

Table of Contents

Preface 5

Acknowledgments 6

An Introduction to GraphQL 7
One-Size-Fits-All . 7
Let’s Go Back in Time . 9
Enter GraphQL . 10
Type System . 13
Introspection . 24
Summary . 26

GraphQL Schema Design 27
What Makes an API Great? . 27
Design First . 27
Client First . 28
Naming . 30
Descriptions . 33
Use the Schema, Luke! . 34
Expressive Schemas . 36
Specific or Generic . 42
The Relay Specification . 46
Lists & Pagination . 47
Sharing Types . 53
Global Identification . 56
Nullability . 57
Abstract Types . 59
Designing for Static Queries . 62
Mutations . 64
Fine-Grained or Coarse-Grained . 66
Errors . 69
Schema Organization . 79
Asynchronous Behavior . 80
Data-Driven Schema vs Use-Case-Driven Schema 81
Summary . 83

Implementing GraphQL Servers 84
GraphQL Server Basics . 84
Code First vs Schema First . 86
Generating SDL Artifacts . 91
Resolver Design . 93
Schema Metadata . 95
Multiple Schemas . 97
Modular Schemas . 100

2

Testing . 102
Summary . 103

Security 104
Rate Limiting . 104
Blocking Abusive Queries . 110
Timeouts . 111
Authentication . 112
Authorization . 112
Blocking Introspection . 115
Persisted Queries . 116
Summary . 119

Performance & Monitoring 120
Monitoring . 120
The N+1 Problem and the Dataloader Pattern 126
Caching . 133
Compiled Queries . 140
Summary . 140

Tooling 142
Linting . 142
Analytics . 143
Summary . 146

Workflow 147
Design . 147
Review . 147
Development . 148
Publish . 148
Analyze . 150
Ship . 150

Public GraphQL APIs 151
Is GraphQL a Good Choice for Public APIs 151
Lack of Conventions . 152
With Great Power comes Great Responsibility 153
Summary . 154

GraphQL in a Distributed Architecture 155
GraphQL API Gateway . 155
GraphQL as a BFF . 166
Service Communication . 167
Summary . 169

Versioning 170
API Versioning is Never Fun . 170

3

Versioning GraphQL is Possible . 171
Continuous Evolution . 172
Change Management . 173
Summary . 177

Documenting GraphQL APIs 178
Documentation Generators . 178
The What, Not Just the How . 179
Workflows and Use Cases . 180
Example / Pre-Made Queries . 181
Changelogs . 181
Upcoming Changes . 181
Summary . 182

Migrating From Other API Styles 183
Generators . 183
REST & GraphQL Alongside . 184
Summary . 185

Closing Thoughts 186

4

Preface

First of all, thanks for purchasing this book. I hope you have as much fun
reading it as I had writing it. GraphQL is still a very recent technology but
is being adopted more and more every day. I’ve always thought there wasn’t
much information available on how to build great GraphQL servers. A lot of the
content seems to be focused on GraphQL clients, where GraphQL really shines.
For that to happen, we need GraphQL servers to be ready. Over the past 4
years, I’ve been helping to build GraphQL platforms at Shopify and GitHub,
probably two of the biggest public GraphQL APIs out there. This book tries to
put into words what I’ve seen work best and what to avoid.

Enjoy!

5

Acknowledgments

This book wouldn’t have been possible without all the great people I’ve worked
with on GraphQL over the years. Specifically thanks to Robert Mosolgo, Scott
Walkinshaw and Evan Huus.

Special thanks to Christian Blais and Christian Joudrey, who gave me a chance
at Shopify years ago, and to Kyle Daigle who gave me the opportunity to bring
my GraphQL experience at GitHub.

Of course, this book wouldn’t have been possible without my wife Gabrielle who
has supported me every step of the way.

Illustrations: Gabrielle Le Sauteur Proof reading: Joanne Goulet

6

An Introduction to GraphQL

Just a few years ago, way before anyone had heard of GraphQL, another API
architecture was dominating the field of web APIs: Endpoint based APIs. I call
Endpoint-based any APIs based on an architecture that revolves around HTTP
endpoints. These may be a JSON API over HTTP, RPC style endpoints, REST,
etc.

These APIs had (and still have) several advantages. In fact, they are still
dominating the field when it comes to web APIs. There is a reason for this.
These endpoints are usually quite simple to implement and can usually answer
very appropriately to one use case. With careful design, Endpoint based APIs
can very well be optimized for a particular use case. They are easily cacheable,
discoverable, and simple to use by clients.

In more recent years, the number of different types of consumers of web APIs
has exploded. While web browsers used to be the main clients for Web APIs,
we now have to make our APIs to respond to mobile apps, other servers that
are part of our distributed architectures, gaming consoles, etc. Even your fridge
might be calling a web API when you open the door!

Endpoint based APIs are great when it comes to optimizing an exchange between
a client and a server for one functionality or use case. The tricky thing is that
because of that explosion in client types, for certain APIs that need to serve that
many use cases, building a good endpoint to serve these scenarios became more
complex. For example, if you were working on an e-commerce platform and had
to provide a use case of fetching products for a product page, you would have to
consider web browsers, which may be rendering a detailed view of products, a
mobile app which may only display the product images on that page, and your
fridge, which may have a very minimal version of the data to avoid sending too
much on the wire. What ends up happening in these cases is that we try to
build a one-size-fits-all API.

One-Size-Fits-All
What is a One-Size-Fits-All API? It’s an API that tries to answer too many
use cases. It’s an API that started optimized like we wanted and became very
generic, due to the failure to adapt to a lot of different ways to consume a
common use case. They are hard to manage for API developers because of how
coupled they are to different clients, and sometimes of how messy it gets to
maintain them on the server.

This became a fairly common problem with endpoint-based APIs, sometimes
blamed only on REST APIs. (In reality, REST is not specifically to blame and
provides ways to avoid this problem.) Web APIs facing that problem reacted
in many different ways. We saw some APIs respond with the simplest solution:
adding more endpoints, one endpoint per variation. For example, take an

7

endpoint-based API that provides a way to fetch products, through a products
resource: GET /products

To provide the gaming console version of this use case, certain APIs solved the
problem in the following way:

GET api/playstation/products

GET api/mobile/products

With a sufficiently large web API, you might guess what happened with this
approach. The number of endpoints used to answer variations on the same
use cases exploded, which made the API extremely hard to reason about for
developers, very brittle to changes, and generally a pain to maintain and evolve.

Not everybody chose this approach. Some chose to keep one endpoint per use
case, but allow certain query parameters to be used. At the simplest level, this
could be a very specific query parameter to select the client version we require:

GET api/products?version=gaming

GET api/products?version=mobile

Some other approaches were more generic, for example partials:

GET api/products?partial=full

GET api/products?partial=minimal

And then some others chose a more generic approach, by letting clients select
what they wanted back from the server. The JSON:API specification calls them
sparse fieldsets:

GET api/products?include=author&fields[products]=name,price

Some even went as far as creating a query language in a query parameter. Take
a look at this example inspired by Google’s Drive API:

GET api/products?fields=name,photos(title,metadata/height)

All the approaches we covered make tradeoffs of their own. Most of these
tradeoffs are found between optimization (How optimized for a single use case
the endpoint is) and customization (How much can an endpoint adapt to different
use cases or variations). Something we’ll discuss more deeply during this book.

While most of these approaches can make clients happy, they’re not necessarily
the best to maintain as an API developer, and usually end up being hard
to understand for both client and server developers. Around 2012, different
companies were hitting this issue, and lots of them started thinking of ways to
make a more customizable API with a great developer experience. Let’s explore
what they built.

8

Let’s Go Back in Time

Netflix

In 2012, Netflix announced that they had made a complete API redesign. In a
blog post about that change, here’s the reason they stated:

Netflix has found substantial limitations in the traditional one-size-
fits-all (OSFA) REST API approach. As a result, we have moved to
a new, fully customizable API.

Knowing that they had to support more than 800 different devices, and the
fallbacks of some of the approaches you’ve just read, it is not so surprising that
they were looking for a better solution to this problem. The post also mentions
something crucial to understanding where we come from:

While effective, the problem with the OSFA approach is that its
emphasis is to make it convenient for the API provider, not the API
consumer.

Netflix’s solution involved a new conceptual layer between the typical client and
server layers, where client-specific code is hosted on the server.

While this might sound like just writing many custom endpoints, this architecture
makes doing so much more manageable on the server. In their approach, the
server code takes care of “gathering content” (fetching data, calling the necessary
services) while the adapter layer takes care of formatting this data in the client-
specific way. In terms of developer experience, this lets the API team give back
some control to client developers, letting them build their client adapters on the
server.

Fun fact: They liked their approach so much that they filed a patent for it,
with the fairly general name of “Api platform that includes server-executed
client-based code”.

SoundCloud

Another company struggled with similar concerns back then: SoundCloud. While
migrating from a monolithic architecture to a more service-oriented one, they
started struggling with their existing API:

9

https://netflixtechblog.com/embracing-the-differences-inside-the-netflix-api-redesign-15fd8b3dc49d
https://netflixtechblog.com/embracing-the-differences-inside-the-netflix-api-redesign-15fd8b3dc49d
https://medium.com/featured-insights/bff-soundcloud-b37525f1e04
https://medium.com/featured-insights/bff-soundcloud-b37525f1e04

After a while, it started to get problematic, both in regard to the
time needed for adding new features, and to the different needs
of the platforms. For a mobile API, it’s sensible to have a smaller
payload footprint and request frequency than a web API, for example.
The existing monolith API didn’t take this into consideration and
was developed by another team, unaware of the mobile needs. So
every time the apps needed a new endpoint, first the frontend team
needed to convince the backend team that this was truly the case,
then a story needed to be written, prioritized, picked, developed and
communicated to the frontend team.

Rings a bell doesn’t it? This is very similar to the problems Netflix was trying to
solve, and the problems that can be caused by implementing the customization
solutions we discussed earlier in this chapter.

Their solution to this was quite interesting: instead of including advanced
customization options to their main API, they decided that each use case would
get its own API server. When you think about it, it makes a lot of sense. This
would allow developers to optimize each use case effectively without needing to
worry about other use cases, which an endpoint-based API performs really well
at.

They called this pattern “Backends for Frontends” (BFF). A great case study
from Thoughtworks includes a great visualization of the pattern.

As you can see, this makes each BFF handle one, or many similar experiences,
which allows developers to write manageable APIs for one use case and avoids
falling in the traps of writing a generic “One-Size-Fits-All” API.

Enter GraphQL
In September 2015, Facebook officially announced the release of GraphQL, whose
popularity has since then skyrocketed. However, although it might not be a
surprise to you after the other solutions we’ve covered so far, but it really is in
2012 that Facebook started re-thinking the way they worked with APIs. They
were frustrated by very similar concepts:

We were frustrated with the differences between the data we wanted
to use in our apps and the server queries they required. We don’t
think of data in terms of resource URLs, secondary keys, or join
tables; we think about it in terms of a graph of objects and the
models we ultimately use in our apps like NSObjects or JSON.

10

https://www.thoughtworks.com/insights/blog/bff-soundcloud
https://www.thoughtworks.com/insights/blog/bff-soundcloud

There was also a considerable amount of code to write on both the
server to prepare the data and on the client to parse it.

Unsurprisingly, Facebook was battling with very similar issues. Once again, we
see in these quotes the need for a more client-focused, experience-driven APIs.
While you read this book, remember these issues, and don’t forget GraphQL is
simply one solution. It is not simply a replacement from HTTP endpoint-based
APIs or the “next REST”. Instead, think of it as a great solution to building APIs
that need to tackle the incredible challenge of building experience based APIs,
and redefining the boundary between the client and server, while maintaining
sanity on the server-side. With that in mind, let’s explore GraphQL!

So what is GraphQL? Maybe a good way to introduce it is by looking at what it
is not:

• GraphQL is not some sort of graph database
• GraphQL is not a library
• GraphQL is not about graph theory

Here’s how I like to describe it instead: GraphQL is a specification for an
API query language and a server engine capable of executing such
queries.

At this point, this may be a bit too vague to truly grasp what GraphQL is all
about, but don’t worry, let’s start with an example. Feel free to jump to the
next chapter if you’re familiar with GraphQL concepts already.

Hello World

This is the “hello world” of GraphQL. A query that asks for the current user, as
well as their name. In this query, me and name are referred to as fields.

query {
me {

name
}

}

A client sends requests like these to a GraphQL server, usually as a simple string.
Here’s what the response coming back from a GraphQL server would look like
in this case:

11

{
"data": {

"me": {
"name": "Marc"

}
}

}

Notice how the response and the query are of very similar shapes. A successful
GraphQL response always has a data key, under which is found the response
the client is looking for. GraphQL allows clients to define requirements down
to single fields, which allows them to fetch exactly what they need. We can do
more than fetching simple fields:

query {
me {

name
friends(first: 2) {

name
age

}
}

}

In the above query, we’re fetching more than just my name, but we’re also
fetching the name and age of the first 2 of my friends. As you can see, we’re
able to traverse complex relationships. We also discover that fields may take
arguments. In fact, you can consider fields a bit like functions: they can take
arguments and return a certain type. Can you guess what the response would
look like?

12

{
"data": {

"me": {
"name": "Marc",
"friends": [{

"name": "Robert",
"age": 30

}, {
"name": "Andrew",
"age": 40

}]
}

}
}

The special query keyword you see as the start of a query is not a normal field.
It tells the GraphQL server that we want to query off the query root of the
schema. A question you may ask at this point is how did the client even know
that this was going to be a valid query to make? Or how did the server express
that this was possible?

Type System
At the core of any GraphQL server is a powerful type system that helps to
express API capabilities. Practically, the type system of a GraphQL engine is
often referred to as the schema. A common way of representing a schema is
through the GraphQL Schema Definition Language (SDL).

The SDL is the canonical representation of a GraphQL schema and is well defined
in the spec. The SDL is such a great tool to express GraphQL schema that we
will be using it during the entire book to describe schema examples. The great
thing with the SDL is that it is language agnostic. No matter what language
you’re running a GraphQL API with, the SDL describes the final schema. Here’s
what it looks like:

13

type Shop {
name: String!
Where the shop is located, null if online only.
location: Location
products: [Product!]!

}

type Location {
address: String

}

type Product {
name: String!
price: Price!

}

Types & Fields

The most basic and crucial primitive of a GraphQL schema is the Object Type.
Object types describe one concept in your GraphQL API. Just by themselves,
they’re not that useful. What makes them whole is when they define fields. In
our previous example, we defined a Shop type that defined three fields: name,
location, and products. The fieldName: Type syntax allows us to give a return
type to our fields. For example, the name field on a Shop type returns a String,
the name of the Shop. It is usually helpful to compare GraphQL fields to simple
functions. Fields are executed by a GraphQL server and return a value that
maps correctly to its return type.

The String type is not user-defined. It is part of GraphQL’s pre-defined scalar
types. But GraphQL’s real power lies in the fact fields, which can return object
types of their own:

location: Location

The location field on the Shop returns a type Location, which is a type that the
schema defines. To see what fields are available on a Location type, we must
look at the Location type definition:

type Location {
address: String!

}

Our Location type defines simply one address field, which returns a String. The

14

fact that fields can return object types of their own is what powers amazing
queries like these:

query {
shop(id: 1) {

location {
address

}
}

}

A GraphQL server can execute queries like these because at each level in the
query, it is able to validate the client requirements against the defined schema.
This visualization might help:

query {
1. The shop field returns a `Shop` type.
shop(id: 1) {

2. field location on the `Shop` type
Returns a `Location` type.
location {

3. field address exists on the `Location` type
Returns a String.
address

}
}

}

There’s still something you might find odd about this query. We know that our
Shop type has a location field, and that our Location type has an address
field. But where is our shop field coming from?

Schema Roots

As you can see, a GraphQL schema can be defined using types and fields to
describe its capabilities. However, how can clients even begin to query this
“Graph” of capabilities? It must have an entry point somewhere. This is where
“Schema Roots” come in. A GraphQL schema must always define a Query Root,
a type that defines the entry point to possibilities. Usually, we call that type
Query:

type Query {
shop(id: ID): Shop!

}

15

The query type is implicitly queried whenever you request a GraphQL API. Take
for example this query:

{
shop(id: 1) {

name
}

}

The above is a valid GraphQL query because it implicitly asks for the shop field
on the Query root, even though we didn’t query a particular field that returned
a Query type first.

A query root has to be defined on a GraphQL schema, but two other types of
roots that can be defined: the Mutation, and the Subscription roots. We’ll cover
those later in the chapter.

Arguments

You might have noticed something special about the shop field on the Query
root.

type Query {
shop(id: ID!): Shop!

}

Just like a function, a GraphQL field can define arguments that a GraphQL
server can use to affect the runtime resolution of the field. These fields are
defined between parentheses after the field name, and you can have as many of
them as you like:

type Query {
shop(owner: String!, name: String!, location: Location): Shop!

}

Arguments, just like fields, can define a type which can be either a Scalar type
or an Input Type. Input types are similar to types, but they are declared in a
different way using the input keyword.

16

type Product {
price(format: PriceFormat): Int!

}

input PriceFormat {
displayCents: Boolean!
currency: String!

}

Variables

While we are on the subject of arguments, it is good to note that GraphQL
queries can also define variables to be used within a query. This allows clients
to send variables along with a query and have the GraphQL server execute it,
instead of including it directly in the query string itself:

query FetchProduct($id: ID!, $format: PriceFormat!) {
product(id: $id) {

price(format: $format) {
name

}
}

}

Notice that we also gave the query an operation name, FetchProduct. A
client would send this query along with its variables, like this:

{
"id": "abc",
"format": {

"displayCents": true,
"currency": "USD"

}
}

Aliases

While the server dictates the canonical name of fields, clients may want to receive
these fields under another name. For this, they can use field aliases:

17

query {
abcProduct: product (id: "abc") {

name
price

}
}

In this example, the client requests the product field, but defines a abcProduct
alias. When the client executes this query, it gets back the field as if it was
named abcProduct:

{
"data": {

"abcProduct": {
"name": "T-Shirt",
"price": 10,

}
}

}

This comes in useful when requesting the same field multiple times with different
arguments.

Mutations

So far, we’ve covered a lot of GraphQL Schema primitives that allow a client to
get information on how to query read-only information from a GraphQL API.
At some point, a lot of APIs will want to add functionality that requires writing
or modifying data. GraphQL defines the concept of mutations to achieve this
goal. Similar to the query root we discovered earlier in this chapter, the “entry
point” to the mutations of a schema is under the Mutation* root. The access to
this root in a GraphQL query is done through including the mutation keyword
at the top level of a query:

mutation {
addProduct(name: String!, price: Price!) {

product {
id

}
}

}

We can define this addProduct mutation in a very similar way we define fields

18

on the query root:

type Mutation {
addProduct(name: String!, price: Price!): AddProductPayload

}

type AddProductPayload {
product: Product!

}

As you can see, mutations are almost exactly like query fields. Two things make
them slightly different:

• Top-level fields under the mutation root are allowed to have side effects /
make modifications.

• Top-level mutation fields must be executed serially by the server, while
other fields could be executed in parallel.

The rest is the same: They also take arguments and have a return type for
clients to query after the mutation was made. We’ll talk a lot about how to
design great mutations in later chapters.

Enums

A GraphQL schema allows us to design our interface in quite a strong way. There
are cases where a field can return a set of distinct values, and where our usual
scalars would not be the most descriptive to clients. In these cases, it is usually
helpful to use Enum types:

type Shop {
The type of products the shop specializes in
type: ShopType!

}

enum ShopType {
APPAREL
FOOD
ELECTRONICS

}

Enum types allow a schema to clearly define a set of values that may be returned,
for fields, or passed, in the case of arguments. They come in very useful to define
an API that is easy to use by clients.

19

Abstract Types

Abstract types are part of a lot of languages, and GraphQL is no different.
Abstract types allow clients to expect the return type of a field to act a certain
way, without returning an actual type, which we’ll usually call the concrete type.
There are two main ways to return an abstract type for fields, interfaces, and
unions.

Interfaces allow us to define a contract that a concrete type implementing it
must answer to. Take this example:

interface Discountable {
priceWithDiscounts: Price!
priceWithoutDiscounts: Price!

}

type Product implements Discountable {
name: String!
priceWithDiscounts: Price!
priceWithoutDiscounts: Price!

}

type GiftCard implements Discountable {
code: String!
priceWithDiscounts: Price!
priceWithoutDiscounts: Price!

}

Here, we have a Product type that implements a Discountable interface. This
means the Product type must define the two Discountable fields because by
implementing the interface, it must respect that contract.

This allows other fields to return Discountable directly, letting clients know
they may request the fields part of that contract directly on the result, without
knowing which concrete type will be returned at runtime. For example, we
could have a discountedItems field which returns a list of either Product or
GiftCard types by directly returning an interface type of Discountable.

type Cart {
discountedItems: [Discountable!]!

}

Because all types are expected to answer to the Discountable contract, clients
can directly ask for the two price fields:

20

query {
cart {

discountedItems {
priceWithDiscounts
priceWithoutDiscounts

}
}

}

If a client wants to query the other fields, it must specify which concrete type
they want to be selecting against. This is done using fragment spreads or typed
fragments:

query {
cart {

discountedItems {
priceWithDiscounts
priceWithoutDiscounts
... on Product {

name
}
... on GiftCard {

code
}

}
}

}

Union types are a bit different. Instead of defining a certain contract, union
types are more of a bag of disparate objects that a field could return. They are
defined using the union keyword:

union CartItem = Product | GiftCard

type Cart {
items: [CartItem]

}

Because it defines no contract and just defines which possible concrete types
could be returned by that field, clients have to specify the expected concrete
type in all cases:

21

query {
cart {

discountedItems {
... on Product {

name
}
... on GiftCard {

code
}

}
}

}

Abstract types are often very useful in a GraphQL schema, but can also be easily
abused. We’ll cover them in detail in the next chapter.

Fragments

The ... on Product we were using to select concrete types are called inline
fragments in GraphQL. Inline fragments are a specific version of a GraphQL
query language concept called fragments. Fragments allow clients to define
parts of a query to be reused elsewhere:

query {
products(first: 100) {

...ProductFragment
}

}

fragment ProductFragment on Product {
name
price
variants

}

A fragment is defined using the fragment keyword. It takes a name and a
location where it can be applied, in this case Product.

Directives

The last things to cover in the schema definition language are directives. Direc-
tives are a kind of annotation that we can use on various GraphQL primitives.
The GraphQL specification defines two builtin directives that are really useful:
@skip and @include.

22

query MyQuery($shouldInclude: Boolean) {
myField @include(if: $shouldInclude)

}

In this example, the @include directive makes sure the myField field is only
queried when the variable shouldInclude is true. Directives provide clients
with a way to annotate fields in a way that can modify the execution behavior of
a GraphQL server. As you can see above, directives may also accept arguments,
just like fields.

It’s also possible for us to add custom directives. First, we need to define a name
for the directive, and determine where it can be applied.

"""
Marks an element of a GraphQL schema as
only available with a feature flag activated
"""
directive @myDirective(

"""
The identifier of the feature flag that toggles this field.
"""
flag: String

) on FIELD

Then, this directive can be used by clients:

query {
user(id: "1") @myDirective {

name
}

}

Directives can apply to queries, but they can also be used with the type system
directly, making them really useful to annotate our schemas with metadata:

23

"""
Marks an element of a GraphQL schema as
only available with a feature flag activated
"""
directive @featureFlagged(

"""
The identifier of the feature flag that toggles this field.
"""
flag: String

) on OBJECT | FIELD_DEFINITION

Then, this directive can be applied to schema members directly:

type SpecialType @featureFlagged(flag: "secret-flag") {
secret: String!

}

Introspection
The true special power behind GraphQL’s type system is its introspection
capabilities. With GraphQL, clients can ask a GraphQL schema for what is
possible to query. GraphQL schemas include introspection meta fields, which
allows clients to fetch almost everything about its type system:

query {
__schema {

types {
name

}
}

}

24

{
"data": {

"__schema": {
"types": [

{
"name": "Query"

},
{

"name": "Product"
},

]
}

}
}

Not only does this help clients discover use cases, but it enables the creation of
amazing tooling. For example, GraphiQL, an interactive GraphQL playground,
enables users to test GraphQL queries and view the reference for a GraphQL API,
thanks to introspection. Here’s an example from GitHub’s GraphQL developer
docs:

25

https://developer.github.com/v4/explorer/
https://developer.github.com/v4/explorer/

But it doesn’t stop there. Introspection is used by clients to generate code and
validate queries ahead of time, used by IDEs to validate queries while developing
an app, and by so many other tools. Introspection is a big reason why the
GraphQL ecosystem is growing so quickly.

Summary
With a query language for clients to express requirements, a type system for
servers to express possibilities, and an introspection system that allows clients to
discover these possibilities, GraphQL allows API providers to designs schemas
that clients will be able to consume in the way they want. These features also
support a wonderful ecosystem of tools that we’ll cover in this book. Now that
we know more about GraphQL and its type system, its time to talk about how
to build GraphQL servers.

26

GraphQL Schema Design

So far we’ve talked a lot about how GraphQL servers express possibilities through
their type systems. The key to a great GraphQL API starts with designing
these possibilities accurately. Like any API, Library, and even simple functions,
GraphQL schema design greatly affects how easy your API will be to use and
understand. In this chapter, we’ll discuss how to come up with a great design,
and also describe a few patterns to avoid or to use when it comes to designing
GraphQL APIs specifically.

What Makes an API Great?
Before we even dive into what goes into designing great GraphQL APIs, it’s
important to discuss what we would like the end result to look like. So what
makes a great API in general? Probably my favorite way to but it comes from
Joshua Bloch:

APIs should be easy to use and hard to misuse

A great API should make it easy to do the right thing and make it really hard
to do the wrong thing. Any developer should be able to come to your API and
understand with relative ease what they can achieve and how to do it. Our
API should guide developers towards the best way to use the API and also push
them away from bad practices, all that through the way we design it.

If you’re like me you’ve probably struggled to use some APIs in the past. A lot
of us have encountered weird unexpected behaviors, inconsistent wording, out
of date documentation, and so many more issues. If you’ve had the chance to
integrate with a well-designed API, then you know how great this can make a
developer feel and how quickly it allows any developer to integrate with your
offered functionalities. This is why design is the first thing we’ll cover in this
book: It is such an important part when it comes to building an API that clients
will love integrating with.

GraphQL inherently does not make it any easier to design a good API. It comes
with a powerful type system, but if we don’t use it right, we can fall into the
same traps than with any other API style.

Design First
The best way to create a schema that will delight our users is to start thinking of
the design very early in the journey. While it is tempting to start implementing
right away using your favorite library, taking a design-first approach will almost
always result in a better API. Failure to do so will generally lead to a design
that is very closely coupled to how things are implemented internally in your
system, something your end-users should not have to care about.

27

You are probably reading this book as a developer interested in building GraphQL
APIs. However, if you work for a sufficiently large company, I am fairly certain
that you are not the person with the most domain knowledge in all areas your
API will cover. This is why it is so important to work with teams and people who
are the most familiar with the use cases you are exposing. However, GraphQL
does come with some design concerns that we’ll cover in this chapter. The
best-case scenario is for GraphQL experts and Domain experts to work together.

APIs, especially public ones, are incredibly hard to change once they have
been exposed. Thinking of design initially, and making sure we have a great
understanding of the concepts enables us to lower the risk of breaking changes
down the line.

Client First
As we saw in the introduction, GraphQL is a client-centric API. This philosophy
affects how we should design our GraphQL APIs too. While it’s tempting to
be designing APIs in terms of backend resources or entities, it’s very important
to design GraphQL APIs with client use cases in mind first, before anything
else. Doing so ensures we are building an API that answers clients’ needs, and is
designed in a way that makes it easy to use and hard to misuse as we just saw
earlier. Failure to do so often leads to generic APIs that make clients need to
guess or read a ton of documentation to achieve what they want, or even worst
not being able to achieve it at all.

A great way to ensure you’re doing this correctly is working with a “first client”
as early on in the process as possible. This means sharing your design early
with a client, having them integrate with the API as soon as possible, and even
providing mock servers for your API design along the way. We’ll talk more about
this process in chapter 6. This is especially true for internal and partner APIs,
and a bit harder sometimes with public APIs. In any case, you should try to be
working with people who are going to be on the receiving end of your API.

Client first does not always mean doing exactly what the clients want either,
especially when dealing with a public API. Often, when clients bump into
problems, they’ll come to you straight with solutions. Gather information on
the problem first before implementing the solution they’re proposing and take a
step back. Chances are there is a more elegant solution behind the problem.

In a similar vein, it turns out that the mantra “You Aren’t Going to Need it”
(YAGNI), a quote that comes from ExtremeProgramming and the agile software
community, is particularly useful when it comes to designing APIs at well. Our
APIs should be complete, meaning they should provide just enough features for
clients to achieve the use cases they’re interested in. However, do not expose
anything more than that! I can’t tell you the number of times I’ve seen an API
needing deprecations or changes because something was exposed without any
client in mind, leading to terrible design, or even worst, something that should
not be exposed to clients due to performance or security reasons.

28

Another thing that designing with clients in mind helps with is making sure
we are not designing schemas that are influenced by implementation details.
Developers that will be integrating with your API don’t care what database
you’re using, what programming language the server is built with, or what design
issues you have on the backend. Your GraphQL schema is an entry point to
functionality and you should avoid tying it to any implementation detail on the
backend. Of course, concerns like availability and performance will sometimes
dictate the design, but it should be done very carefully and with the client in
mind. This will not only make for a better API but will also avoid the many
problems that come with an external API that is coupled to internal concerns:
we want to be able to change internal concerns at a much faster pace than we can
with an API that is used by external clients. Keep that in mind when building
out your schemas.

GraphQL’s typed nature also seems to attract a lot of vendors and tools that
offer to build a GraphQL API from your database or other data sources. If you
are building an API with a “client first” point of view, this rarely makes any
sense. This goes against everything we’ve said so far:

• It makes our schema coupled to implementation concerns.
• The result is often very generic and in terms of tables and entities.
• It doesn’t keep in mind our clients need at all.
• It often exposes way more than what we should (YAGNI).

I’m not saying these tools are useless; they can be useful for quick prototypes
or for when a GraphQL layer on top of a database is actually what is needed.
However, for those of us who care about API design and want a curated, cilent-
centric and experience-based API, those tools will rarely give the result we’re
looking for.

The other type of generators is those who will take an existing API definition,
Swagger/OpenAPI, and transliterate it into a GraphQL schema. Use these tools
with extreme caution. An API should take into consideration the architecture
or style it is built in. REST and GraphQL have different design concerns.
For example, in a REST API, we should focus on resources and use HTTP
methods semantics to interact with them. A very naive generator would generate
mutations that look like postUser or putProduct, when really we are dealing
with an API style that should look much more like remote procedure calls with
GraphQL: createUser and updateUser would most likely be the right call in
this case. It is possible to tweak these tools to provide a reasonable result, but
it will never be as nicely designed as a human-designed, GraphQL-first, curated
API. Of course, depending on context this tradeoff might be an acceptable one
to make, but it’s important to be aware of it.

Now that we’ve covered what makes a great API, let’s on move on to some more
specific good practices!

29

Naming

The names are the API talking back to you, so listen to them

The quote above is again from Joshua Bloch, in How To Design A Good API
and Why it Matters. I love this quote and while it mainly relates to designing
good Java APIs, it applies very well to web APIs like GraphQL as well.

