouse scenarios. The following

sections discuss these special indexes. Although beyond the scope of this book, SQL

Server also offers special indexes for geospatial data, XML and JSON.

 Columnstore Indexes
As you have seen, traditional indexes store rows of data on data pages. This is known

as a rowstore. SQL Server also supports Columnstore indexes. These indexes flip data

around and use a page to store a column, as opposed to a set of rows. This is illustrated

in Figure 8-5.

Chapter 8 Indexes and statIstICs

262

A Columnstore index slices the rows of a table into chunks of between 102,400 and

1,048,576 rows each. Each slice is called a rowgroup. The data in each rowgroup is then

split down into columns and compressed using VertiPaq technology. Each column

within a rowgroup is called a column segment.

Columnstore indexes offer several benefits over traditional indexes, given

appropriate usage scenarios. First, because they are highly compressed, they can

improve IO efficiency and reduce memory overhead. They can achieve such a high

compression rate because data within a single column is often very similar between

rows. Also, because a query is able to retrieve just the data pages of the column it

requires, IO can again be reduced. This is helped even further by the fact that each

column segment contains a header with metadata about the data within the segment.

This means that SQL Server can access just the segments it needs, as opposed to

the whole column. A new query execution mechanism has also been introduced to

support Columnstore indexes. It is called batch execution mode, and it allows data to

be processed in chunks of 1000 rows, as opposed to a row-by-row basis. This means that

CPU usage is much more efficient. Columnstore indexes are not a magic bullet, however,

and are designed to be optimal for data warehouse–style queries that perform read-only

Figure 8-5. Columnstore index structure

Chapter 8 Indexes and statIstICs

263

operations on very large tables. OLTP-style queries are not likely to see any benefit and,

in some cases, may actually execute slower. SQL Server supports both clustered and

nonclustered Columnstore indexes, and these are discussed in the following sections.

 Clustered Columnstore Indexes
Clustered Columnstore indexes cause the entire table to be stored in a Columnstore

format. There is no traditional rowstore storage for a table with a clustered Columnstore

index; however, new rows that are inserted into the table may temporarily be placed

into a rowstore table, called a deltastore. This is to prevent the Columnstore index from

becoming fragmented and to enhance performance for DML operations. The diagram in

Figure 8-6 illustrates this.

Figure 8-6. Clustered columnstore index with deltastores

Chapter 8 Indexes and statIstICs

264

The diagram shows that when data is inserted into a clustered Columnstore index,

SQL Server assesses the number of rows. If the number of rows is high enough to achieve

a good compression rate, SQL Server treats them as a rowgroup or rowgroups and

immediately compresses them and adds them to the Columnstore index. If there are too

few rows however, SQL Server inserts them into the internal deltastore structure. When

you run a query against the table, the database engine seamlessly joins the structures

together and returns the results as one. Once there are enough rows, the deltastore is

marked as closed and a background process called the tuple compresses the rows into a

rowgroup in the Columnstore index.

There can be multiple deltastores for each clustered Columnstore index. This is

because when SQL Server determines that an insert warrants using a deltastore, it

attempts to access the existing deltastores. If all existing deltastores are locked, however,

then a new one is created, instead of the query being forced to wait for a lock to be

released.

When a row is deleted in a clustered Columnstore index, then the row is only

logically removed. The data still physically stays in the rowgroup until the next time

the index is rebuilt. SQL Server maintains a B-tree structure of pointers to deleted rows

in order to easily identify them. If the row being deleted is located in a deltastore, as

opposed to the index itself, then it is immediately deleted, both logically and physically.

When you update a row in a clustered Columnstore index, then SQL Server marks the

row as being logically deleted and inserts a new row into a deltastore, which contains the

new values for the row.

You can create clustered Columnstore indexes using a CREATE CLUSTERED

COLUMNSTORE INDEX statement. The script in Listing 8-6 copies the contents of the

OrdersDisk table to a new table called OrdersColumnstore and then creates a clustered

Columnstore index on the table. When you create the index, you do not need to specify

a key column; this is because all of the columns are added to column segments within

the Columnstore index. Your queries can then use the index to search on whichever

column(s) it needs to satisfy the query. The clustered Columnstore index is the only

index on the table. You are not able to create traditional nonclustered indexes or a

nonclustered Columnstore index. Additionally, the table must not have primary key,

foreign key, or unique constraints.

Chapter 8 Indexes and statIstICs

265

Listing 8-6. Creating a Clustered Columnstore Index

SELECT * INTO dbo.OrdersColumnstore

FROM dbo.OrdersDisk ;

GO

CREATE CLUSTERED COLUMNSTORE INDEX CCI_OrdersColumnstore ON dbo.

OrdersColumnstore ;

Not all data types are supported when you are using Columnstore indexes. It is not

possible to create a clustered Columnstore index on tables that contain the following

data types:

• TEXT

• NTEXT

• IMAGE

• VARCHAR(MAX)

• NVARCHAR(MAX)

• ROWVERSION

• SQL_VARIANT

• HIERARCHYID

• GEOGRAPHY

• GEOMETRY

• XML

 Nonclustered Columnstore Indexes
Nonclustered Columnstore indexes are not updatable. This means that if you create a

nonclustered Columnstore index on a table, that table becomes read-only. The only way

you can update or delete data from that table is to first drop or disable the Columnstore

index and then re-create it once the DML process has completed. To insert data into a

table with a nonclustered Columnstore index, you must first either drop or disable the

Columnstore index or, alternatively, use partition switching to bring the data in. Partition

switching is discussed in Chapter 7.

Chapter 8 Indexes and statIstICs

266

It is appropriate to use a nonclustered Columnstore index instead of a clustered

Columnstore index when the table supports multiple workload profiles. In this scenario,

the nonclustered Columnstore index supports real-time analytics, whereas OLTP-style

queries can make use of a traditional clustered index.

The statement in Listing 8-7 creates a nonclustered Columnstore index on the

FirstName, LastName, Balance, and CustomerID columns of the CustomersDisk table.

You can see from our creation of this index that unlike clustered Columnstore indexes,

nonclustered Columnstore indexes can coexist with traditional indexes, and, in this case,

we even cover some of the same columns.

Listing 8-7. Creating Nonclustered Columnstore Indexes

CREATE NONCLUSTERED COLUMNSTORE INDEX NCCI_FirstName_LastName_Balance_

CustomerID

 ON dbo.CustomersDisk(FirstName,LastName,Balance,CustomerID) ;

 In-Memory Indexes
As we saw in Chapter 7, SQL Server provides two types of index for memory-optimized

tables: nonclustered and nonclustered hash. Every memory-optimized table must have

a minimum of one index and can support a maximum of eight. All in-memory indexes

cover all columns in the table, because they use a memory pointer to link to the data row.

Indexes on memory-optimized tables must be created in the CREATE TABLE

statement. There is no CREATE INDEX statement for in-memory indexes. Indexes built

on memory-optimized tables are always stored in memory only and are never persisted

to disk, regardless of your table’s durability setting. They are then re-created after the

instance restarts from the table’s underlying data. You do not need to worry about

fragmentation of in-memory indexes, since they never have a disk-based structure.

 In-Memory Nonclustered Hash Indexes

A nonclustered hash index consists of an array of buckets. A hash function is run on

each of the index keys, and then the hashed key values are placed into the buckets. The

hashing algorithm used is deterministic, meaning that index keys with the same value

always have the same hash value. This is important because repeated hash values are

always placed in the same hash bucket. When many keys are in the same hash bucket,

performance of the index can degrade, because the whole chain of duplicates needs

Chapter 8 Indexes and statIstICs

267

to be scanned to find the correct key. Therefore, if you are building a hash index on a

nonunique column with many repeated keys, you should create the index with a much

larger number of buckets. This should be in the realm of 20 to 100 times the number

of distinct key values, as opposed to 2 times the number of unique keys that is usually

recommended for unique indexes. Alternatively, using a nonclustered index on a

nonunique column may offer a better solution. The second consequence of the hash

function being deterministic is that different versions of the same row are always stored

in the same hash bucket.

Even in the case of a unique index where only a single, current row version exists,

the distribution of hashed values into buckets is not even, and if there are an equal

number of buckets to unique key values, then approximately one third of the buckets is

empty, one third contains a single value, and one third contains multiple values. When

multiple values share a bucket, it is known as a hash collision, and a large number of

hash collisions can lead to reduced performance. Hence the recommendation for the

number of buckets in a unique index being twice the number of unique values expected

in the table.

Tip When you have a unique nonclustered hash index, in some cases, many
unique values may hash to the same bucket. If you experience this, then increasing
the number of buckets helps, in the same way that a nonunique index does.

As an example, if your table has 1 million rows, and the indexed column is unique,

the optimum number of buckets, known as the BUCKET_COUNT, is 2 million. If you know

that you expect your table to grow to 2 million rows, however, then it may be prudent

to create 4 million hash buckets. This number of buckets is low enough to not have an

impact on memory. It also still allows for the expected increase in rows, without there

being too few buckets, which would impair performance. An illustration of potential

mappings between index values and hash buckets is shown in Figure 8-7.

Chapter 8 Indexes and statIstICs

268

Tip the amount of memory used by a nonclustered hash index always remains
static, since the number of buckets does not change.

Hash indexes are optimized for seek operations with the = predicate. For the seek

operation, however, the full index key must be present in the predicate evaluation. If it is

not, a full index scan is required. An index scan is also required if inequality predicates

such as < or > are used. Also, because the index is not ordered, the index cannot return

the data in the sort order of the index key.

Figure 8-7. Mappings to a nonclustered hash index

Chapter 8 Indexes and statIstICs

269

Note You may remember that in Chapter 7, we witnessed superior performance
from a disk-based table than from a memory-optimized table. this is explained
by using the > predicate in our query; this meant that although the disk-based
index was able to perform an index seek, our memory-optimized hash index had to
perform an index scan.

Let’s now create a memory-optimized version of our OrdersDisk table, which

includes a nonclustered hash index on the OrderID column, using the script in Listing 8-8.

Initially, this row has 1 million rows, but we expect the number to grow to 2 million,

so we use a BUCKET_COUNT of 4 million.

Listing 8-8. Creating a Table with a Nonclustered Hash Index

CREATE TABLE dbo.OrdersMemHash

(

 OrderNumber INT NOT NULL IDENTITY PRIMARY KEY

 NONCLUSTERED HASH WITH(BUCKET_COUNT = 4000000),

 OrderDate DATE NOT NULL,

 CustomerID INT NOT NULL,

 ProductID INT NOT NULL,

 Quantity INT NOT NULL,

 NetAmount MONEY NOT NULL,

 DeliveryDate DATE NULL,

) WITH(MEMORY_OPTIMIZED = ON, DURABILITY = SCHEMA_AND_DATA) ;

INSERT INTO dbo.OrdersMemHash(OrderDate,CustomerID,ProductID,Quantity,NetAm

ount,DeliveryDate)

SELECT OrderDate

 ,CustomerID

 ,ProductID

 ,Quantity

 ,NetAmount

 ,DeliveryDate

FROM dbo.OrdersDisk ;

Chapter 8 Indexes and statIstICs

270

If we now wish to add an additional index to the table, we need to drop and re-create it.

We already have data in the table, however, so we first need to create a temp table and copy

the data in so that we can drop and re-create the memory-optimized table. The script in

Listing 8-9 adds a nonclustered index to the OrderDate column.

Listing 8-9. Adding an Index to a Memory-Optimized Table

--Create and populate temp table

SELECT * INTO #OrdersMemHash

FROM dbo.OrdersMemHash ;

--Drop existing table

DROP TABLE dbo.OrdersMemHash ;

--Re-create the table with the new index

CREATE TABLE dbo.OrdersMemHash

(

 OrderNumber INT NOT NULL IDENTITY PRIMARY KEY

 NONCLUSTERED HASH WITH(BUCKET_COUNT = 4000000),

 OrderDate DATE NOT NULL INDEX NCI_OrderDate NONCLUSTERED,

 CustomerID INT NOT NULL,

 ProductID INT NOT NULL,

 Quantity INT NOT NULL,

 NetAmount MONEY NOT NULL,

 DeliveryDate DATE NULL,

) WITH(MEMORY_OPTIMIZED = ON, DURABILITY = SCHEMA_AND_DATA) ;

GO

--Allow values to be inserted into the identity column

SET IDENTITY_INSERT OrdersMemHash ON ;

GO

--Repopulate the table

Chapter 8 Indexes and statIstICs

271

INSERT INTO

dbo.OrdersMemHash(OrderNumber,OrderDate,CustomerID,ProductID,Quantity,NetAm

ount,DeliveryDate)

SELECT *
FROM #OrdersMemHash ;

--Stop further inserts to the identity column and clean up temp table

SET IDENTITY_INSERT OrdersMemHash OFF ;

DROP TABLE #OrdersMemHash ;

We can examine the distribution of the values in our hash index by interrogating the

sys.dm_db_xtp_hash_index_stats DMV. The query in Listing 8-10 demonstrates using

this DMV to view the number of hash collisions and calculate the percentage of empty

buckets.

Listing 8-10. sys.dm_db_xtp_hash_index_stats

SELECT

 OBJECT_SCHEMA_NAME(HIS.OBJECT_ID) + '.' + OBJECT_NAME(HIS.OBJECT_ID)

'Table Name',

 I.name as 'Index Name',

 HIS.total_bucket_count,

 HIS.empty_bucket_count,

 FLOOR((CAST(empty_bucket_count AS FLOAT)/total_bucket_count) * 100)

'Empty Bucket Percentage',

 total_bucket_count - empty_bucket_count 'Used Bucket Count',

 HIS.avg_chain_length,

 HIS.max_chain_length

FROM sys.dm_db_xtp_hash_index_stats AS HIS

INNER JOIN sys.indexes AS I

 ON HIS.object_id = I.object_id

 AND HIS.index_id = I.index_id ;

From the results in Figure 8-8, we can see that for our hash index, 78% of the buckets

are empty. The percentage is this high because we specified a large BUCKET_COUNT with

table growth in mind. If the percentage was less than 33%, we would want to specify

a higher number of buckets to avoid hash collisions. We can also see that we have an

Chapter 8 Indexes and statIstICs

272

average chain length of 1, with a maximum chain length of 5. This is healthy. If the

average chain count increases, then performance begins to tail off, since SQL Server

has to scan multiple values to find the correct key. If the average chain length reaches

10 or higher, then the implication is that the key is nonunique and there are too many

duplicate values in the key to make a hash index viable. At this point, we should either

drop and re-create the table with a higher bucket count for the index or, ideally, look to

implement a nonclustered index instead.

 In-Memory Nonclustered Indexes

In-memory nonclustered indexes have a similar structure to a disk-based nonclustered

index called a bw-tree. This structure uses a page-mapping table, as opposed to

pointers, and is traversed using less than, as opposed to greater than, which is used

when traversing disk-based indexes. The leaf level of the index is a singly linked list.

Nonclustered indexes perform better than nonclustered hash indexes where a query

uses inequality predicates, such as BETWEEN, >, or <. In-memory nonclustered indexes

also perform better than a nonclustered hash index, where the = predicate is used, but

not all of the columns in the key are used in the filter. Nonclustered indexes can also

return the data in the sort order of the index key. Unlike disk-based indexes, however,

these indexes cannot return the results in the reverse order of the index key.

 Maintaining Indexes
Once indexes have been created, a DBA’s work is not complete. Indexes need to be

maintained on an ongoing basis. The following sections discuss considerations for index

maintenance.

Figure 8-8. sys.dm_db_xtp_hash_index_stats results

Chapter 8 Indexes and statIstICs

273

 Missing Indexes
When you run queries, the Database Engine keeps track of any indexes that it would like

to use when building a plan to aid your query performance. When you view an execution

plan in SSMS, you are provided with advice on missing indexes, but the data is also

available later through DMVs.

Tip Because the suggestions are based on a single plan, you should review them
as opposed to implementing them blindly.

In order to demonstrate this functionality, we can execute the query in Listing 8-11

and choose to include the actual execution plan.

Tip You can see missing index information by viewing the estimated query plan.

Listing 8-11. Generating Missing Index Details

SELECT SUM(c.creditlimit) TotalExposure, SUM(o.netamount)

'TotalOrdersValue'

FROM dbo.CustomersDisk c

INNER JOIN dbo.OrdersDisk o

 ON c.CustomerID = o.CustomerID ;

Once we have run this query, we can examine the execution plan and see what it tells

us. The execution plan for this query is shown in Figure 8-9.

Figure 8-9. Execution plan showing missing indexes

Chapter 8 Indexes and statIstICs

274

At the top of the execution plan in Figure 8-9, you can see that SQL Server is

recommending that we create an index on the CustomerID column of the OrdersDisk

table and include the NetAmount column at the leaf level. We are also advised that this

should provide a 75% performance improvement to the query.

As mentioned, SQL Server also makes this information available through DMVs.

The sys.dm_db_missing_index_details DMV joins to the sys.dm_db_missing_index_

group_stats through the intermediate DMV sys.dm_db_missing_index_groups, which

avoids a many-to-many relationship. The script in Listing 8-12 demonstrates how we can

use these DMVs to return details on missing indexes.

Listing 8-12. Missing Index DMVs

SELECT

 mid.statement TableName

 ,ISNULL(mid.equality_columns, ")

 + ','

 + ISNULL(mid.inequality_columns, ") IndexKeyColumns

 ,mid.included_columns

 ,migs.unique_compiles

 ,migs.user_seeks

 ,migs.user_scans

 ,migs.avg_total_user_cost

 ,migs.avg_user_impact

FROM sys.dm_db_missing_index_details mid

INNER JOIN sys.dm_db_missing_index_groups mig

 ON mid.index_handle = mig.index_handle

 INNER JOIN sys.dm_db_missing_index_group_stats migs

 ON mig.index_group_handle = migs.group_handle ;

The results of this query are shown in Figure 8-10. They show the following: the

name of the table with the missing index; the column(s) that SQL Server recommends

should form the index key; the columns that SQL Server recommends should be added

as included columns at the leaf level of the B-tree; the number of times that queries

that would have benefited from the index have been compiled; how many seeks would

have been performed against the index, if it existed; the number of times that the index

has been scanned if it existed; the average cost that would have been saved by using the

index; and the average percentage cost that would have been saved by using the index.

Chapter 8 Indexes and statIstICs

275

In our case, we can see that the query would have been 95% less expensive if the index

existed when we ran our query.

 Index Fragmentation
Disk-based indexes are subject to fragmentation. Two forms of fragmentation can occur

in B-trees: internal fragmentation and external fragmentation. Internal fragmentation

refers to pages having lots of free space. If pages have lots of free space, then SQL Server

needs to read more pages than is necessary to return all of the required rows for a query.

External fragmentation refers to the pages of the index becoming out of physical order.

This can reduce performance, since the data cannot be read sequentially from disk.

For example, imagine that you have a table with 1 million rows of data and that all of

these data rows fit into 5000 pages when the data pages are 100% full. This means that

SQL Server needs to read just over 39MB of data in order to scan the entire table (8KB ∗

5000). If the pages of the table are only 50% full, however, this increases the number of

pages in use to 10,000, which also increases the amount of data that needs to be read to

78MB. This is internal fragmentation.

Internal fragmentation can occur naturally when DELETE statements are issued

and when DML statements occur, such as when a key value that is not ever-increasing

is inserted. This is because SQL Server may respond to this situation by performing a

page split. A page split creates a new page, moves half of the data from the existing page

to the new page, and leaves the other half on the existing page, thus creating 50% free

space on both pages. They can also occur artificially, however, through the misuse of the

FILLFACTOR and PAD_INDEX settings.

FILLFACTOR controls how much free space is left on each leaf level page of an index

when it is created or rebuilt. By default, the FILLFACTOR is set to 0, which means that

it leaves enough space on the page for exactly one row. In some cases, however, when

a high number of page splits is occurring due to DML operations, a DBA may be able

to reduce fragmentation by altering the FILLFACTOR. Setting a FILLFACTOR of 80, for

example, leaves 20% free space in the page, meaning that new rows can be added to the

Figure 8-10. Missing index results

Chapter 8 Indexes and statIstICs

276

page without page splits occurring. Many DBAs change the FILLFACTOR when they are

not required to, however, which automatically causes internal fragmentation as soon as

the index is built. PAD_INDEX can be applied only when FILLFACTOR is used, and it applies

the same percentage of free space to the intermediate levels of the B-tree.

External fragmentation is also caused by page splits and refers to the logical order

of pages, as ordered by the index key, being out of sequence when compared to the

physical order of pages on disk. External fragmentation makes it so SQL Server is less

able to perform scan operations using a sequential read, because the head needs to

move backward and forward over the disk to locate the pages within the file.

Note this is not the same as fragmentation at the file system level where a data
file can be split over multiple, unordered disk sectors.

 Detecting Fragmentation

You can identify fragmentation of indexes by using the sys.dm_db_index_physical_

stats DMF. This function accepts the parameters listed in Table 8-2.

Table 8-2. sys.dm_db_index_physical_stats Parameters

Parameter Description

Database_ID the Id of the database that you want to run the function against. If you do

not know it, you can pass in DB_ID('MyDatabase') where MyDatabase

is the name of your database.

Object_ID the Object Id of the table that you want to run the function against. If you

do not know it, pass in OBJECT_ID('MyTable') where MyTable is the

name of your table. pass in NULL to run the function against all tables in

the database.

Index_ID the index Id of the index you want to run the function against. this is always

1 for a clustered index. pass in NULL to run the function against all indexes

on the table.

(continued)

Chapter 8 Indexes and statIstICs

277

Listing 8-13 demonstrates how we can use sys.dm_db_index_physical_stats to

check the fragmentation levels of our OrdersDisk table.

Listing 8-13. sys.dm_db_index_physical_stats

USE Chapter8

GO

SELECT

i.name

,IPS.index_type_desc

,IPS.index_level

,IPS.avg_fragmentation_in_percent

,IPS.avg_page_space_used_in_percent

,i.fill_factor

,CASE

 WHEN i.fill_factor = 0

 THEN 100-IPS.avg_page_space_used_in_percent

 ELSE i.fill_factor-ips.avg_page_space_used_in_percent

END Internal_Frag_With_Fillfactor_Offset

,IPS.fragment_count

,IPS.avg_fragment_size_in_pages

Parameter Description

Partition_Number the Id of the partition that you want to run the function against. pass in

NULL if you want to run the function against all partitions or if the table is

not partitioned.

Mode Choose LIMITED, SAMPLED, or DETAILED. LIMITED only scans the non-

leaf levels of an index. SAMPLED scans 1% of pages in the table, unless the

table has 10,000 pages or less, in which case DETAILED mode is used.

DETAILED mode scans 100% of the pages in the table. For very large

tables, SAMPLED is often preferred due to the length of time it can take to

return data in DETAILED mode.

Table 8-2. (continued)

Chapter 8 Indexes and statIstICs

278

FROM sys.dm_db_index_physical_stats(DB_ID('Chapter8'),OBJECT_ID('dbo.Orders

Disk'),NULL,NULL,'DETAILED') IPS

INNER JOIN sys.indexes i

 ON IPS.Object_id = i.object_id

 AND IPS.index_id = i.index_id ;

You can see, from the results of this query, that one row is returned for every level of

each B-tree. If the table was partitioned, this would also be broken down by partition.

The index_level column indicates which level of the B-tree is represented by the

row. Level 0 implies the leaf level of the B-tree, whereas Level 1 is either the lowest

intermediate level or the root level if no intermediate levels exist, and so on, with the

highest number always reflecting the root node. The avg_fragmentation_in_percent

column tells us how much external fragmentation is present. We want this value to be

as close to zero as possible. The avg_page_space_used_in_percent tells us how much

internal fragmentation is present, so we want this value to be as close to 100 as possible.

The Internal_Frag_With_FillFactor_Offset column also tells us how much internal

fragmentation is present, but this time, it applies an offset to allow for the fill factor

that has been applied to the index. The fragment_count column indicates how many

chunks of continuous pages exist for the index level, so we want this value to be as low

as possible. The avg_fragment_size_in_pages column tells the average size of each

fragment, so obviously this number should also be as high as possible.

 Removing Fragmentation

You can remove fragmentation by either reorganizing or rebuilding an index. When

you reorganize an index, SQL Server reorganizes the data within the leaf level of the

index. It looks to see if there is free space on a page that it can use. If there is, then it

moves rows from the next page onto this page. If there are empty pages at the end of this

process, then they are removed. SQL Server only fills pages to the level of the FillFactor

specified. Once this is complete, the data within the leaf level pages is shuffled so that

their physical order is a closer match to their logical, key order. Reorganizing an index is

always an ONLINE operation, meaning that the index can still be used by other processes

while the operation is in progress. Where it is always an ONLINE operation, it will fail if the

ALLOW_PAGE_LOCKS option is turned off. The process of reorganizing an index is suitable

for removing internal fragmentation and low levels of external fragmentation of 30% or

less. However, it makes no guarantees, even with this usage profile, that there will not be

fragmentation left after the operation completes.

Chapter 8 Indexes and statIstICs

279

The script in Listing 8-14 creates an index called NCI_CustomerID on the OrdersDisk

table and then demonstrates how we can reorganize it.

Listing 8-14. Reorganizing an Index

--Create the index that will be used in the examples, for the following

sections

CREATE NONCLUSTERED INDEX NCI_CustomerID ON dbo.OrdersDisk(CustomerID) ;

GO

--Reorganize the index

ALTER INDEX NCI_CustomerID ON dbo.OrdersDisk REORGANIZE ;

When you rebuild an index, the existing index is dropped and then completely

rebuilt. This, by definition, removes internal and external fragmentation, since the index

is built from scratch. It is important to note, however, that you are still not guaranteed

to be 100% fragmentation-free after this operation. This is because SQL Server assigns

different chunks of the index to each CPU core that is involved in the rebuild. Each

CPU core should build its own section in the perfect sequence, but when the pieces are

synchronized, there may be a small amount of fragmentation. You can minimize this

issue by specifying MAXDOP = 1. Even when you set this option, you may still encounter

fragmentation in some cases. For example, if ALLOW_PAGES_LOCKS is configured as

OFF, then the workers share the allocation cache, which can cause fragmentation.

Additionally, when you set MAXDOP = 1, it is at the expense of the time it takes to rebuild

the index.

You can rebuild an index by performing either an ONLINE or OFFLINE operation.

If you choose to rebuild the index as an ONLINE operation, then the original version of the

index is still accessible, while the operation takes place. The ONLINE operation comes at

the expense of both time and resource utilization. You need to enable ALLOW_PAGE_LOCKS

to make your ONLINE rebuild successful.

The script in Listing 8-15 demonstrates how we can rebuild the NCI_Balance index

on the OrdersDisk table. Because we have not specified ONLINE = ON, it uses the default

setting of ONLINE = OFF, and the index is locked for the entire operation. Because we

specify MAXDOP = 1, the operation is slower, but has no fragmentation.

Chapter 8 Indexes and statIstICs

280

Listing 8-15. Rebuilding an Index

ALTER INDEX NCI_CustomerID ON dbo.OrdersDisk REBUILD WITH(MAXDOP = 1) ;

If you create a maintenance plan to rebuild or reorganize indexes, then all indexes

within the specified database are rebuilt, regardless of whether they need to be—this

can be time-consuming and eat resources. You can resolve this issue by using the

sys.dm_db_index_physical_stats DMF to create an intelligent script that you can run

from SQL Server Agent and use to reorganize or rebuild only those indexes that require

it. This is discussed in more detail in Chapter 17.

Tip there is a myth that using ssds removes the issue of index fragmentation.
this is not correct. although ssds reduce the performance impact of out-of-order
pages, they do not remove it. they also have no impact on internal fragmentation.

 Resumable Index Operations
SQL Server 2019 supports resumable online index creation and index rebuilds, for both

traditional (clustered and nonclustered) indexes and Columnstore indexes. Resumable

index operations allow you to pause an online index operation (build or rebuild), in order

to free up system resources, and then restart it again, from where it left off, when resource

utilization is no longer an issue. These operations also allow an online index operation to

be restarted, after it has failed for common reasons, such as lack of disk space.

Some of the advantages that this functionality brings to a DBA are clear. For example,

if a large index rebuild needs to fit inside a short maintenance window, then the rebuild

can be paused at the end of a maintenance window and restarted at the beginning of

the next, as opposed to having to abort the operation, to free up system resources. There

are also other, hidden benefits, however. For example, resumable index operations do

not consume large amount of log space, even when performed on large indexes. This

is because all data required to restart the index operation is stored inside the database.

A side note of this is that the index operation does not hold a long-running transaction

while paused.

For the most part, there are very few drawbacks to using resumable index operations.

The quality of defragmentation achieved is comparable to the quality of a standard

online index operation, and there is no real difference in speed between resumable

Chapter 8 Indexes and statIstICs

281

and standard online index operations (excluding the potential pause of course). As

always, however, there is no such thing as a free lunch, and during a paused, resumable

operation, there will be a degradation of write performance, to affected tables and

indexes, due to two versions of the index needing to be updated. This degradation

should not be more than 10%, in most cases. There should be no impact to read

operations, during the pause, as they continue to use the original version of the index,

until the operation has completed.

The command in Listing 8-16 demonstrated how to rebuild the NCI_CustomerID

index, on the OrdersDisk table, as a resumable operation.

Listing 8-16. Resumable Index Rebuild

ALTER INDEX NCI_CustomerID ON dbo.OrdersDisk REBUILD WITH(MAXDOP = 1,

ONLINE=ON, RESUMABLE=ON) ;

The command in Listing 8-17 will pause the index rebuild, started in Listing 8-16.

Tip the command in Listing 8-17 will only work if the execution of the command
in Listing 8-16 has not yet completed.

Listing 8-17. Pause an Index Rebuild

ALTER INDEX NCI_CustomerID ON dbo.OrdersDisk PAUSE

After running this script, the index rebuild operation will pause, and the message

shown in Figure 8-11 will be displayed.

Figure 8-11. Message thrown, when index operation paused

Chapter 8 Indexes and statIstICs

282

The script in Listing 8-18 will either resume or abort the index rebuild, based on the

value assigned to the @Action variable.

Listing 8-18. Resume or Abort an Index Operation

DECLARE @Action NVARCHAR(6) = 'Resume'

IF (@Action = 'Resume')

BEGIN

 ALTER INDEX NCI_CustomerID ON dbo.OrdersDisk RESUME

END

ELSE

BEGIN

 ALTER INDEX NCI_CustomerID ON dbo.OrdersDisk ABORT

END

Instead of turning on ONLINE and RESUMABLE options for each, individual index

operation, you can turn them on globally, at the database level, by using database

scoped configurations. The ELEVATE_ONLINE configuration will change the default value

of ONLINE to ON, for supported index operations, within the database. The configuration

ELEVATE_RESUMABLE will default the value of RESUMABLE to ON.

Both ELEVATE_ONLINE and ELEVATE_RESUMABLE can be configured as OFF (the

default behavior), WHEN_SUPPORTED, or FAIL_UNSUPPORTED. When set to WHEN_SUPPORTED,

noncompatible operations such as rebuilding XML indexes will be performed offline and

unresumable. If set to FAIL_UNSUPPORTED, however, such operations will fail, throwing an error.

The script in Listing 8-19 demonstrates how to set ELEVATE_ONLINE and ELEVATE_

RESUMABLE to WHEN_SUPPORTED, for the Chapter8 database.

Listing 8-19. Default to ONLINE and RESUMABLE

USE Chapter8

GO

ALTER DATABASE SCOPED CONFIGURATION SET ELEVATE_ONLINE = WHEN_SUPPORTED ;

GO

ALTER DATABASE SCOPED CONFIGURATION SET ELEVATE_RESUMABLE = WHEN_SUPPORTED ;

GO

Chapter 8 Indexes and statIstICs

283

 Partitioned Indexes
As mentioned in Chapter 7, it is possible to partition indexes as well as tables. A clustered

index always shares the same partition scheme as the underlying table, because the leaf

level of the clustered index is made up of the actual data pages of the table. Nonclustered

indexes, on the other hand, can either be aligned with the table or not. Indexes are

aligned if they share the same partition scheme or if they are created on an identical

partition scheme.

In most cases, it is good practice to align nonclustered indexes with the base table,

but on occasion, you may wish to deviate from this strategy. For example, if the base

table is not partitioned, you can still partition an index for performance. Also, if your

index key is unique and does not contain the partitioning key, then it needs to be

unaligned. There is also an opportunity to gain a performance boost from unaligned

nonclustered indexes if the table is involved in collated joins with other tables on

different columns.

You can create a partitioned index by using the ON clause to specify the partition

scheme in the same way that you create a partitioned table. If the index already exists,

you can rebuild it, specifying the partition scheme in the ON clause. The script in

Listing 8-20 creates a partition function and a partition scheme. It then rebuilds the

clustered index of the OrdersDisk table to move it to the new partition scheme. Finally, it

creates a new nonclustered index, which is partition aligned with the table.

Tip Before running the script, change the name of the primary key to match
your own.

Listing 8-20. Rebuilding and Creating Partitioned Indexes

--Create partition function

CREATE PARTITION FUNCTION OrdersPartFunc(int)

AS RANGE LEFT

FOR VALUES(250000,500000,750000) ;

GO

Chapter 8 Indexes and statIstICs

284

--Create partition scheme

CREATE PARTITION SCHEME OrdersPartScheme

AS PARTITION OrdersPartFunc

ALL TO([PRIMARY]) ;

GO

--Partition OrdersDisk table

ALTER TABLE dbo.OrdersDisk DROP CONSTRAINT PK__OrdersDi__CAC5E7420B016A9F ;

GO

ALTER TABLE dbo.OrdersDisk

ADD PRIMARY KEY CLUSTERED(OrderNumber) ON OrdersPartScheme(OrderNumber) ;

GO

--Create partition aligned nonclustered index

CREATE NONCLUSTERED INDEX NCI_Part_CustID ON dbo.OrdersDisk(CustomerID,

OrderNumber)

 ON OrdersPartScheme(OrderNumber) ;

When you rebuild an index, you can also specify that only a certain partition is

rebuilt. The example in Listing 8-21 rebuilds only Partition 1 of the NCI_Part_CustID

index.

Listing 8-21. Rebuilding a Specific Partition

ALTER INDEX NCI_Part_CustID ON dbo.OrdersDisk REBUILD PARTITION = 1 ;

 Statistics
SQL Server maintains statistics regarding the distribution of data within a column or set

of columns. These columns can either be within a table or a nonclustered index. When

the statistics are built on a set of columns, then they also include correlation statistics

between the distributions of values in those columns. The Query Optimizer can then use

these statistics to build efficient query plans based on the number of rows that it expects

a query to return. A lack of statistics can lead to inefficient plans being generated.

For example, the Query Optimizer may decide to perform an index scan when a seek

operation would be more efficient.

Chapter 8 Indexes and statIstICs

285

You can allow SQL Server to manage statistics automatically. A database-level option

called AUTO_CREATE_STATISTICS automatically generates single column statistics, where

SQL Server believes better cardinality estimates will help query performance. There

are limitations to this however. For example, filtered statistics or multicolumn statistics

cannot be created automatically.

Tip the only exception to this is when an index is created. When you create an
index, statistics are always generated, even multicolumn statistics, to cover the
index key. It also includes filtered statistics on filtered indexes. this is regardless of
the AUTO_CREATE_STATS setting.

Auto Create Incremental Stats causes statistics on partitioned tables to be

automatically created on a per-partition basis, as opposed to being generated for the

whole table. This can reduce contention by stopping a scan of the full table from being

required.

Statistics become out of date as DML operations are performed against a table. The

database-level option, AUTO_UPDATE_STATISTICS, rebuilds statistics when they become

outdated. The rules in Table 8-3 are used to determine if statistics are out of date.

Table 8-3. Statistics Update Algorithms

No of Rows in Table Rule

0 table has greater than 0 rows.

<= 500 500 or more values in the first column of the statistics object have changed.

> 500 500 + 20% or more values in the first column of the statistics object

have changed.

partitioned table with

INCREMENTAL statistics

20% or more values in the first column of the statistics object for a

specific partition have changed.

The AUTO_UPDATE_STATISTICS process is very useful, and it is normally a good

idea to use it. An issue can arise, however, because the process is synchronous and

blocking. Therefore, if a query is run, SQL Server checks to see if the statistics need to be

updated. If they do, SQL Server updates them, but this blocks the query and any other

queries that require the same statistics, until the operation completes. During times of

Chapter 8 Indexes and statIstICs

286

high read/write load, such as an ETL process against very large tables, this can cause

performance problems. The workaround for this is another database-level option, called

AUTO_UPDATE_STATISTICS_ASYNC. Even when this option is turned on, it only takes effect

if AUTO_UPDATE_STATISTICS is also turned on. When enabled, AUTO_UPDATE_STATS_ASYNC

forces the update of the statistics object to run as an asynchronous background process.

This means that the query that caused it to run and other queries are not blocked. The

trade-off, however, is that these queries do not benefit from the updated statistics.

The options mentioned earlier can be configured on the Options page of the

Database Properties dialog box. Alternatively, you can configure them using ALTER

DATABASE commands, as demonstrated in Listing 8-22.

Listing 8-22. Toggling Automatic Statistics Options

--Turn on Auto_Create_Stats

ALTER DATABASE Chapter8 SET AUTO_CREATE_STATISTICS ON ;

GO

--Turn on Auto_Create_Incremental_Stats

ALTER DATABASE Chapter8 SET AUTO_CREATE_STATISTICS ON (INCREMENTAL=ON) ;

GO

--Turn on Auto_Update_Stats_Async

ALTER DATABASE Chapter8 SET AUTO_UPDATE_STATISTICS ON WITH NO_WAIT ;

GO

--Turn on Auto_Update_Stats_Async

ALTER DATABASE Chapter8 SET AUTO_UPDATE_STATISTICS_ASYNC ON WITH NO_WAIT ;

GO

 Filtered Statistics
Filtered statistics allow you to create statistics on a subset of data within a column

through the use of a WHERE clause in the statistic creation. This allows the Query

Optimizer to generate an even better plan, since the statistics only contain the

distribution of values within the well-defined subset of data. For example, if we create

Chapter 8 Indexes and statIstICs

287

filtered statistics on the NetAmount column of our OrdersDisk table filtered by OrderDate

being greater than 1 Jan 2019, then the statistics will not include rows that contain old

orders, allowing us to search for large, recent orders more efficiently.

 Incremental Statistics
Incremental statistics can help reduce table scans caused by statistics updates on large

partitioned tables. When enabled, statistics are created and updated on a per-partition

basis, as opposed to globally, for the entire table. This can significantly reduce the

amount of time you need to update statistics on large partitioned tables, since partitions

where the statistics are not outdated are not touched, therefore reducing unnecessary

overhead.

Incremental statistics are not supported in all scenarios, however. A warning is

generated and the setting is ignored if the option is used with the following types of

statistics:

• Statistics on views

• Statistics on XML columns

• Statistics on Geography or Geometry columns

• Statistics on filtered indexes

• Statistics for indexes that are not partition aligned

Additionally, you cannot use incremental statistics on read-only databases or

on databases that are participating in an AlwaysOn Availability Group as a readable

secondary replica.

 Managing Statistics
In addition to being automatically created and updated by SQL Server, you can also

create and update statistics manually using the CREATE STATISTICS statement. If you

wish to create filtered statistics, add a WHERE clause at the end of the statement. The script

in Listing 8-23 creates a multicolumn statistic on the FirstName and LastName columns

of the CustomersDisk table. It then creates a filtered statistic on the NetAmount column of

the OrdersDisk table, built only on rows where the OrderDate is greater than 1st Jan 2019.

Chapter 8 Indexes and statIstICs

288

Listing 8-23. Creating Statistics

USE Chapter8

GO

--Create multicolumn statistic on FirstName and LastName

CREATE STATISTICS Stat_FirstName_LastName ON dbo.CustomersDisk(FirstName,

LastName) ;

GO

--Create filtered statistic on NetAmount

CREATE STATISTICS Stat_NetAmount_Filter_OrderDate ON dbo.

OrdersDisk(NetAmount)

WHERE OrderDate > '2019-01-01' ;

GO

When creating statistics, you can use the options detailed in Table 8-4.

Table 8-4. Creating Statistics Options

Option Description

FULLSCAN Creates the statistic object on a sample of 100% of rows in the table. this

option creates the most accurate statistics but takes the longest time to

generate.

SAMPLE specifies the number of rows or percentage of rows you need to use to build

the statistic object. the larger the sample, the more accurate the statistic, but

the longer it takes to generate. specifying 0 creates the statistic but does not

populate it.

NORECOMPUTE excludes the statistic object from being automatically updated with

AUTO_UPDATE_STATISTICS.

INCREMENTAL Overrides the database-level setting for incremental statistics.

Individual statistics, or all statistics on an individual table, can be updated by

using the UPDATE STATISTICS statement. The script in Listing 8-24 first updates the

Stat_NetAmount_Filter_OrderDate statistics object that we created on the OrdersDisk

table and then updates all statistics on the CustomersDisk table.

Chapter 8 Indexes and statIstICs

289

Listing 8-24. Updating Statistics

--Update a single statistics object

UPDATE STATISTICS dbo.OrdersDisk Stat_NetAmount_Filter_OrderDate ;

GO

--Update all statistics on a table

UPDATE STATISTICS dbo.CustomersDisk ;

GO

When using UPDATE STATISTICS, in addition to the options specified in Table 8-4 for

creating statistics, which are all valid when updating statistics, the options detailed in

Table 8-5 are also available.

Table 8-5. Updating Statistics Options

Option Description

RESAMPLE Uses the most recent sample rate to update the statistics.

ON PARTITIONS Causes statistics to be generated for the partitions listed and then

merges them together to create global statistics.

ALL | COLUMNS | INDEX specifies if statistics should be updated for just columns, just

indexes, or both. the default is ALL.

You can also update statistics for an entire database by using the sp_updatestats

system stored procedure. This procedure updates out-of-date statistics on disk-based

tables and all statistics on memory-optimized tables regardless of whether they are out

of date or not. Listing 8-25 demonstrates this system stored procedure’s usage to update

statistics in the Chapter8 database. Passing in the RESAMPLE parameter causes the most

recent sample rate to be used. Omitting this parameter causes the default sample rate to

be used.

Listing 8-25. Sp_updatestats

EXEC sp_updatestats 'RESAMPLE' ;

Chapter 8 Indexes and statIstICs

290

Note Updating statistics causes queries that use those statistics to be
recompiled the next time they run. the only time this is not the case is if there is
only one possible plan for the tables and indexes referenced. For example, SELECT

* FROM MyTable always performs a clustered index scan, assuming that the
table has a clustered index.

SQL Server 2019 introduces additional metadata information, to help diagnose

issues that are caused by queries waiting for synchronous statistics updates to occur.

Firstly, a new wait type has been added, called WAIT_ON_SYNC_STATISTICS_REFRESH. This

wait type denotes the amount of time that queries have spent waiting on the completion

of synchronous statistics updates. Secondly, a new command type, called SELECT

(STATMAN), has been added to the sys.dm_exec_requests DMV. This command type

indicates that a SELECT statement is currently waiting for a synchronous statistics update

to complete, before it can continue.

 Summary
A table that does not have a clustered index is called a heap, and the data pages of the

table are stored in no particular order. Clustered indexes build a B-tree structure, based

on the clustered index key, and cause the data within the table to be ordered by that

key. There can only ever be one clustered index on a table because the leaf level of the

clustered index is the actual data pages of the table, and the pages can only be physically

ordered in one way. The natural choice of key for a clustered index is the primary key

of the table and, by default, SQL Server automatically creates a clustered index on the

primary key. There are situations, however, when you may choose to use a different

column as the clustered index key. This is usually when the primary key of the table is

very wide, is updatable, or is not ever-increasing.

Nonclustered indexes are also B-tree structures built on other columns within a

table. The difference is that the leaf level of a nonclustered index contains pointers to the

data pages of the table, as opposed to the data pages themselves. Because a nonclustered

index does not order the actual data pages of a table, you can create multiple

nonclustered indexes. These can improve query performance when you create them on

columns that are used in WHERE, JOIN, and GROUP BY clauses. You can also include other

columns at the leaf level of the B-tree of a nonclustered index in order to cover a query.

Chapter 8 Indexes and statIstICs

291

A query is covered by a nonclustered index when you do not need to read the data from

the underlying table. You can also filter a nonclustered index by adding a WHERE clause to

the definition. This allows for improved query performance for queries that use a well-

defined subset of data.

Columnstore indexes compress data and store each column in a distinct set of

pages. This can significantly improve the performance of data warehouse–style queries,

which perform analysis on large data sets, since only the required columns need to be

accessed, as opposed to the entire row. Each column is also split into segments, with

each segment containing a header with metadata about the data, in order to further

improve performance by allowing SQL Server to only access the relevant segments, in

order to satisfy a query. Nonclustered Columnstore indexes are not updatable, meaning

that you must disable or drop the index before DML statements can occur on the base

table. You can, on the other hand, update clustered Columnstore indexes.

You can create two types of index on memory-optimized tables: nonclustered

indexes and nonclustered hash indexes. Nonclustered hash indexes are very efficient for

point lookups, but they can be much less efficient when you must perform a range scan.

Nonclustered indexes perform better for operations such as inequality comparisons, and

they are also able to return the data in the sort order of the index key.

Indexes need to be maintained over time. They become fragmented due to DML

statements causing page splits and can be reorganized or rebuilt to reduce or remove

fragmentation. When pages become out of sequence, this is known as external

fragmentation, and when pages have lots of free space, this is known as internal

fragmentation. SQL Server stores metadata regarding index fragmentation and can

display this through a DMF called sys.dm_db_index_physical_stats. SQL Server also

maintains information on indexes that it regards as missing. A missing index is an index

that does not exist in the database but would improve query performance if it were

created. DBAs can use this data to help them improve their indexing strategies.

SQL Server maintains statistics about the distribution of values within a column

or set of columns to help improve the quality of query plans. Without good-quality

statistics, SQL Server may make the wrong choice about which index or index operator

to use in order to satisfy a query. For example, it may choose to perform an index scan

when an index seek would have been more appropriate. You can update statistics

manually or automatically, but either way causes queries to be recompiled. SQL Server

also supports incremental statistics, which allow statistics to be created on a per-

partition basis, as opposed to globally for an entire table.

Chapter 8 Indexes and statIstICs

293
© Peter A. Carter 2019
P. A. Carter, Pro SQL Server 2019 Administration, https://doi.org/10.1007/978-1-4842-5089-1_9

CHAPTER 9

Database Consistency
Databases involve lots of IO. When you have a lot of IO, you inherently run the risk of

corruption. Your primary defense against database corruption is to take regular backups

of your database and to periodically test that these backups can be restored. You need to

look out for database corruption, however, and SQL Server provides tools you can use to

check the consistency of your database as well as to resolve consistency issues if backups

are not available. This chapter will look at the options you have for both checking and

fixing consistency issues.

 Consistency Errors
Consistency errors can occur in user databases or system databases, leaving tables,

databases, or even the entire instances in an inaccessible state. Consistency errors can

occur for many reasons, including hardware failures and issues with the Database

Engine. The following sections discuss the types of error that can occur, how to detect

these errors, and what to do if your system databases become corrupt.

 Understand Consistency Errors
Different database consistency errors can occur; these cause a query to fail or a session

to be disconnected and a message to be written to the SQL Server error log. The most

common errors are detailed in the following sections.

 605 Error

A 605 error can point to one of two issues, depending on the error severity. If the

severity is level 12, then it indicates a dirty read. A dirty read is a transactional

anomaly that occurs when you are using the Read Uncommitted isolation level or

the NOLOCK query hint. It occurs when a transaction reads a row that never existed in

294

the database, due to another transaction being rolled back. Transactional anomalies

will be discussed in more detail in Chapter 18. To resolve this issue, either rerun the

query until it succeeds or rewrite the query to avoid the use of the Read Uncommitted

isolation level or the NOLOCK query hint.

The 605 error may indicate a more serious issue, however, and often it indicates a

hardware failure. If the severity level is 21, then the page may be damaged, or the incorrect

page may be being served up from the operating system. If this is the case, then you

need to either restore from a backup or use DBCC CHECKDB to fix the issue. (DBCC CHECKDB

is discussed later in this chapter.) Additionally, you should also have the Windows

administrators and storage team check for possible hardware or disk-level issues.

 823 Error

An 823 error occurs when SQL Server attempts to perform an IO operation and the

Windows API that it uses to perform this action returns an error to the Database Engine.

An 823 error is almost always associated with a hardware or driver issue.

If an 823 error occurs, then you should use DBCC CHECKDB to check the consistency

of the rest of the database and any other databases that reside on the same volume. You

should liaise with your storage team to resolve the issue with the storage. Your Windows

administrator should also check the Windows event log for correlated error messages.

Finally, you should either restore the database from a backup or use DBCC CHECKDB to

“fix” the issue.

 824 Error

If the call to the Windows API succeeds but there are logical consistency issues with the

data returned, then an 824 error is generated. Just like an 823 error, an 824 error usually

means that there is an issue with the storage subsystem. If an 824 error is generated, then

you should follow the same course of action as you do when an 823 error is generated.

 5180 Error

A 5180 error occurs when a file ID is discovered that is not valid. File IDs are stored

in page pointers, as well as in system pages at the beginning of each file. This error is

usually caused by a corrupt pointer within a page, but it can potentially also indicate an

issue with the Database Engine. If you experience this error, you should restore from a

backup or run DBCC CHECKDB to fix the error.

Chapter 9 Database ConsistenCy

295

 7105 Error

A 7105 error occurs when a row within a table references an LOB (Large Object Block)

structure that does not exist. This can happen because of a dirty read in the same

manner as a 605 severity 12 error, or it can happen as the result of a corrupt page. The

corruption can either be in the data page that points to the LOB structure or in a page of

the LOB structure itself.

If you encounter a 7105 error, then you should run DBCC CHECKDB to check for

errors. If you don’t find any, then the error is likely the result of a dirty read. If you find

errors, however, then either restore the database from a backup or use DBCC CHECKDB

to fix the issue.

 Detecting Consistency Errors
SQL Server provides mechanisms for verifying the integrity of pages as they are read

from and written to disk. It also provides a log of corrupt pages that helps you identify the

type of error that has occurred, how many times it has occurred, and the current status of

the page that has become corrupt. These features are discussed in the following sections.

 Page Verify Option

A database-level option called Page Verify determines how SQL Server checks for

page corruption that the IO subsystem causes when it is reading and writing pages

to disk. It can be configured as CHECKSUM, which is the default option, TORN_PAGE_

DETECTION, or NONE.

The recommended setting for Page Verify is CHECKSUM. When this option is

selected, every time a page is written, a CHECKSUM value is created against the

entire page and saved in the page header. A CHECKSUM value is a hash sum, which is

deterministic and unique based on the value that the hashing function is run against.

This value is then recalculated when a page is read into the buffer cache and compared

to the original value.

When TORN_PAGE_DETECTION is specified, whenever a page is written to disk, the first

2 bytes of every 512-byte sector of the page are written to the page’s header. When the

page is subsequently read into memory, these values are checked to ensure that they are

the same. The flaw here is obvious; it is perfectly possible for a page to be corrupt, and

for this corruption not to be noticed, because it is not within the bytes that are checked.

Chapter 9 Database ConsistenCy

296

TORN_PAGE_DETECTION is a deprecated feature of SQL Server, which means that it will

not be available in future versions. You should avoid using it. If Page Verify is set to NONE,

then SQL Server performs no page verification whatsoever. This is not good practice.

If all of your databases have been created in a SQL Server 2019 instance, then they

are all configured to use CHECKSUM by default. If you have migrated your databases from a

previous version of SQL Server, however, then they may be configured to use TORN_PAGE_

DETECTION. You can check the Page Verify setting of your databases by using the script in

Listing 9-1.

Listing 9-1. Checking the Page Verify Option

--Create the Chapter9 database

CREATE DATABASE Chapter9 ;

GO

--View page verify option, for all databases on the instance

SELECT

 name

 ,page_verify_option_desc

FROM sys.databases ;

If you find that a database is using TORN_PAGE_DETECTION, or worse, was set to NONE,

then you can resolve the issue by altering the setting in the Options page of the Database

Properties dialog box, as shown in Figure 9-1.

Chapter 9 Database ConsistenCy

297

Note Changing the page Verify option does not cause the CHECKSUM to be
created against the data pages immediately. the CHECKSUM is only generated
when the pages are written back to disk after being modified.

Alternatively, you can achieve the same results using T-SQL by using an ALTER

DATABASE <DatabaseName> SET PAGE_VERIFY CHECKSUM WITH NO_WAIT statement. The

script in Listing 9-2 causes all databases that are currently set to either NONE or TORN_

PAGE_DETECTION to be reconfigured to use CHECKSUM. The script uses the XQuery data()

function to avoid the need for a cursor. The script works by building the statement

required for every row in the table. It flips the data for each row into XML, but the tags

Figure 9-1. The Options page

Chapter 9 Database ConsistenCy

298

are then striped out using the Data() function, leaving only the statement. It is then

flipped back to a relational string and passed into a Unicode variable, which is then

executed as dynamic SQL.

Listing 9-2. Reconfiguring All Databases to Use CHECKSUM

DECLARE @SQL NVARCHAR(MAX)

SELECT @SQL =

(

SELECT

 'ALTER DATABASE ' + QUOTENAME(Name) +

 ' SET PAGE_VERIFY CHECKSUM WITH NO_WAIT; '

AS [data()]

FROM sys.databases

WHERE page_verify_option_desc <> 'CHECKSUM'

FOR XML PATH(")

) ;

BEGIN TRY

 EXEC(@SQL) ;

END TRY

BEGIN CATCH

 SELECT 'Failure executing the following SQL statement ' + CHAR(13)

+CHAR(10) + @SQL ;

END CATCH

Tip you can use this technique any time you require a script to perform an
operation against multiple databases. the code is far more efficient than using a
cursor and promotes good practice by allowing Dbas to lead by example. you are
always telling your developers not to use the cursor, right?

Chapter 9 Database ConsistenCy

299

 Suspect Pages

If SQL Server discovers a page with a bad checksum or a torn page, then it records the

pages in the MSDB database in a table called dbo.suspect_pages. It also records any

pages that encounter an 823 or 824 error in this table. The table consists of six columns,

as described in Table 9-1.

The possible values for the event_type column are explained in Table 9-2.

Table 9-1. suspect_pages Columns

Column Description

Database_id the iD of the database that contains the suspect page

File_id the iD of the file that contains the suspect page

Page_id the iD of the page that is suspect

Event_Type the nature of the event that caused the suspect pages to be updated

Error_count an incremental counter that records the number of times that the event

has occurred

Last_updated_date the last time the row was updated

Table 9-2. Event Types

Event_type Description

1 823 or 824 error

2 bad checksum

3 torn page

4 restored

5 repaired

7 Deallocated by DBCC CHECKDB

Chapter 9 Database ConsistenCy

300

After recording the suspect page in the suspect_pages table, SQL Server updates

the row after you have fixed the issue by either restoring the page from a backup or by

using DBCC CHECKDB. It also increments the error count every time an error with the same

event_type is encountered. You should monitor this table for new and updated entries,

and you should also periodically delete rows from this table, which have an event_type

of 4 or 5, to stop the table from becoming full.

Note page restores will be discussed in Chapter 12.

The script in Listing 9-3 creates a new database called Chapter9, with a single table,

called CorruptTable, which is then populated with data. It then causes one of the table’s

pages to become corrupt.

Listing 9-3. Corrupting a Page

USE Chapter9

GO

--Create the table that we will corrupt

CREATE TABLE dbo.CorruptTable

(

ID INT NOT NULL PRIMARY KEY CLUSTERED IDENTITY,

SampleText NVARCHAR(50)

) ;

--Populate the table

DECLARE @Numbers TABLE

(ID INT)

;WITH CTE(Num)

AS

(

SELECT 1 Num

UNION ALL

SELECT Num + 1

FROM CTE

Chapter 9 Database ConsistenCy

301

WHERE Num <= 100

)

INSERT INTO @Numbers

SELECT Num

FROM CTE ;

INSERT INTO dbo.CorruptTable

SELECT 'SampleText'

FROM @Numbers a

CROSS JOIN @Numbers b ;

--DBCC WRITEPAGE will be used to corrupt a page in the table. This requires the

--database to be placed in single user mode.

--THIS IS VERY DANGEROUS – DO NOT EVER USE THIS IN A PRODUCTION ENVIRONMENT

ALTER DATABASE Chapter9 SET SINGLE_USER WITH NO_WAIT ;

GO

DECLARE @SQL NVARCHAR(MAX) ;

SELECT @SQL = 'DBCC WRITEPAGE(' +

(

 SELECT CAST(DB_ID('Chapter9') AS NVARCHAR)

) +

', 1, ' +

(

 SELECT TOP 1 CAST(page_id AS NVARCHAR)

 FROM dbo.CorruptTable

 CROSS APPLY sys.fn_PhysLocCracker(%%physloc%%)

) +

', 2000, 1, 0x61, 1)' ;

EXEC(@SQL) ;

ALTER DATABASE Chapter9 SET MULTI_USER WITH NO_WAIT ;

GO

SELECT *

FROM dbo.CorruptTable ;

Chapter 9 Database ConsistenCy

302

The results in Figure 9-2 show that the final query in the script, which tried to read

the data from the table, failed because one of the pages is corrupt, and therefore, there is

a bad checksum.

Caution DBCC WRITEPAGE is used here for educational purposes only. it
is undocumented and also extremely dangerous. it should never be used on a
production system and should only be used on any database with extreme caution.

You can use the query in Listing 9-4 to generate a friendly output from the msdb.dbo.

suspect_pages table. This query uses the DB_NAME() function to find the name of the

database, joins to the sys.master_files system table to find the name of the file involved,

and uses a CASE statement to translate the event_type into an event type description.

Listing 9-4. Querying suspect_pages

SELECT

 DB_NAME(sp.database_id) [Database]

 ,mf.name

 ,sp.page_id

 ,CASE sp.event_type

 WHEN 1 THEN '823 or 824 or Torn Page'

 WHEN 2 THEN 'Bad Checksum'

 WHEN 3 THEN 'Torn Page'

 WHEN 4 THEN 'Restored'

 WHEN 5 THEN 'Repaired (DBCC)'

 WHEN 7 THEN 'Deallocated (DBCC)'

 END AS [Event]

 ,sp.error_count

 ,sp.last_update_date

Figure 9-2. Bad checksum error

Chapter 9 Database ConsistenCy

303

FROM msdb.dbo.suspect_pages sp

INNER JOIN sys.master_files mf

 ON sp.database_id = mf.database_id

 AND sp.file_id = mf.file_id ;

After corrupting a page of our CorruptTable table, running this query will produce

the results in Figure 9-3. Obviously, the page_id is likely to be different if you were to

run the scripts on your own system, since the Database Engine is likely to have allocated

different pages to the table that you created.

Note We will fix the error later in this chapter, but that involves losing data that
was stored on the page. if a backup is available, then a page restore is a better
option than a repair in this scenario.

 Consistency Issues for Memory-Optimized Tables

Corruption usually occurs during a physical IO operation, so you can be forgiven for

thinking that memory-optimized tables are immune to corruption, but this is a fallacy.

As you may remember from Chapter 7, although memory-optimized tables reside in

memory, a copy of the tables—and depending on your durability settings, a copy of your

data—is kept in physical files. This is to ensure that the tables and data are still available

after a restart of the instance. These files can be subject to corruption. It is also possible

for data to become corrupt in memory, due to issues such as a faulty RAM chip.

Figure 9-3. Results of querying suspect_pages

Chapter 9 Database ConsistenCy

304

Unfortunately, the repair options of DBCC CHECKDB are not supported against

memory tables. However, when you take a backup of a database that contains a memory-

optimized filegroup, a checksum validation is performed against the files within this

filegroup. It is therefore imperative that you not only take regular backups, but that you

also check that they can be restored successfully, on a regular basis. This is because your

only option, in the event of a corrupted memory-optimized table, is to restore from the

last known good backup.

 System Database Corruption
If system databases become corrupt, your instance can be left in an inaccessible state.

The following sections discuss how to respond to corruption in the Master database and

the Resource database.

 Corruption of the Master Database

If the Master database becomes corrupted, it is possible that your instance will be unable

to start. If this is the case, then you need to rebuild the system databases and then restore

the latest copies from backups. Chapter 12 discusses strategies for database backups

in more detail, but this highlights why backing up your system databases is important.

In the event that you need to rebuild your system databases, you will lose all instance-

level information, such as logins, SQL Server Agent jobs, linked servers, and so on, if you

are not able to restore from a backup. Even knowledge of the user databases within the

instance will be lost, and you will need to reattach the databases.

In order to rebuild the system databases, you need to run setup. When you are

rebuilding system databases using setup, the parameters described in Table 9-3 are

available.

Chapter 9 Database ConsistenCy

305

The PowerShell command in Listing 9-5 rebuilds the system databases of the

PROSQLADMIN instance.

Listing 9-5. Rebuilding System Databases

.\setup.exe /ACTION=rebuilddatabase /INSTANCENAME=PROSQLADMIN /SQLSYSADMINA

CCOUNTS=SQLAdministrator

As mentioned, when this action is complete, ideally we restore the latest copy of

the Master database from a backup. Since we do not have one, we need to reattach our

Chapter9 database in order to continue. Additionally, the detail of the corrupt page

within the suspect_pages table will also be lost. Attempting to read the CorruptTable

table in the Chapter9 database causes this data to be repopulated, however. The script in

Listing 9-6 reattaches the Chapter9 database. You should change the file paths to match

your own configuration before you run the script.

Table 9-3. System Database Rebuild Parameters

Parameter Description

/ACTION specifies Rebuilddatabase for the action parameter.

/INSTANCENAME specifies the instance name of the instance that contains the

corrupt system database.

/Q this parameter stands for quiet. Use this to run setup without any

user interaction.

/SQLCOLLATION this is an optional parameter that you can use to specify a

collation for the instance. if you omit it, the collation of the

Windows os is used.

/SAPWD if your instance uses mixed-mode authentication, then use this

parameter to specify the password for the sa account.

/SQLSYSADMINACCOUNTS Use this parameter to specify which accounts should be made

sysadmins of the instance.

Chapter 9 Database ConsistenCy

306

Listing 9-6. Reattaching a Database

CREATE DATABASE Chapter9 ON

(FILENAME = N'F:\MSSQL\DATA\Chapter9.mdf'),

(FILENAME = N'F:\MSSQL\DATA\Chapter9_log.ldf')

 FOR ATTACH ;

 Corruption of the Resource Database or Binaries

It is possible for the instance itself to become corrupt. This can include corrupt Registry

keys or the Resource database becoming corrupt. If this happens, then find the repair

utility that ships with the SQL Server installation media. To invoke this tool, select Repair

from the Maintenance tab of the SQL Server Installation Center.

After the wizard has run the appropriate rule checks, you are presented with the

Select Instance page, as illustrated in Figure 9-4.

Figure 9-4. The Select Instance page

Chapter 9 Database ConsistenCy

307

After you select the instance that needs to be repaired, the following page of the

wizard runs an additional rule check to ensure that the required features can be

repaired. Finally, on the Ready To Repair page, you see a summary of the actions that are

to be performed. After choosing to repair, you see the repair progress report. Once the

repair completes, a Summary page displays, which provides you with the status of each

operation that was performed and also a link to a log file that you may wish to review if

you need to perform troubleshooting.

As an alternative to using SQL Server Installation Center, you can achieve the same

rebuild from the command line. This is useful if your instance is running on Windows

Server Core. When you are repairing an instance from the command line, the parameters

available to you are those listed in Table 9-4. Because the Master database is not being

rebuilt when you are repairing an instance, you do not need to specify a collation or

Administrator details.

Table 9-4. Instance Repair Parameters

Parameter Description

/ACTION specifies Repair for the action parameter.

/INSTANCENAME specifies the instance name of the instance that contains the corrupt

system database.

/Q this parameter is quiet. Use this to run without any user interaction.

/ENU an optional parameter that you can use on a localized operating system to

specify that the english version of sQL server should be used.

/FEATURES an optional parameter you can use to specify a list of components to repair.

/HIDECONSOLE an optional parameter that causes the console to be suppressed.

The PowerShell command in Listing 9-7 also rebuilds the PROSQLADMIN instance. This

script also works for instances hosted on Windows Server Core.

Listing 9-7. Repairing an Instance

.\setup.exe /ACTION=repair /INSTANCENAME=PROSQLADMIN /q

Chapter 9 Database ConsistenCy

308

 DBCC CHECKDB
DBCC CHECKDB is a utility that can be used to both discover corruption and also fix the

errors. When you run DBCC CHECKDB, by default it creates a database snapshot and runs

the consistency checks against this snapshot. This provides a transactionally consistent

point from which the checks can occur while at the same time reducing contention in

the database. It can check multiple objects in parallel to improve performance, but this

depends on the number of cores that are available and the MAXDOP setting of the instance.

 Checking for Errors
When you run DBCC CHECKDB for the purpose of discovering corruption only, then you

can specify the arguments, detailed in Table 9-5.

Table 9-5. DBCC CHECKDB Arguments

Argument Description

NOINDEX specifies that integrity checks should be performed on heap and clustered

index structures but not on nonclustered indexes.

EXTENDED_

LOGICAL_CHECKS

Forces the logical consistency of XML indexes, indexed views, and spatial

indexes to be performed.

NO_INFOMSGS prevents informational messages from being returned in the results. this

can reduce noise when you are searching for an issue, since only errors

and warnings with a severity level greater than 10 are returned.

TABLOCK DBCC CHECKDB creates a database snapshot and runs its consistency

checks against this structure to avoid taking out locks in the database,

which cause contention. specifying this option changes that behavior so

that instead of creating a snapshot, sQL server takes out a temporary

exclusive lock on the database, followed by exclusive locks on the

structures that it is checking. in the event of high write load, this can reduce

the time it takes to run DBCC CHECKDB, but at the expense of contention

with other processes that may be running. it also causes the system table

metadata validation and service broker validation to be skipped.

(continued)

Chapter 9 Database ConsistenCy

309

DBCC CHECKDB is a very intensive process that can consume many CPU and IO

resources. Therefore, it is advisable to run it during a maintenance window to avoid

performance issues for applications. The Database Engine automatically decides

how many CPU cores to assign the DBCC CHECKDB based on the instance level setting

for MAXDOP and the amount of throughput to the server when the process begins. If

you expect load to increase during the window when DBCC CHECKDB will be running,

however, then you can throttle the process to a single core by turning on Trace Flag

2528. This flag should be used with caution, however, because it causes DBCC CHECKDB

to take much longer to complete. If a snapshot is not generated, either because you have

specified TABLOCK or because there was not enough space on disk to generate a snapshot,

then it also causes each table to be locked for a much longer period.

The sample in Listing 9-8 does not perform any checks but calculates the amount

of space required in TempDB in order for DBCC CHECKDB to run successfully against the

Chapter9 database.

Argument Description

ESTIMATEONLY When this argument is specified, no checks are performed. the only thing

that happens is that the space required in tempDb to perform the checks is

calculated based on the other arguments specified.

PHYSICAL_ONLY When this argument is used, DBCC CHECKDB is limited to performing

allocation consistency checks on the database, consistency checks on

system catalogs, and validation on each page of every table within the

database. this option cannot be used in conjunction with DATA_PURITY.

DATA_PURITY specifies that column integrity checks are carried out, such as ensuring

that values are within their data type boundaries. For use with databases

that have been upgraded from sQL server 2000 or below only. For any

newer databases, or sQL server 2000 databases that have already been

scanned with DATA_PURITY, the checks happen by default.

ALL_ERRORMSGS For backward compatibility only. has no effect on sQL 2019 databases.

Table 9-5. (continued)

Chapter 9 Database ConsistenCy

310

Listing 9-8. Checking TempDB Space Required for DBCC CHECKDB

USE Chapter9

GO

DBCC CHECKDB WITH ESTIMATEONLY ;

Because our Chapter9 database is tiny, we only require less than half a megabyte of

space in TempDB. This is reflected in the results, shown in Figure 9-5.

The script in Listing 9-9 uses DBCC CHECKDB to perform consistency checks across the

entire Chapter9 database.

Listing 9-9. Running DBCC CHECKDB

USE Chapter9

GO

DBCC CHECKDB ;

Figure 9-6 displays a fragment of the results of running this command. As you can

see, the issue with the corrupt page in the CorruptTable table has been identified.

Figure 9-5. TempDB space required for DBCC CHECKDB results

Chapter 9 Database ConsistenCy

311

In real life, unless you are troubleshooting a specific error, you are unlikely to be

running DBCC CHECKDB manually. It is normally scheduled to run with SQL Server Agent

or a maintenance plan. So how do you know when it encounters an error? Simply, the

SQL Server Agent job step fails. Figure 9-7 shows the error message being displayed in

the history of the failed job. The output from DBCC CHECKDB is also written to the SQL

Server error log. This is regardless of whether or not it was invoked manually or through

a SQL Server Agent job.

Figure 9-6. DBCC CHECKDB identifies corrupt page

Figure 9-7. Errors in job history

Chapter 9 Database ConsistenCy

312

Because DBCC CHECKDB finding errors causes the job to fail, you can set up a

notification so that a DBA receives an alert. Assuming that Database Mail is configured

on the server, you can create a new operator that receives e-mails by selecting New

Operator from the context menu of the Operators folder under the SQL Server Agent

folder in SQL Server Management Studio, as illustrated in Figure 9-8.

Once you have created the operator, you are able to specify that operator in

the Notifications tab of the Job Properties page of the SQL Server Agent job. This is

illustrated in Figure 9-9.

Figure 9-8. Create a new operator

Chapter 9 Database ConsistenCy

313

SQL Server Agent jobs are discussed fully in Chapter 22.

 Fixing Errors
When we use DBCC CHECKDB to repair a corruption in the database, we need to specify

an additional argument that determines the repair level to use. The options available

are REPAIR_REBUILD and REPAIR_ALLOW_DATA_LOSS. REPAIR_REBUILD is, of course, the

preferred option, and it can be used to resolve issues that will not cause data loss, such as

bad page pointers, or corruption inside a nonclustered index. REPAIR_ALLOW_DATA_LOSS

attempts to fix all errors it encounters, but as its name suggests, this may involve data

being lost. You should only use this option to restore the data if no backup is available.

Figure 9-9. Configure notification

Chapter 9 Database ConsistenCy

314

Before specifying a repair option for DBCC CHECKDB, always run it without a repair

option first. This is because when you do so, it will tell you the minimum repair option

that you can use to resolve the errors. If we look again at the output of the run against

the Chapter9 database, then we can see that the end of the output advises the most

appropriate repair option to use. This is illustrated in Figure 9-10.

In our case, we are informed that we need to use the REPAIR_ALLOW_DATA_LOSS

option. If we try to use the REPAIR_REBUILD option, we receive the following message,

from DBCC CHECKDB:

CHECKDB found 0 allocation errors and 4 consistency errors in database

'chapter9'.repair_allow_data_loss is the minimum repair level for the

errors found by DBCC CHECKDB (chapter9, repair_rebuild)

Since we do not have a backup of the Chapter9 database, this is our only chance of

fixing the corruption. In order to use the repair options, we also have to put our database

in SINGLE_USER mode. The script in Listing 9-10 places the Chapter9 database in

SINGLE_USER mode, runs the repair, and then alters the database again to allow multiple

connections.

Listing 9-10. Repairing Corruption with DBCC CHECKDB

ALTER DATABASE Chapter9 SET SINGLE_USER ;

GO

DBCC CHECKDB (Chapter9, REPAIR_ALLOW_DATA_LOSS) ;

GO

Figure 9-10. Suggested repair option

Chapter 9 Database ConsistenCy

315

ALTER DATABASE Chapter9 SET MULTI_USER ;

GO

The partial results in Figure 9-11 show that the errors in CorruptTable have been

fixed. It also shows that the page has been deallocated. This means that we have lost all

data on the page.

If we query the msdb.dbo.suspect_pages table again using the same query as

demonstrated in Listing 9-4, we see that the Event column has been updated to state that

the page has been deallocated. We can also see that the error_count column has been

incremented every time we accessed the page, through either SELECT statements or DBCC

CHECKDB. These results are displayed in Figure 9-12.

 Emergency Mode
If your database files are damaged to the extent that your database is inaccessible and

unrecoverable, even by using the REPAIR_ALLOW_DATA_LOSS option, and you do not have

usable backups, then your last resort is to run DBCC CHECKDB in emergency mode using

Figure 9-11. Results of repairing corruption with DBCC CHECKDB

Figure 9-12. suspect_pages table, following repair

Chapter 9 Database ConsistenCy

316

the REPAIR_ALLOW_DATA_LOSS option. Remember, emergency mode is a last resort option

for repairing your databases, and if you cannot access them through this mode, you will

not be able to access them via any other means. When you perform this action with the

database in emergency mode, DBCC CHECKDB treats pages that are inaccessible due to

corruption as if they do not have errors in an attempt to recover data.

This operation can also back up databases that are inaccessible due to log

corruption. This is because it attempts to force the transaction log to recover, even if it

encounters errors. If this fails, it rebuilds the transaction log. Of course, this may lead to

transaction inconsistencies, but as mentioned, this is an option of last resort.

As an example, we will delete the transaction log file for the Chapter9 database in the

operating system. You can find the operating system location of the transaction log file

by running the query in Listing 9-11.

Listing 9-11. Finding the Transaction Log Path

SELECT physical_name

FROM sys.master_files

WHERE database_id = DB_ID('Chapter9')

 AND type_desc = 'Log' ;

Because data and log files are locked by the SQL Server process, we first need to stop

the instance. After starting the instance again, we can see that our Chapter9 database has

been marked as Recovery Pending, as shown in Figure 9-13.

Chapter 9 Database ConsistenCy

317

Since we have no backup available for the Chapter9 database, the only option that

we have is to use DBCC CHECKDB in emergency mode. The script in Listing 9-12 puts the

Chapter9 database in emergency mode and then uses DBCC CHECKDB with the REPAIR_

ALLOW_DATA_LOSS option to fix the error.

Listing 9-12. DBCC CHECKDB in Emergency Mode

ALTER DATABASE Chapter9 SET EMERGENCY ;

GO

ALTER DATABASE Chapter9 SET SINGLE_USER ;

GO

DBCC CHECKDB ('Chapter9', REPAIR_ALLOW_DATA_LOSS) ;

GO

ALTER DATABASE Chapter9 SET MULTI_USER ;

GO

The partial results, displayed in Figure 9-14, show that SQL Server was able to

bring the database online by rebuilding the transaction log. However, it also shows

that this means that transactional consistency has been lost and the restore chain has

Figure 9-13. Database in Recovery Pending

Chapter 9 Database ConsistenCy

318

been broken. Because we have lost transactional consistency, we should now run DBCC

CHECKCONSTRAINTS to find errors in foreign key constraints, and CHECK constraints. DBCC

CHECKCONSTRAINTS is covered later in this chapter.

Note if running DBCC CHECKDB in emergency mode fails, then there is no other
way that the database can be repaired.

 Other DBCC Commands for Corruption
A number of other DBCC commands perform a subset of the work carried out by DBCC

CHECKDB. These are discussed in the following sections.

 DBCC CHECKCATALOG

In SQL Server the system catalog is a collection of metadata that describes the database

and data held within it. When DBCC CHECKCATALOG is run, it performs consistency checks

on this catalog. This command is run as part of DBCC CHECKDB but can also run as a

command in its own right. When run in its own right, it accepts the same arguments as

DBCC CHECKDB, with the exception of PHYSICAL_ONLY and DATA_PURITY, which are not

available for this command.

Figure 9-14. Results of DBCC CHECKDB in emergency mode

Chapter 9 Database ConsistenCy

319

 DBCC CHECKALLOC

DBCC CHECKALLOC performs consistency checks against the disk allocation structures

within a database. It is run as part of DBCC CHECKDB but can also be run as a command

in its own right. When run in its own right, it accepts many of the same arguments as

DBCC CHECKDB, with the exception of PHYSICAL_ONLY, DATA_PURITY, and REPAIR_REBUILD,

which are not available for this command. The output is by table, index, and partition.

 DBCC CHECKTABLE

DBCC CHECKTABLE is run against every table and indexed view in a database as part

of DBCC CHECKDB. However, it can also be run as a separate command in its own right

against a specific table and the indexes of that table. It performs consistency checks

against that specific table, and if any indexed views reference the table, it also performs

cross-table consistency checks. It accepts the same arguments as DBCC CHECKDB, but with

it, you also need to specify the name or ID of the table that you want to check.

Caution i have witnessed people split their tables into two buckets and replace
DBCC CHECKDB with a run DBCC CHECKTABLE against half of their tables on
alternate nights. this not only leaves gaps in what is being checked, but a new
database snapshot is generated for every table that is checked, as opposed to one
snapshot being generated for all checks to be performed. this can lead to longer
runtimes, per table.

 DBCC CHECKFILEGROUP

DBCC CHECKFILEGROUP performs consistency checks on the system catalog, the allocation

structures, tables, and indexed views within a specified filegroup. There are some

limitations to this, however, when a table has indexes that are stored on a different

filegroup. In this scenario, the indexes are not checked for consistency. This still

applies if it is the indexes that are stored on the filegroup that you are checking, but the

corresponding base table is on a different filegroup.

Chapter 9 Database ConsistenCy

320

If you have a partitioned table, which is stored on multiple filegroups, DBCC

CHECKFILEGROUP only checks the consistency of the partition(s) that are stored on the

filegroup being checked. The arguments for DBCC CHECKFILEGROUP are the same as those

for DBCC CHECKDB, with the exception of DATA_PURITY, which is not valid and you cannot

specify any repair options. You also need to specify the filegroup name or ID.

 DBCC CHECKIDENT

DBCC CHECKIDENT scans all rows within a specified table to find the highest value in the

IDENTITY column. It then checks to ensure that the next IDENTITY value, which is stored

in a table’s metadata, is higher than the highest value in the IDENTITY column of the

table. DBCC CHECKIDENT accepts the arguments detailed in Table 9-6.

We could check the IDENTITY value against the maximum IDENTITY value in our

CorruptTable table by using the command in Listing 9-13.

Listing 9-13. DBCC CHECKIDENT

DBCC CHECKIDENT('CorruptTable',NORESEED) ;

Table 9-6. DBCC CHECKIDENT Arguments

Argument Description

table name the name of the table to be checked.

NORESEED returns the maximum value of the IDENTITY column and the current

IDENTITY value, but will not reseed the column, even if required.

RESEED reseeds the current IDENTITY value to that of the maximum IDENTITY

value in the table.

new reseed Value Used with RESEED, specifies a seed for the IDENTITY value. this should

be used with caution, since setting the IDENTITY value to lower than the

maximum value in the table can cause errors to be generated, if there is

a primary key or unique constraint on the IDENTITY column.

WITH NO_INFOMSGS Causes informational messages to be suppressed.

Chapter 9 Database ConsistenCy

321

The results, displayed in Figure 9-15, show that both the maximum value in the

IDENTITY column and the current IDENTITY value are both 10201, meaning that there is

not currently an issue with the IDENTITY value in our table.

 DBCC CHECKCONSTRAINTS

DBCC CHECKCONSTRAINTS can check the integrity of a specific foreign key or check

constraint within a table, check all constraints on a single table, or check all

constraints on all tables of a database. DBCC CHECKCONSTRAINTS accepts the arguments

detailed in Table 9-7.

Figure 9-15. DBCC CHECKIDENT results

Table 9-7. DBCC CHECKCONSTRAINTS Arguments

Argument Description

table or Constraint specifies either the name or iD of the constraint you wish to check or

specifies the name or iD of a table to check all enabled constraints on that

table. omitting this argument causes all enabled constraints on all tables

within the database to be checked.

ALL_CONSTRAINTS if DBCC CHECKCONSTRAINTS is being run against an entire table or

entire database, then this option forces disabled constraints to be checked

as well as enabled ones.

ALL_ERRORMSGS by default, if DBCC CHECKCONSTRAINTS finds rows that violate a

constraint, it returns the first 200 of these rows. specifying ALL_

ERRORMSGS causes all rows violating the constraint to be returned, even if

this number exceeds 200.

NO_INFOMSGS Causes informational messages to be suppressed.

Chapter 9 Database ConsistenCy

322

The script in Listing 9-14 creates a table called BadConstraint and inserts a single row.

It then creates a check constraint on the table, with the NOCHECK option specified, which

allows us to create a constraint that is immediately violated by the existing row that we

have already added. Finally, we run DBCC CHECKCONSTRAINTS against the table.

Listing 9-14. DBCC CHECKCONSTRAINTS

USE Chapter9

GO

--Create the BadConstraint table

CREATE TABLE dbo.BadConstraint

(

ID INT PRIMARY KEY

) ;

--Insert a negative value into the BadConstraint table

INSERT INTO dbo.BadConstraint

VALUES(-1) ;

--Create a CHECK constraint, which enforces positive values in the ID column

ALTER TABLE dbo.BadConstraint WITH NOCHECK ADD CONSTRAINT chkBadConstraint

CHECK (ID > 0) ;

GO

--Run DBCC CHECKCONSTRAINTS against the table

DBCC CHECKCONSTRAINTS('dbo.BadConstraint') ;

The results of running this script are shown in Figure 9-16. You can see that DBCC

CHECKCONSTRAINTS has returned the details of the row that breaches the constraint.

Chapter 9 Database ConsistenCy

323

Tip after running DBCC CHECKDB or other DbCC commands to repair corruption,
it is good practice to run DBCC CHECKCONSTRAINTS. this is because the repair
options of the DbCC commands do not take constraint integrity into account.

Even if DBCC CHECKCONSTRAINTS does not find any bad data, it still does not mark the

constraint as trusted. You must do this manually. The script in Listing 9-15 first runs a

query to see if the constraint is trusted and then manually marks it as trusted.

Listing 9-15. Marking a Constraint as Trusted

SELECT

 is_not_trusted

FROM sys.check_constraints

WHERE name = 'chkBadConstraint' ;

ALTER TABLE dbo.BadConstraint WITH CHECK CHECK CONSTRAINT chkDadConstraint ;

 Consistency Checks on VLDBs
If you have VLDBs (very large databases), then it may be difficult to find a maintenance

window long enough to run DBCC CHECKDB, and running it while users or ETL processes

are connected is likely to cause performance issues. You may also encounter a

similar issue if you have a large estate of smaller databases that are using a common

infrastructure, such as a SAN or a private cloud. Ensuring that your databases are

consistent, however, should be a priority near the top of your agenda, so you should try

and find a strategy that achieves both your maintenance and performance goals. The

following sections discuss strategies that you may choose to adopt to achieve this balance.

Figure 9-16. DBCC CHECKCONSTRAINTS results

Chapter 9 Database ConsistenCy

324

 DBCC CHECKDB with PHYSICAL_ONLY
One strategy that you can adopt is to run DBCC CHECKDB regularly, ideally nightly, using

the PHYSICAL_ONLY option, and then run a complete check on a periodic but less-

frequent basis, ideally weekly. When you run DBCC CHECKDB with the PHYSICAL_ONLY

option, consistency checks are carried out of system catalogs and allocation structures,

and each page of every table is scanned and validated. The net result of this is that

corruption caused by IO errors is trapped, but other issues, such as logical consistency

errors, are identified. This is why it is important to still run a full scan weekly.

 Backing Up WITH CHECKSUM and DBCC CHECKALLOC
If you are in a position where all of your databases have a full backup every night and all

are configured with a PAGE_VERIFY option of CHECKSUM, then an alternative approach to

the one mentioned in the previous section is to add the WITH CHECKSUM option to your

full backups, followed by a DBCC CHECKALLOC, to replace the DBCC CHECKDB, with the

PHYSICAL_ONLY option specified on a nightly basis. The DBCC CHECKALLOC command,

which is actually a subset of the DBCC CHECKDB command, validates the allocation

structures within the database. When the full backups are taken WITH CHECKSUM, then

this fulfills the requirement to scan and verify each page of every table for IO errors. Just

like running DBCC CHECKDB, with the PHYSICAL_ONLY option specified, this identifies

any corruption caused by IO operations and identifies any bad checksums. Any page

errors that occurred in memory, however, are not identified. This means that like the

PHYSICAL_ONLY strategy, you still require a full run of DBCC CHECKDB once a week to trap

logical consistency errors or corruptions that occurred in memory. This option is very

useful if you have an environment with common infrastructure and you are performing

full nightly backups of all databases, since you will reduce the overall amount of IO on a

nightly basis. This is at the expense of the duration of your backup window, however, and

it increases the resources used during this time.

 Splitting the Workload
Another strategy for VLDBs may be to split the load of DBCC CHECKDB over multiple

nights. For example, if your VLDB has multiple filegroups, then you could run DBCC

CHECKFILEGROUP against half of the filegroups on Monday, Wednesday, and Friday

and against the other half of the filegroups on Tuesday, Thursday, and Saturday.

Chapter 9 Database ConsistenCy

325

You could reserve Sunday for a full run of DBCC CHECKDB. A full run of DBCC CHECKDB is

still advised on a weekly basis, since DBCC CHECKFILEGROUP does not perform checks,

such as validating Service Broker objects.

If your issue is common infrastructure, as opposed to VLDBs, then you can adapt

the concept just described so that you run DBCC CHECKDB on a subset of databases

on alternate nights. This can be a little complex, since the approach here, in order to

avoid swamping the SAN, is to segregate the databases intelligently, and based on size,

as opposed to a random 50/50 split. This will often involve centralizing the maintenance

routines, on a central server, known as a central management server (CMS). A CMS is

a SQL Server instance, which sits in the middle of your SQL Server estate and provides

centralized monitoring and maintenance. Often, for intelligent maintenance, such

as I am describing here, the CMS will control maintenance routines by scheduling

PowerShell scripts, which will interact with metadata, stored on the CMS, to decide

which maintenance jobs to run.

 Offloading to a Secondary Server
The final strategy for reducing the load on production systems caused by DBCC CHECKDB

is to offload the work to a secondary server. If you decide to take this approach, it involves

taking a full backup of the VLDB and then restoring it on a secondary server before you

run DBCC CHECKDB on the secondary server. This approach has several disadvantages,

however. First, and most obviously, it means that you have the expense of procuring and

maintaining a secondary server, just for the purpose of running consistency checks. This

makes it the most expensive of the options discussed (unless, of course, you reuse an

existing server, such as a UAT server). Also, if you find corruption, you will not know if the

corruption was generated on the production system and copied over in the backup or if

the corruption was actually generated on the secondary server. This means that if errors

are found, you still have to run DBCC CHECKDB on the production server.

 Summary
Many types of corruption can occur in SQL Server. These include pages that have been

damaged at the file system level, logical consistency errors, and corrupt pages that have

a bad checksum. Pages can also be damaged in memory, which would not be identified

through a checksum.

Chapter 9 Database ConsistenCy

326

Three page verification options can be selected for a database. The NONE option

leaves you totally exposed to issues and is regarded as bad practice. The TORN_PAGE_

DETECTION option is deprecated and should not be used, since it only checks the first 2

bytes in every 512-byte sector. The final option is CHECKSUM. This is the default option and

should always be selected.

Pages that are damaged are stored in a table called dbo.suspect_pages in the MSDB

database. Here, the error count is increased every time the error is encountered, and

the event type of the page is updated to indicate that it has been repaired or restored as

appropriate.

If a system database, especially Master, becomes corrupt, you may be unable to

start your instance. If this is the case, then you can rectify the issue by running setup

with the ACTION parameter set to Rebuilddatabases. Alternatively, if the instance

itself has become corrupt, then you can run setup with the ACTION parameter set

to repair. This resolves issues such as corrupt Registry keys or corruption to the

Resource database.

DBCC CHECKDB is a command that you should run on a regular basis to check for

corruption. If you find corruption, then you can also use this command to fix the

issue. There are two repair modes that are available, depending on the nature of the

corruption: REPAIR_REBUILD and REPAIR_ALLOW_DATA_LOSS. You should only use the

REPAIR_ALLOW_DATA_LOSS option as a last resort in the event that no backup is available

from which to restore the database or corrupt pages. This is because the REPAIR_ALLOW_

DATA_LOSS option is liable to deallocate the corrupt pages, causing all data on these

pages to be lost.

Other DBCC commands can be used to perform a subset of DBCC CHECKDB

functionality. These include DBCC CHECKTABLE, which can validate the integrity of a

specific table, and DBCC CONSTRAINTS, which you can use to verify the integrity of foreign

keys and check constraints, especially after you run DBCC CHECKDB with a repair option.

For VLDBs or estates that share infrastructure, running DBCC CHECKDB can be an

issue because of performance impact and resource utilization. You can mitigate this by

adopting a strategy that offers a trade-off between maintenance and performance goals.

These strategies include splitting the workload, offloading the workload to a secondary

server, or running only subsets of the checking functionality on a nightly basis and then

performing a full check on a weekly basis.

Chapter 9 Database ConsistenCy

PART III

Security, Resilience, and
Scaling Workloads

329
© Peter A. Carter 2019
P. A. Carter, Pro SQL Server 2019 Administration, https://doi.org/10.1007/978-1-4842-5089-1_10

CHAPTER 10

SQL Server Security Model
SQL Server 2019 offers a complex security model with overlapping layers of

security that help database administrators (DBAs) counter the risks and threats in

a manageable way. It is important for DBAs to understand the SQL Server security

model so that they can implement the technologies in the way that best fits the

needs of their organization and applications. This chapter discusses the SQL Server

security hierarchy before demonstrating how to implement security at the instance,

database, and object levels. We will also discuss auditing with SQL Audit, and assisting

regulatory compliance with security reports, such as Data Discovery and Classification

and Vulnerability Assessment.

 Security Hierarchy
The security hierarchy for SQL Server begins at the Windows domain level and cascades

down through the local server, the SQL Server instance, the databases, and right on

down to the object level. The model is based on the concept of principals, securables,

and permissions. Principals are entities to which permissions are granted, denied, or

revoked. Revoking a permission means deleting an existing grant or denying assignment.

Groups and roles are principals that contain zero or more security principals and

simplify the management of security by allowing you to assign permissions to similar

principals as a single unit.

Securables are objects that can have permissions granted on them—for example,

an endpoint at the instance level, or a table within a database. Therefore, you grant

a permission on a securable to a principal. The diagram in Figure 10-1 provides an

overview of each level of the security hierarchy and how principals are layered.

330

The diagram shows that a login, created within the SQL Server instance, can be

mapped to a local Windows user or group or to a domain user or group. Usually, in

an Enterprise environment, this is a domain user or group. (A group is a collection of

users that are granted permissions as a unit.) This eases the administration of security.

Imagine that a new person joins the sales team. When added to the domain group called

SalesTeam—which already has all of the required permissions to file system locations,

SQL Server databases, and so on—he immediately inherits all required permissions to

perform his role.

The diagram also illustrates how local server accounts or domain accounts and

groups can be mapped to a user at the database level (a database user without login).

This is part of the functionality of contained databases. This technology was introduced

as far back as SQL Server 2012, to support high availability with AlwaysOn Availability

Groups. Contained database authentication is discussed later in this chapter.

Figure 10-1. Security principal hierarchy

Chapter 10 SQL Server SeCurity ModeL

331

You can then add the Windows login, which you create at the SQL Server instance

level or at a second tier SQL Server login (if you are using mixed-mode authentication),

to fixed server roles and user-defined server roles at the instance level. Doing this allows

you to grant the user common sets of permissions to instance-level objects, such as

linked servers and endpoints. You can also map logins to database users.

Database users sit at the database level of the hierarchy. You can grant them

permissions directly on schemas and objects within the database, or you can add them

to database roles. Database roles are similar to server roles, except they are granted a

common set of permissions on objects that sit inside the database, such as schemas,

tables, views, stored procedures, and so on.

Before moving any further, we will now create the Chapter10 database, which will

be used by examples in this chapter. This can be achieved by running the script in

Listing 10-1.

Listing 10-1. Create the Chapter10 Database

--Create Chapter10 database

CREATE DATABASE Chapter10 ;

GO

USE Chapter10

GO

--Create SensitiveData table

CREATE TABLE dbo.SensitiveData

(

ID INT PRIMARY KEY IDENTITY,

SensitiveText NVARCHAR(100)

) ;

--Populate SensitiveData table

DECLARE @Numbers TABLE

(

ID INT

)

Chapter 10 SQL Server SeCurity ModeL

332

;WITH CTE(Num)

AS

(

SELECT 1 AS Num

UNION ALL

SELECT Num + 1

FROM CTE

WHERE Num < 100

)

INSERT INTO @Numbers

SELECT Num

FROM CTE ;

INSERT INTO dbo.SensitiveData

SELECT 'SampleData'

FROM @Numbers ;

 Implementing Instance-Level Security
Unless you are using contained databases (discussed later in this chapter), all users

must be authenticated at the instance level. You can use two authentication modes

with SQL Server: Windows authentication and mixed-mode authentication. When

you select Windows authentication, a login at the instance level is created and

mapped to a Windows user or group, which exists either at the domain level or at the

local server level.

For example, let’s say you have two users, Pete and Danielle. Both users have domain

accounts, PROSQLADMIN\Pete and PROSQLADMIN\Danielle. Both users are also part of

a Windows group called PROSQLADMIN\SQLUsers. Creating two logins, one mapped

to Pete’s account and one mapped to Danielle’s account, is functionally equivalent to

creating one login, mapped to the SQLUsers group, as long as you grant the exact same

set of permissions. Creating two separate logins provides more granular control over the

permissions, however.

Chapter 10 SQL Server SeCurity ModeL

333

When you create a login mapped to a Windows user or group, SQL Server records

the SID (security identifier) of this principal and stores it in the Master database. It

then uses this SID to identify users who are attempting to connect, from the context

that they have used, to log in to the server or domain.

In addition to creating a login mapped to a Windows user or group, you can also

map a login to a certificate or an asymmetric key. Doing so does not allow a user to

authenticate to the instance by using a certificate, but it does allow for code signing so

that permissions to procedures can be abstracted, rather than granted directly to a login.

This helps when you are using dynamic SQL, which breaks the ownership chain; in this

scenario, when you run the procedure, SQL Server combines the permissions from the

user who called the procedure and the user who maps to the certificate. Ownership

chains are discussed later in this chapter.

If you select mixed-mode authentication for your instance, however, then in

addition to using Windows authentication, as described earlier, users can also connect

by using second tier authentication. When you use second tier authentication,

you create a SQL login, which has a username and password. This username and

password is stored in the Master database with its own SID. When a user attempts

to authenticate to the instance, she supplies the username and password, and this is

validated against the credentials stored.

When you are using mixed-mode authentication, there will be a special user, called

the SA. This is the System Administrator account, and it has administrative rights to the

entire instance. This can be a security vulnerability, because anybody looking to hack

into a SQL Server instance will first try to crack the password for the SA account. Because

of this, it is imperative that you use a very strong password for this account.

An additional security tip is to rename the SA account. This means that a potential

hacker will not know the name of the administrative account, which makes it a lot harder

to break into the instance. You can rename the SA account by using the command in

Listing 10-2.

Listing 10-2. Renaming the SA Account

ALTER LOGIN sa WITH NAME = PROSQLADMINSA ;

By its very nature, Windows authentication is more secure than second tier

authentication. Therefore, it is good practice to configure your instance to use Windows

authentication only, unless you have a specific need to use second tier authentication.

Chapter 10 SQL Server SeCurity ModeL

334

You can set the authentication mode in SQL Server Management Studio within the

Security tab of the Server Properties dialog box. You will need to restart the SQL Server

service for the change to take effect.

 Server Roles
SQL Server provides a set of server roles, out of the box, that allow you to assign instance-

level permissions to logins that map to common requirements. These are called fixed

server roles, and you cannot change the permissions that are assigned to them; you can

only add and remove logins. Table 10-1 describes each of these fixed server roles.

Table 10-1. Fixed Server Roles

Role Description

sysadmin the sysadmin role gives administrative permissions to the entire instance.

a member of the sysadmin role can perform any action within the instance

of the SQL Server relational engine.

blkadmin in conjunction with the INSERT permission on the target table within a

database, the bulkadmin role allows a user to import data from a file using

the BULK INSERT statement. this role is normally given to service accounts

that run etL processes.

dbcreator the dbcreator role allows its members to create new databases within the

instance. once a user creates a database, he is automatically the owner of that

database and is able to perform any action inside it.

diskadmin the diskadmin role gives its members the permissions to manage backup

devices within SQL Server.

processadmin Members of the processadmin role are able to stop the instance from t-SQL

or SSMS. they are also able to kill running processes.

public all SQL Server logins are added to the public role. although you can assign

permissions to the public role, this does not fit with the principle of least

privilege. this role is normally only used for internal SQL Server operations,

such as authentication to tempdB.

(continued)

Chapter 10 SQL Server SeCurity ModeL

335

Role Description

securityadmin Members of the securityadmin role are able to manage logins at the

instance level. For example, members may add a login to a server role (except

sysadmin) or assign permissions to an instance-level resource, such as

an endpoint. however, they cannot assign permissions within a database to

database users.

serveradmin Serveradmin combines the diskadmin and processadmin roles. as well

as being able to start or stop the instance, however, members of this role can

also shut down the instance using the SHUTDOWN t-SQL command. the subtle

difference here is that the SHUTDOWN command gives you the option of not

running a CHECKPOINT in each database if you use it with the NOWAIT option.

additionally, members of this role can alter endpoints and view all instance

metadata.

setupadmin Members of the setupadmin role are able to create and manage linked

servers.

Table 10-1. (continued)

You can also create your own server roles, which group users who need a common

set of permissions that are tailored to your environment. For example, if you have a

highly available environment that relies on availability groups, then you may wish to

create a server role called AOAG and grant this group the following permissions:

• Alter any availability group

• Alter any endpoint

• Create availability group

• Create endpoint

You can then add the junior DBAs, who are not authorized to have full sysadmin

permissions, but who you want to manage the high availability of the instance, to this

role. You can create this server role by selecting New Server Role from the context menu

of Security ➤ Server Roles in SSMS. The General tab of the New Server Role dialog box is

illustrated in Figure 10-2.

Chapter 10 SQL Server SeCurity ModeL

336

You can see that we have assigned the name of the role as AOAG, we have specified

an owner for the role, and we have selected the permissions required under the

instance that we are configuring. On the Members tab of the dialog box, we can search

for preexisting logins that we will add to the role, and in the Membership tab, we can

optionally choose to nest the role inside another server role.

Alternatively, you can create the group through T-SQL. The script in Listing 10-3 also

creates this group. We add logins to the role later in this chapter.

Listing 10-3. Creating a Server Role and Assigning Permissions

USE Master

GO

CREATE SERVER ROLE AOAG AUTHORIZATION [WIN-KIAGK4GN1MJ\Administrator] ;

GO

Figure 10-2. The General tab

Chapter 10 SQL Server SeCurity ModeL

337

GRANT ALTER ANY AVAILABILITY GROUP TO AOAG ;

GRANT ALTER ANY ENDPOINT TO AOAG ;

GRANT CREATE AVAILABILITY GROUP TO AOAG ;

GRANT CREATE ENDPOINT TO AOAG ;

GO

 Logins
You can create a login through SSMS or through T-SQL. To create a login through SSMS,

select New Login from the context menu of Security ➤ Logins. Figure 10-3 shows the

General tab of the Login - New dialog box.

Figure 10-3. The General tab

Chapter 10 SQL Server SeCurity ModeL

338

You can see that we have named the login Danielle, and we have specified SQL

Server authentication as opposed to Windows authentication. This means that we have

also had to specify a password and then confirm it. You may also note that three boxes

are checked: Enforce Password Policy, Enforce Password Expiration, and User Must

Change Password At Next Login. These three options are cumulative, meaning that you

cannot select Enforce Password Expiration without also having Enforce Password Policy

selected. You also cannot select User Must Change Password At Next Login without also

selecting the Enforce Password Expiration option.

When you select the Enforce Password Policy option, SQL Server checks the

password policies for Windows users at the domain level and applies them to SQL Server

logins as well. So, for example, if you have a domain policy that enforces that network

user’s passwords are eight characters or longer, then the same applies to the SQL Server

login. If you do not select this option, then no password policies are enforced against

the login’s password. In a similar vein, if you select the option to enforce password

expiration, the expiration period is taken from the domain policies.

We have also set the login’s default database to be Chapter10. This does not assign

the user any permissions to the Chapter10 database, but it specifies that this database

will be the login’s landing zone, when the user authenticate to the instance. It also

means that if the user does not have permissions to the Chapter10 database, or if the

Chapter10 database is dropped or becomes inaccessible, the user will not be able to

log in to the instance.

