PROFESSIONAL

C++
INTRODUCTION ..ttt ittt ittt ettt ittt ittt xlvii
» PARTI INTRODUCTION TO PROFESSIONAL C++
CHAPTER1 A Crash Course in C++ and the Standard Library................ 3
CHAPTER 2 Working with Strings and String Views 87
CHAPTER3 CodingwithStyle.. 111
» PART I PROFESSIONAL C++ SOFTWARE DESIGN
CHAPTER 4 Designing Professional C++ Programs 137
CHAPTERS5 Designingwith Objects 169
CHAPTER 6 DesigningforReuse........, 187
» PART Il C++ CODING THE PROFESSIONAL WAY
CHAPTER7 MemoryManagement i, 211
CHAPTER 8 Gaining Proficiency with Classes and Objects. 249
CHAPTER 9 Mastering Classesand Objects 283
CHAPTER 10 Discovering Inheritance Techniques. 337
CHAPTER11 OddsandEnds.......... ... i iiiiiiiiiiiinnnn.. 397
CHAPTER 12 Writing Generic Code with Templates. 421
CHAPTER 13 Demystifying C++ 1/0o e 465
CHAPTER 14 Handling Errors. i 495
CHAPTER 15 Overloading C++ Operators, 535
CHAPTER 16 Overview of the C++ Standard Library 573
CHAPTER 17 Understanding Iterators and the Ranges Library. 603
CHAPTER 18 Standard Library Containersciiuoa... 627
CHAPTER 19 Function Pointers, Function Objects, and

Lambda Expressions. i 699
CHAPTER 20 Mastering Standard Library Algorithms. 725

Continues

CHAPTER 21
CHAPTER 22
CHAPTER 23
CHAPTER 24

» PART IV
CHAPTER 25
CHAPTER 26
CHAPTER 27

» PART V

CHAPTER 28
CHAPTER 29
CHAPTER 30
CHAPTER 31
CHAPTER 32
CHAPTER 33
CHAPTER 34

» PART VI
APPENDIX A
APPENDIX B
APPENDIX C
APPENDIX D

String Localization and Regular Expressions 763

Date and Time Utilities.o oo oo i it e 793
Random Number Facilities. 809
Additional Library Utilities i L. 821
MASTERING ADVANCED FEATURES OF C++

Customizing and Extending the Standard Library.............. 833
Advanced Templates il 877
Multithreaded Programming with C++ 915
C++ SOFTWARE ENGINEERING

Maximizing Software Engineering Methods 971
Writing Efficient C++ L 993
Becoming Adeptat Testing, 1021
ConqueringDebugging 1045
Incorporating Design Techniques and Frameworks. 1083
Applying Design Patterns.o i i 1105
Developing Cross-Platform and Cross-Language Applications. . . 1137
APPENDICES

CHtnterviews. oo e 1165
Annotated Bibliography. o ool 1191
Standard Library Header Files 1203
Introductionto UML. 1213
.. 1219

PROFESSIONAL
C++

PROFESSIONAL
C++

Fifth Edition

Marc Gregoire

AN

WFrox

A Wiley Brand

Professional C++
Copyright © 2021 by John Wiley & Sons, Inc., Indianapolis, Indiana
Published simultaneously in Canada and the United Kingdom

ISBN: 978-1-119-69540-0
ISBN: 978-1-119-69550-9 (ebk)
ISBN: 978-1-119-69545-5 (ebk)

Manufactured in the United States of America

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means,
electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under Sections 107 or 108 of
the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization through
payment of the appropriate per-copy fee to the Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923,
(978) 750-8400, fax (978) 646-8600. Requests to the Publisher for permission should be addressed to the Permissions
Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008, or online
at www.wiley.com/go/permissions.

Limit of Liability/Disclaimer of Warranty: The publisher and the author make no representations or warranties with respect
to the accuracy or completeness of the contents of this work and specifically disclaim all warranties, including without
limitation warranties of fitness for a particular purpose. No warranty may be created or extended by sales or promotional
materials. The advice and strategies contained herein may not be suitable for every situation. This work is sold with the
understanding that the publisher is not engaged in rendering legal, accounting, or other professional services. If professional
assistance is required, the services of a competent professional person should be sought. Neither the publisher nor the author
shall be liable for damages arising herefrom. The fact that an organization or Web site is referred to in this work as a citation
and/or a potential source of further information does not mean that the author or the publisher endorses the information the
organization or Web site may provide or recommendations it may make. Further, readers should be aware that Internet Web
sites listed in this work may have changed or disappeared between when this work was written and when it is read.

For general information on our other products and services please contact our Customer Care Department within the
United States at (877) 762-2974, outside the United States at (317) 572-3993 or fax (317) 572-4002.

Wiley publishes in a variety of print and electronic formats and by print-on-demand. Some material included with standard
print versions of this book may not be included in e-books or in print-on-demand. If this book refers to media such as a CD
or DVD that is not included in the version you purchased, you may download this material at booksupport .wiley.com.
For more information about Wiley products, visit www.wiley.com.

Library of Congress Control Number: 2020950208

Trademarks: Wiley, the Wiley logo, Wrox, the Wrox logo, Programmer to Programmer, and related trade dress are
trademarks or registered trademarks of John Wiley & Sons, Inc. and/or its affiliates, in the United States and other countries,
and may not be used without written permission. All other trademarks are the property of their respective owners. John
Wiley & Sons, Inc., is not associated with any product or vendor mentioned in this book.

www. EBooksWor I d. i r

Dedicated to my wonderful parents and my brother,
who are always there for me. Their support and
patience helped me in finishing this book.

ABOUT THE AUTHOR

MARC GREGOIRE is a software architect from Belgium. He graduated from the University of

Leuven, Belgium, with a degree in “Burgerlijk ingenieur in de computer wetenschappen” (equivalent
to a master of science in engineering in computer science). The year after, he received an advanced
master’s degree in artificial intelligence, cum laude, at the same university. After his studies, Marc
started working for a software consultancy company called Ordina Belgium. As a consultant, he
worked for Siemens and Nokia Siemens Networks on critical 2G and 3G software running on Solaris
for telecom operators. This required working in international teams stretching from South America
and the United States to Europe, the Middle East, Africa, and Asia. Now, Marc is a software architect
at Nikon Metrology (nikonmetrology.com), a division of Nikon and a leading provider of preci-
sion optical instruments, X-ray machines, and metrology solutions for X-ray, CT, and 3-D geometric
inspection.

His main expertise is C/C++, specifically Microsoft VC++ and the MFC framework. He has experi-
ence in developing C++ programs running 24/7 on Windows and Linux platforms: for example,
KNX/EIB home automation software. In addition to C/C++, Marc also likes C#.

Since April 2007, he has received the annual Microsoft MVP (Most Valuable Professional) award for
his Visual C++ expertise.

Marec is the founder of the Belgian C++ Users Group (becpp . org), co-author of C++ Standard
Library Quick Reference 1+ and 2" editions (Apress), a technical editor for numerous books for
several publishers, and a regular speaker at the CppCon C++ conference. He maintains a blog at
www . nuonsoft .com/blog/ and is passionate about traveling and gastronomic restaurants.

ABOUT THE TECHNICAL EDITORS

PETER VAN WEERT is a Belgian software engineer whose main interests and expertise are application
software development, programming languages, algorithms, and data structures.

He received his master of science degree in computer science summa cum laude with congratulations
from the Board of Examiners from the University of Leuven. In 2010, he completed his PhD thesis on
the design and efficient compilation of rule-based programming languages at the research group for
declarative programming languages and artificial intelligence. During his doctoral studies he was a
teaching assistant for object-oriented programming (Java), software analysis and design, and declara-
tive programming.

Peter then joined Nikon Metrology, where he worked on large-scale, industrial application software
in the area of 3-D laser scanning and point cloud inspection for over six years. Today, Peter is senior
C++ engineer and Scrum team leader at Medicim, the R&D unit for digital dentistry software of
Envista Holdings. At Medicim, he codevelops a suite of applications for dental professionals, capable
of capturing patient data from a wide range of hardware, with advanced diagnostic functionality and
support for implant planning and prosthetic design.

Common themes in his professional career include advanced desktop application development,
mastering and refactoring of code bases of millions of lines of C++ code, high-performant, real-time
processing of 3-D data, concurrency, algorithms and data structures, interfacing with cutting-edge
hardware, and leading agile development teams.

Peter is a regular speaker at, and board member of, the Belgian C++ Users Group. He also
co-authored two books: C++ Standard Library Quick Reference and Beginning C++ (5th edition),
both published by Apress.

OCKERT J. DU PREEZ is a self-taught developer who started learning programming in the days of
QBasic. He has written hundreds of developer articles over the years detailing his programming

quests and adventures. His articles can be found on CodeGuru (codeguru. com), Developer.com

(developer.com), DevX (devx.com), and Database Journal (databasejournal.com). Software
development is his second love, just after his wife and child.

He knows a broad spectrum of development languages including C++, C#, VB.NET, JavaScript, and
HTML. He has written the books Visual Studio 2019 In-Depth (BpB Publications) and JavaScript for
Gurus (BpB Publications).

He was a Microsoft Most Valuable Professional for NET (2008-2017).

ACKNOWLEDGMENTS

I THANK THE JOHN WILEY & SONS AND WROX PRESS editorial and production teams for their sup-
port. Especially, thank you to Jim Minatel, executive editor at Wiley, for giving me a chance to write
this fifth edition; Kelly Talbot, project editor, for managing this project; and Kim Wimpsett, copy edi-
tor, for improving readability and consistency and making sure the text is grammatically correct.

Thanks to technical editor Hannes Du Preez for checking the technical accuracy of the book. His
contributions in strengthening this book are greatly appreciated.

A very special thank you to technical editor Peter Van Weert for his outstanding contributions. His
considerable advice and insights have truly elevated this book to a higher level.

Of course, the support and patience of my parents and my brother were very important in finishing
this book. I would also like to express my sincere gratitude to my employer, Nikon Metrology, for
supporting me during this project.

Finally, I thank you, the reader, for trying this approach to professional C++ software development.

—MARC GREGOIRE

CONTENTS

INTRODUCTION xlvii

CHAPTER 1: A CRASH COURSE IN C++ AND THE STANDARD LIBRARY 3

C++ Crash Course 4
The Obligatory “Hello, World" Program 4
Comments 5
Importing Modules 5
Preprocessor Directives 5
The main() Function 8
I/O Streams 8
Namespaces 9
Nested Namespace 11
Namespace Alias L
Literals 11
Variables 12
Numerical Limits 14
Zero Initialization 15
Casting 15
Floating-Point Numbers 16
Operators 16
Enumerated Types 19
Old-Style Enumerated Types 21
Structs 22
Conditional Statements 23
if/else Statements 23
switch Statements 24
The Conditional Operator 25
Logical Evaluation Operators 26
Three-Way Comparisons 27
Functions 28
Function Return Type Deduction 30
Current Function’s Name 30

Function Overloading 30

CONTENTS

XVi

Attributes
[[nodiscard]]
[[maybe_unused]]
[[noreturn]]
[[deprecated]]
[[likely]] and [[unlikely]]

C-Style Arrays

std::array

std::vector

std::pair

std::optional

Structured Bindings

Loops
The while Loop
The do/while Loop
The for Loop
The Range-Based for Loop

Initializer Lists

Strings in C++

C++ as an Object-Oriented Language
Defining Classes
Using Classes

Scope Resolution

Uniform Initialization
Designated Initializers

Pointers and Dynamic Memory
The Stack and the Free Store
Working with Pointers
Dynamically Allocated Arrays
Null Pointer Constant

The Use of const
const as a Qualifier for a Type
const Methods

The constexpr Keyword

The consteval Keyword

References
Reference Variables
Reference Data Members
Reference Parameters
Reference Return Values
Deciding Between References and Pointers

30
31
31
32
32
33
33
35
36
36
37
38
38
38
39
39
39
40
40
41
41
44
44
45
48
49
49
50
51
52
53
53
55
56
57
58
58
61
61
64
64

CONTENTS

const_cast() 68
Exceptions 69
Type Aliases 70
typedefs 71
Type Inference 72
The auto Keyword 72

The decltype Keyword 75

The Standard Library 75
Your First Bigger C++ Program 75
An Employee Records System 76
The Employee Class 76
Employee.copm 76
Employee.cpp 78
EmployeeTest.cpp 79

The Database Class 80
Database.cppm 80
Database.cpp 81
DatabaseTest.cpp 82

The User Interface 82
Evaluating the Program 85
Summary 85
Exercises 85
CHAPTER 2: WORKING WITH STRINGS AND STRING VIEWS 87
Dynamic Strings 88
C-Style Strings 88
String Literals 90
Raw String Literals 90

The C++ std::string Class 92
What Is Wrong with C-Style Strings? 92
Using the string Class 92
std::string Literals 95
CTAD with std::vector and Strings 96
Numeric Conversions 96
High-Level Numeric Conversions 96
Low-Level Numeric Conversions 97

The std::string_view Class 100
std::string_view and Temporary Strings 102
std::string_view Literals 102
Nonstandard Strings 102
String Formatting 103
Format Specifiers 104

xvii

CONTENTS

width 104
[filllalign 105

sign 105

105

type 106
precision 107

0 107
Format Specifier Errors 107
Support for Custom Types 107
Summary 110
Exercises 110
CHAPTER 3: CODING WITH STYLE 111
The Importance of Looking Good 111
Thinking Ahead 112
Elements of Good Style 112
Documenting Your Code 112
Reasons to Write Comments 112
Commenting to Explain Usage 112
Commenting to Explain Complicated Code 115
Commenting to Convey Meta-information 116
Commenting Styles 117
Commenting Every Line 117
Prefix Comments 118
Fixed-Format Comments 119

Ad Hoc Comments 120
Self-Documenting Code 122
Decomposition 122
Decomposition Through Refactoring 123
Decomposition by Design 124
Decomposition in This Book 124
Naming 124
Choosing a Good Name 124
Naming Conventions 125
Counters 125
Prefixes 126
Hungarian Notation 126
Getters and Setters 127
Capitalization 127
Namespaced Constants 127
Using Language Features with Style 127
Use Constants 128

xviii

CONTENTS

Use References Instead of Pointers 128
Use Custom Exceptions 129
Formatting 129
The Curly Brace Alignment Debate 130
Coming to Blows over Spaces and Parentheses 131
Spaces, Tabs, and Line Breaks 131
Stylistic Challenges 132
Summary 132
Exercises 133
CHAPTER 4: DESIGNING PROFESSIONAL C++ PROGRAMS 137
What Is Programming Design? 138
The Importance of Programming Design 139
Designing for C++ 141
Two Rules for Your Own C++ Designs 142
Abstraction 142
Benefiting from Abstraction 142
Incorporating Abstraction in Your Design 143
Reuse 144
Writing Reusable Code 144
Reusing Designs 145
Reusing Existing Code 146
A Note on Terminology 146
Deciding Whether to Reuse Code or Write it Yourself 147
Advantages to Reusing Code 147
Disadvantages to Reusing Code 148
Putting It Together to Make a Decision 149
Guidelines for Choosing a Library to Reuse 149
Understand the Capabilities and Limitations 149
Understand the Learning Cost 150
Understand the Performance 150
Understand Platform Limitations 153
Understand Licensing 153
Understand Support and Know Where to Find Help 154
Prototype 154
Open-Source Libraries 155

The C++ Standard Library 157

Xix

CONTENTS

Designing a Chess Program 157
Requirements 158
Design Steps 158

Divide the Program into Subsystems 158

Choose Threading Models 160

Specify Class Hierarchies for Each Subsystem 161
Specify Classes, Data Structures, Algorithms, and Patterns for

Each Subsystem 162

Specify Error Handling for Each Subsystem 165

Summary 166

Exercises 166

CHAPTER 5: DESIGNING WITH OBJECTS 169

Am | Thinking Procedurally? 170

The Object-Oriented Philosophy 170
Classes 170
Components 171
Properties 171
Behaviors 172
Bringing It All Together 172

Living in a World of Classes 173
Over-Classification 173
Overly General Classes 174

Class Relationships 175
The Has-a Relationship 175
The Is-a Relationship (Inheritance) 176

Inheritance Techniques 177
Polymorphism 178

The Fine Line Between Has-a and Is-a 178

The Not-a Relationship 181
Hierarchies 182
Multiple Inheritance 183
Mixin Classes 184
Summary 185
Exercises 185
CHAPTER 6: DESIGNING FOR REUSE 187

The Reuse Philosophy 188

How to Design Reusable Code 189
Use Abstraction 189
Structure Your Code for Optimal Reuse 191

Avoid Combining Unrelated or Logically Separate Concepts 191

XX

CONTENTS

Use Templates for Generic Data Structures and Algorithms 193
Provide Appropriate Checks and Safeguards 195
Design for Extensibility 196
Design Usable Interfaces 198
Consider the Audience 198
Consider the Purpose 199
Design Interfaces That Are Easy to Use 200
Design General-Purpose Interfaces 204
Reconciling Generality and Ease of Use 205
Designing a Successful Abstraction 205
The SOLID Principles 206
Summary 207
Exercises 207
CHAPTER 7: MEMORY MANAGEMENT 211
Working with Dynamic Memory 212
How to Picture Memory 212
Allocation and Deallocation 213
Using new and delete 213
What About My Good Friend malloc? 214
When Memory Allocation Fails 215
Arrays 215
Arrays of Primitive Types 215
Arrays of Objects 218
Deleting Arrays 218
Multidimensional Arrays 219
Working with Pointers 223

A Mental Model for Pointers 223
Casting with Pointers 224
Array-Pointer Duality 224
Arrays Are Pointers! 224
Not All Pointers Are Arrays! 226
Low-Level Memory Operations 227
Pointer Arithmetic 227
Custom Memory Management 228
Garbage Collection 228
Obiject Pools 229
Common Memory Pitfalls 229
Underallocating Data Buffers and Out-of-Bounds Memory Access 229

XXi

CONTENTS

Memory Leaks 231
Finding and Fixing Memory Leaks in Windows with Visual C++ 232
Finding and Fixing Memory Leaks in Linux with Valgrind 233

Double-Deletion and Invalid Pointers 234

Smart Pointers 234

unique_ptr 235
Creating unique_ptrs 236
Using unique_ptrs 237
unique_ptr and C-Style Arrays 238
Custom Deleters 239

shared_ptr 239
Creating and Using shared_ptrs 239
The Need for Reference Counting 241
Casting a shared_ptr 242
Aliasing 242

weak_ptr 243

Passing to Functions 244

Returning from Functions 244

enable_shared_from_this 244

The Old and Removed auto_ptr 245

Summary 246
Exercises 246
CHAPTER 8: GAINING PROFICIENCY WITH CLASSES
AND OBJECTS 249
Introducing the Spreadsheet Example 250
Writing Classes 250

Class Definitions 250
Class Members 251
Access Control 251
Order of Declarations 252
In-Class Member Initializers 253

Defining Methods 253
Accessing Data Members 254
Calling Other Methods 254
The this Pointer 255

Using Objects 257
Objects on the Stack 257
Objects on the Free Store 257

Understanding Object Life Cycles 258

Object Creation 258
Writing Constructors 259
Using Constructors 260

XXii

CONTENTS

Providing Multiple Constructors 260
Default Constructors 261
Constructor Initializers 265
Copy Constructors 269
Initializer-List Constructors 271
Delegating Constructors 273
Converting Constructors and Explicit Constructors 273
Summary of Compiler-Generated Constructors 275
Object Destruction 276
Assigning to Objects 277
Declaring an Assignment Operator 278
Defining an Assignment Operator 278
Explicitly Defaulted and Deleted Assignment Operator 280
Compiler-Generated Copy Constructor and Copy Assignment Operator 280
Distinguishing Copying from Assignment 280
Objects as Return Values 280
Copy Constructors and Object Members 281
Summary 282
Exercises 282
CHAPTER 9: MASTERING CLASSES AND OBJECTS 283
Friends 284
Dynamic Memory Allocation in Objects 285
The Spreadsheet Class 285
Freeing Memory with Destructors 288
Handling Copying and Assignment 289
The Spreadsheet Copy Constructor 291

The Spreadsheet Assignment Operator 291
Disallowing Assignment and Pass-by-Value 294
Handling Moving with Move Semantics 295
Rvalue References 295
Implementing Move Semantics 297
Testing the Spreadsheet Move Operations 301
Implementing a Swap Function with Move Semantics 303
Using std::move() in Return Statements 303
Optimal Way to Pass Arguments to Functions 304

Rule of Zero 305
More About Methods 306
static Methods 306
const Methods 307
mutable Data Members 308

xXiii

CONTENTS

Method Overloading 308
Overloading Based on const 309
Explicitly Deleting Overloads 310
Ref-Qualified Methods 310

Inline Methods 311

Default Arguments 313

Different Kinds of Data Members 314

static Data Members 314
Inline Variables 314
Accessing static Data Members within Class Methods 315
Accessing static Data Members Outside Methods 316

const static Data Members 316

Reference Data Members 317

Nested Classes 318
Enumerated Types Inside Classes 319
Operator Overloading 320

Example: Implementing Addition for SpreadsheetCells 320
First Attempt: The add Method 320
Second Attempt: Overloaded operator+ as a Method 321
Third Attempt: Global operator+ 322

Overloading Arithmetic Operators 324
Overloading the Arithmetic Shorthand Operators 324

Overloading Comparison Operators 325
Compiler-Generated Comparison Operators 328

Building Types with Operator Overloading 330

Building Stable Interfaces 330
Using Interface and Implementation Classes 330
Summary 334
Exercises 335
CHAPTER 10: DISCOVERING INHERITANCE TECHNIQUES 337
Building Classes with Inheritance 338

Extending Classes 338
A Client's View of Inheritance 339
A Derived Class's View of Inheritance 340
Preventing Inheritance 341

Overriding Methods 342
The virtual Keyword 342
Syntax for Overriding a Method 342
A Client's View of Overridden Methods 343
The override Keyword 344

XXiv

CONTENTS

The Truth About virtual
Preventing Overriding
Inheritance for Reuse
The WeatherPrediction Class
Adding Functionality in a Derived Class
Replacing Functionality in a Derived Class
Respect Your Parents
Parent Constructors
Parent Destructors
Referring to Parent Names
Casting Up and Down
Inheritance for Polymorphism
Return of the Spreadsheet
Designing the Polymorphic Spreadsheet Cell
The SpreadsheetCell Base Class
A First Attempt
Pure Virtual Methods and Abstract Base Classes
The Individual Derived Classes
StringSpreadsheetCell Class Definition
StringSpreadsheetCell Implementation
DoubleSpreadsheetCell Class Definition and Implementation
Leveraging Polymorphism
Future Considerations
Multiple Inheritance
Inheriting from Multiple Classes
Naming Collisions and Ambiguous Base Classes
Name Ambiguity
Ambiguous Base Classes
Uses for Multiple Inheritance
Interesting and Obscure Inheritance Issues
Changing the Overridden Method'’s Return Type
Adding Overloads of Virtual Base Class Methods to Derived Classes
Inherited Constructors
Hiding of Inherited Constructors
Inherited Constructors and Multiple Inheritance
Initialization of Data Members
Special Cases in Overriding Methods
The Base Class Method Is static
The Base Class Method Is Overloaded
The Base Class Method Is private
The Base Class Method Has Default Arguments

346
350
350
350
351
352
353
353
355
356
358
360
360
360
361
361
362
363
363
363
364
364
365
367
367
368
368
369
371
371
371
373
374
375
376
377
378
378
379
380
382

XXV

CONTENTS

The Base Class Method Has a Different Access Specification 383
Copy Constructors and Assignment Operators in Derived Classes 385
Run-Time Type Facilities 386
Non-public Inheritance 388
Virtual Base Classes 389

Casts 390
static_cast() 390
reinterpret_cast() 391
std::bit_cast() 392
dynamic_cast() 393
Summary of Casts 394

Summary 394

Exercises 395

CHAPTER 11: ODDS AND ENDS 397

Modules 397
Module Interface Files 399
Module Implementation Files 401
Splitting Interface from Implementation 402
Visibility vs. Reachability 403
Submodules 404
Module Partitions 405

Implementation Partitions 407

Header Units 408

Header Files 408
Duplicate Definitions 409
Circular Dependencies 409
Querying Existence of Headers 410
Feature Test Macros for Core Language Features 410
The static Keyword 411
static Data Members and Methods 411
static Linkage 411

The extern Keyword 413
static Variables in Functions 414
Order of Initialization of Nonlocal Variables 415

Order of Destruction of Nonlocal Variables 415

XXVi

CONTENTS

C Utilities 415
Variable-Length Argument Lists 415
Accessing the Arguments 416

Why You Shouldn’t Use C-Style Variable-Length Argument Lists 417
Preprocessor Macros 417
Summary 419
Exercises 419
CHAPTER 12: WRITING GENERIC CODE WITH TEMPLATES 421
Overview of Templates 422
Class Templates 422
Writing a Class Template 423
Coding Without Templates 423

A Template Grid Class 426
Using the Grid Template 430

How the Compiler Processes Templates 431
Selective Instantiation 431
Template Requirements on Types 432
Distributing Template Code Between Files 432
Method Definitions in Same File as Class Template Definition 433
Method Definitions in Separate File 433
Template Parameters 433
Non-type Template Parameters 434
Default Values for Type Parameters 436
Class Template Argument Deduction 436
Method Templates 438
Method Templates with Non-type Parameters 440
Class Template Specialization 442
Deriving from Class Templates 445
Inheritance vs. Specialization 446
Alias Templates 447
Function Templates 447
Function Template Overloading 449
Friend Function Templates of Class Templates 449
More on Template Parameter Deduction 451
Return Type of Function Templates 451
Abbreviated Function Template Syntax 453

XXVii

CONTENTS

Variable Templates 454
Concepts 454
Syntax 455
Constraints Expression 455
Requires Expressions 455
Combining Concept Expressions 457
Predefined Standard Concepts 457
Type-Constrained auto 458
Type Constraints and Function Templates 458
Constraint Subsumption 460
Type Constraints and Class Templates 461
Type Constraints and Class Methods 461
Type Constraints and Template Specialization 462
Summary 463
Exercises 463
CHAPTER 13: DEMYSTIFYING C++ I/O 465
Using Streams 466
What Is a Stream, Anyway? 466
Stream Sources and Destinations 467
Output with Streams 468
Output Basics 468
Methods of Output Streams 469
Handling Output Errors 470
Output Manipulators 471
Input with Streams 473
Input Basics 473
Handling Input Errors 475
Input Methods 476
Input Manipulators 480
Input and Output with Objects 481
Custom Manipulators 482
String Streams 482
File Streams 484
Text Mode vs. Binary Mode 485
Jumping Around with seek() and tell() 485
Linking Streams Together 487
Bidirectional I/0 488
Filesystem Support Library 490
Path 490
Directory Entry 491

XXViii

CONTENTS

Helper Functions 492
Directory Iteration 492
Summary 493
Exercises 493
CHAPTER 14: HANDLING ERRORS 495
Errors and Exceptions 496
What Are Exceptions, Anyway? 496
Why Exceptions in C++ Are a Good Thing 496
Recommendation 498
Exception Mechanics 498
Throwing and Catching Exceptions 499
Exception Types 501
Catching Exception Objects as Reference-to-const 502
Throwing and Catching Multiple Exceptions 503
Matching and const 505
Matching Any Exception 505
Uncaught Exceptions 505
noexcept Specifier 507
noexcept(expression) Specifier 508
noexcept(expression) Operator 508
Throw Lists 508
Exceptions and Polymorphism 509
The Standard Exception Hierarchy 509
Catching Exceptions in a Class Hierarchy 510
Writing Your Own Exception Classes 512
Source Location 514
Nested Exceptions 517
Rethrowing Exceptions 519
Stack Unwinding and Cleanup 520
Use Smart Pointers 521
Catch, Cleanup, and Rethrow 522
Common Error-Handling Issues 523
Memory Allocation Errors 523
Non-throwing new 524
Customizing Memory Allocation Failure Behavior 524
Errors in Constructors 526
Function-Try-Blocks for Constructors 528
Errors in Destructors 531
Summary 531
Exercises 532

XXiX

CONTENTS

CHAPTER 15: OVERLOADING C++ OPERATORS 535
Overview of Operator Overloading 536
Why Overload Operators? 536
Limitations to Operator Overloading 536
Choices in Operator Overloading 537
Method or Global Function 537
Choosing Argument Types 538
Choosing Return Types 538
Choosing Behavior 539
Operators You Shouldn’t Overload 539
Summary of Overloadable Operators 540
Rvalue References 544
Precedence and Associativity 545
Relational Operators 546
Overloading the Arithmetic Operators 547
Overloading Unary Minus and Unary Plus 547
Overloading Increment and Decrement 547
Overloading the Bitwise and Binary Logical Operators 548
Overloading the Insertion and Extraction Operators 549
Overloading the Subscripting Operator 550
Providing Read-Only Access with operator|] 553
Non-integral Array Indices 555
Overloading the Function Call Operator 555
Overloading the Dereferencing Operators 557
Implementing operator* 558
Implementing operator—> 558
What in the World Are operator.* and operator—>*? 559
Writing Conversion Operators 559
Operator auto 560
Solving Ambiguity Problems with Explicit Conversion Operators 561
Conversions for Boolean Expressions 561
Overloading the Memory Allocation and Deallocation Operators 563
How new and delete Really Work 564
The New-Expression and operator new 564

The Delete-Expression and operator delete 565
Overloading operator new and operator delete 565
Explicitly Deleting/Defaulting operator new and operator delete 568
Overloading operator new and operator delete with Extra Parameters 568
Overloading operator delete with Size of Memory as Parameter 569
Overloading User-Defined Literal Operators 570

XXX

CONTENTS

Cooked-Mode Literal Operator 570
Raw-Mode Literal Operator 571
Standard User-Defined Literals 571
Summary 572
Exercises 572
CHAPTER 16: OVERVIEW OF THE C++ STANDARD LIBRARY 573
Coding Principles 574
Use of Templates 574
Use of Operator Overloading 575
Overview of the C++ Standard Library 575
Strings 575
Regular Expressions 576
I/O Streams 576
Smart Pointers 576
Exceptions 576
Numerics Library 577
Time and Date Utilities 579
Random Numbers 579
Initializer Lists 579
Pair and Tuple 579
Vocabulary Types 580
Function Objects 580
Filesystem 580
Multithreading 580
Type Traits 581
Standard Integer Types 581
Standard Library Feature Test Macros 581
<version> 582
Source Location 582
Containers 582
vector 583

list 584
forward_list 584
deque 584
array 584
span 585
queue 585
priority_queue 585

stack 586

XXXi

CONTENTS

set and multiset 586
map and multimap 587
Unordered Associative Containers/Hash Tables 587
bitset 588
Summary of Standard Library Containers 588
Algorithms 591
Nonmodifying Sequence Algorithms 591
Modifying Sequence Algorithms 593
Operational Algorithms 595
Swap Algorithms 595
Partition Algorithms 595
Sorting Algorithms 596
Binary Search Algorithms 597
Set Algorithms 597
Heap Algorithms 598
Minimum/Maximum Algorithms 598
Numerical Processing Algorithms 599
Permutation Algorithms 600
Choosing an Algorithm 600
Ranges Library 601
What's Missing from the Standard Library 601
Summary 601
Exercises 601
CHAPTER 17: UNDERSTANDING ITERATORS AND
THE RANGES LIBRARY 603
lterators 604
Getting lterators for Containers 606
Iterator Traits 608
Examples 609
Stream lterators 610
Output Stream lterator 610
Input Stream lIterator 611
Iterator Adapters 612
Insert Iterators 612
Reverse lterators 614
Move lterators 615
Ranges 616
Range-Based Algorithms 617
Projection 618
Views 619

XXXii

CONTENTS

Modifying Elements Through a View 622
Mapping Elements 623
Range Factories 623
Input Streams as Views 625
Summary 625
Exercises 626
CHAPTER 18: STANDARD LIBRARY CONTAINERS 627
Containers Overview 628
Requirements on Elements 628
Exceptions and Error Checking 630
Sequential Containers 631
vector 631
vector Overview 631
vector Details 633
Move Semantics 646
vector Example: A Round-Robin Class 647

The vector<bool> Specialization 652
deque 653
list 653
Accessing Elements 653
[terators 654
Adding and Removing Elements 654

list Size 654
Special list Operations 654

list Example: Determining Enrollment 656
forward_list 657
array 660
span 661
Container Adapters 663
queue 663
queue Operations 663
queue Example: A Network Packet Buffer 664
priority_queue 666
priority_queue Operations 666
priority_queue Example: An Error Correlator 667
stack 668
stack Operations 668
stack Example: Revised Error Correlator 669
Ordered Associative Containers 669
The pair Utility Class 669
map 670

XXXiii

CONTENTS

Constructing maps 670
Inserting Elements 671

map lterators 674
Looking Up Elements 675
Removing Elements 675
Nodes 676

map Example: Bank Account 676
multimap 679
multimap Example: Buddy Lists 680

set 682
set Example: Access Control List 682
multiset 684
Unordered Associative Containers or Hash Tables 684
Hash Functions 684
unordered_map 686
unordered_map Example: Phone Book 689
unordered_multimap 690
unordered_set/unordered_multiset 691
Other Containers 691
Standard C-Style Arrays 691
Strings 692
Streams 693
bitset 693
bitset Basics 693
Bitwise Operators 694
bitset Example: Representing Cable Channels 694
Summary 697
Exercises 698

CHAPTER 19: FUNCTION POINTERS, FUNCTION OBJECTS,

AND LAMBDA EXPRESSIONS 699
Function Pointers 700
Pointers to Methods (and Data Members) 702
std::function 703
Function Objects 705

Writing Your First Function Object 705
Function Objects in the Standard Library 706
Arithmetic Function Objects 706
Comparison Function Objects 707
Logical Function Objects 709
Bitwise Function Objects 709
Adapter Function Objects 709

XXXV

CONTENTS

Lambda Expressions 713
Syntax 713
Lambda Expressions as Parameters 718
Generic Lambda Expressions 719
Lambda Capture Expressions 719
Templated Lambda Expressions 720
Lambda Expressions as Return Type 721
Lambda Expressions in Unevaluated Contexts 722
Default Construction, Copying, and Assigning 722

Invokers 722

Summary 723

Exercises 723

CHAPTER 20: MASTERING STANDARD LIBRARY ALGORITHMS 725

Overview of Algorithms 726
The find and find_if Algorithms 726
The accumulate Algorithm 729
Move Semantics with Algorithms 730
Algorithm Callbacks 730

Algorithm Details 731
Non-modifying Sequence Algorithms 731

Search Algorithms 731
Specialized Searchers 733
Comparison Algorithms 733
Counting Algorithms 736
Modifying Sequence Algorithms 737
generate 737
transform 738
copy 739
move 740
replace 742
erase 742
remove 743
unique 744
shuffle 745
sample 745
reverse 746
Shifting Elements 746
Operational Algorithms 747
for_each 747
for_each_n 749

XXXV

CONTENTS

Partition Algorithms 749
Sorting Algorithms 750
Binary Search Algorithms 751
Set Algorithms 752
Minimum/Maximum Algorithms 755
Parallel Algorithms 756
Constrained Algorithms 758
Numerical Processing Algorithms 758
jota 759
Reduce Algorithms 759
Scan Algorithms 760
Summary 761
Exercises 761
CHAPTER 21: STRING LOCALIZATION AND REGULAR
EXPRESSIONS 763
Localization 763
Wide Characters 764
Localizing String Literals 764
Non-Western Character Sets 765
Locales and Facets 767
Using Locales 767
Global Locale 769
Character Classification 769
Character Conversion 769
Using Facets 770
Conversions 771
Regular Expressions 772
ECMAScript Syntax 773
Anchors 773
Wildcards 773
Alternation 773
Grouping 774
Repetition 774
Precedence 775
Character Set Matches 775
Word Boundaries 777
Back References 778
Lookahead 778
Regular Expressions and Raw String Literals 778
Common Regular Expressions 779
The regex Library 779

XXXVi

CONTENTS

regex_match() 781
regex_match() Example 781
regex_search() 783
regex_search() Example 784
regex_iterator 784
regex_iterator Example 785
regex_token_iterator 785
regex_token_iterator Examples 786
regex_replace() 788
regex_replace() Examples 789
Summary 790
Exercises 791
CHAPTER 22: DATE AND TIME UTILITIES 793
Compile-Time Rational Numbers 794
Duration 796
Clock 801
Time Point 802
Date 804
Time Zone 807
Summary 808
Exercises 808
CHAPTER 23: RANDOM NUMBER FACILITIES 809
C-Style Random Number Generation 810
Random Number Engines 811
Random Number Engine Adapters 813
Predefined Engines and Engine Adapters 813
Generating Random Numbers 814
Random Number Distributions 816
Summary 819
Exercises 819
CHAPTER 24: ADDITIONAL LIBRARY UTILITIES 821
Vocabulary Types 821
variant 821
any 823
Tuples 824
Decompose Tuples 826
Structured Bindings 827

tie 827

XXXVii

CONTENTS

Concatenation 828
Comparisons 828
make_from_tuple 829
apply 829
Summary 829
Exercises 830
CHAPTER 25: CUSTOMIZING AND EXTENDING
THE STANDARD LIBRARY 833
Allocators 834
Extending the Standard Library 835
Why Extend the Standard Library? 835
Writing a Standard Library Algorithm 836
find_all() 836
Writing a Standard Library Container 837
A Basic Directed Graph 837
Making directed_graph a Standard Library Container 848
Adding Support for Allocators 866
Improving graph_node 871
Additional Standard Library-Like Functionality 872
Further Improvements 874
Other Container Types 874
Summary 875
Exercises 875
CHAPTER 26: ADVANCED TEMPLATES 877
More About Template Parameters 878
More About Template Type Parameters 878
Introducing Template Template Parameters 880
More About Non-type Template Parameters 882
Class Template Partial Specialization 884
Emulating Function Partial Specialization with Overloading 888
Template Recursion 889
An N-Dimensional Grid: First Attempt 889
A Real N-Dimensional Grid 890
Variadic Templates 892
Type-Safe Variable-Length Argument Lists 893

YO0Vl

CONTENTS

Variable Number of Mixin Classes 895
Fold Expressions 896
Metaprogramming 898
Factorial at Compile Time 898
Loop Unrolling 899
Printing Tuples 900
constexpr if 902
Using a Compile-Time Integer Sequence with Folding 903
Type Traits 903
Using Type Categories 905
Using Type Relationships 907
Using the conditional Type Trait 907
Using enable_if 909
Using constexpr if to Simplify enable_if Constructs 910
Logical Operator Traits 912
Static Assertions 912
Metaprogramming Conclusion 913
Summary 913
Exercises 913
CHAPTER 27: MULTITHREADED PROGRAMMING WITH C++ 915
Introduction 916
Race Conditions 918
Tearing 919
Deadlocks 919
False-Sharing 920
Threads 921
Thread with Function Pointer 921
Thread with Function Object 922
Thread with Lambda 924
Thread with Member Function 924
Thread Local Storage 924
Canceling Threads 925
Automatically Joining Threads 925
Retrieving Results from Threads 926
Copying and Rethrowing Exceptions 926
Atomic Operations Library 929
Atomic Operations 931
Atomic Smart Pointers 932
Atomic References 932
Using Atomic Types 933

Waiting on Atomic Variables 935

XXXiX

CONTENTS

Mutual Exclusion 936
Mutex Classes 936
Spinlock 936
Non-timed Mutex Classes 937
Timed Mutex Classes 939
Locks 939
lock_guard 939
unique_lock 940
shared_lock 941
Acquiring Multiple Locks at Once 941
scoped_lock 942
std::call_once 942
Examples Using Mutual Exclusion Objects 943
Thread-Safe Writing to Streams 943
Using Timed Locks 945
Double-Checked Locking 946
Condition Variables 947
Spurious Wake-Ups 948
Using Condition Variables 949
Latches 950
Barriers 951
Semaphores 951
Futures 952
std::promise and std::future 953
std::packaged_task 954
std::async 955
Exception Handling 956
std::shared_future 956
Example: Multithreaded Logger Class 958
Thread Pools 962
Coroutines 963
Threading Design and Best Practices 965
Summary 966
Exercises 966

CHAPTER 28: MAXIMIZING SOFTWARE ENGINEERING METHODS 971

The Need for Process 972
Software Life Cycle Models 973
The Waterfall Model 973

x|

CONTENTS

Benefits of the Waterfall Model 974
Drawbacks of the Waterfall Model 974
Sashimi Model 975
Spiral-like Models 975
Benefits of a Spiral-like Model 976
Drawbacks of a Spiral-like Model 977
Agile 978
Software Engineering Methodologies 978
The Unified Process 979
The Rational Unified Process 980
RUP as a Product 980

RUP as a Process 980

RUP in Practice 981
Scrum 981
Roles 981

The Process 982
Benefits of Scrum 983
Drawbacks of Scrum 983
eXtreme Programming 984
XP in Theory 984

XP in Practice 988
Software Triage 988
Building Your Own Process and Methodology 989
Be Open to New Ideas 989
Bring New Ideas to the Table 989
Recognize What Works and What Doesn't Work 989
Don't Be a Renegade 989
Source Code Control 990
Summary 992
Exercises 992
CHAPTER 29: WRITING EFFICIENT C++ 993
Overview of Performance and Efficiency 994
Two Approaches to Efficiency 994
Two Kinds of Programs 994

Is C++ an Inefficient Language? 994
Language-Level Efficiency 995
Handle Objects Efficiently 996
Pass-by-Value or Pass-by-Reference 996
Return-by-Value or Return-by-Reference 998
Catch Exceptions by Reference 998

xli

CONTENTS

Use Move Semantics 998
Avoid Creating Temporary Objects 998
Return-Value Optimization 999
Pre-allocate Memory 1000
Use Inline Methods and Functions 1001
Design-Level Efficiency 1001
Cache Where Necessary 1002
Use Object Pools 1003
An Object Pool Implementation 1003
Using the Object Pool 1006
Profiling 1008
Profiling Example with gprof 1009
First Design Attempt 1009
Profiling the First Design Attempt 1012
Second Design Attempt 1014
Profiling the Second Design Attempt 1015
Profiling Example with Visual C++ 2019 1016
Summary 1019
Exercises 1019
CHAPTER 30: BECOMING ADEPT AT TESTING 1021
Quality Control 1022
Whose Responsibility Is Testing? 1022
The Life Cycle of a Bug 1022
Bug-Tracking Tools 1023
Unit Testing 1025
Approaches to Unit Testing 1026
The Unit Testing Process 1026
Define the Granularity of Your Tests 1027
Brainstorm the Individual Tests 1028
Create Sample Data and Results 1029
Write the Tests 1029

Run the Tests 1030

Unit Testing in Action 1031
Introducing the Microsoft Visual C++ Testing Framework 1031
Writing the First Test 1033
Building and Running Tests 1034
Negative Tests 1034
Adding the Real Tests 1035

xlii

CONTENTS

Debugging Tests 1038
Basking in the Glorious Light of Unit Test Results 1038
Fuzz Testing 1039
Higher-Level Testing 1039
Integration Tests 1039
Sample Integration Tests 1039
Methods of Integration Testing 1040
System Tests 1041
Regression Tests 1041
Tips for Successful Testing 1042
Summary 1043
Exercises 1043
CHAPTER 31: CONQUERING DEBUGGING 1045
The Fundamental Law of Debugging 1046
Bug Taxonomies 1046
Avoiding Bugs 1046
Planning for Bugs 1047
Error Logging 1047
Debug Traces 1049
Debug Mode 1049

Ring Buffers 1053
Assertions 1057
Crash Dumps 1058
Debugging Techniques 1059
Reproducing Bugs 1059
Debugging Reproducible Bugs 1060
Debugging Nonreproducible Bugs 1060
Debugging Regressions 1061
Debugging Memory Problems 1062
Categories of Memory Errors 1062

Tips for Debugging Memory Errors 1065
Debugging Multithreaded Programs 1066
Debugging Example: Article Citations 1067
Buggy Implementation of an ArticleCitations Class 1067
Testing the ArticleCitations Class 1070
Lessons from the ArticleCitations Example 1079
Summary 1079
Exercises 1080

xliii

CONTENTS

CHAPTER 32: INCORPORATING DESIGN TECHNIQUES

AND FRAMEWORKS 1083
“I Can Never Remember How to. . .” 1084
. .Write a Class 1084

.. .Derive from an Existing Class 1086

.. .Write a Lambda Expression 1086

.. .Use the Copy-and-Swap Idiom 1087

.. .Throw and Catch Exceptions 1088

.. .Write to a File 1089

.. .Read from a File 1089

. .\Write a Class Template 1090

. .Constrain Template Parameters 1090
There Must Be a Better Way 1091
Resource Acquisition Is Initialization 1091
Double Dispatch 1093
Attempt #1: Brute Force 1094
Attempt #2: Single Polymorphism with Overloading 1095
Attempt #3: Double Dispatch 1096
Mixin Classes 1098
Using Multiple Inheritance 1098
Using Class Templates 1100
Object-Oriented Frameworks 1101
Working with Frameworks 1101
The Model-View-Controller Paradigm 1102
Summary 1103
Exercises 1103
CHAPTER 33: APPLYING DESIGN PATTERNS 1105
Dependency Injection 1106
Example: A Logging Mechanism 1106
Implementation of a Dependency-Injected Logger 1106
Using Dependency Injection 1108
The Abstract Factory Pattern 1109
Example: A Car Factory Simulation 1109
Implementation of an Abstract Factory 1110
Using an Abstract Factory 1111
The Factory Method Pattern 1112
Example: A Second Car Factory Simulation 1112
Implementation of a Factory 1114
Using a Factory 1115

xliv

CONTENTS

Other Types of Factories 1117
Other Uses of Factories 1117
The Adapter Pattern 1118
Example: Adapting a Logger Class 1118
Implementation of an Adapter 1119
Using an Adapter 1120
The Proxy Pattern 1120
Example: Hiding Network Connectivity Issues 1121
Implementation of a Proxy 1121
Using a Proxy 1122
The Iterator Pattern 1123
The Observer Pattern 1124
Example: Exposing Events from Subjects 1124
Implementation of an Observable 1124
Using an Observer 1125
The Decorator Pattern 1126
Example: Defining Styles in Web Pages 1127
Implementation of a Decorator 1127
Using a Decorator 1128
The Chain of Responsibility Pattern 1129
Example: Event Handling 1129
Implementation of a Chain of Responsibility 1129
Using a Chain of Responsibility 1131
The Singleton Pattern 1132
Example: A Logging Mechanism 1132
Implementation of a Singleton 1133
Using a Singleton 1135
Summary 1135
Exercises 1135
CHAPTER 34: DEVELOPING CROSS-PLATFORM AND CROSS-
LANGUAGE APPLICATIONS 1137
Cross-Platform Development 1138
Architecture Issues 1138
Size of Integers 1138
Binary Compatibility 1139
Address Sizes 1140
Byte Order 1140
Implementation Issues 1142
Compiler Quirks and Extensions 1142

xlv

CONTENTS

Library Implementations 1142
Handling Different Implementations 1143
Platform-Specific Features 1143
Cross-Language Development 1145
Mixing C and C++ 1145
Shifting Paradigms 1145
Linking with C Code 1149
Calling C++ Code from C# 1151
C++/CLI to Use C# Code from C++ and C++ from C# 1152
Calling C++ Code from Java with JNI 1154
Calling Scripts from C++ Code 1156
Calling C++ Code from Scripts 1156

A Practical Example: Encrypting Passwords 1157

Calling Assembly Code from C++ 1159
Summary 1160
Exercises 1160
APPENDIX A: C++ INTERVIEWS 1165
APPENDIX B: ANNOTATED BIBLIOGRAPHY 1191
APPENDIX C: STANDARD LIBRARY HEADER FILES 1203
APPENDIX D: INTRODUCTION TO UML 1213

INDEX 1219

xlvi

INTRODUCTION

The development of C++ started in 1982 by Bjarne Stroustrup, a Danish computer scientist, as the
successor of C with Classes. In 1983, the first edition of The C++ Programming Language book was
released. The first standardized version of C++ was released in 1998, called C++98.In 2003, C++03
came out and contained a few small updates. After that, it was silent for a while, but traction slowly
started building up, resulting in a major update of the language in 2011, called C++11. From then
on, the C++ Standard Committee has been on a three-year cycle to release updated versions, giving
us C++14, C++17, and now C++20. All in all, with the release of C++20 in 2020, C++ is almost 40
years old and still going strong. In most rankings of programming languages in 2020, C++ is in the
top four. It is being used on an extremely wide range of hardware, going from small devices with
embedded microprocessors all the way up to multirack supercomputers. Besides wide hardware
support, C++ can be used to tackle almost any programming job, be it games on mobile platforms,
performance-critical artificial intelligence (Al) and machine learning (ML) software, real-time 3-D
graphics engines, low-level hardware drivers, entire operating systems, and so on. The performance of
C++ programs is hard to match with any other programming language, and as such, it is the de facto
language for writing fast, powerful, and enterprise-class object-oriented programs. As popular as

C++ has become, the language is surprisingly difficult to grasp in full. There are simple, but powerful,
techniques that professional C++ programmers use that don’t show up in traditional texts, and there
are useful parts of C++ that remain a mystery even to experienced C++ programmers.