Naming is very hard to get right but so important to think about. A good
name immediately conveys information on what the API probably does before
even needing to read documentation or even worst, guessing. In fact, naming
things in a good way will often guide us towards the right design by itself.

When it comes to naming, consistency is king. Remember that clients have
to take the time to understand a new API before using it. When things are
consistent, discovering a new API will feel natural to users. Here’s a good
example:

type Query {
products(ids: [ID!]): [Product!]!
findPosts(ids: [ID!]): [Post!]!

}

type Mutation {
addProduct(input: AddProductInput): AddProductPayload
createPost(input: CreatePostInput): CreatePostPayload

}

This schema is not consistent at all when it comes to naming. On the query
side, notice how there are two different naming schemes to get a list of objects.
On one end, finding posts is prefixed with find, and on the other end finding
products is done with a simple products field. This kind of schema is really hard
to use for a client since it’s not predictable. A client already using findPosts
and wishing to integrate with products will most likely assume they can do that
using findProducts, until they’re met with a field does not exist error or
simply not finding what they’re looking for. Besides being consistent with action
verbs like these, you should also be consistent in how you name your domain
concepts as well. For example, don’t name a post BlogPost somewhere, and
Post somewhere else unless they are actually different concepts.

Another good example can be found under the Mutation type. On one end we
can add a product to a shop using addProduct, but then adding a social media
post is done using createPost. These prefix issues are very common. These
inconsistencies can add up and make your API really hard to explore and use.

30

https://www.youtube.com/watch?v=aAb7hSCtvGw
https://www.youtube.com/watch?v=aAb7hSCtvGw

API symmetry is also important. Symmetry could be for example making sure
there are symmetric actions possible given a particular entity. For example,
a publishPost mutation makes it seem like there should be unpublishPost
mutation. Especially if other mutations in your schema are symmetric in that
way. Following the Principle of least astonishment is generally a very good idea.

Another good idea to consider is to be overly specific when it comes to naming
schema members. Not only does being specific avoid confusion for clients on
what exactly that object or field represents, but it helps GraphQL API providers
as well. Many large systems have more than one name for similar concepts.
When a very common or generic name such as “Event” or “User” is introduced,
it often takes up a lot of our naming real estate, making it hard to introduce
more specific concepts down the line.

Try to keep the generic names for later, as they might come in useful ahead in
the process. Here’s an example of naming gone wrong. We introduce a User
object which acts as the viewer on the query root. It includes information about
the currently logged-in user.

type Query {
viewer: User!

}

type User {
name: String!
hasTwoFactorAuthentication: Boolean
billing: Billing!

}

A few months later, the team realizes that this object is being used outside the
scope of a logged-in user, for example, when listing team members:

31

https://en.wikipedia.org/wiki/Principle_of_least_astonishment

type Query {
viewer: User!
team(id: ID!): Team

}

type Team {
members: [User!]!

}

type User {
name: String!
hasTwoFactorAuthentication: Boolean
billing: Billing!

}

However, they quickly realize that it makes no sense to expose private information
on team members, as they are only meant to be seen by the viewer. They need
to either raise an error whenever these fields are accessed by a non-viewer user,
or make a new type. The first solution is quite impractical, not great for clients,
and pretty brittle as far as implementation goes. The team needs to go through
a large deprecation and realizes User was more of an interface, while Viewer
and TeamMember should probably have been types of their own:

32

type Query {
viewer: User!
team(id: ID!): Team

}

type Team {
members: [User!]!

}

interface User {
name: String!

}

type TeamMember implements User {
name: String!
isAdmin: Boolean!

}

type Viewer implements User {
name: String!
hasTwoFactorAuthentication: Boolean
billing: Billing!

}

Specific naming could have avoided a big deprecation and is much nicer to use
and understand for clients. Naming things right can guide us towards the right
design, and naming things incorrectly just leads us deeper into a bad design.

Descriptions
Most GraphQL schema members may be documented using a description. In
terms of SDL, it looks like this:

"""
An order represents a `Checkout`
that was paid by a `Customer`
"""
type Order {

items: [LineItem!]!
}

Descriptions are great since they encode this information directly into the schema
instead of being found in an external source like documentation. When exploring

33

an API using GraphiQL, users can quickly read descriptions along with the
schema.

It’s a good idea to describe almost all entities in your schema. Good descriptions
should clearly convey what a schema type represents, what mutations do,
etc. However, as much as descriptions are great, they can sometimes reveal
inadequate schema design.

Ideally, descriptions are just icing on the cake. A client trying to integrate with
your API should rarely have to read descriptions to understand how your API
can and should be used. As we talked about already, our schema should already
convey what things mean and how they should be used. Typical smells are
descriptions that describe edge cases, descriptions that contain conditionals and
describe contextual behavior.

The bottom line is to use descriptions, but don’t make your users rely on them to
understand your use cases. We’ll talk much more about GraphQL documentation
in chapter 10.

Use the Schema, Luke!
GraphQL gives us this amazing and expressive type system to design our APIs.
Using it at its full potential makes for incredibly expressive APIs that don’t
depend on runtime behavior for users to understand. In the next example, we
have a schema for a Product type which has a name, price, and type. Type is
the type of the product like “apparel”, “food” or “toys”.

type Product {
name: String!
priceInCents: Int!
type: String!

}

One potential problem with this schema is that clients might have a very hard
time trying to understand what can come out of this type. How should they
handle the type field? If type has a set number of items, a much better way to
“self-document” this schema, but also provide some runtime guarantees, would
be to use an enum type here:

34

enum ProductType {
APPAREL
FOOD
TOYS

}

type Product {
name: String!
priceInCents: Int!
type: ProductType!

}

Another common and tempting design issue is having completely unstructured
data as part of the schema. This is often done as either a String type with a
description that indicates how to parse the field, or sometimes as a scalar type
like JSON.

type Product {
metaAttributes: JSON!

}

type User {
JSON encoded string with a list of user tags
tags: String!

}

A better approach in most cases is to use a stronger schema to express these
things.

type ProductMetaAttribute {
key: String!
value: String!

}

type Product {
metaAttributes: [ProductMetaAttribute!]!

}

While this may look very similar, the typed schema here allows clients to handle
this behavior in a much better way, allows us to evolve the schema over time
without fearing to break clients, and also lets the server implementation know
which fields are used on this ProductMetaAttribute type over time. As soon
as we use a custom encoding scalar or a string, we lose everything the typed

35

GraphQL schema gives us. If you really must use it, for example, data structures
that are potentially recursive, use it with care. Try to use a strong schema as
much as you can.

For example, custom scalars may help turn fields serialized as strings into more
useful types:

type Product {
Instead of a string description, we use a
custom scalar to indicate to clients
that they can treat the result of this field
as valid markdown.
description: Markdown

}

scalar Markdown

And may even be used as input types for more precise validation:

input CreateUser {
email: EmailAddress

}

A valid email address according to RFC5322
scalar EmailAddress

The bottom line is that as soon as we have the opportunity to use a stronger
schema, we should consider doing so. This may be through using more complex
object types rather than simple scalars, using enum types, and even custom
scalars when it makes sense.

Expressive Schemas
GraphQL’s type system enables us to build truly expressive APIs. What do we
mean by that? An expressive API allows client developers to easily understand
how the API is meant to be used. It is easy to use and hard to misuse. Not only
that, but as we just saw in the last section, the GraphQL schema enables API
providers to express how the API is meant to be used before they even have to
look at documentation or worst, having to implement it first.

One way to build expressive schemas is to use nullability to our advantage. Take
a look at this example where a GraphQL API is providing a way to find a
product. Products can be referred by their global ID or by their name, since we
are scoped to a single shop. One way to achieve this is by making a findProduct
field which optionally accepts both an id and name field:

36

type Query {
Find a query by id or by name. Passing none or both
will result in a NotFound error.
findProduct(id: ID, name: String): Product

}

This design would indeed solve the client’s needs. However, it is not intuitive
at all. What happens if a client provides none of the arguments? What if they
provide both? In both of these cases, the server would probably return an error
since this is not the way the API is meant to be used. There’s a way to solve the
same use case, but without having to document it explicitly or letting developers
discover this at runtime:

type Query {
productByID(id: ID!): Product
productByName(name: String!): Product

}

This may be a bit surprising to some of you. These fields are so similar; can
we not reuse the same field for them? In reality, as we covered a bit in the
introduction, we should not be afraid of providing many different ways to do
things with GraphQL. Even if we were to expose five different ways of fetching a
product, we are not adding overhead to any existing clients. We know that these
clients will simply select the ones that answer their use cases best. You can see
that the fields now have a single, required field, meaning the API is incredibly
hard to misuse. The schema itself, at validation time, will instruct clients how
to use the field. Let’s look at a more complex example:

type Payment {
creditCardNumber: String
creditCardExp: String
giftCardCode: String

}

This is a Payment type that represents a payment made by a customer. It has
three fields that can potentially be filled in, depending on how the order was
paid. If a credit card was used, the creditCardNumber and creditCardExp
fields should be filled in. Additionally, if a gift card was used on the order, then
the giftCardCode field will be present. The first thing we can improve is by
using a stronger schema to represent some of these things.

37

type Payment {
creditCardNumber: CreditCardNumber
creditCardExpiration: CreditCardExpiration
giftCardCode: String

}

Represents a 16 digits credit card number
scalar CreditCardNumber

type CreditCardExpiration {
isExpired: Boolean!
month: Int!
year: Int!

}

We’ve addressed a few issues. Instead of a String type credit card expiration,
which makes it hard for clients to figure out what format they should provide,
we have refactored this into a CardExpirationDetails type that has integers
fields for both the month and the year. Not only is this more useable than a
string clients have to pass, but this also allows us to add fields to this expiration
details type as we evolve. For example, we could eventually add an isExpired:
Boolean field to help clients with this logic. We’ve also used a custom scalar for
the credit card number, which provides a bit more semantics to clients since a
credit card number has a pretty particular format.

There is still room for improvement. Notice how all fields are nullable, which
means it’s quite hard for a client to even know what a payment object will look
like at runtime. We can make that better:

38

type Payment {
creditCard: CreditCard
giftCardCode: String

}

type CreditCard {
number: CreditCardNumber!
expiration: CreditCardExpiration!

}

Represents a 16 digits credit card number
scalar CreditCardNumber

type CreditCardExpiration {
isExpired: Boolean!
month: Int!
year: Int!

}

Much nicer already! We’ve used an object type that contains all the credit card
related input fields. Now, the schema expresses that if a credit card input is
passed, then it must contain all of the fields, as shown by the fields number
and expiration that are now required. In the previous version, we would have
had to handle this kind of conditional in our implementation rather than just
letting the schema handle that for us. A common smell that indicates you might
need this sort of refactoring is by taking a look at field prefixes. If multiple fields
on a type share a prefix, chances are they could be under a new object type.
This also lets us evolve the schema in a much better way, instead of adding more
fields at the root, in our case the Payment object.

Another way to put this principle is the quote “Make Impossible States Impossi-
ble”. It’s hard to find who said it first, but it’s a popular saying when it comes
to strongly typed languages. What it means is that if we look at our schema’s
type, this type should make it impossible to have inconsistent information. Let’s
take a look at a very simple example. We have a Cart object which contains a
set of items someone would like to buy. This cart object also has attributes that
can let us know if someone has paid for the items, and how much has been paid
so far.

type Cart {
paid: Boolean
amountPaid: Money
items: [CartItem!]!

}

39

Given this schema, it’s unfortunately possible for a client to get data that
represents an impossible state. For example, a cart could say it has been paid
for, with amountPaid being null, which makes no sense:

{
"data": {

"cart": {
"paid": true,
"amountPaid": null,
"item": [...]

}
}

}

Or the opposite: we could say the cart has not been paid, even though the
amountPaid is all there:

{
"data": {

"cart": {
"paid": false,
"amountPaid": 10000,
"item": [...]

}
}

}

Instead, we want to be building a schema that simply does not allow these states,
thanks to the type system. The solution to this always depends on the context.
In this case, maybe we were missing concepts. Maybe an Order type should
represent a paid cart, and a cart simply a bag of objects. In other cases, this can
be avoided by simply wrapping related fields under an object type. For example,
we could say that if a payment property is there on a cart, it means that it has
been paid for. We can then use nullability to ensure both paid and amountPaid
are present when that’s the case:

40

type Cart {
payment: Payment
items: [CartItem!]!

}

type Payment {
paid: Boolean!
amountPaid: Money!

}

Before we move on, here’s another example of an API that makes it hard and
surprising for a client to use. In this example, we have a product field which
takes an optional sort argument. This could make sense since we don’t want to
force all clients to pass a value for the sort argument if they’re not looking for a
particular sort order.

type Query {
products(sort: SortOrder): [Product!]!

}

The problem is that the schema tells us absolutely nothing about what the
default sort is. Instead, GraphQL provides us with default values, which are
incredibly useful to document the default case. So instead of setting a default
sort order in our resolving logic, we can encode it right into the schema:

type Query {
products(sort: SortOrder = DESC): [Product!]!

}

As you can see, there are many ways to make our schema easier to use and
understand:

• Make sure your fields do one thing well and avoid clever or generic fields
when possible.

• Avoid runtime logic when the schema can enforce it.
• Use complex object and input types to represent coupling between fields

and arguments: avoid “impossible states”.
• Use default values to indicate what the default behavior is when using
optional inputs and arguments.

41

Specific or Generic
The great debate on specific or generic is one that the API community has been
having for many years. On one end, being very specific in the use cases we
provide means we optimize very well for the clients interested in that specific
functionality. On the other end, an API that is too specific for some clients
means it leaves less customization for other clients. This is especially true if you
are dealing with many unknown clients since you don’t know their use cases just
yet.

However, since GraphQL’s core philosophy is all about letting clients consume
exactly what they need, building our schema with that in mind and opting for
simple fields that answer specific client’s needs is generally a good idea. Fields
that are too generic tend to be optimized for no one and also harder to reason
about. Fields should often do one thing, and do it really well. A good indication
that a field might be trying to do more than one thing is a boolean argument.
You’ll often get a better design by splitting it into different fields. Here’s a
common example:

type Query {
posts(first: Int!, includeArchived: Boolean): [Post!]!

}

Instead of making the posts field able to handle both listing archived posts and
normal posts, what if we separated it into two fields:

type Query {
posts(first: Int!): [Post!]!
archivedPosts(first: Int!): [Post!]!

}

Just by splitting this into two distinct use cases, we have a more readable schema
that is easier to optimize, easier to cache and easier to reason about for clients.
However, this is a basic example. The most common examples of excessive use
of generic fields are probably very complex filters like these:

42

query {
posts(where: [

{ attribute: DATE, gt: "2019-08-30" },
{ attribute: TITLE, includes: "GraphQL" }

]) {
id
title
date

}
}

While these kinds of filtering syntaxes, which are closer to SQL, are quite
powerful, they can be avoided most of the time. Not only are they so generic
that they force the server team to handle all the performance edge cases inside a
single resolver, but they also don’t focus on any use case in particular, making
them hard to discover and use on the client too.

Filters can be very useful, for example, if you’re implementing an actual search
or filtering use case. However, try to be conscious of how much you need these
generic fields. Can you expose the specific use case in another way? For example:

type Query {
filterPostsByTitle(

includingTitle: String!,
afterDate: DateTime

): [Post!]!
}

Keep in mind that this whole specific vs. generic debate depends a ton on the
kind of API you’re building. For example, if you’re building an API to support
various SQL-like filters for some sort of search interface, going the generic route
may make a lot of sense. At this point though, you are just implementing an
actual use case!

Anemic GraphQL

Anemic GraphQL is something I stole from the Anemic Domain Model, a pattern
popularized by the great Martin Fowler. Anemic GraphQL means designing the
schemas purely as dumb bags of data rather than designing them thinking of
actions, use cases, or functionality. This is best expressed by an example:

43

https://martinfowler.com/bliki/AnemicDomainModel.html

type Discount {
amount: Money!

}

type Product {
price: Money!
discounts: [Discount!]!

}

Take this Product type which represents a product on an e-commerce store. For
the sake of this example, the product simply has a price and a list of discounts
that are applied at the moment. Now imagine a client wants to display the
actual price a customer will have to pay. Pretty simple, right? We take the
product’s price and remove all discounts off that price.

const discountAmount = accounts.reduce((amount, discount) => {
amount + discount.amount

}, 0);

const totalPrice = product.price - discountAmount

The client can happily display this price to customers for the time being. That
is until the Product type evolves. Imagine that taxes are added to products a
few months later:

type Product {
price: Money!
discounts: [Discount!]!
taxes: Money!

}

Now that taxes are added, the client’s initial logic does not hold up anymore,
which means customers see the wrong price. What could have prevented that?
How about exposing what the client actually was interested in, the total price?

type Product {
price: Money!
discounts: [Discount!]!
taxes: Money!
totalPrice: Money!

}

44

This way, clients consume exactly what they’re interested in, and no matter
what ends up affecting the totalPrice, they will forever get the exact value,
avoiding updating their brittle client code every time something is added. This
is because we’ve designed the schema according to our domain, and not simply
exposed our data for clients to consume.

Let’s see how this applies to mutations. Here’s a mutation to update a checkout
during an e-commerce transaction:

type Mutation {
updateCheckout(

input: UpdateCheckoutInput
): UpdateCheckoutPayload

}

input UpdateCheckoutInput {
email: Email
address: Address
items: [ItemInput!]
creditCard: CreditCard
billingAddress: Address

}

At first glance, this seems great for clients. It lets them modify any attribute of
that checkout. When we look closer, we realize that there are a few problems
with this approach:

• Because the mutation focuses so much on data, and not on behaviors, our
clients need to guess how to make a specific action. What if adding an
item to our checkout actually requires updates to a few other attributes?
Our client would only learn that through errors at runtime, or worst, may
end up in a wrong state by forgetting to update one attribute.

• We’ve added cognitive overload to clients because they need to select the
set of fields to update when wanting to take a certain action, like “Add to
Cart”.

• Because we focus on the shape of the internal data of a Checkout, and not
on the potential behaviors of a Checkout, we don’t explicitly indicate that
it’s even possible to do these actions, we let them guess by looking at our
data model.

• We’ve had to make everything nullable, which makes the schema much
less expressive in general.

An alternative to these coarse-grained generic mutations is to go the fine-grained
approach:

45

type Mutation {
addItemToCheckout(

input: AddItemToCheckoutInput
): AddItemToCheckoutPayload

}

input AddItemToCheckoutInput {
checkoutID: ID!
item: ItemInput!

}

We’ve addressed a lot of the issues we just outlined:

• Our schema is strongly typed. Nothing is optional in this mutation. Our
clients know exactly what to provide to add an item to a checkout.

• No more guessing. Instead of finding which data to update, we add an
item. Our clients don’t care about which data needs to be updated in
these cases, they just want to add an item.

• The set of potential errors that may happen during the execution of this
mutation has been greatly reduced. Our resolver can return finer-grained
errors.

• There’s no way for the client to get into a weird state by using this mutation
because that’s handled by our resolver.

An interesting side effect of this design is that the server-side implementation of
such mutations is generally much nicer to both understand and write because
it focuses on one thing and because the input and payload are predictive. In
a world with pub/sub subscriptions, it’s also much easier to see which events
should be triggered by certain mutations.

The Relay Specification
Before we dive into other schema design concepts, we must talk about the Relay
Specification. Relay is a JavaScript client for GraphQL that was initially released
by Facebook along with GraphQL. Relay is a powerful abstraction for building
client applications consuming GraphQL. However, to achieve this, it makes
several assumptions about the GraphQL API it interacts with:

• A method to re-fetch objects using a global identifier
• A Connection concept that helps paginate through datasets.
• A specific structure for mutations

We’ll cover these points in more detail when we talk about their design impli-
cations. But for now, just remember that when we talk about Relay, we talk
about these specific assumptions / design considerations that the Relay client
expects.

46

https://relay.dev/docs/en/graphql-server-specification.html
https://relay.dev/docs/en/graphql-server-specification.html

Lists & Pagination
Almost all schemas will eventually expose list type fields. Almost all simple
examples we’ve seen so far exposed these things as simple list types:

type Product {
variants: [ProductVariant!]!

}

This is the simplest way to allow clients to fetch lists but can be a terrible
decision down the line. In this example, the variants field provides no control
to clients into how many items will be returned. This means that no matter
how many variants there are for a certain product, they will be all returned to
the client at run time. This often leads to fields that have to be removed due to
performance issues on the backend, or clients needing to do their own filtering
(wasting huge amounts of data) since they only want to display the first few
items in their UI for example.

For this reason, pagination is almost always an essential component of a good
API. The idea behind it is to break up large datasets into “pages”, letting the
client get parts of that data instead of sending way too much data across the
wire. Pagination makes for a great experience for both clients and servers:

• On the server-side, pagination helps us load a certain part of a dataset,
instead of making queries for way too much data, which will often lead to
extremely slow request times and timeouts over time.

• On the client-side, this often encourages a better user experience and
performance as well. We would not want our users to have to scroll
through a list of thousands of items.

Practically, pagination is done in various ways in a GraphQL schema. Let’s
cover the two main approaches.

Offset Pagination

The most widely used technique for paginating an API is what’s called offset
pagination. In offset pagination, the clients tell us how many items they are
interested in receiving, but also an offset or page parameter that helps them
move across the paginated list. In an HTTP API, this often would look like this:

GET /products?limit=250&page=3

With GraphQL, we could recreate this behavior on fields:

type Query {
products(limit: Int!, page: Int!): [Product!]!

}

47

This type of pagination can be great since it’s often the easiest way to implement
it on the backend, but it also gives a lot of flexibility to the client since they
can skip to any page they’re interested in and track their location as they’re
paginating through the list. But while it’s effective, as API providers grow, a
lot of them start noticing some issues with the technique. The first reason is
often database performance. If we take the products field we designed and try
to imagine what a database query would look like to fulfill it, it would usually
look a bit like this:

SELECT * FROM products
WHERE user_id = %user_id
LIMIT 250 OFFSET 500;

These types of SQL queries often don’t scale well for very big datasets. When
the offset parameter grows large, the database implementation often needs to
read all rows up to this number just to get to that offset, but then has no need
for all the rows it just read, and simply returns offset + limit to the user.

The second common problem with offset pagination is that they can return
inconsistent results. This is because any changes to the list while a client is
paginating can modify the items returned in the page requested by the client.
Imagine a client fetching the first page, while items are getting added to the
list. When the client loads the second page, it’s now possible it will receive
some duplicate results from the first page since they were “pushed down” by new
results. There are ways around this problem, but still something that needs to
be addressed.

For these two reasons, a lot of API providers find themselves moving to another
style of pagination that is cursor-based.

Cursor Pagination

Cursor pagination approaches the problem from a different perspective. A
cursor is a stable identifier that points to an item on the list. Clients can then
use this cursor to instruct the API to give them a number of results before or
after this specific cursor. In practice, this looks like this:

type Query {
products(limit: Int!, after: String): [Product!]!

}

Notice how the concept of “pages” does not exist in cursor pagination. The only
information a client knows is the “next” or “previous” few items, but generally
does not know how many pages there are, and can’t skip ahead to any page.
The performance downsides of offset pagination are eliminated because we can

48

now use that cursor to fetch the results:

SELECT * FROM products
WHERE user_id = %user_id
AND id >= 15
ORDER BY id DESC
LIMIT 10

In cursor pagination, the server always provides what the “next” cursor is, in
some way or another, to allow clients to request the next few elements. For
example:

{
"data": {

"products": {
"next": "def456",
"items": [{},{},{}]

}
}

}

A client would then take the next cursor and use it to fetch the next 10 items:

query {
products(first: 10, after: "def456) {

next
items {

name
price

}
}

}

Unless you absolutely need the ability for clients to skip ahead to different pages,
cursor pagination is a good choice for GraphQL APIs. Today, most GraphQL
APIs use cursor-based pagination, and that is mostly due to Relay’s connection
pattern.

Relay Connections

As covered earlier, Relay has certain assumptions about how a GraphQL schema
should be designed. One of those assumptions is about how a GraphQL API
should handle pagination. Unsurprisingly, it is strongly based on cursor pagina-
tion, but the way it is designed is very interesting. Relay calls paginated lists

49

Connections. To better understand the connection abstraction, let’s start by
what it looks like for a client to query a connection field:

query {
products(first: 10, after: "abc123") {

edges {
cursor
node {

name
}

}
pageInfo {

endCursor
hasNextPage
hasPreviousPage

}
}

}

There’s a lot to unpack here. Connections return a connection type that
exposes two fields. The edges field contains the data we requested, while
pageInfo is a field that contains metadata about the pagination itself. The
edges field does not return the items immediately but instead returns an edge
type with extra connection metadata for that particular item. This is how we
know the cursor of each item in the list. Finally, the node field on the list of
edges is what contains the data we were looking for, in our case the products.
The result for such a query would look something like this:

50

{
"data": {

"products": {
"edges": [

{
"cursor": "Y3Vyc29yOnYyOpHOAA28Nw==",
"node": {

"name": "Production Ready GraphQL Book"
}

}
],
"pageInfo": {

"endCursor": "Y3Vyc29yOnYyOpHOAA28Nw==",
"hasNextPage": true,
"hasPreviousPage": false

}
}

}
}

A client would then take the endCursor in the pageInfo metadata, and use it
to get the next items after what we’ve already fetched. The full schema for a
connection usually looks like this:

type ProductConnection {
edges: [ProductEdge]
pageInfo: PageInfo!

}

type ProductEdge {
cursor: String!
node: Product!

}

type PageInfo {
endCursor: String
hasNextPage: Boolean!
hasPreviousPage: Boolean!
startCursor: String

}

type Product {
name: String!

}

51

At first, the connection pattern appears to be overly verbose. After all, what
most clients are interested in is getting a list of products, why wrap it into
this weird “edges” concept? It turns out that while the connection pattern
comes with a certain overhead to clients, it is incredibly useful to design more
complex scenarios. For example, the GitHub API uses connection edges to
encode data about the relationship rather than the item itself. For example,
the Team.members connection and edges have the role of a user in that team of
the edge type rather than on the User type itself:

type TeamMemberEdge {
cursor: String!
node: User!
role: TeamMemberRole!

}

The connection pattern as defined by Relay does require cursor-based pagination,
but note that the edge types are still a good idea, even if you opt for offset based
pagination. Using the underlying type directly in a list type is rarely what we
want, as seen in the example above, where some fields are specific to a type’s
membership in a collection.

Custom Connection Fields

There are a few fields that providers often provide along with the connection and
edge types. Clients often find the edges { node } syntax to be overly verbose.
One thing I’ve seen certain providers offer is a way to skip the edges part and
get all nodes directly. We still get the benefits of paginated lists but without the
verbosity of the edges pattern:

query {
products(first: 100) {

nodes {
name

}
}

}

Remember to provide both options if you choose to implement this helper
field. As we saw, the edge pattern gives us a ton of advantages when it comes to
designing relationships.

The next field that is commonly added to connections is a totalCount field,
which allows clients to request the total amount of nodes (before pagination)
found in the list. I’m hesitant about recommending this one as a good practice.
Don’t add this one by default on all connections. Computing a totalCount on

52

large collections can often be very slow, depending on where the collection is
resolved from. There’s no denying the field can come in useful in certain cases
but performance should be kept in mind before exposing it. Once it’s there, it’s
very hard to remove or maintain with performance issues.

Pagination Summary

These very common page number links that are used for pagination are very easy
to implement with offset-based pagination, but almost impossible to do well with
a cursor-based pagination, which is more geared towards “infinite list” use cases.
If this is something you absolutely have to support, go for offset pagination, but
remember the possible drawbacks in the future. I highly encourage to use a
“Connection style” pattern even with offset pagination to allow you to represent
relationships in a better way than simple list types.

If your use case can be supported by cursor-based pagination, I highly recommend
choosing the connection pattern when designing your GraphQL API:

• Cursor pagination is generally a great choice for accuracy and performance.
• It lets Relay clients seamlessly integrate with your API.
• It is probably the most common pattern in GraphQL at the moment and
lets us be consistent with other APIs in the space.

• The connection pattern lets us design more complex use cases, thanks to
the Connection and Edge types.

Sharing Types
As your schema grows, an appealing thing will be to reuse types across different
fields and use cases. Sometimes, it makes total sense. However, trying to share
too much rarely turns out well. It might be the most common problem I’ve
seen in GraphQL schemas. While the appeal of reusing types (for client-side
structure reuse for example) can be great, it can lead to a lot of pain down
the line. A good example is related to the connection pattern we just talked
about. Imagine this schema where an Organization has a paginated connection
of users:

53

type UserConnection {
edges: [UserEdge!]!
pageInfo: PageInfo!

}

type UserEdge {
node: User

}

type User {
login: String!

}

type Organization {
users: UserConnection!

}

Now imagine we add the concept of teams, where teams have members. A
common mistake would be to reuse the same UserConnection for the members
field. After all, team members and organization users are all users, right?

type UserConnection {
edges: [UserEdge!]!
pageInfo: PageInfo!

}

type UserEdge {
node: User

}

type User {
login: String!

}

type Organization {
users: UserConnection!
teams: [Team]

}

type Team {
members: UserConnection!

}

54

The issue with reusing types like this is that the future holds many surprises with
how types diverge over time. This example is something I’ve seen multiple times.
Once we realize that team members have different features than organization
users, we get stuck:

type UserEdge {
isTeamLeader: Boolean
isOrganizationAdmin: Boolean

}

Our UserEdge, where we would have loved to put information related to a User
within a team, is shared across both organization users and team members,
which means we can’t add anything specific to one of them. Now imagine if we
had TeamMemberConnection and OrganizationUserConnection. We would be
free to encode any data on the edges and connections. This is a really good
example of the dangers of sharing types.

Another common approach is trying to share inputs. For example, createX and
updateX mutations often look fairly similar. The update mutation will often
take the id of the resource to update, but the rest of the attributes will be
incredibly similar to the create one. An approach that we can use is sharing an
input between both:

input ProductInput {
name: String
price: MoneyInput

}

type Mutation {
createProduct(input: ProductInput):

CreateProductPayload

updateProduct(id: ID!, input: ProductInput):
UpdateProductPayload

}

This approach can be useful to allow generated clients to reuse forms and logic,
but it can also lead to a problem similar to the connection example we saw. A
create input would usually have a bit more non-null fields, because you can’t
create a product without a name, for example. Because we reuse it in the update
mutation, we have to make that input field nullable, meaning the create mutation
must handle this validation at runtime instead of simply letting the schema do
it. We’ll see more about mutation design later on in this chapter.

The two examples we covered here are the reasons why I generally recommend

55

against trying too hard to share types unless it’s very obvious it can be shared.
When there are any doubts, the downsides usually outweigh the benefits.

Global Identification
Another concept that gained popularity in GraphQL APIs is global identification
of objects. Once again this originally comes from Relay, but has since become
a good practice in general. The idea is that a GraphQL client should be able
to fetch any “node” in the graph given a unique identifier. In practice, this
translates in GraphQL server exposing a global node(id: ID!): Node field that
lets clients fetch any node through that single field. The node field returns a
Node interface type:

interface Node {
id: ID!

}

type User implements Node {
id: ID!
name: String!