On the Server Roles tab, you can add the login to server roles. In our case, we have

chosen not to add the login to any additional server roles. Adding logins to server roles is

discussed in the next section of this chapter.

On the User Mapping tab, we can map the login to users at the database level. On

this screen, you should create a database user within the Chapter10 database. The name

of the database user in each database has defaulted to the same name as the login. This

is not mandatory, and you can change the names of the database users; however, it is

good practice to keep the names consistent. Failure to do so only leads to confusion

and increases the time you must spend managing your security principals. We have not

added the users to any database roles at this point. Database roles are discussed later in

this chapter.

On the Securables tab, we can search for specific instance-level objects on which to

grant the login permissions. In the Status tab, we can grant or deny the login permissions

to log in to the instance and enable or disable the login. Also, if the login has become

Chapter 10 SQL Server SeCurity ModeL

339

locked out because an incorrect password has been entered too many times, we can

unlock the user. The number of failed password attempts is based on the Group Policy

settings for the Server, but the CHECK_POLICY option must be used on the login.

The same user can be created through T-SQL by running the script in Listing 10-4.

You can see that in order to achieve the same results, multiple commands are required.

The first creates the login and the others create database users that map to the login.

Listing 10-4. Creating a SQL Server Login

USE Master

GO

CREATE LOGIN Danielle

 WITH PASSWORD=N'Pa$$w0rd' MUST_CHANGE, DEFAULT_DATABASE=Chapter10,

 CHECK_EXPIRATION=ON, CHECK_POLICY=ON ;

GO

USE Chapter10

GO

CREATE USER Danielle FOR LOGIN Danielle ;

GO

We can also use either the New Login dialog box or T-SQL to create Windows

logins. If using the GUI, we can select the Windows login as opposed to the SQL Server

login option and then search for the user or group that we want the login to map to.

Listing 10-5 demonstrates how to create a Windows login using T-SQL. It maps the

login to a domain user called Pete, with the same configuration as Danielle.

Listing 10-5. Creating a Windows Login

CREATE LOGIN [PROSQLADMIN\pete] FROM WINDOWS WITH DEFAULT_

DATABASE=Chapter10 ;

GO

USE Chapter10

GO

CREATE USER [PROSQLADMIN\pete] FOR LOGIN [PROSQLADMIN\pete] ;

Chapter 10 SQL Server SeCurity ModeL

340

 Granting Permissions
When assigning permissions to logins, you can use the following actions:

• GRANT

• DENY

• REVOKE

GRANT gives principal permissions on a securable. You can use the WITH option with

GRANT to also provide a principal with the ability to assign the same permission to other

principals. DENY specifically denies login permissions on a securable; DENY overrules

GRANT. Therefore, if a login is a member of a server role or roles that give the login

permissions to alter an endpoint, but the principal was explicitly denied permissions to

alter the same endpoint, then the principal is not able to manage the endpoint. REVOKE

removes a permission association to a securable. This includes DENY associations as well

as GRANT associations. If a login has been assigned permissions through a server role,

however, then revoking the permissions to that securable, against the login itself, has no

effect. In order to have an effect, you would need to use DENY, remove the permissions

from the role, or change the permissions assigned to the role.

The command in Listing 10-6 grants Danielle permission to alter any login, but then

it specifically denies her the permissions to alter the service account.

Listing 10-6. Granting and Denying Permissions

GRANT ALTER ANY LOGIN TO Danielle ;

GO

DENY ALTER ON LOGIN::[NT Service\MSSQL$PROSQLADMIN] TO Danielle ;

Note the difference in syntax between assigning permissions on a class of object,

in this case, logins, and assigning permissions on a specific object. For an object

type, the ANY [Object Type] syntax is used, but for a specific object, we use [Object

Class]::[Securable].

We can add or remove logins from a server role by using the ALTER SERVER ROLE

statement. Listing 10-7 demonstrates how to add Danielle to the sysadmin role and then

remove her again.

Chapter 10 SQL Server SeCurity ModeL

341

Listing 10-7. Adding and Removing Server Roles

--Add Danielle to the sysadmin Role

ALTER SERVER ROLE sysadmin ADD MEMBER Danielle ;

GO

--Remove Danielle from the sysadmin role

ALTER SERVER ROLE sysadmin DROP MEMBER Danielle ;

GO

 Implementing Database-Level Security
We have seen how security at the instance level is managed using logins and server

roles. Security at the level of the individual database has a similar model, consisting of

database users and database roles. The following sections describe this functionality.

 Database Roles
Just as there are server roles at the instance level that help manage permissions, there

are also database roles at the database level that can group principals together to assign

common permissions. There are built-in database roles, but it is also possible to define

your own, ones that meet the requirements of your specific data-tier application.

The built-in database roles that are available in SQL Server 2019 are described in

Table 10-2.

Table 10-2. Database Roles

Database Role Description

db_accessadmin Members of this role can add and remove database users from the

database.

db_backupoperator the db_backupoperator role gives users the permissions they need

to back up the database, natively. it may not work for third-party backup

tools, such as Commvault or Backup exec, since these tools often

require sysadmin rights.
(continued)

Chapter 10 SQL Server SeCurity ModeL

342

Database Role Description

db_datareader Members of the db_datareader role can run SELECT statements

against any table in the database. it is possible to override this for

specific tables by explicitly denying a user permissions to those tables.

DENY overrides the GRANT.

db_datawriter Members of the db_datawriter role can perform dML (data

Manipulation Language) statements against any table in the database.

it is possible to override this for specific tables by specifically denying a

user permissions against a table. the DENY will override the GRANT.

db_denydatareader the db_denydatareader role denies the SELECT permission against

every table in the database.

db_denydatawriter the db_denydatawriter role denies its members the permissions to

perform DML statements against every table in the database.

db_ddladmin Members of this role are given the ability to run CREATE, ALTER,

and DROP statements against any object in the database. this

role is rarely used, but i have seen a couple of examples or poorly

written applications that create database objects on the fly. if you are

responsible for administering an application such as this, then the

ddl_admin role may be useful.

db_owner Members of the db_owner role can perform any action within the

database that has not been specifically denied.

db_securityadmin Members of this role can grant, deny, and revoke a user’s permissions

to securables. they can also add or remove role memberships, with the

exception of the db_owner role.

Table 10-2. (continued)

You can create your own database roles in SQL Server Management Studio by

drilling down through Databases ➤ Your Database ➤ Security and then selecting New

Database Role from the context menu of database roles in Object Explorer. This displays

the General tab of the Database Role - New dialog box. Here, you should specify

db_ReadOnlyUsers as the name of our role and state that the role will be owned by dbo.

dbo is the system user that members of the sysadmin server role map to. We have then

used the Add button to add Danielle to the role.

Chapter 10 SQL Server SeCurity ModeL

343

On the Securables tab, we can search for objects that we want to grant

permissions on, and then we can select the appropriate permissions for the objects.

Figure 10-4 illustrates the results of searching for objects that are part of the dbo

schema. We have then selected that the role should have SELECT permissions against

the SensitiveData table, but that DELETE, INSERT, and UPDATE permissions should be

specifically denied.

Because there is currently only one table in our Chapter10 database, this role is

functionally equivalent to adding Danielle to the db_datareader and

db_denydatawriter built-in database roles. The big difference is that when we create

new tables in our database, the permissions assigned to our db_ReadOnlyUsers role

Figure 10-4. The Securables tab

Chapter 10 SQL Server SeCurity ModeL

344

continue to apply only to the SensitiveData table. This is in contrast to the

db_datareader and db_denydatawriter roles, which assign the same permission set to

any new tables that are created.

An alternative way to create the db_ReadOnlyUsers role is to use the T-SQL script in

Listing 10-8. You can see that we have had to use several commands to set up the role.

The first command creates the role and uses the authorization clause to specify the

owner. The second command adds Danielle as a member of the role, and the subsequent

commands use GRANT and DENY keywords to assign the appropriate permissions on the

securable to the principal.

Listing 10-8. Creating a Database Role

--Set Up the Role

CREATE ROLE db_ReadOnlyUsers AUTHORIZATION dbo ;

GO

ALTER ROLE db_ReadOnlyUsers ADD MEMBER Danielle ;

GRANT SELECT ON dbo.SensitiveData TO db_ReadOnlyUsers ;

DENY DELETE ON dbo.SensitiveData TO db_ReadOnlyUsers ;

DENY INSERT ON dbo.SensitiveData TO db_ReadOnlyUsers ;

DENY UPDATE ON dbo.SensitiveData TO db_ReadOnlyUsers ;

GO

Tip although DENY assignments can be helpful in some scenarios—for
example, if you want to assign securable permissions to all but one table—in
a well- structured security hierarchy, use them with caution. DENY assignments
can increase the complexity of managing security, and you can enforce the
principle of least privilege by exclusively using GRANT assignments in the
majority of cases.

Chapter 10 SQL Server SeCurity ModeL

345

 Schemas
Schemas provide a logical namespace for database objects while at the same time

abstracting an object from its owner. Every object within a database must be owned by a

database user. In much older versions of SQL Server, this ownership was direct. In other

words, a user named Bob could have owned ten individual tables. From SQL Server 2005

onward, however, this model has changed so that Bob now owns a schema, and the ten

tables are part of that schema.

This abstraction simplifies changing the ownership of database objects; in

this example, to change the owner of the ten tables from Bob to Colin, you need to

change the ownership in one single place (the schema) as opposed to changing it on

all ten tables.

Well-defined schemas can also help simplify the management of permissions,

because you can assign principal permissions on a schema, as opposed to the

individual objects within that schema. For example, if you had five sales-related tables—

OrderHeaders, OrderDetails, StockList, PriceList, and Customers—putting all five

tables within a single schema named Sales allows you to apply the SELECT, UPDATE, and

INSERT permissions on the Sales schema to the SalesUsers database role. Assigning

permissions to an entire schema does not just affect tables, however. For example,

granting SELECT on a schema also gives SELECT permissions to all views within the

schema. Granting the EXECUTE permission on a schema grants EXECUTE on all procedures

and functions within the schema.

For this reason, well-designed schemas group tables by business rules, as opposed to

technical joins. Consider the entity relationship diagram in Figure 10-5.

Chapter 10 SQL Server SeCurity ModeL

346

A good schema design for this example would involve three schemas, which are split

by business responsibility—Sales, Procurement, and Accounts. Table 10-3 demonstrates

how these tables can be split and permissions can then be assigned to the tables via

database roles.

Figure 10-5. Entity relationship diagram

Chapter 10 SQL Server SeCurity ModeL

347

The command in Listing 10-9 creates a schema called CH10 and then grants the user

Danielle SELECT permissions on the dbo schema. This will implicitly give her SELECT

permissions on all tables within this schema, including new tables, which are yet to be

created.

Listing 10-9. Granting Permissions on a Schema

CREATE SCHEMA CH10 ;

GO

GRANT SELECT ON SCHEMA::CH10 TO Danielle ;

To change a table’s schema post creation, use the ALTER SCHEMA TRANSFER

command, as demonstrated in Listing 10-10. This script creates a table without

specifying a schema. This means that it is automatically placed in the dbo schema.

It is then moved to the CH10 schema.

Table 10-3. Schema Permissions

Schema Table Database Role Permissions

Sales OrderHeader

OrderDetails

Customers

Addresses

Sales SELECT, INSERT, UPDATE

Accounts SELECT

Procurement Products

Vendors

Purchasing SELECT, INSERT, UPDATE

Sales SELECT

Accounts SELECT

Accounts Invoices

CustAccountHistory

VendAccountHistory

Accounts SELECT, INSERT, UPDATE

Chapter 10 SQL Server SeCurity ModeL

348

Listing 10-10. Transferring an Object Between Schemas

CREATE TABLE TransferTest

(

 ID int

) ;

GO

ALTER SCHEMA CH10 TRANSFER dbo.TransferTest ;

GO

 Creating and Managing Contained Users
We have already seen how to create a database user, which maps to a login at the

instance level. It is also possible to create a database user, which does not map to a

server principal, however. This is to support a technology called contained databases.

Contained databases allow you to reduce a database’s dependency on the instance

by isolating aspects such as security. This makes the database easier to move between

instances and helps support technologies such as AlwaysOn Availability Groups, which

are discussed in Chapter 14.

Currently, SQL Server supports the database containment levels of NONE, which

is the default, and PARTIAL. PARTIAL indicates that the database supports contained

database users and that metadata is stored inside the database using the same

collation. However, the database can still interact with no-contained features, such

as users mapped to logins at the instance level. There is currently no option for FULL

containment, since there is no way to stop the database from interacting with objects

outside its boundaries.

In order to use contained databases, you must enable them at both the instance

and the database level. You can enable them at both levels by using the Server

Properties and Database Properties dialog boxes in SQL Server Management Studio.

Alternatively, you can enable them at the instance level by using sp_configure and at

the database level by using the ALTER DATABASE statement. The script in Listing 10-11

demonstrates how to enable contained databases for the instance and the Chapter10

database using T-SQL. To use the ALTER DATABASE command, you need to disconnect

users from the database.

Chapter 10 SQL Server SeCurity ModeL

349

Listing 10-11. Enabling Contained Databases

--Enable contained databases at the instance level

EXEC sp_configure 'show advanced options', 1 ;

GO

RECONFIGURE ;

GO

EXEC sp_configure 'contained database authentication', '1' ;

GO

RECONFIGURE WITH OVERRIDE ;

GO

--Set Chapter10 database to use partial containment

USE Master

GO

ALTER DATABASE [Chapter10] SET CONTAINMENT = PARTIAL WITH NO_WAIT ;

GO

Once you have enabled contained databases, you can create database users that are

not associated with a login at the instance level. You can create a user from a Windows

user or group by using the syntax demonstrated in Listing 10-12. This script creates a

database user that maps to the Chapter10Users domain group. It specifies that dbo is the

default schema.

Listing 10-12. Creating a Database User from a Windows Login

USE Chapter10

GO

CREATE USER [PROSQLADMIN\Chapter10Users] WITH DEFAULT_SCHEMA=dbo ;

GO

Alternatively, to create a database user who is not mapped to a login at the

instance level but who still relies on second tier authentication, you can use the

syntax in Listing 10-13. This script creates a user in the Chapter10 database called

ContainedUser.

Chapter 10 SQL Server SeCurity ModeL

350

Listing 10-13. Creating a Database User with Second Tier Authentication

USE Chapter10

GO

CREATE USER ContainedUser WITH PASSWORD=N'Pa$$w0rd', DEFAULT_SCHEMA=dbo ;

GO

When you use contained database users, you need to take a number of additional

security considerations into account. First, some applications may require that a user

have permissions to multiple databases. If the user is mapped to a Windows user

or group, then this is straightforward because the SID that is being authenticated is

that of the Windows object. If the database user is using second tier authentication,

however, then it is possible to duplicate the SID of the user from the first database.

For example, we can create a user called ContainedUser in the Chapter10 database

that will use second tier authentication. We can then duplicate this user in the

Chapter10Twain database by specifying the SID, as demonstrated in Listing 10-14.

Before duplicating the user, the script first creates the Chapter10Twain database and

configures it to be contained.

Listing 10-14. Creating a Duplicate User

USE Master

GO

CREATE DATABASE Chapter10Twain ;

GO

ALTER DATABASE Chapter10Twain SET CONTAINMENT = PARTIAL WITH NO_WAIT ;

GO

USE Chapter10Twain

GO

CREATE USER ContainedUser WITH PASSWORD = 'Pa$$w0rd',

 SID = 0x0105000000000009030000009134B23303A7184590E152AE6A1197DF ;

We can determine the SID by querying the sys.database_principals catalog view

from the Chapter10 database, as demonstrated in Listing 10-15.

Chapter 10 SQL Server SeCurity ModeL

351

Listing 10-15. Finding the User’s SID

SELECT sid

FROM sys.database_principals

WHERE name = 'ContainedUser' ;

Once we have duplicated the user in the second database, we also need to turn on

the TRUSTWORTHY property of the first database in order to allow cross-database queries

to take place. We can turn on TRUSTWORTHY in the Chapter10 database by using the

command in Listing 10-16.

Listing 10-16. Turning On TRUSTWORTHY

ALTER DATABASE Chapter10 SET TRUSTWORTHY ON ;

Even if we do not create a duplicate user, it is still possible for a contained user to

access other databases via the Guest account of another database if the Guest account is

enabled. This is a technical requirement so that the contained user can access TempDB.

DBAs should also be careful when they attach a contained database to an instance

to ensure that they are not inadvertently granting permissions to users who are not

meant to have access. This can happen when you are moving a database from a pre-

production environment to a production instance and UAT (user acceptance testing) or

development users were not removed from the database before the attach.

 Implementing Object-Level Security
There are two variations of syntax for granting a database user permissions to an object.

The first uses the OBJECT phrase, whereas the second does not. For example, the two

commands in Listing 10-17 are functionally equivalent.

Listing 10-17. Assigning Permissions

USE Chapter10

GO

--Grant with OBJECT notation

GRANT SELECT ON OBJECT::dbo.SensitiveData TO [PROSQLADMIN\Chapter10Users] ;

GO

Chapter 10 SQL Server SeCurity ModeL

352

--Grant without OBJECT notation

GRANT SELECT ON dbo.SensitiveData TO [PROSQLADMIN\Chapter10Users] ;

GO

Many permissions can be granted and not all permissions are relevant to each

object. For example, the SELECT permission can be granted on a table or a view, but not

to a stored procedure. The EXECUTE permission, on the other hand, can be granted on a

stored procedure, but not to a table or view.

When granting permissions on a table, it is possible to grant permissions to specific

columns, as opposed to the table itself. The script in Listing 10-18 gives the user

ContainedUser SELECT permissions on the SensitiveData table in the Chapter10

database. Instead of being able to read the entire table, however, permissions are only

granted on the SensitiveText column.

Listing 10-18. Granting Column-Level Permissions

GRANT SELECT ON dbo.SensitiveData ([SensitiveText]) TO ContainedUser ;

 Server Audit
SQL Server Audit provides DBAs with the ability to capture granular audits against

instance-level and database-level activity and save this activity to a file, the Windows

Security log, or the Windows Application log. The location where the audit data is

saved is known as the target. The SQL Server Audit object sits at the instance level and

defines the properties of the audit and the target. You can have multiple server audits

in each instance. This is useful if you have to audit many events in a busy environment,

since you can distribute the IO by using a file as the target and placing each target file

on a separate volume.

Choosing the correct target is important from a security perspective. If you choose

the Windows Application log as a target, then any Windows user who is authenticated to

the server is able to access it. The Security log is a lot more secure than the Application

log but can also be more complex to configure for SQL Server Audit. The service

account that is running the SQL Server service requires the Generate Security Audits

user rights assignment within the server’s local security policy. Application-generated

auditing also needs to be enabled for success and failure within the audit policy. The

other consideration for the target is size. If you decide to use the Application log or

Chapter 10 SQL Server SeCurity ModeL

353

Security log, then it is important that you consider, and potentially increase, the size of

these logs before you begin using them for your audit. Also, work with your Windows

administration team to decide on how the log will be cycled when full and if you will be

achieving the log by backing it up to tape.

The SQL Server Audit can then be associated with one or more server audit

specifications and database audit specifications. These specifications define the activity

that will be audited at the instance level and the database level, respectively. It is helpful

to have multiple server or database audit specifications if you are auditing many actions,

because you can categorize them to make management easier while still associating

them with the same server audit. Each database within the instance needs its own

database audit specification if you plan to audit activity in multiple databases.

 Creating a Server Audit
When you create a server audit, you can use the options detailed in Table 10-4.

Table 10-4. Server Audit Options

Option Description

FILEPATH only applies if you choose a file target. Specifies the file path, where the

audit logs will be generated.

MAXSIZE only applies if you choose a file target. Specifies the largest size that the

audit file can grow to. the minimum size you can specify for this is 2MB.

MAX_ROLLOVER_

FILES

only applies if you choose a file target. When the audit file becomes full, you

can either cycle that file or generate a new file. the MAX_ROLLOVER_FILES

setting controls how many new files can be generated before they begin to

cycle. the default value is UNLIMITED, but specifying a number caps the

number of files to this limit. if you set it to 0, then there will only ever be one

file, and it will cycle every time it becomes full. any value above 0 indicates

the number of rollover files that will be permitted. So, e.g., if you specify 5,

then there will be a maximum of six files in total.

(continued)

Chapter 10 SQL Server SeCurity ModeL

354

Table 10-4. (continued)

Option Description

MAX_FILES only applies if you choose a file target. as an alternative to MAX_

ROLLOVER_FILES, the MAX_FILES setting specifies a limit for the number

of audit files that can be generated, but when this number is reached, the

logs will not cycle. instead, the audit fails and events that cause an audit

action to occur are handled based on the setting for ON_FAILURE.

RESERVE_DISK_

SPACE

only applies if you choose a file target. preallocate space on the volume

equal to the value set in MAXSIZE, as opposed to allowing the audit log to

grow as required.

QUEUE_DELAY Specifies if audit events are written synchronously or asynchronously. if set

to 0, events are written to the log synchronously. otherwise, specifies the

duration in milliseconds that can elapse before events are forced to write.

the default value is 1000 (1 second), which is also the minimum value.

ON_FAILURE Specifies what should happen if events that cause an audit action fail to be

audited to the log. acceptable values are CONTINUE, SHUTDOWN, or FAIL_

OPERATION. When CONTINUE is specified, the operation is allowed to

continue. this can lead to unaudited activity occurring. FAIL_OPERATION

causes auditable events to fail, but allows other actions to continue.

SHUTDOWN forces the instance to stop if auditable events cannot be written

to the log.

AUDIT_GUID Because server and database audit specifications link to the server

audit through a Guid, there are occasions when an audit specification

can become orphaned. these include when you attach a database to an

instance or when you implement technologies such as database mirroring.

this option allows you to specify a specific Guid for the server audit, as

opposed to having SQL Server generate a new one.

It is also possible to create a filter on the server audit. This can be useful when

your audit specification captures activity against an entire class of object, but you are

only interested in auditing a subset. For example, you may configure a server audit

specification to log any member changes to server roles; however, you are only actually

interested in members of the sysadmin server role being modified. In this scenario, you

can filter on the sysadmin role.

Chapter 10 SQL Server SeCurity ModeL

355

You can create a server audit through the GUI in SQL Server Management Studio by

drilling through Security in Object Explorer and choosing New Audit from the Audits

node. Figure 10-6 illustrates the Create Audit dialog box.

You can see that we have decided to save our audit to a flat file, as opposed to a

Windows log. Therefore, we need to specify the file-related parameters. We set our file to

rollover and enforce the maximum size for any one file to be 512MB. We leave the default

value of 1 second (1000 milliseconds) as a maximum duration before audit entries are

forced to be written to the log and name the audit Audit-ProSQLAdmin.

Figure 10-6. The General tab

Chapter 10 SQL Server SeCurity ModeL

356

On the Filter tab of the Create Audit dialog box, you should specify that we wish to

filter on the object_name and only audit changes to the sysadmin role.

Alternatively, we can use T-SQL to perform the same action. The script in Listing 10- 19

creates the same server audit.

Listing 10-19. Creating a Server Audit

USE Master

GO

CREATE SERVER AUDIT [Audit-ProSQLAdmin]

TO FILE

(FILEPATH = N'c:\audit'

 ,MAXSIZE = 512 MB

 ,MAX_ROLLOVER_FILES = 2147483647

 ,RESERVE_DISK_SPACE = OFF

)

WITH

(QUEUE_DELAY = 1000

 ,ON_FAILURE = CONTINUE

)

WHERE object_name = 'sysadmin' ;

 Creating a Server Audit Specification
To create the server audit specification through SSMS, we can drill through Security

in Object Explorer and choose New Server Audit Specification from the Server Audit

Specifications context menu. This will cause the Create Server Audit Specification dialog

box to be displayed, as illustrated in Figure 10-7.

Chapter 10 SQL Server SeCurity ModeL

357

You can see that we have selected the SERVER_ROLE_MEMBER_CHANGE_GROUP as the

audit action type. This audits any additions or removals of the membership of server

roles. Combined with the filter that we have put on the Server Audit object, however,

the new result is that only changes to the sysadmin server role will be logged. We

also selected the Audit-ProSQLAdmin audit from the Audit drop-down box to tie the

objects together.

Alternatively, we can create the same server audit specification through T-SQL by

running the command in Listing 10-20. In this command, we are using the FOR SERVER

AUDIT clause to link the server audit specification to the Audit-ProSQLAdmin server audit,

and the ADD clause to specify the audit action type to capture.

Listing 10-20. Creating the Server Audit Specification

CREATE SERVER AUDIT SPECIFICATION [ServerAuditSpecification-ProSQLAdmin]

FOR SERVER AUDIT [Audit-ProSQLAdmin]

ADD (SERVER_ROLE_MEMBER_CHANGE_GROUP) ;

Figure 10-7. Server Audit Specification dialog box

Chapter 10 SQL Server SeCurity ModeL

358

 Enabling and Invoking Audits
Even though we have created the server audit and server audit specification, we need

to enable them before any data starts to be collected. We can achieve this by choosing

Enable from the context menu of each of the objects in Object Explorer or by altering the

objects and setting their STATE = ON in T-SQL. This is demonstrated in Listing 10-21.

Listing 10-21. Enabling Auditing

ALTER SERVER AUDIT [Audit-ProSQLAdmin] WITH (STATE = ON) ;

ALTER SERVER AUDIT SPECIFICATION [ServerAuditSpecification-ProSQLAdmin]

WITH (STATE = ON) ;

We now add the Danielle login to the sysadmin server roles using the script in

Listing 10-22 so that we can check that our audit is working.

Listing 10-22. Triggering the Audit

ALTER SERVER ROLE sysadmin ADD MEMBER Danielle ;

We expect that our server audit specification’s definition has captured both actions,

but that the WHERE clause has filtered out the first action we applied to the server audit.

If we view the audit log by selecting View Audit Log from the context menu of the Audit-

ProSQLAdmin server audit in Object Explorer, as illustrated in Figure 10-8, we can see that

this is working as expected and review the audit entry that has been captured.

Chapter 10 SQL Server SeCurity ModeL

359

We can see that a granular level of information has been captured. Most notably, this

information includes the full statement that caused the audit to fire, the database and

object involved, the target login, and the login that ran the statement.

 Database Audit Specifications
A database audit specification is similar to a server audit specification but specifies

audit requirements at the database level, as opposed to at the instance level. In order

to demonstrate this functionality, we map the Danielle login to a user in this database

and assign SELECT permissions to the SensitiveData table. We also create a new server

audit, called Audit-Chapter10, which we use as the audit to which our database audit

specification attaches. These actions are performed in Listing 10-23. Before executing

the script, change the file path to match your own configuration.

Figure 10-8. Audit Log File Viewer

Chapter 10 SQL Server SeCurity ModeL

360

Listing 10-23. Creating the Chapter10Audit Database

USE Master

GO

--Create Chapter10Audit Database

CREATE DATABASE Chapter10Audit

GO

USE Chapter10Audit

GO

CREATE TABLE dbo.SensitiveData (

 ID INT PRIMARY KEY NOT NULL,

 Data NVARCHAR(256) NOT NULL

) ;

--Create Server Audit

USE master

GO

CREATE SERVER AUDIT [Audit-Chapter10Audit]

TO FILE

(FILEPATH = N'C:\Audit'

 ,MAXSIZE = 512 MB

 ,MAX_ROLLOVER_FILES = 2147483647

 ,RESERVE_DISK_SPACE = OFF

)

WITH

(QUEUE_DELAY = 1000

 ,ON_FAILURE = CONTINUE

) ;

USE Chapter10Audit

GO

Chapter 10 SQL Server SeCurity ModeL

361

--Create database user from Danielle Login

CREATE USER Danielle FOR LOGIN Danielle WITH DEFAULT_SCHEMA=dbo ;

GO

GRANT SELECT ON dbo.SensitiveData TO Danielle ;

We now look to create a database audit specification that captures any INSERT

statements made against the SensitiveData table by any user but also captures SELECT

statements run specifically by Danielle.

We can create the database audit specification in SQL Server Management Studio by

drilling through the Chapter10Audit database ➤ Security and selecting New Database

Audit Specification from the context menu of Database Audit Specifications. This invokes

the Create Database Audit Specification dialog box, as illustrated in Figure 10-9.

Figure 10-9. Database Audit Specification dialog box

You can see that we named the database audit specification

DatabaseAuditSpecification-Chapter10-SensitiveData and linked it to the Audit-

Chapter10 server audit using the drop-down list. In the lower half of the screen, we

specified two audit action types, INSERT and SELECT. Because we specified an object

class of OBJECT, as opposed to the other available options of DATABASE or SCHEMA, we

Chapter 10 SQL Server SeCurity ModeL

362

also need to specify the object name of the table that we want to audit. Because we only

want Danielle’s SELECT activity to be audited, we add this user to the Principal field for

the SELECT action type, but we add the Public role as the principal for the INSERT action

type. This is because all database users will be members of the Public role, and hence,

all INSERT activity will be captured, regardless of the user.

Tip you can display a complete list of audit class types by running the query
SELECT * FROM sys.dm_audit_class_type_map. you can find a complete
list of auditable actions by running the query SELECT * FROM sys.dm_
audit_actions.

We can create the same database audit specification in T-SQL by using the CREATE

DATABASE AUDIT SPECIFICATION statement, as demonstrated in Listing 10-24.

Listing 10-24. Creating the Database Audit Specification

USE Chapter10Audit

GO

CREATE DATABASE AUDIT SPECIFICATION [DatabaseAuditSpecification-Chapter10-

SensitiveData]

FOR SERVER AUDIT [Audit-Chapter10]

ADD (INSERT ON OBJECT::dbo.SensitiveData BY public),

ADD (SELECT ON OBJECT::dbo.SensitiveData BY Danielle) ;

Just as we would with a server audit specification, we need to enable the database audit

specification before any information starts to be collected. The script in Listing 10-25 enables

both Audit-Chapter10 and DatabaseAuditSpecification-Chapter10- SensitiveData.

Listing 10-25. Enabling the Database Audit Specification

USE Chapter10Audit

GO

ALTER DATABASE AUDIT SPECIFICATION [DatabaseAuditSpecification-Chapter10-

SensitiveData]

WITH (STATE = ON) ;

GO

Chapter 10 SQL Server SeCurity ModeL

363

USE Master

GO

ALTER SERVER AUDIT [Audit-Chapter10] WITH (STATE = ON) ;

To test security, SQL Server allows you to impersonate a user. To do this, you must

be a sysadmin or be granted the Impersonate permissions on the user in question.

The script in Listing 10-26 impersonates the user Danielle in order to check that the

auditing is successful. It does this by using the EXECUTE AS USER command. The REVERT

command switches the security context back to the user who ran the script.

Listing 10-26. Testing Security with Impersonation

USE Chapter10Audit

GO

GRANT INSERT, UPDATE ON dbo.sensitiveData TO Danielle ;

GO

INSERT INTO dbo.SensitiveData (SensitiveText)

VALUES ('testing') ;

GO

UPDATE dbo.SensitiveData

SET SensitiveText = 'Boo'

WHERE ID = 2 ;

GO

EXECUTE AS USER ='Danielle'

GO

INSERT dbo.SensitiveData (SensitiveText)

VALUES ('testing again') ;

GO

UPDATE dbo.SensitiveData

SET SensitiveText = 'Boo'

WHERE ID = 1 ;

GO

REVERT

Chapter 10 SQL Server SeCurity ModeL

364

 Auditing the Audit
With the auditing that we have implemented up to this point, there is a security

hole. If an administrator with the permissions to manage server audit has ill intent,

then it is possible for them to change the audit specification before performing a

malicious action and then finally reconfiguring the audit to its original state in order

to remove reputability.

Server audit allows you to protect against this threat, however, by giving you

the ability to audit the audit itself. If you add the AUDIT_CHANGE_GROUP to your

server audit specification or database audit specification, then any changes to the

specification are captured.

Using the Audit-Chapter10 server audit and the DatabaseAuditSpecification-

Chapter10 database audit specification as an example, we are auditing any INSERT

statements, by any user, to the SensitiveData table. To avoid a privileged user with

ill intent inserting data into this table without traceability, we can use the script

in Listing 10-27 to add the AUDIT_CHANGE_GROUP. Note that we have to disable the

database audit specification before we make the change and then re-enable it.

Listing 10-27. Adding AUDIT_CHANGE_GROUP

USE Chapter10Audit

GO

ALTER DATABASE AUDIT SPECIFICATION [DatabaseAuditSpecification-Chapter10-

SensitiveData]

WITH (STATE=OFF) ;

GO

ALTER DATABASE AUDIT SPECIFICATION [DatabaseAuditSpecification-Chapter10-

SensitiveData]

ADD (AUDIT_CHANGE_GROUP) ;

GO

ALTER DATABASE AUDIT SPECIFICATION [DatabaseAuditSpecification-Chapter10-

SensitiveData]

WITH(STATE = ON) ;

GO

Chapter 10 SQL Server SeCurity ModeL

365

After executing this command, any changes we make to the auditing are captured.

If you view the audit log, you can see that the Administrator login has been audited,

removing the INSERT audit on the SensitiveData table.

 Security Reports
When implementing security, DBAs should also think about regulatory compliance,

such as GDPR and SOX. Many regulations require companies to demonstrate that they

know what sensitive data they are holding and who has access to it.

SQL Server helps this process, with features called SQL Data Discovery and

Classification and Vulnerability Assessment. Each of these features will be discussed in

the following sections.

Tip in the following sections, demonstrations will use the WideWorldimporters
sample database. this can be obtained from https://github.com/
Microsoft/sql-server-samples/releases/tag/wide-world-
importers-v1.0

 SQL Data Discovery and Classification
A feature called SQL Data Discovery and Classification, which is built into SQL Server

Management Studio, firstly analyzes the columns in your database and attempts to

discover columns that may contain sensitive information, based on their name. After you

have reviewed and amended these classifications, columns can be tagged, with labels

indicating the type of sensitive information that they hold. This information can then be

viewed in a report, which can also be exported, for communications with auditors.

To access this feature, select Tasks ➤ Data Discovery and Classification ➤ Classify

Data from the context menu of the database in question. This will cause the Data

Classification dialog box to be displayed. Here, you can use the Add Classification to

display the Add Classification pane or click the Recommendations bar at the bottom of

the window to display classification suggestions, based on column names, as depicted in

Figure 10-10.

Chapter 10 SQL Server SeCurity ModeL

https://github.com/Microsoft/sql-server-samples/releases/tag/wide-world-importers-v1.0
https://github.com/Microsoft/sql-server-samples/releases/tag/wide-world-importers-v1.0
https://github.com/Microsoft/sql-server-samples/releases/tag/wide-world-importers-v1.0

366

Here, you can use the check boxes to select the recommendations that you would

like to accept or modify them by using the drop-downs, which allow you to change the

information type and sensitivity labels. You can ignore recommendations by leaving

the check boxes blank, or Add Classification pane can be used to add any columns

that the classification may have missed. Once you are happy with the selection, use the

Accept selected recommendations button, followed by the Save button, to add extended

properties to the columns.

The View Report button will generate a drill-through report, which can be exported

to Word, Excel, or a pdf, allowing it to easily be passed to auditors. A sample of the report

output can be seen in Figure 10-11.

Figure 10-10. View Classification Recommendations

Chapter 10 SQL Server SeCurity ModeL

367

 Vulnerability Assessment
The Vulnerability Assessment is a very useful tool, built into SQL Server

Management Studio, which will scan for and report on potential security issues

within a database. This saves a DBA from having to either check everything manually

after a deployment or create a script that can be periodically run. The feature can be

accessed by selecting Tasks ➤ Vulnerability Assessment ➤ Scan For Vulnerabilities

from the context menu of the relevant database. This will cause the Scan For

Vulnerabilities dialog box to be displayed, where you can select the path that you

would like the report to be saved.

After exiting this dialog box, a report will be generated, as shown in Figure 10-12. The

report consists of two tabs. The first tab details checks that have failed, while the second

tab details checks that were performed and passed. The issues will be categorized by risk

(either Low, Medium, or High).

Figure 10-11. SQL Data Classification Report

Chapter 10 SQL Server SeCurity ModeL

368

Selecting a result will cause an additional pane to be displayed on the report, with a

more detailed view of the issue, as illustrated in Figure 10-13. Here, you will be given a

description of the issue, with details on how to remediate the problem and a copy of the

query that was used to determine the result of the check.

Figure 10-12. Vulnerability Assessment Results

Figure 10-13. Detailed view

Chapter 10 SQL Server SeCurity ModeL

369

If the result of the failed check is expected for a specific database, for example,

there is no requirement to implement TDE on a specific database, then you can use the

Approve as Baseline button for the issue. This means that when the next scan is run, the

result will not appear as a failure. The baseline can be set back to the default settings, by

using the Clear Baseline button.

 Summary
SQL Server offers a complex security framework for managing permissions that contains

multiple, overlapping layers. At the instance level, you can create logins from Windows

users or groups, or you can create them as second tier logins, with passwords stored

inside the database engine. Second tier authentication requires that you enable mixed-

mode authentication at the instance level.

Server roles allow logins to be grouped together so that you can assign them

common permissions. This eases the administrative overhead of managing security. SQL

Server provides built-in server roles for common scenarios, or you can create your own

server roles that meet the needs of your data-tier applications.

At the database level, logins can map to database users. If you are using contained

databases, then it is also possible to create database users that map directly to a

Windows security principal or have their own second tier authentication credentials.

This can help isolate the database from the instance by removing the dependency on

an instance-level login. This can help you make the database more portable, but at the

expense of additional security considerations.

Fine-grained permissions can become difficult to manage, especially when you need

to secure data at the column level. SQL Server offers ownership chaining, which can

reduce this complexity. With ownership chaining, it is possible to assign permissions

on a view, as opposed to on the underlying tables. It is even possible to use ownership

chasing across multiple databases, which, of course, is not without its own complexities.

For ownership chaining to succeed, all of the objects in the chain must share the same

owner. Otherwise the ownership chain is broken and permissions on the underlying

objects are evaluated.

Server audit allows a fine-grained audit of activity at both the instance and database

levels. It also includes the ability to audit the audit itself, thus removing the threat of a

privileged user bypassing the audit with malicious intent. You can save audits to a file in

the operating system and control permissions through NTFS. Alternatively, you can save

audits to the Windows Security log or Windows Application log.

Chapter 10 SQL Server SeCurity ModeL

371
© Peter A. Carter 2019
P. A. Carter, Pro SQL Server 2019 Administration, https://doi.org/10.1007/978-1-4842-5089-1_11

CHAPTER 11

Encryption
Encryption is a process of obfuscating data with an algorithm that uses keys and

certificates so that if security is bypassed and data is accessed or stolen by unauthorized

users, then it will be useless, unless the keys that were used to encrypt it are also

obtained. This adds an additional layer of security over and above access control, but it

does not replace the need for an access control implementation. Encrypting data also

has the potential to considerably degrade performance, so you should use it on the basis

of need, as opposed to implementing it on all data as a matter of routine.

In this chapter, we discuss the SQL Server encryption hierarchy before demonstrating

how to implement Transparent Data Encryption (TDE) as well as cell- level encryption.

We also discuss Always Encrypted and secure enclaves.

 Encryption Hierarchy
SQL Server offers the ability to encrypt data through a hierarchy of keys and certificates.

Each layer within the hierarchy encrypts the layer below it.

 Encryption Concepts
Before we discuss the hierarchy in detail, it is important to understand the concepts that

relate to encryption. The following sections provide an overview of the main artifacts

that are involved in encryption.

 Symmetric Keys

A symmetric key is an algorithm that you can use to encrypt data. It is the weakest form

of encryption because it uses the same algorithm for both encrypting and decrypting the

data. It is also the encryption method that has the least performance overhead. You can

encrypt a symmetric key with a password or with another key or certificate.

372

 Asymmetric Keys

In contrast to a symmetric key, which uses the same algorithm to both encrypt and

decrypt data, an asymmetric key uses a pair of keys or algorithms. You can use one for

encryption only and the other for decryption only. The key that is used to encrypt the

data is called the private key and the key that is used to decrypt the data is known as the

public key.

 Certificates

A certificate is issued by a trusted source, known as a certificate authority (CA). It uses an

asymmetric key and provides a digitally signed statement, which binds the public key to

a principal or device, which holds the corresponding private key.

 Windows Data Protection API

The Windows Data Protection API (DPAPI) is a cryptographic application programming

interface (API) that ships with the Windows operating system. It allows keys to be

encrypted by using user or domain secret information. DPAPI is used to encrypt the

Service Master Key, which is the top level of the SQL Server encryption hierarchy.

 SQL Server Encryption Concepts
SQL Server’s cryptography functionality relies on a hierarchy of keys and certificates,

with the root level being the Service Master Key. The following sections describe the use

of master keys, as well as SQL Server’s encryption hierarchy.

 Master Keys

The root level of the SQL Server encryption hierarchy is the Service Master Key.

The Service Master Key is created automatically when the instance is built, and it is

used to encrypt database master keys, credentials, and linked servers’ passwords using

the DPAPI. The Service Master Key is stored in the Master database, and there is always

precisely one per instance. In SQL Server 2012 and above, the Service Master Key is a

symmetric key that is generated using the AES 256 algorithm. This is in contrast to older

versions of SQL Server, which use the Triple DES algorithm.

Chapter 11 enCryption

373

Because of the new encryption algorithm used in SQL Server 2012 and above,

when you upgrade an instance from SQL Server 2008 R2 or below, it is good practice to

regenerate the key.

The issue with regenerating the Service Master Key, however, is that it involves

decrypting and then re-encrypting every key and certificate that sits below it in the

hierarchy. This is a very resource-intensive process and should only be attempted during

a maintenance window.

You can regenerate the Service Master Key using the command in Listing 11-1. You

should be aware, however, that if the process fails to decrypt and re-encrypt any key that

is below it in the hierarchy, then the whole regeneration process fails. You can change

this behavior by using the FORCE keyword. The FORCE keyword forces the process to

continue, after errors. Be warned that this will leave any data that cannot be decrypted

and re-encrypted unusable. You will have no way to regain access to this data.

Listing 11-1. Regenerating the Service Master Key

ALTER SERVICE MASTER KEY REGENERATE

Because the Service Master Key is so vital, you must take a backup of it after it has

been created or regenerated and store it in a secure, offsite location for the purpose of

disaster recovery. You can also restore the backup of this key if you are migrating an

instance to a different server to avoid issues with the encryption hierarchy. The script

in Listing 11-2 demonstrates how to back up and restore the Service Master Key. If the

master key you restore is identical, then SQL Server lets you know and data does not

need to be re-encrypted.

Listing 11-2. Backing Up and Restoring the Service Master Key

BACKUP SERVICE MASTER KEY

 TO FILE = 'c:\keys\service_master_key'

 ENCRYPTION BY PASSWORD = 'Pa$$w0rd'

RESTORE SERVICE MASTER KEY

 FROM FILE = 'c:\keys\service_master_key'

 DECRYPTION BY PASSWORD = 'Pa$$w0rd'

Chapter 11 enCryption

374

Tip service_master_key is the name of the key file as opposed to a folder. By
convention, it does not have an extension.

As when you are regenerating a Service Master Key, when you restore it, you can also

use the FORCE keyword with the same consequences.

A Database Master Key is a symmetric key, encrypted using the AES 256 algorithm,

that is used to encrypt the private keys and certificates that are stored within a database.

It is encrypted using a password, but a copy is created that is encrypted using the Service

Master Key. This allows the Database Master Key to be opened automatically when it

is needed. If this copy does not exist, then you need to open it manually. This means

that the key needs to be explicitly opened in order for you to use a key that has been

encrypted by it. A copy of the Database Master Key is stored within the database, and

another copy is stored within the Master database. You can create a Database Master Key

using the command in Listing 11-3.

Listing 11-3. Creating a Database Master Key

CREATE DATABASE Chapter11MasterKeyExample ;

GO

USE Chapter11MasterKeyExample

GO

CREATE MASTER KEY ENCRYPTION BY PASSWORD = 'Pa$$w0rd'

As with the Service Master Key, Database Master Keys should be backed up and

stored in a secure offsite location. You can back up and restore a Database Master Key by

using the commands in Listing 11-4.

Listing 11-4. Backing Up and Restoring a Database Master Key

BACKUP MASTER KEY TO FILE = 'c:\keys\Chapter11_master_key'

 ENCRYPTION BY PASSWORD = 'Pa$$w0rd';

RESTORE MASTER KEY

 FROM FILE = 'c:\keys\Chapter11_master_key'

 DECRYPTION BY PASSWORD = 'Pa$$w0rd' --The password in the backup file

 ENCRYPTION BY PASSWORD = 'Pa$$w0rd'; --The password it will be

encrypted within the database

Chapter 11 enCryption

375

As with the Service Master Key, if the restore is unable to decrypt and re-encrypt any of

the keys below it in the hierarchy, the restore fails. You are able to use the FORCE keyword to

force the restore to succeed, but when you do so, you permanently lose access to the data

encrypted using the key(s) that could not be decrypted and re- encrypted.

 Hierarchy

The SQL Server encryption hierarchy is illustrated in Figure 11-1.

The diagram shows that the Service Master Key and a copy of the Database Master

Key are stored at the instance level, with the Database Master Key also being stored

within the database. The certificates, symmetric keys, and asymmetric keys that are

encrypted using the Database Master Key are also stored within the database.

Figure 11-1. Encryption hierarchy

Chapter 11 enCryption

376

To the right of the diagram, you see a section called the EKM Module. An Extensible

Key Management (EKM) module allows you to generate and manage keys and

certificates used to secure SQL Server data in third-party hardware security modules,

which interface with SQL Server using the Microsoft Cryptographic API (MSCAPI). This

is more secure, because the key is not being stored with the data, but it also means that

you can benefit from advanced features that may be offered by the third-party vendor,

such as key rotation and secure key disposal.

Before you can use a third-party EKM module, you need to enable EKM at the

instance level using sp_configure, and you must register the EKM by importing the .dll

into SQL Server. Many EKM providers are available, but the sample script in Listing

11-5 demonstrates how you might import the Thales EKM module after you install the

database security pack.

Listing 11-5. Enabling EKM and Importing the EKM Module

--Enable EKM

sp_configure 'show advanced', 1

GO

RECONFIGURE

GO

sp_configure 'EKM provider enabled', 1

GO

RECONFIGURE

GO

--Register provider

CREATE CRYPTOGRAPHIC PROVIDER nCipher_Provider FROM FILE =

 'C:\Program Files\nCipher\nfast\bin\ncsqlekm64.dll'

Note a full discussion of eKM is beyond the scope of this book, but you can
obtain further information from your cryptographic provider.

Chapter 11 enCryption

377

 Transparent Data Encryption
When implementing a security strategy for your sensitive data, one important aspect to

consider is the risk of data being stolen. Imagine a situation in which a privileged user

with malicious intent uses detach/attach to move a database to a new instance in order

to gain access to data they are not authorized to view. Alternatively, if a malicious user

gains access to the database backups, they can restore the backups to a new server in

order to gain access to the data.

Transparent Data Encryption (TDE) protects against these scenarios by encrypting

the data pages and log file of a database and by storing the key, known as a Database

Encryption Key, in the boot record of the database. Once you enable TDE on a database,

pages are encrypted before they are written to disk, and they are decrypted when they

are read into memory.

TDE also provides several advantages over cell-level encryption, which will be

discussed later in this chapter. First, it does not cause bloat. A database encrypted with

TDE is the same size as it was before it was encrypted. Also, although there is a

performance overhead, this is significantly less than the performance overhead

associated with cell-level encryption. Another significant advantage is that the

encryption is transparent to applications, meaning that developers do not need to

modify their code to access the data.

When planning the implementation of TDE, be mindful of how it interacts with other

technologies. For example, you are able to encrypt a database that uses In-Memory

OLTP, but the data within the In-Memory filegroup is not encrypted because the data

resides in memory, and TDE only encrypts data at rest, meaning when it is on disk. Even

though the memory-optimized data is not encrypted, log records associated with in-

memory transactions are encrypted.

It is also possible to encrypt databases that use FILESTREAM, but again, data within

a FILESTREAM filegroup is not encrypted. If you use full-text indexes, then new full-

text indexes are encrypted. Existing full-text indexes are only encrypted after they are

imported during an upgrade. It is regarded as bad practice to use full-text indexing with

TDE, however. This is because data is written to disk in plaintext during the full-text

indexing scan operation, which leaves a window of opportunity for attackers to access

sensitive data.

Chapter 11 enCryption

378

High availability and disaster recovery technologies such as database mirroring,

AlwaysOn Availability Groups, and log shipping are supported with databases that

have TDE enabled. Data on the replica database is also encrypted, and the data within

the log is encrypted, meaning that it cannot be intercepted as it is being sent between

the servers. Replication is also supported with TDE, but the data in the subscriber is

not automatically encrypted. You must enable TDE manually on subscribers and the

distributor.

Caution even if you enable tDe at the subscriber, data is still stored in plaintext
while it is in intermediate files. this, arguably, poses a greater risk than using Fte
(full-text indexes), so you should closely consider the risk/benefit scenario.

It is also important to note that enabling TDE for any database within an instance

causes TDE to be enabled on TempDB. The reason for this is that TempDB is used to

store user data for intermediate result sets, during sort operations, spool operations, and

so on. TempDB also stores user data when you are using Temp Tables, or row versioning

operations occur. This can have the undesirable effect of decreasing the performance of

other user databases that have not had TDE enabled.

It is also important to note, from the viewpoint of the performance of database

maintenance, that TDE is incompatible with instant file initialization. Instant file

initialization speeds up operations that create or expand files, as the files do not need

to be zeroed out. If your instance is configured to use instant file initialization, then it

no longer works for the files associated with any databases that you encrypt. It is a hard

technical requirement that files are zeroed out when TDE is enabled.

 Implementing TDE
To implement Transparent Data Encryption, you must first create a Database Master

Key. Once this key is in place, you can create a certificate. You must use the Database

Master Key to encrypt the certificate. If you attempt to encrypt the certificate using a

password only, then it will be rejected when you attempt to use it to encrypt the

Database Encryption Key. The Database Encryption Key is the next object that you need

to create, and as implied earlier, you encrypt this using the certificate. Finally, you can

alter the database to turn encryption on.

Chapter 11 enCryption

379

Note it is possible to encrypt the Database encryption Key using an asymmetric
key as opposed to a server certificate, but only if the asymmetric key is protected
using an eKM module.

When you enable TDE for a database, a background process moves through each

page in every data file and encrypts it. This does not stop the database from being

accessible, but it does take out locks, which stop maintenance operations from taking

place. While the encryption scan is in progress, the following operations cannot be

performed:

• Dropping a file

• Dropping a filegroup

• Dropping the database

• Detaching the database

• Taking the database offline

• Setting the database as read_only

Luckily, a new feature of SQL Server 2019 gives DBAs more control over this process,

with the ability to pause and restart the encryption scan, using an ALTER DATABASE

statement, with either SET ENCRYPTION SUSPEND or SET ENCRYPTION RESTART options

specified.

It is also important to note that the operation to enable TDE will fail if any of the

filegroups within a database are marked as read_only. This is because all pages within

all files need to be encrypted when TDE is enabled, and this involves changing the data

within the pages to obfuscate them.

The script in Listing 11-6 creates a database called Chapter11Encrypted and then

creates a table that is populated with data. Finally, it creates a Database Master Key and a

server certificate.

Chapter 11 enCryption

380

Listing 11-6. Creating the Chapter11Encrypted Database

--Create the Database

CREATE DATABASE Chapter11Encrypted ;

GO

USE Chapter11Encrypted

GO

--Create the table

CREATE TABLE dbo.SensitiveData

(

ID INT PRIMARY KEY IDENTITY,

FirstName NVARCHAR(30),

LastName NVARCHAR(30),

CreditCardNumber VARBINARY(8000)

) ;

GO

--Populate the table

DECLARE @Numbers TABLE

(

 Number INT

)

;WITH CTE(Number)

AS

(

 SELECT 1 Number

 UNION ALL

 SELECT Number + 1

 FROM CTE

 WHERE Number < 100

)

INSERT INTO @Numbers

SELECT Number FROM CTE ;

Chapter 11 enCryption

381

DECLARE @Names TABLE

(

 FirstName VARCHAR(30),

 LastName VARCHAR(30)

) ;

INSERT INTO @Names

VALUES('Peter', 'Carter'),

 ('Michael', 'Smith'),

 ('Danielle', 'Mead'),

 ('Reuben', 'Roberts'),

 ('Iris', 'Jones'),

 ('Sylvia', 'Davies'),

 ('Finola', 'Wright'),

 ('Edward', 'James'),

 ('Marie', 'Andrews'),

 ('Jennifer', 'Abraham'),

 ('Margaret', 'Jones') ;

INSERT INTO dbo.SensitiveData(Firstname, LastName, CreditCardNumber)

SELECT FirstName, LastName, CreditCardNumber FROM

 (SELECT

 (SELECT TOP 1 FirstName FROM @Names ORDER BY NEWID())

FirstName

 ,(SELECT TOP 1 LastName FROM @Names ORDER BY NEWID())

LastName

 ,(SELECT CONVERT(VARBINARY(8000)

 ,(SELECT TOP 1 CAST(Number * 100 AS CHAR(4))

 FROM @Numbers

 WHERE Number BETWEEN 10 AND 99 ORDER BY NEWID()) + '-' +

 (SELECT TOP 1 CAST(Number * 100 AS CHAR(4))

 FROM @Numbers

 WHERE Number BETWEEN 10 AND 99 ORDER BY

NEWID()) + '-' +

 (SELECT TOP 1 CAST(Number * 100 AS CHAR(4))

 FROM @Numbers

Chapter 11 enCryption

382

 WHERE Number BETWEEN 10 AND 99 ORDER BY

NEWID()) + '-' +

 (SELECT TOP 1 CAST(Number ∗ 100 AS CHAR(4))
 FROM @Numbers

 WHERE Number BETWEEN 10 AND 99 ORDER BY

NEWID()))) CreditCardNumber

FROM @Numbers a

CROSS JOIN @Numbers b

CROSS JOIN @Numbers c

) d ;

USE Master

GO

--Create the Database Master Key

CREATE MASTER KEY ENCRYPTION BY PASSWORD = 'Pa$$w0rd';

GO

--Create the Server Certificate

CREATE CERTIFICATE TDECert WITH SUBJECT = 'Certificate For TDE';

GO

Now that we have created our database, along with the Database Master Key

and certificate, we can now encrypt our database. To do this through SQL Server

Management Studio, we can select Manage Database Encryption, from under Tasks, in

the context menu of our database. This invokes the Manage Database Encryption wizard,

illustrated in Figure 11-2.

Chapter 11 enCryption

383

You can see that we have selected our server certificate from the drop-down box and

have chosen to enable database encryption. In the Encryption Algorithm drop-down

box, we have selected AES 128, which is the default option.

Note Choosing an algorithm is essentially a trade-off between security and
performance. Longer keys consume more CpU resources but are more difficult to
crack.

Transparent Data Encryption can also be configured through T-SQL. We can achieve

the same results via T-SQL by executing the script in Listing 11-7.

Figure 11-2. Manage Database Encryption wizard

Chapter 11 enCryption

384

Listing 11-7. Enabling Transparent Data Encryption

USE CHAPTER11Encrypted

GO

--Create the Database Encryption Key

CREATE DATABASE ENCRYPTION KEY

WITH ALGORITHM = AES_128

ENCRYPTION BY SERVER CERTIFICATE TDECert ;

GO

--Enable TDE on the database

ALTER DATABASE CHAPTER11Encrypted SET ENCRYPTION ON ;

GO

 Managing TDE
When configuring TDE, we are given a warning that the certificate used to encrypt

the Database Encryption Key has not been backed up. Backing up this certificate is

critical, and you should do so before you configure TDE or immediately afterward. If

the certificate becomes unavailable, you have no way to recover the data within your

database. You can back up the certificate by using the script in Listing 11-8.

Listing 11-8. Backing Up the Certificate

USE Master

GO

BACKUP CERTIFICATE TDECert

TO FILE = 'C:\certificates\TDECert'

WITH PRIVATE KEY (file='C:\certificates\TDECertKey',

ENCRYPTION BY PASSWORD='Pa$$w0rd')

Chapter 11 enCryption

385

 Migrating an Encrypted Database

By the very nature of TDE, if we attempt to move our Chapter11Encrypted database

to a new instance, the operation fails, unless we take our cryptographic artifacts into

account. Figure 11-3 illustrates the message we receive if we take a backup of the

Chapter11Encrypted database and try to restore it on a new instance. You can find a full

discussion of backups and restores in Chapter 12.

We would receive the same error if we detached the database and attempted to

attach it to the new instance. Instead, we must first create a Database Master Key with

the same password and then restore the server certificate and private key to the new

instance. We can restore the server certificate that we created earlier, using the script in

Listing 11-9.

Listing 11-9. Restoring the Server Certificate

CREATE MASTER KEY ENCRYPTION BY PASSWORD = 'Pa$$w0rd' ;

GO

CREATE CERTIFICATE TDECert

FROM FILE = 'C:\Certificates\TDECert'

WITH PRIVATE KEY

(

 FILE = 'C:\Certificates\TDECertKey',

 DECRYPTION BY PASSWORD = 'Pa$$w0rd'

) ;

Figure 11-3. An attempt to restore an encrypted database on a new instance

Chapter 11 enCryption

386

Tip Make sure that the SQL Server service account has permissions to the
certificate and key files in the operating system. otherwise you will receive an
error stating that the certificate is not valid, does not exist, or that you do not have
permissions to it. this means that you should check the restore immediately and
periodically repeat the test.

 Managing Cell-Level Encryption
Cell-level encryption allows you to encrypt a single column, or even specific cells from

a column, using a symmetric key, an asymmetric key, a certificate, or a password.

Although this can offer an extra layer of security for your data, it can also cause a

significant performance impact and a large amount of bloat. Bloat means that the

size of the data is much larger after the data has been encrypted than it was before.

Additionally, implementing cell-level encryption is a manual process that requires you

to make code changes to applications. Therefore, encrypting data should not be your

default position, and you should only do it when you have a regulatory requirement or

clear business justification.

Although it is common practice to encrypt data using a symmetric key, it is also

possible to encrypt data using an asymmetric key, a certificate, or even a passphrase. If

you encrypt data using a passphrase, then the TRIPLE DES algorithm is used to encrypt

the data. Table 11-1 lists the cryptographic functions that you can use to encrypt or

decrypt data using these methods.

Table 11-1. Cryptographic Functions

Encryption Method Encryption Function Decryption Function

asymmetric key ENCRYPTBYASYMKEY() DECRYPTBYASYMKEY()

Certificate ENCRYPTBYCERT() DECRYPTBYCERT()

passphrase ENCRYPTBYPASSPHRASE() DECRYPTBYPASSPHRASE()

Chapter 11 enCryption

387

When we created the SensitiveData table in our database, you may have noticed

that we used the VARBINARY(8000) data type for the CreditCardNumber column when

the obvious choice would have been a CHAR(19). This is because encrypted data must be

stored as one of the binary data types. We have set the length to 8000 bytes, because this

is the maximum length of the data that is returned from the function used to encrypt it.

The script in Listing 11-10 will create a duplicate of the Chapter11Encrypted

database. The script then creates a Database Master Key for this database and a

certificate. After that, it creates a symmetric key that will be encrypted using the

certificate. Finally, it opens the symmetric key and uses it to encrypt the

CreditCardNumber column in our SensitiveData table.

Listing 11-10. Encrypting a Column of Data

--Create the duplicate Database

CREATE DATABASE Chapter11CellEncrypted ;

GO

USE Chapter11CellEncrypted

GO

--Create the table

CREATE TABLE dbo.SensitiveData

(

ID INT PRIMARY KEY IDENTITY,

FirstName NVARCHAR(30),

LastName NVARCHAR(30),

CreditCardNumber VARBINARY(8000)

)

GO

--Populate the table

SET identity_insert dbo.SensitiveData ON

Chapter 11 enCryption

388

INSERT INTO dbo.SensitiveData(id, firstname, lastname, CreditCardNumber)

SELECT id

 ,firstname

 ,lastname

 ,CreditCardNumber

FROM Chapter11Encrypted.dbo.SensitiveData

SET identity_insert dbo.SensitiveData OFF

--Create Database Master Key

CREATE MASTER KEY ENCRYPTION BY PASSWORD = 'Pa$$w0rd';

GO

--Create Certificate

CREATE CERTIFICATE CreditCardCert

 WITH SUBJECT = 'Credit Card Numbers';

GO

--Create Symmetric Key

CREATE SYMMETRIC KEY CreditCardKey

 WITH ALGORITHM = AES_128

 ENCRYPTION BY CERTIFICATE CreditCardCert;

GO

--Open Symmetric Key

OPEN SYMMETRIC KEY CreditCardKey

 DECRYPTION BY CERTIFICATE CreditCardCert;

--Encrypt the CreditCardNumber column

UPDATE dbo.SensitiveData

SET CreditCardNumber = ENCRYPTBYKEY(KEY_GUID('CreditCardKey'),

CreditCardNumber);

GO

CLOSE SYMMETRIC KEY CreditCardKey --Close the key so it cannot be used

again, unless reopened

Chapter 11 enCryption

389

Notice that the UPDATE statement that we used to encrypt the data uses a function

called ENCRYPTBYKEY() to encrypt the data. Table 11-2 describes the parameters the

ENCRYPTBYKEY() function accepts. If we wish only to encrypt a subset of cells, we can add

a WHERE clause to the UPDATE statement.

Also notice that before we use the key to encrypt the data, we issue a statement to

open the key. The key must always be opened before it is used for either encrypting or

decrypting data. To do this, the user must have permissions to open the key.

When you encrypt a column of data using the method shown in Listing 11-10,

you still have a security risk caused by the deterministic nature of the algorithm

used for encryption, which means when you encrypt the same value, you get the

same hash. Imagine a scenario in which a user has access to the SensitiveData

table but is not authorized to view the credit card numbers. If that user is also

a customer with a record in that table, they could update their own credit card

number with the same hashed value as that of another customer in the table. They

have then successfully stolen another customer’s credit card number, without

having to decrypt the data in the CreditCardNumber column. This is known as a

whole-value substitution attack.

To protect against this scenario, you can add an authenticator column, which is also

known as a salt value. This can be any column but is usually the primary key column of

the table. When the data is encrypted, the authenticator column is encrypted along with

the data. At the point of decryption, the authenticator value is then checked, and if it

does not match, then the decryption fails.

Table 11-2. EncryptByKey() Parameters

Parameter Description

Key_GUID the GUiD of the symmetric key that is used to encrypt the data

ClearText the binary representation of the data that you wish to encrypt

Add_authenticator a BIT parameter that indicates if an authenticator column should

be added

Authenticator a parameter that specifies the column that should be used as an

authenticator

Chapter 11 enCryption

390

Caution it is very important that the values in the authenticator column are never
updated. if they are, you may lose access to your sensitive data.

The script in Listing 11-11 shows how we can use an authenticator column to

encrypt the CreditCardNumber column using the primary key of the table as an

Authenticator column. Here, we use the HASHBYTES() function to create a hash

value of the Authenticator column, and then we use the hash representation to

encrypt the data. If you have already encrypted the column, the values are updated

to include the salt.

Tip this script is included as an example, but you should avoid running it at this
point so you are able to follow later code examples.

Listing 11-11. Encrypting a Column Using an Authenticator

OPEN SYMMETRIC KEY CreditCardKey

 DECRYPTION BY CERTIFICATE CreditCardCert;

--Encrypt the CreditCardNumber column

UPDATE SensitiveData

SET CreditCardNumber = ENCRYPTBYKEY(Key_GUID('CreditCardKey')

 ,CreditCardNumber

 ,1

 ,HASHBYTES('SHA1', CONVERT(VARBINARY(8000), ID)));

GO

CLOSE SYMMETRIC KEY CreditCardKey ;

At the end of the script, we close the key. If we do not close it explicitly, then it

remains open for the rest of the session. This can be useful if we are going to perform

multiple activities using the same key, but it is good practice to explicitly close it

immediately following its final usage within a session.

Chapter 11 enCryption

391

Even though it is possible to encrypt data using symmetric keys, asymmetric keys, or

certificates for performance reasons, you will usually choose to use a symmetric key and

then encrypt that key using either an asymmetric key or a certificate.

 Accessing Encrypted Data
In order to read the data in the column encrypted using ENCRYPTBYKEY(), we need to

decrypt it using the DECRYPTBYKEY() function. Table 11-3 describes the parameters for

this function.

The script in Listing 11-12 demonstrates how to read the encrypted data in the

CreditCardNumber column using the DECRYPTBYKEY() function after it has been

encrypted without an authenticator.

Listing 11-12. Reading an Encrypted Column

--Open Key

OPEN SYMMETRIC KEY CreditCardKey

 DECRYPTION BY CERTIFICATE CreditCardCert;

--Read the Data using DECRYPTBYKEY()

SELECT

 FirstName

 ,LastName

 ,CreditCardNumber AS [Credit Card Number Encrypted]

 ,CONVERT(VARCHAR(30), DECRYPTBYKEY(CreditCardNumber)) AS [Credit

Card Number Decrypted]

Table 11-3. DecryptByKey Parameters

Parameter Description

Cyphertext the encrypted data that you want to decrypt

AddAuthenticator a BIT value specifying if an authenticator column

is required

Authenticator the column to be used as an authenticator

Chapter 11 enCryption

392

 ,CONVERT(VARCHAR(30), CreditCardNumber)

 AS [Credit Card Number Converted

Without Decryption]

FROM dbo.SensitiveData ;

--Close the Key

CLOSE SYMMETRIC KEY CreditCardKey ;

The sample of the results from the final query in this script is shown in

Figure 11- 4. You can see that querying the encrypted column directly returns the

encrypted binary value. Querying the encrypted column with a straight conversion

to the VARCHAR data type succeeds, but no data is returned. Querying the encrypted

column using the DECRYPTBYKEY() function, however, returns the correct result

when the value is converted to the VARCHAR data type.

 Always Encrypted
Always Encrypted is a technology introduced in SQL Server 2016 and is the first SQL

Server encryption technology which protects data against privileged users, such

as members of the sysadmin role. Because DBAs cannot view the encrypted data,

Always Encrypted provides true segregation of duties. This can help with compliance

issues for sensitive data when your platform support is outsourced to a third-party

vendor. This is especially true if you have a regulatory requirement not to make your

data available outside of your country’s jurisdiction and the third-party vendor is

using offshore teams.

Figure 11-4. Results of DECRYPTBYKEY()

Chapter 11 enCryption

393

Always Encrypted uses two separate types of key: a column encryption key and a

column master key. The column encryption key is used to encrypt the data within a

column, and the column master key is used to encrypt the column encryption keys.

Tip the column master key is a key or a certificate located within an external store.

Having the second layer of key means that SQL Server need only store an encrypted

value of the column encryption key, instead of storing it in plaintext. The column master

key is not stored in the database engine at all. Instead, it is stored in an external key store.

The key store used could be an HSM (hardware security module), Windows Certificate

Store, or an EKM provider, such as Azure Key Vault or Thales. SQL Server then stores the

location of the column master key, within the database metadata.

Instead of SQL Server being responsible for the encryption and decryption of

data, this responsibility is handled by the client driver. Of course, this means that the

application must be using a supported driver, and the following link contains details

of working with supported drivers: https://msdn.microsoft.com/en-gb/library/

mt147923.aspx

When an application issues a request, which will require data to either be encrypted

or decrypted, the client driver liaises with the database engine to determine the location

of the column master key. The database engine also provides the encrypted column

encryption key and the algorithm used to encrypt it.

The client driver can now contact the external key store and retrieve the column

master key, which it uses to decrypt the column encryption key. The plaintext

version of the column encryption key can then be used to encrypt or decrypt the

data, as required.

The entire process is transparent to the application, meaning that changes are not

required to the application’s code, in order to use Always Encrypted. The only change

that may be required is to use a later supported driver.

Note the client driver will cache the plaintext version of column encryption keys
as an optimization, which attempts to avoid repeated round trips to the external
key store.

Chapter 11 enCryption

https://msdn.microsoft.com/en-gb/library/mt147923.aspx
https://msdn.microsoft.com/en-gb/library/mt147923.aspx

394

Always Encrypted has some significant limitations, including an inability to

perform non-equality comparisons (even equality comparisons are only available with

deterministic encryption). SQL Server 2019 introduces Secure Enclaves, to address

some of these issues. With secure enclaves, operators such as <, >, and even LIKE are

supported, providing that randomized encryption is used. Secure Enclaves also support

in-place encryption.

Secure Enclaves work, by using a protected area of memory, inside the SQL Server

process, as a trusted execution environment. Within this memory region, data is

decrypted and computations performed. It is not possible for the rest of the SQL Server

process, or any other process on the server, to access the secure memory, meaning that

the decrypted data cannot be leaked, even when using debugging tools.

If SQL Server determines that a secure enclave is required to satisfy a query, then

the client driver uses a secure channel, to send the encryption keys to the secure

enclave. The client driver then submits the query, and encrypted query parameters, for

execution. Because the data (even the encrypted parameters) are only ever decrypted

inside the enclave, the data, parameters, and encryption keys are never exposed, in

plaintext.

Because the decrypted data and keys are available inside of the enclave, the client

driver needs to verify that the enclave is genuine. To do this, it requires an external

arbiter, known as an attestation service, such as the Windows Server Host Guardian

Service. Before sending any data to the enclave, the client driver will contact the

attestation service, to determine the enclave’s validity.

When using Always Encrypted, there are many limitations. For example, advanced

data types are not supported. A full list of limitations can be found at https://docs.

microsoft.com/en-us/sql/relational-databases/security/encryption/always-

encrypted- database-engine?view=sql-server-2019#feature-details.

 Implementing Always Encrypted
In this section, we will encrypt data, within a database called

Chapter11AlwaysEncrypted, using Always Encrypted with Secure Enclaves. We will use

VBS (virtualization-based security) enclaves. In production environments, you should

ensure that your enclaves use TPM (Trusted Platform Module) attestation, for enhanced

security. TPM is a hardware-based attestation and is beyond the scope of this chapter.

Further details can be found at https://docs.microsoft.com/en-us/windows-server/

identity/ad-ds/manage/component-updates/tpm-key-attestation.

Chapter 11 enCryption

https://docs.microsoft.com/en-us/sql/relational-databases/security/encryption/always-encrypted-database-engine?view=sql-server-2019#feature-details
https://docs.microsoft.com/en-us/sql/relational-databases/security/encryption/always-encrypted-database-engine?view=sql-server-2019#feature-details
https://docs.microsoft.com/en-us/sql/relational-databases/security/encryption/always-encrypted-database-engine?view=sql-server-2019#feature-details
https://docs.microsoft.com/en-us/windows-server/identity/ad-ds/manage/component-updates/tpm-key-attestation
https://docs.microsoft.com/en-us/windows-server/identity/ad-ds/manage/component-updates/tpm-key-attestation

395

In this section, we will configure a second server as the attestation service and

register our SQL Server with it, so that it may arbitrate, when clients wish to use the

enclave.

The first step is to use the PowerShell script in Listing 11-13, to configure a second

server as the attestation service. This server must be running Windows Server 2019.

The process requires the server to perform several reboots. Therefore, the script uses

comments to mark the sections. After running each section of the script, the subsequent

section should not be run, until the reboot is complete. Remember that you cannot use

the same server, which hosts your SQL Server instance. It is also worthy of note that

the server acting as the attestation service may not be domain joined, at the point it is

configured. This is because a new domain is created for the host guardian.

Tip the powerShell terminal should be run as administrator for the script to
execute successfully.

Listing 11-13. Configure the Attestation Server

#Part 1 - Install the Host Guardian Service role

Install-WindowsFeature -Name HostGuardianServiceRole

-IncludeManagementTools -Restart

#Part 2 - Install the Host Guardian Service & configure its domain

$DSRepairModePassword = ConvertTo-SecureString -AsPlainText

'MyVerySecurePa$$w0rd' –Force

Install-HgsServer -HgsDomainName 'HostGuardian.local'

-SafeModeAdministratorPassword $DSRepairModePassword -Restart

#After the reboot, log-in using the admin account, which will now be

elevated to Domain Admin of the HostGuardian.local domain

#Part 3 - Configure Host Ket Attestation

Initialize-HgsAttestation -HgsServiceName 'hgs' -TrustHostKey

Chapter 11 enCryption

396

We now need to register the server hosting the SQL Server instance as a guarded

host. We can prepare for this using the script in Listing 11-14. Once again, the script

uses comments to split it into sections. This is because restarts are required during the

process. Again, the PowerShell terminal should be run as Administrator.

Listing 11-14. Prepare to Register the Host As a Guarded Host

#Part 1 - Enable the HostGuardian feature

Enable-WindowsOptionalFeature -Online -FeatureName HostGuardian -All

#Part 2 - Remove VBS requirement. Only required if you are using a VM

Set-ItemProperty -Path HKLM:\SYSTEM\CurrentControlSet\Control\DeviceGuard

-Name RequirePlatformSecurityFeatures -Value 0

shutdown /r

#Part 3 - Generate a host key pair and export public key to a file

#Generate the host key pair

Set-HgsClientHostKey

#Create a folder to store the keys

New-Item -Path c:\ -Name Keys -ItemType directory

#Export the public key to a file

Get-HgsClientHostKey -Path ("c:\Keys\{0}key.cer" -f $env:computername)

At this point, you should manually copy the certificate file that is generated in the c:\

keys folder to the attestation server. Assuming that you copy the certificate to a folder

called c:\keys, the script in Listing 11-15 will import the key into the attestation service.

Note Be sure to change the server and key names to match your own.

Listing 11-15. Import Client Key into Attestation Service

Add-HgsAttestationHostKey -Name WIN-2RDHRBC9VK8 -Path c:\keys\WIN-

2RDHRBC9VK8key.cer

Chapter 11 enCryption

397

The final step in the registration process is to configure the client, which can be

achieved using the script in Listing 11-16. Be sure to change the IP address of the

attestation service to match your own, before running the script.

Listing 11-16. Configure the Client

$params = @{

 AttestationServerUrl = 'http://10.0.0.3/Attestation'

 KeyProtectionServerUrl = 'http://10.0.0.3/KeyProtection'

}

Set-HgsClientConfiguration @params

Now that our server is registered as a guarded host, we can create the certificate

and keys which will be used by Always Encrypted. This can be done using the script in

Listing 11-17.

Listing 11-17. Create the Always Encrypted Cryptographic Objects

Create a certificate, to encrypt the column master key. It will be stored

in the Windows Certificate Store, under Current User

$params = @{

 Subject = "AlwaysEncryptedCert"

 CertStoreLocation = 'Cert:\CurrentUser\My'

 KeyExportPolicy = 'Exportable'

 Type = 'DocumentEncryptionCert'

 KeyUsage = 'DataEncipherment'

 KeySpec = 'KeyExchange'

}

$certificate = New-SelfSignedCertificate @params

Import the SqlServer module.

Import-Module "SqlServer"

Connect to the Chapter11AlwaysEncrypted database

$serverName = "{0}\prosqladmin" -f $env:COMPUTERNAME

$databaseName = "Chapter11AlwaysEncrypted"

Chapter 11 enCryption

398

$connectionString = "Data Source = {0}; Initial Catalog = {1}; Integrated

Security = true" -f @(

 $serverName

 $databaseName

)

$database = Get-SqlDatabase -ConnectionString $connectionString

Create a settings object, specifying -AllowEnclaveComputations to make

the key Enclave Enabled

$params = @{

 CertificateStoreLocation = 'CurrentUser'

 Thumbprint = $certificate.Thumbprint

 AllowEnclaveComputations = $true

}

$cmkSettings = New-SqlCertificateStoreColumnMasterKeySettings @params

Create the Column Master Key.

$cmkName = 'ColumnMasterKey'

$params = @{

 Name = $cmkName

 InputObject = $database

 ColumnMasterKeySettings = $cmkSettings

}

New-SqlColumnMasterKey @params

Create a Column Encryption Key, encrypted with the Column Master Key

$params = @{

 Name = 'ColumnEncryptionKey'

 InputObject = $database

 ColumnMasterKey = $cmkName

}

New-SqlColumnEncryptionKey @params

When creating the Column Master Key, we specified a Key Store parameter.

Table 11- 4 details the key stores that are supported for Always Encrypted. If we wish to

use Secure Enclaves, however, we must not choose the CNG store.

Chapter 11 enCryption

399

The next step is to enable secure enclaves within the SQL Server instance. Unlike

most instance configurations, the instance must be restarted for the change to take

effect. The script in Listing 11-18 will change the configuration.

Listing 11-18. Enable Secure Enclaves

EXEC sys.sp_configure 'column encryption enclave type', 1;

RECONFIGURE ;

Tip in prerelease versions of SQL Server 2019, trace Flag 127 must be enabled
globally, to enable rich computations.

We now want to encrypt the CreditCardNumber, ExpMonth, and ExpYear columns of

the dbo.CreditCards table, which is loosely based on the Sales.CreditCard table of the

AdventureWorks database.

When encrypting the data, we have a choice of two methods: deterministic or

randomized. This is an important decision to understand, as it may have an impact on

performance, security, and the features that are available with secure enclaves.

Table 11-4. Key Store Values

Key Store Type Description

Windows Certificate

Store—Current User

the key or certificate is stored in the area of the Windows Certificate

Store that is reserved for the profile of the user that created the

certificate. this option may be appropriate if you use the database

engine’s service account interactively to create the certificate.

Windows Certificate

Store—Local Machine

the key or certificate is stored in the area of the Windows Certificate

Store that is reserved for the local machine.

azure Key Vault the key or certificate is stored in the azure Key Vault eKM service.

Key Storage provider

(CnG)

the key or certificate is stored in an eKM store that supports

Cryptography api: next Generation.

Chapter 11 enCryption

400

Deterministic encryption will always produce the same encrypted value for the same

plaintext value. This means that if deterministic encryption is used, operations including

equality joins, grouping, and indexing are possible on an encrypted column, proving a

BIN2 collation is used for the column. This leaves the possibility of attacks against the

encryption, however.

If you use randomized encryption, then different encrypted values can be generated

for the same plaintext values. This means that while encryption loopholes are plugged,

for standard Always Encrypted implementations, equality joins, grouping, and indexing

are not supported against the encrypted data.

When implementing Always Encrypted with secure enclaves, however, more

functionality is available when using randomized encryption, than it is when using

deterministic encryption. Table 11-5 details the compatibility of deterministic and

randomized encryption, with and without secure enclaves.

Table 11-5. Encryption Types and Feature Compatibility

Encryption Type In-Place
Encryption

Equality
Comparisons

Rich
Computations

Like

Deterministic Without

enclaves

no yes no no

Deterministic With

enclaves

yes yes no no

randomized Without

enclaves

no no no no

randomized With

enclaves

yes yes (inside

enclave)

yes yes

We will use randomized encryption, so that we can fully benefit from secure enclave

functionality. The script in Listing 11-19 will create the Chapter11AlwaysEncrypted

database, before creating the dbo.CreditCards table, which is loosely based on the

Sales.CreditCards table from the AdventureWorks database.

Chapter 11 enCryption

401

Listing 11-19. Create the CreditCards Table with Encrypted Columns

CREATE TABLE dbo.CreditCards

(

CardID INT IDENTITY NOT NULL,

CardType NVARCHAR(20) NOT NULL,

CardNumber NVARCHAR(20) COLLATE Latin1_General_BIN2 ENCRYPTED WITH (

 COLUMN_ENCRYPTION_KEY = [ColumnEncryptionKey],

 ENCRYPTION_TYPE = Randomized,

 ALGORITHM = 'AEAD_AES_256_CBC_HMAC_SHA_256') NOT NULL,

ExpMonth INT ENCRYPTED WITH (

 COLUMN_ENCRYPTION_KEY = [ColumnEncryptionKey],

 ENCRYPTION_TYPE = Randomized,

 ALGORITHM = 'AEAD_AES_256_CBC_HMAC_SHA_256') NOT NULL,

ExpYear INT ENCRYPTED WITH (

 COLUMN_ENCRYPTION_KEY = [ColumnEncryptionKey],

 ENCRYPTION_TYPE = Randomized,

 ALGORITHM = 'AEAD_AES_256_CBC_HMAC_SHA_256') NOT NULL,

CustomerID INT NOT NULL

) ;

Caution if encrypting existing data, only ever perform the operation during a
maintenance window, as DML statements against the table while encryption is in
progress could potentially result in data loss.

We will now use PowerShell to demonstrate how a client may insert data into

encrypted columns. Note that the connection string includes the Column Encryption

Setting. The technique is demonstrated in Listing 11-20.

Listing 11-20. Insert Data into Encrypted Columns

#Create a SqlConnection object, specifying Column Encryption Setting =

enabled

$sqlConn = New-Object System.Data.SqlClient.SqlConnection

Chapter 11 enCryption

402

$sqlConn.ConnectionString = "Server=localhost\prosqladmin;Integrated

Security=true; Initial Catalog=Chapter11AlwaysEncrypted; Column Encryption

Setting=enabled;"

#Open the connection

$sqlConn.Open()

#Create a SqlCommand object, and add the query and parameters

$sqlcmd = New-Object System.Data.SqlClient.SqlCommand

$sqlcmd.Connection = $sqlConn

$sqlcmd.CommandText = "INSERT INTO dbo.CreditCards (CardType, CardNumber,

ExpMonth, ExpYear, CustomerID) VALUES (@CardType, @CardNumber, @ExpMonth,

@ExpYear, @CustomerID)"

$sqlcmd.Parameters.Add((New-Object Data.SqlClient.SqlParameter("

@CardType",[Data.SQLDBType]::nVarChar,20)))

$sqlcmd.Parameters["@CardType"].Value = "SuperiorCard"

$sqlcmd.Parameters.Add((New-Object Data.SqlClient.SqlParameter("

@CardNumber",[Data.SQLDBType]::nVarChar,20)))

$sqlcmd.Parameters["@CardNumber"].Value = "33332664695310"

$sqlcmd.Parameters.Add((New-Object Data.SqlClient.SqlParameter("

@ExpMonth",[Data.SQLDBType]::Int)))

$sqlcmd.Parameters["@ExpMonth"].Value = "12"

$sqlcmd.Parameters.Add((New-Object Data.SqlClient.SqlParameter("

@ExpYear",[Data.SQLDBType]::Int)))

$sqlcmd.Parameters["@ExpYear"].Value = "22"

$sqlcmd.Parameters.Add((New-Object Data.SqlClient.SqlParameter("

@CustomerID",[Data.SQLDBType]::Int)))

$sqlcmd.Parameters["@CustomerID"].Value = "1"

#Insert the data

$sqlcmd.ExecuteNonQuery();

#Close the connection

$sqlConn.Close()

Chapter 11 enCryption

403

 Administering Keys
As you would expect, metadata about keys is exposed through system tables and

dynamic management views. Details regarding Column Master Keys can be found in

the sys.column_master_keys table. The columns returned by this table are detailed in

Table 11-6.

The details of Column Encryption Keys can be found in the sys.column_

encryption_keys system table. This table returns the columns detailed in Table 11-7.

Table 11-6. sys.column_master_keys Columns

Column Description

name the name of the column master key.

Column_master_key_id the internal identifier of the column master key.

Create_date the date and time that the key was created.

Modify_date the date and time that the key was last modified.

Key_store_provider_name the type of key store provider, where the key is stored.

Key_path the path to the key, within the key store.

allow_enclave_computations Specifies if the key is enclave enabled.

Signature a digital signature, combining key_path and allow_

enclave_computations. this stops malicious

administrators changing the key’s enclave-enabled setting.

Table 11-7. Columns Returned by sys.column_encryption_keys

Name Description

name the name of the column encryption key

Column_encryption_key_id the internal iD of the column encryption key

Create_date the date and time that the key was created

Modify_date the date and time that the key was last

modified

Chapter 11 enCryption

404

An additional system table called sys.column_encryption_key_values provides a

join between the sys.column_master_keys and sys.column_encryption_keys system

tables while at the same time providing the encrypted value of the column encryption

key, when encrypted by the column master key. Table 11-8 details the columns returned

by this system table.

Therefore, we could use the query in Listing 11-21 to find all columns in a database

that have been encrypted with enclave-enabled keys.

Tip remove the Where clause to return all columns that are secure with always
encrypted, and determine which columns do and do not support secure enclaves.

Listing 11-21. Return Details of Columns That Use Secure Enclaves

SELECT

 c.name AS ColumnName

 , OBJECT_NAME(c.object_id) AS TableName

 , cek.name AS ColumnEncryptionKey

 , cmk.name AS ColumnMasterKey

 , CASE

 WHEN cmk.allow_enclave_computations = 1

 THEN 'Yes'

 ELSE 'No'

 END AS SecureEnclaves

Table 11-8. sys.column_encryption_key_values Columns

Name Description

Column_encryption_key_id the internal iD of the column encryption key

Column_master_key_id the internal iD of the column master key

encrypted_value the encrypted value of the column encryption key

encrypted_algorithm_name the algorithm used to encrypt the column

encryption key

Chapter 11 enCryption

405

FROM sys.columns c

INNER JOIN sys.column_encryption_keys cek

 ON c.column_encryption_key_id = cek.column_encryption_key_id

INNER JOIN sys.column_encryption_key_values cekv

 ON cekv.column_encryption_key_id = cek.column_encryption_key_id

INNER JOIN sys.column_master_keys cmk

 ON cmk.column_master_key_id = cekv.column_master_key_id

WHERE allow_enclave_computations = 1

It is not possible for an Administrator to toggle a key between enclave enabled

and not enclave enabled. This is a conscious design decision by Microsoft, to protect

against malicious Administrators. It is possible to rotate keys, however, and when

rotating keys, you can rotate out a key that is not enclave enabled and replace it with

one that is (or vice versa).

Tip the following demonstration assumes that an additional column master key
exists within the Chapter11alwaysencrypted database.

The simplest way to rotate a key is by using SQL Server Management Studio. Drill

through Databases ➤ Chapter11AlwaysEncrypted ➤ Security ➤ Always Encrypted

Keys ➤ Column Master Keys and then select Rotate from the context menu of the key

which you wish to rotate out. This will cause the Column Master Key Rotation dialog box

to be displayed, as illustrated in Figure 11-5. Here, you can select the new key, which

should be used to encrypt the underlying column encryption keys.

Chapter 11 enCryption

406

Now that the encryption keys have been re-encrypted using the new keys, the old

key values need to be cleaned up. This can be achieved by selecting Cleanup from the

context menu of the old column master key, causing the Column Master Key Cleanup

dialog box to be invoked. This is illustrated in Figure 11-6.

Figure 11-5. Column Master Key Rotation dialog box

Chapter 11 enCryption

407

 Summary
The SQL Server encryption hierarchy begins with the Service Master Key, which is

encrypted using the Data Protection API (DPAPI) in the Windows operating system. You

can then use this key to encrypt the Database Master Key. In turn, you can use this key

to encrypt keys and certificates stored within the database. SQL Server also supports

third-party Extensible Key Management (EKM) providers to allow for advanced key

management of keys used to secure data.

Transparent Data Encryption (TDE) gives administrators the ability to encrypt an

entire database with no bloat and an acceptable performance overhead. This offers

protection against the theft of data by malicious users attaching a database to a new

instance or stealing the backup media. TDE gives developers the advantage of not

needing to modify their code in order to access the data.

Figure 11-6. Column Master Key Cleanup dialog box

Chapter 11 enCryption

408

Cell-level encryption is a technique used to encrypt data at the column level, or

even the specific rows within a column, using a symmetric key, an asymmetric key, or a

certificate. Although this functionality is very flexible, it is also very manual and causes a

large amount of bloat and a large performance overhead. For this reason, I recommended

that you only use cell-level encryption to secure the minimum amount of data you need

in order to fulfill a regulatory requirement or that you have clear business justification for

using it.

In order to mitigate the impact of bloat and performance degradation when using

cell-level encryption, it is recommended that you encrypt data using a symmetric key.

You can then encrypt the symmetric key using an asymmetric key or certificate.

Chapter 11 enCryption

409
© Peter A. Carter 2019
P. A. Carter, Pro SQL Server 2019 Administration, https://doi.org/10.1007/978-1-4842-5089-1_12

CHAPTER 12

Backups and Restores
Backing up a database is one of the most important tasks that a DBA can perform.

Therefore, after discussing the principles of backups, we look at some of the backup

strategies that you can implement for SQL Server databases. We then discuss how

to perform the backup of a database before we finally look in- depth at restoring

it, including restoring to a point in time, restoring individual files and pages, and

performing piecemeal restores.

 Backup Fundamentals
Depending on the recovery model you are using, you can take three types of backup

within SQL Server: full, differential, and log. We discuss the recovery models in addition

to each of the backup types in the following sections.

 Recovery Models
As discussed in Chapter 6, you can configure a database in one of three recovery models:

SIMPLE, FULL, and BULK LOGGED. These models are discussed in the following sections.

 SIMPLE Recovery Model

When configured in SIMPLE recovery model, the transaction log (or to be more specific,

VLFs [virtual log files] within the transaction log that contain transactions that are no

longer required) is truncated after each checkpoint operation. This means that usually

you do not have to administer the transaction log. However, it also means that you can’t

take transaction log backups.

410

The SIMPLE recovery model can increase performance, for some operations, because

transactions are minimally logged. Operations that can benefit from minimal logging are

as follows:

• Bulk imports

• SELECT INTO

• UPDATE statements against large data types that use the .WRITE clause

• WRITETEXT

• UPDATETEXT

• Index creation

• Index rebuilds

The main disadvantage of the SIMPLE recovery model is that it is not possible to

recover to a specific point in time; you can only restore to the end of a full backup. This

disadvantage is amplified by the fact that full backups can have a performance impact,

so you are unlikely to be able to take them as frequently as you would take a transaction

log backup without causing an impact to users. Another disadvantage is that the SIMPLE

recovery model is incompatible with some SQL Server HA/DR features, namely

• AlwaysOn Availability Groups

• Database mirroring

• Log shipping

Therefore, in production environments, the most appropriate way to use the SIMPLE

recovery model is for large data warehouse–style applications where you have a nightly

ETL load, followed by read-only reporting for the rest of the day. This is because this

model provides the benefit of minimally logged transactions, while at the same time, it

does not have an impact on recovery, since you can take a full backup after the nightly

ETL run.

 FULL Recovery Model

When a database is configured in FULL recovery model, the log truncation does not occur

after a CHECKPOINT operation. Instead, it occurs after a transaction log backup, as long as

a CHECKPOINT operation has occurred since the previous transaction log backup.

Chapter 12 BaCkups and restores

411

This means that you must schedule transaction log backups to run on a frequent basis.

Failing to do so not only leaves your database at risk of being unrecoverable in the event

of a failure, but it also means that your transaction log continues to grow until it runs out

of space and a 9002 error is thrown.

When a database is in FULL recovery model, many factors can cause the VLFs within

a transaction log not to be truncated. This is known as delayed truncation. You can find

the last reason for delayed truncation to occur in the log_reuse_wait_desc column of

sys.databases; a full list of reasons for delayed truncation appears in Chapter 6.

The main advantage of the FULL recovery model is that point-in-time recovery is

possible, which means that you can restore your database to a point in the middle of a

transaction log backup, as opposed to only being able to restore it to the end of a backup.

Point-in-time recovery is discussed in detail later in this chapter. Additionally, FULL

recovery model is compatible with all SQL Server functionality. It is usually the best

choice of recovery model for production databases.

Tip If you switch from SIMPLE recovery model to FULL recovery model, you are
not actually in FULL recovery model until after you take a transaction log backup.
therefore, make sure to back up your transaction log immediately.

 BULK LOGGED Recovery Model

The BULK LOGGED recovery model is designed to be used on a short-term basis

while a bulk import operation takes place. The idea is that your normal model of

operations is to use FULL recovery model and then temporarily switch to the BULK

LOGGED recovery model just before a bulk import takes place; you then switch back to

FULL recovery model when the import completes. This may give you a performance

benefit and also stop the transaction log from filling up, since bulk import operations

are minimally logged.

Immediately before you switch to the BULK LOGGED recovery model, and immediately

after you switch back to FULL recovery model, it is good practice to take a transaction

log backup. This is because you cannot use any transaction log backups that contain

minimally logged transactions for point-in-time recovery. For the same reason, it is

also good practice to safe-state your application before you switch to the BULK LOGGED

recovery model. You normally achieve this by disabling any logins, except for the login

Chapter 12 BaCkups and restores

412

that performs the bulk import and logins that are administrators, to ensure that no other

data modifications take place. You should also ensure that the data you are importing is

recoverable by a means other than a restore. Following these rules mitigates the risk of

data loss in the event of a disaster.

Although the minimally logged inserts keep the transaction log small and reduce

the amount of IO to the log, during the bulk import, the transaction log backup is more

expensive than it is in FULL recovery model in terms of IO. This is because when you

back up a transaction log that contains minimally logged transactions, SQL Server also

backs up any data extents, which contain pages that have been altered using minimally

logged transactions. SQL Server keeps track of these pages by using bitmap pages,

called ML (minimally logged) pages. ML pages occur once in every 64,000 extents

and use a flag to indicate if each extent in the corresponding block of extents contains

minimally logged pages.

Caution BULK LOGGED recovery model may not be faster than FULL recovery
model for bulk imports unless you have a very fast Io subsystem. this is because
the BULK LOGGED recovery model forces data pages updated with minimally
logged pages to flush to disk as soon as the operation completes instead of waiting
for a checkpoint operation.

 Changing the Recovery Model
Before we show you how to change the recovery model of a database, let’s first create the

Chapter12 database, which we use for demonstrations in this chapter. You can create

this database using the script in Listing 12-1.

Listing 12-1. Creating the Chapter12 Database

CREATE DATABASE Chapter12

 ON PRIMARY

(NAME = 'Chapter12', FILENAME = 'C:\MSSQL\DATA\Chapter12.mdf'),

 FILEGROUP FileGroupA

(NAME = 'Chapter12FileA', FILENAME = 'C:\MSSQL\DATA\Chapter12FileA.ndf'),

 FILEGROUP FileGroupB

Chapter 12 BaCkups and restores

413

(NAME = 'Chapter12FileB', FILENAME = 'C:\MSSQL\DATA\Chapter12FileB.ndf')

 LOG ON

(NAME = 'Chapter12_log', FILENAME = 'C:\MSSQL\DATA\Chapter12_log.ldf') ;

GO

ALTER DATABASE [Chapter12] SET RECOVERY FULL ;

GO

USE Chapter12

GO

CREATE TABLE dbo.Contacts

(

ContactID INT NOT NULL IDENTITY PRIMARY KEY,

FirstName NVARCHAR(30),

LastName NVARCHAR(30),

AddressID INT

) ON FileGroupA ;

CREATE TABLE dbo.Addresses

(

AddressID INT NOT NULL IDENTITY PRIMARY KEY,

AddressLine1 NVARCHAR(50),

AddressLine2 NVARCHAR(50),

AddressLine3 NVARCHAR(50),

PostCode NCHAR(8)

) ON FileGroupB ;

You can change the recovery model of a database from SQL Server Management

Studio (SSMS) by selecting Properties from the context menu of the database and

navigating to the Options page, as illustrated in Figure 12-1. You can then select the

appropriate recovery model from the Recovery Model drop-down list.

Chapter 12 BaCkups and restores

414

We can also use the script in Listing 12-2 to switch our Chapter12 database from the

FULL recovery model to the SIMPLE recovery model and then back again.

Listing 12-2. Switching Recovery Models

ALTER DATABASE Chapter12 SET RECOVERY SIMPLE ;

GO

ALTER DATABASE Chapter12 SET RECOVERY FULL ;

GO

Figure 12-1. The Options tab

Chapter 12 BaCkups and restores

415

Tip after changing the recovery model, refresh the database in object explorer to
ensure that the correct recovery model displays.

 Backup Types
You can take three types of backup in SQL Server: full, differential, and log. We discuss

these backup types in the following sections.

 Full Backup

You can take a full backup in any recovery model. When you issue a backup command,

SQL Server first issues a CHECKPOINT, which causes any dirty pages to be written to disk.

It then backs up every page within the database (this is known as the data read phase)

before it finally backs up enough of the transaction log (this is known as the log read

phase) to be able to guarantee transactional consistency. This ensures that you are able

to restore your database to the most recent point, including any transactions that are

committed during the data read phase of the backup.

 Differential Backup

A differential backup backs up every page in the database that has been modified since

the last full backup. SQL Server keeps track of these pages by using bitmap pages called

DIFF pages, which occur once in every 64,000 extents. These pages use flags to indicate

if each extent in their corresponding block of extents contains pages that have been

updated since the last full backup.

The cumulative nature of differential backups means that your restore chain only ever

needs to include one differential backup—the latest one. Only ever needing to restore

one differential backup is very useful if there is a significant time lapse between full

backups, but log backups are taken very frequently, because restoring the last differential

can drastically decrease the number of transaction log backups you need to restore.

 Log Backup

A transaction log backup can only be taken in the FULL or BULK LOGGED recovery models.

When a transaction log backup is issued in the FULL recovery model, it backs up all

transaction log records since the last backup. When it is performed in the BULK LOGGED

Chapter 12 BaCkups and restores

416

recovery model, it also backs up any pages that include minimally logged transactions.

When the backup is complete, SQL Server truncates VLFs within the transaction log until

the first active VLF is reached.

Transaction log backups are especially important on databases that support

OLTP (online transaction processing), since they allow a point-in-time recovery to

the point immediately before the disaster occurred. They are also the least resource-

intensive type of backup, meaning that you can perform them more frequently than

you can perform a full or differential backup without having a significant impact on

database performance.

 Backup Media
Databases can be backed up to disk, tape, or URL. Tape backups are deprecated

however, so you should avoid using them; their support will be removed in a future

version of SQL Server. The terminology surrounding backup media consists of backup

devices, logical backup devices, media sets, media families, and backup sets. The

structure of a media set is depicted in Figure 12-2, and the concepts are discussed in

the following sections.

Figure 12-2. Backup media diagram

Chapter 12 BaCkups and restores

417

 Backup Device

A backup device is a physical file on disk, a tape, or a Windows Azure Blob. When the

device is a disk, the disk can reside locally on the server or on a backup share specified

by a URL. A media set can contain a maximum of 64 backup devices, and data can be

striped across the backup devices and can also be mirrored. In Figure 12-2, there are six

backup devices, split into three mirrored pairs. This means that the backup set is striped

across three of the devices and then mirrored to the other three.

Striping the backup can be useful for a large database, because doing so allows

you to place each device on a different drive array to increase throughput. It can also

pose administrative challenges, however; if one of the disks in the devices in the

stripe becomes unavailable, you are unable to restore your backup. You can mitigate

this by using a mirror. When you use a mirror, the contents of each device are

duplicated to an additional device for redundancy. If one backup device in a media

set is mirrored, then all devices within the media set must be mirrored. Each backup

device or mirrored set of backup devices is known as a media family. Each device

can have up to four mirrors.

Each backup device within a media set must be all disk or all tape. If they are

mirrored, then the mirror devices must have similar properties; otherwise an error is

thrown. For this reason, Microsoft recommends using the same make and model of

device for mirrors.

It is also possible to create logical backup devices, which abstract a physical

backup device. Using logical devices can simplify administration, especially if you are

planning to use many backup devices in the same physical location. A logical backup

device is an instance-level object and can be created in SSMS by choosing New Backup

Device from the context menu of Server Objects ➤ Backup Devices; this causes the

Backup Device dialog box to be displayed, where you can specify a logical device name

and a physical path.

Alternatively, you can create the same logical backup device via T-SQL using the

sp_addumpdevice system stored procedure. The command in Listing 12-3 uses the

sp_addumpdevice procedure to create the Chapter12Backup logical backup device.

In this example, we use the @devtype parameter to pass in the type of the device, in

our case, disk. We then pass the abstracted name of the device into the @logicalname

parameter and the physical file into the @physicalname parameter.

Chapter 12 BaCkups and restores

418

Listing 12-3. Creating a Logical Backup Device

EXEC sp_addumpdevice @devtype = 'disk',

 @logicalname = 'Chapter12Backup',

 @physicalname = 'C:\MSSQL\Backup\Chapter12Backup.bak' ;

GO

 Media Sets

A media set contains the backup devices to which the backup is written. Each media

family within a media set is assigned a sequential number based upon their position

in the media set. This is called the family sequence number. Additionally, each physical

device is allocated a physical sequence number to identify its physical position within the

media set.

When a media set is created, the backup devices (files or tapes) are formatted, and

a media header is written to each device. This media header remains until the devices

are formatted and contains details, such as the name of the media set, the GUID of

the media set, the GUIDs and sequence numbers of the media families, the number of

mirrors in the set, and the date/time that the header was written.