Too often, programming books focus on the syntax of the language instead of its real-world use. The
typical C++ text introduces a major part of the language in each chapter, explaining the syntax and
providing an example. Professional C++ does not follow this pattern. Instead of giving you just the
nuts and bolts of the language with little practical context, this book will teach you how to use C++
in the real world. It will show you the little-known features that will make your life easier, as well as
the programming techniques that separate novices from professional programmers.

WHO THIS BOOK IS FOR

Even if you have used the language for years, you might still be unfamiliar with the more advanced
features of C++, or you might not be using the full capabilities of the language. Perhaps you write
competent C++ code, but would like to learn more about design and good programming style in C++.
Or maybe you’re relatively new to C++ but want to learn the “right” way to program from the start.
This book will meet those needs and bring your C++ skills to the professional level.

Because this book focuses on advancing from basic or intermediate knowledge of C++ to becoming

a professional C++ programmer, it assumes that you have some knowledge about programming.
Chapter 1, “A Crash Course in C++ and the Standard Library,” covers the basics of C++ as a refresher,
but it is not a substitute for actual training in programming. If you are just starting with C++ but you

INTRODUCTION

have significant experience in another programming language such as C, Java, or C#, you should be
able to pick up most of what you need from Chapter 1.

In any case, you should have a solid foundation in programming fundamentals. You should know
about loops, functions, and variables. You should know how to structure a program, and you should
be familiar with fundamental techniques such as recursion. You should have some knowledge of com-
mon data structures such as queues, and useful algorithms such as sorting and searching. You don’t
need to know about object-oriented programming just yet—that is covered in Chapter 5, “Designing
with Objects.”

You will also need to be familiar with the compiler you will be using to compile your code. Two com-
pilers, Microsoft Visual C++ and GCC, are introduced later in this introduction. For other compilers,
refer to the documentation that came with your compiler.

WHAT THIS BOOK COVERS

Professional C++ uses an approach to C++ programming that will both increase the quality of your
code and improve your programming efficiency. You will find discussions on new C++20 features
throughout this fifth edition. These features are not just isolated to a few chapters or sections; instead,
examples have been updated to use new features when appropriate.

Professional C++ teaches you more than just the syntax and language features of C++. It also
emphasizes programming methodologies, reusable design patterns, and good programming style. The
Professional C++ methodology incorporates the entire software development process, from designing
and writing code to debugging and working in groups. This approach will enable you to master the
C++ language and its idiosyncrasies, as well as take advantage of its powerful capabilities for large-
scale software development.

Imagine users who have learned all of the syntax of C++ without seeing a single example of its use.
They know just enough to be dangerous! Without examples, they might assume that all code should
go in the main () function of the program or that all variables should be global—practices that are
generally not considered hallmarks of good programming.

Professional C++ programmers understand the correct way to use the language, in addition to the
syntax. They recognize the importance of good design, the theories of object-oriented programming,
and the best ways to use existing libraries. They have also developed an arsenal of useful code and
reusable ideas.

By reading and understanding this book, you will become a professional C++ programmer. You will
expand your knowledge of C++ to cover lesser known and often misunderstood language features.
You will gain an appreciation for object-oriented design and acquire top-notch debugging skills.
Perhaps most important, you will finish this book armed with a wealth of reusable ideas that you can
actually apply to your daily work.

There are many good reasons to make the effort to be a professional C++ programmer as opposed
to a programmer who knows C++. Understanding the true workings of the language will improve
the quality of your code. Learning about different programming methodologies and processes will

xlviii

INTRODUCTION

help you to work better with your team. Discovering reusable libraries and common design patterns
will improve your daily efficiency and help you stop reinventing the wheel. All of these lessons will
make you a better programmer and a more valuable employee. While this book can’t guarantee you a
promotion, it certainly won’t hurt.

HOW THIS BOOK IS STRUCTURED

This book is made up of five parts.

Part I, “Introduction to Professional C++,” begins with a crash course in C++ basics to ensure a foun-
dation of C++ knowledge. Following the crash course, Part I goes deeper into working with strings,
because strings are used extensively in most examples throughout the book. The last chapter of Part I
explores how to write readable C++ code.

Part II, “Professional C++ Software Design,” discusses C++ design methodologies. You will read about
the importance of design, the object-oriented methodology, and the importance of code reuse.

Part III, “C++ Coding the Professional Way,” provides a technical tour of C++ from the professional
point of view. You will read about the best ways to manage memory in C++, how to create reusable
classes, and how to leverage important language features such as inheritance. You will also learn
techniques for input and output, error handling, string localization, how to work with regular expres-
sions, and how to structure your code in reusable components called modules. You will read about
how to implement operator overloading, how to write templates, how to put restrictions on template
parameters using concepts, and how to unlock the power of lambda expressions and function objects.
This part also explains the C++ Standard Library, including containers, iterators, ranges, and algo-
rithms. You will also read about some additional libraries that are available in the standard, such as
the libraries to work with time, dates, time zones, random numbers, and the filesystem.

Part IV, “Mastering Advanced Features of C++,” demonstrates how you can get the most out of
C++. This part of the book exposes the mysteries of C++ and describes how to use some of its more
advanced features. You will read about how to customize and extend the C++ Standard Library to
your needs, advanced details on template programming, including template metaprogramming, and
how to use multithreading to take advantage of multiprocessor and multicore systems.

Part V, “C++ Software Engineering,” focuses on writing enterprise-quality software. You’ll read about
the engineering practices being used by programming organizations today; how to write efficient C++
code; software testing concepts, such as unit testing and regression testing; techniques used to debug
C++ programs; how to incorporate design techniques, frameworks, and conceptual object-oriented
design patterns into your own code; and solutions for cross-language and cross-platform code.

The book concludes with a useful chapter-by-chapter guide to succeeding in a C++ technical inter-
view, an annotated bibliography, a summary of the C++ header files available in the standard, and a
brief introduction to the Unified Modeling Language (UML).

This book is not a reference of every single class, method, and function available in C++. The book
C++17 Standard Library Quick Reference by Peter Van Weert and Marc Gregoire (Apress, 2019.

xlix

INTRODUCTION

ISBN: 978-1-4842-4923-9) is a condensed reference to all essential data structures, algorithms, and
functions provided by the C++ Standard Library up until the C++17 standard. Appendix B lists a
couple more references. Two excellent online references are:

» cppreference.com: You can use this reference online or download an offline version for use
when you are not connected to the Internet.

> cplusplus.com/reference/

When I refer to a “Standard Library Reference” in this book, I am referring to one of these detailed
C++ references.

The following are additional excellent online resources:

» github.com/isocpp/CppCoreGuidelines: The C++ Core Guidelines are a collaborative
effort led by Bjarne Stroustrup, inventor of the C++ language itself. They are the result of
many person-years of discussion and design across a number of organizations. The aim of
the guidelines is to help people to use modern C++ effectively. The guidelines are focused on
relatively higher-level issues, such as interfaces, resource management, memory management,
and concurrency.

> github.com/Microsoft/GSL: This is an implementation by Microsoft of the Guidelines
Support Library (GSL) containing functions and types that are suggested for use by the C++
Core Guidelines. It’s a header-only library.

isocpp.org/faq: This is a large collection of frequently asked C++ questions.

> stackoverflow.com: Search for answers to common programming questions, or ask your
own questions.

CONVENTIONS

To help you get the most from the text and keep track of what’s happening, a number of conventions
are used throughout this book.

WARNING Boxes like this one hold important, not-to-be-forgotten information
that is directly relevant to the surrounding text.

NOTE Tips, hints, tricks, and asides to the current discussion are placed in boxes
like this one.

INTRODUCTION

As for styles in the text:
Important words are italic when they are introduced.
Keyboard strokes are shown like this: Ctrl+A.
Filenames and code within the text are shown like so: monkey . cpp.
URLs are shown like this: wrox. com.
Code is presented in three different ways:

// Comments in code are shown like this.

In code examples, new and important code is highlighted like this.

Code that's less important in the present context or that has been shown before is
formatted like this.

Paragraphs or sections that are specific to the C++20 standard have a little C++20 icon on the left,
just as this paragraph does. C++11, C++14, and C++17 features are not marked with any icon.

WHAT YOU NEED TO USE THIS BOOK

All you need to use this book is a computer with a C++ compiler. This book focuses only on parts of
C++ that have been standardized, and not on vendor-specific compiler extensions.

Any C++ Compiler

You can use whichever C++ compiler you like. If you don’t have a C++ compiler yet, you can down-
load one for free. There are a lot of choices. For example, for Windows, you can download Microsoft
Visual Studio Community Edition, which is free and includes Visual C++. For Linux, you can use
GCC or Clang, which are also free.

The following two sections briefly explain how to use Visual C++ and GCC. Refer to the documenta-
tion that came with your compiler for more details.

COMPILERS AND C++20 FEATURE SUPPORT

This book discusses new features introduced with the C++20 standard. At the time
of this writing, no compilers were fully C++20 compliant yet. Some new features
were only supported by some compilers and not others, while other features were
not yet supported by any compiler. Compiler vendors are hard at work to catch up
with all new features, and ’'m sure it won’t take long before there will be fully
C++20-compliant compilers available. You can keep track of which compiler
supports which features at en.cppreference.com/w/cpp/compiler support.

INTRODUCTION

COMPILERS AND C++20 MODULE SUPPORT

At the time of this writing, there was no compiler available yet that fully supported
C++20 modules. There was experimental support in some of the compilers, but it
was still incomplete. This book uses modules everywhere. We did our best to make
sure all sample code would compile once compilers fully support modules, but since
we were not able to compile and test all examples, some errors might have crept in.
When you use a compiler with support for modules and you encounter problems
with any of the code samples, double-check the list of errata for the book at www
.wiley.com/go/proc++5e to see if it’s a known issue. If your compiler does not yet
support modules, you can convert modularized code to non-modularized code, as
explained briefly in Chapter 11, “Odds and Ends.”

Example: Microsoft Visual C++ 2019

First, you need to create a project. Start Visual C++ 2019, and on the welcome screen, click the Cre-
ate A New Project button. If the welcome screen is not shown, select File & New = Project. In the
Create A New Project dialog, search for the Console App project template with tags C++, Windows,
and Console, and click Next. Specify a name for the project and a location where to save it, and
click Create.

Once your new project is loaded, you can see a list of project files in the Solution Explorer. If this
docking window is not visible, select View = Solution Explorer. A newly created project will contain
a file called <projectnames.cpp. You can start writing your C++ code in that . cpp file, or if you
want to compile source code files from the downloadable source archive for this book, select the
<projectnames.cpp file in the Solution Explorer and delete it. You can add new files or existing files
to a project by right-clicking the project name in the Solution Explorer and then selecting Add = New
Item or Add = Existing Item.

At the time of this writing, Visual C++ 2019 did not yet automatically enable C++20 features. To
enable C++20 features, in the Solution Explorer window, right-click your project and click Properties.
In the Properties window, go to Configuration Properties = C/C++ = Language, and set the C++ Lan-
guage Standard option to ISO C++20 Standard or Preview - Features from the Latest C++ Working
Draft, whichever is available in your version of Visual C++. These options are accessible only if your
project contains at least one . cpp file.

Finally, select Build = Build Solution to compile your code. When it compiles without errors, you can
run it with Debug = Start Debugging.

Module Support

At the time of this writing, Visual C++ 2019 did not yet have full support for modules. Authoring and
consuming your own modules usually works just fine, but importing Standard Library headers such
as the following did not yet work out of the box:

import <iostream>;

INTRODUCTION

To make such import declarations work, for the time being you need to add a separate header file
to your project, for example called HeaderUnits.h, which contains an import declaration for every
Standard Library header you want to import. Here’s an example:

// HeaderUnits.h

#pragma once

import <iostreams;

import <vectors;

import <optionals;

import <utility>;

/]

Next, right-click the HeaderUnits.h file in the Solution Explorer and click Properties. In Configura-
tion Properties = General, set Item Type to C/C++ Compiler and click Apply. Next, in Configuration
Properties & C/C++ = Advanced, set Compile As to Compile as C++ Header Unit (/exportHeader)
and click OK.

When you now recompile your project, all import declarations that have a corresponding import
declaration in your HeaderUnits.h file should compile fine.

If you are using module implementation partitions (see Chapter 11), also known as internal parti-
tions, then right-click all files containing such implementation partitions, click Properties, go to
Configuration Properties & C/C++ => Advanced, and set the Compile As option to Compile as C++
Module Internal Partition (/internalPartition) and click OK.

Example: GCC

Create your source code files with any text editor you prefer and save them to a directory. To compile
your code, open a terminal and run the following command, specifying all your . cpp files that you
want to compile:

g++ -std=c++2a -0 <executable name> <sourcel.cpp> [source2.cpp ...]

The -std=c++2a option is required to tell GCC to enable C++20 support. This option will change to
-std=c++20 once GCC is fully C++20 compliant.

Module Support

At the time of this writing, GCC only had experimental support for modules through a special ver-
sion of GCC (branch devel/c++-modules). When you are using such a version of GCC, module sup-
port is enabled with the -fmodules-ts option, which might change to -fmodules in the future.

Unfortunately, import declarations of Standard Library headers such as the following were not yet
properly supported:

import <iostreams;

If that’s the case, simply replace such import declarations with corresponding #include directives:

#include <iostreams>

INTRODUCTION

For example, the AirlineTicket example from Chapter 1 uses modules. After having replaced the
imports for Standard Library headers with #include directives, you can compile the AirlineTicket
example by changing to the directory containing the code and running the following command:

g++ -std=c++2a -fmodules-ts -o AirlineTicket AirlineTicket.cppm AirlineTicket.cpp
AirlineTicketTest.cpp

When it compiles without errors, you can run it as follows:

./AirlineTicket

std::format Support

liv

Many code samples in this book use std: : format (), introduced in Chapter 1. At the time of this
writing, there was no compiler yet that had support for std: : format (). However, as long as your
compiler doesn’t support std: : format () yet, you can use the freely available {fmt} library as a
drop-in replacement:

1. Download the latest version of the {fmt} library from https://fmt .dev/ and extract the
code on your machine.

2. Copy the include/fmt and src directories to fmt and src subdirectories in your project
directory, and then add fmt/core.h, fmt/format .h, fmt/format-inl.h, and src/format
.cc to your project.

3. Add a file called format (no extension) to the root directory of your project and add the
following code to it:
#pragma once
#define FMT_HEADER_ ONLY

#include "fmt/format.h"
namespace std

using fmt::format;
using fmt::format_error;
using fmt::formatter;

}

4. Finally, add your project root directory (the directory containing the format file) as an addi-
tional include directory for your project. For example, in Visual C++, right click your project
in the Solution Explorer, click Properties, go to Configuration Properties & C/C++ > Gen-
eral, and add $(ProjectDir); to the front of the Additional Include Directories option.

NOTE Don’t forget to undo these steps once your compiler supports the standard
std: :format ().

INTRODUCTION

READER SUPPORT FOR THIS BOOK

The following sections describe different options to get support for this book.

Companion Download Files

As you work through the examples in this book, you may choose either to type in all the code manu-
ally or to use the source code files that accompany the book. However, I suggest you type in all the
code manually because it greatly benefits the learning process and your memory. All of the source
code used in this book is available for download at www.wiley.com/go/proc++5e.

NOTE Because many books have similar titles, you may find it easiest to search by
ISBN; for this book, the ISBN is 978-1-119-69540-0.

Once you’ve downloaded the code, just decompress it with your favorite decompression tool.

How to Contact the Publisher

If you believe you’ve found a mistake in this book, please bring it to our attention. At John Wiley &
Sons, we understand how important it is to provide our customers with accurate content, but even
with our best efforts an error may occur.

To submit your possible errata, please e-mail it to our Customer Service Team at wileysupporte
wiley.com with “Possible Book Errata Submission” as a subject line.

How to Contact the Author

If you have any questions while reading this book, the author can easily be reached at
marc.gregoireenuonsoft.com and will try to get back to youin a timely manner.

PART |
Introduction to Professional C++

» CHAPTER 1: A Crash Course in C++ and the Standard Library
» CHAPTER 2: Working with Strings and String Views

» CHAPTER 3: Coding with Style

Professional C++, Fifth Edition. Marc Gregoire.
© 2021 John Wiley & Sons, Inc. Published 2021 by John Wiley & Sons, Inc.

A Crash Course in C++
and the Standard Library

WHAT'S IN THIS CHAPTER?

> A brief overview of the most important parts and syntax of the
C++ language and the Standard Library

How to write a basic class
How scope resolution works
What uniform initialization is
The use of const

What pointers, references, exceptions, and type aliases are

Y Y Y VY Y Y

Basics of type inference

WILEY.COM DOWNLOADS FOR THIS CHAPTER

Please note that all the code examples for this chapter are available as a part of the chapter’s
code download on this book’s website at www.wiley.com/go/proc++5e on the
Download Code tab.

The goal of this chapter is to cover briefly the most important parts of C++ so that you have a
foundation of knowledge before embarking on the rest of this book. This chapter is not a
comprehensive lesson in the C++ programming language or the Standard Library. Certain basic
points, such as what a program is and what recursion is, are not covered. Esoteric points, such
as the definition of a union, or the volatile keyword, are also omitted. Certain parts of the C
language that are less relevant in C++ are also left out, as are parts of C++ that get in-depth
coverage in later chapters.

Professional C++, Fifth Edition. Marc Gregoire.
© 2021 John Wiley & Sons, Inc. Published 2021 by John Wiley & Sons, Inc.

4 | CHAPTER1 A CRASH COURSE IN C++ AND THE STANDARD LIBRARY

This chapter aims to cover the parts of C++ that programmers encounter every day. For example, if
you’re fairly new to C++ and don’t understand what a reference variable is, you’ll learn about that
kind of variable here. You’ll also learn the basics of how to use the functionality available in the
Standard Library, such as vector containers, optional values, string objects, and more. These
parts of the Standard Library are briefly introduced in Chapter 1 so that these modern constructs can
be used throughout examples in this book from the beginning.

If you already have significant experience with C++, skim this chapter to make sure that there aren’t
any fundamental parts of the language on which you need to brush up. If you’re new to C++, read
this chapter carefully and make sure you understand the examples. If you need additional introduc-
tory information, consult the titles listed in Appendix B.

C++ CRASH COURSE

The C++ language is often viewed as a “better C” or a “superset of C.” It was mainly designed to be
an object-oriented C, commonly called as “C with classes.” Later on, many of the annoyances and
rough edges of the C language were addressed as well. Because C++ is based on C, some of the syntax
you’ll see in this section will look familiar to you if you are an experienced C programmer. The two
languages certainly have their differences, though. As evidence, The C++ Programming Language

by C++ creator Bjarne Stroustrup (fourth edition; Addison-Wesley Professional, 2013) weighs in at
1,368 pages, while Kernighan and Ritchie’s The C Programming Language (second edition; Prentice
Hall, 1988) is a scant 274 pages. So, if you’re a C programmer, be on the lookout for new or unfamil-
iar syntax!

The Obligatory “Hello, World"” Program

In all its glory, the following code is the simplest C++ program you’re likely to encounter:

import <iostreams;

int main()

{

std::cout << "Hello, World!" << std::endl;
return 0;

}

This code, as you might expect, prints the message “Hello, World!” on the screen. It is a simple pro-
gram and unlikely to win any awards, but it does exhibit the following important concepts about the
format of a C++ program:

> Comments

> Importing modules
» Themain() function
>

I/0 streams

C++ Crash Course | 5

These concepts are briefly explained in the following sections (along with header files as an alterna-
tive for modules, in the event that your compiler does not support C++20 modules yet).

Comments

The first line of the program is a comment, a message that exists for the programmer only and is
ignored by the compiler. In C++, there are two ways to delineate a comment. In the preceding and fol-
lowing examples, two slashes indicate that whatever follows on that line is a comment:

The same behavior (this is to say, none) would be achieved by using a multiline comment. Multiline
comments start with /* and end with */. The following code shows a multiline comment in action
(or, more appropriately, inaction):

Comments are covered in detail in Chapter 3, “Coding with Style.”

Importing Modules

One of the bigger new features of C++20 is support for modules, replacing the old mechanism of
so-called header files. If you want to use functionality from a module, you need to import that mod-
ule. This is done with an import declaration. The first line of the “Hello, World” application imports
the module called <iostreams, which declares the input and output mechanisms provided by C++:

import <iostreams;

If the program did not import that module, it would be unable to perform its only task of out-
putting text.

Since this is a book about C++20, this book uses modules everywhere. All functionality provided by
the C++ Standard Library is provided in well-defined modules. Your own custom types and func-
tionality can also be provided through self-written modules, as you will learn throughout this book.
If your compiler does not yet support modules, simply replace import declarations with the proper
#include preprocessor directives, discussed in the next section.

Preprocessor Directives

If your compiler does not yet support C++20 modules, then instead of an import declaration such as
import <iostreams;,you need to write the following preprocessor directive:

#include <iostream>

In short, building a C++ program is a three-step process. First, the code is run through a preproces-
sor, which recognizes meta-information about the code. Next, the code is compiled, or translated
into machine-readable object files. Finally, the individual object files are linked together into a single
application.

6 | CHAPTER1 A CRASH COURSE IN C++ AND THE STANDARD LIBRARY

Directives aimed at the preprocessor start with the # character, as in the line #include <iostreams
in the previous example. In this case, an #include directive tells the preprocessor to take everything
from the <iostreams header file and make it available to the current file. The <iostream> header
declares the input and output mechanisms provided by C++.

The most common use of header files is to declare functions that will be defined elsewhere. A function
declaration tells the compiler how a function is called, declaring the number and types of parameters,
and the function return type. A definition contains the actual code for the function. Before the intro-
duction of modules in C++20, declarations usually went into header files, typically with extension .h,
while definitions usually went into source files, typically with extension .cpp. With modules, it is

no longer necessary to split declarations from definitions, although, as you will see, it is still possi-

ble to do so.

NOTE [n C, the names of the Standard Library header files usually end in .n,
such as <stdio.h>, and namespaces are not used.

In C++, the .h suffix is omitted for Standard Library beaders, such as
<iostreams>, and everything is defined in the std namespace or a subnamespace
Of std.

The Standard Library beaders from C still exist in C++ but in two versions.

» The recommended versions without a .h suffix but
with a c prefix. These versions put everything in the
std namespace (for example, <cstdios).

» The old versions with the .h suffix. These versions do

not use namespaces (for example, <stdio.h>).

Note that these C Standard Library headers are not guaranteed to be importable
with an import declaration. To be safe, use #include <cxyzs instead of import

<CXYyZ>;.

The following table shows some of the most common preprocessor directives:

PREPROCESSOR DIRECTIVE ~ FUNCTIONALITY COMMON USES

#include [file] The specified file is inserted Almost always used to include
into the code at the location of ~ header files so that code can
the directive. make use of functionality defined

elsewhere.

C++ Crash Course

7

PREPROCESSOR DIRECTIVE

#define [id] [valuel
#ifdef [id]

#endif

#ifndef [id]

#endif

#pragma [xyz]

FUNCTIONALITY

Every occurrence of the
specified identifier is replaced
with the specified value.

Code within the ifdef (“if
defined”) or ifndef ("if

not defined”) blocks are
conditionally included or
omitted based on whether the
specified identifier has been
defined with #define.

xyz is compiler dependent.
Most compilers support a
#pragma to display a warning
or error if the directive is
reached during preprocessing.

COMMON USES

Often used in C to define a
constant value or a macro. C++
provides better mechanisms

for constants and most types

of macros. Macros can be
dangerous, so use them
cautiously. See Chapter 11,”Odds
and Ends,"” for details.

Used most frequently to protect
against circular includes. Each
header file starts with an #ifndef
checking the absence of an
identifier, followed by a #define
directive to define that identifier.
The header file ends with an
#endif. This prevents the file
from being included multiple
times; see the example after

this table.

See the example after this table.

One example of using preprocessor directives is to avoid multiple includes, as shown here:

#ifndef MYHEADER H
#define MYHEADER H

#endif

If your compiler supports the #pragma once directive, and most modern compilers do, then this can

be rewritten as follows:

#pragma once

Chapter 11 discusses this in a bit more detail. But, as mentioned, this book uses C++20 modules

instead of old-style header files.

8 | CHAPTER1 A CRASH COURSE IN C++ AND THE STANDARD LIBRARY

The main() Function

main () is, of course, where the program starts. The return type of main () is an int, indicating the
result status of the program. You can omit any explicit return statements in main (), in which case
zero is returned automatically. The main () function either takes no parameters or takes two param-
eters as follows:

int main(int argc, char* argv([])

argc gives the number of arguments passed to the program, and argv contains those arguments.
Note that argv [0] can be the program name, but it might as well be an empty string, so do not rely
on it; instead, use platform-specific functionality to retrieve the program name. The important thing
to remember is that the actual arguments start at index 1.

I/O Streams

I/O streams are covered in depth in Chapter 13, “Demystifying C++ I/O,” but the basics of output
and input are simple. Think of an output stream as a laundry chute for data. Anything you toss into
it will be output appropriately. std: : cout is the chute corresponding to the user console, or standard
out. There are other chutes, including std: : cerr, which outputs to the error console. The << opera-
tor tosses data down the chute. In the preceding example, a quoted string of text is sent to standard
out. Output streams allow multiple types of data to be sent down the stream sequentially on a single
line of code. The following code outputs text, followed by a number, followed by more text:

std::cout << "There are " << 219 << " ways I love you." << std::endl;

Starting with C++20, though, it is recommended to use std: : format (), defined in <format>, to
perform string formatting. The format () function is discussed in detail in Chapter 2, “Working with
Strings and String Views,” but in its most basic form it can be used to rewrite the previous statement
as follows:

std::cout << std::format ("There are {} ways I love you.", 219) << std::endl;

std: :endl represents an end-of-line sequence. When the output stream encounters std: : endl, it
will output everything that has been sent down the chute so far and move to the next line. An alter-
nate way of representing the end of a line is by using the \n character. The \n character is an escape
sequence, which refers to a new-line character. Escape sequences can be used within any quoted string
of text. The following table shows the most common ones:

ESCAPE SEQUENCE ~ MEANING

\n New line: moves the cursor to the beginning of the next line

\r Carriage return: moves the cursor to the beginning of the current line, but
does not advance to the next line

\& Tab
\\ Backslash character

\" Quotation mark

C++ Crash Course | 9

WARNING Keep in mind that endl inserts a new line into the stream and
flushes everything currently in its buffers down the chute. Overusing endl,
for example in a loop, is not recommended because it will have a performance
impact. On the other hand, inserting \n into the stream also inserts a new line
but does not automatically flush the buffers.

Streams can also be used to accept input from the user. The simplest way to do this is to use the >>
operator with an input stream. The std: : cin input stream accepts keyboard input from the user.
Here is an example:

int value;
std::cin >> value;

User input can be tricky because you can never know what kind of data the user will enter. See Chap-
ter 13 for a full explanation of how to use input streams.

If you’re new to C++ and coming from a C background, you’re probably wondering what has been
done with the trusty old printf () and scanf () functions. While these functions can still be used
in C++, I strongly recommend using format () and the streams library instead, mainly because the
printf () and scanf () family of functions do not provide any type safety.

Namespaces

Namespaces address the problem of naming conflicts between different pieces of code. For example,
you might be writing some code that has a function called foo (). One day, you decide to start using
a third-party library, which also has a foo () function. The compiler has no way of knowing which
version of foo () you are referring to within your code. You can’t change the library’s function name,
and it would be a big pain to change your own.

Namespaces come to the rescue in such scenarios because you can define the context in which names
are defined. To place code in a namespace, enclose it within a namespace block. Here’s an example:

namespace mycode {
void foo()

{
}

std::cout << "foo() called in the mycode namespace" << std::endl;

}

By placing your version of foo () in the namespace mycode, you are isolating it from the foo () func-
tion provided by the third-party library. To call the namespace-enabled version of foo (), prepend the
namespace onto the function name by using : :, also called the scope resolution operator, as follows:

mycode: :foo () ;
Any code that falls within a mycode namespace block can call other code within the same namespace

without explicitly prepending the namespace. This implicit namespace is useful in making the code
more readable. You can also avoid prepending of namespaces with a using directive. This directive

10

CHAPTER 1 A CRASH COURSE IN C++ AND THE STANDARD LIBRARY

tells the compiler that the subsequent code is making use of names in the specified namespace. The
namespace is thus implied for the code that follows:

using namespace mycode;

int main()

{
}

A single source file can contain multiple using directives, but beware of overusing this shortcut. In
the extreme case, if you declare that you’re using every namespace known to humanity, you’re effec-
tively eliminating namespaces entirely! Name conflicts will again result if you are using two names-
paces that contain the same names. It is also important to know in which namespace your code is
operating so that you don’t end up accidentally calling the wrong version of a function.

foo();

You’ve seen the namespace syntax before—you used it in the “Hello, World” program, where cout
and end1 are names defined in the std namespace. You could have written “Hello, World” with the
using directive as shown here:

import <iostreams;
using namespace std;

int main()

{
}

cout << "Hello, World!" << endl;

NOTE Most code snippets in this book assume a using directive for the std
namespace so that everything from the C++ Standard Library can be used
without the need to qualify it with std::.

A using declaration can be used to refer to a particular item within a namespace. For example, if the
only part of the std namespace that you want to use unqualified is cout, you can use the following
using declaration:

using std::cout;
Subsequent code can refer to cout without prepending the namespace, but other items in the std
namespace still need to be explicit:

using std::cout;
cout << "Hello, World!" << std::endl;

C++ Crash Course |

11

WARNING Never put a using directive or using declaration in a header file at
global scope; otherwise, you force it on everyone who includes your header file.
Putting it in a smaller scope, for instance at namespace or class scope, is OK,
even in a beader. It’s also perfectly fine to put a using directive or declaration in
a module interface file, as long as you don’t export it. However, this book always
fully qualifies all types in module interface files, as I think it makes it easier to
understand an interface.

Nested Namespace

A nested namespace is a namespace inside another one. Each namespace is separated by a double
colon. Here’s an example:

namespace MyLibraries::Networking::FTP {

}

This compact syntax was not available before C++17 and you had to resort to the following:

namespace MyLibraries {
namespace Networking {
namespace FTP {

}

Namespace Alias

A namespace alias can be used to give a new and possibly shorter name to another namespace. Here’s
an example:

namespace MyFTP = MyLibraries::Networking::FTP;

Literals

Literals are used to write numbers or strings in your code. C++ supports a few standard literals.
Numbers can be specified with the following literals (the examples represent the same number, 123):

> Decimal literal, 123

» Octal literal, 0173

» Hexadecimal literal, 0x7B
>

Binary literal, ob1111011

12 | CHAPTER1 A CRASH COURSE IN C++ AND THE STANDARD LIBRARY

Other examples of literals in C++ include the following:
> A floating-point value (such as 3.14f)
A double floating-point value (such as 3.14)
A hexadecimal floating-point literal (such as 0x3.ABCp-10 and 0Xb.cp121)

A single character (such as 'a')

Y V VY Y

A zero-terminated array of characters (such as "character array")

It is also possible to define your own type of literals, which is an advanced feature explained in
Chapter 15, “Overloading C++ Operators.”

Digits separators can be used in numeric literals. A digits separator is a single quote character.
For example:

> 23'456'789

> 0.123'456f

Variables

In C++, variables can be declared just about anywhere in your code and can be used anywhere in the
current block below the line where they are declared. Variables can be declared without being given
a value. These uninitialized variables generally end up with a semi-random value based on whatever
is in memory at that time, and they are therefore the source of countless bugs. Variables in C++ can
alternatively be assigned an initial value when they are declared. The code that follows shows both
flavors of variable declaration, both using ints, which represent integer values:

int uninitializedInt;

int initializedInt { 7 };

cout << format("{} is a random value", uninitializedInt) << endl;

cout << format ("{} was assigned an initial value", initializedInt) << endl;

NOTE Most compilers will issue a warning or an error when code is using
uninitialized variables. Some compilers will generate code that will report an
error at run time.

The initializedInt variable is initialized using the uniform initialization syntax. You can also use
the following assignment syntax for initializing variables:

int initializedInt = 7;

Uniform initialization was introduced with the C++11 standard in 2011. It is recommended to use
uniform initialization instead of the old assignment syntax, so that’s the syntax used in this book.
The section “Uniform Initialization” later in this chapter goes deeper in on the benefits and why it is
recommended.

C++ Crash Course

13

Variables in C++ are strongly typed; that is, they always have a specific type. C++ comes with a
whole set of built-in types that you can use out of the box. The following table shows the most

common types:

TYPE

(signed) int

signed

(signed) short (int)

(signed) long (int)

(signed) long long (int)

unsigned (int)

unsigned short (int)

unsigned long (int)

unsigned long long (int)

float

double

long double

DESCRIPTION

Positive and
negative integers;
the range depends
on the compiler
(usually 4 bytes)

Short integer
(usually 2 bytes)

Long integer
(usually 4 bytes)

Long long integer;
the range depends
on the compiler
but is at least the
same as for long
(usually 8 bytes)

Limits the preceding
types to values >= 0

Floating-
point numbers

Double precision
numbers; precision
is at least the same
as for float

Long double
precision numbers;
precision is at
least the same as
for double

USAGE
int i {—7};
signed int i {-6};

signed i {-5};

short s {13};
short int s {14};
signed short s {15};

signed short int s {16};

long 1 {-7L};

long long 11 {14LL};

unsigned int i {2U};
unsigned j {5U};

unsigned short s {23U};
unsigned long 1 {5400UL};

unsigned long long 11 {140ULL};

float £ {7.2f};

double d {7.2};

long double d {16.98L};

continues

14 | CHAPTER1 A CRASH COURSE IN C++ AND THE STANDARD LIBRARY

TABLE (continued)
TYPE DESCRIPTION USAGE
char A single character char ch {'m'};
unsigned char
signed char

chars_t (since C++20) A single n-bit UTF- charg8 t c8 {us'm'};

charlé t n-encoded Unicode charlé t cl6 {u'm'};
character where n

char32 t char32 t c¢32 {U'm';;
- can be 8, 16, or 32 - {)
wchar t A single wide wchar t w {L'm'};
character; the
size depends on
the compiler
bool A Boolean type bool b {true};

that can have one
of two values:
true or false

Type char is a different type compared to both the signed char and unsigned char types. It
should be used only to represent characters. Depending on your compiler, it can be either signed or
unsigned, so you should not rely on it being signed or unsigned.

Related to char, <cstddef> provides the std: :byte type representing a single byte. Before C++17,
a char or unsigned char was used to represent a byte, but those types make it look like you are
working with characters. std: :byte on the other hand clearly states your intention, that is, a single
byte of memory. A byte can be initialized as follows:

std::byte b { 42 };

NOTE C++ does not provide a basic string type. However, a standard imple-
mentation of a string is provided as part of the Standard Library, as briefly
described later in this chapter and in detail in Chapter 2.

Numerical Limits

C++ provides a standard way to obtain information about numeric limits, such as the maximum pos-
sible value for an integer on the current platform. In C, you could access #defines, such as INT MAX.
While those are still available in C++, it’s recommended to use the std: :numeric limits class tem-
plate defined in <1imitss. Class templates are discussed later in this book, but those details are not
important to understand how to use numeric_limits. For now, you just need to know that, since it
is a class template, you have to specify the type you are interested in between a set of angle brackets.

C++ Crash Course | 15

Here are a few examples:

cout << "int:\n";

cout << format ("Max int value: {}\n”, numeric limits<ints>::max());

cout << format ("Min int value: {}\n", numeric_limits<ints>::min());

cout << format ("Lowest int value: {}\n", numeric_limits<int>::lowest());

cout << "\ndouble:\n";

cout << format ("Max double value: {}\n", numeric_limits<double>::max());

cout << format ("Min double value: {}\n", numeric_limits<doubles::min());

cout << format ("Lowest double value: {}\n", numeric limits<double>::lowest());

The output of this code snippet on my system is as follows:

int:

Max int value: 2147483647
Min int value: -2147483648
Lowest int value: -2147483648

double:

Max double value: 1.79769e+308
Min double value: 2.22507e-308
Lowest double value: -1.79769e+308

Note the differences between min () and lowest (). For an integer, the minimum value equals the
lowest value. However, for floating-point types, the minimum value is the smallest positive value
that can be represented, while the lowest value is the most negative value representable, which
equals -max ().

Zero Initialization

Variables can be initialized to zero with a {0} uniform initializer. The o0 here is optional. A uniform
initializer of a set of empty curly brackets, {}, is called a zero initializer. Zero initialization initializes
primitive integer types (such as char, int, and so on) to zero, primitive floating-point types to 0.0,
pointer types to nullptr, and constructs objects with the default constructor (discussed later).

Here is an example of zero initializing a £loat and an int:

float myFloat {};
int myInt {};

Casting

Variables can be converted to other types by casting them. For example, a f1oat can be cast to

an int. C++ provides three ways to explicitly change the type of a variable. The first method is a
holdover from C; it is not recommended but, unfortunately, still commonly used. The second method
is rarely used. The third method is the most verbose but is also the cleanest one and is therefore
recommended.

float myFloat { 3.14f
int i1 { (int)myFloat
int i2 { int (myFloat) };

int i3 { static_cast<int>(myFloat) };

bi
bi

’

16

CHAPTER 1 A CRASH COURSE IN C++ AND THE STANDARD LIBRARY

The resulting integer will be the value of the floating-point number with the fractional part truncated.
Chapter 10, “Discovering Inheritance Techniques,” describes the different casting methods in more
detail. In some contexts, variables can be automatically cast, or coerced. For example, a short can be
automatically converted into a 1ong because a 1ong represents the same type of data with at least the
same precision:

long somelong { someShort };

When automatically casting variables, you need to be aware of the potential loss of data. For exam-
ple, casting a £loat to an int throws away the fractional part of the number, and the resulting
integer can even be completely wrong if the floating-point value represents a number bigger than the
maximum representable integer value. Most compilers will issue a warning or even an error if you
assign a float to an int without an explicit cast. If you are certain that the left-hand side type is
fully compatible with the right-hand side type, it’s OK to cast implicitly.

Floating-Point Numbers

Working with floating-point numbers can be more complicated than working with integral types. You
need to keep a few things in mind. Calculations with floating-point values that are orders of magni-
tude different can cause errors. Furthermore, calculating the difference between two floating-point
numbers that are almost identical will cause the loss of precision. Also keep in mind that a lot of deci-
mal values cannot be represented exactly as floating-point numbers. However, going deeper in on the
numerical problems with using floating-point numbers and how to write numerical stable floating-
point algorithms is outside the scope of this book, as these topics warrant a whole book on their own.

There are several special floating-point numbers:

> +/-infinity: Represents positive and negative infinity, for example the result of dividing a
non-zero number by zero

> NaN: Abbreviation for not-a-number, for example the result of dividing zero by zero, a
mathematically undefined result
To check whether a given floating-point number is not-a-number, use std: : isnan (). To check for

infinity, use std: : isinf (). Both functions are defined in <cmaths>.

To obtain one of these special floating-point values, use numeric_limits, for example numeric_
limits<double>::infinity.