}

This Node interface is a means of saying this object has a globally unique ID and
may be fetched using node(id: ID!) and nodes(ids: [ID!]!) fields. What’s
the goal of all this? A lot of it is client-side caching. GraphQL clients often build
complex normalized caches to store nodes they have previously fetched. Relay
needs a mechanism to re-fetch single nodes, and having the node convention
allows the client to do it without too much configuration. Do you absolutely need
global identification? Not necessarily. If you don’t expect any Relay clients to
use your API and don’t see a need to fetch objects using a single global identifier,
you don’t have to implement it. For example, clients like Apollo can use a
combination of the type name and a simpler ID to build that global identifier
for you.

Nonetheless, having a globally unique ID for a certain “node” or “object” can be
quite a useful principle. In fact, they are similar to uniform resource identifiers
(URIs) used to identify REST resources for example. One important part of
these identifiers, just like REST URIs, is that users should not try to build or
hack their IDs, but instead simply use the IDs they get from the API directly.
A good way to make sure this happens is by using opaque identifiers:

56

{
"data": {

"node": {
"id": "RmFjdGlvbjoy"

}
}

}

The most common way to make the IDs opaque is to Base64 them. The goal
here is not to completely hide how the ID is built (It’s easy for a client to see it
is Base64). Instead, this simply reminds the clients that the string is meant to
be opaque. Opaque IDs are great since they enable us to change the underlying
ID generation knowing that clients have hopefully not built logic coupled to how
the ID is constructed. However, sometimes, I find that they don’t always lead to
the best developer experience. It can be hard to know what kind of node ID you
have in your hands when building a client application. An idea I’m interested in
is opaque ids that still let you know a bit about themselves. I believe the first
time I encountered these were with the Slack API. They had opaque tokens that
started with a different letter based on the object’s type. Maybe a good idea for
global IDs is to include a bit of information to help developers.

As far as building these IDs, you should include as much information as possible
that would help fetch this node globally. In the most basic cases, this is
usually type_name:database_id, but you should not always default to this.
Sometimes nodes cannot be fetched without routing information, especially in
more distributed architectures. Make sure you include any information that
would make it easier to “route” to this node. For example, “products” might be
shared or distributed by “shops”, meaning our IDs might need the shop id in
there: shop_id:type_name:id.

To summarize:

• You don’t always need global identification, especially if not planning on
supporting Relay.

• Like Connections, they can be a good pattern even outside of a Relay
context.

• Opaque IDs are recommended.
• Ensure your global ID contains enough context to globally route to a node,
especially in a distributed architecture.

Nullability
Nullability is a GraphQL concept that allows us to define whether or not a field
can return null or not when queried. As we saw when introducing GraphQL, a
non-null field, meaning a field that cannot return null at runtime is defined by
using the bang (!) symbol after its type. By default, all fields are nullable:

57

type Product {
This field is non-null
name: String!

Price returns null when the product is free (default)
price: Money

The tags field itself can be null.
If it does return a list, then every
item within this list is non-null.
tags: [Tag!]

}

If a field returns null when queried, even though it was marked as non-null in
the schema, this causes a GraphQL server to error. Since the field can’t be null,
a GraphQL will go up the parent of the field until it finds a nullable one. If
fields were all non-nullable, the entire query returns null, with an error. For
example, let’s say that in the following query, the topProduct field is marked as
non-null, and the shop field was marked as nullable.

query {
shop(id: 1) {

name
topProduct {

name
price
tags

}
}

}

Now imagine that the name field was to return null, even though we marked it
as non-null. Because topProduct can’t be null either, the result we would get
would look like this:

{
"data": {

"shop": null
}

}

Because shop was nullable, GraphQL had to bomb the entire shop type response
even though only a single field name ended up returning null. This example is a

58

good reminder that nullability can be either a really powerful thing or a terrible
mistake, depending on how we apply it.

Non-Nullability is great for many reasons:

• As covered earlier in the chapter, it helps to build more expressive and
predictable schemas.

• It lets clients avoid overly defensive code/conditionals.

However, it does come with several dangers to keep in mind:

• Non-null fields and arguments are harder to evolve. Going from non-null
to null is a breaking change, but the opposite is not.

• It’s very hard to predict what can be null or not, especially in distributed
environments. Chances are your architecture will evolve, and anything
including timeouts, transient errors, or rate limits could return null for
certain fields.

So here are a few guidelines that I use for nullability when designing schemas:

• For arguments, non-null is almost always better to allow for a more pre-
dictable and easy to understand API. (If you’re adding an argument,
nullable is the best choice to avoid breaking existing clients)

• Fields that return object types that are backed by database associations,
network calls, or anything else that could potentially fail one day should
almost always be nullable.

• Simple scalars on an object that you know will already have been loaded
on the parent at execution time are generally safe to make non-null.

• Rarely: For object types you’re strongly confident will never be null, and
that will still allow for partial responses at the parent level. (Hard to
predict, especially when the type ends up being reused in other contexts)

Following these guidelines will usually lead you towards the right decision on
whether to make a schema member non-nullable or nullable. As always, this
depends a lot on implementation, so when in doubt, make sure you understand
the underlying system before deciding on nullability!

Abstract Types
Abstract types are incredibly useful when designing a GraphQL schema. They
can be of great help when designing a schema and can be truly helpful to decouple
our interface from the underlying persistence layer. For example, take a look at
this type that was generated from our database model:

59

type SocialMediaFeedCard {
id: ID!
title: String!
birthdayDate: DateTime
eventDate: DateTime
postContent: String

}

What this type aims to represent is a social media post. The problem is that this
post is sometimes about a birthday, sometimes about an event, and sometimes
simply a text post. As you can see, because of the way we’ve designed this, we
don’t use the schema to its full potential and it’s possible to be in illegal states.
A birthday card should not have content, simply a birthdayDate. An event
should not also include a birthdayDate, yet our schema implies this is possible.

We can instead design this concept using abstract types, in this case by using an
Interface type:

interface SocialMediaFeedCard {
id: ID!
title: String!

}

type BirthdayFeedCard implements SocialMediaFeedCard {
id: ID!
title: String!
date: DateTime!

}

type EventFeedCard implements SocialMediaFeedCard {
id: ID!
title: String!
date: DateTime!

}

type ContentFeedCard implements SocialMediaFeedCard {
id: ID!
title: String!
content: String!

}

The schema is instantly clearer for clients, and we easily see the possible card
types that could be coming our way. We also don’t need any nullable fields
anymore and all the potential types don’t allow for any illegal states as we had

60

before. That is the power of abstract types.

Union or Interface?

GraphQL has two kinds of abstract types: Union types and Interface types.
When should you use which? A good rule of thumb is that interfaces should be
providing a common contract for things that share behaviors. Take GitHub
for example, which has a Starrable interface for objects that can be “starred”:
Repositories, Gists, Topics. Unions should be used when a certain field could
return different types, but these types don’t necessarily share any common
behaviors. A common example of this is for a search field that returns a list
type which can contain many different possible object types, but not necessarily
share common behaviors.

Don’t Overuse Interfaces

Interfaces are great to create some stronger contracts in our schema but they
are sometimes over-relied on, for example when they are simply used to share
common fields. When multiple types share a couple of fields but these types
don’t share any common behavior, try to avoid the temptation to just throw
an interface in the mix. A good interface should mean something to the API
consumers. It describes and provides a common way to do or behave like
something instead of being or having something.

So how do we know if our interfaces are too focused on “categorizing” objects,
grouping similar attributes, and not focused enough on interactions and behav-
iors? One useful schema “smell” is naming. When we use interfaces that don’t
have strong meaning in the schema, the naming will usually be awkward and
meaningless. A common example of this is having the word Interface in the type
name, for example, ItemInterface, which would share common fields with an
item in an e-commerce domain. As our Cart items, a Checkout items, an Order
items start drifting apart, this interface might become a pain to maintain since
it looks like it was designed purely in terms of what common data is shared.
If we had looked at all sorts of items and determined they had very different
interactions and behaviors inside our domain, maybe we would have picked a
different abstraction. I’ve seen other namings such as ItemFields or ItemInfo
used in the same way.

The most common way I see interfaces used for the wrong reason is when the
GraphQL implementation used makes it easy to use interfaces for code reuse.
Instead of using the GraphQL schema to allow for code reuse, use the tools
you have in your programming language to make it easier to reuse fields. For
example, use helper functions, composition, or inheritance.

Abstract Types and API Evolution

Abstract types often give us the impression that it will be easier to evolve our
API over time. In some ways this is true. If a field returns an interface type, and

61

that we obey to Liskov’s substitution principle, adding a new object type which
implements an interface should not cause client applications to behave differently.
This is true of interfaces, and less true of unions, which allow completely disjoint
types. While adding union members and interface implementations is not a
breaking change in the strict sense of the word (a client might not immediately
break as if we were removing a field definition), it is still a very tricky change to
make in most cases, and can almost be considered breaking. It is often referred
to as a “dangerous change” for this reason. GraphQL clients are not forced into
selecting all union possibilities, or all concrete types on an interface. GraphQL
clients should code defensively against new cases, and GraphQL servers should
be cautious of adding types that may affect important client logic.

Designing for Static Queries
It is pretty established by now that the query language GraphQL often shines
when used directly and explicitly, although it is tempting to use SDKs, query
builders, and other tools that look kind of like this:

query.products(first: 10).fields(["name", "price"])

We lose all visibility on what will be sent to a GraphQL server at runtime.
Instead, take the GraphQL query defined directly like this:

query {
products(first: 10) {

name
price

}
}

It is very explicit and allows everyone to know right away what data is being
asked for, and what the shape of the query will look like at runtime. Not only is
the GraphQL language a great choice instead of a query builder, but you should
strive to keep your queries static. A static query is a query that does not change
based on any variable, condition, or state of the program. We know by looking
at the source code that it is exactly what the server will receive when the code
is deployed. This gives us a lot of advantages over more dynamic queries:

• Just looking at source code gives developers a really good idea of the data
requirements of a client.

• We can give operation names to our queries. This greatly simplifies server-
side logging and query analysis. For example: query FetchProducts {
products { name } }

62

https://en.wikipedia.org/wiki/Liskov_substitution_principle

• It opens the door to great tooling on the client-side: think IDE support,
code generation, linting, etc.

• It enables the server to save these queries server-side. We’ll see this in
more detail in Chapter 5.

• Finally, we use the standard and specified language to interact with
GraphQL servers, meaning it is language-agnostic!

Here’s a piece of code that builds a query dynamically:

const productFields = products.map((id, index) => {
return `product${index}: product(id: "${id}") { name }`;

})

const query = `
query {

${productFields}.join('\n')
}

`

This code has a list of product ids and builds a GraphQL query to fetch the
product object associated with each id. At runtime, this query would look
something like this:

query {
product0: product (id: "abc") { name }
product1: product (id: "def") { name }
product2: product (id: "ghi") { name }
product3: product (id: "klm") { name }

}

The problem here is that:

• The code does not contain the full GraphQL query, so it is hard to see
what would actually be sent once the code goes live.

• The query string changes depending on how many product ids are
in that list at runtime. It uses field aliases (product0, product1, etc.)
to do so.

We could use GraphQL concepts instead to avoid the need for constructing a
query that always stays the same no matter what, by using variables:

63

query FetchProducts($ids: [ID!]!) {
products(ids: $ids) {

name
price

}
}

This way, the actual query string itself never changes, but the client can fetch as
many products as they want simply by providing a different set of variables. For
this reason, I recommend offering at least a plural version of most fields, and
additionally a way to fetch a single entity if needed. A fun fact is that clients
can provide a single value to list type arguments in GraphQL:

query {
This is valid!
products(ids: "abc") {

name
price

}
}

Mutations
Mutations are probably the part that people learning and using GraphQL struggle
with the most. They often seem completely different from the query side of
things, even if really, mutations are “just” fields like we have on the query side.
It makes sense though. Mutations often have to deal with errors, it’s often not
clear what they should return once they’re done with their side effect, and have
some strange rules that the query side of things doesn’t necessarily have. Let’s
dive into some design concerns when it comes to mutations.

Input and Payload types

Mutations are simple fields. Just like any other field they can take arguments,
and return a certain type. However, rather than return a simple type, a common
practice (originally from Relay) is to return what we call “Payload types”, a type
with the sole purpose of being used as the result of a particular mutation.

An example payload type for a createCheckout mutation
type CreateProductPayload {

product: Product
}

64

In this example, that payload type simply has a single field, the product that
has been created. It is nullable in case the creation fails, which we’ll cover in the
errors section later on in this chapter. Why don’t we simply return a Product
type for the createProduct mutation? The first reason is that this enables us
to evolve the mutation over time without having to change the type. Mutation
results often require us to return more than just the thing that has been mutated.
A payload type allows us to include other information about the result of the
mutation, for example, a successful field:

An example payload type for a createCheckout mutation
type CreateProductPayload {

product: Product
successful: Boolean!

}

These payload types should almost always be unique. Trying to share types,
as we saw earlier, will lead to problems down the line, especially for mutation
payloads. For the input, a similar strategy can be used:

type Mutation {
createProduct(input: CreateProductInput!):

CreateProductPayload
}

input CreateProductInput {
name: String!
price: Money!

}

Relay’s convention is to use a single, required and unique input type per mutation.
The benefits are similar to what we discussed for payload types:

• The input is much more evolvable.
• The mutation can use a single variable on the client-side, which does make
it a bit easier to use especially when you start having a lot of arguments.

I don’t get crazy about having absolutely one required input argument in
mutations, but it is definitely a good pattern for consistency, both within your
API and with others. However, don’t be afraid to use a handful of arguments if
needed. We’ll see how these input and payloads can be structured in the next
few sections.

65

Fine-Grained or Coarse-Grained
As we saw in the section on Anemic GraphQL earlier on in the chapter, finer-
grained, action-based GraphQL mutations offer a ton of advantages. While
that sounds great, there’s a darker side. GraphQL is mostly used as an API
interface, which means we’re usually interacting with it over the network. While
the best interface will usually look like what you would design for a programming
language method signature, the nature of the network often pushes us to design
coarser interfaces for performance reasons. The tradeoff between finer and
coarser-grained mutations will often depend on what you think the use case is
from your clients (something public APIs make much harder).

Generally, I’ve found that having a coarse-grained create mutation and
finer-grained mutations to update an entity can be a good rule of thumb.
It happens quite often that clients want to create something with a single
mutation, but the updates and actions on the created entity might be done in
smaller mutations like adding an item, updating the address, etc. Finding the
right balance is an art; This is why it is so important to think about the client
use case while designing mutations and fields. Overall, this will depend on what
you’ve identified as the real use cases your clients are interested in. We don’t
want to make the client have to use 5 different mutations or fields for what we
could have solved with a single functionality.

While really fine-grained fields and mutations have a ton of advantages, they
do push more of the control flow business logic to the client. For example, a
common use case might be to create a product, add a label to it, and then modify
its price. If this is represented as one action on the UI, the client now has to
manage partial failures, retries, etc. to achieve a consistent experience if these
actions were all designed as fine-grained actions. Imagine, for example, that the
addLabel mutation fails. The client needs to recognize that the creation of the
product worked, the modification of the price as well, but that the addLabel
mutation needs to be retried. When this becomes an issue, maybe we’ve detected
an actual use case, and a coarser-grained mutation is starting to make sense for
this functionality. In the end, because network calls have a performance cost, we
often need to make our operations a bit more coarse-grained than we want, and
that’s totally ok. It’s definitely not a black or white scenario.

Transactions

At some point in your GraphQL journey, you’ll hear about a lack of transactions
or at least wonder how to do transactions with GraphQL. What do we mean by
transactions and GraphQL? Isn’t that a database thing? Imagine we have this
addProductToCheckout mutation from previously. What if a client wanted to
add 3 products, but wanted all of the mutations to succeed or none at all?

66

mutation {
product1: addProductToCheckout (...) { id }
product2: addProductToCheckout (...) { id }
product3: addProductToCheckout (...) { id }

}

This way of querying has several issues anyways. First, this is the opposite of
static queries we covered earlier in the chapter. Clients need to generate query
strings with the number of products to add, which is really not great to use for
clients. Second, since GraphQL executes all of these mutations one after the
other, the second mutation could fail, while the third one could succeed, leading
to a really weird state on the client.

A lot of people have been asking for a GraphQL feature to allow running multiple
mutations within a single transaction block. Most of the time, this complexity
is not needed. Instead, as we discussed in the previous section, designing a
coarser grained mutation that contains the whole transaction within one field is
almost always a better idea. In this example, it would be as simple as adding
an addProductsToCheckout mutation that takes multiple items to add. This
would solve the static query issue as well as the transaction issue.

If you’ve got multiple mutations that need to be executed in a sequence, for
example adding products to a checkout, updating the billing address, and
applying a discount all at once, don’t be afraid to include that as an actual
use case. Especially if you’re dealing with an internal API, feel free to provide
specific use cases to solve “transactions” rather than trying to reuse finer grained
mutations.

Batch

Another way to do transaction-like operations is to use batching. Batching can
mean a lot of things in GraphQL. There’s batching as in sending multiple query
documents to a server at once, but we can also design a batch mutation within
a single query. We’ve talked about finer-grained mutations vs. coarser-grained
mutations, how we want our queries to be static, and how transactions can often
be designed as a new mutation field for that use case. One other way to tackle
this problem is by building a mutation that takes a few operations as an input:

67

type Mutation {
updateCartItems(

input: UpdateCartItemsInput
): UpdateCartItemsPayload

}

input UpdateCartItemsInput {
cartID: ID!
operations: [UpdateCartItemOperationInput!]!

}

input UpdateCartItemOperationInput {
operation: UpdateCardItemOperation!
ids: [ID!]!

}

enum UpdateCartItemOperation {
ADD
REMOVE

}

In this example, the updateCartItems mutation accepts a list of
UpdateCartItemOperation inputs. Each input describes what kind of
operation it represents through the operation field, which is an enum of
possible operations. The client can then use this mutation to add and remove
any number of items in a single mutation:

mutation {
updateCartItems(input: {

cardID: "abc123",
operations: [

{ operation: ADD, ids: ["abc", "def"] },
{ operation: REMOVE, ids: ["bar", "foo"] }

]
}) {

cart {
items {

name
}

}
}

}

68

We’re lucky that the ADD and REMOVE both took an ids argument as well. In
some cases, different operations have different inputs. The best idea to design
this would be to use Input Unions. However, at the time of writing this book,
they still have not been adopted into the spec. In the meantime, a decent solution
is to provide all the fields as optional, and handle this at the resolver/runtime
level instead:

input UpdateCartItemOperationInput {
operation: UpdateCartItemOperation!
addInput: CartItemOperationAddInput
removeInput: CartItemOperationRemoveInput
updateInput: CartItemOperationUpdateInput

}

It’s verbose, and the schema is less expressive since everything is nullable, but it
works. This can be useful when batch mutations are really needed until we get
input unions in the specification.

Although not standard, you could use directives to indicate that this input type
only accepts on of the fields, for example:

input UpdateCartItemOperationInput @oneField {
operation: UpdateCartItemOperation!
addInput: CartItemOperationAddInput
removeInput: CartItemOperationRemoveInput
updateInput: CartItemOperationUpdateInput

}

Errors
Errors are a subject that many of us struggle with. Part of this is because there
is no one way to do it, and how you handle errors will depend on the context
in which your API is meant to be used. We’ll try to capture as much of this
context as possible while navigating this section. First, let’s start with what the
GraphQL specification says about errors, and what they look like.

A basic GraphQL error looks like this:

{
"message": "Could not connect to product service.",
"locations": [{ "line": 6, "column": 7 }],
"path": ["viewer", "products", 1, "name"]

}

69

We have a message which describes the error, locations shows where in the
query string document this happened, and path is an array of string leading to
the field in error from the root of the query. In this case, it was the field name
on the product with index 1 on the products field.

Errors can be extended with more information. To avoid naming conflicts as the
specification evolves, the extensions key should be used to do so:

{
"message": "Could not connect to product service.",
"locations": [{ "line": 6, "column": 7 }],
"path": ["viewer", "products", 1, "name"],
"extensions": {

"code": "SERVICE_CONNECT_ERROR"
}

}

Here we added code (generally a good idea) to our error for client applications
to be able to rely on a stable identifier to handle errors rather than the human-
readable message string. While query results live under the data key of a
response, errors are added to GraphQL responses under an errors key:

70

{
"errors": [

{
"message": "Error when computing price.",
"locations": [{ "line": 6, "column": 7 }],
"path": ["shop", "products", 1, "price"],
"extensions": {

"code": "SERVICE_CONNECT_ERROR"
}

}
],
"data": {

"shop": {
"name": "Cool Shop",
"products": [

{
"id": "1000",
"price": 100

},
{

"id": "1001",
"price": null

},
{

"id": "1002",
"price": 100

}
]

}
}

}

In the example above, notice that the price field on the product at index 1
returned null. Per the spec, fields that have an error should be null and have an
associated error added to the errors key. This behavior has several implications
on how we use these errors in our API. Take mutations, for example:

71

mutation {
createProduct(name: "Computer", price: 2000) {

product {
name
price

}
}

}

Let’s say we wanted an error for when a duplicate product is added. Any error
we add to the mutation field would result in the full mutation response coming
back as null:

{
"errors": [

{
"message": "Name for product already exists",
"locations": [{ "line": 2, "column": 2 }],
"path": ["createProduct"],
"extensions": {

"code": "PRODUCT_NAME_TAKEN"
}

}
],
"data": {

"createProduct": null
}

}

There are a few downsides to these errors that make them hard to use in these
cases:

• The Payload type for mutations we saw previously was great to encode
metadata about the mutation. In this case, because the field must return
null, we lose the possibility of sending back data to the client for this
mutation, even if there was an error.

• The information on errors is limited, which means servers will usually need
to add additional keys within an extension key. If we add it to the error
itself, we risk the specification clashing with the fields we added.

• The errors payload is outside the GraphQL schema, meaning clients don’t
get any of the benefits of the GraphQL type system. That means our
errors are harder to consume but also harder to evolve.

72

• The null propagation we saw in the section on nullability needs to be
always on top of our mind since errors could end up having catastrophic
repercussions on a query if most fields are non-null.

This all makes sense when we understand that GraphQL errors were originally
designed to represent exceptional events and client-related issues, not necessarily
expected product or business errors that need to be relayed to the end-user. It’s
helpful to divide errors into two very broad categories to understand what goes
where:

• Developer/Client Errors: Something went wrong during the query (Time-
out, Rate Limited, Wrong ID Format, etc.). These are often errors that
the developer of the client application needs to deal with.

• User Errors: The user/client did something wrong (Trying to pay for a
checkout twice, Email is already taken, etc.) these things are part of the
functionality our API provides.

The GraphQL “errors” key we just covered is a great place to capture devel-
oper/client errors. It is meant to be read by developers and handled by the
GraphQL client. For user-facing errors that are part of our business/domain
rules, the current best practice is to look at designing these errors as part of
our schema rather than treating them as exceptions/query level errors. Let’s
take a look at some ways of achieving this.

Errors as data

The easiest way to design errors as data is to simply add fields that describe
possible errors in our payload types:

type SignUpPayload {
emailWasTaken: Boolean!
nil if the Account could not be created
account: Account

}

Clients can then consume this information as they wish. Now that way of
handling errors can work with purely internal use cases but makes it hard to
handle errors generically and to be consistent across mutations. A possibly
better approach is for payload types to include something like a userErrors
field:

73

type SignUpPayload {
userErrors: [UserError!]!
account: Account

}

type UserError {
The error message
message: String!

Indicates which field cause the error, if any
#
Field is an array that acts as a path to the error
#
Example:
#
["accounts", "1", "email"]
#
field: [String!]

An optional error code for clients to match on.
code: UserErrorCode

}

Something that makes errors as data a bit annoying, as compared to error mech-
anisms like status codes, is that clients don’t have to query the userErrors
field. This means that some clients might be getting a null account back, but
have no idea why this happens. Part of the solution is educating clients on your
APIs best practices, but there is no guarantee that clients will be aware of errors
if they don’t specifically include that field. Note that clients could also ignore
the errors in the “errors” GraphQL response, but at least they are described
by the GraphQL specification, meaning a lot of clients will already have error
detection mechanisms in place for those types of errors.

Union / Result Types

Another approach that is getting some popularity is also an “errors as data”
approach, but instead of using a specific field for errors, this approach uses union
types to represent possible problematic states to the client. Let’s take the same
“sign up” example, but design it using a result union:

74

type Mutation {
signUp(email: string!, password: String!): SignUpPayload

}

union SignUpPayload =
SignUpSuccess |
UserNameTaken |
PasswordTooWeak

mutation {
signUp(

email: "marc@productionreadygraphql.com",
password: "P@ssword"

) {
... on SignUpSuccess {

account {
id

}
}

... on UserNameTaken {
message
suggestedUsername

}

... on PasswordTooWeak {
message
passwordRules

}
}

}

As you can see, this approach has several advantages. The union type here very
well describes what could happen during the execution of the mutation, and
each case is strongly typed using the GraphQL type system. This allows us to
add custom fields to each error scenario, like a suggestedUserName when a user
name was taken or a list of password rules when the password provided was too
weak.

It exemplifies what both the approaches we saw are aiming to convey: some API
errors are meant to be exposed as use cases just like any other field or type, and
clients should be able to consume them the same way.

75

So, which error style should you pick?

Honestly, as long as “user errors” are well defined in the schema, I don’t have
a strong opinion on how they should be implemented. Even simple fields like
emailIsTaken on the payload types can be used if you’re working with a low
number of clients / getting started. Using unions is definitely a very expressive
way to define errors. One thing to keep in mind is that clients must be coding
defensively against new types of errors in their clients. For example:

mutation {
createProduct {

... on Success {
product {

name
}

}
... on ProductNameTaken {

message
}
What if ProductPriceTooHigh gets added?

}
}

Wemust make sure clients can handle a new possible type like ProductPriceTooHigh.
In a world where our schema is versioned and where client applications are
compiled against our schema and make sure our case checking is exhaustive, this
would be perfect! However, most of us do not have this chance, especially not in
the world of web APIs. This is why I think the union type technique is great,
and in theory perfect (in a compiled language with exhaustive case checks), but
can possibly fall short when used in GraphQL.

At this point, a possible advantage to a userErrors list in these cases is that
the client will get all new errors within that same field they already selected.
This means that even though they might not handle the error perfectly, they can
display it if they want and log the error message for easier debugging. It might
encourage a bit more of a generic approach to handling errors on the client.

One approach we can use to help clients handle new error scenarios is by using
an interface type to define an error contract:

76

interface UserError {
message: String!
code: ErrorCode!
path: [String!]!

}

type DuplicateProductError implements UserError {
message: String!
code: ErrorCode!
path: [String!]!
duplicateProduct: Product!

}

This way, clients can always select message, code and path on errors, but can
select error specific fields as well:

mutation {
createProduct(name: "Book", price: 1000) {

product {
name
price

}
userErrors {

message
code
path
... on DuplicateProductError {

duplicateProduct
}

}
}

}

The same technique can be applied to unions and it helps users by allowing
them to match on the interface type rather than having to cover all the possible
concrete types:

77

mutation {
createProduct(name: "Book", price: 1000) {

... on CreateProductSuccess {
product {

name
price

}
}
... on DuplicateProductError {

duplicateProduct
}
... on UserError {

message
code
path

}
}

All in all, both the union approach and the userErrors approach can be
effective. What is common between both of these approaches is that we treat
errors as data in our schema. However, the userErrors approach is often
easier to programmatically populate at runtime. Sometimes in existing complex
applications, validation rules are hard to explicitly define and require more
generic handling of errors:

user_errors = errors_from_model(product)

On the other end, you can define types and clearly define the scenarios using the
schema which is a great advantage. Just keep in mind that users need to make
queries in a way that handles new cases if schema evolution is important to you.
As we saw earlier in the chapter, the union approach also allows us to avoid
designing impossible states. With the userErrors approach, it is sometimes
unclear what fields will be null when there are errors.

In all these cases, nothing is forcing clients to either match against error types
in the union case, or to select a userErrors field on the payload type. This is a
problem that is yet to be solved in the GraphQL community and that currently
requires documentation to help users understand which fields/types they need to
look out for when executing mutations and fields that could return errors. With
GraphQL errors, we at least know the errors are likely to be correctly handled
by clients.

78

Schema Organization
A GraphQL schema is one big graph of possibilities from which clients have to
select their requirements. For this reason, some people are tempted to ask about
organizing a schema in a way that makes finding use cases easier, or at least
groups similar concepts together.

Namespaces

Many people have been asking for a namespacing mechanism for GraphQL
schemas. So far no proposal has advanced very far into the specification. If you
follow the advice we covered in naming earlier in this chapter, I rarely see this
becoming a huge issue. If you are specific enough in naming, situations where
namespacing is absolutely needed will be rare.

However, if you must namespace things in a very explicit way, I recommend
using a naming strategy, like prefixes for example:

type Instagram_User {
...

}

type Facebook_User {
...

}

From what I’ve heard and seen, most of the namespacing requests come from
developers using strategies like schema stitching, which we’ll cover in Chapter
8. Schema stitching allows merging different schemas which opens the door to
naming conflicts. Again, this can often be solved by proper naming and can be
assisted by build-time tools instead of a specific GraphQL feature. Remember
that the resulting GraphQL schema and the way you build that schema server-
side are two completely different issues. We can still use namespaces, modules,
and reusable functions on the server-side to help with code organization.

Mutations

Some teams struggle naming mutations. Should you name your mutation
createProduct or productCreate? For example, back when I was at Shopify,
the team decided to go the productCreate route to allow for better discover-
ability, since related mutations would be grouped in the SDL / introspection /
GraphQL. That makes sense, but for me, it always felt sad that we were going
for a less readable name just for the sake of organization.

Don’t be afraid to use specific and readable names for your mutations like
addProductsToCart rather than things like cartProductAdd. Tools can help

79

with discoverability anyways. One idea I’ve been playing with is to use a tags
directive to help with that kind of grouping for documentation and other tools:

type Mutation {
createProduct(...):

CreateProductPayload @tags(names: ["product"])

createShop(...):
CreateShopPayload @tags(names: ["shop"])

addImageToProduct(...):
AddImageToProductPayload @tags(names: ["product"])

}

Another idea is to use parent fields or “namespaces” to group similar fields
under parent fields like shop { create(...) { id } } but the specification
and tooling are not 100% clear on that kind of usage and I would probably
not recommend using that approach at the moment. Top-level fields on the
mutation root are the only fields expected to have a side effect. This means that
in mutations grouped like these:

mutation {
products {

deleteProduct(id: "abc") {
product

}
}

}

The deleteProduct should actually be considered a read-only field in theory.
Personally, I don’t recommend going this route even though it might technically
work in the server implementation you are using.

Asynchronous Behavior
Sometimes our APIs are not synchronous. They can’t return a result right away
as something needs to process in the background. In REST and HTTP based
APIs, the most common practice to handle this is the 202 Accepted status code.
However, using this with GraphQL is trickier because it might be that only a
part of our request is asynchronous while the rest can return right away. There
are a few approaches to model this. The first thing we can look at is modeling
the asynchronous concept explicitly, for example, if we’re dealing with payment
processing, we could design a pending payment as a type, within a union type:

80

type Query {
payment(id: ID!): Payment

}

union Payment = PendingPayment | CompletedPayment

We can also opt for a single type instead of a union:

type Operation {
status: OperationStatus
result: OperationResult

}

enum OperationStatus {
PENDING
CANCELED
FAILED
COMPLETED

}

Another solution is to handle these cases more generically, with a Job type and
concept. This is what Shopify went for in their admin GraphQL API. The idea
is pretty clever. A job is identifiable through a global ID, and simply contains
two other fields:

• A done boolean type, which indicates if the asynchronous job has been
completed or is still pending.