 Backup Sets

Each time a backup is taken to the media set, it is known as a backup set. New backup

sets can be appended to the media, or you can overwrite the existing backup sets. If the

media set contains only one media family, then that media family contains the entire

backup set. Otherwise, the backup set is distributed across the media families. Each

backup set within the media set is given a sequential number; this allows you to select

which backup set to restore.

 Backup Strategies
A DBA can implement numerous backup strategies for a database, but always base

your strategy on the RTO (recovery time objective) and RPO (recovery point objective)

requirements of a data-tier application. For example, if an application has an RPO of

60 minutes, you are not able to achieve this goal if you only back up the database once

every 24 hours.

Chapter 12 BaCkups and restores

419

 Full Backup Only
Backup strategies where you only take full backups are the least flexible. If databases are

infrequently updated and there is a regular backup window that is long enough to take a

full backup, then this may be an appropriate strategy. Also, a full backup–only strategy is

often used for the Master and MSDB system databases.

It may also be appropriate for user databases, which are used for reporting only

and are not updated by users. In this scenario, it may be that the only updates to the

database are made via an ETL load. If this is the case, then your backup only needs to be

as frequent as this load. You should, however, consider adding a dependency between

the ETL load and the full backup, such as putting them in the same SQL Server Agent job.

This is because if your backup takes place halfway through an ETL load, it may render

the backup useless when you come to restore—at least, it would be useless without

unpicking the transactions performed in the ETL load that were included in the backup

before finally rerunning the ETL load.

Using a full backup–only strategy also limits your flexibility for restores. If you only

take full backups, then your only restore option is to restore the database from the

point of the last full backup. This can pose two issues. The first is that if you take nightly

backups at midnight every night and your database becomes corrupt at 23:00, then you

lose 23 hours of data modifications.

The second issue occurs if a user accidently truncates a table at 23:00. The earliest

restore point for the database is midnight the previous night. In this scenario, once again,

your RPO for the incident is 23 hours, meaning 23 hours of data modifications are lost.

 Full and Transaction Log Backups
If your database is in FULL recovery model, then you are able to take transaction log

backups, as well as the full backups. This means that you can take much more frequent

backups, since the transaction log backup is quicker than the full backup and uses fewer

resources. This is appropriate for databases that are updated throughout the day, and

it also offers more flexible restores, since you are able to restore to a point in time just

before a disaster occurred.

If you are taking transaction log backups, then you schedule your log backups to be

in line with your RPO. For example, if you have an RPO of 1 hour, then you can schedule

your log backups to occur every 60 minutes, because this means that you can never lose

Chapter 12 BaCkups and restores

420

more than one hour of data. (This is true as long as you have a complete log chain, none

of your backups are corrupt, and the share or folder where the backups are stored is

accessible when you need it.)

When you use this strategy, you should also consider your RTO. Imagine that you

have an RPO of 30 minutes, so you are taking transaction log backups every half hour,

but you are only taking a full backup once per week, at 01:00 on a Saturday. If your

database becomes corrupt on Friday night at 23:00, you need to restore 330 backups.

This is perfectly feasible from a technical view point, but if you have an RTO of 1 hour,

then you may not be able to restore the database within the allotted time.

 Full, Differential, and Transaction Log Backups
To overcome the issue just described, you may choose to add differential backups to your

strategy. Because a differential backup is cumulative, as opposed to incremental in the

way that log backups are, if you took a differential backup on a nightly basis at 01:00, then

you only need to restore 43 backups to recover your database to the point just before the

failure. This restore sequence consists of the full backup, the differential backup taken on

the Friday morning at 01:00, and then the transaction logs, in sequence, between 01:30

and 23:00.

 Filegroup Backups
For very large databases, it may not be possible to find a maintenance window that is

large enough to take a full backup of the entire database. In this scenario, you may be

able to split your data across filegroups and back up half of the filegroups on alternate

nights. When you come to a restore scenario, you are able to restore only the filegroup

that contains the corrupt data, providing that you have a complete log chain from the

time the filegroup was backed up to the end of the log.

Tip although it is possible to back up individual files as well as a whole
filegroup, I find this less helpful, because tables are spread across all files within
a filegroup. therefore, if a table is corrupted, you need to restore all files within
the filegroup, or if you only have a handful of corrupt pages, then you can restore
just these pages.

Chapter 12 BaCkups and restores

421

 Partial Backup
A partial backup involves backing up all read/write filegroups, but not backing up any

read-only filegroups. This can be very helpful if you have a large amount of archive data

in the database. The BACKUP DATABASE command in T-SQL also supports the READ_

WRITE_FILEGROUP option. This means that you can easily perform a partial backup of a

database without having to list out the read/write filegroups, which of course can leave

you prone to human error if you have many filegroups.

 Backing Up a Database
A database can be backed up through SSMS or via T-SQL. We examine these techniques

in the following sections. Usually, regular backups are scheduled to run with SQL Server

Agent or are incorporated into a maintenance plan. These topics are discussed in

Chapter 22.

 Backing Up in SQL Server Management Studio
You can back up a database through SSMS by selecting Tasks ➤ Backup from the context

menu of the database; this causes the General page of the Back Up Database dialog box

to display, as shown in Figure 12-3.

Chapter 12 BaCkups and restores

422

In the Database drop-down list, select the database that you wish to back up, and

in the Backup Type drop-down, choose to perform either a Full, a Differential, or a

Transaction Log backup. The Copy-Only Backup check box allows you to perform a

backup that does not affect the restore sequence. Therefore, if you take a copy-only

full backup, it does not affect the differential base. Under the covers, this means that

the DIFF pages are not reset. Taking a copy-only log backup does not affect the log

archive point, and therefore the log is not truncated. Taking a copy-only log backup

can be helpful in some online restore scenarios. It is not possible to take a copy-only

differential backup.

Figure 12-3. The General page

Chapter 12 BaCkups and restores

423

If you have selected a full or differential backup in the Backup Component section,

choose if you want to back up the entire database or specific files and filegroups.

Selecting the Files and Filegroups radio button causes the Select Files and Filegroups

dialog box to display, as illustrated in Figure 12-4. Here, you can select individual files or

entire filegroups to back up.

In the Back Up To section of the screen, you can select either Disk, Tape, or URL from

the drop-down list before you use the Add and Remove buttons to specify the backup

devices that form the definition of the media set. You can specify a maximum of 64

backup devices. The backup device may contain multiple backups (backup sets), and

when you click the Contents button, the details of each backup set contained within the

backup device will be displayed.

Figure 12-4. The Select Files and Filegroups dialog box

Chapter 12 BaCkups and restores

424

On the Media Option page, you can specify if you want to use an existing media

set or create a new one. If you choose to use an existing media set, then specify if you

want to overwrite the content of the media set or append a new backup set to the

media set. If you choose to create a new media set, then you can specify the name

and, optionally, a description for the media set. If you use an existing media set, you

can verify the date and time that the media set and backup set expire. These checks

may cause the backup set to be appended to the existing backup device, instead of

overwriting the backup sets.

Under the Reliability section, specify if the backup should be verified after

completion. This is usually a good idea, especially if you are backing up to a URL, since

backups across the network are prone to corruption. Choosing the Perform Checksum

Before Writing To Media option causes the page checksum of each page of the database

to be verified before it is written to the backup device. This causes the backup operation

to use additional resources, but if you are not running DBCC CHECKDB as frequently

as you take backups, then this option may give you an early warning of any database

corruption. (Please see Chapter 9 for more details.) The Continue On Error option

causes the backup to continue, even if a bad checksum is discovered during verification

of the pages.

On the Backup Options page, you are able to set the expiration date of the backup

set as well as select if you want the backup set to be compressed or encrypted. For

compression, you can choose to use the instance default setting, or you can override this

setting by specifically choosing to compress, or not compress, the backup.

If you choose to encrypt the backup, then you need to select a preexisting certificate.

(You can find details of how to create a certificate in Chapter 11.) You then need to select

the algorithm that you wish to use to encrypt the backup. Available algorithms in SQL

Server 2019 are AES 128, AES 192, AES 256, or 3DES (Triple_DES_3Key). You should

usually select an AES algorithm, because support for 3DES will be removed in a future

version of SQL Server.

 Backing Up via T-SQL
When you back up a database or log via T-SQL, you can specify many arguments. These

can be broken down into the following categories:

• Backup options (described in Table 12-1).

• WITH options (described in Table 12-2).

Chapter 12 BaCkups and restores

425

• Backup set options (described in Table 12-3).

• Media set options (described in Table 12-4).

• Error management options (described in Table 12-5).

• Tape options have been deprecated for many versions and should

not be used. Therefore, details of tape options are omitted from this

chapter.

• Log-specific options (described in Table 12-6).

• Miscellaneous options (described in Table 12-7).

Table 12-1. Backup Options

Argument Description

DATABASE/LOG specify DATABASE to perform a full or differential backup. specify

LOG to perform a transaction log backup.

database_name the name of the database to perform the backup operation against.

Can also be a variable containing the name of the database.

file_or_filegroup a comma-separated list of files or filegroups to back up, in the

format FILE = logical file name or FILEGROUP = Logical

filegroup name.

READ_WRITE_

FILEGROUPS

performs a partial backup by backing up all read/write filegroups.

optionally, use comma-separated FILEGROUP = syntax after

this clause to add read- only filegroups.

TO a comma-separated list of backup devices to stripe the backup set

over, with the syntax DISK = physical device,

TAPE = physical device, or URL = physical device.

MIRROR TO a comma-separated list of backup devices to which to mirror the

backup set. If the MIRROR TO clause is used, the number of backup

devices specified must equal the number of backup devices specified

in the TO clause.

Chapter 12 BaCkups and restores

426

Table 12-2. WITH Options

Argument Description

CREDENTIAL use when backing up to a Windows azure Blob.

DIFFERENTIAL specifies that a differential backup should be taken. If this option is

omitted, then a full backup is taken.

ENCRYPTION specifies the algorithm to use for the encryption of the backup. If the

backup is not to be encrypted, then NO_ENCRYPTION can be specified,

which is the default option. Backup encryption is only available in

enterprise, Business Intelligence, and standard editions of sQL server.

encryptor_name the name of the encryptor in the format SERVER CERTIFICATE =

encryptor name or SERVER ASYMMETRIC KEY = encryptor name.

Table 12-3. Backup Set Options

Argument Description

COPY_ONLY specifies that a copy_only backup of the database or log should be taken.

this option is ignored if you perform a differential backup.

COMPRESSION/NO

COMPRESSION

By default, sQL server decides if the backup should be compressed

based on the instance-level setting. (these can be viewed in sys.

configurations.) You can override this setting, however, by specifying

COMPRESSION or NO COMPRESSION, as appropriate. Backup compression

is only available in enterprise, Business Intelligence, and standard editions

of sQL server.

NAME specifies a name for the backup set.

DESCRIPTION adds a description to the backup set.

EXPIRYDATE/

RETAINEDDAYS

use EXPIRYDATE = datetime to specify a precise date and time that

the backup set expires. after this date, the backup set can be overwritten.

specify RETAINDAYS = int to specify a number of days before the backup

set expires.

Chapter 12 BaCkups and restores

427

Table 12-4. Media Set Options

Argument Description

INIT/NOINIT INIT attempts to overwrite the existing backup sets in the media set

but leaves the media header intact. It first checks the name and expiry

date of the backup set, unless SKIP is specified. NOINIT appends the

backup set to the media set, which is the default behavior.

SKIP/NOSKIP SKIP causes the INIT checks of backup set name and expiration date

to be skipped. NOSKIP enforces them, which is the default behavior.

FORMAT/NOFORMAT FORMAT causes the media header to be overwritten, leaving any backup

sets within the media set unusable. this essentially creates a new media

set. the backup set names and expiry dates are not checked. NOFORMAT

preserves the existing media header, which is the default behavior.

MEDIANAME specifies the name of the media set.

MEDIADESCRIPTION adds a description of the media set.

BLOCKSIZE specifies the block size in bytes that will be used for the backup.

the BLOCKSIZE defaults to 512 for disk and urL and defaults to

65,536 for tape.

Table 12-5. Error Management Options

Argument Description

CHECKSUM/NO_CHECKSUM specifies if the page checksum of each page should be validated

before the page is written to the media set.

CONTINUE_AFTER_ERROR/

STOP_ON_ERROR

STOP_ON_ERROR is the default behavior and causes the backup

to fail if a bad checksum is discovered when verifying the page

checksum. CONTINUE_AFTER_ERROR allows the backup to

continue if a bad checksum is discovered.

Chapter 12 BaCkups and restores

428

Table 12-6. Log-Specific Options

Argument Description

NORECOVERY/

STANDBY

NORECOVERY causes the database to be left in a restoring state when the

backup completes, making it inaccessible to users. STANDBY leaves the

database in a read-only state when the backup completes. STANDBY requires

that you specify the path and file name of the transaction undo file, so it

should be used with the format STANDBY = transaction_undo_file.

If neither option is specified, then the database remains online when the

backup completes.

NO_TRUNCATE specifies that the log backup should be attempted, even if the database

is not in a healthy state. It also does not attempt to truncate an inactive

portion of the log. taking a tail-log backup involves backing up the log with

NORECOVERY and NO_TRUNCATE specified.

Table 12-7. Miscellaneous Options

Argument Description

BUFFERCOUNT the total number of Io buffers used for the backup operation.

MAXTRANSFERSIZE the largest possible unit of transfer between sQL server and the backup

media, specified in bytes.

STATS specifies how often progress messages should be displayed. the default

is to display a progress message in 10% increments.

To perform the full database backup of the Chapter12 database, which we

demonstrate through the GUI, we can use the command in Listing 12-4. Before running

this script, modify the path of the backup device to meet your system’s configuration.

Listing 12-4. Performing a Full Backup

BACKUP DATABASE Chapter12

 TO DISK = 'H:\MSSQL\Backup\Chapter12.bak'

 WITH RETAINDAYS = 90

 , FORMAT

 , INIT

Chapter 12 BaCkups and restores

429

 , MEDIANAME = 'Chapter12'

 , NAME = 'Chapter12-Full Database Backup'

 , COMPRESSION ;

GO

If we want to perform a differential backup of the Chapter12 database and append

the backup to the same media set, we can add the WITH DIFFERENTIAL option to our

statement, as demonstrated in Listing 12-5. Before running this script, modify the path of

the backup device to meet your system’s configuration.

Listing 12-5. Performing a Differential Backup

BACKUP DATABASE Chapter12

 TO DISK = 'H:\MSSQL\Backup\Chapter12.bak'

 WITH DIFFERENTIAL

 , RETAINDAYS = 90

 , NOINIT

 , MEDIANAME = 'Chapter12'

 , NAME = 'Chapter12-Diff Database Backup'

 , COMPRESSION ;

GO

If we want to back up the transaction log of the Chapter12 database, again

appending the backup set to the same media set, we can use the command in

Listing 12-6. Before running this script, modify the path of the backup device to meet

your system’s configuration.

Listing 12-6. Performing a Transaction Log Backup

BACKUP LOG Chapter12

 TO DISK = 'H:\MSSQL\Backup\Chapter12.bak'

 WITH RETAINDAYS = 90

 , NOINIT

 , MEDIANAME = 'Chapter12'

 , NAME = 'Chapter12-Log Backup'

 , COMPRESSION ;

GO

Chapter 12 BaCkups and restores

430

Tip In enterprise scenarios, you may wish to store full, differential, and log
backups in different folders, to assist administrators, when looking for files to
recover.

If we are implementing a filegroup backup strategy and want to back up only

FileGroupA, we can use the command in Listing 12-7. We create a new media set for this

backup set. Before running this script, modify the path of the backup device to meet your

system’s configuration.

Listing 12-7. Performing a Filegroup Backup

BACKUP DATABASE Chapter12 FILEGROUP = 'FileGroupA'

 TO DISK = 'H:\MSSQL\Backup\Chapter12FGA.bak'

 WITH RETAINDAYS = 90

 , FORMAT

 , INIT

 , MEDIANAME = 'Chapter12FG'

 , NAME = 'Chapter12-Full Database Backup-FilegroupA'

 , COMPRESSION ;

GO

To repeat the full backup of the Chapter12 but stripe the backup set across two

backup devices, we can use the command in Listing 12-8. This helps increase the

throughput of the backup. Before running this script, you should modify the paths of the

backup devices to meet your system’s configuration.

Listing 12-8. Using Multiple Backup Devices

BACKUP DATABASE Chapter12

 TO DISK = 'H:\MSSQL\Backup\Chapter12Stripe1.bak',

 DISK = 'G:\MSSQL\Backup\Chapter12Stripe2.bak'

 WITH RETAINDAYS = 90

 , FORMAT

 , INIT

 , MEDIANAME = 'Chapter12Stripe'

Chapter 12 BaCkups and restores

431

 , NAME = 'Chapter12-Full Database Backup-Stripe'

 , COMPRESSION ;

GO

For increased redundancy, we can create a mirrored media set by using the

command in Listing 12-9. Before running this script, modify the paths of the backup

devices to meet your system’s configuration.

Listing 12-9. Using a Mirrored Media Set

BACKUP DATABASE Chapter12

 TO DISK = 'H:\MSSQL\Backup\Chapter12Stripe1.bak',

 DISK = 'G:\MSSQL\Backup\Chapter12Stripe2.bak'

 MIRROR TO DISK = 'J:\MSSQL\Backup\Chapter12Mirror1.bak',

 DISK = 'K:\MSSQL\Backup\Chapter12Mirror2.bak'

 WITH RETAINDAYS = 90

 , FORMAT

 , INIT

 , MEDIANAME = 'Chapter12Mirror'

 , NAME = 'Chapter12-Full Database Backup-Mirror'

 , COMPRESSION ;

GO

 Restoring a Database
You can restore a database either through SSMS or via T-SQL. We explore both of these

options in the following sections.

 Restoring in SQL Server Management Studio
To begin a restore in SSMS, select Restore Database from the context menu of Databases

in Object Explorer. This causes the General page of the Restore Database dialog box to

display, as illustrated in Figure 12-5. Selecting the database to be restored from the drop-

down list causes the rest of the tab to be automatically populated.

Chapter 12 BaCkups and restores

432

You can see that the contents of the Chapter12 media set are displayed in the

Backup Sets To Restore pane of the page. In this case, we can see the contents of the

Chapter12 media set. The Restore check boxes allow you to select the backup sets that

you wish to restore.

The Timeline button provides a graphical illustration of when each backup set was

created, as illustrated in Figure 12-6. This allows you to easily see how much data loss

exposure you have, depending on the backup sets that you choose to restore. In the

Timeline window, you can also specify if you want to recover to the end of the log or if

you wish to restore to a specific date/time.

Figure 12-5. The General page

Chapter 12 BaCkups and restores

433

Clicking the Verify Backup Media button on the General page causes a RESTORE

WITH VERIFYONLY operation to be carried out. This operation verifies the backup media

without attempting to restore it. In order to do this, it performs the following checks:

• The backup set is complete.

• All backup devices are readable.

• The CHECKSUM is valid (only applies if WITH CHECKSUM was specified

during the backup operation).

• Page headers are verified.

• There is enough space on the target restore volume for the backups to

be restored.

On the Files page, illustrated in Figure 12-7, you can select a different location to

which to restore each file. The default behavior is to restore the files to the current

location. You can use the ellipses, next to each file, to specify a different location for each

individual file, or you can use the Relocate All Files To Folder option to specify a single

folder for all data files and a single folder for all log files.

Figure 12-6. The Backup Timeline page

Chapter 12 BaCkups and restores

434

On the Options page, shown in Figure 12-8, you are able to specify the restore

options that you plan to use. In the Restore Options section of the page, you can

specify that you want to overwrite an existing database, preserve the replication

settings within the database (which you should use if you are configuring log

shipping to work with replication), and restore the database with restricted access.

This last option makes the database accessible only to administrators and members

of the db_owner and db_creator roles after the restore completes. This can be

helpful if you want to verify the data, or perform any data repairs, before you make

the database accessible to users.

In the Restore Options section, you can also specify the recovery state of the

database. Restoring the database with RECOVERY brings the database online when the

restore completes. NORECOVERY leaves the database in a restoring state, which means

that further backups can be applied. STANDBY brings the database online but leaves it

in a read- only state. This option can be helpful if you are failing over to a secondary

server. If you choose this option, you are also able to specify the location of the

Transaction Undo file.

Figure 12-7. The Files page

Chapter 12 BaCkups and restores

435

Tip If you specify WITH PARTIAL during the restore of the first backup file, you
are able to apply additional backups, even if you restore WITH RECOVERY. there is
no GuI support for piecemeal restores, however. performing piecemeal restores via
t-sQL is discussed later in this chapter.

In the Tail-Log Backup section of the screen, you can choose to attempt a tail-log

backup before the restore operation begins, and if you choose to do so, you can choose

to leave the database in a restoring state. A tail-log backup may be possible even if the

database is damaged. Leaving the source database in a restoring state essentially safe-

states it to mitigate the risk of data loss. If you choose to take a tail-log backup, you can

also specify the file path for the backup device to use. You can also specify if you want to

close existing connections to the destination database before the restore begins and if

you want to be prompted before restoring each individual backup set.

Figure 12-8. The Options page

Chapter 12 BaCkups and restores

436

 Restoring via T-SQL
When using the RESTORE command in T-SQL, in addition to restoring a database, the

options detailed in Table 12-8 are available.

Table 12-8. Restore Options

Restore Option Description

RESTORE FILELISTONLY returns a list of all files in the backup device.

RESTORE HEADERONLY returns the backup headers for all backup sets within

a backup device.

RESTORE LABELONLY returns information regarding the media set and media family to

which the backup device belongs.

RESTORE REWINDONLY Closes and rewinds the tape. only works if the backup device

is a tape.

RESTORE VERIFYONLY Checks that all backup devices exist and are readable.

also performs other high-level verification checks, such as

ensuring there is enough space on the destination drive, checking

the CheCksuM (providing the backup was taken with CheCksuM),

and checking key page header fields.

When using the RESTORE command to perform a restore, you can use many

arguments to allow many restore scenarios to take place. These arguments can be

categorized as follows:

• Restore arguments (described in Table 12-9)

• WITH options (described in Table 12-10)

• Backup set options (described in Table 12-11)

• Media set options (described in Table 12-12)

• Error management options (described in Table 12-13)

• Miscellaneous options (described in Table 12-14)

Chapter 12 BaCkups and restores

437

Table 12-9. Restore Arguments

Argument Description

DATABASE/LOG specify DATABASE to which to restore all or some of the

files that constitute the database. specify LOG to restore a

transaction log backup.

database_name specifies the name of the target database that will be restored.

file_or_filegroup_

or_pages

specifies a comma-separated list of the files, filegroups, or

pages to be restored. If restoring pages, use the format PAGE

= FileID:PageID. In SIMPLE recovery model, files and

filegroups can only be specified if they are read-only or if you

are performing a partial restore using WITH PARTIAL.

READ_WRITE_FILEGROUPS restores all read/write filegroups but no read-only filegroups.

FROM a comma-separated list of backup devices that contains the

backup set to restore or the name of the database snapshot

from which you wish to restore. database snapshots are

discussed in Chapter 16.

Table 12-10. WITH Options

Argument Description

PARTIAL Indicates that this is the first restore in a piecemeal restore, which

is discussed later in this chapter.

RECOVERY/NORECOVERY/

STANDBY

specifies the state that the database should be left in when

the restore operation completes. RECOVERY indicates that the

database will be brought online. NORECOVERY indicates that

the database will remain in a restoring state so that subsequent

restores can be applied. STANDBY indicates that the database will

be brought online in read-only mode.

MOVE used to specify the file system location that the files should be

restored to if this is different from the original location.

CREDENTIAL used when performing a restore from a Windows azure Blob.
(continued)

Chapter 12 BaCkups and restores

438

Table 12-11. Backup Set Options

Argument Description

FILE Indicates the sequential number of the backup set, within the media set, to be used.

PASSWORD If you are restoring a backup that was taken in sQL server 2008 or earlier where

a password was specified during the backup operation, then you need to use this

argument to be able to restore the backup.

Table 12-12. Media Set Options

Argument Description

MEDIANAME If you use this argument, then the MEDIANAME must match the name of the

media set allocated during the creation of the media set.

MEDIAPASSWORD If you are restoring from a media set created using sQL server 2008 or

earlier and a password was specified for the media set, then you must use

this argument during the restore operation.

BLOCKSIZE specifies the block size to use for the restore operation, in bytes, to override

the default value of 65,536 for tape and 512 for disk or urL.

Argument Description

REPLACE If a database already exists on the instance with the target

database name that you have specified in the restore statement,

or if the files already exist in the operating system with the same

name or location, then REPLACE indicates that the database or

files should be overwritten.

RESTART Indicates that if the restore operation is interrupted, it should be

restarted from that point.

RESTRICTED_USER Indicates that only administrators and members of the db_owner

and db_creator roles should have access to the database after

the restore operation completes.

Table 12-10. (continued)

Chapter 12 BaCkups and restores

439

Table 12-13. Error Management Options

Argument Description

CHECKSUM/NOCHECKSUM If CHECKSUM was specified during the backup operation, then

specifying CHECKSUM during the restore operation will verify page

integrity during the restore operation. specifying NOCHECKSUM

disables this verification.

CONTINUE_AFTER_ERROR/

STOP_ON_ERROR

STOP_ON_ERROR causes the restore operation to terminate if

any damaged pages are discovered. CONTINUE_AFTER_ERROR

causes the restore operation to continue, even if damaged pages

are discovered.

Table 12-14. Miscellaneous Options

Argument Description

BUFFERCOUNT the total number of Io buffers used for the restore operation.

MAXTRANSFERSIZE the largest possible unit of transfer between sQL server and the

backup media, specified in bytes.

STATS specifies how often progress messages should be displayed. the

default is to display a progress message in 5% increments.

FILESTREAM

(DIRECTORY_NAME)

specifies the name of the folder to which FILESTREAM data should be

restored.

KEEP_REPLICATION preserves the replication settings. use this option when configuring log

shipping with replication.

KEEP_CDC preserves the change data capture (CdC) settings of a database when

it is being restored. only relevant if CdC was enabled at the time of the

backup operation.
(continued)

Chapter 12 BaCkups and restores

440

Table 12-14. (continued)

Argument Description

ENABLE_BROKER/

ERROR_BROKER_

CONVERSATIONS/NEW

BROKER

ENABLE_BROKER specifies that service broker message delivery will

be enabled after the restore operation completes so that messages

can immediately be sent. ERROR_BROKER_CONVERSATIONS specifies

that all conversations will be terminated with an error message

before message delivery is enabled. NEW_BROKER specifies that

conversations will be removed without throwing an error and the

database will be assigned a new service Broker identifier. only

relevant if service Broker was enabled when the backup was created.

STOPAT/STOPATMARK/

STOPBEFOREMARK

used for point-in-time recovery and only supported in FULL recovery

model. STOPAT specifies a datetime value, which will determine

the time of the last transaction to restore. STOPATMARK specifies

either an Lsn (log sequence number) to restore to or the name of a

marked transaction, which will be the final transaction that is restored.

STOPBEFOREMARK restores up to the transaction prior to the Lsn or

marked transaction specified.

To perform the same restore operation that we performed through SSMS, we use

the command in Listing 12-10. Before running the script, change the path of the backup

devices to match your own configuration.

Listing 12-10. Restoring a Database

USE master

GO

--Back Up the tail of the log

BACKUP LOG Chapter12

TO DISK = N'H:\MSSQL\Backup\Chapter12_LogBackup_2012-02-16_12-17-49.bak'

 WITH NOFORMAT,

 NAME = N'Chapter12_LogBackup_2012-02-16_12-17-49',

 NORECOVERY ,

 STATS = 5 ;

--Restore the full backup

Chapter 12 BaCkups and restores

441

RESTORE DATABASE Chapter12

FROM DISK = N'H:\MSSQL\Backup\Chapter12.bak'

 WITH FILE = 1,

 NORECOVERY,

 STATS = 5 ;

--Restore the differential

RESTORE DATABASE Chapter12

FROM DISK = N'H:\MSSQL\Backup\Chapter12.bak'

 WITH FILE = 2,

 NORECOVERY,

 STATS = 5 ;

--Restore the transaction log

RESTORE LOG Chapter12

FROM DISK = N'H:\MSSQL\Backup\Chapter12.bak'

 WITH FILE = 3,

 STATS = 5 ;

GO

 Restoring to a Point in Time
In order to demonstrate restoring a database to a point in time, we first take a series of

backups, manipulating data between each one. The script in Listing 12-11 first creates a

base full backup of the Chapter12 database. It then inserts some rows into the Addresses

table before it takes a transaction log backup. It then inserts some further rows into the

Addresses table before truncating the table; and then finally, it takes another transaction

log backup.

Listing 12-11. Preparing the Chapter12 Database

USE Chapter12

GO

Chapter 12 BaCkups and restores

442

BACKUP DATABASE Chapter12

 TO DISK = 'H:\MSSQL\Backup\Chapter12PointinTime.bak'

 WITH RETAINDAYS = 90

 , FORMAT

 , INIT, SKIP

 , MEDIANAME = 'Chapter12Point-in-time'

 , NAME = 'Chapter12-Full Database Backup'

 , COMPRESSION ;

INSERT INTO dbo.Addresses

VALUES('1 Carter Drive', 'Hedge End', 'Southampton', 'SO32 6GH')

 ,('10 Apress Way', NULL, 'London', 'WC10 2FG') ;

BACKUP LOG Chapter12

 TO DISK = 'H:\MSSQL\Backup\Chapter12PointinTime.bak'

 WITH RETAINDAYS = 90

 , NOINIT

 , MEDIANAME = 'Chapter12Point-in-time'

 , NAME = 'Chapter12-Log Backup'

 , COMPRESSION ;

INSERT INTO dbo.Addresses

VALUES('12 SQL Street', 'Botley', 'Southampton', 'SO32 8RT')

 ,('19 Springer Way', NULL, 'London', 'EC1 5GG') ;

TRUNCATE TABLE dbo.Addresses ;

BACKUP LOG Chapter12

 TO DISK = 'H:\MSSQL\Backup\Chapter12PointinTime.bak'

 WITH RETAINDAYS = 90

 , NOINIT

 , MEDIANAME = 'Chapter12Point-in-time'

 , NAME = 'Chapter12-Log Backup'

 , COMPRESSION ;

GO

Chapter 12 BaCkups and restores

443

Imagine that after the series of events that occurred in this script, we discover

that the Addresses table was truncated in error and we need to restore to the point

immediately before this truncation occurred. To do this, we either need to know the

exact time of the truncation and need to restore to the date/time immediately before,

or to be more accurate, we need to discover the LSN of the transaction where the

truncation occurred and restore up to this transaction. In this demonstration, we

choose the latter option.

We can use a system function called sys.fn_dump_dblog() to display the contents of

the final log backup that includes the second insert statement and the table truncation.

The procedure accepts a massive 68 parameters, and none of them can be omitted!

The first and second parameters allow you to specify a beginning and end LSN with

which to filter the results. These parameters can both be set to NULL to return all entries

in the backup. The third parameter specifies if the backup set is disk or tape, whereas

the fourth parameter specifies the sequential ID of the backup set within the device. The

next 64 parameters accept the names of the backup devices within the media set. If the

media set contains less than 64 devices, then you should use the value DEFAULT for any

parameters that are not required.

The script in Listing 12-12 uses the undocumented fn_dump_dblog() system

function to identify the starting LSN of the autocommit transaction in which the

truncation occurred. The issue with this function is that it does not return the LSN in

the same format required by the RESTORE command. Therefore, the calculated column,

ConvertedLSN, converts each of the three sections of the LSN from binary to decimal,

pads them out with zeros as required, and finally concatenates them back together to

produce an LSN that can be passed into the RESTORE operation.

Listing 12-12. Finding the LSN of the Truncation

SELECT

 CAST(

 CAST(

 CONVERT(VARBINARY, '0x'

 + RIGHT(REPLICATE('0', 8)

 + SUBSTRING([Current LSN], 1, 8), 8), 1

) AS INT

) AS VARCHAR(11)

) +

Chapter 12 BaCkups and restores

444

 RIGHT(REPLICATE('0', 10) +

 CAST(

 CAST(

 CONVERT(VARBINARY, '0x'

 + RIGHT(REPLICATE('0', 8)

 + SUBSTRING([Current LSN], 10, 8), 8), 1

) AS INT

) AS VARCHAR(10)), 10) +

 RIGHT(REPLICATE('0',5) +

 CAST(

 CAST(CONVERT(VARBINARY, '0x'

 + RIGHT(REPLICATE('0', 8)

 + SUBSTRING([Current LSN], 19, 4), 8), 1

) AS INT

) AS VARCHAR

), 5) AS ConvertedLSN

 ,*
FROM

 sys.fn_dump_dblog (

 NULL, NULL, N'DISK', 3, N'H:\MSSQL\Backup\Chapter12PointinTime.bak'

 DEFAULT, DEFAULT, DEFAULT, DEFAULT, DEFAULT, DEFAULT, DEFAULT,

 DEFAULT, DEFAULT, DEFAULT, DEFAULT, DEFAULT, DEFAULT, DEFAULT,

 DEFAULT, DEFAULT, DEFAULT, DEFAULT, DEFAULT, DEFAULT, DEFAULT,

 DEFAULT, DEFAULT, DEFAULT, DEFAULT, DEFAULT, DEFAULT, DEFAULT,

 DEFAULT, DEFAULT, DEFAULT, DEFAULT, DEFAULT, DEFAULT, DEFAULT,

 DEFAULT, DEFAULT, DEFAULT, DEFAULT, DEFAULT, DEFAULT, DEFAULT,

 DEFAULT, DEFAULT, DEFAULT, DEFAULT, DEFAULT, DEFAULT, DEFAULT,

 DEFAULT, DEFAULT, DEFAULT, DEFAULT, DEFAULT, DEFAULT, DEFAULT,

 DEFAULT, DEFAULT, DEFAULT, DEFAULT, DEFAULT, DEFAULT, DEFAULT)

WHERE [Transaction Name] = 'TRUNCATE TABLE' ;

Now that we have discovered the LSN of the transaction that truncated the

Addresses table, we can restore the Chapter12 database to this point. The script in

Listing 12-13 restores the full and first transaction log backups in their entirety. It then

restores the final transaction log but uses the STOPBEFOREMARK argument to specify the

Chapter 12 BaCkups and restores

445

first LSN that should not be restored. Before running the script, change the locations of

the backup devices, as per your own configuration. You should also replace the LSN with

the LSN that you generated using sys.fn_dump_dblog().

Listing 12-13. Restoring to a Point in Time

USE master

GO

RESTORE DATABASE Chapter12

 FROM DISK = N'H:\MSSQL\Backup\Chapter12PointinTime.bak'

 WITH FILE = 1

 , NORECOVERY

 , STATS = 5

 , REPLACE ;

RESTORE LOG Chapter12

 FROM DISK = N'H:\MSSQL\Backup\Chapter12PointinTime.bak'

 WITH FILE = 2

 , NORECOVERY

 , STATS = 5

 , REPLACE ;

RESTORE LOG Chapter12

 FROM DISK = N'H:\MSSQL\Backup\Chapter12PointinTime.bak'

 WITH FILE = 3

 , STATS = 5

 , STOPBEFOREMARK = 'lsn:35000000036000001'

 , RECOVERY

 , REPLACE ;

 Restoring Files and Pages
The ability to restore a filegroup, a file, or even a page gives you great control and

flexibility in disaster recovery scenarios. The following sections demonstrate how to

perform a file restore and a page restore.

Chapter 12 BaCkups and restores

446

 Restoring a File
You may come across situations in which only some files or filegroups within the

database are corrupt. If this is the case, then it is possible to restore just the corrupt

file, assuming you have the complete log chain available, between the point when

you took the file or filegroup backup and the end of the log. In order to demonstrate

this functionality, we first insert some rows into the Contacts table of the Chapter12

database before we back up the primary filegroup and FileGroupA. We then insert

some rows into the Addresses table, which resides on FileGroupB, before we take a

transaction log backup. These tasks are performed by the script in Listing 12-14.

Listing 12-14. Preparing the Database

INSERT INTO dbo.Contacts

VALUES('Peter', 'Carter', 1),

 ('Danielle', 'Carter', 1) ;

BACKUP DATABASE Chapter12 FILEGROUP = N'PRIMARY', FILEGROUP =

N'FileGroupA'

 TO DISK = N'H:\MSSQL\Backup\Chapter12FileRestore.bak'

 WITH FORMAT

 , NAME = N'Chapter12-Filegroup Backup'

 , STATS = 10 ;

INSERT INTO dbo.Addresses

VALUES('SQL House', 'Server Buildings', NULL, 'SQ42 4BY'),

 ('Carter Mansions', 'Admin Road', 'London', 'E3 3GJ') ;

BACKUP LOG Chapter12

 TO DISK = N'H:\MSSQL\Backup\Chapter12FileRestore.bak'

 WITH NOFORMAT

 , NOINIT

 , NAME = N'Chapter12-Log Backup'

 , NOSKIP

 , STATS = 10 ;

Chapter 12 BaCkups and restores

447

If we imagine that Chapter12FileA has become corrupt, we are able to restore

this file, even though we do not have a corresponding backup for Chapter12FileB,

and recover to the latest point in time by using the script in Listing 12-15. This script

performs a file restore on the file Chapter12FileA before taking a tail-log backup of the

transaction log and then finally applying all transaction logs in sequence. Before running

this script, change the location of the backup devices to reflect your own configuration.

Caution If we had not taken the tail-log backup, then we would no longer have
been able to access the Contacts table (in FileGroupB), unless we had also
been able to restore the Chapter12FileB file.

Listing 12-15. Restoring a File

USE master

GO

RESTORE DATABASE Chapter12 FILE = N'Chapter12FileA'

 FROM DISK = N'H:\MSSQL\Backup\Chapter12FileRestore.bak'

 WITH FILE = 1

 , NORECOVERY

 , STATS = 10

 , REPLACE ;

GO

BACKUP LOG Chapter12

 TO DISK = N'H:\MSSQL\Backup\Chapter12_LogBackup_2012-

02- 17_12-26-09.bak'

 WITH NOFORMAT

 , NOINIT

 , NAME = N'Chapter12_LogBackup_2012-02-17_12-26-09'

 , NOSKIP

 , NORECOVERY

 , STATS = 5 ;

Chapter 12 BaCkups and restores

448

RESTORE LOG Chapter12

 FROM DISK = N'H:\MSSQL\Backup\Chapter12FileRestore.bak'

 WITH FILE = 2

 , STATS = 10

 , NORECOVERY ;

RESTORE LOG Chapter12

 FROM DISK = N'H:\MSSQL\Backup\Chapter12_LogBackup_2012-

02- 17_12-26-09.bak'

 WITH FILE = 1

 , STATS = 10

 , RECOVERY ;

GO

 Restoring a Page
If a page becomes corrupt, then it is possible to restore this page instead of restoring the

complete file or even the database. This can significantly reduce downtime in a minor DR

scenario. In order to demonstrate this functionality, we take a full backup of the Chapter12

database and then use the undocumented DBCC WRITEPAGE to cause a corruption in one of

the pages of our Contacts table. These steps are performed in Listing 12-16.

Caution DBCC WRITEPAGE is used here for educational purposes only. It is
undocumented, but also extremely dangerous. It should not ever be used on a
production system and should only ever be used on any database with extreme caution.

Listing 12-16. Preparing the Database

--Back up the database

BACKUP DATABASE Chapter12

 TO DISK = N'H:\MSSQL\Backup\Chapter12PageRestore.bak'

 WITH FORMAT

 , NAME = N'Chapter12-Full Backup'

 , STATS = 10 ;

Chapter 12 BaCkups and restores

449

--Corrupt a page in the Contacts table

ALTER DATABASE Chapter12 SET SINGLE_USER WITH NO_WAIT ;

GO

DECLARE @SQL NVARCHAR(MAX)

SELECT @SQL = 'DBCC WRITEPAGE(' +

(

 SELECT CAST(DB_ID('Chapter12') AS NVARCHAR)

) +

', ' +

(

 SELECT TOP 1 CAST(file_id AS NVARCHAR)

 FROM dbo.Contacts

 CROSS APPLY sys.fn_PhysLocCracker(%%physloc%%)

) +

 ', ' +

(

 SELECT TOP 1 CAST(page_id AS NVARCHAR)

 FROM dbo.Contacts

 CROSS APPLY sys.fn_PhysLocCracker(%%physloc%%)

) +

', 2000, 1, 0x61, 1)' ;

EXEC(@SQL) ;

ALTER DATABASE Chapter12 SET MULTI_USER ;

GO

If we attempt to access the Contacts table after running the script, we receive the

error message warning us of a logical consistency-based I/O error, and the statement

fails. The error message also provides details of the page that is corrupt, which we can

use in our RESTORE statement. To resolve this, we can run the script in Listing 12-17. The

script restores the corrupt page before taking a tail-log backup, and then finally it applies

the tail of the log. Before running the script, modify the location of the backup devices to

Chapter 12 BaCkups and restores

450

reflect your configuration. You should also update the PageID to reflect the page that is

corrupt in your version of the Chapter12 database. Specify the page to be restored in the

format FileID:PageID.

Tip the details of the corrupt page can also be found in MSDB.dbo.suspect_
pages.

Listing 12-17. Restoring a Page

USE Master

GO

RESTORE DATABASE Chapter12 PAGE='3:8'

 FROM DISK = N'H:\MSSQL\Backup\Chapter12PageRestore.bak'

 WITH FILE = 1

 , NORECOVERY

 , STATS = 5 ;

BACKUP LOG Chapter12

 TO DISK = N'H:\MSSQL\Backup\Chapter12_LogBackup_2012-

02- 17_16-47-46.bak'

 WITH NOFORMAT, NOINIT

 , NAME = N'Chapter12_LogBackup_2012-02-17_16-32-46'

 , NOSKIP

 , STATS = 5 ;

RESTORE LOG Chapter12

 FROM DISK = N'H:\MSSQL\Backup\Chapter12_LogBackup_2012-

02- 17_16-47-46.bak'

 WITH STATS = 5

 , RECOVERY ;

GO

Chapter 12 BaCkups and restores

451

 Piecemeal Restores
A piecemeal restore involves bringing the filegroups of a database online one by

one. This can offer a big benefit for a large database, since you can make some

data accessible, while other data is still being restored. In order to demonstrate this

technique, we first take filegroup backups of all filegroups in the Chapter12 database and

follow this with a transaction log backup. The script in Listing 12-18 performs this task.

Before running the script, modify the locations of the backup devices to reflect your own

configurations.

Listing 12-18. Filegroup Backup

BACKUP DATABASE Chapter12

 FILEGROUP = N'PRIMARY', FILEGROUP = N'FileGroupA', FILEGROUP =

N'FileGroupB'

 TO DISK = N'H:\MSSQL\Backup\Chapter12Piecemeal.bak'

 WITH FORMAT

 , NAME = N'Chapter12-Fiegroup Backup'

 , STATS = 10 ;

BACKUP LOG Chapter12

 TO DISK = N'H:\MSSQL\Backup\Chapter12Piecemeal.bak'

 WITH NOFORMAT, NOINIT

 , NAME = N'Chapter12-Full Database Backup'

 , STATS = 10 ;

The script in Listing 12-19 now brings the filegroups online, one by one, starting

with the primary filegroup, followed by FileGroupA, and finally, FileGroupB. Before

beginning the restore, we back up the tail of the log. This backup is restored WITH

RECOVERY after each filegroup is restored. This brings the restored databases back online.

It is possible to restore further backups because we specify the PARTIAL option on the

first restore operation.

Chapter 12 BaCkups and restores

452

Listing 12-19. Piecemeal Restore

USE master

GO

BACKUP LOG Chapter12

 TO DISK = N'H:\MSSQL\Backup\Chapter12_LogBackup_2012-

02- 17_27-29-46.bak'

 WITH NOFORMAT, NOINIT

 , NAME = N'Chapter12_LogBackup_2012-02-17_17-29-46'

 , NOSKIP

 , NORECOVERY

 , NO_TRUNCATE

 , STATS = 5 ;

RESTORE DATABASE Chapter12

 FILEGROUP = N'PRIMARY'

 FROM DISK = N'H:\MSSQL\Backup\Chapter12Piecemeal.bak'

 WITH FILE = 1

 , NORECOVERY

 , PARTIAL

 , STATS = 10 ;

RESTORE LOG Chapter12

 FROM DISK = N'H:\MSSQL\Backup\Chapter12Piecemeal.bak'

 WITH FILE = 2

 , NORECOVERY

 , STATS = 10 ;

RESTORE LOG Chapter12

 FROM DISK = N'H:\MSSQL\Backup\Chapter12_LogBackup_2012-

02- 17_27-29-46.bak'

 WITH FILE = 1

 , STATS = 10

 , RECOVERY ;

-----------------The PRIMARY Filegroup is now online--------------------

Chapter 12 BaCkups and restores

453

RESTORE DATABASE Chapter12

 FILEGROUP = N'FileGroupA'

 FROM DISK = N'H:\MSSQL\Backup\Chapter12Piecemeal.bak'

 WITH FILE = 1

 , NORECOVERY

 , STATS = 10 ;

RESTORE LOG Chapter12

 FROM DISK = N'H:\MSSQL\Backup\Chapter12Piecemeal.bak'

 WITH FILE = 2

 , NORECOVERY

 , STATS = 10 ;

RESTORE LOG Chapter12

 FROM DISK = N'H:\MSSQL\Backup\Chapter12_LogBackup_2012-

02- 17_27-29-46.bak'

 WITH FILE = 1

 , STATS = 10

 , RECOVERY ;

-----------------The FilegroupA Filegroup is now online--------------------

RESTORE DATABASE Chapter12

 FILEGROUP = N'FileGroupB'

 FROM DISK = N'H:\MSSQL\Backup\Chapter12Piecemeal.bak'

 WITH FILE = 1

 , NORECOVERY

 , STATS = 10 ;

RESTORE LOG Chapter12

 FROM DISK = N'H:\MSSQL\Backup\Chapter12Piecemeal.bak'

 WITH FILE = 2

 , NORECOVERY

 , STATS = 10 ;

Chapter 12 BaCkups and restores

454

RESTORE LOG Chapter12

 FROM DISK = N'H:\MSSQL\Backup\Chapter12_LogBackup_2012-

02- 17_27-29-46.bak'

 WITH FILE = 1

 , STATS = 10

 , RECOVERY ;

-----------------The database is now fully online--------------------

 Summary
A SQL Server database can operate in three recovery models. The SIMPLE recovery

model automatically truncates the transaction log after CHECKPOINT operations occur.

This means that log backups cannot be taken and, therefore, point-in-time restores

are not available. In FULL recovery model, the transaction log is only truncated after a

log backup operation. This means that you must take transaction log backups for both

disaster recovery and log space. The BULK LOGGED recovery model is meant to be used

only while a bulk insert operation is happening. In this case, you switch to this model if

you normally use the FULL recovery model.

SQL Server supports three types of backup. A full backup copies all database pages

to the backup device. A differential backup copies all database pages that have been

modified since the last full backup to the backup device. A transaction log backup copies

the contents of the transaction log to the backup device.

A DBA can adopt many backup strategies to provide the best possible RTO and

RPO in the event of a disaster that requires a database to be restored. These include

taking full backups only, which is applicable to SIMPLE recovery model; scheduling

full backups along with transaction log backups; or scheduling full, differential, and

transaction log backups. Scheduling differential backups can help improve the RTO

of a database if frequent log backups are taken. DBAs may also elect to implement

a filegroup backup strategy; this allows them to stagger their backups into more

manageable windows or perform a partial backup, which involves backing up only

read/write filegroups.

Ad hoc backups can be taken via T-SQL or SQL Server Management Studio (SSMS).

In production environments, you invariably want to schedule the backups to run

periodically, and we discuss how to automate this action in Chapter 22.

Chapter 12 BaCkups and restores

455

You can also perform restores either through SSMS or with T-SQL. However, you

can only perform complex restore scenarios, such as piecemeal restores, via T-SQL. SQL

Server also provides you with the ability to restore a single page or file. You can restore a

corrupt page as an online operation, and doing so usually provides a better alternative

to fixing small-scale corruption than either restoring a whole database or using DBCC

CHECKDB with the ALLOW_DATA_LOSS option. More details on DBCC CHECKDB can be

found in Chapter 9.

Tip Many other restore scenarios are beyond the scope of this book, because
a full description of every possible scenario would be worthy of a volume in
its own right. I encourage you to explore various restore scenarios in a sandpit
environment before you need to use them for real!

Chapter 12 BaCkups and restores

457
© Peter A. Carter 2019
P. A. Carter, Pro SQL Server 2019 Administration, https://doi.org/10.1007/978-1-4842-5089-1_13

CHAPTER 13

High Availability
and Disaster Recovery
Concepts
In today’s 24×7 environments that are running mission-critical applications, businesses

rely heavily on the availability of their data. Although servers and their software are

generally reliable, there is always the risk of a hardware failure or a software bug, each of

which could bring a server down. To mitigate these risks, business-critical applications

often rely on redundant hardware to provide fault tolerance. If the primary system fails,

then the application can automatically fail over to the redundant system. This is the

underlying principle of high availability (HA).

Even with the implementation of HA technologies, there is always a small risk of an

event that causes the application to become unavailable. This could be due to a major

incident, such as the loss of a data center, due to a natural disaster, or due to an act of

terrorism. It could also be caused by data corruption or human error, resulting in the

application’s data becoming lost or damaged beyond repair.

In these situations, some applications may rely on restoring the latest backup to

recover as much data as possible. However, more critical applications may require a

redundant server to hold a synchronized copy of the data in a secondary location. This is

the underpinning concept of disaster recovery (DR). This chapter discusses the concepts

behind HA and DR before providing an overview of the technologies that are available to

implement these concepts.

458

 Availability Concepts
In order to analyze the HA and DR requirements of an application and implement the

most appropriate solution, you need to understand various concepts. We discuss these

concepts in the following sections.

 Level of Availability
The amount of time that a solution is available to end users is known as the level of

availability, or uptime. To provide a true picture of uptime, a company should measure

the availability of a solution from a user’s desktop. In other words, even if your SQL

Server has been running uninterrupted for over a month, users may still experience

outages to their solution caused by other factors. These factors can include network

outages or an application server failure.

In some instances, however, you have no choice but to measure the level of

availability at the SQL Server level. This may be because you lack holistic monitoring

tools within the Enterprise. Most often, however, the requirement to measure the level

of availability at the instance level is political, as opposed to technical. In the IT industry,

it has become a trend to outsource the management of data centers to third-party

providers. In such cases, the provider responsible for managing the SQL servers may not

necessarily be the provider responsible for the network or application servers. In this

scenario, you need to monitor uptime at the SQL Server level to accurately judge the

performance of the service provider.

The level of availability is measured as a percentage of the time that the application

or server is available. Companies often strive to achieve 99%, 99.9%, 99.99%, or 99.999%

availability. As a result, the level of availability is often referred to in 9s. For example, five

9s of availability means 99.999% uptime and three 9s means 99.9% uptime.

Table 13-1 details the amount of acceptable downtime per week, per month, and per

year for each level of availability.

Chapter 13 high availability and disaster reCovery ConCepts

459

To calculate other levels of availability, you can use the script in Listing 13-1. Before

running this script, replace the value of @Uptime to represent the level of uptime that you

wish to calculate. You should also replace the value of @UptimeInterval to reflect uptime

per week, month, or year.

Listing 13-1. Calculating the Level of Availability

DECLARE @Uptime DECIMAL(5,3) ;

--Specify the uptime level to calculate

SET @Uptime = 99.9 ;

DECLARE @UptimeInterval VARCHAR(5) ;

--Specify WEEK, MONTH, or YEAR

SET @UptimeInterval = 'YEAR' ;

DECLARE @SecondsPerInterval FLOAT ;

--Calculate seconds per interval

SET @SecondsPerInterval =

(

SELECT CASE

 WHEN @UptimeInterval = 'YEAR'

 THEN 60*60*24*365.243

Table 13-1. Levels of Availability

Level of Availability Downtime per Week Downtime per Month Downtime per Year

99% 1 hour, 40 minutes,

48 seconds

7 hours, 18 minutes,

17 seconds

3 days, 15 hours,

39 minutes, 28 seconds

99.9% 10 minutes, 4 seconds 43 minutes, 49 seconds 8 hours, 45 minutes,

56 seconds

99.99% 1 minute 4 minutes, 23 seconds 52 minutes, 35 seconds

99.999% 6 seconds 26 seconds 5 minutes, 15 seconds

All values are rounded down to the nearest second.

Chapter 13 high availability and disaster reCovery ConCepts

460

 WHEN @UptimeInterval = 'MONTH'

 THEN 60*60*24*30.437

 WHEN @UptimeInterval = 'WEEK'

 THEN 60*60*24*7

 END

) ;

DECLARE @UptimeSeconds DECIMAL(12,4) ;

--Calculate uptime

SET @UptimeSeconds = @SecondsPerInterval * (100-@Uptime) / 100 ;

--Format results

SELECT

 CONVERT(VARCHAR(12), FLOOR(@UptimeSeconds /60/60/24)) + ' Day(s), '

 + CONVERT(VARCHAR(12), FLOOR(@UptimeSeconds /60/60 % 24)) + ' Hour(s), '

 + CONVERT(VARCHAR(12), FLOOR(@UptimeSeconds /60 % 60)) + ' Minute(s), '

 + CONVERT(VARCHAR(12), FLOOR(@UptimeSeconds % 60)) + ' Second(s).' ;

 Service-Level Agreements and Service-Level Objectives

When a third-party provider is responsible for managing servers, the contract usually

includes service-level agreements (SLAs). These SLAs define many parameters,

including how much downtime is acceptable, the maximum length of time a server can

be down in the event of failure, and how much data loss is acceptable if failure occurs.

Normally, there are financial penalties for the provider if these SLAs are not met.

In the event that servers are managed in-house, DBAs still have the concept of

customers. These are usually the end users of the application, with the primary contact

being the business owner. An application’s business owner is the stakeholder within the

business who commissioned the application and who is responsible for signing off on

funding enhancements, among other things.

In an in-house scenario, it is still possible to define SLAs, and in such a case, the IT

Infrastructure or Platform departments may be liable for charge-back to the business

teams if these SLAs are not being met. However, in internal scenarios, it is much more

common for IT departments to negotiate service-level objectives (SLOs) with the

business teams, as opposed to SLAs. SLOs are very similar in nature to SLAs, but their

use implies that the business does not impose financial penalties on the IT department

in the event that they are not met.

Chapter 13 high availability and disaster reCovery ConCepts

461

 Proactive Maintenance

It is important to remember that downtime is not only caused by failure but also by

proactive maintenance. For example, if you need to patch the operating system, or SQL

Server itself, with the latest service pack, then you must have some downtime during

installation.

Depending on the upgrade you are applying, the downtime in such a scenario could

be substantial—several hours for a stand-alone server. In this situation, high availability

is essential for many business-critical applications—not to protect against unplanned

downtime, but to avoid prolonged outages during planned maintenance.

 Recovery Point Objective and Recovery Time Objective
The recovery point objective (RPO) of an application indicates how much data loss

is acceptable in the event of a failure. For a data warehouse that supports a reporting

application, for example, this may be an extended period, such as 24 hours, given that

it may only be updated once per day by an ETL process and all other activity is read-

only reporting. For highly transactional systems, however, such as an OLTP database

supporting trading platforms or web applications, the RPO will be zero. An RPO of zero

means that no data loss is acceptable.

Applications may have different RPOs for high availability and for disaster recovery.

For example, for reasons of cost or application performance, an RPO of zero may be

required for a failover within the site. If the same application fails over to a DR data

center, however, 5 or 10 minutes of data loss may be acceptable. This is because of

technology differences used to implement intrasite availability and intersite recovery.

The recovery time objective (RTO) for an application specifies the maximum amount

of time an application can be down before recovery is complete and users can reconnect.

When calculating the achievable RTO for an application, you need to consider many

aspects. For example, it may take less than a minute for a cluster to fail over from one

node to another and for the SQL Server service to come back up; however it may take far

longer for the databases to recover. The time it takes for databases to recover depends

on many factors, including the size of the databases, the quantity of databases within an

instance, and how many transactions were in-flight when the failover occurred. This is

because all noncommitted transactions need to be rolled back.

Just like RPO, it is common for there to be different RTOs depending on whether

you have an intrasite or intersite failover. Again, this is primarily due to differences in

Chapter 13 high availability and disaster reCovery ConCepts

462

technologies, but it also factors in the amount of time you need to bring up the entire

estate in the DR data center if the primary data center is lost.

The RPO and RTO of an application may also vary in the event of data corruption.

Depending on the nature of the corruption and the HA/DR technologies that have been

implemented, data corruption may result in you needing to restore a database from a

backup.

If you must restore a database, the worst-case scenario is that the achievable point

of recovery may be the time of the last backup. This means that you must factor a hard

business requirement for a specific RPO into your backup strategy. (Backups are discussed

fully in Chapter 12.) If only part of the database is corrupt, however, you may be able

to salvage some data from the live database and restore only the corrupt data from the

restored database.

Data corruption is also likely to have an impact on the RTO. One of the biggest

influencing factors is if backups are stored locally on the server, or if you need to retrieve

them from tape. Retrieving backup files from tape, or even from off-site locations, is

likely to add significant time to the recovery process.

Another influencing factor is what caused the corruption. If it is caused by a faulty

IO subsystem, then you may need to factor in time for the Windows administrators to

run the check disk command (CHKDSK) against the volume and potentially more time for

disks to be replaced. If the corruption is caused by a user accidently truncating a table or

deleting a data file, however, then this is not of concern.

 Cost of Downtime
If you ask any business owners how much downtime is acceptable for their applications

and how much data loss is acceptable, the answers invariably come back as zero and

zero, respectively. Of course, it is never possible to guarantee zero downtime, and once

you begin to explain the costs associated with the different levels of availability, it starts

to get easier to negotiate a mutually acceptable level of service.

The key factor in deciding how many 9s you should try to achieve is the cost of

downtime. Two categories of cost are associated with downtime: tangible costs and

intangible costs. Tangible costs are usually fairly straightforward to calculate. Let’s use a

sales application as an example. In this case, the most obvious tangible cost is lost revenue

because the sales staff cannot take orders. Intangible costs are more difficult to quantify

but can be far more expensive. For example, if a customer is unable to place an order with

your company, they may place their order with a rival company and never return.

Chapter 13 high availability and disaster reCovery ConCepts

463

 Other intangible costs can include loss of staff morale, which leads to higher staff

turnover or even loss of company reputation. Because intangible costs, by their very

nature, can only be estimated, the industry rule of thumb is to multiply the tangible costs

by three and use this figure to represent your intangible costs.

Once you have an hourly figure for the total cost of downtime for your application,

you can scale this figure out, across the predicted lifecycle of your application, and

compare the costs of implementing different availability levels. For example, imagine

that you calculate that your total cost of downtime is $2,000/hour and the predicted

lifecycle of your application is 3 years. Table 13-2 illustrates the cost of downtime for your

application, comparing the costs that you have calculated for implementing each level

of availability, after you have factored in hardware, licenses, power, cabling, additional

storage, and additional supporting equipment, such as new racks, administrative costs,

and so on. This is known as the total cost of ownership (TCO) of a solution.

In this table, you can see that implementing five 9s of availability saves $525,474 over

a two-9s solution, but the cost of implementing the solution is an additional $802,000,

meaning that it is not economical to implement. Four 9s of availability saves $520,334

over a two-9s solution and only costs an additional $354,000 to implement. Therefore,

for this particular application, a four-9s solution is the most appropriate level of service

to design for.

 Classification of Standby Servers
There are three classes of standby solution. You can implement each using different

technologies, although you can use some technologies to implement multiple classes

of standby server. Table 13-3 outlines the different classes of standby that you can

implement.

Table 13-2. Cost of Downtime

Level of Availability Cost of Downtime (3 Years) Cost of Availability Solution

99% $525,600 $108,000

99.9% $52,560 $224,000

99.99% $5,256 $462,000

99.999% $526 $910,000

Chapter 13 high availability and disaster reCovery ConCepts

464

Note Cold standby does not show an example technology because no
synchronization is required and, thus, no technology implementation is required.
For example, in a cloud scenario, you may have a vMWare sddC in an aWs
availability zone. if an availability zone is lost, automation spins up an sddC in a
different availability zone and restores vM snapshots from an s3 bucket.

 High Availability and Recovery Technologies
SQL Server provides a full suite of technologies for implementing high availability and

disaster recovery. The following sections provide an overview of these technologies and

discuss their most appropriate uses.

 AlwaysOn Failover Clustering
A Windows cluster is a technology for providing high availability in which a group of up

to 64 servers works together to provide redundancy. An AlwaysOn Failover Clustered

Instance (FCI) is an instance of SQL Server that spans the servers within this group. If

one of the servers within this group fails, another server takes ownership of the instance.

Its most appropriate usage is for high availability scenarios where the databases are large

Table 13-3. Standby Classifications

Class Description Example Technologies

hot a synchronized solution where failover can occur automatically or

manually. often used for high availability.

Clustering, alwayson

availability groups

(synchronous)

Warm a synchronized solution where failover can only occur manually.

often used for disaster recovery.

log shipping, alwayson

availability groups

(asynchronous)

Cold an unsynchronized solution where failover can only occur manually.

this is only suitable for read-only data, which is never modified.

–

Chapter 13 high availability and disaster reCovery ConCepts

465

or have high write profiles. This is because clustering relies on shared storage, meaning

the data is only written to disk once. With SQL Server–level HA technologies, write

operations occur on the primary database and then again on all secondary databases,

before the commit on the primary completes. This can cause performance issues.

Even though it is possible to stretch a cluster across multiple sites, this involves SAN

replication, which means that a cluster is normally configured within a single site.

Each server within a cluster is called a node. Therefore, if a cluster consists of three

servers, it is known as a three-node cluster. Each node within a cluster has the SQL

Server binaries installed, but the SQL Server service is only started on one of the nodes,

which is known as the active node. Each node within the cluster also shares the same

storage for the SQL Server data and log files. The storage, however, is only attached to the

active node.

Tip in geographically dispersed clusters (geoclusters), each server is attached to
different storage. the volumes are updated by san replication or Windows storage
replica (a Windows server technology, introduced in Windows server 2016, which
performs storage replication). the cluster regards the two volumes as a single,
shared volume, which can only be attached to one node at a time.

If the active node fails, then the SQL Server service is stopped and the storage is

detached. The storage is then reattached to one of the other nodes in the cluster, and the

SQL Server service is started on this node, which is now the active node. The instance is

also assigned its own network name and IP address, which are also bound to the active

node. This means that applications can connect seamlessly to the instance, regardless of

which node has ownership.

The diagram in Figure 13-1 illustrates a two-node cluster. It shows that although

the databases are stored on a shared storage array, each node still has a dedicated

system volume. This volume contains the SQL Server binaries. It also illustrates how

the shared storage, IP address, and network name are rebound to the passive node in

the event of failover.

Chapter 13 high availability and disaster reCovery ConCepts

466

 Active/Active Configuration

Although the diagram in Figure 13-1 illustrates an active/passive configuration, it is

also possible to have an active/active configuration. It is not possible for more than one

node at a time to own a single instance, and therefore it is not possible to implement

load balancing. It is, however, possible to install multiple instances on a cluster, and a

different node may own each instance. In this scenario, each node has its own unique

network name and IP address. Each instance’s shared storage also consists of a unique

set of volumes.

Therefore, in an active/active configuration, during normal operations, Node1 may

host Instance1 and Node2 may host Instance2. If Node1 fails, both instances are then

hosted by Node2, and vice versa. The diagram in Figure 13-2 illustrates a two-node

active/active cluster.

Network Name

IP Address

Active Node

Database

Shared storage

System volume

SQL Server
binaries

System volume

SQL Server
binariesPassive Node

Normal operation

Failover

Figure 13-1. Two-node cluster

Chapter 13 high availability and disaster reCovery ConCepts

467

Caution in an active/active cluster, it is important to consider resources in the
event of failover. For example, if each node has 128gb of raM and the instance
hosted on each node is using 96gb of raM and locking pages in memory, then
when one node fails over to the other node, this node fails as well, because it does
not have enough memory to allocate to both instances. Make sure you plan both
memory and processor requirements as if the two nodes are a single server. For
this reason, active/active clusters are not generally recommended for sQl server.

 Three-Plus Node Configurations

As previously mentioned, it is possible to have up to 64 nodes in a cluster. When you

have three or more nodes, it is unlikely that you will want to have a single active node

and two redundant nodes, due to the associated costs. Instead, you can choose to

implement an N+1 or N+M configuration.

System volume

SQL Server
binaries

System volume

SQL Server
binaries

Network Name

IP Address

Network Name

IP Address

Active Node
(Instance1)

Passive Node
(Instance2)

Active Node
(Instance2)

Passive Node
(Instance1)

Database

Shared storage
(Instance1)

Database

Shared storage
(Instance2)

Normal operation

Failover

Figure 13-2. Active/active cluster

Chapter 13 high availability and disaster reCovery ConCepts

468

In an N+1 configuration, you have multiple active nodes and a single passive node.

If a failure occurs on any of the active nodes, they fail over to the passive node. The

diagram in Figure 13-3 depicts a three-node N+1 cluster.

In an N+1 configuration, in a multifailure scenario, multiple nodes may fail over to

the passive node. For this reason, you must be very careful when you plan resources to

ensure that the passive node is able to support multiple instances. However, you can

mitigate this issue by using an N+M configuration.

Whereas an N+1 configuration has multiple active nodes and a single passive node,

an N+M cluster has multiple active nodes and multiple passive nodes, although there

are usually fewer passive nodes than there are active nodes. The diagram in Figure 13-4

shows a five-node N+M configuration. The diagram shows that Instance3 is configured

to always fail over to one of the passive nodes, whereas Instance1 and Instance2 are

configured to always fail over to the other passive node. This gives you the flexibility to

control resources on the passive nodes, but you can also configure the cluster to allow any

of the active nodes to fail over to either of the passive nodes, if this is a more appropriate

design for your environment.

Network Name

IP Address

Network Name

IP Address

Active Node
(Instance1)

Active Node
(Instance2)

Passive Node
(Instance1 &
Instance2)

Database

Shared storage
(Instance1)

Database

Shared storage
(Instance2)

Normal operation

Failover

System volume

SQL Server
binaries

System volume

SQL Server
binaries

System volume

SQL Server
binaries

Figure 13-3. Three-node N+1 configuration

Chapter 13 high availability and disaster reCovery ConCepts

469

 Quorum

So that automatic failover can occur, the cluster service needs to know if a node goes

down. In order to achieve this, you must form a quorum. The definition of a quorum is

“The minimum number of members required in order for business to be carried out.” In

terms of high availability, this means that each node within a cluster, and optionally a

witness device (which may be a cluster disk or a file share that is external to the cluster),

receives a vote. If more than half of the voting members are unable to communicate

with a node, then the cluster service knows that it has gone down and any cluster-aware

applications on the server fail over to another node. The reason that more than half

of the voting members need to be unable to communicate with the node is to avoid a

situation known as a split brain.

To explain a split-brain scenario, imagine that you have three nodes in Data Center 1

and three nodes in Data Center 2. Now imagine that you lose network connectivity

between the two data centers, yet all six nodes remain online. The three nodes in Data

Center 1 believe that all of the nodes in Data Center 2 are unavailable. Conversely, the

nodes in Data Center 2 believe that the nodes in Data Center 1 are unavailable. This leaves

both sides (known as partitions) of the cluster thinking that they should take control.

Network Name

IP Address

System volume

SQL Server
binaries

System volume

SQL Server
binaries

System volume

SQL Server
binaries

System volume

SQL Server
binaries

System volume

SQL Server
binaries

Active Node
(Instance1)

Network Name

IP Address

Active Node
(Instance2)

Network Name

IP Address

Active Node
(Instance3)

Passive Node
(Instance3)

Passive Node
(Instance1 &
Instance2)

Database

Shared storage
(Instance1)

Database

Shared storage
(Instance2)

Database

Shared storage
(Instance2)

Normal operation

Failover

Figure 13-4. Five-node N+M configuration

Chapter 13 high availability and disaster reCovery ConCepts

470

This can have unpredictable and undesirable consequences for any application that

successfully connects to one or the other partition. The Quorum = (Voting Members / 2) + 1

formula protects against this scenario.

Tip if your cluster loses quorum, then you can force one partition online, by
starting the cluster service using the /fq switch. if you are using Windows server
2012 r2 or higher, then the partition that you force online is considered the
authoritative partition. this means that other partitions can automatically rejoin the
cluster when connectivity is reestablished.

Various quorum models are available and the most appropriate model depends on

your environment. Table 13-4 lists the models that you can utilize and details the most

appropriate way to use them.

Although the default option is one node, one vote, it is possible to manually remove

a node vote by changing the NodeWeight property to zero. This is useful if you have a

multi-subnet cluster (a cluster in which the nodes are split across multiple sites). In this

scenario, it is recommended that you use a file-share witness in a third site. This helps

you avoid a cluster outage as a result of network failure between data centers. If you have

an odd number of nodes in the quorum, however, then adding a file-share witness leaves

you with an even number of votes, which is dangerous. Removing the vote from one of

the nodes in the secondary data center eliminates this issue.

Table 13-4. Quorum Models

Quorum Model Appropriate Usage

node Majority When you have an odd number of nodes in the cluster

node + disk Witness Majority When you have an even number of nodes in the cluster

node + File share Witness

Majority

When you have nodes split across multiple sites or when you have

an even number of nodes and are required to avoid shared disks∗

*Reasons for needing to avoid shared disks due to virtualization are discussed later in this chapter.

Chapter 13 high availability and disaster reCovery ConCepts

471

Caution a file-share witness does not store a full copy of the quorum database.
this means that a two-node cluster with a file-share witness is vulnerable to a
scenario known as partition in time. in this scenario, if one node fails while you are
in the process of patching or altering the cluster service on the second node, then
there is no up-to-date copy of the quorum database. this leaves you in a position
in which you need to destroy and rebuild the cluster.

Modern versions of Windows Server also support the concepts of Dynamic Quorum

and Tie Breaker for 50% Node Split. When Dynamic Quorum is enabled, the cluster

service automatically decides whether or not to give the quorum witness a vote,

depending on the number of nodes in the cluster. If you have an even number of nodes,

then it is assigned a vote. If you have an odd number of nodes, it is not assigned a vote.

Tie Breaker for 50% Node Split expands on this concept. If you have an even number of

nodes and a witness and the witness fails, then the cluster service automatically removes

a vote from one random node within the cluster. This maintains an odd number of votes

in the quorum and reduces the risk of a cluster going offline, due to a witness failure.

Tip if your cluster is running in Windows server 2016 or higher, with datacenter
edition, then storage spaces direct is supported. this allows high availability to be
realized, using locally attached physical storage, with a software-defined storage
layer on top. a full conversation around storage spaces direct is beyond the scope
of this book, but further details can be found at https://docs.microsoft.
com/en-us/windows-server/storage/storage-spaces/storage-
spaces- direct-overview.

 AlwaysOn Availability Groups
AlwaysOn Availability Groups (AOAG) replaces database mirroring and is essentially a

merger of database mirroring and clustering technologies. SQL Server is installed as a

stand-alone instance (as opposed to an AlwaysOn Failover Clustered Instance) on each

node of a cluster. A cluster-aware application, called an Availability Group Listener, is

then installed on the cluster; it is used to direct traffic to the correct node. Instead of

Chapter 13 high availability and disaster reCovery ConCepts

https://docs.microsoft.com/en-us/windows-server/storage/storage-spaces/storage-spaces-direct-overview
https://docs.microsoft.com/en-us/windows-server/storage/storage-spaces/storage-spaces-direct-overview
https://docs.microsoft.com/en-us/windows-server/storage/storage-spaces/storage-spaces-direct-overview

472

relying on shared disks, however, AOAG compresses the log stream and sends it to the

other nodes, in a similar fashion to database mirroring.

AOAG is the most appropriate technology for high availability in scenarios where you

have small databases with low write profiles. This is because, when used synchronously,

it requires that the data is committed on all synchronous replicas before it is committed

on the primary database. You can have up to eight replicas, including three synchronous

replicas. AOAG may also be the most appropriate technology for implementing high

availability in a virtualized environment. This is because the shared disk required by

clustering may not be compatible with some features of the virtual estate. As an example,

VMware does not support the use of vMotion, which is used to manually move virtual

machines (VMs) between physical servers, and the Distributed Resource Scheduler (DRS),

which is used to automatically move VMs between physical servers, based on resource

utilization, when the VMs use shared disks, presented over Fiber Channel.

Tip the limitations surrounding shared disks with vMware features can be
worked around by presenting the storage directly to the guest os over an isCsi
connection at the expense of performance degradation.

AOAG is the most appropriate technology for DR when you have a proactive failover

requirement but when you do not need to implement a load delay. AOAG may also be

suitable for disaster recovery in scenarios where you wish to utilize your DR server for

offloading reporting. This allows the redundant servers to be utilized. When used for

disaster recovery, AOAG works in an asynchronous mode. This means that it is possible

to lose data in the event of a failover. The RPO is nondeterministic and is based on the

time of the last uncommitted transaction.

In the old days, of database mirroring, the secondary database was always offline.

This means that you cannot use the secondary database to offload any reporting or other

read-only activities. It is possible to work around this by creating a database snapshot

against the secondary database and pointing read-only activity to the snapshot. This can

still be complicated, however, because you must configure your application to issue

read-only statements against a different network name and IP address. Availability Groups,

on the other hand, allow you to configure one or more replicas as readable. The only

limitation is that readable replicas and automatic failover cannot be configured on the

same secondaries. The norm, however, would be to configure readable secondary replicas

in asynchronous commit mode so that they do not impair performance.

Chapter 13 high availability and disaster reCovery ConCepts

473

To further simplify this, the Availability Group Replica checks for the read-only or

read-intent properties in an application connection string and points the application

to the appropriate node. This means that you can easily scale reporting and database

maintenance routines horizontally with very little development effort and with the

applications being able to use a single connection string.

Because AOAG allows you to combine synchronous replicas (with or without

automatic failover), asynchronous replicas, and replicas for read-only access, it allows

you to satisfy high availability, disaster recovery, and reporting scale-out requirements

using a single technology. If your sole requirement is read scaling, as opposed to HA or

DR, then it is actually possible to configure Availability Groups with no cluster, from SQL

Server 2017 onward. In this case, there is no cluster service, and hence no automatic

redirection. Replicas within the Availability Group use certificate when communicating

with each other. This is also true if you configure Availability Groups without AD, in a

workgroup or cross-domain.

When you are using AOAG, failover does not occur at the database level, nor at the

instance level. Instead, failover occurs at the level of the availability group. The availability

group is a concept that allows you to group related databases together so that they can fail

over as an atomic unit. This is particularly useful in consolidated environments, because

it allows you to group together the databases that map to a single application. You can

then fail over this application to another replica for the purposes of DR testing, among

other reasons, without having an impact on the other data-tier applications that are

hosted on the instance.

No hard limits are imposed for the number of availability groups you can configure

on an instance, nor are there any hard limits for the number of databases on an

instance that can take part in AOAG. Microsoft, however, has tested up to, and officially

recommends, a maximum of 100 databases and 10 availability groups per instance. The

main limiting factor in scaling the number of databases is that AOAG uses a database

mirroring endpoint and there can only be one per instance. This means that the log

stream for all data modifications is sent over the same endpoint.

Figure 13-5 depicts how you can map data-tier applications to availability groups for

independent failover. In this example, a single instance hosts two data-tier applications.

Each application has been added to a separate availability group. The first availability

group has failed over to Node2. Therefore, the availability group listeners point traffic for

Application1 to Node2 and traffic for Application2 to Node1. Because each availability

group has its own network name and IP address, and because these resources fail over with

the AOAG, the application is able to seamlessly reconnect to the databases after failover.

Chapter 13 high availability and disaster reCovery ConCepts

474

Primary Replica

Applications

Secondary Replica

Availability
Group Listener

(Availability
Group1)

Availability
Group Listener

(Availability
Group2)

App1 -
DB1

App1 -
DB2

App1 -
DB3

Availability Group 1

App2 -
DB1

App2 -
DB2

Availability Group 2

App1 -
DB1

App1 -
DB2

App1 -
DB3

Availability Group 1

App2 -
DB1

App2 -
DB2

Availability Group 2

Figure 13-5. Availability group failover

Chapter 13 high availability and disaster reCovery ConCepts

475

The diagram in Figure 13-6 depicts an AlwaysOn Availability Group topology. In this

example, there are four nodes in the cluster and a disk witness. Node1 is hosting the

primary replicas of the databases, Node2 is being used for automatic failover, Node3 is

being used to offload reporting, and Node4 is being used for DR. Because the cluster

is stretched across two data centers, multi-subnet clustering has been implemented.

Because there is no shared storage, however, there is no need for SAN replication

between the sites.

Application

Availability
Group Listener

AlwaysOn Availability Group Cluster

Primary Site DR Site

Node1 (Primary
Replica)

Node2
(Synchronous

Secondary Replica
– Automatic

Failover)

Node3
(Asynchronous

Secondary Replica
– Readable)

Node4
(Asynchronous

Secondary Replica
– Not Readable)

Synchronous commit

Asynchronous
commit

SQL Server
binaries

Primary
Replica

SQL Server
binaries

Secondary
Replica

SQL Server
binaries

Secondary
Replica

SQL Server
binaries

Secondary
Replica

Figure 13-6. AlwaysOn Availability Group topology

Chapter 13 high availability and disaster reCovery ConCepts

476

Note alwayson availability groups are discussed in more detail in Chapters 14
and 16.

 Automatic Page Repair

If a page becomes corrupt in a database configured as a replica in an AlwaysOn

Availability Group topology, then SQL Server attempts to fix the corruption by obtaining a

copy of the pages from one of the secondary replicas. This means that a logical corruption

can be resolved without you needing to perform a restore or to run DBCC CHECKDB with a

repair option. However, automatic page repair does not work for the following page types:

• File Header page

• Database Boot page

• Allocation pages

• GAM (Global Allocation Map)

• SGAM (Shared Global Allocation Map)

• PFS (Page Free Space)

If the primary replica fails to read a page because it is corrupt, it first logs the page

in the MSDB.dbo.suspect_pages table. It then checks that at least one replica is in the

SYNCHRONIZED state and that transactions are still being sent to the replica. If these

conditions are met, then the primary sends a broadcast to all replicas, specifying the

PageID and LSN (log sequence number) at the end of the flushed log. The page is then

marked as restore pending, meaning that any attempts to access it will fail, with error

code 829.

After receiving the broadcast, the secondary replicas wait, until they have redone

transactions up to the LSN specified in the broadcast message. At this point, they try to

access the page. If they cannot access it, they return an error. If they can access the page,

they send the page back to the primary replica. The primary replica accepts the page

from the first secondary to respond.

Chapter 13 high availability and disaster reCovery ConCepts

477

The primary replica will then replace the corrupt copy of the page with the version

that it received from the secondary replica. When this process completes, it updates the

page in the MSDB.dbo.suspect_pages table to reflect that it has been repaired by setting

the event_type column to a value of 5 (Repaired).

If the secondary replica fails to read a page while redoing the log because it is

corrupt, it places the secondary into the SUSPENDED state. It then logs the page in the

MSDB.dbo.suspect_pages table and requests a copy of the page from the primary replica.

The primary replica attempts to access the page. If it is inaccessible, then it returns an

error and the secondary replica remains in the SUSPENDED state.

If it can access the page, then it sends it to the secondary replica that requested it.

The secondary replica replaces the corrupt page with the version that it obtained

from the primary replica. It then updates the MSDB.dbo.suspect_pages table with an

event_id of 5. Finally, it attempts to resume the AOAG session.

Note it is possible to manually resume the session, but if you do, the corrupt
page is hit again during the synchronization. Make sure you repair or restore the
page on the primary replica first.

 Log Shipping
Log shipping is a technology that you can use to implement disaster recovery. It works by

backing up the transaction log on the principle server, copying it to the secondary server,

and then restoring it. It is most appropriate to use log shipping in DR scenarios in which

you require a load delay, because this is not possible with AOAG. As an example of where

a load delay may be useful, consider a scenario in which a user accidently deletes all of

the data from a table. If there is a delay before the database on the DR server is updated,

then it is possible to recover the data for this table, from the DR server, and then

repopulate the production server. This means that you do not need to restore a backup

to recover the data. Log shipping is not appropriate for high availability, since there is

no automatic failover functionality. The diagram in Figure 13-7 illustrates a log shipping

topology.

Chapter 13 high availability and disaster reCovery ConCepts

478

 Recovery Modes

In a log shipping topology, there is always exactly one principle server, which is the

production server. It is possible to have multiple secondary servers, however, and these

servers can be a mix of DR servers and servers used to offload reporting.

When you restore a transaction log, you can specify three recovery modes: Recovery,

NoRecovery, and Standby. The Recovery mode brings the database online, which is not

supported with Log Shipping. The NoRecovery mode keeps the database offline so that

more backups can be restored. This is the normal configuration for log shipping and is

the appropriate choice for DR scenarios.

The Standby option brings the database online, but in a read-only state so that you

can restore further backups. This functionality works by maintaining a TUF (Transaction

Undo File). The TUF file records any uncommitted transactions in the transaction log.

This means that you can roll back these uncommitted transactions in the transaction log,

Principle

Transaction
Log

File share

Secondary

File share

Backup Restore

Transaction
Log

Copy

Figure 13-7. Log Shipping topology

Chapter 13 high availability and disaster reCovery ConCepts

479

which allows the database to be more accessible (although it is read-only). The next time

a restore needs to be applied, you can reapply the uncommitted transaction in the TUF

file to the log before the redo phase of the next log restore begins.

Figure 13-8 illustrates a log shipping topology that uses both a DR server and a

reporting server.

 Remote Monitor Server

Optionally, you can configure a monitor server in your log shipping topology. This helps

you centralize monitoring and alerting. When you implement a monitor server, the

history and status of all backup, copy, and restore operations are stored on the monitor

server. A monitor server also allows you to have a single alert job, which is configured to

monitor the backup, copy, and restore operations on all servers, as opposed to it needing

separate alerts on each server in the topology.

Principle

Transaction
Log

File share

Secondary (Read
only for reporting)

File share

Backup Restore (With Standby)

Transaction
Log

Secondary (Offline
for DR)

File share

Restore (With NoRecovery)

Transaction
Log

Copy

Copy

Figure 13-8. Log shipping with DR and reporting servers

Chapter 13 high availability and disaster reCovery ConCepts

480

Caution if you wish to use a monitor server, it is important to configure it when
you set up log shipping. after log shipping has been configured, the only way to
add a monitor server is to tear down and reconfigure log shipping.

 Failover

Unlike other high availability and disaster recovery technologies, an amount of

administrative effort is associated with failing over log shipping. To fail over log shipping,

you must back up the tail end of the transaction log, and copy it, along with any other

uncopied backup files, to the secondary server.

You now need to apply the remaining transaction log backups to the secondary

server in sequence, finishing with the tail-log backup. You apply the final restore using

the WITH RECOVERY option to bring the database back online in a consistent state. If you

are not planning to fail back, you can reconfigure log shipping with the secondary server

as the new primary server.

Note log shipping is discussed in further detail in Chapter 15. backups and
restores are discussed in further detail in Chapter 12.

 Combining Technologies
To meet your business objectives and nonfunctional requirements (NFRs), you need to

combine multiple high availability and disaster recovery technologies together to create

a reliable, scalable platform. A classic example of this is the requirement to combine an

AlwaysOn Failover Cluster with AlwaysOn Availability Groups.

The reason you may need to combine these technologies is that when you use

AlwaysOn Availability Groups in synchronous mode, which you must do for automatic

failover, it can cause a performance impediment. As discussed earlier in this chapter,

the performance issue is caused by the transaction being committed on the secondary

server before being committed on the primary server. Clustering does not suffer from

this issue, however, because it relies on a shared disk resource, and therefore the

transaction is only committed once.

Chapter 13 high availability and disaster reCovery ConCepts

481

Therefore, it is common practice to first use a cluster to achieve high availability and

then use AlwaysOn Availability Groups to perform DR and/or offload reporting. The

diagram in Figure 13-9 illustrates a HA/DR topology that combines clustering and AOAG

to achieve high availability and disaster recovery, respectively.

The diagram in Figure 13-9 shows that the primary replica of the database is hosted on

a two-node active/passive cluster. If the active node fails, the rules of clustering apply, and

the shared storage, network name, and IP address are reattached to the passive node, which

then becomes the active node. If both nodes are inaccessible, however, the availability

group listener points the traffic to the third node of the cluster, which is situated in the DR

site and is synchronized using log stream replication. Of course, when asynchronous mode

is used, the database must be failed over manually by a DBA.

Another common scenario is the combination of a cluster and log shipping to

achieve high availability and disaster recovery, respectively. This combination works in

much the same way as clustering combined with AlwaysOn Availability Groups and is

illustrated in Figure 13-10.

Network Name

Primary Site DR Site

IP Address

Node1 (Active) Node2 (Passive) Node3

Failover Clustered Instance

System volume

SQL Server
binaries

System volume

SQL Server
binaries

Primary
Replica

Shared storage

Secondary
Replica

SQL Server
binaries

Stand-alone
Instance

Normal operation

Failover

Automatic Failover

Automatic Failover

Automatic Failover

Manual Failover

Manual Failover

Figure 13-9. Clustering and AlwaysOn Availability Groups combined

Chapter 13 high availability and disaster reCovery ConCepts

482

The diagram shows that a two-node active/passive cluster has been configured in

the primary data center. The transaction log(s) of the database(s) hosted on this instance

are then shipped to a stand-alone server in the DR data center. Because the cluster uses

shared storage, you should also use shared storage for the backup volume and add the

backup volume as a resource in the role. This means that when the instance fails over to

the other node, the backup share also fails over, and log shipping continues to synchronize,

uninterrupted.

Caution if failover occurs while the log shipping backup or copy jobs are in
progress, then log shipping may become unsynchronized and require manual
intervention. this means that after a failover, you should check the health of your
log shipping jobs.

Automatic Failover

Network Name

IP Address

Node1 (Active) Node2 (Passive)

Primary Site DR Site

Stand-alone
Server

System volume

SQL Server
binaries

System volume

SQL Server
binaries

Shared storage

Transaction
Log

File share

Backup

Transaction
Log

File share

Restore

Automatic Failover

Automatic Failover

Copy

Normal operation

Failover

Figure 13-10. Clustering combined with log shipping

Chapter 13 high availability and disaster reCovery ConCepts

483

 Summary
Understanding the concepts of availability is key to making the correct implementation

choices for your applications that require high availability and disaster recovery. You

should calculate the cost of downtime and compare this to the cost of implementing

choices of HA/DR solutions to help the business understand the cost/benefit profile

of each option. You should also be mindful of SLAs when choosing the technology

implementation, since there could be financial penalties if SLAs are not met.

SQL Server provides a full suite of high availability and disaster recovery

technologies, giving you the flexibility to implement a solution that best fits the needs

of your data-tier applications. For high availability, you can implement either clustering

or AlwaysOn Availability Groups (AOAG). Clustering uses a shared disk resource, and

failover occurs at the instance level. AOAG, on the other hand, synchronizes data at the

database level by maintaining a redundant copy of the database with a synchronous

log stream.

To implement disaster recovery, you can choose to implement AOAG or log

shipping. Log shipping works by backing up, copying, and restoring the transaction

logs of the databases, whereas AOAG synchronizes the data using an asynchronous log

stream.

It is also possible to combine multiple HA and DR technologies together in order

to implement the most appropriate availability strategy. Common examples of this are

combining clustering for high availability with AOAG or log shipping to provide DR.

Chapter 13 high availability and disaster reCovery ConCepts

485
© Peter A. Carter 2019
P. A. Carter, Pro SQL Server 2019 Administration, https://doi.org/10.1007/978-1-4842-5089-1_14

CHAPTER 14

Implementing AlwaysOn
Availability Groups
AlwaysOn Availability Groups provide a flexible option for achieving high availability,

recovering from disasters, and scaling out read-only workloads. The technology

synchronizes data at the database level, but health monitoring and quorum are provided

by a Windows cluster.

There are different variations of AlwaysOn Availability Groups. The traditional

flavor sits on a Windows Failover Cluster, but if SQL Server is installed on Linux, then

Pacemaker can be used. Since SQL Server 2017, AlwaysOn Availability Groups can also

be configured with no cluster at all. This is acceptable for offloading reporting but is not

a valid HA or DR configuration. When using SQL Server 2019 with Windows Server 2019,

Availability Groups can even be configured for containerized SQL, with Kubernetes.

This chapter focuses on configuring Availability Groups on a Windows Failover

Cluster, for the purpose of providing both high availability (HA) and disaster recovery

(DR). We also discuss Availability Groups on Linux and Distributed Availability Groups.

We discuss using availability groups to scale out read-only workloads in Chapter 16.

Note For the demonstrations in this chapter, we use a domain that contains a
domain controller and a three-node cluster. The cluster has no shared storage
for data and there is no AlwaysOn Failover Clustered Instance. Each node has
a stand-alone instance of SQL Server installed on it named ClusterNode1\
PrimaryReplica, ClusterNode2\SyncHA, and ClusterNode3\
AsyncDR, respectively. CLUSTERNODE1 and CLUSTERNODE2 are in Site1 and
CLUSTERNODE3 resides in Site2, meaning that the cluster is stretched across
subnets. Full details of how to build a Failover Cluster or a Failover Clustered

486

Instance are beyond the scope of this book, but full details can be found in the
Apress title SQL Server AlwaysOn Revealed, which can be found at www.apress.
com/gb/book/9781484223963.

 Implementing AlwaysOn Availability Groups
Before implementing AlwaysOn Availability Groups, we first create three databases,

which we will use during the demonstrations in this chapter. Two of the databases

relate to the fictional application, App1, and the third database relates to the fictional

application, App2. Each contains a single table, which we populate with data. Each

database is configured with Recovery mode set to FULL. This is a hard requirement for

a database to use AlwaysOn Availability Groups because data is synchronized via a log

stream. The script in Listing 14-1 creates these databases.

Listing 14-1. Creating Databases

CREATE DATABASE Chapter14App1Customers ;

GO

ALTER DATABASE Chapter14App1Customers SET RECOVERY FULL ;

GO

USE Chapter14App1Customers

GO

CREATE TABLE App1Customers

(

ID INT PRIMARY KEY IDENTITY,

FirstName NVARCHAR(30),

LastName NVARCHAR(30),

CreditCardNumber VARBINARY(8000)

) ;

GO

--Populate the table

ChApTER 14 ImpLEmENTINg ALwAySON AvAILAbILITy gROUpS

http://www.apress.com/gb/book/9781484223963
http://www.apress.com/gb/book/9781484223963

487

DECLARE @Numbers TABLE

(

 Number INT

)

;WITH CTE(Number)

AS

(

 SELECT 1 Number

 UNION ALL

 SELECT Number + 1

 FROM CTE

 WHERE Number < 100

)

INSERT INTO @Numbers

SELECT Number FROM CTE

DECLARE @Names TABLE

(

 FirstName VARCHAR(30),

 LastName VARCHAR(30)

) ;

INSERT INTO @Names

VALUES('Peter', 'Carter'),

 ('Michael', 'Smith'),

 ('Danielle', 'Mead'),

 ('Reuben', 'Roberts'),

 ('Iris', 'Jones'),

 ('Sylvia', 'Davies'),

 ('Finola', 'Wright'),

 ('Edward', 'James'),

 ('Marie', 'Andrews'),

 ('Jennifer', 'Abraham'),

 ('Margaret', 'Jones')

INSERT INTO App1Customers(Firstname, LastName, CreditCardNumber)

ChApTER 14 ImpLEmENTINg ALwAySON AvAILAbILITy gROUpS

488

SELECT FirstName, LastName, CreditCardNumber FROM

 (SELECT

 (SELECT TOP 1 FirstName FROM @Names ORDER BY NEWID())

FirstName

 , (SELECT TOP 1 LastName FROM @Names ORDER BY NEWID())

LastName

 ,(SELECT CONVERT(VARBINARY(8000)

 ,(SELECT TOP 1 CAST(Number * 100 AS CHAR(4))

 FROM @Numbers

 WHERE Number BETWEEN 10 AND 99 ORDER BY NEWID()) + '-' +

 (SELECT TOP 1 CAST(Number * 100 AS CHAR(4))

 FROM @Numbers

 WHERE Number BETWEEN 10 AND 99 ORDER BY NEWID())

+ '-' +

 (SELECT TOP 1 CAST(Number * 100 AS CHAR(4))

 FROM @Numbers

 WHERE Number BETWEEN 10 AND 99 ORDER BY NEWID())

+ '-' +

 (SELECT TOP 1 CAST(Number * 100 AS CHAR(4))

 FROM @Numbers

 WHERE Number BETWEEN 10 AND 99 ORDER BY NEWID())))

CreditCardNumber

FROM @Numbers a

CROSS JOIN @Numbers b

CROSS JOIN @Numbers c

) d ;

CREATE DATABASE Chapter14App1Sales ;

GO

ALTER DATABASE Chapter14App1Sales SET RECOVERY FULL ;

GO

USE Chapter14App1Sales

GO

ChApTER 14 ImpLEmENTINg ALwAySON AvAILAbILITy gROUpS

489

CREATE TABLE [dbo].[Orders](

 [OrderNumber] [int] IDENTITY(1,1) NOT NULL PRIMARY KEY CLUSTERED,

 [OrderDate] [date] NOT NULL,

 [CustomerID] [int] NOT NULL,

 [ProductID] [int] NOT NULL,

 [Quantity] [int] NOT NULL,

 [NetAmount] [money] NOT NULL,

 [TaxAmount] [money] NOT NULL,

 [InvoiceAddressID] [int] NOT NULL,

 [DeliveryAddressID] [int] NOT NULL,

 [DeliveryDate] [date] NULL,

) ;

DECLARE @Numbers TABLE

(

 Number INT

)

;WITH CTE(Number)

AS

(

 SELECT 1 Number

 UNION ALL

 SELECT Number + 1

 FROM CTE

 WHERE Number < 100

)

INSERT INTO @Numbers

SELECT Number FROM CTE

--Populate ExistingOrders with data

INSERT INTO Orders

SELECT

 (SELECT CAST(DATEADD(dd,(SELECT TOP 1 Number

 FROM @Numbers

 ORDER BY NEWID()),getdate())as DATE)),

ChApTER 14 ImpLEmENTINg ALwAySON AvAILAbILITy gROUpS

490

 (SELECT TOP 1 Number -10 FROM @Numbers ORDER BY NEWID()),

 (SELECT TOP 1 Number FROM @Numbers ORDER BY NEWID()),

 (SELECT TOP 1 Number FROM @Numbers ORDER BY NEWID()),

 500,

 100,

 (SELECT TOP 1 Number FROM @Numbers ORDER BY NEWID()),

 (SELECT TOP 1 Number FROM @Numbers ORDER BY NEWID()),

 (SELECT CAST(DATEADD(dd,(SELECT TOP 1 Number - 10

 FROM @Numbers

 ORDER BY NEWID()),getdate()) as DATE))

FROM @Numbers a

CROSS JOIN @Numbers b

CROSS JOIN @Numbers c ;

CREATE DATABASE Chapter14App2Customers ;

GO

ALTER DATABASE Chapter14App2Customers SET RECOVERY FULL ;

GO

USE Chapter14App2Customers

GO

CREATE TABLE App2Customers

(

ID INT PRIMARY KEY IDENTITY,

FirstName NVARCHAR(30),

LastName NVARCHAR(30),

CreditCardNumber VARBINARY(8000)

) ;

GO

--Populate the table

DECLARE @Numbers TABLE

(

 Number INT

) ;

ChApTER 14 ImpLEmENTINg ALwAySON AvAILAbILITy gROUpS

491

;WITH CTE(Number)

AS

(

 SELECT 1 Number

 UNION ALL

 SELECT Number + 1

 FROM CTE

 WHERE Number < 100

)

INSERT INTO @Numbers

SELECT Number FROM CTE ;

DECLARE @Names TABLE

(

 FirstName VARCHAR(30),

 LastName VARCHAR(30)

) ;

INSERT INTO @Names

VALUES('Peter', 'Carter'),

 ('Michael', 'Smith'),

 ('Danielle', 'Mead'),

 ('Reuben', 'Roberts'),

 ('Iris', 'Jones'),

 ('Sylvia', 'Davies'),

 ('Finola', 'Wright'),

 ('Edward', 'James'),

 ('Marie', 'Andrews'),

 ('Jennifer', 'Abraham'),

 ('Margaret', 'Jones')

INSERT INTO App2Customers(Firstname, LastName, CreditCardNumber)

SELECT FirstName, LastName, CreditCardNumber FROM

 (SELECT

 (SELECT TOP 1 FirstName FROM @Names ORDER BY NEWID())

FirstName

ChApTER 14 ImpLEmENTINg ALwAySON AvAILAbILITy gROUpS

492

 , (SELECT TOP 1 LastName FROM @Names ORDER BY NEWID())

LastName

 ,(SELECT CONVERT(VARBINARY(8000)

 ,(SELECT TOP 1 CAST(Number * 100 AS CHAR(4))

 FROM @Numbers

 WHERE Number BETWEEN 10 AND 99 ORDER BY NEWID()) + '-' +

 (SELECT TOP 1 CAST(Number * 100 AS CHAR(4))

 FROM @Numbers

 WHERE Number BETWEEN 10 AND 99 ORDER BY NEWID())

+ '-' +

 (SELECT TOP 1 CAST(Number * 100 AS CHAR(4))

 FROM @Numbers

 WHERE Number BETWEEN 10 AND 99 ORDER BY NEWID())

+ '-' +

 (SELECT TOP 1 CAST(Number * 100 AS CHAR(4))

 FROM @Numbers

 WHERE Number BETWEEN 10 AND 99 ORDER BY NEWID())))

CreditCardNumber

FROM @Numbers a

CROSS JOIN @Numbers b

CROSS JOIN @Numbers c

) d ;

 Configuring SQL Server
The first step in configuring AlwaysOn Availability Groups is enabling this feature

on the SQL Server service. To enable the feature from the GUI, we open SQL Server

Configuration Manager, drill through SQL Server Services, and select Properties from the

context menu of the SQL Server service. When we do this, the service properties display

and we navigate to the AlwaysOn High Availability tab, shown in Figure 14-1.

On this tab, we check the Enable AlwaysOn Availability Groups box and ensure that the

cluster name displayed in the Windows Failover Cluster Name box is correct. We then need

to restart the SQL Server service. Because AlwaysOn Availability Groups uses stand-alone

instances, which are installed locally on each cluster node, as opposed to a failover clustered

instance, which spans multiple nodes, we need to repeat these steps for each stand-alone

instance hosted on the cluster.

ChApTER 14 ImpLEmENTINg ALwAySON AvAILAbILITy gROUpS

493

We can also use PowerShell to enable AlwaysOn Availability Groups. To do this, we

use the PowerShell command in Listing 14-2. The script assumes that CLUSTERNODE1 is

the name of the server and that PRIMARYREPLICA is the name of the SQL Server instance.

Listing 14-2. Enabling AlwaysOn Availability Groups

Enable-SqlAlwaysOn -Path SQLSERVER:\SQL\CLUSTERNODE1\PRIMARYREPLICA

The next step is to take a full backup of all databases that will be part of the

availability group. We will not be able to add them to an Availability Group until this has

been done. We create separate availability groups for App1 and App2, respectively, so to

create an availability group for App1, we need to back up the Chapter14App1Customers

and Chapter14App1Sales databases. We do this by running the script in Listing 14-3.

Figure 14-1. The AlwaysOn High Availability tab

ChApTER 14 ImpLEmENTINg ALwAySON AvAILAbILITy gROUpS

494

Listing 14-3. Backing Up the Databases

BACKUP DATABASE Chapter14App1Customers

TO DISK = N'C:\Backups\Chapter14App1Customers.bak'

WITH NAME = N'Chapter14App1Customers-Full Database Backup' ;

GO

BACKUP DATABASE Chapter14App1Sales

TO DISK = N'C:\Backups\Chapter14App1Sales.bak'

WITH NAME = N'Chapter14App1Sales-Full Database Backup' ;

GO

Note backups are discussed in Chapter 12.

 Creating the Availability Group
You can create an availability group topology in SQL Server in several ways. It can be

created manually, predominantly through dialog boxes, via T-SQL, or through a wizard.