Operators

What good is a variable if you don’t have a way to change it? The following table shows the most
common operators used in C++ and sample code that makes use of them. Note that operators in C++
can be binary (operate on two expressions), unary (operate on a single expression), or even ternary
(operate on three expressions). There is only one ternary operator in C++, and it is explained in the
section “The Conditional Operator” later in this chapter. Furthermore, Chapter 15, “Overloading
C++ Operators,” is reserved for operators and explains how you can add support for these operators
to your own custom types.

C++ Crash Course | 17

OPERATOR DESCRIPTION USAGE
= Binary operator to assign the value on the right to the int i;
expression on the left. i= 3
int j;
J = 1;
! Unary operator to complement the true/false (non-0/0) bool b {!true};
status of an expression. bool b2 {1b};
+ Binary operator for addition. int 1 {3 + 2};

int j {1 + 5};
int k {i + 3};

- Binary operators for subtraction, multiplication, int 1 {5 - 1};
* and division. int § {5 * 2};
/ int k {3 / i};
% Binary operator for the remainder of a division int rem {5 % 2};

operation. This is also referred to as the mod or modulo
operator. For example: 5%2=1.

++ Unary operator to increment an expression by 1. If the i+
operator occurs after the expression, or post-increment, B
the result of the expression is the unincremented value.
If the operator occurs before the expression, or pre-
increment, the result of the expression is the new value.
-- Unary operator to decrement an expression by 1. i--;
--1;
+= Shorthand syntax for: i+= 3;
-= 1= i + 3 i-=5;
e i=4d = 39 i *= j;
/= =143 1 /= 3
%= i=1/73; i%=3;
i=1i%9;
& Takes the raw bits of one expression and performs a i =3 &k;
e bitwise AND with the other expression. i &= k;
\ Takes the raw bits of one expression and performs a i=3 | k;
|- bitwise OR with the other expression. i |= k;

continues

18 | CHAPTER1 A CRASH COURSE IN C++ AND THE STANDARD LIBRARY

TABLE (continued)

OPERATOR DESCRIPTION USAGE

<< Takes the raw bits of an expression and “shifts” each bit i =1 << 1;
o left (<<) or right (>>) the specified number of places. P21 s> 4;
<<= i <<= 1;
>>= 1 >>= 4;

A Performs a bitwise exclusive or, also called XOR i=41 " 3;
A_ operation, on two expressions. i A= 5

The following program shows the most common variable types and operators in action. If you are
unsure about how variables and operators work, try to figure out what the output of this program
will be, and then run it to confirm your answer.

int somelnteger { 256 };
short someShort;

long somelong;

float someFloat;

double someDouble;

someInteger++;

somelnteger *= 2;

someShort = static_cast<short>(somelnteger) ;

someLong = someShort * 10000;

someFloat = someLong + 0.785f;

someDouble = static_cast<doubles> (someFloat) / 100000;
cout << someDouble << endl;

The C++ compiler has a recipe for the order in which expressions are evaluated. If you have a compli-
cated line of code with many operators, the order of execution may not be obvious. For that reason,
it’s probably better to break up a complicated expression into several smaller expressions, or explic-
itly group subexpressions by using parentheses. For example, the following line of code is confusing
unless you happen to know the exact evaluation order of the operators:

int i { 34 +8*2+21/7%2};
Adding parentheses makes it clear which operations are happening first:

int i {34 + (8 *2) + ((21 /7) $2) };
For those of you playing along at home, both approaches are equivalent and end up with i equal to
51.If you assumed that C++ evaluated expressions from left to right, your answer would have been
1. C++ evaluates /, *, and ¢ first (in left-to-right order), followed by addition and subtraction, then

bitwise operators. Parentheses let you explicitly tell the compiler that a certain operation should be
evaluated separately.

Formally, the evaluation order of operators is expressed by their so-called precedence. Operators with
a higher precedence are executed before operators with a lower precedence. The following list shows

C++ Crash Course | 19

the precedence of the operators from the previous table. Operators higher in the list have higher
precedence and hence are executed before operators lower in the list.

> 4+ -- (postfix)

> 1 4+ -- (prefix)

> * /g

) S

) << >>

> &

> A

> |

> = += -= *= [= %= &= |= "= <<= >>=

This is only a selection of the available C++ operators. Chapter 15 gives a complete overview of all
available operators, including their precedence.

Enumerated Types

An integer really represents a value within a sequence—the sequence of numbers. Enumerated types
let you define your own sequences so that you can declare variables with values in that sequence. For
example, in a chess program, you could represent each piece as an int, with constants for the piece
types, as shown in the following code. The integers representing the types are marked const to indi-
cate that they can never change.

const int PieceTypeKing { 0 };

const int PieceTypeQueen { 1 };

const int PieceTypeRook { }i
const int PieceTypePawn { }i

2

3
int myPiece { PieceTypeKing };

This representation can become dangerous. Since a piece is just an int, what would happen if another

programmer added code to increment the value of a piece? By adding 1, a king becomes a queen,

which really makes no sense. Worse still, someone could come in and give a piece a value of -1, which

has no corresponding constant.

Strongly typed enumeration types solve these problems by tightly defining the range of values for a
variable. The following code declares a new type, PieceType, which has four possible values, repre-
senting four of the chess pieces:

enum class PieceType { King, Queen, Rook, Pawn };
This new type can be used as follows:

PieceType piece { PieceType::King };

20

CHAPTER 1 A CRASH COURSE IN C++ AND THE STANDARD LIBRARY

Behind the scenes, an enumerated type is just an integer value. The underlying values for King, Queen,
Rook, and Pawn are 0, 1, 2, and 3, respectively. It’s possible to specify the integer values for members
of an enumeration type yourself. The syntax is as follows:

enum class PieceType

{

King = 1,
Queen,
Rook = 10,
Pawn

}i

If you do not assign a value to an enumeration member, the compiler automatically assigns it a value
that is the previous enumeration member incremented by 1. If you do not assign a value to the first
enumeration member, the compiler assigns it the value 0. So, in this example, King has the integer
value 1, Queen has the value 2 assigned by the compiler, Rook has the value 10, and Pawn has the
value 11 assigned automatically by the compiler.

Even though enumeration values are internally represented by integer values, they are not automati-
cally converted to integers, which means the following is illegal:

if (PieceType::Queen == 2) {...}

By default, the underlying type of an enumeration value is an integer, but this can be changed
as follows:

enum class PieceType : unsigned long

{

King = 1,
Queen,
Rook = 10,
Pawn

bi

For an enum class, the enumeration value names are not automatically exported to the enclosing
scope. This means they cannot clash with other names already defined in the parent scope. As a result,
different strongly typed enumerations can have enumeration values with the same name. For exam-
ple, the following two enumerations are perfectly legal:

enum class State { Unknown, Started, Finished };
enum class Error { None, BadInput, DiskFull, Unknown};

A big benefit of this is that you can give short names to the enumeration values, for example,
Unknown instead of UnknownState and UnknownError.

However, it also means that you either have to fully qualify enumeration values or use a using enum
or using declaration, as described next.

Starting with C++20, you can use a using enum declaration to avoid having to fully qualify enumera-
tion values. Here’s an example:

using enum PieceType;
PieceType piece { King };

C++ Crash Course | 21

Additionally, a using declaration can be used if you want to avoid having to fully qualify specific
enumeration values. For example, in the following code snippet, Xing can be used without full quali-
fication, but other enumeration values still need to be fully qualified:

using PieceType: :King;

PieceType piece { King };

piece = PieceType: :Queen;

WARNING Even though C++20 allows you to avoid fully qualifying enumera-
tion values, [recommend using this feature judiciously. At least try to minimize
the scope of the using enum or using declaration because if this scope is too big,
you risk reintroducing name clashes. The section on the switch statement later
in this chapter shows a properly scoped use of a using enum declaration.

Old-Style Enumerated Types

New code should always use the strongly typed enumerations explained in the previous section. How-
ever, in legacy code bases, you might find old-style enumerations: enum instead of enum class. Here
is the previous PieceType defined as an old-style enumeration:

enum PieceType { PieceTypeKing, PieceTypeQueen, PieceTypeRook, PieceTypePawn };

The values of such old-style enumerations are exported to the enclosing scope. This means that in
the parent scope you can use the names of the enumeration values without fully qualifying them,
for example:

PieceType myPiece { PieceTypeQueen };

This of course also means that they can clash with other names already defined in the parent scope
resulting in a compilation error. Here’s an example:

bool ok { false };
enum Status { error, ok };

This code snippet does not compile because the name ok is first defined to be a Boolean variable, and
later the same name is used as the name of an enumeration value. Visual C++ 2019 emits the fol-
lowing error:

error C2365: 'ok': redefinition; previous definition was 'data variable'

Hence, you should make sure such old-style enumerations have enumeration values with unique
names, such as PieceTypeQueen, instead of simply Queen.

These old-style enumerations are not strongly typed, meaning they are not type safe. They are always
interpreted as integers, and thus you can inadvertently compare enumeration values from com-
pletely different enumeration types, or pass an enumeration value of the wrong enumeration type to
a function.

WARNING Always use strongly typed enum class enumerations instead of the
old-style type-unsafe enum enumerations.

22 | CHAPTER1 A CRASH COURSE IN C++ AND THE STANDARD LIBRARY

Structs

Structs let you encapsulate one or more existing types into a new type. The classic example of a struct
is a database record. If you are building a personnel system to keep track of employee information,
you might want to store the first initial, last initial, employee number, and salary for each employee. A
struct that contains all of this information is shown in the employee . cppm module interface file that
follows. This is your first self-written module in this book. Module interface files usually have .cppm
as extension.! The first line in the module interface file is a module declaration and states that this file
is defining a module called employee. Furthermore, a module needs to explicitly state what it exporis,
i.e., what will be visible when somewhere else this module is imported. Exporting a type from a mod-
ule is done with the export keyword in front of, for example, a struct.

export module employee;

export struct Employee {
char firstInitial;
char lastInitial;
int employeeNumber;
int salary;

}i

A variable declared with type Employee has all of these fields built in. The individual fields of a struct
can be accessed by using the . operator. The example that follows creates and then outputs the record
for an employee. Note that when importing custom modules, angle brackets must not be used.

import <iostreams;
import <formats;
import employee;

using namespace std;

int main()

{

Employee anEmployee;
anEmployee.firstInitial = 'J';
anEmployee.lastInitial = 'D';
anEmployee.employeeNumber = 42;
anEmployee.salary = 80000;

cout << format ("Employee: {}{}", anEmployee.firstInitial,
anEmployee.lastInitial) << endl;

cout << format ("Number: {}", anEmployee.employeeNumber) << endl;

cout << format("Salary: ${}", anEmployee.salary) << endl;

1 At the time of this writing, there was no standardized naming for module interface files. However, most compilers sup-
port the . cppm (C++ module) extension, so that’s what this book uses. Check the documentation of your compiler to
learn which extension to use.

C++ Crash Course | 23

Conditional Statements

Conditional statements let you execute code based on whether something is true. As shown in the fol-
lowing sections, there are two main types of conditional statements in C++: if/else statements and
switch statements.

if/else Statements

The most common conditional statement is the if statement, which can be accompanied by an else.
If the condition given inside the if statement is true, the line or block of code is executed. If not,
execution continues with the else case if present or with the code following the conditional state-
ment. The following code shows a cascading if statement, a fancy way of saying that the if statement
has an else statement that in turn has another if statement, and so on:

if (1> 4) |
} else if (i > 2) {
} else {

}

The expression between the parentheses of an if statement must be a Boolean value or evaluate to
a Boolean value. A value of 0 evaluates to false, while any non-zero value evaluates to true. For
example, if (0) is equivalent to if (false). Logical evaluation operators, described later, provide
ways of evaluating expressions to result in a true or false Boolean value.

Initializers for if Statements
C++ allows you to include an initializer inside an if statement using the following syntax:
if (<initializer>; <conditional expressions) {
<if_body>
} else if (<else if expressions) {
<else if body>
} else {
<else_body>
}

Any variable introduced in the <initializers is available only in the <conditional expressions,
in the <if bodys>,in all <else if expressionss and <else if bodyss, and in the <else bodys.
Such variables are not available outside the if statement.

It is too early in this book to give a useful example of this feature, but here is an example of how it
could be employed:

if (Employee employee { getEmployee() }; employee.salary > 1000) { ... }

In this example, the initializer gets an employee, and the condition checks whether the salary of the
retrieved employee exceeds 1000. Only in that case is the body of the if statement executed. More
concrete examples will be given throughout this book.

24 | CHAPTER1 A CRASH COURSE IN C++ AND THE STANDARD LIBRARY

switch Statements

The switch statement is an alternate syntax for performing actions based on the value of an expres-
sion. In C++, the expression of a switch statement must be of an integral type, a type convertible

to an integral type, an enumerated type, or a strongly typed enumeration, and must be compared to
constants. Each constant value represents a “case.” If the expression matches the case, the subsequent
lines of code are executed until a break statement is reached. You can also provide a default case,
which is matched if none of the other cases matches. The following pseudocode shows a common use
of the switch statement:

switch (menultem) {
case OpenMenultem:

break;
case SaveMenultem:

break;
default:

break;

}

A switch statement can always be converted into if/else statements. The previous switch state-
ment can be converted as follows:

if (menultem == OpenMenultem) {
} else if (menultem == SaveMenultem) {
} else {

}

switch statements are generally used when you want to do something based on more than one
specific value of an expression, as opposed to some test on the expression. In such a case, the switch
statement avoids cascading if/else statements. If you need to inspect only one value, an if or
if/else statement is fine.

Once a case expression matching the switch condition is found, all statements that follow it are
executed until a break statement is reached. This execution continues even if another case expression
is encountered, which is called fallthrough. In the following example, a single set of statements is exe-
cuted for both Mode: : Standard and Default. If mode is Custom, value is first changed from 42 to
84, after which the same set of statements as for Default and Standard is executed. In other words,
the custom case falls through to the standard/Default case. This code snippet also shows a nice
example of using a properly scoped using enum declaration to avoid having to write Mode : : Custom,
Mode::Standard,andiﬂode::Defaultforthe(ﬁﬂfrentcaselabeb.

enum class Mode { Default, Custom, Standard };

int value { 42 };
Mode mode { }i
switch (mode) {

using enum Mode;

C++ Crash Course | 25

case Custom:
value = 84;

case Standard:

case Default:

break;

}

Fallthrough can be a source of bugs, for example if you accidentally forget a break statement.
Because of this, compilers might give a warning if a fallthrough is detected in a switch statement,
unless the case is empty. In the previous example, no compiler will give a warning that the stand-
ard case falls through to the Default case, but a compiler might give a warning for the custom case
fallthrough. To prevent this warning, you can tell the compiler that a fallthrough is intentional using
the [[fallthrough]] attribute as follows:

switch (mode) ({
using enum Mode;

case Custom:
value = 84;
[[fallthroughl];
case Standard:
case Default:

break;

}

Initializers for switch Statements
Just as for if statements, you can use initializers with switch statements. The syntax is as follows:
switch (<initializer>; <expression>) { <body> }

Any variables introduced in the <initializers are available only in the <expressions> and in the
<body>. They are not available outside the switch statement.

The Conditional Operator

C++ has one operator that takes three arguments, known as a ternary operator. It is used as a short-
hand conditional expression of the form “if [something]| then [perform action], otherwise [perform
some other action].” The conditional operator is represented by a ? and a :. The following code
outputs “yes” if the variable 1 is greater than 2, and “no” otherwise:

cout << ((i > 2) ? "yes" : "no");
The parentheses around i > 2 are optional, so the following is equivalent:
cout << (i > 2 ? "yes" : "no");

The advantage of the conditional operator is that it is an expression, not a statement like the 1 f and
switch statements. Hence, a conditional operator can occur within almost any context. In the preced-
ing example, the conditional operator is used within code that performs output. A convenient way to

26 | CHAPTER1 A CRASH COURSE IN C++ AND THE STANDARD LIBRARY

remember how the syntax is used is to treat the question mark as though the statement that comes
before it really is a question. For example, “Is i greater than 2? If so, the result is ‘yes’; if not, the
result is ‘no.””

Logical Evaluation Operators

You have already seen a logical evaluation operator without a formal definition. The > operator com-
pares two values. The result is true if the value on the left is greater than the value on the right. All
logical evaluation operators follow this pattern—they all result in a true or false.

The following table shows common logical evaluation operators:

oP DESCRIPTION USAGE

< Determines if the left-hand side is less if (1 < 0) {
than, less than or equal to, greater
than, or greater than or equal to the

cout << "i is negative";

right-hand side.)
s=
== Determines if the left-hand side equals if (i == 3) {
the right-hand side. Don’t confuse this CElE ex U a2
with the = (assignment) operator!)
1= Not equals. The result of the statement if (4 1= 3) {
is true if the left-hand side does not cout << "i is not 3";
equal the right-hand side.)

<=> Three-way comparison operator, also result = i <=> 0;
called the spaceship operator. Explained
in more detail in the next section.

! Logical NOT. This complements the true/ if (!someBoolean) {
false status of a Boolean expression. This
is a unary operator.

cout << "someBoolean is false";

}
&& Logical AND. The result is true if both if (someBoolean &&
parts of the expression are true. someOtherBoolean) {

cout << "both are true";

C++ Crash Course | 27

OoP DESCRIPTION USAGE
| Logical OR. The result is true if either if (someBoolean ||
part of the expression is true. someOtherBoolean) {

cout << "at least one is true";

C++ uses short-circuit logic when evaluating logical expressions. That means that once the final result
is certain, the rest of the expression won’t be evaluated. For example, if you are performing a logical
OR operation of several Boolean expressions, as shown in the following code, the result is known to
be true as soon as one of them is found to be true. The rest won’t even be checked.

bool result { booll || bool2 || (1 > 7) || (27 / 13 $ 1 + 1) < 2 };

In this example, if bool1 is found to be true, the entire expression must be true, so the other parts
aren’t evaluated. In this way, the language saves your code from doing unnecessary work. It can, how-
ever, be a source of hard-to-find bugs if the later expressions in some way influence the state of the
program (for example, by calling a separate function). The following code shows a statement using &&
that short-circuits after the second term because 0 always evaluates to false:

bool result { booll && 0 && (i > 7) && !done };

Short-circuiting can be beneficial for performance. You can put cheaper tests first so that more
expensive tests are not even executed when the logic short-circuits. It is also useful in the context of
pointers to avoid parts of the expression to be executed when a pointer is not valid. Pointers and
short-circuiting with pointers are discussed later in this chapter.

Three-Way Comparisons

The three-way comparison operator can be used to determine the order of two values. It is also called
the spaceship operator because its sign, <=>, resembles a spaceship. With a single expression, it tells
you whether a value is equal, less than, or greater than another value. Because it has to return more
than just true or false, it cannot return a Boolean type. Instead, it returns an enumeration-like?
type, defined in <compare> and in the std namespace. If the operands are integral types, the result is
a so-called strong ordering and can be one of the following:

> strong ordering::less: First operand less than second
> strong ordering::greater: First operand greater than second

> strong ordering::equal: Equal operands

2 It’s not a true enumeration type. These ordering types cannot be used in switch statements, or with using enum
declarations.

28 | CHAPTER1 A CRASH COURSE IN C++ AND THE STANDARD LIBRARY

If the operands are floating-point types, the result is a partial ordering:

> partial ordering::less: First operand less than second

> partial ordering::greater: First operand greater than second
> partial ordering::equivalent: Equal operands
>

partial ordering::unordered: If one or both of the operands is not-a-number

Here is an example of its use:

int 1 { 11 };
strong ordering result { i <=> 0 };

if (result == strong ordering::less) { cout << "less" << endl; }
if (result == strong ordering::greater) { cout << "greater" << endl; }
if (result == strong ordering::equal) { cout << "equal" << endl; }

There is also a weak ordering, which is an additional ordering type that you can choose from to
implement three-way comparisons for your own types.

> weak ordering::less: First operand less than second
> weak_ ordering::greater: First operand greater than second

> weak ordering::equivalent: Equal operands

For primitive types, using the three-way comparison operator doesn’t gain you much compared to
just performing individual comparisons using the ==, <, and > operators. However, it becomes useful
with objects that are more expensive to compare. With the three-way comparison operator, such
objects can be ordered with a single operator, instead of potentially having to call two individual
comparison operators, triggering two expensive comparisons. Chapter 9, “Mastering Classes and
Objects,” explains how to add support for three-way comparisons to your own types.

Finally, <compare> provides named comparison functions to interpret the result of an ordering.
These functions are std: :is_eqg(), is_neq(), is_lt (), is_lteqg(),is_gt (), and is_gteq()
returning true if an ordering represents ==, ! =, <, <=, >, or >= respectively, false otherwise. Here is
an example:

int 1 { 11 };

strong ordering result { i <=> 0 };

if (is_1t(result)) { cout << "less" << endl; }

if (is_gt(result)) { cout << "greater" << endl; }
if (is_eg(result)) { cout << "equal" << endl; }

Functions

For programs of any significant size, placing all the code inside of main () is unmanageable. To make
programs easier to understand, you need to break up, or decompose, code into concise functions.

In C++, you first declare a function to make it available for other code to use. If the function is used
only inside a particular file, you generally declare and define the function in that source file. If the
function is for use by other modules or files, you export a declaration for the function from a module

C++ Crash Course | 29

interface file, while the function’s definition can be either in the same module interface file or in a
so-called module implementation file (discussed later).

NOTE Function declarations are often called function prototypes or function
headers to emphasize that they represent how the function can be accessed,

but not the code behind it. The term function signature is used to denote the
combination of the function name and its parameter list, but without the return

type.

A function declaration is shown in the following code. This example has a return type of void, indi-
cating that the function does not provide a result to the caller. The caller must provide two arguments
for the function to work with—an integer and a character.

void myFunction(int i, char c);

Without an actual definition to match this function declaration, the link stage of the compilation
process will fail because code that makes use of the function will be calling nonexistent code. The fol-
lowing definition prints the values of the two parameters:

void myFunction(int i, char c)

{

cout << format ("the value of i is {}", i) << endl;
cout << format("the value of ¢ is {}", ¢) << endl;

}

sewhere in the program, you can make calls to myFunction () and pass in arguments for the two
Elsewh the program, y ke calls to myF () and p g ts for the t
parameters. Some sample function calls are shown here:

myFunction(8, 'a');

myFunction (someInt, 'b');
myFunction (5, someChar) ;

NOTE In C++, unlike C, a function that takes no parameters just has an empty
parameter list. It is not necessary to use void to indicate that no parameters are
taken. However, you must still use void to indicate when no value is returned.

C++ functions can also return a value to the caller. The following function adds two numbers and
returns the result:

int addNumbers (int numberl, int number2)

{
}

This function can be called as follows:

return numberl + number2;

int sum { addNumbers(5, 3) };

30 | CHAPTER1 A CRASH COURSE IN C++ AND THE STANDARD LIBRARY

Function Return Type Deduction

You can ask the compiler to figure out the return type of a function automatically. To make use of
this functionality, just specify auto as the return type.

auto addNumbers (int numberl, int number2)

{
}

The compiler deduces the return type based on the expressions used for the return statements in the

body of the function. There can be multiple return statements, but they must all resolve to the same

type. Such a function can even include recursive calls (calls to itself), but the first return statement in
the function must be a non-recursive call.

return numberl + number2;

Current Function’s Name

Every function has a local predefined variable _ func__ containing the name of the current function.
One use of this variable could be for logging purposes.

int addNumbers (int numberl, int number?2)

cout << format ("Entering function {}", _ func_) << endl;
return numberl + number?2;

Function Overloading

Overloading a function means providing several functions with the same name but with a differ-
ent set of parameters. Only specifying different return types is not enough; the number and/or types
of the parameters must be different. For example, the following code snippet defines two functions
called addNumbers (), one defined for integers, the other defined for doubles:

int addNumbers (int a, int b) { return a + b; }
double addNumbers (double a, double b) { return a + b; }

When calling addNumbers (), the compiler automatically selects the correct function overload based
on the provided arguments.

cout << addNumbers (1, 2) << endl;
cout << addNumbers(1l.11, 2.22);

Attributes

Attributes are a mechanism to add optional and/or vendor-specific information into source code.
Before attributes were standardized in C++, vendors decided how to specify such information. Exam-
plesare attribute , declspec, and so on. Since C++11, there is standardized support for
attributes by using the double square brackets syntax [[attribute]].

Earlier in this chapter, the [[fallthrough]] attribute is introduced to prevent a compiler warning
when fallthrough in a switch case statement is intentional. The C++ standard defines a couple more
standard attributes useful in the context of functions.

C++ Crash Course |

31

[[nodiscard]]

The [[nodiscard]] attribute can be used on a function returning a value to let the compiler issue
a warning when that function is called without doing something with the returned value. Here is
an example:

[[nodiscard]] int func()

{
}

int main()

{
}

The compiler issues a warning similar to the following:

return 42;

func () ;

warning C4834: discarding return value of function with 'nodiscard' attribute

This feature can, for example, be used for functions that return error codes. By adding the [[nodis-
card]] attribute to such functions, the error codes cannot be ignored.

More general, the [[nodiscard]] attribute can be used on classes, functions, and enumerations.

Starting with C++20, a reason can be provided for the [[nodiscard]] attribute in the form of a
string, for example:

[[nodiscard("Some explanation")]] int func();

[[maybe_unused]]

The [[maybe unused]] attribute can be used to suppress the compiler from issuing a warning when
something is unused, as in this example:

int func(int paraml, int param2)

{
}

If the compiler warning level is set high enough, this function definition might result in two compiler
warnings. For example, Microsoft Visual C++ gives these warnings:

return 42;

warning C4100: 'param2': unreferenced formal parameter
warning C4100: 'paraml': unreferenced formal parameter

By using the [[maybe unused]] attribute, you can suppress such warnings:

int func(int paraml, [[maybe unused]] int param2)

{
}

In this case, the second parameter is marked with the attribute suppressing its warning. The compiler
now only issues a warning for parami:

return 42;

warning C4100: 'paraml': unreferenced formal parameter

32 | CHAPTER1 A CRASH COURSE IN C++ AND THE STANDARD LIBRARY

The [[maybe unused]] attribute can be used on classes and structs, non-static data members,
unions, typedefs, type aliases, variables, functions, enumerations, and enumeration values. Some of
these terms you might not know yet but are discussed later in this book.

[[noreturn]]

Adding a [[noreturn]] attribute to a function means that it never returns control to the call site.
Typically, the function either causes some kind of termination (process termination or thread termina-
tion) or throws an exception. With this attribute, the compiler can avoid giving certain warnings or
errors because it now knows more about the intent of the function. Here is an example:

[[noreturn]] void forceProgramTermination()

{
}

bool isDongleAvailable ()

{

std::exit (1) ;

bool isAvailable { false };

return isAvailable;

}

bool isFeatureLicensed (int featureId)

{

if (!isDongleAvailable()) {
forceProgramTermination() ;
} else {

bool isLicensed { featureId == 42 };

return isLicensed;

}

int main()

{
}

This code snippet compiles fine without any warnings or errors. However, if you remove the [[nore-
turn]] attribute, the compiler generates the following warning (output from Visual C++):

bool isLicensed { isFeatureLicensed(42) };

warning C4715: 'isFeatureLicensed': not all control paths return a value

[[deprecated]]

[[deprecated]] can be used to mark something as deprecated, which means you can still use it, but
its use is discouraged. This attribute accepts an optional argument that can be used to explain the
reason for the deprecation, as in this example:

[[deprecated ("Unsafe method, please use xyz")]] void func();

C++ Crash Course | 33

If you use this deprecated function, you’ll get a compilation error or warning. For example, GCC
gives the following warning:

warning: 'void func()' is deprecated: Unsafe method, please use xyz

[[likely]] and [[unlikely]]

These likelihood attributes can be used to help the compiler in optimizing the code. These attributes
can, for example, be used to mark branches of if and switch statements according to how likely it
is that a branch will be taken. Note that these attributes are rarely required. Compilers and hardware
these days have powerful branch prediction to figure it out themselves, but in certain cases, such as
performance critical code, you might have to help the compiler. The syntax is as follows:

int value { }i
if (value > 11) [[unlikely]] { }
else { }

switch (value)

{

[[1likely]] case 1:

break;
case 2:

break;
[[unlikely]] case 12:

break;

C-Style Arrays

Arrays hold a series of values, all of the same type, each of which can be accessed by its position in
the array. In C++, you must provide the size of the array when the array is declared. You cannot give
a variable as the size—it must be a constant, or a constant expression (constexpr). Constant expres-
sions are discussed later in this chapter. The code that follows shows the declaration of an array of
three integers followed by three lines to initialize the elements to 0:

int myArray[3]
myArray [0] = 0;
myArray[1l] = 0;
myArray [2] 0

’

’

WARNING [n C++, the first element of an array is always at position 0, not
position 1! The last position of the array is always the size of the array minus 1!

34

CHAPTER 1 A CRASH COURSE IN C++ AND THE STANDARD LIBRARY

The “Loops” section later in this chapter discusses how you could use loops to initialize each element
of an array. However, instead of using loops or the previous initialization mechanism, you can also
accomplish zero initialization with the following one-liner:

int myArray[3] = { 0 };

You can even drop the 0.
int myArray(3] = {};

Finally, the equal sign is optional as well, so you can write this:
int myArray[3] {};

An array can be initialized with an initializer list, in which case the compiler deduces the size of the
array automatically. Here’s an example:

int myArrayl[] { 1, 2, 3, 4 };

If you do specify the size of the array and the initializer list has fewer elements than the given size,
the remaining elements are set to 0. For example, the following code sets only the first element in the
array to the value 2 and sets all others to 0:

int myArray[3] { 2 };

To get the size of a stack-based C-style array, you can use the std: :size () function (requires
<array>). [t returns a size_t, which is an unsigned integer type defined in <cstddef>. Here is
an example:

size t arraySize { std::size(myArray) };

An older trick to get the size of a stack-based C-style array was to use the sizeof operator. The
sizeof operator returns the size of its argument in bytes. To get the number of elements in a stack-
based array, you divide the size in bytes of the array by the size in bytes of the first element. Here’s
an example:

size t arraySize { sizeof (myArray) / sizeof (myArray[0]) };

The preceding examples show a one-dimensional array, which you can think of as a line of inte-

gers, each with its own numbered compartment. C++ allows multidimensional arrays. You might
think of a two-dimensional array as a checkerboard, where each location has a position along the
x-axis and a position along the y-axis. Three-dimensional and higher arrays are harder to picture and
are rarely used. The following code shows the syntax for creating a two-dimensional array of charac-
ters for a tic-tac-toe board and then putting an “o0” in the center square:

char ticTacToeBoard([3] [3];
ticTacToeBoard[1] [1] = 'o';

Figure 1-1 shows a visual representation of this board with the position of each square.

NOTE [n C++, it is best to avoid C-style arrays and instead use Standard
Library functionality, such as std::array and vector, discussed in the next two
sections.

C++ Crash Course | 35

ticTacToeBoard([0][0] ticTacToeBoard[0][1] ticTacToeBoard([0][2]

ticTacToeBoard([1][0] ticTacToeBoard[1][1] ticTacToeBoard[1][2]

ticTacToeBoard([2][0] ticTacToeBoard([2][1] ticTacToeBoard([2][2]

FIGURE 1-1

std::array

The arrays discussed in the previous section come from C and still work in C++. However, C++ has a
special type of fixed-size container called std: :array, defined in <arrays. It’s basically a thin wrap-
per around C-style arrays.

There are a number of advantages to using std: :arrays instead of C-style arrays. They always know
their own size, are not automatically cast to a pointer to avoid certain types of bugs, and have itera-
tors to easily loop over the elements. Iterators are discussed in detail in Chapter 17, “Understanding
Iterators and the Ranges Library.”

The following example demonstrates how to use the array container. The use of angle brackets
after array, as in array<int, 3>, will become clear during the discussion of templates in
Chapter 12, “Writing Generic Code with Templates.” However, for now, just remember that you have
to specify two parameters between the angle brackets. The first parameter represents the type of the
elements in the array, and the second one represents the size of the array.

array<int, 3> arr { 9, 8, 7 };

cout << format ("Array size = {}", arr.size()) << endl;
cout << format ("2nd element = {}", arr[1]) << endl;

C++ supports so-called class template argument deduction (CTAD), as discussed in detail in Chap-
ter 12. For now, it’s enough to remember that this allows you to avoid having to specify the template
types between angle brackets for certain class templates. CTAD works only when using an initializer
because the compiler uses this initializer to automatically deduce the template types. This works for
std: :array, allowing you to define the previous array as follows:

array arr { 9, 8, 7 };

NOTE Both the C-style arrays and the std::arrays have a fixed size, which
must be known at compile time. They cannot grow or shrink at run time.

If you want an array with a dynamic size, it is recommended to use std: : vector, as explained in the
next section. A vector automatically increases in size when you add new elements to it.

36 | CHAPTER1 A CRASH COURSE IN C++ AND THE STANDARD LIBRARY

std::vector

The C++ Standard Library provides a number of different non-fixed-size containers that can be used
to store information. std: : vector, declared in <vectors, is an example of such a container. The
vector class replaces the concept of C-style arrays with a much more flexible and safer mechanism.
As a user, you need not worry about memory management, as a vector automatically allocates
enough memory to hold its elements. A vector is dynamic, meaning that elements can be added

and removed at run time. Chapter 18, “Standard Library Containers,” goes into more detail regard-
ing containers, but the basic use of a vector is straightforward, which is why it’s introduced in the
beginning of this book so that it can be used in examples. The following code demonstrates the basic
functionality of vector:

vector<ints> myVector { 11, 22 };

myVector.push back(33) ;
myVector.push back(44) ;

cout << format("lst element: {}", myVector[0]) << endl;

myVector is declared as vector<ints. The angle brackets are required to specify the template param-
eters, just as with std: :array. A vector is a generic container. It can contain almost any type of
object, but all elements in a vector must be of the same type. This type is specified between the angle
brackets. Templates are discussed in detail in Chapters 12 and 26, “Advanced Templates.”

Just as std: :array, the vector class template supports CTAD, allowing you to define myvector
as follows:

vector myVector { 11, 22 };

Again, an initializer is required for CTAD to work. The following is illegal:

vector myVector;

To add elements to a vector, you can use the push back () method. Individual elements can be
accessed using a similar syntax as for arrays, i.e., operator[].

std::pair

The std: :pair class template is defined in <utilitys. It groups together two values of possibly
different types. The values are accessible through the first and second public data members. Here is
an example:

pair<double, int> myPair { 1.23, 5 };
cout << format ("{} {}", myPair.first, myPair.second) ;

pair also supports CTAD, so you can define myPair as follows:

pair myPair { 1.23, 5 };

C++ Crash Course | 37

std::optional

std: :optional, defined in <optionals, holds a value of a specific type, or nothing. It is introduced
already in this first chapter as it is a useful type to use in some of the examples throughout the book.

Basically, opt ional can be used for parameters of a function if you want to allow for values to be
optional. It is also often used as a return type from a function if the function can either return something
or not. This removes the need to return “special” values from functions such as nullptr, end (), -1, EOF,
and so on. It also removes the need to write the function as returning a Boolean, representing success or
failure, while storing the actual result of the function in an argument passed to the function as an output
parameter (a parameter of type reference-to-non-const discussed later in this chapter).

The optional type is a class template, so you have to specify the actual type that you need between
angle brackets, as in optional<int>. This syntax is similar to how you specify the type stored in a
vector, for example vector<ints.

Here is an example of a function returning an optional:

optional<int> getData (bool givelt)

{
if (giveIt) {
return 42;
}

return nullopt;

}

You can call this function as follows:

optional<int> datal { getData (true) };
optional<int> data2 { getData(false) };

To determine whether an optional has a value, use the has_value () method, or simply use the
optional in an if statement:

cout << "datal.has_value = " << datal.has_value() << endl;
if (data2) {

cout << "data2 has a value." << endl;
}

If an optional has a value, you can retrieve it with value () or with the dereferencing operator:

cout << "datal.value = " << datal.value() << endl;
cout << "datal.value = " << *datal << endl;

If you call value () on an empty optional, an std: :bad optional access exception is thrown.
Exceptions are introduced later in this chapter.

value_or () can be used to return either the value of an optional or another value when the
optional is empty:

cout << "data2.value = " << data2.value_or(0) << endl;

Note that you cannot store a reference (discussed later in this chapter) in an optional, so
optional<Te&> does not work. Instead, you can store a pointer in an optional.

38 | CHAPTER1 A CRASH COURSE IN C++ AND THE STANDARD LIBRARY

Structured Bindings

Structured bindings allow you to declare multiple variables that are initialized with elements from, for
example, an array, struct, Oor pair.

Assume you have the following array:

array values { 11, 22, 33 };

You can declare three variables, x, v, and z, initialized with the three values from the array as fol-
lows. Note that you have to use the auto keyword for structured bindings. You cannot, for example,
specify int instead of auto.

auto [x, y, z] { values };

The number of variables declared with the structured binding has to match the number of values in
the expression on the right.

Structured bindings also work with structs if all non-static members are public. Here’s an example:
struct Point { double m x, my, m_z; };
Point point;
point.m x = 1.0; point.m y = 2.0; point.m z = 3.0;
auto [x, y, z] { point };

As a final example, the following code snippet decomposes the elements of a pair into separate
variables:

pair myPair { "hello", 5 };

auto [theString, theInt] { myPair };

cout << format ("theString: {}", theString) << endl;
cout << format ("theInt: {}", theInt) << endl;

It is also possible to create a set of references-to-non-const or references-to-const using the struc-
tured bindings syntax, by using autos& or const autos instead of auto. Both references-to-non-
const and references-to-const are discussed later in this chapter.

Loops

Computers are great for doing the same thing over and over. C++ provides four looping mechanisms:
the while loop, do/while loop, for loop, and range-based for loop.

The while Loop

The while loop lets you perform a block of code repeatedly as long as an expression evaluates to
true. For example, the following completely silly code will output “This is silly.” five times:
int i { 0 } ;
while (i < 5) {
cout << "This is silly." << endl;
++1;

C++ Crash Course | 39

The keyword break can be used within a loop to immediately get out of the loop and continue execu-
tion of the program. The keyword continue can be used to return to the top of the loop and reevalu-
ate the while expression. However, using continue in loops is often considered poor style because it

causes the execution of a program to jump around somewhat haphazardly, so use it sparingly.

The do/while Loop

C++ also has a variation on the while loop called do/while. It works similarly to the while loop,
except that the code to be executed comes first, and the conditional check for whether to continue
happens at the end. In this way, you can use a loop when you want a block of code to always be
executed at least once and possibly additional times based on some condition. The example that fol-
lows outputs the statement, “This is silly.” once, even though the condition ends up being false:
int i { 100 };
do {
cout << "This is silly." << endl;
++1;
} while (1 < 5);

The for Loop

The for loop provides another syntax for looping. Any for loop can be converted to a while loop,
and vice versa. However, the for loop syntax is often more convenient because it looks at a loop in
terms of a starting expression, an ending condition, and a statement to execute at the end of every
iteration. In the following code, 1 is initialized to 0; the loop continues as long as i is less than 5; and
at the end of every iteration, 1 is incremented by 1. This code does the same thing as the while loop
example earlier but is more readable because the starting value, ending condition, and per-iteration
statements are all visible on one line.

for (int i { 0 }; i < 5; ++1) {

cout << "This is silly." << endl;
}

The Range-Based for Loop

The range-based for loop is the fourth looping mechanism. It allows for easy iteration over elements
of a container. This type of loop works for C-style arrays, initializer lists (discussed later in this chap-
ter), and any type that has begin () and end () methods returning iterators (see Chapter 17), such as
std: :array, vector, and all other Standard Library containers discussed in Chapter 18, “Standard
Library Containers.”

The following example first defines an array of four integers. The range-based for loop then iterates
over a copy of every element in this array and prints out each value. To iterate over the elements
themselves without making copies, use a reference variable, as discussed later in this chapter.

array arr { 1, 2, 3, 4 };
for (int i : arr) { cout << i << endl; }

40

CHAPTER 1 A CRASH COURSE IN C++ AND THE STANDARD LIBRARY

Initializers for Range-Based for Loops
Starting with C++20, you can use initializers with range-based for loops, similar to initializers for if
and switch statements. The syntax is as follows:

for (<initializer>; <for-range-declaration> : <for-range-initializers>) { <body> }
Any variables introduced in the <initializers> are available only in the <for-range-ini-
tializers> and in the <body>. They are not available outside the range-based for loop. Here is
an example:

for (array arr { 1, 2, 3, 4 }; int i : arr) { cout << i << endl; }

Initializer Lists

Initializer lists are defined in <initializer lists> and make it easy to write functions that can
accept a variable number of arguments. The std::initializer list type is a class template, and
so it requires you to specify the type of elements in the list between angle brackets, similar to how
you specify the type of object stored in a vector. The following example shows how to use an ini-
tializer list:

import <initializer lists>;
using namespace std;

int makeSum(initializer list<int> values)

{
int total { 0 };
for (int value : values) {
total += value;
}

return total;
}
The function makeSum () accepts an initializer list of integers as argument. The body of the function

uses a range-based for loop to accumulate the total sum. This function can be used as follows:

int a { makeSum({ 1, 2, 3 }) };
int b { makeSum({ 10, 20, 30, 40, 50, 60 }) };

Initializer lists are type safe. All elements in such a list must be of the same type. For the makesum ()
function shown here, all elements of the initializer list must be integers. Trying to call it with a dou-
ble, as shown next, results in a compilation error or warning.

int ¢ { makesum({ 1, 2, 3.0 }) };

Strings in C++

There are two ways to work with strings in C++:
> The C style: Representing strings as arrays of characters

> The C++ style: Wrapping a C-style representation in an easier-to-use and safer string type

C++ Crash Course | 41

Chapter 2 provides a detailed discussion. For now, the only thing you need to know is that the C++
std: :string type is defined in <string> and that you can use a C++ string almost like a basic
type. The following example shows that strings can be used just like character arrays:

string myString { "Hello, World" };

cout << format ("The value of myString is {}", myString) << endl;
cout << format ("The second letter is {}", myString[1l]) << endl;

C++ as an Object-Oriented Language

If you are a C programmer, you may have viewed the features covered so far in this chapter as
convenient additions to the C language. As the name C++ implies, in many ways the language is
just a “better C.” There is one major point that this view overlooks: unlike C, C++ is an object-ori-
ented language.

Object-oriented programming (OOP) is a different, arguably more natural, way to write code. If

you are used to procedural languages such as C or Pascal, don’t worry. Chapter 5, “Designing with
Objects,” covers all the background information you need to know to shift your mindset to the
object-oriented paradigm. If you already know the theory of OOP, the rest of this section will get you
up to speed (or refresh your memory) on basic C++ object syntax.

Defining Classes

A class defines the characteristics of an object. In C++, classes are usually defined and exported from
a module interface file (. cppm), while their definitions can either be directly in the same module
interface file or be in a corresponding module implementation file (. cpp). Chapter 11 discusses mod-
ules in depth.

A basic class definition for an airline ticket class is shown in the following example. The class can
calculate the price of the ticket based on the number of miles in the flight and whether the customer is
a member of the Elite Super Rewards Program.

The definition begins by declaring the class name. Inside a set of curly braces, the data members
(properties) of the class and its methods (behaviors) are declared. Each data member and method

is associated with a particular access level: public, protected, or private. These labels can occur
in any order and can be repeated. Members that are public can be accessed from outside the class,
while members that are private cannot be accessed from outside the class. It’s recommended to
make all your data members private, and if needed, to give access to them with public or pro-
tected getters and setters. This way, you can easily change the representation of your data while
keeping the public/protected interface the same. The use of protected is explained in the context
of inheritance in Chapters 5 and 10.

Remember, when writing a module interface file, don’t forget to use an export module declaration
to specify which module you are writing, and don’t forget to explicitly export the types you want to
make available to users of your module.

export module airline ticket;

import <strings;

continues

42 | CHAPTER1 A CRASH COURSE IN C++ AND THE STANDARD LIBRARY

(continued)
export class AirlineTicket

{
public:
AirlineTicket () ;
~AirlineTicket () ;

double calculatePriceInDollars() ;

std::string getPassengerName () ;
void setPassengerName (std::string name) ;

int getNumberOfMiles() ;
void setNumberOfMiles (int miles) ;

bool hasEliteSuperRewardsStatus() ;

void setHasEliteSuperRewardsStatus (bool status);
private:

std::string m passengerName;

int m_numberOfMiles;

bool m_hasEliteSuperRewardsStatus;

}i

This book follows the convention to prefix each data member of a class with a lowercase m followed
by an underscore, such as m_passengerName.