• The fun part: A query field which returns the Query root type. This helps
clients query the new state of things after the job has been completed.

Data-Driven Schema vs Use-Case-Driven Schema
So far we’ve talked a lot about designing well-crafted GraphQL schemas that
express real use cases. When in doubt, designing a GraphQL schema for behaviors
instead of for data has been my go-to rule. While this usually leads to a great
experience when consuming an API, there are other distinct uses for an API.
The GitHub GraphQL API is a good example of a schema designed with
business/domain use cases in mind. The schema is good for an application
looking to interact with the GitHub domain and consume common use cases:
things like “opening an issue”, “commenting”, “merging a pull request”, “listing
branches”, “paginating pull requests”, etc.

However, certain clients, when seeing GraphQL’s syntax and features, see great
potential for getting exactly the data they require out of a business. After all,

81

https://help.shopify.com/en/api/graphql-admin-api/reference/object/job

the “one GraphQL query to fetch exactly what you need“ thing we hear so often
may be interpreted that way. For example, take a comment analysis application
that needs to sync all comments for all issues every 5 minutes. GraphQL sounds
like a great fit to do this: craft the query for the data you need, send one query,
and profit. However, we hit certain problems pretty quickly:

• Most APIs paginate their resources as they are not made for mass consump-
tion of data, but for displaying results to a human, for example. When
what you’re looking for is pure data, paginated fields make that much more
difficult.

• Timeouts: Most GraphQL API providers don’t want gigantic GraphQL
queries running for too long, and will aggressively use timeouts and rate
limits to block that from happening (We’ll learn more about this in Chapter
4). However, purely data-driven clients might need to make pretty large
queries to achieve their goals. Even though it’s a valid use case and not an
excessive use scenario, there is quite a high chance that queries could be
blocked if they query thousands of records.

Pretty hard to deal with, right? On one end, clients that purely have a data-
driven use case may have a legitimate reason to do so, but on the other end, your
GraphQL API might not be designed (and nor should it be) for this purpose. In
fact, this is not necessarily a GraphQL problem. Most APIs out there today are
mostly aimed at building use-case driven clients, and would be hard to deal with
when wanting to sync a large amount of data (large GraphQL requests, batch
HTTP requests, or tons of HTTP requests).

When the use case is actually about data, we have to consider other ways.

Asynchronous GraphQL Jobs

Most large requests of that kind take time to compute and executing them during
a request is simply not feasible for API providers. Another idea is to schedule a
query for an API provider to execute asynchronously, and get the results at a
later time. Practically, we could implement it by having an endpoint to register
async queries:

POST /async_graphql
{

allTheThings {
andEvenMore {

things
}

}
}

202 ACCEPTED
Location: /async_graphql/HS3HlKN76EI5es7qSTHNmA

82

And then indicating to clients they need to poll for the result somewhere else:

GET /async_graphql/HS3HlKN76EI5es7qSTHNmA

202 ACCEPTED
Location: /async_graphql/HS3HlKN76EI5es7qSTHNmA

GET /async_graphql/HS3HlKN76EI5es7qSTHNmA

200 OK
{ "data": { ... } }

As another example, once again, Shopify has a great example of Asynchronous
GraphQL job in practice, which they call “Bulk Operations”.. Although they
use the same schema for these operations as with their synchronous GraphQL
API, they can auto paginate resources, and you don’t risk getting rate limited as
much or facing query timeouts. This is a great way to support longer-running,
more data-oriented use cases.

Summary
Great API design goes beyond GraphQL. Most of the best practices we’ve seen
in this chapter apply to things like HTTP APIs, library design and even UI
design in some cases. We’ve seen many principles in this chapter, but I think
there are four main points you should remember when building your GraphQL
schema.

• First, use a design-first approach to schema development. Discuss design
with teammates that know the domain best and ignore implementation
details.

• Second, design in terms of client use cases. Don’t think in terms of data,
types, or fields.

• Third, make your schema as expressive as possible. The schema should
guide clients towards good usage. Documentation should be the icing on
the cake.

• Finally, avoid the temptation of a very generic and clever schema. Build
specific fields and types that clearly answer client use cases.

If you follow these general practices, you’ll already be well on your way to a
schema that clients will love to use, and evolve well over time.

83

https://help.shopify.com/en/api/guides/bulk-operations
https://help.shopify.com/en/api/guides/bulk-operations

Implementing GraphQL Servers

In the last few chapters, we saw how GraphQL came to be and how the query
language and type system allows multiple clients to consume different use cases
through possibilities exposed by the server. We also covered what we should
be thinking about when designing a GraphQL schema. While we discussed the
concepts, we didn’t talk about how GraphQL servers are built and implemented
in practice. In this chapter, we’ll see the main concepts in implementing GraphQL
servers and a few examples. Every single languag- specific library has a different
way of doing things, so we’ll be focused more on principles rather than specific
ways of doing things.

GraphQL Server Basics
Building a GraphQL server is simple in theory, but quite tricky in practice. If
you’re familiar with the basic concepts of a GraphQL server, feel free to skip to
the next section. At its core, building a GraphQL server mainly requires three
main things:

• A type system definition (What we were designing in Chapter 2)
• A runtime execution engine to fulfill the requested queries according to
the type system. (What this chapter is all about)

• In most cases: an HTTP server ready to accept query strings and variables.

Almost every single language has a GraphQL server implementation, and all of
them let us achieve these two elements in different ways. A user will define both
the type system and runtime behavior for an API, and the library will usually
take care of implementing the GraphQL spec including the execution algorithm.
To fulfill queries, we need more than a type system, we need behaviors and the
data behind this type system. In GraphQL the concept used to fulfill data for a
certain field is called a resolver. At their core resolvers are really just simple
functions:

function resolveName(parent, arguments, context) {
return parent.name;

}

A resolver is in charge of resolving the data for a single field. The GraphQL
engine will call the resolver for a particular field once it gets to this point. In
fact, the basic execution of a GraphQL query often resembles a simple depth-first
search of a tree-like data structure:

84

At every step or node of a GraphQL query, a GraphQL server will typically
execute the associated resolver function for that single field. As you can see
in the example above, a resolve function usually takes 3 to 4 arguments. The
first argument is usually the parent object. This is the object that was returned
by the parent resolver function. If you take a look a the image above, this
means that the name resolver would receive the user object the user resolver
returned. The second argument are the arguments for the fields. For example,
if the field user was called with an id argument, the resolver function for the
user field would receive the value provided for that id argument. Finally, the
third argument is often a context argument. This is often an object containing
global and contextual data for the particular query. This is often used to include
data that could potentially be accessed by any resolver.

To put this into context, let’s say we had this query:

query {
user(id: "abc") {

name
}

}

You can imagine the GraphQL server would first call the user resolver, with our
“root” object (which varies based on implementations), the id argument, and
the global context object. It would then take the result of the user resolver
and use it to call the name resolver, which would receive a user object as a first

85

argument, no extra arguments, and the global context object.

With a type system in place, and resolvers ready to execute for every field, we’ve
got everything needed for a GraphQL implementation to execute queries. If you
have never implemented any GraphQL server until now, I’d encourage
you to play around with your favorite language implementation of
GraphQL and come back to this when you’re ready. For now, we’re
moving on to slightly more advanced concepts and considerations.

Code First vs Schema First
Probably the biggest debate in the last few years, when it comes to implementing
GraphQL servers, is whether a “code-first” or “schema-first” approach is best.
These approaches refer to the way the type system is built on the server-side.

Schema First

With schema-first, developers mainly build their schemas using the Schema
Definition Language (SDL) that we covered in the previous chapter. In JavaScript,
using the reference implementation, a schema-first approach looks like this:

var { graphql, buildSchema } = require('graphql');

var schema = buildSchema(`
type Query {

hello: String
}

`);

A schema string is passed to buildSchema, which builds a GraphQL schema
in memory. While having a schema is great, if it doesn’t have any logic on
what this hello field should return when a client requests it, it is pretty useless.
Schema-first approaches usually let you define resolvers, by mapping them to
fields and types defined using the SDL. Here’s what it looks like, again with the
GraphQL JavaScript reference implementation:

86

// Define a resolver object that can augment
// the schema at runtime
var root = {

hello: () => {
return 'Hello world!';

},
};

// Run the GraphQL query '{ hello }' and print out the response
// Use the `root` resolver object we created earlier.
graphql(schema, '{ hello }', root).then((response) => {

console.log(response);
});

The schema-first approach is not to be confused with a design-first approach,
something that is almost always a good idea when it comes to building APIs, as
we covered in the previous chapter on schema design. By schema-first, we mean
that we are building the schema using the SDL directly, rather than defining
it purely with structures available in the programming language we are using.
This will get clearer as we explore code-first.

There are great benefits to a schema-first approach. One of them is the fact that
we’re building the schema using a common language, the SDL itself. This lets
engineers know with great confidence what the resulting GraphQL schema will
be. Not only that, but it forces the schema developers to think in GraphQL,
rather than think straight away about implementation.

The SDL is a great tool in general. It serves as a common language between
teams using different languages, or simply between clients and servers. But it
also serves as a common language between computers: a ton of tools operate
on the SDL itself, making them language agnostic. This is a big advantage,
especially if GraphQL tools don’t operate well with the programming language
you’re building with.

The SDL is a great tool, but it can’t do everything. For example, as we just
saw in the previous example, the SDL itself provides no mechanism to describe
the logic that should be executed when a field is requested. It makes sense,
the GraphQL schema language is made to describe an interface, but it’s not a
powerful programming language that we need to execute network calls, database
requests, or any logic we usually need in an API server.

The fact that we need to separate the schema description and what happens at
runtime can be a challenge with a schema-first approach. When a schema grows
large enough, it can be a big challenge to ensure the type definitions and their
mapped resolvers are indeed valid. Any change in the schema must be reflected
in the resolvers, and that is true for the opposite as well.

87

Finally, the other issue is that using the SDL makes it harder to define reusable
tooling and type definition helpers. As schemas grow large and more and more
team members contribute to the schema, it’s often useful to encapsulate schema
definition behavior in reusable functions or classes rather than typing it out
entirely, which opens the schema to inconsistencies.

These problems are all mostly solvable with careful tooling, but they usually
require code to be involved at some point to solve them. So what if we just
used code to start with?

Code First

A code-first approach is an alternative to that schema-first approach. Instead
of using the SDL, we use the programming language primitives we have at our
disposal. Here’s an example from the GraphQL Ruby library that might make
this clearer:

class PostType < Types::BaseObject
name "Post"

description "A blog post"

field :title, String, null: false

field :comments, [Types::CommentType], null: true,
description: "This post's comments"

def title(post, _, _)
post.title

end

def comments(post, _, _)
object.comments

end
end

As you can see, GraphQL Ruby represents GraphQL object types using Ruby
classes. Represented as the SDL, this class would look like this:

type Post {
title: String!
comments: [Comment]

}

In this case, using Ruby to define the schema provides engineers working on the

88

GraphQL schema with all the tools they are used to with Ruby, for example,
including a module for common functionality or programmatically define types.
A common example we used at GitHub is generating connection types. Con-
nection types are a way to do pagination in GraphQL. They usually require a
lot of boilerplate to get started:

• Defining a XConnection type, like PostConnection
• Defining an edge type, like PostEdge

Using a code first approach allows providers to serve different versions of an API
without building an entire schema. For example, instead of having to type the
full connection types for all our paginated list, in a code-first scenario, we can
simply write code to automate this type generation:

Connection.build creates a connection type as
well as the edge type for paginating comments
field :comments, Connection.build(Types::Comment)

description: "This post's comments"

The sky is the limit for what we can build with code-first since we’re simply
playing with code rather than the SDL. The other big advantage is that usually,
code-first approaches will have you define both the schema and the resolvers,
the interface and the runtime logic, in the same place. This is a big thing
when it comes to maintenance, especially when you’re dealing with hundreds to
thousands of types and fields.

However, code-first means that tools that operate on the SDL can’t understand
your schema definition anymore. It also means that we can abstract GraphQL
so much that it’s not clear what becomes exposed to users anymore. This needs
to be taken into consideration, and we can solve that as well.

SDL Design, Code Implementation, SDL Artifact

My favorite approach is a hybrid one. The SDL is a great tool to discuss schema
design before going forward with the implementation. I prefer using a GitHub
issue, or whatever issue tracking software you use to discuss a design first. The
SDL allows anyone to see the proposed schema and is usually much faster to
write than doing the same in a programming language.

Once satisfied with the design, we can move towards implementation using a
code-first approach. This lets us use powerful tools, but also co-locate definitions
and resolvers. Now, we talked about how the programming language abstractions
might make it harder to see what the resulting schema could be. One of the most
powerful patterns I saw both at Shopify and GitHub is having an SDL artifact
generated from code definitions. This artifact should be committed to your
version control system and should be tested against your code to always be in
sync.

89

This gives us kind of a best-of-both-worlds solution. We use the power of our
programming language to define schemas more efficiently, but we keep the “source
of truth” the SDL gives us. Having the SDL being generated from code as an
artifact allows reviewers and teammates to quickly understand what is going
on with GraphQL changes. It also lets us use any tools that operate on SDLs,
even though we defined it in another language in the first place. This is highly
recommended if you go with a code-first schema definition approach.

Annotation-Based Implementations

Somewhere in the battle between schema-first and code-first approaches that
we’ve seen so far hides another good approach to building schemas: an annotation-
based approach. It is allegedly how Facebook’s GraphQL Schema is built and
while it’s closer to a code-first approach, it’s not exactly the same.

An annotation-based schema implementation usually uses your domain entities,
objects, classes, etc. and annotates them to generate a GraphQL schema out of
them. The big advantage here is that the interface layer is tiny. You don’t need
hundreds of objects defining a GraphQL schema. Instead, you may simply reuse
the domain entities you already have.

The danger with this approach is that it depends on your “entities” making a
good API in the first place. If all you have are ActiveRecord objects closely
coupled to your database schema or implementation details, an annotation-based
approach risks making your resulting API not so great or stable. However, if
you do have well-defined entities that represent your domain without being
coupled to implementation details like the database, this might be a really great
approach.

A good OpenSource example of this is graphql-spqr, a Java library for building
GraphQL servers:

90

https://github.com/leangen/graphql-spqr

public class User {

private String name;
private Date registrationDate;

@GraphQLQuery(
name = "name",
description = "A person's name"

)
public String getName() {

return name;
}

@GraphQLQuery(
name = "registrationDate",
description = "Date of registration"

)
public Date getRegistrationDate() {

return registrationDate;
}

}

Java is no stranger to annotation based approaches in general, which makes it
work quite nicely. Overall, it’s incredibly similar to a code-first approach, but
the annotation-based approach may help if you already have well defined domain
objects.

Generating SDL Artifacts
Generating SDL artifacts as we talked about in a code-first context is a great
practice, but not necessarily always straightforward. Fortunately, some GraphQL
libraries offer this functionality out of the box. For example, GraphQL-Ruby
has a Schema::Printer class that can receive a schema Ruby object, and turn it
into an SDL string:

Print the SDL document based on MySchema
An instance of GraphQL::Schema
GraphQL::Schema::Printer.print_schema(MySchema)

In JavaScript land, GraphQL-JS contains a utility method called printSchema,
which does pretty much the same, except it is much less customizable than the
Ruby version:

91

https://www.rubydoc.info/github/rmosolgo/graphql-ruby/GraphQL/Schema/Printer
https://graphql.org/graphql-js/utilities/#printschema

import { printSchema } from 'graphql';

// Print the SDL document based on schema
// A variable of type GraphQLSchema
printSchema(schema)

Any language that supports schema printers should give you a good base. Any
new field or type added through a code-first approach gets reflected in the artifact.
Your documentation generator, linter, and any other tool can operate on that
source of truth instead of analyzing code. The other option is an introspection
query, but that’s done usually done at runtime, and doesn’t necessarily reflect
the whole schema, but just whatever token or user’s view of the schema. A
better approach is to print the whole schema. Instead of hiding feature flagged
fields, or hiding partner only types, we print everything and annotate them with
metadata, so it’s clear when viewing the SDL that these types are not available
to everyone:

directive featureFlagged(name: String!)
on FieldDefinition | TypeDefinition

type Query {
viewer: User

}

type User {
name: String
secretField: SecretType @featureFlagged(name: "secret")

}

type SecretType @featureFlagged(name: "secret") {
name: String!

}

This approach is great to improve confidence in how changes affect the schema
as a whole. Not only that but this can be the basis of all developer tooling
including linting, breaking change detectors, documentation generators, and so
much more. I highly recommend checking in this schema artifact into source
control, meaning developers making changes quickly see the resulting schema
structure and a single source of truth of the schema is versioned for you.

The bad news is that you’ll probably need some custom printing logic to pull this
off unless your metadata solution also adds directive definitions under the hood,
which certain implementations can do. GraphQL Ruby makes custom printers
really easy, but GraphQL-JS has by default only a simple printSchema function.

92

Fortunately, that file is not that large, which means you could potentially
implement your own.

Summary

I highly encourage you to build your schema using a code-first approach when
you can, but sometimes the specific programming language you choose will
dictate the approach depending on what the most mature library picked as a
schema definition scheme. For example, GraphQL Ruby, Sangria (Scala), and
Graphene (Python) already favor code-first, but in JavaScript land, it depends
on your choice of library. I recommend using tools like GraphQL Nexus or using
GraphQL-JS directly. Annotation-based approaches like SQPR and type-graphql
can also be great choices, but be careful you are not tying your GraphQL schema
to implementation details.

Resolver Design
No matter how you’re building a schema, you will have to write resolvers at
some point. The resolver pattern of GraphQL’s execution engine is great. It
helps teams add new use cases by working on their isolated resolver and makes
it simple to think about the logic of a single field. However, it can be overused.
At its core, GraphQL is an API interface. It’s an interface to your domain
and business logic, and in most cases, should not be the source of truth for your
business.

So how does that actually look practically? A great resolver often contains

93

https://github.com/prisma-labs/nexus
https://github.com/graphql/graphql-js
https://github.com/leangen/graphql-spqr
https://github.com/MichalLytek/type-graphql

very little code. It deals with user input, calls down to our domain layer, and
transforms the result into an API result. Now describing what that “domain”
layer should look like is a whole different story and would take an entire book to
describe. However, in general, encapsulating behaviors, at least outside of our
persistence and interface layers will be a great start. It’s really tempting to start
handling a ton of different validation rules in there, but try to make resolvers
as “dumb” as possible. Chances are your GraphQL API is not the only entry
point to your business. If you have a UI, a REST API, or even internal RPC
calls across micro-services, you want all these things to be consistent. If you
start handling too much logic at the GraphQL layer, it risks becoming out of
date or straight out wrong over time.

Beware of the Context Object

The context argument that most GraphQL implementations allow you to use
in resolvers is very useful. For example, it is incredibly useful to store “request”
level information like values of certain headers, the request IP, authentication
and authorization data, etc. These are totally valid uses of context, but using
it to alter runtime behavior can be very detrimental to building a stable API.
Every single conditional we add around context makes the API less predictable,
less testable and harder to cache. Let’s take a look at the following resolvers:

def user(object, arguments, context)
if BLACKLIST.includes?(context[:ip])

nil
else

getUser(arguments[:id])
end

end

While this code is not necessarily wrong, having too many of these conditionals
relies on the same exact context to be provided on every call. For example,
a query executed in a totally different context, maybe an internal call or an
inter-service call where the ip is not provided, would result in broken resolver
logics.

Another pattern to avoid, if possible, is mutating the context object during the
query execution like this:

def user(object, arguments, context)
user = getUser(arguments[:id])
context[:user] = user
user

end

94

This could make your resolvers order dependent and almost surely lead to issues
as your schema evolves or as users execute query patterns you haven’t thought
of. It’s very hard to avoid using context entirely but try to be very selective of
what goes in there. A good idea might also be to make certain parts of context
to be required before executing a query.

Lookaheads and Order Dependent Fields

Some libraries allow you to fetch information on what fields are being queried
under the field that is currently being resolved by your function. Be very careful
with this information. It may be tempting to preemptively load data for an
order’s products for example. There are problems with writing resolver logic
that depends on the query shape or the child fields being queried under it:

• GraphQL fields on the query root can be executed in parallel; you probably
don’t want to lock yourself forever by having resolver logic that is not
parallelizable.

• As your schema evolves, new queries that your resolvers did not expect
can start making an appearance, meaning the logic you wrote for handling
subqueries is now out of date and most likely wrong.

Trying to be too smart about the execution of a query will often make things
worst. The beauty of the resolver pattern is that it does one thing, and does it
really well. Try to keep its logic isolated. In general, don’t assume where a type
or field might be used in a query. Chances are it will be reused in a different
context, and the main thing that you should rely on is the object it receives.
Except for mutation fields, resolvers work best as pure functions; they should
behave as consistently as possible and have no side effects when queried on the
query root. This means avoiding mutating the query context at all costs and
not depending on the execution order at all.

Summary

Writing great resolvers is easier said than done, but we can focus on some core
principles to make sure we’re heading towards the right direction:

• Keep as much business logic out of the GraphQL layer.
• Keep the context argument as immutable as possible.
• Don’t depend on your fields being called in a certain order, or assume that
a certain value in context was filled in by another field.

Schema Metadata
Any sufficiently complex GraphQL API will at some point need to add metadata
or any extra information to its type system. While the type system allows us to
describe fields, their types, and their nullability, it can’t do everything. There’s
a ton of other things we might want to attach to schema members. For example,
GitHub’s GraphQL framework allows engineers to tag types with the schema

95

version (internal or public), whether the type is under development, if the type
is hidden behind a special feature flag, which oauth scopes are needed to access
a certain schema member, and a lot more. We’ll cover some of these in more
detail later.

Metadata is easy when you’re using a code-first approach, we can do it any way
we want. GraphQL Ruby allows us to define base classes from which we can
extend. This lets us define our own DSL and metadata, for example:

class PostType < MyBetterObjectType
name "Post"
description "A blog post"

under_development since: "2012-07-12"

schema :internal

scopes :read_posts

Field definitions
end

GraphQL Nexus allows this sort of metadata on most schema members as well,
for example setting a complexity attribute on a field id:

export const User = objectType({
name: "User",
definition(t) {

t.id("id", {
complexity: 2,

});
},

});

Metadata with a schema-first or SDL-first approach is commonly done through
schema directives. These directives are then interpreted by the framework to
allow for custom use cases. So instead of having a custom Ruby DSL like the
example we just saw, the same metadata could be defined like this in a SDL-first
approach:

96

type Post
@underDevelopment(since: "2012-07-12")
@schema(schema: "internal")
@oauth(scopes: ["read_posts"]) {
title: String!
comments: [Comment]

}

The story around how to publish this metadata for other machines to consume
or let clients fetch it through introspection is complicated. At the time of writing
this book, there are still discussions around how to do this best. This is because
schema directives are not currently exposed through introspection requests. My
recommendation around this problem would be to encode this metadata in the
SDL you generate, even though the actual introspection queries don’t support
it. This at least lets tools consume this metadata out-of-band. This difference
between the SDL dump and the introspection payload is a bit annoying at the
moment and hopefully will be addressed in the spec eventually.

Schema metadata is a great way to guide developers adding new functionality to
the API to reuse great patterns. This lets us write reusable code that executes
based on some metadata rather than asking for all developers to copy code
around. For example, an oauth_scope metadata attribute not only lets us
publish this to the SDL and generate docs from, but also automate the checks
for all resolvers defining this metadata. This is a must for anyone building a
GraphQL platform that might be extended by multiple developers.

Multiple Schemas
Some of us have different schemas to maintain. For example, Shopify has both a
storefront and an admin API. GitHub has both an internal and public API.
Maintaining multiple schemas can be tricky. Should these schemas be completely
separated and different or should they share common concerns? There are two
main approaches when it comes to maintaining and publishing multiple GraphQL
schemas. The first approach is to build different schemas at build time and
the second approach is to build different schemas at run time.

The build time approach is the simplest. We simply build different schemas for
different use cases. This works best when schemas are fairly different, but we can
still share object type definitions and really any code common to your GraphQL
platform. For example, this approach can work quite well:

97

https://github.com/graphql/graphql-spec/issues/300

+-- admin
| +-- order.rb
| +-- schema.rb
+-- storefront
| +-- collection.rb
| +-- product.rb
| +-- schema.rb
+-- common
| +-- product_image.rb

The big advantage of this approach is that it’s very easy to see what schemas are
being built. It also ensures our schemas can easily evolve in any way they want.
For this reason, make sure you don’t reuse type definitions unless you’re certain
the types will stay the same. Again, you may share code, but avoid sharing
actual GraphQL types.

The runtime approach comes in useful when the most part of the schemas is the
same, but they vary in small ways. For example, a public API may be a subset
of an internal API, or you may offer only certain types to certain users. In that
case, schema metadata comes in very useful to avoid building two very similar
schemas and having to maintain types in duplicate. Here’s an example using
GraphQL Nexus, which allows us to define extra config on object types:

const User = objectType({
name: "User",
// Annotate this type as INTERNAL only.
schema: INTERNAL,
definition(t) {

t.int("id", { description: "Id of the user" });
},

});

Now the missing part is that we need the capability to hide or show fields based
on a certain request. This is most commonly referred to as schema visibility
filters, or schema masks.

Schema Visibility

When developing a new REST endpoint for select partners, or simply when
building new functionality behind a feature flag, we generally don’t want this
endpoint to be publicly accessible. Usually, anyone who is not supposed to be
aware of that new resource would get a 404 Not Found. We wouldn’t want
to return a 403 Unauthorized, because that would leak the existence of that
resource. While we want to block usage unless feature flagged, we also don’t

98

want to risk leaking an upcoming resource.

It is very common for large GraphQL APIs to need the same mechanism, except
we deal with a single endpoint. Instead of hiding the existence of a resource,
we want to hide subsets of the schema like fields, types, or really any schema
member. This is commonly referred to as schema visibility or schema masking.
Schema visibility is not only useful for publishing new features behind feature
flags or sharing schemas only with certain partners, but we’ll see in the next
section that it can help us maintain multiple versions of a schema by simply
applying certain visibility masks at runtime.

Note that this is very different from your typical authorization. Authorization
can usually be implemented within a field resolver, returning null and/or an
error. With visibility, we don’t event want clients to see that fields or types
exist in the schema. GitHub’s schema previews is a good example of visibility in
action. New schema features that are only accessible if a special preview header
is passed along with the query. If a client doesn’t have the header, it will receive
a “Field does not exist error”.

At the time of writing this book, schema visibility mechanisms are unfortunately
not implemented in all libraries. GraphQL-JS is lacking this feature, but both
GraphQL Ruby and GraphQL Java give developers the ability to restrict visibility
on certain schema members. If your library of choice has no support for this,
and you’re convinced this is an important feature after reading this chapter, I
encourage you to either implement it or open an issue for it!

Combining schema metadata with visibility is where things start being really
powerful. For example, In GitHub’s implementation, developers can annotate
types with a feature flag:

class SecretFeature < ProductionReadyGraphQL::BaseType
name "Secret"
description "Do no leak this."

feature_flagged :secret_flag

Field definitions
end

Then, at runtime, a visibility filter is applied to the execution of the query, only
allowing users that are on-boarded to this feature flag to see that this type exists.
GraphQL Ruby is smart enough to hide all fields that are of the feature flagged
type, and hide those too.

99

https://developer.github.com/v4/previews/
https://graphql-ruby.org/schema/limiting_visibility.html
https://www.graphql-java.com/documentation/v12/fieldvisibility/

class FeatureFlagMask
If this returns true, the schema member will be allowed
def call(schema_member, ctx)

current_user = ctx[:current_user]

if schema_member.feature_flagged
FeatureFlags

.get(schema_member.feature_flagged)

.enabled?(current_user)
else

true
end

end
end

MySchema.execute(query_string, only: FeatureFlagMask)

While visibility allows for great use cases like feature flagging, it should not be
overdone. Taken to the extreme, it gets really hard to debug, test and track
which “version” of the schema a user ends up seeing. Try to use visibility for
broader use cases like feature flags, or different schema versions like internal
vs. public.

Building a really good implementation of visibility that is smart enough to hide
parts of the graph based on others, for example, where hiding a type ends up
hiding fields of that type for example, can get real tricky. Consider hiding an
interface, which should hide fields on types that implement it. You can also hide
all fields on a type, which should hide this type, and which should, in turn, hide
fields that reference it. It gets really complex! It is needed to achieve some of the
feature flag and runtime masking features, but maybe not the simplest approach
when it comes to building two separate GraphQL APIs. In that case, the simple
approach of two definitions and code sharing is likely to work better for you.

Modular Schemas
When schemas grow large, teams often start looking for solutions to modularize
or split their schemas into different parts. Tools like merge-graphql-schemas and
GraphQL Modules can help do that in an opinionated way. There is no doubt
modularizing is a great idea in software development in general. You’ll notice
however that the idea of modularizing the schema definition itself is mostly
a concern coming from developers building their schemas with an SDL first
approach since the SDL is by nature a single large definition file. While the
tools linked above do a great job of allowing teams to modularize parts of an
SDL and merging them into a single schema, it’s not always necessary.

100

https://github.com/Urigo/merge-graphql-schemas
https://graphql-modules.com/

With a code-first approach, it’s usually quite easy to modularize without any
special technique or library in mind. We’re dealing with code, so modularity
should already be in mind, GraphQL or not. From what I’ve seen I would
say developers tend to worry a bit too much about specific GraphQL modules
and should instead rely on their programming language conventions to achieve
modularity. Don’t forget that the resulting GraphQL schema that clients consume
and how it is defined are two completely different things.

As far as how you should modularize things, I’m in favor of splitting into
subdomains. This means related concepts should live close to each other. Here’s
an example of a directory structure that generally works well:

+-- graphql
| +-- orders
| | +-- order_type.rb
| | +-- invoice_type.rb
| | +-- ...
| +-- products
| | +-- product_type.rb
| | +-- variant_type.rb
| +-- schema.rb

Within these subdomains, you may modularize more to your liking, but I don’t
recommend modularizing by GraphQL “member types”, at least at the top level,
like this:

+-- graphql
| +-- object_types
| | +-- order_type.rb
| | +-- product_type.rb
| | +-- ...
| +-- interfaces
| | +-- ...
| +-- input_types
| | +-- ...
| +-- mutations
| | +-- add_product.rb
| | +-- delete_order.rb
| +-- schema.rb

The type of schema member is rarely what we’re interested in when modularizing
code, we would rather separate and group concerns according to their business
capabilities. Remember that you can start very simple and evolve towards this
over time. It’s often hard to find the right sub-domains early on, and things
become more clear as we go on. Modularize when it starts to be painful and keep

101

it simple. Most of the time, there is no need for complex solutions or frameworks.

Testing
Testing GraphQL is a challenge, and it’s also something that teams just starting
with GraphQL find quite difficult. The dynamic and customizable nature of
GraphQL makes it really hard to have confidence in our tests. The execution
engine itself, especially given the context argument most libraries provide, adds
another level of unpredictability. The single most important thing we noticed
about testing at GitHub is that it became much easier when we followed the
advice for resolver design we just covered. Well encapsulated behaviors, as simple
objects, are much easier to test and are much more predictable than a GraphQL
resolver. Once your actual behaviors are tested, the rest gets a bit easier. Still,
we’ll want to test the interface itself, and there are a few ways to do that.