In this chapter, we will explore the wizard and the dialog boxes.

 Using the New Availability Group Wizard

When the backups complete successfully, we invoke the New Availability Group wizard

by drilling through AlwaysOn High Availability in Object Explorer and selecting the New

Availability Group wizard from the context menu of the Availability Groups folder. The

Introduction page of the wizard is displayed, giving us an overview of the steps that we

need to undertake.

On the Specify Name page (see Figure 14-2), we are prompted to enter a name for

our availability group. We will also select Windows Server Failover Cluster as the Cluster

Type. Other options for cluster type are external, which supports Pacemaker on Linux

and None, which is used for Clusterless Availability Groups. The Database Level Health

Detection option will cause the Availability Group to fail over, should any database

within the group go offline. The Per Database DTC Support option will specify if cross-

database transactions are supported, using MSDTC (Microsoft Distributed Transaction

ChApTER 14 ImpLEmENTINg ALwAySON AvAILAbILITy gROUpS

495

Coordinator). A full discussion of configuring DTC is beyond the scope of this book,

but further details can be found at https://docs.microsoft.com/en-us/previous-

versions/windows/desktop/ms681291(v=vs.85).

On the Select Databases page, we are prompted to select the database(s) that we

wish to participate in the availability group, as illustrated in Figure 14-3. On this screen,

notice that we cannot select the Chapter14App2Customers database, because we have

not yet taken a full backup of the database.

Figure 14-2. The Specify Name page

ChApTER 14 ImpLEmENTINg ALwAySON AvAILAbILITy gROUpS

https://docs.microsoft.com/en-us/previous-versions/windows/desktop/ms681291(v=vs.85)
https://docs.microsoft.com/en-us/previous-versions/windows/desktop/ms681291(v=vs.85)

496

The Specify Replicas page consists of four tabs. We use the first tab, Replicas,

to add the secondary replicas to the topology. Checking the Synchronous Commit

option causes data to be committed on the secondary replica before it is committed

on the primary replica. (This is also referred to as hardening the log on the secondary

before the primary.) This means that, in the event of a failover, data loss is not

possible, meaning that we can meet an SLA (service-level agreement) with an RPO

(recovery point objective) of 0 (zero). It also means that there will be a performance

degradation, however. If we choose Asynchronous Commit, then the replica operates

in Asynchronous Commit mode. This means that data is committed on the primary

replica before being committed on the secondary replica. This stops us from suffering

performance degradation, but it also means that, in the event of failover, the RPO is

nondeterministic. Performance considerations for synchronous replicas are discussed

later in this chapter.

Figure 14-3. The Select Databases page

ChApTER 14 ImpLEmENTINg ALwAySON AvAILAbILITy gROUpS

497

When we check the Automatic Failover option, the Synchronous Commit option is

also selected automatically if we have not already selected it. This is because automatic

failover is only possible in Synchronous Commit mode. We can set the Readable

Secondary drop-down to No, Yes, or Read-intent. When we set it to No, the database is

not accessible on replicas that are in a secondary role. When we set it to Read-intent,

the Availability Group Listener can redirect read-only workloads to this secondary

replica, but only if the application has specified Application Intent=Read-only in

the connection string. Setting it to Yes enables the listener to redirect read-only traffic,

regardless of whether the Application Intent parameter is present in the application’s

connection string. Although we can change the value of Readable Secondary through

the GUI while at the same time configuring a replica for automatic failover without error,

this is simply a quirk of the wizard. In fact, the replica is not accessible, since active

secondaries are not supported when configured for automatic failover. The Replicas

tab is illustrated in Figure 14-4. To meet our requirement of achieving HA and DR, we

have configured the secondary server within the same site as a synchronous replica

and configured the server in a different site as asynchronous. This means that the

latency between data centers will not compound the performance degradation, which is

associated with synchronous commits.

Note Using secondary replicas for read-only workloads is discussed in more
depth in Chapter 16.

ChApTER 14 ImpLEmENTINg ALwAySON AvAILAbILITy gROUpS

498

On the Endpoints tab of the Specify Replicas page, illustrated in Figure 14-5, we

specify the port number for each endpoint. The default port is 5022, but we can specify a

different port if we need to. On this tab, we also specify if data should be encrypted when

it is sent between the endpoints. It is usually a good idea to check this option, and if we

do, then AES (Advanced Encryption Standard) is used as the encryption algorithm.

Optionally, you can also change the name of the endpoint that is created. Because only

one database mirroring endpoint is allowed per instance, however, and because the default

name is fairly descriptive, there is not always a reason to change it. Some DBAs choose to

rename it to include the name of the instance, since this can simplify the management of

multiple servers. This is a good idea if your enterprise has many availability group clusters.

The service account each instance uses is displayed for informational purposes. It

simplifies security administration if you ensure that the same service account is used by

both instances. If you fail to do this, you will need to grant each instance permissions to

each service account. This means that instead of reducing the security footprint of each

service account by using it for one instance only, you simply push the footprint up to the

SQL Server level instead of the operating system level.

The endpoint URL specifies the URL of the endpoint that availability groups will use

to communicate. The format of the URL is [Transport Protocol]://[Path]:[Port]. The

transport protocol for a database mirroring endpoint is always TCP (Transmission Control

Figure 14-4. The Replicas tab

ChApTER 14 ImpLEmENTINg ALwAySON AvAILAbILITy gROUpS

499

Protocol). The path can either be the fully qualified domain name (FQDN) of the server, the

server name on its own, or an IP address, which is unique across the network. I recommend

using the FQDN of the server, because this is always guaranteed to work. It is also the default

value populated. The port should match the port number that you specify for the endpoint.

Note Availability groups communicate with a database mirroring endpoint.
Although database mirroring is deprecated, the endpoints are not.

On the Backup Preferences tab (see Figure 14-6), we can specify the replica on which

automated backups will be taken. One of the big advantages of AlwaysOn Availability

Groups is that when you use them, you can scale out maintenance tasks, such as backups,

to secondary servers. Therefore, automated backups can seamlessly be directed to active

secondaries. The possible options are Prefer Secondary, Secondary Only, Primary, or

Any Replica. It is also possible to set priorities for each replica. When determining which

replica to run the backup job against, SQL Server evaluates the backup priorities of each

node and is more likely to choose the replica with the highest priority.

Although the advantages of reducing IO on the primary replica are obvious, I,

somewhat controversially, recommend against scaling automated backups to secondary

Figure 14-5. The Endpoints tab

ChApTER 14 ImpLEmENTINg ALwAySON AvAILAbILITy gROUpS

500

replicas in many cases. This is especially the case when RTO (recovery time objective)

is a priority for the application because of operational supportability issues. Imagine a

scenario in which backups are being taken against a secondary replica and a user calls

to say that they have accidently deleted all data from a critical table. You now need to

restore a copy of the database and repopulate the table. The backup files, however, sit on

the secondary replica. As a result, you need to copy the backup files over to the primary

replica before you can begin to restore the database (or perform the restore over the

network). This instantly increases your RTO.

Also, when configured to allow backups against multiple servers, SQL Server still

only maintains the backup history on the instance where the backup was taken. This

means that you may be scrambling between servers, trying to retrieve all of your backup

files, not knowing where each one resides. This becomes even worse if one of the servers

has a complete system outage. You can find yourself in a scenario in which you have a

broken log chain.

The workaround for most of the issues that I just mentioned is to use a share on a

file server and configure each instance to back up to the same share. The problem with

this, however, is that by setting things up in this manner, you are now sending all of your

backups across the network rather than backing them up locally. This can increase the

duration of your backups as well as increase network traffic.

Figure 14-6. The Backup Preferences tab

ChApTER 14 ImpLEmENTINg ALwAySON AvAILAbILITy gROUpS

501

On the Listener tab, shown in Figure 14-7, we choose if we want to create an

availability group listener or if we want to defer this task until later. If we choose to create

the listener, then we need to specify the listener’s name, the port that it should listen

on, and the IP address(es) that it should use. We specify one address for each subnet,

in multi-subnet clusters. The details provided here are used to create the client access

point resource in the availability group’s cluster role. You may notice that we have

specified port 1433 for the listener, although our instance is also running on port 1433.

This is a valid configuration, because the listener is configured on a different IP address

than the SQL Server instance. It is also not mandatory to use the same port number,

but it can be beneficial, if you are implementing AlwaysOn Availability Groups on an

existing instance because applications that specify the port number to connect may

need fewer application changes. Remember that the server name will still be different,

however, because applications will be connecting to the virtual name of the listener,

as opposed to the name of the physical server\instance. In our example, applications

connect to APP1LISTEN\PRIMARYREPLICA instead of CLUSTERNODE1\PRIMARYREPLICA.

Although connections via CLUSTERNODE1 are still permitted, they do not benefit from

high availability or scale our reporting.

Because our App1 Availability Group spans two subnets, then our Listener must

have two IP addresses, one in each subnet. This makes the listener available in either of

our sites.

Tip If you do not have Create Computer Objects permission within the OU, then
the listener’s vCO (virtual computer object) must be present in AD and you must be
assigned Full Control permissions on the object.

ChApTER 14 ImpLEmENTINg ALwAySON AvAILAbILITy gROUpS

502

On the Select Initial Data Synchronization screen, shown in Figure 14-8, we choose

how the initial data synchronization of the replicas is performed. If you choose Full,

then each database that participates in the availability group is subject to a full backup,

followed by a log backup. The backup files are backed up to a share, which you specify,

before they are restored to the secondary servers. The share path can be specified using

either Windows or Linux formats, depending on your requirements. After the restore is

complete, data synchronization, via log stream, commences.

If you have already backed up your databases and restored them onto the secondaries,

then you can select the Join Only option. This starts the data synchronization, via log stream,

on the databases within the availability group. Selecting Skip Initial Data Synchronization

allows you to back up and restore the databases yourself after you complete the setup.

If you select the Automatic Seeding option, then an empty database is initially

created on each Replica. The data is then seeding using VDI over the log stream

transport. This option is slower than initializing with a backup but avoids transferring

large backup files between shares.

Tip If your availability group will contain many databases, then it may be best to
perform the backup/restore yourself. This is because the built-in utility will perform
the actions sequentially, and therefore, it may take a long time to complete.

Figure 14-7. The Listener tab

ChApTER 14 ImpLEmENTINg ALwAySON AvAILAbILITy gROUpS

503

On the Validation page, rules that may cause the setup to fail are checked. If any of the

results come back as Failed, then you need to resolve them before you attempt to continue.

Once validation tests are complete and we move to the Summary page, we are

presented with a list of the tasks that are to be carried out during the setup.

As setup progresses, the results of each configuration task display on the Results page.

If any errors occur on this page, be sure to investigate them, but this does not necessarily

mean that the entire availability group needs to be reconfigured. For example, if the creation

of the availability group listener fails because the VCO had not been presented in AD, then

you can re-create the listener without needing to re-create the entire availability group.

As an alternative to using the New Availability Group wizard, you can perform the

configuration of the availability group using the New Availability Group dialog box,

followed by the Add Listener dialog box. This method of creating an availability group is

examined later in this chapter.

Figure 14-8. The Select Data Synchronization page

ChApTER 14 ImpLEmENTINg ALwAySON AvAILAbILITy gROUpS

504

 Using the New Availability Group Dialog Box

Now that we have successfully created our first availability group, let’s create a second

availability group for App2. This time, we use the New Availability Group and Add

Listener dialog boxes. We begin this process by backing up the Chapter14App2Customers

database. Just like when we created the App1 availability group, the databases are not

selectable until we perform the backup. Unlike when we used the wizard, however, we

have no way to make SQL Server perform the initial database synchronization using a

backup/restore option. Therefore, we must either back up the database to the share that

we created during the previous demonstration and then restore the backup, along with

a transaction log backup, to the secondary instance, or use Automatic Seeding. In this

example, we will use Automatic Seeding, so there is no need to restore the databases

to the secondary Replicas in advance. The script in Listing 14-4 will perform the Full

backup of the Chapter14App2Customers database.

Tip For Automatic Seeding to work, the Availability group must be granted the
CREATE ANY DATABASE permission on the secondary servers. more information
about granting permissions can be found in Chapter 10.

Listing 14-4. Backing Up and Restoring the Database

--Back Up Database

BACKUP DATABASE [Chapter14App2Customers] TO DISK = N'\\CLUSTERNODE1\

AOAGShare\Chapter14App2Customers.bak' WITH COPY_ONLY, FORMAT, INIT,

REWIND, COMPRESSION, STATS = 5 ;

GO

If we had not already created an availability group, then our next job would be to create

a TCP endpoint so the instances could communicate. We would then need to create a

login for the service account on each instance and grant it the connect permissions on the

endpoints. Because we can only ever have one database mirroring endpoint per instance,

however, we are not required to create a new one, and obviously we have no reason to

grant the service account additional privileges. Therefore, we continue by creating the

availability group. To do this, we drill through AlwaysOn High Availability in Object

Explorer and select New Availability Group from the context menu of availability groups.

ChApTER 14 ImpLEmENTINg ALwAySON AvAILAbILITy gROUpS

505

This causes the General tab of the New Availability Group dialog box to display, as

illustrated in Figure 14-9. On this screen, we type the name of the availability group in

the first field. Then we click the Add button under the Availability Databases window

before we type the name of the database that we wish to add to the group. We then

need to click the Add button under the Availability Replicas window before we type the

server\instance name of the secondary replica in the new row. For our use case, there is

no need to specify the Per Database DTC Support or Database Level Health Detection

settings, as there is only a single database within the Availability Group. We have set

Required Synchronized Secondaries to Commit to 1, however. This setting, which was

new in SQL Server 2017, guarantees that the specified number of secondary replicas

write the transaction data to log before the primary replica commits each transaction.

In our scenario, where we only have a single synchronous secondary, that in the event of

a failure on the Primary Replica, failover will happen automatically, but the Secondary

Replica will not allow user transactions to be written to the database, until the original

Primary Replica comes back online. This absolutely guarantees that there can be no data

loss in any circumstances. If we had left this setting as 0 (as we did in the first example

in this chapter), then in the event that the Primary Replica failed and users wrote

transactions to the Secondary Replica, before this Replica also failed, then data loss

could occur, as the only other Replica uses asynchronous commit mode.

Figure 14-9. The New Availability Group dialog box

ChApTER 14 ImpLEmENTINg ALwAySON AvAILAbILITy gROUpS

506

Now we can begin to set the replica properties. We discussed the Role, Availability

Mode, Failover Mode, Readable Secondary, and Endpoint URL properties when we

created the App1 availability group. The Connection In Primary Role property defines

what connections can be made to the replica if the replica is in the primary role. You can

configure this as either Allow All Connections or allow Read/Write connections. When

Read/Write is specified, applications using the Application Intent = Read only

parameter in their connection string will not be able to connect to the replica.

The Session Timeout property sets how long the replicas can go without receiving a

ping from one another before they enter the DISCONNECTED state and the session ends.

Although it is possible to set this value to as low as 5 seconds, it is usually a good idea to

keep the setting at 60 seconds; otherwise you run the risk of a false positive response,

resulting in unnecessary failover. If a replica times out, it needs to be resynchronized,

since transactions on the primary will no longer wait for the secondary, even if the

secondary is running in Synchronous Commit mode.

On the Backup Preferences tab of the dialog box, we define the preferred replica

to use for automated backup jobs, as shown in Figure 14-10. Just like when using the

wizard, we can specify Primary, or we can choose between enforcing and preferring

backups to occur on a secondary replica. We can also configure a weight, between 0 and

100 for each replica, and use the Exclude Replica check box to avoid backups being taken

on a specific node.

Tip Excluding Replicas from backups can help if you are using Software
Assurance, and although your licensing allows you to keep a secondary replica
synchronized for the purpose of either hA or DR, it does not allow you to perform
other tasks (such as backups) on this secondary server.

ChApTER 14 ImpLEmENTINg ALwAySON AvAILAbILITy gROUpS

507

Once we have created the availability group, we need to create the availability group

listener. To do this, we select New Listener from the context menu of the App2 availability

group, which should now be visible in Object Explorer. This invokes the New Availability

Group Listener dialog box, which can be seen in Figure 14-11.

In this dialog box, we start by entering the virtual name for the listener. We then

define the port that it will listen on and the IP address that will be assigned to it.

Tip we are able to use the same port for both of the listeners, as well as the SQL
Server instance, because all three use different Ip addresses.

Figure 14-10. The Backup Preferences tab

ChApTER 14 ImpLEmENTINg ALwAySON AvAILAbILITy gROUpS

508

 Availability Groups on Linux
As well as working on a Windows cluster, Availability Groups can also be configured on

SQL Server instances running on Linux. In this section, we will discuss how to configure

availability groups for high availability on Linux. In our specific scenario, we have two servers,

namely, ubuntu-primary and ubuntu-secondary, which will form our server topology.

Tip For further information on installing SQL Server on Linux, please see Chapter 4.

Just as you do in a Windows environment, the first step in configuring Availability

Groups on Linux is to enable the feature, at the service level. The script in Listing 14-5

demonstrates how to enable Availability Groups and then restart the service. This script

needs to be executed on each server that will host a Replica.

Figure 14-11. The New Availability Group Listener dialog box

ChApTER 14 ImpLEmENTINg ALwAySON AvAILAbILITy gROUpS

509

Tip As discussed in Chapter 4, sudo is the equivalent of Run as Administrator in
windows. you will be prompted to enter the root password, when using sudo.

Listing 14-5. Enable AlwaysOn Availability Groups

sudo /opt/mssql/bin/mssql-conf set hadr.hadrenabled 1

sudo systemctl restart mssql-server

Because Linux servers cannot authenticate with each other, using AD authentication,

the next step is to create certificates, which can be used for authentication. You can

create the certificates by connecting to the primary server and running the script in

Listing 14-6. The script creates a certificate in the SQL Server instance and then backs

it up to the operating system, so that we can copy it to the secondary server. Remember

that you can connect to a SQL Server instance running on Linux by using sqlcmd or by

connecting from SSMS installed on a Windows-based machine.

Tip Further details of creating certificates can be found in Chapter 11.

Listing 14-6. Creating a Certificate

CREATE MASTER KEY ENCRYPTION BY PASSWORD = 'Pa$$w0rd';

GO

CREATE CERTIFICATE aoag_certificate WITH SUBJECT = 'AvailabilityGroups';

GO

BACKUP CERTIFICATE aoag_certificate

 TO FILE = '/var/opt/mssql/data/aoag_certificate.cer'

 WITH PRIVATE KEY (

 FILE = '/var/opt/mssql/data/aoag_certificate.pvk',

 ENCRYPTION BY PASSWORD = 'Pa$$w0rd'

);

GO

ChApTER 14 ImpLEmENTINg ALwAySON AvAILAbILITy gROUpS

510

We now need to copy the keys to the secondary server. To do this, we first need to

grant the user permissions to the /var/opt/mssql/ data folder. We can do this with the

command in Listing 14-7, which needs to be run on both servers.

Listing 14-7. Grant Permissions

sudo chmod -R 777 /var/opt/mssql/data

The command in Listing 14-8, if run on the primary server, will copy the public and

private keys of the certificate to the secondary server. For this command to work, SSH

should be installed and configured on each server. A full discussion of SSH is beyond

the scope of this book, but a guide can be found at http://ubuntuhandbook.org/index.

php/2014/09/enable-ssh-in-ubuntu-14-10-server-desktop/.

Tip you should change the user and server names to match your own
configuration.

Listing 14-8. Copy the Keys

scp aoag_certificate.* pete@ubuntu-secondary:/var/opt/mssql/data

We now need to create the certificate on the secondary server, by importing the

certificate and key from the file system. This can be achieved using the script in Listing 14-9.

Listing 14-9. Create the Certificate on the Secondary Server

CREATE MASTER KEY ENCRYPTION BY PASSWORD = 'Pa$$w0rd' ;

GO

CREATE CERTIFICATE aoag_certificate

 FROM FILE = '/var/opt/mssql/data/aoag_certificate.cer'

 WITH PRIVATE KEY (

 FILE = '/var/opt/mssql/data/aoag_certificate.pvk',

 DECRYPTION BY PASSWORD = 'Pa$$w0rd'

) ;

GO

ChApTER 14 ImpLEmENTINg ALwAySON AvAILAbILITy gROUpS

http://ubuntuhandbook.org/index.php/2014/09/enable-ssh-in-ubuntu-14-10-server-desktop/
http://ubuntuhandbook.org/index.php/2014/09/enable-ssh-in-ubuntu-14-10-server-desktop/

511

Now that our certificates are in place, we need to create the endpoints that will be

used for connections. The script in Listing 14-10 will create an endpoint called AOAG_

Endpoint, which listens on port 5022 and uses our certificate for authentication. This

script should be run on both instances.

Listing 14-10. Create the Endpoints

CREATE ENDPOINT AOAG_Endpoint

STATE = STARTED

AS TCP (LISTENER_PORT = 5022)

FOR DATABASE_MIRRORING (

 ROLE = ALL,

 AUTHENTICATION = CERTIFICATE aoag_certificate,

 ENCRYPTION = REQUIRED ALGORITHM AES

);

Next, we can create the Availability Group on the Primary Replica. This can be

achieved using the command in Listing 14-11. We will not discuss the full syntax of

the CREATE AVAILABILITY GROUP command here, which can be found at https://

docs.microsoft.com/en-us/sql/t-sql/statements/create-availability-group-

transact-sql?view=sql-server-2019, but there are a couple specific points of interest

that I would like to point out. Firstly, you will notice that CLUSTER_TYPE is set to

EXTERNAL. This is the only valid option, when the underlying cluster is Pacemaker, on

Linux. You will also notice that the FAILOVER_MODE is set to manual. This is the only

valid option when the CLUSTER_TYPE is set to EXTERNAL. It means that failover should

never be performed via T-SQL. Failover should only ever be managed by the external

cluster manager.

Listing 14-11. Create the Availability Group

CREATE AVAILABILITY GROUP Linux_AOAG

 WITH (CLUSTER_TYPE = EXTERNAL)

 FOR REPLICA ON 'ubuntu-primary' WITH (

 ENDPOINT_URL = N'tcp://ubuntu-primary:5022',

 AVAILABILITY_MODE = SYNCHRONOUS_COMMIT,

 FAILOVER_MODE = EXTERNAL,

 SEEDING_MODE = AUTOMATIC

),

ChApTER 14 ImpLEmENTINg ALwAySON AvAILAbILITy gROUpS

https://docs.microsoft.com/en-us/sql/t-sql/statements/create-availability-group-transact-sql?view=sql-server-2019
https://docs.microsoft.com/en-us/sql/t-sql/statements/create-availability-group-transact-sql?view=sql-server-2019
https://docs.microsoft.com/en-us/sql/t-sql/statements/create-availability-group-transact-sql?view=sql-server-2019

512

 'ubuntu-secondary' WITH (

 ENDPOINT_URL = N'tcp://ubuntu-secondary:5022',

 AVAILABILITY_MODE = SYNCHRONOUS_COMMIT,

 FAILOVER_MODE = EXTERNAL,

 SEEDING_MODE = AUTOMATIC

) ;

GO

We will now use the command in Listing 14-12 to grant the Availability Group

permissions to create databases.

Listing 14-12. Grant Permissions

ALTER AVAILABILITY GROUP Linux_AOAG GRANT CREATE ANY DATABASE ;

GO

We can now join our secondary replica to the Availability Group and ensure that it

has the appropriate permissions by running the script in Listing 14-13 while connected

to the secondary instance.

Tip For the following script to succeed, the Linux user running the pacemaker
service should be granted VIEW SERVER STATE on the replica and ALTER,
CONTROL, and VIEW DEFINITION on the Availability group.

Listing 14-13. Join the Secondary Replica

ALTER AVAILABILITY GROUP Linux_AOAG JOIN WITH (CLUSTER_TYPE = EXTERNAL) ;

GO

ALTER AVAILABILITY GROUP Linux_AOAG GRANT CREATE ANY DATABASE ;

GO

Databases can now be added to the Availability Group. The script in Listing 14-14

will create a database called LinuxDB and populate it with data. It will then take the

required backup, before adding it to the Linux_AOAG Availability Group.

ChApTER 14 ImpLEmENTINg ALwAySON AvAILAbILITy gROUpS

513

Listing 14-14. Adding a Database

CREATE DATABASE LinuxDB ;

GO

ALTER DATABASE LinuxDB SET RECOVERY FULL ;

GO

USE LinuxDB

GO

CREATE TABLE [dbo].[Orders](

 [OrderNumber] [int] IDENTITY(1,1) NOT NULL PRIMARY KEY CLUSTERED,

 [OrderDate] [date] NOT NULL,

 [CustomerID] [int] NOT NULL,

 [ProductID] [int] NOT NULL,

 [Quantity] [int] NOT NULL,

 [NetAmount] [money] NOT NULL,

 [TaxAmount] [money] NOT NULL,

 [InvoiceAddressID] [int] NOT NULL,

 [DeliveryAddressID] [int] NOT NULL,

 [DeliveryDate] [date] NULL,

) ;

DECLARE @Numbers TABLE

(

 Number INT

)

;WITH CTE(Number)

AS

(

 SELECT 1 Number

 UNION ALL

 SELECT Number + 1

 FROM CTE

 WHERE Number < 100

)

ChApTER 14 ImpLEmENTINg ALwAySON AvAILAbILITy gROUpS

514

INSERT INTO @Numbers

SELECT Number FROM CTE

--Populate ExistingOrders with data

INSERT INTO Orders

SELECT

 (SELECT CAST(DATEADD(dd,(SELECT TOP 1 Number

 FROM @Numbers

 ORDER BY NEWID()),getdate())as DATE)),

 (SELECT TOP 1 Number -10 FROM @Numbers ORDER BY NEWID()),

 (SELECT TOP 1 Number FROM @Numbers ORDER BY NEWID()),

 (SELECT TOP 1 Number FROM @Numbers ORDER BY NEWID()),

 500,

 100,

 (SELECT TOP 1 Number FROM @Numbers ORDER BY NEWID()),

 (SELECT TOP 1 Number FROM @Numbers ORDER BY NEWID()),

 (SELECT CAST(DATEADD(dd,(SELECT TOP 1 Number - 10

 FROM @Numbers

 ORDER BY NEWID()),getdate()) as DATE))

FROM @Numbers a

CROSS JOIN @Numbers b

CROSS JOIN @Numbers c ;

--Backup Database

BACKUP DATABASE LinuxDB

 TO DISK = N'/var/opt/mssql/data/LinuxDB.bak';

GO

--Add database to Availability Group

USE master

GO

ALTER AVAILABILITY GROUP Linux_AOAG ADD DATABASE LinuxDB

GO

Connecting to the primary instance, with SSMS, should now show that the Availability

Group is configured and contains your database, as illustrated in Figure 14- 12.

ChApTER 14 ImpLEmENTINg ALwAySON AvAILAbILITy gROUpS

515

Finally, we will create a Listener for the Availability Group, using the command in

Listing 14-15.

Listing 14-15. Create an Availability Group Listener

ALTER AVAILABILITY GROUP Linux_AOAG

ADD LISTENER N'LinuxListener' (

WITH IP

(

 ('192.168.1.62', N'255.255.255.0')

)

, PORT=5022) ;

GO

 Distributed Availability Groups
Distributed Availability Groups (DAG) are an extension of Availability Groups, which

allow for data to be synchronized between two separate Availability Groups. This is

an exciting technology, with many different use cases. For example, it allows data

synchronization between Windows- and Linux-based Availability Groups, it allows the

number of readable secondary replicas to be extended beyond 8 (which is the limit

for a standard Availability Group), and it allows cross-site replication, without the

Figure 14-12. Configured Availability Group on Linux server

ChApTER 14 ImpLEmENTINg ALwAySON AvAILAbILITy gROUpS

516

complexity of a stretch cluster. DAGs can also help server migrations, by providing data

synchronization when an in-place upgrade is not possible, and a side-by-side migration

is required.

While each side of the DAG can be a Windows Failover Cluster, this is not a

requirement, as the focus is very much on maintaining the databases, and no cluster

configuration occurs.

In this section, we will illustrate the technology, by configuring DAGs for our App1

Availability Group, between our PROSQLADMIN-C Cluster and the Linux_AOAG

Availability Group hosted on two Linux servers, participating in a Pacemaker cluster.

The first step is to create the Distributed Availability Group on the Linux cluster.

This can be achieved by using the script in Listing 14-16. Note the WITH (DISTRIBUTED)

syntax, followed by the specifications of each Availability Group.

Note before starting, you should remove existing databases from the App1
Availability group; otherwise it will not be able to join the Distributed Availability
group, as the secondary Availability group must be empty.

Listing 14-16. Create the Distributed Availability Group

CREATE AVAILABILITY GROUP DistributedAG

 WITH (DISTRIBUTED)

 AVAILABILITY GROUP ON

 'App1' WITH

 (

 LISTENER_URL = 'tcp://App1Listener.prosqladmin.com:1433',

 AVAILABILITY_MODE = ASYNCHRONOUS_COMMIT,

 FAILOVER_MODE = MANUAL,

 SEEDING_MODE = AUTOMATIC

),

 'Linux_AOAG' WITH

 (

 LISTENER_URL = 'tcp://LinuxListener:5022',

 AVAILABILITY_MODE = ASYNCHRONOUS_COMMIT,

ChApTER 14 ImpLEmENTINg ALwAySON AvAILAbILITy gROUpS

517

 FAILOVER_MODE = MANUAL,

 SEEDING_MODE = AUTOMATIC

);

GO

We can now run the command in Listing 14-17, against the PROSQLADMIN-C

cluster, to join it to the Distributed Availability Group.

Listing 14-17. Join the Second Availability Group

ALTER AVAILABILITY GROUP DistributedAG

 JOIN

 AVAILABILITY GROUP ON

 'App1' WITH

 (

 LISTENER_URL = 'tcp://App1Listener.prosqladmin.com:1433',

 AVAILABILITY_MODE = ASYNCHRONOUS_COMMIT,

 FAILOVER_MODE = MANUAL,

 SEEDING_MODE = AUTOMATIC

),

 'Linux_AOAG' WITH

 (

 LISTENER_URL = 'tcp://LinuxListener:5022',

 AVAILABILITY_MODE = ASYNCHRONOUS_COMMIT,

 FAILOVER_MODE = MANUAL,

 SEEDING_MODE = AUTOMATIC

) ;

GO

Tip Databases will need to be manually joined to secondary replicas within the
secondary Availability group.

ChApTER 14 ImpLEmENTINg ALwAySON AvAILAbILITy gROUpS

518

 Managing AlwaysOn Availability Groups
Once the initial setup of your availability group is complete, you still need to perform

administrative tasks. These include failing over the availability group, monitoring,

and on rare occasions, adding additional listeners. These topics are discussed in the

following sections.

 Failover
If a replica is in Synchronous Commit mode and is configured for automatic failover,

then the availability group automatically moves to a redundant replica in the event of

an error condition being met on the primary replica. There are occasions, however,

when you will want to manually fail over an availability group. This could be because of

DR testing, proactive maintenance, or because you need to bring up an asynchronous

replica following a failure of the primary replica or the primary data center.

 Synchronous Failover

If you wish to fail over a replica that is in Synchronous Commit mode, launch the

Failover Availability Group wizard by selecting Failover from the context menu of your

availability group in Object Explorer. After moving past the Introduction page, you find

the Select New Primary Replica page (see Figure 14-13). On this page, check the box of

the replica to which you want to fail over. Before doing so, however, review the Failover

Readiness column to ensure that the replicas are synchronized and that no data loss

will occur.

ChApTER 14 ImpLEmENTINg ALwAySON AvAILAbILITy gROUpS

519

On the Connect to Replica page, illustrated in Figure 14-14, use the Connect button

to establish a connection to the new primary replica.

Figure 14-13. The Select New Primary Replica page

ChApTER 14 ImpLEmENTINg ALwAySON AvAILAbILITy gROUpS

520

On the Summary page, you are given details of the task to be performed, followed by

a progress indicator on the Results page. Once the failover completes, check that all tasks

were successful, and investigate any errors or warnings that you receive.

We can also use T-SQL to fail over the availability group. The command in

Listing 14- 18 achieves the same results. Make sure to run this script from the replica

that will be the new primary replica. If you run it from the current primary replica, use

SQLCMD mode and connect to the new primary within the script.

Listing 14-18. Failing Over an Availability Group

ALTER AVAILABILITY GROUP App2 FAILOVER ;

GO

Figure 14-14. The Connect to Replica page

ChApTER 14 ImpLEmENTINg ALwAySON AvAILAbILITy gROUpS

521

 Asynchronous Failover

If your availability group is in Asynchronous Commit mode, then from a technical

standpoint, you can fail over in a similar way to the way you can for a replica running in

Synchronous Commit mode, except for the fact that you need to force the failover, thereby

accepting the risk of data loss. You can force failover by using the command in Listing

14-19. You should run this script on the instance that will be the new primary. For it to

work, the cluster must have quorum. If it doesn’t, then you need to force the cluster online

before you force the availability group online.

Listing 14-19. Forcing Failover

ALTER AVAILABILITY GROUP App2 FORCE_FAILOVER_ALLOW_DATA_LOSS ;

From a process perspective, you should only ever do this if your primary site is

completely unavailable. If this is not the case, first put the application into a safe state.

This avoids any possibility of data loss. The way that I normally achieve this in a

production environment is by performing the following steps:

 1. Disable logins.

 2. Change the mode of the replica to Synchronous Commit mode.

 3. Fail over.

 4. Change the replica back to Asynchronous Commit mode.

 5. Enable the logins.

You can perform these steps with the script in Listing 14-20. When run from the DR

instance, this script places the databases in App2 into a safe state before failing over, and

then it reconfigures the application to work under normal operations.

Listing 14-20. Safe-Stating an Application and Failing Over

--DISABLE LOGINS

DECLARE @AOAGDBs TABLE

(

DBName NVARCHAR(128)

) ;

ChApTER 14 ImpLEmENTINg ALwAySON AvAILAbILITy gROUpS

522

INSERT INTO @AOAGDBs

SELECT database_name

FROM sys.availability_groups AG

INNER JOIN sys.availability_databases_cluster ADC

 ON AG.group_id = ADC.group_id

WHERE AG.name = 'App2' ;

DECLARE @Mappings TABLE

(

 LoginName NVARCHAR(128),

 DBname NVARCHAR(128),

 Username NVARCHAR(128),

 AliasName NVARCHAR(128)

) ;

INSERT INTO @Mappings

EXEC sp_msloginmappings ;

DECLARE @SQL NVARCHAR(MAX)

SELECT DISTINCT @SQL =

(

 SELECT 'ALTER LOGIN [' + LoginName + '] DISABLE; ' AS [data()]

 FROM @Mappings M

 INNER JOIN @AOAGDBs A

 ON M.DBname = A.DBName

 WHERE LoginName <> SUSER_NAME()

 FOR XML PATH ('')

)

EXEC(@SQL)

GO

--SWITCH TO SYNCHRONOUS COMMIT MODE

ALTER AVAILABILITY GROUP App2

MODIFY REPLICA ON N'CLUSTERNODE3\ASYNCDR' WITH (AVAILABILITY_MODE =

SYNCHRONOUS_COMMIT) ;

GO

ChApTER 14 ImpLEmENTINg ALwAySON AvAILAbILITy gROUpS

523

--FAIL OVER

ALTER AVAILABILITY GROUP App2 FAILOVER

GO

--SWITCH BACK TO ASYNCHRONOUS COMMIT MODE

ALTER AVAILABILITY GROUP App2

MODIFY REPLICA ON N'CLUSTERNODE3\ASYNCDR' WITH (AVAILABILITY_MODE =

ASYNCHRONOUS_COMMIT) ;

GO

--ENABLE LOGINS

DECLARE @AOAGDBs TABLE

(

DBName NVARCHAR(128)

) ;

INSERT INTO @AOAGDBs

SELECT database_name

FROM sys.availability_groups AG

INNER JOIN sys.availability_databases_cluster ADC

 ON AG.group_id = ADC.group_id

WHERE AG.name = 'App2' ;

DECLARE @Mappings TABLE

(

 LoginName NVARCHAR(128),

 DBname NVARCHAR(128),

 Username NVARCHAR(128),

 AliasName NVARCHAR(128)

) ;

INSERT INTO @Mappings

EXEC sp_msloginmappings

DECLARE @SQL NVARCHAR(MAX)

ChApTER 14 ImpLEmENTINg ALwAySON AvAILAbILITy gROUpS

524

SELECT DISTINCT @SQL =

(

 SELECT 'ALTER LOGIN [' + LoginName + '] ENABLE; ' AS [data()]

 FROM @Mappings M

 INNER JOIN @AOAGDBs A

 ON M.DBname = A.DBName

 WHERE LoginName <> SUSER_NAME()

 FOR XML PATH ('')

) ;

EXEC(@SQL)

 Synchronizing Uncontained Objects
Regardless of the method you use to fail over, assuming that all of the databases within

the availability group are not contained, then you need to ensure that instance-level

objects are synchronized. The most straightforward way to keep your instance-level

objects synchronized is by implementing an SSIS package, which is scheduled to run on

a periodic basis.

Whether you choose to schedule an SSIS package to execute, or you choose a

different approach, such as a SQL Server Agent job that scripts and re-creates the objects

on the secondary servers, these are the objects that you should consider synchronizing:

• Logins

• Credentials

• SQL Server Agent jobs

• Custom error messages

• Linked servers

• Server-level event notifications

• Stored procedures in Master

• Server-level triggers

• Encryption keys and certificates

ChApTER 14 ImpLEmENTINg ALwAySON AvAILAbILITy gROUpS

525

 Monitoring
Once you have implemented availability groups, you need to monitor them and respond

to any errors or warnings that could affect the availability of your data. If you have many

availability groups implemented throughout the enterprise, then the only way to monitor

them effectively and holistically is by using an enterprise monitoring tool, such as SOC

(Systems Operations Center). If you only have a small number of availability groups,

however, or if you are troubleshooting a specific issue, then SQL Server provides the

AlwaysOn Dashboard and the AlwaysOn Health Trace. The following sections examine

these two features.

 AlwaysOn Dashboard

The AlwaysOn Dashboard is an interactive report that allows you to view the health of

your AlwaysOn environment and drill through or roll up elements within the topology.

You can invoke the report from the context menu of the Availability Groups folder in

Object Explorer, or from the context menu of the availability group itself. Figure 14-15

shows the report that is generated from the context menu of the App2 availability group.

You can see that currently synchronization of both replicas is in a healthy state.

The three possible synchronization states that a database can be in are

SYNCHRONIZED, SYNCRONIZING, and NOT SYNCHRONIZING. A synchronous replica should

be in the SYNCHRONIZED state, and any other state is unhealthy. An asynchronous

replica, however, will never be in the SYNCHRONIZED state, and a state of SYNCHRONIZING

is considered healthy. Regardless of the mode, NOT SYNCHRONIZING indicates that the

replica is not connected.

ChApTER 14 ImpLEmENTINg ALwAySON AvAILAbILITy gROUpS

526

Note In addition to the synchronization states, a replica also has one of the
following operational states: PENDING_FAILOVER, PENDING, ONLINE, OFFLINE,
FAILED, FAILED_NO_QUORUM, and NULL (when the replica is disconnected).
The operational state of a replica can be viewed using the sys.dm_hadr_
availability_replica_states Dmv.

At the top right of the report, there are links to the failover wizard, which we

discussed earlier in this chapter; the AlwaysOn Health events, which we discussed

in the next section; and also, a link to view cluster quorum information. The Cluster

Quorum Information screen, which is invoked by this link, is displayed in Figure 14-16.

You can also drill through each replica in the Availability Replicas window to see

replica-specific details.

Figure 14-15. The availability group dashboard

ChApTER 14 ImpLEmENTINg ALwAySON AvAILAbILITy gROUpS

527

 AlwaysOn Health Trace

The AlwaysOn Health Trace is an Extended Event session, which is created when you

create your first availability group. It can be located in SQL Server Management Studio,

under Extended Events ➤ Sessions, and via its context menu, you can view live data that

is being captured, or you can enter the session’s properties to change the configuration

of the events that are captured.

Drilling through the session exposes the session’s package, and from the

context menu of the package, you can view previously captured events. Figure 14-17

shows that the latest event captured, which was Database 5 (which, in our case, is

Chapter14App2Customers), was waiting for the log to be hardened on the synchronous

replica. Extended Events is discussed in detail in Chapter 19.

Figure 14-16. The Cluster Quorum Information screen

ChApTER 14 ImpLEmENTINg ALwAySON AvAILAbILITy gROUpS

528

 Other Administrative Considerations
When databases are made highly available with AlwaysOn Availability Groups, several

limitations are imposed. One of the most restrictive of these is that databases cannot be

placed in single_user mode or be made read only. This can have an impact when you

need to safe-state your application for maintenance. This is why, in the Failover section

of this chapter, we disabled the logins that have users mapped to the databases. If you

must place your database in single-user mode, then you must first remove it from the

availability group.

Figure 14-17. The target data

ChApTER 14 ImpLEmENTINg ALwAySON AvAILAbILITy gROUpS

529

A database can be removed from an availability group by running the command in

Listing 14-21. This command removes the Chapter14App2Customers database from the

availability group.

Listing 14-21. Removing a Database from an Availability Group

ALTER DATABASE Chapter14App2Customers SET HADR OFF ;

There may also be occasions in which you want a database to remain in an

availability group, but you wish to suspend data movement to other replicas. This is

usually because the availability group is in Synchronous Commit mode and you have

a period of high utilization, where you need a performance improvement. You can

suspend the data movement to a database by using the command in Listing 14-22, which

suspends data movement for the Chapter14App1Sales database and then resumes it.

Caution If you suspend data movement, the transaction log on the primary
replica continues to grow, and you are not able to truncate it until data movement
resumes and the databases are synchronized.

Listing 14-22. Suspending Data Movement

ALTER DATABASE Chapter14App2Customers SET HADR SUSPEND ;

GO

ALTER DATABASE Chapter14App2Customers SET HADR RESUME ;

GO

Another important consideration is the placement of database and log files. These

files must be in the same location on each replica. This means that if you use named

instances, it is a hard technical requirement that you change the default file locations

for data and logs, because the default location includes the name of the instance. This is

assuming, of course, that you do not use the same instance name on each node, which

would defy many of the benefits of having a named instance.

ChApTER 14 ImpLEmENTINg ALwAySON AvAILAbILITy gROUpS

530

 Summary
AlwaysOn Availability Groups can be implemented with up to eight secondary replicas,

combining both Synchronous and Asynchronous Commit modes. When implementing

high availability with availability groups, you always use Synchronous Commit mode,

because Asynchronous Commit mode does not support automatic failover. When

implementing Synchronous Commit mode, however, you must be aware of the

associated performance penalty caused by committing the transaction on the secondary

replica before it is committed on the primary replica. For disaster recovery, you will

normally choose to implement Asynchronous Commit mode.

The availability group can be created via the New Availability Group wizard, through

dialog boxes, through T-SQL, or even through PowerShell. If you create an availability

group using dialog boxes, then some aspects, such as the endpoint and associated

permissions, must be scripted using T-SQL or PowerShell.

If you implement disaster recovery with availability groups, then you need to

configure a multi-subnet cluster. This does not mean that you must have SAN replication

between the sites, however, since availability groups do not rely on shared storage. What

you do need to do is add additional IP addresses for the administrative cluster access

point and also for the Availability Group Listener. You also need to pay attention to the

properties of the cluster that support client reconnection to ensure that clients do not

experience a high number of timeouts.

Failover to a synchronous replica in the event of a failure of the primary replica

is automatic. There are instances, however, in which you will also need to fail over

manually. This could be because of a disaster that requires failover to the DR site,

or it could be for proactive maintenance. Although it is possible to fail over to an

asynchronous replica with the possibility of data loss, it is good practice to place the

databases in a safe state first. Because you cannot place a database in read only or

single_user mode, if it is participating in an availability group, safe-stating usually

consists of disabling the logins and then switching to Synchronous Commit mode

before failover.

To monitor availability groups throughout the enterprise, you need to use a

monitoring tool, such as Systems Operation Center. If you need to monitor a small

number of availability groups or troubleshoot a specific issue, however, use one of the

tools included with SQL Server, such as a dashboard for monitoring the health of the

topology, and an Extended Event session, called the AlwaysOn Health Trace.

ChApTER 14 ImpLEmENTINg ALwAySON AvAILAbILITy gROUpS

531

You should also consider other maintenance tasks. These include where to place

database and log files, as they must have the same location on each replica, and

removing a database from an availability group so that you can place it in single_user

mode, for example. Changing to single_user mode may be due to a requirement to

run DBCC CHECKDB in a repair mode and suspend data movement. Suspending data

movement allows you to remove the performance overhead during a period of high

utilization, but be warned, it also causes the transaction log on the primary replica

to grow, without an option to truncate it, until data movement has resumed and the

databases are once again synchronized.

ChApTER 14 ImpLEmENTINg ALwAySON AvAILAbILITy gROUpS

533
© Peter A. Carter 2019
P. A. Carter, Pro SQL Server 2019 Administration, https://doi.org/10.1007/978-1-4842-5089-1_15

CHAPTER 15

Implementing Log
Shipping
As discussed in Chapter 13, log shipping is a technology you can use to implement

disaster recovery and the scale out of read-only reporting. It works by taking the

transaction log backups of a database, copying them to one or more secondary servers,

and then restoring them, in order to keep the secondary server(s) synchronized. This

chapter demonstrates how to implement log shipping for disaster recovery (DR). You

also discover how to monitor and fail over log shipping.

Note For the purpose of the demonstrations in this chapter, we use a
domain, consisting of a domain controller and four stand-alone servers, each
with an instance of SQL Server installed. The server\instance names are
PRIMARYSERVER\PROSQLADMIN, DRSERVER\PROSQLDR, REPORTSERVER\
PROSQLREPORTS, and MONITORSERVER\PROSQLMONITOR, respectively.

 Implementing Log Shipping for DR
Before we begin to implement log shipping for disaster recovery, we first create a

database that we will use for the demonstrations in this chapter. The script in Listing 15- 1

creates a database called Chapter15 with its recovery model set to FULL. We create one

table within the database and populate it with data.

534

Listing 15-1. Creating the Database to Be Log Shipped

--Create the database

CREATE DATABASE Chapter15;

GO

ALTER DATABASE Chapter15 SET RECOVERY FULL;

GO

USE Chapter15

GO

--Create and populate numbers table

DECLARE @Numbers TABLE

(

 Number INT

)

;WITH CTE(Number)

AS

(

 SELECT 1 Number

 UNION ALL

 SELECT Number + 1

 FROM CTE

 WHERE Number < 100

)

INSERT INTO @Numbers

SELECT Number FROM CTE;

--Create and populate name pieces

DECLARE @Names TABLE

(

 FirstName VARCHAR(30),

 LastName VARCHAR(30)

);

ChapTer 15 ImpLemenTIng Log ShIppIng

535

INSERT INTO @Names

VALUES('Peter', 'Carter'),

 ('Michael', 'Smith'),

 ('Danielle', 'Mead'),

 ('Reuben', 'Roberts'),

 ('Iris', 'Jones'),

 ('Sylvia', 'Davies'),

 ('Finola', 'Wright'),

 ('Edward', 'James'),

 ('Marie', 'Andrews'),

 ('Jennifer', 'Abraham') ;

--Create and populate Customers table

CREATE TABLE dbo.Customers

(

 CustomerID INT NOT NULL IDENTITY PRIMARY KEY,

 FirstName VARCHAR(30) NOT NULL,

 LastName VARCHAR(30) NOT NULL,

 BillingAddressID INT NOT NULL,

 DeliveryAddressID INT NOT NULL,

 CreditLimit MONEY NOT NULL,

 Balance MONEY NOT NULL

);

SELECT * INTO #Customers

FROM

 (SELECT

 (SELECT TOP 1 FirstName FROM @Names ORDER BY NEWID())

FirstName,

 (SELECT TOP 1 LastName FROM @Names ORDER BY NEWID())

LastName,

 (SELECT TOP 1 Number FROM @Numbers ORDER BY NEWID())

BillingAddressID,

 (SELECT TOP 1 Number FROM @Numbers ORDER BY NEWID())

DeliveryAddressID,

ChapTer 15 ImpLemenTIng Log ShIppIng

536

 (SELECT TOP 1 CAST(RAND() * Number AS INT) * 10000

 FROM @Numbers

 ORDER BY NEWID()) CreditLimit,

 (SELECT TOP 1 CAST(RAND() * Number AS INT) * 9000

 FROM @Numbers

 ORDER BY NEWID()) Balance

 FROM @Numbers a

 CROSS JOIN @Numbers b

) a;

INSERT INTO dbo.Customers

SELECT * FROM #Customers;

GO

For the purpose of this demonstration, we would like to configure disaster recovery

for the Chapter15 database so that we have an RPO (recovery point objective) of 10

minutes. We will also implement a 10-minute load delay on the DR server. This means

that if an application team notifies us immediately of an incident that has led to data

loss—for example, a user accidently deletes rows from a table—then we are able to

rectify the issue by using the data on the DR server before the log that contains the

erroneous transaction is restored.

 GUI Configuration
We can configure log shipping for our Chapter15 database through SQL Server

Management Studio (SSMS). To do this, we select Properties from the context menu

of the database and navigate to the Transaction Log Shipping page, which is displayed

in Figure 15-1. The first task on this page is to check the Enable This As The Primary

Database In A Log Shipping Configuration check box.

ChapTer 15 ImpLemenTIng Log ShIppIng

537

We can now use the Backup Settings button to display the Transaction Log Backup

Settings screen. On this screen, we enter the UNC (Universal Naming Convention) to

the share that will be used for storing the log backups that log shipping takes. Because

this share is actually configured on our primary server, we also enter the local path in

the field below. The account that will be used to run the backup job needs to be granted

read and change permissions on this share. By default, this will be the SQL Server service

account, but for more granular security, it is possible to configure log shipping jobs to

run under a proxy account. Proxy accounts are discussed in Chapter 22.

We then configure how long we want our backup files to be retained before they are

deleted. The value that you select for this depends on your enterprise’s requirements,

but if your backup files are offloaded to tape, then you should make the files available

long enough to allow the enterprise backup job to run, and you should potentially build

in enough time for it to fail and then succeed on the following cycle. You should also

consider your requirements for ad hoc restores. For example, if a project notices a data

issue and requests a restore, you want to be able to retrieve the relevant backups from

Figure 15-1. The Transaction Log Shipping page

ChapTer 15 ImpLemenTIng Log ShIppIng

538

local disk, if possible. Therefore, consider how long you should give projects to notice

an issue and request a restore before SQL Server removes the local copy of the backups.

Backup strategies are discussed further in Chapter 12.

You should also specify how soon you want an alert to be generated if no log backup

occurs. To be notified of any backup failure, you can configure the value to be a minute

longer than your backup schedule. In some environments, however, it may be acceptable

to miss a few backups. In such an instance, you may set the value to a larger interval so

that you are not flooded with failed backup alerts during maintenance windows and

other such situations.

The Set Backup Compression drop-down determines if backup compression should

be used to reduce network traffic. The default is to take the configuration from the

instance, but you can override this by specifically choosing to use it, or not use it, for the

backups taken by the log shipping job. The Transaction Log Backup Settings screen is

illustrated in Figure 15-2.

Figure 15-2. The Transaction Log Backup Settings screen

ChapTer 15 ImpLemenTIng Log ShIppIng

539

Clicking the Schedule button causes the New Job Schedule screen to be invoked.

This screen, which is illustrated in Figure 15-3, is the standard SQL Server Agent screen

used for creating job schedules, except that it has been prepopulated with the default

name of the log shipping backup job. Because we are trying to achieve an RPO of

10 minutes, we configure the backup job to run every 5 minutes. This is because we also

need to allow time for the copy job to run. In a DR planning, we cannot assume that the

primary server will be available for retrieving our log backup.

After returning to the Transaction Log Shipping page, we can use the Add button to

configure the secondary server(s) for our Log Shipping topology. Using this button causes

the Secondary Database Settings page to display. This page consists of three tabs. The

first of these is the Initialize Secondary Database tab, which is displayed in Figure 15-4.

On this tab, we configure how we want to initialize our secondary database. We can

pre-initialize our databases by taking a full backup of the database and then manually

restoring them to the secondary server using the NORECOVERY option. In this kind of

instance, we would select the No, The Secondary Database Is Initialized option.

Figure 15-3. The New Job Schedule screen

ChapTer 15 ImpLemenTIng Log ShIppIng

540

If we already have a full backup available, then we can place it in a file share that

the SQL Server service account has read and modify permissions on and then use the

Yes, Restore An Existing Backup Of The Primary Database Into The Secondary Database

option and specify the location of the backup file.

In our case, however, we do not have an existing full backup of the Chapter15

database, so we select the option to Yes, Generate A Full Backup Of The Primary

Database And Restore It To The Secondary Database. This causes the Restore Options

window to display; it is here where we enter the locations that we want the database and

transaction log files to be created on the secondary server, as illustrated in Figure 15-4.

On the Copy Files tab, illustrated in Figure 15-5, we configure the job that is

responsible for copying the transaction log files from the primary server to the secondary

server(s). First, we specify the share on the secondary server to which we will copy the

transaction logs. The account that runs the copy job must be configured with read and

modify permissions on the share. Just like the backup job, this job defaults to running

under the context of the SQL Server service account, but you can also configure it to run

under a proxy account.

Figure 15-4. The Initialize Secondary Database tab

ChapTer 15 ImpLemenTIng Log ShIppIng

541

We also use this tab to configure how long the backup files should be retained on

the secondary server before they are deleted. I usually recommend keeping this value in

line with the value that you specify for retaining the backups on the primary server for

consistency.

The Job Name field is automatically populated with the default name for a log

shipping copy job, and, using the Schedule button, you can invoke the New Job

Schedule screen, where you can configure the schedule for the copy job. As illustrated

in Figure 15-6, we have configured this job to run every 5 minutes, which is in line with

our RPO requirement of 10 minutes. It takes 5 minutes before the log is backed up, and

then another 5 minutes before it is moved to the secondary server. Once the file has been

moved to the secondary server, we can be confident that, except in the most extreme

circumstances, we will be able to retrieve the backup from either the primary or the

secondary server, thus achieving our 10-minute RPO.

Figure 15-5. The Copy Files tab

ChapTer 15 ImpLemenTIng Log ShIppIng

542

On the Restore Transaction Log tab, we configure the job that is responsible for

restoring the backups on the secondary server. The most important option on this screen

is what database state we choose when restoring. Selecting the No Recovery Mode

option is the applicable choice for a DR server. This is because if you choose Standby

Mode, uncommitted transactions are saved to a Transaction Undo File, which means

the database can be brought online in read-only mode (as discussed in Chapter 13).

However, this action increases the recovery time, because these transactions then need

to be reapplied before the redo phase of the next restore.

On this tab, we also use the Delay Restoring Backups For At Least option to apply

the load delay, which gives users a chance to report data issues. We can also specify how

long the delay should be before we are alerted that no restore operation has occurred.

The Restore Transaction Log tab is illustrated in Figure 15-7.

Figure 15-6. The New Job Schedule screen

ChapTer 15 ImpLemenTIng Log ShIppIng

543

The Schedule button invokes the New Job Schedule screen, displayed in Figure 15-8.

On this screen, we can configure the job schedule for the restore of our transaction logs.

Although doing so is not mandatory, for consistency, I usually recommend configuring

this value so it is the same as the backup and copy jobs.

Figure 15-7. The Restore Transaction Log tab

ChapTer 15 ImpLemenTIng Log ShIppIng

544

Once back on the Transaction Log Shipping page, we need to decide if we want to

implement a monitor server. This option allows us to configure an instance, which acts

as a centralized point for monitoring our Log Shipping topology. This is an important

decision to make at this point, because after the configuration is complete, there is

no official way to add a monitor server to the topology without tearing down and

reconfiguring log shipping.

Tip It is technically possible to force in a monitor server at a later time,
but the process involves manually updating log shipping metadata tables in
mSDB. Therefore, it is not recommended or supported.

To add a monitor server, we check the option to Use A Monitor Server Instance and

enter the server\instance name. Clicking the Settings button causes the Log Shipping

Monitor Settings screen to display. We use this screen, shown in Figure 15-9, to configure

how connections are made to the monitor server and the history retention settings.

Figure 15-8. New Job Schedule screen

ChapTer 15 ImpLemenTIng Log ShIppIng

545

Now that our Log Shipping topology is fully configured, we can choose to script the

configuration, which can be helpful for the purposes of documentation and change

control. We can then complete the configuration. The progress of the configuration

displays in the Save Log Shipping Configuration window (see Figure 15-10). Once

configuration is complete, we should check this window for any errors that may have

occurred during configuration and resolve them as needed. The most common cause

of issues with log shipping configuration tends to be permissions related, so we need

to ensure that the SQL Server service account (or proxy account) has the correct

permissions on the file shares and instances before we continue.

Figure 15-9. The Log Shipping Monitor Settings screen

ChapTer 15 ImpLemenTIng Log ShIppIng

546

 T-SQL Configuration
To configure log shipping through T-SQL, we need to run a number of system stored

procedures. The first of these procedures is sp_add_log_shipping_primary_database,

which we use to configure the backup job and monitor the primary database. The

parameters used by this procedure are described in Table 15-1.

Figure 15-10. The Save Log Shipping Configuration page

Table 15-1. sp_add_log_shipping_primary_database Parameters

Parameter Description

@database The name of the database for which you are configuring log shipping.

@backup_directory The local path to the backup folder.

@backup_share The network path to the backup folder.

@backup_job_name The name to use for the job that backs up the log.

@backup_retention_

period

The duration that log backups should be kept for, specified in minutes.

@monitor_server The server\instance name of the monitor server.

@monitor_server_

Security_mode

The authentication mode to use to connect to the monitor server. 0 is

SQL authentication and 1 is Windows authentication.

(continued)

ChapTer 15 ImpLemenTIng Log ShIppIng

547

Listing 15-2 demonstrates how we can use the sp_add_log_shipping_primary_

database procedure to configure Chapter15 for log shipping. This script uses the

@backup_job_id output parameter to pass the job’s GUID into the sp_update_job

stored procedure. It also uses the sp_add_schedule and sp_attach_schedule system

stored procedures to create the job schedule and attach it to the job. Because configuring

log shipping involves connecting to multiple instances, we have added a connection to

the primary instance. This means that we should run the script in SQLCMD mode.

Note sp_update_job, sp_add_schedule, and sp_attach_schedule are
system stored procedures used to manipulate SQL Server agent objects. a full
discussion of SQL Server agent can be found in Chapter 22.

Parameter Description

@monitor_server_login The account used to connect to the monitor server (only use if SQL

authentication is specified).

@monitor_server_

password

The password of the account used to connect to the monitor server

(only use if SQL authentication is specified).

@backup_threshold The amount of time that can elapse, without a log backup being

taken, before an alert is triggered.

@threshold_alert The alert to be raised if the backup threshold is exceeded.

@threshold_alert_

enabled

Specifies if an alert should be fired. 0 disables the alert, 1 enables it.

@history_retention_

period

The duration for which the log backup job history will be retained,

specified in minutes.

@backup_job_id an OUTPUT parameter that specifies the gUID of the backup job that

is created by the procedure.

@primary_id an OUTPUT parameter that specifies the ID of the primary database.

@backup_compression Specifies if backup compression should be used. 0 means disabled, 1

means enabled, and 2 means use the instance's default configuration.

Table 15-1. (continued)

ChapTer 15 ImpLemenTIng Log ShIppIng

548

Listing 15-2. sp_add_log_shipping_primary_database

--Note that this script should be run in sqlcmd mode

:connect primaryserver\prosqladmin

DECLARE @LS_BackupJobId UNIQUEIDENTIFIER

DECLARE @LS_BackUpScheduleID INT

--Configure Chapter15 database as the Primary for Log Shipping

EXEC master.dbo.sp_add_log_shipping_primary_database

 @database = N'Chapter15'

 ,@backup_directory = N'c:\logshippingprimary'

 ,@backup_share = N'\\primaryserver\logshippingprimary'

 ,@backup_job_name = N'LSBackup_Chapter15'

 ,@backup_retention_period = 2880

 ,@backup_compression = 2

 ,@monitor_server = N'monitorserver.prosqladmin.com\

prosqlmonitor'

 ,@monitor_server_security_mode = 1

 ,@backup_threshold = 60

 ,@threshold_alert_enabled = 1

 ,@history_retention_period = 5760

 ,@backup_job_id = @LS_BackupJobId OUTPUT ;

--Create a job schedule for the backup job

EXEC msdb.dbo.sp_add_schedule

 @schedule_name =N'LSBackupSchedule_primaryserver\

prosqladmin1'

 ,@enabled = 1

 ,@freq_type = 4

 ,@freq_interval = 1

 ,@freq_subday_type = 4

 ,@freq_subday_interval = 5

 ,@freq_recurrence_factor = 0

 ,@active_start_date = 20190517

 ,@active_end_date = 99991231

 ,@active_start_time = 0

ChapTer 15 ImpLemenTIng Log ShIppIng

549

 ,@active_end_time = 235900

 ,@schedule_id = @LS_BackUpScheduleID OUTPUT ;

--Attach the job schedule to the job

EXEC msdb.dbo.sp_attach_schedule

 @job_id = @LS_BackupJobId

 ,@schedule_id = @LS_BackUpScheduleID ;

--Enable the backup job

EXEC msdb.dbo.sp_update_job

 @job_id = @LS_BackupJobId

 ,@enabled = 1 ;

We use the sp_add_log_shipping_primary_secondary system stored procedure to

update the metadata on the primary server in order to add a record for each secondary

server in the Log Shipping topology. The parameters that it accepts are described in

Table 15-2.

Listing 15-3 demonstrates how we can use the sp_add_log_shipping_primary_

secondary procedure to add a record of our DRSERVER\PROSQLDR instance to our primary

server. Again, we specifically connect to the primary server, meaning that the script

should run in SQLCMS mode.

Listing 15-3. sp_add_log_shipping_primary_secondary

:connect primaryserver\prosqladmin

EXEC master.dbo.sp_add_log_shipping_primary_secondary

 @primary_database = N'Chapter15'

 ,@secondary_server = N'drserver\prosqldr'

 ,@secondary_database = N'Chapter15'

Table 15-2. sp_add_log_shipping_primary_secondary Parameters

Parameter Description

@primary_database The name of the primary database

@secondary_server The server\instance of the secondary server

@secondary_database The name of the database on the secondary server

ChapTer 15 ImpLemenTIng Log ShIppIng

550

We now need to configure our DR server. The first task in this process is to run the

sp_add_log_shipping_secondary_primary system stored procedure. This procedure

creates the SQL Server Agent jobs that copy the transaction logs to the secondary server

and restore them. It also configures monitoring. The parameters accepted by this stored

procedure are detailed in Table 15-3.

Table 15-3. sp_add_log_shipping_secondary_primary Parameters

Parameter Description

@primary_server The server\instance name of the primary server.

@primary_database The name of the primary database.

@backup_source_directory The folder that the log backups are copied from.

@backup_destination_

directory

The folder that the log backups are copied to.

@copy_job_name The name that is given to the SQL Server agent job used to copy

the transaction logs.

@restore_job_name The name that is given to the SQL Server agent job used to restore

the transaction logs.

@file_retention_period The duration for which log backup history should be retained,

specified in minutes.

@monitor_server The server\instance name of the monitor server.

@monitor_server_

security_mode

The authentication mode to be used to connect to the monitor

server. 0 is SQL authentication and 1 is Windows authentication.

@monitor_server_login The account used to connect to the monitor server (only use if SQL

authentication is specified).

@monitor_server_

password

The password of the account used to connect to the monitor

server (only use if SQL authentication is specified).

@copy_job_id OUTPUT parameter that specifies the gUID of the job that has been

created to copy the transaction logs.

@restore_job_id OUTPUT parameter that specifies the gUID of the job that has been

created to restore the transaction logs.

@secondary_id an OUTPUT parameter that specifies the ID of secondary database.

ChapTer 15 ImpLemenTIng Log ShIppIng

551

Listing 15-4 demonstrates how we can use the sp_add_log_shipping_secondary_

primary stored procedure to configure our DRSERVER\PROSQLDR instance as a secondary

server in our Log Shipping topology. The script connects explicitly to the DR instance, so

we should run it in SQL command mode. Just as when we set up the primary server, we

use output parameters to pass to the SQL Server Agent stored procedures, to create the

job schedules and enable the jobs.

Listing 15-4. sp_add_log_shipping_secondary_primary

--Note This script should be run in sqlcmd mode

:connect drserver\prosqldr

DECLARE @LS_Secondary__CopyJobId AS uniqueidentifier

DECLARE @LS_Secondary__RestoreJobId AS uniqueidentifier

DECLARE @LS_SecondaryCopyJobScheduleID AS int

DECLARE @LS_SecondaryRestoreJobScheduleID AS int

--Configure the secondary server

EXEC master.dbo.sp_add_log_shipping_secondary_primary

 @primary_server = N'primaryserver\prosqladmin'

 @primary_database = N'Chapter15'

 ,@backup_source_directory = N'\\primaryserver\

logshippingprimary'

 ,@backup_destination_directory = N'\\drserver\

logshippingdr'

 ,@copy_job_name = N'LSCopy_primaryserver\prosqladmin_

Chapter15'

 ,@restore_job_name = N'LSRestore_primaryserver\prosqladmin_

Chapter15'

 ,@file_retention_period = 2880

 ,@monitor_server = N'monitorserver.prosqladmin.com\

prosqlmonitor'

 ,@monitor_server_security_mode = 1

 ,@copy_job_id = @LS_Secondary__CopyJobId OUTPUT

 ,@restore_job_id = @LS_Secondary__RestoreJobId OUTPUT ;

ChapTer 15 ImpLemenTIng Log ShIppIng

552

--Create the schedule for the copy job

EXEC msdb.dbo.sp_add_schedule

 @schedule_name =N'DefaultCopyJobSchedule'

 ,@enabled = 1

 ,@freq_type = 4

 ,@freq_interval = 1

 ,@freq_subday_type = 4

 ,@freq_subday_interval = 15

 ,@freq_recurrence_factor = 0

 ,@active_start_date = 20190517

 ,@active_end_date = 99991231

 ,@active_start_time = 0

 ,@active_end_time = 235900

 ,@schedule_id = @LS_SecondaryCopyJobScheduleID OUTPUT ;

--Attach the schedule to the copy job

EXEC msdb.dbo.sp_attach_schedule

 @job_id = @LS_Secondary__CopyJobId

 ,@schedule_id = @LS_SecondaryCopyJobScheduleID ;

--Create the job schedule for the restore job

EXEC msdb.dbo.sp_add_schedule

 @schedule_name =N'DefaultRestoreJobSchedule'

 ,@enabled = 1

 ,@freq_type = 4

 ,@freq_interval = 1

 ,@freq_subday_type = 4

 ,@freq_subday_interval = 15

 ,@freq_recurrence_factor = 0

 ,@active_start_date = 20190517

 ,@active_end_date = 99991231

 ,@active_start_time = 0

 ,@active_end_time = 235900

 ,@schedule_id = @LS_SecondaryRestoreJobScheduleID OUTPUT ;

ChapTer 15 ImpLemenTIng Log ShIppIng

553

--Attch the schedule to the restore job

EXEC msdb.dbo.sp_attach_schedule

 @job_id = @LS_Secondary__RestoreJobId

 ,@schedule_id = @LS_SecondaryRestoreJobScheduleID ;

--Enable the jobs

EXEC msdb.dbo.sp_update_job

 @job_id = @LS_Secondary__CopyJobId

 ,@enabled = 1 ;

EXEC msdb.dbo.sp_update_job

 @job_id = @LS_Secondary__RestoreJobId

 ,@enabled = 1 ;

Our next step is to configure the secondary database. We can perform this task

by using the sp_add_log_shipping_secondary_database stored procedure. The

parameters accepted by this procedure are detailed in Table 15-4.

Table 15-4. sp_add_log_shipping_secondary_database Paremeters

Parameter Description

@secondary_database The name of the secondary database.

@primary_server The server\instance of the primary server.

@primary_database The name of the primary database.

@restore_delay Specifies the load delay, in minutes.

@restore_all When set to 1, the restore job restores all available log backups.

When set to 0, the restore job only applies a single log backup.

@restore_mode Specifies the backup mode for the restore job to use. 1 means

STANDBY and 0 means NORECOVERY.

@disconnect_users Determines if users should be disconnected from the database while

transaction log backups are being applied. 1 means that they are and

0 means that they are not. only applies when restoring logs in

STANDBY mode.

(continued)

ChapTer 15 ImpLemenTIng Log ShIppIng

554

Listing 15-5 demonstrates how we can use the sp_add_log_shipping_secondary_

database to configure our secondary database for log shipping. Since we are explicitly

connecting to the DRSERVER\PROSQLDR instance, the script should run in SQLCMD mode.

Listing 15-5. sp_add_log_shipping_secondary_database

:connect drserver\prosqldr

EXEC master.dbo.sp_add_log_shipping_secondary_database

 @secondary_database = N'Chapter15'

 ,@primary_server = N'primaryserver\prosqladmin'

 ,@primary_database = N'Chapter15'

 ,@restore_delay = 10

 ,@restore_mode = 0

 ,@disconnect_users = 0

 ,@restore_threshold = 30

 ,@threshold_alert_enabled = 1

Parameter Description

@block_size Specifies the block size for the backup device, in bytes.

@buffer_count Specifies the total number of memory buffers that can be used by a

restore operation.

@max_transfer_size Specifies the maximum size of the request that can be sent to the

backup device, in bytes.

@restore_threshold The amount of time that can elapse, without a restore being applied,

before an alert is generated; specified in minutes.

@threshold_alert The alert to be raised if the restore threshold is exceeded.

@threshold_alert_

enabled

Specifies if the alert is enabled. 1 means that it is enabled and 0

means that it is disabled.

@history_retention_

period

The retention period of the restore history, specified in minutes.

@Ignoreremotemonitor an undocumented parameter that partially controls how the internal log

shipping database journal is updated.

Table 15-4. (continued)

ChapTer 15 ImpLemenTIng Log ShIppIng

555

 ,@history_retention_period = 5760

 ,@ignoreremotemonitor = 1

The final task is to synchronize the monitor server and the DR server. We do this by

using the (surprisingly) undocumented stored procedure sp_processlogshipping

monitorsecondary. The parameters accepted by this procedure are detailed in Table 15-5.

Table 15-5. sp_processlogshippingmonitorsecondary

Parameter Description

@mode The recovery mode to use for the database. 0 indicates

NORECOVERY and 1 indicates STANDBY.

@secondary_server The server\instance of the secondary server.

@secondary_database The name of the secondary database.

@secondary_id The ID of the secondary server.

@primary_server The server\instance of the primary server.

@monitor_server The server\instance of the monitor server.

@monitor_server_

security_mode

The authentication mode used to connect to the monitor server.

@primary_database The name of the primary database.

@restore_threshold The amount of time that can elapse without a restore being

applied before an alert is triggered; specified in minutes.

@threshold_alert The alert that fires if the alert restore threshold is exceeded.

@threshold_alert_enabled Specifies if the alert is enabled or disabled.

@last_copied_file The file name of the last log backup to be copied to the

secondary server.

@last_copied_date The date and time of the last time a log was copied to the

secondary server.

@last_copied_date_utc The date and time of the last time a log was copied to the

secondary server, converted to UTC (Coordinated Universal Time).

@last_restored_file The file name of the last transaction log backup to be restored on

the secondary server.

(continued)

ChapTer 15 ImpLemenTIng Log ShIppIng

556

The script in Listing 15-6 demonstrates how to use the sp_processlogshipping

monitorsecondary stored procedure to synchronize the information between our DR

server and our monitor server. We should run the script against the monitor server, and

since we are connecting explicitly to the MONITORSERVER\PROSQLMONITOR instance, we

should run the script in SQLCMD mode.

Listing 15-6. sp_processlogshippingmonitorsecondary

:connect monitorserver\prosqlmonitor

EXEC msdb.dbo.sp_processlogshippingmonitorsecondary

 @mode = 1

 ,@secondary_server = N'drserver\prosqldr'

 ,@secondary_database = N'Chapter15'

 ,@secondary_id = N''

 ,@primary_server = N'primaryserver\prosqladmin'

 ,@primary_database = N'Chapter15'

 ,@restore_threshold = 30

 ,@threshold_alert = 14420

 ,@threshold_alert_enabled = 1

 ,@history_retention_period = 5760

 ,@monitor_server = N'monitorserver.prosqladmin.com\

prosqlmonitor'

 ,@monitor_server_security_mode = 1

Table 15-5. (continued)

Parameter Description

@last_restored_date The date and time of the last time a log was restored on the

secondary server.

@last_restored_date_utc The date and time of the last time a log was restored on the

secondary server, converted to UTC.

@last_restored_latency The elapsed time between the last log backup on the primary and

its corresponding restore operation completing on the secondary.

@history_retention_period The duration that the history is retained, specified in minutes.

ChapTer 15 ImpLemenTIng Log ShIppIng

557

 Log Shipping Maintenance
After you configure log shipping, you still have ongoing maintenance tasks to perform,

such as failing over to the secondary server, if you need to, and switching the primary

and secondary roles. These topics are discussed in the following sections. We also

discuss how to use the monitor server to monitor the log shipping environment.

 Failing Over Log Shipping
If your primary server has an issue, or your primary site fails, you need to fail over to your

secondary server. To do this, first back up the tail end of the log. We discuss this process

fully in Chapter 15, but the process essentially involves backing up the transaction log

without truncating it and with NORECOVERY. This stops users from being able to connect

to the database, therefore avoiding any further data loss. Obviously, this is only possible

if the primary database is accessible. You can perform this action for the Chapter15

database by using the script in Listing 15-7.

Listing 15-7. Backing Up the Tail End of the Log

BACKUP LOG Chapter15

TO DISK = N'c:\logshippingprimary\Chapter15_tail.trn'

WITH NO_TRUNCATE , NAME = N'Chapter15-Full Database Backup', NORECOVERY

GO

The next step is to manually copy the tail end of the log and any other logs that have

not yet been copied to the secondary server. Once this is complete, you need to manually

restore the outstanding transaction log backups to the secondary server, in sequence.

You need to apply the backups with NORECOVERY until the final backup is reached. This

final backup is applied with RECOVERY. This causes any uncommitted transactions to be

rolled back and the database to be brought online. Listing 15-8 demonstrates applying

the final two transaction logs to the secondary database.

Listing 15-8. Applying Transaction Logs

--Restore the first transaction log

RESTORE LOG Chapter15

FROM DISK = N'C:\LogShippingDR\Chapter15.trn'

ChapTer 15 ImpLemenTIng Log ShIppIng

558

WITH FILE = 1, NORECOVERY, STATS = 10 ;

GO

--Restore the tail end of the log

RESTORE LOG Chapter15

FROM DISK = N'C:\LogShippingDR\Chapter15_tail.trn'

WITH FILE = 1, RECOVERY, STATS = 10 ;

GO

 Switching Roles
After you have failed over log shipping to the secondary server, you may want to swap

the server roles so that the secondary that you failed over to becomes the new primary

server and the original primary server becomes the secondary. In order to achieve this,

first you need to disable the backup job on the primary server and the copy and restore

jobs on the secondary server. We can perform this task for our Log Shipping topology by

using the script in Listing 15-9. Because we are connecting to multiple servers, we need

to run this script in SQLCMD mode.

Listing 15-9. Disabling Log Shipping Jobs

:connect primaryserver\prosqladmin

USE [msdb]

GO

--Disable backup job

EXEC msdb.dbo.sp_update_job @job_name = 'LSBackup_Chapter15',

 @enabled=0 ;

GO

:connect drserver\prosqldr

USE [msdb]

GO

ChapTer 15 ImpLemenTIng Log ShIppIng

559

--Diable copy job

EXEC msdb.dbo.sp_update_job @job_name='LSCopy_primaryserver\prosqladmin_

Chapter15', @enabled=0 ;

GO

--Disable restore job

EXEC msdb.dbo.sp_update_job @job_name='LSRestore_primaryserver\prosqladmin_

Chapter15', @enabled=0 ;

GO

The next step is to reconfigure log shipping on the new primary server. When you do

this, configure the following:

• Ensure that you use the same backup share that you used for the

original primary server.

• Ensure that when you add the secondary database, you specify the

database that was originally the primary database.

• Specify the synchronization No, The Secondary Database Is

Initialized option.

The script in Listing 15-10 performs this action for our new secondary server. Since

we are connecting to multiple servers, we should run the script in SQLCMD mode.

Listing 15-10. Reconfiguring Log Shipping

:connect drserver\prosqldr

DECLARE @LS_BackupJobId AS uniqueidentifier

DECLARE @SP_Add_RetCode As int

DECLARE @LS_BackUpScheduleID AS int

EXEC @SP_Add_RetCode = master.dbo.sp_add_log_shipping_primary_database

 @database = N'Chapter15'

 ,@backup_directory = N'\\primaryserver\logshippingprimary'

 ,@backup_share = N'\\primaryserver\logshippingprimary'

 ,@backup_job_name = N'LSBackup_Chapter15'

ChapTer 15 ImpLemenTIng Log ShIppIng

560

 ,@backup_retention_period = 2880

 ,@backup_compression = 2

 ,@backup_threshold = 60

 ,@threshold_alert_enabled = 1

 ,@history_retention_period = 5760

 ,@backup_job_id = @LS_BackupJobId OUTPUT

 ,@overwrite = 1

EXEC msdb.dbo.sp_add_schedule

 @schedule_name =N'LSBackupSchedule_DRSERVER\PROSQLDR1'

 ,@enabled = 1

 ,@freq_type = 4

 ,@freq_interval = 1

 ,@freq_subday_type = 4

 ,@freq_subday_interval = 5

 ,@freq_recurrence_factor = 0

 ,@active_start_date = 20190517

 ,@active_end_date = 99991231

 ,@active_start_time = 0

 ,@active_end_time = 235900

 ,@schedule_id = @LS_BackUpScheduleID OUTPUT

EXEC msdb.dbo.sp_attach_schedule

 @job_id = @LS_BackupJobId

 ,@schedule_id = @LS_BackUpScheduleID

EXEC msdb.dbo.sp_update_job

 @job_id = @LS_BackupJobId

 ,@enabled = 1

EXEC master.dbo.sp_add_log_shipping_primary_secondary

 @primary_database = N'Chapter15'

 ,@secondary_server = N'primaryserver\prosqladmin'

 ,@secondary_database = N'Chapter15'

 ,@overwrite = 1

ChapTer 15 ImpLemenTIng Log ShIppIng

561

:connect primaryserver\prosqladmin

DECLARE @LS_Secondary__CopyJobId AS uniqueidentifier

DECLARE @LS_Secondary__RestoreJobId AS uniqueidentifier

DECLARE @LS_Add_RetCode As int

DECLARE @LS_SecondaryCopyJobScheduleID AS int

DECLARE @LS_SecondaryRestoreJobScheduleID AS int

EXEC @LS_Add_RetCode = master.dbo.sp_add_log_shipping_secondary_primary

 @primary_server = N'DRSERVER\PROSQLDR'

 ,@primary_database = N'Chapter15'

 ,@backup_source_directory = N'\\primaryserver\

logshippingprimary'

 ,@backup_destination_directory = N'\\primaryserver\

logshippingprimary'

 ,@copy_job_name = N'LSCopy_DRSERVER\PROSQLDR_Chapter15'

 ,@restore_job_name = N'LSRestore_DRSERVER\PROSQLDR_

Chapter15'

 ,@file_retention_period = 2880

 ,@overwrite = 1

 ,@copy_job_id = @LS_Secondary__CopyJobId OUTPUT

 ,@restore_job_id = @LS_Secondary__RestoreJobId OUTPUT

EXEC msdb.dbo.sp_add_schedule

 @schedule_name =N'DefaultCopyJobSchedule'

 ,@enabled = 1

 ,@freq_type = 4

 ,@freq_interval = 1

 ,@freq_subday_type = 4

 ,@freq_subday_interval = 5

 ,@freq_recurrence_factor = 0

 ,@active_start_date = 20190517

 ,@active_end_date = 99991231

 ,@active_start_time = 0

 ,@active_end_time = 235900

 ,@schedule_id = @LS_SecondaryCopyJobScheduleID OUTPUT

ChapTer 15 ImpLemenTIng Log ShIppIng

562

EXEC msdb.dbo.sp_attach_schedule

 @job_id = @LS_Secondary__CopyJobId

 ,@schedule_id = @LS_SecondaryCopyJobScheduleID

EXEC msdb.dbo.sp_add_schedule

 @schedule_name =N'DefaultRestoreJobSchedule'

 ,@enabled = 1

 ,@freq_type = 4

 ,@freq_interval = 1

 ,@freq_subday_type = 4

 ,@freq_subday_interval = 5

 ,@freq_recurrence_factor = 0

 ,@active_start_date = 20190517

 ,@active_end_date = 99991231

 ,@active_start_time = 0

 ,@active_end_time = 235900

 ,@schedule_id = @LS_SecondaryRestoreJobScheduleID OUTPUT

EXEC msdb.dbo.sp_attach_schedule

 @job_id = @LS_Secondary__RestoreJobId

 ,@schedule_id = @LS_SecondaryRestoreJobScheduleID

EXEC master.dbo.sp_add_log_shipping_secondary_database

 @secondary_database = N'Chapter15'

 ,@primary_server = N'DRSERVER\PROSQLDR'

 ,@primary_database = N'Chapter15'

 ,@restore_delay = 10

 ,@restore_mode = 0

 ,@disconnect_users = 0

 ,@restore_threshold = 30

 ,@threshold_alert_enabled = 1

 ,@history_retention_period = 5760

 ,@overwrite = 1

EXEC msdb.dbo.sp_update_job

 @job_id = @LS_Secondary__CopyJobId

 ,@enabled = 1

ChapTer 15 ImpLemenTIng Log ShIppIng

563

EXEC msdb.dbo.sp_update_job

 @job_id = @LS_Secondary__RestoreJobId

 ,@enabled = 1

The final step is to reconfigure monitoring so it correctly monitors our new

configuration. We can achieve this for our log shipping environment by using the script

in Listing 15-11. This script connects to both the primary and secondary servers, so we

should run it in SQLCMD mode.

Listing 15-11. Reconfiguring Monitoring

:connect drserver\prosqldr

USE msdb

GO

EXEC master.dbo.sp_change_log_shipping_secondary_database

 @secondary_database = N'database_name',

 @threshold_alert_enabled = 0 ;

GO

:connect primaryserver\prosqladmin

USE msdb

GO

EXEC master.dbo.sp_change_log_shipping_primary_database

 @database=N'database_name',

 @threshold_alert_enabled = 0 ;

GO

Because we have now created the backup, copy, and restore jobs on both servers,

switching the roles after subsequent failovers is much more straightforward. From now

on, after we have failed over, we can switch roles by simply disabling the backup job on

the original primary server and the copy and restore jobs on the secondary server, and

then enabling the backup job on the new primary server and the copy and restore jobs

on the new secondary server.

ChapTer 15 ImpLemenTIng Log ShIppIng

564

 Monitoring
The most important aspect of monitoring your Log Shipping topology is ensuring that

the backups are occurring on the primary and being restored on the secondary. For

this reason, when we configure log shipping in this chapter, we tweak the acceptable

thresholds for backups and restores, and Server Agent Alerts are created on the monitor

server. Before these alerts are useful, however, we need to configure them with an

operator to notify.

On the monitor server, we have configured two alerts. The first is called Log Shipping

Primary Server Alert, and when you view the General tab of this alert’s properties, you

see that it is configured to respond to Error 14420, as shown in Figure 15-11. Error 14420

indicates that a backup has not been taken of the primary database within the defined

threshold.

On the Response tab, displayed in Figure 15-12, we need to configure an operator

to receive the alerts. You can either use the New Operator button to configure a new

Figure 15-11. The General tab

ChapTer 15 ImpLemenTIng Log ShIppIng

565

operator or, as in our case, simply select the appropriate notification channel for the

appropriate operator(s) in the list. You can also elect to run a SQL Server Agent job,

which attempts to remediate the condition.

You should configure the Log Shipping Secondary Server Alert in the same way you

configured the Log Shipping Primary Server Alert. The secondary server alert works in

the same way, except that it is monitoring for Error 14421 instead of 14420. Error 14421

indicates that a transaction log has not been restored to the secondary server within the

threshold period.

The log shipping report can be run from SQL Server Management Studio, and when

you run it on the monitor server, it displays the status of the primary server and each

secondary server. When run on the primary server, it shows the status of each database

based on the backup jobs and includes a line for each secondary. When run on the DR

server, it shows the status of each database based on the restore jobs. You can access

the report by invoking the context menu of the instance and drilling through Reports ➤

Standard Reports, before selecting the Transaction Log Shipping Status report.

Figure 15-12. The Response tab

ChapTer 15 ImpLemenTIng Log ShIppIng

566

Figure 15-13 illustrates the report when run against the primary server. You can see

that the status of the backup jobs has been set to Alert and the text has been highlighted

in red. This indicates that the threshold for a successful backup has been breached on

the primary database. In our case, we simulated this by disabling the backup job. We

could have obtained the same information by using the sp_help_log_shipping_monitor

stored procedure.

 Summary
Log shipping is a technology that you can use to implement DR for databases. It

synchronizes data by backing up the transaction log of the primary database, copying

it to a secondary server, and then restoring it. If the log is restored with STANDBY, then

uncommitted transactions are stored in a Transaction Undo File, and you can reapply

them before subsequent backups. This means that you can bring the database online in

read-only mode for reporting. If the logs are restored with NORECOVERY, however, then the

servers are ready for a DR invocation, but the databases are in an offline state.

Failing over a database to a secondary server involves backing up the tail end of the

transaction log and then applying any outstanding log backups to the secondary database,

before finally bringing the database online by issuing the final restore with RECOVERY.

Figure 15-13. The Log Shipping report

ChapTer 15 ImpLemenTIng Log ShIppIng

567

If you wish to switch the server roles, then you need to disable the current log shipping

jobs, reconfigure log shipping so that the secondary server is now the primary, and then

reconfigure monitoring. After subsequent failovers, however, switching the roles becomes

easier, because you are able to simply disable and enable the appropriate SQL Server

Agent jobs used by log shipping.

To monitor the health of your Log Shipping topology, you should configure the log

shipping alerts and add an operator who will be notified if the alert fires. The alert for the

primary server is monitoring for Error 14420, which means that the backup threshold

has been exceeded. The alert for the secondary server(s) monitors for Error 14421, which

indicates that the restore threshold has been exceeded.

A log shipping report is available; it returns data about the primary databases, the

secondary databases, or all servers in the topology, depending on whether it is invoked

from the primary server, the secondary server, or the monitor server, respectively. The

same information can be obtained from the sp_help_log_shipping_monitor stored

procedure.

ChapTer 15 ImpLemenTIng Log ShIppIng

569
© Peter A. Carter 2019
P. A. Carter, Pro SQL Server 2019 Administration, https://doi.org/10.1007/978-1-4842-5089-1_16

CHAPTER 16

Scaling Workloads
SQL Server provides multiple technologies that allow DBAs to horizontally scale

their workloads between multiple databases to avoid lock contention or to scale

them horizontally between servers to spread resource utilization. These technologies

include database snapshots, replication, and AlwaysOn Availability Groups. This

chapter discusses the considerations for these technologies and demonstrates how to

implement them.

 Database Snapshots
A database snapshot is a point-in-time view of a database that never changes after it is

generated. It works using copy-on-write technology; this means that if a page is modified

in the source database, the original version of the page is copied to an NTFS sparse file,

which is used by the database snapshot. A sparse file is a file that starts off empty, with

no disk space allocated. As pages are updated in the source database and these pages

are copied to the sparse file, it grows to accommodate them. This process is illustrated in

Figure 16-1.

570

If a user runs a query against the database snapshot, SQL Server checks to see if the

required pages exist in the database snapshot. Any pages that do exist are returned from

the database snapshot, whereas any other pages are retrieved from the source database,

as illustrated in Figure 16-2. In this example, to satisfy the query, SQL Server needs to

return Page 1:100 and Page 1:101. Page 1:100 has been modified in the source database

since the snapshot was taken. Therefore, the original version of the page has been copied

to the sparse file and SQL Server retrieves it from there. Page 1:101, on the other hand,

has not been modified in the source database since the snapshot was created. Therefore,

it does not exist in the sparse file, and SQL Server retrieves it from the source database.

Source
Database

Data File

Modified
Page

Original
Page

Snapshot

Sparse File

Copy on write

Figure 16-1. Database snapshots

Chapter 16 SCaling WorkloadS

571

If your data-tier application is suffering from contention caused by locking, then

you can scale out reporting to a database snapshot. It is important to note, however,

that because a database snapshot must reside on the same instance as the source

database, it does not help overcome resource utilization issues. In fact, the opposite is

true. Because any modified pages must be copied to the sparse file, the IO overhead

increases. The memory footprint also increases, since pages are duplicated in the buffer

cache for each database.

Source
Database

Snapshot
SELECT *
FROM SnapshotDB.dbo.MyTable

Data File

Modified
Page

Original
Page

Sparse File

Copy on writePage
1:100

Page
1:100

Page
1:101

Page
1:102

Retrieve Page 1:100
From Snapshot

Retrieve Page 1:101
From Source Database

Figure 16-2. Querying a database snapshot

Chapter 16 SCaling WorkloadS

572

Tip it may not be appropriate to have a database snapshot present while
io- intensive tasks are carried out. i have seen a couple of scenarios—one
involving index rebuilds on a VldB and the other involving a snapshot on the
Subscriber database in a replication topology—where the copy-on-write thread
and the ghost cleanup thread have blocked each other so badly that processes
never complete. if you encounter this scenario and you must have a snapshot
present during io-intensive tasks, then the only workaround is to disable the
ghost cleanup task using trace Flag 661. Be warned, however, that if you take
this approach, deleted rows are never automatically removed, and you must clean
them up in another way, such as by rebuilding all indexes.

In addition to the resource overhead of database snapshots, another issue you

encounter when you use them to reduce contention for reporting is that data becomes

stale as pages in the source database are modified. To overcome this, you can create a

metadata-driven script to periodically refresh the snapshot. This is demonstrated in

Chapter 17.

The issue of data becoming stale can also be an advantage however, because it gives

you two benefits: first, it means that you can use snapshots for historic reporting purposes;

and second, it means that you can use database snapshots to recover data after user error

has occurred. Be warned, however, that these snapshots provide no resilience against IO

errors or database failures, and you cannot use them to replace database backups.

 Implementing Database Snapshots
Before demonstrating how to create a database snapshot, we first create the Chapter16

database, which we use for demonstrations throughout this chapter. The script in

Listing 16-1 creates this database and populates it with data.

Listing 16-1. Creating the Chapter16 Database

CREATE DATABASE Chapter16 ;

GO

USE Chapter16

GO

Chapter 16 SCaling WorkloadS

573

CREATE TABLE Customers

(

ID INT PRIMARY KEY IDENTITY,

FirstName NVARCHAR(30),

LastName NVARCHAR(30),

CreditCardNumber VARBINARY(8000)

) ;

GO

--Populate the table

DECLARE @Numbers TABLE

(

 Number INT

)

;WITH CTE(Number)

AS

(

 SELECT 1 Number

 UNION ALL

 SELECT Number + 1

 FROM CTE

 WHERE Number < 100

)

INSERT INTO @Numbers

SELECT Number FROM CTE ;

DECLARE @Names TABLE

(

 FirstName VARCHAR(30),

 LastName VARCHAR(30)

) ;

INSERT INTO @Names

VALUES('Peter', 'Carter'),

 ('Michael', 'Smith'),

 ('Danielle', 'Mead'),

Chapter 16 SCaling WorkloadS

574

 ('Reuben', 'Roberts'),

 ('Iris', 'Jones'),

 ('Sylvia', 'Davies'),

 ('Finola', 'Wright'),

 ('Edward', 'James'),

 ('Marie', 'Andrews'),

 ('Jennifer', 'Abraham'),

 ('Margaret', 'Jones') ;

INSERT INTO Customers(Firstname, LastName, CreditCardNumber)

SELECT FirstName, LastName, CreditCardNumber FROM

 (SELECT

 (SELECT TOP 1 FirstName FROM @Names ORDER BY NEWID())

FirstName

 , (SELECT TOP 1 LastName FROM @Names ORDER BY NEWID())

LastName

 ,(SELECT CONVERT(VARBINARY(8000)

 ,(SELECT TOP 1 CAST(Number * 100 AS CHAR(4))

 FROM @Numbers

 WHERE Number BETWEEN 10 AND 99

 ORDER BY NEWID()) + '-' +

 (SELECT TOP 1 CAST(Number * 100 AS CHAR(4))

 FROM @Numbers

 WHERE Number BETWEEN 10 AND 99

 ORDER BY NEWID()) + '-' +

 (SELECT TOP 1 CAST(Number * 100 AS CHAR(4))

 FROM @Numbers

 WHERE Number BETWEEN 10 AND 99

 ORDER BY NEWID()) + '-' +

 (SELECT TOP 1 CAST(Number * 100 AS CHAR(4))

 FROM @Numbers

 WHERE Number BETWEEN 10 AND 99

 ORDER BY NEWID()))) CreditCardNumber

FROM @Numbers a

CROSS JOIN @Numbers b

) d ;

Chapter 16 SCaling WorkloadS

575

To create a database snapshot on the Chapter16 database, we use the CREATE

DATABASE syntax, adding the AS SNAPSHOT OF clause, as demonstrated in Listing 16-2.

The number of files must match the number of files of the source database, and the

snapshot must be created with a unique name. The .ss file extension is standard, but

not mandatory. I have known some DBAs to use an .ndf extension if they cannot gain

an antivirus exception for an additional file extension. I recommend using the .ss

extension if possible, however, because this clearly identifies the file as being associated

with a snapshot.

Listing 16-2. Creating a Database Snapshot

CREATE DATABASE Chapter16_ss_0630

ON PRIMARY

(NAME = N'Chapter16', FILENAME = N'F:\MSSQL\DATA\Chapter16_ss_0630.ss')

AS SNAPSHOT OF Chapter16 ;

The fact that each database snapshot must have a unique name can cause an issue

for connecting applications if you plan to use multiple snapshots; this is because the

applications do not know the name of the database to which they should connect. You

can resolve this issue by programmatically pointing applications to the latest database

snapshot. You can find an example of how to do this in Listing 16-3. This script creates

and runs a procedure that returns all data from the Contacts table. It first dynamically

checks the name of the most recent snapshot that is based on the Chapter16 database,

which means that the data will always be returned from the most recent snapshot.

Listing 16-3. Directing Clients to Latest Snapshot

USE Chapter16

GO

CREATE PROCEDURE dbo.usp_Dynamic_Snapshot_Query

AS

BEGIN

 DECLARE @LatestSnashot NVARCHAR(128)

 DECLARE @SQL NVARCHAR(MAX)

 SET @LatestSnashot = (

 SELECT TOP 1 name from sys.databases

Chapter 16 SCaling WorkloadS

576

 WHERE source_database_id = DB_ID('Chapter16')

 ORDER BY create_date DESC) ;

 SET @SQL = 'SELECT * FROM ' + @LatestSnashot + '.dbo.Customers' ;

 EXEC(@SQL) ;

END

EXEC dbo.usp_Dynamic_Snapshot_Query ;

 Recovering Data from a Snapshot
If user error leads to data loss, then a database snapshot can allow a DBA to recover

data without needing to restore a database from a backup, which can reduce the RTO

for resolving the issue. Imagine that a user accidently truncates the Contacts table in

the Chapter16 database; we can recover this data by reinserting it from the snapshot, as

demonstrated in Listing 16-4.

Listing 16-4. Recovering Lost Data

--Truncate the table

TRUNCATE TABLE Chapter16.dbo.Customers ;

--Allow Identity values to be re-inserted

SET IDENTITY_INSERT Chapter16.dbo.Customers ON ;

--Insert the data

INSERT INTO Chapter16.dbo.Customers(ID, FirstName, LastName, CreditCardNumber)

SELECT *
 FROM Chapter16_ss_0630.dbo.Customers ;

--Turn off IDENTITY_INSERT

SET IDENTITY_INSERT Chapter16.dbo.Customers OFF ;

If a large portion of the source database has been damaged by user error, then

instead of fixing each data issue individually, it may be quicker to recover the entire

database from the snapshot. You can do this using the RESTORE command with the FROM

DATABASE_SNAPSHOT syntax, as demonstrated in Listing 16-5.

Chapter 16 SCaling WorkloadS

577

Note if more than one snapshot of the database that you wish to recover exists,
then you must drop all the snapshots but the one you are going to restore from
before you run this script.

Listing 16-5. Recovering from a Database Snapshot

USE Master

GO

RESTORE DATABASE Chapter16

 FROM DATABASE_SNAPSHOT = 'Chapter16_ss_0630' ;

 Replication
SQL Server provides a suite of replication technologies, which you can use to disperse

data between instances. You can use replication for many purposes, including offloading

reporting, integrating data from multiple sites, supporting data warehousing, and

exchanging data with mobile users.

 Replication Concepts
Replication draws its terminology from the publishing industry. The components of a

Replication topology are described in Table 16-1.

Table 16-1. Replication Components

Component Description

publisher the publisher is the instance that makes data available to other locations. this is

essentially the primary server.

Subscriber the subscriber is the instance that receives data from the publisher. this is essentially

the secondary server. a replication topology can have multiple subscribers.

(continued)

Chapter 16 SCaling WorkloadS

578

Figure 16-3 illustrates how the replication components fit together within a

Replication topology. In this example, two subscribers each receiving the same

publication and the distributor have been separated from the publisher. This is known as

a remote distributor. If the publisher and distributor shared an instance, then it is known

as a local distributor.

Component Description

distributor the distributor is the instance that stores the metadata for the replication technology

and may also take the workload of processing. this instance may be the same

instance as the publisher.

article an article is a database object that is replicated, such as a table or a view. the article

can be filtered to reduce the amount of data that needs to be replicated.

publication a publication is a collection of articles from a database that is replicated as a single

unit.

Subscription a subscription is a request from a subscriber to receive publications. it defines which

publications are received by the subscriber. there are two types of subscription:

push and pull. in a pull subscription model, the distribution or merge agent that

is responsible for moving the data runs on each subscriber. in a push model, the

distribution or merge agent runs on the distributor.

replication

agents

replication agents are applications that sit outside of SQl Server that are used to

perform various tasks. the agents that are used depend on the type of replication that

you implement.

Table 16-1. (continued)

Chapter 16 SCaling WorkloadS

579

 Types of Replication
SQL Server offers three broad types of replication: snapshot, transactional, and merge.

These replication technologies are introduced in the following sections.

 Snapshot

Snapshot replication works by taking a complete copy of all articles at the point when

synchronizations occur; therefore, it does not need to track data changes between

synchronizations. If you have defined a filter on the article, then only the filtered

data is copied. This means that snapshot replication has no overhead, except when

synchronization is occurring. When synchronization does occur, however, the resource

overhead can be very high if there is a large amount of data to replicate.

The Snapshot Agent creates a system view and system stored procedure for each

article in the publication. It uses these objects to generate the contents of the articles. It

also creates schema files, which it applies to the subscription database before it uses BCP

(Bulk Copy Program) to bulk copy the data.

Publisher

Publication

Distributor

Distribution /
Merge Agent

Articles

Subscription

Subscriber

Subscription

Subscriber

Figure 16-3. Replication component overview

Chapter 16 SCaling WorkloadS

580

Because of the resource utilization profile, snapshot replication is most suited to

situations in which the dataset being replicated is small and changes infrequently, or in

cases in which many changes happen in a short time period. (An example of this may

include a price list, which is updated monthly.) Additionally, snapshot replication is the

default mechanism you use to perform the initial synchronization for transactional and

merge replication.

When you are using snapshot replication, the Snapshot Agent runs on the publisher

to generate the publication. The Distribution Agent (which runs either on the distributor

or on each subscriber) then applies the publication to the subscribers. Snapshot

replication always works in a single direction only, meaning that the subscribers can

never update the publisher.

 Transactional

Transactional replication works by reading transactions from the transaction log on the

publisher and then sending these transactions to be reapplied on the subscribers. The

Log Reader Agent, which runs at the publisher, reads the transactions, and a VLF is not

truncated until all log records marked for replication have been processed. This means

that if there is a long period between synchronizations and many data modifications

occur, there is a risk that your transaction log will grow or even run out of space. After the

transactions have been read from the log, the Distribution Agent applies the transactions

to the subscribers. This agent runs at the distributor in a push subscription model or at

each of the subscribers in a pull subscription model. Synchronization is scheduled by

SQL Server Agent jobs, which are configured to run the replication agents, and you can

configure synchronization, so it happens continuously or periodically, depending on

your requirements. The initial data synchronization is performed using the Snapshot

Agent by default.