The method that has the same name as the class with no return type is a constructor. It is automati-
cally called when an object of the class is created. The method with a tilde (~) character followed by
the class name is a destructor. It is automatically called when the object is destroyed.

The . cppm module interface file defines the class, while the implementations of the methods in this
example are in a . cpp module implementation file. This source file starts with the following module
declaration to tell the compiler that this is a source file for the airline ticket module:

module airline ticket;

There are several ways to initialize data members of a class. One way is to use a constructor initial-
izer, which follows a colon after the constructor name. Here is the AirlineTicket constructor with
a constructor initializer:
AirlineTicket::AirlineTicket ()
: m_passengerName { "Unknown Passenger" }

, m_numberOfMiles { 0 }
, m_hasEliteSuperRewardsStatus { false }

{
}

A second option is to put the initializations in the body of the constructor, as shown here:

AirlineTicket::AirlineTicket ()

{

m_passengerName "Unknown Passenger";
m_numberOfMiles = 0;
m_hasEliteSuperRewardsStatus = false;

C++ Crash Course | 43

However, if the constructor is only initializing data members without doing anything else, then there
is actually no real need for a constructor because data members can be initialized directly inside a
class definition, also known as in-class initializers. For example, instead of writing an AirlineTicket
constructor, you can modify the definition of the data members in the class definition to initialize
them as follows:

private:
std::string m_passengerName { "Unknown Passenger" };
int m _numberOfMiles { 0 };
bool m_hasEliteSuperRewardsStatus { false };

If your class additionally needs to perform some other types of initialization, such as opening a
file, allocating memory, and so on, then you still need to write a constructor to handle those ini-
tializations.

Here is the destructor for the AirlineTicket class:

AirlineTicket::~AirlineTicket ()

{
}

This destructor doesn’t do anything and can simply be removed from this class. It is just shown here
so you know the syntax of destructors. Destructors are required if you need to perform some cleanup,
such as closing files, freeing memory, and so on. Chapters 8, “Gaining Proficiency with Classes and
Objects,” and 9 discuss destructors in more detail.

The definitions of some of the other AirlineTicket class methods are shown here:

double AirlineTicket::calculatePriceInDollars ()

{

if (hasEliteSuperRewardsStatus()) {

return 0;

return getNumberOfMiles() * 0.1;

}

string AirlineTicket::getPassengerName() { return m passengerName; }
void AirlineTicket::setPassengerName (string name) { m_passengerName = name; }

As mentioned in the beginning of this section, it’s also possible to put the method implementations
directly in the module interface file. The syntax is as follows:

export class AirlineTicket

{
public:
double calculatePriceInDollars()

{

if (hasEliteSuperRewardsStatus()) { return 0; }
return getNumberOfMiles() * 0.1;

continues

44 | CHAPTER1 A CRASH COURSE IN C++ AND THE STANDARD LIBRARY

(continued)
std::string getPassengerName() { return m passengerName; }
void setPassengerName (std::string name) { m_passengerName = name; }

int getNumberOfMiles() { return m numberOfMiles; }
void setNumberOfMiles(int miles) { m_numberOfMiles = miles; }

bool hasEliteSuperRewardsStatus() { return m hasEliteSuperRewardsStatus; }
void setHasEliteSuperRewardsStatus (bool status)

{
}

private:
std::string m passengerName { "Unknown Passenger" };
int m_numberOfMiles { 0 };
bool m hasEliteSuperRewardsStatus { false };

m_hasEliteSuperRewardsStatus = status;

}i

Using Classes
To use the AirlineTicket class, you first need to import its module:
import airline_ticket;

The following sample program makes use of the class. This example shows the creation of a stack-
based AirlineTicket object:

AirlineTicket myTicket;

myTicket.setPassengerName ("Sherman T. Socketwrench") ;
myTicket.setNumberOfMiles (700) ;

double cost { myTicket.calculatePriceInDollars() };

cout << format ("This ticket will cost ${}", cost) << endl;

The preceding example exposes you to the general syntax for creating and using classes. Of course,
there is much more to learn. Chapters 8, 9, and 10 go into more depth about the specific C++ mecha-
nisms for defining classes.

Scope Resolution

As a C++ programmer, you need to familiarize yourself with the concept of a scope. Every name in
your program, including variable, function, and class names, is in a certain scope. You create scopes
with namespaces, function definitions, blocks delimited by curly braces, and class definitions. Vari-
ables that are initialized in the initialization statement of for loops and range-based for loops are
scoped to that for loop and are not visible outside the for loop. Similarly, variables initialized in an
initializer for if or switch statements are scoped to that if or switch statement and are not visible
outside that statement. When you try to access a variable, function, or class, the name is first looked
up in the nearest enclosing scope, then the next scope, and so forth, up to the global scope. Any
name not in a namespace, function, block delimited by curly braces, or class is assumed to be in the
global scope. If it is not found in the global scope, at that point the compiler generates an undefined
symbol error.

Sometimes names in scopes hide identical names in other scopes. Other times, the scope you
want is not part of the default scope resolution from that particular line in the program. If you

C++ Crash Course | 45

don’t want the default scope resolution for a name, you can qualify the name with a specific scope
using the scope resolution operator : :. The following example demonstrates this. The example
defines a class Demo with a get () method, a get () function that is globally scoped, and a get ()
function that is in the NS namespace.

class Demo

{

public:
int get() { return 5; }

}i
int get() { return 10; }

namespace NS

{
}

The global scope is unnamed, but you can access it specifically by using the scope resolution operator
by itself (with no name prefix). The different get () functions can be called as follows. In this exam-
ple, the code itself is in the main () function, which is always in the global scope:

int get() { return 20; }

int main()

{

Demo d;

cout << d.get() << endl;
cout << NS::get() << endl;
cout << ::get() << endl;
cout << get() << endl;

}

Note that if the namespace called Ns is defined as an unnamed/anonymous namespace, then the fol-
lowing line will cause a compilation error about ambiguous name resolution because you would have
a get () defined in the global scope, and another get () defined in the unnamed namespace.

cout << get() << endl;

The same error occurs if you add the following using directive right before the main () function:

using namespace NS;

Uniform Initialization

Before C++11, initialization of types was not always uniform. For example, take the following defini-
tions of a circle, once as a structure, and once as a class:

struct CircleStruct

{

int x, y;
double radius;

}i

class CircleClass

{

public:
continues

46 | CHAPTER1 A CRASH COURSE IN C++ AND THE STANDARD LIBRARY

(continued)
CircleClass(int x, int y, double radius)
:mx {x}, my{y]} mradius { radius } {}
private:
int m_x, m_y;
double m_radius;

}i

In pre-C++11, initialization of a variable of type circlestruct and a variable of type circleClass

looked different:

CircleStruct myCirclel = { 10, 10, 2.5 };
CircleClass myCircle2 (10, 10, 2.5);

For the structure version, you can use the { ...} syntax. However, for the class version, you needed to
call the constructor using function notation: (...).

Since C++11, you can more uniformly use the {. ..} syntax to initialize types, as follows:

CircleStruct myCircle3 = { 10, 10, 2.5 };
CircleClass myCircle4 = { 10, 10, 2.5 };

The definition of mycircle4 automatically calls the constructor of circleclass. Even the use of the
equal sign is optional, so the following are identical:

CircleStruct myCircles { 10, 10, 2.5 };
CircleClass myCircleé { 10, 10, 2.5 };

As another example, in the section “Structs” earlier in this chapter, an Employee structure is initial-
ized as follows:

Employee anEmployee;

anEmployee.firstInitial = 'J';

anEmployee.lastInitial = 'D';

anEmployee.employeeNumber = 42;

anEmployee.salary = 80'000;

With uniform initialization, this can be rewritten as follows:
Employee anEmployee { 'J', 'D', 42, 80'000 };

Uniform initialization is not limited to structures and classes. You can use it to initialize almost any-
thing in C++. For example, the following code initializes all four variables with the value 3:
int a =
int b(3);
int ¢ = {
int 4 { 3

3;

3 } ;

}i

Uniform initialization can be used to perform zero-initialization® of variables; you just specify an
empty set of curly braces, as shown here:

int e { };

3 Zero-initialization constructs objects with the default constructor and initializes primitive integer types (such as char,
int, and so on) to zero, primitive floating-point types to 0.0, and pointer types to nullptr.

C++ Crash Course | 47

A benefit of using uniform initialization is that it prevents narrowing. When using the old-style
assignment syntax to initialize variables, C++ implicitly performs narrowing, as shown here:

void func(int i) { }

int main()

{
int x = 3.14;
func(3.14);

}

For both lines in main (), C++ automatically truncates 3.14 to 3 before assigning it to x or calling
func (). Note that some compilers might issue a warning about this narrowing, while others won’t. In
any case, narrowing conversions should not go unnoticed, as they might cause subtle or not so subtle
bugs. With uniform initialization, both the assignment to x and the call to func () must generate a
compilation error if your compiler fully conforms to the C++11 standard:

int x { 3.14 };
func({ 3.14 });

If a narrowing cast is what you need, I recommend using the gs1: :narrow_cast () function avail-
able in the Guidelines Support Library (GSL).*

Uniform initialization can be used to initialize dynamically allocated arrays, as shown here:
int* myArray = new int[4] { 0, 1, 2, 3 };

And since C++20, you can drop the size of the array, 4, as follows:
int* myArray = new int[] { 0, 1, 2, 3 };

It can also be used in the constructor initializer to initialize arrays that are members of a class.

class MyClass

{

public:

MyClass() : m array { 0, 1, 2, 3 } {}
private:

int m_arrayl[4];

i

Uniform initialization can be used with the Standard Library containers as well—such as
std: :vector, already demonstrated earlier in this chapter.

NOTE Counsidering all these benefits, it is recommended to use uniform initiali-
zation over using the assignment syntax to initialize variables. Hence, this book
uses uniform initialization wherever possible.

4 A header-only implementation of the GSL can be found at github.com/Microsoft/GSL

48 | CHAPTER1 A CRASH COURSE IN C++ AND THE STANDARD LIBRARY

Designated Initializers

C++20 introduces designated initializers to initialize data members of so-called aggregates using their
name. An aggregate type is an object of an array type, or an object of a structure or class that satisfies
the following restrictions: only public data members, no user-declared or inherited constructors, no
virtual functions (see Chapter 10), and no virtual, private, or protected base classes (see Chap-
ter 10). A designated initializer starts with a dot followed by the name of a data member. Designated
initializers must be in the same order as the declaration order of the data members. Mixing desig-
nated initializers and non-designated initializers is not allowed. Any data members that are not initial-
ized using a designated initializer are initialized with their default values, which means the following:

> Data members that have an in-class initializer will get that value.

> Data members that do not have an in-class initializer are zero initialized.

Let’s take a look at a slightly modified Employee structure. This time the salary data member has a
default value of 75,000.

struct Employee {
char firstInitial;
char lastInitial;
int employeeNumber;
int salary { 75'000 };

}i

Earlier in this chapter, such an Employee structure is initialized using a uniform initialization syntax
as follows:

Employee anEmployee { 'J', 'D', 42, 80'000 };
Using designated initializers, this can be written as follows:

Employee anEmployee {
.firstInitial = 'J',
.lastInitial = 'D',
.employeeNumber = 42,
.salary = 80'000

}i

A benefit of using such designated initializers is that it’s much easier to understand what a designated
initializer is initializing compared to using the uniform initialization syntax.

With designated initializers, you can skip initialization of certain members if you are satisfied with
their default values. For example, when creating an employee, you could skip initializing employee-
Number, in which case employeeNumber is zero initialized as it doesn’t have an in-class initializer:
Employee anEmployee {
.firstInitial = 'J',
.lastInitial = 'D',
.salary = 80'000

}i

With the uniform initialization syntax, this is not possible, and you have to specify 0 for the employee
number as follows:

Employee anEmployee { 'J', 'D', 0, 80'000 };

C++ Crash Course | 49

If you skip initializing the salary data member as follows, then salary gets its default value, which
is its in-class initialization value, 75,000:
Employee anEmployee {
.firstInitial = 'J',
.lastInitial = 'D!'

}i

A final benefit of using designated initializers is that when members are added to the data structure,
existing code using designated initializers keeps working. The new data members will just be initial-
ized with their default values.

Pointers and Dynamic Memory

Dynamic memory allows you to build programs with data that is not of fixed size at compile time.
Most nontrivial programs make use of dynamic memory in some form.

The Stack and the Free Store

Memory in your C++ application is divided into two parts—the stack and the free store. One way
to visualize the stack is as a deck of cards. The current top card represents the current scope of the
program, usually the function that is currently being executed.
All variables declared inside the current function will take up
memory in the top stack frame, the top card of the deck. If the inti 7
current function, which I’ll call foo (), calls another function
bar (), a new card is put on the deck so that bar () has its own

intj | 11

stack frame to work with. Any parameters passed from foo () foo()
to bar () are copied from the foo () stack frame into the bar ()

stack frame. Figure 1-2 shows what the stack might look like main()
during the execution of a hypothetical function foo () that has FIGURE 1-2

declared two integer values.

Stack frames are nice because they provide an isolated memory workspace for each function. If a vari-
able is declared inside the foo () stack frame, calling the bar () function won’t change it unless you
specifically tell it to. Also, when the foo () function is done running, the stack frame goes away, and
all of the variables declared within the function no longer take up memory. Variables that are stack-
allocated do not need to be deallocated (deleted) by the programmer; it happens automatically.

The free store is an area of memory that is completely independent of the current function or stack
frame. You can put variables on the free store if you want them to exist even when the function in
which they were created has completed. The free store is less structured than the stack. You can think
of it as just a pile of bits. Your program can add new bits to the pile at any time or modify bits that
are already on the pile. You have to make sure that you deallocate (delete) any memory that you allo-
cated on the free store. This does not happen automatically, unless you use smart pointers, which are
discussed in detail in Chapter 7, “Memory Management.”

50 | CHAPTER1 A CRASH COURSE IN C++ AND THE STANDARD LIBRARY

WARNING Pointers are introduced here because you will encounter them, espe-
cially in legacy code bases. In new code, however, such raw/naked pointers are
allowed only if there is no ownership involved. Otherwise, you should use one of
the smart pointers explained in Chapter 7.

Working with Pointers

You can put anything on the free store by explicitly allocating memory for it. For example, to put an
integer on the free store, you need to allocate memory for it, but first you need to declare a pointer:

int* myIntegerPointer;

The * after the int type indicates that the variable you are declaring refers or points to some integer
memory. Think of the pointer as an arrow that points at the dynamically allocated free store memory.
It does not yet point to anything specific because you haven’t assigned it to anything; it is an unini-
tialized variable. Uninitialized variables should be avoided at all times, and especially uninitialized
pointers because they point to some random place in memory. Working with such pointers will most
likely make your program crash. That’s why you should always declare and initialize your pointers

at the same time! You can initialize them to a null pointer (nullptr—for more information, see the
“Null Pointer Constant” section) if you don’t want to allocate memory right away:

int* myIntegerPointer { nullptr };
A null pointer is a special default value that no valid pointer will ever have and converts to false
when used in a Boolean expression. Here’s an example:

if (!myIntegerPointer) ({ }
You use the new operator to allocate the memory:

myIntegerPointer = new int;

In this case, the pointer points to the address of just a single integer value. To access this value, you
need to dereference the pointer. Think of dereferencing as following the pointer’s arrow to the actual
value on the free store. To set the value of the newly allocated free store integer, you would use code
like the following:

*myIntegerPointer = 8;

Notice that this is not the same as setting myIntegerPointer to the value 8. You are not changing
the pointer; you are changing the memory that it points to. If you were to reassign the pointer value,
it would point to the memory address 8, which is probably random garbage that will eventually make
your program crash.

After you are finished with your dynamically allocated memory, you need to deallocate the memory
using the delete operator. To prevent the pointer from being used after having deallocated the
memory it points to, it’s recommended to set it to nullptr:

delete myIntegerPointer;
myIntegerPointer = nullptr;

C++ Crash Course | 51

WARNING A pointer must be valid before it is dereferenced. Dereferencing a
null pointer or an uninitialized pointer causes undefined behavior. Your program
might crash, but it might just as well keep running and start giving strange
results.

Pointers don’t always point to free store memory. You can declare a pointer that points to a vari-
able on the stack, even another pointer. To get a pointer to a variable, you use the & (“address
of”) operator:

int i { 8 };
int* myIntegerPointer { &i };

C++ has a special syntax for dealing with pointers to structures or classes. Technically, if you have

a pointer to a structure or a class, you can access its fields by first dereferencing it with *, and then
using the normal . syntax, as in the code that follows. The code snippet assumes the existence of a
function called getEmployee () returning a pointer to an Employee instance.

Employee* anEmployee { getEmployee() };
cout << (*anEmployee) .salary << endl;

This syntax is a little messy. The -> (arrow) operator lets you perform both the dereference and the
field access in one step. The following code is equivalent to the previous code but is easier to read:

Employee* anEmployee { getEmployee() };
cout << anEmployee->salary << endl;

Remember the concept of short-circuiting logic, discussed earlier in this chapter? This can be useful in
combination with pointers to avoid using an invalid pointer, as in the following example:

bool isValidSalary { (anEmployee && anEmployee->salary > 0) };

Or, here it is a little bit more verbose:

bool isValidSalary { (anEmployee != nullptr && anEmployee->salary > 0) };

anEmployee is dereferenced to get the salary only if it is a valid pointer. If it is a null pointer, the logi-
cal operation short-circuits, and the anEmployee pointer is not dereferenced.

Dynamically Allocated Arrays

The free store can also be used to dynamically allocate arrays. You use the new [] operator to allocate
memory for an array.

int arraySize { 8 };
int* myVariableSizedArray { new int[arraySizel };

This allocates enough memory to hold arraysize integers. Figure 1-3 shows what the stack and the
free store both look like after this code is executed. As you can see, the pointer variable still resides on
the stack, but the array that was dynamically created lives on the free store.

52 | CHAPTER1 A CRASH COURSE IN C++ AND THE STANDARD LIBRARY

Stack Free Store

myVariableSizedArray[0]
myVariableSizedArray[1]

myVariableSizedArray[2]

myVariableSizedArray myVariableSizedArray([3]

myVariableSizedArray[4]
myVariableSizedArray[5]
myVariableSizedArray[6]

myVariableSizedArray[7]

FIGURE 1-3

Now that the memory has been allocated, you can work with myvariableSizedarray as though it
were a regular stack-based array:

myVariableSizedArray[3] = 2;

When your code is done with the array, it should remove the array from the free store so that other
variables can use the memory. In C++, you use the delete [] operator to do this:

delete[] myVariableSizedArray;
myVariableSizedArray = nullptr;

The brackets after delete indicate that you are deleting an array!

NOTE Awvoid using malloc() and free() from C. Instead, use new and delete,
or new[] and deletel].

WARNING To prevent memory leaks, every call to new should be paired with a
call to delete, and every call to new[] should be paired with a call to deletel].
Not calling delete or deletell, or mismatching calls, results in memory leaks or
worse. Memory leaks are discussed in Chapter 7.

Null Pointer Constant

Before C++11, the constant NULL was used for null pointers. NULL is simply defined as the constant 0,
and this can cause problems. Take the following example:

void func(int i) { cout << "func(int)" << endl; }

C++ Crash Course | 53

int main()

{
}

The code defines a function func () with a single integer parameter. The main () function calls

func () with argument NULL, which is supposed to be a null pointer constant. However, since NULL is
not a real pointer, but identical to the integer 0, it triggers a call to func (int) . This might be unex-
pected behavior. Hence, some compilers even give a warning about this.

func (NULL) ;

This problem is avoided by using a real null pointer constant, nullptr. The following code uses this
real null pointer constant and causes a compilation error because there is no overload of func ()
accepting a pointer:

func (nullptr) ;

The Use of const

The keyword const can be used in a few different ways in C++. Its uses are related, but there are
subtle differences. The subtleties of const make for excellent interview questions!

Basically, the keyword const is short for “constant” and specifies that something remains unchanged.
The compiler enforces this requirement by marking any attempt to change it as an error. Further-
more, when optimizations are enabled, the compiler can take advantage of this knowledge to produce
better code.

const as a Qualifier for a Type

If you assumed that the keyword const has something to do with constants, you have correctly
uncovered one of its uses. In the C language, programmers often use the preprocessor #define mech-
anism to declare symbolic names for values that won’t change during the execution of the program,
such as the version number. In C++, programmers are encouraged to avoid #define in favor of using
const to define constants. Defining a constant with const is just like defining a variable, except that
the compiler guarantees that code cannot change the value. Here are some examples:

const int versionNumberMajor { 2 };

const int versionNumberMinor { 1 };

const std::string productName { "Super Hyper Net Modulator" };
const double PI { 3.141592653589793238462 };

You can mark any variable const, including global variables and class data members.

const with Pointers

When a variable contains one or more levels of indirection via a pointer, applying const becomes
trickier. Consider the following lines of code:

int* ip;

ip = new int[10];

ip[4] = 5;

54

CHAPTER 1 A CRASH COURSE IN C++ AND THE STANDARD LIBRARY

Suppose that you decide to apply const to ip. Set aside your doubts about the usefulness of doing so
for a moment, and consider what it means. Do you want to prevent the ip variable itself from being
changed, or do you want to prevent the values to which it points from being changed? That is, do you
want to prevent the second line or the third line?

To prevent the pointed-to values from being modified (as in the third line), you can add the keyword
const to the declaration of ip like this:

const int* ip;
ip = new int[10];
ip[4] = 5;

Now you cannot change the values to which ip points. An alternative but semantically equivalent
way to write this is as follows:

int const* ip;
ip = new int[10];
ip[4] = 5;

Putting the const before or after the int makes no difference in its functionality.

If you instead want to mark ip itself const (not the values to which it points), you need to write this:

int* const ip { nullptr };
ip = new int[10];
ip[4] = 5;

Now that ip itself cannot be changed, the compiler requires you to initialize it when you declare it,
either with nullptr as in the preceding code or with newly allocated memory as follows:

int* const ip { new int[10] };
ip[4] = 5;

You can also mark both the pointer and the value to which it points const like this:
int const* const ip { nullptr };

Here is an alternative but equivalent syntax:
const int* const ip { nullptr };

Although this syntax might seem confusing, there is actually a simple rule: the const keyword applies
to whatever is directly to its left. Consider this line again:

int const* const ip { nullptr };

From left to right, the first const is directly to the right of the word int. Thus, it applies to the int
to which ip points. Therefore, it specifies that you cannot change the values to which ip points. The
second const is directly to the right of the *. Thus, it applies to the pointer to the int, which is the
ip variable. Therefore, it specifies that you cannot change ip (the pointer) itself.

The reason this rule becomes confusing is an exception. That is, the first const can go before the vari-
able like this:

const int* const ip { nullptr };

This “exceptional” syntax is used much more commonly than the other syntax.

C++ Crash Course | 55

You can extend this rule to any number of levels of indirection, as in this example:

const int * const * const * const ip { nullptr };

NOTE Here is another easy-to-remember rule to figure out complicated variable
declarations: read from right to left. For example, int* const ip reads from
right to left as “ip is a const pointer to an int.” Further, int const* ip reads
as “ip is a pointer to a const int,” and const int* ip reads as “ip is a pointer
to an int constant.”

const to Protect Parameters

In C++, you can cast a non-const variable to a const variable. Why would you want to do this? It
offers some degree of protection from other code changing the variable. If you are calling a func-
tion that a co-worker of yours is writing and you want to ensure that the function doesn’t change
the value of an argument you pass in, you can tell your co-worker to have the function take a const
parameter. If the function attempts to change the value of the parameter, it will not compile.

In the following code, a string* is automatically cast to a const string* in the call to mystery-
Function (). If the author of mysteryFunction () attempts to change the value of the passed string,
the code will not compile. There are ways around this restriction, but using them requires conscious
effort. C++ only protects against accidentally changing const variables.

void mysteryFunction(const string* someString)

{
}

int main()

{

*gsomeString = "Test";

string myString { "The string" };
mysteryFunction (&myString) ;

}

You can also use const on primitive-type parameters to prevent accidentally changing them in the
body of the function. For example, the following function has a const integer parameter. In the body
of the function, you cannot modify the param integer. If you do try to modify it, the compiler will
generate an error.

void func (const int param) { }

const Methods

A second use of the const keyword is to mark class methods as const, preventing them from modi-
fying data members of the class. The AirlineTicket class introduced earlier can be modified to
mark all read-only methods as const. If any of the const methods tries to modify one of the Airli-
neTicket data members, the compiler will emit an error.

export class AirlineTicket

continues

56 | CHAPTER1 A CRASH COURSE IN C++ AND THE STANDARD LIBRARY

(continued)
public:
double calculatePriceInDollars() const;

std::string getPassengerName () const;
void setPassengerName (std::string name) ;

int getNumberOfMiles() const;
void setNumberOfMiles (int miles) ;

bool hasEliteSuperRewardsStatus() const;

void setHasEliteSuperRewardsStatus (bool status);
private:

std::string m passengerName { "Unknown Passenger" };

int m_numberOfMiles { 0 };

bool m hasEliteSuperRewardsStatus { false };

}i

string AirlineTicket::getPassengerName () const

{
}

return m_passengerName;

NOTE To follow the const-correctness principle, it’s recommended to declare
member functions that do not change any data members of the object as being
const. These member functions are also called inspectors, compared to mutators
for non-const member functions.

The constexpr Keyword

C++ always had the notion of constant expressions, which are expressions evaluated at compile time.
In some circumstances, constant expressions are a requirement. For example, when defining an array,
the size of the array needs to be a constant expression. Because of this restriction, the following piece
of code is not valid in C++:

const int getArraySize() { return 32; }

int main()

{
}

Using the constexpr keyword, the getArraysize () function can be redefined to allow it to be
called from within a constant expression:

int myArray[getArraySize()];

constexpr int getArraySize() { return 32; }

int main()

{

int myArray[getArraySize()];

C++ Crash Course | 57

You can even do something like this:

int myArray[getArraySize() + 1];

Declaring a function as constexpr imposes quite a lot of restrictions on what the function can

do because the compiler has to be able to evaluate the function at compile time. For example, a
constexpr function is allowed to call other constexpr functions but is not allowed to call any non-
constexpr functions. Such a function is not allowed to have any side effects, nor can it throw any
exceptions. constexpr functions are an advanced feature of C++, and hence not discussed in further
details in this book.

By defining a constexpr constructor, you can create constant-expression variables of user-defined
types. As with constexpr functions, constexpr classes carry a lot of restrictions, again not further
discussed in this book. However, to give you an idea of what is possible, here is an example. The fol-
lowing Rect class defines a constexpr constructor. It also defines a constexpr getArea () method
that is performing some calculation.

class Rect

{
public:
constexpr Rect (size t width, size t height)
: m_width { width }, m_height { height } {}

constexpr size t getArea() const { return m width * m height; }
private:
size t m width { 0 }, m _height { 0 };

}i
Using this class to declare a constexpr object is straightforward.

constexpr Rect r { 8, 2 };
int myArray[r.getArea()];

The consteval Keyword

The constexpr keyword discussed in the previous section specifies that a function could be executed
at compile time, but it does not guarantee compile-time execution. Take the following constexpr
function:

constexpr double inchToMm(double inch) { return inch * 25.4; }
If called as follows, the function is evaluated at compile time as desired:

constexpr double const inch { 6.0 };
constexpr double mml { inchToMm(const inch) };

However, if called as followed, the function is not evaluated at compile time, but at run time!

double dynamic_inch { 8.0 };
double mm2 { inchToMm(dynamic_inch) };

58

CHAPTER 1 A CRASH COURSE IN C++ AND THE STANDARD LIBRARY

If you really want the guarantee that a function is always evaluated at compile time, you need to use
the C++20 consteval keyword to turn a function into a so-called immediate function. The inch-
ToMm () function can be changed as follows:

consteval double inchToMm(double inch) { return inch * 25.4; }
Now, the first call to inchToMm () earlier still compiles fine and results in compile-time evalua-

tion. However, the second call now results in a compilation error because it cannot be evaluated at
compile time.

References

Professional C++ code, including much of the code in this book, uses references extensively. A refer-
ence in C++ is an alias for another variable. All modifications to the reference change the value of the
variable to which it refers. You can think of references as implicit pointers that save you the trouble
of taking the address of variables and dereferencing the pointer. Alternatively, you can think of refer-
ences as just another name for the original variable. You can create stand-alone reference variables,
use reference data members in classes, accept references as parameters to functions and methods, and
return references from functions and methods.

Reference Variables

Reference variables must be initialized as soon as they are created, like this:

int x { 3 };
int& xRef { x };

Attaching & to a type indicates that the variable is a reference. It is still used as though it was a nor-
mal variable, but behind the scenes, it is really a pointer to the original variable. Both the variable x
and the reference variable xRef point to exactly the same value; i.e., xRef is just another name for x.
If you change the value through either one of them, the change is visible through the other one as
well. For example, the following code sets x to 10 through xRref:

xRef = 10;
You cannot declare a reference variable outside of a class definition without initializing it.

int& emptyRef;

WARNING A reference variable must always be initialized when it’s created.

Modifying References

A reference always refers to the same variable to which it is initialized; references cannot be changed
once they are created. The syntax might be confusing for beginning C++ programmers. If you assign a
variable to a reference when the reference is declared, the reference refers to that variable. However, if

C++ Crash Course | 59

you assign a variable to a reference after that, the variable to which the reference refers is changed to
the value of the variable being assigned. The reference is not updated to refer to that variable. Here is
a code example:

int x {3}, vy {4};

int& xRef { x };

xRef = y;

You might try to circumvent this restriction by taking the address of v when you assign it:
xRef = &y;

This code does not compile. The address of y is a pointer, but xref is declared as a reference to an
int, not a reference to a pointer.

Some programmers go even further in their attempts to circumvent the intended semantics of refer-
ences. What if you assign a reference to a reference? Won’t that make the first reference refer to the
variable to which the second reference refers? You might be tempted to try this code:

int x { 3}, z {5 };

int& xRef { x };

int& zRef { z };
zRef = xRef;

The final line does not change zRef. Instead, it sets the value of z to 3, because xRef refers to x,
which is 3.

WARNING Omnce a reference is initialized to refer to a specific variable, you
cannot change the reference to refer to another variable; you can change only the
value of the variable the reference refers to.

References-to-const

const applied to references is usually easier than const applied to pointers for two reasons. First, ref-
erences are const by default, in that you can’t change to what they refer. So, there is no need to mark
them const explicitly. Second, you can’t create a reference to a reference, so there is usually only one
level of indirection with references. The only way to get multiple levels of indirection is to create a
reference to a pointer.

Thus, when C++ programmers refer to a reference-to-const, they mean something like this:

int z;
const int& zRef { z };
zRef = 4;

By applying const to the int&, you prevent assignment to zRef, as shown. Similar to pointers, const
ints& zRef is equivalent to int consts& zRef. Note, however, that marking zRef const has no
effect on z. You can still modify the value of z by changing it directly instead of through the reference.

60

CHAPTER 1 A CRASH COURSE IN C++ AND THE STANDARD LIBRARY

You cannot create a reference to an unnamed value, such as an integer literal, unless the reference is
to a const value. In the following example, unnamedref1 does not compile because it is a reference-
to-non-const referring to a constant. That would mean you could change the value of the constant,
5, which doesn’t make sense. unnamedref2 works because it’s a reference-to-const, so you cannot for
example write unnamedRef2 = 7.

int& unnamedRefl { 5 };
const int& unnamedRef2 { 5 };

The same holds for temporary objects. You cannot create a reference-to-non-const to a temporary
object, but a reference-to-const is fine. For example, suppose you have the following function return-
ing an std: : string object:

string getString() { return "Hello world!"; }

You can create a reference-to-const to the result of calling getstring (), and that reference keeps
the temporary std: : string object alive until the reference goes out of scope:

strings& stringl { getString() };
const string& string2 { getString() };

References to Pointers and Pointers to References

You can create references to any type, including pointer types. Here is an example of a reference to a
pointer to int:

int* intP { nullptr };

int*& ptrRef { intP };

ptrRef = new int;

*ptrRef = 5;

The syntax is a little strange: you might not be accustomed to seeing * and & right next to each other.
However, the semantics are straightforward: ptrRef is a reference to intP, which is a pointer to int.
Modifying ptrRef changes intPp. References to pointers are rare but can occasionally be useful, as
discussed in the “Reference Parameters” section later in this chapter.

Taking the address of a reference gives the same result as taking the address of the variable to which
the reference refers. Here is an example:

int x { 3 };

int& xRef { x };

int* xPtr { &xRef };

*xPtr = 100;

This code sets xPtr to point to x by taking the address of a reference to x. Assigning 100 to *xPtr
changes the value of x to 100. Writing the comparison xPtr == xRef will not compile because of

a type mismatch; xPtr is a pointer to an int, while xRef is a reference to an int. The comparisons
xPtr == &xRef and xPtr == &x both compile without errors and are both true.

Finally, note that you cannot declare a reference to a reference or a pointer to a reference. For exam-
ple, neither int& & nor inte&* is allowed.

C++ Crash Course | 61

Structured Bindings and References

Structured bindings are introduced earlier in this chapter. One of the examples given was the
following;:

pair myPair { "hello", 5 };
auto [theString, thelInt] { myPair };

Now that you know about references and const variables, it’s time to learn that both can be com-
bined with structured bindings as well. Here’s an example:

auto& [theString, thelInt] { myPair };
const auto& [theString, thelInt] { myPair };

Reference Data Members

Data members of classes can be references. As discussed earlier, a reference cannot exist without
referring to some other variable, and it is not possible to change where a reference refers to. Thus,
reference data members cannot be initialized inside the body of a class constructor, but they must be
initialized in the so-called constructor initializer. Syntax-wise, a constructor initializer immediately
follows the constructor header and starts with a colon. The following is a quick example with the
constructor initializer highlighted. Chapter 9 goes in much more detail.

class MyClass

{
public:
MyClass (int& ref) : m ref { ref } { }
private:
int& m_ref;

WARNING A reference must always be initialized when it’s created. Usually, ref-
erences are created when they are declared, but reference data members need to
be initialized in the constructor initializer for the containing class.

Reference Parameters

C++ programmers do not often use stand-alone reference variables or reference data members. The
most common use of references is for parameters to functions. The default parameter-passing seman-
tics is pass-by-value: functions receive copies of their arguments. When those parameters are modi-
fied, the original arguments remain unchanged. Pointers to stack variables are often used in C to
allow functions to modify variables in other stack frames. By dereferencing the pointer, the function
can change the memory that represents the variable even though that variable isn’t in the current
stack frame. The problem with this approach is that it brings the messiness of pointer syntax into
what is really a simple task.

62

CHAPTER 1 A CRASH COURSE IN C++ AND THE STANDARD LIBRARY

Instead of passing pointers to functions, C++ offers a better mechanism, called pass-by-reference,
where parameters are references instead of pointers. The following are two implementations of an
addone () function. The first one has no effect on the variable that is passed in because it is passed by
value, and thus the function receives a copy of the value passed to it. The second one uses a reference
and thus changes the original variable.

void addOne (int i)

{
}

void addOne (int& 1)

{
}

The syntax for the call to the addone () function with an integer reference is no different than if the
function just took an integer.

1++;

i++;

int myInt { 7 };
addOne (myInt) ;

NOTE There is a subtle difference between the two addone() implementations.
The version using pass-by-value accepts literals without a problem; for example,
addone (3); is legal. However, doing the same with the pass-by-reference ver-
sion of addone () will result in a compilation error. This can be solved by using
reference-to-const parameters, discussed in the next section.

Here is another example where pass-by-reference comes in handy; it’s a simple swap function to swap
the values of two ints:

void swap(int& first, int& second)

int temp { first };
first = second;
second = temp;

}

You can call it like this:

int x { 5}, vy {61};
swap (x, V)i

When swap () is called with the arguments x and y, the first parameter is initialized to refer to x,
and the second parameter is initialized to refer to y. When swap () modifies first and second, x
and y are actually changed.

A common quandary arises when you have a pointer to something that you need to pass to a func-
tion or method that takes a reference. You can “convert” a pointer to a reference in this case by

C++ Crash Course | 63

dereferencing the pointer. This action gives you the value to which the pointer points, which the com-
piler then uses to initialize the reference parameter. For example, you can call swap () like this:

int x { 5}, v {61};

int *xp { &x }, *yp { &y };

swap (*xp, *yp);
Finally, if you have a function that needs to return an object of a class that is expensive to copy, you’ll
often see the function accepting an output parameter of type reference-to-non-const to such a class
that the function then modifies, instead of directly returning such an object. Developers thought that
this was the recommended way to prevent any performance penalties with creating copies when
returning objects from functions. However, even back then, compilers were usually smart enough to
avoid any redundant copies. So, we have the following rule:

WARNING The recommended way to return objects from a function is to return
them by value, instead of using output parameters.

Pass-by-Reference-to-const

The main value in reference-to-const parameters is efficiency. When you pass a value into a func-
tion, an entire copy is made. When you pass a reference, you are really just passing a pointer to the
original so the computer doesn’t need to make a copy. By passing a reference-to-const, you get the
best of both worlds: no copy is made, and the original variable cannot be changed. References-to-
const become more important when you are dealing with objects because they can be large and
making copies of them can have unwanted side effects. The following example shows how to pass an
std: :string to a function as a reference-to-const:

void printString(const string& myString)

{
}

int main()

{

cout << myString << endl;

string someString { "Hello World" };
printString(someString) ;
printString("Hello World");

}

Pass-by-Reference vs. Pass-by-Value

Pass-by-reference is required when you want to modify the parameter and see those changes reflected
in the variable passed to the function. However, you should not limit your use of pass-by-reference
to only those cases. Pass-by-reference avoids copying the arguments to the function, providing two
additional benefits:

> Efficiency: Large objects could take a long time to copy. Pass-by-reference passes only a ref-
erence to the object into the function.

> Support: Not all classes allow pass-by-value.

64 | CHAPTER1 A CRASH COURSE IN C++ AND THE STANDARD LIBRARY

If you want to leverage these benefits but do not want to allow the original objects to be modified,
you should mark the parameters const, giving you pass-by-reference-to-const.

NOTE These benefits of pass-by-reference imply that you should use pass-by-
value only for simple built-in types such as int and double for which you don’t
need to modify the arguments. If you need to pass an object to a function, prefer
to pass it by reference-to-const instead of by value. This prevents unneces-

sary copying. Pass it by reference-to-non-const if the function needs to modify
the object. Chapter 9 slightly modifies this rule after the introduction of move
semantics, allowing pass-by-value of objects in certain cases.

Reference Return Values

You can also return a reference from a function. Of course, you can use this technique only if the var-
iable to which the returned reference refers to continues to exist following the function termination.

WARNING From a function, never return a reference to a variable that is locally
scoped to that function, such as an automatically allocated variable on the stack
that will be destroyed when the function ends.

The main reason to return a reference is if you want to be able to assign to the return value directly
as an lvalue (the left-hand side of an assignment statement). Several overloaded operators commonly
return references, such as operators =, +=, and so on. Chapter 15 goes into more details on how to
write such overloaded operators yourself.

Deciding Between References and Pointers

References in C++ could be considered redundant: everything you can do with references, you can
accomplish with pointers. For example, you could write the earlier shown swap () function like this:

void swap (int* first, int* second)

int temp { *first };
*first = *gecond;
*second = temp;

}

However, this code is more cluttered than the version with references. References make your pro-
grams cleaner and easier to understand. They are also safer than pointers: it’s impossible to have

a null reference, and you don’t explicitly dereference references, so you can’t encounter any of the
dereferencing errors associated with pointers. Of course, these arguments about references being safer

C++ Crash Course | 65

are valid only in the absence of any pointers. For example, take the following function that accepts a
reference to an int:

void refcall(int& t) { ++t; }

You could declare a pointer and initialize it to point to some random place in memory. Then you
could dereference this pointer and pass it as the reference argument to refcall (), as in the follow-
ing code. This code compiles fine, but it is undefined what will happen when executed. It could for
example cause a crash.

int* ptr { (int*)8 };
refcall (*ptr) ;

Most of the time, you can use references instead of pointers. References to objects also support
so-called polymorphism, discussed in detail in Chapter 10, in the same way as pointers to objects.
However, there are some use cases in which you need to use a pointer. One example is when you
need to change the location to which it points. Recall that you cannot change the variable to which
references refer. For example, when you dynamically allocate memory, you need to store a pointer to
the result in a pointer rather than a reference. A second use case in which you need to use a pointer is
when the pointer is optional, that is, when it can be nullptr. Yet another use case is if you want to
store polymorphic types (discussed in Chapter 10) in a container.

A long time ago, and in legacy code, a way to distinguish between appropriate use of pointers and ref-
erences in parameters and return types was to consider who owns the memory. If the code receiving
the variable became the owner and thus became responsible for releasing the memory associated with
an object, it had to receive a pointer to the object. If the code receiving the variable didn’t have to free
the memory, it received a reference. Nowadays, however, raw pointers should be avoided in favor of
so-called smart pointers (see Chapter 7), which is the recommended way to transfer ownership.

NOTE Prefer references over pointers; that is, use a pointer only if a reference is
not possible.

Consider a function that splits an array of ints into two arrays: one of even numbers and one of odd
numbers. The function doesn’t know how many numbers in the source array will be even or odd, so it
should dynamically allocate the memory for the destination arrays after examining the source array. It
should also return the sizes of the two new arrays. Altogether, there are four items to return: pointers
to the two new arrays and the sizes of the two new arrays. Obviously, you must use pass-by-reference.
The canonical C way to write the function looks like this:

void separateOddsAndEvens (const int arr[], size t size, int** odds,
size t* numOdds, int** evens, size t* numEvens)

*numOdds = *numEvens = 0;
for (size t i = 0; i < size; ++i) {

continues

66 | CHAPTER1 A CRASH COURSE IN C++ AND THE STANDARD LIBRARY

(continued)
if (arr[i] % 2 == 1) {
++ (*numOdds) ;
} else {
+ (*numEvens) ;
}

*odds = new int [*numOdds];
*evens = new int [*numEvens] ;

size t oddsPos = 0, evensPos = 0;
for (size t i = 0; i < size; ++i) {
2 == 1) {

if (arr[i] %
(*odds) [oddsPos++] = arr([i];
} else {
(*evens) [evensPos++] = arr[i];

}
}

The final four parameters to the function are the “reference” parameters. To change the values to
which they refer, separateoddsandEvens () must dereference them, leading to some ugly syntax in
the function body. Additionally, when you want to call separateoddsAndEvens (), you must pass the
address of two pointers so that the function can change the actual pointers, and pass the address of
two size_ts so that the function can change the actual size_ts. Note also that the caller is responsi-
ble for deleting the two arrays created by separateoddsAndEvens () !

int unsplit(] { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 };

int* oddNums { nullptr };

int* evenNums { nullptr };
size t numOdds { 0 }, numEvens { 0 };

separateOddsAndEvens (unSplit, std::size(unSplit),
&oddNums, &numOdds, &evenNums, &numEvens) ;

delete[] oddNums; oddNums = nullptr;
delete[] evenNums; evenNums = nullptr;

If this syntax annoys you (which it should), you can write the same function by using references to
obtain true pass-by-reference semantics:

void separateOddsAndEvens (const int arr[], size t size, int*& odds,
size t& numOdds, int*& evens, size_t& numEvens)

numOdds = numEvens = 0;
for (size t 1 { 0 }; 1
if (arr[i] % 2 ==
++numOdds;
} else {
++numEvens;
}

< size; ++i) {
) {

C++ Crash Course | 67

odds = new int[numOdds];
evens = new int[numEvens];

size t oddsPos { 0 }, evensPos { 0 };
for (size t i { 0 }; i < size; ++1) {

if (arr[i] % 2 == 1) {
odds [oddsPos++] = arr[il;
} else {
evens [evensPos++] = arr[i];

}
}

In this case, the odds and evens parameters are references to int*s. separateoddsAndEvens () can
modify the int*s that are used as arguments to the function (through the reference), without any
explicit dereferencing. The same logic applies to numodds and numEvens, which are references to
size_ts. With this version of the function, you no longer need to pass the addresses of the pointers or
size_ts. The reference parameters handle it for you automatically:

separateOddsAndEvens (unSplit, std::size(unSplit),
oddNums, numOdds, evenNums, numEvens) ;

Even though using reference parameters is already much cleaner than using pointers, it is recom-
mended that you avoid dynamically allocated arrays as much as possible. For example, by using the
Standard Library vector container, the separateoddsAndEvens () function can be rewritten to be
much safer, shorter, more elegant, and much more readable, because all memory allocations and deal-
locations happen automatically.

voild separateOddsAndEvens (const vector<int>& arr,
vector<int>& odds, vector<int>& evens)

for (int i : arr) {

if (1 %2 ==1) {
odds.push back (i) ;
} else {

evens.push back (i) ;

}
}

This version can be used as follows:

vector<int> vecUnSplit { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 };
vector<int> odds, evens;
separateOddsAndEvens (vecUnSplit, odds, evens);

Note that you don’t need to deallocate the odds and evens containers; the vector class takes care of
this. This version is much easier to use than the versions using pointers or references.