Integration Testing

Even if your business logic is well isolated and tested, testing our GraphQL layer
is still important. After all, GraphQL’s execution engine is quite often some
sort of black box with validation and coercion possibly changing the results.
This adds up to the fact that combinations of fields may also give unpredictable
results (even though we try to avoid it at all cost!), among many other things.
Integration tests are probably the easiest and safest type of testing we can do
for a GraphQL API.

Although queries can span the entire schema, testing per object type is some-
thing I’ve seen work generally well. It’s difficult to give strong recommendations
on testing but usually, object integration tests can contain the following:

• Tests that work accordingly for the fields returning this object (Fetching
this object through the node field, fetching this object through a finder
field like findProduct, etc.)

• Tests that query for all fields on the object, to make sure we’re not missing
anything.

• Authorization tests, especially if authorization differs per field (More on
that in Chapter 4)

With that in place for all objects, we’ve already got some good testing going on.

Unit Testing Resolvers

There is some value in testing individual fields, especially if they have more
complex sets of parameters. Resolvers are usually simple functions, meaning
they can be tested quite easily. However, there are a few things to keep in mind
that may make testing individual resolvers a bit hard. First, resolvers often
go through additional transformations before the field result gets added to the
response payload. Type coercion, which almost all GraphQL frameworks will do
for you, may change the results. There are also all the middleware and plugins

102

you might have added to your implementation that may modify the behavior
or result of your fields. Then, there’s the context object. It’s often quite hard
to provide a context object to a single resolver without a global query in mind.
Finally, the parent object that the resolver gets as a first argument must be
mocked or provided correctly. There is no guarantee it will always be the same
object when actual queries get executed.

Summary
Implementing GraphQL servers depends a lot on what your current architecture
looks like, what language you’re building in, and what GraphQL framework you
end up picking. However, there are some ground principles that I think will help
anyone trying to build a great GraphQL platform.

• Prefer code-first frameworks with high extendability (metadata, plugin
and middlewares, etc)

• Keep your GraphQL layer as thin as possible, and refactor logic to its
own domain layer if not already the case.

• Keep resolvers as simple as possible, and don’t rely on global mutable
state.

• Modularize when it starts hurting, you don’t need a magical or specific
framework. Use your programming language to achieve modularity.

• Test most of the domain logic at the domain layer. Integration tests are
the best “bang for buck” approach for GraphQL servers.

• Use visibility filters for small schema variations based on runtime conditions,
but don’t hesitate to build completely different servers at build time when
dealing with wildly different schemas.

103

Security

Security is a hot topic in the GraphQL world. Part of it is because people who
hear about “clients can query exactly what they need” for the first time start
getting anxious about clients accessing data they shouldn’t have access to. As
we saw, in fact, servers expose the use cases they want to expose, and nothing
more. Still, there are some things to set up to make sure clients don’t take down
our server or access things they shouldn’t. A lot of these things are similar to
other API styles, but we’ll cover some GraphQL specifics in this chapter.

Rate Limiting
Rate limiting is a very important security feature for any web API. While our
APIs must respond to client use cases, it’s also important for us to define limits
within which an API client must play nicely. For endpoint-based APIs, these
limits are commonly expressed in terms of requests per minute or similar. It
makes sense, given the load on our servers is often related to how many endpoints
are getting hit for a period of time. The problem is that it turns out this doesn’t
translate very well to GraphQL. To understand why, let’s look at this query:

query A {
me {

name
}

}

And this other request:

query B {
me {

posts(first: 100) {
author {

followers(first: 100) {
name

}
}

}
}

}

Using the naive approach of enforcing rate limits using a request or query per
minute approach would fail rather quickly. Although we thought that our limit
was fair, given the first query, we now realize that with the same number of
requests, the second query is way too expensive. The problem here is that the

104

second query is much more complex and expensive to run than the first one,
which only fetched a single object, meaning we can’t allow the same number
of queries per minute for both these queries. This is why GraphQL APIs must
usually completely rethink how to rate limit clients. Let’s cover some techniques
that enable a GraphQL API to effectively rate limit clients.

Complexity Based Approach

One of the most popular techniques to rate limit GraphQL APIs is to take
a complexity approach. The basic idea is this one: given a GraphQL query
document, can we estimate a cost for it? If we could say that query B in the
previous example “costs” 100 points, and that query A costs 1 point, we could
use that metric instead of the number of requests to rate limit based on time. For
example, our API could allow only 1000 points per minute to be run. Query A
could then be executed 1000 times in a minute, but query B only 10 times. This
lets us accurately represent how costly it is to execute a query on the server-side,
protecting our precious resources.

Calculating Complexity

In the previous example, we computed costs in a fairly random way. In reality,
we strive to come up with a cost for a query that accurately represents the
server-side cost of executing it. Not only that, but a server would generally want
to compute the cost or complexity of a GraphQL query before executing it.
This allows the API to reject very expensive requests before it’s too late. Some
server implementations, like GraphQL Ruby, have an analyzer API that lets
you do a first pass on the query document before it is executed. It is a great
place to run this logic. In JavaScript land, similar tools exist like graphql-query-
complexity. For those of you using implementations that don’t have such an
API or library, using an AST visitor or similar tool to parse and traverse the
query to compute a complexity score is your best bet.

There are many ways to compute complexity and your particular implementation
might influence the way you compute costs. However, an often pretty effective
heuristic is to think about the complexity and to think in terms of objects rather
than fields. Scalar fields are usually not very costly for a server to compute since
they come from an object that has already been loaded / de-serialized. Instead,
we can compute the number of object types or “nodes” that have to be fetched
by the server. For example, the following query could have a cost of 2:

105

https://github.com/rmosolgo/graphql-ruby/blob/master/guides/queries/analysis.md
https://github.com/slicknode/graphql-query-complexity
https://github.com/slicknode/graphql-query-complexity

query {
viewer { # <== Loading the viewer costs 1

name
bio
bestFriend { # <== The viewer's best friend also costs 1

name # <== but we ignore name since it's a scalar
}

}
}

The next problem we face is that list types complicate things. A single field
that returns a list type may instead load n objects, which is hard to predict.
Fortunately, if your GraphQL API is paginated, for example by using Relay’s
Connection specification, we can actually compute a cost using the pagination
arguments:

query {
Loading the viewer costs 1
viewer {

For 1 user, fetch 100 posts, costs 1
posts(first: 100) {

edge {
node {

For each post, load one author: 1x100, costs 1
author {

name
}

}
}

}
}

}

Given our approach, this query would have a cost of 102 points. This is because
we loaded 1 viewer object, 1 page of 100 posts, and then 100 authors. We
could make the posts field cost 100, but here we know that our server can
efficiently load 100 posts off a user. The “multiplier” effect comes from loading
one author per post, which is usually expensive to compute for typical server
implementations. You can tweak these numbers based on how expensive data
fetching is for your application and access patterns.

This still leaves us with a problem for list types that are not paginated. How
can we know how many items are possibly going to be loaded? First, verify this
field can really not be paginated. It’s very rare a list type would not be well

106

suited for pagination. If it is impossible, chances are the list is small and you
think it will remain small, which means you can assign it an average cost that
makes sense for you. It doesn’t need to be perfectly accurate, but express what
kind of load this could produce on the server.

You can try to rate limit based on the number of objects that were returned in
the response. For example, if a connection actually only returns 20 items, we
would cost 20, but if it returned 99, we would cost 99. This is more accurate for
sure, but now our rate limit algorithm is not stable anymore. A client application
could think they are well within the limits, when several items get added to a
collection which makes their cost increase and start getting rate limited. This is
quite upsetting for a client. I think the “static” approach is a much better choice
for most.

Time Based Approach

As you can see, an accurate “complexity cost” can be tricky to compute. An
alternative approach is to instead rate limit by server time. This is inherently
closer to the true “server cost”, because well, we’re costing it based on how
much time the server took to respond! This is often done through a middleware
computing the number of milliseconds elapsed between when the request was
received by the application server and when the response was sent out. I really
like this approach. However, it comes with similar issues than what we discussed
earlier with the complexity approach: The amount of time a server takes to
execute a query depends on many factors, which means for example that on
a given day, a client may be totally fine, whereas during a time where servers
respond slightly slower, they might get rate limited. Some may even see this as
a feature: rate limit more when servers are struggling.

Compared to the complexity approach, it’s a bit less easy to understand for
clients. With a complexity-based approach, you can very easily express how
much a query will cost. You can even do so before the end if you share your
algorithm or provide tools to compute it. With time, clients basically need
to try out queries and see how long they take or adapt while deploying their
applications. Both solutions are still way better than simply counting the number
of requests.

Exposing Rate Limits

It’s often hard for clients to know whether they’re within limits, or about to
get rate limited if they continue. For this reason, a lot of API providers want
to communicate or expose the rate limit status of a client to help the client
integrate and make sure it stays within the acceptable usage of the API. The
most common way to do so is through response headers. As part of every API
response, we can provide clients with different headers about their current rate
limit status. This example is from GitHub’s REST API:

Status: 200 OK

107

X-RateLimit-Limit: 5000
X-RateLimit-Remaining: 4999
X-RateLimit-Reset: 1372700873

RateLimit-Limit is the total amount of requests a user can make in a rate limit
period (an hour in this case) before it will be blocked, RateLimit-Remaining
is the actual number of requests left before this specific user is rate limited,
and RateLimit-Reset is a Unix timestamp representing when a new period will
start, meaning the remaining amount will go back to the original limit (5000 in
this case).

We can apply this exact same strategy with GraphQL, except both Limit and
Remaining may represent a complexity cost, or a server time amount. The
header approach works great, but GitHub’s GraphQL API also opts for an
additional approach by including a rateLimit GraphQL field. Pretty meta,
right?

query {
rateLimit {

cost
limit
remaining
resetAt

}
user(id: "123) {

login
}

}

Under rateLimit, you can query the cost of the current executed query, as well
as limit, remaining, and resetAt just like with the headers. Here’s another
interesting thing: we can even ask for this information without actually executing
the query by passing a dryRun argument:

108

query {
Dry run means the server will
compute the complexity, but won't
fully execute the query
rateLimit(dryRun: true) {

cost
limit
remaining
resetAt

}
user(id: "123) {

login
}

}

Note that response “extensions” are a great fit for this kind of information as well.
For example, Shopify’s API makes great use of the extensions key to provide
rate limit data:

{
"data": {

"shop": {
"name": "ProductionReadyGraphQL"

}
},
"extensions": {

"cost": {
"requestedQueryCost": 1,
"actualQueryCost": 1,
"throttleStatus": {

"maximumAvailable": 1000,
"currentlyAvailable": 999,
"restoreRate": 50

}
}

}
}

This can be very useful for clients wanting to estimate how many queries like
this they could make.

Limitations Exposing rate limit details to clients is very useful, but we have
to know that it comes with a few gotchas. Mainly:

109

• It encourages clients to “game” the system by making an exact number
of requests per hour/minute to always stay under the limit. This is not
necessarily a bad thing but can be very hard to change down the line.

• It assumes you can reliably and consistently provide an accurate picture
of the current state of your system. If requests can be routed to different
data centers, or if it depends on some information that cannot be fetched
synchronously, these details can be hard to provide.

If we think these limitations could be problematic, another good approach is to
document what proper usage looks like, and encourage and educate clients on
how to play well with rate limits. Instead of giving them exact information on
their rate limit status, we expect them to react well once they’re rate limited. A
great approach to let a client know they’ve been rate limited is by using the 429
TOO MANY REQUESTS status code, with a Retry-After header which lets clients
know when to try again.

Blocking Abusive Queries
GraphQL’s power is all about giving a lot of power to the clients. However,
we can’t just give all the power to clients. We have to set limits. One thing
most people first think about is not allowing infinite depth for queries. After all,
GraphQL does enable clients to build very nested queries:

query {
product {

variants {
product {

variants {
product {

We can do that for a while
variants {}

}
}

}
}

}
}

In practice, this can be implemented as a custom validator. For example,
GraphQL-JS has packages available already to do depth validation, and GraphQL
Ruby implements it out of the box.

You hear a lot about protecting GraphQL servers from “recursive” queries (which
is not a thing the GraphQL query language allows in the first place since leaf
nodes must always be selected) and limiting the depth of a query. It turns out

110

https://github.com/stems/graphql-depth-limit
https://github.com/rmosolgo/graphql-ruby/blob/master/guides/queries/complexity_and_depth.md#prevent-deeply-nested-queries
https://github.com/rmosolgo/graphql-ruby/blob/master/guides/queries/complexity_and_depth.md#prevent-deeply-nested-queries

that query depth is only one of the ways malicious clients can abuse or make
excessive use of a GraphQL server. In fact, breadth can be just as bad:

query {
product1: product (id: "1") { ... }
product2: product (id: "1") { ... }
product3: product (id: "1") { ... }
product4: product (id: "1") { ... }
product5: product (id: "1") { ... }
...

}

So how do we guard against this? The complexity approach we covered for rate
limiting actually covers this pretty well. Instead of a max depth or max breadth,
a max complexity can be set. Note that while rate limiting protects our server
against abuse over time, it’s a great idea to set a maximal complexity per
query as well, so that we don’t allow gigantic queries even if they are sent at a
slow rate.

Besides complexity, another approach to query limits is to have a node limit.
Often, this effectively translates into how many instances of an object type is
requested by a query. GitHub has both a node limit per query and a complexity
based rate limiting approach. Together, they ensure a client is not able to build
a ridiculously large query, and stays within acceptable usage of the API over
time.

Finally, no matter how we compute complexity of a query, there are often ways
around them. I strongly suggest you set limits on the total byte size of the query
and variables (even if they are quite large) to block excessive queries you did not
even think could exist. For example, it’s possible to overload certain GraphQL
servers with enormous lists of arguments. You can block these by enforcing a
limit on the number of items in list arguments, but the total size limit at least
blocks a few more of these cases.

Timeouts
No matter what approaches we use for blocking abusive queries before executing
them or rate limiting clients, chances are we may be still open to running queries
that are simply too complex. Like any web server, aggressive timeouts should
be set on the request time, to never let queries running for too long. There’s no
perfect amount as far as the timeout value is, as long as you have one.

Timeouts are interesting with GraphQL since they almost become a feature
rather than an exception compared to a typical web API. Timeouts are to be
expected with queries that simply request too much compute time. A high
amount of timeouts for a REST endpoint is usually an emergency. People might

111

https://developer.github.com/v4/guides/resource-limitations/#node-limit
https://developer.github.com/v4/guides/resource-limitations/#rate-limit
https://developer.github.com/v4/guides/resource-limitations/#rate-limit

get paged. With GraphQL, you’ll most likely have to get used to them if your
server accepts arbitrary queries.

With a timeout in place, we can be a bit more confident that no matter what
happens with our node or complexity limits, there is an upper end of time an
actor can take with a single query. The key here is finding a max complexity
and/or node limit that would block queries before we need to timeout requests.
This is easier said than done, but with good monitoring, data analysis, and some
trial and error, accurate limits can be found.

Authentication
Authentication is the act of determining who a user is, and whether they are
logged in or not. Not to be confused with authorization, which is the act of
determining if a user can do an action or see a certain resource.

The main question around authentication in the GraphQL community is if it
should be handled within the GraphQL server, or out of band. Practically, this is
asking if our GraphQL schemas should offer login and logout style mutations,
or if they should simply expect a user to be already logged in before interacting
with it.

I strongly recommend leaving authentication concerns out of the GraphQL
schema, and simply expect a currentUser or other session concepts to be
present in the GraphQL context when executing a query. Resolvers should not
be aware of HTTP headers or tokens. This way we can swap out, or support
many different authentication schemes without changing the schema. It also
makes the schema much easier to interact with, and more stateless.

Having authentication mutations on a GraphQL server either turns the server
into a stateful thing, or requires us to handle authentication per-field, meaning
login may be called with a token, but not other mutations. This is possible but
I find it’s more brittle than simply expecting a token to be always present when
executing GraphQL queries.

This also makes authentication checks much simpler on the GraphQL side. The
downside, of course, is that clients may need to authenticate using another
solution than GraphQL. This somehow never felt like a big down side to me.
GraphQL does not provide much advantages to a login mutation that we simply
use to fetch a single token.

I advise you use standard authentication mechanisms like an authentication
middleware rather than trying to roll your own authentication in GraphQL. This
might save you a few headaches!

Authorization
Authorization for APIs is a complex subject no matter if we use GraphQL, REST
or gRPC. The truth is that authorization is a hard problem in general. It would

112

take a whole book, and probably scientific research, to find out the ultimate
way to perform authorizations. In fact there probably is no “ultimate way” and
that’s why recommending the best way to do it in GraphQL is not possible.

Instead, you want GraphQL to rely as much as possible on the authorization
you already have deeper in your application. The main reason we want to avoid
having all authorization logic at the GraphQL level is that GraphQL is often
just one possible way to access your domain logic. If we start implementing
everything in our GraphQL layer, we’re now in a situation where we have to
make sure to copy these business rules everywhere else and maintain them while
they evolve, which is very error-prone.

Often, when we talk about authorization, we tend to conflate multiple concepts.
On one end, we have authorization like API scopes; which fields or types a
client is allowed to access, often on behalf of a user (OAuth for example). On
the other end, we have authorization that deals closer with our domain, like
“You can’t close an issue if you’re not an administrator”. Generally, API scopes
make a lot of sense to be implemented at the GraphQL layer, but business
rules that relate to our domain should stay as much as possible out
of our GraphQL logic.

There’s no doubt that some authorization checks may need to be done at the
GraphQL layer. In these cases, there are a few considerations we can keep in
mind.

Prioritize Object Authorization over Field Authorization

When it’s time to enforce authorization in GraphQL APIs, some very common
questions and problem organization issues hit, as to whether they should be
enforced on a per-type or per-field basis.

I highly recommend you start with an approach where authorization rules apply
to object types rather than fields. There are a few reasons why:

First, object types usually translate quite well to API scopes. A lot of simple
scalar fields on objects also have very similar permissions to each other.

But most importantly, it’s very hard to track all possible ways to get to an
object. If we only make authorization checks at the field level, we open ourselves
up to access patterns we didn’t think of. Here’s an example, which uses a simple
@authorization directive to express to help visualize where authorization checks
would happen:

type Query {
adminThings: AdminOnlyType!

@authorization(scopes: ["read:admin_only_types"])
}

113

With this simple schema, no one without the scope read:admin_only_types can
have access, because there’s only one way to get there, through the adminThings
field, and that that field is well protected by our field authorization. Now,
imagine as the schema gets more complex, and as different teams start adding
their part of the schema:

type Query {
adminThings: AdminOnlyType!

@authorization(scopes: ["read:admin_only_types"])
product: Product!

@authorization(scopes: ["read:products"])
}

type Product {
name: String
settings: AdminOnlyType!

}

Involuntarily, we have opened a door to the AdminOnlyType through
the settings field on the Product type, which only requires the scope
read:products. This is still a fairly basic example, but imagine what happens
when your schema grows to thousands of types. It will get very hard to track
and test. The Node interface and field make this even more obvious. Often
we can access almost everything from a Global ID, which points us towards
protecting types rather than the fields that return them.

GraphQL-Ruby takes this approach by default, with authorization hooks it
provides out of the box:

class Types::Product < Types::BaseObject
REQUIRED_SCOPE = "read:products"

def self.authorized?(_object, context)
context[:scopes].include?(REQUIRED_SCOPE)

end
end

Note: GraphQL ruby also allows you to make checks on the actual
object returned by the parent resolver, but as we covered earlier, a
lot of these checks are better made in your business layer rather than
a GraphQL type definition.

GraphQL-Shield is also a popular library in JavaScript that enables you to write

114

https://github.com/maticzav/graphql-shield

a complex permission layer for GraphQL. You can express a lot of permission
rules with it, so do try to keep your API layer simple if you can, and be careful
with the per-field checking approach. All in all, my recommendation is to keep
authorization simple in your GraphQL interface. It is most probably the best
thing to do for security and maintainability. Focus on API permissions like API
scopes rather than business rules, and enforce them on a per-type basis at first,
until you start needing finer-grained (per-field) permissions in there.

Leaking Existence

A common gotcha in API authorization is the subtle difference between: “This
thing you’re looking for exists but you cannot access it”, and “This thing doesn’t
exist (it actually does but I’m not telling you)”.

A lot of the time we don’t want to tell someone they don’t have access to a thing
they tried accessing. Take for example the node(id: ID!) field which allows
clients to fetch types that implement the Node interface using a global identifier.
If clients got an error like “You can’t access this object”, this instantly leaks the
existence of this object to the client.

To avoid that issue, we simply return null instead of returning an error. This
means our type better be nullable, or else we risk nulling out a lot more of the
response, another good reason to think twice before making a field non-nullable,
as we discussed in Chapter 2 on schema design.

Blocking Introspection
One of the most popular concerns I see around securing GraphQL APIs is
removing introspection capabilities from a server. This is generally a bit odd to
me since that’s one of the reasons that make a GraphQL API so great to use. But
of course, that depends on the context behind using that GraphQL API. Internal
APIs that want to hide upcoming features, especially if they’re accessible through
something public like a browser might need to limit introspection to avoid leaking
secret things. Internal APIs may also want to use query whitelisting, a process
in which a GraphQL server only allows a known set of queries to be executed,
often registered beforehand. This can often be used for private APIs that are
used by client-side apps to block anyone from executing other queries than the
ones the client makes. Introspection is before all a tool for engineers/developers,
not end users. This means it should be enabled in development, but there is no
need to leave it open in production for an internal API.

For public GraphQL API though, there is nothing inherently insecure about
introspection since the schema is what we actually want to expose. Limiting
introspection in those cases oddly sounds like “Security by obscurity”. For types
and fields that should not be discovered, for example feature flags as we’ve
covered earlier in the book I prefer using schema visibility (which we’ve covered
in Chapter 2): This allows us to hide certain parts of our schema to certain
clients only.

115

If you don’t have these two things in place and they require too much effort,
limiting introspection can be used as a simpler measure. However, keep in mind
you might be restricting a very important feature for clients and tools.

Persisted Queries
Persisted queries are a very powerful concept that utilizes GraphQL’s strength
while minimizing a lot of its pain points. Let’s take a look at the normal flow of
a GraphQL query, which by now you probably know quite well:

In this scenario, the client sends the typical GraphQL query to a server, the
server lexes, parses, validates and executes the query, and then returns the result
to the client. Let’s say this client was deployed to production. One thing we
notice is that the query string the client sends never changes. In fact, sending the
entire query to the server every time is totally useless! We are wasting precious
server side cycles by making the server parse and validate the same query string
over and over again. Persisted queries attempt to solve that problem. Here’s
how:

116

With persisted queries, instead of sending the full query document on every
request, the client starts by registering queries with the server, before any query
is even sent. Sometimes these queries are registered before or during the deploy
process. In other cases, the first query from a client is used as the “registration”.
In exchange, a GraphQL server capable of supporting persisted queries will
provide the client with an identifier for that query. Examples of good identifiers
are query hashes, URLs at which the queries can be accessed, or simple IDs.

Once the client has the identifier for a particular query, it can send the identifier
along with any needed variables to execute the query, this time without passing
the full query document. For example, if the server returned an URL after the
registration of a certain query, the client could use this URL instead of sending
the query document every single time:

117

This has several amazing advantages. First, clients never send the full query
string anymore, saving a lot on bandwidth. But not only that, servers can
optimize queries by pre-parsing them, pre-validating them, and pre-analyzing
them. These things often become quite costly over time especially with large
queries which makes persisted queries a very good idea for all serious GraphQL
APIs.

Besides the performance and bandwidth improvements, this also helps API
providers secure GraphQL APIs. Earlier we covered whitelisted queries, which
meant allowing only certain queries to be ran against our GraphQL server. With
persisted queries, this is even more straightforward, since an API provider could
allow only pre-registered queries to be run, essentially blocking access to all
other queries against the API.

The funny thing with persisted queries implemented that way is that it starts to
look a lot like what we wanted to escape in the first place, endpoint based and
fixed queries! However, there’s a small detail that makes this so powerful. Even
though we’re dealing with static queries/resources, these resources are generated
by the clients rather than the server. In fact I love thinking of persisted queries
as client dynamically generated resources, using the dynamic GraphQL engine
to support as many different resources as needed by clients.

Apollo has good libraries around persisted queries and a lot of server side libraries
have functionality to cache or persist queries. For example, GraphQL Java has
support for caching pre-parsed queries and GraphQL-Ruby supports an operation
store in its pro version.

118

https://www.apollographql.com/docs/apollo-server/performance/apq/
https://graphql-java.readthedocs.io/en/v4/execution.html#query-caching
https://graphql-java.readthedocs.io/en/v4/execution.html#query-caching
https://graphql-ruby.org/operation_store/overview
https://graphql-ruby.org/operation_store/overview

Persisted queries are a must for all internal APIs, and I suspect they might
become useful for public APIs as well eventually.

Summary
• Rate limiting GraphQL requires more thought than a typical endpoint-
based API.

• A complexity or time-based approach is your best choice for rate limiting
clients.

• Timeouts are a must to avoid long-running queries taking up too much
server time.

• Query depth is not as important as advertised, complexity and node count
is often enough.

• Authorizing object types is often simpler and less error-prone than autho-
rizing fields.

• Disabling introspection is a good idea for private APIs, but should be
avoided for public APIs.

• Persisted queries are a very powerful concept, especially for internal APIs.

119

Performance & Monitoring

Performance is crucial for APIs, but GraphQL makes it a bit trickier in many
ways:

• The potential for so many different variations of requests makes it very
hard to optimize for one particular query.

• The resolver pattern makes it hard for fields to cache or perform work
ahead of time.

• The GraphQL execution sometimes looks like a kind of black box.

That’s the tradeoff we are making when building a GraphQL server, but it
doesn’t mean there are no solutions to those things. In this chapter, we’ll cover
how to tell if a GraphQL server is performant, and how to do efficient data
loading and caching.

Monitoring
It’s useless to work on performance if we can’t even measure performance gains
or detect issues with the performance of our API.

If you’re used to endpoint-based HTTP APIs, you might have successfully
performed some monitoring before. For example, one of the most basic ways of
monitoring performance for an API is to measure response time. We may have
some dashboards that look like this:

Monitoring our APIs this way lets us quickly catch a subset of the API that is

120

having issues. For example, in the example above, something seems to be off
with the POST /posts endpoint. So our first instinct might be to approach a
GraphQL API the same way:

Unfortunately, we rapidly discover that measuring the response time of a
GraphQL endpoint gives us almost no insight into the health of our GraphQL
API. Let’s see why, by looking at a super simplified example. Imagine you
maintain a GraphQL API that currently mainly serves simple queries like this
one:

query {
viewer {
name
bestFriend {
name

}
}

}

A new application onboards on your API and has different, more complex,
requirements:

121

query {
viewer {
friends(first: 1000) {
bestFriend {
name
favoriteCities(first: 100) {
name
population

}
}

}
}

}

Notice how the queries look similar in terms of query document size, but how
that new query is actually requesting potentially more than 100_000 objects,
while the first one is only querying for one. If you were monitoring the response
time of this GraphQL endpoint, and that the new client sent enough of these
queries, you would see the response time for /graphql go up, probably by quite
a bit.

Now is this alarming? Not at all, because indeed, responses we return are a
bit slower because we simply serve more complex queries! Most of us are not
actually interested in this, but would rather know if the performance degraded,
given the same usual load/use cases. That’s when a fix would be required.

In fact, we are not interested in monitoring the endpoint, but the queries in
this case. We want to know if a query that a user normally ran in 200ms now
takes 500ms to run. If you’re the maintainer of a private API, with a small set
of known clients and a small set of queries, we could actually just do that —
monitor known queries for their performance.

This brings us to a very important point. Your clients should always include
information that helps you determine who is making the queries. For a
public API, that’s often a given if you are using authentication tokens, but I
often see teams using GraphQL internally not tracking at all who their clients
are. You should consider passing a client identifier and the client app’s version
on every call.

We could go as far as refusing to serve queries if clients don’t pass this information
along with queries. A common way to do so is by having clients include this
information through headers:

GraphQL-Client-Name: my-app
GraphQL-Client-Version: 15.4.2

This is even easier with “persisted queries” that we saw in the last chapter. We

122

can attach these client identifiers along with their persisted queries.

However, if you’re managing a public API, or a very large internal API with a
larger set of clients and queries, this may not be easy to do, due to the high
cardinality of queries. We must then find other ways.

Per-Field Monitoring & Tracing

I like to think of the lifecycle of a GraphQL query in 3 broad steps:

• Parsing & Lexing
• Validation & Static Analysis
• Execution

It’s often useful to monitor timings for each of those, as the execution of the
query is not always where problems will arise. I’ve seen countless examples of a
validator being incredibly slow to parse some complex queries, and even parsing
that is taking up most of the computation time for a GraphQL Query. A lot of
GraphQL libraries have hooks for you to insert custom tracing logic.

Per field monitoring is a much more fine-grained way of getting useful data.
However, it can be costly depending on how you collect this kind of monitoring
data. The idea is that on top of monitoring the whole response time of a query
string, we look at the individual field performances. This way, we can detect
outliers much better than when looking at global query performance.

Field and resolver monitoring can often be achieved by using middleware or
resolver extensions that many libraries offer along with your favorite application

123

performance management library/vendor. For example GraphQL-Ruby makes it
really easy to instrument queries using Prometheus and many other vendors/tools.
If you’d rather have something out of the box, Apollo Server along with Apollo
Engine can get you metrics and logging really easily.

GraphQL is also a perfect candidate for tracing. Viewing the execution of a
GraphQL query as a fine-grained trace often gives us a lot more information
than the total response time for a full query. A lot of GraphQL implementation
provides hooks for tracing implementations like OpenTracing.

GraphQL Response Extensions

It’s often very useful to provide inline performance information in a query
response, for example when debugging a slow query. The GraphQL specification
allows servers to include additional information as part of the response under an
extensions key. This is incredibly useful for metadata like tracing information.
Apollo Tracing defines a tracing extension format; however, it is not necessarily
an official standard. You may come up with your own tracing extension as well.

124

https://github.com/rmosolgo/graphql-ruby/blob/master/guides/queries/tracing.md#prometheus
https://github.com/rmosolgo/graphql-ruby/blob/master/guides/queries/tracing.md#prometheus
http://spec.graphql.org/draft/#sec-Response-Format
http://spec.graphql.org/draft/#sec-Response-Format
http://spec.graphql.org/draft/#sec-Response-Format
https://github.com/apollographql/apollo-tracing

// An example of the Apollo Tracing extension
{

"data": <>,
"errors": <>,
"extensions": {

"tracing": {
"version": 1,
"startTime": <>,
"endTime": <>,
"duration": <>,
"parsing": {

"startOffset": <>,
"duration": <>,

},
"validation": {

"startOffset": <>,
"duration": <>,

},
"execution": {

"resolvers": [
{

"path": [<>, ...],
"parentType": <>,
"fieldName": <>,
"returnType": <>,
"startOffset": <>,
"duration": <>,

},
...

]
}

}
}

}

A very important thing to think about is not only encoding the timings of each
resolver, but also the timings of every external call that resolvers make. It is
very rare for a resolver itself to be slow in terms of CPU. The huge majority
of performance issues are from resolvers making external calls, like calls to a
cache, a database, or an external service. These are extremely useful to include
in traces like this. You seldom want to return this trace for all responses, unless
you expect all clients to use this information because it often adds a lot of bytes
to the response. At the very least you should make sure it is compressed. If you
maintain a public API, you might not want to expose such a detailed trace for

125

security.