Transactional replication is normally used in server-to-server scenarios where there

is a high volume of data modifications at the publisher and there is a reliable network

connection between the publisher and subscriber. A global data warehouse is an

example of this, having subsets of data replicated to regional data warehouses.

Standard transactional replication always works in a single direction only, which

means that it is not possible for the subscribers to update the publisher. SQL Server also

Chapter 16 SCaling WorkloadS

581

offers peer-to-peer transactional replication, however. In a Peer-to-Peer topology, each

server acts as a publisher and a subscriber to the other servers in the topology. This means

that changes you make on any server are replicated to all other servers in the topology.

Because all servers can accept updates, it is possible for conflicts to occur. For this

reason, peer-to-peer replication is most suitable when each peer accepts updates on a

different partition of data. If a conflict does occur, you can configure SQL Server to apply

the transaction with the highest OriginatorID (a unique integer that is assigned to each

node in the topology), or you can choose to resolve the conflict manually, which is the

recommended approach.

Tip if you are unable to partition the updatable data between nodes, and conflicts
are likely, you may find merge replication to be a better choice of technology.

 Merge

Merge replication allows you to update both the publisher and the subscribers. This is

a good choice for client-server scenarios, such as mobile salespersons who can enter

orders on their laptops and then have them sync with the main sales database. It can also

be useful in some server-server scenarios—for example, regional data warehouses that

are updated via ETL processes and then rolled up into a global data warehouse.

Merge replication works by maintaining a rowguid on every table that is an article

within the publication. If the table does not have a uniqueidentifier column with

the ROWGUID property set, then merge replication adds one. When a data modification

is made to a table, a trigger fires, which maintains a series of change-tracking tables.

When the Merge Agent runs, it applies only the latest version of the row. This means that

resource utilization is high for tracking changes that occur, but the trade-off is that merge

replication has the lowest overhead for actually synchronizing the changes.

Because the subscribers, as well as the publisher, can be updated, there is a risk that

conflicts between rows will occur. You manage these using conflict resolvers. Merge

replication offers 12 conflict resolvers out of the box, including earliest wins, latest

wins, and subscriber always wins. You can also program your own COM-based conflict

resolvers or choose to resolve conflicts manually.

Chapter 16 SCaling WorkloadS

582

Because you can use merge replication in client-server scenarios, it offers you

a technology called Web synchronization for updating subscribers. When you use

Web synchronization, after extracting the changes, the Merge Agent makes an

HTTPS request to IIS and sends the data changes to the subscribers in the form of

an XML message. Replication Listener and Merge Replication Reconciler, which are

processes running on the subscriber, process the data changes, after sending any data

modifications made at the subscriber back to the publisher.

 Implementing Transactional Replication
The most appropriate type of replication for scaling workloads is standard transactional

replication. We discuss how to implement this technology in the following sections.

Note For the demonstrations in this section, we use two instances: WIN-
KIAGK4GN1MJ\PROSQLADMIN and WIN-KIAGK4GN1MJ\PROSQLADMIN2.

 Implementing the Distributor

Before configuring transactional replication for the Chapter 16 database, we will

configure our instance as a Distributor. This can be achieved with the Configure

Distribution Wizard, which can be invoked by selecting Configure Distribution from

the context menu of Replication. The first page in the wizard is the Distributor page,

illustrated in Figure 16-4. On this page, we can choose to use the current instance as the

distributor or specify a different instance.

Chapter 16 SCaling WorkloadS

583

Because our instance is not currently configured for SQL Server Agent service

to start automatically, we now see the SQL Server Agent Start page, which warns us

of this situation. This is because replication agents rely on SQL Server Agent to be

scheduled and run. We choose the option for SQL Server Agent to be configured to start

automatically, as shown in Figure 16-5.

Figure 16-4. The Distributor page

Chapter 16 SCaling WorkloadS

584

On the Snapshot Folder page of the wizard, we select the location the Snapshot

Agent will use to store the initial data for synchronization. This can be a local folder or a

network share, but if you specify a local folder, then pull subscriptions are not supported,

since the subscribers are unable to access it. In our case, we use a network share. The

Snapshot Folder page is illustrated in Figure 16-6.

Figure 16-5. The SQL Server Agent Start page

Chapter 16 SCaling WorkloadS

585

Next, on the Distribution Database page of the wizard, we must specify a name for

the distribution database and supply to folder locations, where the data and log files

should be stored. This is represented in Figure 16-7.

Figure 16-6. Snapshot Folder page

Chapter 16 SCaling WorkloadS

586

On the Publishers page of the wizard, shown in Figure 16-8, we specify the instances

that will be used as Publishers for the Distributor. The current instance will be added

automatically but can be deselected. The Add button in the bottom right of the page can

be used to add additional SQL Server instances or Oracle databases.

Figure 16-7. Distribution Database page

Chapter 16 SCaling WorkloadS

587

Finally, we can choose to either configure the distributor, script the configuration, or

both. In this case, we will configure the Distributor straight away.

 Implementing the Publication

Now that the Distributor is configured, we will set up a Publication, for the Chapter16

database. To begin configuring transaction replication, we select New Publication

from the context menu of Replication ➤ Local Publications in Object Explorer. This

causes the New Publication Wizard to be invoked. After passing through the welcome

screen, we see the Publication Database page, shown in Figure 16-9. Here, we select the

database that contains the objects that we wish to use as articles in our publication. All

articles within a publication must reside in the same database, so we can only select

one database on this screen. To replicate articles from multiple databases, we must have

multiple publications.

Figure 16-8. Publishers page

Chapter 16 SCaling WorkloadS

588

On the Publication Type page, shown in Figure 16-10, we select the type of

replication we wish to use for the publication—in our case, transactional.

Figure 16-9. The Publication Database page

Chapter 16 SCaling WorkloadS

589

On the Articles page of the wizard, illustrated in Figure 16-11, we select the objects

that we wish to include in our publication. All tables that you wish to publish must have

a primary key, or you are not able to select them. Within a table, you can also select

individual columns to replicate, if you need to.

Figure 16-10. The Publication Type page

Chapter 16 SCaling WorkloadS

590

The Article Properties button allows us to alter the properties, either for the

selected article or for all articles within the Article Properties dialog box, which is

shown in Figure 16-12. You should usually leave most properties as the default unless

you have a specific reason to change them. However, you should pay particular

attention to some properties.

You use the Action If Name Is In Use property to determine the behavior if a table

with the same name already exists in the subscriber database. The possible options are

as follows:

• Keep the existing object unchanged.

• Drop the existing object and create a new one.

• Delete data. If the article has a row filter, delete only the data that

matches the filter.

• Truncate all data in the existing object.

Figure 16-11. The Articles page

Chapter 16 SCaling WorkloadS

591

The Copy Permissions property determines if object-level permissions are copied

to the subscriber. This is important, since you may or may not want to configure the

permissions the same as they are for the publisher depending on how you are using the

environment.

On the Filter Table Rows page of the wizard, shown in Figure 16-13, we can use the

Add, Edit, and Delete buttons to manage filters. Filters essentially add a WHERE clause to

the article so that you can limit the number of rows that are replicated. You’ll find this is

especially useful for partitioning the data across multiple subscribers.

Figure 16-12. The Article Properties dialog box

Chapter 16 SCaling WorkloadS

592

Figure 16-14 illustrates the Add Filter dialog box. In our case, we are creating a filter

so that only customers with an ID > 500 are replicated. The ways you can use this in

production scenarios include filtering based on region, account status, and so on.

Figure 16-13. The Filter Table Rows page

Chapter 16 SCaling WorkloadS

593

On the Snapshot Agent page, illustrated in Figure 16-15, you can configure the initial

snapshot to be created immediately, as we have done here, or you can schedule the

Snapshot Agent to run at a specific time.

Figure 16-14. The Add Filter dialog box

Chapter 16 SCaling WorkloadS

594

On the Agent Security page, illustrated in Figure 16-16, you are invited to configure

the accounts that are used for running each of the replication agents. At a minimum, the

account that runs the Snapshot Agent should have the following permissions:

• Be a member of the db_owner database role in the distribution

database

• Have read, write, and modify permissions on the share that contains

the snapshot

At a minimum, the account that runs the Log Reader Agent must have the following

permissions:

• Be a member of the db_owner database role in the distribution

database

Figure 16-15. The Snapshot Agent page

Chapter 16 SCaling WorkloadS

595

When you create the subscription, choose the sync_type. This configuration choice

affects the Log Reader account’s required permissions in the following ways:

• Automatic: No additional permissions required

• Anything else: sysadmin on the distributor

Clicking the Security Settings button for the Snapshot Agent causes the Snapshot

Agent Security dialog box to display, as shown in Figure 16-17. In this dialog box, you

can choose to run the Snapshot Agent under the context of the Server Agent service

account, or you can specify a different Windows account to use. To follow the principle of

least privilege, you should use a separate account. It is also possible to specify a different

account from which to make connections to the publisher instance. In our case though,

we specify that the same account should make all the connections.

Figure 16-16. The Agent Security page

Chapter 16 SCaling WorkloadS

596

Back on the Agent Security page, you can elect to specify the details for the account

that will run the Log Reader Agent, or you can clone the information you have already

entered for the account that will run the Snapshot Agent.

On the Wizard Actions page, you can elect to either generate the publication, as

we have done, script the generation of the publication, or both. We will create the

Publication immediately. Finally, on the Completion page, specify a name for the

Publication. We will call ours Chapter16.

 Implementing the Subscriber

Now that the PROSQLADMIN instance is configured as a distributor and publisher and

our publication has been created, we need to configure our PROSQLADMIN2 instance as

a subscriber. We can perform this task from either the publisher or from the subscriber.

From the subscriber, we perform this task by connecting to the PROSQLADMIN2 instance

and then by drilling through replication and selecting New Subscription from the context

Figure 16-17. The Snapshot Agent Security dialog box

Chapter 16 SCaling WorkloadS

597

menu of Local Subscriptions. This causes the New Subscription Wizard to be invoked.

After passing through the Welcome page of this wizard, you are presented with the

Publication page, as illustrated in Figure 16-18. On this page, you use the Publisher drop-

down box to connect to the instance that is configured as the publisher, and then you

select the appropriate publication from the Databases And Publications area of the screen.

On the Distribution Agent Location page, you choose if you want to use push

subscriptions or pull subscriptions. The appropriate choice here depends on your

topology. If you have many subscribers, then you may choose to implement a remote

distributor. If this is the case, then it is likely that you will use push subscriptions so that

the server configured as the distributor has the impact of agents running. If you have

many subscribers and you are using a local distributor, however, then it is likely that

you will use pull subscriptions so that you can spread the cost of the agents between

the subscribers. In our case, we have a local distributor, but we also only have a single

subscriber, so from a performance perspective, it is an obvious choice of which server

is most equipped to deal with the workload. We also must consider security when we

Figure 16-18. The Publication page

Chapter 16 SCaling WorkloadS

598

place the distribution agent, however; we discuss this later in this section. For this

demonstration, we use push subscriptions. The Distribution Agent Location page is

illustrated in Figure 16-19.

On the Subscribers page, we can select the name of our subscription database from

the drop-down list. Because our subscription database doesn’t already exist, however,

we select New Database, as shown in Figure 16-20, which causes the New Database

dialog box to be invoked.

Figure 16-19. The Distribution Agent Location page

Chapter 16 SCaling WorkloadS

599

On the General page of the New Database dialog box, shown in Figure 16-21,

you need to enter appropriate settings for the subscription database based upon its

planned usage. If you need to, you can configure many of the database properties on

the Options page.

Figure 16-20. The Subscribers page

Chapter 16 SCaling WorkloadS

600

On the Distribution Agent Security page, illustrated in Figure 16-22, click the ellipses

to invoke the Distribution Agent Security dialog box.

Figure 16-21. The General page

Chapter 16 SCaling WorkloadS

601

In the Distribution Agent Security dialog box, illustrated in Figure 16-23, specify

the details of the account that runs the Distribution Agent. When you are using push

subscription, at a minimum, the account that runs the Distribution Agent should have

the following permissions:

• Be a member of the db_owner role on the Distribution database

• Be a member of the publication access list (We discuss configuring

publication access later in this chapter.)

• Have read permissions on the share where the snapshot is located

The account that is used to connect to the subscriber must have the following

permissions:

• Be a member of the db_owner role in the subscription database

• Have permissions to view server state on the subscribers (This only

applies if you plan to use multiple subscription streams.)

Figure 16-22. The Distribution Agent Security page

Chapter 16 SCaling WorkloadS

602

When you are using pull subscriptions, at a minimum, the account that runs the

distribution agent needs the following permissions:

• Be a member of the db_owner role on the subscription database

• Be a member of the publication access list (We discuss configuring

publication access later in this chapter.)

• Have read permissions on the share where the snapshot is located

• Have permissions to view server state on the subscriber (This only

applies if you plan to use multiple subscription streams.)

In the first section of the dialog box, you select if you want to impersonate the

SQL Server service account or specify a different account on which to run the agent.

To enforce the principle of least privilege, you should use a different account. In the

second section of the dialog box, you specify how the Distribution Agent connects to the

distributor. If you are using push subscriptions, then the agent must use the account that

runs the Distribution Agent. In the third section of the dialog box, you specify how the

Distribution Agent connects to the subscriber. If you are using pull subscriptions, then

you must use the same account that is running the Distribution Agent.

Chapter 16 SCaling WorkloadS

603

On the Synchronization Schedule page, you define a schedule for the Distribution

Agent to run. You can choose to run the agent continuously, run the agent only on

demand, or define a new server agent schedule on which to run the Distribution Agent,

as illustrated in Figure 16-24. We choose to run the agent continuously.

Figure 16-23. The Distribution Agent Security dialog box

Chapter 16 SCaling WorkloadS

604

On the Initialize Subscriptions page, depicted in Figure 16-25, you choose if you

want the subscription to be initialized immediately, or if you want to wait for the

first synchronization and then initialize it from the snapshot at that point. For this

demonstration, we initialize the subscription immediately. If you select the Memory

Optimized check box, then the tables will be replicated into memory-optimized tables

on the Subscriber. To select this option, you must have already created the memory-

optimized filegroup. You must also have configured the Enable Memory Optimization

property of the Article to True.

Figure 16-24. The Synchronization Schedule page

Chapter 16 SCaling WorkloadS

605

On the Wizard Actions page, you need to choose whether you want to create the

subscription immediately or if you want to script the process. We choose to create the

subscription immediately. Finally, on the Complete The Wizard page, you are given a

summary of the actions that the wizard performs.

 Modifying the PAL

The PAL (Publication Access List) is used to control access security to the publication.

When agents connect to the publication, their credentials are compared to the PAL

to ensure they have the correct permissions. The benefit of the PAL is that it abstracts

security from the publication database and prevents client applications from needing to

modify it directly.

To view the PAL of the Chapter16 publication in SSMS and add a login called

ReplicationAdmin, you must drill through Replication ➤ Local Publishers and select

Properties from the context menu of the Chapter16 publication. This causes the

Properties dialog box to be invoked, and you should navigate to the Publication Access

List page, which is illustrated in Figure 16-26.

Figure 16-25. The Initialize Subscriptions page

Chapter 16 SCaling WorkloadS

606

You can now use the Add button to display a list of logins that do not have current

access to the publication. You should select the appropriate login from the list to add it to

the PAL, as shown in Figure 16-27.

Figure 16-26. The Publication Access List page

Chapter 16 SCaling WorkloadS

607

 Adding AlwaysOn Readable Secondary Replicas
It can be very useful to add readable secondary replicas to an AlwaysOn Availability Group

topology in order to implement horizontal scaled reporting. When you use this strategy,

the databases are kept synchronized, with variable, but typically low latency, using log

streaming. The additional advantage of readable secondary replicas is that they stay

online, even if the primary replica is offline. Readable secondary replicas can be added

to an existing Availability Group, which is configured for HA and/or DR. Alternatively, if

there is no HA or DR requirement for a database, but read scaling would be advantageous,

an Availability Group can be created, specifically for the purpose of read scaling.

Figure 16-27. Add Publication Access

Chapter 16 SCaling WorkloadS

608

 Benefits and Considerations
Over and above pure horizontal scaling, readable secondary replicas offer other

advantages, such as temporary statistics, which you can also use to optimize read-

only workloads. Also, snapshot isolation is used exclusively on readable secondary

replicas, even if other isolation levels or locking hints are explicitly requested. This

helps avoid contention, but it also means that TempDB should be suitably scaled and

on a fast disk array.

The main risk of using readable secondary replicas is that implementing snapshot

isolation on the secondary replica can actually cause deleted records not to be cleaned

up on the primary replica. This is because the ghost record cleanup task only removes

rows from the primary once they are no longer required at the secondary. In this

scenario, log truncation is also delayed on the primary replica. This means that you

potentially risk having to kill long-running queries that are being satisfied against

the readable secondary. This issue can also occur if the secondary replica becomes

disconnected from the primary. Therefore, there is a risk that you may need to remove

the secondary replica from the Availability Group and subsequently re-add it.

 Implementing Readable Secondaries
In this section, we will use the PROSQLADMIN-C cluster that we also used in Chapter 14.

This time, however, an additional node has been added to the cluster, in Site 1. The

server is called CLUSTERNODE4 and hosts an instance called READABLE. This instance

has had AlwaysOn Availability Groups enabled on the service.

Tip in this section, we will touch upon the generic configuration of availability
groups, but further details can be found in Chapter 14, as the primary focus here
will be configuring a readable secondary.

Before we create an Availability Group, we will first create a database called

Chapter16ReadScale, by using the script in Listing 16-6.

Chapter 16 SCaling WorkloadS

609

Listing 16-6. Create the Chapter16ReadScale Database

CREATE DATABASE Chapter16ReadScale ;

GO

USE Chapter16ReadScale

GO

CREATE TABLE Customers

(

ID INT PRIMARY KEY IDENTITY,

FirstName NVARCHAR(30),

LastName NVARCHAR(30),

CreditCardNumber VARBINARY(8000)

) ;

GO

--Populate the table

DECLARE @Numbers TABLE

(

 Number INT

)

;WITH CTE(Number)

AS

(

 SELECT 1 Number

 UNION ALL

 SELECT Number + 1

 FROM CTE

 WHERE Number < 100

)

INSERT INTO @Numbers

SELECT Number FROM CTE ;

Chapter 16 SCaling WorkloadS

610

DECLARE @Names TABLE

(

 FirstName VARCHAR(30),

 LastName VARCHAR(30)

) ;

INSERT INTO @Names

VALUES('Peter', 'Carter'),

 ('Michael', 'Smith'),

 ('Danielle', 'Mead'),

 ('Reuben', 'Roberts'),

 ('Iris', 'Jones'),

 ('Sylvia', 'Davies'),

 ('Finola', 'Wright'),

 ('Edward', 'James'),

 ('Marie', 'Andrews'),

 ('Jennifer', 'Abraham'),

 ('Margaret', 'Jones') ;

INSERT INTO Customers(Firstname, LastName, CreditCardNumber)

SELECT FirstName, LastName, CreditCardNumber FROM

 (SELECT

 (SELECT TOP 1 FirstName FROM @Names ORDER BY NEWID())

FirstName

 , (SELECT TOP 1 LastName FROM @Names ORDER BY NEWID())

LastName

 ,(SELECT CONVERT(VARBINARY(8000)

 ,(SELECT TOP 1 CAST(Number * 100 AS CHAR(4))

 FROM @Numbers

 WHERE Number BETWEEN 10 AND 99

 ORDER BY NEWID()) + '-' +

 (SELECT TOP 1 CAST(Number * 100 AS CHAR(4))

 FROM @Numbers

 WHERE Number BETWEEN 10 AND 99

 ORDER BY NEWID()) + '-' +

 (SELECT TOP 1 CAST(Number * 100 AS CHAR(4))

Chapter 16 SCaling WorkloadS

611

 FROM @Numbers

 WHERE Number BETWEEN 10 AND 99

 ORDER BY NEWID()) + '-' +

 (SELECT TOP 1 CAST(Number * 100 AS CHAR(4))

 FROM @Numbers

 WHERE Number BETWEEN 10 AND 99

 ORDER BY NEWID()))) CreditCardNumber

FROM @Numbers a

CROSS JOIN @Numbers b

) d

Next, we will create an Availability Group, using the Availability Group wizard. On

the first page of the wizard (Figure 16-28), we will provide a name for our new Availability

Group. In our case, we will call it Chapter16. We will also specify the Cluster Type as a

Windows Failover Cluster.

On the Select Databases page of the wizard, illustrated in Figure 16-29, we will select

the database that we want to add to the Availability Group.

Figure 16-28. Specify Availability Group Options page

Chapter 16 SCaling WorkloadS

612

The Replicas tab of the Specify Replicas page is shown in Figure 16-30. Here, we have

added CLUSTERNODE1, CLUSTERNODE2, and CLUSTERNODE3 as the initial Primary Replica, HA

Replica, and DR Replica, respectively. You will notice, however, that we have also added

CLUSTERNODE4 as an asynchronous Replica and marked it as a Readable Secondary.

Figure 16-29. Select Databases page

Chapter 16 SCaling WorkloadS

613

On the Endpoints tab, shown in Figure 16-31, you will see that the endpoints for

CLUSTERNODE1, CLUSTERNODE2, and CLUSTERNODE3 are grayed out. This is because you can

only have one database mirroring endpoint per instance, and on these instances, the

endpoints already exist, due to our work in Chapter 14.

Figure 16-30. Specify Replicas page—Replicas tab

Chapter 16 SCaling WorkloadS

614

On the Backup Preferences tab, illustrated in Figure 16-32, we have configured the

replicas, so that backups will only occur on the Primary Replica, if Secondary Replicas

are not available. We have excluded our synchronous Replica on CLUSTERNODE2

and set a higher priority to our Readable Secondary Replica. This means that backups

will occur on the Readable Secondary, if it is available. If it is not, then the backups

will be taken on the DR Replica. Only if neither of these are available will the backup

be taken against the Primary Replica. Backups will never occur against the HA

synchronous Replica.

Figure 16-31. Specify Replicas page—Endpoints tab

Chapter 16 SCaling WorkloadS

615

On the Listener tab, which is shown in Figure 16-33, we have specified a name and a

port for the Listener. We have also added two IP addresses, one for each subnet that the

Listener spans.

Figure 16-32. Specify Replicas page—Backup Preferences tab

Chapter 16 SCaling WorkloadS

616

The Read-Only Routing tab is where things get interesting, from the perspective of

Readable Secondaries. Each Readable Secondary Replica must be given a Read-Only

Routing URL. This is the path to which read-only requests will be sent and consists of the

protocol (TCP), followed by the fully qualified address of the server hosting the readable

secondary, including the port number.

After this Read-Only URL has been specified, we can then add the Read-Only

Routing List. This specifies the Replica(s) that read-only requests will be routed to. The

routing list only applies to a node, when it has the Primary role, within the Availability

Group. Therefore, different routing lists can be supplied for each node. This is useful

when you have multiple readable secondaries in different sites. If we had a second

readable secondary replica in Site 2, for example, then we could configure the Replica on

CLUSTERNODE3 to route read-only requests to this readable secondary, when it holds

the Primary role.

You can also specify multiple readable secondary Replicas in each routing list, if

more than one readable secondary exists. Read-only requests will be routed to the first

server in the list. If this server is not available, however, then requests will be routed to

the second server in the list, and so on. If you wish to use this feature, then the servers

should be separated by a comma.

Figure 16-33. Specify Replicas page—Listener tab

Chapter 16 SCaling WorkloadS

617

From SQL Server 2016 onward, it is also possible to load balance read-only requests.

In this scenario, requests will be routed between each load balanced server, alternately.

If you wish to use this feature, then the servers that form part of the load balancing group

should be wrapped in parentheses. For example, imagine that we had six cluster nodes

in our configuration. CLUSTERNODE1 has the Primary role. CLUSTERNODE2 is a synchronous

HA server, CLUSTERNODE3 is a DR server, and CLUSTERNODE4, CLUSTERNODE5, and

CLUSTERNODE6 are all readable secondaries. The read-only routing list in Listing 16-7

would alternate read-only requests between CLUSTERNODE4 and CLUSTERNODE5. If

neither of these servers were available, then read-only requests would be routed to

CLUSTERNODE6.

Listing 16-7. Complex Read-Only Routing List

(CLUSTERNODE4\READABLE, CLUSTERNODE5\READABLE2), CLUSTERNODE6\READABLE3

In our scenario, however, we only have a single Readable Secondary Replica, so we

can add the Replica to each node, using the Add button, as shown in Figure 16-34.

We can now specify how we want to synchronize the Availability Group, using the

Select Initial Data Synchronization page of the wizard, shown in Figure 16-35.

Figure 16-34. Specify Replicas page—Read-Only Routing tab

Chapter 16 SCaling WorkloadS

618

After the wizard has run validation tests, you can now create and synchronize the

Availability Group.

 Summary
Database snapshots use copy-on-write technology to create a point-in-time copy of

a database. The snapshot must exist on the same instance as the source database, so

although you cannot use them to distribute load between servers, you can use them to

reduce contention between read and write operations.

Snapshots can be used to recover data that has been lost due to human error as well

as for reporting purposes. You can either copy the data back to the source database or

restore the source database from a snapshot, as long as it is the only snapshot linked with

the source database. Snapshots do not offer a protection against failure or corruption,

however, and they are not a suitable alternative to backups.

Replication is a suite of technologies, offered by SQL Server, that allows you to

distribute data between systems. For the purpose of scaling workloads, transactional

replication is the most appropriate choice. Transactional replication can be

implemented by configuring a distributor, which will hold replication metadata and

Figure 16-35. Select Initial Data Synchronization page

Chapter 16 SCaling WorkloadS

619

potentially take the weight off the synchronization; a publisher, which hosts the data that

is synchronized; and subscribers, which are the targets for synchronization. Replication

is a complex technology, and as a DBA, you should understand how to implement it

using T-SQL, as well as the GUI, since you will encounter situations in which you need

to tear down and rebuild replication. Replication also exposes the RMO (Replication

Management Objects) API, which is a replication programming interface for .NET.

You can configure readable secondary replicas within an AlwaysOn Availability

Group topology; these allow for horizontal scaling of read-only workloads. Readable

secondary replicas stay online even if the primary replica goes offline. The caveat here is

that connections must be made directly to the instance.

In order to implement readable secondary replicas, you must configure read-only

routing. This involves giving the secondary a URL for read-only reporting and then

updating the read-only routing list on the primary replica. The risk of using this strategy

for scale-out reporting is that long-running transactions at the secondary, or the

secondary becoming disconnected, can lead to log truncation delays and delays in ghost

records being cleaned up.

Chapter 16 SCaling WorkloadS

PART IV

Performance and
Maintenance

623
© Peter A. Carter 2019
P. A. Carter, Pro SQL Server 2019 Administration, https://doi.org/10.1007/978-1-4842-5089-1_17

CHAPTER 17

SQL Server Metadata
Metadata is data that describes other data. SQL Server exposes a vast array of metadata

including structural metadata, which describes every object, and descriptive metadata,

which describes the data itself. Metadata is exposed through a series of

• Catalog views

• Information schema views

• Dynamic management views and functions

• System functions

• System stored procedures

In this chapter, we will discuss how metadata can be used to perform actions at

the instance level, such as expose registry values, examine how metadata can assist

in capacity planning, and discuss how metadata can be used for troubleshooting and

performance tuning. Finally, we will see how metadata can be used to drive automated

maintenance.

Tip Metadata is a high topic worthy of a book in its own right. I therefore
encourage you to play with other metadata objects, which may not be covered in
this chapter.

 Introducing Metadata Objects
Catalog views reside in the sys schema. There are many catalog views, some of the most

useful of which, such as sys.master_files, are explored in this chapter. Listing 17-1

shows an example of how to use a catalog view to produce a list of databases that are in

FULL recovery model.

624

Listing 17-1. Using Catalog Views

SELECT name

FROM sys.databases

WHERE recovery_model_desc = 'FULL' ;

Information schema views reside in the INFORMATION_SCHEMA schema. They

return less detail than catalog views but are based on the ISO standards. This means

that you can port your queries between RDBMS (Relational Database Management

Systems). Listing 17-2 shows an example of using information schema views to

produce a list of principals that have been granted SELECT access to the Chapter10.

dbo.SensitiveData table.

Listing 17-2. Using Information Schema Views

USE Chapter10

GO

SELECT GRANTEE, PRIVILEGE_TYPE

FROM INFORMATION_SCHEMA.TABLE_PRIVILEGES

WHERE TABLE_SCHEMA = 'dbo'

 AND TABLE_NAME = 'SensitiveData'

 AND PRIVILEGE_TYPE = 'SELECT' ;

Many dynamic management views and functions are available in SQL Server.

Collectively, they are known as DMVs and they provide information about the current

state of the instance, which you can use for troubleshooting and tuning performance.

The following categories of DMV are exposed in SQL Server 2019:

• AlwaysOn Availability Groups

• Change data capture

• Change tracking

• Common language runtime (CLR)

• Database mirroring

• Databases

• Execution

Chapter 17 SQL Server Metadata

625

• Extended events

• FILESTREAM and FileTable

• Full-text search and semantic search

• Geo-Replication

• Indexes

• I/O

• Memory-optimized tables

• Objects

• Query notifications

• Replication

• Resource Governor

• Security

• Server

• Service broker

• Spatial

• SQL Data Warehouse and PDW

• SQL Server operating system

• Stretch Databases

• Transactions

We demonstrate and discuss how to use DMVs many times throughout this chapter.

DMVs always begin with a dm_ prefix, followed by two to four characters that describe

the category of the object—for example, os_ for operating system, db_ for database,

and exec_ for execution. This is followed by the name of the object. In Listing 17-3,

you can see two things: an example of how to use a dynamic management view to find

a list of logins that are currently connected to the Chapter16 database and a dynamic

management function you can use to produce details of the pages that store the data

relating to the Chapter16.dbo.Customers table.

Chapter 17 SQL Server Metadata

626

Listing 17-3. Using Dynamic Management Views and Functions

USE Chapter16 –This database will exist if you followed the examples in

Chapter16 of this book

GO

--Find logins connected to the Chapter16 database

SELECT login_name

FROM sys.dm_exec_sessions

WHERE database_id = DB_ID('Chapter16') ;

--Return details of the data pages storing the Chapter16.dbo.Customers table

SELECT *
FROM sys.dm_db_database_page_allocations(DB_ID('Chapter16'),

 OBJECT_ID('dbo.Customers'),

 NULL,

 NULL,

 'DETAILED') ;

SQL Server also offers many metadata-related system functions, such as DB_ID()

and OBJECT_ID(), which we used in Listing 17-3. Another example of a metadata-related

system function is DATALENGTH, which we use in Listing 17-4 to return the length of each

value in the LastName column of the Chapter16.dbo.Customers table.

Listing 17-4. Using System Functions

USE Chapter16

GO

SELECT DATALENGTH(LastName)

FROM dbo.Customers ;

 Server-Level and Instance-Level Metadata
Many forms of metadata are available for the server and instance. Server-level metadata

can be very useful for DBAs who need to find configuration information or troubleshoot

an issue when they do not have access to the underlying operating system. For example,

the dm_server category of DMVs offers views that allow you to check the status of server

Chapter 17 SQL Server Metadata

627

audits, view SQL Server’s Registry keys, find the location of memory dump files, and find

details of the instance’s services. In the following sections, we discuss how to view the

Registry keys associated with the instance, expose details of SQL Server’s services, and

view the contents of the buffer cache.

 Exposing Registry Values
The sys.dm_server_registry DMV exposes key registry entries pertaining to the

instance. The view returns three columns, which are detailed in Table 17-1.

A very useful piece of information that you can find in the sys.dm_server_registry

DMV is the port number on which SQL Server is currently listening. The query in

Listing 17-5 uses the sys.dm_server_registry DMV to return the port on which the

instance is listening, assuming the instance is configured to listen on all IP addresses.

Listing 17-5. Finding the Port Number

SELECT *
FROM (

 SELECT

 CASE

 WHEN value_name = 'tcport' AND value_data <> ''

 THEN value_data

 WHEN value_name = 'tcpport' AND value_data = ''

 THEN (

 SELECT value_data

 FROM sys.dm_server_registry

 WHERE registry_key LIKE '%ipall'

 AND value_name = 'tcpdynamicports')

Table 17-1. sys.dm_server_registry Columns

Column Description

Registry_key the name of the registry key

Value_name the name of the key’s value

Value_data the data contained within the value

Chapter 17 SQL Server Metadata

628

 END PortNumber

 FROM sys.dm_server_registry

 WHERE registry_key LIKE '%IPAll') a

WHERE a.PortNumber IS NOT NULL ;

Another useful feature of this DMV is its ability to return the startup parameters

of the SQL Server service. This is particularly useful if you want to find out if switches

such as -E have been configured for the instance. The -E switch increases the number

of extents that are allocated to each file in the round-robin algorithm. The query in

Listing 17-6 displays the startup parameters configured for the instance.

Listing 17-6. Finding Startup Parameters

SELECT *
FROM sys.dm_server_registry

WHERE value_name LIKE 'SQLArg%' ;

 Exposing Service Details
Another useful DMV within the dm_server category is sys.dm_server_services, which

exposes details of the services the instance is using. Table 17-2 describes the columns

returned.

Table 17-2. sys.dm_server_services Columns

Column Description

Servicename the name of the service.

Startup_type an integer representing the startup type of the service.

Startup_desc a textual description of the startup type of the service.

Status an integer representing the current status of the service.

Status_desc a textual description of the current service state.

Process_id the process Id of the service.

Last_startup_time the date and time that the service last started.

Service_account the account used to run the service.

(continued)

Chapter 17 SQL Server Metadata

629

The query in Listing 17-7 returns the name of each service, its startup type, its

current status, and the name of the service account that runs the service.

Listing 17-7. Exposing Service Details

SELECT servicename

 ,startup_type_desc

 ,status_desc

 ,service_account

FROM sys.dm_server_services ;

 Analyzing Buffer Cache Usage
The dm_os category of DMV exposes 41 objects that contain information about the

current status of SQLOS, although only 31 of these are documented. A particularly

useful DMV in the dm_os category, which exposes the contents of the buffer cache,

is sys.dm_os_buffer_descriptors. When queried, this object returns the columns

detailed in Table 17-3.

Column Description

Filename the file name of the service, including the full file path.

Is_clustered 1 indicates that the service is clustered; 0 indicates that it is stand-alone.

Clusternodename If the service is clustered, this column indicates the name of the node on

which the service is running.

Table 17-2. (continued)

Table 17-3. sys.dm_os_buffer_descriptors Columns

Column Description

Database_id the Id of the database that the page is from

File_id the Id of the file that the page is from

Page_id the Id of the page

Page_level the index level of the page

(continued)

Chapter 17 SQL Server Metadata

630

The script in Listing 17-8 demonstrates how we can use the sys.dm_os_buffer_

descriptors DMV to determine the percentage of the buffer cache each database is

using on the instance. This can help you during performance tuning as well as give you

valuable insights that you can use during capacity planning or consolidation planning.

Listing 17-8. Determining Buffer Cache Usage per Database

DECLARE @DB_PageTotals TABLE

(

CachedPages INT,

Database_name NVARCHAR(128),

database_id INT

) ;

INSERT INTO @DB_PageTotals

SELECT COUNT(*) CachedPages

 ,CASE

 WHEN database_id = 32767

 THEN 'ResourceDb'

 ELSE DB_NAME(database_id)

 END Database_name

 ,database_id

Table 17-3. (continued)

Column Description

Allocation_unit_id the Id of the allocation unit that the page is from

Page_type the type of page, e.g., DATA_PAGE, INDEX_PAGE, IAM_PAGE, or

PFS_PAGE

Row_count the number of rows stored on the page

Free_space_in_bytes the amount of free space on the page

Is_modified a flag that indicates if the page is dirty

Numa_node the NUMa node for the buffer

Read_microset the amount of time taken to read the page into cache, specified in

microseconds

Chapter 17 SQL Server Metadata

631

FROM sys.dm_os_buffer_descriptors a

GROUP BY DB_NAME(database_id)

 ,database_id ;

DECLARE @Total FLOAT = (SELECT SUM(CachedPages) FROM @DB_PageTotals) ;

SELECT Database_name,

 CachedPages,

 SUM(cachedpages) over(partition by database_name)

 / @total * 100 AS RunningPercentage

FROM @DB_PageTotals a

ORDER BY CachedPages DESC ;

Note More dMvs within the dm_os category are discussed in the “Metadata for
troubleshooting and performance tuning” section of this chapter.

 Metadata for Capacity Planning
One of the most useful ways you can use metadata is during your pursuit of proactive

capacity management. SQL Server exposes metadata that provides you with information

about the current size and usage of your database files, and you can use this information

to plan ahead and arrange additional capacity, before your enterprise monitoring

software starts generating critical alerts.

 Exposing File Stats
The sys.dm_db_file_space_usage DMV returns details of the space used within each

data file of the database in which it is run. The columns returned by this object are

detailed in Table 17-4.

Chapter 17 SQL Server Metadata

632

The sys.dm_io_virtual_file_stats DMV returns IO statistics for the database and

log files of the database. This can help you determine the amount of data being written

to each file and warn you of high IO stalls. The object accepts database_id and file_id

as parameters and returns the columns detailed in Table 17-5.

Table 17-4. sys.dm_db_file_space_usage Columns

Column Description

database_id the Id of the database to which the file belongs.

file_id the Id of the file within the database. these Ids are repeated between

databases. For example, the primary file always has an Id of 1, and the

first log file always has an Id of 2.

filegroup_id the Id of the filegroup in which the file resides.

total_page_count the total number of pages within the file.

allocated_extent_

page_count

the number of pages within the file that are in extents that have been

allocated.

unallocated_extent_

page_count

the number of pages within the file that are in extents that have not

been allocated.

version_store_

reserved_page_count

the number of pages reserved to support transactions using snapshot

isolation. Only applicable to tempdB.

user_object_

reserved_page_count

the number of pages reserved for user objects. Only applicable to

tempdB.

internal_object_

reserved_page_count

the number of pages reserved for internal objects. Only applicable to

tempdB.

mixed_extent_page_

count

the number of extents that have pages allocated to different objects.

Chapter 17 SQL Server Metadata

633

Tip IO stalls are the amount of time it takes the IO subsystem to respond to SQL
Server.

Table 17-5. sys.dm_io_virtual_file_stats Columns

Column Description

database_id the Id of the database to which the file belongs.

file_id the Id of the file within the database. these Ids are repeated

between databases. For example, the primary file always has an

Id of 1 and the first log file always has an Id of 2.

sample_ms the number of milliseconds since the computer started.

num_of_reads the total number of reads against the file.

num_of_bytes_read the total number of bytes read from the file.

io_stall_read_ms the total time waiting for reads to be issued against the file,

specified in milliseconds.

num_of_writes the total number of write operations performed against the file.

num_of_bytes_written the total number of bytes written to the file.

io_stall_write_ms the total time waiting for writes to complete against the file,

specified in milliseconds.

io_stall the total time waiting for all IO requests against the file to be

completed, specified in milliseconds.

size_on_disk_bytes the total space used by the file on disk, specified in bytes.

file_handle the Windows file handle.

io_stall_queued_read_ms total IO latency for read operations against the file, caused by

resource Governor. resource Governor is discussed in Chapter 24.

io_stall_queued_write_ms total IO latency for write operations against the file, caused by

resource Governor. resource Governor is discussed in Chapter 24.

Unlike the previous two DMVs discussed in this section, the sys.master_files catalog

view is a system-wide view, meaning that it returns a record for every file within every

database on the instance. The columns returned by this view are described in Table 17-6.

Chapter 17 SQL Server Metadata

634

Table 17-6. sys.master_ files Columns

Column Description

database_id the Id of the database to which the file belongs.

file_id the Id of the file within the database. these Ids are repeated

between databases. For example, the primary file always has an Id

of 1 and the first log file always has an Id of 2.

file_guid the GUId of the file.

type an integer representing the file type.

type_desc a textual description of the file type.

data_space_id the Id of the filegroup in which the file resides.

name the logical name of the file.

physical_name the physical path and name of the file.

state an integer indicating the current state of the file.

state_desc a textual description of the current state of the file.

size the current size of the file, specified as a count of pages.

max_size the maximum size of the file, specified as a count of pages.

growth the growth setting of the file. 0 indicates autogrowth is disabled.

If is_percent_growth is 0, then the value indicates the growth

increment as a count of pages. If is_percent_growth is 1, then

the value indicates a whole number percentage increment.

is_media_read_only Specifies if the media on which the file resides is read-only.

is_read_only Specifies if the file is in a read-only filegroup.

is_sparse Specifies that the file belongs to a database snapshot.

is_percent_growth Indicates if the growth output is a percentage or a fixed rate.

is_name_reserved Specifies if the filename is reusable.

create_lsn the LSN (log sequence number) at which the file was created.

drop_lsn the LSN at which the file was dropped (if applicable).

read_only_lsn the most recent LSN at which the filegroup was marked read-only.

(continued)

Chapter 17 SQL Server Metadata

635

 Using File Stats for Capacity Analysis
When combined together, you can use the three metadata objects described in the

previous section to produce powerful reports that can help you with capacity planning

and diagnosing performance issues. For example, the query in Listing 17-9 provides

the file size, amount of free space remaining, and IO stalls for each file in the database.

Because sys.dm_io_virtual_file_stats is a function as opposed to a view, we CROSS

APPLY the function to the result set, passing in the database_id and the file_id of each

row as parameters.

Listing 17-9. File Capacity Details

SELECT m.name

 ,m.physical_name

 ,CAST(fsu.total_page_count / 128. AS NUMERIC(12,4)) [Fie Size (MB)]

 ,CAST(fsu.unallocated_extent_page_count / 128. AS NUMERIC(12,4))

[Free Space (MB)]

Table 17-6. (continued)

Column Description

read_write_lsn the most recent LSN at which the filegroup was marked read/write.

differential_base_lsn the LSN at which changes in the file started being marked in the

dIFF pages.

differential_base_guid the GUId of the full backup on which differential backups for the file

are made.

differential_base_time the time of the full backup on which differential backups for the file

are made.

redo_start_lsn the LSN at which the next roll forward will start.

redo_start_fork_guid the GUId of the recovery fork.

redo_target_lsn the LSN at which an online roll forward for the file can stop.

redo_target_fork_guid the GUId of the recovery fork.

backup_lsn the most recent LSN at which a full or differential backup was taken.

Chapter 17 SQL Server Metadata

636

 ,vfs.io_stall_read_ms

 ,vfs.io_stall_write_ms

FROM sys.dm_db_file_space_usage fsu

CROSS APPLY sys.dm_io_virtual_file_stats(fsu.database_id, fsu.file_id) vfs

INNER JOIN sys.master_files m

 ON fsu.database_id = m.database_id

 AND fsu.file_id = m.file_id ;

The script in Listing 17-10 demonstrates how you can use sys.master_files to

analyze drive capacity for each volume by detailing the current size of each file, the

amount each file will grow by the next time it grows, and the current free capacity of the

drive. You can obtain the free space on the drive by using the xp_fixeddrives stored

procedure.

Listing 17-10. Analyzing Drive Space with xp_fixeddrives

DECLARE @fixeddrives TABLE

(

Drive CHAR(1),

MBFree BIGINT

) ;

INSERT INTO @fixeddrives

EXEC xp_fixeddrives ;

SELECT

 Drive

 ,SUM([File Space Used (MB)]) TotalSpaceUsed

 , SUM([Next Growth Amount (MB)]) TotalNextGrowth

 , SpaceLeftOnVolume

FROM (

SELECT Drive

 ,size * 1.0 / 128 [File Space Used (MB)]

 ,CASE

 WHEN is_percent_growth = 0

 THEN growth * 1.0 / 128

 WHEN is_percent_growth = 1

 THEN (size * 1.0 / 128 * growth / 100)

Chapter 17 SQL Server Metadata

637

 END [Next Growth Amount (MB)]

 ,f.MBFree SpaceLeftOnVolume

FROM sys.master_files m

INNER JOIN @fixeddrives f

 ON LEFT(m.physical_name, 1) = f.Drive) a

GROUP BY Drive, SpaceLeftOnVolume

ORDER BY drive ;

The issue with xp_fixeddrives is that it cannot see mapped drives. Therefore, as an

alternative, you can employ the script in Listing 17-11, which uses PowerShell to return

the information.

Caution the drawback of this approach is that it requires xp_cmdshell to be
enabled, which is against security best practice.

Listing 17-11. Analyzing Drive Space with PowerShell

USE [master];

DECLARE @t TABLE

(

 name varchar(150),

 minimum tinyint,

 maximum tinyint ,

 config_value tinyint ,

 run_value tinyint

)

DECLARE @psinfo TABLE(data NVARCHAR(100)) ;

INSERT INTO @psinfo

EXEC xp_cmdshell 'Powershell.exe "Get-WMIObject Win32_LogicalDisk -filter

"DriveType=3"| Format-Table DeviceID, FreeSpace, Size"' ;

DELETE FROM @psinfo WHERE data IS NULL OR data LIKE '%DeviceID%' OR data

LIKE '%----%';

UPDATE @psinfo SET data = REPLACE(data,' ',',');

Chapter 17 SQL Server Metadata

638

;WITH DriveSpace AS

(

 SELECT LEFT(data,2) as [Drive],

 REPLACE((LEFT((SUBSTRING(data,(PATINDEX('%[0-9]%',data))

 , LEN(data))),CHARINDEX(',',

 (SUBSTRING(data,(PATINDEX('%[0-9]%',data))

 , LEN(data))))-1)),',','') AS FreeSpace,

 REPLACE(RIGHT((SUBSTRING(data,(PATINDEX('%[0-9]%',data))

 , LEN(data))),PATINDEX('%,%',

 (SUBSTRING(data,(PATINDEX('%[0-9]%',data)) , LEN(data))))) ,',','')

 AS [Size]

 FROM @psinfo

)

SELECT

 mf.Drive

 ,CAST(sizeMB as numeric(18,2)) as [File Space Used (MB)]

 ,CAST(growth as numeric(18,2)) as [Next Growth Amount (MB)]

 ,CAST((CAST(FreeSpace as numeric(18,2))

 /(POWER(1024., 3))) as numeric(6,2)) AS FreeSpaceGB

 ,CAST((CAST(size as numeric(18,2))/(POWER(1024., 3))) as numeric(6,2))

AS TotalSizeGB

 ,CAST(CAST((CAST(FreeSpace as numeric(18,2))/(POWER(1024., 3))) as

numeric(6,2))

 / CAST((CAST(size as numeric(18,2))/(POWER(1024., 3)))

as numeric(6,2))

 * 100 AS numeric(5,2)) [Percent Remaining]

FROM DriveSpace

 JOIN

 (SELECT DISTINCT LEFT(physical_name, 2) Drive, SUM(size /

128.0) sizeMB

 ,SUM(CASE

 WHEN is_percent_growth = 0

 THEN growth / 128.

 WHEN is_percent_growth = 1

 THEN (size / 128. * growth / 100)

 END) growth

Chapter 17 SQL Server Metadata

639

 FROM master.sys.master_files

 WHERE db_name(database_id) NOT IN('master','model','msdb')

 GROUP BY LEFT(physical_name, 2)

) mf ON DriveSpace.Drive = mf.drive ;

 Metadata for Troubleshooting and Performance
Tuning
You can use many metadata objects to tune performance and troubleshoot issues within

SQL Server. In the following sections, we explore how to capture performance counters

from within SQL Server, how to analyze waits, and how to use DMVs to troubleshoot

issues with expensive queries.

 Retrieving Perfmon Counters
Perfmon is a Windows tool that captures performance counters for the operating system,

plus many SQL Server–specific counters. DBAs who are trying to diagnose performance

issues find this very useful. The problem is that many DBAs do not have administrative

access to the underlying operating system, which makes them reliant on Windows

administrators to assist with the troubleshooting process. A workaround for this issue

is the sys_dm_os_performance_counters DMV, which exposes the SQL Server Perfmon

counters within SQL Server. The columns returned by sys.dm_os_performance_

counters are described in Table 17-7.

Table 17-7. sys.dm_os_performance_counters Columns

Column Description

object_name the category of the counter.

counter_name the name of the counter.

instance_name the instance of the counter. For example, database-related counters have an

instance for each database.

cntr_value the value of the counter.

cntr_type the type of counter. Counter types are described in table 17-8.

Chapter 17 SQL Server Metadata

640

The sys.dm_os_performance_counters DMV exposes different types of counters

that can be identified by the cntr_type column, which relates to the underlying WMI

performance counter type. You need to handle different counter types in different ways.

The counter types exposed are described in Table 17-8.

The query in Listing 17-12 demonstrates how to use sys.dm_os_performance_

counters to capture metrics of the PERF_COUNTER_LARGE_RAWCOUNT type, which is the

simplest form of counter to capture. The query returns the number of memory grants

that are currently pending.

Listing 17-12. Using Counter Type 65792

SELECT *
FROM sys.dm_os_performance_counters

WHERE counter_name = 'Memory Grants Pending' ;

The script in Listing 17-13 demonstrates capturing the number of lock requests that

are occurring per second over the space of one minute. The lock requests/sec counter

Table 17-8. Counter Types

Counter Type Description

1073939712 You will use PERF_LARGE_RAW_BASE as a base value in conjunction with the

PERF_LARGE_RAW_FRACTION type to calculate a counter percentage or with

PERF_AVERAGE_BULK to calculate an average.

537003264 Use PERF_LARGE_RAW_FRACTION as a fractional value in conjunction with PERF_

LARGE_RAW_BASE to calculate a counter percentage.

1073874176 PERF_AVERAGE_BULK is a cumulative average that you use in conjunction with

PERF_LARGE_RAW_BASE to calculate a counter average. the counter, along with

the base, is sampled twice to calculate the metric over a period of time.

272696320 PERF_COUNTER_COUNTER is a 32-bit cumulative rate counter. the value should be

sampled twice to calculate the metric over a period of time.

272696576 PERF_COUNTER_BULK_COUNT is a 64-bit cumulative rate counter. the value should

be sampled twice to calculate the metric over a period of time.

65792 PERF_COUNTER_LARGE_RAWCOUNT returns the last sampled result for the counter.

Chapter 17 SQL Server Metadata

641

uses the PERF_COUNTER_BULK_COUNT counter type, but the same method applies to

capturing counters relating to In-Memory OLTP, which uses the PERF_COUNTER_COUNTER

counter type.

Listing 17-13. Using Counter Types 272696576 and 272696320

DECLARE @cntr_value1 BIGINT = (

SELECT cntr_value

FROM sys.dm_os_performance_counters

WHERE counter_name = 'Lock Requests/sec'

 AND instance_name = '_Total') ;

WAITFOR DELAY '00:01:00'

DECLARE @cntr_value2 BIGINT = (

SELECT cntr_value

FROM sys.dm_os_performance_counters

WHERE counter_name = 'Lock Requests/sec'

 AND instance_name = '_Total') ;

SELECT (@cntr_value2 - @cntr_value1) / 60 'Lock Requests/sec' ;

The script in Listing 17-14 demonstrates capturing the plan cache hit ratio for the

instance. The Plan Cache Hit Ratio counter is counter type 537003264. Therefore, we

need to multiply the value by 100 and then divide by the base counter to calculate the

percentage. Before running the script, you should change the instance name to match

your own.

Listing 17-14. Using Counter Type 537003264

SELECT

 100 *
 (

 SELECT cntr_value

 FROM sys.dm_os_performance_counters

 WHERE object_name = 'MSSQL$PROSQLADMIN:Plan Cache'

 AND counter_name = 'Cache hit ratio'

 AND instance_name = '_Total')

 /

Chapter 17 SQL Server Metadata

642

 (

 SELECT cntr_value

 FROM sys.dm_os_performance_counters

 WHERE object_name = 'MSSQL$PROSQLADMIN:Plan Cache'

 AND counter_name = 'Cache hit ratio base'

 AND instance_name = '_Total') [Plan cache hit ratio %] ;

The script in Listing 17-15 demonstrates how to capture the Average Latch Wait Time

(ms) counter. Because this counter is of type PERF_AVERAGE_BULK, we need to capture the

value and its corresponding base counter twice. We then need to deduct the first capture

of the counter from the second capture, deduct the first capture of the base counter from

the second capture, and then divide the fractional counter value by its base value to

calculate the average over the time period. Because it is possible that no latches will be

requested within the time period, we have wrapped the SELECT statement in an IF/ELSE

block to avoid the possibility of a divide-by-0 error being thrown.

Listing 17-15. Using Counter Type 1073874176

DECLARE @cntr TABLE

(

ID INT IDENTITY,

counter_name NVARCHAR(256),

counter_value BIGINT,

[Time] DATETIME

) ;

INSERT INTO @cntr

SELECT

 counter_name

 ,cntr_value

 ,GETDATE()

 FROM sys.dm_os_performance_counters

 WHERE counter_name IN('Average Latch Wait Time (ms)',

 'Average Latch Wait Time base') ;

--Adds an artificial delay

WAITFOR DELAY '00:01:00' ;

Chapter 17 SQL Server Metadata

643

INSERT INTO @cntr

SELECT

 counter_name

 ,cntr_value

 ,GETDATE()

 FROM sys.dm_os_performance_counters

 WHERE counter_name IN('Average Latch Wait Time (ms)',

 'Average Latch Wait Time base') ;

IF (SELECT COUNT(DISTINCT counter_value)

 FROM @cntr

 WHERE counter_name = 'Average Latch Wait Time (ms)') > 2

BEGIN

SELECT

 (

 (

 SELECT TOP 1 counter_value

 FROM @cntr

 WHERE counter_name = 'Average Latch Wait Time (ms)'

 ORDER BY [Time] DESC

)

 -

 (

 SELECT TOP 1 counter_value

 FROM @cntr

 WHERE counter_name = 'Average Latch Wait Time (ms)'

 ORDER BY [Time] ASC

)

)

 /

 (

 (

 SELECT TOP 1 counter_value

 FROM @cntr

 WHERE counter_name = 'Average Latch Wait Time base'

 ORDER BY [Time] DESC

Chapter 17 SQL Server Metadata

644

)

 -

 (

 SELECT TOP 1 counter_value

 FROM @cntr

 WHERE counter_name = 'Average Latch Wait Time base'

 ORDER BY [Time] ASC

)

) [Average Latch Wait Time (ms)] ;

END

ELSE

BEGIN

 SELECT 0 [Average Latch Wait Time (ms)] ;

END

 Analyzing Waits
Waits are a natural aspect of any RDBMS, but they can also indicate a performance

bottleneck. A full explanation of all wait types can be found at https://msdn.

microsoft.com, but all wait types break down into three categories: resource waits,

queue waits, and external waits.

Note a query in SQL Server is either running, waiting for its turn on the
processor (runnable), or waiting for another resource (suspended). If it is waiting
for another resource, SQL Server records the reason why it is waiting and the
duration of this wait.

Resource waits occur when a thread requires access to an object, but that object

is already in use, and therefore, the thread has to wait. This can include the thread

waiting to take a lock out on an object or waiting for a disk resource to respond. Queue

waits occur when a thread is idle and is waiting for a task to be assigned. This does not

necessarily indicate a performance bottleneck, since it is often a background task, such

as the Deadlock Monitor or Lazy Writer waiting until it is needed. External waits occur

when a thread is waiting for an external resource, such as a linked server. The hidden

Chapter 17 SQL Server Metadata

https://msdn.microsoft.com
https://msdn.microsoft.com

645

gotcha here is that an external wait does not always mean that the thread is actually

waiting. It could be performing an operation external to SQL Server, such as an extended

stored procedure running external code.

Any task that has been issued is in one of three states: running, runnable, or

suspended. If a task is in the running state, then it is actually being executed on a

processor. When a task is in the runnable state, it sits on the processor queue, awaiting its

turn to run. This is known as a signal wait. When a task is suspended, it means that the

task is waiting for any reason other than a signal wait. In other words, it is experiencing a

resource wait, a queue wait, or an external wait. Each query is likely to alternate between

the three states as it progresses.

The sys.dm_os_wait_stats returns details of the cumulative waits for each wait

type, since the instance started or since the statistics exposed by the DMV were reset.

You can reset the statistics by running the command in Listing 17-16. This is important,

as it gives a holistic view, as to the source of bottlenecks.

Listing 17-16. Resetting Wait Stats

DBCC SQLPERF ('sys.dm_os_wait_stats', CLEAR) ;

The columns returned by sys.dm_os_wait_stats are detailed in Table 17-9.

To find the wait types that are responsible for the highest cumulative wait time, run

the query in Listing 17-17. This query adds a calculated column to the result set, which

deducts the signal wait time from the overall wait time to avoid CPU pressure from

skewing the results.

Table 17-9. sys.dm_os_wait_stats Columns

Column Description

wait_type the name of the wait type that has occurred.

waiting_tasks_count the number of tasks that have occurred on this wait type.

wait_time_ms the cumulative time of all waits against this wait type, displayed in

milliseconds. this includes signal wait times.

max_wait_time_ms the maximum duration of a single wait against this wait type.

signal_wait_time_ms the cumulative time for all signal waits against this wait type.

Chapter 17 SQL Server Metadata

646

Listing 17-17. Finding the Highest Waits

SELECT *
 , wait_time_ms - signal_wait_time_ms ResourceWaits

FROM sys.dm_os_wait_stats

ORDER BY wait_time_ms - signal_wait_time_ms DESC ;

Of course, signal wait time can be a cause for concern in its own right, potentially

identifying the processor as a bottleneck, and you should analyze it. Therefore, use the

query in Listing 17-18 to calculate the percentage of overall waits, which are due to a task

waiting for its turn on the processor. The value is displayed for each wait type, and it is

followed by a row that displays the overall percentage for all wait types.

Listing 17-18. Calculating Signal Waits

SELECT ISNULL(wait_type, 'Overall Percentage:') wait_type

 ,PercentageSignalWait

FROM (

 SELECT wait_type

 ,CAST(100. * SUM(signal_wait_time_ms)

 / SUM(wait_time_ms) AS NUMERIC(20,2))

PercentageSignalWait

 FROM sys.dm_os_wait_stats

 WHERE wait_time_ms > 0

 GROUP BY wait_type WITH ROLLUP

) a

ORDER BY PercentageSignalWait DESC ;

To find the highest waits over a defined period, you need to sample the data twice

and then deduct the first sample from the second sample. The script in Listing 17-19

samples the data twice with a 10-minute interval and then displays the details of the five

highest waits within that interval.

Listing 17-19. Calculating the Highest Waits over a Defined Period

DECLARE @Waits1 TABLE

(

wait_type NVARCHAR(128),

Chapter 17 SQL Server Metadata

647

wait_time_ms BIGINT

) ;

DECLARE @Waits2 TABLE

(

wait_type NVARCHAR(128),

wait_time_ms BIGINT

) ;

INSERT INTO @waits1

SELECT wait_type

 ,wait_time_ms

FROM sys.dm_os_wait_stats ;

WAITFOR DELAY '00:10:00' ;

INSERT INTO @Waits2

SELECT wait_type

 ,wait_time_ms

FROM sys.dm_os_wait_stats ;

SELECT TOP 5

 w2.wait_type

 ,w2.wait_time_ms - w1.wait_time_ms

FROM @Waits1 w1

INNER JOIN @Waits2 w2

 ON w1.wait_type = w2.wait_type

ORDER BY w2.wait_time_ms - w1.wait_time_ms DESC ;

 Database Metadata
In previous versions of SQL Server, if a DBA needed to discover information about

specific pages within a database, he had no choice but to use the well-known, but

undocumented, DBCC command, DBCC PAGE. SQL Server addresses this issue, by adding

a new dynamic management view, called sys.dm_db_page_info. It is fully documented

and supported by Microsoft, and provides the ability to return a page header, in a table-

valued format. The function accepts the parameters detailed in Table 17-10.

Chapter 17 SQL Server Metadata

648

In order to populate these parameters, an additional system function has been

added, called sys.fn_PageResCracker. This function can be cross applied to a table,

passing %%physloc%% as a parameter. Alternatively, if cross applied to the sys.dm_exec_

requests DMV, or sys.sysprocesses, a deprecated system view, an additional column

has been added, called page_resource, which can be passed as a parameter to the

function. This is helpful, if you are diagnosing an issue with page waits. When passed a

page resource/physical location object, the function will return the database_id,

file_id, and page_id of each row in a result set.

Caution When used with %%physloc%% as opposed to a page_resource
object, the sys.fn_PageResCracker function returns a slot_id, as opposed to
a database_id. therefore, when used with %%physloc%%, the DB_ID() function
should be used to obtain the database_id, and the database_id column returned
by the function should be discarded.

Table 17-11 details the columns that are returned by the sys.dm_db_page_info DMF.

Table 17-10. Parameters Accepted by sys.dm_db_page_info

Parameter Description

database_id the database_id of the database that you wish to return details for.

File_id the file_id of the file that you wish to return details for.

page_id the page_id of the page that you are interested in.

Mode Mode can be set to either LIMITED or DETAILED. the only difference between the

modes is that when LIMIted is used, the description columns are not populated.

this can improve performance against large tables.

Chapter 17 SQL Server Metadata

649

Table 17-11. Columns Returned by sys.dm_db_page_info

Column Description

database_id the Id of the database

File_id the Id of the file

page_id the Id of the page

page_type the internal Id associated with the page type description

page_type_desc

page_flag_bits

page_flag_bits_desc

the type of page. For example, data page, index page, IaM page, pFS

page, etc.

page_type_flag_bits hexadecimal value representing the page flags

page_type_flag_bits_desc a description of the page flags

object_id the Id of the object that the page is a part of

index_id the Id of the index that the page is part of

partition_id the partition Id of the partition that the page is part of

alloc_unit_id the Id of the allocation unit where the page is stored

page_level the level of the page within a B-tree structure

slot_count the number of slots within the page

ghost_rec_count the number of records of the page that have been marked for deletion,

but have not yet been physically removed

torn_bits Used to detect data corruption, by storing 1 bit for every torn write detected

is_iam_pg Indicates if the page is an IaM page

is_mixed_ext Indicates if the page is part of a mixed extent (an extent allocated to

multiple objects)

pfs_file_id the file Id of the file where the page’s associated pFS (page Free

Space) page is stored

pfs_page_id the page Id of the pFS page that is associated with the page

pfs_alloc_percent the amount of free space on the page

pfs_status the value of the page’s pFS byte

pfs_status_desc a description of the page’s pFS byte

(continued)

Chapter 17 SQL Server Metadata

650

Table 17-11. (continued)

Column Description

gam_file_id the file Id of the file where the page’s associated GaM (global allocation

map) page is stored

gam_page_id the page Id of the GaM page, which is associated with the page

gam_status Indicates if the page is allocated in GaM

gam_status_desc describes the GaM status marker

sgam_file_id the file Id of the file where the page’s associated SGaM (shared global

allocation map) page is stored

sgam_page_id the page Id of the SGaM page, which is associated with the page

sgam_status Indicates if the page is allocated in SGaM

sgam_status_desc describes the SGaM status marker

diff_map_file_id the file Id of the file containing the page’s associated differential

bitmap page

diff_map_page_id the page Id of the differential bitmap page associated with the page

diff_status Indicates if the page has changed since the last differential backup

diff_status_desc describes the differential status marker

ml_file_id the file Id of the file that stores the page’s associated minimally logged

bitmap page

ml_page_id the page Id of the minimally logged bitmap page, associated with

the page

ml_status Indicates if the page is minimally logged

ml_status_desc describes the minimally logged status marker

free_bytes the amount of free space on the page (in bytes)

free_data_offset the page offset, to the start of the free space on the page

reserved_bytes If the page is a leaf-level index page, indicates the amount of rows

awaiting ghost cleanup. If the page is on a heap, then indicates the

number of free bytes reserved by all transactions

reserved_xdes_id Used for MSFt support for debugging

(continued)

Chapter 17 SQL Server Metadata

651

The potential occasions where this data may prove invaluable are almost limitless.

The script in Listing 17-20 demonstrates how this data could be used to determine the

maximum log sequence number in a critical table, in preparation for a restore activity.

The DBA can then use the maximum LSN, to ensure that a point-in-time restore captures

the latest modifications to the critical data.

Listing 17-20. Find the Most Recent LSN to Modify a Table

CREATE DATABASE Chapter17

GO

ALTER DATABASE Chapter17

SET RECOVERY FULL

GO

USE Chapter17

GO

CREATE TABLE dbo.CriticalData (

 ID INT IDENTITY PRIMARY KEY NOT NULL,

 ImportantData NVARCHAR(128) NOT NULL

)

Column Description

xdes_id Used for MSFt support for debugging

prev_page_file_id the file Id of the previous page in the IaM chain

prev_page_page_id the page Id of the previous page in the IaM chain

next_page_file_id the file Id of the next page in the IaM chain

next_page_page_id the page Id of the next page in the IaM chain

min_len the length of fixed width rows

page_lsn the last LSN (log sequence number) to modify the page

header_version the version of the page header

Table 17-11. (continued)

Chapter 17 SQL Server Metadata

652

INSERT INTO dbo.CriticalData(ImportantData)

VALUES('My Very Important Value')

GO

SELECT MAX(page_info.page_lsn)

FROM dbo.CriticalData c

CROSS APPLY sys.fn_PageResCracker(%%physloc%%) AS r

CROSS APPLY sys.dm_db_page_info(DB_ID(), r.file_id, r.page_id, 'DETAILED')

AS page_info

 Metadata-Driven Automation
You can use metadata to drive intelligent scripts that you can use to automate routine

DBA maintenance tasks while at the same time incorporating business logic. In the

following sections, you see how you can use metadata to generate rolling database

snapshots and also to rebuild only those indexes that are fragmented.

 Dynamically Cycling Database Snapshots
As discussed in Chapter 16, we can use database snapshots to create a read-only copy

of the database that can reduce contention for read-only reporting. The issue is that the

data becomes stale, as data in the source database is modified. For this reason, a useful

tool for managing snapshots is a stored procedure, which dynamically creates a new

snapshot and drops the oldest existing snapshot. You can then schedule this procedure to

run periodically, using SQL Server Agent. (SQL Server Agent is discussed in Chapter 22.)

The script in Listing 17-21 creates a stored procedure that, when passed the name of the

source database, drops the oldest snapshot and creates a new one.

The procedure accepts two parameters. The first specifies the name of the

database that should be used to generate the snapshot. The second parameter

specifies how many snapshots you should have at any one time. For example, if

you pass in a value of Chapter17 to the @DBName parameter and a value of 2 to the

@RequiredSnapshots parameter, the procedure creates a snapshot against the

Chapter17 database but only removes the oldest snapshot if at least two snapshots

already exist against the Chapter17 database.

Chapter 17 SQL Server Metadata

653

The procedure builds up the CREATE DATABASE script in three parts (see Listing 17-21).

The first part contains the initial CREATE DATABASE statement. The second part creates the

file list, based on the files that are recorded as being part of the database in sys.master_

files. The third part contains the AS SNAPSHOT OF statement. The three strings are then

concatenated together before being executed. The script appends a sequence number

to the name of the snapshot, and the name of each file within the snapshot, to ensure

uniqueness.

Listing 17-21. Dynamically Cycling Database Snapshots

CREATE PROCEDURE dbo.DynamicSnapshot @DBName NVARCHAR(128),

@RequiredSnapshots INT

AS

BEGIN

 DECLARE @SQL NVARCHAR(MAX)

 DECLARE @SQLStart NVARCHAR(MAX)

 DECLARE @SQLEnd NVARCHAR(MAX)

 DECLARE @SQLFileList NVARCHAR(MAX)

 DECLARE @DBID INT

 DECLARE @SS_Seq_No INT

 DECLARE @SQLDrop NVARCHAR(MAX)

 SET @DBID = (SELECT DB_ID(@DBName)) ;

 --Generate sequence number

 IF (SELECT COUNT(*) FROM sys.databases WHERE source_database_id =

@DBID) > 0

 SET @SS_Seq_No = (SELECT TOP 1 CAST(SUBSTRING(name,

LEN(Name), 1) AS INT)

 FROM sys.databases

 WHERE source_database_id = @DBID

 ORDER BY create_date DESC) + 1

 ELSE

 SET @SS_Seq_No = 1

 --Generate the first part of the CREATE DATABASE statement

Chapter 17 SQL Server Metadata

654

 SET @SQLStart = 'CREATE DATABASE '

 + QUOTENAME(@DBName + CAST(CAST(GETDATE() AS DATE)

AS NCHAR(10))

 + '_ss' + CAST(@SS_Seq_No AS NVARCHAR(4))) + ' ON ' ;

 --Generate the file list for the CREATE DATABASE statement

 SELECT @SQLFileList =

 (

 SELECT

 '(NAME = N''' + mf.name + ''', FILENAME = N'''

 + SUBSTRING(mf.physical_name, 1, LEN(mf.physical_

name) - 4)

 + CAST(@SS_Seq_No AS NVARCHAR(4)) + '.ss' + '''),'

AS [data()]

 FROM sys.master_files mf

 WHERE mf.database_id = @DBID

 AND mf.type = 0

 FOR XML PATH ('')

) ;

 --Remove the extra comma from the end of the file list

 SET @SQLFileList = SUBSTRING(@SQLFileList, 1, LEN(@SQLFileList) - 2) ;

 --Generate the final part of the CREATE DATABASE statement

 SET @SQLEnd = ') AS SNAPSHOT OF ' + @DBName ;

 --Concatenate the strings and run the completed statement

 SET @SQL = @SQLStart + @SQLFileList + @SQLEnd ;

 EXEC(@SQL) ;

 --Check to see if the required number of snapshots exists for the

database,

 --and if so, delete the oldest

Chapter 17 SQL Server Metadata

655

 IF (SELECT COUNT(*)

 FROM sys.databases

 WHERE source_database_id = @DBID) > @RequiredSnapshots

 BEGIN

 SET @SQLDrop = 'DROP DATABASE ' + (

 SELECT TOP 1

 QUOTENAME(name)

 FROM sys.databases

 WHERE source_database_id = @DBID

 ORDER BY create_date ASC)

 EXEC(@SQLDrop)

 END ;

END

The command in Listing 17-22 runs the DynamicSnapshot procedure against the

Chapter17 database, specifying that two snapshots should exist at any one time.

Listing 17-22. Running the DynamicSnapshot Procedure

EXEC dbo.DynamicSnapshot 'Chapter17', 2 ;

 Rebuilding Only Fragmented Indexes
When you rebuild all indexes with a maintenance plan, which we discuss in Chapter 22,

SQL Server supplies no intelligent logic out of the box. Therefore, all indexes are rebuilt,

regardless of their fragmentation level, which requires unnecessary time and resource

utilization. A workaround for this issue is to write a custom script that rebuilds indexes

only if they are fragmented.

The script in Listing 17-23 demonstrates how you can use SQLCMD to identify

indexes that have more than 25% fragmentation and then rebuild them dynamically. The

reason that the code is in a SQLCMD script, as opposed to a stored procedure, is because

sys.dm_db_index_physical_stats must be called from within the database that you

wish to run it against. Therefore, when you run it via SQLCMD, you can use a scripting

variable to specify the database you require; doing so makes the script reusable for all

databases. When you run the script from the command line, you can simply pass in the

name of the database as a variable.

Chapter 17 SQL Server Metadata

656

Listing 17-23. Rebuilding Only Required Indexes

USE $(DBName)

GO

DECLARE @SQL NVARCHAR(MAX)

SET @SQL =

(

 SELECT 'ALTER INDEX '

 + i.name

 + ' ON ' + s.name

 + '.'

 + OBJECT_NAME(i.object_id)

 + ' REBUILD ; '

 FROM sys.dm_db_index_physical_stats(DB_ID('$(DBName)'),NULL,NULL,

NULL,'DETAILED') ps

 INNER JOIN sys.indexes i

 ON ps.object_id = i.object_id

 AND ps.index_id = i.index_id

 INNER JOIN sys.objects o

 ON ps.object_id = o.object_id

 INNER JOIN sys.schemas s

 ON o.schema_id = s.schema_id

 WHERE index_level = 0

 AND avg_fragmentation_in_percent > 25

 FOR XML PATH('')

) ;

EXEC(@SQL) ;

When this script is saved as in the root of C:\ as RebuildIndexes.sql, it can be run

from the command line. The command in Listing 17-24 demonstrates running it against

the Chapter17 database.

Listing 17-24. Running RebuildIndexes.sql

Sqlcmd -v DBName="Chapter17" -I c:\RebuildIndexes.sql -S ./PROSQLADMIN

Chapter 17 SQL Server Metadata

657

 Summary
SQL Server exposes a vast array of metadata, which describes the data structures

within SQL Server as well as the data itself. Metadata is exposed through a series of

catalog views, dynamic management views and functions, system functions, and the

INFORMATION_SCHEMA. Normally you only use the INFORMATION_SCHEMA if you need your

scripts to be transferable to other RDBMS products. This is because it provides less detail

than SQL Server–specific metadata but conforms to ISO standards, and therefore, it

works on all major RDBMS.

This chapter also covered much useful information about the underlying operating

system, as well as SQLOS. For example, you can use the dm_server category of DMV to

find details of the instance’s Registry keys and expose details of the instance’s services.

You can use the dm_os category of DMV to expose many internal details regarding the

SQLOS, including the current contents of the buffer cache.

SQL Server also exposes metadata that you can use for capacity planning, such as

the usage statistics for all files within a database (e.g., IO stalls) and the amount of free

space remaining. You can use this information to proactively plan additional capacity

requirements before alerts start being triggered and applications are put at risk.

Metadata can also help in the pursuit of troubleshooting and performance tuning.

The sys.dm_os_performance_counters DMV allows DBAs to retrieve Perfmon counters,

even if they do not have access to the operating system. This can remove inter-team

dependencies. You can use sys.dm_os_wait_stats to identify the most common cause

of waits within the instance, which can in turn help diagnose hardware bottlenecks, such

as memory or CPU pressure. The dm_exec category of DMV can help identify expensive

queries, which may be tuned, to improve performance.

DBAs can also use metadata to create intelligent scripts, which can reduce their

workload by adding business rules to common maintenance tasks. For example, a

DBA can use metadata for tasks such as dynamically rebuilding only indexes that have

become fragmented or dynamically managing the cycling of database snapshots.

I encourage you to explore the possibilities of metadata-driven automation further; the

possibilities are endless.

Chapter 17 SQL Server Metadata

659
© Peter A. Carter 2019
P. A. Carter, Pro SQL Server 2019 Administration, https://doi.org/10.1007/978-1-4842-5089-1_18

CHAPTER 18

Locking and Blocking
Locking is an essential aspect of any RDBMS, because it allows concurrent users to

access the same data, without the risk of their updates conflicting and causing data

integrity issues. This chapter discusses how locking, deadlocks, and transactions work in

SQL Server; it then moves on to discuss how transactions impact In-Memory transaction

functionality and how the DBA can observe lock metadata regarding transactions and

contention.

 Understanding Locking
The following sections discuss how processes can take locks at various levels of

granularity, which types of locks are compatible with others, and features for controlling

lock behavior during online maintenance operations and lock partitioning, which can

improve performance on large systems.

 Lock Granularity
Processes can take out locks at many different levels of granularity, depending on the

nature of the operation requesting the lock. To reduce the impact of operations blocking

each other, it is sensible to take out a lock at the lowest possible level of granularity.

The trade-off, however, is that taking out locks uses system resources, so if an operation

requires acquiring millions of locks at the lowest level of granularity, then this is highly

inefficient, and locking at a higher level is a more suitable choice. Table 18-1 describes

the levels of granularity at which locks can be taken out.

660

When SQL Server locks a resource within a table, it takes out what is known as an

intent lock on the resource directly above it in the hierarchy. For example, if SQL Server

needs to lock a RID or KEY, it also takes out an intent lock on the page containing the

row. If the Lock Manager decides that it is more efficient to lock at a higher level of the

hierarchy, then it escalates the lock to a higher level. It is worth noting, however, that row

locks are not escalated to page locks; they are escalated directly to table locks. If the table

is partitioned, then SQL Server can lock the partition as opposed to the whole table. The

thresholds that SQL Server uses for lock escalation are as follows:

• An operation requires more than 5000 locks on a table, or a partition,

if the table is partitioned.

• The number of locks acquired within the instance causes memory

thresholds to be exceeded.

You can change this behavior for specific tables, however, by using the LOCK_

ESCALATION option of a table. This option has three possible values, as described in

Table 18-2.

Table 18-1. Locking Granularity

Level Description

RID/KEY A row identifier on a heap or an index key. Use locks on index keys

in serializable transactions to lock ranges of rows. Serializable

transactions are discussed later in this chapter.

PAGE A data or index page.

EXTENT Eight continuous pages.

HoBT (Heap or B-Tree) A heap of a single index (B-tree).

TABLE An entire table, including all indexes.

FILE A file within a database.

METADATA A metadata resource.

ALLOCATION_UNIT Tables are split into three allocation units: row data, row overflow

data, and LOB (Large Object Block) data. A lock on an allocation unit

locks one of the three allocation units of a table.

DATABASE The entire database.

ChApTEr 18 LOCking And BLOCking

661

 Locking Behaviors for Online Maintenance
In SQL Server, you can also control the behavior of locking for online index rebuilds and

partition SWITCH operations. The available options are described in Table 18-3.

Table 18-2. LOCK_ESCALATION Values

Value Description

TABLE Locks escalate to the table level, even when you are using partitioned tables.

AUTO This value allows locks to escalate to a partition, rather than the table, on partitioned

tables.

DISABLE The value disables locks being escalated to the table level except when a table lock is

required to protect data integrity.

Table 18-3. Blocking Behaviors

Option Description

MAX_DURATION The duration, specified in minutes, that an online index rebuild or

SWITCH operation waits before the ABORT_AFTER_WAIT action is

triggered.

ABORT_AFTER_WAIT These are the available actions:

• NONE specifies that the operation will continue to wait, with

normal priority.

• SELF means that the operation will be terminated.

• BLOCKERS means that all user transactions that are currently

blocking the operation will be killed.

WAIT_AT_LOW_PRIORITY Functionally equivalent to MAX_DURATION = 0, ABORT_AFTER_

WAIT = NONE.

The script in Listing 18-1 creates the Chapter18 database, which includes a table

called Customers that is populated with data. The script then demonstrates configuring

LOCK_ESCALATION before rebuilding the nonclustered index on dbo.customers,

specifying that any operations should be killed if they are blocking the rebuild for more

than 1 minute.

ChApTEr 18 LOCking And BLOCking

662

Tip Be sure to change the file paths to match your own configuration, before
running the script.

Listing 18-1. Configuring Table Locking Options

--Create the database

CREATE DATABASE Chapter18

ON PRIMARY

(NAME = N'Chapter18', FILENAME = 'F:\MSSQL\DATA\Chapter18.mdf'),

 FILEGROUP MemOpt CONTAINS MEMORY_OPTIMIZED_DATA DEFAULT

(NAME = N'MemOpt', FILENAME = 'F:\MSSQL\DATA\MemOpt')

 LOG ON

(NAME = N'Chapter18_log', FILENAME = 'E:\MSSQL\DATA\Chapter18_log.ldf') ;

GO

USE Chapter18

GO

--Create and populate numbers table

DECLARE @Numbers TABLE

(

 Number INT

)

;WITH CTE(Number)

AS

(

 SELECT 1 Number

 UNION ALL

 SELECT Number + 1

 FROM CTE

 WHERE Number < 100

)

INSERT INTO @Numbers

SELECT Number FROM CTE;

ChApTEr 18 LOCking And BLOCking

663

--Create and populate name pieces

DECLARE @Names TABLE

(

 FirstName VARCHAR(30),

 LastName VARCHAR(30)

);

INSERT INTO @Names

VALUES('Peter', 'Carter'),

 ('Michael', 'Smith'),

 ('Danielle', 'Mead'),

 ('Reuben', 'Roberts'),

 ('Iris', 'Jones'),

 ('Sylvia', 'Davies'),

 ('Finola', 'Wright'),

 ('Edward', 'James'),

 ('Marie', 'Andrews'),

 ('Jennifer', 'Abraham');

--Create and populate Addresses table

CREATE TABLE dbo.Addresses

(

AddressID INT NOT NULL IDENTITY PRIMARY KEY,

AddressLine1 NVARCHAR(50),

AddressLine2 NVARCHAR(50),

AddressLine3 NVARCHAR(50),

PostCode NCHAR(8)

) ;

INSERT INTO dbo.Addresses

VALUES('1 Carter Drive', 'Hedge End', 'Southampton', 'SO32 6GH')

 ,('10 Apress Way', NULL, 'London', 'WC10 2FG')

 ,('12 SQL Street', 'Botley', 'Southampton', 'SO32 8RT')

 ,('19 Springer Way', NULL, 'London', 'EC1 5GG') ;

ChApTEr 18 LOCking And BLOCking

664

--Create and populate Customers table

CREATE TABLE dbo.Customers

(

 CustomerID INT NOT NULL IDENTITY PRIMARY KEY,

 FirstName VARCHAR(30) NOT NULL,

 LastName VARCHAR(30) NOT NULL,

 BillingAddressID INT NOT NULL,

 DeliveryAddressID INT NOT NULL,

 CreditLimit MONEY NOT NULL,

 Balance MONEY NOT NULL

);

SELECT * INTO #Customers

FROM

 (SELECT

 (SELECT TOP 1 FirstName FROM @Names ORDER BY NEWID())

FirstName,

 (SELECT TOP 1 LastName FROM @Names ORDER BY NEWID())

LastName,

 (SELECT TOP 1 Number FROM @Numbers ORDER BY NEWID())

BillingAddressID,

 (SELECT TOP 1 Number FROM @Numbers ORDER BY NEWID())

DeliveryAddressID,

 (SELECT TOP 1 CAST(RAND() * Number AS INT) * 10000

 FROM @Numbers

 ORDER BY NEWID()) CreditLimit,

 (SELECT TOP 1 CAST(RAND() * Number AS INT) * 9000

 FROM @Numbers

 ORDER BY NEWID()) Balance

 FROM @Numbers a

 CROSS JOIN @Numbers b

) a;

ChApTEr 18 LOCking And BLOCking

665

INSERT INTO dbo.Customers

SELECT * FROM #Customers;

GO

--This table will be used later in the chapter

CREATE TABLE dbo.CustomersMem

(

 CustomerID INT NOT NULL IDENTITY

 PRIMARY KEY NONCLUSTERED HASH WITH

(BUCKET_COUNT = 20000),

 FirstName VARCHAR(30) NOT NULL,

 LastName VARCHAR(30) NOT NULL,

 BillingAddressID INT NOT NULL,

 DeliveryAddressID INT NOT NULL,

 CreditLimit MONEY NOT NULL,

 Balance MONEY NOT NULL

) WITH(MEMORY_OPTIMIZED = ON) ;

INSERT INTO dbo.CustomersMem

SELECT

 FirstName

 , LastName

 , BillingAddressID

 , DeliveryAddressID

 , CreditLimit

 , Balance

FROM dbo.Customers ;

GO

CREATE INDEX idx_LastName ON dbo.Customers(LastName)

--Set LOCK_ESCALATION to AUTO

ALTER TABLE dbo.Customers SET (LOCK_ESCALATION = AUTO) ;

ChApTEr 18 LOCking And BLOCking

666

--Set WAIT_AT_LOW_PRIORITY

ALTER INDEX idx_LastName ON dbo.Customers REBUILD

WITH

(ONLINE = ON (WAIT_AT_LOW_PRIORITY (MAX_DURATION = 1 MINUTES, ABORT_AFTER_

WAIT = BLOCKERS))) ;

 Lock Compatibility
A process can acquire different types of locks. These lock types are described in Table 18- 4.

Table 18-4. Lock Types

Type Description

Shared (S) Used for read operations.

Update (U) Taken out on resources that may be updated.

Exclusive (X) Used when data is modified.

Schema Modification

(Sch-M) / Schema

Stability (Sch-S)

Schema modification locks are taken out when ddL statements are

being run against a table. Schema stability locks are taken out while

queries are being compiled and executed. Stability locks only block

operations that require a schema modification lock, whereas schema

modification locks block all access to a table.

Bulk Update (BU) Bulk update locks are used during bulk load operations to allow

multiple threads to parallel load data to a table while blocking other

processes.

Key-range key-range locks are taken on a range of rows when using pessimistic

isolation levels. isolation levels are discussed later in this chapter.

Intent intent locks are used to protect resources lower in the lock hierarchy by

signaling their intent to acquire a shared or exclusive lock.

Intent locks improve performance, because they are only examined at the table level,

which negates the need to examine every row or page before another operation acquires

a lock. The types of intent lock that can be acquired are described in Table 18-5.

ChApTEr 18 LOCking And BLOCking

667

The matrix in Figure 18-1 shows basic lock compatibility. You can find a complete

matrix of lock compatibility at http://msdn.microsoft.com.

Table 18-5. Intent Lock Types

Type Description

intent shared (iS) protects shared locks on some resources at the lower level of the

hierarchy

intent exclusive (iX) protects shared and exclusive locks on some resources at the

lower level of the hierarchy

Shared with intent exclusive

(SiX)

protects shared locks on all resources and exclusive locks on

some resources at the lower level of the hierarchy

intent update (iU) protects update locks on all resources at the lower level of the

hierarchy

Shared intent update (SiU) The resultant set of S and iU locks

Update intent exclusive (UiX) The resultant set of X and iU locks

Figure 18-1. Lock compatibility matrix

 Lock Partitioning
It is possible for locks on frequently accessed resources to become a bottleneck. For

this reason, SQL Server automatically applies a feature called lock partitioning for any

instance that has affinity with more than 16 cores. Lock partitioning reduces contention

by dividing a single lock resource into multiple resources. This means that contention is

reduced on shared resources such as the memory used by the lock resource structure.

ChApTEr 18 LOCking And BLOCking

http://msdn.microsoft.com

668

 Understanding Deadlocks
Because of the very nature of locking, operations need to wait until a lock has been

released before they can acquire their own lock on a resource. A problem can occur,

however, if two separate processes have taken out locks on different resources, but both

are blocked, waiting for the other to complete. This is known as a deadlock.

 How Deadlocks Occur
To see how this issue can arise, examine Table 18-6.

Table 18-6. Deadlock Chronology

Process A Process B

Acquires an exclusive lock on Row1 in Table1

Acquires an exclusive lock on Row2 in Table2

Attempts to acquire a lock on Row2 in Table2

but is blocked by process B

Attempts to acquire a lock on Row1 in Table1

but is blocked by process A

In the sequence described here, neither Process A nor Process B can continue, which

means a deadlock has occurred. SQL Server detects deadlocks via an internal process

called the deadlock monitor. When the deadlock monitor encounters a deadlock, it

checks to see if the processes have been assigned a transaction priority. If the processes

have different transaction priorities, it kills the process with the lowest priority. If they

have the same priority, then it kills the least expensive process in terms of resource

utilization. If both processes have the same cost, it picks a process at random and kills it.

The script in Listing 18-2 generates a deadlock. You must run the first and third parts

of the script in a different query window than the second and fourth parts. You must run

each section of the script in sequence.

ChApTEr 18 LOCking And BLOCking

669

Listing 18-2. Generating a Deadlock

--Part 1 - Run in 1st query window

BEGIN TRANSACTION

UPDATE dbo.Customers

SET LastName = 'Andrews'

WHERE CustomerID = 1

--Part 2 - Run in 2nd query window

BEGIN TRANSACTION

UPDATE dbo.Addresses

SET PostCode = 'SA12 9BD'

WHERE AddressID = 2

--Part 3 - Run in 1st query window

UPDATE dbo.Addresses

SET PostCode = 'SA12 9BD'

WHERE AddressID = 2

--Part 4 - Run in 2nd query window

UPDATE dbo.Customers

SET LastName = 'Colins'

WHERE CustomerID = 1

SQL Server chooses one of the processes as a deadlock victim and kills it. This

leads to an error message being thrown in the victim’s query window, as illustrated in

Figure 18-2.

Figure 18-2. Deadlock victim error

ChApTEr 18 LOCking And BLOCking

670

 Minimizing Deadlocks
Your developers can take various steps to minimize the risk of deadlocks. Because it is

you (the DBA) who is responsible for supporting the instance in production, it is prudent

to check to make sure the development team’s code meets standards for minimizing

deadlocks before you release the code to production.

When reviewing code, prior to code release, you should look to ensure that the

following guidelines are being followed:

• Optimistic isolation levels are being used where appropriate (you

should also consider the trade-offs regarding TempDB usage, disk

overhead, etc.).

• There should be no user interaction within transactions (this can

avoid locks being held for extended periods).

• Transactions are as short as possible and within the same batch (this

can avoid long-running transactions, which hold locks for longer

than necessary).

• All programmable objects access objects in the same order (this

can offset the likelihood of deadlocks and replace at the expense of

contention on the first table).

 Understanding Transactions
Every action that causes data or objects to be modified happens within the context of

a transaction. SQL Server supports three types of transaction: autocommit, explicit,

and implicit. Autocommit transactions are the default behavior and mean that each

statement is performed in the context of its own transaction. Explicit transactions are

started and ended manually. They start with a BEGIN TRANSACTION statement and end

with either a COMMIT TRANSACTION statement, which causes the associated log records

to be hardened to disk, or a ROLLBACK statement, which causes all actions within the

transaction to be undone. If implicit transactions are turned on for a connection,

then the default autocommit behavior no longer works for that connection. Instead,

transactions are started automatically, and then committed manually, using a COMMIT

TRANSACTION statement.

ChApTEr 18 LOCking And BLOCking

671

 Transactional Properties
Transactions exhibit properties known as ACID (atomic, consistent, isolated, and

durable). Each of these is discussed in the following sections.

 Atomic

For a transaction to be atomic, all actions within a transaction must either commit

together or roll back together. It is not possible for only part of a transaction to commit.

SQL Server’s implementation of this property is slightly more flexible, however, through

the implementation of save points.

A Save point is a marker within a transaction where, in the event of a rollback,

everything before the Save point is committed, and everything after the Save point can

be either committed or rolled back. This can be helpful in trapping occasional errors

that may occur. For example, the script in Listing 18-3 performs a large insert into the

Customers table before performing a small insert into the Addresses table. If the insert

into the Addresses table fails, the large insert into the Customers table is still committed.

Listing 18-3. Save points

SELECT COUNT(*) InitialCustomerCount FROM dbo.Customers ;

SELECT COUNT(*) InitialAddressesCount FROM dbo.Addresses ;

BEGIN TRANSACTION

DECLARE @Numbers TABLE

(

 Number INT

)

;WITH CTE(Number)

AS

(

 SELECT 1 Number

 UNION ALL

 SELECT Number + 1

 FROM CTE

 WHERE Number < 100

)

ChApTEr 18 LOCking And BLOCking

672

INSERT INTO @Numbers

SELECT Number FROM CTE;

--Create and populate name pieces

DECLARE @Names TABLE

(

 FirstName VARCHAR(30),

 LastName VARCHAR(30)

);

INSERT INTO @Names

VALUES('Peter', 'Carter'),

 ('Michael', 'Smith'),

 ('Danielle', 'Mead'),

 ('Reuben', 'Roberts'),

 ('Iris', 'Jones'),

 ('Sylvia', 'Davies'),

 ('Finola', 'Wright'),

 ('Edward', 'James'),

 ('Marie', 'Andrews'),

 ('Jennifer', 'Abraham');

--Populate Customers table

SELECT * INTO #Customers

FROM

 (SELECT

 (SELECT TOP 1 FirstName FROM @Names ORDER BY NEWID())

FirstName,

 (SELECT TOP 1 LastName FROM @Names ORDER BY NEWID())

LastName,

 (SELECT TOP 1 Number FROM @Numbers ORDER BY NEWID())

BillingAddressID,

 (SELECT TOP 1 Number FROM @Numbers ORDER BY NEWID())

DeliveryAddressID,

 (SELECT TOP 1 CAST(RAND() * Number AS INT) * 10000

 FROM @Numbers

ChApTEr 18 LOCking And BLOCking

673

 ORDER BY NEWID()) CreditLimit,

 (SELECT TOP 1 CAST(RAND() * Number AS INT) * 9000

 FROM @Numbers

 ORDER BY NEWID()) Balance

 FROM @Numbers a

 CROSS JOIN @Numbers b

) a;

INSERT INTO dbo.Customers

SELECT * FROM #Customers;

SAVE TRANSACTION CustomerInsert

BEGIN TRY

--Populate Addresses table - Will fail, due to length of Post Code

INSERT INTO dbo.Addresses

VALUES('1 Apress Towers', 'Hedge End', 'Southampton', 'SA206 2BQ') ;

END TRY

BEGIN CATCH

 ROLLBACK TRANSACTION CustomerInsert

END CATCH

COMMIT TRANSACTION

SELECT COUNT(*) FinalCustomerCount FROM dbo.Customers ;

SELECT COUNT(*) FinalAddressesCount FROM dbo.Addresses ;

The results of the row counts, illustrated in Figure 18-3, show that the insert to the

Customers table committed, while the insert to the Addresses table rolled back. It is also

possible to create multiple save points within a single transaction and then roll back to

the most appropriate point.

ChApTEr 18 LOCking And BLOCking

674

 Consistent

The consistent property means that the transaction moves the database from one

consistent state to another; at the end of the transaction, all data must conform to all

data rules, which are enforced with constraints, data types, and so on.

SQL Server fully enforces this property, but there are workarounds. For example,

if you have a check constraint, or a foreign key on a table, and you wish to perform a

large bulk insert, you can disable the constraint, insert the data, and then re-enable the

constraint with NOCHECK. When you use NOCHECK, the constraint enforces the rules for

new data modification, but it does not enforce the rule for data that already exists in

the table. When you do this, however, SQL Server marks the constraint as not trusted,

and the Query Optimizer ignores the constraint until you have validated the existing

data in the table using an ALTER TABLE MyTable WITH CHECK CHECK CONSTRAINT ALL

command.

 Isolated

Isolation refers to the concurrent transaction’s ability to see data modifications made

by a transaction before they are committed. Isolating transactions avoids transactional

anomalies and is enforced by either acquiring locks or maintaining multiple versions of

rows. Each transaction runs with a defined isolation level. Before we discuss available

isolation levels, however, we first need to examine the transactional anomalies that can

occur.

Figure 18-3. Row counts

ChApTEr 18 LOCking And BLOCking

675

Transactional Anomalies

Transactional anomalies can cause queries to return unpredictable results. Three types

of transactional anomalies are possible within SQL Server: dirty reads, nonrepeatable

reads, and phantom reads. These are discussed in the following sections.

Dirty Reads

A dirty read occurs when a transaction reads data that never existed in the database. An

example of how this anomaly can occur is outlined in Table 18-7.

Table 18-7. A Dirty Read

Transaction1 Transaction2

inserts row1 into Table1

reads row1 from Table1

rolls back

Table 18-8. A Nonrepeatable Read

Transaction1 Transaction2

reads row1 from Table1

Updates row1 in Table1

Commits

reads row1 from Table1

In this example, because Transaction1 rolled back, Transaction2 read a row that

never existed in the database. This anomaly can occur if shared locks are not acquired for

reads, since there is no lock to conflict with the exclusive lock taken out by Transaction1.

Nonrepeatable Read

A nonrepeatable read occurs when a transaction reads the same row twice but receives

different results each time. An example of how this anomaly can occur is outlined in

Table 18-8.

ChApTEr 18 LOCking And BLOCking

676

In this example, you can see that Transaction1 has read row1 from Table1 twice.

The second time, however, it receives a different result, because Transaction2 has

updated the row. This anomaly can occur if Transaction1 takes out shared locks but

does not hold them for the duration of the transaction.

Phantom Read

A phantom read occurs when a transaction reads a range of rows twice but receives a

different number of rows the second time it reads the range. An example of how this

anomaly can occur is outlined in Table 18-9.

Table 18-9. Phantom Reads

Transaction1 Transaction2

reads all rows from Table1

inserts ten rows into Table1

Commits

reads all rows from Table1

In this example, you can see that Transaction1 has read all rows from Table1 twice.

The second time, however, it reads an extra ten rows, because Transaction2 has inserted

ten rows into the table. This anomaly can occur when Transaction1 does not acquire a

key-range lock and hold it for the duration of the transaction.

Isolation Levels

SQL Server provides four pessimistic and two optimistic transaction isolation levels

for transactions that involve disk-based tables. Pessimistic isolation levels use locks

to protect against transactional anomalies, and optimistic isolation levels use row

versioning.

Pessimistic Isolation Levels

Read Uncommitted is the least restrictive isolation level. It works by acquiring locks for

write operations but not acquiring any locks for read operations. This means that under

this isolation level, read operations do not block other readers or writers. The result is

that all transactional anomalies described in the previous sections are possible.

ChApTEr 18 LOCking And BLOCking

677

Read Committed is the default isolation level. It works by acquiring shared locks

for read operations as well as locks for write operations. The shared locks are only held

during the read phase of a specific row, and the lock is released as soon as the record has

been read. This results in protection against dirty reads, but nonrepeatable reads and

phantom reads are still possible.

Tip in some circumstances, shared locks may be held until the end of the
statement. This occurs when a physical operator is required to spool data to disk.

In addition to acquiring locks for write operations, Repeatable Read acquires

shared locks on all rows that it touches and then it holds these locks until the end of

the transaction. The result is that dirty reads and nonrepeatable reads are not possible,

although phantom reads can still occur. Because the reads are held for the duration

of the transaction, deadlocks are more likely to occur than when you are using Read

Committed or Read Uncommitted isolation levels.

Serializable is the most restrictive isolation level, and the level where deadlocks are

most likely to occur. It works by not only acquiring locks for write operations but also by

acquiring key-range locks for read operations and then holding them for the duration

of the transaction. Because key-range locks are held in this manner, no transactional

anomalies are possible, including phantom reads.

Optimistic Isolation Levels

Optimistic isolation levels work without acquiring any locks for either read or write

operations. Instead, they use a technique called row versioning. Row versioning works by

maintaining a new copy of a row in TempDB for uncommitted transactions every time

the row is updated. This means that there is always a consistent copy of the data that

transactions can refer to. This can dramatically reduce contention on highly concurrent

systems. The trade-off is that you need to scale TempDB appropriately, in terms of

both size and throughput capacity, since the extra IO can have a negative impact on

performance.

Snapshot isolation uses optimistic concurrency for both read and write operations.

It works by assigning each transaction a transaction sequence number at the point the

transaction begins. It is then able to read the version of the row from TempDB that was

current at the start of the transaction by looking for the closest sequence number that

ChApTEr 18 LOCking And BLOCking

678

is lower than the transaction’s own sequence number. This means that although other

versions of the row may exist with modifications, it cannot see them, since the sequence

numbers are higher. If two transactions try to update the same row at the same time,

instead of a deadlock occurring, the second transaction throws error 3960 and the

transaction is rolled back. The result of this behavior is that dirty reads, nonrepeatable

reads, and phantom reads are not possible.

The Read Committed Snapshot uses pessimistic concurrency for write operations

and optimistic concurrency for read operations. For read operations, it uses the version

of the row that is current at the beginning of each statement within the transaction, as

opposed to the version that was current at the beginning of the transaction. This means

that you achieve the same level of isolation as you would by using the pessimistic Read

Committed isolation level.

Unlike the pessimistic isolation levels, you need to turn on optimistic isolation

levels at the database level. When you turn on Read Committed Snapshot, this replaces

the functionality of Read Committed. This is important to bear in mind, because Read

Committed Snapshot becomes your default isolation level and is used for all transactions

that do not specifically set an isolation level. The script in Listing 18-4 demonstrates

how to turn on Snapshot isolation and Read Committed Snapshot isolation for the

Chapter18 database. The script first checks to make sure that Read Committed and

Read Committed Snapshot are not already enabled. If they are not, it kills any sessions

that are currently connected to the Chapter18 database before finally running the ALTER

DATABASE statements.