The version using vectors is already much better than the versions using pointers or references, but
as I recommended earlier, output parameters should be avoided as much as possible. If a function
needs to return something, it should just return it instead of using output parameters! Statements of

68

CHAPTER 1 A CRASH COURSE IN C++ AND THE STANDARD LIBRARY

the form return object; trigger return value optimization (RVO) if object is a local variable, a
parameter to the function, or a temporary value. Furthermore, if object is a local variable, named
return value optimization (NRVO) can kick in. Both RVO and NRVO are forms of copy elision and
make returning objects from functions very efficient. With copy elision, compilers can avoid any
copying of objects that are returned from functions. This results in zero-copy pass-by-value semantics.

The following version of separateoddsaAndEvens () returns a simple struct of two vectors, instead
of accepting two output vectors as parameters. It also uses C++20 designated initializers.

struct OddsAndEvens { vector<int> odds, evens; };

OddsAndEvens separateOddsAndEvens (const vector<ints>& arr)

{

vector<int> odds, evens;
for (int i : arr) {

if (1 % 2 ==1) {
odds.push back (i) ;
} else {

evens.push_back (i) ;
}
1
return OddsAndEvens { .odds = odds, .evens = evens };

}

With these changes, the code to call separateoddsandEvens () becomes compact yet easy to read
and understand:

vector<int> vecUnSplit { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 };
auto oddsAndEvens { separateOddsAndEvens (vecUnSplit) };

NOTE Avoid output parameters. If a function needs to return something, just
return it by value.

const_cast()

In C++ every variable has a specific type. It is possible in certain situations to cast a variable of one
type to a variable of another type. To that end, C++ provides five types of casts: const_cast (),
static_cast (), reinterpret cast (), dynamic_cast (), and std::bit_cast () (since C++20).
This section discusses const_cast (). The second type of cast, static_cast (), is briefly introduced
earlier in this chapter and discussed in more detail in Chapter 10. The other remaining casts are also
discussed in Chapter 10.

const_cast () is the most straightforward of the different casts available. You can use it to add
const-ness to a variable or cast away const-ness of a variable. It is the only cast of the five that is
allowed to cast away const-ness. Theoretically, of course, there should be no need for a const cast. If
a variable is const, it should stay const. In practice, however, you sometimes find yourself in a situ-
ation where a function is specified to take a const parameter, which it must then pass to a function

C++ Crash Course | 69

that takes a non-const parameter, and you are absolutely sure that the latter function will not modify
its non-const argument. The “correct” solution would be to make const consistent in the program,
but that is not always an option, especially if you are using third-party libraries. Thus, you sometimes
need to cast away the const-ness of a variable, but again you should do this only when you are sure
the function you are calling will not modify the object; otherwise, there is no other option than to
restructure your program. Here is an example:

void ThirdPartyLibraryMethod (char* str);

void f (const char* str)

{
}

Additionally, the Standard Library provides a helper method called std: :as_const (), defined in
<utilitys, which returns a reference-to-const version of its reference parameter. Basically, as_
const (obj) is equivalent to const_cast<const T&>(obj), where T is the type of obj. Using as_
const () results in shorter and more readable code compared to using const_cast (). Concrete use
cases for as_const () are coming later in this book, but its basic use is as follows:

ThirdPartyLibraryMethod (const cast<char*s>(str));

string str { "C++" };
const string& constStr { as_const(str) };

Exceptions

C++ is a flexible language but not a particularly safe one. The compiler will let you write code
that scribbles on random memory addresses or tries to divide by zero (computers don’t deal well
with infinity). One language feature that attempts to add a degree of safety back to the language is
exceptions.

An exception is an unexpected situation. For example, if you are writing a function that retrieves a
web page, several things could go wrong. The Internet host that contains the page might be down, the
page might come back blank, or the connection could be lost. One way you could handle this situa-
tion is by returning a special value from the function, such as nullptr or an error code. Exceptions
provide a much better mechanism for dealing with problems.

Exceptions come with some new terminology. When a piece of code detects an exceptional situation,
it throws an exception. Another piece of code catches the exception and takes appropriate action. The
following example shows a function, divideNumbers (), that throws an exception if the caller passes
in a denominator of zero. The use of std: :invalid_argument requires <stdexcepts>.

double divideNumbers (double numerator, double denominator)

if (denominator == 0) {
throw invalid argument { "Denominator cannot be 0." };

return numerator / denominator;

}

When the throw statement is executed, the function immediately ends without returning a value. If
the caller surrounds the function call with a try/catch block, as shown in the following code, it
receives the exception and is able to handle it. Chapter 14, “Handling Errors,” goes into much more

70

CHAPTER 1 A CRASH COURSE IN C++ AND THE STANDARD LIBRARY

detail on exception handling, but for now, remember that it is recommended to catch exceptions by
reference-to-const, such as const invalid arguments in the following example. Also note that all
Standard Library exception classes have a method called what (), which returns a string containing a
brief explanation of the exception.

try {
cout << divideNumbers (2.5, 0.5) << endl;

cout << divideNumbers (2.3, 0) << endl;

cout << divideNumbers (4.5, 2.5) << endl;
} catch (const invalid argument& exception) {

cout << format ("Exception caught: {}", exception.what()) << endl;
}

The first call to divideNumbers () executes successfully, and the result is output to the user. The
second call throws an exception. No value is returned, and the only output is the error message that is
printed when the exception is caught. The third call is never executed because the second call throws
an exception, causing the program to jump to the catch block. The output for the preceding code
snippet is as follows:

5
An exception was caught: Denominator cannot be 0.

Exceptions can get tricky in C++. To use exceptions properly, you need to understand what happens
to the stack variables when an exception is thrown, and you have to be careful to properly catch and
handle the necessary exceptions. Also, if you need to include more information about an error in an
exception, you can write your own exception types. Lastly, the C++ compiler doesn’t force you to
catch every exception that might occur. If your code never catches any exceptions but an exception
is thrown, the program will be terminated. These trickier aspects of exceptions are covered in much
more detail in Chapter 14.

Type Aliases

A type alias provides a new name for an existing type declaration. You can think of a type alias as
syntax for introducing a synonym for an existing type declaration without creating a new type. The
following gives a new name, IntPtr, to the int* type declaration:

using IntPtr = int¥*;
You can use the new type name and the definition it aliases interchangeably. For example, the follow-
ing two lines are valid:

int* pl;

IntPtr p2;
Variables created with the new type name are completely compatible with those created with the orig-
inal type declaration. So, it is perfectly valid, given these definitions, to write the following, because
they are not just compatible types; they are the same type:

pl = p2;
p2 = pl;

C++ Crash Course | 71

The most common use for type aliases is to provide manageable names when the real type declara-
tions become too unwieldy. This situation commonly arises with templates. An example from the
Standard Library itself is std: :basic_string<T> to represent strings. It’s a class template where T
is the type of each character in the string, for example char. You have to specify the template type
parameter any time you want to refer to such a type. For declaring variables, specifying function
parameters, and so on, you would have to write basic_string<chars:

void processVector (const vector<basic string<char>>& vec) { }

int main()

{

vector<basic_string<char>> myVector;
processVector (myVector) ;

}

Since basic_string<chars is used that frequently, the Standard Library provides the following type
alias as a shorter, more meaningful name:

using string = basic string<chars;
With this type alias, the previous code snippet can be written more elegantly:

void processVector (const vector<string>& vec)]

int main()

{

vector<string> myVector;
processVector (myVector) ;

typedefs

Type aliases were introduced in C++11. Before C++11, you had to use typedefs to accomplish some-
thing similar but in a more convoluted way. This old mechanism is still explained here because you
will come across it in legacy code bases.

Just as a type alias, a typedef provides a new name for an existing type declaration. For example,
take the following type alias:

using IntPtr = int*;
This can be written as follows with a typedef:
typedef int* IntPtr;
As you can see, it’s much less readable. The order is reversed, which causes a lot of confusion, even

for professional C++ developers. Other than being more convoluted, a typedef behaves the same as a
type alias. For example, the typedef can be used as follows:

IntPtr p;

72

CHAPTER 1 A CRASH COURSE IN C++ AND THE STANDARD LIBRARY

Type aliases and typedefs are not entirely equivalent, though. Compared to typedefs, type aliases
are more powerful when used with templates, but that is a topic covered in Chapter 12 because it
requires more details about templates.

WARNING Always prefer type aliases over typedefs.

Type Inference

Type inference allows the compiler to automatically deduce the type of an expression. There are two
keywords for type inference: auto and decltype.

The auto Keyword

The auto keyword has a number of different uses:

> Deducing a function’s return type, as explained earlier in this chapter
Structured bindings, as explained earlier in this chapter
Deducing the type of an expression, as discussed in this section
Deducing the type of non-type template parameters; see Chapter 12
Abbreviated function template syntax; see Chapter 12
decltype (auto); see Chapter 12

Alternative function syntax; see Chapter 12

Y Y Y Y Y Y Y

Generic lambda expressions; see Chapter 19, “Function Pointers, Function Objects, and
Lambda Expressions”

auto can be used to tell the compiler to automatically deduce the type of a variable at compile time.
The following line shows the simplest use of the auto keyword in that context:

auto x { 123 };

In this example, you don’t win much by typing auto instead of int; however, it becomes useful for
more complicated types. Suppose you have a function called getFoo () that has a complicated return
type. If you want to assign the result of calling getFoo () to a variable, you can spell out the compli-
cated type, or you can simply use auto and let the compiler figure it out:

auto result { getFoo() };

This has the added benefit that you can easily change the function’s return type without having to
update all the places in the code where that function is called.

The auto& Syntax

Using auto to deduce the type of an expression strips away reference and const qualifiers. Suppose
you have the following;:

const string message { "Test" };
const string& foo() { return message; }

C++ Crash Course | 73

You can call foo () and store the result in a variable with the type specified as auto, as follows:
auto f1 { foo() };
Because auto strips away reference and const qualifiers, £1 is of type string, and thus a copy is

made! If you want a reference-to-const, you can explicitly make it a reference and mark it const,
as follows:

const auto& £2 { foo() };
Earlier in this chapter, the as_const () utility function is introduced. It returns a reference-to-const
version of its reference parameter. Be careful when using as_const () in combination with auto.

Since auto strips away reference and const qualifiers, the following result variable has type
string, not const strings, and hence a copy is made:

string str { "C++" };
auto result { as_const(str) };

WARNING Always keep in mind that auto strips away reference and const
qualifiers and thus creates a copy! If you do not want a copy, use autos or const
autoé&.

The auto* Syntax
The auto keyword can also be used for pointers. Here’s an example:

int i { 123 };
auto p { &i };

The type of p is int*. There is no danger here to accidentally make a copy, unlike when working with
references as discussed in the previous section. However, when working with pointers, I do recom-
mend using the auto* syntax as it more clearly states that pointers are involved, for example:

auto* p { &i };

Additionally, the use of auto* versus just auto does resolve a strange behavior when using auto,
const, and pointers together. Suppose you write the following:

const auto pl { &i };
This is most of the time not doing what you expect it to do!

Often, when you use const, you want to protect the thing to which the pointer is pointing to. You
would think that p1 is of type const int*, but in fact, the type is int* const, so it’s a const
pointer to a non-const integer! Putting the const after the auto as follows doesn’t help; the type is
still int* const:

auto const p2 { &i };

74 | CHAPTER1 A CRASH COURSE IN C++ AND THE STANDARD LIBRARY

When you use auto* in combination with const, then it is behaving as you would expect. Here’s
an example:

const auto* p3 { &i };

Now p3 is of type const int*.If you really want a const pointer instead of a const integer, you put
the const at the end:

auto* const p4 { &i };
p4 has type int* const.

Finally, with this syntax you can make both the pointer and the integer constant:

const auto* const p5 { &i };

p5 is of type const int* const. You cannot achieve this if you omit the *.

Copy List vs. Direct List Initialization

There are two types of initialization that use braced initializer lists:

> Copy list initialization: T obj = {argl, arg2, ...};

> Direct list initialization: T obj {argl, arg2, ...};
In combination with auto type deduction, there is an important difference between copy- and direct
list initialization introduced since C++17.

Since C++17, you have the following results (requires <initializer lists):

o
|

auto a = { 11 };
auto {

auto c
auto d

{ 11 };
{

11, 22 };

Note that for copy list initialization, all the elements in the braced initializer must be of the same
type. For example, the following does not compile:
auto b = { 11, 22.33 };

In earlier versions of the standard (C++11/14), both copy- and direct list initialization would deduce

an initializer list<>

auto a = { 11 };
auto b = {

auto ¢
auto d { 11, 22 };

Your First Bigger C++ Program | 75

The decltype Keyword

The decltype keyword takes an expression as argument and computes the type of that expression, as
shown here:

int x { 123 };
decltype (x) y { 456 };

In this example, the compiler deduces the type of v to be int because that is the type of x.

The difference between auto and decltype is that decltype does not strip reference and const
qualifiers. Take, again, a function foo () returning a reference-to-const string. Defining £2 using
decltype as follows results in £2 being of type const strings, and thus no copy is made:

decltype (foo()) f2 { foo() };

On first sight, dec1ltype doesn’t seem to add much value. However, it is powerful in the context of
templates, discussed in Chapters 12 and 26.

The Standard Library

C++ comes with a Standard Library, which contains a lot of useful classes that can easily be used in
your code. The benefit of using these classes is that you don’t need to reinvent them, and you don’t
need to waste time on implementing things that have already been implemented for you. Another
benefit is that the classes available in the Standard Library are heavily tested and verified for correct-
ness by thousands of users. The Standard Library classes are also optimized for performance, so using
them will most likely result in better performance compared to making your own implementation.

A lot of functionality is available to you in the Standard Library. Chapters 16 to 24 provide more
details; however, when you start working with C++, it is good to have an idea of what the Standard
Library can do for you from the beginning. This is especially important if you are a C programmer. As
a C programmer, you might try to solve problems in C++ the same way you would solve them in C,
but, in C++ there is probably an easier and safer solution to the problem that involves using Standard
Library classes.

That is the reason why this chapter already introduces some Standard Library classes, such as

std: :string, array, vector, pair, and optional. These are used throughout examples in this book
from the beginning, to make sure you get into the habit of using Standard Library classes. Many more
classes are introduced in Chapters 16 to 24.

YOUR FIRST BIGGER C++ PROGRAM

The following program builds on the employee database example used earlier in the discussion on
structs. This time, you will end up with a fully functional C++ program that uses many of the features
discussed in this chapter. This real-world example includes the use of classes, exceptions, streams,
vectors, namespaces, references, and other language features.

76 | CHAPTER1 A CRASH COURSE IN C++ AND THE STANDARD LIBRARY

An Employee Records System

A program to manage a company’s employee records needs to be flexible and have useful features.
The feature set for this program includes the following abilities:

> To add and fire employees
To promote and demote employees
To view all employees, past and present

To view all current employees

Y Y v Y

To view all former employees

The design for this program divides the code into three parts. The Employee class encapsulates the
information describing a single employee. The Database class manages all the employees of the com-
pany. Finally, a separate UserInterface file provides the interactivity of the program.

The Employee Class

The Employee class maintains all the information about an employee. Its methods provide a way to
query and change that information. Employees also know how to display themselves on the console.
Additionally, methods exist to adjust the employee’s salary and employment status.

Employee.cppm

The Employee.cppm module interface file defines the Employee class. The sections of this file are
described individually in the text that follows. The first few lines are as follows:

export module employee;
import <strings;
namespace Records {

The first line is a module declaration and states that this file exports a module called employee, fol-
lowed by an import for the string functionality. This code also declares that the subsequent code,
contained within the curly braces, lives in the Records namespace. Records is the namespace that is
used throughout this program for application-specific code.

Next, the following two constants are defined inside the Records namespace. Note that this book
uses the convention to not prefix constants with any special letter.

const int DefaultStartingSalary { 30'000 };
export const int DefaultRaiseAndDemeritAmount { 1'000 };

The first constant represents the default starting salary for new employees. This constant is not
exported, because code outside this module does not need access to it. Code in the employee module
can access this constant as Records : :DefaultStartingSalary.

The second constant is the default amount for promoting or demoting an employee. This constant
is exported, so code outside this module could, for example, promote an employee by twice the
default amount.

Your First Bigger C++ Program | 77

Next, the Employee class is defined and exported, along with its public methods:

export class Employee

{

public:
Employee (const std::string& firstName,
const std::string& lastName) ;

void promote (int raiseAmount = DefaultRaiseAndDemeritAmount) ;
void demote (int demeritAmount = DefaultRaiseAndDemeritAmount) ;
void hire() ;

void fire();

void display() const;

void setFirstName (const std::string& firstName) ;
const std::string& getFirstName () const;

void setLastName (const std::string& lastName) ;
const std::string& getLastName () const;

void setEmployeeNumber (int employeeNumber) ;
int getEmployeeNumber () const;

void setSalary(int newSalary) ;
int getSalary () const;

bool isHired() const;

A constructor is provided that accepts a first and last name. The promote () and demote () methods
both have integer parameters that have a default value equal to DefaultRaiseAndDemeritAmount.
In this way, other code can omit the parameter, and the default will automatically be used. Methods
to hire and fire an employee are provided, together with a method to display information about an
employee. A number of setters and getters provide functionality to change the information or to query
the current information of an employee.

The data members are declared as private so that other parts of the code cannot modify
them directly:

private:
std::string m_firstName;
std::string m_lastName;
int m_employeeNumber { -1 };
int m _salary { DefaultStartingSalary };
bool m hired { false };
}i
}

The setters and getters provide the only public way of modifying or querying those values. The data

members are directly initialized here inside the class definition instead of in a constructor. By default,
new employees have no name, an employee number of —1, the default starting salary, and a status of
not hired.

78

CHAPTER 1 A CRASH COURSE IN C++ AND THE STANDARD LIBRARY

Employee.cpp

The first few lines of the module implementation file are as follows:

module employee;
import <iostreams;
import <formats;
using namespace std;

The first line specifies for which module this source file is, followed by an import of <iostreams and
<formats, and a using directive.

The constructor accepting a first and last name just sets the corresponding data members:

namespace Records {
Employee: :Employee (const string& firstName, const string& lastName)
: m_firstName { firstName }, m_lastName { lastName }
{

}

The promote () and demote () methods simply call setsalary () with a new value. Note that the
default values for the integer parameters do not appear in the source file; they are allowed only in a
function declaration, not in a definition.

void Employee::promote (int raiseAmount)

{
}

void Employee::demote (int demeritAmount)

{
}

The hire () and fire () methods just set the m_hired data member appropriately:

setSalary(getSalary() + raiseAmount) ;

setSalary(getSalary() - demeritAmount) ;

void Employee::hire() { m hired = true; }
void Employee::fire() { m_hired = false; }

The display () method uses the console output stream to display information about the current
employee. Because this code is part of the Employee class, it could access data members, such as

m_salary, directly instead of using getters, such as getSalary (). However, it is considered good
style to make use of getters and setters when they exist, even from within the class.

void Employee::display() const

{

cout << format ("Employee: {}, {}", getLastName(), getFirstName()) << endl;
cout << Memmmm oo " << endl;
cout << (isHired() ? "Current Employee" : "Former Employee") << endl;

cout << format ("Employee Number: {}", getEmployeeNumber()) << endl;
cout << format("Salary: ${}", getSalary()) << endl;
cout << endl;

Your First Bigger C++ Program | 79

Finally, a number of getters and setters perform the task of getting and setting values:

void Employee::setFirstName (const string& firstName)

{
}

const string& Employee::getFirstName () const

{
}

m_firstName = firstName;

return m_firstName;

}

Even though these methods seem trivial, it’s better to have trivial getters and setters than to make
your data members public. For example, in the future, you may want to perform bounds checking
in the setsalary () method. Getters and setters also make debugging easier because you can insert a
breakpoint in them to inspect values when they are retrieved or set. Another reason is that when you
decide to change how you are storing the data in your class, you only need to modify these getters
and setters, while other code using your class can remain untouched.

EmployeeTest.cpp

As you write individual classes, it is often useful to test them in isolation. The following code includes
amain() function that performs some simple operations using the Employee class. Once you are con-
fident that the Employee class works, you should remove or comment out this file so that you don’t
attempt to compile your code with multiple main () functions.

import <iostreams;
import employee;

using namespace std;
using namespace Records;

int main()
{
cout << "Testing the Employee class." << endl;
Employee emp { "Jane", "Doe" };
emp.setFirstName ("John") ;
emp . setLastName ("Doe") ;
emp . setEmployeeNumber (71) ;
emp.setSalary(50'000) ;
emp .promote () ;
emp.promote (50) ;
emp.hire() ;
emp.display () ;

}

Another way to test individual classes is with unit testing, discussed in Chapter 30, “Becoming Adept
at Testing.”

80 | CHAPTER1 A CRASH COURSE IN C++ AND THE STANDARD LIBRARY

The Database Class

The Database class uses the std: :vector class from the Standard Library to store Employee objects.

Database.cppm
Here are the first few lines of the database.cppm module interface file:

export module database;
import <strings;
import <vectors;
import employee;

namespace Records {
const int FirstEmployeeNumber { 1'000 };

Because the database will take care of automatically assigning an employee number to a new
employee, a constant defines where the numbering begins.

Next, the Database class is defined and exported:

export class Database

{
public:
Employee& addEmployee (const std::string& firstName,
const std::string& lastName) ;
Employee& getEmployee (int employeeNumber) ;
Employee& getEmployee (const std::string& firstName,
const std::string& lastName) ;

The database provides an easy way to add a new employee by providing a first and last name. For
convenience, this method returns a reference to the new employee. External code can also get an
employee reference by calling the getEmployee () method. Two versions of this method are declared.
One allows retrieval by employee number. The other requires a first name and a last name.

Because the database is the central repository for all employee records, it has the following meth-
ods to output all employees, the employees who are currently hired, and the employees who are no
longer hired:

void displayAll() const;
void displayCurrent () const;
void displayFormer () const;

Finally, the private data members are defined as follows:

private:
std::vector<Employee> m_employees;
int m nextEmployeeNumber { FirstEmployeeNumber };

}i
1

The m_employees data member contains the Employee objects, while m_nextEmployeeNumber keeps
track of what employee number is assigned to a new employee and is initialized with the FirstEm-
ployeeNumber constant.

Your First Bigger C++ Program | 81

Database.cpp

Here is the implementation of the addEmployee () method:

module database;
import <stdexcepts>;

using namespace std;

namespace Records
Employee& Database::addEmployee (const string& firstName,
const string& lastName)

Employee theEmployee { firstName, lastName };

theEmployee.setEmployeeNumber (m_nextEmployeeNumber++) ;
theEmployee.hire () ;

m_employees.push _back (theEmployee) ;
return m_employees.back () ;

}

The addEmployee () method creates a new Employee object, fills in its information, and adds it to
the vector. The m_nextEmployeeNumber data member is incremented after its use so that the next
employee will get a new number. The back () method of vector returns a reference to the last ele-
ment in the vector, which is the newly added employee.

One of the getEmployee () methods is implemented as follows. The second version is implemented
similarly, hence not shown. They both loop over all employees in m_employees using a range-based
for loop and check to see whether an Employee is a match for the information passed to the method.
An exception is thrown if no match is found.

Employee& Database::getEmployee (int employeeNumber)

for (auto& employee : m _employees) {
if (employee.getEmployeeNumber () == employeeNumber) {
return employee;
}
1

throw logic error { "No employee found." };

}

The following display methods all use a similar algorithm: they loop through all employees and tell

each employee to display itself to the console if the criterion for display matches. displayFormer ()
is similar to displayCurrent ().

void Database::displayAll () const

{
}

for (const auto& employee : m employees) { employee.display(); }

void Database::displayCurrent () const
{

for (const auto& employee : m_employees) {
if (employee.isHired()) { employee.display(); }
}

82 | CHAPTER1 A CRASH COURSE IN C++ AND THE STANDARD LIBRARY

DatabaseTest.cpp
A simple test for the basic functionality of the database is shown here:

import <iostreams;
import database;

using namespace std;
using namespace Records;

int main()

{
Database myDB;
Employee& empl { myDB.addEmployee ("Greg", "Wallis") };
empl.fire();

Employee& emp2 { myDB.addEmployee ("Marc", "White") };
emp2.setSalary(100'000) ;

Employee& emp3 { myDB.addEmployee ("John", "Doe") };
emp3.setSalary(10'000) ;
emp3 .promote () ;

cout << "all employees: " << endl << endl;
myDB.displayAll () ;

cout << endl << "current employees: " << endl << endl;
myDB.displayCurrent () ;

cout << endl << "former employees: " << endl << endl;
myDB.displayFormer () ;

The User Interface

The final part of the program is a menu-based user interface that makes it easy for users to work with
the employee database.

The following main () function contains a loop that displays the menu, performs the selected action,
and then does it all again. For most actions, separate functions are defined. For simpler actions, such
as displaying employees, the actual code is put in the appropriate case.

import <iostreams;
import <stdexcepts>;
import <exceptions;
import <formats;
import <strings;
import database;
import employee;

using namespace std;
using namespace Records;

int displayMenu() ;
void doHire (Database& db) ;

Your First Bigger C++ Program | 83

void doFire (Database& db) ;
void doPromote (Database& db) ;

int main()

{

Database employeeDB;

bool
whil

}

done { false };

e (!done) {

int selection { displayMenu() };

switch (selection) {

case 0:
done = true;
break;

case 1:
doHire (employeeDB) ;
break;

case 2:
doFire (employeeDB) ;
break;

case 3:
doPromote (employeeDB) ;
break;

case 4:
employeeDB.displayAll () ;
break;

case 5:
employeeDB.displayCurrent () ;
break;

case 6:
employeeDB.displayFormer () ;
break;

default:
cerr << "Unknown command." << endl;
break;

The displayMenu () function outputs the menu and gets input from the user. One important note is
that this code assumes that the user will “play nice” and type a number when a number is requested.
When you read about I/O in Chapter 13, you will learn how to protect against bad input.

int disp

{
int
cout
cout
cout
cout
cout
cout
cout
cout
cout
cout

layMenu ()

selection;

<< endl;

<< "Employee Database" << endl;

< Mmoo " << endl;

<< "1) Hire a new employee" << endl;

<< "2) Fire an employee" << endl;

<< "3) Promote an employee" << endl;

<< "4) List all employees" << endl;

<< "5) List all current employees" << endl;
<< "6) List all former employees" << endl;
<< "0) Quit" << endl;

continues

84 | CHAPTER1 A CRASH COURSE IN C++ AND THE STANDARD LIBRARY

(continued)

}

cout << endl;

cout << "--->";
cin >> selection;
return selection;

The doHire () function gets the new employee’s name from the user and tells the database to add
the employee:

void doHire (Database& db)

{

}

doFire (

string firstName;
string lastName;

cout << "First name? ";
cin >> firstName;

cout << "Last name? ";
cin >> lastName;

auto& employee { db.addEmployee (firstName, lastName) };
cout << format ("Hired employee {} {} with employee number {}.",
firstName, lastName, employee.getEmployeeNumber()) << endl;

) and doPromote () both ask the database for an employee by their employee number and

then use the public methods of the Employee object to make changes:

void doFire (Database& db)

{

}

int employeeNumber;
cout << "Employee number? ";
cin >> employeeNumber;

try {
auto& emp { db.getEmployee (employeeNumber) };
emp.fire();
cout << format ("Employee {} terminated.", employeeNumber) << endl;

} catch (const std::logic_error& exception) {
cerr << format ("Unable to terminate employee: {}",
exception.what()) << endl;

void doPromote (Database& db)

{

int employeeNumber;
cout << "Employee number? ";
cin >> employeeNumber;

int raiseAmount;
cout << "How much of a raise? ";
cin >> raiseAmount;

Exercises | 85

try {
auto& emp { db.getEmployee (employeeNumber) };

emp .promote (raiseAmount) ;
} catch (const std::logic_error& exception) {
cerr << format ("Unable to promote employee: {}", exception.what()) << endl;

Evaluating the Program

The preceding program covers a number of topics from the simple to the more complex. There are a
number of ways that you could extend this program. For example, the user interface does not expose
all the functionality of the Database and Employee classes. You could modify the Ul to include those
features. You could also try to implement additional functionality that you can think of for both
classes, which would be a great exercise to practice the material you learned in this chapter.

If there are parts of this program that don’t make sense, consult the relevant sections in this chapter
to review those topics. If something is still unclear, the best way to learn is to play with the code and
try things. For example, if you’re not sure how to use the conditional operator, write a short main ()
function that uses it.

SUMMARY

After this crash course in C++ and the Standard Library, you are ready to become a professional C++
programmer. When you start getting deeper into the C++ language later in this book, you can refer to
this chapter to brush up on parts of the language you may need to review. Going back to some of the
sample code in this chapter may be all you need to bring a forgotten concept back to the forefront of
your mind.

The next chapter goes deeper in on how strings are handled in C++, because almost every program
yow’ll write will have to work with strings one way or another.

EXERCISES

By solving the following exercises, you can practice the material discussed in this chapter. Solutions
to all exercises are available with the code download on the book’s website at www.wiley.com/go/
proc++5e. However, if you are stuck on an exercise, first reread parts of this chapter to try to find an
answer yourself before looking at the solution from the website.

Exercise 1-1: Modify the Employee structure from the beginning of this chapter by putting it
in a namespace called HR. What modifications do you have to make to the code in main () to
work with this new implementation? Additionally, modify the code to use C++20 designated
initializers.

Exercise 1-2: Build further on the result of Exercise 1-1 and add an enumeration data mem-
ber title to Employee to specify whether a certain employee is a Manager, Senior Engineer,
or Engineer. Which kind of enumeration type will you use and why? Whatever you need to
add, add it to the HR namespace. Test your new Employee data member in the main () func-
tion. Use a switch statement to print out a human-readable string for the title.

86 | CHAPTER1 A CRASH COURSE IN C++ AND THE STANDARD LIBRARY

Exercise 1-3: Use an std: :array to store three Employee instances from Exercise 1-2
with different data. Subsequently, use a range-based for loop to print out the employees in
the array.

Exercise 1-4: Do the same as Exercise 1-3, but use an std: :vector instead of an array, and
use push_back () to insert elements into the vector.

Exercise 1-5: Now that you know about const and references, and what they are used for,
modify the AirlineTicket class from earlier in this chapter to use references wherever pos-
sible and to be so-called const correct.

Exercise 1-6: Modify the AirlineTicket class from Exercise 1-5 to include an optional
frequent-flyer number. What is the best way to represent this optional data member? Add a
setter and a getter to set and retrieve the frequent-flyer number. Modify the main () function
to test your implementation.

Working with Strings
and String Views

WHAT'S IN THIS CHAPTER?

The differences between C-style strings and C++ strings
Details of the C++ std: :string class
Why you should use std: :string view

What raw string literals are

Y Y Y Y Y

How to format strings

WILEY.COM DOWNLOADS FOR THIS CHAPTER

Please note that all the code examples for this chapter are available as a part of the chapter’s
code download on this book’s website at www.wiley.com/go/proc++5e on the
Download Code tab.

Every program that you write will use strings of some kind. With the old C language, there is
not much choice but to use a dumb null-terminated character array to represent a string.
Unfortunately, doing so can cause a lot of problems, such as buffer overflows, which can result
in security vulnerabilities. The C++ Standard Library includes a safe and easy-to-use

std: :string class that does not have these disadvantages.

Because strings are so important, this chapter, early in the book, discusses them in more detail.

Professional C++, Fifth Edition. Marc Gregoire.
© 2021 John Wiley & Sons, Inc. Published 2021 by John Wiley & Sons, Inc.

88

CHAPTER 2 WORKING WITH STRINGS AND STRING VIEWS

DYNAMIC STRINGS

Strings in languages that have supported them as first-class objects tend to have a number of attrac-
tive features, such as being able to expand to any size or to have substrings extracted or replaced.
In other languages, such as C, strings were almost an afterthought; there was no really good string
data type, just fixed arrays of bytes. The C string library was nothing more than a collection of
rather primitive functions without even bounds checking. C++ provides a string type as a first-class
data type.

C-Style Strings

In the C language, strings are represented as an array of characters. The last character of a string is a
null character (\0) so that code operating on the string can determine where it ends. This null char-
acter is officially known as NUL, spelled with one L, not two. NUL is not the same as the NULL pointer.
Even though C++ provides a better string abstraction, it is important to understand the C technique
for strings because they still arise in C++ programming. One of the most common situations is where
a C++ program has to call a C-based interface in some third-party library or as part of interfacing to
the operating system.

By far, the most common mistake that programmers make
with C strings is that they forget to allocate space for the \0

character. For example, the string "hello" appears to be five mystring | 'h" | 'e" | T ‘ ! ‘ o\

characters long, but six characters worth of space are needed in

. FIGURE 2-1
memory to store the value, as shown in Figure 2-1.

C++ contains several functions from the C language that operate on strings. These functions are
defined in the <cstring> header. As a general rule of thumb, these functions do not handle memory
allocation. For example, the strcpy () function takes two strings as parameters. It copies the second
string onto the first, whether it fits or not. The following code attempts to build a wrapper around
strepy () that allocates the correct amount of memory and returns the result, instead of taking in an
already allocated string. This initial attempt will turn out to be wrong! It uses the strlen() func-
tion to obtain the length of the string. The caller is responsible for freeing the memory allocated by
copyString().

char* copyString(const char* str)

{
char* result { new char[strlen(str)] };
strcpy (result, str);
return result;

}

The copystring () function as written is incorrect. The strlen () function returns the length of the
string, not the amount of memory needed to hold it. For the string "hello", strlen() returns 5, not
6. The proper way to allocate memory for a string is to add 1 to the amount of space needed for the
actual characters. It seems a bit unnatural to have +1 all over the place. Unfortunately, that’s how

it works, so keep this in mind when you work with C-style strings. The correct implementation is

as follows:

char* copyString(const char* str)

{

Dynamic Strings | 89

char* result { new char[strlen(str) + 1] };
strcpy (result, str);
return result;

}

One way to remember that strlen () returns only the number of actual characters in the string is
to consider what would happen if you were allocating space for a string made up of several other
strings. For example, if your function took in three strings and returned a string that was the con-
catenation of all three, how big would it be? To hold exactly enough space, it would be the length
of all three strings added together, plus one space for the trailing \ 0 character. If strlen() included
the \ o in the length of the string, the allocated memory would be too big. The following code uses
the strepy () and strcat () functions to perform this operation. The cat in strcat () stands for
concatenate.

char* appendStrings (const char* strl, const char* str2, const char* str3)

char* result { new char[strlen(strl) + strlen(str2) + strlen(str3) + 1] };
strcpy (result, strl);

strcat (result, str2);

strcat (result, str3);

return result;

}

The sizeof () operator in C and C++ can be used to get the size of a certain data type or variable.
For example, sizeof (char) returns 1 because a char has a size of 1 byte. However, in the context
of C-style strings, sizeof () is not the same as strlen (). You should never use sizeof () to try to
get the size of a string. It returns different sizes depending on how the C-style string is stored. If it is
stored as a char [], then sizeof () returns the actual memory used by the string, including the \0
character, as in this example:

char textl[] { "abcdef" };
size t sl { sizeof (textl) };
size t s2 { strlen(textl) };

However, if the C-style string is stored as a char*, then sizeof () returns the size of a pointer!

const char* text2 { "abcdef" };
size t s3 { sizeof (text2) };
size t s4 { strlen(text2) };

Here, s3 will be 4 when compiled in 32-bit mode, and it will be 8 when compiled in 64-bit mode
because it is returning the size of a const char*, which is a pointer.

A complete list of functions to operate on C-style strings can be found in the <cstring> header file.

WARNING When you use the C-style string functions with Microsoft Visual
Studio, the compiler is likely to give you security-related warnings or even errors
about these functions being deprecated. You can eliminate these warnings by
using other C Standard Library functions, such as strcpy_s() or strcat_s(),
which are part of the “secure C library” standard (ISO/IEC TR 24731). How-
ever, the best solution is to switch to the C++ std::string class, discussed in the
upcoming “The C++ std::string Class” section, but first a bit more on string lit-
erals.

90

CHAPTER 2 WORKING WITH STRINGS AND STRING VIEWS

String Literals

You’ve probably seen strings written in a C++ program with quotes around them. For example, the
following code outputs the string hello by including the string itself, not a variable that contains it:

cout << "hello" << endl;

In the preceding line, "hello" is a string literal because it is written as a value, not a variable. String
literals are actually stored in a read-only part of memory. This allows the compiler to optimize
memory usage by reusing references to equivalent string literals. That is, even if your program uses
the string literal "hel1o" 500 times, the compiler is allowed to optimize memory by creating just one
instance of hello in memory. This is called literal pooling.

String literals can be assigned to variables, but because string literals are in a read-only part of
memory and because of the possibility of literal pooling, assigning them to variables can be risky.
The C++ standard officially says that string literals are of type “array of # const char”; however,
for backward compatibility with older non-const-aware code, most compilers do not enforce your
program to assign a string literal to a variable of type const char*. They let you assign a string
literal to a char* without const, and the program will work fine unless you attempt to change the
string. Generally, the behavior of modifying string literals is undefined. It could, for example, cause a
crash, it could keep working with seemingly inexplicable side effects, the modification could silently
be ignored, or it could just work; it all depends on your compiler. For example, the following code
exhibits undefined behavior:

char* ptr { "hello" };
ptr([1l] = 'a';

A much safer way to code is to use a pointer to const characters when referring to string literals.
The following code contains the same bug, but because it assigned the literal to a const char*, the
compiler catches the attempt to write to read-only memory:

const char* ptr { "hello" };
ptr[1l] = 'a’';

You can also use a string literal as an initial value for a character array (char [1). In this case, the
compiler creates an array that is big enough to hold the string and copies the string to this array. The
compiler does not put the literal in read-only memory and does not do any literal pooling.

char arr[] { "hello" };

Raw String Literals

Raw string literals are string literals that can span multiple lines of code, they don’t require escaping
of embedded double quotes, and escape sequences like \t and \n are processed as normal text and
not as escape sequences. Escape sequences are discussed in Chapter 1, “A Crash Course in C++ and
the Standard Library.” For example, if you write the following with a normal string literal, you will
get a compilation error because the string contains non-escaped double quotes:

const char* str { "Hello "World"!" };

Dynamic Strings | 91

Normally you have to escape the double quotes as follows:

const char* str { "Hello \"World\"!" };

With a raw string literal, you can avoid the need to escape the quotes. A raw string literal starts with
R" (and ends with) n:

const char* str { R"(Hello "World"!)" };

If you need a string consisting of multiple lines, without raw string literals, you need to embed \n
escape sequences in your string where you want to start a new line. Here’s an example:

const char* str { "Line 1\nLine 2" };

If you output this string to the console, you get the following:

Line 1
Line 2

With a raw string literal, instead of using \n escape sequences to start new lines, you can simply press
Enter to start real physical new lines in your source code as follows. The output is the same as the
previous code snippet using the embedded \n.

const char* str { R"(Line 1
Line 2)" };

Escape sequences are ignored in raw string literals. For example, in the following raw string literal,
the \t escape sequence is not replaced with a tab character but is kept as the sequence of a backslash
followed by the letter t:

const char* str { R"(Is the following a tab character? \t)" };

So, if you output this string to the console, you get this:

Is the following a tab character? \t

Because a raw string literal ends with) ", you cannot embed a) " in your string using this syntax.
For example, the following string is not valid because it contains the) " sequence in the middle of
the string:

const char* str { R"(Embedded)" characters)" };

If you need embedded) " characters, you need to use the extended raw string literal syntax, which is
as follows:

R"d-char-sequence (r-char-sequence)d-char-sequence"

The r-char-sequence is the actual raw string. The d-char-sequence is an optional delimiter
sequence, which should be the same at the beginning and at the end of the raw string literal. This
delimiter sequence can have at most 16 characters. You should choose this delimiter sequence as a
sequence that will not appear in the middle of your raw string literal.

The previous example can be rewritten using a unique delimiter sequence as follows:
const char* str { R"-(Embedded)" characters)-" };

Raw string literals make it easier to work with database querying strings, regular expressions, file
paths, and so on. Regular expressions are discussed in Chapter 21, “String Localization and Regular
Expressions.”

92

CHAPTER 2 WORKING WITH STRINGS AND STRING VIEWS

The C++ std::string Class

C++ provides a much-improved implementation of the concept of a string as part of the Standard
Library. In C++, std: :string is a class (actually an instantiation of the basic_string class tem-
plate) that supports many of the same functionalities as the <cstrings functions, but that takes
care of memory allocations for you. The string class is defined in <string> and lives in the std
namespace. It has already been introduced in the previous chapter, but now it’s time to take a closer
look at it.

What Is Wrong with C-Style Strings?

To understand the necessity of the C++ string class, consider the advantages and disadvantages of
C-style strings.

Advantages:

> They are simple, making use of the underlying basic character type and array structure.
> They are lightweight, taking up only the memory that they need if used properly.

> They are low level, so you can easily manipulate and copy them as raw memory.
>

If you’re a C programmer—why learn something new?

Disadvantages:

> They require incredible efforts to simulate a first-class string data type.

> They are unforgiving and susceptible to difficult-to-find memory bugs.

> They don’t leverage the object-oriented nature of C++.

> They require knowledge of their underlying representation on the part of the programmer.
The preceding lists were carefully constructed to make you think that perhaps there is a better way.

As you’ll learn, C++ strings solve all the problems of C strings and render most of the arguments
about the advantages of C strings over a first-class data type irrelevant.

Using the string Class

Even though string is a class, you can almost always treat it as if it were a built-in type. In fact, the
more you think of it that way, the better off you are. Through the magic of operator overloading,
C++ strings are much easier to use than C-style strings. For example, the + operator is redefined for
strings to mean “string concatenation.” The following code produces 1234:

string a { "12" };

string b { "34" };

string c;

c =a + b;

The += operator is also overloaded to allow you to easily append a string:

a += b;

Dynamic Strings | 93

Comparing strings
Another problem with C strings is that you cannot use == to compare them. Suppose you have the
following two strings:

char* a { "12" };
char b[] { "12" };

Weriting a comparison as follows always returns false, because it compares the pointer values, not
the contents of the strings:

if (a == b) { }

Note that C arrays and pointers are related. You can think of C arrays, like the b array in the exam-
ple, as pointers to the first element in the array. Chapter 7, “Memory Management,” goes deeper in
on the array-pointer duality.

To compare C strings, you have to write something like so:
if (stremp(a, b) == 0) { }

Furthermore, there is no way to use <, <=, >=, or > to compare C strings, so strcmp () performs a
three-way comparison, returning a value less than 0, 0, or a value greater than 0, depending on the
lexicographic relationship of the strings. This results in clumsy and hard-to-read code, which is also
error-prone.

With C++ strings, operators (==, ! =, <, and so on) are all overloaded to work on the actual string
characters. Individual characters can still be accessed with the square brackets operator, [].