Slow Query Log

Slow query logs are an idea that comes from database implementations. The
idea is simple: set a threshold at which we consider a query too slow. Any query
that exceed that threshold get logged. This is most useful when dealing with a
known set of queries, or when dealing with either a public or a large enough set
of clients and queries. We then get the same problem described at the beginning
of the chapter: are the slow queries problematic or simply slow because they are
larger queries? Still, the slow query log can be a simple and effective tool to
catch expensive queries early on, before they become problematic.

Tracking Queries over Time

Regressions are often what we are really interested in, in terms of performance.
Are there any queries that have gotten slower in the last hour, day, week? If
you can afford it, tracking every single query over time, in something like a
Time Series database or your Data Warehouse, can be very useful. Products like
Apollo Platform give you similar features if you don’t want to build it yourself.
Because query strings can vary a lot depending on white space, arguments, and
order of fields, a hash or signature of a query often needs to be computed. We
can then track the performance of a particular query hash instead of tracking
plain query strings. GitHub computes a hash for both query strings and the
variables provided. We can then track regressions for a particular pair of query
string + variables, avoiding the monitoring issue we talked about earlier (loading
250 items is often inherently slower than loading 1).

The N+1 Problem and the Dataloader Pattern
While a very powerful concept that allows a GraphQL engine to dynamically
generate client representations, the “resolver” pattern – the functions that most
GraphQL implementations use to execute queries – can sometimes lead to certain
unexpected issues when used naively.

This is the case with data loading. The problem is that resolvers live in their
own little world (in fact, they can even be executed in parallel along others).
This means that a resolver with data requirements has no idea if this data has
been loaded before, or if it will be loaded after. For example, three resolvers
that need to load a certain user could end up making the same SQL query:

126

https://www.apollographql.com/docs/intro/platform/

Most servers will actually resolve queries serially, meaning one field after the
other. Take a look at the execution of a typical query that loads the current
user’s name and age, all their friends, as well as the best friend of each of their
friends.

Looking at this GraphQL query from an external eye, we can imagine how we

127

would want to load the data that we need. In fact, if we were dealing with an
endpoint-based API, where the serialization logic for the whole payload is often
collocated or at least executed in a shared context, we’d know how to do this.
Here, we want to load the current user, load the first 3 friends from a join table,
and then load these 3 friends at once using their IDs. Finally, we would take the
best_friend_id from each user and load them all. Looking at a resolver graph,
we’d have the 4 following queries:

As we just saw, this is hard to achieve with our resolver concept. How can the
resolver for friends(first: 3) know that it needs to preload the best friend
for each? This is the responsibility of the bestFriend field! While the fact that
the loading of bestFriend is collocated in the bestFriend resolver is great, a
naive execution of this query would rather look like this:

128

As you can see, a typical GraphQL execution would likely make 6 queries instead
of 4 here. Ask for 50 users and we would have 53 queries while the other solution
still works with 4 SQL calls! This is clearly not acceptable and will fall apart
very quickly as your data sets grow and more queries of that kind are run against
your GraphQL API. Now that we see the problem, what can we do about this?
There are multiple ways to look at the problem. The first one is to ask ourselves
if we could not find a way to load data ahead of time, instead of waiting for
child resolvers to load their small part of data. In this case, this could mean for
the friends resolver to “look ahead” and see that the best friend will need to
be loaded for each. It could then preload this data and each bestFriend resolver
could simply use a part of this preloaded data.

This solution is not the most popular one, and that’s understandable. A GraphQL
server will usually let clients query data in the representation they like. This
means our loading system would need to adapt to every single scenario of data
requirements that could appear very far into a query. It is definitely doable,
but from what I’ve seen so far, most solutions out there are quite naive and
will eventually break in very complex data loading scenarios. Instead, the more
popular approach at the moment is one that is commonly called “DataLoader”.
This is because the first implementation of this pattern for GraphQL was released
as a JavaScript library called DataLoader.

Lazy Loading

The idea behind DataLoader is kind of the opposite of the “look-ahead” solution
we just talked about. Instead of being eager about loading data, and having

129

to handle all possible cases ahead, the DataLoader style loading pattern is
purposefully very lazy about loading data. Let’s dive into it.

The first principle to understand is that when using the DataLoader approach,
we take an asynchronous approach to resolvers. This means resolvers don’t
always return a value anymore, they can return somewhat of an “incomplete
result”. For the sake of this example, we’ll talk about the most commonly used
“incomplete result” objects, promises.

As you can see, while the standard execution strategy would execute the query
in a depth-first-search approach, resolving child fields before other fields at the
same level, we have a different approach here. When a resolver wants to fetch
data, instead of fetching it right away, it will indicate to the executor that it will
eventually have data, but that for now, it should proceed to the next resolver on
the same level of the query tree.

The next step to understand how this eventually works is to introduce the
concept of loaders. Loaders are a simple idea, even though their implementation
may be complex. The basic idea is that when an individual resolver has data
needs, it will go through a loader instead of going straight to a data store. The
role of loaders is to collect identifiers required to fetch objects from individual
resolvers and to batch-load this data more efficiently.

The typical abstraction for a loader is a class or object with two main methods:

• #load takes the loading key as an argument for the data the caller is
interested in and returns a promise, which will eventually be fulfilled with
the data that the caller asked for. This method is used within resolvers.

130

• #perform (batchFunction) takes all the accumulated keys that the load
function calls added, and loads the data in the most efficient way. This
method is usually either defined by us, or calls a batch function we’ve
provided.

class Loader {
load(key) {
// Adds the key to an eventual batch and returns a promise

}

perform(keys) {
// Receives all keys that were asked to be loaded
// Loads them all as a batch
// Fulfills every resolver promise with the
// data they've asked for

}
}

Here’s an actual example using the Dataloader package and GraphQL-Js:

// Create a loader that can fetch multiple users
// in a single batch
const userLoader = new DataLoader(ids => getUsers(ids));

const UserType = new GraphQLObjectType({
name: 'User',
fields: () => ({
name: { type: GraphQLString },
bestFriend: {
type: UserType,
// The bestFriend resolver now returns a Promise
// instead of loading the user right away.
resolve: user => userLoader.load(user.bestFriendID)

},
})

})

One thing that is usually hard to grasp at first is the time when that perform
or batch function is called during the execution. We know resolvers won’t load
data individually anymore, but when are these promises even fulfilled? How
does the GraphQL execution engine handle this? It turns out that it varies a
lot, depending on the implementation and language.

For example, Node.js has asynchronous primitives that allow this pattern to

131

https://github.com/graphql/dataloader

work quite well. This is why DataLoader uses process.nextTick to batch-load a
set of keys. DataLoader uses Node.js queue system to wait for all promises to
have been enqueued and then run the batch function. If you would like more
details into how this works under the hood, Lee Byron has an amazing video
explanation available. I highly recommend watching this video, at the very least
the part about enqueuePostPromiseJob.

Other languages do it differently. For example, GraphQL-Ruby has a specific
“lazy executor” that starts by resolving all field resolver functions at a single level
of a query, until it can’t go any further without resolving promises. In that case,
it calls the batch functions on loaders, and keeps going on with the execution
once the promises are fulfilled.

If you’re looking into implementing DataLoader, the JavaScript implementation
repository lists out a lot of language-specific implementations of this pattern
that you can pick from.

Lazy Loading Drawbacks

Lazy loading is often a very important piece when it comes to the performance
of a GraphQL server, but it has a few drawbacks.

• Monitoring gets a bit harder; the execution is not only about individual
resolver timings anymore.

• The execution mental model is not as clear as before, making it hard to
debug performance issues.

• The performance of an individual field can be a lie. Imagine a field that

132

https://www.youtube.com/watch?v=OQTnXNCDywA&feature=youtu.be&t=1323
https://www.youtube.com/watch?v=OQTnXNCDywA&feature=youtu.be&t=1323
https://github.com/graphql/dataloader#other-implementations
https://github.com/graphql/dataloader#other-implementations

simply enqueues thousands of users to be loaded. If we were to monitor the
performance of that field, we’d see that it resolves very fast. In fact, it’s
putting all of its work on a loader, which we have to monitor separately.

• Everything becomes async! If you’re used to it, especially working with
JavaScript, that might be fine, but if you’re working in a language with
poor support for promises/futures, this may be quite annoying to work
with.

Caching
If you’ve followed the discussions around whether GraphQL is a good idea or
not, you might have heard things like “GraphQL breaks caching”, or “GraphQL
is not cacheable”. If not, I guarantee you’ll be hearing similar things when you
start displaying interest in building a GraphQL API. I’ve seen some companies
starting to use GraphQL being scared of this question to which they don’t have
a clear answer. Before we dive into the world of caching and GraphQL, it might
be a good idea to address these common concerns and understand where they
come from.

Comments like “GraphQL breaks caching” lack the nuance required to actually
have a proper discussion about caching and GraphQL. What kind of caching?
Client side? Server side? HTTP caching? Application side caching? To have
a proper discussion and end up with a better understanding of GraphQL’s
limitations in terms of caching, we must take certain subtleties into account.

GraphQL breaks server-side caching?

This is a common thing to see thrown around when talking about GraphQL.
The first thing to understand is that “server-side caching” is already vague. At
this point, we know that GraphQL can actually be a thin layer over our existing
servers, and that in no way does GraphQL prevent us to cache on the server-side,
sometimes referred to as Application Caching. We will dive deeper into some
concepts that can be applied at the application level later on in this chapter.

Most GraphQL clients and frameworks have as a feature a de-normalized cache
that allows client-side applications to avoid re-fetching data that they already
possess, using it to optimistically update a UI and to keep a consistent version
of the world across components. So if we can actually cache things both at the
server and client layers, why are we hearing so much about GraphQL “breaking”,
or making caching really hard? This is where it becomes more subtle.

HTTP Caching

While certain API styles like REST make great use of the powerful HTTP
semantics, GraphQL does not really, at least not by default. Since GraphQL
is transport agnostic, most server implementations out there use HTTP as a
“dumb pipe”, rather than using it to its full potential. This causes issues around

133

certain things, like HTTP caching. There are multiple parts to HTTP caching
that are important to understand before we go further.

First, there are many different cache entities that can be involved in HTTP
caching. Client-side caches, such as browser caches, use HTTP caching to avoid
re-fetching data that is still fresh. Gateway caches are usually deployed along
with a server, to avoid requests from always hitting servers if the information is
still up to date at the cache level.

Two concepts that are particularly important to understand when it comes
to HTTP caching: freshness and validation. Freshness lets the server trans-
mit, through Cache-Control and Expires HTTP headers, the time for which
a resource should be considered fresh. For example, a server returning this
Cache-Control header is telling clients not to bother fetching this resource
again until it has been at least one hour (3600 seconds):

Cache-Control: max-age=3600

This is especially great for data that doesn’t change often, such as browser assets.
Whenever the age of the resource we fetched will be greater than this max-age,
the client will emit a request instead of using the value in its cache. However, it
doesn’t mean that it actually changed on the server. This is where validation
comes in. Validation is a way for clients to avoid re-fetching data when they’re
not sure if the data is still fresh or not. There are two common HTTP headers to
achieve this. The first one is Last-Modified. When an HTTP cache on the server
has a value for Last-Modified, a client can send an If-Modified-Since to avoid
downloading the data if the data hasn’t changed since last time it downloaded it.

The other common way of validating caches is using ETag. ETags are server-
generated identifiers for representations that change whenever the resource has
changed as well. This lets the client track which “version” of the representation
it has and avoids re-downloading a representation for which the ETag is the
same as the one the client has.

Together, freshness and validation are a powerful way to control client and
gateway caches. Can we really not harness the power of HTTP caching with
GraphQL?

GraphQL & HTTP Caching

When we dig deeper into the issues with GraphQL and Caching, we discover
some of these issues are purely related to HTTP Caching. It is an important
distinction to make since server-side caching could just as well mean an HTTP
Gateway cache or an application-side caching on the server.

One of the first things that could influence how HTTP caching works with
GraphQL is the HTTP verb that is used to send GraphQL queries. A lot of
misinformation has led to some people believing that using POST on a GraphQL
endpoint is the only way to make it work. HTTP caches will not cache POST

134

requests, which means GraphQL is simply not cacheable at the HTTP level.
However, GET is indeed a valid way to query a GraphQL server over HTTP.
This means that caches could indeed cache GraphQL responses.

The only issue with GET is with the size of the query string. For example, almost
every browser has different limits for these. If this becomes an issue, persisted
queries become very useful. As we saw in the last chapter, persisted queries let
you store query strings on the server instead of the client, meaning a client could
execute queries simply like this:

GET /graphql/my_query

Our GraphQL query, with persisted queries, is essentially a typical HTTP
endpoint! As we covered when talking about persisted queries, if we see GraphQL
queries as a way to dynamically create server-side client-specific representations,
each query is in fact something that could be cached. Can we apply HTTP
concepts to GraphQL queries? Let’s start with freshness. What we would want
is for a server to be able to tell a client how long the query can be considered as
fresh, and when to request for this data again. The unfortunate thing here is that
HTTP semantics operate on whole responses/representations, and doesn’t care
or understand GraphQL queries, meaning we don’t have a way to do per-field
freshness, for example. Still, nothing could stop us from adding a freshness
header to a whole query: we could say that a GraphQL query’s max-age is
equal to the field in the query with the lowest max-age. Validation is similar.
While we can’t use HTTP to revalidate only parts of the query, we could set
Last-Modified to the value of the field with oldest Last-Modified value, and we
could also generate an ETag based on a combination of all data loaded within
the query.

Since GraphQL queries possibly span multiple entities that could change, and
that they need to be represented as one representation on the GraphQL side,
the number of invalidations for GraphQL queries is usually quite high. A single
field being invalidated can invalidate an entire query, even if the rest of it is still
“fresh”.

While this may sound to some as GraphQL being inherently “not cacheable”, it
is instead really all about customization vs. optimization. The invalidation issue
we discussed above is not something very specific to GraphQL and is something
that all APIs that are dynamic and customizable as GraphQL struggle with. It’s
a tradeoff we choose to make!

Take for example a typical HTTP endpoint for a web API:

GET /user/1

This particular endpoint accepts no particular query parameters and simply
returns the user associated to this URI. As a public API especially, this endpoint
is highly cacheable across all API clients. Now imagine a more customizable
version of this endpoint:

135

GET /user/1?partial=complete
GET /user/1?partial=compact

This API uses a partial query parameter to change the level of detail of the
response. An even more customizable API, just as we saw in the introduction
could look like this:

GET /user/1?fields=name,friends

The more versions of an HTTP endpoint we have, the more we dilute the cache.
Meaning someone requesting fields=name only can’t actually use a cache, even
though someone requested fields=name,friends. We’ve got the same issue
happening with GraphQL, remove a field, change anything to a query in fact,
and we lose the benefit of all queries that were cached with a superset or subset
of the data.

As you see, this is not something specific to GraphQL, and can be found in any
API over HTTP that decides to opt for a more customizable API. With endpoint
based APIs, the API designer is in charge of building the API and making these
tradeoffs. By choosing GraphQL, we implicitly take the customizability road.
Hopefully, that tradeoff was deliberate and the cache invalidation issues were
worth it on the long run. Instead of “GraphQL is not cacheable”, how about
“Highly customizable APIs benefit less from HTTP caching”?

How Important is HTTP Caching to you?

There’s no doubt HTTP caching is a wonderful mechanism for data that doesn’t
change often. It can be shared across multiple users, especially when gateway
caches are concerned. For authenticated web APIs, the eternal debate lies on
how useful HTTP caching really is. It is a debate which I won’t solve here, but
it is still worth discussing.

An interesting fact is that shared caches actually should not cache any request
with an Authorization header. If your API is authenticated, the “GraphQL
breaks HTTP network/gateway/shared caches” argument simply does not apply.
Private caches, such as browser caches and client side caches, could still gain a lot
from using HTTP caching. As we saw, it is not out of question with GraphQL,
it is simply not as powerful as for highly optimized/one-size-fits-all APIs because
of how often a query can be invalidated and how little can be shared.

Another thing to keep in mind is that many web APIs actually can’t have stale
data for very long, which means that freshness headers become less useful.

Validators such as ETag and Last-Modified usually require the server to retrieve
all necessary data and run business logic to be computed. This usually is the
major part of the work, savings being mainly on serialization and bandwidth
since no data needs to be transmitted. If bandwidth or serialization is an issue,
again, nothing prevents you to implement ETag or Last-Modified generation
for a GraphQL query. GraphQL definitely made tradeoffs where it is much

136

more suited to authenticated APIs and realtime data that changes often, versus
serving long-lived data as a public API. If your use case is the latter one, and it
is the only thing your API does, considering using an API architecture that uses
HTTP in a more meaningful way could be a better choice.

HTTP Caching could benefit GraphQL in good ways. The lack of GraphQL
over HTTP specification is something that makes things a bit harder. The
fact mutations can possibly be executed using the GET method is an example
of something that could be solved by such specification. However, there are
many other ways to cache GraphQL, be it at the client level, the whole response
level, the individual resolver level, etc. In fact, certain vendors, like Apollo, are
exploring caching semantics right into GraphQL. In this chapter, we will mainly
cover GraphQL specific approaches, since these are currently the most used tools
and can be more powerful in the long run because they understand GraphQL
semantics.

Caching in Practice

As you can see, caching GraphQL is a nuanced issue. While it may be less
effective than with highly specific, public endpoint-based APIs, there is still a lot
of value to be had by caching in GraphQL, and that, at many different levels.

Full Query Caching Most of the caching for GraphQL will be more effective
at the application level, meaning within your server. The most common issue
is that since GraphQL queries can span multiple entities at once, queries may
sometimes use parts of the schema that should be cached and other parts that
should not be cached at the same time.

For example, Shopify took a very pragmatic approach to solve this issue. Instead
of trying to solve caching and GraphQL at a global level, they decided to cache
queries they could cache. Some of their types represent objects that are cacheable:
things on the storefront like products, variants, images, etc. They annotate the
types that are cacheable when defining them. It might look like this:

type Product @cacheable {
name: String

}

When queries are executed, the server looks at all the fields and verifies all
types are cacheable. If that’s the case, the whole query is safe to be cached
and is cached under a key they generate based on the query and user context.
This is such a good example of a great progressive improvement since a lot of
queries did hit only cacheable storefront types. Of course, the gotcha is that if a
single non-cacheable field gets added, we lose all benefits of caching.

137

Cache Keys The generation of a cache key is always important, but even more
so with GraphQL. The dynamic nature of GraphQL queries is such that even a
white space in the query could affect the key and cause a miss, even though it
was the same query in the first place. A good cache key should generally contain
at least:

• User information (if authenticated API).
• A query hash, which should be normalized as much as possible.
• The variables hash (we would not want queries with different variables to
be cached as the same thing).

• The operation name
• A cache-busting element.

The user information part is usually a user_id or some sort of client identifier,
in order to avoid serving data that belongs to one user to all other users. The
query hash is a representation of the query string the client is asking to be
executed. Generally, it should be normalized to remove variations coming from
things like white space, comments, etc. Some would even say field ordering
should be normalized, but that can be potentially scary since the spec does
say something about ordering. The variables hash is important since not all
variables will always be included in the query string.

The operation name is also easy to forget but very important. In GraphQL,
clients are allowed to define multiple operations within one query string:

query A {
shop {

name
}

}

query B {
shop {

products {
name

}
}

}

Although most servers do not execute multiple queries, they allow clients to
provide an operation_name, which tells which of operations A or B it should
execute. If we cached full responses without caching the operation_name, this
would break quickly as clients that provide B as an operation name could get a
result for query A, and vice-versa.

Finally, the “cache-busting element” will depend a lot on your own implementation.
In the previous Shopify example, a “shop_version” attribute, which represents

138

the current state of a shop’s storefront, is used. By including it in the cache key,
they ensure queries are never stale. If you can tolerate some staleness, you can
also use a Time-To-Live (TTL) approach by setting an expiration on your cache
key instead.

Data Layer Caching Remember the batch loaders we covered while talking
about the N+1 problem? Well not only do they avoid inefficient database queries,
but they can also help to cache duplicate queries. Imagine the following query:

query {
shop {

owner {
shop {

owner {
shop {

owner {
name

}
}

}
}

}
}

}

Without caching, as we saw in the chapter on performance, we probably would
be making a database query every time we hit the fields shop and owner.
Fortunately, most DataLoader implementations also take care of that for you.
They will not only batch calls, but cache any data loading access given a certain
entity!

Data caching is probably the most effective and most essential layer you should
be working on, before moving up to more advanced caching. It’s much easier to
batch and cache specific data sources than to try caching highly dynamic actual
GraphQL queries.

Resolver Caching Full response caching can be tricky to get right because
of how dynamic GraphQL queries are. For this reason, some of us may turn to
caching individual field resolvers. I suggest you use your best judgment when
trying to cache individual resolvers. While it may sound as easy as caching, in
terms of field names and argument names, we often forget about the mighty
context argument that most implementations support in resolvers. This
means that introducing a generic caching solution for resolvers needs to take
into account any data that could be used from that context to generate different
values.

139

For this reason, I suggest instead that you take a look at caching individual
resolvers, just as you would any other logic in your system. For example, if your
resolver is making an expensive call, consider caching that field’s logic specifically
if it is causing problems.

HTTP Caching As we mentioned in the introduction of this section. even
HTTP caching is doable in GraphQL. A good example of this is the Apollo Server.
It has a solid caching implementation that can help to generate HTTP caching
headers based on your schema and even using special functions in resolvers at
runtime. As we said earlier, while caching might be a bit less effective with
GraphQL, it is possible and can be done in a pragmatic way.

Caching Summary

Caching GraphQL might be a bit less effective due to how client-driven it is, but
it doesn’t mean it is impossible. Techniques like persisted queries make HTTP
caching actually quite powerful with GraphQL as well. If your API consists of
mainly static & public data, maybe there are more effective API styles. However,
if you support multiple clients with different needs in an authenticated API
with interactive data, GraphQL is a great choice and caching can be used in a
pragmatic way.

Compiled Queries
Compiled queries are a very exciting area of GraphQL that I hope to see a
lot more of in the future. Without going into details, compiled queries take
the idea of persisted queries even further. Standard persisted queries execute
the registered queries the same way as any other queries (besides skipping
validation/analysis). This means that even though we know exactly what queries
will be run, we still have the overhead of the GraphQL execution engine. What
if we optimized that ahead of time? That’s exactly what compiled queries try to
achieve.

At the moment these are more at the idea stage, but there are some examples
out there. GraphQL compilers and engines, new ways to execute queries are a
very exciting area and they have the potential to solve a lot of the performance
downsides of GraphQL.

Summary
• GraphQL is inherently harder to optimize than typical endpoint-based
APIs.

• Monitoring GraphQL often requires monitoring individual fields or queries
rather than monitoring endpoint response time.

• The N+1 problem can be avoided through lazy loading.
• Caching is possible with GraphQL, but often not as powerful as with other
API styles.

140

https://www.apollographql.com/docs/apollo-server/performance/caching/

• Compiled queries are a promising technique for improving performance of
GraphQL APIs.

141

Tooling

I attribute a lot of the success GraphQL has had over the past few years to the
amazing tooling ecosystem of GraphQL, and the amazing tooling that can be
built because of its type system and specification. In this chapter, we’ll cover
what I think are the must-have tools for any serious GraphQL platform that
needs to scale. There are so many things to be built and the truth is that the
open-source and even vendor offerings are lacking, with Apollo being the major
player of developer tooling in the GraphQL space. In this chapter, we’ll explore
some of my favorite tools to ensure a high-quality experience for GraphQL API
development.

Linting
Linters are something most of us have used at least once in our lives. If you’re
in the JavaScript world, you might be familiar with ESLint, which is almost
ubiquitous by now. We can apply the same tooling to our GraphQL development
experience. The GraphQL type system and its introspection capabilities allow
us to read the GraphQL definition and also analyze it.

The bigger your schema becomes, and also the more the number of contributors
grows, keeping consistency across your API becomes more and more challenging.
All the good design practices we saw in Chapter 2 become hard to enforce and
often, a specific GraphQL team becomes a gate-keeping team, something that
simply cannot scale in a larger organization. Linters allow us to encode these
practices into a set of rules and have those rules run in an automated way
whenever changes are made to the schema. These linters can be run locally, in
development, but also in a much more powerful way during your automated
tests or CI pipeline.

In a few conferences in 2018, I presented some of the tooling we built at GitHub
to make sure our schema stayed high quality and consistent with more than
300 engineers actively contributing to it. One of these tools was a linter, called
GraphQL Doctor. Since then, a few people played around with the idea. I
even think there is an open-source GraphQL doctor out there. We built the
linter and applied it where most of the engineers would notice: GitHub itself.
Our linter ended up being a pull request bot capable of analyzing GraphQL
changes and recommending best practices when needed:

There are some of these tools already out there if you don’t want to build
them yourself. A great example is graphql-schema-linter, a JavaScript GraphQL
Schema linter.

Change Management

Not only does a linter help with quality and consistency, but it can also help us
avoid breaking integrators by helping developers working on the schema to be

142

https://github.com/cjoudrey/graphql-schema-linter

aware of potentially dangerous changes.

The same tool we use for linting also compares schema versions and determines
what changed between them. Each change is then analyzed and GraphQL doctor
can then tell if these changes are breaking or not. Getting a list of differences
between schemas can be annoying but fortunately, there are a few tools out there
to help you:

• GraphQL Schema Comparator is a tool I wrote, which GraphQL Doctor
uses internally.

• GraphQL-JS includes a schema comparator, although it’s a bit hidden.
• Sangria, the Scala implementation of GraphQL also contains a schema
comparator.

• Finally, Apollo’s Platform can help you detect these changes.

A lot of these tools help you with categorizing breaking versus non-breaking
changes. It’s incredibly important to know whether changes are going to be
affecting clients in any way. When your team grows, it’s hard to watch for these
manually and tools like this can greatly help.

Analytics
An often overlooked feature of GraphQL is the fact there is no way for a client
to ask for all fields on a certain type, a sort of SELECT *. This may sound like
something against GraphQL, but it actually allows us to build amazing analytics
and usage analysis. Take your typical endpoint-based API: we can track which
resources are being consumed, the status codes they return, and any headers
that are being sent of returned ???. However, the only thing we know is which
resource a client was interested in, not which properties they are actually using.
If I’m deprecating a property called address on a resource /user/:id, we have
to assume we are breaking everyone, since we have no information on how the
resource is exactly used. With GraphQL, we know if address on a User type
has been selected, which is very powerful when it comes to understanding how
our API is being used.

For APIs with various different clients, especially public APIs, tracking usage
down to every field and argument can turn out to be incredibly useful. At
GitHub, we took every request hitting our public API and analyzed it against
the current version of the schema. Because queries can be quite large and going
through every field to collect usage information can be expensive, a good idea is
to handle this process outside of the process that is executing the query. This
prevents altering query time for clients.

143

https://github.com/xuorig/graphql-schema_comparator
https://github.com/graphql/graphql-js/blob/master/src/utilities/findBreakingChanges.js
https://sangria-graphql.org/
https://www.apollographql.com/docs/graph-manager/schema-validation

For every query to analyze, a good idea is to include anything that could help
us down the line:

• The actor behind this query: this could be an access token, the current
user, the current application, etc.

• Any errors that may have happened, including parsing errors, and GraphQL
errors, like if certain fields did not exist.

• Resolver timings, full query time, everything we talked about in the
performance chapter.

Another issue you might hit is that queries are not valid against all versions of
your schema, and we certainly don’t expect the schema to stay the same. This is
why it’s a good idea to send, along with information about the query, information
about the version of the schema that executed this query. Instead of sending the
whole schema SDL to the analysis service every time, we can compute a hash of
the schema, like sha256, and send over that hash to the analysis service.

When the analysis service receives a new query, it first needs to fetch the schema,
which you can achieve in different ways. For consistency purposes, we used git to
load the schema SDL, which is always stored in the API repository, which means
we also included the git sha along with the schema hash. Once you have the
schema, analysis becomes easier. Starting from the query root, we look at every
field in the query, validate them, and analyze them including any metadata (Is
the field deprecated? Is it accessible under a feature flag only?, etc.), and store
them under a format that can allow us to search later on.

One way to do this is to “de-normalize” the whole query into a set of entities

144

that were used:

• A list of fields (with their parent types)
• A list of arguments used (with their parent field and type)
• A list of fragment spreads that were used (very useful when finding out
what concrete type users are querying against for interfaces and union
types)

• Enum values used

Store this in any time series database or data warehouse you have access to.
Along with all these entities, you can encode who made the query, which enables
searches of that kind:

• Finding the top 10 list of integrators querying User.name
• Finding fields frequently used together
• Finding the slowest fields for a particular integrator
• Looking at the usage for all deprecated fields
• Finding if it is safe to remove an optional argument
• The sky is the limit! Add any other contextual data that might help debug
and/or understand how your API is being used.

Removing sensitive parameters

It is common practice to remove sensitive parameters and user data out of queries
before storing and analyzing them. There are a lot of parameter blacklists out
there for HTTP requests, but for GraphQL we have to look within the query
string. A good trick is to keep the query valid and to replace any user sensitive
data by placeholders. Given this query:

mutation {
createUser(

name: "John",
age: 30,
profession: "Engineer"

) {
name
age

}
}

We can replace all user-provided data with placeholder values, or simply null if
the field is nullable:

145

mutation {
createUser(

name: "REDACTED",
age: null,
profession: "REDACTED"

) {
name
age

}
}

This way the query remains valid against the schema. We can analyze which
arguments and fields were used, but without viewing the actual user provided
values. Don’t forget to sanitize parameters within list and input types as well.

As you can see, building such an analyzer is not necessarily an easy task, but it
can be very useful. There are unfortunately not a lot of tools that will do that
out of the box for you, since it depends so much on your architecture. Once
again Apollo is your friend if you are in need of something of that kind.

Summary
GraphQL’s schema enables us to use so many great tools to ensure we understand
and keep our schema stable and well designed. We must take the opportunity.
Use linters to enforce consistency and best practices, breaking change detectors
to make sure your API stays stable, and finally, gather as much data as you can
on queries. The ability to understand queries and which parts of the API they
hit is such a superpower that has saved us many times in the past.

146

https://www.apollographql.com/docs/graph-manager/setup-analytics
https://www.apollographql.com/docs/graph-manager/setup-analytics

Workflow

Keeping an API high quality as teams grow is a challenge and is rarely achieved
without thinking about the whole process from beginning to end. In this chapter,
we’ll cover important parts of a workflow that will hopefully lead you to develop
one that works for your team or organization. Every team works differently, so
this is far from an absolute recommendation, but these are practices that I’ve
seen work well over the years.

Design
As we’ve covered many times in this book so far, careful design goes a long way in
ensuring that an API stands the test of time, remains stable, easy to understand
and to use by clients. If there’s only one thing you should remember in this
chapter, this is the one I absolutely would recommend to any team working on a
GraphQL API. Too much upfront design can be less than ideal, of course. But
from my experience, most teams start working on implementing API features
way too early. More upfront design, at least a few discussions on the subject,
would avoid many problems down the line.

Practically, in terms of workflow, I’ve seen a few different ways to make this
effective:

• GitHub issues or any other collaborative document are great ways to post
and discuss an initial design (using the SDL).

• Involve project managers, designers, and documentation specialists as early
as possible in the process.