Listing 18-4. Turning On Optimistic Isolation

--Check if already enabled

IF EXISTS (

 SELECT name

 ,snapshot_isolation_state_desc

 ,is_read_committed_snapshot_on

 FROM sys.databases

 WHERE name = 'Chapter18'

 AND snapshot_isolation_state_desc = 'OFF'

 AND is_read_committed_snapshot_on = 0)

ChApTEr 18 LOCking And BLOCking

679

BEGIN

 --Kill any existing sessions

 IF EXISTS(

 SELECT * FROM sys.dm_exec_sessions where database_id = DB_id('Chapter18')

)

 BEGIN

 PRINT 'Killing Sessions to Chapter18 database'

 DECLARE @SQL NVARCHAR(MAX)

 SET @SQL = (SELECT 'KILL ' + CAST(Session_id AS

NVARCHAR(3)) + '; ' [data()]

 FROM sys.dm_exec_sessions

 WHERE database_id = DB_id('Chapter18')

 FOR XML PATH('')

)

 EXEC(@SQL)

 END

 PRINT 'Enabling Snapshot and Read Committed Sanpshot Isolation'

 ALTER DATABASE Chapter18

 SET ALLOW_SNAPSHOT_ISOLATION ON ;

 ALTER DATABASE Chapter18

 SET READ_COMMITTED_SNAPSHOT ON ;

END

ELSE

 PRINT 'Snapshot Isolation already enabled'

 Durable

For a transaction to be durable, after it has been committed, it stays committed, even

in a catastrophic event. This means that the change must be written to disk, since the

change within memory will not withstand a power failure, a restart of the instance, and

so on. SQL Server achieves this by using a process called write-ahead logging (WAL).

This process flushes the log cache to disk at the point the transaction commits, and the

commit only completes once this flush finishes.

ChApTEr 18 LOCking And BLOCking

680

SQL Server relaxed these rules, however, by introducing a feature called delayed

durability. This feature works by delaying the flush of the log cache to disk until one of

the following events occurs:

• The log cache becomes full and automatically flushes to disk.

• A fully durable transaction in the same database commits.

• The sp_flush_log system stored procedure is run against the

database.

When delayed durability is used, the data is visible to other transactions as soon as

the transaction commits; however, the data committed within the transaction could

potentially be lost, if the instance goes down or is restarted, until the log records have

been flushed. Support for delayed durability is configured at the database level, using

one of the three options detailed in Table 18-10.

Table 18-10. Support Levels for Delayed Durability

Support Level Description

ALLOWED delayed durability is supported within the database and specified on a

transaction level basis.

FORCED All transactions within the database will use delayed durability.

DISABLED The default setting. no transactions within the database are permitted to use

delayed durability.

The command in Listing 18-5 shows how to allow delayed durability in the

Chapter18 database.

Listing 18-5. Allowing Delayed Durability

ALTER DATABASE Chapter18

SET DELAYED_DURABILITY = ALLOWED ;

If a database is configured to allow delayed durability, then Full or Delayed durability

is configured at the transaction level, in the COMMIT statement. The script in Listing 18-6

demonstrates how to commit a transaction with delayed durability.

ChApTEr 18 LOCking And BLOCking

681

Listing 18-6. Committing with Delayed Durability

USE Chapter18

GO

BEGIN TRANSACTION

 UPDATE dbo.Customers

 SET DeliveryAddressID = 1

 WHERE CustomerID = 10 ;

COMMIT WITH (DELAYED_DURABILITY = ON)

Caution The most important thing to remember, when using delayed durability, is
the potential for data loss. if any transactions have committed but the associated log
records have not been flushed to disk when the instance goes down, this data is lost.

In the event of an issue, such as an IO error, it is possible for uncommitted

transactions to enter a state where they cannot be committed or rolled back. This

occurs when you are bringing a database back online and it fails during both the redo

phase and the undo phase. This is called a deferred transaction. Deferred transactions

stop the VLF that they are in from being truncated, meaning that the transaction log

continues to grow.

Resolving the issue depends on the cause of the problem. If the problem is

caused by a corrupt page, then you may be able to restore this page from a backup. If

the issue is caused because a filegroup was offline, then you must either restore the

filegroup or mark the filegroup as defunct. If you mark a filegroup as defunct, you

cannot recover it.

 Transaction with In-Memory OLTP
Memory-optimized tables do not support locks to improve concurrency; this changes

the way isolation levels can work, since pessimistic concurrency is no longer an option.

We discuss isolation levels supported for In-Memory OLTP, along with considerations for

cross-container queries, in the following sections.

ChApTEr 18 LOCking And BLOCking

682

 Isolation Levels
Because all isolation levels used with In-Memory OLTP must be optimistic, each isolation

level implements row versioning. Unlike row versioning for disk-based tables, however,

row versions for memory-optimized tables are not maintained in TempDB. Instead, they

are maintained in the memory-optimized table that they relate to.

 Read Committed

The Read Committed isolation level is supported against memory-optimized tables,

but only if you are using autocommit transactions. It is not possible to use Read

Committed in explicit or implicit transactions. It is also not possible to use Read

Committed in the ATOMIC block of a natively compiled stored procedure. Because Read

Committed is the default isolation level for SQL Server, you must either ensure that

all transactions involving memory-optimized tables explicitly state an isolation level,

or you must set the MEMORY_OPTIMIZED_ELEVATE_TO_SNAPSHOT database property.

This option elevates all transactions that involve memory-optimized tables but do

not specify an isolation level to Snapshot isolation, the least restrictive isolation level,

which is fully supported for In- Memory OLTP.

The command in Listing 18-7 shows how to set the MEMORY_OPTIMIZED_ELEVATE_TO_

SNAPSHOT property for the Chapter18 database.

Listing 18-7. Elevating to Snapshot

ALTER DATABASE Chapter18

SET MEMORY_OPTIMIZED_ELEVATE_TO_SNAPSHOT = ON ;

 Read Committed Snapshot

The Read Committed Snapshot isolation level is supported for memory-optimized

tables, but only when you are using autocommit transactions. This isolation level is not

supported when the transaction accesses disk-based tables.

ChApTEr 18 LOCking And BLOCking

683

 Snapshot

The Snapshot isolation level uses row versioning to guarantee that a transaction

always sees the data, as it was at the start of the transaction. Snapshot isolation is only

supported against memory-optimized tables when you use interpreted SQL if it is

specified as a query hint as opposed to at the transaction level. It is fully supported in the

ATOMIC block of natively compiled stored procedures.

If a transaction attempts to modify a row that has already been updated by another

transaction, then the conflict detection mechanism rolls back the transaction, and Error

41302 is thrown. If a transaction attempts to insert a row that has the same primary key

value as a row that has been inserted by another transaction, then conflict detection rolls

back the transaction and Error 41352 is thrown. If a transaction attempts to modify the

data in a table that has been dropped by another transaction, then Error 41305 is thrown,

and the transaction is rolled back.

 Repeatable Read

The Repeatable Read isolation level provides the same protection as Snapshot, but

additionally, it guarantees that rows read by the transaction have not been modified

by other rows since the start of the transaction. If the transaction attempts to read a

row that has been modified by another transaction, then Error 41305 is thrown and

the transaction is rolled back. The Repeatable Read isolation is not supported against

memory-optimized tables when using interpreted SQL, however. It is only supported in

the ATOMIC block of natively compiled stored procedures.

 Serializable

The Serializable isolation level offers the same protection that is offered by Repeatable

Read, but in addition, it guarantees that no rows have been inserted within the range

of rows being accessed by queries within the transaction. If a transaction using the

Serializable isolation level cannot meet its guarantees, then the conflict detection

mechanism rolls back the transaction and Error 41325 is thrown. Serializable isolation is

not supported against memory-optimized tables when using interpreted SQL, however.

It is only supported in the ATOMIC block of natively compiled stored procedures.

ChApTEr 18 LOCking And BLOCking

684

 Cross-Container Transactions
Because isolation levels’ use is restricted, when a transaction accesses both memory-

optimized tables and disk-based tables, you may need to specify a combination of

isolation levels and query hints. The query in Listing 18-8 joins together the Customers

and CustomersMem tables. It succeeds only because we have turned on MEMORY_

OPTIMIZED_ELEVATE_TO_SNAPSHOT. This means that the query uses the default Read

Committed Snapshot isolation level to access the disk-based table and automatically

upgrades the read of the CustomersMem table to use Snapshot isolation.

Listing 18-8. Joining Disk and Memory Tables with Automatic Elevation

BEGIN TRANSACTION

 SELECT *

 FROM dbo.Customers C

 INNER JOIN dbo.CustomersMem CM

 ON C.CustomerID = CM.CustomerID ;

COMMIT TRANSACTION

However, if we now turn off MEMORY_OPTIMIZED_ELEVATE_TO_SNAPSHOT, which you

can do using the script in Listing 18-9, the same transaction now fails with the error

message shown in Figure 18-4.

Listing 18-9. Turning Off MEMORY_OPTIMIZED_ELEVATE_TO_SNAPSHOT

ALTER DATABASE Chapter18

SET MEMORY_OPTIMIZED_ELEVATE_TO_SNAPSHOT=OFF

GO

Figure 18-4. Join disk and memory tables without automatic elevation

The query in Listing 18-10 demonstrates how we can join the Customers table with

the CustomersMem table using the Snapshot isolation level for the memory-optimized

table and the Serializable isolation level for the disk-based table. Because we are using

ChApTEr 18 LOCking And BLOCking

685

interpreted SQL, the Snapshot isolation level is the only level we can use to access the

memory-optimized table, and we must specify this as a query hint. If we specify it at the

transaction level instead of at serializable, the transaction fails.

Listing 18-10. Joining Disk and Memory-Optimized Tables Using Query Hints

BEGIN TRANSACTION

SET TRANSACTION ISOLATION LEVEL SERIALIZABLE

 SELECT *

 FROM dbo.Customers C

 INNER JOIN dbo.CustomersMem CM (SNAPSHOT)

 ON C.CustomerID = CM.CustomerID ;

COMMIT TRANSACTION

If we use a natively compiled stored procedure instead of interpreted SQL, we add

the required transaction isolation level to the ATOMIC block of the procedure definition.

The script in Listing 18-11 demonstrates creating a natively compiled stored procedure

that updates the CustomersMem table using the Serializable isolation level. Because

natively compiled stored procedures are not able to access disk-based tables, you do not

need to be concerned with locking hints to support cross-container transactions.

Listing 18-11. Using Serializable Isolation in a Natively Compiled Stored

Procedure

CREATE PROCEDURE dbo.UpdateCreditLimit

WITH native_compilation, schemabinding, execute as owner

AS

BEGIN ATOMIC

 WITH(TRANSACTION ISOLATION LEVEL = SERIALIZABLE, LANGUAGE

= 'English')

 UPDATE dbo.CustomersMem

 SET CreditLimit = CreditLimit * 1.1

 WHERE Balance < CreditLimit / 4 ;

 UPDATE dbo.CustomersMem

 SET CreditLimit = CreditLimit * 1.05

 WHERE Balance < CreditLimit / 2 ;

END

ChApTEr 18 LOCking And BLOCking

686

 Retry Logic
Whether you are using interpreted SQL or a natively compiled stored procedure, always

ensure that you use retry logic when you are running transactions against memory-

optimized tables. This is because of the optimistic concurrency model, which means

that the conflict detection mechanism rolls transactions back, as opposed to managing

concurrency with locking. It is also important to remember that SQL Server even rolls

back read-only transactions if the required level of isolation cannot be guaranteed. For

example, if you are using serializable isolation in a read-only transaction, and another

transaction inserts rows that match your query filters, the transaction is rolled back.

The script in Listing 18-12 creates a wrapper stored procedure for the

UpdateCreditLimit procedure, which retries the procedure up to ten times should the

procedure fail, with a 1-second gap between each iteration. You should change this delay

to match the average duration of conflicting transactions.

Listing 18-12. Retry Logic for Memory-Optimized Tables

CREATE PROCEDURE UpdateCreditLimitWrapper

AS

BEGIN

 DECLARE @Retries INT = 1 ;

 WHILE @Retries <= 10

 BEGIN

 BEGIN TRY

 EXEC dbo.UpdateCreditLimit ;

 END TRY

 BEGIN CATCH

 WAITFOR DELAY '00:00:01' ;

 SET @Retries = @Retries + 1 ;

 END CATCH

 END

END

ChApTEr 18 LOCking And BLOCking

687

 Observing Transactions, Locks, and Deadlocks
SQL Server provides a set of DMVs that expose information about current transactions

and locks. The following sections explore the metadata available.

 Observing Transactions
The sys.dm_tran_active_transactions DMV details the current transactions within

the instance. This DMV returns the columns described in Table 18-11.

Note Undocumented columns have been omitted from dMVs in this chapter.

Table 18-11. Columns Returned by sys.dm_tran_active_transactions

Column Description

transaction_id The unique id of the transaction.

name The name of the transaction. if the transaction has not been

marked with a name, then the default name is displayed—e.g.,

"user_transaction".

transaction_begin_time The date and time that the transaction started.

transaction_type An integer value depicting the type of transaction.

• 1 indicates a read/write transaction.

• 2 indicates a read-only transaction.

• 3 indicates a system transaction.

• 4 indicates a distributed transaction.

transaction_uow A unit of work id that MSdTC (Microsoft distributed Transaction

Coordinator) uses to work with distributed transactions.

(continued)

ChApTEr 18 LOCking And BLOCking

688

Table 18-11. (continued)

Column Description

transaction_state The current status of the transaction.

• 0 indicates that the transaction is still initializing.

• 1 indicates that the transaction is initialized but has not yet

started.

• 2 indicates that the transaction is active.

• 3 indicates that the transaction has ended. This status is

only applicable to read-only transactions.

• 4 indicates that the commit has been initiated. This status

is only applicable to distributed transactions.

• 5 indicates that the transaction is prepared and awaiting

resolution.

• 6 indicates that the transaction has been committed.

• 7 indicates that the transaction is being rolled back.

• 8 indicates that the rollback of a transaction has finished.

dtc_state indicates the state of a transaction on an Azure database.

• 1 indicates that the transaction is active.

• 2 indicates that the transaction is prepared.

• 3 indicates that the transaction is committed.

• 4 indicates that the transaction is aborted.

• 5 indicates that the transaction is recovered.

The script in Listing 18-13 indicates how to use sys.dm_tran_active_transactions

to find details of long-running transactions. The query looks for transactions that have

been running for longer than 10 minutes and returns information including their current

state, the amount of resources they are consuming, and the login that is executing them.

Tip in a test environment, begin a transaction but do not commit it 10 minutes
before running this query.

ChApTEr 18 LOCking And BLOCking

689

Listing 18-13. Long-Running Transactions

SELECT

 name

 ,transaction_begin_time

 ,CASE transaction_type

 WHEN 1 THEN 'Read/Write'

 WHEN 2 THEN 'Read-Only'

 WHEN 3 THEN 'System'

 WHEN 4 THEN 'Distributed'

 END TransactionType,

 CASE transaction_state

 WHEN 0 THEN 'Initializing'

 WHEN 1 THEN 'Initialized But Not Started'

 WHEN 2 THEN 'Active'

 WHEN 3 THEN 'Ended'

 WHEN 4 THEN 'Committing'

 WHEN 5 THEN 'Prepared'

 WHEN 6 THEN 'Committed'

 WHEN 7 THEN 'Rolling Back'

 WHEN 8 THEN 'Rolled Back'

 END State

, SUBSTRING(TXT.text, (er.statement_start_offset / 2) + 1,

 ((CASE WHEN er.statement_end_offset = -1

 THEN LEN(CONVERT(NVARCHAR(MAX), TXT.text)) * 2

 ELSE er.statement_end_offset

 END - er.statement_start_offset) / 2) + 1) AS CurrentQuery

 , TXT.text AS ParentQuery

 , es.host_name

 , CASE tat.transaction_type

 WHEN 1 THEN 'Read/Write Transaction'

 WHEN 2 THEN 'Read-Only Transaction'

 WHEN 3 THEN 'System Transaction'

 WHEN 4 THEN 'Distributed Transaction'

 ELSE 'Unknown'

 END AS TransactionType

ChApTEr 18 LOCking And BLOCking

690

 ,SUSER_SNAME(es.security_id) LoginRunningTransaction

 ,es.memory_usage * 8 MemUsageKB

 ,es.reads

 ,es.writes

 ,es.cpu_time

 FROM sys.dm_tran_active_transactions tat

 INNER JOIN sys.dm_tran_session_transactions st

 ON tat.transaction_id = st.transaction_id

INNER JOIN sys.dm_exec_sessions es

 ON st.session_id = es.session_id

INNER JOIN sys.dm_exec_requests er

 ON er.session_id = es.session_id

CROSS APPLY sys.dm_exec_sql_text(er.sql_handle) TXT

 WHERE st.is_user_transaction = 1

 AND tat.transaction_begin_time < DATEADD(MINUTE,-10,GETDATE()) ;

The query works by joining to sys.dm_exec_sessions via sys.dm_tran_session_

transactions. This DMV can be used to correlate transactions with sessions, and it

returns the columns described in Table 18-12.

Table 18-12. sys.dm_tran_session_transactions Columns

Column Description

session_id The id of the session in which the transaction is running.

transaction_id The unique id of the transaction.

transaction_descriptor The id used to communicate with the client driver.

enlist_count The number of active requests in the session.

is_user_transaction indicates if the transaction is a user or a system transaction. 0

indicates a system transaction and 1 indicates a user transaction.

is_local indicates if the transaction is distributed. 0 indicates a distributed

transaction and 1 indicates a local transaction.

is_enlisted indicates that a distributed transaction is enlisted.

is_bound indicates if the transaction is running in a bound session.

open_transaction_count A count of open transactions within the session.

ChApTEr 18 LOCking And BLOCking

691

 Observing Locks and Contention
Details of current locks on the instance are exposed through a DMV called sys.dm_tran_

locks. This DMV returns the columns detailed in Table 18-13.

Table 18-13. sys.dm_tran_locks

Column Description

resource_type The resource type on which the lock has been placed.

resource_subtype The subtype of the resource type that has a lock placed

on it. For example, if you are updating the properties of a

database, then the resource_type is METADATA and

the resource_subtype is DATABASE.

resource_database_id The id of the database that contains the resource that has

a lock placed on it.

resource_description Additional information about the resource that is not

contained in other columns.

resource_associated_entity_id The id of the database entity with which the resource is

associated.

resource_lock_partition The partition number of the lock, if lock partitioning is

being used.

request_mode The locking mode that has been requested or acquired.

For example, S for a shared lock or X for an exclusive lock.

request_type The request_type is always LOCK.

request_status The current status of the lock request. possible values

are ABORT_BLOCKERS, CONVERT, GRANTED, LOW_

PRIORITY_CONVERT, LOW_PRIORITY_WAIT, and WAIT.

request_reference_count The number of times that the requestor has requested a

lock on the same resource.

request_session_id The session id that currently owns the request. it is

possible for the session id to change if the transaction is

distributed.

(continued)

ChApTEr 18 LOCking And BLOCking

692

Table 18-13. (continued)

Column Description

request_exec_context_id The execution id of the process that requested the lock.

request_request_id The Batch id of the batch that currently owns the request.

This id can change if Multiple Active result Sets (MArS)

are being used by the application.

request_owner_type The type of the owner of the lock request. possible vales

are TRANSACTION, SESSION, and CURSOR for user

operations. Values can also be SHARED_TRANSACTION_

WORKSPACE and EXCLUSIVE_TRANSACTION_

WORKSPACE, which are used internally to hold locks for

enlisted transactions, or NOTIFICATION_OBJECT, which

is used by internal SQL Server operations.

request_owner_id The id of the transaction that owns the lock request,

unless the request was made by a FileTable, in which case

-3 indicates a table lock, -4 indicates a database lock,

and other values indicate the file handle of the file.

request_owner_guid A gUid identifying the request owner. Only applicable to

distributed transactions.

lock_owner_address Memory address of the request’s internal data structure.

The sys.dm_os_waiting_tasks DMV returns information about tasks that are

waiting on resources, including locks. The columns returned by this DMV are detailed

in Table 18-14. This DMV can be used with sys.dm_tran_locks to find the details of

processes that are blocked and blocking, due to locks.

ChApTEr 18 LOCking And BLOCking

693

Table 18-14. sys.dm_os_waiting_tasks Columns

Column Description

waiting_task_address The address of the task that is waiting.

session_id The id of the session in which the waiting task is running.

exec_context_id The id of the thread and sub-thread that is running the task.

wait_duration_ms The duration of the wait, specified in milliseconds.

wait_type The type of wait that is being experienced. Waits are discussed

in Chapter 17.

resource_address The address of the resource the task is waiting for.

blocking_task_address indicates the address of the task that is currently consuming the

resource.

blocking_session_id The Session id of the task that is currently consuming the

resource.

blocking_exec_context_id The id of the thread and sub-thread of the task that is currently

consuming the resource.

resource_description Additional information about the resource, which is not contained

in other columns, including the lock resource owner.

The script in Listing 18-14 demonstrates how to use sys.dm_tran_locks and sys.

dm_os_waiting_tasks to identify blocking on the instance. The script contains three

parts, each of which you should run in a separate query window. The first two parts of

the script cause contention. The third part identifies the source of the contention.

Listing 18-14. Using sys.dm_tran_locks

--Part 1 - Run in 1st query window

BEGIN TRANSACTION

UPDATE Customers

SET CreditLimit = CreditLimit ;

ChApTEr 18 LOCking And BLOCking

694

--Part 2 - Run in 2nd query window

SELECT creditlimit

FROM dbo.Customers (SERIALIZABLE) ;

--Part 3 - Run in 3rd query window

SELECT

 DB_NAME(tl.resource_database_id) DatabaseName

 ,tl.resource_type

 ,tl.resource_subtype

 ,tl.resource_description

 ,tl.request_mode

 ,tl.request_status

 ,os.session_id BlockedSession

 ,os.blocking_session_id BlockingSession

 ,os.resource_description

 ,OBJECT_NAME(

 CAST(

 SUBSTRING(os.resource_description,

 CHARINDEX('objid=',os.resource_

description,0)+6,9)

 AS INT)

) LockedTable

FROM sys.dm_os_waiting_tasks os

INNER JOIN sys.dm_tran_locks tl

 ON os.session_id = tl.request_session_id

WHERE tl.request_owner_type IN ('TRANSACTION', 'SESSION', 'CURSOR') ;

Tip To stop the blocking, run ROLLBACK in the first query window.

The results in Figure 18-5 show that the second part of our script is being blocked

by the first part of the script. The final column pulls the Object ID out of the resource_

description column and identifies the table on which the contention is occurring.

ChApTEr 18 LOCking And BLOCking

695

 Observing Deadlocks
You can capture details of deadlocks and have them written to the error log by turning

on trace flags 1204 and 1222. Trace flag 1204 captures details of the resources and

types of lock involved in a deadlock. It contains a section for each node involved in the

deadlock, followed by a section detailing the deadlock victim. Trace flag 1222 returns

three sections. The first gives details of the deadlock victim; the second gives details of

the processes involved in the deadlock; and the final section describes the resources that

are involved in the deadlock.

In the modern world of SQL Server, it is often not necessary to turn on these trace

flags, since you can find details of deadlocks retrospectively, by looking at the system

health session, which is an Extended Event session enabled by default on every instance

of SQL Server. Among other important details, the system health session captures

details of any deadlocks that occur. You can access the System Health Session by drilling

through Management ➤ Extended Events ➤ Sessions ➤ system_health in SQL Server

Management Studio, and then by selecting View Target Data from the context menu of

Package0.eventfile. If you search for xml_deadlock_report in the name column, you

will expose details of deadlock incidents that have occurred. The Details tab provides

the full deadlock report, including information about the deadlock victim, and the

processes, resources, and owners involved in the deadlock. The Deadlock tab displays

the Deadlock Graph, as shown in Figure 18-6, for the deadlock that we generated in

Listing 18-2.

Caution if the system health session has a rollover size limit, then details of
deadlock can be lost.

Figure 18-5. sys.dm_tran_locks results

ChApTEr 18 LOCking And BLOCking

696

 Summary
Locks can be taken at different levels of granularity. Locking at a lower level reduces

contention but uses additional resources for internal lock memory structures. Locking at

a higher level can increase the wait time of other processes and increase the likelihood

of deadlocks. SQL Server 2014 introduces new features that give DBAs the ability to

control locking behaviors for online maintenance operations, such as index rebuilds

and partition switching operations. On large systems with 16 or more cores available to

the instance, SQL Server automatically implements lock partitioning, which can reduce

contention by splitting a single lock resource into multiple resources.

Transactions have ACID properties, making them atomic, consistent, isolated,

and durable. SQL Server offers the functionality to relax some of these rules, however,

in order to improve performance and make coding easier. Six isolation levels are

available against disk tables, two of which are optimistic, and the others are pessimistic.

Pessimistic isolation levels work by acquiring locks to avoid transactional anomalies,

whereas optimistic concurrency relies on row versioning.

Because memory-optimized tables do not support locks, all transactions against

memory-optimized tables use optimistic concurrency. SQL Server has implemented

optimistic isolation levels, which can only be used against memory-optimized tables.

Because of the optimistic nature of the transactions, you should implement retry logic

for both read-only and read/write transactions.

Figure 18-6. Deadlock Graph

ChApTEr 18 LOCking And BLOCking

697

SQL Server offers a wide array of metadata that can help you, as a DBA, observe

transactions, locks, contention, and deadlocks. Sys.dm_tran_active_transactions

show details of transactions that are currently active on the instance. Sys.dm_tran_

locks exposes information about locks that have currently been requested or granted

within the instance. You can capture deadlock information in the SQL Server error log

by enabling trace flags 1204 and 1222, but the system health trace also captures deadlock

information by default. This means that you can retrieve deadlock information after the

fact, without having to perform upfront configuration or tracing.

ChApTEr 18 LOCking And BLOCking

699
© Peter A. Carter 2019
P. A. Carter, Pro SQL Server 2019 Administration, https://doi.org/10.1007/978-1-4842-5089-1_19

CHAPTER 19

Extended Events
Extended Events are a lightweight monitoring system offered by SQL Server. Because

the architecture uses so few system resources, they scale very well and allow you to

monitor their instances, with minimal impact on user activity. They are also highly

configurable, which gives you in your role as a DBA a wide range of options for

capturing details from a very fine grain, such as page splits, to higher-level detail, such

as CPU utilization. You can also correlate Extended Events with operating system data

to provide a holistic picture when troubleshooting issues. The predecessor to Extended

Events was SQL Trace, and its GUI, called Profiler. This is now deprecated for use with

the Database Engine, and it is recommended that you only use it for tracing Analysis

Service activity.

In this chapter, we will discuss the concepts associated with Extended Events, before

discussing how to implement the technology. Finally, we will discuss how to integrate

them with operating system counters.

 Extended Events Concepts
Extended Events have a rich architecture, which consists of events, targets, actions,

types, predicates, and maps. These artifacts are stored within a package, which is, in

turn, stored within a module, which can be either a .dll or an executable. We discuss

these concepts in the following sections.

700

 Packages
A package is a container for the objects used within Extended Events. Here are the four

types of SQL Server package:

• Package0: The default package, used for Extended Events system

objects.

• Sqlserver: Used for SQL Server–related objects.

• Sqlos: Used for SQLOS-related objects.

• SecAudit: Used by SQL Audit; however, its objects are not exposed.

 Events
An event is an occurrence of interest that you can trace. It may be a SQL batch

completing, a cache miss, or a page split, or virtually anything else that can happen

within the Database Engine, depending on the nature of the trace that you are

configuring. Each event is categorized by channel and keyword (also known as

category). A channel is a high-level categorization, and all events in SQL Server 2019 fall

into one of the channels described in Table 19-1.

Table 19-1. Channels

Channel Description

Admin Well-known events with well-known resolutions. For example, deadlocks, server

starts, CPU thresholds being exceeded, and the use of deprecated features.

Operational Used for troubleshooting issues. For example, bad memory being detected,

an AlwaysOn Availability Group replica changing its state, and a long IO being

detected are all events that fall within the Operational channel.

Analytic High-volume events that you can use for troubleshooting issues such as

performance. For example, a transaction beginning, a lock being acquired, and a

file read completing are all events that fall within the Analytic channel.

Debug Used by developers to diagnose issues by returning internal data. The events in

the Debug channel are subject to change in future versions of SQL Server, so you

should avoid them when possible.

CHAPTer 19 exTenDeD evenTS

701

Keywords, also known as categories, are much more fine grain. There are 88

categories within SQL Server 2019. These categories can be listed, by running the query

in Listing 19-1.

Listing 19-1. Return List of Categories

SELECT DISTINCT map_value AS Category

FROM sys.dm_xe_map_values map

WHERE map.name = 'keyword_map'

ORDER BY map.map_value

 Targets
A target is the consumer of the events; essentially, it is the device to which the trace data

will be written. The targets available within SQL Server 2019 are detailed in Table 19-2.

Table 19-2. Targets

Target Synchronous/Asynchronous Description

event counter Synchronous Counts the number of events that occur during a

session

event file Asynchronous Writes the event output to memory buffers and

then flushes them to disk

event pairing Asynchronous Determines if a paired event occurs without its

matching event, e.g., if a statement started but

never completed

eTW* Synchronous Used to correlate extended events with operating

system data

Histogram Asynchronous Counts the number of events that occur during a

session, based on an action or event column

ring buffer Asynchronous Stores data in a memory buffer, using First In First

Out (FIFO) methodology

*Event Tracking for Windows

CHAPTer 19 exTenDeD evenTS

702

 Actions
Actions are commands that allow additional information to be captured when an event

fires. An action is fired synchronously when an event occurs and the event is unaware of

the action. There are 64 actions available in SQL Server 2019, which allow you to capture

a rich array of information, including the statement that caused the event to fire, the

login that ran this statement, the transaction ID, the CPU ID, and the call stack.

 Predicates
Predicates are filter conditions that you can apply before the system sends events to the

target. It is possible to create simple predicates, such as filtering statements completing

based on a database ID, but you can also create more complex predicates, such as only

capturing a long IO that has a duration greater than 5 seconds or only capturing the role

change of an AlwaysOn Availability Group replica if it happens more than twice.

Predicates also fully support short-circuiting. This means that if you use multiple

conditions within a predicate, then the order of predicates is important, because if the

evaluation of the first predicate fails, the second predicate will not be evaluated. Because

predicates are evaluated synchronously, this can have an impact on performance.

Therefore, it is prudent to design your predicates in such a way that predicates that are

least likely to evaluate to true come before predicates that are very likely to evaluate to

true. For example, imagine that you are planning to filter on a specific database (with

a database ID of 6) that is the target of a high percentage of the activity on the instance,

but you also plan to filter on a specific user ID (MyUser), which is responsible for a lower

percentage of the activity. In this scenario, you would use the WHERE (([sqlserver].

[username]=N'MyUser') AND ([sqlserver].[database_id]=(6))) predicate to first

filter out activity that does not relate to MyUser and then filter out activity that does not

relate to database ID 6.

 Types and Maps
All objects within a package are assigned a type. This type is used to interpret the data stored

within the byte collection of an object. Objects are assigned one of the following types:

• Action

• Event

CHAPTer 19 exTenDeD evenTS

703

• Pred_compare (retrieve data from events)

• Pred_source (compare data types)

• Target

• Type

You can find a list of predicate comparators and predicate sources by executing the

queries in Listing 19-2.

Listing 19-2. Retrieving Predicate Comparators and Sources

--Retrieve list of predicate comparators

SELECT name

 ,description,

 (SELECT name

 FROM sys.dm_xe_packages

 WHERE guid = xo.package_guid) Package

FROM sys.dm_xe_objects xo

WHERE object_type = 'pred_compare'

ORDER BY name ;

--Retrieve list of predicate sources

SELECT name

 ,description,

 (SELECT name

 FROM sys.dm_xe_packages

 WHERE guid = xo.package_guid) Package

FROM sys.dm_xe_objects xo

WHERE object_type = 'pred_source'

ORDER BY name ;

A map is a dictionary that maps internal ID values to strings that DBAs can

understand. Map keys are only unique within their context and are repeated between

contexts. For example, within the statement_recompile_cause context, a map_key of

1 relates to a map_value of Schema Changed. Within the context of a database_sql_

statement type, however, a map_key of 1 relates to a map_value of CREATE DATABASE.

CHAPTer 19 exTenDeD evenTS

704

You can find a complete list of mappings by using the sys.dm_xe_map_values DMV, as

demonstrated in Listing 19-3. To check the mappings for a specific context, filter on the

name column.

Listing 19-3. Sys.dm_xe_map_values

SELECT

 map_key

 , map_value

 , name

FROM sys.dm_xe_map_values ;

 Sessions
A session is essentially a trace. It can contain events from multiple packages, actions,

targets, and predicates. When you start or stop a session, you are turning the trace on

or off. When a session starts, events are written to memory buffers and have predicates

applied before they are sent to the target. Therefore, when creating a session, you need to

configure properties, such as how much memory the session can use for buffering, what

events can be dropped if the session experiences memory pressure, and the maximum

latency before the events are sent to the target.

 Creating an Event Session
You can create an event session using either the New Session Wizard, the New Session

dialog box, or via T-SQL. We explore each of these options in the following sections.

Before creating any event sessions, however, we first create the Chapter19 database,

populate it with data, and create stored procedures, which we use in later examples.

Listing 19-4 contains the script to do this.

Listing 19-4. Creating the Chapter19 Database

--Create the database

CREATE DATABASE Chapter19 ;

GO

CHAPTer 19 exTenDeD evenTS

705

USE Chapter19

GO

--Create and populate numbers table

DECLARE @Numbers TABLE

(

 Number INT

)

;WITH CTE(Number)

AS

(

 SELECT 1 Number

 UNION ALL

 SELECT Number + 1

 FROM CTE

 WHERE Number < 100

)

INSERT INTO @Numbers

SELECT Number FROM CTE;

--Create and populate name pieces

DECLARE @Names TABLE

(

 FirstName VARCHAR(30),

 LastName VARCHAR(30)

);

INSERT INTO @Names

VALUES('Peter', 'Carter'),

 ('Michael', 'Smith'),

 ('Danielle', 'Mead'),

 ('Reuben', 'Roberts'),

 ('Iris', 'Jones'),

 ('Sylvia', 'Davies'),

 ('Finola', 'Wright'),

 ('Edward', 'James'),

CHAPTer 19 exTenDeD evenTS

706

 ('Marie', 'Andrews'),

 ('Jennifer', 'Abraham');

--Create and populate Customers table

CREATE TABLE dbo.Customers

(

 CustomerID INT NOT NULL

 IDENTITY PRIMARY KEY,

 FirstName VARCHAR(30) NOT NULL,

 LastName VARCHAR(30) NOT NULL,

 BillingAddressID INT NOT NULL,

 DeliveryAddressID INT NOT NULL,

 CreditLimit MONEY NOT NULL,

 Balance MONEY NOT NULL

);

SELECT * INTO #Customers

FROM

 (SELECT

 (SELECT TOP 1 FirstName FROM @Names ORDER BY NEWID())

FirstName,

 (SELECT TOP 1 LastName FROM @Names ORDER BY NEWID())

LastName,

 (SELECT TOP 1 Number FROM @Numbers ORDER BY NEWID())

BillingAddressID,

 (SELECT TOP 1 Number FROM @Numbers ORDER BY NEWID())

DeliveryAddressID,

 (SELECT TOP 1 CAST(RAND() * Number AS INT) * 10000

 FROM @Numbers

 ORDER BY NEWID()) CreditLimit,

 (SELECT TOP 1 CAST(RAND() * Number AS INT) * 9000

 FROM @Numbers

 ORDER BY NEWID()) Balance

 FROM @Numbers a

 CROSS JOIN @Numbers b

) a;

CHAPTer 19 exTenDeD evenTS

707

INSERT INTO dbo.Customers

SELECT * FROM #Customers;

GO

CREATE INDEX idx_LastName ON dbo.Customers(LastName)

GO

CREATE PROCEDURE UpdateCustomerWithPageSplits

AS

BEGIN

 UPDATE dbo.Customers

 SET FirstName = cast(FirstName + replicate(FirstName,10) as

varchar(30))

 ,LastName = cast(LastName + replicate(LastName,10) as varchar(30)) ;

END ;

GO

CREATE PROCEDURE UpdateCustomersWithoutPageSplits

AS

BEGIN

 UPDATE dbo.Customers

 SET CreditLimit = CreditLimit * 1.5

 WHERE Balance < CreditLimit - 10000 ;

END ;

GO

 Using the New Session Dialog Box
You can access the New Session dialog box from SQL Server Management Studio by

first drilling through Management ➤ Extended Events in Object Explorer and then

by selecting New Session from the Sessions context menu. We use the New Session

dialog box to create a session that monitors page splits and correlates them with the

stored procedures that caused them to occur. To allow this, we need to enable causality

tracking, which gives each event an additional GUID value, called an ActivityID, and a

sequence number; together, these allow the events to be correlated.

CHAPTer 19 exTenDeD evenTS

708

When you invoke the dialog box, the General page displays, as illustrated in

Figure 19-1. On this page, you can specify a name for the session, choose whether or not

it should start automatically after it is completed and automatically when the instance

starts, whether the live data view launches after the session completes, and if causality

tracking should be enabled.

Because we are going to monitor page splits, we name the session PageSplits and

specify that the session should start automatically, both after creation and also when the

instance starts. We also turn on causality tracking.

Figure 19-1. The General page

On the Events page, we first search for and select the page_split and module_start

events, as shown in Figure 19-2. The module_start event is triggered every time a

programmable object fires.

CHAPTer 19 exTenDeD evenTS

709

We now need to use the Configure button to configure each of the events. In the

Global Fields (Actions) tab of the Configure screen, we select the nt_username and

database_name actions for the module_start event, as illustrated in Figure 19-3.

Figure 19-2. The Events page

CHAPTer 19 exTenDeD evenTS

710

Tip If you need to configure the same actions for multiple events, you can
multiselect the events.

On the Filter (Predicate) tab, we configure the page_split event to be filtered on the

database_name, which is Chapter19 in this case, as shown in Figure 19-4. This means

that only page splits relating to this database are captured. We do not filter the module_

start event on the database_name, because the procedure that caused the page splits

could, in theory, have been fired from any database.

Figure 19-3. The Global Fields (Actions) tab

CHAPTer 19 exTenDeD evenTS

711

In the Event Fields tab of the Configure screen, the fields that relate to the event are

displayed. If there are any optional fields, then we are able to select them. Figure 19-5

shows that we have selected the statement field for the module_start event.

Figure 19-4. The Filter (Predicate) tab

CHAPTer 19 exTenDeD evenTS

712

On the Data Storage page of the New Session dialog box, we configure the target(s).

For our scenario, we configure a single event file target, as demonstrated in Figure 19-6.

The parameters are context sensitive, depending on the type of target that you select.

Because we have selected a file target, we need to configure the location and maximum

size of the file. We also need to specify if we want new files to be created if the initial file

becomes full, and if so, how many times this should happen.

Figure 19-5. The Event Fields tab

CHAPTer 19 exTenDeD evenTS

713

On the Advanced page, we can specify the desired behavior in the event of memory

pressure: whether single-event loss is acceptable, whether multiple-event loss is

acceptable, or whether there should be no event loss at all. We can also set the minimum

and maximum size for events and how memory partitioning should be applied. This

is discussed in more detail in the following section. Additionally, we can configure

dispatch latency. This indicates the maximum amount of time that an event remains in

the buffers before it is flushed to disk.

 Using T-SQL
You can also create event sessions via T-SQL using the CREATE EVENT SESSION DDL

statement. The command accepts the arguments detailed in Table 19-3.

Figure 19-6. The Data Storage page

CHAPTer 19 exTenDeD evenTS

714

The statement also accepts the WITH options, detailed in Table 19-4. The WITH

statement is specified once, at the end of the CREATE EVENT SESSION statement.

Table 19-3. Create Event Session Arguments

Argument Description

event_session_name The name of the event session that you are creating.

ADD EVENT | SET Specified for every event that is added to the session, followed by the

name of the event, in the format package.event. You can use the

SET statement to set event- specific customizations, such as including

nonmandatory event fields.

ACTION Specified after each ADD EVENT argument if global fields should be

captured for that event.

WHERE Specified after each ADD EVENT argument if the event should be

filtered.

ADD TARGET | SET Specified for each target that will be added to the session. You can use

the SET statement to populate target-specific parameters, such as the

filename parameter for the event_file target.

Table 19-4. Create Event Session WITH Options

Option Description

MAX_MEMORY The maximum amount of memory that the event session can use

for buffering events before dispatching them to the target(s).

EVENT_RETENTION_MODE Specifies the behavior if the buffers become full. Acceptable values

are ALLOW_SINGLE_EVENT_LOSS, which indicates that a single

event can be dropped if all buffers are full; ALLOW_MULTIPLE_

EVENT_LOSS, which indicates that an entire buffer can be dropped

if all buffers are full; and NO_EVENT_LOSS, which indicates that

tasks that cause events to fire are to wait until there is space in the

buffer.

(continued)

CHAPTer 19 exTenDeD evenTS

715

Option Description

MAX_DISPATCH_LATENCY The maximum amount of time that events can reside in the session

buffers before being flushed to the target(s), specified in seconds.

MAX_EVENT_SIZE The maximum possible size for event data from any single event.

It can be specified in kilobytes or megabytes and should only be

configured to allow events that are larger than the MAX_MEMORY

setting.

MEMORY_PARTITION_MODE Specifies where vent buffers are created. Acceptable values are

NONE, which indicates that the buffers will be created within the

instance; PER_NODE, which indicates that the buffers will be

created for each nUMA node; and PER_CPU, which means that

buffers will be created for each CPU.

TRACK_CAUSALITY Specifies that an additional GUID and sequence number will be

stored with each event so that events can be correlated.

STARTUP_STATE Specifies if the session automatically starts when the instance

starts. ON indicates it does, OFF indicates it does not.

Table 19-4. (continued)

Caution Using the NO_EVENT_LOSS option for EVENT_RETENTION_MODE can
cause performance issues on your instance, because tasks may have to wait to
complete until there is space in the event session’s buffers to hold the event data.

The script in Listing 19-5 demonstrates how you can use T-SQL to create a session

called LogFileIO. This session is similar to the Database Log File IO Tracking template,

provided through the GUI. The difference is that we are additionally capturing the

sqlos.wait_completed event and the sqlserver.DatabaseName global field, which we

are also filtering on this, so that only details of the Chapter19 transaction log are tracked.

The results of the trace will be written to a file called LogFileIO.xel in the C:\Logs

folder (which needs to be pre-created). The STARTUP_STATE option is used to start the

session.

CHAPTer 19 exTenDeD evenTS

716

Listing 19-5. Creating an Event Session

CREATE EVENT SESSION [LogFileIO] ON SERVER

ADD EVENT sqlos.async_io_completed(

 ACTION(sqlserver.database_name)

 WHERE ([sqlserver].[database_name]=N'Chapter19')),

ADD EVENT sqlos.async_io_requested(

 ACTION(sqlserver.database_name)

 WHERE ([sqlserver].[database_name]=N'Chapter19')),

ADD EVENT sqlos.spinlock_backoff(

 ACTION(sqlserver.database_name,sqlserver.sql_text)

 WHERE (([package0].[equal_uint64]([type],(85))) AND ([sqlserver].

[database_name]=N'Chapter19'))),

ADD EVENT sqlos.wait_completed(

 ACTION(sqlserver.database_name)

 WHERE ([sqlserver].[database_name]=N'Chapter19')),

ADD EVENT sqlos.wait_info(

 ACTION(sqlserver.client_app_name,sqlserver.database_name,sqlserver.is_

system,sqlserver.session_id)

 WHERE ((([package0].[equal_uint64]([opcode],(1))) AND ([package0].

[equal_uint64]([wait_type],(182)))) AND ([sqlserver].[database_

name]=N'Chapter19'))),

ADD EVENT sqlserver.databases_log_flush(

 ACTION(sqlserver.database_name)

 WHERE ([sqlserver].[database_name]=N'Chapter19')),

ADD EVENT sqlserver.databases_log_flush_wait(

 ACTION(sqlserver.database_name)

 WHERE ([sqlserver].[database_name]=N'Chapter19')),

ADD EVENT sqlserver.file_write_completed(SET collect_path=(1)

 ACTION(sqlserver.database_name)

 WHERE (([package0].[equal_uint64]([file_id],(2))) AND ([sqlserver].

[database_name]=N'Chapter19'))),

ADD EVENT sqlserver.file_written(SET collect_path=(1)

 ACTION(sqlserver.database_name)

 WHERE (([package0].[equal_uint64]([file_id],(2))) AND ([sqlserver].

[database_name]=N'Chapter19')))

CHAPTer 19 exTenDeD evenTS

717

ADD TARGET package0.event_file(SET filename=N'C:\Logs\LogFileIO.xel',

max_file_size=(512)),

ADD TARGET package0.histogram(SET filtering_event_name=N'sqlos.spinlock_

backoff',source=N'sqlserver.sql_text'),

ADD TARGET package0.ring_buffer

WITH (MAX_MEMORY=4096 KB, EVENT_RETENTION_MODE=ALLOW_SINGLE_EVENT_LOSS,

MAX_DISPATCH_LATENCY=30 SECONDS,MAX_EVENT_SIZE=0 KB, MEMORY_PARTITION_

MODE=NONE,TRACK_CAUSALITY=OFF,STARTUP_STATE=ON)

GO

Note This session will start automatically, due to the STArTUP_STATe being
configured as On.

 Viewing the Collected Data
SQL Server provides a data viewer that you can use for basic analysis of event data from

a file or live data from the buffers. For more complex analysis, however, you can access

and manipulate the event data via T-SQL. The following sections discuss each of these

methods of analysis.

 Analyzing Data with Data Viewer
You can use the data viewer to watch live data as it hits the buffers by drilling through

Management ➤ Extended Events ➤ Sessions in Object Explorer and selecting Watch

Live Data from the Session context menu. Alternatively, you can use it to view data in

the target by drilling through the session and selecting View Target Data from the Target

context menu.

Tip The data viewer does not support the ring buffer or eTW target types.

The script in Listing 19-6 inserts data into the Customers table in the Chapter19

database, which causes IO activity for the transaction log, which is captured by our

LogFileIO session.

CHAPTer 19 exTenDeD evenTS

718

Listing 19-6. Inserting into Customers

USE Chapter19

GO

--Create and populate numbers table

DECLARE @Numbers TABLE

(

 Number INT

)

;WITH CTE(Number)

AS

(

 SELECT 1 Number

 UNION ALL

 SELECT Number + 1

 FROM CTE

 WHERE Number < 100

)

INSERT INTO @Numbers

SELECT Number FROM CTE;

--Create and populate name pieces

DECLARE @Names TABLE

(

 FirstName VARCHAR(30),

 LastName VARCHAR(30)

);

INSERT INTO @Names

VALUES('Peter', 'Carter'),

 ('Michael', 'Smith'),

 ('Danielle', 'Mead'),

 ('Reuben', 'Roberts'),

 ('Iris', 'Jones'),

 ('Sylvia', 'Davies'),

CHAPTer 19 exTenDeD evenTS

719

 ('Finola', 'Wright'),

 ('Edward', 'James'),

 ('Marie', 'Andrews'),

 ('Jennifer', 'Abraham');

--Insert to Customers

SELECT * INTO #Customers

FROM

 (SELECT

 (SELECT TOP 1 FirstName FROM @Names ORDER BY NEWID())

FirstName,

 (SELECT TOP 1 LastName FROM @Names ORDER BY NEWID())

LastName,

 (SELECT TOP 1 Number FROM @Numbers ORDER BY NEWID())

BillingAddressID,

 (SELECT TOP 1 Number FROM @Numbers ORDER BY NEWID())

DeliveryAddressID,

 (SELECT TOP 1 CAST(RAND() * Number AS INT) * 10000

 FROM @Numbers

 ORDER BY NEWID()) CreditLimit,

 (SELECT TOP 1 CAST(RAND() * Number AS INT) * 9000

 FROM @Numbers

 ORDER BY NEWID()) Balance

 FROM @Numbers a

 CROSS JOIN @Numbers b

 CROSS JOIN @Numbers c

) a;

INSERT INTO dbo.Customers

SELECT * FROM #Customers;

GO

If we now open the data viewer for the event_file target under the LogFileIO

session in Object Explorer, we see the results illustrated in Figure 19-7. The viewer shows

each event and timestamp in a grid; selecting an event exposes the Details pane for that

event.

CHAPTer 19 exTenDeD evenTS

720

Notice that a data viewer toolbar is displayed in SQL Server Management Studio, as

illustrated in Figure 19-8. You can use this toolbar to add or remove columns from the

grid as well as to perform grouping and aggregation operations.

Figure 19-7. Data view on event_ file target

CHAPTer 19 exTenDeD evenTS

721

Clicking the Choose Columns button invokes the Choose Columns dialog box. We

use this dialog box to add the duration and wait_type columns to the grid, as shown in

Figure 19-9.

Figure 19-9. The Choose Columns dialog box

Figure 19-8. Data viewer toolbar

CHAPTer 19 exTenDeD evenTS

722

We can now right-click the Wait_Type column and select the Group By This Column

option. This will cause all of the events to be rolled up, to the level of Wait Type.

We can now use the Aggregation button to invoke the Aggregation dialog box. We

can use this dialog box to apply aggregate functions, such as SUM, AVG, or COUNT, to the

data. It is also possible to sort the data by an aggregated value. Figure 19-10 shows that

we are using this dialog box to add a SUM of the wait durations.

Figure 19-10. The Aggregation dialog box

CHAPTer 19 exTenDeD evenTS

723

 Analyzing Data with T-SQL
If you require more complex analysis of the data, then you can achieve this via

T-SQL. The sys.fn_xe_file_target_read_file function makes this possible by reading

the target file and returning one row per event in XML format. The sys.fn_xe_file_

target_read_file accepts the parameters detailed in Table 19-5.

Figure 19-11. The data viewer grid

In the data viewer grid, we are now able to see a SUM of the duration column for the

wait_type, and if we expand this group, it displays the granular details, as shown in

Figure 19-11.

CHAPTer 19 exTenDeD evenTS

724

The sys.fn_xe_file_target_read_file procedure returns the columns detailed in

Table 19-6.

Table 19-5. sys.fn_xe_ file_target_read_ file Parameters

Parameter Description

path The file path and file name of the .XEL file. This can contain the *

wildcard so that rollover files can be included.

mdpath The file path and name of the metadata file. This is not required for SQL

Server 2012 and above but is for backward compatibility only, so you

should always pass NULL.

initial_file_name The first file in the path to read. If this parameter is not NULL, then you

must also specify initial_offset.

initial_offset Specifies the last offset that was read so that all events prior are skipped.

If specified, then you must also specify initial_file_name.

Table 19-6. sys.fn_xe_ file_target_read_ file Results

Column Description

module_guid The GUID of the module that contains the package

package_guid The GUID of the package that contains the event

object_name The name of the event

event_data The event data, in xML format

file_name The name of the xeL file that contains the event

file_offset The offset of the block within the file that contains the event

Because the event data is returned in XML format, we need to use XQuery to shred

the nodes into relational data. A full description of XQuery is beyond the scope of

this book, but Microsoft provides an XQuery language reference on https://msdn.

microsoft.com.

CHAPTer 19 exTenDeD evenTS

https://msdn.microsoft.com
https://msdn.microsoft.com

725

The script in Listing 19-7 runs the UpdateCustomersWithPageSplits and

UpdateCustomersWithoutPageSplits procedures in the Chapter19 database before

extracting the event data using the sys.fn_xe_file_target_read_file. We then use the

XQuery Value method to extract relational values from the XML results. Finally, because

we have turned on causality tracking, we group the data by the correlation GUID to

see how many page splits each stored procedure caused. UpdateWithoutPageSplits

provides a contrast.

Tip remember to update file paths to match your own configuration before
running the query.

Listing 19-7. Analyzing Event Data with T-SQL

--Run the update procedures

EXEC UpdateCustomersWithoutPageSplits ;

GO

EXEC UpdateCustomerWithPageSplits ;

GO

--Wait 30 seconds to allow for the XE buffers to be flushed to the target

WAITFOR DELAY '00:00:30' ;

--Query the XE Target

SELECT c.procedurename, d.pagesplits

 FROM

 (

 SELECT

 correlationid,

 COUNT(*) -1 PageSplits -- -1 to remove the count of the

module_start event

 FROM

 (

 SELECT CapturedEvent,

CHAPTer 19 exTenDeD evenTS

726

 xml_data.value('(/event/data[@name="object_name"]/

value)[1]', 'nvarchar(max)')

procedurename, --extract procedure name

 xml_data.value('(/event/action[@name="attach_

activity_id"]/value)[1]', 'uniqueidentifier')

correlationid --extract Correlation ID

 FROM

 (

--Query the fn_xe_file_target_read_file function, to extract the raw XML

 SELECT

 OBJECT_NAME CapturedEvent,

 CAST(event_data AS XML) xml_data

 FROM

sys.fn_xe_file_target_read_file('C:\mssql\pagesplits*.xel', NULL , NULL,

NULL) as XE) a

) b

 GROUP BY correlationid

) d

INNER JOIN --Self join, to allow the count of page splits

(

 SELECT CapturedEvent,

 xml_data.value('(/event/data[@name="object_name"]/value)

[1]', 'nvarchar(max)') procedurename,

 xml_data.value('(/event/action[@name="attach_activity_id"]/

value)[1]', 'uniqueidentifier') correlationid

 FROM

 (

 SELECT object_name CapturedEvent,

 CAST(event_data AS XML) xml_data

 FROM

 sys.fn_xe_file_target_read_file('C:\mssql\pagesplits*.xel',

NULL , NULL, NULL) as XE) a

) c

ON c.correlationid = d.correlationid

 AND c.procedurename IS NOT NULL ;

CHAPTer 19 exTenDeD evenTS

727

Tip Using xQuery allows you to query on every event field and action that is
captured within your trace, so you can create very complex queries, providing rich
and powerful analysis of the activity within your instance.

 Correlating Extended Events with
Operating System Data
Extended Events offer the capability to integrate with operating system–level data. This

gives useful insights, such as the queries that were running when CPU spiked, and so on.

The following sections discuss how to correlate SQL Server events with Perfmon data

and other operating system–level events.

 Correlating Events with Perfmon Data
Before Extended Events were introduced, DBAs used a tool called SQL Trace and its GUI,

Profiler, to capture traces from SQL Server; it was possible to correlate this data with data

from Perfmon. With Extended Events, you do not often need to make this correlation,

because Extended Events include Perfmon counters for processor, logical disk, and

system performance objects, such as context switches and file writes. Therefore, you can

correlate SQL Server events with operating system counters by adding these objects to

the session and by following the T-SQL analysis techniques discussed in the previous

section.

Tip Perfmon counters are in the Analytic channel but have no category.

The script in Listing 19-8 demonstrates creating an event session that captures

statements executed within the instance, alongside processor counters. Processor

counters are captured every 15 seconds for each processor in the system. The results are

saved to an event file target and an ETW target.

CHAPTer 19 exTenDeD evenTS

728

Listing 19-8. Creating an Event Session with Perfmon Counters

CREATE EVENT SESSION Statements_with_Perf_Counters

ON SERVER

--Add the Events and Actions relating to each Event

ADD EVENT sqlserver.error_reported(

 ACTION(sqlserver.client_app_name,sqlserver.database_id,sqlserver.query_

hash,sqlserver.session_id)

 WHERE ([package0].[greater_than_uint64]([sqlserver].[database_id],(4)) AND

[package0].[equal_boolean]([sqlserver].[is_system],(0)))),

ADD EVENT sqlserver.module_end(SET collect_statement=(1)

 ACTION(sqlserver.client_app_name,sqlserver.database_id,sqlserver.query_

hash,sqlserver.session_id)

 WHERE ([package0].[greater_than_uint64]([sqlserver].[database_id],(4)) AND

[package0].[equal_boolean]([sqlserver].[is_system],(0)))),

ADD EVENT sqlserver.perfobject_processor,

ADD EVENT sqlserver.rpc_completed(

 ACTION(sqlserver.client_app_name,sqlserver.database_id,sqlserver.query_

hash,sqlserver.session_id)

 WHERE ([package0].[greater_than_uint64]([sqlserver].[database_id],(4))

AND

[package0].[equal_boolean]([sqlserver].[is_system],(0)))),

ADD EVENT sqlserver.sp_statement_completed(SET collect_object_name=(1)

 ACTION(sqlserver.client_app_name,sqlserver.database_id,sqlserver.query_

hash,sqlserver.query_plan_hash,sqlserver.session_id)

 WHERE ([package0].[greater_than_uint64]([sqlserver].[database_id],(4))

AND [package0].[equal_boolean]([sqlserver].[is_system],(0)))),

ADD EVENT sqlserver.sql_batch_completed(

 ACTION(sqlserver.client_app_name,sqlserver.database_id,sqlserver.query_

hash,sqlserver.session_id)

 WHERE ([package0].[greater_than_uint64]([sqlserver].[database_id],(4)) AND

[package0].[equal_boolean]([sqlserver].[is_system],(0)))),

CHAPTer 19 exTenDeD evenTS

729

ADD EVENT sqlserver.sql_statement_completed(

 ACTION(sqlserver.client_app_name,sqlserver.database_id,sqlserver.query_

hash,sqlserver.query_plan_hash,sqlserver.session_id)

 WHERE ([package0].[greater_than_uint64]([sqlserver].[database_id],(4)) AND

[package0].[equal_boolean]([sqlserver].[is_system],(0))))

--Add the Targets

ADD TARGET package0.event_file(SET filename=N'C:\MSSQL\

StatementsAndProcessorUtilization.xel'),

ADD TARGET package0.etw_classic_sync_target(SET default_etw_session_

logfile_path=N'C:\MSSQL\StatementsWithPerfCounters.etl')

WITH (MAX_MEMORY=4096 KB,EVENT_RETENTION_MODE=ALLOW_SINGLE_EVENT_LOSS,MAX_

DISPATCH_LATENCY=30 SECONDS,MAX_EVENT_SIZE=0 KB,MEMORY_PARTITION_

MODE=NONE,TRACK_CAUSALITY=ON,STARTUP_STATE=OFF) ;

GO

--Start the instance

ALTER EVENT SESSION Statements_with_Perf_Counters

ON SERVER

STATE = start;

Tip The SQL Server service account must be in the Performance Log Users
group, or an error is thrown.

 Integrating Event Sessions with Operating
System–Level Events

Note To follow the demonstrations in this section, you need to install Windows
Performance Toolkit, which you can download from https://msdn.microsoft.
com as part of the Windows Deployment and Assessment Toolkit.

CHAPTer 19 exTenDeD evenTS

https://msdn.microsoft.com
https://msdn.microsoft.com

730

There are instances in which you may need to integrate event session data with

operating system data other than Perfmon counters that SQL Server provides. For

example, imagine a scenario in which you have an application that exports SQL Server

data to flat files in the operating system so that a middleware product, such as BizTalk,

can pick them up. You are having trouble generating some files and you need to view the

process flow—from SQL statement being run through to the WMI events being triggered

in the operating system. For this, you need to merge event session data with a trace

of WMI events. You can achieve this through the ETW (Event Tracking for Windows)

architecture.

To demonstrate this, we first create an event trace session in Performance Monitor

using the WMI provider, and then we integrate it with the event session that we created

in the previous section. (You can find Performance Monitor in Administrative Tools

in Windows.) After we open Performance Monitor, we select New ➤ Data Collector

Set from the Event Trace Sessions context menu, which causes the Create New Data

Collector Set wizard to be invoked. On the first page of the wizard, specify a name for the

Collector Set, as illustrated in Figure 19-12, and specify if the Data Collector set should

be configured manually or based on a template. In our scenario, we choose to configure

it manually.

Figure 19-12. The Create New Data Collector Set wizard

CHAPTer 19 exTenDeD evenTS

731

On the page for enabling event trace providers, we can use the Add button to add the

WMI-Activity provider, as illustrated in Figure 19-13.

Figure 19-13. Add the WMI Provider

We now use the Edit button to invoke the Properties dialog box. Here, we add the

Trace and Operational categories by using the check boxes, as shown in Figure 19-14.

CHAPTer 19 exTenDeD evenTS

732

After exiting the Properties dialog box, we move to the next page of the wizard, where

we can configure the location where the trace file is stored. We configure the trace file to

be saved to the same location as our event session trace, as shown in Figure 19-15.

Figure 19-14. Properties dialog box

CHAPTer 19 exTenDeD evenTS

733

On the final page of the wizard, we leave the default options of running the trace

under the default account and then save and close the trace.

In Performance Monitor, our trace is now visible in the Event Trace Sessions folder,

but showing as stopped. We can use the context menu of the trace to start the Data

Collector Set, as shown in Figure 19-16. Also notice that there is a Data Collector Set

called XE_DEFAULT_ETW_SESSION. Our Extended Event session created this because we

created an ETW target. This session is required for integrating the data.

Figure 19-15. Configure the trace file location

CHAPTer 19 exTenDeD evenTS

734

Figure 19-16. Start the Data Collector Set

Now that both the WMISession and Statements_with_Perf_Counters sessions are

started, we use the BCP command in Listing 19-9 to generate activity, which causes

events to fire in both sessions.

Listing 19-9. Generating Activity

bcp chapter19.dbo.customers out c:\mssql\dump.dat -S .\PROSQLADMIN -T -c

We now need to ensure that the buffers of both sessions are flushed to disk. We do

this by stopping both sessions. After stopping the Statements_with_Perf_Counters

session, we also need to stop the XE_DEFAULT_ETW_SESSION ETW session in Performance

Monitor. You can stop the Statements_with_Perf_Counters session by using the T-SQL

command in Listing 19-10.

CHAPTer 19 exTenDeD evenTS

735

Listing 19-10. Stopping the Event Session

ALTER EVENT SESSION Statements_with_Perf_Counters

ON SERVER

STATE = stop;

You can stop the WMISession and XE_DEFAULT_ETW_SESSION by selecting Stop from

their respective context menus in Performance Monitor.

The next step is to merge the two trace files together. You can achieve

this from the command line by using the XPERF utility with the -Merge switch

(demonstrated in Listing 19-11). This command merges the files together, with

StatementsWithPerfCounters.etl being the target file. You should navigate to the

C:\Program Files (x86)\Windows Kits\8.1\Windows Performance Toolkit folder,

before running the script.

Listing 19-11. Merging Trace Files

xperf -merge c:\mssql\wmisession.etl C:\MSSQL\StatementsWithPerfCounters.etl

Now that all events are in the same file, you can open and analyze this .etl file with

Windows Performance Analyzer, which is available as part of the Windows Performance

Toolkit, as shown in Figure 19-17. Once installed, you can access Windows Performance

Analyzer via the Windows Start menu. A full discussion of Windows Performance

Analyzer is beyond the scope of this book, but you can find it in Administrative Tools

in Windows after it’s installed. You will find full documentation on https://msdn.

microsoft.com.

CHAPTer 19 exTenDeD evenTS

https://msdn.microsoft.com
https://msdn.microsoft.com

736

Figure 19-17. Windows Performance Analyzer

 Summary
Extended Events introduce new concepts that you must understand in order to fully

harness their power. Events are points of interest that are captured in a trace, whereas

actions provide extended information, in addition to the event columns. Predicates allow

you to filter events in order to provide a more targeted trace, and targets define how

the data is stored. A session is the trace object itself, and it can be configured to include

multiple events, actions, predicates, and targets.

You can create an event session through the New Session Wizard, an easy and

quick method that exposes Templates; via the New Session dialog box; or of course, via

T-SQL. When creating a session via T-SQL, you use the CREATE EVENT SESSION DDL

statement to configure all aspects of the trace.

CHAPTer 19 exTenDeD evenTS

737

Each Extended Event artifact is contained within one of four packages: Package0,

Sqlserver, Sqlos, and SecAudit. The contents of SecAudit are not exposed, however,

since these are used internally to support SQL Audit functionality, which is discussed in

Chapter 9.

You can view data using the data viewer. The data viewer allows you to watch live

data in the session’s buffers, and it also supports viewing target data from the Event File,

Event Count, and Histogram Target types. The data viewer provides basic data analysis

capability, including grouping and aggregating data.

For more complex data analysis, you can open targets in T-SQL. To open an Event

File target, use the sys.fn_xe_file_target_read_file results system stored procedure.

You then have the power of T-SQL at your disposal for complex analysis requirements.

You can correlate events by turning on causality tracking within the session.

This adds a GUID and a sequence number to each event so that you can identify

relationships. You can also easily correlate SQL events with Perfmon data, because

Extended Events expose processor, logical disk, and system performance counters. To

correlate events with other operating system–level events, event sessions can use the

ETW target, which you can then merge with other data collector sets to map Extended

Events to events from other providers in the ETW architecture.

CHAPTer 19 exTenDeD evenTS

739
© Peter A. Carter 2019
P. A. Carter, Pro SQL Server 2019 Administration, https://doi.org/10.1007/978-1-4842-5089-1_20

CHAPTER 20

Query Store
The Query Store is a feature that was introduced in SQL Server 2016, which captures

the history of queries, their plans, and statistics. It allows DBAs to easily view the plans

that were used by queries and troubleshoot performance issues. In this chapter, we will

discuss how Query Store can be enabled and configured. We will also examine how the

Query Store can be used to diagnose and resolve performance issues.

 Enabling and Configuring Query Store
Query Store is enabled and configured at the database level, so the first thing we will do is

create a database, called Chapter20. This can be achieved using the script in Listing 20-1.

Listing 20-1. Create the Chapter20 Database

--Create the database

CREATE DATABASE Chapter20 ;

GO

USE Chapter20

GO

--Create and populate numbers table

DECLARE @Numbers TABLE

(

 Number INT

)

740

;WITH CTE(Number)

AS

(

 SELECT 1 Number

 UNION ALL

 SELECT Number + 1

 FROM CTE

 WHERE Number < 100

)

INSERT INTO @Numbers

SELECT Number FROM CTE;

--Create and populate name pieces

DECLARE @Names TABLE

(

 FirstName VARCHAR(30),

 LastName VARCHAR(30)

);

INSERT INTO @Names

VALUES('Peter', 'Carter'),

 ('Michael', 'Smith'),

 ('Danielle', 'Mead'),

 ('Reuben', 'Roberts'),

 ('Iris', 'Jones'),

 ('Sylvia', 'Davies'),

 ('Finola', 'Wright'),

 ('Edward', 'James'),

 ('Marie', 'Andrews'),

 ('Jennifer', 'Abraham');

Chapter 20 Query Store

741

--Create and populate Customers table

CREATE TABLE dbo.Customers

(

 CustomerID INT NOT NULL

 IDENTITY PRIMARY KEY,

 FirstName VARCHAR(30) NOT NULL,

 LastName VARCHAR(30) NOT NULL,

 BillingAddressID INT NOT NULL,

 DeliveryAddressID INT NOT NULL,

 CreditLimit MONEY NOT NULL,

 Balance MONEY NOT NULL

);

SELECT * INTO #Customers

FROM

 (SELECT

 (SELECT TOP 1 FirstName FROM @Names ORDER BY NEWID())

FirstName,

 (SELECT TOP 1 LastName FROM @Names ORDER BY NEWID())

LastName,

 (SELECT TOP 1 Number FROM @Numbers ORDER BY NEWID())

BillingAddressID,

 (SELECT TOP 1 Number FROM @Numbers ORDER BY NEWID())

DeliveryAddressID,

 (SELECT TOP 1 CAST(RAND() * Number AS INT) * 10000

 FROM @Numbers

 ORDER BY NEWID()) CreditLimit,

 (SELECT TOP 1 CAST(RAND() * Number AS INT) * 9000

 FROM @Numbers

 ORDER BY NEWID()) Balance

 FROM @Numbers a

 CROSS JOIN @Numbers b

) a;

Chapter 20 Query Store

742

INSERT INTO dbo.Customers

SELECT * FROM #Customers;

GO

CREATE INDEX idx_LastName ON dbo.Customers(LastName)

GO

Now that we have a database, we can enable Query Store for the database, by using

the command in Listing 20-2.

Listing 20-2. Enable Query Store

ALTER DATABASE Chapter20 SET QUERY_STORE = ON

As well as enabling Query Store using an ALTER DATABASE command, this method

is also used to configure Query Store properties. Table 20-1 details the Query Store–

related SET options that are available.

Table 20-1. Query Store SET Options

SET Option Description

oN enables the Query Store for the specified database.

oFF Disables the Query Store for the specified database.

CLear Clears the contents of the Query Store.

operatIoN_MoDe Can be configured as reaD_oNLy or the default of reaD_

WrIte. When configured as reaD_WrIte, data is written to

the Query Store and can be read from the Query Store. When

set to reaD_oNLy, data can still be read from the Query Store,

but no further data will be written to it. the Query Store will

automatically switch to reaD_oNLy, if it runs out of space for

storing new data.

CLeaNup_poLICy accepts StaLe_Query_threShoLD_DayS and a number of

days. this determines how many days data for each query

should be retained.

(continued)

Chapter 20 Query Store

743

Table 20-1. (continued)

SET Option Description

Data_FLuSh_INterVaL_SeCoNDS Query Store data is flushed to disk asynchronously. Data_

FLuSh_INterVaL_SeCoNDS specifies how frequently data

should be flushed.

MaX_StoraGe_SIZe_MB Specifies the maximum amount of space that can be used by

Query Store data. If this value overflows, the Query Store will

switch to reaD_oNLy operational mode.

INterVaL_LeNGth_MINuteS Specifies the time interval at which runtime execution

statistics data is aggregated.

SIZe_BaSeD_CLeaNup_MoDe Specifies if an automatic cleanup is triggered, when the Query

Store reaches 90% of its maximum size threshold. Can be set

to auto or oFF. When set to auto, the oldest, least expensive

queries will be removed, until the size drops to around 80% of

the Query Store’s maximum size threshold.

Query_Capture_MoDe Specifies which queries data should be captured for. Can be

configured as aLL, NoNe, auto, or CuStoM. When set to aLL,

statistics will be captured for all queries. When set to NoNe,

statistics will only be captured for queries which already exist

in the Query Store. When configured as auto, SQL Server will

capture statistics for the most expensive queries, based on

execution count and resource utilization. When configured as

CuStoM, then you will have more granular control over which

queries have statistics captured. When CuStoM is specified,

Query_Capture_poLICy should also be specified.

MaX_pLaNS_per_Query Specifies the maximum number of plans that will be captured

for each query, defaulting to 200.

WaIt_StatS_Capture_MoDe Specifies if wait statistics should be captured for queries. this

is, of course, very useful, but comes at the expense of extra

disk space consumed.

Query_Capture_poLICy Can be used when Query_Capture_MoDe is set to

CuStoM. please see table 20-2 for details of the available

options that can be passed.

Chapter 20 Query Store

744

Table 20-2 details the options that can be configured for QUERY_CAPTURE_POLICY.

Table 20-2. QUERY_CAPTURE_POLICY Options

Option Description

StaLe_Capture_poLICy_threShoLD Specifies an evaluation period, which is used by the

other parameters, to determine if a query should have its

statistics captured. Can be specified in hours or days.

eXeCutIoN_CouNt Specifies the minimum number of executions within the

evaluation period that should occur for a query to be

captured.

totaL_CoMpILe_Cpu_tIMe_MS Specifies the total amount of Cpu compilation time

within the evaluation period that should occur for a

query to be captured.

totaL_eXeCutIoN_Cpu_tIMe_MS Specifies the total amount of Cpu execution time within

the evaluation period that should occur for a query to be

captured.

Let’s use the command in Listing 20-3 to configure the Query Store for the Chapter20

database. Here, we are configuring the Query Store to retain data for 30 days, persist data

to disk every 5 minutes, capture wait statistics for queries, and run an automatic cleanup

when 90% of a 2GB threshold is reached.

Listing 20-3. Configure the Query Store

ALTER DATABASE Chapter20

SET QUERY_STORE = ON (

 OPERATION_MODE = READ_WRITE,

 CLEANUP_POLICY = (STALE_QUERY_THRESHOLD_DAYS = 30),

 DATA_FLUSH_INTERVAL_SECONDS = 300,

 MAX_STORAGE_SIZE_MB = 2048,

 SIZE_BASED_CLEANUP_MODE = AUTO,

 WAIT_STATS_CAPTURE_MODE = ON

) ;

Chapter 20 Query Store

745

The Query Store can also be configured using SSMS. To do this, drill through

Databases in Object Explorer and select Properties from the context menu of the

database, for which you wish to configure the Query Store. In the Properties page, you

can select the Query Store tab, which is illustrated in Figure 20-1.

Figure 20-1. Query Store Properties tab

Chapter 20 Query Store

746

 Working with Query Store Data
Before we can see how to work with Query Store data, we will first need to run some

queries, so that the Query Store has some data to collect. The script in Listing 20-4 will

run a number of queries against the Chapter20 database.

Listing 20-4. Query the Chapter20 Database

SELECT

 CustomerID

 , FirstName

 , LastName

 , CreditLimit

 , Balance

FROM dbo.Customers

WHERE LastName = 'Carter'

GO

SELECT TOP (1000) [CustomerID]

 ,[FirstName]

 ,[LastName]

 ,[BillingAddressID]

 ,[DeliveryAddressID]

 ,[CreditLimit]

 ,[Balance]

FROM [Chapter20].[dbo].[Customers]

GO

SELECT *

FROM dbo.Customers A

INNER JOIN dbo.Customers B

 ON a.CustomerID = b.CustomerID

UNION

SELECT *

FROM dbo.Customers A

INNER JOIN dbo.Customers B

 ON a.CustomerID = b.CustomerID

GO

Chapter 20 Query Store

747

 SSMS Reports
Now we have run some queries, the Query Store will have captured data about those

queries. We can view this data through a series of SSMS reports. The standard reports are

• View Regressed Queries

• View Overall Resource Consumption

• View Queries with Forced Plans

• View Queries with High Variation

• Query Wait Statistics

• View Tracked Queries

These reports can be accessed by drilling through Databases ➤ [Database Name]

and then selecting the appropriate report from the context menu of the Query Store

node. In this chapter, we will examine some of the reports that I find most useful, but I

encourage you to experiment with all of them.

Tip Because of the nature of the reports, when you first set up Query Store, there
will be very little data. the data points will grow as time moves forward after Query
Store is enabled.

The View Overall Resource Consumption report is illustrated in Figure 20-2. This

report consists of four charts, representing execution duration, execution count, CPU

Time, and Logical Reads, aggregated over time intervals.

Chapter 20 Query Store

748

Hovering your mouse over a bar will cause a box with further details to be displayed,

as you can see in Figure 20-3.

Figure 20-3. Viewing additional details

Figure 20-2. Overall Resource Consumption

Chapter 20 Query Store

749

Clicking the Standard Grid button will replace the bar charts with a grid, with one

row per time interval, showing aggregated runtime statistics. This grid can be copied to

Excel for further analysis. The grid is illustrated in Figure 20-4.

Figure 20-4. Standard grid view

Tip you will notice that the execution count is far higher than the number of
queries we have run. this is because SQL Server runs queries in the background,
as part of many different processes, including queries that are run when you
navigate SSMS.

Figure 20-5 illustrates the Top Resource Consumers Report. The top left corner of

this report shows a bar chart, representing the most resource-intensive queries. The

Metric drop-down defaults to Duration, but many different metrics can be selected,

including degree of parallelism (DOP), CPU Time, Row Count, Wait Time even CLR

Time, or Log Memory Used, to name but a few.

The top right corner of the report shows a scatter chart, detailing resource utilization

and execution time of each plan. This is helpful when a query has been executed using

multiple plans, as you can easily assess the most efficient plans for a query.

The bottom half of the plan shows the accrual execution plan that was used. As

with any other graphical query plan representation in SSMS, hovering over a physical

operator will show cost information for that operator.

Chapter 20 Query Store

750

The front page of the Query Wait Statistics report can be seen in Figure 20-6. The bar

chart at the top of the screen shows a summary of resources that the highest cumulative

wait times have been against.

Figure 20-5. Top Resource Consumers

Figure 20-6. Query Wait Statistics report

Chapter 20 Query Store

751

Each bar in the bar chart is clickable. For example, if I were to click the CPU bar, then

the drill-through report in Figure 20-7 would be displayed.

Figure 20-7. CPU drill-through report

By default, the top half of the grid will show the most expensive queries (labelled by

Plan ID), based on Total Wait Time, but as you can see, the Based On drop-down list can

be changed to base the results on average, min, max wait time, or the standard deviation.

The lower half of the report shows the graphical representation of the Query Plan

that has been selected in the top half of the report.

 Query Store T-SQL Objects
As well as graphical reports, SQL Server also exposes a number of catalog views which

can be used to retrieve Query Store data. Table 20-3 details the catalog views which are

exposed.

Chapter 20 Query Store

752

Table 20-4 details how each wait type category maps to underlying wait types.

Table 20-3. Query Store Catalog Views

Catalog View Description

Query_store_plan Stores information about every query plan that is associated with a

query.

Query_store_query Stores query information and aggregated runtime statistics.

Query_store_wait_stats Stores wait statistic details. please see table 20-4 for mappings of

each wait type.

Query_store_query_text Stores the SQL handle and SQL text of each query.

Query_store_runtime_stats Stores the runtime statistics for each query.

Table 20-4. Wait Statistics Mappings

Wait Category Wait Types

Cpu SoS_SCheDuLer_yIeLD

Worker thread threaDpooL

Lock LCK_M_*

Latch LatCh_*

Buffer Latch paGeLatCh_*

Buffer Io paGeIoLatCh_*

SQL CLr CLr*

SQLCLr*

Mirroring DBMIrror*

transaction aCt*

DtC*

traN_MarKLatCh_*

MSQL_XaCt_*

traNSaCtIoN_MuteX

(continued)

Chapter 20 Query Store

753

Table 20-4. (continued)

Wait Category Wait Types

Idle SLeep_*

LaZyWrIter_SLeep

SQLtraCe_BuFFer_FLuSh

SQLtraCe_INCreMeNtaL_FLuSh_SLeep

SQLtraCe_WaIt_eNtrIeS

Ft_IFtS_SCheDuLer_IDLe_WaIt

Xe_DISpatCher_WaIt

reQueSt_For_DeaDLoCK_SearCh

LoGMGr_Queue

oNDeMaND_taSK_Queue

CheCKpoINt_Queue

Xe_tIMer_eVeNt

preemptive (preemptive Io) preeMptIVe_*

Service Broker BroKer_*

transaction Log Io LoGMGr

LoGBuFFer

LoGMGr_reSerVe_appeND

LoGMGr_FLuSh

LoGMGr_pMM_LoG

ChKpt

WrIteLoG

Network Io aSyNC_NetWorK_Io

Net_WaItFor_paCKet

proXy_NetWorK_Io

eXterNaL_SCrIpt_NetWorK_IoF

parallelism CXpaCKet

eXChaNGe

(continued)

Chapter 20 Query Store

754

Table 20-4. (continued)

Wait Category Wait Types

Memory reSourCe_SeMaphore, CMeMthreaD

CMeMpartItIoNeD, ee_pMoLoCK

MeMory_aLLoCatIoN_eXt

reSerVeD_MeMory_aLLoCatIoN_eXt

MeMory_GraNt_upDate

user Wait WaItFor

WaIt_For_reSuLtS

BroKer_reCeIVe_WaItFor

tracing traCeWrIte

SQLtraCe_LoCK

SQLtraCe_FILe_BuFFer

SQLtraCe_FILe_WrIte_Io_CoMpLetIoN

SQLtraCe_FILe_reaD_Io_CoMpLetIoN

SQLtraCe_peNDING_BuFFer_WrIterS, SQLtraCe_

ShutDoWN, Query_traCeout

traCe_eVtNotIFF

Full text Search Ft_reStart_CraWL

FuLLteXt Gatherer

MSSearCh

Ft_MetaData_MuteX

Ft_IFtShC_MuteX

Ft_IFtSISM_MuteX

Ft_IFtS_rWLoCK

Ft_CoMproWSet_rWLoCK

Ft_MaSter_MerGe

Ft_propertyLISt_CaChe

Ft_MaSter_MerGe_CoorDINator

pWaIt_reSourCe_SeMaphore_Ft_paraLLeL_Query_SyNC

(continued)

Chapter 20 Query Store

755

Wait Category Wait Types

other Io aSyNC_Io_CoMpLetIoN, Io_CoMpLetIoN

BaCKupIo, WrIte_CoMpLetIoN

Io_Queue_LIMIt

Io_retry

replication Se_repL_*

repL_*, haDr_*

pWaIt_haDr_*, repLICa_WrIteS

FCB_repLICa_WrIte, FCB_repLICa_reaD

pWaIt_haDrSIM

Log rate Governor LoG_rate_GoVerNor

pooL_LoG_rate_GoVerNor

haDr_throttLe_LoG_rate_GoVerNor

INStaNCe_LoG_rate_GoVerNor

* Denotes a wildcard, where all waits that match the portion to the left of the * are included

Table 20-4. (continued)

Tip Idle and user Wait are unlike other Wait type categories, in the respect that
they are not waiting for a resource, they are waiting for work to do.

For example, the query in Listing 20-5 will return the three highest wait categories, by

total wait time, excluding idle and user waits, which are “healthy” waits.

Listing 20-5. Return Top 3 Wait Types

SELECT TOP 3

 wait_category_desc

 , SUM(total_query_wait_time_ms) TotalWaitTime

FROM sys.query_store_wait_stats

WHERE wait_category_desc NOT IN ('Idle', 'User Wait')

GROUP BY wait_category_desc

ORDER BY SUM(total_query_wait_time_ms) DESC

Chapter 20 Query Store

756

 Resolving Issues with Query Store
Figure 20-8 illustrates the Regressed Query report. This report displays queries whose

impact in terms of duration or execution count has increased over time. These queries

are illustrated with a bar chart in the top left of the report. The top right of the report

illustrates the plans that have been used to execute the query, with their associated

duration. At the bottom of the report, we can see the actual execution plan for the

current selection of query and plan in the top half of the screen.

Figure 20-8. Regressed Query report

In this particular example, we can see that the query has run using two distinct plans

and that the plan with an ID of 168 took significantly less time to execute than the plan

with an ID of 110. Therefore, with the more efficient plan selected, we can use the Force

Plan button, in the middle of the report, to ensure that the more efficient plan is always

used to execute this query. Once we have used this feature, the Unforce Plan button will

become active, allowing us to undo our action, if required.

Tip the Force and unforce buttons are available on all Query Store reports,
where a specific plan is selectable.

Chapter 20 Query Store

757

As well as using the GUI to impart performance improvements on queries, there are

also a number of system stored procedures exposed. These procedures are detailed in

Table 20-5 and can be used to manage both plans and the Query Store itself.

Table 20-5. Query Store Stored Procedures

Procedure Description

Sp_query_store_flush_db Flushes Query Store data to disk

Sp_query_store_force_plan Forces a query to use a specific plan

Sp_query_store_unforce_plan removes a forced plan from a query

Sp_query_store_reset_exec_stats Clears the runtime statistics from the Query Store, for a

specific query

Sp_query_store_remove_plan removes a specific plan from the Query Store

Sp_query_store_remove_query removes a query and all associated information from the

Query Store

For example, to Unforce the plan that we forced upon our query in the previous

example, we could use the query in Listing 20-6.

Listing 20-6. Unforce a Query Plan

EXEC sp_query_store_unforce_plan @query_id=109, @plan_id=168

 Summary
The Query Store is a very powerful feature of SQL Server, which allows DBAs to monitor

the performance of specific queries and their plans. Because the data is flushed to disk,

this means that the data persists, even after an instance is restarted.

Six standard reports are available, which allow DBAs to view information such as

regressed queries, the most resource-intensive queries, or even wait statistics, by query.

Chapter 20 Query Store

758

As well as viewing problematic queries, DBAs can also force the most performant

plan to be used. This can be achieved through the interactive reports, or via automation,

using T-SQL. The automated approach would examine the Query Store data through

the catalog views and then pass the relevant data to the parameters of system stored

procedures.

SQL Server 2019 gives DBAs even more granular control over which queries are

captured by Query Store. This is implemented with custom capture policies, where

details such as execution count and execution time can be used to capture only the

queries with the highest performance impact. This not only saves disk space but also

avoids “noise” when working with the captured data.

Chapter 20 Query Store

759
© Peter A. Carter 2019
P. A. Carter, Pro SQL Server 2019 Administration, https://doi.org/10.1007/978-1-4842-5089-1_21

CHAPTER 21

Distributed Replay
Distributed Replay is a utility supplied with SQL Server that offers you the ability to

replay traces on one or more clients and dispatch the events to a target server. This is

useful for scenarios in which you are testing the impact of software updates, such as OS-

level and SQL Server–level service packs, testing performance tuning, load testing, and

consolidation planning.

In older versions of SQL Server, SQL Trace and its GUI, Profiler, were commonly

used to both generate traces and replay them. This had limitations, however, such as the

overhead to capture the trace and the inability to replay the trace on multiple servers.

For this reason, SQL Trace and Profiler have been deprecated for the Database Engine,

and it is recommended that you only use Profiler for tracing Analysis Services activity.

Instead, the recommendation is that you use Extended Events (discussed in Chapter 19)

to capture traces with less overhead and then use Distributed Replay to replay them.

Note For the demonstrations in this chapter, we will be using four servers,
named Controller, Client1, Client2, and Target. Each server has a default instance
of SQL Server installed, and all servers are part of the PROSQLADMIN domain.
The Distributed Replay Controller feature is installed on the controller server,
and the Distributed Replay Client is installed on the Client1 and Client2 servers.
Both Distributed Replay Controller and Distributed Replay Client are shared
features, so only need to be installed once per server, even if there are multiple
instances installed. Although the Distributed Replay Client should be installed on
the target instance for application compatibility testing, in our scenarios, we look
at performance testing while simulating concurrent activity, and therefore the
Distributed Replay Client is not installed on the target, since it is not recommended
for these purposes. The Distributed Replay Administration Tool has been installed
on the controller.

760

 Distributed Replay Concepts
To harness the power of Distributed Replay, it is important that you understand its

concepts, such as the controller, the clients, and the target servers. It is also important

to understand the architecture of Distributed Replay. These topics are discussed in the

following sections.

 Distributed Replay Components
The Distributed Replay Controller sits at the heart of the Distributed Replay

infrastructure and is used to orchestrate the activity on each of the Distributed Replay

clients. When the Distributed Replay Controller service starts, it pulls its settings from

the DReplayController.config file, so you may need to edit this file to configure logging

options. We discuss this later in the chapter. There is only one controller in a Distributed

Replay topology.

The Distributed Replay clients are the servers you use to replay the workloads.

When the Distributed Replay Client service starts, it pulls its configuration from the

DReplayClient.config file, so you may need to edit this file to configure the logging

options and folders where the trace results and intermediate files will be stored. This is

discussed later in the chapter. You can configure multiple clients in a Distributed Replay

topology with support for a maximum of 16 clients.

The target is the instance in which the trace is replayed. There is always one target

in a Distributed Replay topology. Because you can have a ratio of multiple clients to

one target, you can use Distributed Replay as a tool for load testing with commodity

hardware or to simulate concurrent workloads.

The Distributed Replay Administration Tool is a command-line tool that allows

you to prepare and replay traces. The executable is called DReplay.exe; it relies on

the DReplay.exe.preprocess.config file to obtain the configuration it needs to

process intermediate trace files and the DReplay.exe.replay.config file to obtain the

configuration it needs to replay the trace. This means that you may need to edit each of

these configuration files to specify settings, such as whether or not system activity should

be included, and specify query timeout values, which we discussed later in this chapter.

ChApTER 21 DiSTRiBuTED REpLAy

761

 Distributed Replay Architecture
The diagram in Figure 21-1 gives you an overview of the Distributed Replay components

and how the replay process works across the preprocess and replay phases. In the

preprocess phase, an intermediate file is created in the working directory of the

controller. In the replay phase, dispatch files are created at the clients before the events

are dispatched to the target.

Intermediate file

Pre-process Phase

Replay Phase

Controller

Clients (1..16) Target Instance

Dispatch file

Figure 21-1. Distributed Replay architecture

 Configuring the Environment
Before we begin to replay traces, we need to configure the Distributed Replay controller,

the Distributed Replay clients, and the Distributed Replay Administration Tool. These

activities are discussed in the following sections.

ChApTER 21 DiSTRiBuTED REpLAy

762

 Configuring the Controller
You can find the DReplayController.config file within the Tools\DReplayController

folder, which resides in the 32-bit shared directory of SQL Server. Therefore, if SQL

Server is installed with default paths, the fully qualified path is C:\Program Files

(x86)\Microsoft SQL Server\150\Tools\DReplayController\DReplayController.

config. You can use this configuration file to control the logging level. These are the

possible options:

• INFORMATIONAL: Logs all messages to the controller log.

• WARNINGS: Filters out informational messages, but logs all errors and

warnings.

• CRITICAL: Logs only critical errors. This is the default value.

The default contents of the DReplayController.config file are shown in Listing 21- 1.

Listing 21-1. DReplayController.config

<?xml version='1.0'?>

<Options>

 <LoggingLevel>CRITICAL</LoggingLevel>

</Options>

Because the service pulls this logging level from the configuration file at the point

when the service starts, if you change the logging level after starting the service, then you

need to restart the service. The log itself is created when the service starts, and it includes

startup information, such as the service account being used. You can find the log in the \

DReplayController\Log folder named DReplay Controller Log_<Uniquifier>. A new

log is generated each time the service starts.

If you are running the Distributed Replay Client service under a different service

account than the Distributed Replay Controller service, then you also need to configure

DCOM (Distributed Component Object Model) permissions on the Distributed Replay

Controller service. You can do this via Component Services, which can be found in

Administrative Tools in Windows.

Once Component Services has been invoked, you need to drill through Console Root

➤ Component Services ➤ Computers ➤ My Computer ➤ DCOM Config and then select

Properties from the DReplayController context menu. This causes the Properties dialog

box to be invoked. From here, you should navigate to the Security tab.

ChApTER 21 DiSTRiBuTED REpLAy

763

Now use the Edit button in the Launch and Activation Permissions section to launch

the Permissions dialog box. Here, use the Add button to add the service account of the

Distributed Replay Client service before granting it the Local Activation and Remote

Activation privileges.

You now need to repeat this process in the Access Permissions section to grant the

service account the Local Access and Remote Access privileges.

You also need to ensure that the Distributed Replay Client service account is added

to the Distributed COM Users Windows Group on the server running the Distributed

Replay Controller. Once you have applied these changes, you need to restart both the

Distributed Replay Controller service and the Distributed Replay Client service(s) for the

changes to take effect.

Tip in regard to firewall configuration, the controller and the client communicate
using port 135 and dynamic ports; therefore, you must ensure that these are
open between the servers. Opening the dynamic port range can violate some
organization’s security best practice, however. The workaround is to configure
Windows Firewall so it allows the Distributed Replay executables to communicate
through any port. This poses its own issues, however, because some corporate
firewalls are not configured to offer this functionality, meaning that even though
Windows Firewall does allow the traffic through, the packets may be dropped at
the corporate firewall level.

 Configuring Clients
You can find the DReplayClient.config file in the Tools\DReplayClient folder,

which resides in the 32-bit shared directory of SQL Server. Therefore, if SQL Server is

installed with default paths, the fully qualified path would be C:\Program Files (x86)\

Microsoft SQL Server\150\Tools\DReplayController\DReplayClient.config. You

can use this configuration file to configure the settings detailed in Table 21-1.

ChApTER 21 DiSTRiBuTED REpLAy

764

Listing 21-2 displays an edited version of the DReplayClient.config file, which has

been configured to point to our controller server and the Working and Results folders.

Listing 21-2. DReplayClient.config

<?xml version="1.0" encoding="utf-8"?>

<Options>

 <Controller>controller</Controller>

 <WorkingDirectory>C:\DistributedReplay\WorkingDir\</WorkingDirectory>

 <ResultDirectory>C:\DistributedReplay\ResultDir\</ResultDirectory>

 <LoggingLevel>CRITICAL</LoggingLevel>

</Options>

Tip you must start the Distributed Replay Controller service before you start the
Distributed Replay Client service on each client.

Table 21-1. DReplayClient.config Options

Option Description

Controller The name of the server hosting the Distributed Replay Controller. it is

important to note that this is the server name, not the server\instance

name.

WorkingDirectory The location on the client where dispatch files are stored. if this option

is not included in the configuration file, then the folder where the

configuration file is stored is used.

ResultsDirectory The location where the results file from the replay is stored. if this

option is not specified in the configuration file, then the folder that the

configuration file is stored in is used.

Logging use this option to control the logging level. The possible options are

• iNFORMATiONAL, which logs all messages to the controller log.

• WARNiNGS, which filters out informational messages, but logs all

errors and warnings.

• CRiTiCAL, which logs only critical errors. This is the default value.

ChApTER 21 DiSTRiBuTED REpLAy

765

Because we are using two clients, we need to repeat these activities on each. In our

environment, these clients are the servers, Client1 and Client2.

Tip in regard to firewall configuration, the client and the target communicate
using the SQL Server ports. in a standard configuration, this means using TCp
1433 and uDp 1434 for the browser service, if you are using a named instance.
if you are using nonstandard ports, configure the firewall accordingly.

 Configuring the Replay
The replay is started using the Administration Tool, which relies on two configuration

files, DReplay.exe.preprocess.config and DReplay.exe.replay.config. The first of

these configuration files controls the building of the intermediate files and the second

controls replay options and output options. Both files are located within the 32-bit

shared directory, so with a default installation, the fully qualified paths are C:\Program

Files (x86)\Microsoft SQL Server\150\Tools\Binn\DReplay.exe.preprocess.

config and C:\Program Files (x86)\Microsoft SQL Server\150\Tools\Binn\

DReplay.exe.replay.config, respectively. Table 21-2 details the options you can

configure in DReplay.exe.preprocess.config.

Table 21-2. DReplay.exe.preprocess.config Options

Option Description

IncSystemSession Specifies if activity captured from system sessions should be included

in the replay.

MaxIdleTime Specifies a limit for the amount of idle time in seconds.

• -1 specifies that the idle time between activities should be the

same as the original trace.

• 0 specifies that there should be no idle time between activities.

The default contents of the DReplay.exe.preprocess.config file are shown in

Listing 21-3.

ChApTER 21 DiSTRiBuTED REpLAy

766

Listing 21-3. DReplay.exe.preprocess.config

<?xml version="1.0" encoding="utf-8"?>

<Options>

 <PreprocessModifiers>

 <IncSystemSession>No</IncSystemSession>

 <MaxIdleTime>-1</MaxIdleTime>

 </PreprocessModifiers>

</Options>

Table 21-3 details the options you can configure within DReplay.exe.replay.config.

Table 21-3. DReplay.exe.replay.config Options

Option Category Description

Server Replay options The server\instance name of the target server.

SequencingMode Replay options Specifies the mode to be used for scheduling

events. The possible options are

• Synchronization, which indicates that the

order of transactions is subject to time-

based synchronization, across the clients,

which is useful for performance testing.

• Stress, which is the default option, indicates

that transactions are fired as quickly as

possible, without time-based synchronization.

This is useful for load testing.

StressScaleGranularity Replay options When the SequenceMode is set to Stress,

StressScaleGranularity determines how to

scale activity on a SpiD.

• SPID indicates that connections on a

single SpiD should be scaled as if they

were a single SpiD.

• Connection indicates that connections

on a single SpiD should be scaled as if

they were separate connections.

(continued)

ChApTER 21 DiSTRiBuTED REpLAy

767

Table 21-3. (continued)

Option Category Description

ConnectTimeScale Replay options A percentage value that indicates if connection

time should be reduced during the replay when

the SequenceMode is Stress. 100 indicates

100% of connection time is included. Lower

values reduce the simulated connection times

accordingly.

ThinkTimeScale Replay options A percentage value that indicates if the user

thinks time should be reduced during the replay

when SequenceMode is Stress. 100 indicates

100% of think time is included, so transactions

replay at the speed they were captured.

Specifying lower values reduces the interval.

UseConnectionPooling Replay options Specifies if connection pooling should be used

on the clients. A connection pool is a cache of

connections that subsequent connection can

reuse.

HealthmonInterval Replay options When SequenceMode is set to

Synchronization, HealthmonInterval

determines how often the health monitor runs,

specified in seconds. -1 indicates that the health

monitor is disabled.

QueryTimeout Replay options Specifies the query timeout value in seconds.

-1 indicates that it is disabled.

ThreadsPerClient Replay options Specifies the number of threads to use for the

replay on each client.

RecordRowCount Output options Specifies if you should include a row count for

each result set.

RecordResultSet Output options Specifies if you should save the contents of each

record set.

ChApTER 21 DiSTRiBuTED REpLAy

768

Listing 21-4 shows an example of the DReplay.exe.replay.config file, which

has been modified for our environment to allow us to perform a performance test by

simulating multiple connections.

Listing 21-4. DReplay.exe.replay.config

<?xml version="1.0" encoding="utf-8"?>

<Options>

 <ReplayOptions>

 <Server>Target</Server>

 <SequencingMode>synchronization</SequencingMode>

 <HealthmonInterval>60</HealthmonInterval>

 <QueryTimeout>3600</QueryTimeout>

 <ThreadsPerClient>255</ThreadsPerClient>

 <EnableConnectionPooling>No</EnableConnectionPooling>

 </ReplayOptions>

 <OutputOptions>

 <ResultTrace>

 <RecordRowCount>Yes</RecordRowCount>

 <RecordResultSet>No</RecordResultSet>

 </ResultTrace>

 </OutputOptions>

</Options>

 Working with Distributed Replay
Now that the Distributed Replay utility is configured, we create a trace using Extended

Events before we synchronize the target. We then use Distributed Replay to replay the

trace in order to test performance tweaks, simulating concurrent activity on the two

clients. Before we do this, however, we create the Chapter21 database on the controller

using the script in Listing 21-5.

ChApTER 21 DiSTRiBuTED REpLAy

769

Listing 21-5. Creating the Chapter21 Database

--Create the database

CREATE DATABASE Chapter21 ;

GO

USE Chapter21

GO

--Create and populate numbers table

DECLARE @Numbers TABLE

(

 Number INT

)

;WITH CTE(Number)

AS

(

 SELECT 1 Number

 UNION ALL

 SELECT Number + 1

 FROM CTE

 WHERE Number < 100

)

INSERT INTO @Numbers

SELECT Number FROM CTE;

--Create and populate name pieces

DECLARE @Names TABLE

(

 FirstName VARCHAR(30),

 LastName VARCHAR(30)

);

ChApTER 21 DiSTRiBuTED REpLAy

770

INSERT INTO @Names

VALUES('Peter', 'Carter'),

 ('Michael', 'Smith'),

 ('Danielle', 'Mead'),

 ('Reuben', 'Roberts'),

 ('Iris', 'Jones'),

 ('Sylvia', 'Davies'),

 ('Finola', 'Wright'),

 ('Edward', 'James'),

 ('Marie', 'Andrews'),

 ('Jennifer', 'Abraham');

--Create and populate Addresses table

CREATE TABLE dbo.Addresses

(

AddressID INT NOT NULL IDENTITY PRIMARY KEY,

AddressLine1 NVARCHAR(50),

AddressLine2 NVARCHAR(50),

AddressLine3 NVARCHAR(50),

PostCode NCHAR(8)

) ;

INSERT INTO dbo.Addresses

VALUES('1 Carter Drive', 'Hedge End', 'Southampton', 'SO32 6GH')

 ,('10 Apress Way', NULL, 'London', 'WC10 2FG')

 ,('12 SQL Street', 'Botley', 'Southampton', 'SO32 8RT')

 ,('19 Springer Way', NULL, 'London', 'EC1 5GG') ;

--Create and populate Customers table

ChApTER 21 DiSTRiBuTED REpLAy

771

CREATE TABLE dbo.Customers

(

 CustomerID INT NOT NULL IDENTITY PRIMARY KEY,

 FirstName VARCHAR(30) NOT NULL,

 LastName VARCHAR(30) NOT NULL,

 BillingAddressID INT NOT NULL,

 DeliveryAddressID INT NOT NULL,

 CreditLimit MONEY NOT NULL,

 Balance MONEY NOT NULL

);

SELECT * INTO #Customers

FROM

 (SELECT

 (SELECT TOP 1 FirstName FROM @Names ORDER BY NEWID())

FirstName,

 (SELECT TOP 1 LastName FROM @Names ORDER BY NEWID())

LastName,

 (SELECT TOP 1 Number FROM @Numbers ORDER BY NEWID())

BillingAddressID,

 (SELECT TOP 1 Number FROM @Numbers ORDER BY NEWID())

DeliveryAddressID,

 (SELECT TOP 1 CAST(RAND() * Number AS INT) * 10000

 FROM @Numbers ORDER BY NEWID()) CreditLimit,

 (SELECT TOP 1 CAST(RAND() * Number AS INT) * 9000

 FROM @Numbers ORDER BY NEWID()) Balance

 FROM @Numbers a

 CROSS JOIN @Numbers b

 CROSS JOIN @Numbers c

) a;

INSERT INTO dbo.Customers

SELECT * FROM #Customers;

GO

ChApTER 21 DiSTRiBuTED REpLAy

772

 Synchronizing the Target
Because we replay a trace that includes DML statements, we need to synchronize our

target database immediately before we start capturing the trace to ensure that the IDs

align. We perform this task by backing up the Chapter21 database on the controller and

restoring it on the target. We can achieve this by using the script in Listing 21-6.