The C++ string class additionally provides a compare () method that behaves like stremp () and
has a similar return type. Here is an example:

string a { "12" };
string b { "34" };

auto result { a.compare(b) };

if (result < 0) { cout << "less" << endl; }

if (result > 0) { cout << "greater" << endl; }
if (result == 0) { cout << "equal" << endl; }

Just as with strcmp (), this is cumbersome to use. You need to remember the exact meaning of the
return value. Furthermore, since the return value is just an integer, it is easy to forget the meaning of
this integer and to write the following wrong code to compare for equality:

if (a.compare (b)) { cout << "equal" << endl; }

compare () returns 0 for equality, anything else for non-equality. So, this line of code does the oppo-
site of what it was intended to do; that is, it outputs “equal” for non-equal strings! If you just want to
check whether two strings are equal, do not use compare (), but simply =-=.

C++20 improves all this with the three-way comparison operator, introduced in Chapter 1. The
string class has full support for this operator. Here’s an example:

auto result { a <=> b };

if (is_1lt(result)) { cout << "less" << endl; }
if (is gt (result)) { cout << "greater" << endl; }
if (is_eg(result)) { cout << "equal" << endl; }

94

CHAPTER 2 WORKING WITH STRINGS AND STRING VIEWS

Memory Handling

As the following code shows, when string operations require extending the string, the memory
requirements are automatically handled by the string class, so memory overruns are a thing
of the past:

string myString { "hello" };

myString += ", there";

string myOtherString { myString };

if (myString == myOtherString) {

myOtherString[0] = 'H';
}

cout << myString << endl;
cout << myOtherString << endl;

The output of this code is shown here:

hello, there
Hello, there

There are several things to note in this example. One point is that there are no memory leaks even
though strings are allocated and resized in a few places. All of these string objects are created as
stack variables. While the string class certainly has a bunch of allocating and resizing to do, the
string destructors clean up this memory when string objects go out of scope. How exactly destruc-
tors work is explained in detail in Chapter 8, “Gaining Proficiency with Classes and Objects.”

Another point to note is that the operators work the way you want them to work. For example, the
= operator copies the strings, which is most likely what you want. If you are used to working with
array-based strings, this will be either refreshingly liberating for you or somewhat confusing. Don’t
worry—once you learn to trust the string class to do the right thing, life gets so much easier.

Compatibility with C-Style Strings

For compatibility, you can use the ¢c_str () method on a string to get a const char pointer,
representing a C-style string. However, the returned const pointer becomes invalid whenever the
string has to perform any memory reallocation or when the string object is destroyed. You should
call the method just before using the result so that it accurately reflects the current contents of the
string, and you must never return the result of ¢_str () called on a stack-based string object from
a function.

There is also a data () method that, up until C++14, always returned a const char* just as

c_str (). Starting with C++17, however, data () returns a char* when called on a non-const string.

Operations on strings

The string class supports quite a few additional operations. Here are a few:

> substr(pos,len): Returns the substring that starts at a given position and has a
given length

> find(str): Returns the position where a given substring is found, or string::npos
if not found

Dynamic Strings | 95

> replace(pos,len,str): Replaces part of a string (given by a position and a length) with
another string

> starts_with(str)/ends_with(str): Returns true if a string starts/ends with a
given substring

Here is a small code snippet that shows some of these operations in action:

string strHello { "Hello!!" };

string strWorld { "The World..." };
auto position { strHello.find("!!") };
if (position != string::npos) {

strHello.replace (position, 2, strWorld.substr(3, 6));

}

cout << strHello << endl;

The output is as follows:

Hello World

Consult a Standard Library Reference for a complete list of all supported operations that can be
performed on string objects.

NOTE Since C++20, std::string is a constexpr class, introduced in Chapter 1.
This means that string can be used to perform operations at compile time and
that it can be used in the implementation of constexpr functions and classes.

std::string Literals

A string literal in source code is usually interpreted as a const char*. You can use the standard user-
defined literal s to interpret a string literal as an std: : string instead.

auto stringl { "Hello World" };
auto string2 { "Hello World"s };

The standard user-defined literal s is defined in the std::literals::string literals namespace.
However, both the string literals and literals namespaces are so-called inline namespaces. As
such, you have the following options to make those string literals available to your code:

using namespace std;

using namespace std::literals;

using namespace std::string literals;

using namespace std::literals::string literals;

96 | CHAPTER2 WORKING WITH STRINGS AND STRING VIEWS

Basically, everything that is declared in an inline namespace is automatically available in the parent
namespace. To define an inline namespace yourself, you use the inline keyword. For example, the
string literals inline namespace is defined as follows:

namespace std {
inline namespace literals {
inline namespace string literals {

}

CTAD with std::vector and Strings

Chapter 1 explains that std: : vector supports class template argument deduction (CTAD), allow-
ing the compiler to automatically deduce the type of a vector based on an initializer list. You have
to be careful when using CTAD for a vector of strings. Take the following declaration of a vector,
for example:

vector names { "John", "Sam", "Joe" };

The deduced type will be vector<const char*s, not vector<strings! This is an easy mistake to
make and can lead to some strange behavior of your code, or even crashes, depending on what you
do with the vector afterward.

If you want a vector<strings, then use std: :string literals as explained in the previous section.
Note the s behind each string literal in the following example:

vector names { "John"s, "Sam"s, "Joe's };

Numeric Conversions

The C++ Standard Library provides both high-level and low-level numeric conversion functions,
explained in the upcoming sections.

High-Level Numeric Conversions

The std namespace includes a number of helper functions, defined in <strings, that make it easy to
convert numerical values into strings or strings into numerical values.

Converting to Strings

The following functions are available to convert numerical values into strings, where T can be
(unsigned) int, (unsigned) long, (unsigned) long long, float, double, or long double. All of
these functions create and return a new string object and manage all necessary memory allocations.

string to_string(T val);

These functions are pretty straightforward to use. For example, the following code converts a long
double value into a string:

long double d { 3.14L };
string s { to_string(d) };

Dynamic Strings | 97

Converting from Strings

Converting in the other direction is done by the following set of functions, also defined in the std
namespace. In these prototypes, str is the string that you want to convert, idx is a pointer that
receives the index of the first non-converted character, and base is the mathematical base that should
be used during conversion. The idx pointer can be a null pointer, in which case it will be ignored.
These functions ignore leading whitespace, throw invalid argument if no conversion could be per-
formed, and throw out_of range if the converted value is outside the range of the return type.

> int stoi(const string& str, size t *idx=0, int base=10);

long stol(const string& str, size t *idx=0, int base=10);

unsigned long stoul(const string& str, size t *idx=0, int base=10);

long long stoll(const string& str, size t *idx=0, int base=10);

unsigned long long stoull(const string& str, size t *idx=0, int base=10);
float stof(const string& str, size t *idx=0);

double stod(const string& str, size t *idx=0);

Y Y Y VY VY Y Y

long double stold(const string& str, size t *idx=0);

Here is an example:

const string toParse { " 123USD" };

size t index { 0 };

int value { stoi(toParse, &index) };

cout << format ("Parsed value: {}", value) << endl;

cout << format ("First non-parsed character: '{}'", toParse[index]) << endl;

The output is as follows:

Parsed value: 123
First non-parsed character: 'U'

stoi (), stol (), stoul (), stoll(),and stoull () accept integral values and have a parameter
called base, which specifies the base in which the given integral value is expressed. A base of 10, the
default, assumes the usual decimal numbers, 0-9, while a base of 16 assumes hexadecimal numbers. If
the base is set to 0, the function automatically figures out the base of the given number as follows:

> If the number starts with 0x or 0x, it is parsed as a hexadecimal number.
> If the number starts with o, it is parsed as an octal number.
> Otherwise, it is parsed as a decimal number.

Low-Level Numeric Conversions

The standard also provides a number of lower-level numerical conversion functions, all defined in
<charconvs. These functions do not perform any memory allocations and do not work directly with
std: :strings, but instead they use raw buffers provided by the caller. Additionally, they are tuned
for high performance and are locale-independent (see Chapter 21 for details on localization). The
end result is that these functions can be orders of magnitude faster than other higher-level numerical

98 | CHAPTER2 WORKING WITH STRINGS AND STRING VIEWS

conversion functions. These functions are also designed for so-called perfect round-tripping, which
means that serializing a numerical value to a string representation followed by deserializing the result-
ing string back to a numerical value results in the exact same value as the original one.

You should use these functions if you want highly performant, perfect round-tripping, locale-inde-
pendent conversions, for example to serialize/deserialize numerical data to/from human-readable
formats such as JSON, XML, and so on.

Converting to Strings
For converting integers to characters, the following set of functions is available:

to _chars result to chars(char* first, char* last, IntegerT value, int base = 10);

Here, IntegerT can be any signed or unsigned integer type or char. The result is of type to_chars_
result, a type defined as follows:

struct to_chars_result {
char* ptr;
errc ec;

}i

The ptr member is either equal to the one-past-the-end pointer of the written characters if the con-
version was successful or equal to last if the conversion failed (in which case ec == errc::value
too_large).

Here is an example of its use:

const size t BufferSize { 50 };

string out (BufferSize, ' ');

auto result { to_chars(out.data(), out.data() + out.size(), 12345) };
if (result.ec == errc{}) { cout << out << endl;

Using structured bindings introduced in Chapter 1, you can write it as follows:

string out (BufferSize, ' ');
auto [ptr, error] { to_chars(out.data(), out.data() + out.size(), 12345) };
if (error == errc{}) { cout << out << endl;

Similarly, the following set of conversion functions is available for floating-point types:

to _chars result to chars(char* first, char* last, FloatT value);

to_chars_result to_chars(char* first, char* last, FloatT value,
chars_format format);

to _chars result to chars(char* first, char* last, FloatT value,
chars format format, int precision);

Here, FloatT can be float, double, or long double. Formatting can be specified with a combina-
tion of chars format flags.

enum class chars format
scientific,
fixed,
hex,
general = fixed | scientific

Dynamic Strings | 99

The default format is chars format: :general, which causes to chars () to convert the floating-
point value to a decimal notation in the style of (-)ddd.ddd or to a decimal exponent notation in the
style of (-)d.ddde=dd, whichever results in the shortest representation with at least one digit before
the decimal point (if present). If a format but no precision is specified, the precision is automatically
determined to result in the shortest possible representation for the given format, with a maximum
precision of six digits. Here is an example:

double value { 0.314 };

string out (BufferSize, ' ');

auto [ptr, error] { to chars(out.data(), out.data() + out.size(), value) };
if (error == errc{}) { cout << out << endl; / }

Converting from Strings

For the opposite conversion—that is, converting character sequences into numerical values—the fol-
lowing set of functions is available:

from chars_result from chars(const char* first, const char* last,
IntegerT& value, int base = 10);

from chars_result from chars(const char* first, const char* last,
FloatT& value,
chars_format format = chars_format::general) ;

Here, from chars_result is a type defined as follows:

struct from chars result
const char* ptr;
errc ec;

}i

The ptr member of the result type is a pointer to the first character that was not converted, or it
equals 1ast if all characters were successfully converted. If none of the characters could be con-
verted, ptr equals first, and the value of the error code will be errc: :invalid argument. If the
parsed value is too large to be representable by the given type, the value of the error code will be
errc::result_out of range. Note that from chars () does not skip any leading whitespace.

The perfect round-tripping feature of to_chars () and from chars () can be demonstrated
as follows:

double valuel { 0.314 };

string out (BufferSize, ' ');

auto [ptrl, errorl] to_chars(out.data(), out.data() + out.size(), valuel) }i
if (errorl == errc{}) { cout << out << endl; }

double value2;

auto [ptr2, error2] from chars(out.data(), out.data() + out.size(), value2) }i
if (error2 == errc{}) {
if (valuel == value2) ({
cout << "Perfect roundtrip" << endl;
} else {

cout << "No perfect roundtrip?!?" << endl;

}

100

| CHAPTER 2 WORKING WITH STRINGS AND STRING VIEWS

The std::string_view Class

Before C++17, there was always a dilemma of choosing the parameter type for a function that
accepted a read-only string. Should it be a const char*? In that case, if a client had an std: :string
available, they had to call ¢_str () or data() on it to get a const char*. Even worse, the func-

tion would lose the nice object-oriented aspects of string and all its nice helper methods. Maybe

the parameter could instead be a const strings? In that case, you always needed a string. If you
passed a string literal, for example, the compiler silently created a temporary string object that
contained a copy of your string literal and passed that object to your function, so there was a bit of
overhead. Sometimes people would write multiple overloads of the same function—one that accepted
a const char* and another that accepted a const strings—but that was obviously a less-than-
elegant solution.

Since C++17, all those problems are solved with the introduction of the std: : string view class,
which is an instantiation of the std: :basic_string view class template, and defined in <string
views. A string view is basically a drop-in replacement for const strings but without the
overhead. It never copies strings! A string view provides a read-only view of a string and supports
an interface similar to string. One exception is the absence of ¢_str (), but data() is available.
On the other hand, string view does add the methods remove prefix(size t) and remove
suffix(size t), which shrink a string by advancing the starting pointer by a given offset or by
moving the end pointer backward by a given offset.

If you know how to use std: :string, then using a string view is straightforward, as the follow-
ing example code demonstrates. The extractExtension () function extracts and returns from a
given filename the extension including the dot character. Note that string views are usually passed
by value because they are extremely cheap to copy. They just contain a pointer to, and the length

of, a string.

string view extractExtension(string view filename)

{
}

This function can be used with all kinds of different strings:

return filename.substr(filename.rfind('."));

string filename { R" (c:\temp\my file.ext)" };
cout << format ("C++ string: {}", extractExtension(filename)) << endl;

const char* cString { R"(c:\temp\my file.ext)" };
cout << format ("C string: {}", extractExtension(cString)) << endl;

cout << format ("Literal: {}", extractExtension(R" (c:\temp\my file.ext)")) << endl;

There is not a single copy being made in all these calls to extractExtension (). The filename
parameter of the extractExtension () function is just a pointer and a length, and so is the return
type of the function. This is all very efficient.

There is also a string view constructor that accepts any raw buffer and a length. This can be used
to construct a string view out of a string buffer that is not NUL terminated. It is also useful when
you do have a NUL-terminated string buffer, but you already know the length of the string, so the

Dynamic Strings | 101

constructor does not need to count the number of characters again. Here is an example:

const char* raw { /* ... */ };
size t length { /* ... %/ };
cout << format ("Raw: {}", extractExtension({ raw, length })) << endl;

The last line can also be written as follows:

cout << format ("Raw: {}", extractExtension(string view { raw, length })) << endl;

NOTE Use an std::string view instead of const strings or const char*
whenever a function requires a read-only string as one of its parameters.

You cannot implicitly construct a string from a string view. Either you use an explicit string
constructor or you use the string view: :data () member. For example, suppose you have the fol-
lowing function that accepts a const strings:

void handleExtension(const string& extension) { /* ... */ }
Calling this function as follows does not work:

handleExtension (extractExtension("my file.ext"));
The following are two possible options you can use:

handleExtension (extractExtension("my file.ext").data()); // data() method
handleExtension (string { extractExtension("my file.ext") }); // explicit ctor

For the same reason, you cannot concatenate a string and a string view as such. The following
code does not compile:

string str { "Hello" };
string view sv { " world" };
auto result { str + sv };

Instead, you can use the data () method on the string view as follows:
auto resultl { str + sv.data() };

Or, you can use append () :

string result2 { str };
result2.append(sv.data(), sv.size());

WARNING Functions returning a string should return a const strings or a
string, but not a string view. Returning a string view would introduce the
risk of invalidating the returned string view if, for example, the string to which
it refers needs to reallocate.

102 | CHAPTER2 WORKING WITH STRINGS AND STRING VIEWS

WARNING Storing a const strings or a string view as a data member of a
class requires you to make sure the string to which they refer stays alive for the
duration of the object’s lifetime. It’s safer to store a std::string instead.

std::string_view and Temporary Strings

A string view should not be used to store a view of a temporary string. Take the follow-
ing example:
string s { "Hello" };

string view sv { s + " World!" };
cout << sv;

This code snippet has undefined behavior, i.e., what happens when running this code depends on your
compiler and compiler settings. It might crash, it might print “ ello World!” (without the letter H),
and so on. Why is this undefined behavior? The initializer expression for the sv string view results
in a temporary string with the “Hello World!” contents. The string view then stores a pointer to
this temporary string. At the end of the second line of code, this temporary string is destroyed, leaving
the string view with a dangling pointer.

WARNING Never use std::string view to store a view of temporary strings.

std::string_view Literals

You can use the standard user-defined literal sv to interpret a string literal as an std: :string view.
Here’s an example:

auto sv { "My string view"sv };
The standard user-defined literal sv requires one of the following using directives:

using namespace std::literals::string view literals;
using namespace std::string view literals;

using namespace std::literals;

using namespace std;

Nonstandard Strings

There are several reasons why many C++ programmers don’t use C++-style strings. Some program-
mers simply aren’t aware of the string type because it was not always part of the C++ specification.
Others have discovered over the years that the C++ string doesn’t provide the behavior they need or
dislike the fact that std: :string is totally agnostic about the character encoding and so have devel-
oped their own string type. Chapter 21 returns to the topic of character encodings.

Perhaps the most common reason is that development frameworks and operating systems tend
to have their own way of representing strings, such as the cstring class in the Microsoft MFC

String Formatting | 103

framework. Often, this is for backward compatibility or to address legacy issues. When starting a
project in C++, it is important to decide ahead of time how your group will represent strings. Some
things are for sure:

>

>

You should not pick the C-style string representation.

You can standardize on the string functionality available in the framework you are using,
such as the built-in string features of MFC, Qt, and so on.

If you use std::string for your strings, then use std::string view to pass read-only
strings as arguments to functions; otherwise, see if your framework has support for
something similar like string views.

STRING FORMATTING

Up until C++20, formatting of strings was usually done with C-style functions like printf () or with
C++ /O streams:

>

C-style functions:

>

Not recommended because they are not type safe and are not extensible to support
your own custom types

Easy to read because of separation of format string and arguments, and hence easy
to translate to different languages

For example:

printf ("x has value %d and y has value %d.\n", x, y);

C++ I/0 streams:

>

>

Recommended (before C++20) because they are type safe and extensible

Harder to read because the strings and arguments are intertwined, and hence harder
to translate

For example:

cout << "x has value " << x << " and y has value " << y << endl;

C++20 introduces std: : format (), defined in <format >, to format strings. It basically combines all
advantages of the C-style functions and the C++ I/O streams. It’s a type-safe and extensible format-
ting mechanism. Its basic form is introduced in the previous chapter and already used throughout
examples. Now it’s time to look at how powerful format () really is.

The first argument to format () is the formatting string. Subsequent arguments are values that are
used to fill in placeholders in the formatting string. Up until now, format () has always been used

with as placeholders empty sets of curly brackets: {}. Inside those braces can be a string in the for-
mat [index] [:specifier]. You can either omit the index from all placeholders or specify, for all

104

| CHAPTER 2 WORKING WITH STRINGS AND STRING VIEWS

placeholders, the zero-based index of one of the values passed to format () as second and subsequent
arguments that should be used for this placeholder. If index is omitted, the values passed as second
and subsequent arguments to format () are used in their given order for all placeholders. The speci -
fier is a format specifier to change how a value must be formatted in the output and explained in
detail in the next section. If you need the { or } character in the output, then you need to escape it

as {{or}}.

Let’s start by looking at how the index part can be used. The following call to format () omits
explicit indices in the placeholders:

auto sl { format("Read {} bytes from {}", n, "filel.txt") };

You can specify manual indices as follows:

auto s2 { format ("Read {0} bytes from {1}", n, "filel.txt") };

Mixing manual indices and automatic indices is not allowed. The following uses an invalid for-
mat string:

auto s2 { format("Read {0} bytes from {}", n, "filel.txt") };

The order of the formatted values in the output string can be changed without having to change the
actual order of the arguments passed to format (). This is a useful feature if you want to translate
strings in your software. Certain languages have different ordering within their sentences. For exam-
ple, the previous format string can be translated to Chinese as follows. In Chinese, the order of the
placeholders in the sentence is reversed, but thanks to positional placebolders in the format string, the
order of the arguments to the format () function remains unchanged.!

auto s3 { format (L"M{1}HEE{0} N F T o ", n, L'filel.txt") };

The next section delves deeper in on how to control the output using format specifiers.

Format Specifiers

A format specifier is used to manipulate how a value is formatted in the output. A format specifier is
prefixed with a colon, :. The general form of a format specifier is as follows?:

[[£i11]align] [sign] [#] [0] [width] [.precision] [type]

All parts between square brackets are optional. The individual specifier parts are discussed in the next
subsections.

width

The width specifies the minimum width of the field into which the given value should be format-

ted, for example 5. This can also be another set of curly brackets, in which case it’s called a dynamic
width. If an index is specified in the curly brackets, for example {3}, the width for the dynamic width
is taken from the format ()’ argument with the given index. Otherwise, if no index is specified, for
example {}, the width is taken from the next argument in the list of arguments passed to format ().

1 The use of the L prefix is explained in Chapter 21.
2 Technically, there is an optional L that can be passed in between the precision and the type. This has to do with locale-
specific formatting, not further discussed in this text.

String Formatting | 105

Here are some examples:
int i { 42 };
cout << format ("|{:5}|", i) << endl;
cout << format ("|{:{}}|", i, 7) << endl;

[filllalign

The [£ill]align part optionally says what character to use as a fill character, followed by how a
value should be aligned in its field:

> < means left alignment (default for non-integers and non-floating-point numbers).
> > means right alignment (default for integers and floating-point numbers).
> * means center alignment.
The fill character is inserted into the output to make sure the field in the output reaches the desired

minimum width specified by the [width] part of the specifier. If no [width] is specified, then [£i11]
align has no effect.

Here are some examples:

int i { 42 };

cout << format ("|{:7}|", i) << endl;

cout << format ("|{:<7}|", 1) << endl;
cout << format ("|{: >7}|", 1) << endl;
cout << format ("|{: *7}|", 1) << endl;

sign
The sign part can be one of the following:
> - means to only display the sign for negative numbers (default).
> 4+ means to display the sign for negative and positive numbers.
> space means that a minus sign should be used for negative numbers, and a space for

positive numbers.

Here are some examples:

int i { 42 };

cout << format ("|{:<5}|", i) << endl;

cout << format ("|{:<+5}|", 1) << endl;
cout << format ("|{:< 5}|", 1) << endl;
cout << format ("|{:< 5}|", -i) << endl;

The # part enables the so-called alternate formatting rules. If enabled for integral types, and hexadeci-
mal, binary, or octal number formatting is specified as well, then the alternate format inserts a 0x, 0X,
0b, OB, or 0 in front of the formatted number. If enabled for floating-point types, the alternate format
will always output a decimal separator, even if no digits follow it.

The following two sections give examples with alternate formatting.

106 |

CHAPTER 2 WORKING WITH STRINGS AND STRING VIEWS

type

The type specifies the type a given value must be formatted in. There are several options:

>

Integer types: b (binary), B (binary, but with 0B instead of ob if # is specified), d (decimal),
o (octal), x (hexadecimal with lowercase a, b, c, 4, e, £), X (hexadecimal with uppercase 3,
B, C, D, E, F, and if # is specified, with 0x instead of 0x). If type is unspecified, d is used for
integer types.

Floating-point types: The following floating-point formats are supported. The result of
scientific, fixed, general, and hexadecimal formatting is the same as discussed earlier in this
chapter for std::chars_format::scientific, fixed, general, and hex.

> e, E: Scientific notation with either small e or capital E as the representation of the
exponent, formatted with either a given precision or 6 if no precision is specified.

> £, F: Fixed notation formatted with either a given precision or 6 if no precision is
specified.

> g, G: General notation with either small e or capital £ as the representation of the
exponent, formatted with either a given precision or 6 if no precision is specified.

a, A: Hexadecimal notation with either lowercase letters (a) or uppercase letters (a)
If type is unspecified, g is used for floating-point types.

Booleans: s (outputs true or false in textual form), b, B, ¢, d, o, x, X (outputs 1 or 0 in
integer form). If type is unspecified, s is used for Boolean types.

Characters: c (character is copied to output), b, B, d, o, %, X (integer representation). If type
is unspecified, c is used for character types.

String: s (string is copied to output). If type is unspecified, s is used for string types.

Pointers: p (hexadecimal notation of the pointer prefixed with 0x). If type is unspecified, p is
used for pointer types.

Here are some examples with an integral type:

int 1 { 42 };

cout << format ("|[{:10d}|", i) << endl;

cout << format ("|{:10b}|", i) << endl;

cout << format ("|{:#10b}|", i) << endl;

cout << format ("[{:10X}|", i) << endl;

cout << format ("|{:#10X}|", i) << endl;
Here is an example with a string type:

string s { "ProCpp" };

cout << format ("|[{: *10}|", s) << endl; //

Examples with floating-point types are given in the next section on precision.

String Formatting | 107

precision

The precision can be used only for floating-point and string types. It is specified as a dot followed
by the number of decimal digits to output for floating-point types, or the number of characters to
output for strings. Just as with width, this can also be another set of curly brackets, in which case it’s
called a dynamic precision. The precision is then taken either from the next argument in the list of
arguments passed to format () or from the argument with given index.

Here are some examples using a floating-point type:

double d { 3.1415 / 2.3 };

cout << format ("|{:12g}|", d) << endl;
cout << format("|{:12.2}|", d) << endl;
cout << format ("|{:12e}|", d) << endl;

int width { 12 };
int precision { 3 };
cout << format ("|{2:{0}.{1}£}|", width, precision, d) << endl;

The o part of the specifier means that, for numeric values, zeros are inserted into the formatted value

to reach the desired minimum width specified by the [width] part of the specifier (see earlier). These

zeros are inserted at the front of the numeric value, but after any sign, and after any 0x, 0X, Ob, or OB
prefix. It is ignored if an alignment is specified.

Here are some examples:

int i { 42 };
cout << format (
cout << format (
cout << format ("
cout << format ("

"] {:06d}|", i) << endl;
{:+06d}|", 1) << endl;
{:06x}|", i) << endl;
{:#06x}|", 1) << endl;

n‘

Format Specifier Errors

As you can see from the discussion, format specifiers need to follow strict rules. If a format specifier
contains an error, an std: : format_error exception will be thrown:
try {
cout << format ("An integer: {:.}", 5);

} catch (const format error& caught exception)
cout << caught exception.what () ;
}

Support for Custom Types

The C++20 formatting library can be extended to add support for custom types. This involves writing
a specialization of the std: : formatter class template containing two method templates: parse ()
and format (). Template specialization and method templates are explained in Chapter 12, “Writing
Generic Code with Templates.” Still, for completeness, let’s see how you would implement a custom
formatter once you are fluent in template specializations. I know, at this time in the book, you will

108 | CHAPTER2 WORKING WITH STRINGS AND STRING VIEWS

not understand all the syntax in this example yet—for that you need to wait until Chapter 12—but
it gives you a taste of what is possible once you advance further in the book, at which point you can
come back to this example.

Suppose you have the following class to store a key-value pair:

class KeyValue
{
public:
KeyValue (string view key, int value) : m key { key }, m _value { value } {}

const string& getKey() const { return m key; }
int getValue() const { return m value; }

private:
string m_key;
int m_value;

}i

A custom formatter for KeyValue objects can be implemented by writing the following class
template specialization. This custom formatter supports custom format specifiers as well: {:a} outputs
only the key, { :b} outputs only the value, and {:c} and {} output both key and value.

template<>
class formatter<KeyValue>
{
public:
constexpr auto parse (auto& context)
{
auto iter { context.begin() };
const auto end { context.end() };
if (iter == end || *iter == '}') {
m_outputType = OutputType::KeyAndValue;
return iter;

}

switch (*iter) {

case 'a':
m_outputType = OutputType::KeyOnly;
break;

case 'b':
m_outputType = OutputType::ValueOnly;
break;

case 'c':
m_outputType = OutputType::KeyAndValue;
break;

default:
throw format error { "Invalid KeyValue format specifier." };

}

++iter;
if (iter != end && *iter != '}') {
throw format error { "Invalid KeyValue format specifier." };

return iter;

String Formatting | 109

auto format (const KeyValue& kv, auto& context)

{
switch (m_outputType) {
using enum OutputType;
case KeyOnly:
return format to(context.out(), "{}", kv.getKey());
case ValueOnly:
return format to(context.out(), "{}", kv.getValue());
default:
return format to(context.out(), "{} - {}",
kv.getKey (), kv.getValue());
}
1
private:
enum class OutputType
{
KeyOnly,
ValueOnly,
KeyAndValue
}i

OutputType m_outputType { OutputType::KeyAndValue };

}i

The parse () method is responsible for parsing the format specifier given as a character range
[context.begin (), context.end ()). It should store the result of parsing the format specifier in data
members of the formatter class, and it should return an iterator pointing to the character after the
end of the parsed format specifier string.

The format () method formats the value given as first argument according to the format specifica-
tion parsed by parse (), writes the result to context .out (), and returns an iterator to the end of the
output. In this example, the actual formatting is performed by forwarding the work to std: : format
to().The format to() function accepts a pre-allocated buffer as first argument to which it writes
the resulting string, while format () creates a new string object to return.

The custom formatter can be tested as follows:

KeyValue keyValue { "Keyl", 11 };

cout << format ("{}", keyValue) << endl;

cout << format ("{:a}", keyValue) << endl;

cout << format ("{:b}", keyValue) << endl;

cout << format ("{:c}", keyValue) << endl;

try { cout << format("{:cd}", keyValue) << endl; }

catch (const format error& caught exception) { cout << caught exception.what(); }

The output is as follows:

Keyl - 11
Keyl

11

Keyl - 11

Invalid KeyValue format specifier.

As an exercise, you could add support for a custom separator symbol between the key and the value.
With custom formatters, the possibilities are endless, and everything is type safe!

110

| CHAPTER 2 WORKING WITH STRINGS AND STRING VIEWS

SUMMARY

This chapter discussed the C++ string and string view classes and what their benefits are com-
pared to plain old C-style character arrays. It also explained how a number of helper functions make
it easier to convert numerical values into strings and vice versa, and it introduced the concept of
raw string literals.

The chapter finished with a discussion of the C++20 string formatting library, used throughout
examples in this book. It is a powerful mechanism to format strings with fine-grained control over
how the formatted output should look.

The next chapter discusses guidelines for good coding style, including code documentation,
decomposition, naming, code formatting, and other tips.

EXERCISES

By solving the following exercises, you can practice the material discussed in this chapter. Solutions
to all exercises are available with the code download on the book’s website at www.wiley.com/go/
proc++5e. However, if you are stuck on an exercise, first reread parts of this chapter to try to find an
answer yourself before looking at the solution from the website.

Exercise 2-1: Write a program that asks the user for two strings and then prints them out

in alphabetical order, using the three-way comparison operator. To ask the user for a string,
you can use the std: :cin stream, briefly introduced in Chapter 1. Chapter 13,”Demystify-
ing C++ I/O,” explains input and output in detail, but for now, here is how to read in a string
from the console. To terminate the line, just press Enter.

std::string s;
getline(cin, s1);

Exercise 2-2: Write a program that asks the user for a source string (= haystack), a string

to find (= needle) in the source string, and a replacement string. Write a function with

three parameters—the haystack, needle, and replacement string—that returns a copy of the
haystack with all needles replaced with the replacement string. Use only std: :string, no
string view. What kind of parameter types will you use and why? Call this function from
main () and print out all the strings for verification.

Exercise 2-3: Modify the program from Exercise 2-2 and use std: :string view on as many
places as you can.

Exercise 2-4: Write a program that asks the user to enter an unknown number of floating-
point numbers and stores all numbers in a vector. Each number should be typed followed by
Enter. Stop asking for more numbers when the user inputs the number 0. To read a floating-
point number from the console, use cin in the same way it was used in Chapter 1 to input
integer values. Format all numbers in a table with a couple of columns where each column
formats a number in a different way. Each row in the table corresponds to one of the input-
ted numbers.

Coding with Style

WHAT'S IN THIS CHAPTER?

> The importance of documenting your code and what kind of
commenting styles you can use

> What decomposition means and how to use it
> What naming conventions are

> What formatting rules are

If you’re going to spend several hours each day in front of a keyboard writing code, you should
take some pride in all that work. Writing code that gets the job done is only part of a program-
mer’s work. After all, anybody can learn the fundamentals of coding. It takes a true master to
code with style.

This chapter explores the question of what makes good code. Along the way, you’ll see several
approaches to C++ style. As you will discover, simply changing the style of code can make it
appear very different. For example, C++ code written by Windows programmers often has its
own style, using Windows conventions. It almost looks like a completely different language
than C++ code written by macOS programmers. Exposure to several different styles will help
you avoid that sinking feeling you get when opening a C++ source file that barely resembles the
C++ you thought you knew.

THE IMPORTANCE OF LOOKING GOOD

Writing code that is stylistically “good” takes time. You probably don’t need much time to whip
together a quick-and-dirty program to parse an XML file. Writing the same program with func-
tional decomposition, adequate comments, and a clean structure would take you more time. Is
it really worth it?

Professional C++, Fifth Edition. Marc Gregoire.
© 2021 John Wiley & Sons, Inc. Published 2021 by John Wiley & Sons, Inc.

112

| CHAPTER3 CODING WITH STYLE

Thinking Ahead

How confident would you be in your code if a new programmer had to work with it a year from
now? A friend of mine, faced with a growing mess of web application code, encouraged his team to
think about a hypothetical intern who would be starting in a year. How would this poor intern ever
get up to speed on the code base when there was no documentation and scary multiple-page func-
tions? When you’re writing code, imagine that somebody new or even you will have to maintain it in
the future. Will you even still remember how it works? What if you’re not available to help? Well-
written code avoids these problems because it is easy to read and understand.

Elements of Good Style

It is difficult to enumerate the characteristics of code that make it “stylistically good.” Over time,
you’ll find styles that you like and notice useful techniques in code that others wrote. Perhaps more
important, you’ll encounter horrible code that teaches you what to avoid. However, good code shares
several universal tenets that are explored in this chapter:

> Documentation
Decomposition
Naming

Use of the language

Y Y VY

Formatting

DOCUMENTING YOUR CODE

In the programming context, documentation usually refers to comments contained in the source

files. Comments are your opportunity to tell the world what was going through your head when you
wrote the accompanying code. They are a place to say anything that isn’t obvious from looking at the
code itself.

Reasons to Write Comments

It may seem obvious that writing comments is a good idea, but have you ever stopped to think about
why you need to comment your code? Sometimes programmers acknowledge the importance of com-
menting without fully understanding why comments are important. There are several reasons, all of
which are explored in this chapter.

Commenting to Explain Usage

One reason to use comments is to explain how clients should interact with the code. Normally, a
developer should be able to understand what a function does simply based on the name of the func-
tion, the type of the return value, and the name and type of its parameters. However, not everything
can be expressed in code. Function pre- and postconditions' and the exceptions a function can throw

1 Preconditions are the conditions that client code must satisfy before calling a function. Postconditions are the condi-
tions that must be satisfied by the function when it has finished executing.

Documenting Your Code | 113

are things that you can only explain in a comment. In my opinion, it is OK to only add a comment if
it really adds any useful information, such as pre- and postconditions and exceptions; otherwise, it’s
acceptable to omit the comment. Nevertheless, it’s rare for a function to have no pre- or postcondi-
tions. Bottom line, it’s up to the developer to decide whether a function needs a comment. Experi-
enced programmers will have no problems deciding this, but less experienced developers might not
always make the right decision. That’s why some companies have a rule stating that at least each
publicly accessible function or method in a module or header file should have a comment explaining
what it does, what its arguments are, what values it returns, and possible exceptions it can throw.

A comment gives you the opportunity to state, in English, anything that you can’t state in code. For
example, there’s really no way in C++ code to indicate that the saveRecord () method of a database
object throws an exception if openbDatabase () has not been called yet. A comment, however, can be
the perfect place to note this restriction, as follows:

int saveRecord (Record& record) ;

The saveRecord () method accepts a reference-to-non-const Record object. Users might wonder
why it’s not a reference-to-const, so this is something that needs to be explained in a comment:

int saveRecord(Record& record) ;

The C++ language forces you to specify the return type of a method, but it does not provide a way
for you to say what the returned value actually represents. For example, the declaration of the
saveRecord () method may indicate that it returns an int (a bad design decision discussed further
in this section), but a client reading that declaration wouldn’t know what the int means. A comment
explains the meaning of it:

int saveRecord (Record& record) ;

The previous comment documents everything about the saveRecord () method in a formal way,
including a sentence that describes what the method does. Some companies require such formal and
thorough documentation, however, I don’t recommend this style of commenting all the time. The first
line, for example, is rather useless since the name of the function is self-explanatory. The description
of the parameter is important as is the comment about the exception, so these definitely should stay.

114

| CHAPTER3 CODING WITH STYLE

Documenting what exactly the return type represents for this version of saveRecord () is required
since it returns a generic int. However, a much better design would be to return a Record1p instead
of a plain int, which removes the need to add any comments for the return type. Recordip could
be a simple class with a single int data member, but it conveys more information, and it allows you
to add more data members in the future if need be. So, the following is my recommendation for the
saveRecord () method:

RecordID saveRecord (Record& record) ;

NOTE If your company coding guidelines don’t force you to write formal com-
ments for functions, use common sense when writing comments. Only state
something in a comment that is not obvious based on the name of the function,
the return type, and the name and type of its parameters.

Sometimes, the parameters to and the return type from a function are generic and can be used to pass
all kinds of information. In that case you need to clearly document exactly what type is being passed.
For example, message handlers in Windows accept two parameters, LPARAM and WPARAM, and can
return an LRESULT. All three can be used to pass almost anything you like, but you cannot change
their type. By using type casting, they can, for example, be used to pass a simple integer or a pointer
to some object. Your documentation could look like this:

LRESULT handleMessage (WPARAM wParam, LPARAM lParam) ;

Your public documentation should describe the behavior of your code, not the implementation. The
behavior includes the inputs, outputs, error conditions and handling, intended uses, and performance
guarantees. For example, public documentation describing a call to generate a single random num-
ber should specify that it takes no parameters, returns an integer in a previously specified range, and
should list all the exceptions that might be thrown when something goes wrong. This public docu-
mentation should not explain the details of the linear congruence algorithm for actually generating
the number. Providing too much implementation detail in comments targeted for users of your code is
probably the single most common mistake in writing public comments.

Documenting Your Code | 115

Commenting to Explain Complicated Code

Good comments are also important inside the actual source code. In a simple program that processes
input from the user and writes a result to the console, it is probably easy to read through and under-
stand all of the code. In the professional world, however, you will often need to write code that is
algorithmically complex or too esoteric to understand simply by inspection.

Consider the code that follows. It is well-written, but it may not be immediately apparent what it
is doing. You might recognize the algorithm if you have seen it before, but a newcomer probably
wouldn’t understand the way the code works.

void sort (int datal], size_ t size)
{
for (int i { 1 }; i < size; ++1) {
int element { datali] };
int { i };
while (j > 0 && datal[j - 1] > element) {
data[j] = datalj - 11;
j--;
}

data[j] = element;

}

A better approach would be to include comments that describe the algorithm that is being used and
to document (loop) invariants. Invariants are conditions that have to be true during the execution of
a piece of code, for example, a loop iteration. In the modified function that follows, a thorough com-
ment at the top explains the algorithm at a high level, and inline comments explain specific lines that
may be confusing:

// Implements the "insertion sort" algorithm. The algorithm separates the
// array into two parts--the sorted part and the unsorted part. Each
// element, starting at position 1, is examined. Everything earlier in the
// array is in the sorted part, so the algorithm shifts each element over
// until the correct position is found to insert the current element. When
the algorithm finishes with the last element, the entire array is sorted.
void sort (int datal[], size t size)
{
// Start at position 1 and examine each element.
for (int 1 { 1 }; i < size; ++i) {
// Loop invariant:
// All elements in the range 0 to i-1 (inclusive) are sorted.

int element { datali] };
// j marks the position in the sorted part where element will be inserted.
int j {1 };
// As long as the value in the slot before the current slot in the sorted
// array is higher than element, shift values to the right to make room
// for inserting element (hence the name, "insertion sort") in the correct
// position.

continues

116

| CHAPTER3 CODING WITH STYLE

(continued)

while (j > 0 && datal[j - 1] > element) {
datal[j] = datalj - 11;

j--i

data[j] = element;

}

The new code is certainly more verbose, but a reader unfamiliar with sorting algorithms would be
much more likely to understand it with the comments included.

Commenting to Convey Meta-information

Another possible reason to use comments is to provide information at a higher level than the code
itself. This meta-information provides details about the creation of the code without addressing
the specifics of its behavior. For example, your organization may want to keep track of the original
author of each method. You can also use meta-information to cite external documents or refer to
other code.

The following example shows several instances of meta-information, including the author, the date it
was created, and the specific feature it addresses. It also includes inline comments expressing meta-
data, such as the bug number that corresponds to a line of code and a reminder to revisit a possible
problem in the code later.

RecordID saveRecord(Record& record)

{
if (!m_databaseOpen) { throw DatabaseNotOpenedException { }; }
RecordID id { getDB()->saveRecord (record) };
if (id == -1) return -1;
record.setId(id) ;

return id;

}

A change-log could also be included at the beginning of each file. The following shows a possible
example of such a change-log:

Documenting Your Code | 117

WARNING All the meta-information in the previous examples (except for the
“TODO” comment) is discouraged when you use—and you should use—a
source code control solution, as discussed in Chapter 28, “Maximizing Software
Engineering Methods.” Such a solution offers an annotated change history with
revision dates, author names, and, if properly used, comments accompanying
each modification, including references to change requests and bug reports.

You should check in or commit each change request or bug fix separately with a
descriptive comment. With such a system, you don’t need to manually keep track
of meta-information.

Another type of meta-information is a copyright notice. Some companies require such a copyright
notice at the beginning of every source file.

It’s easy to go overboard with comments. A good approach is to discuss which types of comments are
most useful with your group and to form a policy. For example, if one member of the group uses a
“TODO” comment to indicate code that still needs work but nobody else knows about this conven-
tion, the code in need of attention could be overlooked.

Commenting Styles

Every organization has a different approach to commenting code. In some environments, a particular
style is mandated to give the code a common standard for documentation. Other times, the quan-
tity and style of commenting are left up to the programmer. The following examples depict several
approaches to commenting code.

Commenting Every Line

One way to avoid lack of documentation is to force yourself to overdocument by including a com-
ment for every line. Commenting every line of code should ensure that there’s a specific reason for
everything you write. In reality, such heavy commenting on a large scale is unwieldy, messy, and tedi-
ous! For example, consider the following useless comments:

int result;
result = doodad.getResult() ;

if (result % 2 == 0) {
logError () ;

} else {
logSuccess () ;

}

return result;

The comments in this code express each line as part of an easily readable English story. This is
entirely useless if you assume that the reader has at least basic C++ skills. These comments don’t add
any additional information to code. Specifically, look at this line:

if (result % 2 == 0) {

118 | CHAPTER 3 CODING WITH STYLE

The comment is just an English translation of the code. It doesn’t say why the programmer has used
the modulo operator on the result with the value 2. The following would be a better comment:

if (result % 2 == 0) {
The modified comment, while still fairly obvious to most programmers, gives additional information

about the code. The modulo operator with 2 is used because the code needs to check whether the
result is even.

Even better, if some expression does something that might not be immediately obvious to everyone,

I recommend turning it into a function with a well-chosen name. This makes the code self-document-
ing, removing the need to write comments where the function is used, and results in a piece of reus-
able code. For example, you can define a function isEven () as follows:

bool isEven(int value) { return value % 2 == 0; }
And then use it like this, without any comments:

if (isEven(result)) {

Despite its tendency to be verbose and superfluous, heavy commenting can be useful in cases where
the code would otherwise be difficult to comprehend. The following code also comments every line,
but these comments are actually helpful:

result = doodad.calculate(Start, End, Offset);
result &= getProcessorMask() ;

setUserField ((result + MarigoldOffset) / MarigoldConstant + MarigoldConstant) ;

This code is taken out of context, but the comments give you a good idea of what each line does.
Without them, the calculations involving & and the mysterious “Marigold Formula” would be dif-
ficult to decipher.

NOTE Commenting every line of code is usually not warranted, but if the code
is complicated enough to require it, don’t just translate the code to English:
explain what’s really going on.