Once you’ve designed the schema for the new functionality, it’s time to get some
eyes on it.

Review
Schema reviews are a great way to ensure your proposed design makes sense to a
variety of people. Hopefully, you have linters in place to help remove ambiguity
and bike-shedding to keep your schema consistent. Instead, reviewers should
think about the core design, something that automated tools can’t do as well.

Who should the reviewers be? If you’re reading this book, chances are you might
be one of them! However, chances are that as your organization or team grows,
the amount of “GraphQL experts” won’t be enough for them to review all API
changes going through every week and even every day. Review “teams” tend to
work well at first, but it’s hard to scale. Reviews taking more and more of your
time are a big sign that it might be time to invest in schema/API quality tools
to cut down on review time.

Overall our goal should always be to build quality tooling and great schema
definition APIs that make it “hard to do the wrong thing” in the first place.

147

There is a point at which we have to trust that:

• Our team members have the proper documentation to learn about GraphQL
and good API design

• The APIs and tools they use naturally guide them towards best practices.

Development
The development phase ideally begins once you have agreed on the ideal design
for a new use case. If possible, try to avoid thinking of how to build it before
that point, since we don’t want implementation details to impact our design,
even though that won’t always be possible. There isn’t much to add to the
development phase. If you follow some of the advice we’ve seen along the book
so far, you’re on a good path!

Publish
You have confidence in your design, the team has implemented the GraphQL
schema, and your tooling and reviewers have confirmed your schema is high
quality. What next? It’s time to start publishing it. If you’re working with
a single client, this step is usually quite straightforward and you can often go
straight to deploying your change globally and letting the client integrate with
your new use cases.

If you’re dealing with a lot of clients, or even a public API, making changes like
these might require more of a plan. The goal of this phase is to gain confidence
in our design and implementation before opening the gates to all traffic. Let’s
cover three techniques, from more targeted to more public.

Mock Server

A mock server is a server that obeys to your GraphQL interface but does not
actually serve or modify real data behind the scenes. It is incredibly useful to
validate a design with known clients without having to fully deploy a change or
risking making mistakes with real production data. Mock servers are not a new
idea in the API world, but due to its type system, GraphQL makes it quite easy
to build a “fake” interface.

The great graphql-tools utility by Apollo is a great choice to build a simple
GraphQL mock server using JavaScript. GraphQL-Faker is another project that
can be used as a CLI to quickly spin up a mock server given a GraphQL schema.
It even lets us annotate the schema with custom directives to help the fake data
generation:

148

https://github.com/apollographql/graphql-tools
https://github.com/APIs-guru/graphql-faker

type Person {
name: String @fake(type: firstName)
gender: String @examples(values: ["male", "female"])
pets: [Pet] @listLength(min: 1, max: 10)

}

You can push the idea further by integrating these tools or your own mock server
tooling into your CI. If using a “schema as artifact” approach, our CI can pull in
this artifact and provide teams a mock server URL before we have shipped the
schema to production.

Feature Flags

Mock servers are great to share with internal teams, but not ideal to share with
partners and external clients. We sometimes want to provide them with the real
thing, without opening up to all our clients just yet. Perfect solutions to this
are feature flags and schema visibility which we covered earlier in the book.

Feature flags let you work with select clients, and by using schema visibility
techniques we explored, you can ensure these new use cases are not discoverable
by existing and other clients. This is of huge help when validating a design.
Working with an internal client at first is great, but an external eye often brings
new concerns we didn’t think of. The beauty of this approach is that since we
only opened the new parts of the schema to select partners, breaking changes
can be done by communicating with them directly. Something that is much
harder to do when the schema was released to all clients already.

API Previews

Finally, API previews are similar to the feature flag approach, but intended to be
used by anyone. API providers that support previews will often announce them
publically and clients that are interested can onboard if they want, often using a
special header. For example, GitHub uses Schema Previews to let integrators
try out new features and hopefully give beneficial feedback before the schema
graduates to general availability. They can be a really useful technique to gather
feedback when you have a large pool of clients about which you don’t know
much, contrary to when working with select partners or internal applications.

The way they’re often implemented is through HTTP headers. Clients can provide
a FooCorp-API-Preview: new-cool-feature header which enables access to
the API in preview. In GraphQL, this is often a part of our graph that is usually
hidden. Once again, this is easy to do if you have schema visibility filters in
place since it requires logic to hide or show parts of the schema at runtime:

149

https://developer.github.com/v4/previews/

type Query {
newFeature: NewShinyFeature!

@preview(name: "new-shiny-feature")
}

type NewShinyFeature @preview(name: "new-shiny-feature") {
field: String!

}

The implementation is almost exactly the same as a feature flag, but the idea
behind them is different. I must warn you that while API previews can be a good
way to gather feedback for a new use case, they can be quite easily overused.
Make sure previews are graduated quickly or else they often naturally become
part of the API in a weird state where a ton of clients use the field, which means
we can hardly change it anymore, but the field is still tagged as in “preview
mode”. Make sure you know what you want to get out of a preview period, that
you gather information from users and data, and that you graduate them to GA
as soon as possible once the idea is validated.

Previews can be useful for public APIs, but for an internal or partner APIs,
feature flags are generally a much better idea.

Analyze
We’ve designed a great schema, implemented it, and published it to limited
audiences and/or the world! We’re not done yet. If you have implemented some
of the schema analytics we talked about in the tooling chapter, you can observe
how these new use cases get used over time. How’s the performance of the
new functionality? Is it getting used? Can we reach out to the biggest users
and see what could be improved? These are all great questions you can answer
really well, thanks to GraphQL’s declarative nature. Often, new use cases and
functionality can be found from looking into workarounds that integrators have
to go through to achieve their goals. Do reach out to teams and clients using
your API, it’s time to make crucial changes before our new functionality becomes
available to everyone.

Ship
It’s time to ship your new API to everyone. If you’ve designed carefully by
thinking of actual use cases and bringing in stakeholders and domain experts,
ensured quality with code review and automatic linters, published to limited
audiences to validate functionality and minimize risk, and finally, monitored and
analyzed the usage of your new feature, you’re ready to go! Keep analyzing
performance and usage. You will learn more as more and more clients integrate
with your API.

150

Public GraphQL APIs

We can often categorize APIs in three broad categories:

• Private APIs (Internal to an organization)
• Partner APIs (Shared with a limited amount of partners)
• Public APIs (Fully public APIs accessible by almost anyone)

It has been interesting to see that GraphQL is mainly very popular for private
and partner APIs, and a bit less in public APIs. Even Facebook doesn’t have a
public GraphQL API at the moment of writing this book, and a lot more people
are using it internally. As far as I know, Shopify and GitHub are probably the
largest public GraphQL APIs currently. Why are public GraphQL APIs so rare?
I think there are a few reasons.

Is GraphQL a Good Choice for Public APIs

The target audience should be the single biggest influence on your
API Design.
Daniel Jacobson, when talking about Netflix’s approach to APIs

We can certainly ask the question of whether GraphQL is a good idea or not
when implementing an open or public API. First, looking at where it comes from,
we know that Facebook still has no public GraphQL API and that GraphQL
was architected of other problems than the ones that come from GraphQL. An
example I always bring up, when talking about how GraphQL was initially more
oriented towards internal APIs, is Facebook’s GraphQL client Relay. Since Relay
made many assumptions about the design of a GraphQL server, our APIs had
to be designed in a certain way if we wanted to support clients that were using
Relay. As we saw in the chapter on design, many of these things are generally
good ideas (input and payload types, connections), but the fact that a client was
so coupled to a specific server implementation means that an API provider must
take a specific type of client into consideration.

As a public API provider, we can’t assume that all our clients will be using
Relay, which means a lot of clients are forced into fields that are Relay specific.
I remember even thinking about building a Relay specific version of a schema at
some point or a special relay field on the root. Quite a hurdle for public API
providers! Since then, the new “Relay Modern” implementation has made a lot
of these assumptions best practices rather than hard requirements. This lets
clients use Relay with servers that did not necessarily choose to implement every
Relay recommendation. A lot of these recommendations have also since moved
to be GraphQL best practices in general.

However, that doesn’t mean GraphQL can’t be a great alternative for public
APIs as well. GraphQL can be a really powerful way of exposing possibilities

151

https://www.slideshare.net/danieljacobson/top-10-lessons-learned-from-the-netflix-api-oscon-2014
https://graphql.org/learn/pagination/
https://graphql.org/learn/pagination/

to a large set of clients. A public API (if successful) often means a ton of
possible clients. Handling so many various use cases can become quite hard for
API providers, and failure to handle these use cases becomes cumbersome for
clients, leading to very generic and one-size-fits-all APIs. GraphQL is fantastic
at handling such situations. Together, the type system, resolver pattern and
query language allow providers to define as many capabilities and variations as
they want without extra cost on existing clients (for example, think about typical
enormous webhook or HTTP endpoint payloads). GraphQL also offers a good
and most of the time simple mental model and architecture for API engineers.

The issue is that public APIs are often more generic by nature because we don’t
always know nor do we want to predict all the client use cases. Public APIs
are usually generic in a way that lets clients the possibility of inventing new
use cases through very generic interfaces. Of course, that often leads to the
One-Size-Fits-All problems, so a public GraphQL API has to try and strike
a balance between offering functionality that is generic enough for clients to
build solutions on top of our API platform, but also avoids falling into the same
“One-Size-Fits-All” trap many have criticized REST for. After all, even Roy
Fielding, author of the REST dissertation, acknowledges that trade-off:

The trade-off, though, is that a uniform interface degrades efficiency,
since information is transferred in a standardized form rather than
one which is specific to an application’s needs. The REST interface is
designed to be efficient for large-grain hypermedia data transfer, opti-
mizing for the common case of the Web, but resulting in an interface
that is not optimal for other forms of architectural interaction.

GraphQL has the potential of being finer-grained and more client-specific, but
this means we have to design the schema in this way in the first place. It would
be impossible to create a field per client when dealing with hundreds of thousands
of clients, so the answer must lie somewhere in between. As covered in Chapter
2, aiming for more specific fields is often a good idea. Very generic fields, full
of bells and whistles, should probably be avoided. The key is often listening
to clients and not hesitating to express new use cases as new fields rather than
overloading existing ones.

Lack of Conventions
Conventions often make great public APIs and it turns out HTTP is quite a
good standard. When using GraphQL as our public API, we often give away a
lot of what APIs that lean more on the HTTP specification often give us.

A lot has to be reinvented with a GraphQL API. Errors, caching, rate limiting,
timeouts, and so many other things are handled in many different ways by
GraphQL API providers at the moment. Part of it is because best practices are
still emerging, but the other part is because the GraphQL specification doesn’t

152

say anything about it, which is wise in many ways. Currently, a GraphQL client
must learn how a certain provider handles all these elements. Is the GraphQL
server using errors in data, or using GraphQL errors? Is the GraphQL API
returning 429 or does it have a custom error encoded when a client gets rate
limited? What about cache hints? Every time a client interacts with a new
GraphQL API, they have to find how all these things must be handled, either
through exploration or documentation. Compare this to an HTTP API, where
you can most of the time expect the right behavior when you throw an HTTP
client at it.

Of course, a lot of this is a challenge to typical HTTP APIs too, which is why
you’ll always hear the advice of using as many HTTP concepts as possible before
implementing your own logic. Should public GraphQL APIs served over HTTP
return a 429 TOO MANY REQUESTS or more something like this?

{
"errors": [{

"message": "Rate Limited",
"code": "RATE_LIMITED",

}]
}

With 429, most of HTTP libraries will handle these requests perfectly. With the
other approach, we require clients to learn a whole new “protocol” for our API,
try and learn about every error possible and how it’s expressed in this particular
API. This also explains why generated clients are so popular with things like
gRPC, since companies can generate their own concepts into clients instead of
letting users with generic clients try to handle these scenarios.

My advice would be for GraphQL APIs to rely on conventions as much as
possible. Clients should not have to learn new conventions every time they face
a new GraphQL API, especially if we want GraphQL to succeed as a technology.

With Great Power comes Great Responsibility
There is something else to keep in mind: we love the fact that GraphQL puts the
power in the client’s hands. However, this is also a source of concern: with this
power, responsibility should be in the client’s hands as well, but that’s rarely
the case when it comes to public APIs. Take monitoring, for example. With
GraphQL, the easiest way to find regressions and monitor performance would
probably be on the client side. However, as a public API provider, we don’t want
to wait for client support requests coming in before acting upon performance
regressions. As we covered in Chapter 5, this leads to very complex monitoring
solutions trying to understand how every query possibility is behaving. That is
way easier to handle with a smaller set of known, internal queries.

153

GraphQL works beautifully when you control the clients since so
much logic is moved at this layer. With a public API, we lose a
lot of that control, which greatly increases the complexity. It is easier
when you know those clients, or even better if you can talk to them because
they are across the room. When they are hundreds of thousands and you don’t
have great communication channels, things can get ugly.

Overall, GraphQL’s sweet spot is currently still around supporting a set of known
clients with diverging needs. It can offer amazing benefits in a public API setting
as well, but know this is far from a solved story at the moment. I’m hoping we
see more conventions and tooling that make it easier to support open API using
GraphQL.

Summary
In summary, as shown by both GitHub and Shopify, GraphQL can be a good
choice for a public API. However, this choice means that we need to be careful
when designing our schema to not fall in the very tempting One-Size-Fits-All
trap. Finding the right balance between generic and specific is key, but don’t be
afraid of providing multiple ways of achieving use cases since it does not affect
existing clients.

Finally, conventions are still far from being set in stone. As more and more
providers turn to GraphQL for public APIs, it will be important to make sure
clients can expect consistency from a GraphQL API.

154

GraphQL in a Distributed Architecture

In this chapter, we will be taking a look at different popular distributed architec-
tures and strategies around GraphQL. Over the past few years, while its origin
comes from a monolithic API layer, GraphQL has been used in many different
contexts such as service-oriented architectures.

GraphQL API Gateway
GraphQL was very quickly applied to the API gateway pattern. An API Gateway
is usually a service that acts as an entry point to experiences/functionality. It
is often seen in a distributed architecture to decouple use cases that clients are
interested in and are consuming from the underlying services involved in these
use cases. Since the entry point should aim at hiding the implementation details
of use cases, clients don’t need to know how many “services” are behind a given
functionality. The gateway allows a provider to change these details over time
while maintaining a stable facade.

Providers can also unify a lot of logic like rate limiting and authentication,
instead of implementing this same logic on all API servers. Some more complex
API gateways are also able to aggregate what would have been multiple calls
to individual services into one request. In that sense, it definitely seems like
GraphQL can be a great abstraction over existing APIs, providing a schema to
expose these possibilities, and the query language to allow clients to consume
the use cases as they want from multiple sources, behind the scenes.

There are a few concerns with API gateways that we should keep in mind while
analyzing solutions. The first one is that it is often very tempting to do too
much at the gateway level. Because of that, API gateways often become a
centralized point of failure, and centralized configuration, dealing with concerns
that individual services should be in control of. After all, the reason most teams
turn to micro-services is to decentralize this logic in the first place. In fact, in an
ideal world, our API gateway would probably be closer to just another service,
rather than this big centralized point in our system (easier said than done).

What makes GraphQL API gateways particular is that they’re usually not as
simple as when dealing with different exposing typical HTTP resources. A lot
of API gateways that deal with endpoint-based APIs act like a simple proxy,
meaning that it’s simple to map a request to an underlying service.

155

In the above example, the API gateway resolves the /users endpoint by calling
down the appropriate service, and the /products resource by calling down
to another service. Note that while we compare it to a proxy in terms of
implementation, conceptually, an API gateway should not just be a proxy since
that would mean our gateway is very coupled to the underlying implementations,
we should rather aim for a “door” to use cases rather than just a “dumb proxy”.

With GraphQL, a query often can’t be resolved through one unique underlying
service and chances are fields are querying across multiple services. You can
imagine that when queries get larger and more complex, the GraphQL gateway
has to orchestrate a complex plan to fetch this information:

156

It’s important to say that the simple case is more common with endpoint-
based APIs. Some of the same problems arise when gateways start composing
different requests together or making transformations to the underlying service
representations for example. GraphQL simply shows that problem even better.
There is still a lot of value in providing a GraphQL interface over our domain,
so how do we deal with these challenges? In the next few sections, we’ll explore
the most common solutions when building a GraphQL gateway. As we cover
different approaches, it is good to keep in mind what a great API gateway looks
like, and common pitfalls to avoid. Now let’s cover some implementations.

The “Simple” Way

The simple “proxy” resolution for a use case is appealing due to its simplicity,
and while GraphQL queries often tend to span multiple areas of responsibilities
and services, that’s not necessarily a hard rule and the way we design our
schema can make the execution of queries simple. In fact, the first time I saw
an organization use GraphQL as a gateway was probably from a blog post by
Airbnb. Airbnb had existing Thrift schema for their use cases, separated across
different presentation services. To expose these use cases as a united GraphQL
interface, they translated Thrift interfaces to GraphQL schemas, and simply
merged them together in a way that makes execution more straightforward for a
gateway. Take a look at a query from the blog post:

157

https://medium.com/airbnb-engineering/reconciling-graphql-and-thrift-at-airbnb-a97e8d290712
https://medium.com/airbnb-engineering/reconciling-graphql-and-thrift-at-airbnb-a97e8d290712
https://en.wikipedia.org/wiki/Apache_Thrift

query LuxuryHomeQuery {
luxuryHome {

listings: luxuryListingsById (listingId: 123) {
id
bathrooms
bedrooms

}

reviews: reviewsByListingId (listingId: 123) {
// ...

}

quote: luxuryListingQuote (listingId: 123) {
// ...

}
}

}

One thing you notice here is that we are fetching three distinct concepts related
to a single listingId in this query, listings, reviews, and quote, but that
we have to provide the listingId: 123 every time we query something related
to it. Compare that to how a typical GraphQL server would choose to design
this use case:

query LuxuryHomeQuery {
luxuryListings(id: 123) {

id
bathrooms
bedrooms
reviews {

// ...
}
quote {

// ...
}

}
}

GraphQL is great at allowing to fetch relationships from a certain node. Why
has Airbnb chosen to design the schema in a way that almost resembles typical,
more RPC, endpoints? They don’t talk much about the reasons why in their
post, but we can see that in the first case, the execution plan for a gateway is
much simpler than in the second. With Airbnb’s approach, we can imagine

158

the execution looks quite similar to the simple proxy approach, being able to
separate parts of the query easily between underlying services:

If they chose to design the schema in a more “pure GraphQL” way, they would
have to handle a much more complex execution plan for the query. The service
in charge of fetching a listing would then have to understand the rest of the
query to fetch the reviews and quote, or resolve the listing field, return it back
to the gateway, for the gateway to then query the missing information. In both
cases, that’s a lot more to handle:

159

The downside to this approach is that we definitely lose some of the beauty of
the declarative GraphQL query language and go back to what looks more like
“batch requests”. The beauty of it is that our API gateway can remain simple
without doing too much or being too coupled to the downstream services. The
gateway simply “wired-up” the different parts of the schema together.

Schema Stitching

Airbnb’s approach of wiring up different schemas together to form the API
gateway is commonly referred to as “schema stitching”, the act of taking two or
more parts of a GraphQL schema and combining them to make a valid, unique
GraphQL schema. For example, two services could define their part of the
schema, the one they own:

User Service Schema

type Query {
user(id: ID!): User

}

type User {
name: String!
age: Int!

}

160

Product Service Schema

type Query {
product(id: ID!): Product

}

type Product {
name: String!
price: Int!

}

Schema stitching would take these two schemas and merge them as one, like
this:

type Query {
user(id: ID!): User
product(id: ID!): Product

}

type User {
name: String!
age: Int!

}

type Product {
name: String!
price: Int!

}

As you can see, types were merged under the same schema, and shared types
(like Query in our example) merged fields. This example is very similar to the
Airbnb example we covered right before, as it is very easy for a gateway to
look at a query and see which service should resolve it. There are no type
dependencies between services. Now imagine we want to query the products a
user has for sale. We would need to modify our schema so it looks more like this:

161

User Service Schema

type Query {
user(id: ID!): User

}

type User {
name: String!
age: Int!
productsForSale: [Product]!

}

Quickly, we realize we have an issue. The schema from the user service is invalid
since it uses the Product type, which is actually on the product service schema.
It only becomes valid when the schemas are stitched together. To solve these
type dependency issues, schema stitching is usually done at the gateway level,
combining schemas but also adding links between schemas. Using Apollo
schema stitching, the logic looks like this:

const linkTypeDefs = `
extend type User {

productsForSale: [Product]!
}

extend type Product {
owner: User!

}
`;

mergeSchemas({
schemas: [

productSchema,
userSchema,
linkTypeDefs,

],
});

We’re not done, we’ve now extended the User type with a productsForSale
field, but how is it resolved? We need to write some resolving logic that will take
our user object and query our product service for the rest of the query. Again,
using Apollo’s solution, it looks a bit like this:

162

const mergedSchema = mergeSchemas({
schemas: [

userSchema,
productSchema,
linkTypeDefs,

],
resolvers: {

User: {
productsForSale: {

fragment: `... on User { id }`,
resolve(user, args, context, info) {

return info.mergeInfo.delegateToSchema({
schema: productSchema,
operation: 'query',
fieldName: 'productsByUserID',
args: {

ownerId: user.id,
},
context,
info,

});
},

},
},
Product: {

owner: {
fragment: `... on Product { ownerId }`,
resolve(product, args, context, info) {

return info.mergeInfo.delegateToSchema({
schema: authorSchema,
operation: 'query',
fieldName: 'user',
args: {

id: product.ownerId,
},
context,
info,

});
},

},
},

},
});

163

There are a number of issues with this approach that eventually led Apollo to
mark schema-stitching as deprecated:

• We talked about how a gateway should know as little as possible about
the underlying services. The gateway should be a thin layer. In this case,
we have to define relationships and even handle how they’re resolved. We
wanted to decentralize these things, but now all the logic for cross-service
queries is centralized at the gateway.

• The gateway logic can be quite brittle and needs to handle things like
name conflicts and to make sure the underlying services don’t change their
schemas.

Apollo’s Schema Federation

Schema Federation is a product Apollo released that aims to replace schema
stitching. We won’t go into detail on how it works, but the idea is to avoid the
pitfalls of the schema stitching approach. Federation aims for full decentralization
of the schema by letting individual services define their own schema and the
way they extend the others, removing the need for gateway defined links and
business logic. To make this work, federation is a specification that lets us
annotate type in a way that lets the federating gateway resolve queries across
services by building a “query plan”.

There are several things to look out for when opting for an approach like schema
federation. As we covered in Chapter 5, predictable performance is always a
challenge, even in a monolithic GraphQL server. Now we’re dealing with query
plans, something that is infamously hard to control and tune. It can become a
black box that is very hard to debug. It’s up to the implementation and tooling
to make that easier. The other thing is that all your services need to implement
the federation spec for it to work.

If I were to use schema federation in a project, I’d make sure to be careful about
a few things:

1. Your underlying services may not be the right split for your federated graph.
Use cases sometimes span multiple services, and you should probably aim
to divide your graph by use cases and sub-domains rather than how your
services are split up. If you have 100 services it doesn’t necessarily mean
you want 100 separate schemas.

2. Keep the “links” between schemas as simple as possible to avoid unpre-
dictable performance.

3. The most mature (and original) implementation of the specification is in
JavaScript. At the moment, Federation is most effective if you’re willing
to build or already have JavaScript services. More and more languages are
getting added, so keep an eye out.

With that in mind, federation can be a beautiful solution if it fits your team’s
needs and scales better than schema-stitching. The Apollo team has enormous

164

https://www.apollographql.com/docs/apollo-server/federation/introduction/

GraphQL knowledge and experience and will most likely keep improving the
query planning and making it less of a black box.

Single Schema Gateway

Overall, most issues with stitching and federation stem from the fact that
GraphQL is inherently a centralized approach to APIs. We can try to decentralize
as much as we want, but the reality is that we still end up with centralization,
either through a very complex gateway or by building a single GraphQL server.
I truly believe GraphQL can have a place in a micro-services context as a single
schema and thin API server.

What if we considered our GraphQL API as “just another service”, something
we wanted from a gateway in the first place? If you’re looking to keep things
boring and simple, one can build a GraphQL API server that is resolved by
many underlying services, while still keeping the graph in a single place.

We’re trading organizational complexity with operational complexity when we opt
for something like federation or stitching. Both approaches can work. Facebook,
GitHub, and Shopify all operate monolithic schemas and approach organization
issues by building great developer tooling, rather than by separating the graph
in different repositories.

My preferred approach for building a GraphQL gateway today would probably
be a thin GraphQL facade operating as a single service. A GraphQL API can act
as a gateway without necessarily using more complex approaches like stitching
or federation. We can keep the schema and interface centralized, but federate
the execution (the resolvers). We must be very careful of leaving business logic
almost entirely out of the gateway itself. I really like this approach because I
think it’s easy to adopt it progressively for teams with existing architectures.
A lot of organizations already have service communication in place using other
approaches like REST or gRPC. It’s easy to reuse these pieces when building
our GraphQL this way, rather than having to implement GraphQL APIs on all
services like stitching or federation currently requires.

Unlike stitching and federation however, there are not really any “out of the
box” mature GraphQL gateways like the one I’m describing here. By following
most of what we’ve covered in the book so far, we already have most of what
is needed. With something like GraphQL, keeping things boring and simple is
actually a very good thing!

One of the ideas behind service-oriented architecture and schema federation is
to decouple the teams when it comes to developing software. Federating the
schema means different teams can evolve the schema on their own side of things,
but allowing the gateway to merge all of these under a single API down the line.

While it may help teams make changes to the schema faster due to smaller code-
bases, we must remind ourselves that we are still interacting with a centralized
graph in the end. These problems must be addressed at the core, by making

165

sure teams are naming things properly and not reusing generic types across the
board. Naming conflicts are often brought up when trying to merge schemas
together. This is usually a symptom of inapropriate naming in the first place.

Separation of concerns and namespacing are things that can be addressed to best
practices and tooling whether we’re building our schema in a single codebase
or if we federate it across many. My recommendation is to use linting and best
practices to help teams name their concepts appropriately, and the tools your
programming language offers to decouple parts of the schema.

GraphQL as a BFF
We’ve talked about the “Backend for Frontend” pattern in the introduction of
Chapter 1, and how GraphQL aims to address some of the same problems. We
even compared GraphQL as some sort of BFF. Let’s dive deeper into this. What
exactly is a BFF? A BFF really can be considered as some sort of API gateway.

At its core, the BFF pattern is an answer from SoundCloud to common problems
that may appear when building OSFA (One-Size-Fits-All) APIs, where we have a
single API that aims to answer the use cases of many different client applications.
In an OSFA API, lots of different client applications often have to share server-
side resources, which can often lead to issues evolving in? from? use cases on
the backend, and poor experience from the client perspective.

In the BFF pattern, we choose to acknowledge there are differences between
clients and to build individual API servers per client or experience. These
servers are then free to be more specific to a client’s need, and free to evolve
without the issues we face when trying to share resources. But the BFF pattern
is not just a technological choice, but often an organizational one as well. Teams
that are in charge of a particular “experience”, for example the mobile team, has
full control over that API and the client, which avoids some of the organizational
problems and communication issues that often arise with OSFA APIs. Note that
these problems are solvable in different ways, but the BFF pattern simply takes
this opinionated stance on solving the issue.

Reading this, we can draw some parallels with the benefits of a GraphQL API.
With GraphQL, adding fields has no impact on existing clients, which does make
evolution a bit more approachable and which enables one server to support many
different clients. However, besides the fact clients need to declaratively select
their needs, there is nothing that makes GraphQL inherently a good replacement
or similar solution as a BFF. In fact, the way we build our GraphQL server
could just as well turn into an OSFA GraphQL API.

The other thing to note is that BFF goes further than just optimizing for client
use cases on the representation side of things. A BFF may decide to serialize
payload differently, caching things differently, authenticate in another way, etc.
To really have a “GraphQL BFF” pattern, we would most likely need multiple
GraphQL servers, in which case we would be really just implementing BFF in

166

its original form.

Still, a GraphQL server can definitely be used to optimize multiple client needs
within a single server, which can be incredibly useful. There are certain aspects
to keep in mind when doing this:

• A GraphQL “BFF” needs not to fear adding multiple distinct ways of
achieving similar things. This could be adding client-specific fields, and
even a completely different type if needed. The beauty of this is that
existing clients are not affected at all. The gotcha is that our schema does
get some more “bloat” and documentation, and discovery might be affected.

• We must avoid the temptation of building a generic OSFA GraphQL API.
• Independence must be achieved through tooling and culture since the
different experiences are not as naturally separated as with the BFF
pattern.

Another thing to note is that common issues with the BFF pattern are shared
concerns. That’s one benefit of maintaining a single GraphQL server when it
comes to being able to optimize for multiple experiences. We can still reuse the
same authentication system, rate limiting logic, authorization system, etc. As
we covered earlier though, this could be seen as a downside just as well as an
advantage, because we may also want these concerns to be experience-specific.
This is highly context-dependent.

All in all, GraphQL can definitely be used as a single BFF, and employed
to support multiple client experiences when it comes to the representation of
resources. However, the main goal of the BFF pattern, full autonomy of those
experiences, has to be maintained more actively than with multiple BFF servers,
which are by nature more isolated and independent.

Service Communication
As we already covered during this chapter, GraphQL can be a great choice in
terms of serving an API to North-South traffic, as an interface to our system. But
is it a good idea to use GraphQL to communicate between services, in an “East-
West” manner? First, let’s look at the requirement of good service-to-service
communication.

Network boundaries are quite useful for a number of reasons, namely independent
scaling, availability, and development speed. All these are good reasons for which
some of you have opted for a service-oriented architecture. However, when we go
from extremely fast method calls to network calls, we introduce a lot of overhead.
This is why one of the first goals for someone thinking about service-to-service
communication should be to reduce this overhead as much as possible. For this
reason, performance is quite important when choosing a protocol/architecture
for communications.

Another thing we have to be careful about is to realize that remote calls (over the
network) are inherently different than local calls (method calls). They usually

167

require a very different design. Fortunately, pretty much any technology choice
available these days will allow us to design our API in a way that makes remote
calls possible, as long as we’re careful with our API design. This also means
we need to think about resiliency and to refrain from abstracting the network
too much, in order to avoid making network calls behind the scenes or making
things inefficient without realizing it.

API evolution is also a big issue. We don’t want a field that was added to one
service’s API requiring changes to all clients in our system. Expand-only types
are very useful. They help us avoid lock-step deploys. Most API solutions today
offer these qualities, GraphQL being one of them. But that does not point us
towards a specific solution just yet.

Another thing we may want to take a look at is the protocol we want to
use. Most people give GraphQL a hard time since most APIs are implemented
over HTTP 1.1. While that’s probably true, it doesn’t have to be this way.
GraphQL is purposefully transport/protocol agnostic. Nothing is stopping us
from implementing GraphQL over H2, over UDP, or even as a new GraphQL
specific protocol. However, the counter argument is that it hasn’t been really
tried before, and chances are some semantics we’re used to (200 Status Code,
headers) with current GraphQL APIs would need to change or at least be
adapted. Generally, I like to think that protocol or transport layer is mostly
a non-issue if we had strong enough incentives to use GraphQL in Service-To-
Service communications.