Tip Remember to change the file locations to match your own configuration
before running the script.

Listing 21-6. Synchronizing the Chapter21 Database

--Part 1 - To be run on the controller

BACKUP DATABASE Chapter21

TO DISK = N'F:\MSSQL\Backup\Chapter21.bak'

WITH NOFORMAT, NOINIT, NAME = N'Chapter21-Full Database Backup',

SKIP, STATS = 10

GO

--Part 2 - To be run on the client, after moving the backup file across

RESTORE DATABASE Chapter21

FROM DISK = N'F:\MSSQL\Backup\Chapter21.bak'

WITH FILE = 1, STATS = 5

GO

Ideally, the database should have the same DatabaseID on each server, but if this is

not feasible, then ensure that the Database_name action is captured in the event session

for mapping purposes. You should also ensure that any logins contained within the

trace are created on the Target server, with the same permissions and the same default

database. If you fail to do this, you get replay errors.

ChApTER 21 DiSTRiBuTED REpLAy

773

Since our demonstration is for testing performance enhancements, you may wish

to take this opportunity to create appropriate indexes on the Customers and Addresses

tables in the synchronized database. You can find a script including index suggestions

that are appropriate for our trace workload in Listing 21-7.

Listing 21-7. Index Suggestions

USE Chapter21

GO

CREATE INDEX IDX_Customers_LastName ON dbo.Customers(LastName)

INCLUDE(FirstName) ;

GO

CREATE INDEX IDX_Customers_AddressID ON dbo.Customers(DeliveryAddressID) ;

GO

CREATE INDEX IDX_Addresses_AddressID ON dbo.Addresses(AddressID) ;

GO

CREATE INDEX IDX_Customers_LastName_CustomerID ON dbo.Customers(LastName,

CustomerID) ;

GO

 Creating a Trace
Let’s now create our Extended Event session and start the trace. You should

configure the Event session to capture the events, event fields, and actions detailed

in Table 21-4.

ChApTER 21 DiSTRiBuTED REpLAy

774

Table 21-4. Events and Event Fields

Event Event Fields Actions

assembly_load – collect_current_thread_id

event_sequence

cpu_id

scheduler_id

system_thread_id

task_address

worker_address

database_id

database_name

is_system

plan_handle

request_id

session_id

transaction_id

attention – event_sequence

database_id

database_name

is_system

request_id

session_id

(continued)

ChApTER 21 DiSTRiBuTED REpLAy

775

Table 21-4. (continued)

Event Event Fields Actions

begin_tran_completed statement collect_current_thread_id

event_sequence

cpu_id

scheduler_id

system_thread_id

task_address

worker_address

database_id

database_name

is_system

plan_handle

request_id

session_id

transaction_id

begin_tran_starting statement collect_current_thread_id

event_sequence

cpu_id

scheduler_id

system_thread_id

task_address

worker_address

database_id

database_name

is_system

plan_handle

request_id

session_id

transaction_id

(continued)

ChApTER 21 DiSTRiBuTED REpLAy

776

Table 21-4. (continued)

Event Event Fields Actions

commit_tran_completed statement collect_current_thread_id

event_sequence

cpu_id

scheduler_id

system_thread_id

task_address

worker_address

database_id

database_name

is_system

plan_handle

request_id

session_id

transaction_id

commit_tran_starting statement collect_current_thread_id

event_sequence

cpu_id

scheduler_id

system_thread_id

task_address

worker_address

database_id

database_name

is_system

plan_handle

request_id

session_id

transaction_id

(continued)

ChApTER 21 DiSTRiBuTED REpLAy

777

Table 21-4. (continued)

Event Event Fields Actions

cursor_close – collect_current_thread_id

event_sequence

cpu_id

scheduler_id

system_thread_id

task_address

worker_address

database_id

database_name

is_system

plan_handle

request_id

session_id

sql_text

transaction_id

cursor_execute – collect_current_thread_id

event_sequence

cpu_id

scheduler_id

system_thread_id

task_address

worker_address

database_id

database_name

is_system

plan_handle

request_id

session_id

sql_text

transaction_id

(continued)

ChApTER 21 DiSTRiBuTED REpLAy

778

Table 21-4. (continued)

Event Event Fields Actions

cursor_implicit_conversion – collect_current_thread_id

event_sequence

cpu_id

scheduler_id

system_thread_id

task_address

worker_address

database_id

database_name

is_system

plan_handle

request_id

session_id

sql_text

transaction_id

cursor_open – collect_current_thread_id

event_sequence

cpu_id

scheduler_id

system_thread_id

task_address

worker_address

database_id

database_name

is_system

plan_handle

request_id

session_id

sql_text

transaction_id

(continued)

ChApTER 21 DiSTRiBuTED REpLAy

779

Table 21-4. (continued)

Event Event Fields Actions

cursor_prepare – collect_current_thread_id

event_sequence

cpu_id

scheduler_id

system_thread_id

task_address

worker_address

database_id

database_name

is_system

plan_handle

request_id

session_id

sql_text

transaction_id

cursor_recompile – collect_current_thread_id

event_sequence

cpu_id

scheduler_id

system_thread_id

task_address

worker_address

database_id

database_name

is_system

plan_handle

request_id

session_id

sql_text

transaction_id

(continued)

ChApTER 21 DiSTRiBuTED REpLAy

780

Table 21-4. (continued)

Event Event Fields Actions

cursor_unprepare – collect_current_thread_id

event_sequence

cpu_id

scheduler_id

system_thread_id

task_address

worker_address

database_id

database_name

is_system

plan_handle

request_id

session_id

sql_text

transaction_id

database_file_size_change database_name collect_current_thread_id

event_sequence

cpu_id

scheduler_id

system_thread_id

task_address

worker_address

database_id

database_name

is_system

plan_handle

request_id

session_id

transaction_id

(continued)

ChApTER 21 DiSTRiBuTED REpLAy

781

Table 21-4. (continued)

Event Event Fields Actions

dtc_transaction – collect_current_thread_id

event_sequence

cpu_id

scheduler_id

system_thread_id

task_address

worker_address

database_id

database_name

is_system

plan_handle

request_id

session_id

transaction_id

exec_prepared_sql – collect_current_thread_id

event_sequence

cpu_id

scheduler_id

system_thread_id

task_address

worker_address

database_id

database_name

is_system

plan_handle

request_id

session_id

transaction_id

(continued)

ChApTER 21 DiSTRiBuTED REpLAy

782

Table 21-4. (continued)

Event Event Fields Actions

existing_connection database_name

option_text

event_sequence

client_app_name

client_hostname

client_pid

database_id

database_name

is_system

nt_username

request_id

server_instance_name

server_principal_name

session_id

session_nt_username

session_resource_group_id

session_resource_pool_id

session_server_principal_name

username

(continued)

ChApTER 21 DiSTRiBuTED REpLAy

783

Table 21-4. (continued)

Event Event Fields Actions

login database_name

option_text

collect_current_thread_id

event_sequence

cpu_id

scheduler_id

system_thread_id

task_address

worker_address

client_app_name

client_hostname

client_pid

database_id

database_name

is_system

nt_username

plan_handle

request_id

server_instance_name

server_principal_name

session_id

session_nt_username

session_resource_group_id

session_resource_pool_id

session_server_principal_name

transaction_id

username

(continued)

ChApTER 21 DiSTRiBuTED REpLAy

784

Table 21-4. (continued)

Event Event Fields Actions

logout – collect_current_thread_id

event_sequence

cpu_id

scheduler_id

system_thread_id

task_address

worker_address

client_app_name

client_hostname

client_pid

database_id

database_name

is_system

nt_username

plan_handle

request_id

server_instance_name

server_principal_name

session_id

session_nt_username

session_resource_group_id

session_resource_pool_id

session_server_principal_name

transaction_id

username

(continued)

ChApTER 21 DiSTRiBuTED REpLAy

785

Table 21-4. (continued)

Event Event Fields Actions

prepare_sql – collect_current_thread_id

event_sequence

cpu_id

scheduler_id

system_thread_id

task_address

worker_address

database_id

database_name

is_system

plan_handle

request_id

session_id

transaction_id

promote_tran_completed – collect_current_thread_id

event_sequence

cpu_id

scheduler_id

system_thread_id

task_address

worker_address

database_id

database_name

is_system

plan_handle

request_id

session_id

transaction_id

(continued)

ChApTER 21 DiSTRiBuTED REpLAy

786

Table 21-4. (continued)

Event Event Fields Actions

promote_tran_started – collect_current_thread_id

event_sequence

cpu_id

scheduler_id

system_thread_id

task_address

worker_address

database_id

database_name

is_system

plan_handle

request_id

session_id

transaction_id

rollback_tran_completed statement collect_current_thread_id

event_sequence

cpu_id

scheduler_id

system_thread_id

task_address

worker_address

database_id

database_name

is_system

plan_handle

request_id

session_id

transaction_id

(continued)

ChApTER 21 DiSTRiBuTED REpLAy

787

Table 21-4. (continued)

Event Event Fields Actions

rollback_tran_started statement collect_current_thread_id

event_sequence

cpu_id

scheduler_id

system_thread_id

task_address

worker_address

database_id

database_name

is_system

plan_handle

request_id

session_id

transaction_id

rpc_completed data_stream

output_

parameters

collect_current_thread_id

event_sequence

cpu_id

scheduler_id

system_thread_id

task_address

worker_address

database_id

database_name

is_system

plan_handle

request_id

session_id

transaction_id

(continued)

ChApTER 21 DiSTRiBuTED REpLAy

788

Table 21-4. (continued)

Event Event Fields Actions

rpc_starting data_stream collect_current_thread_id

event_sequence

cpu_id

scheduler_id

system_thread_id

task_address

worker_address

database_id

database_name

is_system

plan_handle

request_id

session_id

transaction_id

save_tran_completed statement collect_current_thread_id

event_sequence

cpu_id

scheduler_id

system_thread_id

task_address

worker_address

database_id

database_name

is_system

plan_handle

request_id

session_id

transaction_id

(continued)

ChApTER 21 DiSTRiBuTED REpLAy

789

Table 21-4. (continued)

Event Event Fields Actions

save_tran_started statement collect_current_thread_id

event_sequence

cpu_id

scheduler_id

system_thread_id

task_address

worker_address

database_id

database_name

is_system

plan_handle

request_id

session_id

transaction_id

server_memory_change – collect_current_thread_id

event_sequence

cpu_id

scheduler_id

system_thread_id

task_address

worker_address

database_id

database_name

is_system

plan_handle

request_id

session_id

transaction_id

(continued)

ChApTER 21 DiSTRiBuTED REpLAy

790

Table 21-4. (continued)

Event Event Fields Actions

sql_batch_completed batch_text collect_current_thread_id

event_sequence

cpu_id

scheduler_id

system_thread_id

task_address

worker_address

database_id

database_name

is_system

plan_handle

request_id

session_id

transaction_id

sql_batch_starting batch_text collect_current_thread_id

event_sequence

cpu_id

scheduler_id

system_thread_id

task_address

worker_address

database_id

database_name

is_system

plan_handle

request_id

session_id

transaction_id

(continued)

ChApTER 21 DiSTRiBuTED REpLAy

791

Table 21-4. (continued)

Event Event Fields Actions

sql_transaction – collect_current_thread_id

event_sequence

cpu_id

scheduler_id

system_thread_id

task_address

worker_address

database_id

database_name

is_system

plan_handle

request_id

session_id

transaction_id

trace_flag_changed – collect_current_thread_id

event_sequence

cpu_id

scheduler_id

system_thread_id

task_address

worker_address

database_id

database_name

is_system

plan_handle

request_id

session_id

transaction_id

(continued)

ChApTER 21 DiSTRiBuTED REpLAy

792

So these are the events, event fields, and actions that we include in our session

definition (see Listing 21-8).

Tip if you do not include all recommended events, event fields, and actions,
then errors may be thrown when you convert the .xel file to a .trc file.
A workaround here is to use trace flag -T28 when running ReadTrace in order
to ignore the RML requirements. This can lead to unpredictable results, however,
and is not advised.

Table 21-4. (continued)

Event Event Fields Actions

unprepare_sql – collect_current_thread_id

event_sequence

cpu_id

scheduler_id

system_thread_id

task_address

worker_address

database_id

database_name

is_system

plan_handle

request_id

session_id

transaction_id

ChApTER 21 DiSTRiBuTED REpLAy

793

Listing 21-8. Creating the Extended Event Session and Starting the Trace

CREATE EVENT SESSION DReplay

ON SERVER

ADD EVENT sqlserver.assembly_load(

 ACTION(package0.collect_current_thread_id,package0.event_

sequence,sqlos.cpu_id,sqlos.scheduler_id,sqlos.system_thread_id,sqlos.

task_address,sqlos.worker_address,sqlserver.database_id,sqlserver.

database_name,sqlserver.is_system,sqlserver.plan_handle,sqlserver.

request_id,sqlserver.session_id,sqlserver.transaction_id)),

ADD EVENT sqlserver.attention(

 ACTION(package0.event_sequence,sqlserver.database_id,sqlserver.

database_name,sqlserver.is_system,sqlserver.request_id,sqlserver.

session_id)),

ADD EVENT sqlserver.begin_tran_completed(SET collect_statement=(1)

 ACTION(package0.collect_current_thread_id,package0.event_

sequence,sqlos.cpu_id,sqlos.scheduler_id,sqlos.system_thread_id,sqlos.

task_address,sqlos.worker_address,sqlserver.database_id,sqlserver.

database_name,sqlserver.is_system,sqlserver.plan_handle,sqlserver.

request_id,sqlserver.session_id,sqlserver.transaction_id)),

ADD EVENT sqlserver.begin_tran_starting(SET collect_statement=(1)

 ACTION(package0.collect_current_thread_id,package0.event_

sequence,sqlos.cpu_id,sqlos.scheduler_id,sqlos.system_thread_id,sqlos.

task_address,sqlos.worker_address,sqlserver.database_id,sqlserver.

database_name,sqlserver.is_system,sqlserver.plan_handle,sqlserver.

request_id,sqlserver.session_id,sqlserver.transaction_id)),

ADD EVENT sqlserver.commit_tran_completed(SET collect_statement=(1)

 ACTION(package0.collect_current_thread_id,package0.event_

sequence,sqlos.cpu_id,sqlos.scheduler_id,sqlos.system_thread_id,sqlos.

task_address,sqlos.worker_address,sqlserver.database_id,sqlserver.

database_name,sqlserver.is_system,sqlserver.plan_handle,sqlserver.

request_id,sqlserver.session_id,sqlserver.transaction_id)),

ChApTER 21 DiSTRiBuTED REpLAy

794

ADD EVENT sqlserver.commit_tran_starting(SET collect_statement=(1)

 ACTION(package0.collect_current_thread_id,package0.event_

sequence,sqlos.cpu_id,sqlos.scheduler_id,sqlos.system_thread_id,sqlos.

task_address,sqlos.worker_address,sqlserver.database_id,sqlserver.

database_name,sqlserver.is_system,sqlserver.plan_handle,sqlserver.

request_id,sqlserver.session_id,sqlserver.transaction_id)),

ADD EVENT sqlserver.cursor_close(

 ACTION(package0.collect_current_thread_id,package0.event_

sequence,sqlos.cpu_id,sqlos.scheduler_id,sqlos.system_thread_id,sqlos.

task_address,sqlos.worker_address,sqlserver.database_id,sqlserver.

database_name,sqlserver.is_system,sqlserver.plan_handle,sqlserver.

request_id,sqlserver.session_id,sqlserver.sql_text,sqlserver.

transaction_id)),

ADD EVENT sqlserver.cursor_execute(

 ACTION(package0.collect_current_thread_id,package0.event_

sequence,sqlos.cpu_id,sqlos.scheduler_id,sqlos.system_thread_id,sqlos.

task_address,sqlos.worker_address,sqlserver.database_id,sqlserver.

database_name,sqlserver.is_system,sqlserver.plan_handle,sqlserver.

request_id,sqlserver.session_id,sqlserver.sql_text,sqlserver.

transaction_id)),

ADD EVENT sqlserver.cursor_implicit_conversion(

 ACTION(package0.collect_current_thread_id,package0.event_

sequence,sqlos.cpu_id,sqlos.scheduler_id,sqlos.system_thread_id,sqlos.

task_address,sqlos.worker_address,sqlserver.database_id,sqlserver.

database_name,sqlserver.is_system,sqlserver.plan_handle,sqlserver.

request_id,sqlserver.session_id,sqlserver.sql_text,sqlserver.

transaction_id)),

ADD EVENT sqlserver.cursor_open(

 ACTION(package0.collect_current_thread_id,package0.event_

sequence,sqlos.cpu_id,sqlos.scheduler_id,sqlos.system_thread_id,sqlos.

task_address,sqlos.worker_address,sqlserver.database_id,sqlserver.

database_name,sqlserver.is_system,sqlserver.plan_handle,sqlserver.

request_id,sqlserver.session_id,sqlserver.sql_text,sqlserver.

transaction_id)),

ChApTER 21 DiSTRiBuTED REpLAy

795

ADD EVENT sqlserver.cursor_prepare(

 ACTION(package0.collect_current_thread_id,package0.event_

sequence,sqlos.cpu_id,sqlos.scheduler_id,sqlos.system_thread_id,sqlos.

task_address,sqlos.worker_address,sqlserver.database_id,sqlserver.

database_name,sqlserver.is_system,sqlserver.plan_handle,sqlserver.

request_id,sqlserver.session_id,sqlserver.sql_text,sqlserver.

transaction_id)),

ADD EVENT sqlserver.cursor_recompile(

 ACTION(package0.collect_current_thread_id,package0.event_

sequence,sqlos.cpu_id,sqlos.scheduler_id,sqlos.system_thread_id,sqlos.

task_address,sqlos.worker_address,sqlserver.database_id,sqlserver.

database_name,sqlserver.is_system,sqlserver.plan_handle,sqlserver.

request_id,sqlserver.session_id,sqlserver.sql_text,sqlserver.

transaction_id)),

ADD EVENT sqlserver.cursor_unprepare(

 ACTION(package0.collect_current_thread_id,package0.event_

sequence,sqlos.cpu_id,sqlos.scheduler_id,sqlos.system_thread_id,sqlos.

task_address,sqlos.worker_address,sqlserver.database_id,sqlserver.

database_name,sqlserver.is_system,sqlserver.plan_handle,sqlserver.

request_id,sqlserver.session_id,sqlserver.sql_text,sqlserver.

transaction_id)),

ADD EVENT sqlserver.database_file_size_change(SET collect_database_name=(1)

 ACTION(package0.collect_current_thread_id,package0.event_

sequence,sqlos.cpu_id,sqlos.scheduler_id,sqlos.system_thread_id,sqlos.

task_address,sqlos.worker_address,sqlserver.database_id,sqlserver.

database_name,sqlserver.is_system,sqlserver.plan_handle,sqlserver.

request_id,sqlserver.session_id,sqlserver.transaction_id)),

ADD EVENT sqlserver.dtc_transaction(

 ACTION(package0.collect_current_thread_id,package0.event_

sequence,sqlos.cpu_id,sqlos.scheduler_id,sqlos.system_thread_id,sqlos.

task_address,sqlos.worker_address,sqlserver.database_id,sqlserver.

database_name,sqlserver.is_system,sqlserver.plan_handle,sqlserver.

request_id,sqlserver.session_id,sqlserver.transaction_id)),

ChApTER 21 DiSTRiBuTED REpLAy

796

ADD EVENT sqlserver.exec_prepared_sql(

 ACTION(package0.collect_current_thread_id,package0.event_

sequence,sqlos.cpu_id,sqlos.scheduler_id,sqlos.system_thread_id,sqlos.

task_address,sqlos.worker_address,sqlserver.database_id,sqlserver.

database_name,sqlserver.is_system,sqlserver.plan_handle,sqlserver.

request_id,sqlserver.session_id,sqlserver.transaction_id)),

ADD EVENT sqlserver.existing_connection(SET collect_database_

name=(1),collect_options_text=(1)

 ACTION(package0.event_sequence,sqlserver.client_app_name,sqlserver.

client_hostname,sqlserver.client_pid,sqlserver.database_id,sqlserver.

database_name,sqlserver.is_system,sqlserver.nt_username,sqlserver.

request_id,sqlserver.server_instance_name,sqlserver.server_principal_

name,sqlserver.session_id,sqlserver.session_nt_username,sqlserver.

session_resource_group_id,sqlserver.session_resource_pool_id,sqlserver.

session_server_principal_name,sqlserver.username)),

ADD EVENT sqlserver.login(SET collect_database_name=(1),collect_options_

text=(1)

 ACTION(package0.collect_current_thread_id,package0.event_

sequence,sqlos.cpu_id,sqlos.scheduler_id,sqlos.system_thread_id,sqlos.

task_address,sqlos.worker_address,sqlserver.client_app_name,sqlserver.

client_hostname,sqlserver.client_pid,sqlserver.database_id,sqlserver.

database_name,sqlserver.is_system,sqlserver.nt_username,sqlserver.plan_

handle,sqlserver.request_id,sqlserver.server_instance_name,sqlserver.

server_principal_name,sqlserver.session_id,sqlserver.session_nt_

username,sqlserver.session_resource_group_id,sqlserver.session_

resource_pool_id,sqlserver.session_server_principal_name,sqlserver.

transaction_id,sqlserver.username)),

ADD EVENT sqlserver.logout(

 ACTION(package0.collect_current_thread_id,package0.event_

sequence,sqlos.cpu_id,sqlos.scheduler_id,sqlos.system_thread_id,sqlos.

task_address,sqlos.worker_address,sqlserver.client_app_name,sqlserver.

client_hostname,sqlserver.client_pid,sqlserver.database_id,sqlserver.

database_name,sqlserver.is_system,sqlserver.nt_username,sqlserver.plan_

handle,sqlserver.request_id,sqlserver.server_instance_name,sqlserver.

ChApTER 21 DiSTRiBuTED REpLAy

797

server_principal_name,sqlserver.session_id,sqlserver.session_nt_

username,sqlserver.session_resource_group_id,sqlserver.session_

resource_pool_id,sqlserver.session_server_principal_name,sqlserver.

transaction_id,sqlserver.username)),

ADD EVENT sqlserver.prepare_sql(

 ACTION(package0.collect_current_thread_id,package0.event_

sequence,sqlos.cpu_id,sqlos.scheduler_id,sqlos.system_thread_id,sqlos.

task_address,sqlos.worker_address,sqlserver.database_id,sqlserver.

database_name,sqlserver.is_system,sqlserver.plan_handle,sqlserver.

request_id,sqlserver.session_id,sqlserver.transaction_id)),

ADD EVENT sqlserver.promote_tran_completed(

 ACTION(package0.collect_current_thread_id,package0.event_

sequence,sqlos.cpu_id,sqlos.scheduler_id,sqlos.system_thread_id,sqlos.

task_address,sqlos.worker_address,sqlserver.database_id,sqlserver.

database_name,sqlserver.is_system,sqlserver.plan_handle,sqlserver.

request_id,sqlserver.session_id,sqlserver.transaction_id)),

ADD EVENT sqlserver.promote_tran_starting(

 ACTION(package0.collect_current_thread_id,package0.event_

sequence,sqlos.cpu_id,sqlos.scheduler_id,sqlos.system_thread_id,sqlos.

task_address,sqlos.worker_address,sqlserver.database_id,sqlserver.

database_name,sqlserver.is_system,sqlserver.plan_handle,sqlserver.

request_id,sqlserver.session_id,sqlserver.transaction_id)),

ADD EVENT sqlserver.rollback_tran_completed(SET collect_statement=(1)

 ACTION(package0.collect_current_thread_id,package0.event_

sequence,sqlos.cpu_id,sqlos.scheduler_id,sqlos.system_thread_id,sqlos.

task_address,sqlos.worker_address,sqlserver.database_id,sqlserver.

database_name,sqlserver.is_system,sqlserver.plan_handle,sqlserver.

request_id,sqlserver.session_id,sqlserver.transaction_id)),

ADD EVENT sqlserver.rollback_tran_starting(SET collect_statement=(1)

 ACTION(package0.collect_current_thread_id,package0.event_

sequence,sqlos.cpu_id,sqlos.scheduler_id,sqlos.system_thread_id,sqlos.

task_address,sqlos.worker_address,sqlserver.database_id,sqlserver.

database_name,sqlserver.is_system,sqlserver.plan_handle,sqlserver.

request_id,sqlserver.session_id,sqlserver.transaction_id)),

ChApTER 21 DiSTRiBuTED REpLAy

798

ADD EVENT sqlserver.rpc_completed(SET collect_data_stream=(1),collect_

output_parameters=(1),collect_statement=(0)

 ACTION(package0.collect_current_thread_id,package0.event_

sequence,sqlos.cpu_id,sqlos.scheduler_id,sqlos.system_thread_id,sqlos.

task_address,sqlos.worker_address,sqlserver.database_id,sqlserver.

database_name,sqlserver.is_system,sqlserver.plan_handle,sqlserver.

request_id,sqlserver.session_id,sqlserver.transaction_id)),

ADD EVENT sqlserver.rpc_starting(SET collect_data_stream=(1),collect_

statement=(0)

 ACTION(package0.collect_current_thread_id,package0.event_

sequence,sqlos.cpu_id,sqlos.scheduler_id,sqlos.system_thread_id,sqlos.

task_address,sqlos.worker_address,sqlserver.database_id,sqlserver.

database_name,sqlserver.is_system,sqlserver.plan_handle,sqlserver.

request_id,sqlserver.session_id,sqlserver.transaction_id)),

ADD EVENT sqlserver.save_tran_completed(SET collect_statement=(1)

 ACTION(package0.collect_current_thread_id,package0.event_

sequence,sqlos.cpu_id,sqlos.scheduler_id,sqlos.system_thread_id,sqlos.

task_address,sqlos.worker_address,sqlserver.database_id,sqlserver.

database_name,sqlserver.is_system,sqlserver.plan_handle,sqlserver.

request_id,sqlserver.session_id,sqlserver.transaction_id)),

ADD EVENT sqlserver.save_tran_starting(SET collect_statement=(1)

 ACTION(package0.collect_current_thread_id,package0.event_

sequence,sqlos.cpu_id,sqlos.scheduler_id,sqlos.system_thread_id,sqlos.

task_address,sqlos.worker_address,sqlserver.database_id,sqlserver.

database_name,sqlserver.is_system,sqlserver.plan_handle,sqlserver.

request_id,sqlserver.session_id,sqlserver.transaction_id)),

ADD EVENT sqlserver.server_memory_change(

 ACTION(package0.collect_current_thread_id,package0.event_

sequence,sqlos.cpu_id,sqlos.scheduler_id,sqlos.system_thread_id,sqlos.

task_address,sqlos.worker_address,sqlserver.database_id,sqlserver.

database_name,sqlserver.is_system,sqlserver.plan_handle,sqlserver.

request_id,sqlserver.session_id,sqlserver.transaction_id)),

ChApTER 21 DiSTRiBuTED REpLAy

799

ADD EVENT sqlserver.sql_batch_completed(SET collect_batch_text=(1)

 ACTION(package0.collect_current_thread_id,package0.event_

sequence,sqlos.cpu_id,sqlos.scheduler_id,sqlos.system_thread_id,sqlos.

task_address,sqlos.worker_address,sqlserver.database_id,sqlserver.

database_name,sqlserver.is_system,sqlserver.plan_handle,sqlserver.

request_id,sqlserver.session_id,sqlserver.transaction_id)),

ADD EVENT sqlserver.sql_batch_starting(SET collect_batch_text=(1)

 ACTION(package0.collect_current_thread_id,package0.event_

sequence,sqlos.cpu_id,sqlos.scheduler_id,sqlos.system_thread_id,sqlos.

task_address,sqlos.worker_address,sqlserver.database_id,sqlserver.

database_name,sqlserver.is_system,sqlserver.plan_handle,sqlserver.

request_id,sqlserver.session_id,sqlserver.transaction_id)),

ADD EVENT sqlserver.sql_transaction(

 ACTION(package0.collect_current_thread_id,package0.event_

sequence,sqlos.cpu_id,sqlos.scheduler_id,sqlos.system_thread_id,sqlos.

task_address,sqlos.worker_address,sqlserver.database_id,sqlserver.

database_name,sqlserver.is_system,sqlserver.plan_handle,sqlserver.

request_id,sqlserver.session_id,sqlserver.transaction_id)),

ADD EVENT sqlserver.trace_flag_changed(

 ACTION(package0.collect_current_thread_id,package0.event_

sequence,sqlos.cpu_id,sqlos.scheduler_id,sqlos.system_thread_id,sqlos.

task_address,sqlos.worker_address,sqlserver.database_id,sqlserver.

database_name,sqlserver.is_system,sqlserver.plan_handle,sqlserver.

request_id,sqlserver.session_id,sqlserver.transaction_id)),

ADD EVENT sqlserver.unprepare_sql(

 ACTION(package0.collect_current_thread_id,package0.event_

sequence,sqlos.cpu_id,sqlos.scheduler_id,sqlos.system_thread_id,sqlos.

task_address,sqlos.worker_address,sqlserver.database_id,sqlserver.

database_name,sqlserver.is_system,sqlserver.plan_handle,sqlserver.

request_id,sqlserver.session_id,sqlserver.transaction_id))

ChApTER 21 DiSTRiBuTED REpLAy

800

ADD TARGET package0.event_file(SET filename=N'C:\MSSQL\DReplay.xel')

WITH (MAX_MEMORY=4096 KB,EVENT_RETENTION_MODE=ALLOW_SINGLE_EVENT_LOSS,MAX_

DISPATCH_LATENCY=30 SECONDS,MAX_EVENT_SIZE=0 KB,MEMORY_PARTITION_

MODE=NONE,TRACK_CAUSALITY=ON,STARTUP_STATE=ON) ;

GO

ALTER EVENT SESSION DReplay

ON SERVER

STATE = start;

GO

To generate activity to be traced, depending on your scenario, you may wish to

capture real user activity; to do so, you need to use a tool, such as SQLStress, or script

activity. In our case, we script activity to be traced (see Listing 21-9).

Listing 21-9. Generating Activity

USE Chapter21

GO

DECLARE @Numbers TABLE

(

 Number INT

)

;WITH CTE(Number)

AS

(

 SELECT 1 Number

 UNION ALL

 SELECT Number + 1

 FROM CTE

 WHERE Number < 100

)

INSERT INTO @Numbers

SELECT Number FROM CTE;

ChApTER 21 DiSTRiBuTED REpLAy

801

DECLARE @Names TABLE

(

 FirstName VARCHAR(30),

 LastName VARCHAR(30)

);

INSERT INTO @Names

VALUES('Peter', 'Carter'),

 ('Michael', 'Smith'),

 ('Danielle', 'Mead'),

 ('Reuben', 'Roberts'),

 ('Iris', 'Jones'),

 ('Sylvia', 'Davies'),

 ('Finola', 'Wright'),

 ('Edward', 'James'),

 ('Marie', 'Andrews'),

 ('Jennifer', 'Abraham');

SELECT * INTO #Customers

FROM

 (SELECT

 (SELECT TOP 1 FirstName FROM @Names ORDER BY NEWID())

FirstName,

 (SELECT TOP 1 LastName FROM @Names ORDER BY NEWID())

LastName,

 (SELECT TOP 1 Number FROM @Numbers ORDER BY NEWID())

BillingAddressID,

 (SELECT TOP 1 Number FROM @Numbers ORDER BY NEWID())

DeliveryAddressID,

 (SELECT TOP 1 CAST(RAND() * Number AS INT) * 10000

 FROM @Numbers

 ORDER BY NEWID()) CreditLimit,

 (SELECT TOP 1 CAST(RAND() * Number AS INT) * 9000

 FROM @Numbers

 ORDER BY NEWID()) Balance

 FROM @Numbers a

) a;

ChApTER 21 DiSTRiBuTED REpLAy

802

INSERT INTO dbo.Customers

SELECT * FROM #Customers ;

DROP TABLE #Customers

GO 10

SELECT FirstName, LastName

FROM dbo.Customers

WHERE LastName = 'Carter'

GO 100

SELECT COUNT(*)

FROM dbo.Customers c

INNER JOIN dbo.Addresses a

ON c.DeliveryAddressID = a.AddressID

GO 100

SELECT *
FROM dbo.Addresses

GO 100

DELETE FROM dbo.Customers

WHERE LastName = 'Mead'

 OR CustomerID > 1000000

GO 50

SELECT TOP 10 PERCENT *
FROM dbo.Customers

GO 100

We can now stop our trace by using the command in Listing 21-10.

Listing 21-10. Stopping the Trace

ALTER EVENT SESSION DReplay

ON SERVER

STATE = stop;

GO

ChApTER 21 DiSTRiBuTED REpLAy

803

 Replaying the Trace
Now that we have captured a trace, we convert it to a .trc file and then preprocess

it before replaying it by using the Distributed Replay Administration Tool from the

command line.

 Converting the Trace File

In order to use our .xel file with Distributed Replay, we first need to convert it to a .trc

file. We do this with the help of the readtrace.exe command-line tool, which uses RML

(Replay Markup Language) to convert the data. ReadTrace ships as part of Microsoft’s

RML Utilities for SQL Server toolset, which you can download from www.microsoft.com/

en-gb/download/details.aspx?id=4511. The following example assumes that you have

installed this toolkit.

Tip The preceding link contains all RML utilities, and this chapter uses this
version of the tools. A newer version of ReadTrace can be downloaded as part of
DEA (Database Experimentation Assistant), however, which can be found at www.
microsoft.com/en-us/download/details.aspx?id=54090.

Here, we convert our trace file by navigating to the C:\Program Files\Microsoft

Corporation\RMLUtils folder and running ReadTrace.exe with the arguments detailed

in Table 21-5.

Table 21-5. ReadTrace Arguments

Argument Description

-I The fully qualified file name of the .xel file to convert.

-O The folder to output the results to. This includes the log file as well as the .trc file.

-a prevent analytical processing.

-MS Mirror to a single .trc file, as opposed to separate files for each SpiD.

ChApTER 21 DiSTRiBuTED REpLAy

http://www.microsoft.com/en-gb/download/details.aspx?id=4511
http://www.microsoft.com/en-gb/download/details.aspx?id=4511
http://www.microsoft.com/en-us/download/details.aspx?id=54090
http://www.microsoft.com/en-us/download/details.aspx?id=54090

804

Tip you can find a full description of all ReadTrace arguments in the RML utilities
for SQL Server help file.

We run ReadTrace by using the command in Listing 21-11.

Tip Remember to change the filename and path of the input and output files
before running this script. Even if you have used the same location, your .xel file
name will include a different uniquifier.

Listing 21-11. Converting to .trc Using ReadTrace

readtrace.exe -I"C:\MSSQL\DReplay_0_130737313343740000.xel" -O"C:\MSSQL\

DReplayTraceFile" -a -MS

 Preprocessing the Trace Data

The Administration Tool is a command-line utility, which can be run with the options

detailed in Table 21-6.

Table 21-6. Administration Tool Options

Option Description

Preprocess prepares the trace data by creating the intermediate files

Replay Dispatches the trace to the clients and begins the replay

Status Displays the controller’s current status

Cancel Cancels the current operation

When run with the preprocess option, the Administration Tool accepts the

arguments detailed in Table 21-7.

ChApTER 21 DiSTRiBuTED REpLAy

805

To preprocess our trace file, we can use the command in Listing 21-12. This process

creates an intermediate file, which can then be dispatched to the clients, ready for replay.

Tip Change the file paths to match your configuration before you run this script.

Listing 21-12. Preprocessing the Trace

dreplay preprocess -m controller -i "C:\MSSQL\DReplayTraceFile\SPID00000.

trc" -d "c:\Distributed Replay\WorkingDir" -c "C:\Program Files (x86)\

Microsoft SQL Server\150\Tools\Binn\DReplay.exe.preprocess.config"

 Starting the Replay

You can start the replay using the Distributed Replay Administration Tool. The arguments

accepted when the tool is used with the replay option are detailed in Table 21-8.

Table 21-7. Preprocess Arguments

Argument Full Name Description

-m Controller The name of the server hosting the Distributed Replay

Controller.

-i input_trace_file The fully qualified file name of the trace file. if there are

rollover files, then specify a comma-separated list.

-d controller_working_dir The folder where intermediate files are stored.

-c config_file The fully qualified file name of the DReplay.exe.

preprocess.config configuration file.

-f status_interval The frequency with which status messages are

displayed, specified in milliseconds.

ChApTER 21 DiSTRiBuTED REpLAy

806

Therefore, to replay the trace, using Client1 and Client2, against our Target server, we

use the command in Listing 21-13.

Listing 21-13. Replaying the Trace

dreplay replay -m controller -d "c:\Distributed Replay\WorkingDir" -s

Target -o -w Client1,Client2 -c "C:\Program Files (x86)\Microsoft SQL

Server\150\Tools\Binn\DReplay.Exe.Replay.config"

Tip The first line of the output may indicate that no events have been dispatched.
This is not an issue—it just means that the event dispatch has not yet started.

Table 21-8. Replay Arguments

Argument Full Name Description

-m Controller The name of the server hosting the Distributed

Replay Controller

-d controller_working_dir The folder where intermediate files are stored

-o output Specifies that client’s replay activity should be

captured and saved to the Results directory

-s target_server The server\instance name of the Target server

-w clients A comma-separated list of clients

-c config_file The fully qualified name of the DReplay.exe.

replay.config configuration file

-f status_interval The frequency at which to display the status,

specified in seconds

ChApTER 21 DiSTRiBuTED REpLAy

807

 Summary
Distributed Replay provides a mechanism to replay traces captured with either Profiler

or Extended Events. Unlike its predecessor, Profiler, which is deprecated for use with

the Database Engine, Distributed Replay can replay the workload from multiple servers,

which allows you to perform load testing and simulate multiple concurrent connections.

The controller is the server running the Distributed Replay Controller service, which

synchronizes the replay and can be configured to work in two different modes: stress and

synchronization. In stress mode, the controller fires the events as quickly as possible,

while in synchronization mode, it fires the events in the order in which they were

captured.

The clients are the servers running the Distributed Replay Client service, which

replays the trace. Distributed Replay supports a maximum of 16 clients. The target is the

instance to which the events are dispatched by the clients.

Although it is possible to replay a trace captured in Profiler, Extended Events use less

resources and provide more flexibility. Therefore, consider using this method to capture

the trace. In order to replay an Extended Event session with Distributed Replay, however,

you first need to convert the .xel file to a .trc file. You can do this using RML Utilities,

which are available for download at www.microsoft.com.

The Distributed Replay Administration Tool is a command-line tool that is used

to both preprocess and run the trace. When run in preprocess mode, it creates an

intermediate file. When run in replay mode, it generates dispatch files on the clients and

uses these files to dispatch the events to the target.

ChApTER 21 DiSTRiBuTED REpLAy

http://www.microsoft.com

809
© Peter A. Carter 2019
P. A. Carter, Pro SQL Server 2019 Administration, https://doi.org/10.1007/978-1-4842-5089-1_22

CHAPTER 22

Automating Maintenance
Routines
Automation is a critical part of database administration because it reduces the total

cost of ownership (TCO) of the enterprise by allowing repeatable tasks to be carried out

with little or no human intervention. SQL Server provides a rich set of functionality for

automating routine DBA activity, including a scheduling engine, decision-tree logic, and

a comprehensive security model. In this chapter, we discuss how you can harness SQL

Server Agent to reduce the maintenance burden on your time. We also look at how you

can reduce effort by using multiserver jobs, which allow you to operate a consistent set

of routines across the enterprise.

 SQL Server Agent
SQL Server Agent is a service that provides the ability to create automated routines with

decision-based logic and schedule them to run one time only, on a reoccurring basis,

when the SQL Server Agent service starts or when a CPU idle condition occurs.

SQL Server Agent also controls alerts, which allow you to respond to a wide range of

conditions, including errors, performance conditions, or WMI (Windows Management

Instrumentation) events. Responses can include sending e-mails or running tasks.

After introducing you to the concepts surrounding SQL Server Agent, the following

sections discuss the SQL Server Agent security model, how to create and manage jobs,

and how to create alerts.

810

 SQL Server Agent Concepts
SQL Server Agent is implemented using jobs, which orchestrate the tasks that are run;

schedules, which define when the tasks run; alerts, which can respond to events that

occur within SQL Server; and operators, which are users (usually DBAs) who are notified

of occurrences, such as job status or alerts that have been triggered. The following

sections introduce you to each of these concepts.

 Schedules

A schedule defines the time or condition that triggers a job to start running. A schedule

can be defined as follows:

One time: Allows you to specify a specific date and time.

Start automatically when SQL Server Agent starts: Useful if a set

of tasks should run when the instance starts, assuming that the

SQL Server Agent service is configured to start automatically.

Start when CPU becomes idle: Useful if you have resource-

intensive jobs that you do not wish to impact user activity.

Recurring: Allows you to define a complex schedule, with start

and end dates, that can reoccur daily, weekly, or monthly. If you

schedule a job to run weekly, then you can also define multiple

days on which it should run. If you define the schedule as daily,

you can opt to have the trigger occur once daily, on an hourly

basis, every minute, or even as frequently as every 10 seconds.

If the schedule is reoccurring based on second, minute, or hour,

then it is possible to define start and stop times within a day. This

means that you can schedule a job to run every minute, between

18:00 and 20:00, for example.

Tip A recurring daily schedule is actually used to define a schedule that runs
daily, hourly, every minute, or every second.

ChApter 22 AutomAting mAintenAnCe routines

811

You can create individual schedules for each job, or you can choose to define a

schedule and use this to trigger multiple jobs that you need to run at the same time—for

example, when you have multiple maintenance jobs you want to run when the CPU

is idle. In this case, you use the same schedule for all of these jobs. Another example

is when you have multiple ETL running against different databases. If you have a

small ETL window, you may want all of these jobs to run at the same time. Here again,

you can define a single schedule and use it for all of the ETL jobs. This approach can

reduce administration; if, for example, the ETL window moves, you can change a single

schedule rather than many schedules.

 Operators

An operator is an individual or team that is configured to receive a notification of job

status or when an alert is triggered. You can confine operators to be notified via e-mail,

NET SEND, or the pager. It is worth noting, however, that the pager and NET SEND options

are deprecated and you should avoid using them.

If you choose to configure operators so they are notified through e-mail, then you

must also configure Database Mail, discussed later in this chapter, specifying the address

and port of the SMTP Replay server that delivers the messages. If you configure operators

to be notified via NET SEND, then the SQL Server Agent Windows service is dependent on

the NET SEND service, as well as the SQL Server service, in order to start. If you configure

operators to be notified by pager, then you must use Database Mail to relay the messages

to the e-mail to pager service.

Caution You increase your operational risk by introducing reliance on the NET
SEND service.

When using pager alerts, you can configure each operator with days and times that

they are on duty. You can configure this in 24/7 organizations that run support shifts

or “follow the sun” support models for operational support, which see shifts being

passed to support teams in different global regions. This functionality also allows you

to configure each operator with different shift patterns on weekdays, Saturdays, and

Sundays.

ChApter 22 AutomAting mAintenAnCe routines

812

 Jobs

A job is comprised of a series of actions that you should perform. Each action is known

as a job step. You can configure each job step to perform an action within one of the

following categories:

• SSIS packages

• T-SQL commands

• PowerShell scripts

• Operating system commands

• Replication Distributor tasks

• Replication Merge Agent tasks

• Replication Queue Reader Agent tasks

• Replication Snapshot Agent tasks

• Replication Transaction Log Reader tasks

• Analysis Services commands

• Analysis Services queries

You can configure each job step, with the exception of T-SQL commands, to run

under the context of the service account running the SQL Server Agent service or to run

under a proxy account, which is linked to a credential. You can also configure each step

to retry a specific number of times, with an interval between each retry.

Additionally, you can configure On Success and On Failure actions individually for

each job step. This allows DBAs to implement decision-based logic and error handling,

as outlined in Figure 22-1.

ChApter 22 AutomAting mAintenAnCe routines

813

You can run each job on a schedule that you can create specifically for the job that

you are configuring, or share between multiple jobs, which should all run on the same

schedule.

You can also configure notifications for each job. A notification alerts an operator

to the success or failure of a job, but you can also configure it to write entries to the

Windows Application Event Log or even delete the job.

Step 1

Step 2

Step 3

Step 4
(Error handler)

Quit Job
reporting
success

On Success

On Success On Success

On Failure

On Failure

Quit Job
reporting

failure

Quit Job
reporting

failure

On Failure

On FailureOn Success

Quit Job
reporting

failure

Quit Job
reporting
success

Step 5
(Error handler)

Figure 22-1. Decision-tree logic

ChApter 22 AutomAting mAintenAnCe routines

814

 Alerts

Alerts respond to events that occur in SQL Server and have been written to the Windows

application event log. Alerts can respond to the following categories of activity:

• SQL Server events

• SQL Server performance conditions

• WMI events

When you create an alert against a SQL Server events category, you can configure it

to respond to a specific error message or to a specific error severity level that occurs. You

can also filter alerts so that they only fire if the error or warning contains specific text.

They can also be filtered by the specific database in which they occur.

When you create alerts against the SQL Server performance conditions category,

they are configured so they are triggered if a counter falls below, becomes equal to,

or rises above a specified value. When configuring such an alert, you need to select

the performance object that is essentially the category of performance condition, the

counter within that performance object, and the instance of the counter that you wish

to alert against. So, for example, to trigger an alert in the event that the Percentage Log

Used for the Chapter22 database rises above 70%, you would select the Databases object,

the Percent Log Used counter, and the Chapter22 instance and configure the alert to be

triggered if this counter rises above 70. A complete list of performance objects and their

associated performance counters can be revealed by running the query in Listing 22-1.

Listing 22-1. Listing Performance Objects and Counters

SELECT

 object_name

 , counter_name

FROM msdb.dbo.sysalerts_performance_counters_view

ORDER BY object_name

 SQL Server Agent Security
You control access to SQL Server Agent via database roles, and you can run job steps under

the context of the SQL Server Agent service account or by using separate proxy accounts

that map to credentials. Both of these concepts are explored in the following sections.

ChApter 22 AutomAting mAintenAnCe routines

815

 SQL Server Agent Database Roles

Other than members of the sysadmin server role, who have full access to SQL Server

Agent, access can be granted to SQL Server Agent using fixed database roles within the

MSDB database. The following roles are provided:

• SQLAgentUserRole

• SQLAgentReaderRole

• SQLAgentOperatorRole

The permissions provided by the roles are detailed in Table 22-1. Members of

the sysadmin role are granted all permissions to SQL Server Agent. This includes

permissions that are not provided by any of the SQL Server Agent roles, such as editing

multiserver job properties. Actions that are not possible through SQL Server Agent role

membership can only be actioned by members of the sysadmin role.

Table 22-1. SQL Server Agent Permissions Matrix

Permission SQLAgentUserRole SQLAgentReaderRole SQLAgentOperatorRole

CREATE/ALTER/DROP

operator

no no no

CREATE/ALTER/DROP

local job

Yes (owned only) Yes (owned only) Yes (owned only)

CREATE/ALTER/DROP

multiserver job

no no no

CREATE/ALTER/DROP

schedule

Yes (owned only) Yes (owned only) Yes (owned only)

CREATE/ALTER/DROP proxy no no no

CREATE/ALTER/DROP alerts no no no

View list of operators Yes Yes Yes

View list of local jobs Yes (owned only) Yes Yes

View list of multiserver jobs no Yes Yes

View list of schedules Yes (owned only) Yes Yes

View list of proxies Yes Yes Yes

(continued)

ChApter 22 AutomAting mAintenAnCe routines

816

Table 22-1. (continued)

Permission SQLAgentUserRole SQLAgentReaderRole SQLAgentOperatorRole

View list of alerts no no no

enable/disable operators no no no

enable/disable local jobs Yes (owned only) Yes (owned only) Yes

enable/disable multiserver

jobs

no no no

enable/disable schedules Yes (owned only) Yes (owned only) Yes

enable/disable alerts no no no

View operator properties no no Yes

View local job properties Yes (owned only) Yes Yes

View multiserver job

properties

no Yes Yes

View schedule properties Yes (owned only) Yes Yes

View proxy properties no no Yes

View alert properties no no Yes

edit operator properties no no no

edit local job properties no Yes (owned only) Yes (owned only)

edit multiserver job

properties

no no no

edit schedule properties no Yes (owned only) Yes (owned only)

edit proxy properties no no no

edit alert properties no no no

start/stop local jobs Yes (owned only) Yes (owned only) Yes

start/stop multiserver jobs no no no

View local job history Yes (owned only) Yes Yes

View multiserver job history no Yes Yes

Delete local job history no no Yes

Delete multiserver job history no no no

Attach/detach schedules Yes (owned only) Yes (owned only) Yes (owned only)

ChApter 22 AutomAting mAintenAnCe routines

817

 SQL Server Agent Proxy Accounts

By default, all job steps run under the context of the SQL Server Agent service account.

Adopting this approach, however, can be a security risk, since you may need to grant the

service account a large number of permissions to the instance and objects within the

operating system. The amount of permissions you need to grant the service account is

especially important for jobs that require cross-server access.

To mitigate this risk and follow the principle of least privilege, you should instead

consider using proxy accounts. Proxies are mapped to credentials within the instance

level and you can configure them to run only a subset of step types. For example, you

can configure one proxy to be able to run operating system commands while configuring

another to be able to run only PowerShell scripts. This means that you can reduce the

permissions that each proxy requires.

For job steps with the Transact-SQL (T-SQL) script step type, it is not possible to

select a proxy account. Instead, the Run As User option allows you to select a database

user to use as the security context to run the script. This option uses the EXECUTE AS

functionality in T-SQL to change the security context.

 Creating SQL Server Agent Jobs
In the following sections, we create a simple SQL Server Agent job, which runs an

operating system command to delete old backup files. We then create a more complex

SQL Server Agent job, which backs up a database and runs a PowerShell script to ensure

the SQL Server Browser service is running. Before creating the SQL Server Agent jobs,

however, we first create the Chapter22 database, as well as security principles that we

use in the following sections.

You can find the script to perform these tasks in Listing 22-2. The script uses

PowerShell to create two domain users: SQLUser and WinUser. It then uses SQLCMD to

create the Chapter22 database, before creating a login for SQLUser and mapping it

to the Chapter22 database with backup permissions. You can run the script from the

PowerShell ISE (Integrated Scripting Environment) or from the PowerShell command

prompt. You should run the script on a Windows Server operating system; if you are

running it on a different operating system, you need to prepare the environment

manually.

ChApter 22 AutomAting mAintenAnCe routines

818

Listing 22-2. Preparing the Environment

Set-ExecutionPolicy Unrestricted

import-module SQLPS

import-module servermanager

Add-WindowsFeature -Name "RSAT-AD-PowerShell" -IncludeAllSubFeature

New-ADUser SQLUser -AccountPassword (ConvertTo-SecureString -AsPlainText

"Pa$$w0rd" -Force) -Server "PROSQLADMIN.COM"

Enable-ADAccount -Identity SQLUser

New-ADUser WinUser -AccountPassword (ConvertTo-SecureString -AsPlainText

"Pa$$w0rd" -Force) -Server "PROSQLADMIN.COM"

Enable-ADAccount -Identity WinUser

$perm = [ADSI]"WinNT://SQLServer/Administrators,group"

$perm.psbase.Invoke("Add",([ADSI]"WinNT://PROSQLADMIN/WinUser").path)

invoke-sqlcmd -ServerInstance .\MasterServer -Query "--Create the database

CREATE DATABASE Chapter22 ;

GO

USE Chapter22

GO

--Create and populate numbers table

DECLARE @Numbers TABLE

(

 Number INT

)

;WITH CTE(Number)

AS

(

 SELECT 1 Number

 UNION ALL

 SELECT Number + 1

ChApter 22 AutomAting mAintenAnCe routines

819

 FROM CTE

 WHERE Number < 100

)

INSERT INTO @Numbers

SELECT Number FROM CTE;

--Create and populate name pieces

DECLARE @Names TABLE

(

 FirstName VARCHAR(30),

 LastName VARCHAR(30)

);

INSERT INTO @Names

VALUES('Peter', 'Carter'),

 ('Michael', 'Smith'),

 ('Danielle', 'Mead'),

 ('Reuben', 'Roberts'),

 ('Iris', 'Jones'),

 ('Sylvia', 'Davies'),

 ('Finola', 'Wright'),

 ('Edward', 'James'),

 ('Marie', 'Andrews'),

 ('Jennifer', 'Abraham');

--Create and populate Customers table

CREATE TABLE dbo.Customers

(

 CustomerID INT NOT NULL IDENTITY PRIMARY KEY,

 FirstName VARCHAR(30) NOT NULL,

 LastName VARCHAR(30) NOT NULL,

 BillingAddressID INT NOT NULL,

 DeliveryAddressID INT NOT NULL,

 CreditLimit MONEY NOT NULL,

 Balance MONEY NOT NULL

);

ChApter 22 AutomAting mAintenAnCe routines

820

SELECT * INTO #Customers

FROM

 (SELECT

 (SELECT TOP 1 FirstName FROM @Names ORDER BY NEWID())

FirstName,

 (SELECT TOP 1 LastName FROM @Names ORDER BY NEWID())

LastName,

 (SELECT TOP 1 Number FROM @Numbers ORDER BY NEWID())

BillingAddressID,

 (SELECT TOP 1 Number FROM @Numbers ORDER BY NEWID())

DeliveryAddressID,

 (SELECT TOP 1 CAST(RAND() * Number AS INT) * 10000

 FROM @Numbers

 ORDER BY NEWID()) CreditLimit,

 (SELECT TOP 1 CAST(RAND() * Number AS INT) * 9000

 FROM @Numbers

 ORDER BY NEWID()) Balance

 FROM @Numbers a

) a;

--Create the SQLUser Login and DB User

USE Master

GO

CREATE LOGIN [PROSQLADMIN\sqluser] FROM WINDOWS WITH DEFAULT_

DATABASE=Chapter22 ;

GO

USE Chapter22

GO

CREATE USER [PROSQLADMIN\sqluser] FOR LOGIN [PROSQLADMIN\sqluser] ;

GO

--Add the SQLUser to the db_backupoperator group

ALTER ROLE db_backupoperator ADD MEMBER [PROSQLADMIN\sqluser] ;

GO"

ChApter 22 AutomAting mAintenAnCe routines

821

 Creating a Simple SQL Server Agent Job

We start by creating a simple Server Agent job, which uses an operating system

command to delete backup files that are older than 30 days, and schedule this job to run

on a monthly basis. We create the SQL Server Agent artifacts using the New Job dialog

box. To invoke this dialog box, drill through SQL Server Agent in Object Explorer, and

select New Job from the Jobs context menu. Figure 22-2 illustrates the General page of

the New Job dialog box.

Figure 22-2. The General page

On this page, we name our job DeleteOldBackups and change the job owner to

be the sa account. We can also optionally add a description for the job and choose a

category.

On the Steps page, we use the New button to invoke the New Job Step dialog box.

The General tab of this dialog box is illustrated in Figure 22-3.

ChApter 22 AutomAting mAintenAnCe routines

822

On this page, we give our job step a name, specify that the step is an operating

system command in the Type drop-down, and confirm in the Run As drop-down that

the step runs under the security context of the SQL Server Agent service account. In the

Command section, we enter a batch command, which deletes all files from our default

backup location that are older than 30 days and have a file extension of .bak. You can

find this batch command in Listing 22-3.

Listing 22-3. Removing Old Backups

forfiles -p "C:\Program Files\Microsoft SQL Server\MSSQL12.MASTERSERVER\

MSSQL\Backup" -s -m *.bak /D -30 /C "cmd /c del @path"

On the Advanced page of the New Job Step dialog box, shown in Figure 22-4, we

leave the default settings. We could use this page, however, in more complex scenarios,

to configure logging and to control decision-tree logic. We discuss this in the next

section.

Figure 22-3. The General page

ChApter 22 AutomAting mAintenAnCe routines

823

Once we have configured our job step, we can exit out of the New Job Step dialog box

and return to the New Job dialog box. Here, we now move to the Schedules page. On this

page, we use the New button to invoke the New Job Schedule dialog box, illustrated in

Figure 22-5.

Figure 22-4. The Advanced page

ChApter 22 AutomAting mAintenAnCe routines

824

In the New Job Schedule dialog box, we first enter a name for our schedule. The

default schedule type is Recurring, but the screen changes dynamically if we choose

other options. In the Frequency section of the screen, we select Monthly. Again, the

screen changes dynamically if we select weekly or daily in this drop-down.

We can now configure the date and time that we would like the schedule to invoke

job execution. In our scenario, we leave the default option of midnight, on the first day of

each month.

On the Notifications page of the New Job dialog box, we configure any actions that

we want to occur when the job completes. As illustrated in Figure 22-6, we configure an

entry to write to the Windows Application Log if the job fails. This is an especially useful

option if your enterprise is managed by a monitoring tool such as SCOM, because you

can configure SCOM to monitor for a failure entry in the Windows application log and

send an alert to the DBA team. In the next section, we discuss how to configure e-mail

notifications directly from SQL Server Agent.

Figure 22-5. The New Job Schedule dialog box

ChApter 22 AutomAting mAintenAnCe routines

825

 Creating a Complex SQL Server Agent Job

In the following sections, we create a more complex SQL Server Agent job, which backs

up the Chapter22 database. The job then checks that the SQL Server Browser service

is running. We use Run As to set the context under which the T-SQL job step runs and

a proxy to run the PowerShell job step. We also configure Database Mail so that an

operator can be notified of the success or failure of the job and schedule the job to run

periodically. You can also see how to create the SQL Server Agent artifacts using T-SQL,

which may prove useful when you are working in Server Core environments.

Creating the Credential

Now that our environment is prepared, we create a SQL Server Agent job, which first

backs up the Chapter22 database. The job then checks to ensure that the SQL Server

Browser service is running. Checking that the browser service is running is a useful

practice, because if it stops, then applications are only able to connect to the instance

Figure 22-6. The Notifications page

ChApter 22 AutomAting mAintenAnCe routines

826

if they specify the port number of the instance in their connection strings. We run the

backup as a T-SQL command under the context of SQL User, and we use PowerShell

to check that the browser service is running by using the WinUser account. Therefore,

our first step is to create a credential, which uses the WinUser account. We can achieve

this in SQL Server Management Studio by drilling through Security and selecting New

Credential from the Credentials context menu. This causes the New Credential dialog

box to be invoked, as shown in Figure 22-7.

Figure 22-7. The New Credential dialog box

In this dialog box, use the Credential Name field to specify a name for your new

credential. In the Identity field, specify the name of the Windows security principle that

you wish to use and then type the Windows password in the Password and Confirm

Password fields. You can also link the credential to an EKM provider. If you wish to do

this, check Use Encryption Provider and select your provider from the drop-down list.

EKM is discussed further in Chapter 11.

ChApter 22 AutomAting mAintenAnCe routines

827

Creating the Proxy

Next, let’s create a SQL Server Agent proxy account, which uses this credential. We

configure this proxy account to be able to run PowerShell job steps. We can achieve this

through SSMS by drilling through SQL Server Agent in Object Explorer and selecting

New Proxy from the Proxies context menu. This causes the General page of the New

Proxy Account dialog box to display, illustrated in Figure 22-8.

Figure 22-8. The New Proxy Account dialog box

On this page, we specify a name for our proxy account and give it a description. We use

the Credential Name field to select our WinUserCredential credential and then use the Active

To The Following Subsystems section to authorize the proxy to run PowerShell job steps.

Tip if you enter the new proxy account from the node of the relevant subsystem
located under the proxies node in object explorer, the relevant subsystem is
automatically selected within the dialog box.

ChApter 22 AutomAting mAintenAnCe routines

828

On the Principals page, we can add logins or server roles that have permissions to

use the proxy. In our case, this is not required, because we are using SQL Server with

an administrator account, and administrators automatically have permissions to proxy

accounts.

Creating the Schedule

Now that our proxy account is configured, we create the schedule to be used by our job.

We need our maintenance job to run on a nightly basis, so we configure the schedule to

run at 1 AM every morning. To invoke the New Job Schedule dialog box from SSMS, we

select New ➤ Schedule from the SQL Server Agent context menu in Object Explorer. This

dialog box is shown in Figure 22-9.

Figure 22-9. The New Job Schedule dialog box

ChApter 22 AutomAting mAintenAnCe routines

829

In this dialog box, we specify a name for the schedule in the Name field and select

the condition for the schedule in the Schedule Type field. Selecting any condition other

than Recurring causes the Frequency and Duration sections to become unavailable.

Selecting any condition other than One Time causes the One-Time Occurrence section

to become unavailable. We also ensure that the Enabled box is checked so that the

schedule can be used.

In the Frequency section, we select Daily in the Occurs drop-down list. Our selection

in this field causes the options within the Frequency and Daily Frequency sections to be

altered dynamically to suit our selection. Since we want our schedule to run daily at 1

AM, we ensure that 1 is specified in the Recurs Every field and change the Occurs Once

At field to be 1 AM. Because we want our job to start running immediately and never

expire, we do not need to edit the fields in the Duration section.

Configuring Database Mail

We would like our DBA’s distribution list to be notified if our job fails. Therefore, we need

to create an operator. Before we do this, however, we need to configure the Database Mail

on the instance so that the notifications can be delivered. Our first step is to enable the

Database Mail extended stored procedures, which are disabled by default, to reduce the

attack surface. We can activate these using sp_configure, as demonstrated in Listing 22-4.

Note if you do not have access to an smtp replay server, then the examples in
this section will still work, but you will not receive e-mail.

Listing 22-4. Enabling Database Mail XPs

EXEC sp_configure 'show advanced options', 1 ;

GO

RECONFIGURE

GO

EXEC sp_configure 'Database Mail XPs', 1 ;

GO

RECONFIGURE

GO

ChApter 22 AutomAting mAintenAnCe routines

830

We can now launch the Database Mail Configuration Wizard by drilling through

Management in Object Explorer and selecting Database Mail. After passing through the

Welcome page, we see the Select Configuration Task page shown in Figure 22-10.

Figure 22-10. The Select Configuration Task page

On this page, we should ensure that the Set Up Database Mail By Performing The

Following Tasks option is selected. On the New Profile page, we specify a name for our

profile. A profile is an alias for one or more mail accounts, which are used to send the

notification to the operator. It is good practice to add multiple accounts to a profile; that

way, if one account fails, you can use a different one. This page is illustrated in Figure 22- 11.

ChApter 22 AutomAting mAintenAnCe routines

831

Let’s now use the Add button to add one or more SMTP (Simple Mail Transfer

Protocol) email accounts to the profile via the New Database Mail Account dialog box,

shown in Figure 22-12.

Figure 22-11. The New Profile page

ChApter 22 AutomAting mAintenAnCe routines

832

In this dialog box, we specify a name for the account and, optionally, a description.

We then need to specify the email address that we will use to send mails, along with the

name and port of the SMTP server that will deliver the messages. You can also specify a

display name for when the e-mails are received. For DBAs who receive the notification,

it helps if the display name includes the server\instance from which the notification

was generated. We have selected Anonymous authentication. This implies that access to

the SMTP server is controlled with firewall rules, as opposed to authentication. This is a

relatively common approach in enterprise environments.

After adding the account, we can move to the Manage Profile Security page of the

wizard. This page has two tabs: Public Profiles and Private Profiles. We configure our

profile as public and also mark it as the default profile. Making the profile public means

that any user with access to the MSDB database can send e-mail from that profile. If we

make the profile private, then we need to specify a list of users or roles who may use the

profile for sending e-mail. Marking the profile as default makes the profile default for

the user or role. Each user or role can have one default profile. The Public Profiles tab is

displayed in Figure 22-13.

Figure 22-12. The New Database Mail Account dialog box

ChApter 22 AutomAting mAintenAnCe routines

833

On the Configure System Parameters page of the wizard, illustrated in Figure 22-14,

you can alter the default system properties, which control how mail is handled. This

includes specifying the number of times an account should be retried and the time lapse

between retries. It also involves setting the maximum allowable size of an e-mail and

configuring a blacklist of extensions. The Database Mail Executable Minimum Lifetime

(Seconds) setting configures how long the Database Mail process should remain active

when there are no e-mails in the queue waiting to be sent. The logging level can be

configured with the following settings:

Normal: Logs errors

Extended: Logs errors, warnings, and informational messages

Verbose: Logs errors, warnings, informational messages, success

messages, and internal messages

Figure 22-13. The Public Profiles tab

ChApter 22 AutomAting mAintenAnCe routines

834

Caution unfortunately, attachment exclusions are implemented as a blacklist, as
opposed to a whitelist. this means that to achieve the best balance of security and
operational support, you should give time and thought to the file types that should
be excluded.

On the Complete the Wizard page, you are provided with a summary of the tasks that

will be performed. In our scenario, this includes creating a new account, creating a new

profile, adding the account to the profile, and configuring the profile’s security.

We now need to configure SQL Server Agent to use our mail profile. To do this, we

select Properties from the SQL Server Agent context menu in Object Explorer to invoke

the SQL Server Agent Properties dialog box and navigate to the Alert System page, shown

in Figure 22-15.

Figure 22-14. The Configure System Parameters page

ChApter 22 AutomAting mAintenAnCe routines

835

On this page, we check the Enable Mail Profile check box before selecting the DBA-

DL profile from the drop-down list. After we exit the dialog box, operators are able to use

Database Mail.

Creating the Operator

Now that Database Mail has been configured, we need to create an operator that will

receive e-mails in the event that our job fails. We can access the New Operator dialog box

by drilling through SQL Server Agent in Object Explorer and by selecting New Operator

from the Operators context menu. The General page of the New Operator dialog box is

shown in Figure 22-16.

Figure 22-15. The Alert System page

ChApter 22 AutomAting mAintenAnCe routines

836

On this page, we specify a name for the operator and also add the e-mail address

that the operator will be using. This must match the e-mail address that has been

configured within Database Mail. The Notifications page displays details of the alerts

and notifications that are already configured for the operator, so it is irrelevant to us at

this point.

Creating the Job

Now that all of the prerequisites are in place, we can create the SQL Server Agent job. We

can achieve this in SQL Server Management Studio by drilling through SQL Server Agent

in Object Explorer and choosing New Job from the Jobs context menu. This causes the

General page of the New Job dialog box to display, as illustrated in Figure 22-17.

Figure 22-16. The General page

ChApter 22 AutomAting mAintenAnCe routines

837

On this page, we use the Name field to specify a name for our job and, optionally,

add a description in the Description field. It’s also optional to add the job to a category;

in our instance, we have added the job to the Database Maintenance category by

selecting it from the drop-down list. We also check the Enabled box so that the job will be

active as soon as it is created.

We also specify that the job owner will be sa. This is a controversial topic, but I

generally recommend this approach for the following reason: job ownership does not

matter much. No matter who owns the job, it functions in the same way. If the owner’s

account is dropped, however, then the job no longer functions. If you make sa the

owner, then there is no chance of this situation occurring. If you are using the Windows

authentication model as opposed to mixed-mode authentication, however, then it

is reasonable to use the SQL Server Agent service account as an alternative. This is

because, although it is possible that you will change the service account and drop the

associated login, it is more unlikely than dropping other user’s logins, such as a DBA’s

login, when he leaves the company.

Figure 22-17. The General page

ChApter 22 AutomAting mAintenAnCe routines

838

On the Steps page of the dialog box, we use the New button to add our first step—

backing up the Chapter22 database. The General page of the New Job Step dialog box is

illustrated in Figure 22-18.

Figure 22-18. The General page of the New Job Step dialog box

On this page, we enter Backup as the name of the job step and type the BACKUP

DATABASE command in the Command field. The Type field allows us to select the

subsystem to use, but it defaults to T-SQL, so we do not need to alter this. Listing 22-5

contains the backup script.

Tip make sure to always test scripts before you add them to your jobs.

Listing 22-5. Backup Script

BACKUP DATABASE Chapter22

 TO DISK =

 N'C:\Microsoft SQL Server\MSSQL15.PROSQLADMIN\MSSQL\Backup\

Chapter22.bak'

 WITH NOINIT

ChApter 22 AutomAting mAintenAnCe routines

839

 ,NAME = N'Chapter22-Full Database Backup'

 ,SKIP

 ,STATS = 10 ;

On the Advanced page of the dialog box, shown in Figure 22-19, we use the On

Success Action and On Failure Action drop-down boxes to configure the step so that

it moves to the next step, regardless of whether the step succeeds or fails. We do this

because our two steps are unrelated. We also configure the step to retry three times, at

1-minute intervals, before it fails.

We check the Include Step Output In History box so that the step output is included

in the job history (doing so helps DBAs troubleshoot any issues) and configure the step

to run as the SQLUser user. We configure the Run as User option because, as previously

discussed, job steps of the T-SQL type use EXECUTE AS technology, instead of a proxy

account, to implement security.

Figure 22-19. The Advanced page

Once we exit the dialog box, we need to use the New button on the Steps page of the

New Job dialog box again to add our second job step. This time, on the General page,

we specify the PowerShell type and enter the PowerShell script that checks the status of

ChApter 22 AutomAting mAintenAnCe routines

840

the SQL Server Browser service. We also use the Run As box to specify that the step runs

under the context of the PowerShellProxy proxy. This is demonstrated in Figure 22-20.

Listing 22-6 shows the command that we use.

Figure 22-20. The General page

Listing 22-6. Checking Browser Service

Get-Service | Where {$_.name -eq "SQLBrowser"}

On the Advanced page, we choose to include the step output in the job history. We

can leave all other options with their default values.

When we return to the Steps page of the New Job dialog box, we see both of our steps

listed in the correct order, as shown in Figure 22-21. If we wish to change the order of

the steps, however, we can use the up and down arrows in the Move Step section. We

can also bypass early steps by selecting to start the job at a later step using the Start Step

drop-down list.

ChApter 22 AutomAting mAintenAnCe routines

841

On the Schedules page of the wizard, we click the Pick button; doing so displays a list

of existing schedules in the Pick Schedule for Job dialog box (see Figure 22-22). We use

this dialog box to select our maintenance schedule.

Figure 22-21. The Steps page

Figure 22-22. The Pick Schedule for Job dialog box

ChApter 22 AutomAting mAintenAnCe routines

842

After we exit the dialog box, the Schedule displays on the Schedules page of the Job

Properties dialog box.

You can use the Alerts page to organize alerts for the job. This is not relevant to our

scenario right now, but alerts are discussed later in the chapter.

On the Notifications page, we configure the DBATeam operator we want notified by

e-mail in the event that the job fails. We do this by checking the E-mail check box and

selecting our DBATeam operator from the drop-down list, as shown in Figure 22-23.

Figure 22-23. The Notifications page

You can use the Targets page to configure multiserver jobs, which are not relevant to

our current scenario, but we do discuss them later in this chapter.

 Monitoring and Managing Jobs
Although jobs are usually scheduled to run automatically, you still encounter monitoring

and maintenance requirements, such as executing jobs manually and viewing job

history. These tasks are discussed in the following sections.

ChApter 22 AutomAting mAintenAnCe routines

843

 Executing Jobs

Even if a job is scheduled to run automatically, at times you may wish to execute a job on

an ad hoc basis. For example, if you have a job that is scheduled to run nightly to take full

backups of the databases within your instance, you may wish to execute it manually just

before a code release or software upgrade.

A job can be executed manually in SQL Server Management Studio by drilling

through SQL Server Agent ➤ Jobs in Object Explorer and then selecting Start Job at Step

from the Job’s context menu; doing this invokes the Start Job dialog box. Figure 22-24

displays the Start Job dialog box for the BackupAndCheckBrowser job. In this dialog box,

you can select the first step of the job you want to run before you use the Start button to

execute the job.

Figure 22-24. Start Job dialog box

To execute a job using T-SQL, you can use the sp_start_job system stored

procedure. This procedure accepts the parameters detailed in Table 22-2.

ChApter 22 AutomAting mAintenAnCe routines

844

Table 22-2. sp_start_ job Parameters

Parameter Description

@job_name the name of the job to execute. if NULL, then the @job_name parameter must

be specified.

@job_id the iD of the job to execute. if NULL, then the @job_name parameter must be

specified.

@server_name used for multiserver jobs. specifies the target server on which to run the job.

@step_name the name of the job step where execution should begin.

To run our BackupAndCheckBrowser job, we execute the command in Listing 22-7.

Once a job has been executed, it cannot be executed again until it has completed.

Listing 22-7. Executing a Job

EXEC sp_start_job @job_name=N'BackupAndCheckBrowser' ;

If we wanted the job to start executing at a later step, we can use the @step_name

parameter. For example, in our scenario, imagine that we want to execute our job in

order to check that the SQL Server Browser service is running, but do not want the

database backup to occur beforehand. To achieve this, we execute the command in

Listing 22-8.

Listing 22-8. Starting a Job from a Specific Step

EXEC sp_start_job @job_name=N'BackupAndCheckBrowser', @step_name =

'CheckBrowser' ;

 Viewing Job History

You can view the job history for a specific job by selecting View History from the

Job context menu in SQL Server Agent ➤ Jobs within Object Explorer, or for all

jobs by opening Job Activity Monitor, which you can find under the SQL Server

Agent node in Object Explorer. Figure 22-25 shows what the job history of our

BackupAndCheckBrowser job looks like after a single execution.

ChApter 22 AutomAting mAintenAnCe routines

845

Here, you can see that we have drilled through Job History to see the history of each

individual step. After highlighting the Step 2 progress entry, we can see that the results

of the PowerShell script have been written to the step history, and they show us that the

SQL Server Browser service is running, as expected.

 Creating Alerts
Creating an alert allows you to proactively respond to conditions that occur within your

instance by either notifying an operator, running a job, or both. On our instance, we want

to notify the DBATeam operator in the event that our Chapter22 log file becomes more

than 75% full.

To create this alert in SQL Server Management Studio, we drill through SQL Server

Agent in Object Explorer and select New Alert from the Alerts context menu. This causes

the General page of the New Alert dialog box to display. This page is shown in Figure 22- 26.

Figure 22-25. The job history

ChApter 22 AutomAting mAintenAnCe routines

846

On this page of the dialog box, we use the Name field to specify a name for our alert

and select SQL Server Performance Condition Alert from the Type drop-down list. This

causes the options within the page to dynamically update. We then select the Percent

Log Used counter from the Databases object and specify that we are interested in the

Chapter22 instance of our object. (There is an instance of this counter for each database

that resides on the instance.) Finally, we specify that the alert should be triggered if the

value of this counter rises above 75 within the Alert If Counter section of the page.

On the Response page of the dialog box, shown in Figure 22-27, we check the Notify

Operators box if the condition is met, and then select an e-mail notification for our

DBATeam operator.

Figure 22-26. The General page

ChApter 22 AutomAting mAintenAnCe routines

847

On the Options page of the dialog box, you can specify if alert error text should be

included in the notification and also additional information to include. You can also

configure a delay to occur between occurrences of the response being triggered. This can

help you avoid duplicate notifications or needlessly running a job to fix an issue that is

already being resolved. Figure 22-28 shows that we included the server\instance name in

our notification to assist the DBAs in identifying the source of the alert.

Figure 22-27. Response page

ChApter 22 AutomAting mAintenAnCe routines

848

 Multiserver Jobs
Administration can be drastically simplified when you use multiserver administration. In

a multiserver environment, you can configure one instance as a master server (MSX) and

then other servers as target servers (TSX). You can then create a set of maintenance jobs

on the MSX and configure them to run on the TSXs, or a subset of the TSXs.

 Configuring the MSX and TSX Servers
Before creating multiserver jobs, you must first prepare the environment.

The first step is to edit the Registry on the MSX and set the value of the

AllowDownloadedJobsToMatchProxyName REG_DWORD to 1, which allows jobs to match

the proxy name. You can find this value under the SQL Server Agent key, which is located

under the Software\Microsoft\Microsoft SQL Server\[YOUR INSTANCE NAME] key in

the Registry. You also need to ensure that the TSXs have a proxy account configured with

the same name as the proxy account on the MSX that will be running the job.

Figure 22-28. The Options page

ChApter 22 AutomAting mAintenAnCe routines

849

We also need to configure how the TSXs encrypt the data when they communicate

with the MSX. We achieve this using the MsxEncryptChannelOptions Registry key for

the TSX. You can find this key in the SQL Server Agent key, which is located under

the Software\Microsoft\Microsoft SQL Server\[YOUR INSTANCE NAME] key in the

Registry. A value of 0 means that encryption is not used. 1 indicates that encryption

is used, but the certificate is not validated, and an option of 2 indicates that full SSL

encryption and certificate validation is used. In our environment, since all instances are

on the same physical box, we disable encryption.

Therefore, to prepare our SQLSERVER\MASTERSERVER instance to be an MSX and to

prepare our SQLSERVER\TARGETSERVER1 and SQLSERVER\TARGETSERVER2 instances to be

TSXs, we run the script in Listing 22-9 to update the Registry.

Note the demonstrations in this section use three instances named
SQLSERVER\MASTERSERVER, which we configure as an msX, and SQLSERVER\
TARGETSERVER1 and SQLSERVER\TARGETSERVER2, both of which we configure
as tsXs.

Listing 22-9. Updating the Registry

USE Master

GO

EXEC xp_regwrite

 @rootkey = N'HKEY_LOCAL_MACHINE'

 ,@key = N'Software\Microsoft\Microsoft SQL Server\MasterServer\SQL Server

Agent'

 ,@value_name = N'AllowDownloadedJobsToMatchProxyName'

 ,@type = N'REG_DWORD'

 ,@value = 1 ;

EXEC xp_regwrite

 @rootkey='HKEY_LOCAL_MACHINE',

 @key='SOFTWARE\Microsoft\Microsoft SQL Server\MSSQL15.TARGETSERVER1\

SQLServerAgent',

 @value_name='MsxEncryptChannelOptions',

ChApter 22 AutomAting mAintenAnCe routines

850

 @type='REG_DWORD',

 @value=0 ;

EXEC xp_regwrite

 @rootkey='HKEY_LOCAL_MACHINE',

 @key='SOFTWARE\Microsoft\Microsoft SQL Server\MSSQL15.TARGETSERVER2\

SQLServerAgent',

 @value_name='MsxEncryptChannelOptions',

 @type='REG_DWORD',

 @value=0 ;

GO

Tip Because all of our instances reside on the same server, this script can be
run from any of the three instances. if your instances are on different servers, then
the first command will run on the msX and the other two commands should run
against their corresponding tsX. You should also note that the service account
running the database engine will require permissions to the registry keys, for the
script to succeed.

We now use the SQLCMD script in Listing 22-10 to create the PowerShell proxy account

on TARGETSERVER1 and TARGETSERVER2. The script must be run in SQLCMD mode to

work because it connects to multiple instances.

Listing 22-10. Creating a Proxy

:connect sqlserver\targetserver1

CREATE CREDENTIAL WinUserCredential

 WITH IDENTITY = N'PROSQLADMIN\WinUser', SECRET = N'Pa$$w0rd' ;

GO

EXEC msdb.dbo.sp_add_proxy

 @proxy_name=N'PowerShellProxy',

 @credential_name=N'WinUserCredential',

 @enabled=1,

 @description=N'Proxy to check Browser Service status' ;

GO

ChApter 22 AutomAting mAintenAnCe routines

851

EXEC msdb.dbo.sp_grant_proxy_to_subsystem

 @proxy_name=N'PowerShellProxy',

 @subsystem_id=12 ;

GO

:connect sqlserver\targetserver2

CREATE CREDENTIAL WinUserCredential

 WITH IDENTITY = N'PROSQLADMIN\WinUser', SECRET = N'Pa$$w0rd' ;

GO

EXEC msdb.dbo.sp_add_proxy

 @proxy_name=N'PowerShellProxy',

 @credential_name=N'WinUserCredential',

 @enabled=1,

 @description=N'Proxy to check Browser Service status' ;

GO

EXEC msdb.dbo.sp_grant_proxy_to_subsystem

 @proxy_name=N'PowerShellProxy',

 @subsystem_id=12 ;

GO

We can now begin to configure our SQLSERVER\MASTERSERVER instance as an MSX. To

do this through SQL Server Management Studio, we invoke the Master Server Wizard

by opening the SQL Server Agent context menu in Object Explorer and selecting Multi

Server Administration ➤ Make This A Master.

After passing through the Welcome page of the wizard, we find the Master Server

Operator page (see Figure 22-29). On this page, we enter the details of an operator who

will be notified of the status of multiserver jobs.

ChApter 22 AutomAting mAintenAnCe routines

852

On the Target Servers page of the wizard, shown in Figure 22-30, we select our target

servers from the list of registered servers in the Registered Servers pane and move them

to the Target Servers pane using the arrows. After highlighting a server in the Target

Servers pane, we can use the Connection button to ensure connectivity.

Figure 22-29. The Master Server Operator page

ChApter 22 AutomAting mAintenAnCe routines

853

Tip All of our instances appear in the Local server groups node of the registered
servers pane because they are all on the same server. if the instances that you
wish to be target servers are not local, you can register servers by using the
registered servers window, which you can access from the View menu in sQL
server management studio.

On the Master Server Login Credentials page of the wizard, we are asked if a New

Login should be created if required. This is the login that the TSXs use to connect to the

MSX and download the jobs that they should run. If the instances of SQL Server Agent

share the same service account as the MSX, then this is not required.

Now we see a summary of the actions that will be performed on the Completion

page of the wizard before we are presented with a progress window, which informs us of

the success or failure of each task.

Figure 22-30. The Target Servers page

ChApter 22 AutomAting mAintenAnCe routines

854

 Creating Master Jobs
You can create a master job in the same way as a local job, with the exception of

specifying the target servers on which it should run. However, a limitation of using

multiserver jobs is that T-SQL job steps cannot run under the context of another user;

they must run under the context of the service account. Therefore, before we convert our

BackupAndCheckBrowser job to be a multiserver job, we must edit it to remove the Run

As Account. We can do this by using the sp_update_jobstep procedure, as demonstrated

in Listing 22-11.

Listing 22-11. Updating Job Step

USE MSDB

GO

EXEC msdb.dbo.sp_update_jobstep

 @job_name=N'BackupAndCheckBrowser',

 @step_id=1 ,

 @database_user_name=N" ;

GO

Another limitation of multiserver jobs is that the only allowable operator is the

MSXOperator, who receives all notifications for multiserver jobs. Therefore, we also need

to change the DBATeam operator to the MSXOperator operator before continuing. We

can use the sp_update_job procedure to achieve this with the script in Listing 22-12.

Listing 22-12. Updating a Job

USE msdb

GO

EXEC msdb.dbo.sp_update_job

 @job_name=N'BackupAndCheckBrowser',

 @notify_email_operator_name=N'MSXOperator' ;

GO

We can now proceed to convert our BackupAndCheckBrowser job to a multiserver

job from Management Studio by opening the Job Properties dialog box and navigating

to the Targets page. As illustrated in Figure 22-31, we can use this page to change the

ChApter 22 AutomAting mAintenAnCe routines

855

job to a multiserver job and specify the target servers that it should run against from a

list of target servers that have been enlisted using the sp_msx_enlist stored procedure.

After closing the properties dialog box, the job runs against the TargetServer1 and

TargetServer2 instances instead of the MASTERSERVER instance.

Figure 22-31. Convert to multiserver job

To achieve the same results via T-SQL, we use the sp_delete_jobserver system

stored procedure to stop the job from running against the MSX and the sp_add_

jobserver system stored procedure to configure the job to run against the TSXs. Both of

these procedures accept the parameters detailed in Table 22-3.

ChApter 22 AutomAting mAintenAnCe routines

856

In our scenario, we can use the script in Listing 22-13 to convert the job.

Listing 22-13. Converting to a Multiserver Job

EXEC msdb.dbo.sp_delete_jobserver

 @job_name=N'BackupAndCheckBrowser',

 @server_name = N'SQLSERVER\MASTERSERVER' ;

GO

EXEC msdb.dbo.sp_add_jobserver

 @job_name=N'BackupAndCheckBrowser',

 @server_name = N'SQLSERVER\TARGETSERVER1' ;

GO

EXEC msdb.dbo.sp_add_jobserver

 @job_name=N'BackupAndCheckBrowser',

 @server_name = N'SQLSERVER\TARGETSERVER2' ;

GO

 Managing Target Servers
When you configure your MSX, make sure you consider various maintenance activities

against the TSXs. These include polling the TSXs, synchronizing time across the servers,

running ad hoc jobs, and defecting (delisting) TSXs.

We can achieve these tasks in the Target Server Status dialog box, which we can

invoke from the context menu of SQL Server Agent on the MSX by selecting Multi Server

Administration ➤ Manage Target Servers. The Target Server Status tab of this dialog box

is shown in Figure 22-32.

Table 22-3. sp_delete_jobserver and sp_add_jobserver Parameters

Parameter Description

@job_id the guiD of the job that you are converting to a multiserver job. if NULL, then

the @job_name parameter must be specified.

@job_name the name of the job that you are converting to a multiserver job. if NULL, then

the @job_id parameter must be specified.

@server_name the server\instance name that you want the job to run against.

ChApter 22 AutomAting mAintenAnCe routines

857

On this tab, we can use the Force Poll button to make the Target Servers Poll the

MSX. When a TSX polls the MSX, we are forcing it to download the latest copy of the jobs

that it is configured to run. This is useful if you have updated the master job.

The Force Defection button causes the highlighted TSX to be delisted from the

MSX. After it is delisted, the selected TSX no longer polls for or runs multiserver jobs.

The Post Instructions button invokes the Post Download Instructions dialog box,

where you are able to send one of the following instructions to TSXs:

• Defect

• Set Polling Interval

• Synchronize Clocks

• Start Job

To synchronize the time on all servers, you would choose the Synchronize Clocks

instruction type and ensure that All Target Servers is selected in the Recipients section,

as illustrated in Figure 22-33. The clocks are then synchronized when the targets next

poll the master.

Figure 22-32. The Target Server Status tab

ChApter 22 AutomAting mAintenAnCe routines

858

In another scenario, there may be a time when we wish to perform an ad hoc run of

our BackupAndCheckBrowser job against TARGETSERVER1. We can do this by selecting

Start Job as the Instruction Type and then choosing our job from the Job Name drop-

down list. We then use the Recipients section of the screen to select TARGETSERVER1. This

is illustrated in Figure 22-34.

Figure 22-33. Synchronize Clocks

ChApter 22 AutomAting mAintenAnCe routines

859

On the Download Instructions tab of the Target Server Status dialog box, which is

illustrated in Figure 22-35, we see a list of instructions that have been sent to targets. We

can use the drop-down lists at the top of the screen to filter the instructions by job or by

target server.

Figure 22-34. Start a job on TARGETSERVER1

ChApter 22 AutomAting mAintenAnCe routines

860

Figure 22-35. The Download Instructions tab

 Summary
SQL Server Agent is a scheduling engine for SQL Server that allows you to create

powerful maintenance jobs, with decision-based logic, on a variety of schedules. A job

is the container for the tasks that should be performed, and each of these tasks is known

as a step. Each job step can run under the context of a different account and can run

tasks under different subsystems, or types, such as T-SQL, PowerShell, operating system

command, or SSIS package.

A schedule is attached to a job and can be triggered at a specific date and time,

when the CPU is idle, or on a reoccurring schedule, such as daily, weekly, or monthly. A

schedule can also reoccur on an intraday basis, such as hourly, every minute, or even as

frequently as every 10 seconds.

An operator is an individual or team who is notified of the success or failure of jobs

and if an alert fires. Operators can be notified of job status via e-mail, pager, or NET SEND;

however, support for NET SEND and pager are deprecated. For an operator to be notified

by e-mail, Database Mail must be configured so that e-mails can be sent via your SMTP

Replay server.

ChApter 22 AutomAting mAintenAnCe routines

861

By default, jobs run under the context of the SQL Server Agent service account.

However, for good security practice, you should consider using proxy accounts to run

the job steps. Proxy accounts map to credentials at the instance level, which in turn map

to a Windows-level security principle. Proxies can be used for all subsystems, except

T-SQL. T-SQL job steps use EXECUTE AS to execute the commands under the context of a

database user. This is configured using the Run As property.

Alerts can be triggered when an error or warning is fired within the Database Engine,

when a WMI event occurs, or in response to a performance condition being met. When

an alert fires, responses include notifying an operator or running a job to resolve an

issue.

Multiserver jobs allow DBAs to run jobs consistently across their enterprise. In a

multiserver scenario, there is a master server (MSX), in which jobs are created and

modified, and multiple target servers (TSXs). The TSXs periodically poll the MSX and

retrieve a list of jobs that they should be running.

ChApter 22 AutomAting mAintenAnCe routines

863
© Peter A. Carter 2019
P. A. Carter, Pro SQL Server 2019 Administration, https://doi.org/10.1007/978-1-4842-5089-1_23

CHAPTER 23

Policy-Based Management
Policy-Based Management (PBM) is a system DBAs can use to report on or enforce

standards across the enterprise, when used with a central management server. This

chapter first introduces you to the concepts used by PBM and then demonstrates how to

use PBM to effectively manage an estate through the GUI and with PowerShell.

 PBM Concepts
Policy-Based Management uses the concepts of targets, facets, conditions, and policies.

Targets are entities PBM manages, such as databases or tables. Facets are collections of

properties that relate to a target. For example, the database facet includes a property

relating to the name of the database. Conditions are Boolean expressions that can be

evaluated against a property. Policies bind conditions to targets. The following sections

discuss each of these concepts.

 Facets
A facet is a collection of properties that relate to a type of target, such as View, which

has properties including IsSchemaBound, HasIndex, and HasAfterTrigger; Database

Role, which has properties including Name Owner and IsFixedRole; and Index, which

has properties including IsClustered, IsPartitioned, and IsUnique. The Index facet

also exposes properties relating to geospatial indexes, memory-optimized indexes, XML

indexes, and full-text indexes. Other notable facets include Database, StoredProcedure,

SurfaceAreaConfiguration, LinkedServer, and Audit. SQL Server 2019 provides 96

facets in all, and you can find a complete list within the “Evaluation Modes” section of

this chapter. You can also access a list of facets by running the command in Listing 23-1.

864

Listing 23-1. Finding a List of Facets

SELECT name

FROM msdb.dbo.syspolicy_management_facets ;

 Conditions
A condition is a Boolean expression that is evaluated against an object property to

determine whether or not it matches your requirement. Each facet contains multiple

properties that you can create conditions against, but each condition can only access

properties from a single facet. Conditions can be evaluated against the following

operators:

• =

• !=

• LIKE

• NOT LIKE

• IN

• NOT IN

For example, you can use the LIKE operator to ensure that all database names begin

with Chapter by using the following expression Database.Name LIKE 'Chapter%'.

 Targets
A target is an entity to which a policy can be applied. This can be a table, a database,

an entire instance, or most other objects within SQL Server. When adding targets to a

policy, you can use conditions to limit the number of targets. This means, for example, if

you create a policy to enforce database naming conventions on an instance, you can use

a condition to avoid checking the policy against database names that contain the words

“SharePoint,” “bdc,” or “wss,” since these are your SharePoint databases and they may

contain GUIDs that may be disallowed under your standard naming conventions.

Chapter 23 poliCy-Based ManageMent

865

 Policies
A policy contains one condition and binds it to one or more targets (targets may also be

filtered by separate conditions) and an evaluation mode. Depending on the evaluation

mode you select, the policy may also contain a schedule on which you would like the

policy to be checked. Policies support four evaluation modes, which are discussed in the

following section.

 Evaluation Modes
Policies support between one and four evaluation modes, depending on which facet you

use within the condition. The following are the evaluation modes:

• On Demand

• On Schedule

• On Change: Log Only

• On Change: Prevent

If the evaluation mode is configured as On Demand, then the policies are only

evaluated when you (the DBA) manually evaluate them. If the evaluation mode is

configured as On Schedule, then you create a schedule when you create the policy; this

causes the policy to be evaluated periodically.

Tip a policy can be evaluated on demand even if it has been configured with a
different evaluation mode.

If you select the On Change: Log Only evaluation mode, then whenever the relevant

property of a target changes, the result of the policy validation is logged to the SQL

Server log. In the event that the policy is fired but not validated, a message is generated

in the log. This occurs when a target has been configured in such a way that one of your

policies is violated. If the policy is violated, then Error 34053 is thrown with a severity

level of 16 (meaning the problem can be fixed by the user).

Tip When you create an object, this causes the properties to be evaluated in the
same way that they are when an existing object’s properties are altered.

Chapter 23 poliCy-Based ManageMent

866

If you choose On Change: Prevent as the evaluation mode, then when a property is

changed, SQL Server evaluates the property, and if there is a violation, an error message

is thrown and the statement that caused the policy violation is rolled back.

Because policies work based on DDL events being fired, depending on the properties

within the facet, not all evaluation modes can be implemented for all facets. The rules

for working out the evaluation modes supported by a specific facet are rather opaque, so

you can discover them by running the query in Listing 23-2.

Listing 23-2. Listing Supported Execution Types per Facet

SELECT

 name ,

 'Yes' AS on_demand,

 CASE

 WHEN (CONVERT(BIT, execution_mode & 4)) = 1

 THEN 'Yes'

 ELSE 'No'

 END AS on_schedule,

 CASE

 WHEN (CONVERT(BIT, execution_mode & 2)) = 1

 THEN 'Yes'

 ELSE 'No'

 END AS on_change_log,

 CASE

 WHEN (CONVERT(BIT, execution_mode & 1)) = 1

 THEN 'Yes'

 ELSE 'No'

 END AS on_change_prevent

FROM msdb.dbo.syspolicy_management_facets ;

 Central Management Servers
SQL Server Management Studio provides a feature called a central management server.

This feature allows you to register an instance as a central management server and then

register other instances as registered servers of this central management server. Once

Chapter 23 poliCy-Based ManageMent

867

you have registered servers under a central management server, you can run queries

against all servers in the group or run policies against all servers within a group.

Tip CMs is a great feature, when used with policy-Based Management, but also
in its own right. i always implement CMs when i am looking after medium or large
sQl server estates, for purposes such as running ad hoc queries against multiple
servers. this allows me to quickly answer management and capacity questions,
such as “how many databases do we have in our estate?”

To register a central management server, select Registered Servers from the View

menu in SQL Server Management Studio. This causes the Registered Servers window to

appear, which is illustrated in Figure 23-1.

Let’s register our SQLSERVER\MASTERSERVER instance (which is the server\instance

name we use in the demonstrations within this section) as a central management server

by selecting Register Central Management Server from the context menu of Central

Management Servers. This causes the General tab of the New Server Registration dialog

box to display, as illustrated in Figure 23-2.

Figure 23-1. The Registered Servers window

Chapter 23 poliCy-Based ManageMent

868

On this tab, we enter the server\instance name of the central management server in

the Server Name box. This causes the Registered Server Name field to update, but you

can edit this manually to give it a new name if you wish. Optionally, you can also add a

description for the instance.

On the Connection Properties tab, displayed in Figure 23-3, we specify our

preferences for connecting to the instance.

Figure 23-2. The General tab

Chapter 23 poliCy-Based ManageMent

869

On this tab, we enter a database as a landing zone. If we leave the option as Default,

then the connection is made to our default database. In the Network section of the tab,

you can specify a specific network protocol to use or leave the setting as Default, which is

what we have done here. Leaving this as Default causes the connection to use the highest

priority protocol specified in the instance’s network configuration. Although changing

the network packet size is not normally advised, because in most scenarios, it will have a

negative effect, doing so can improve performance in atypical scenarios by allowing the

connection to benefit from jumbo frames, which are Ethernet frames that can support a

larger payload and therefore cause less fragmentation of traffic.

Figure 23-3. The Connection Properties tab

Chapter 23 poliCy-Based ManageMent

870

In the Connection section of the screen, we specify durations for connection

timeouts and execution timeouts. You can also specify whether to encrypt connections

made to the central management server. If you are managing multiple instances within

a single instance of SQL Server Management Studio, the Use Custom Color option is

very useful for color coding the instance. Checking this option and specifying a color

helps avoid queries accidently being run against an incorrect server. I find color coding

instances particularly useful when I’m troubleshooting failed code releases, since I don’t

want to accidently run Dev/Test code against production!

The Always Encrypted tab allows you to enable Always Encrypted for the connection

and specify the appropriate attestation server. This tab is illustrated in Figure 23-4. For

further information on Always Encrypted, please see Chapter 11.

Figure 23-4. Always Encrypted tab

Chapter 23 poliCy-Based ManageMent

871

The Additional Connection Parameters tab, shown in Figure 23-5, allows you to

specify connection string properties manually. You should be aware, however, that if

you enter connection properties that you have already specified on the other tabs, the

manually specified properties will override your selections in the other tabs.

Clicking the Test button at the bottom of the New Server Registration window allows

you to test the connection to the instance before you save it. This is always a good idea

because it helps you avoid unnecessary troubleshooting at a later date.

Figure 23-5. Additional Connection Parameters tab

Chapter 23 poliCy-Based ManageMent

872

Once we have registered the central management server, we can choose to

either register servers directly below the central management server or create server

groups below the central management server. Base the strategy you choose here on

the requirements of your environment. For example, if all servers that the central

management server manages should have the same policies applied, it is probably

sufficient to register the servers directly below the central management server. If your

central management server will manage servers from different environments, however,

such as Prod and Dev/Test, then you probably want to enforce different sets of policies

against different environments; in such cases, it makes sense to create different server

groups. Selecting New Server Group from the context menu of your newly created

central management server invokes the New Server Group Properties dialog box, as

illustrated in Figure 23-6.

You can see that we are using this dialog box to enter the name and description of

the server group that will group our Dev/Test servers together. After exiting the dialog

box, we repeat the process to create a server group for our production servers, which we

name Prod.

Tip you can also nest server groups. therefore, in more complex topologies, you
can have a server group for each geographical region, which contains a server
group for each environment.

Figure 23-6. New Server Group Properties dialog box

Chapter 23 poliCy-Based ManageMent

873

Now let’s choose the New Server Registration option from the context menu of

each server group to add our instances to the appropriate groups. We add SQLSERVER\

TARGETSERVER1 and SQLSERVER\TARGETSERVER2 to the Prod group and add the default

instance of SQLSERVER to the DevTest group. You can add the servers using the same New

Server Registration dialog box that you used to register the central management server.

Figure 23-7 shows the Registered Servers screen after the servers have been added.

One very useful feature of central management servers is their ability to run queries

against all servers within a server group or against all servers they manage. For example,

we can select New Query from the context menu of the Prod Server Group and run the

query in Listing 23-3.

Listing 23-3. Listing All Database in the Server Group

SELECT name

FROM sys.Databases ;

This query returns the results displayed in Figure 23-8.

Figure 23-7. The Registered Servers window

Chapter 23 poliCy-Based ManageMent

874

The first thing you notice is that the status bar below the query results is pink instead

of yellow. This indicates that the query has been run against multiple servers. Second,

instead of displaying an instance name, the status bar displays the server group that the

query has been run against; in our case, this is Prod. Finally, notice that an additional

column has been added to the result set. This column is called Server Name, and it

indicates which instance within the server group the row returned from. Because no user

databases exist on SQLSERVER\TARGETSERVER1 or SQLSERVER\TARGETSERVER2, the four

system databases have been returned from each instance.

 Creating Policies
You can create policies using either SQL Server Management Studio or T-SQL. The

following sections discuss how to create a simple static policy, before they go on to

discuss how to create advanced, dynamic policies.

 Creating Simple Policies
PBM offers a great deal of flexibility within its predefined facets, properties, and

conditions. You can use this flexibility to create a comprehensive set of policies for your

enterprise. The following sections discuss how to use PBM’s built-in functionality to

create simple policies.

Figure 23-8. Results of listing all servers in the server group

Chapter 23 poliCy-Based ManageMent

875

 Creating a Policy That You Can Manually Evaluate

As you’ve probably noticed, example databases in this book use the name format of

Chapter<ChapterNumber>. Therefore, here we create a policy that enforces this naming

convention by causing any policy that violates this policy to roll back and generate

an error. To do this, we invoke the Create New Policy dialog box by drilling through

Management ➤ Policy Management in Object Explorer on the Master server and then

selecting New Policy from the Policies context menu. Figure 23-9 displays the General

page of the dialog box.

On this page, we give the policy a name but find that the Against Targets and

Evaluation Mode options are not accessible. This is because we have not yet created

a condition. Therefore, our next step is to use the Check Condition drop-down box to

select New Condition. This causes the General page of the Create New Condition dialog

box to display, illustrated in Figure 23-10.