Prefix Comments

Your group may decide to begin all source files with a standard comment. This is an opportunity to
document important information about the program and a specific file. Examples of information that
could be at the top of every file include the following;:

> Copyright information

> A brief description of the file/class

Documenting Your Code | 119

The last-modified date*

The original author®

A change-log (as described earlier)*
The feature ID addressed by the file*

Incomplete features**

Y Y Y VY Y'Y

Known bugs**

* These items are usually automatically handled by your source code control solution (see

Chapter 28).

** These items are usually handled by your bug and feature tracking system (see Chapter 30,
“Becoming Adept at Testing”).

Your development environment may allow you to create a template that automatically starts new files
with your prefix comment. Some source control systems such as Subversion (SVN) can even assist by
filling in metadata. For example, if your comment contains the string $1d$, SVN can automatically
expand the comment to include the author, filename, revision, and date.

An example of a prefix comment is shown here:

Fixed-Format Comments

Writing comments in a standard format that can be parsed by external document builders is a popu-
lar programming practice. In the Java language, programmers can write comments in a standard
format that allows a tool called JavaDoc to automatically create hyperlinked documentation for the
project. For C++, a free tool called Doxygen (available at doxygen.org) parses comments to auto-
matically build HTML documentation, class diagrams, UNIX man pages, and other useful docu-
ments. Doxygen even recognizes and parses JavaDoc-style comments in C++ programs. The code that
follows shows JavaDoc-style comments that are recognized by Doxygen:

export class Watermelon

{

public:

Watermelon(size t initialSeeds) ;

continues

120

| CHAPTER3 CODING WITH STYLE

(continued)

double calculateSeedRatio (bool slow) ;

}i

Doxygen recognizes the C++ syntax and special comment directives such as eparam, @ereturn, and
@throws to generate customizable output. Figure 3-1 shows an example of a Doxygen-generated
HTML class reference.

Note that you should still avoid writing useless comments, even when you use a tool to automatically
generate documentation. Take a look at the watermelon constructor in the previous code. Its com-
ment omits a description and only describes the parameter and the exceptions it throws. Adding a
description, as in the following example, is redundant:

Watermelon(size t initialSeeds) ;

Automatically generated documentation like the file shown in Figure 3-1 can be helpful during devel-
opment because it allows developers to browse through a high-level description of classes and their
relationships. Your group can easily customize a tool like Doxygen to work with the style of com-
ments that you have adopted. Ideally, your group would set up a machine that builds documentation
on a daily basis.

Ad Hoc Comments

Most of the time, you use comments on an as-needed basis. Here are some guidelines for comments
that appear within the body of your code:

> Before adding a comment, first consider whether you can rework the code to make the com-
ment redundant—for example, by renaming variables, functions, and classes; by reordering
steps in the code; by introducing intermediate well-named variables; and so on.

> Imagine someone else is reading your code. If there are subtleties that are not immediately
obvious, then you should document those.

> Don’t put your initials in the code. Source code control solutions will track that kind of
information automatically for you.

> If you are doing something with an API that isn’t immediately obvious, include a reference
to the documentation of that API where it is explained.

> Remember to update your comments when you update the code. Nothing is more confusing
than code that is fully documented with incorrect information.

> If you use comments to separate a function into sections, consider whether the function can
be broken up into multiple, smaller functions.

Documenting Your Code | 121

> Avoid offensive or derogatory language. You never know who might look at your
code someday.
> Liberal use of inside jokes is generally considered OK. Check with your manager.
Main Page | Classes ~ | Files = | Q- Search

Public Member Functions | List of all members

Watermelon Class Reference

#include <watermelon.h>

Public Member Functions

Watermelon (size_t initialSeeds)
double calculateSeedRatio (bool slow)

Detailed Description

Implements the basic functionality of a watermelon TODO: Implement updated algorithms!

Constructor & Destructor Documentation

+ Watermelon()
Watermelon:Watermelon (size_t initialSeeds)
Parameters
initialSeeds The starting number of seeds, must be > 5.

Exceptions
invalid_argument if initialSeeds <= 5.

Member Function Documentation

+ calculateSeedRatio()

double Watermelon::calculateSeedRatio (bool slow)

Computes the seed ratio, using the Marigold algorithm.

Parameters

slow Whether or not to use long (slow) calculations.

Returns
The marigold ratio.

FIGURE 3-1

122

| CHAPTER3 CODING WITH STYLE

Self-Documenting Code

Well-written code often doesn’t need abundant commenting. The best code is written to be readable.
If you find yourself adding a comment for every line, consider whether the code could be rewritten
to better match what you are saying in the comments. For example, use descriptive names for your
functions, parameters, variables, classes, and so on. Properly make use of const; that is, if a variable
is not supposed to be modified, mark it as const. Reorder the steps in a function to make it clearer
what it is doing. Introduce intermediate well-named variables to make an algorithm easier to under-
stand. Remember that C++ is a language. Its main purpose is to tell the computer what to do, but the
semantics of the language can also be used to explain its meaning to a reader.

Another way of writing self-documenting code is to break up, or decompose, your code into smaller
pieces. Decomposition is covered in detail in the following section.

NOTE Good code is naturally readable and only requires comments to provide
useful additional information.

DECOMPOSITION

Decomposition is the practice of breaking up code into smaller pieces. There is nothing more daunt-
ing in the world of coding than opening up a file of source code to find 300-line functions and
massive, nested blocks of code. Ideally, each function or method should accomplish a single task. Any
subtasks of significant complexity should be decomposed into separate functions or methods. For
example, if somebody asks you what a method does and you answer, “First it does A, then it does B;
then, if C, it does Dj; otherwise, it does E,” you should probably have separate helper methods for A,
B, C,D, and E.

Decomposition is not an exact science. Some
programmers will say that no function should be
longer than a page of printed code. That may be a
good rule of thumb, but you could certainly find
a quarter-page of code that is desperately in need
of decomposition. Another rule of thumb is that
if you squint your eyes and look at the format of
the code without reading the actual content, it
shouldn’t appear too dense in any one area. For
example, Figures 3-2 and 3-3 show code that has
been purposely blurred so that you don’t focus
on the content. It should be obvious that the code
in Figure 3-3 has better decomposition than the
code in Figure 3-2.

FIGURE 3-2

Decomposition | 123

Decomposition Through
Refactoring

Sometimes, when you’ve had a few coffees and
you’re really in the programming zone, you start
coding so fast that you end up with code that
does exactly what it’s supposed to do but is far
from pretty. All programmers do this from time to
time. Short periods of vigorous coding are some-
times the most productive times in the course of
a project. Dense code also arises over the course
of time as code is modified. As new requirements
and bug fixes emerge, existing code is amended
with small modifications. The computing term
cruft refers to the gradual accumulation of small
amounts of code that eventually turns a once-
elegant piece of code into a mess of patches and
special cases.

Refactoring is the act of restructuring your code.
The following list contains example techniques
that you can use to refactor your code. Consult
one of the refactoring books in Appendix B to get
a more comprehensive list.

FIGURE 3-3
> Techniques that allow for more
abstraction:

> Encapsulate field: Make a field private and give access to it with getter and
setter methods.

> Generalize type: Create more general types to allow for more code sharing.
> Techniques for breaking code apart into more logical pieces:

> Extract method: Turn part of a larger method into a new method to make it easier
to understand.

> Extract class: Move part of the code from an existing class into a new class.

> Techniques for improving names and the location of code:

Move method or move field: Move to a more appropriate class or source file.
Rename method or rename field: Change the name to better reveal its purpose.

Pull up: In object-oriented programming, move to a base class.

Y VY VY VY

Push down: In object-oriented programming, move to a derived class.

124 | CHAPTER3 CODING WITH STYLE

Whether your code starts its life as a dense block of unreadable cruft or it just evolves that way,
refactoring is necessary to periodically purge the code of accumulated hacks. Through refactoring,
you revisit existing code and rewrite it to make it more readable and maintainable. Refactoring is an
opportunity to revisit the decomposition of code. If the purpose of the code has changed or if it was
never decomposed in the first place, when you refactor the code, squint at it and determine whether
it needs to be broken down into smaller parts.

When refactoring code, it is important to be able to rely on a testing framework that catches any
defects that you might introduce. Unit tests, discussed in Chapter 30, are particularly well suited for
helping you catch mistakes during refactoring.

Decomposition by Design

If you use modular decomposition and approach every module, method, or function by consider-
ing what pieces of it you can put off until later, your programs will generally be less dense and more
organized than if you implement every feature in its entirety as you code.

Of course, you should still design your program before jumping into the code.

Decomposition in This Book

You will see decomposition in many of the examples in this book. In many cases, methods are
referred to for which no implementation is shown because they are not relevant to the example and
would take up too much space.

NAMING

The C++ compiler has a few naming rules:
> Names cannot start with a number (for example, 9tos).

> Names that contain a double underscore (such as my _name) are reserved and shall
not be used.

> Names that begin with an underscore followed by an uppercase letter (such as _Name) are
always reserved and shall not be used.

> Names in the global namespace that begin with an underscore (such as name) are reserved

and shall not be used.

Other than those rules, names exist only to help you and your fellow programmers work with the
individual elements of your program. Given this purpose, it is surprising how often programmers use
unspecific or inappropriate names.

Choosing a Good Name

The best name for a variable, method, function, parameter, class, namespace, and so on, accurately
describes the purpose of the item. Names can also imply additional information, such as the type or

Naming | 125

specific usage. Of course, the real test is whether other programmers understand what you are trying
to convey with a particular name.

There are no set-in-stone rules for naming other than the rules that work for your organization. How-
ever, there are some names that are rarely appropriate. The following table shows some names at both

ends of the naming continuum:

GOOD NAMES

sourceName, destinationName

Distinguishes two objects

g settings
Conveys global status

m_nameCounter

Conveys data member status

calculateMarigoldOffset ()

Simple, accurate

m_typeString
Easy on the eyes

errorMessage

Descriptive name

sourceFile, destinationFile

No abbreviations

Naming Conventions

BAD NAMES

thingl, thing2
Too general

globalUserSpecificSettingsAndPreferences
Too long

m_NC
Too obscure, too brief

doAction ()
Too general, imprecise

typeSTR256
A name only a computer could love

m_IHatelarry
Unacceptable inside joke

string

Nondescriptive name

srcFile, dstFile
Abbreviations

Selecting a name doesn’t always require a lot of thought and creativity. In many cases, you’ll want to
use standard techniques for naming. The following are some of the types of data for which you can

make use of standard names.

Counters

Early in your programming career, you probably saw code that used the variable i as a counter. It

is customary to use i and j as counters and inner-loop counters, respectively. Be careful with nested
loops, however. It’s a common mistake to refer to the “ith” element when you really mean the “jth”
element. When working with 2-D data, it’s probably easier to use row and column as indices instead
of i and j. Some programmers prefer using counters outerLoopIndex and innerLoopIndex, and
some even frown upon using i and j as loop counters.

126

| CHAPTER3 CODING WITH STYLE

Prefixes

Many programmers begin their variable names with a letter that provides some information about
the variable’s type or usage. On the other hand, there are as many programmers, or even more, who
disapprove of using any kind of prefix because this could make evolving code less maintainable in
the future. For example, if a member variable is changed from static to non-static, you have to
rename all the uses of that name. If you don’t rename them, your names continue to convey seman-
tics, but now they are the wrong semantics.

However, you often don’t have a choice, and you need to follow the guidelines of your company. The
following table shows some potential prefixes:

PREFIX ~ EXAMPLE NAME LITERAL PREFIX MEANING USAGE
mData “member” Data member within a class
L m_data
s sLookupTable “static” Static variable or data member
ms msLookupTable
ms_ ms_lookupTable
k kMaximumLength “konstant” (German for A constant value. Some program-
“constant”) mers omit any prefix to indicate
constants.
b bCompleted “Boolean” Designates a Boolean value
is isCompleted

Hungarian Notation

Hungarian notation is a variable and data member—-naming convention that is popular with Micro-
soft Windows programmers. The basic idea is that instead of using single-letter prefixes such as m,
you should use more verbose prefixes to indicate additional information. The following line of code
shows the use of Hungarian notation:

char* pszName;

The term Hungarian notation arose from the fact that its inventor, Charles Simonyi, is Hungar-

ian. Some also say that it accurately reflects the fact that programs using Hungarian notation end
up looking as if they were written in a foreign language. For this latter reason, some programmers
tend to dislike Hungarian notation. In this book, prefixes are used, but not Hungarian notation.
Adequately named variables don’t need much additional context information besides the prefix. For
example, a data member named m_name says it all.

NOTE Good names convey information about their purpose without making
the code unreadable.

Using Language Features with Style | 127

Getters and Setters

If your class contains a data member, such as m_status, it is customary to provide access to the
member via a getter called getStatus () and a setter called setStatus (). To give access to a Boolean
data member, you typically use is as a prefix instead of get, for example isRunning (). The C++
language has no prescribed naming for these methods, but your organization will probably want to
adopt this or a similar naming scheme.

Capitalization

There are many different ways of capitalizing names in your code. As with most elements of coding
style, it is important that your group adopts a standardized approach and that all members adopt that
approach. One way to get messy code is to have some programmers naming classes in all lowercase
with underscores representing spaces (priority queue) and others using capitals with each subse-
quent word capitalized (PriorityQueue). Variables and data members almost always start with a
lowercase letter and use either underscores (my queue) or capitals (myQueue) to indicate word breaks.
Functions and methods are traditionally capitalized in C++, but, as you’ve seen, in this book I have
adopted the style of lowercase functions and methods to distinguish them from class names. A similar
style of capitalizing letters is used to indicate word boundaries for class and data member names.

Namespaced Constants

Imagine that you are writing a program with a graphical user interface. The program has several
menus, including File, Edit, and Help. To represent the ID of each menu, you may decide to use a
constant. A perfectly reasonable name for a constant referring to the Help menu ID is Help.

The name Help will work fine until you add a Help button to the main window. You also need a
constant to refer to the ID of the button, but Help is already taken.

A possible solution for this is to put your constants in different namespaces, which are discussed in
Chapter 1, “A Crash Course in C++ and the Standard Library.” You create two namespaces: Menu and
Button. Each namespace has a Help constant, and you use them as Menu: :Help and Button: :Help.
Another, and more recommended, solution is to use enumerated types, also introduced in Chapter 1.

USING LANGUAGE FEATURES WITH STYLE

The C++ language lets you do all sorts of terribly unreadable things. Take a look at this wacky code:
i++ + ++1;

This is unreadable, but more importantly, its behavior is undefined by the C++ standard. The problem
is that i++ uses the value of i but has a side effect of incrementing it. The standard does not say when
this incrementing should be done, only that the side effect (increment) should be visible after the
sequence point ;. However, the compiler can do it at any time during the execution of that statement.
It’s impossible to know which value of i will be used for the ++1i part. Running this code with differ-
ent compilers and platforms can result in different values.

128

| CHAPTER3 CODING WITH STYLE

Expressions such as the following
ali]l = ++1;

are well-defined since C++17, which guarantees that the evaluation of all operations on the right-
hand side of an assignment is finished before evaluating the left-hand side. So, in this case, first 1 is
incremented and then used as index in a[i]. Even so, for clarity, it remains recommended to avoid
such expressions.

With all the power that the C++ language offers, it is important to consider how the language features
can be used toward stylistic good instead of evil.

Use Constants

Bad code is often littered with “magic numbers.” In some function, the code might be using 2.71828
or 24 or 3600, and so on. Why? What do these values mean? People with a mathematical background
might find it obvious that 2.71828 represents an approximation of the transcendental value e, but
most people don’t know this. The C++ language offers constants to give symbolic names to values
that don’t change, such as 2.71828, 24, 3600, and so on. Here are some examples:

const double ApproximationForE { 2.71828182845904523536 };
const int HoursPerDay { 24 };
const int SecondsPerHour { 3'600 };

NOTE Since C++20, the Standard Library includes a collection of predefined
mathematical constants, all defined in <numbers> in the std::numbers
namespace. For example, it defines std::numbers::e, pi, sqrt2, phi, and many
more.

Use References Instead of Pointers

In the past, C++ programmers often learned C first. In C, pointers were the only pass-by-reference
mechanism, and they certainly worked just fine for many years. Pointers are still required in some
cases, but in many situations you can switch to references. If you learned C first, you probably think
that references don’t really add any new functionality to the language. You might think that they
merely introduce a new syntax for functionality that pointers could already provide.

There are several advantages to using references rather than pointers. First, references are safer than
pointers because they don’t deal directly with memory addresses and cannot be nuliptr. Second,
references are more stylistically pleasing than pointers because they use the same syntax as stack
variables, avoiding symbols such as * and &. They’re also easy to use, so you should have no prob-
lem adopting references into your style palette. Unfortunately, some programmers think that if they
see an & in a function call, they know the called function is going to change the object, and if they
don’t see the &, it must be pass-by-value. With references, they say they don’t know if the function is
going to change the object unless they look at the function prototype. This is a wrong way of think-
ing. Passing in a pointer does not automatically mean that the object will be modified, because the
parameter might be const T*. Passing both a pointer and a reference can modify the object, or it

Formatting | 129

may not, depending on whether the function prototype uses const T*, T*, const T&, or T&. So, you
need to look at the prototype anyway to know whether the function might change the object.

Another benefit of references is that they clarify ownership of memory. If you are writing a method
and another programmer passes you a reference to an object, it is clear that you can read and possibly
modify the object, but you have no easy way of freeing its memory. If you are passed a pointer, this is
less clear. Do you need to delete the object to clean up memory? Or will the caller do that? In mod-
ern C++, the preferred way of handling ownership and ownership transfer is to use smart pointers,
discussed in Chapter 7, “Memory Management.”

Use Custom Exceptions

C++ makes it easy to ignore exceptions. Nothing about the language syntax forces you to deal with
exceptions, and you could in theory write error-tolerant programs with traditional mechanisms such
as returning special values (for example, -1, nullptr, . ..) or setting error flags. When returning
special values to signal errors, the [[nodiscard]] attribute, introduced in Chapter 1, can be used to
force the caller of your function to do something with the returned value.

However, exceptions provide a much richer mechanism for error handling, and custom exceptions
allow you to tailor this mechanism to your needs. For example, a custom exception type for a web
browser could include fields that specify the web page that contained the error, the network state
when the error occurred, and additional context information.

Chapter 14, “Handling Errors,” contains a wealth of information about exceptions in C++.
p 5 g 5 p

NOTE Language features exist to belp the programmer. Understand and make
use of features that contribute to good programming style.

FORMATTING

Many programming groups have been torn apart and friendships ruined over code-formatting argu-
ments. In college, a friend of mine got into such a heated debate with a peer over the use of spaces in
an if statement that people were stopping by to make sure that everything was OK.

If your organization has standards in place for code formatting, consider yourself lucky. You may not
like the standards they have in place, but at least you won’t have to argue about them.

If no standards are in place for code formatting, I recommend introducing them in your organiza-
tion. Standardized coding guidelines make sure that all programmers on your team follow the same
naming conventions, formatting rules, and so on, which makes the code more uniform and easier to
understand.

There are automated tools available that can format your code according to certain rules right before
committing the code to your source code control system. Some IDEs have such tools built-in and can,
for example, automatically format the code when saving a file.

130 | CHAPTER3 CODING WITH STYLE

If everybody on your team is just writing code their own way, try to be as tolerant as you can.
As you’ll see, some practices are just a matter of taste, while others actually make it difficult to
work in teams.

The Curly Brace Alignment Debate

Perhaps the most frequently debated point is where to put the curly braces that demark a block of
code. There are several styles of curly brace use. In this book, the curly brace is put on the same line
as the leading statement, except in the case of a class, function, or method. This style is shown in the
code that follows (and throughout this book):

void someFunction ()

{

if (condition()) {
cout << "condition was true" << endl;
} else {

cout << "condition was false" << endl;

}
}

This style conserves vertical space while still showing blocks of code by their indentation. Some pro-
grammers would argue that preservation of vertical space isn’t relevant in real-world coding. A more
verbose style is shown here:

void someFunction ()

{

if (condition())

{
}
else

{
}

cout << "condition was true" << endl;

cout << "condition was false" << endl;

}

Some programmers are even liberal with the use of horizontal space, yielding code like this:

void someFunction ()

{

if (condition())

{

cout << "condition was true" << endl;

cout << "condition was false" << endl;

Another point of debate is whether to put braces around single statements, for example:

void someFunction ()

{

Formatting | 131

if (condition())

cout << "condition was true" << endl;
else

cout << "condition was false" << endl;

}

Obviously, I won’t recommend any particular style because I don’t want hate mail. Personally, I
always use braces, even for single statements, as it protects against certain badly written C-style mac-
ros (see Chapter 11, “Odds and Ends”) and is safer against adding statements in the future.

NOTE When selecting a style for denoting blocks of code, the important
consideration is how well you can see which block falls under which condition
simply by looking at the code.

Coming to Blows over Spaces and Parentheses

The formatting of individual lines of code can also be a source of disagreement. Again, I won’t advo-
cate a particular approach, but you are likely to encounter a few of the styles shown here.

In this book, I use a space after any keyword, a space before and after any operator, a space after
every comma in a parameter list or a call, and parentheses to clarify the order of operations,
as follows:
if (1 == 2)
j=i+ (k/m;
}

An alternative, shown next, treats if stylistically like a function, with no space between the keyword
and the left parenthesis. Also, the parentheses used to clarify the order of operations inside of the if
statement are omitted because they have no semantic relevance.

The difference is subtle, and the determination of which is better is left to the reader, yet I can’t move
on from the issue without pointing out that if is not a function.

Spaces, Tabs, and Line Breaks

The use of spaces and tabs is not merely a stylistic preference. If your group does not agree on a con-
vention for spaces and tabs, there are going to be major problems when programmers work jointly.
The most obvious problem occurs when Alice uses four-space tabs to indent code and Bob uses
five-space tabs; neither will be able to display code properly when working on the same file. An even
worse problem arises when Bob reformats the code to use tabs at the same time that Alice edits the
same code; many source code control systems won’t be able to merge in Alice’s changes.

Most, but not all, editors have configurable settings for spaces and tabs. Some environments even
adapt to the formatting of the code as it is read in or always save using spaces even if the Tab key

132

| CHAPTER3 CODING WITH STYLE

is used for authoring. If you have a flexible environment, you have a better chance of being able to
work with other people’s code. Just remember that tabs and spaces are different because a tab can be
any length and a space is always a space.

Finally, not all platforms represent a line break in the same way. Windows, for example, uses \r\n for
line breaks, while Linux-based platforms typically use \n. If you use multiple platforms in your com-
pany, then you need to agree on which line break style to use. Here also, your IDE can most likely be
configured to use the line break style you need, or automated tools can be used to automatically fix
line breaks, for example, when committing your code to your source code control system.

STYLISTIC CHALLENGES

Many programmers begin a new project by pledging that this time they will do everything right. Any
time a variable or parameter shouldn’t be changed, it’ll be marked const. All variables will have clear,
concise, readable names. Every developer will put the left curly brace on the subsequent line and will
adopt the standard text editor and its conventions for tabs and spaces.

For a number of reasons, it is difficult to sustain this level of stylistic consistency. In the case of const,
sometimes programmers just aren’t educated about how to use it. You will eventually come across

old code or a library function that isn’t const-savvy. For example, suppose you are writing a function
accepting a const parameter, and you need to call a legacy function accepting a non-const param-
eter. If you cannot modify the legacy code to make it const aware, maybe because it’s a third-party
library, and you are absolutely certain that the legacy function will not modify its non-const argu-
ment, then a good programmer will use const_cast () (see Chapter 1) to temporarily suspend the
const property of the parameter, but an inexperienced programmer will start to unwind the const
property back from the calling function, once again ending up with a program that never uses const.

Other times, standardization of style comes up against programmers’ individual tastes and biases.
Perhaps the culture of your team makes it impractical to enforce strict style guidelines. In such situa-
tions, you may have to decide which elements you really need to standardize (such as variable names
and tabs) and which ones are safe to leave up to individuals (perhaps spacing and commenting style).
You can even obtain or write scripts that will automatically correct style “bugs” or flag stylistic prob-
lems along with code errors. Some development environments, such as Microsoft Visual C++, support
automatic formatting of code according to rules that you specify. This makes it trivial to write code
that always follows the guidelines that have been configured.

SUMMARY

The C++ language provides a number of stylistic tools without any formal guidelines on how to use
them. Ultimately, any style convention is measured by how widely it is adopted and how much it ben-
efits the readability of the code. When coding as part of a team, you should raise issues of style early
in the process as part of the discussion of what language and tools to use.

Exercises | 133

The most important point about style is to appreciate that it is an important aspect of programming.
Teach yourself to check over the style of your code before you make it available to others. Recognize
good style in the code you interact with, and adopt the conventions that you and your organization
find useful.

This chapter concludes the first part of this book. The next part discusses software design on a
high level.

EXERCISES

By solving the following exercises, you can practice the material discussed in this chapter. Solutions
to all exercises are available with the code download on the book’s website at www.wiley.com/go/
proc++5e. However, if you are stuck on an exercise, first reread parts of this chapter to try to find an
answer yourself before looking at the solution from the website.

Code comments and coding style are subjective. The following exercises do not have a single perfect
answer. The solutions from the website provide one of many possible correct answers to the exercises.

Exercise 3-1: Chapter 1 discusses an example of an employee records system. That system has
a database, and one of the methods of the database is displayCurrent (). Here is the imple-
mentation of that method with some comments:

void Database::displayCurrent () const
{
for (const auto& employee : m_employees) {
if (employee.isHired()) ({
employee.display () ;
}

}

Do you see anything wrong with these comments? Why? Can you come up with bet-
ter comments?

Exercise 3-2: The employee records system from Chapter 1 contains a Database class. The
following is a snippet of that class with only three methods. Add proper JavaDoc-style com-
ments to this code snippet. Consult Chapter 1 to brush up on what exactly these methods do.

class Database
{
public:
Employee& addEmployee (const std::string& firstName,
const std::string& lastName) ;
Employee& getEmployee (int employeeNumber) ;
Employee& getEmployee (const std::string& firstName,
const std::string& lastName) ;

134 | CHAPTER3 CODING WITH STYLE

Exercise 3-3: The following class has a number of naming issues. Can you spot them all and
propose better names?

class xrayController

public:
/ Gets the active X-ray current in pA.
double getCurrent () const;
Sets the current of the X-rays to the given current in pA.
void setIt (double Val);
/ Sets the current to 0 pA.
void OCurrent () ;
/ Gets the X-ray source type.
const std::string& getSourceType () const;
/ Sets the X-ray source type.
void setSourceType(std::string view Type);
private:
double d; // The X-ray current in pA.
std::string m _src_ type; // The type of the X-ray source.

Exercise 3-4: Given the following code snippet, reformat the snippet three times: first put
curly braces on their own lines, then indent the curly braces themselves, and finally remove
the curly braces for single-statement code blocks. This exercise allows you to get a feeling of
different formatting styles and what the impact is on code readability.

Employee& Database::getEmployee (int employeeNumber)

{
for (auto& employee : m_employees) {
if (employee.getEmployeeNumber () == employeeNumber) {
return employee;
}
}

throw logic_error { "No employee found." };

PART I

Professional C++
Software Design

» CHAPTER 4: Designing Professional C++ Programs
» CHAPTER 5: Designing with Objects

» CHAPTER 6: Designing for Reuse

Professional C++, Fifth Edition. Marc Gregoire.
© 2021 John Wiley & Sons, Inc. Published 2021 by John Wiley & Sons, Inc.

Designing Professional
C++ Programs

WHAT'S IN THIS CHAPTER?

The definition of programming design
The importance of programming design

The aspects of design that are unique to C++

Y Y Vv Y

The two fundamental themes for effective C++ design: abstrac-
tion and reuse

The different types of code available for reuse
The advantages and disadvantages of code reuse
Guidelines for choosing a library to reuse
Open-source libraries

The C++ Standard Library

Y Y Y Y Y

Before writing a single line of code in your application, you should design your program. What
data structures will you use? What classes will you write? This plan is especially important
when you program in groups. Imagine sitting down to write a program with no idea what your
co-worker, who is working on the same program, is planning! In this chapter, you’ll learn how
to use the Professional C++ approach to C++ design.

Despite the importance of design, it is probably the most misunderstood and underused aspect
of the software-engineering process. Too often, programmers jump into applications without

a clear plan: they design as they code. This approach can lead to convoluted and overly com-
plicated designs. It also makes development, debugging, and maintenance tasks more difficult.
Although it seems counterintuitive, investing extra time at the beginning of a project to design it
properly actually saves time over the life of the project.

Professional C++, Fifth Edition. Marc Gregoire.
© 2021 John Wiley & Sons, Inc. Published 2021 by John Wiley & Sons, Inc.

138

| CHAPTER 4 DESIGNING PROFESSIONAL C++ PROGRAMS

WHAT IS PROGRAMMING DESIGN?

The first step when starting a new program, or a new feature for an existing program, is to analyze
the requirements. This involves having discussions with your stakebolders. A vital outcome of this
analysis phase is a functional requirements document describing what exactly the new piece of code
has to do, but it does not explain how it has to do it. Requirement analysis can also result in a non-
functional requirements document describing how the final system should be, compared to what it
should do. Examples of non-functional requirements are that the system needs to be secure, extensi-
ble, satisfy certain performance criteria, and so on.

Once all requirements have been collected, the design phase of the project can start. Your program
design, or software design, is the specification of the architecture that you will implement to fulfill
all functional and non-functional requirements of the program. Informally, the design is how you
plan to write the program. You should generally write your design in the form of a design document.
Although every company or project has its own variation of a desired design document format, most
design documents share the same general layout, which includes two main parts:

> The gross subdivision of the program into subsystems, including interfaces and depen-
dencies between the subsystems, data flow between the subsystems, input and output to and
from each subsystem, and a general threading model

> The details of each subsystem, including subdivision into classes, class hierarchies, data
structures, algorithms, a specific threading model, and error-handling specifics

The design documents usually include diagrams and tables showing subsystem interactions and class
hierarchies. The Unified Modeling Language (UML) is the industry standard for such diagrams and

is used for diagrams in this and subsequent chapters. See Appendix D for a brief introduction to the
UML syntax. With that being said, the exact format of the design document is less important than the
process of thinking about your design.

NOTE The point of designing is to think about your program before you
write it.

You should generally try to make your design as good as possible before you begin coding. The
design should provide a map of the program that any reasonable programmer could follow in order
to implement the application. Of course, it is inevitable that the design will need to be modified once
you begin coding and you encounter issues that you didn’t think of earlier. Software-engineering
processes have been designed to give you the flexibility to make these changes. Scrum, an agile
software development methodology, is one example of such an iterative process whereby the appli-
cation is developed in cycles, known as sprints. With each sprint, designs can be modified, and new
requirements can be taken into account. Chapter 28, “Maximizing Software Engineering Methods,”
describes various software-engineering process models in more detail.

The Importance of Programming Design | 139

THE IMPORTANCE OF PROGRAMMING DESIGN

It’s tempting to skip the analysis and design steps, or to perform them only cursorily, to begin pro-
gramming as soon as possible. There’s nothing like seeing code compiling and running to give you

the impression that you have made progress. It seems like a waste of time to formalize a design or to
write down functional requirements when you already know, more or less, how you want to structure
your program. Besides, writing a design document just isn’t as much fun as coding. If you wanted to
write papers all day, you wouldn’t be a computer programmer! As a programmer myself, I understand
this temptation to begin coding immediately and have certainly succumbed to it on occasion. How-
ever, it will most likely lead to problems on all but the simplest projects. Whether or not you succeed
without a design prior to the implementation depends on your experience as a programmer, your
proficiency with commonly used design patterns, and how deeply you understand C++, the problem
domain, and the requirements.

If you are working in a team where each team member will work on a different part of the project, it
is paramount that there is a design document for all team members to follow. Design documents also
help newcomers to get up to speed with the designs of a project.

Some companies have dedicated functional analysts to write the functional requirements and dedi-
cated software architects to work out the software design. In those companies, developers can usually
just focus on the programming aspects of the project. In other companies, the developers have to do
the requirements gathering and the designs themselves. Some companies lie in between these two
extremes; maybe they only have a software architect making the bigger architectural decisions, while
developers do smaller designs themselves.

To help you understand the importance of programming design, imagine that you own a plot of
land on which you want to build a house. When the builder shows up, you ask to see the blueprints.
“What blueprints?” he responds. “I know what Pm doing. I don’t need to plan every little detail
ahead of time. Two-story house? No problem. I did a one-story house a few months ago—T’ll just
start with that model and work from there.”

Suppose that you suspend your disbelief and allow the builder to proceed. A few months later, you
notice that the plumbing appears to run outside the house instead of inside the walls. When you query
the builder about this anomaly, he says, “Oh. Well, I forgot to leave space in the walls for the plumb-
ing. I was so excited about this new drywall technology that it just slipped my mind. But it works just
as well outside, and functionality is the most important thing.” You’re starting to have your doubts
about his approach, but, against your better judgment, you allow him to continue.

When you take your first tour of the completed building, you notice that the kitchen lacks a sink. The
builder excuses himself by saying, “We were already two-thirds done with the kitchen by the time we
realized there wasn’t space for the sink. Instead of starting over, we just added a separate sink room
next door. It works, right?”

Do the builder’s excuses sound familiar if you translate them to the software domain? Have you
ever found yourself implementing an “ugly” solution to a problem like putting plumbing outside the
house? For example, maybe you forgot to include locking in your queue data structure that is shared

140

| CHAPTER 4 DESIGNING PROFESSIONAL C++ PROGRAMS

between multiple threads. By the time you realize the problem, you decide to just perform the locking
manually on all places where the queue is used. Sure, it’s ugly, but it works, you say. That is, until
someone new joins the project who assumes that the locking is built into the data structure, fails to
ensure mutual exclusion in her access to the shared data, and causes a race condition bug that takes
three weeks to track down. Of course, this locking problem is just given as an example of an ugly
workaround. Obviously, a professional C++ programmer would never decide to perform the locking
manually on each queue access but would instead directly incorporate the locking inside the queue
class or make the queue class thread-safe in a lock-free manner.

Formalizing a design before you code helps you determine how everything fits together. Just as
blueprints for a house show how the rooms relate to each other and work together to fulfill the
requirements of the house, the design for a program shows how the subsystems of the program relate
to each other and work together to fulfill the software requirements. Without a design plan, you are
likely to miss connections between subsystems, possibilities for reuse or shared information, and the
simplest ways to accomplish tasks. Without the “big picture” that the design gives, you might become
so bogged down in individual implementation details that you lose track of the overarching architec-
ture and goals. Furthermore, the design provides written documentation to which all members of the
project can refer. If you use an iterative process like the agile Scrum methodology mentioned earlier,
you need to make sure to keep the design documentation up-to-date during each cycle of the pro-
cess, for as long as doing so adds value. One of the pillars of the agile methodology states to prefer
“Working software over comprehensive documentation.” You should at least maintain design docu-
mentation about how the bigger parts of a project work together, while in my opinion, it’s up to the
team whether maintaining design documentation about smaller aspects of the project adds any value
towards the future or not. If not, then make sure to either remove such documents or mark them as
out-of-date.

If the preceding analogy hasn’t convinced you to design before you code, here is an example where
jumping directly into coding fails to lead to an optimal design. Suppose that you want to write a chess
program. Instead of designing the entire program before you begin
coding, you decide to jump in with the easiest parts and move slowly
to the more difficult parts. Following the object-oriented perspective
introduced in Chapter 1, “A Crash Course in C++ and the Standard
Library,” and covered in more detail in Chapter 5, “Designing with
Objects,” you decide to model your chess pieces with classes. You
figure the pawn is the simplest chess piece, so you opt to start there.
After considering the features and behaviors of a pawn, you write

a class with the properties and methods shown in the UML class

Pawn

-m_locationOnBoard : Location
-m_color : Color
-m_isCaptured : bool

+move() : void

+isMovelegal() : bool

+draw() : void

+promote() : void

diagram in Figure 4-1. FIGURE 4-1
In this design, the m_color attribute denotes whether the pawn is .
black or white. The promote () method executes upon reaching the Bishop

opposing side of the board.

Of course, you haven’t actually made this class diagram. You’ve gone
straight to the implementation phase. Happy with that class, you
move on to the next easiest piece: the bishop. After considering its
attributes and functionality, you write a class with the properties and
methods shown in the class diagram in Figure 4-2.

-m_locationOnBoard : Location
-m_color : Color
-m_isCaptured : bool

+move() : void
+isMovelegal() : bool
+draw() : void

FIGURE 4-2

Designing for C++ | 141

Again, you haven’t generated a class diagram, because you jumped straight to the coding phase. How-
ever, at this point you begin to suspect that you might be doing something wrong. The bishop and the
pawn look similar. In fact, their properties are identical, and they share many methods. Although the
implementations of the move method might differ between the pawn and the bishop, both pieces need
the ability to move. If you had designed your program before jumping into coding, you would have
realized that the various pieces are actually quite similar and that you should find some way to write
the common functionality only once. Chapter 5 explains the object-oriented design techniques for
doing that.

Furthermore, several aspects of the chess pieces depend on other subsystems of your program. For
example, you cannot accurately represent the location on the board in a chess piece class without
knowing how you will model the board. On the other hand, perhaps you will design your program
so that the board manages pieces in a way that doesn’t require them to know their own locations.

In either case, encoding the location in the piece classes before designing the board leads to problems.
To take another example, how can you write a draw method for a piece without first deciding your
program’s user interface? Will it be graphical or text-based? What will the board look like? The prob-
lem is that subsystems of a program do not exist in isolation—they interrelate with other subsystems.
Most of the design work determines and defines these relationships.

DESIGNING FOR C++

There are several aspects of the C++ language that you need to keep in mind when designing for C++:

> C++ has an immense feature set. It is almost a complete superset of the C language, plus
classes and objects, operator overloading, exceptions, templates, and many other features.
The sheer size of the language makes design a daunting task.

> C++is an object-oriented language. This means that your designs should include class hier-
archies, class interfaces, and object interactions. This type of design is quite different from
traditional design in C or other procedural languages. Chapter 5 focuses on object-oriented
design in C++.

> C++ has numerous facilities for designing generic and reusable code. In addition to basic
classes and inheritance, you can use other language facilities such as templates and operator
overloading for effective design. Design techniques for reusable code are discussed in more
detail later in this chapter and further in Chapter 6, “Designing for Reuse.”

> C++ provides a useful Standard Library. This includes a string class, I/O facilities, and
many common data structures and algorithms. All of these facilitate coding in C++.

> C++ readily accommodates many design patterns, that is, common ways to solve problems.

Tackling a design can be overwhelming. I have spent entire days scribbling design ideas on paper,
crossing them out, writing more ideas, crossing those out, and repeating the process. Sometimes this
process is helpful, and, at the end of those days (or weeks), it leads to a clean, efficient design. Other
times it is frustrating and leads nowhere, but it is not a waste of effort. You will most likely waste

142

| CHAPTER 4 DESIGNING PROFESSIONAL C++ PROGRAMS

more time if you have to re-implement a design that turned out to be broken. It’s important to remain
aware of whether you are making real progress. If you find that you are stuck, you can take one of
the following actions:

> Ask for help. Consult a co-worker, mentor, book, newsgroup, or web page.
> Work on something else for a while. Come back to this design choice later.

> Make a decision and move on. Even if it’s not an ideal solution, decide on something and try
to work with it. An incorrect choice will soon become apparent. However, it may turn out
to be an acceptable method. Perhaps there is no clean way to accomplish what you want to
with this design. Sometimes you have to accept an “ugly” solution if it’s the only realistic
strategy to fulfill your requirements. Whatever you decide, make sure you document your
decision so that you and others in the future know why you made it. This includes docu-
menting designs that you have rejected and the rationale behind the rejection.

NOTE Keep in mind that good design is bard, and getting it right takes practice.
Don’t expect to become an expert overnight, and don’t be surprised if you find it
more difficult to master C++ design than C++ coding.

TWO RULES FOR YOUR OWN C++ DESIGNS

When you are designing your own C++ programs, there are two fundamental design rules to follow:
abstraction and reuse. These guidelines are so important that they can be considered themes of this
book. They come up repeatedly throughout the text and throughout effective C++ program designs in
all domains.

Abstraction

The principle of abstraction is easiest to understand through a real-world analogy. A television is a
piece of technology found in most homes. You are probably familiar with its features: you can turn
it on and off, change the channel, adjust the volume, and add external components such as speak-
ers, DVRs, and Blu-ray players. However, can you explain how it works inside the black box? That
is, do you know how it receives signals through a cable, translates them, and displays them on the
screen? Most people certainly can’t explain how a television works, yet are quite capable of using it.
That is because the television clearly separates its internal implementation from its external interface.
We interact with the television through its interface: the power button, channel changer, and volume
control. We don’t know, nor do we care, how the television works; we don’t care whether it uses a
cathode ray tube or some sort of alien technology to generate the image on our screen. It doesn’t mat-
ter because it doesn’t affect the interface.

Benefiting from Abstraction

The abstraction principle is similar in software. You can use code without knowing the underlying
implementation. As a trivial example, your program can make a call to the sqrt () function declared
in the <cmath> header file without knowing what algorithm the function actually uses to calculate

Two Rules for Your Own C++ Designs | 143

the square root. In fact, the underlying implementation of the square root calculation could change
between releases of the library, and as long as the interface stays the same, your function call will still
work. The principle of abstraction extends to classes as well. As introduced in Chapter 1, you can use
the cout object of class ostream to stream data to standard output like this:

cout << "This call will display this line of text" << endl;

In this statement, you use the documented interface of the cout insertion operator (<<) with a charac-
ter array. However, you don’t need to understand how cout manages to display that text on the user’s
screen. You only need to know the public interface. The underlying implementation of cout is free to
change as long as the exposed behavior and interface remain the same.

Incorporating Abstraction in Your Design

You should design functions and classes so that you and other programmers can use them without
knowing, or relying on, the underlying implementations. To see the difference between a design that
exposes the implementation and one that hides it behind an interface, consider the chess program
again. You might want to implement the chessboard with a two-dimensional array of pointers to
ChessPiece objects. You could declare and use the board like this:

ChessPiece* chessBoard[8] [8]{};
chessBoard[0] [0] = new Rook{};

However, that approach fails to use the concept of abstraction. Every programmer who uses the
chessboard knows that it is implemented as a two-dimensional array. Changing that implementa-
tion to something else, such as a one-dimensional flattened vector of size 64, would be difficult,
because you would need to change every use of the board in the entire program. Everyone using the
chessboard also has to properly take care of memory management. There is no separation of interface
from implementation.

A better approach is to model the chessboard as a class. You could then expose an interface that hides
the underlying implementation details. Here is an example of the beginnings of a ChessBoard class:

class ChessBoard

{
public:
void setPieceAt(size t x, size t y, ChessPiece* piece);
ChessPiece* getPieceAt (size t x, size t y) const;
bool isEmpty(size t x, size t y) const;
private:

}i

Note that this interface makes no commitment to any underlying implementation. The ChessBoard
could easily be a two-dimensional array, but the interface does not require it. Changing the implemen-
tation does not require changing the interface. Furthermore, the implementation can provide addi-
tional functionality, such as bounds checking.

Ideally, this example has convinced you that abstraction is an important technique in C++ program-
ming. Chapter 5 covers object-oriented design in more detail, while Chapter 6 goes deeper in on the
principles of abstraction. Chapters 8, “Gaining Proficiency with Classes and Objects,” 9, “Mastering
Classes and Objects,” and 10, “Discovering Inheritance Techniques,” provide all the details about
writing your own classes.

144

| CHAPTER 4 DESIGNING PROFESSIONAL C++ PROGRAMS

Reuse

The second fundamental rule of design in C++ is reuse. Again, it is helpful to examine a real-world
analogy to understand this concept. Suppose that you give up your programming career in favor of
working as a baker. On your first day of work, the head baker tells you to bake cookies. To fulfill his
orders, you find the recipe for chocolate chip cookies, mix the ingredients, form cookies on the cookie
sheet, and place the sheet in the oven. The head baker is pleased with the result.

Now, I’'m going to point out something so obvious that it will surprise you: you didn’t build your
own oven in which to bake the cookies. Nor did you churn your own butter, mill your own flour,

or form your own chocolate chips. I can hear you think, “That goes without saying.” That’s true if
you’re a real cook, but what if you’re a programmer writing a baking simulation game? In that case,
you would think nothing of writing every component of the program, from the chocolate chips to the
oven. Or, you could save yourself time by looking around for code to reuse. Perhaps your office-mate
wrote a cooking simulation game and has some nice oven code lying around. Maybe it doesn’t do
everything you need, but you might be able to modify it and add the necessary functionality.