To see if GraphQL would be a great fit or not, maybe we can take a look at
what it’s great at and what the tradeoffs are. One way I like representing these
tradeoffs is with an API customization spectrum:

Different API styles often have to pick between how flexible they are and how
optimized they are. Some styles are very far on one end. For example, RPC is
usually a very optimized function call, and GraphQL is on the other extreme,
allowing for a lot of flexibility on the client side.

On the optimized side, we’ve got a lot of advantages:

• Caching is more effective.

168

• Server-side performance is usually better (since we only have one thing to
optimize).

• Very clear use cases.

But also disadvantages:

• The One-Size-Fits-All problem we talked about in this chapter
• Bandwidth and latency may become an issue with large, generic payloads

On the flexible or customizable side, we’ve got the usual GraphQL benefits we’ve
been talking about so much already:

• Bandwidth savings.
• Easier to support a larger amount of client use cases.
• Adding to resources comes at less of a cost.

But that also comes with a set of drawbacks:

• More complex execution and performance for the backend.
• Not as clear and focused use cases.

All in all, I don’t think service communication is the sweet spot for GraphQL
usage. Technologies with RPC in mind like gRPC were made for these usecases

Summary
GraphQL is a beautiful abstraction for APIs and is tempting to use in a dis-
tributed architecture. Keep in mind that GraphQL execution is not trivial, and
executing a query in a distributed context is likely to make things even more
complex.

If you operate a service-oriented architecture and are looking to expose a
GraphQL API here’s my recommendation:

1. Consider building a GraphQL API service, as a single schema, that com-
municates with underlying services to resolve the use cases. Keep it as
thin of a layer as possible and make developer experience great through
tooling and best practices.

2. Even though Apollo’s stitching approach is officialy deprecated, I believe
it’s still a valid approach under one condition: that you only need to
merge fields at the Query root. Any nested links between schemas is really
annoying to maintain, as we saw earlier in the chapter.

3. For anything more complex than merging at the query root, Apollo Feder-
ation is currently the best approach for a gateway with an inteligent query
planner.

Finally, I believe there are more effective communication patterns for service-to-
service calls like gRPC, and the benefits that GraphQL gives us don’t apply as
much in that context.

169

Versioning

Versioning is probably one of the topics that triggers the most questions about
APIs and the one that brings the most controversy and heated discussions.

How do you version GraphQL APIs? The most common answer you’ll get these
days is “you don’t”. If you’re like me when I first read that, you might be a little
anxious about maintaining a version-less API or a bit skeptical of the approach.
In fact, not only is this a common answer, but it’s listed as a main feature of
GraphQL graphql.org’s landing page..

When reading graphql.org, this may look like a feature being specific to GraphQL,
but in fact, evolving APIs without versioning is something that has been fre-
quently recommended for REST and HTTP APIs already. In fact, Roy Fielding
himself famously said at a conference that the best practice for versioning REST
APIs was not to do it!In this chapter, we’ll explore API versioning in general and
try to see which evolution approach makes the most sense for GraphQL APIs.

API Versioning is Never Fun
A good way to understand where this idea of not versioning an API at all comes
from is to look at how web APIs are typically versioned. The truth is that no
matter what approach we end up choosing, we accept the tradeoffs they come
with. Probably the most popular approach out there is to globally version APIs.
Think v1, v2, v3 every time we have to make changes that could potentially be
breaking to our integrators. The approach makes sure existing customers never
get broken by some of these changes, but comes with serious annoyances:

• Every time we release a new major version, we leave every single client on
older versions behind, forcing them to upgrade for those newer changes.

• Most providers will avoid making too many major version changes. So,
when new versions are deployed, they often come loaded with a ton of
changes, making it harder for clients to understand and to basically re-
integrate with the API from scratch.

• The API provider needs to choose between supporting older API versions
forever, leading to increased complexity, or to start breaking clients that
are stuck to older versions.

In practice, this global versioning is done in different ways:

• In the URL: v1/user, v2/user: Global versioning using the URL often
leads to an explosion of new resources (even though most of them remain
unchanged) under the new URL version. It leads to a massive amount
of URLs to support over time. This doesn’t play well with caching and
clients often need to rewrite everything, since they can’t trust that their
existing v1 resources will play well with the v2.

• Using headers: Stripe-Version: 2019-05-25. Header-based approaches
often try to make smaller changes between versions, but the overall problems

170

https://graphql.org/
https://graphql.org/
https://en.wikipedia.org/wiki/Roy_Fielding
https://www.slideshare.net/evolve_conference/201308-fielding-evolve/31
https://www.slideshare.net/evolve_conference/201308-fielding-evolve/31

still remain. Providers need to find a way to support multiple versions
while keeping the complexity as low as possible. A great example of this is
Stripe’s approach to versioning.

Overall, global versioning might make a lot of sense when we are in fact dealing
with a new set of resources or a completely different API.

An alternative that is not as “global” as these two approaches is to apply
versioning content negotiation. For example, the GitHub API allows clients to
specify a custom media type that includes a version number. This is a pretty
good way to express versioning for the representation of a resource, but not
necessarily for other types of changes. The other downside is that clients aren’t
forced to pass that media type, and if it goes away, they are usually reverted back
to the latest version, almost certainly breaking their integrations. For GraphQL,
since we aren’t dealing with different HTTP resources, this is a no go anyway.

Versioning GraphQL is Possible
Even though the “no version” approach is often recommended, nothing is stopping
anyone from versioning a GraphQL API. In fact, Shopify adopted a URL
versioning approach to evolve their GraphQL API.

Their versioning approach uses the URL for global versioning. With GraphQL,
this is less annoying because it doesn’t create a full new hierarchy of resources
under the new identifiers. It uses finer-grained, 3-month long versions, which
helps with the typical global versioning problems.

Practically, making it work is quite challenging. As discussed in Chapter 3,
maintaining multiple schemas can be challenging. One way to make versioning
work would be to build completely different schemas depending on the URL or
version a client is requesting. You can imagine this would cause a lot of overhead
to server developers and becomes incredibly hard to manage as the number of
versions piles up. Instead, a runtime visibility approach as we discussed earlier
in the book may be used to present users with different variations of the schema.
This comes with a lot of complexity as well but is possible.

The same kind of catch 22s we saw with global versioning applies to GraphQL
as well. The fact that all these approaches lead to broken clients down the line
or incredible complexity on the provider side leads to an often recommended
approach: simply aiming for backward compatibility at all costs, opting for
additive changes when possible, and thinking of extensibility instead of breaking
changes.

If you’re like me when I first read about this approach you’re probably thinking
“but sometimes changes are unavoidable!” It’s true, even with all the best
practices kept in mind, mistakes can happen. But as we’ll see, whether we
version an API or not, mistakes happen anyway.

While versioning often gives a sense of security to both providers and clients, it

171

https://stripe.com/en-ca/blog/api-versioning
https://developer.github.com/v3/media/#request-specific-version
https://developer.github.com/v3/media/#request-specific-version
https://help.shopify.com/en/api/versioning#the-api-version-release-schedule
https://help.shopify.com/en/api/versioning#the-api-version-release-schedule

doesn’t generally last forever. Unless an infinite amount of versions is supported,
which causes unbounded complexity on the server-side, clients eventually need
to evolve. In that Shopify example, this happens 9 months after a stable version
is released. After those 9 months, clients need to either upgrade to the next
viable version, which contains a smaller set of changes or upgrade to the newest
version, which probably includes a lot more changes.

Continuous Evolution
The alternative to versioning, as mentioned at the beginning of this post, is to
simply not do it. The process of maintaining a single version and constantly
evolving it in place, rather than cutting new versions, is often called Continuous
Evolution. One of my favorite ways to describe the philosophy comes from Phil
Sturgeon:

API evolution is the concept of striving to maintain the “I” in API,
the request/response body, query parameters, general functionality,
etc., only breaking them when you absolutely, absolutely, have to.
It’s the idea that API developers bending over backwards to maintain
a contract, no matter how annoying that might be, is often more
financially and logistically viable than dumping the workload onto a
wide array of clients.

A big part of the philosophy behind continuous evolution is a strong commit-
ment to contracts, aiming to evolve the API in a backward-compatible way
the absolute best we can. This may sound like an unachievable dream to some
of you, but I’ve noticed a lot of API providers will settle into versioning rather
than trying to find creative ways to maintain their interface.

Additive changes are almost always backward compatible, and a lot of the time
breaking changes can be avoided if they are used wisely. The main downsides to
an additive approach to evolution are usually naming real estate and API “bloat”.
The naming issue can usually be mitigated by being overly specific in naming in
the first place. The bloating, especially in GraphQL, is most probably less of an
issue than the cost of versioning to clients. But that’s of course a tradeoff for
API providers to decide.

But as we covered earlier, some changes are simply unavoidable. Not all changes
can be made through addition, and there will always be moments where a
breaking change needs to be made. In fact, here are a few good examples of
unavoidable breaking changes:

• Security Changes: You realize that a field has been leaking private data or
that a certain set of fields should never have been exposed.

• Performance issues linked to the API design: An unpaginated list that
can potentially return millions of records, causing timeouts and breaking

172

https://twitter.com/philsturgeon
https://twitter.com/philsturgeon

clients.
• Authentication changes: An API provider deciding to deprecate “basic
auth” altogether, forcing API clients to move towards JWTs.

• A non-null field actually can be null at runtime. This causes errors that
are not fixable without breaking the schema contract.

In these four example cases, there is often no way an additive change can be
made to address the situation. The API must be modified, or fields be removed.
With continuous evolution, we rely on deprecation notices, a period to let clients
move away from the deprecated fields, and a final sunset making the breaking
change.

Versioning seems like it would solve breaking change issues but if you look at the
examples we listed, none of them would be easy even if we had a great versioning
strategy in place. In fact, we would need to make breaking changes in all affected
versions, making use of deprecations, a period to let clients move away, before
finally making the breaking change. Notice something funny? Versioning requires
the same amount of work (possibly more, the amount of versions) than if we had
a single continuously evolving version.

No matter what strategy you picked, it’s how you go through that deprecation
period that will determine how good your API evolution is. This is sometimes
referred to as “change management”.

Change Management
As API maintainers, no matter what evolution/versioning process we decide to
standardize, one thing is certain: we have to get good at change management.
GraphQL gives us a few really great tools to become skillful at this. The first
step to a good change management strategy is to make the upcoming change
visible to existing integrators.

Deprecations

Deprecations are the best tool for continuous evolution. They allow us to mark
certain parts of our API to say that their usage is not encouraged anymore, and
potentially going away in the future. GraphQL comes with a great tool for that:
the @deprecated directive:

type User {
name: String! @deprecated(

reason: "Field name is being replaced by field `username`"
)
username: String!

}

The @deprecated directive is incredibly useful when it comes to moving away

173

from fields that will become unavailable in the future. It has a reason argument
to allow providers to explain the reason behind this upcoming change. Unfortu-
nately, at the moment, this directive is only applicable to fields and enum values,
but will soon be coming to arguments and input values.

The great benefit of @deprecated is that it is a respected standard across clients,
which means tools can help us. For example, GraphQL will hide any deprecated
fields by default, to avoid having new clients onboarded to a field that is going
away. GraphQL clients can start throwing warnings when using a deprecated
schema member (member or members?), and documentation generators can
automatically annotate these members as well.

This is great, but we can still make it better. In my experience, a great
deprecation requires additional details:

• The date at which the schema member is going away (sunset date).
• The reason why the schema member is going away.
• An alternative to that schema member.
• Optional: a link to a longer form explanation (A blog post for example).

If you’re using a code-first approach, we can encode all that information within
a simple custom helper:

new GraphQLObjectType({
name: 'User',
fields: {

name: {
type: GraphQLString,
deprecationReason: deprecationReason(

reason: "Name is going away",
alternative: "Use `username` instead",
sunset_date: "2030-05-01",
link: "https://dev.gql.com/blog/user-name-deprecation",

)
}

}
})

deprecationReason here is a custom function we’ve created to ensure consistency
with our deprecation messages and to make sure our developers always provide
the necessary information when deprecating a schema member. In this particular
example, the deprecation reason could end up looking like this:

Name is going away. Use `username` instead. Sunset date: 2030-05-01
For more information: https://dev.gql.com/blog/user-name-deprecation

This is a strategy we used at GitHub. When hundreds of developers are working
on a GraphQL schema, utilities like these ones ensure a high quality and consistent

174

experience for integrators.

Communication

Deprecations help us communicate changes, but they’re often not enough to
make all clients aware of upcoming changes. The best API platforms are able
to communicate changes through many different means, including deprecations.
This is where the approach of tracking all queries comes in very useful.

One of the biggest advantages to GraphQL is the fact a provider knows, down
to every single piece of the query, how their API is being used. If your API is
authenticated this means that:

• You know how many times members you’re about to change are used
weekly, daily, etc.

• Most importantly, you know who is using these fields the most.

Using this power to communicate changes is a huge benefit of GraphQL, even for
internal platforms. A lot of API providers will email integrators when a change
is coming. This is a very important practice, but we can push it even further
with GraphQL. Because we know who uses every single field, we can tailor our
emails to individual integrators that we know could be affected.

Email is just one way to communicate changes. This data could be used to build
amazing developer dashboards, for example. Here are a few other places you
should consider communicating changes:

• Your developer platform’s Twitter account.
• Your documentation site.
• A blog post announcing the upcoming changes.
• A change log.

Last Resorts

The sad news is that even with deprecations in place and great communication,
chances are a small percentage of your integrators will still be stuck using the
deprecated parts of the schema, either because they didn’t have the chance to
address the change or because they simply did not see your communications.

Any large change will most probably result in some broken integrators, which
means you have to weigh your options. Again, if we take Stripe, their API deals
with money. This heavily skews the versioning strategy towards rarely breaking
integrators, and taking the complexity on the provider side of things instead.
This is why they’ve invested in their particular versioning approach.

Using continuous evolution, there’s still a last resort we can use to make sure
to get the last few integrators moving to the alternatives. API “brownouts” is
a technique where we temporarily make a breaking change in the hope that a
monitoring system, logs, or a human notices that something has been changed.

175

https://stripe.com/docs/upgrades#api-changelog

Hopefully the error your API is returning will include some kind of information
on how to fix it:

{
"errors": [{

"message":
"Deprecated: Field `name` does not exist on type `User`.
Upgrade as soon as possible.
See: https://my.api.com/blog/deprecation-of-name-on-user"

}]
}

Practically this is usually done using feature toggles. You can enable a brownout
flag which would dynamically hide the GraphQL member you’re deprecating.
This can be done either by using schema visibility techniques or by implementing
a custom error in the resolver itself. Take a look at the data you’re gathering
after some brownout sessions and see if the usage is dropping. You can repeat
the experience until you see a drop in usage, or maybe reconsider the deprecation
if the usage is just too much.

So, should you version your GraphQL API? That decision ultimately boils down
to your own set of tradeoffs, what your clients are expecting, and what kind
of expectations you want to set as an API provider. However, more and more,
I’m inclined to think that versioning usually ends up causing more trouble than
anything, since a lot of the time, there comes a point where changes need to be
made, just like in a continuous evolution approach.

GraphQL helps us do continuous evolution in a few ways that make it a bit
easier:

• It has first-class deprecation support on fields and most tooling already
knows how to use it.

• Additive changes come with no overhead on existing and new clients.
• Usage tracking can be done down to single fields.

These three features make GraphQL a really good candidate for continuous
evolution, which is why it is being recommended so strongly. Another thing to
keep in mind is that if you opt for a continuous evolution approach first and then
decide you absolutely need versioning, that’s possible. However, the opposite is
much harder.

Still, I feel it’s important to mention that continuous evolution can definitely
be done in a bad way. It is a big responsibility and (it should not be overdone)
can’t be abused. That’s why additive changes must be the absolute priority
before making changes.

Finally, the best way to avoid all these kinds of problems is often at the root:
API design. Use a design-first approach with a focus on evolvable design from

176

https://en.wikipedia.org/wiki/Feature_toggle

the get-go. When changes have to be made, we turn to great change management
and hope for the best.

Summary
In summary, no versioning approach is perfect and will most likely cause some
pain on the server-side and/or the client-side of things. GraphQL has a set of
features that makes continuous evolution particularly appealing but versioning a
GraphQL is also possible.

If you can, always opt for additive and backward-compatible changes. Use the
@deprecation directive and don’t be afraid to augment its reason argument
with your own tooling and best practices.

No matter what approach we end up picking, mistakes may happen. It’s how we
communicate and make these changes that matter most.

177

Documenting GraphQL APIs

Documentation is the entry point to all new developers wanting to integrate
with your API. If we want our APIs to be used and loved, we have no choice
but to invest in great documentation. Your documentation doesn’t only show
potential clients how to achieve things, but what they can achieve using your
API. This is a really important point that a lot of providers forget when building
developer documentation.

In this chapter, we’ll dive into the current state of GraphQL documentation,
existing tools, and ways to produce great documentation.

Documentation Generators
Documentation is often listed as a benefit of using GraphQL. In some ways
that’s very true: the GraphQL type system and introspection capabilities make
it easy for clients to discover possibilities. This is what makes GraphQL such a
powerful tool to explore GraphQL APIs.

This introspection and type system is something GraphQL API providers used
right away to generate documentation. Many tools will use the introspection
to generate a complete reference for all types and fields available to clients.
This next image is the reference for the Query root on GitHub’s developer
documentation:

Generators are great because they can often be built into your pipeline so
that every change to your GraphQL schema gets reflected right away on your

178

https://developer.github.com/v4/
https://developer.github.com/v4/

documentation site. This solves a common problem with APIs where either
the documentation shows wrong information because the implementation has
changed, or certain use cases simply never get documented because teams forget.

Whether you use a schema-first approach or a code-first approach, chances are
you’ll need to filter your schema before using it in some generator tool. The
reason being that directives like @featureFlag, @preview, and @internal, or
any internal-only information should never be shown in external documentation.
If your API is internal-only this might be less of a concern, but it’s always a good
idea to whitelist the information from introspection before getting it exposed
automatically on a docs site. Another approach is to generate two SDL artifact:
one that gives a full view of your schema to help internal developers, and one
that is intended to be used by documentation tooling.

There are already various ways to generate documentation from a schema.
graphql-docs is a great tool we use with success at GitHub. Other tools like
graphql-voyager allow you to generate a visual representation for your schema.
Over time I’m sure we’ll also see more and more SaaS offerings for GraphQL
documentation.

The What, Not Just the How
GraphQL APIs have been tagged as having great documentation because of
GraphQL’s type system and because of how easy it is to generate a reference
from introspection, but is it actually all we need? In some ways, the fact that it
is so easy to get started might be more of a curse than a blessing. Maybe the
best way to understand this is with an example that is often used to describe
the benefits of GraphQL, the burger analogy.

Imagine you are at a restaurant and craving for a good hamburger. The analogy
is that a typical endpoint-based API would give you a list of pre-made burgers
to satisfy common use cases, while GraphQL could simply give you a list of
ingredients from which you could make your burger. Initially, this sounds like a
great benefit of GraphQL (and it is), but it also illustrates how difficult it can
be to document a GraphQL API.

When given a giant list of ingredients, it’s very hard for a potential integrator
to even understand what is possible to achieve with the API. While typical
endpoint-based APIs generally group specific use cases in well-defined endpoints,
integrators now have to mix and match a number of fields and arguments to
build their own resource. The bad news is that most GraphQL documentation
currently looks like a bag of fields with no real explanation of what to do with
them.

To solve this, we have to focus on the use cases rather than simply generating a
reference. A reference is a very useful part of documentation, but it should not
be the only one. Go check out the documentation website for a GraphQL API
you know. Does it talk about what you can achieve with the API or common use

179

https://github.com/gjtorikian/graphql-docs
https://github.com/APIs-guru/graphql-voyager

cases? Or does it only give you a playground (GraphQL) and a huge reference
of types and fields?

My biggest pet peeve with GraphQL documentation is when providers list types
by what kind of GraphQL types they are: Here are the Object Types, here are
the Input Types, and here are the Union Types. This is absolutely useless for a
client who’s looking to integrate with your API. Input types are never used in
isolation; they’re needed as input to a mutation, for example, which returns an
object type. What we’re interested in is how to add a product to a cart, not the
full list of input fields for an AddProductToCartInput.

Given these examples, I find it funny when certain people claim that documen-
tation is a big advantage with GraphQL, as compared to REST. The reference
might be easier to generate, but the rest of the documentation remains very
hard to build. So what can we do?

Workflows and Use Cases
Great GraphQL documentation, and really documentation in general, goes
beyond a simple reference and starts with thinking about use cases and common
workflows. Let’s take an e-commerce API for example. We can think of it in
different levels:

1. Types, Fields, Arguments: A simple reference
2. Features / Use Cases: Adding a product a cart, making a payment on a

checkout, canceling an order
3. Common Applications and Workflows: What can you build with the API?

Building checkout extensions, building automation after every order, etc.

I find the best documentation should include all three levels. A great example
of documentation with a focus on typical workflows and possibilities is from
Microsoft’s Graph API (Not a GraphQL API, confusing I know). On the API’s
documentation page, we can see a “See what you can do with Microsoft Graph”
section which highlights what users may achieve by using the API. This is
absolutely great to help onboard clients to your platform, and GraphQL APIs
should pay specific attention to this as use cases and possibilities are sometimes
lost in a sea of fields and types.

These practices are not easily automated, and that is absolutely ok. Probably
the best way to ensure you cover most of these documentation practices is by
making sure documentation is not an afterthought. Involve technical writers at
the very beginning of your design journey and involve multiple teams and people
during the whole process. Think in terms of processes and use cases along the
way.

Challenge yourself to go beyond a simple documentation generator for your
GraphQL API. Not only will your users be happy, but you will probably improve
your API design at the same time.

180

https://developer.microsoft.com/en-us/graph
https://developer.microsoft.com/en-us/graph

Example / Pre-Made Queries
A practical way to solve a bit of the “here’s all the ingredients, deal with it”
problem is to pre-build queries for integrators. This lets integrators integrate
quickly and then tweak queries as needed. An embedded GraphQL is a great
way to expose these example queries and lets the users tailor the specific fields
down to their needs. Shopify, for example, does a great job at this for the
documentation of their mutations for example.

Changelogs
Changelogs are a great way for API clients to view, or even subscribe to changes
in your API. A common approach is to build a list of changes between versions,
but they can absolutely be used when opting for continuous evolution as well.

A good example of a GraphQL specific changelog is the GitHub GraphQL API
change log, which is generated using graphql-schema_comparator, a tool I wrote
for this purpose, which we covered in the tooling and workflows chapter. Shopify
and Stripe are two other great examples of API platform changelogs.

Upcoming Changes
Changelogs are great and they can be upgraded by planning upcoming changes,
besides logging changes that have already been made. As discussed in the
previous chapter on versioning, communication is a big part of a successful
breaking change. At GitHub, we built a specific breaking change log for API
clients to verify if their integrations could be affected by changes in the future.

181

https://help.shopify.com/en/api/graphql-admin-api/reference/mutation/customercreate
https://help.shopify.com/en/api/graphql-admin-api/reference/mutation/customercreate
https://developer.github.com/v4/changelog/
https://developer.github.com/v4/changelog/
https://github.com/xuorig/graphql-schema_comparator
https://help.shopify.com/en/api/versioning/release-notes/2019-07
https://stripe.com/docs/upgrades
https://developer.github.com/v4/breaking_changes/

We also categorize every change based on its severity: dangerous for changes
that could potentially affect an application’s runtime behavior, and breaking for
schema breaking changes.

Summary
• GraphQL documentation generators are great for API references but lack
a human touch.

• Documentation should focus on what is possible with the API, not just
how to achieve it.

• Changelogs and upcoming change pages are a great way for clients to keep
up with API evolution.

182

Migrating From Other API Styles

GraphQL being the new kid on the block, I see a lot of teams and companies
realizing it fits their needs (or simply jumping on the bandwagon) from an
existing API style. This fact has been covered by a lot of posts ever since
GraphQL was announced. There are many ways to do it, so let’s cover some
common situations.

Generators
A very tempting approach to migrating to GraphQL is taking whatever schema
or API definition you have from another API style, and try to automate the
conversion to a GraphQL schema. For example, openapi-to-graphql is a tool
built by a research group at IBM that takes an OpenAPI definition and turns it
into a valid GraphQL schema.

I think these can be useful when absolutely needed. However, these tools rarely
do an ideal job because different API styles inherently have different design
concerns Let’s look at one of my favorite examples to see what kind of results
these tools can give us.

Let’s say we have this OpenAPI definition, which defines a single path and allows
clients to publish and unpublish articles using HTTP verbs, a common pattern
in HTTP, endpoint-based APIs.

paths:
/articles/{id}/published:

put: # The put operation publishes an article
delete: # The delete operation unpublishes an article

It’s hard for a tool to translate this to a valid GraphQL schema. What we would
want with GraphQL would probably look like this instead, a much more RPC
oriented approach:

type Mutation {
publishArticle(articleId: ID!): PublishArticlePayload
unpublishArticle(articleId: ID!): UnpublishArticlePayload

}

This is just one example, but you can see how a different API style may require a
different design. This is why when given the choice, and if time can be invested,
I’d prefer migrating an API to GraphQL by taking a look at the use cases and
translating them into a GraphQL interface, rather than translating a REST
interface into a GraphQL interface directly.

183

https://github.com/IBM/openapi-to-graphql
https://github.com/OAI/OpenAPI-Specification

These tools can get you pretty far, but will always require a human touch if you
truly want a well designed “GraphQL-native” API.

REST & GraphQL Alongside
GraphQL is not necessarily there to replace REST, but rather a new way
of tackling different challenges in different contexts. This means that providers
will not always necessarily replace their REST API with a GraphQL API, and
maintaining both, at least for a while, is definitely a possibility. I’ve had the
chance to see multiple approaches to solve this problem.

GraphQL backed by REST

The main way we hear about the transition between REST and GraphQL or
maintaining both is to build a GraphQL API on top of an existing REST API.
Practically, this means building a GraphQL schema that is resolved by calling
down to different REST endpoints. In my experience, this is generally a good
pattern as long as performance is kept in check. The same loading issues we saw
in the performance chapter can happen when resolvers are calling an endpoint.
This could mean terrible performance if implemented naively and could often
require building custom batch endpoints if they are not available in your REST
API already.

Remember to try and think beyond the current URL structure when building
your GraphQL schema. It’s very possible your GraphQL types won’t be a one-
to-one mapping with your REST endpoints, and that’s great. It’s also possible
certain fields and types will be resolved by a combination of REST calls.

REST backed by GraphQL

One other solution that we initially used at GitHub to maintain both our REST
and GraphQL APIs was to back REST API endpoints with static GraphQL
queries. Since both APIs lived in the same monolith, REST endpoints were
modified so that they built a static GraphQL query representing their needs,
and executed the query on every request, through the GraphQL engine. Notice
that this is not a network call, but simply the REST endpoint calling GraphQL
with a pre-defined request, in code.

While this sounds awesome at first, because we’re using GraphQL as the source
of truth, it comes with certain costs. In fact, I don’t recommend this approach
anymore. First, there is a strong temptation to design the GraphQL schema
so that it fits existing REST endpoints. Just like with the generators, we have
to be very careful of not simply copying the design of REST payloads into
our GraphQL API, since that makes it easier to use GraphQL from the REST
implementation. Not only that, but a very complex dance of error translation
will need to happen, for example, translating a GraphQL error to the correct
status code.

184

The other thing to be careful about is that this gives us the impression that we are
somehow “reusing” logic by calling down to GraphQL. In an ideal world, REST
and GraphQL would not share much since they are both simply an interface. If
this technique is tempting to you, maybe it’s because your GraphQL resolvers
contain a lot of logic that is tempting to reuse.

So what can we do? Instead of having REST call down to GraphQL, have
both REST and GraphQL be independent interfaces and call down to a great
domain/business layer! This is already useful when dealing with a single interface
like REST, but it becomes crucial when we’re dealing with a UI, a REST API,
and a GraphQL API. If your domain logic is not well isolated and reusable,
you’ll either centralize it somewhere like a GraphQL resolver, or repeat yourself
at all interface layers leading to inconsistencies and bugs. Writing things twice is
often a much better idea than opting for a solution that will introduce coupling
we don’t want and come bite us later when APIs evolve.

Summary
There are many practical solutions to either migrating or maintaining both
GraphQL and REST. The key point here is not to look at your new GraphQL
API as - GraphQL version of your REST API, but instead just a new GraphQL
interface to your domain and use cases.

GraphQL over REST is a good pattern, but pay attention to the N+1 problem
and other performance problems. Don’t copy over REST endpoints to GraphQL,
think of your use cases and design the GraphQL API to solve them.

If code reuse is an issue, try to avoid centralizing logic in either your REST or
GraphQL API and look for a different layer for this logic. I recommend taking a
look at domain driven design for a solution to this.

185

https://www.amazon.com/exec/obidos/ASIN/0321125215/domainlanguag-20

Closing Thoughts

GraphQL is now here to stay, and for good reasons. We still have a long
road ahead, but I hope this journey into what makes an evolvable and reliable
GraphQL server will help you support powerful GraphQL platforms. Always
remember that the reason we build APIs in the first place is to solve use cases
for our audience and clients. Keeping this purpose in mind will ultimately drive
your API design and even your implementations. No API style or design is
perfect in all contexts. For the situations where GraphQL is the best fit, I really
hope this book will have given you tracks that will guide your decisions around
building great GraphQL APIs.

186

	Preface
	Acknowledgments
	An Introduction to GraphQL
	One-Size-Fits-All
	Let's Go Back in Time
	Enter GraphQL
	Type System
	Introspection
	Summary

	GraphQL Schema Design
	What Makes an API Great?
	Design First
	Client First
	Naming
	Descriptions
	Use the Schema, Luke!
	Expressive Schemas
	Specific or Generic
	The Relay Specification
	Lists & Pagination
	Sharing Types
	Global Identification
	Nullability
	Abstract Types
	Designing for Static Queries
	Mutations
	Fine-Grained or Coarse-Grained
	Errors
	Schema Organization
	Asynchronous Behavior
	Data-Driven Schema vs Use-Case-Driven Schema
	Summary

	Implementing GraphQL Servers
	GraphQL Server Basics
	Code First vs Schema First
	Generating SDL Artifacts
	Resolver Design
	Schema Metadata
	Multiple Schemas
	Modular Schemas
	Testing
	Summary

	Security
	Rate Limiting
	Blocking Abusive Queries
	Timeouts
	Authentication
	Authorization
	Blocking Introspection
	Persisted Queries
	Summary

	Performance & Monitoring
	Monitoring
	The N+1 Problem and the Dataloader Pattern
	Caching
	Compiled Queries
	Summary

	Tooling
	Linting
	Analytics
	Summary

	Workflow
	Design
	Review
	Development
	Publish
	Analyze
	Ship

	Public GraphQL APIs
	Is GraphQL a Good Choice for Public APIs
	Lack of Conventions
	With Great Power comes Great Responsibility
	Summary

	GraphQL in a Distributed Architecture
	GraphQL API Gateway
	GraphQL as a BFF
	Service Communication
	Summary

	Versioning
	API Versioning is Never Fun
	Versioning GraphQL is Possible
	Continuous Evolution
	Change Management
	Summary

	Documenting GraphQL APIs
	Documentation Generators
	The What, Not Just the How
	Workflows and Use Cases
	Example / Pre-Made Queries
	Changelogs
	Upcoming Changes
	Summary

	Migrating From Other API Styles
	Generators
	REST & GraphQL Alongside
	Summary

	Closing Thoughts