Figure 23-9. Create New Policy dialog box, General page

Chapter 23 poliCy-Based ManageMent

876

On this page, we give the condition a name and select the Database facet. In the

Expression area of the screen, we select that the @Name field should be LIKE 'Chapter%',

where % is a zero-or-more-character wildcard. On the Description page, we are

optionally able to specify a textual description for the condition.

Back on the General page of the Create New Policy dialog box, we ensure that the

Evaluation Mode drop-down is set to select On Demand, which means that the policy

is not evaluated unless we explicitly evaluate it. The only other option available is to

schedule the evaluation. This is because the Database facet does not support the On

Change: Log Only or On Change: Prevent evaluation modes.

Our policy obviously does not apply to system databases. This matters because

we can use our policy to check existing databases as well as new databases we create.

Therefore, in the Against Targets section of the page, we use the drop-down box to enter

the Create New Condition dialog box and create a condition that excludes databases that

have a database ID of four or less, as shown in Figure 23-11.

Figure 23-10. Create New Condition dialog box, General page

Chapter 23 poliCy-Based ManageMent

877

Back in the Create New Policy dialog box, we can create a condition to enforce a

server restriction, which filters the instances that the policy is evaluated against. Because

we are only evaluating the policy against our SQLSERVER\MASTERSERVER instance,

however, we do not need to do this. Instead, we navigate to the Description page,

illustrated in Figure 23-12.

Figure 23-11. Create an ExcludeSystemDatabases condition

Chapter 23 poliCy-Based ManageMent

878

On this page, we use the New button to create a new category, CodeRelease, which

helps us check code quality in a UAT (user acceptance testing) or OAT (operational

acceptance testing) environment before the code is promoted to production. Optionally,

we can also add a free text description of the policy and a help hyperlink, alongside a

web site address or e-mail link.

 Manually Evaluating a Policy

Before evaluating our policy, we first create a database that does not match our naming

convention by executing the command in Listing 23-4.

Listing 23-4. Creating a BrokenPolicy Database

CREATE DATABASE BrokenPolicy ;

We can evaluate our new policy against our instance by using the Evaluate Policies

dialog box, which we can invoke by drilling through Management ➤ Policy Management

➤ Policies and by selecting Evaluate from the context menu of our policy.

Figure 23-12. The Description page

Chapter 23 poliCy-Based ManageMent

879

Tip you can manually evaluate the policy even if it is disabled.

In the Evaluate Policies dialog box, shown in Figure 23-13, you see a list of policies

that have been evaluated in the top half of the window; a status indicator informs you if

any policies have been broken. In the bottom half of the window, you see a list of targets

that the highlighted policy was evaluated against; here a status indicator informs you of

the policy’s status on a target-by-target basis.

Tip if you wish to evaluate multiple policies, select evaluate from the context
menu of the policies folder in object explorer, and then select which policies you
would like to evaluate. all selected policies are then evaluated and displayed in the
evaluation results page.

Tip We created the Chapter22 database in Chapter 22 of this book. if you do
not have a Chapter22 database, you can create it using the statement CREATE
DATABASE Chapter22 ;

Click the View link in the Details column to invoke the Results Detailed View dialog

box, as illustrated in Figure 23-14. This information is useful for failed policy evaluations

because it provides the details of the actual value that did not meet the policy’s condition.

Figure 23-13. The Evaluate Policies dialog box

Chapter 23 poliCy-Based ManageMent

880

 Creating a Policy That Prevents Unwanted Activity

Another very useful simple policy is one that helps you prevent developers from

obfuscating their stored procedures. Procedure obfuscation arguably has a place in

third-party software, in order to prevent the theft of intellectual property. For in-house

applications, however, there is no need to use obfuscation, and doing so can lead to

issues with diagnosing performance issues. Additionally, if the development teams are

not using source control, it can lead to the loss of code, in the event of a disaster. In this

instance, rather than just evaluating the policy on an ad hoc basis, we want to prevent

stored procedures that are obfuscated from being created. This means that during code

releases, you do not need to review every stored procedure for the WITH ENCRYPTION

syntax. Instead, you can expect the policy to be evaluated and the CREATE PROCEDURE

statement to be rolled back, preventing this from occurring.

Before we create this policy, we need to ensure that nested triggers are enabled on

the instance. This is because the policy will be enforced using DDL triggers, and nested

Figure 23-14. The Results Detailed View dialog box

Chapter 23 poliCy-Based ManageMent

881

triggers are a hard technical requirement for the On Change: Prevent mode. You can

enable nested triggers using sp_configure, with the script in Listing 23-5; however, they

are turned on by default.

Listing 23-5. Enabling Nested Triggers

EXEC sp_configure 'nested triggers', 1 ;

RECONFIGURE

After creating the policy, you need to create a condition. When creating the

condition, as illustrated in Figure 23-15, we use the @IsEncrypted property of the

StoredProcedure facet.

In the Create New Policy dialog box, illustrated in Figure 23-16, we could use the

Against Targets area to configure which targets should be evaluated by the policy; the

setting defaults to Every Stored Procedure In Every Database, however. This suits our

needs, so we do not need to create a condition. In the Evaluation Mode drop-down, we

select On Change: Prevent; this makes it so it is not possible to create stored procedures

on our SQLSERVER\MASTERSERVER instance if it is obfuscated. We also make sure to check

the Enabled box so that the policy is enabled when it is created.

Figure 23-15. The Create New Condition dialog box

Chapter 23 poliCy-Based ManageMent

882

To demonstrate the prevention in action, we attempt to create a stored procedure

using the script in Listing 23-6.

Listing 23-6. Creating a Stored Procedure with NOLOCK

CREATE PROCEDURE ObfuscatedProc

WITH ENCRYPTION

AS

BEGIN

 SELECT *
 FROM sys.tables

END

Figure 23-17 shows the error that is thrown when we attempt to run this CREATE

PROCEDURE statement.

Figure 23-16. The Create New Policy dialog box

Chapter 23 poliCy-Based ManageMent

883

 Creating an Advanced Policy
PBM is extensible, and if you can’t create the required condition using the built-in facet

properties, the Expression Advanced Editor allows you to use a wide range of functions.

These functions include ExecuteSql() and ExecuteWql(), which allow you to build your

own SQL and WQL (Windows Query Language), respectively. The ExecuteSql() and

ExecuteWql() functions are not T-SQL functions. They are part of the PBM framework.

You can use these functions to write queries against either the Database Engine or

Windows and evaluate the result. The functions are called once for each target. So, for

example, if they are used with the Server facet, they only run once, but if they are used

against the Table facet, they are evaluated for every target table. If multiple columns

are returned when you are using ExecuteSql(), then the first column of the first row is

evaluated. If multiple columns are returned when you are using ExecuteWql(), then an

error is thrown. For example, imagine that you want to ensure that the SQL Server Agent

service starts. You can achieve this in T-SQL by running the query in Listing 23-7. This

query uses the LIKE operator because the servicename column also includes the name

of the service, and the LIKE operator makes the query generic so that it can be run on

any instance, without needing to be modified.

Listing 23-7. Checking to Make Sure SQL Server Agent Is Running with T-SQL

SELECT status_desc

FROM sys.dm_server_services

WHERE servicename LIKE 'SQL Server Agent%' ;

Or alternatively, you can achieve the same result by using the WQL query in

Listing 23-8.

Figure 23-17. The error thrown by the policy trigger

Chapter 23 poliCy-Based ManageMent

884

Note you can find an WQl reference at https://msdn.microsoft.com/en-
us/library/aa394606(v=vs.85).aspx.

Listing 23-8. Checking That SQL Server Agent Is Running with WQL

SELECT State FROM Win32_Service WHERE Name ="SQLSERVERAGENT$MASTERSERVER"

To use the T-SQL version of the query, you need to use the ExecuteSql() function,

which accepts the parameters in Table 23-1.

To use the WQL version of the query, you need to use ExecuteWql(), which accepts

the parameters described in Table 23-2.

Therefore, if you are using the T-SQL approach, your condition would use the script

in Listing 23-9 in the Conditions editor of PBM (it will not work directly in SSMS).

Listing 23-9. ExecuteSQL()

ExecuteSql('string', 'SELECT status_desc FROM sys.dm_server_services WHERE

servicename LIKE "SQL Server Agent%"')

Table 23-1. ExecuteSQL() Parameters

Parameter Description

returnType specifies the return type expected from the query. acceptable values are Numeric,

String, Bool, DateTime, Array, and GUID.

sqlQuery specifies the query that should run.

Table 23-2. ExecuteWQL() Parameters

Parameter Description

returnType specifies the return type expected from the query. acceptable values are Numeric,

String, Bool, DateTime, Array, and GUID.

namespace specifies the WQl namespace that the query should be executed against.

wqlQuery specifies the query that should run.

Chapter 23 poliCy-Based ManageMent

https://msdn.microsoft.com/en-us/library/aa394606
https://msdn.microsoft.com/en-us/library/aa394606

885

Tip it is important to note here that we had to escape the single quotes in our
query, to ensure that they are recognized during execution.

If you use the WQL approach, your condition needs to use the script in Listing 23-10.

Listing 23-10. ExecuteWQL()

ExecuteWql('String', 'root\CIMV2', 'SELECT State FROM Win32_Service WHERE

Name ="SQLSERVERAGENT$MASTERSERVER"')

Figure 23-18 shows how we would create the condition using the WQL approach.

Caution Because of the power and flexibility of the ExecuteWql() and
ExecuteSql() functions, it is possible that they will be abused to create
security holes. therefore, make sure you carefully control who has permissions
to create policies.

 Managing Policies
Policies are installed on an instance of SQL Server, but you can export them to XML

files, which in turn allows them to be ported to other servers or to central management

servers so that they can be evaluated against multiple instances at the same time.

Figure 23-18. Creating the condition with ExecuteWql()

Chapter 23 poliCy-Based ManageMent

886

The following sections discuss how to import and export policies, as well as how to

use policies in conjunction with central management servers. We also discuss how to

manage policies with PowerShell.

 Importing and Exporting Policies
Policies can be exported to and imported from the file system, as XML files. To export

our DatabaseNameConvention policy to the default file location, we select Export

Policy from the context menu of the DatabaseNameConvention policy in Object Explorer,

causing the Export Policy dialog box before to be invoked. Here, we can simply choose a

name for the file and click Save, as shown in Figure 23-19.

We now import the policy into our SQLSERVER\TARGETSERVER1 instance. To do this,

we connect to the TARGETSERVER1 instance in Object Explorer and then drill through

Management ➤ Policy-Based Management, before selecting Import Policy from the

Policies context menu. This invokes the Import dialog box, as displayed in Figure 23-20.

Figure 23-19. The Export Policy dialog box

Chapter 23 poliCy-Based ManageMent

887

In this dialog box, we use the Files To Import ellipses button to select our

DatabaseNameConvention policy. We can also choose the state of the policy after it is

imported from the Policy State drop-down and specify whether policies that already exist

on the instance with the same name should be overwritten.

 Enterprise Management with Policies
Although being able to evaluate a policy against a single instance of SQL Server is useful,

to maximize the power of PBM, you can combine policies with central management

servers so that the policy can be evaluated against the SQL Server Enterprise in a single

execution.

For example, imagine that we want to evaluate the DatabaseNameConvention

policy against all servers within the Prod group that we created when we registered the

SQLSERVER\MASTERSERVER instance as a central management server. To do this, we drill

through Central Management Servers ➤ SQLSERVER\MASTERSERVER in the Registered

Servers window before we select Evaluate Policies from the Prod context menu.

This invokes the Evaluate Policies dialog box. Here, you can use the Source ellipses

button to invoke the Select Source dialog box and choose the policy or policies that you

would like to evaluate against the group, as shown in Figure 23-21.

Figure 23-20. The Import dialog box

Chapter 23 poliCy-Based ManageMent

888

In the Select Source dialog box, either select policies stored as XML files from the file

system or specify the connection details of an instance where the policy is installed. In

our case, we select the DatabaseNameConvention by clicking the Files ellipses button.

Selected policies then display in the Policies section of the screen, as shown in

Figure 23-22. If you selected a source with multiple policies, you can use the check boxes

to define which policies to evaluate. Clicking the Evaluate button causes the selected

policies to be evaluated against all servers in the group.

Figure 23-21. The Evaluate Policies dialog box

Chapter 23 poliCy-Based ManageMent

889

 Evaluating Policies with PowerShell
When policies are installed on an instance, they can be evaluated using the methods

already described in this chapter. If your policies are stored as XML files, however,

then you can still evaluate them using PowerShell. This can be helpful if your SQL

Server enterprise includes SQL Server 2000 or 2005 instances, as many still do. Because

PBM was only introduced in SQL Server 2008, policies cannot be imported into older

instances, but PowerShell offers a useful workaround for this issue.

To evaluate our DatabaseNameConvention policy against our SQLSERVER\

MASTERSERVER instance, from the XML file using PowerShell, we need to run the script in

Listing 23-11. The first line of this script changes the path to the folder where the policy is

stored. The second line actually evaluates the policy.

If the property we were configuring was settable and deterministic (which ours

is not), then we could add the -AdHocPolicyExecutionMode parameter and set it to

"Configure". This would cause the setting to change to fall in line with our policy.

Figure 23-22. The Evaluate Policies dialog box

Chapter 23 poliCy-Based ManageMent

890

Listing 23-11. Evaluating a Policy with PowerShell

sl "C:\Users\Administrator\Documents\SQL Server Management Studio\Policies"

Invoke-PolicyEvaluation -Policy "C:\Users\Administrator\Documents\

SQL Server Management Studio\Policies\DatabaseNameConvention.xml"

-TargetServerName ".\MASTERSERVER"

The output of this policy evaluation is shown in Figure 23-23.

Tip to evaluate multiple properties, provide a comma-separated list for the
-Policy parameter.

 Summary
Policy-Based Management (PBM) offers a powerful and flexible method for ensuring

coding standards and hosting standards are met across your enterprise. A target is an

entity managed by PBM. A condition is a Boolean expression that the policy evaluates

against the targets, and a facet is a collection of properties that relate to a specific type

of target.

Depending on the facet you use, a policy offers up to four policy evaluation modes:

On Demand, On Schedule, On Change: Log Only, and On Change: Prevent. On Demand,

On Schedule, and On Change: Log Only can be thought of as reactive, whereas On

Change: Prevent can be thought of as proactive, since it actively stops a configuration

from being made, which violates a policy. Because On Change modes rely on DDL

triggers, you must enable nested triggers at the instance level, and they are not available

for all facets.

Figure 23-23. Results of policy evaluation

Chapter 23 poliCy-Based ManageMent

891

Policies are extensible, through the use of the ExecuteSql() and ExecuteWql()

functions, which allow you to evaluate the results of T-SQL or WQL queries. These

functions offer massive flexibility, but their power can also cause security holes to be

opened, so exercise caution when granting permissions to create policies.

An instance can be registered as a central management server, and other servers can

be registered underneath it, either directly or in groups. This gives DBAs the ability to

run a query across multiple instances at the same time, and it also offers them the ability

to evaluate policies against multiple servers at the same time. This means that you can

use Policy-Based Management at the Enterprise level to enforce standards.

You can evaluate policies from within SQL Server or using PowerShell with the

-InvokePolicyEvaluation cmdlet. This offers you increased flexibility for managing

estates that have older SQL Server instances, such as 2000 or 2005. This is because

PowerShell allows DBAs to evaluate the policies from XML files, instead of only being

able to evaluate them after importing them to MSDB.

Chapter 23 poliCy-Based ManageMent

893
© Peter A. Carter 2019
P. A. Carter, Pro SQL Server 2019 Administration, https://doi.org/10.1007/978-1-4842-5089-1_24

CHAPTER 24

Resource Governor
Resource Governor provides a method for throttling applications at the SQL Server

layer by imposing limits on CPU, memory, and physical IO on different classifications

of connection. This chapter discusses the concepts the Resource Governor uses before

demonstrating how to implement it. We then look at how to monitor the effect that

Resource Governor has on resource utilization.

 Resource Governor Concepts
Resource Governor uses resource pools to define a subset of server resources, workload

groups as logical containers for similar session requests, and a classifier function to

determine to which workload group a specific request should be assigned. The following

sections discuss each of these concepts.

 Resource Pool
A resource pool defines a subset of server resources that sessions can utilize. When

Resource Governor is enabled, three pools are automatically created: the internal pool,

the default pool, and the default external pool. The internal pool represents the server

resources the instance uses. This pool cannot be modified. The default pool is designed

as a catch-all pool and is used to assign resources to any session that is not assigned to

a user-defined resource pool. You cannot remove this pool; however, you can modify

its settings. The default external pool is used to govern resources used by the rterm.exe,

BxlServer.exe, and python.exe processes, which are used by Machine Learning Services.

The default external resource pool can be modified, but not removed, and new external

resource pools can be added.

894

Resource pools allow you to configure the minimum and maximum amount of

resources (CPU, memory, and physical IO) that will be available to sessions that are

assigned to that pool. As you add additional pools, maximum values of existing pools are

transparently adjusted so they do not conflict with the minimum resource percentages

assigned to all pools. For example, imagine that you have configured the resource pools,

which are represented in Table 24-1, to throttle CPU usage.

In this example, the actual Max CPU % settings will be as you configured

them. However, imagine that you now add an additional resource pool, called

AccountsApplication, which is configured with a Min CPU % of 50 and a Max CPU %

of 80. The sum of the minimum CPU percentages is now greater than the sum of the

maximum CPU percentages. This means that the effective maximum CPU percentage

for each resource pool is reduced accordingly. The formula for this calculation is

Smallest(Default(Max), Default(Max) – SUM(Other Min CPU)), which is reflected

in Table 24- 2.

Table 24-1. Resource Pools’ Simple Effective Maximum Percentages

Resource Pool∗ Min
CPU %

Max
CPU %

Effective
Max CPU %

Calculation

Default 0 100 75 Smallest(75,(100–0-25)) = 75

SalesApplication 25 75 75 Smallest(75,(100–0-0)) = 75

Default External 0 100 75 Smallest(75,(100–0-25)) = 75

∗The internal resource pool is not mentioned here since it is not configurable either directly or
implicitly. Instead, it can consume whatever resources it requires and has a minimum CPU of 0;
therefore, it does not impact the effective maximum CPU calculation for other pools.

Chapter 24 resourCe Governor

895

 Workload Group
A resource pool can contain one or more workload groups. A workload group

represents a logical container for similar sessions that have been classified as similar by

executing a classifier function, which is covered in the next section. For example, in the

SalesApplication resource pool mentioned earlier, we can create two workload groups.

We can use one of these workload groups as a container for normal user sessions while

using the second as a container for reporting sessions.

This approach allows us to monitor the groups of sessions separately. It also allows

us to define separate policies for each set of sessions. For example, we may choose

to specify that sessions used for reporting have a lower MAXDOP (Maximum Degree of

Parallelization) setting than the sessions used for standard users, or that sessions used

for reporting should only be able to specify a limited number of concurrent requests.

These settings are in addition to the settings we can configure at the resource pool level.

 Classifier Function
A classifier function is a scalar function, created in the Master database. It is used to

determine which workload group each session should be assigned to. Every new session

is classified using a single classifier function, with the exception of DACs (dedicated

Table 24-2. Resource Pools’ Effective Maximum Percentages After Implicit

Reductions

Resource Pool∗ Min
CPU %

Max
CPU %

Effective
Max CPU %

Calculation

Default 0 100 25 Smallest(100,(100-

sum(25,50,0))) = 25

SalesApplication 25 75 50 Smallest(75,(100-50-0)) = 50

AccountsApplication 50 80 75 Smallest(80,(100-25-0)) = 75

Default External 0 100 25 Smallest(100,(100-

sum(25,50,0))) = 25

∗The internal resource pool is not mentioned here since it is not configurable either directly or
implicitly. Instead, it can consume whatever resources it requires and has a minimum CPU of 0;
therefore, it does not impact the effective maximum CPU calculation for other pools.

Chapter 24 resourCe Governor

896

administrator connections), which are not subject to Resource Governor. The classifier

function can group sessions based on virtually any attribute that it is possible to code

within interpreted SQL. For example, you may choose to classify requests based upon

username, role membership, application name, host name, login property, connection

property, or even time.

 Implementing Resource Governor
To configure Resource Governor on an instance, you must create and configure one or

more resource pools, each with one or more workload groups. In addition, you must also

create a classifier function. Finally, you need to enable Resource Governor, which results

in all subsequent sessions being classified. These topics are discussed in the following

sections.

 Creating Resource Pools
It is possible to create a maximum of 64 resource pools per instance. Let’s create a

resource pool through SQL Server Management Studio, drill through Management ➤

Resource Governor in Object Explorer, and then select New Resource Pool from the

Resource Pools context menu. This causes the Resource Governor Properties dialog box

to be invoked.

In the Resource Pools section of this dialog box, create a new row in the grid and

populate it with the information we need to create our new resource pool. In our case,

you should add the details for a resource pool named SalesApplication, which has a

Minimum CPU % of 25, a Maximum CPU % of 75, a Minimum Memory % of 25, and a

Maximum Memory % of 40.

Tip highlighting a resource pool causes the workload groups associated with
that resource pool to display in the Workload Groups For resource pool section of
the screen. here, you can add, amend, or remove resource pools at the same time.
however, you can also access this dialog box by drilling through Management ➤
resource Governor ➤ [Resource Pool name] and then selecting new Workload
Group from the Workload Groups context menu.

Chapter 24 resourCe Governor

897

In this scenario, the maximum memory limit is a hard limit. This means that no more

than 40% of the memory available to this instance is ever allocated to this resource pool.

Also, even if no sessions are using this resource pool, 25% of the memory available to the

instance is still allocated to this resource pool and is unavailable to other resource pools.

In contrast, the maximum CPU limit is soft, or opportunistic. This means that if

more CPU is available, the resource pool utilizes it. The cap only kicks in when there is

contention on the processor.

Tip It is possible to configure a hard cap on Cpu usage. this is helpful in paas
(platform as a service) or Daas (Database as a service) environments where clients
are charged based on Cpu usage, and you need to ensure consistent billing for their
applications. a client can easily dispute a bill if they have agreed to pay for 40%
of a core, but the soft cap allows them to reach 50%, resulting in a higher charge
automatically being applied. Implementing this is discussed later in this section.

You can also create resource pools via T-SQL. When you do so, you have access

to more functionality than you do through the GUI, which allows you to configure

minimum and maximum IOPS (input/output per second), set hard caps on CPU usage,

and affinitize a resource pool with specific CPUs or NUMA nodes. Creating an affinity

between a resource pool and a subset of CPUs means that the resource pool will only use

the CPUs, to which it is aligned. You can use the CREATE RESOURCE POOL DDL statement

to create a resource pool in T-SQL. The settings you can configure on a resource pool are

detailed in Table 24-3.

Table 24-3. CREATE RESOURCE POOL Arguments

Argument Description

pool_name the name that you assign to the resource pool.

MIN_CPU_

PERCENT

specifies the guaranteed average minimum Cpu resource available to the

resource pool as a percentage of the Cpu bandwidth available to the instance.

MAX_CPU_

PERCENT

specifies the average maximum Cpu resource available to the resource pool as

a percentage of the Cpu bandwidth available to the instance. this is a soft limit

that applies when there is contention for the Cpu resource.

(continued)

Chapter 24 resourCe Governor

898

When we are working with minimum- and maximum-IOPS-per-volume thresholds,

we need to take a few things into account. First, if we do not set a maximum IOPS limit,

SQL Server does not govern the IOPS for the resource pool at all. This means that if

you configure minimum IOPS limits for other resource pools, they are not respected.

Therefore, if you want Resource Governor to govern IO, always set a maximum IOPS

threshold for every resource pool.

It is also worth noting that the majority of IO that you can control through Resource

Governor is read operations. This is because write operations, such as Lazy Writer and

Log Flush operations, occur as system operations and fall inside the scope of the internal

Argument Description

CAP_CPU_

PERCENT

specifies a hard limit on the amount of Cpu resource available to the resource

pool as a percentage of the Cpu bandwidth available to the instance.

MIN_MEMORY_

PERCENT

specifies the minimum amount of memory that is reserved for the resource pool

as a percentage of the memory available to the instance.

MAX_MEMORY_

PERCENT

specifies the maximum amount of memory that the resource pool can use as a

percentage of the memory available to the instance.

MIN_IOPS_PER_

VOLUME

specifies the number of Iops per volume that is reserved for the resource pool.

unlike Cpu and memory thresholds, Iops are expressed as an absolute value, as

opposed to a percentage.

MAX_IOPS_PER_

VOLUME

specifies the maximum number of Iops per volume that the resource pool can

use. Like the minimum Iops threshold, this is expressed as an absolute number,

as opposed to a percentage.

AFFINITY

SCHEDULER∗
specifies that the resource pool should be bound to specific sQLos (sQL

operating system) schedulers, which in turn map to specific virtual cores within

the server. Cannot be used with AFFINITY NUMANODE.

specify AUTO to allow sQL server to manage the schedulers that are used by the

resource pool.

specify the range of scheduler IDs. For example (0, 1, 32 TO 64).

AFFINITY

NUMANODE∗
specifies that the resource pool should be bound to a specific range of nuMa

nodes. For example (1 TO 4). Cannot be used with AFFINITY SCHEDULER.

∗For further details of CPU and NUMA affinity, refer to Chapter 5.

Table 24-3. (continued)

Chapter 24 resourCe Governor

899

resource pool. Because you cannot alter the internal resource pool, you cannot govern

the majority of write operations. This means that using Resource Governor to limit

IO operations is most appropriate when you have a reporting application or another

application with a high ratio of reads to writes.

Finally, you should be aware that Resource Governor can only control the number

of IOPS; it cannot control the size of the IOPS. This means that you cannot use Resource

Governor to control the amount of bandwidth into a SAN an application is using.

To create an external resource pool, the CREATE EXTERNAL RESOURCE POOL DDL

statement should be used. The settings that can be configured on an external resource

pool are detailed in Table 24-4.

If you want to create a resource pool called ReportingApp that sets a minimum CPU

percentage of 50, a maximum CPU percentage of 80, a minimum IOPS reservation of

20, and a maximum IOPS reservation of 100, you can use the script in Listing 24-1.

The final statement of the script uses ALTER RESOURCE GOVERNOR to apply the new

configuration. You should also run this statement after you create workload groups or

apply a classifier function.

Table 24-4. CREATE EXTERNAL RESOURCE POOL Arguments

Argument Description

pool_name the name that you assign to the resource pool.

MAX_CPU_

PERCENT

specifies the average maximum Cpu resource available to the resource pool as a

percentage of the Cpu bandwidth available to the instance. this is a soft limit that

applies when there is contention for the Cpu resource.

AFFINITY

SCHEDULER

specifies that the resource pool should be bound to specific sQLos (sQL operating

system) schedulers, which in turn map to specific virtual cores within the server.

Cannot be used with AFFINITY NUMANODE.

specify AUTO to allow sQL server to manage the schedulers that are used by the

resource pool.

specify the range of scheduler IDs. For example (0, 1, 32 TO 64).

MAX_MEMORY_

PERCENT

specifies the maximum amount of memory that the resource pool can use as a

percentage of the memory available to the instance.

MAX_

PROCESSES

specifies the maximum number of processes allowed within the pool at any given

time. the default is 0, which limits the number of processes by server resources only.

Chapter 24 resourCe Governor

900

Listing 24-1. Creating a Resource Pool

CREATE RESOURCE POOL ReportingApp

 WITH(

 MIN_CPU_PERCENT=50,

 MAX_CPU_PERCENT=80,

 MIN_IOPS_PER_VOLUME = 20,

 MAX_IOPS_PER_VOLUME = 100

) ;

GO

ALTER RESOURCE GOVERNOR RECONFIGURE ;

GO

 Creating Workload Groups
Each resource pool can contain multiple workload groups. To begin creating a workload

group for our SalesApplication resource pool, we drill through Management ➤

Resource Governor ➤ Resource Pools. We then drill through our SalesApplication

resource pool and select New Workload Group from the Workload Groups context

menu. This invokes the Resource Governor Properties dialog box, which is displayed in

Figure 24-1.

Figure 24-1. The Resource Governor Properties dialog box

Chapter 24 resourCe Governor

901

You can see that with the SalesApplication resource pool highlighted in the

Resource Pools section of the dialog box, we have created two rows within the Workload

Groups section of the screen. Each of these rows represents a workload group that is

associated with the SalesApplication resource pool.

We have configured the SalesUsers workload group to allow a maximum of 100

simultaneous requests and a MAXDOP of 4, meaning that requests classified under this

workload group are able to use a maximum of four schedulers.

We have configured the Managers workload group to allow a maximum of ten

simultaneous requests and use a maximum of one scheduler. We have also configured

this workload group to be able to use a maximum of 10% of the memory that the

resource pool can reserve, as opposed to the default of 25%.

If the Memory Grant % setting is set to 0, then any requests classified under that

workload group are blocked from running any operations that require a SORT or HASH

JOIN physical operator. If queries need more than the specified amount of RAM, then SQL

Server reduces the DOP for that query in an attempt to reduce the memory requirement.

If the DOP reaches 1 and there is still not enough memory, then Error 8657 is thrown.

To create a resource pool via T-SQL, use the CREATE WORKLOAD GROUP DDL statement.

This statement accepts the arguments detailed in Table 24-5.

Table 24-5. CREATE WORKLOAD GROUP Arguments

Argument Description

group_name specifies the name of the workload group.

IMPORTANCE Can be configured to HIGH, MEDIUM, or LOW and allows you to prioritize

requests in one workload group above another.

REQUEST_MAX_

MEMORY_GRANT_

PERCENT

specifies the maximum amount of memory that any one query can use

from the resource pool expressed as a percentage of the memory available

to the resource pool.

REQUEST_MAX_CPU_

TIME_SEC

specifies the amount of Cpu time, in seconds, that any one query can use.

It is important to note that if the threshold is exceeded, then an event is

generated that can be captured with extended events. the query is not

cancelled, however.

(continued)

Chapter 24 resourCe Governor

902

Caution Workload group names must be unique, even if they are associated with
different pools. this is so they can be returned by the classifier function.

If we create two workload groups we want associated with our ReportingApp

resource pool—one named InternalReports with a MAXDOP of 4 and a 25% maximum

memory grant and the other named ExternalReports with a MAXDOP of 8 and a

maximum memory grant percentage of 75%—we could use the script in Listing 24-2.

Listing 24-2. Creating Workload Groups

CREATE WORKLOAD GROUP InternalReports

 WITH(

 GROUP_MAX_REQUESTS=100,

 IMPORTANCE=Medium,

 REQUEST_MAX_CPU_TIME_SEC=0,

Argument Description

REQUEST_MEMORY_

GRANT_TIMEOUT_SEC

specifies the maximum amount of time that a query can wait for a work

buffer memory to become available before it times out. the query only

times out under memory contention, however. otherwise, the query

receives the minimum memory grant. this results in performance

degradation for the query. the maximum wait time is expressed in seconds.

MAX_DOP the maximum number of processors that a single parallel query can use.

the MaXDop for a query can be further restrained by using query hints,

by changing the MaXDop setting for the instance, or when the relational

engine chooses a serial plan.

GROUP_MAX_

REQUESTS

specifies the maximum number of concurrent requests that can be

executed within the workload group. If the number of concurrent requests

reaches this value, then further queries are placed in a waiting state until

the number of concurrent queries falls below the threshold.

USING specifies the resource pool with which the workload group is associated. If

not specified, then the group is associated with the default pool.

Table 24-5. (continued)

Chapter 24 resourCe Governor

903

 REQUEST_MAX_MEMORY_GRANT_PERCENT=25,

 REQUEST_MEMORY_GRANT_TIMEOUT_SEC=0,

 MAX_DOP=4

) USING ReportingApp ;

GO

CREATE WORKLOAD GROUP ExternalReports

 WITH(

 GROUP_MAX_REQUESTS=100,

 IMPORTANCE=Medium,

 REQUEST_MAX_CPU_TIME_SEC=0,

 REQUEST_MAX_MEMORY_GRANT_PERCENT=75,

 REQUEST_MEMORY_GRANT_TIMEOUT_SEC=0,

 MAX_DOP=8

) USING ReportingApp ;

GO

ALTER RESOURCE GOVERNOR RECONFIGURE;

GO

 Creating a Classifier Function
A classifier function is a scalar UDF (user-defined function) that resides in the Master

database. It returns a value of type SYSNAME, which is a system-defined type equivalent

to NVARCHAR(128). The value returned by the function corresponds to the name of

the workload group into which each request should fall. The logic within the function

determines which workload group name is returned. You only ever have one classifier

function per instance, so you need to modify the function if you add additional

workload groups.

Now let’s create a classifier function using the Resource Governor environment that

we have built in this chapter. This function will classify each request made against our

instance using the following rules:

 1. If the request is made under the context of the SalesUser login,

then the request should fall under the SalesUsers workload

group.

Chapter 24 resourCe Governor

904

 2. If the request is made by the SalesManager login, then requests

should be placed in the Managers workload group.

 3. If the request is made by the ReportsUser login and the request

was made from a server named ReportsApp, then the request

should fall into the InternalReports workload group.

 4. If the request is made by the ReportsUser login but did not

originate from the ReportsApp server, then it should fall into the

ExternalReports workload group.

 5. All other requests should be placed into the default workload

group.

Before creating our classifier function, we prepare the instance. To do this, we

first create the Chapter24 database. We then create the SalesUser, ReportsUser, and

SalesManager logins, with Users mapped to the Chapter24 database. (Further detail on

security principles can be found in Chapter 10.) Listing 24-3 contains the code we need

to prepare the instance.

Note the users are mapped to the Chapter24 database for the purpose of this
example, but you can make the queries against any database in the instance.

Listing 24-3. Preparing the Instance

--Create the database

USE [master]

GO

CREATE DATABASE Chapter24 ;

--Create the Logins and Users

CREATE LOGIN SalesUser

 WITH PASSWORD=N'Pa$$w0rd', DEFAULT_DATABASE=Chapter24,

 CHECK_EXPIRATION=OFF, CHECK_POLICY=OFF ;

GO

Chapter 24 resourCe Governor

905

CREATE LOGIN ReportsUser

 WITH PASSWORD=N'Pa$$w0rd', DEFAULT_DATABASE=Chapter24,

 CHECK_EXPIRATION=OFF, CHECK_POLICY=OFF ;

GO

CREATE LOGIN SalesManager

 WITH PASSWORD=N'Pa$$w0rd', DEFAULT_DATABASE=Chapter24,

 CHECK_EXPIRATION=OFF, CHECK_POLICY=OFF ;

GO

USE Chapter24

GO

CREATE USER SalesUser FOR LOGIN SalesUser ;

GO

CREATE USER ReportsUser FOR LOGIN ReportsUser ;

GO

CREATE USER SalesManager FOR LOGIN SalesManager ;

GO

In order to implement the business rules pertaining to which workload group each

request should be placed into, we use the system functions detailed in Table 24-6.

When we create a classifier function, it must follow specific rules. First, the function

must be schema-bound. This means that any underlying objects that are referenced by

the function cannot be altered without the function first being dropped. The function

must also return the SYSNAME data type and have no parameters.

It is worth noting that the requirement for the function to be schema-bound is

significant, and it poses limitations on the flexibility of Resource Governor. For example,

it would be very useful if you were able to delegate workloads based upon database role

Table 24-6. System Functions for Implementing Business Rules

Function Description Business Rule(s)

SUSER_SNAME() returns the name of a login 1, 2, 3, 4

HOST_NAME() returns the name of the host from which the request was issued 3, 4

Chapter 24 resourCe Governor

906

membership; however, this is not possible, because schema-bound functions cannot

access objects in other databases, either directly or indirectly. Because the classifier

function must reside in the Master database, you cannot access information regarding

database roles in other databases.

As with all things, there are workarounds for this issue. For example, you can create

a table in the Master database that maintains role membership from user databases.

You can even keep this table updated automatically by using a combination of views

and triggers in the user database. The view would be based on the sys.sysusers catalog

view, and the trigger would be based on the view that you created. This would be a

complex design, however, which would pose operational challenges to maintain.

The script within Listing 24-4 creates the classifier function, which implements

our business rules before associating the function with Resource Governor. As always,

Resource Governor is then reconfigured so that our changes take effect.

Listing 24-4. Creating the Classifier Function

USE Master

GO

CREATE FUNCTION dbo.Classifier()

RETURNS SYSNAME

WITH SCHEMABINDING

AS

BEGIN

 --Declare variables

 DECLARE @WorkloadGroup SYSNAME ;

 SET @WorkloadGroup = 'Not Assigned' ;

 --Implement business rule 1

 IF (SUSER_NAME() = 'SalesUser')

 BEGIN

 SET @WorkloadGroup = 'SalesUsers' ;

 END

 --Implement business rule 2

 ELSE IF (SUSER_NAME() = 'SalesManager')

Chapter 24 resourCe Governor

907

 BEGIN

 SET @WorkloadGroup = 'Managers' ;

 END

 --Implement business rules 3 & 4

 ELSE IF (SUSER_SNAME() = 'ReportsUser')

 BEGIN

 IF (HOST_NAME() = 'ReportsApp')

 BEGIN

 SET @WorkloadGroup = 'InternalReports'

 END

 ELSE

 BEGIN

 SET @WorkloadGroup = 'ExternalReports'

 END

 END

 --Implement business rule 5 (Put all other requests into the

default workload group)

 ELSE IF @WorkloadGroup = 'Not Assigned'

 BEGIN

 SET @WorkloadGroup = 'default'

 END

 --Return the apropriate Workload Group name

 RETURN @WorkloadGroup

END

GO

--Associate the Classifier Function with Resource Governor

ALTER RESOURCE GOVERNOR WITH (CLASSIFIER_FUNCTION = dbo.Classifier) ;

ALTER RESOURCE GOVERNOR RECONFIGURE ;

Chapter 24 resourCe Governor

908

 Testing the Classifier Function
After we create the classifier function, we want to test that it works. We can test business

rules 1 and 2 by using the EXECUTE AS statement to change our system context and then

call the classifier function. This is demonstrated in Listing 24-5. The script temporarily

allows all logins to access the classifier function directly, which allows the queries to

work. It implements this by granting the Public role the EXECUTE permission before

revoking this permission at the end of the script.

Listing 24-5. Testing Business Rules 1 and 2

USE MASTER

GO

GRANT EXECUTE ON dbo.Classifier TO public ;

GO

EXECUTE AS LOGIN = 'SalesUser' ;

SELECT dbo.Classifier() AS 'Workload Group' ;

REVERT

EXECUTE AS LOGIN = 'SalesManager' ;

SELECT dbo.Classifier() as 'Workload Group' ;

REVERT

REVOKE EXECUTE ON dbo.Classifier TO public ;

GO

The result of running these two queries shows that business rules 1 and 2 are

working as expected.

To test business rule 4, we can use the same process we used to validate business

rules 1 and 2. The only difference is that we change the execution context to

ReportsUser. In order to validate rule 3, we use the same process, but this time, we

invoke the query from a server named ReportsApp.

Tip If you do not have access to a server named ReportsApp, then update the
function definition to use a server name that you do have access to.

Chapter 24 resourCe Governor

909

 Monitoring Resource Governor
SQL Server exposes dynamic management views (DMVs) that you can use to return

statistics relating to resource pools and workload groups. You can also monitor Resource

Governor’s usage using Windows’ Performance Monitor tool, however, and this gives

you the advantage of a graphical representation. The following sections discuss both of

these approaches to monitoring Resource Governor.

 Monitoring with Performance Monitor
DBAs can monitor how resource pools and their associated workload groups are being

utilized by using Performance Monitor, which is built into Windows. You can access

Performance Monitor from Control Panel ➤ Administrative Tools or by searching for

Perfmon in the Start menu.

Note to follow the demonstrations in this section, you should be running a
Windows server operating system.

Two categories are available to Performance Monitor that relate to Resource

Governor. The first is MSSQL$[INSTANCE NAME]:Resource Pool Stats. This contains

counters that relate to the consumption of resources, which have been made available

to resource groups. An instance of each counter is available for each resource group that

has been configured on the instance.

The second category is MSSQL$[INSTANCE NAME]:Workload Group Stats, which

contains counters that relate to the utilization of each workload group that has been

configured on the instance. Figure 24-2 illustrates how we can add the InternalReports,

ExternalReports, SalesUsers, and Managers instances of the CPU Usage % counter

from within the Workload Group Stats category. After highlighting the instances, we will

use the Add button, to move them to the Added Counters section. We can invoke the

Add Counters dialog box by selecting Monitoring Tools ➤ Performance Monitor from

the left pane and then using the Plus (+) symbol on the toolbar in the right hand pane.

Chapter 24 resourCe Governor

910

Now that we have added this counter, we also need to add the ReportingApp and

SalesApplication app instances of the Active Memory Grant Amount (KB) counter

from within the Resource Pool Stats category, as illustrated in Figure 24-3.

Figure 24-2. Adding Workload Group Stats

Chapter 24 resourCe Governor

911

To test our Resource Governor configuration, we can use the script in Listing 24- 6.

This script is designed to run in two separate query windows. The first part of the

script should run in a query window that is connected to your instance using the

SalesUser login, and the second part of the script should run in a query window that is

connected to your instance by using the SalesManager login. The two scripts should run

simultaneously and cause Performance Monitor to generate a graph similar to the one in

Figure 24-4. Although the scripts do not cause the classifier function to be called, they act

as an interactive way of testing our logic.

Note the following scripts are likely to return a lot of data.

Figure 24-3. Resource Pool Stats

Chapter 24 resourCe Governor

912

Listing 24-6. Generating Load Against the SalesUsers and Managers Workload

Groups

--Script Part 1 - To be run in a query windows that is connected using the

SalesManager Login

EXECUTE AS LOGIN = 'SalesManager'

DECLARE @i INT = 0 ;

WHILE (@i < 10000)

BEGIN

SELECT DBName = (

 SELECT Name AS [data()]

 FROM sys.databases

 FOR XML PATH('')

) ;

SET @i = @i + 1 ;

END

--Script Part 2 - To be run in a query windows that is connected using the

SalesUser Login

EXECUTE AS LOGIN = 'SalesUser'

DECLARE @i INT = 0 ;

WHILE (@i < 10000)

BEGIN

SELECT DBName = (

 SELECT Name AS [data()]

 FROM sys.databases

 FOR XML PATH('')

) ;

SET @i = @i + 1 ;

END

Chapter 24 resourCe Governor

913

You can see that the CPU usage for the SalesUsers and Managers workload groups is

almost identical, which means that the Resource Governor implementation is working

as expected.

 Monitoring with DMVs
SQL Server provides the sys.dm_resource_governor_resource_pools and sys.dm_

resource_governor_workload_groups DMVs that DBAs can use to examine Resource

Governor statistics. The sys.dm_resource_governor_resource_pools DMV returns the

columns detailed in Table 24-7.

Figure 24-4. Viewing CPU utilization

Table 24-7. Columns Returned by sys.dm_resource_governor_resource_pools

Column Description

pool_id the unique ID of the resource pool

name the name of the resource pool

statistics_start_time the date/time of the last time the resource pool’s statistics were reset

(continued)

Chapter 24 resourCe Governor

914

Table 24-7. (continued)

Column Description

total_cpu_usage_ms the total Cpu time used by the resource pool since the statistics last

reset

cache_memory_kb the total cache memory currently being used by the resource pool

compile_memory_kb the total memory the resource pool is currently using for compilation

and optimization

used_memgrant_kb the total memory the resource pool is using for memory grants

total_memgrant_count a count of memory grants in the resource pool since the statistics

were reset

total_memgrant_

timeout_count

a count of memory grant timeouts in the resource pool since the

statistics were last reset

active_memgrant_count a count of current memory grants within the resource pool

active_memgrant_kb the total amount of memory currently being used for memory grants

in the resource pool

memgrant_waiter_count a count of queries currently pending, waiting for memory grants

within the resource pool

max_memory_kb the maximum amount of memory the resource pool can reserve

used_memory_kb the amount of memory the resource pool currently has reserved

target_memory_kb the amount of memory that the resource pool is currently trying to

maintain

out_of_memory_count a count of failed memory allocations for the resource pool

min_cpu_percent the guaranteed average minimum Cpu % for the resource pool

max_cpu_percent the average maximum Cpu % for the resource pool

min_memory_percent the guaranteed minimum amount of memory that is available to the

resource pool during periods of memory contention

max_memory_percent the maximum percentage of server memory that can be allocated to

the resource pool

cap_cpu_percent the hard limit on the maximum Cpu % available to the resource pool

Chapter 24 resourCe Governor

915

The sys.dm_resource_governor_workload_groups DMV returns the columns

detailed in Table 24-8.

Table 24-8. Columns Returned by sys.dm_resource_governor_workload_groups

Column Description

group_id the unique ID of the workload group.

name the name of the workload group.

pool_id the unique ID of the resource pool with which the workload group is

associated.

statistics_start_

time

the date/time of the last time the workload group’s statistics were reset.

total_request_count a count of the number of requests in the workload group since the

statistics were last reset.

total_queued_

request_count

the number of requests within the workload group that have been

queued as a result of the GROUP_MAX_REQUESTS threshold being

reached since the statistics were last reset.

active_request_count a count of requests that are currently active within the workload group.

queued_request_count the number of requests within the workload group that are currently

queued as a result of the GROUP_MAX_REQUESTS threshold being reached.

total_cpu_limit_

violation_count

a count of requests in the workload group that have exceeded the Cpu

limit since the statistics were last reset.

total_cpu_usage_ms the total Cpu time used by requests within the workload group since the

statistics were last reset.

max_request_cpu_

time_ms

the maximum Cpu time used by any request within the workload group

since the last time the statistics were reset.

blocked_task_count a count of tasks within the workload group that are currently blocked.

total_lock_wait_

count

a count of all lock waits that have occurred for requests within the

workload group since the last time the statistics were reset.

total_lock_wait_

time_ms

a sum of time that locks have been held by requests within the workload

group since statistics were last reset.

(continued)

Chapter 24 resourCe Governor

916

You can join the sys.dm_resource_governor_resource_pools and sys.dm_

resource_governor_workload_groups DMVs, using the pool_id column in each view.

The script in Listing 24-7 demonstrates how you can achieve this so you can return a

report of CPU usage across the workload groups as compared to the overall CPU usage of

the resource pool.

Table 24-8. (continued)

Column Description

total_query_

optimization_count

a count of all query optimizations that have occurred within the workload

group since the statistics were reset.

total_suboptimal_

plan_generation_

count

a count of all suboptimal plans that have been generated within the

workload group, since the last time the statistics were reset. these

suboptimal plans indicate that the workload group was experiencing

memory pressure.

total_reduced_

memgrant_count

a count of all memory grants that have reached the maximum size limit

within the workload group since the last time the statistics were reset.

max_request_grant_

memory_kb

the size of the largest single memory grant that has occurred within the

workload group since the last time the statistics were reset.

active_parallel_

thread_count

a count of how many parallel threads are currently in use within the

workload group.

importance the current value specified for the workload group’s importance setting.

request_max_memory_

grant_percent

the current value specified for the workload group’s maximum memory

grant percentage.

request_max_cpu_

time_sec

the current value specified for the workload group’s Cpu limit.

request_memory_

grant_timeout_sec

the current value specified for the workload group’s memory grant timeout.

group_max_requests the current value specified for the workload group’s maximum

concurrent requests.

max_dop the current value specified for the workload group’s MaXDop.

Chapter 24 resourCe Governor

917

Listing 24-7. Reporting on CPU Usage

SELECT

 rp.name ResourcePoolName

 ,wg.name WorkgroupName

 ,rp.total_cpu_usage_ms ResourcePoolCPUUsage

 ,wg.total_cpu_usage_ms WorkloadGroupCPUUsage

 ,CAST(ROUND(CASE

 WHEN rp.total_cpu_usage_ms = 0

 THEN 100

 ELSE (wg.total_cpu_usage_ms * 1.)

/ (rp.total_cpu_usage_ms * 1.) * 100 Percentage

 END, 3) AS FLOAT) WorkloadGroupPercentageOfResourcePool

FROM sys.dm_resource_governor_resource_pools rp

INNER JOIN sys.dm_resource_governor_workload_groups wg

 ON rp.pool_id = wg.pool_id

ORDER BY rp.pool_id ;

You can reset the cumulative statistics exposed by the sys.resource_governor_

resource_pools and sys.dm_resource_governor_workload_groups DMVs using the

command in Listing 24-8.

Listing 24-8. Resetting Resource Governor Statistics

ALTER RESOURCE GOVERNOR RESET STATISTICS ;

SQL Server exposes a third DMV named sys.dm_resource_governor_resource_

pool_affinity, which returns the columns detailed in Table 24-9.

Table 24-9. Columns Returned by dm_resource_ governor_resource_pool_affinity

Column Description

pool_id the unique ID of the resource pool.

processor_group the ID of the logical processor group.

scheduler_mask the binary mask, which represents the schedulers that are affinitized with the

resource pool. For further details on interpreting this binary mask, please refer

to Chapter 5.

Chapter 24 resourCe Governor

918

You can join the sys.dm_resource_governor_resource_pool_affinity DMV to the

sys.resource_governor_resource_pools DMV using the pool_id column in each view.

Listing 24-9 demonstrates this; it first alters the default resource pool so that it only uses

processor 0 before it displays the scheduler binary mask for each resource pool that has

processor affinity configured.

Listing 24-9. Scheduling a Binary Mask for Each Resource Pool

ALTER RESOURCE POOL [Default] WITH(AFFINITY SCHEDULER = (0)) ;

ALTER RESOURCE GOVERNOR RECONFIGURE ;

SELECT

 rp.name ResourcePoolName

 ,pa.scheduler_mask

FROM sys.dm_resource_governor_resource_pool_affinity pa

INNER JOIN sys.dm_resource_governor_resource_pools rp

 ON pa.pool_id = rp.pool_id ;

There is a DMV called sys.dm_resource_governor_resource_pool_volumes which

returns details of the IO statistics for each resource pool. This DMV’s columns are

described in Table 24-10.

Table 24-10. Columns Returned by dm_resource_ governor_resource_pool_volumes

Column Description

pool_id the unique ID of the resource pool

volume_name the name of the disk volume

min_iops_per_volume the current configuration for the minimum number of Iops per volume

for the resource pool

max_iops_per_volume the current configuration for the maximum number of Iops per volume

for the resource pool

read_ios_queued_

total

the total read Ios queued for the resource pool against this volume

since the last time the statistics were reset

(continued)

Chapter 24 resourCe Governor

919

Table 24-10. (continued)

Column Description

read_ios_issued_

total

the total read Ios issued for the resource pool against this volume since

the last time the statistics were reset

read_ios_completed_

total

the total read Ios completed for the resource pool against this volume

since the last time the statistics were reset

read_bytes_total the total bytes read for the resource pool against this volume since the

last time the statistics were reset

read_io_stall_

total_ms

the cumulative time between read Io operations being issued and

completed for the resource pool against this volume since the last time

the statistics were reset

read_io_stall_

queued_ms

the cumulative time between read Io operations arriving and being

completed for the resource pool against this volume since the last time

the statistics were reset

write_ios_queued_

total

the total write Ios queued for the resource pool against this volume

since the last time the statistics were reset

write_ios_issued_

total

the total write Ios issued for the resource pool against this volume

since the last time the statistics were reset

write_ios_

completed_total

the total write Ios completed for the resource pool against this volume

since the last time the statistics were reset

write_bytes_total the total bytes written for the resource pool against this volume since

the last time the statistics were reset

write_io_stall_

total_ms

the cumulative time between write Io operations being issued and

completed for the resource pool against this volume since the last time

the statistics were reset

write_io_stall_

queued_ms

the cumulative time between write Io operations arriving and being

completed for the resource pool against this volume since the last time

the statistics were reset

io_issue_

violations_total

the total number of times that more Io operations were performed against

the resource pool and volume than are allowed by the configuration

io_issue_delay_

total_ms

the total time between when Io operations were scheduled to be issued

and when they were actually issued

Chapter 24 resourCe Governor

920

You can use the sys.dm_resource_governor_resource_pool_volumes DMV to

determine if your resource pool configuration is causing latency by adding the read_io_

stall_queued_ms and write_io_stall_queued_ms and then subtracting this value from

the total of read_io_stall_total_ms added to write_io_stall_total_ms, as shown in

Listing 24-10. This script first alters the default resource pool so that IOPS are governed

before subsequently reporting on IO stalls.

Tip remember that you are likely to see far fewer write operations than read
operations in user-defined resource pools. this is because the vast majority of
write operations are system operations and, therefore, they take place within the
internal resource pool.

Listing 24-10. Discovering If Resource Pool Configuration Is Causing Disk

Latency

ALTER RESOURCE POOL [default] WITH(

 min_iops_per_volume=50,

 max_iops_per_volume=100) ;

ALTER RESOURCE GOVERNOR RECONFIGURE ;

SELECT

 rp.name ResourcePoolName

 ,pv.volume_name

 ,pv.read_io_stall_total_ms

 ,pv.write_io_stall_total_ms

 ,pv.read_io_stall_queued_ms

 ,pv.write_io_stall_queued_ms

 ,(pv.read_io_stall_total_ms + pv.write_io_stall_total_ms)

 - (pv.read_io_stall_queued_ms + pv.write_io_stall_queued_ms)

GovernorLatency

FROM sys.dm_resource_governor_resource_pool_volumes pv

RIGHT JOIN sys.dm_resource_governor_resource_pools rp

 ON pv.pool_id = rp.pool_id ;

Chapter 24 resourCe Governor

921

Tip If you do not see any Io stalls, create a database on a low-performance
drive and run some intensive queries against it before you rerun the query in
Listing 24- 10.

 Summary
Resource Governor allows you to throttle applications at the SQL Server instance level.

You can use it to limit a request’s memory, CPU, and disk usage. You can also use it to

affinitize a category of requests with specific scheduler or NUMA ranges or to reduce the

MAXDOP for a category of requests.

A resource pool represents a set of server resources, and a workload group is a

logical container for similar requests that have been classified in the same way. Resource

Governor provides an internal resource pool and workload group for system requests

and a default resource pool and workload group as a catch-all for any requests that have

not been classified. Although the internal resource pool cannot be modified, user-

defined resource pools have a one-to-many relationship with workload groups.

Requests made to SQL Server are classified using a user-defined function, which the

DBA must create. This function must be a scalar function that returns the sysname data

type. It must also be schema-bound and reside in the Master database. DBAs can use

system functions, such as USER_SNAME(), IS_MEMBER(), and HOST_NAME(), to assist them

with the classification.

SQL Server provides four dynamic management views (DMVs) that DBAs can use

to help monitor Resource Governor configuration and usage. DBAs can also monitor

Resource Governor usage using Performance Monitor, however, and this gives them

the advantage of a visual representation of the data. When taking this approach, you

will find that Performance Monitor exposes counter categories for resource pools and

workload groups for each instance that resides on the server. The counters within these

categories have one instance for each resource pool or workload group, respectively, that

is currently configured on the instance.

Chapter 24 resourCe Governor

923
© Peter A. Carter 2019
P. A. Carter, Pro SQL Server 2019 Administration, https://doi.org/10.1007/978-1-4842-5089-1

Index

A
Affinity mask, 129, 131
Always Encrypted, 870

administering keys
Column Master Key Cleanup dialog

box, 406, 407
Column Master Key Rotation dialog

box, 405, 406
Secure Enclaves, 404, 405
sys.column_encryption_keys, 403
sys.column_encryption_key_

values, 404
sys.column_master_keys, 403

attestation service, 394
column encryption key, 393
column master key, 393
database engine, 393
defined, 392
implementation

attestation server, 395, 396
cryptographic objects, 397, 398
encryption types and feature

compatibility, 400
guarded host, 396
insert data, 401, 402
key store, 399
secure enclaves, 399
VBS, 394

secure enclaves, 394

AlwaysOn Availability
benefits and considerations, 608
PROSQLADMIN-C cluster, 608
ReadScale database, 608–611
select databases page, 611, 612
Specify Availability Group options, 611
Specify Replicas page

Backup Preferences tab, 614, 615
Endpoints tab, 613, 614
Listener tab, 615, 616
Read-Only Routing tab, 616, 617
Replicas tab, 612, 613
Select Initial Data Synchronization

page, 617, 618
AlwaysOn Availability Groups (AOAG)

administrative considerations, 528, 529
automatic page repair, 476, 477
data-tier applications, 473
failover

asynchronous, 521–524
synchronous, 518–520

HA (see High availability (HA))
monitoring

AlwaysOn dashboard, 525–527
AlwaysOn health trace, 527, 528

synchronizing uncontained
objects, 524

topology, 475
VMs, 472

https://doi.org/10.1007/978-1-4842-5089-1

924

AlwaysOn dashboard, 525–527
AlwaysOn health trace, 527, 528
Atomic, Consistent, Isolated and Durable

(ACID), 177, 671
Autocommit transactions, 670, 682
Automation, 124, 809

B
Backup database

BULK LOGGED recovery
model, 411, 412

creation, 412–415
devices, 417, 418

media set, 418
differential, 415, 429
filegroup, 420, 430
full backup, 415, 428
full backup–only, 419
full/differential/transaction logs, 420
FULL recovery model, 410
full/transaction log, 420
log backup, 415
media, 416
mirrored media set, 431
partial, 421
SIMPLE recovery model, 410, 411
SQL server management studio

AES algorithm, 424
Backup Options page, 424
filegroups, 423
General page, 421, 422
Media Option page, 424
reliability section, 424

transaction log, 429
T-SQL

backup options, 425
backup set options, 426

error management options, 427
log-specific options, 428
media set options, 427
miscellaneous options, 428
WITH options, 426

Bash, 108
B-tree, 245, 247

clustered index scan, 247
leaf level, 247
root node, 247
uniquifier, 247

bw-tree, 272

C
Cell-level encryption, 386

authenticator column, 390
cryptographic functions, 386
DECRYPTBYKEY() function, 391, 392
DecryptByKey parameters, 391
duplicate database selection, 387, 388
EncryptByKey() parameters, 389
HASHBYTES() function, 390
salt value, 389
SensitiveData table, 387

Central Management Server
(CMS), 325, 866

Always Encrypted, 870
Connection Properties, 869
New Server Group, 872
Registered Servers, 867, 868, 873

Chapter6LogFragmentation
create database, 196, 197
log reuse waits, 200, 201
log size and VLFs number, 197
sys.databases, 200
transaction log, 202

Chocolatey, 116

INDEX

925

Classifier function, 893, 895–896
Client connectivity tools, 25
Client tools backwards compatibility, 25
Client tools SDK, 26
Clustered columnstore indexes, 263–265
Clustered indexes, 245

CREATE CLUSTERED INDEX, 249, 250
DROP INDEX, 252
primary key clustering, 248
tables with, 247
tables without, 246
WITH options, 250–252

Collation
accent sensitive, 54
binary collation sort order, 58, 59
case sensitivity, 54, 55
configuration page, 54
sort order, 56, 57

Columnstore indexes, 261–263
Consistency errors, 293
CREATE TABLE T-SQL, 234
Cryptographic functions, 386

D
Database administrators (DBAs), 15, 165,

180, 329, 418
Database consistency

DBCC CHECKDB (see DBCC
CHECKDB)

detecting errors
bad checksum error, 302
CHECKSUM, 295, 298
Corrupt Table, 300, 301
event types, 299
memory-optimization

tables, 303, 304
options page, 297

page verify option, 296
querying suspect_pages, 302, 303
suspect_pages, 299
TORN_PAGE_DETECTION, 295, 296

error
605 error, 293
823 error, 294
824 error, 294
5180 error, 294
7105 error, 295

system database corruption
reattaching database, 306
rebuild parameters, 305
repair instance parameters, 307
select instance page, 306

VLDBs, 323
Database Engine service, 23, 116, 143
Database-level security

built-in database roles, 341, 342
contained databases, 348–351
schemas, 345–348
Securables tab, 343
T-SQL, 344

Database snapshot
benefits, 572
data-tier application, 571
definition, 569
implementation, 572–576
metadata-driven script, 572
querying, 571–573
recovering data, 576, 577
sparse file, 569

Data Protection API (DPAPI), 372
Data quality server, 25
Data structure

B-tree, 245
clustered index scan, 247
leaf level, 247

INDEX

926

root node, 247
uniquifier, 247

heap, 246
DBCC CHECKALLOC, 319, 324
DBCC CHECKCATALOG, 318
DBCC CHECKCONSTRAINTS

arguments, 321
DBCC CHECKDB, 308

arguments, 308, 309
CHECKALLOC, 319
CHECKCATALOG, 318
CHECKCONSTRAINTS, 321
CHECKFILEGROUP, 319
CHECKIDENT, 320
CHECKTABLE, 319
configure notification, 313
corrupt page, 311
Corrupt Table error, 315
emergency mode, 315–318
errors in job history, 311
new operator selection, 312
REPAIR_ALLOW_DATA_LOSS, 313
REPAIR_REBUILD, 313
repairing corruption, 314
running command, 310
suggested repair option, 314
suspect_pages table, 315
TempDB space, 310

DBCC CHECKFILEGROUP, 319
DBCC CHECKIDENT arguments, 320
DBCC CHECKTABLE, 319
DB_ID() function, 626
@DBName parameter, 652
dbo.suspect_pages, 299
Deadlocks

chronology, 668
deadlock monitor, 668

minimize, 670
observation, 695, 696
scripts, 668
victim’s query window, 669

DecryptByKey parameters, 391
Deferred transactions, 681
Degree of parallelism (DOP), 749
Disaster recovery (DR)

AOAG (see AlwaysOn Availability
Groups (AOAG))

database creation, 534–537
GUI configuration

ad-hoc restores, 537
Copy Files tab, 541, 542
Initialize Secondary Database

tab, 540, 541
Log Shipping Monitor

Settings, 545, 546
monitor server, 544
New Job Schedule, 539, 542–545
No Recovery Mode, 542
proxy account, 537
Restore Transaction Log

tab, 543, 544
Save Log Shipping

Configuration, 546, 547
Transaction Log Backup

Settings, 538
Transaction Log Shipping page, 537

vs. HA, 480–482
log shipping, 477–480
recovery point objective, 536
T-SQL configuration

@backup_job_id output, 547, 548
sp_add_log_shipping_primary_

database Parameters, 546–549
sp_add_log_shipping_primary_

secondary system, 549

Data structure (cont.)

INDEX

927

sp_add_log_shipping_secondary_
database paremeters, 553, 554

sp_add_log_shipping_secondary_
primary system, 550–553

sp_processlogshippingmonitor
secondary parameters, 555, 556

Distributed Replay
architecture, 761
clients configuration, 764

options, 764
components, 760
controller configuration

Access Permissions, 763
Launch and Activation

permissions, 763
logging level, 762
Security tab, 762

database creation, 769–771
DReplay.exe.preprocess.

config, 765, 767
DReplay.exe.replay.config, 766, 768
target synchronization, 772, 773
trace

arguments, 806
converting, 803, 804
events, event fields and

actions, 773–792
Extended Event Session, 793–800
generate activity, 800–802
preprocessing, 804, 805

Distributed Replay client, 26
Distributed Replay controller, 26
Docker, 111
-d switch, 113
Dynamic link library (DLL), 241–244
Dynamic management views (DMVs), 909

binary mask, 918
CPU utilization, 913, 917

disk latency, 920
Performance Monitor, 909
resetting statistics, 917
resource pool stats, 911
sales user and manger login, 912
sys.dm_resource_governor_

resource_pool_affinity, 917
sys.dm_resource_governor_

resource_pools, 913
sys.dm_resource_governor_

resource_pool_volumes, 918
sys.dm_resource_governor_

workload_groups, 915
workload group stats, 910

E
Editions and license models, 4

CAL, 4
developer, 5
enterprise, 5
express, 5
operational teams, 6
Server Core, 5
standard, 5
TCO, 3
web, 5

EncryptByKey() parameters, 389
Encryption, 371
Encryption hierarchy

asymmetric keys, 372
certificate authority, 372
DPAPI, 372
SQL Server

backup and restore Database
Master Key, 374

Database Master Key selection, 374
EKM module, 376

INDEX

928

hierarchy, 375
Restore Service Master Key, 373
Service Master Key, 373

symmetric key, 371
End of life cycle (EOL), 17
Event session

database creation, 704–707
dialog box creation

Advanced page, 713
Data Storage page, 712, 713
General page, 708
module_start event, 708–711
page_splits event, 710, 711

T-SQL
arguments, 713
WITH options, 714

EXEC keyword, 127
Explicit transactions, 670
Extended Events

actions, 702
channels, 700, 701
data collection

Aggregation dialog box, 722
analyzing data with T-SQL, 723–727
Columns dialog box, 721
Customers table, 717, 719
data viewer grid, 723
data viewer toolbar, 720
event_file target, 719, 720

operating system data
Collector Set, 730
Data Collector Set, 733, 734
generate activity, 734
merging trace files, 735
Perfmon Data, 727–729
Properties dialog box, 731, 732
trace file location, 732, 733

T-SQL command, 734
Windows Performance

Analyzer, 735, 736
WMI-Activity provider, 731

package, 700
predicates, 702
session (see Event session)
targets, 701
types and maps, 702, 704

Extensible Key Management
(EKM) module, 376

External fragmentation, 275, 276

F
Failover Clustered Instance (FCI)

active/active configuration, 466
node, 465, 466
Quorum, 469–471
three-plus node

configurations, 467–469
Filegroups

adding files, 183–186
backup and restore strategies, 181
expanding files, 186, 187
FILESTREAM

binary cache, 170
buffer cache, 170
container, 170
database properties dialog box, 171
drop-down box, 171, 172
FileTable, 175–177
folder hierarchy, 174, 175
T-SQL commands, 172
Windows cache, 170

log maintenance
Chapter6Log

Fragmentation, 195–197, 200, 202

Encryption hierarchy (cont.)

INDEX

929

log file count, 194, 195
log reuse waits, 200, 201
log size and VLFs number, 197
recovery model, 192
shrinking, 194, 195
structure, 192
sys.databases, 200
transaction log, 202
VLFs per GB, 198

memory-optimized
strategies, 182, 183

memory-optimized tables, 177–179
performance strategies, 180
primary file, 166
round-robin approach, 166–170
secondary files, 166
shrinking files, 187–190
storage tiering strategies, 181, 182

FILESTREAM
binary cache, 170
buffer cache, 170
container, 170
database properties dialog box, 171
drop-down box, 171, 172
FileTable, 175–177
folder hierarchy, 174, 175
T-SQL commands, 172
Windows cache, 170

Filtered index, 260, 261
FORCE keyword, 373
Fragmentation of index, 275, 276

detection of, 276–278
external fragmentation, 275, 276
internal fragmentation, 275
page split, 275
removal of, 278–280

Fully qualified domain name
(FQDN), 499

G
GETDATE() function, 217
Graphical user interface (GUI), 29, 230
GUI installation

Installation Center
Advanced tab, 36–38
Installation tab, 31, 32
Maintenance tab, 33–35
Options tab, 39
Planning tab, 30, 31
Resources tab, 35, 36
Tools tab, 34, 35

Stand-Alone Database Engine Instance
collation (see Collation)
Completion page, 70
Data Directories tab, 62
Distributed Replay Client page, 68
Distributed Replay Controller

page, 67
Feature Selection page, 45–48
FILESTREAM tab, 66
Global Rules page, 42
Install Rules page, 45
Install Setup Files page, 44
Instance Configuration

page, 48–50
License Terms page, 41
MaxDOP tab, 63, 64
Memory tab, 64, 65
Microsoft Update page, 43
Product Key page, 40
Product Updates page, 43
Ready to Install page, 68, 69
selecting service accounts, 50–53
Server Configuration tab, 60–62
Setup Role page, 45
TempDB tab, 62, 63

INDEX

930

H
Hardware requirements

storage
Disk Block Size, 16
file placement, 13, 14
SAN, 15

strategic minimum
requirements, 7

Hash collision, 267
Hash index, 234, 268
Heap, 246
Hekaton, 236
Heterogeneous operating systems

installing SQL server, in Docker
container

Chocolatey package, 116
creating database, 118
creating image file, 119–124
Docker file, 114
Docker image, 111
-d switch, 113
file instruction, 113, 114
Kubernetes, 125
MCR, 112
running Docker image, 112
Start.ps1, 116

installing SQL server, on Linux
adding sa password, 105
Bash script, 108–110
parameters, 105, 107
systemctl tool, 107
ufw, 107
versions, 101–103

High availability (HA)
AlwaysOn failover clustering

active/active configuration, 466
node, 465, 466

Quorum, 469–471
three-plus node

configurations, 467–469
cost of downtime, 462, 463
creation

database page selection, 495, 496
data synchronization page, 503
dialog box, 504–508
introduction page, 494
results page, 503
specify name page, 494, 495
synchronous commit

mode, 508
tabs, 496–503
validation page, 503

database creation, 486–492
vs. DR, 480–482
level of availability

calculation, 459, 460
percentage, 458
proactive maintenance, 461
SLAs & SLOs, 460
SQL server, 458

Linux groups
adding database, 512, 514
create certificates, 509, 510
create endpoints, 511
create group, 511
create Listener, 515
DAG, 515–517
grant permissions, 512
secondary replica, 512

RPO & RTO, 461, 462
SQL Server

configuration, 492–494
standby classifications, 463, 464

Hybrid Buffer Pool, 161–162

INDEX

931

I
Implicit transactions, 670
Indexes

clustered columnstore indexes, 263–265
clustered indexes, 245

CREATE CLUSTERED
INDEX, 249, 250

DROP INDEX, 252
primary key clustering, 248
tables with, 247
tables without, 246
WITH options, 250–252

columnstore indexes, 261–263
fragmentation, 275, 276

detection of, 276–278
external fragmentation, 275, 276
internal fragmentation, 275
page split, 275
removal of, 278–280

in-memory Indexes, 266
nonclustered hash index, 266–272
nonclustered indexes, 272

missing indexes, 273–276
nonclustered columnstore indexes, 265
nonclustered indexes, 253, 254

covering indexes, 254, 255
CREATE NONCLUSTERED INDEX,

255–260
DROP INDEX, 260
filtered index, 260, 261

partitioned indexes, 283, 284
statistics, 284–286

creation, 288
filtered statistics, 286, 287
updation, 289, 290

Index Scan operator, 222, 223
Initial data synchronization, 502, 580

In-memory Indexes, 266
nonclustered hash index, 266–272
nonclustered indexes, 272

In-Memory OLTP, 232
Instance configuration

MAXDOP, 136–138
Max Server Memory (MB), 138–141
Min Server Memory (MB), 138–141
ports

communication process, 147
database engine, 149
dynamic ports, 148
IP addresses tab, 151
port 445, 147
port 1433, 148
protocol tab, 150
static port, 151

processor affinity
affinity I/O mask, 131
affinity mask, 129–131
bit maps, 133, 134
NUMA node, 131

sp_configure, 128–130
system databases

Master, 153
Model, 154
MSDB, 153
mssqlsystemresource, 152
TempDB, 154–157

trace flags
DBCC TRACEOFF, 142–144
DBCC TRACEON, 141–143
startup parameters, 143
trace flag 3042, 145
trace flag 3226, 145
trace flag 3625, 146
Windows Server Core, 144

INDEX

932

Instance installation
/ACTION parameter, 75
command line

parameters, 78–80
/FEATURES parameter, 76
/IACCEPTSQLSERVERLICENSE

TERMS, 74
installation progress, 79
optional parameters, 85
product update, 89–91
smoke test, 80–83
troubleshooting

detail.txt, 83
log files, 84, 85
summary.txt, 83
SystemConfigurationCheck_

Report.htm file, 84
Instance-level security

AOAG, 335
fixed server roles, 334, 335
granting permissions, 340, 341
login creation

CHECK_POLICY, 339
Enforce Password Policy, 338
Securables tab, 338
Server Roles tab, 338
SSMS, 337
Status tab, 338
T-SQL, 339
User Mapping tab, 338

mixed-mode authentication
SA account, 333
security vulnerability, 333

New Server Role, 335, 336
Security tab, 334
Windows authentication

ownership chain, 333
security identifier, 333

SQLUsers group, 332
Windows user/group, 332

Integration services, 25
Internal fragmentation, 275
is_Advanced, 129
is_dynamic, 129

J
Jobs

database mail
configuration, 829, 832

advanced page, 839
Alert System page, 834
BACKUP DATABASE

command, 838
Browser service, 840
job creation, 836, 837
Logging Level, 833
notifications page, 842
operator creation, 835, 836
PowerShell script, 840
Profile page, 830
Public Profiles tab, 832
schedules page, 841
Select Configuration Task

page, 830
steps page, 840
system parameters

configuration, 834
monitoring and maintenance, 842

alerts, 845–847
execution, 843, 844
job history, 844

K
Kubernetes, 125

INDEX

933

L
Local distributor, 578
Locally attached storage

RAID 0 volume, 8
RAID 1 volume, 9
RAID 5 volume, 10
RAID 10 volume, 12

Locking
compatibility, 666, 667
granularity, 659, 660
LOCK_ESCALATION, 661
observation, 691–695
online maintenance, 661–666
partitioning, 667

Lock types, 666
intent, 667

Log shipping
DR (see Disaster recovery (DR))
failing over, 557
monitoring

Log Shipping Primary Server
Alert, 564

Log Shipping Secondary Server
Alert, 565

Response tab, 565, 566
Server Agent Alerts, 564
sp_help_log_shipping_monitor, 566

switching roles
Disabling Log Shipping Jobs, 558, 559
reconfigure log shipping, 559–563
reconfigure monitoring, 563

M
Machine Learning Server, 24
Managed service accounts, 52
Master database, 153
Master data services, 27

Master server (MSX), 848, 853
Memory-optimized tables

creation, 234–237
disk-based tables, 236–240
DLL, 241–244
durability, 233
In-Memory OLTP, 232
migration, 240, 241

Merge replication, 581, 582
Metadata

buffer cache usage, 630–632
capacity management

file details, 635
powerShell, 637, 638
sys.dm_db_file_space_usage, 632
sys.dm_io_virtual_file_stats, 633
sys.master_files, 634, 635
xp_fixeddrives, 636

catalog view, 624
DATALENGTH, 626
definition, 623
driven automation, rebuild

indexes, 656, 657
dynamic management view, 624–626
information schema view, 624
perfmon counters

Average Latch Wait Time (ms), 642
sys.dm_os_performance_

counters, 639
Type 65792, 640
Type 272696320, 641
Type 272696576, 641
Type 537003264, 641
Type 1073874176, 642, 643
types, 640

registry values, 627, 628
server and instance level, 626
service details, 628, 629

INDEX

934

waits
reset, 645
states, 645
sys.dm_os_wait_stats, 645
tasks, 646–648
types, 644

Metadata database
sys.dm_db_page_info

columns, 648–651
parameters, 648

Microsoft Assessment and
Planning (MAP), 4

toolkit, 35
Microsoft Container Registry (MCR), 112
Microsoft Cryptographic API

(MSCAPI), 376
Missing indexes, 273–276
Mixed-mode authentication, 61
Model database, 154
MSDB database, 153
mssqlsystemresource database, 152
Multiserver jobs

master jobs
Multiserver job conversion, 856
sp_add_jobserver parameters, 855
sp_delete_jobserver parameters, 855
sp_msx_enlist stored procedure, 855
sp_update_job procedure, 854
sp_update_jobstep procedure, 854

MSX and TSX servers
Login Credentials page, 853
Master Server operator page, 851
MsxEncryptChannel

Options, 848, 849
proxy creation, 850
Registry updation, 849
Target Servers page, 852

target servers
Download Instructions tab, 859
Force Defection button, 857
Post Instructions button, 857
Start Job, TARGETSERVER1, 858
synchronize clocks, 857
Target Server Status tab, 856

N
New technology file system

(NTFS), 16, 369
Nonclustered columnstore indexes, 265
Nonclustered hash index, 266–272
Nonclustered indexes, 253, 254, 272

covering indexes, 254, 255
CREATE NONCLUSTERED

INDEX, 255–260
DROP INDEX, 260
filtered index, 260, 261

Non-uniform memory access
(NUMA) node, 131

O
OBJECT_ID() function, 626
Object-level security

column-level permissions, 352
OBJECT phrase, 351

Operating systems
configuration

assigning user rights (see User
rights assignments)

Background Service, 19, 20
gold build, 18
power plan, 18

EOL, 17
Over-subscribed processors, 131

Metadata (cont.)

INDEX

935

P
Page split, 275
Partitioned indexes, 283, 284
$PARTITION function, 216, 217
Partitions

concepts
function, 207
hierarchy, 208
index alignment, 207, 208
partitioning Key, 206, 207
scheme, 207

definition, 205
elimination, 221, 222
implementation

existing table, 211–215
new table creation, 210, 211
object creation, 209, 210

$PARTITION function, 216, 217
structure, 206

Piecemeal restore, 181, 451–454
Policy-based management (PBM)

central management server, 866–874, 886
enterprise management, 887–889
import and export, 886, 887
policy evaluation with PowerShell,

889, 890
condition, 864
description, 863
evaluation modes, 865

On Change:Log Only, 865
On Change:Prevent, 866
On Demand, 865
On Schedule, 865
supported execution types, 866

ExecuteSQL() parameters, 884
ExecuteWQL() parameters, 884, 885
facets, 863

policy, 865
simple static policy, 874

BrokenPolicy Database creation, 878
Description page, 877, 878
ExcludeSystemDatabases condition

creation, 877
New Condition dialog box creation,

875, 876
New Policy dialog box creation, 875
prevents unwanted activity, 880–883

target, 864
Primary role property, 506
Principle of least privilege, 51, 595
Publication Access List (PAL), 605–607

Q
QUERY_CAPTURE_POLICY options, 744
Query Store

configuration, 744
database, 739–741
issues

plan, 757
Regressed Query report, 756
stored procedures, 757

properties tab, 745
queries, 746
SET options, 742, 743
SSMS (see SSMS reports)
T-SQL objects

catalog views, 751, 752
wait statistics mappings, 752–755

R
RECONFIGURE command, 128, 129
RECONFIGURE WITH OVERRIDE

command, 128

INDEX

936

Recovery model, 192
Recovery point objective

(RPO), 461, 496, 536
Recovery time objective

(RTO), 461, 500
Redundant array of inexpensive disks

(RAID), 8
Remote distributor, 578
Repair option, 33
Replication

components, 579–581
merge, 581, 582
snapshot, 579, 580
transactional (see Transactional

replication)
@RequiredSnapshots parameter, 652
Resource Governor, see Resource pool
Resource pool

arguments, 897, 899
business rules, 905
classifier function, 896

creation, 906, 907
instance preparation, 904
testing, 908

configuration, 894
creation, 899
definition, 893
DMVs

binary mask, 918
CPU usage, 917
CPU utilization, 913
disk latency, 920
Performance Monitor, 909
resetting statistics, 917
resource pool stats, 911
sales user and manger login, 912
sys.dm_resource_governor_

resource_pools, 913

sys.dm_resource_governor_
resource_pool_volumes, 918

sys.dm_resource_governor_
workload_groups, 915

workload group stats, 910
IOPS limits, 898
memory limit, 896
properties dialog, 896
sys.dm_resource_governor_resource_

pool_affinity, 917
workload groups, 895, 900–902

Restore database
filegroups, 446–448
page, 450–453
piecemeal, 452–455
Point in Time, 445–449
SQL Server Management Studio

backup timeline page, 432, 433
file page, 433, 434
General page, 431, 432
Options page, 434, 435
Tail-Log, 435

T-SQL
error management options, 439
media set options, 438
miscellaneous options, 439, 440
restore arguments, 437
restore options, 436
WITH options, 437, 438

Row versioning, 677

S
Serial advanced technology attachment

(SATA), 15
Server Audit

AUDIT_CHANGE_GROUP, 364
Audit-ProSQLAdmin, 355

INDEX

937

creation, 353–356
database audit specification, 359–363
enabling and invoking, 358, 359
FOR SERVER AUDIT clause, 357
SensitiveData table, 365
SERVER_ROLE_MEMBER_CHANGE_

GROUP, 357, 358
target, 352
T-SQL, 356
Windows Application log, 352

Service-level agreements (SLAs), 460
Session Timeout property, 506
Snapshot replication, 579, 580
Solid state drives (SSDs), 14
sp_configure, 128–130

ALTER SERVER CONFIGURATION, 136
MAXDOP, 138
Max Server Memory, 141
Min Server Memory, 141
processor affinity, 133

sp_estimate_data_compression_savings,
228, 229

Split brain, 469
SQL Server Agent, 809

alerts, 814
SQL Server events, 814
SQL Server performance

conditions, 814
and responses, 809
WMI events, 814

jobs, 812, 813
advanced page, 823
credentials creation, 825, 826
database mail configuration, 829
environment preparation, 818–820
Frequency and Duration

sections, 829
general page, 821, 822

New Job Schedule box, 824
notifications page, 825
proxy creation, 827
removing old backups, 822
schedule creation, 828
SCOM, 824
SQLUser and WinUser, 817
steps page, 821

operator, 811
schedules, 810, 811
security

database roles, 815
proxy accounts, 817

SQL Server Analysis Services (SSAS), 24, 149
SQL Server Installation Center, 29
SQL Server Integration Services (SSIS), 130
SQL Server Management Studio (SSMS)

distributor/publisher
Add Filter, 592, 593
Agent Security page, 594, 595
Article Properties, 591, 592
Articles page, 589, 590
Distribution Database page, 585, 586
distributor page, 582, 583
Filter Table Rows page, 591, 592
Publication Database page, 587, 588
Publication Type page, 588, 589
Publishers page, 586, 587
Snapshot Agent page, 593, 594
Snapshot Agent Security, 596, 597
Snapshot Folder page, 584, 585
SQL Server Agent Start page, 583, 584
Wizard Actions page, 596

PAL, 605–607
subscriber

Distribution Agent, 603–606
Distribution Agent Location

page, 597, 598

INDEX

938

General page, 599, 600
Initialize Subscriptions

page, 604, 605
Publication page, 597
Subscribers page, 598, 599
Synchronization Schedule page, 604
Wizard Actions page, 605

SQL Server Memory Pool, 139
SQL Server security model

database-level security
built-in database roles, 341, 342
contained databases, 348–351
schemas, 345–348
Securables tab, 343
T-SQL, 344

DBAs, 329
hierarchy

database users, 331
domain user/group, 330
principal, 330, 331
securables, 329

instance-level (see Instance-level
security)

object-level security
column-level permissions, 352
OBJECT phrase, 351

security reports
SQL Data Discovery and

Classification, 365–367
Vulnerability Assessment, 367, 369

Server Audit
AUDIT_CHANGE_GROUP, 364
Audit-ProSQLAdmin, 355
creation, 353–356
database audit

specification, 359–363

enabling and invoking, 358, 359
FOR SERVER AUDIT clause, 357
SERVER_ROLE_MEMBER_

CHANGE_GROUP, 357, 358
SensitiveData table, 365
target, 352
T-SQL, 356
Windows Application log, 352

SSMS reports, 747
CPU drill-through, 751
details, 748
Overall Resource

Consumption, 747, 748
Query Wait Statistics, 750
standard grid view, 749
Top Resource Consumers, 749, 750

Standby classifications, 463, 464
Statistics of index, 284–286

creation, 288
filtered statistics, 286, 287
updation, 289, 290

SWITCH function, 221
Synchronous Commit Mode, 508
sys.fn_dump_dblog(), 443
sys.fn_PageResCracker, 648
systemctl tool, 107

T
Tables

compression
columnstore, 227
data compression wizard, 230, 231
dictionary compression, 226
maintenance, 231, 232
page structure, 226, 227
prefix compression, 225
row compression, 224, 225

SQL Server Management Studio
(SSMS) (cont.)

INDEX

939

sp_estimate_data_compression_
savings, 228, 229

structure, 223
tables and partitions, 230, 231
variable-length metadata, 223

memory-optimized tables (see
Memory-optimized tables)

partition
definition, 205
elimination, 221, 222
existing table, 211–215
function, 207
hierarchy, 208
implementing sliding

windows, 218–221
index alignment, 207, 208
new table creation, 210, 211
object creation, 209, 210
$PARTITION function, 216, 217
partitioning key, 206, 207
scheme, 207
structure, 206

Target servers (TSX), 848
TDE, see Transparent Data

Encryption (TDE)
TempDB database, 154–157
Tipping point, 254
Transactional replication

definition, 580
peer-to-peer, 581
uses, 580
working, 580

Transactions
atomic transaction, 671–674
consistent property, 674
in-memory OLTP

cross-container, 684, 685
Read Committed isolation, 682

Read Committed Snapshot
isolation, 682

Repeatable Read, 683
retry logic, 686
Serializable, 683
snapshot isolation, 683

isolation
durable, 679–681
dirty read, 675
nonrepeatable read, 675
optimistic levels, 677–679
pessimistic level, 676, 677
phantom read, 676

observation, 687–691
Save point, 671–673

Transmission Control Protocol (TCP), 498
Transparent Data Encryption (TDE), 377

Backup certificate, 384
FILESTREAM filegroup, 377
implementation, 378

Database Encryption key, 384
Database Master Key selection,

380–383
database progress, 379

In-Memory filegroup, 377
restore and encrypted database, 385
Server Certificate restore

database, 385
TempDB, 378

Trusted Platform Module (TPM), 394

U
Uncomplicated Firewall (ufw), 107
User rights assignments

instant file, 19, 20
locking pages, 20
SQL audit, 21, 22

INDEX

940

V
Very large databases (VLDBs), 323

DBCC CHECKALLOC, 324
DBCC CHECKDB with physical only

option, 324
secondary server, 325
split work load, 324

Virtual accounts, 52
Virtual machines (VMs), 472
Vulnerability assessment, 367, 369

W, X, Y, Z
wget command, 102
whole-value substitution attack, 389

Windows Authentication
model, 837

Windows Server
Core Installation

configuration file
auto-install

script, 97, 98
PowerShell, 98, 100
PROSQLADMINCONF2, 94, 95
SQLAutoInstall.ps1, 96
SQLPROSQLADMIN

CONF1, 92, 93
instance (see Instance

Installation)
NET Framework 3.5, 73

INDEX

	Table of Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Introduction
	Part I: Installation and Configuration
	Chapter 1: Planning the Deployment
	Editions and License Models
	Hardware Considerations
	Specifying Strategic Minimum Requirements
	Storage
	Locally Attached Storage
	RAID 0
	RAID 1
	RAID 5
	RAID 10

	File Placement
	Solid-State Drives (SSDs)
	Working with a SAN
	Disk Block Size

	Operating Systems Considerations
	Configuring the Operating System
	Setting the Power Plan
	Optimizing for Background Services
	Assigning User Rights
	Initializing the Instant File
	Locking Pages in Memory
	SQL Audit to the Event Log

	Selecting Features
	Database Engine Service
	Analysis Services
	Machine Learning Server
	Data Quality Client
	Client Connectivity Tools
	Integration Services
	Client Tools Backward Compatibility
	Client Tools SDK
	Distributed Replay Controller
	Distributed Replay Client
	SQL Client Connectivity SDK
	Master Data Services

	Summary

	Chapter 2: GUI Installation
	Installation Center
	The Planning Tab
	The Installation Tab
	The Maintenance Tab
	The Tools Tab
	The Resources Tab
	The Advanced Tab
	The Options Tab

	Installing a Stand-Alone Database Engine Instance
	Preparation Steps
	The Feature Selection Page
	The Instance Configuration Page
	Selecting Service Accounts
	Choosing the Collation
	Provisioning Instance Security
	Configuring the Instance
	Configuring Distributed Replay
	Completing the Installation

	Summary

	Chapter 3: Server Core Installation
	Installing an Instance
	Required Parameters
	IACCEPTSQLSERVERLICENSETERMS Switch
	ACTION Parameter
	FEATURES Parameter

	Role Parameter
	Basic Installation
	Smoke Tests
	Troubleshooting the Installation
	Summary.txt
	Detail.txt
	SystemConfigurationCheck_Report.htm
	Other Log Files

	Optional Parameters
	Product Update

	Using a Config File
	Automatic Installation Routines
	Enhancing the Installation Routine
	Production Readiness

	Summary

	Chapter 4: Installation on Heterogeneous Operating Systems
	Installing SQL Server on Linux
	Installing SQL Server Manually
	Configuring SQL Server
	Unattended Installation

	Installing SQL Server in a Docker Container
	Running a Microsoft-Supplied Docker Image
	Creating a Simple Docker Image for SQL Server
	Creating a Configurable Docker Image for SQL Server
	Kubernetes Support

	Summary

	Chapter 5: Configuring the Instance
	Instance Configuration
	Using sp_configure
	Processor and Memory Configuration
	Processor Affinity
	MAXDOP
	Min and Max Server Memory

	Trace Flags
	Trace Flag 3042
	Trace Flag 3226
	Trace Flag 3625

	Ports and Firewalls
	Process of Communication
	Ports Required by SQL Server
	Configuring the Port That the Instance Will Listen On

	System Databases
	mssqlsystemresource (Resource)
	MSDB
	Master
	Model
	TempDB
	Optimizing TempDB

	Buffer Pool Extension
	Hybrid Buffer Pool
	Summary

	Part II: Database Administration
	Chapter 6: Database Configuration
	Data Storage
	Filegroups
	FILESTREAM Filegroups
	Memory-Optimized Filegroups
	Strategies for Structured Filegroups
	Performance Strategies
	Backup and Restore Strategies
	Storage-Tiering Strategies

	Strategies for Memory-Optimized Filegroups

	File and Filegroup Maintenance
	Adding Files
	Expanding Files
	Shrinking Files

	Database Scoped Configurations
	Log Maintenance
	Recovery Model
	Log File Count
	Shrinking the Log
	Log Fragmentation

	Summary

	Chapter 7: Table Optimizations
	Table Partitioning
	Partitioning Concepts
	Partitioning Key
	Partition Function
	Partition Scheme
	Index Alignment
	Partitioning Hierarchy

	Implementing Partitioning
	Creating the Partitioning Objects
	Creating a New Partitioned Table
	Partitioning an Existing Table

	Monitoring Partitioned Tables
	$PARTITION Function

	Sliding Windows
	Partition Elimination

	Table Compression
	Row Compression
	Page Compression
	Prefix Compression
	Dictionary Compression
	Page Compression Structure

	Columnstore Compression
	Implementing Compression
	Selecting the Compression Level
	Compressing Tables and Partitions
	Data Compression Wizard
	Maintaining Compression on Heaps
	Maintaining Compressed Partitions

	Memory-Optimized Tables
	Durability
	Creating and Managing Memory-Optimized Tables
	Performance Profile
	Table Memory Optimization Advisor
	Natively Compiled Objects
	Natively Compiled Tables
	Natively Compiled Stored Procedures

	Summary

	Chapter 8: Indexes and Statistics
	Clustered Indexes
	Tables Without a Clustered Index
	Tables with a Clustered Index
	Clustering the Primary Key
	Administering Clustered Indexes

	Nonclustered Indexes
	Covering Indexes
	Administering Nonclustered Indexes
	Filtered Indexes

	Indexes for Specialized Application
	Columnstore Indexes
	Clustered Columnstore Indexes
	Nonclustered Columnstore Indexes
	In-Memory Indexes
	In-Memory Nonclustered Hash Indexes
	In-Memory Nonclustered Indexes

	Maintaining Indexes
	Missing Indexes
	Index Fragmentation
	Detecting Fragmentation
	Removing Fragmentation

	Resumable Index Operations
	Partitioned Indexes

	Statistics
	Filtered Statistics
	Incremental Statistics

	Managing Statistics
	Summary

	Chapter 9: Database Consistency
	Consistency Errors
	Understand Consistency Errors
	605 Error
	823 Error
	824 Error
	5180 Error
	7105 Error

	Detecting Consistency Errors
	Page Verify Option
	Suspect Pages
	Consistency Issues for Memory-Optimized Tables

	System Database Corruption
	Corruption of the Master Database
	Corruption of the Resource Database or Binaries

	DBCC CHECKDB
	Checking for Errors
	Fixing Errors
	Emergency Mode
	Other DBCC Commands for Corruption
	DBCC CHECKCATALOG
	DBCC CHECKALLOC
	DBCC CHECKTABLE
	DBCC CHECKFILEGROUP
	DBCC CHECKIDENT
	DBCC CHECKCONSTRAINTS

	Consistency Checks on VLDBs
	DBCC CHECKDB with PHYSICAL_ONLY
	Backing Up WITH CHECKSUM and DBCC CHECKALLOC
	Splitting the Workload
	Offloading to a Secondary Server

	Summary

	Part III: Security, Resilience, and Scaling Workloads
	Chapter 10: SQL Server Security Model
	Security Hierarchy
	Implementing Instance-Level Security
	Server Roles
	Logins
	Granting Permissions

	Implementing Database-Level Security
	Database Roles
	Schemas
	Creating and Managing Contained Users

	Implementing Object-Level Security
	Server Audit
	Creating a Server Audit
	Creating a Server Audit Specification
	Enabling and Invoking Audits
	Database Audit Specifications
	Auditing the Audit

	Security Reports
	SQL Data Discovery and Classification
	Vulnerability Assessment

	Summary

	Chapter 11: Encryption
	Encryption Hierarchy
	Encryption Concepts
	Symmetric Keys
	Asymmetric Keys
	Certificates
	Windows Data Protection API

	SQL Server Encryption Concepts
	Master Keys
	Hierarchy

	Transparent Data Encryption
	Implementing TDE
	Managing TDE
	Migrating an Encrypted Database

	Managing Cell-Level Encryption
	Accessing Encrypted Data

	Always Encrypted
	Implementing Always Encrypted
	Administering Keys

	Summary

	Chapter 12: Backups and Restores
	Backup Fundamentals
	Recovery Models
	SIMPLE Recovery Model
	FULL Recovery Model
	BULK LOGGED Recovery Model

	Changing the Recovery Model
	Backup Types
	Full Backup
	Differential Backup
	Log Backup

	Backup Media
	Backup Device
	Media Sets
	Backup Sets

	Backup Strategies
	Full Backup Only
	Full and Transaction Log Backups
	Full, Differential, and Transaction Log Backups
	Filegroup Backups
	Partial Backup

	Backing Up a Database
	Backing Up in SQL Server Management Studio
	Backing Up via T-SQL

	Restoring a Database
	Restoring in SQL Server Management Studio
	Restoring via T-SQL

	Restoring to a Point in Time
	Restoring Files and Pages
	Restoring a File
	Restoring a Page

	Piecemeal Restores
	Summary

	Chapter 13: High Availability and Disaster Recovery Concepts
	Availability Concepts
	Level of Availability
	Service-Level Agreements and Service-Level Objectives
	Proactive Maintenance

	Recovery Point Objective and Recovery Time Objective
	Cost of Downtime
	Classification of Standby Servers

	High Availability and Recovery Technologies
	AlwaysOn Failover Clustering
	Active/Active Configuration
	Three-Plus Node Configurations
	Quorum

	AlwaysOn Availability Groups
	Automatic Page Repair

	Log Shipping
	Recovery Modes
	Remote Monitor Server
	Failover

	Combining Technologies

	Summary

	Chapter 14: Implementing AlwaysOn Availability Groups
	Implementing AlwaysOn Availability Groups
	Configuring SQL Server
	Creating the Availability Group
	Using the New Availability Group Wizard
	Using the New Availability Group Dialog Box

	Availability Groups on Linux
	Distributed Availability Groups
	Managing AlwaysOn Availability Groups
	Failover
	Synchronous Failover
	Asynchronous Failover

	Synchronizing Uncontained Objects
	Monitoring
	AlwaysOn Dashboard
	AlwaysOn Health Trace

	Other Administrative Considerations

	Summary

	Chapter 15: Implementing Log Shipping
	Implementing Log Shipping for DR
	GUI Configuration
	T-SQL Configuration

	Log Shipping Maintenance
	Failing Over Log Shipping
	Switching Roles
	Monitoring

	Summary

	Chapter 16: Scaling Workloads
	Database Snapshots
	Implementing Database Snapshots
	Recovering Data from a Snapshot

	Replication
	Replication Concepts
	Types of Replication
	Snapshot
	Transactional
	Merge

	Implementing Transactional Replication
	Implementing the Distributor
	Implementing the Publication
	Implementing the Subscriber
	Modifying the PAL

	Adding AlwaysOn Readable Secondary Replicas
	Benefits and Considerations
	Implementing Readable Secondaries

	Summary

	Part IV: Performance and Maintenance
	Chapter 17: SQL Server Metadata
	Introducing Metadata Objects
	Server-Level and Instance-Level Metadata
	Exposing Registry Values
	Exposing Service Details
	Analyzing Buffer Cache Usage

	Metadata for Capacity Planning
	Exposing File Stats
	Using File Stats for Capacity Analysis

	Metadata for Troubleshooting and Performance Tuning
	Retrieving Perfmon Counters
	Analyzing Waits

	Database Metadata
	Metadata-Driven Automation
	Dynamically Cycling Database Snapshots
	Rebuilding Only Fragmented Indexes

	Summary

	Chapter 18: Locking and Blocking
	Understanding Locking
	Lock Granularity
	Locking Behaviors for Online Maintenance
	Lock Compatibility
	Lock Partitioning

	Understanding Deadlocks
	How Deadlocks Occur
	Minimizing Deadlocks

	Understanding Transactions
	Transactional Properties
	Atomic
	Consistent
	Isolated
	Transactional Anomalies
	Dirty Reads
	Nonrepeatable Read
	Phantom Read

	Isolation Levels
	Pessimistic Isolation Levels
	Optimistic Isolation Levels

	Durable

	Transaction with In-Memory OLTP
	Isolation Levels
	Read Committed
	Read Committed Snapshot
	Snapshot
	Repeatable Read
	Serializable

	Cross-Container Transactions
	Retry Logic

	Observing Transactions, Locks, and Deadlocks
	Observing Transactions
	Observing Locks and Contention
	Observing Deadlocks

	Summary

	Chapter 19: Extended Events
	Extended Events Concepts
	Packages
	Events
	Targets
	Actions
	Predicates
	Types and Maps
	Sessions

	Creating an Event Session
	Using the New Session Dialog Box
	Using T-SQL

	Viewing the Collected Data
	Analyzing Data with Data Viewer
	Analyzing Data with T-SQL

	Correlating Extended Events with Operating System Data
	Correlating Events with Perfmon Data
	Integrating Event Sessions with Operating System–Level Events

	Summary

	Chapter 20: Query Store
	Enabling and Configuring Query Store
	Working with Query Store Data
	SSMS Reports
	Query Store T-SQL Objects

	Resolving Issues with Query Store
	Summary

	Chapter 21: Distributed Replay
	Distributed Replay Concepts
	Distributed Replay Components
	Distributed Replay Architecture

	Configuring the Environment
	Configuring the Controller
	Configuring Clients
	Configuring the Replay

	Working with Distributed Replay
	Synchronizing the Target
	Creating a Trace
	Replaying the Trace
	Converting the Trace File
	Preprocessing the Trace Data
	Starting the Replay

	Summary

	Chapter 22: Automating Maintenance Routines
	SQL Server Agent
	SQL Server Agent Concepts
	Schedules
	Operators
	Jobs
	Alerts

	SQL Server Agent Security
	SQL Server Agent Database Roles
	SQL Server Agent Proxy Accounts

	Creating SQL Server Agent Jobs
	Creating a Simple SQL Server Agent Job
	Creating a Complex SQL Server Agent Job
	Creating the Credential
	Creating the Proxy
	Creating the Schedule
	Configuring Database Mail
	Creating the Operator
	Creating the Job

	Monitoring and Managing Jobs
	Executing Jobs
	Viewing Job History

	Creating Alerts

	Multiserver Jobs
	Configuring the MSX and TSX Servers
	Creating Master Jobs
	Managing Target Servers

	Summary

	Chapter 23: Policy-Based Management
	PBM Concepts
	Facets
	Conditions
	Targets
	Policies
	Evaluation Modes

	Central Management Servers
	Creating Policies
	Creating Simple Policies
	Creating a Policy That You Can Manually Evaluate
	Manually Evaluating a Policy
	Creating a Policy That Prevents Unwanted Activity

	Creating an Advanced Policy

	Managing Policies
	Importing and Exporting Policies
	Enterprise Management with Policies
	Evaluating Policies with PowerShell

	Summary

	Chapter 24: Resource Governor
	Resource Governor Concepts
	Resource Pool
	Workload Group
	Classifier Function

	Implementing Resource Governor
	Creating Resource Pools
	Creating Workload Groups
	Creating a Classifier Function
	Testing the Classifier Function

	Monitoring Resource Governor
	Monitoring with Performance Monitor
	Monitoring with DMVs

	Summary

	Index