Something else you took for granted is that you followed a recipe for the cookies instead of making
up your own. Again, that goes without saying. However, in C++ programming, it does not go without
saying. Although there are standard ways of approaching problems that arise over and over in C++,
many programmers persist in reinventing these strategies in each design.

The idea of using existing code is not new. You’ve been reusing code from the first day you printed
something with cout. You didn’t write the code to actually print your data to the screen. You used the
existing cout implementation to do the work.

Unfortunately, not all programmers take advantage of available code. Your designs should take into
account existing code and reuse it when appropriate.

Writing Reusable Code

The design theme of reuse applies to code you write as well as to code that you use. You should
design your programs so that you can reuse your classes, algorithms, and data structures. You and
your co-workers should be able to use these components in both the current project and future
projects. In general, you should avoid designing overly specific code that is applicable only to the
case at hand.

One language technique for writing general-purpose code in C++ is using templates. Instead of writ-
ing a specific ChessBoard class that stores ChessPieces, as shown earlier, consider writing a generic
GameBoard class template that can be used for any type of two-dimensional board game such as chess
or checkers. You would only need to change the class declaration so that it takes the piece to store as
a template parameter, called PieceType, instead of hard-coding it in the interface. The class template
could look something as follows. If you’ve never seen this syntax before, don’t worry! Chapter 12,
“Writing Generic Code with Templates,” explains the syntax in depth.

template <typename PieceType>
class GameBoard
public:
void setPieceAt (size t x, size t y, PieceType* piece);

Two Rules for Your Own C++ Designs | 145

PieceType* getPieceAt (size t x, size t y) const;
bool isEmpty(size t x, size t y) const;
private:

}i

With this simple change in the interface, you now have a generic game board class that you can
use for any two-dimensional board game. Although the code change is simple, it is important to
make these decisions in the design phase, so that you are able to implement the code effectively
and efficiently.

Chapter 6 goes into more detail on how to design your code with reuse in mind.

Reusing Designs
Learning the C++ language and becoming a good C++ programmer are two very different things. If you
sat down and read the C++ standard, memorizing every fact, you would know C++ as well as anybody
else. However, until you gained some experience by looking at code and writing your own programs,
you wouldn’t necessarily be a good programmer. The reason is that the C++ syntax defines what the
language can do in its raw form but doesn’t say anything about how each feature should be used.

As the baker example illustrates, it would be ludicrous to reinvent recipes for every baked good that
you make. However, programmers often make an equivalent mistake in their designs. Instead of using
existing “recipes,” or patterns, for designing programs, they reinvent these techniques every time they
design a program.

As they become more experienced in using the C++ language, C++ programmers develop their own
individual ways of using the features of the language. The C++ community at large has also built
some standard ways of leveraging the language, some formal and some informal. Throughout this
book, I point out these reusable applications of the language, known as design techniques and design
patterns. Additionally, Chapters 32, “Incorporating Design Techniques and Frameworks,” and 33,
“Applying Design Patterns,” focus almost exclusively on design techniques and patterns. Some will
seem obvious to you because they are simply a formalization of the obvious solution. Others describe
novel solutions to problems you’ve encountered in the past. Some present entirely new ways of think-
ing about your program organization.

For example, you might want to design your chess program so that you have a single ErrorLogger
object that serializes all errors from different components to a log file. When you try to design your
ErrorLogger class, you realize that you would like to have only a single instance of the ErrorLog-
ger class in your program. But, you also want several components in your program to be able to use
this ErrorLogger instance; that is, these components all want to use the same ErrorLogger service.
A standard strategy to implement such a service mechanism is to use dependency injection. With
dependency injection, you create an interface for each service and you inject the interfaces a compo-
nent needs into the component. Thus, a good design at this point would specify that you want to use
the dependency injection pattern.

It is important for you to familiarize yourself with these patterns and techniques so that you can rec-
ognize when a particular design problem calls for one of these solutions. There are many more tech-
niques and patterns applicable to C++ than those described in this book. Even though a nice selection
is covered here, you may want to consult a book on design patterns for more and different patterns.
See Appendix B for suggestions.

146 | CHAPTER4 DESIGNING PROFESSIONAL C++ PROGRAMS

REUSING EXISTING CODE

Experienced C++ programmers never start a project from scratch. They incorporate code from a wide
variety of sources, such as the Standard Library, open-source libraries, proprietary code bases in their
workplace, and their own code from previous projects. You should reuse code liberally in your pro-
jects. To make the most of this rule, this section first explains the different types of code that you can
reuse, followed by the trade-offs between reusing existing code and writing it yourself. The final part
of this section discusses a number of guidelines for choosing a library to reuse, once you have decided
not to write the code yourself but to reuse existing code.

NOTE Reusing code does not mean copying and pasting existing code! In fact, it
means quite the opposite: reusing code without duplicating it.

A Note on Terminology

Before analyzing the advantages and disadvantages of code reuse, it is helpful to specify the terminol-
ogy involved and to categorize the types of reusable code. There are three categories of code available
for reuse:

> Code you wrote yourself in the past
> Code written by a co-worker

> Code written by a third party outside your current organization or company

There are also several ways that the code you reuse can be structured:

> Stand-alone functions or classes. When you reuse your own code or co-workers’ code, you
will generally encounter this variety.

> Libraries. A library is a collection of code used to accomplish a specific task, such as parsing
XML or to handle a specific domain, such as cryptography. Other examples of function-
ality usually found in libraries include threads and synchronization support, networking,
and graphics.

> Frameworks. A framework is a collection of code around which you design a program. For
example, the Microsoft Foundation Classes (MFC) library provides a framework for cre-
ating graphical user interface applications for Microsoft Windows. Frameworks usually dic-
tate the structure of your program.

> Entire applications. Your project might include multiple applications. Perhaps you need a
web server front end to support your new e-commerce infrastructure. It is possible to bundle
entire third-party applications, such as a web server, with your software. This approach
takes code reuse to the extreme in that you reuse entire applications.

Reusing Existing Code | 147

NOTE A program uses a library but fits into a framework. Libraries provide
specific functionality, while frameworks are fundamental to your program design
and structure.

Another term that arises frequently is application programming interface, or API. An APl is an
interface to a library or body of code for a specific purpose. For example, programmers often refer
to the sockets API, meaning the exposed interface to the sockets networking library, instead of the
library itself.

NOTE Although people use the terms API and library interchangeably, they are
not equivalent. The library refers to the implementation, while the API refers to
the published interface to the library.

For the sake of brevity, the rest of this chapter uses the term library to refer to any reusable code,
whether it is really a library, framework, entire application, or random collection of functions from
your office-mate.

Deciding Whether to Reuse Code or Write it Yourself

The rule to reuse code is easy to understand in the abstract. However, it’s somewhat vague when it
comes to the details. How do you know when it’s appropriate to reuse code and which code to reuse?
There is always a trade-off, and the decision depends on the specific situation. However, there are
some general advantages and disadvantages to reusing code.

Advantages to Reusing Code

Reusing code can provide tremendous advantages to you and to your project:

> You may not know how to or may not be able to justify the time to write the code you need.
Would you really want to write code to handle formatted input and output? Of course not.
That’s why you use the standard C++ I/O streams and/or std::format().

> Your designs will be simpler because you will not need to design those components of the
application that you reuse.

> The code that you reuse usually requires no debugging. You can often assume that library
code is bug-free because it has already been tested and used extensively.

> Libraries handle more error conditions than would your first attempt at the code. You might
forget obscure errors or edge cases at the beginning of the project and would waste time
fixing these problems later. Library code that you reuse has generally been tested exten-
sively and used by many programmers before you, so you can assume that it handles most
errors properly.

148 | CHAPTER4 DESIGNING PROFESSIONAL C++ PROGRAMS

Libraries are often tested on a wide range of platforms with different hardware, different
operating systems and operating system versions, different graphic cards, and so on; much
more than you could possibly have available to test yourself. Sometimes, libraries contain
workarounds to make them work on specific platforms.

Libraries generally are designed to be suspect of bad user inputs. Invalid requests, or
requests not appropriate for the current state, usually result in suitable error notifications.
For example, a request to seek a nonexistent record in a database, or to read a record from a
database that is not open, would have well-specified behavior from a library.

Reusing code written by domain experts is safer than writing your own code for that area.
For example, you should not attempt to write your own security code unless you are a
security expert. If you need security or cryptography in your programs, use a library. Many
seemingly minor details in code of that nature could compromise the security of the entire
program, and possibly the entire system, if you got them wrong.

Library code is constantly improving. If you reuse the code, you receive the benefits of these
improvements without doing the work yourself. In fact, if the library writers have properly
separated the interface from the implementation, you can obtain these benefits by upgrad-
ing your library version without changing your interaction with the library. A good upgrade
modifies the underlying implementation without changing the interface.

Disadvantages to Reusing Code

Unfortunately, there are also some disadvantages to reusing code:

>

When you use only code that you wrote yourself, you understand exactly how it works.
When you use libraries that you didn’t write yourself, you must spend time understanding
the interface and correct usage before you can jump in and use it. This extra time at the
beginning of your project will slow your initial design and coding.

When you write your own code, it does exactly what you want. Library code might not pro-
vide the exact functionality that you require.

Even if the library code provides the exact functionality you need, it might not give you
the performance that you desire. The performance might be bad in general, poor for your
specific use case, or completely unspecified.

Using library code introduces a Pandora’s box of support issues. If you discover a bug in the
library, what do you do? Often you don’t have access to the source code, so you couldn’t fix
it even if you wanted to. If you have already invested significant time in learning the library
interface and using the library, you probably don’t want to give it up, but you might find it
difficult to convince the library developers to fix the bug on your time schedule. Also, if you
are using a third-party library, what do you do if the library authors drop support for the
library before you stop supporting the product that depends on it? Think carefully about
this before you decide to use a library for which you cannot get source code.

In addition to support problems, libraries present licensing issues, which cover topics such
as disclosure of your source code, redistribution fees (often called binary license fees), credit
attribution, and development licenses. You should carefully inspect the licensing issues
before using any library. For example, some open-source libraries require you to make your
own code open-source.

Reusing Existing Code | 149

> Reusing code requires a trust factor. You must trust whoever wrote the code by assuming
that they did a good job. Some people like to have control over all aspects of their project,
including every line of source code.

> Upgrading to a new version of the library can cause problems. The upgrade could introduce
bugs, which could have fatal consequences in your product. A performance-related upgrade
might optimize performance in certain cases but make it worse in your specific use case.

> Upgrading your compiler to a new version can cause problems when you are using binary-
only libraries. You can only upgrade the compiler when the library vendor provides binaries
compatible with your new version of the compiler.

Putting It Together to Make a Decision

Now that you are familiar with the terminology, advantages, and disadvantages of reusing code, you
are better prepared to make the decision about whether to reuse code. Often, the decision is obvious.
For example, if you want to write a graphical user interface (GUI) in C++ for Microsoft Windows,
you should use a framework such as MFC or Qt. You probably don’t know how to write the underly-
ing code to create a GUI in Windows, and more importantly, you don’t want to waste time to learn it.
You will save person-years of effort by using a framework in this case.

However, other times the choice is less obvious. For example, if you are unfamiliar with a library and
need only a simple data structure, it might not be worth the time to learn the library to reuse only one
component that you could write in a few days.

Ultimately, you need to make a decision based on your own particular needs. It often comes down to
a trade-off between the time it would take to write it yourself and the time required to find and learn
how to use a library to solve the problem. Carefully consider how the advantages and disadvantages
listed previously apply to your specific case, and decide which factors are most important to you.
Finally, remember that you can always change your mind, which might even be relatively easy if you
handled the abstraction correctly.

Guidelines for Choosing a Library to Reuse

When you’ve decided to reuse libraries, frameworks, co-workers’ code, entire applications, or your
own code, there are several guidelines you should keep in mind to pick the right code to reuse.

Understand the Capabilities and Limitations

Take the time to familiarize yourself with the code. It is important to understand both its capabilities
and its limitations. Start with the documentation and the published interfaces or APIs. Ideally, that
will be sufficient to understand how to use the code. However, if the library doesn’t provide a clear
separation between interface and implementation, you may need to explore the source code itself if
it is provided. Also, talk to other programmers who have used the code and who might be able to
explain its intricacies. You should begin by learning the basic functionality. If it’s a library, what func-
tions does it provide? If it’s a framework, how does your code fit in? What classes should you derive
from? What code do you need to write yourself? You should also consider specific issues depending
on the type of code.

| CHAPTER 4 DESIGNING PROFESSIONAL C++ PROGRAMS

Here are some points to keep in mind when choosing a library:
> Is the library safe for multithreaded programs?

> Does the library impose any specific compiler settings on code using it? If so, is that accept-
able in your project?

> On what other libraries does the library depend?

Additionally, you might have to do some more detailed research for specific libraries:
> Which initialization and cleanup calls are needed?

> If you need to derive from a class, which constructor should you call on it? Which virtual
methods should you override?

> If a call returns memory pointers, who is responsible for freeing the memory: the caller or
the library? If the library is responsible, when is the memory freed? It’s highly recommended
to find out whether you can use smart pointers (see Chapter 7, “Memory Management”) to
manage memory allocated by the library.

What are all the return values (by value or reference) from a call?
> What are all the possible exceptions thrown?

What error conditions do library calls check for, and what do they assume? How are errors
handled? How is the client program notified about errors? Avoid using libraries that pop up
message boxes, issue messages to stderr/cerr or stdout/cout, or terminate the program.

Understand the Learning Cost

The learning cost is the amount of time it takes for a developer to learn how to use a library. This is
not just an initial cost when starting to use the library, but a recurring cost over time. Whenever a
new team member joins the project, she needs to learn how to use that library.

This cost can be substantial for certain libraries. As such, if you find the functionality you need in a
well-known library, I recommend using that one over using some exotic, lesser-known library. For
example, if the Standard Library provides the data structure or algorithm you need, use that one
instead of using another library.

Understand the Performance

It is important to know the performance guarantees that the library or other code provides. Even if
your particular program is not performance sensitive, you should make sure that the code you use
doesn’t have awful performance for your particular use.

Big-O Notation

Programmers generally discuss and document algorithm and library performance using big-O nota-
tion. This section explains the general concepts of algorithm complexity analysis and big-O notation
without a lot of unnecessary mathematics. If you are already familiar with these concepts, you can
skip this section.

Reusing Existing Code | 151

Big-O notation specifies relative, rather than absolute, performance. For example, instead of saying
that an algorithm runs in a specific amount of time, such as 300 milliseconds, big-O notation speci-
fies how an algorithm performs as its input size increases. Examples of input sizes include the number
of items to be sorted by a sorting algorithm, the number of elements in a hash table during a key
lookup, and the size of a file to be copied between disks.

NOTE Big-O notation applies only to algorithms whose speed depends on their
inputs. It does not apply to algorithms that take no input or whose running time
is random. In practice, you will find that the running times of most algorithms of
interest depend on their input, so this limitation is not significant.

To be more formal, big-O notation specifies an algorithm’s run time as a function of its input size,
also known as the complexity of the algorithm. It’s not as complicated as it sounds. For example, an
algorithm could take twice as long to process twice as many elements. Thus, if it takes 1 second to
process 200 elements, it will take 2 seconds to process 400 elements, and 4 seconds to process 800
elements. Figure 4-3 shows this graphically. It is said that the complexity of such an algorithm is a
linear function of its input size, because, graphically, it is represented by a straight line.

w

IS

N

Execution Time (sec)
w

—_

o

o

200 400 600 800 1000
Input Size

FIGURE 4-3

Big-O notation summarizes the algorithm’s linear performance like this: O(n). The O just means that
you’re using big-O notation, while the 7 represents the input size. O(n) specifies that the algorithm
speed is a direct linear function of the input size.

Of course, not all algorithms have performance that is linear with respect to their input size. The fol-
lowing table summarizes the common complexities, in order of their performance from best to worst:

| CHAPTER 4 DESIGNING PROFESSIONAL C++ PROGRAMS

ALGORITHM COMPLEXITY

Constant

Logarithmic

Linear

Linear Logarithmic

Quadratic

Exponential

BIG-O NOTATION

EXPLANATION

The running time is
independent of the
input size.

The running time

is a function of the
logarithm base 2 of the
input size.

The running time is
directly proportional to
the input size.

The running time is a
function of the linear
times the logarithmic
function of the

input size.

The running time is a
function of the square
of the input size.

The running time is an
exponential function of
the input size.

EXAMPLE ALGORITHMS

Accessing a single
element in an array

Finding an element
in a sorted list using
binary search

Finding an element in
an unsorted list

Merge sort

A slower sorting
algorithm like
selection sort

Optimized traveling
salesman problem

There are two advantages to specifying performance as a function of the input size instead of in abso-

lute numbers:

> Itis platform independent. Specifying that a piece of code runs in 200 milliseconds on one
computer says nothing about its speed on a second computer. It is also difficult to compare

two different algorithms without running them on the same computer with the exact same
load. On the other hand, performance specified as a function of the input size is applicable

to any platform.

> Performance as a function of input size covers all possible inputs to the algorithm with one
specification. The specific time in seconds that an algorithm takes to run covers only one
specific input and says nothing about any other input.

Tips for Understanding Performance

Now that you are familiar with big-O notation, you are prepared to understand most performance
documentation. The C++ Standard Library in particular describes its algorithm and data structure
performance using big-O notation. However, big-O notation is sometimes insufficient or even mis-

leading. Consider the following issues whenever you think about big-O performance specifications:

Reusing Existing Code | 153

> If an algorithm takes twice as long to work on twice as much data, it doesn’t say anything
about how long it took in the first place! If the algorithm is written badly but scales well,
it’s still not something you want to use. For example, suppose the algorithm makes unneces-
sary disk accesses. That probably wouldn’t affect the big-O time but would be very bad for
overall performance.

> Along those lines, it’s difficult to compare two algorithms with the same big-O running
time. For example, if two different sorting algorithms both claim to be O(n log n), it’s hard
to tell which is really faster without running your own tests.

> The big-O notation describes the time complexity of an algorithm asymptotically, as the
input size grows to infinity. For small inputs, big-O time can be very misleading. An O(#n?)
algorithm might actually perform better than an O(log ») algorithm on small input sizes.
Consider your likely input sizes before making a decision.

In addition to considering big-O characteristics, you should look at other facets of the algorithm
performance. Here are some guidelines to keep in mind:

> You should consider how often you intend to use a particular piece of library code. Some
people find the 90/10 rule helpful: 90 percent of the running time of most programs is
spent in only 10 percent of the code (Hennessy and Patterson, Computer Architecture:
A Quantitative Approach, Fifth Edition, 2011, Morgan Kaufmann). If the library code
you intend to use falls in the oft-exercised 10 percent category of your code, you should
make sure to analyze its performance characteristics carefully. On the other hand, if it falls
into the oft-ignored 90 percent of the code, you should not spend much time analyzing
its performance because it will not benefit the overall program performance very much.
Chapter 29, “Writing Efficient C++,” discusses profilers, tools to help you find performance
bottlenecks in your code.

> Don’t trust the documentation. Always run performance tests to determine if library code
provides acceptable performance characteristics.

Understand Platform Limitations

Before you start using library code, make sure that you understand on which platforms it runs. If you
want to write a cross-platform application, make sure the libraries you choose are also cross-platform
portable. That might sound obvious, but even libraries that claim to be cross-platform might contain
subtle differences on different platforms.

Also, platforms include not only different operating systems but different versions of the same operat-
ing system. If you write an application that should run on the operating systems Solaris 8, Solaris 9,
and Solaris 10, ensure that any libraries you use also support all those releases. You cannot assume
either forward or backward compatibility across operating system versions. That is, just because a
library runs on Solaris 9 doesn’t mean that it will run on Solaris 10 and vice versa.

Understand Licensing

Using third-party libraries often introduces complicated licensing issues. You must sometimes pay
license fees to third-party vendors for the use of their libraries. There may also be other licens-
ing restrictions, including export restrictions. Additionally, open-source libraries are sometimes

154 | CHAPTER4 DESIGNING PROFESSIONAL C++ PROGRAMS

distributed under licenses that require any code that links with them to be open-source as well.
A number of licenses commonly used by open-source libraries are discussed later in this chapter.

WARNING Make sure that you understand the license restrictions of any third-
party libraries you use if you plan to distribute or sell the code you develop.
When in doubt, consult a legal expert whose specialty is intellectual property.

Understand Support and Know Where to Find Help

Before you use a library, make sure that you understand the process for submitting bugs and that
you realize how long it will take for bugs to get fixed. If possible, determine how long the library will
continue to be supported so that you can plan accordingly.

Interestingly, even using libraries from within your own organization can introduce support issues.
You may find it just as difficult to convince a co-worker in another part of your company to fix a bug
in their library as you would to convince a stranger in another company to do the same thing. In fact,
you may even find it harder, because you’re not a paying customer. Make sure that you understand
the politics and organizational issues within your own organization before using internal libraries.

For reusing entire applications, the support issue might even become more complex. If customers
encounter a problem with your bundled web server, should they contact you or the web server ven-
dor? Make sure that you resolve this issue before you release the software.

Using libraries and frameworks can sometimes be daunting at first. Fortunately, there are many
avenues of support available. First, consult the documentation that accompanies the library. If the
library is widely used, such as the Standard Library or the MFC, you should be able to find a good
book on the topic. In fact, for help with the Standard Library, you can consult Chapters 16 to 25.

If you have specific questions not addressed by books and product documentation, try searching the
Web. Type your question in your favorite search engine to find web pages that discuss the library. For
example, when you search for the phrase introduction to C++ Standard Library, you will find several
hundred websites about C++ and the Standard Library. Also, many websites contain their own private
newsgroups or forums on specific topics for which you can register.

WARNING A note of caution: don’t believe everything you read on the Web!
Web pages do not necessarily undergo the same review process as printed books
and documentation and may contain inaccuracies.

Prototype

When you first sit down with a new library or framework, it is often a good idea to write a quick
prototype. Trying the code is the best way to familiarize yourself with the library’s capabilities. You
should consider experimenting with the library even before you tackle your program design so that
you are intimately familiar with the library’s capabilities and limitations. This empirical testing will
allow you to determine the performance characteristics of the library as well.

Reusing Existing Code | 155

Even if your prototype application looks nothing like your final application, time spent prototyping
is not a waste. Don’t feel compelled to write a prototype of your actual application. Write a dummy
program that just tests the library capabilities you want to use. The point is only to familiarize your-
self with the library.

WARNING Due to time constraints, programmers sometimes find their proto-
types morphing into the final product. If you have hacked together a prototype
that is insufficient as the basis for the final product, make sure that it doesn’t get
used that way.

Open-Source Libraries

Open-source libraries are an increasingly popular class of reusable code. The general meaning of
open-source is that the source code is available for anyone to look at. There are formal definitions
and legal rules about including source code with all your distributions, but the important thing to
remember about open-source software is that anyone (including you) can look at the source code.
Note that open-source applies to more than just libraries. In fact, the most famous open-source
product is probably the Android operating system. Linux is another open-source operating system.
Google Chrome and Mozilla Firefox are two examples of famous open-source web browsers.

The Open-Source Movements

Unfortunately, there is some confusion in terminology in the open-source community. First, there are
two competing names for the movement (some would say two separate, but similar, movements).
Richard Stallman and the GNU project use the term free software. Note that the term free does not
imply that the finished product must be available without cost. Developers are welcome to charge as
much or as little as they want. Instead, the term free refers to the freedom for people to examine the
source code, modify the source code, and redistribute the software. Think of the free in free speech
rather than the free in free beer. You can read more about Richard Stallman and the GNU project at

WWW.gnu.ord.

The Open Source Initiative uses the term open-source software to describe software in which the
source code must be available. As with free software, open-source software does not require the
product or library to be available without cost. However, an important difference with free software
is that open-source software is not required to give you the freedom to use, modify, and redistribute
it. You can read more about the Open Source Initiative at www.opensource.org.

There are a lot of licensing options available for open-source projects. For example, a project could
use one of the GNU Public License (GPL) versions. However, using a library under the GPL requires
you to make your own product open-source under the GPL as well. On the other hand, an open-
source project can use a license like Boost Software License, Berkeley Software Distribution (BSD)
license, MIT License, Apache License, and so on, which allow using an open-source project in closed-
source products. Some of these licenses have different versions. For example, there are actually four
versions of the BSD license. Another option for an open-source project is to use one of the six flavors
of the Creative Commons (CC) license.

156

| CHAPTER 4 DESIGNING PROFESSIONAL C++ PROGRAMS

Some licenses require you to include the library’s license with your final product. Some licenses
require attribution when using the library. Bottom line, all licenses come with subtleties that

are important to understand if you want to use libraries in closed-source projects. The
opensource.org/licenses website gives a thorough overview of approved open source licenses.

Because the name “open-source” is less ambiguous than “free software,” this book uses “open-source”
to refer to products and libraries with which the source code is available. The choice of name is not
intended to imply endorsement of the open-source philosophy over the free software philosophy: it is
only for ease of comprehension.

Finding and Using Open-Source Libraries

Regardless of the terminology, you can gain amazing benefits from using open-source software.

The main benefit is functionality. There is a plethora of open-source C++ libraries available for varied
tasks, from XML parsing and cross-platform error logging, to deep learning and data mining using
artificial neural networks.

Although open-source libraries are not required to provide free distribution and licensing, many
open-source libraries are available without monetary cost. You will generally be able to save money in
licensing fees by using open-source libraries.

Finally, you are often but not always free to modify open-source libraries to suit your exact needs.

Most open-source libraries are available on the Web. For example, searching for open-source C++
library XML parsing results in a list of links to XML libraries in C and C++. There are also a few
open-source portals where you can start your search, including the following:

> www.boost.org

> www.gnu.org

> github.com/open-source
>

www.sourceforge.net

Guidelines for Using Open-Source Code

Open-source libraries present several unique issues and require new strategies. First, open-source
libraries are usually written by people in their “free” time. The source base is generally available

for any programmer who wants to pitch in and contribute to development or bug fixing. As a good
programming citizen, you should try to contribute to open-source projects if you find yourself reap-
ing the benefits of open-source libraries. If you work for a company, you may find resistance to this
idea from your management because it does not lead directly to revenue for your company. However,
you might be able to convince management that indirect benefits, such as exposure of your company
name and perceived support from your company for the open-source movement, should allow you to
pursue this activity.

Second, because of the distributed nature of their development and lack of single ownership, open-
source libraries often present support issues. If you desperately need a bug fixed in a library, it is
often more efficient to make the fix yourself than to wait for someone else to do it. If you do fix bugs,
make sure to put those fixes back into the public codebase for the library. Some licenses even require

Designing a Chess Program | 157

you to do so. Even if you don’t fix any bugs, make sure to report problems that you find so that other
programmers don’t waste time encountering the same issues.

The C++ Standard Library

The most important library that you will use as a C++ programmer is the C++ Standard Library.
As its name implies, this library is part of the C++ standard, so any standards-conforming compiler
should include it. The Standard Library is not monolithic: it includes several disparate components,
some of which you have been using already. You may even have assumed they were part of the core
language. Chapters 16 to 25 go into more detail about the Standard Library.

C Standard Library

Because C++ is mostly a superset of C, the C Standard Library is still available. Its functionality
includes mathematical functions such as abs (), sqrt (), and pow (), and error-handling helpers such
as assert () and errno. Additionally, the C Standard Library facilities for manipulating character
arrays as strings, such as strlen() and strcpy (), and the C-style I/O functions, such as printf ()
and scanf (), are all available in C++.

NOTE C++ provides better strings and /O support than C. Even though the
C-style strings and 1/O routines are available in C++, you should avoid them
in favor of C++ strings and formatting (Chapter 2, “Working with Strings and
String Views”) and 1/O streams (Chapter 13, “Demystifying C++/107).

Chapter 1 explains that the C header files have different names in C++. These names should be used
instead of the C library names, because they are less likely to result in name conflicts. For example, if
you need the functionality of the C header file <stdio.h> in C++, then it’s recommended to include
<cstdios instead of <stdio.hs. For details of the C libraries, consult a Standard Library Reference,
see Appendix B.

Deciding Whether or Not to Use the Standard Library

The Standard Library was designed with functionality, performance, and orthogonality as its priorities.
The benefits of using it are substantial. Imagine having to track down pointer errors in linked list or
balanced binary tree implementations or to debug a sorting algorithm that isn’t sorting properly. If you
use the Standard Library correctly, you will rarely, if ever, need to perform that kind of coding yourself.
Another benefit is that most C++ developers know how to work with the functionality provided by the
Standard Library. Hence, when using the Standard Library in your projects, new team members will
get up to speed faster compared to using third-party libraries that might have a substantial learning
cost. Chapters 16 to 25 provide in-depth information on the Standard Library functionality.

DESIGNING A CHESS PROGRAM

This section introduces a systematic approach to designing a C++ program in the context of a simple
chess game application. To provide a complete example, some of the steps refer to concepts covered

158 | CHAPTER4 DESIGNING PROFESSIONAL C++ PROGRAMS

in later chapters. You should read this example now to obtain an overview of the design process, but
you might also consider rereading it after you have finished later chapters.

Requirements

Before embarking on the design, it is important to possess clear requirements for the program’s func-
tionality and efficiency. Ideally, these requirements would be documented in the form of a require-
ments specification. The requirements for the chess program would contain the following types of
specifications, although in more detail and greater number:

> The program should support the standard rules of chess.

> The program should support two human players. The program should not provide an artifi-
cially intelligent computer player.

> The program should provide a text-based interface:

The program should render the game board and pieces in plain text.

> Players should express their moves by entering numbers representing locations on
the chessboard.

The requirements ensure that you design your program so that it performs as its users expect.

Design Steps

You should take a systematic approach to designing your program, working from the general to the
specific. The following steps do not always apply to all programs, but they provide a general guide-
line. Your design should include diagrams and tables as appropriate. UML is an industry standard for
making diagrams. You can refer to Appendix D for a brief introduction, but in short, UML defines a
multitude of standard diagrams you can use for documenting software designs, for example, class dia-
grams, sequence diagrams, and so on. I recommend using UML or at least UML-like diagrams where
applicable. However, I don’t advocate strictly adhering to the UML syntax because having a clear,
understandable diagram is more important than having a syntactically correct one.

Divide the Program into Subsystems

Your first step is to divide your program into its general functional subsystems and to specify the
interfaces and interactions between the subsystems. At this point, you should not worry about specif-
ics of data structures and algorithms, or even classes. You are only trying to obtain a general feel for
the various parts of the program and their interactions. You can list the subsystems in a table that
expresses the high-level behaviors or functionality of the subsystem, the interfaces exported from

the subsystem to other subsystems, and the interfaces consumed, or used, by this subsystem from
other subsystems. The recommended design for this chess game is to have a clear separation between
storing the data and displaying the data by using the Model-View-Controller (MVC) paradigm. This
paradigm models the notion that many applications commonly deal with a set of data, one or more
views on that data, and manipulation of the data. In MVC, a set of data is called the model, a view is
a particular visualization of the model, and the controller is the piece of code that changes the model
in response to some event. The three components of MVC interact in a feedback loop: actions are

Designing a Chess Program | 159

handled by the controller, which adjusts the model, resulting in a change to the view or views. The
controller can also directly modify the view, for example UI elements. Figure 4-4 visualizes this inter-
action. Using this paradigm, the different components are clearly separated, allowing you to modify
one component without having to modify others. For example, without having to touch the underly-
ing data model or logic, you can easily switch between having a text-based interface and a graphical
user interface, or between an interface for running on a desktop PC and an interface for running as a

phone app.
‘—Displays toUpdates—
Manipulates Model
Uses Manipulates
FIGURE 4-4

The following table shows how the possible subsystems for the chess game could look like:

SUBSYSTEM
NAME

GamePlay

ChessBoard

ChessBoardView

ChessPiece

ChessPieceView

INSTANCES

32

32

FUNCTIONALITY

Starts game
Controls game flow
Controls drawing
Declares winner

Ends game

Stores chess pieces

Checks for ties and
checkmates

Draws the
associated
ChessBoard

Moves itself

Checks for
legal moves

Draws the
associated
ChessPiece

INTERFACES
EXPORTED

Game Over

Get Piece At
Set Piece At

Draw

Move
Check Move

Draw

INTERFACES
CONSUMED

Take Turn (on Player)

Draw (on
ChessBoardView)

Game Over
(on GamePlay)

Draw (on
ChessPieceView)

Get Piece At (on
ChessBoard)

Set Piece At (on
ChessBoard)

None

continues

160 | CHAPTER 4 DESIGNING PROFESSIONAL C++ PROGRAMS

TABLE (continued)

SUBSYSTEM INSTANCES FUNCTIONALITY INTERFACES INTERFACES

NAME EXPORTED CONSUMED

Player 2 Interacts with Take Turn Get Piece At (on
the user by ChessBoard)

prompting the
user for a move,
and obtaining the
user’'s move

Move (on
ChessPiece)

Check Move (on

ChessPiece)
Moves pieces

ErrorLogger 1 Writes error Log Error None
messages to
a log file

As this table shows, the functional subsystems of this chess game include a GamePlay subsystem, a
ChessBoard and ChessBoardView, 32 ChessPieces and ChessPieceViews, two Players, and one Error-
Logger. However, that is not the only reasonable approach. In software design, as in programming
itself, there are often many different ways to accomplish the same goal. Not all solutions are equal;
some are certainly better than others. However, there are often several equally valid methods.

A good division into subsystems separates the program into its basic functional parts. For example, a
Player is a subsystem distinct from the ChessBoard, ChessPieces, or GamePlay. It wouldn’t make sense
to lump the players into the GamePlay subsystem, because they are logically separate subsystems.
Other choices might not be as obvious.

In this MVC design, the ChessBoard and ChessPiece subsystems are part of the Model. The Chess-
BoardView and ChessPieceView are part of the View, and the Player is part of the Controller.

Because it is often difficult to visualize subsystem relationships from tables, it is usually helpful to
show the subsystems of a program in a diagram where lines represent calls from one subsystem to
another. Figure 4-5 shows the chess game subsystems visualized as a diagram loosely based on a UML
communication diagram.

Choose Threading Models

It’s too early in the design phase to think about how to multithread specific loops in algorithms you
will write. However, in this step, you choose the number of high-level threads in your program and
specify their interactions. Examples of high-level threads are a Ul thread, an audio-playing thread, a
network communication thread, and so on.

In multithreaded designs, you should try to avoid shared data as much as possible because it will
make your designs simpler and safer. If you cannot avoid shared data, you should specify locking
requirements.

Designing a Chess Program | 161

P[ayer ——nMove / CheckMove
|
GetPieceAt
TakeTurn
Gameplay <=——GameOver—j ChessBoard l<=—GetPieceAt / SetPiece/t ChessPiece
Draw
~| ChessBoardView |[p,,— =] ChessPieceView
FIGURE 4-5

If you are unfamiliar with multithreaded programs or your platform does not support multithreading,
then you should make your programs single-threaded. However, if your program has several distinct
tasks, each of which could work in parallel, it might be a good candidate for multiple threads. For
example, graphical user interface applications often have one thread performing the main application
work and another thread waiting for the user to press buttons or select menu items. Multithreaded
programming is covered in Chapter 27, “Multithreaded Programming with C++.”

The chess program needs only one thread to control the game flow.

Specify Class Hierarchies for Each Subsystem

In this step, you determine the class hierarchies that you intend to write in your program. The chess
program needs a class hierarchy to represent the chess pieces. This hierarchy could work as shown
in Figure 4-6. The generic ChessPiece class serves as the abstract base class. A similar hierarchy is
required for the ChessPieceview classes.

ChessPiece

|]

[Rook | Bisﬁop | Knight l [King Pawn l Queen l
[il 11 1

FIGURE 4-6

Another class hierarchy can be used for the ChessBoardview class to make it possible to have a text-
based interface or a graphical user interface for the game. Figure 4-7 shows an example hierarchy

162

| CHAPTER 4 DESIGNING PROFESSIONAL C++ PROGRAMS

that allows the chessboard to be displayed as text on a console, or with a 2D or 3D graphical user
interface. A similar hierarchy is required for the individual classes of the ChessPieceview hierarchy.

‘ ChessBoardView ‘

A
L

.ChessBoard\.ﬁewConsoIe| | ChessBoard\a’iewGUlzD | [ChessBoardViewGUI3D
I]

FIGURE 4-7

Chapter S explains the details of designing classes and class hierarchies.

Specify Classes, Data Structures, Algorithms, and Patterns for Each Subsystem

In this step, you consider a greater level of detail, and specify the particulars of each subsystem,
including the specific classes that you’ll write for each subsystem. It may well turn out that you model
each subsystem itself as a class. This information can again be summarized in a table.

SUBSYSTEM CLASSES DATA ALGORITHMS PATTERNS
STRUCTURES

GamePlay GamePlay class GamePlay Gives each None
object player a
includes one turn to play
ChessBoard

object and two
Player objects.

ChessBoard ChessBoard class ChessBoard Checks for None
object stores a a win or tie
two-dimensional after each
8x8 grid move
containing
up to 32
ChessPieces.

ChessBoardView ChessBoardvView Stores Draws a Observer

abstract base class information on chessboard
Concrete derived how to draw a

classes ChessBoard chessboard

ViewConsole,

ChessBoardView

GUI2D, and so on

Designing a Chess Program | 163

SUBSYSTEM CLASSES DATA ALGORITHMS PATTERNS
STRUCTURES
ChessPiece ChessPiece abstract Each piece Piece checks None
base class stores its for a legal
Rook, Bishop, location on the move by
Knight, King, chessboard. querying the
Pawn, and Queen chessboard
derived classes for pi?ces
at various
locations.
ChessPieceView ChessPieceView Stores Draws a Observer
abstract base class information on chess piece
Derived classes how to draw a
RookView, BishopView, chess piece
and so on, and concrete
derived classes
RookViewConsole,
RookViewGUI2D,
and so on
Player Player abstract None Prompts Mediator
base class the user
Concrete derived for a move,
classes PlayerConsole, checks if
PlayerGUI2D, and so on the move is
legal, and
moves the
piece
ErrorLogger One ErrorLogger A queue of Buffers Dependency
class messages to messages injection
log and writes
them to
a log file

Such a table already gives some information about the different classes in a software design, but it
doesn’t clearly describe the interactions between them. A UML sequence diagram can be used to
model such interactions. Figure 4-8 shows such a diagram visualizing the interactions of some of the
classes from the previous table.

The diagram in Figure 4-8 shows only a single iteration, a single TakeTurn call from GamePlay to
Player; hence, it’s only a partial sequence diagram. After a TakeTurn call is finished, the Gamerlay
object should ask the chessBoardview to draw itself, which in turn should ask different chess-
PieceViews to draw themselves. Furthermore, you should extend the sequence diagram to visual-

ize how a chess piece takes an opponent’s piece and to include support for a castling move, a move
involving a player’s king and either of the player’s rooks. Castling is the only move for which a player
moves two pieces at the same time.

164 | CHAPTER4 DESIGNING PROFESSIONAL C++ PROGRAMS

GamePlay Player ChessBoard ChessPiece

T

1

——TakeTurn d :
| | |

1

1

|

I

1

Ask user wl.hat to move
<«
I
I

:—G etPieceAt(sou rce)—b:
] 1

1
Chec k.M ove

T
|
|
|
|
|
|
|
|
|
|
I
|
|

Ir(————— Piece to mcve——————: :
|

!

1

1 |
Ir{—GetF‘iece,@\t{targe'c]—1I
1 I

1 . . |
= —-Piece at target location — ==
1 I

]
]
I
|
]
]
|
]
]
]
Ir<— — —Returns true or false depending on whether move is ok———4
] 1 |
I 1 I
[[I
T T T
] 1 |
alt H H |
I I 1 I
[MoveAllowed] ! ! Mo »
| T WiLve |
I I 1 I
| | < SetPieceAt |
|] 1 |
1 1 i
alt 1 1 |
] 1 |
[Lo) [I
[IsGameOver]] GameOver (win or tie) 1 |
|] 1 |
] 1 |
| et [ttt = I
I 1 1 I
[T | [
|] |)
I I 1 I
I 1 [I
| f< __________________ L !
|] 1
I I 1
E——m - il 1
|] 1

Invalid move, ask user for new
move and restart sequence.

FIGURE 4-8

This section of the design document would normally present the actual interfaces for each class, but
this example will forgo that level of detail.

Designing classes and choosing data structures, algorithms, and patterns can be tricky. You should
always keep in mind the rules of abstraction and reuse discussed earlier in this chapter. For abstrac-
tion, the key is to consider the interface and the implementation separately. First, specify the interface
from the perspective of the user. Decide what you want the component to do. Then decide how the

Designing a Chess Program | 165

component will do it by choosing data structures and algorithms. For reuse, familiarize yourself with
standard data structures, algorithms, and patterns, and make sure you are aware of the Standard
Library in C++, as well as any proprietary code available at your workplace.

Specify Error Handling for Each Subsystem

In this design step, you delineate the error handling in each subsystem. The error handling should
include both system errors, such as network access failures, and user errors, such as invalid entries.
You should specify whether each subsystem uses exceptions. You can again summarize this informa-

tion in a table.

SUBSYSTEM

GamePlay

ChessBoard

ChessPiece

ChessBoardView

ChessPieceView

Player

ErrorLogger

HANDLING SYSTEM ERRORS

Logs an error with the
ErrorLogger, shows a message
to the user, and gracefully shuts
down the program when an
unexpected error occurs

Logs an error with the
ErrorLogger and throws an
exception when an unexpected
error occurs

Logs an error with the
ErrorLogger and throws an
exception if something goes
wrong during drawing

Logs an error with the
ErrorLogger and throws an
exception when an unexpected
error occurs

Attempts to log an error; informs
the user when an unexpected
error occurs

HANDLING USER ERRORS

Not applicable (no direct user
interface)

Not applicable (no direct user
interface)

Not applicable (no direct user
interface)

Sanity-checks a user move entry
to ensure that it is not off the
board; it then prompts the user
for another entry. This subsystem
checks each move's legality
before moving the piece; if
illegal, it prompts the user for
another move.

Not applicable (no direct user
interface)

The general rule for error handling is to handle everything. Think hard about all possible error condi-
tions. If you forget one possibility, it will show up as a bug in your program! Don’t treat anything as
an “unexpected” error. Expect all possibilities: memory allocation failures, invalid user entries, disk
failures, and network failures, to name a few. However, as the table for the chess game shows, you
should handle user errors differently from internal errors. For example, a user entering an invalid
move should not cause your chess program to terminate. Chapter 14, “Handling Errors,” discusses
error handling in more depth.

166

| CHAPTER 4 DESIGNING PROFESSIONAL C++ PROGRAMS

SUMMARY

In this chapter, you learned about the professional C++ approach to design. I hope that it convinced
you that software design is an important first step in any programming project. You also learned
about some of the aspects of C++ that make design difficult, including its object-oriented focus, its
large feature set and Standard Library, and its facilities for writing generic code. With this informa-
tion, you are better prepared to tackle C++ design.

This chapter introduced two design themes. The first theme, the concept of abstraction, or sepa-
rating interface from implementation, permeates this book and should be a guideline for all your
design work.

The second theme, the notion of reuse, both of code and designs, also arises frequently in real-world
projects, and in this book. You learned that your C++ designs should include both reuse of code, in
the form of libraries and frameworks, and reuse of ideas and designs, in the form of techniques and
patterns. You should write your code to be as reusable as possible. Also remember about the trade-
offs and about specific guidelines for reusing code, including understanding the capabilities and
limitations, the performance, licensing and support models, the platform limitations, prototyping, and
where to find help. You also learned about performance analysis and big-O notation. Now that you
understand the importance of design and the basic design themes, you are ready for the rest of Part IL.
Chapter 5 describes strategies for using the object-oriented aspects of C++ in your design.

EXERCISES

By solving the following exercises, you can practice the material discussed in this chapter. Solutions
to all exercises are available with the code download on the book’s website at www.wiley.com/go/
proc++5e. However, if you are stuck on an exercise, first reread parts of this chapter to try to find an
answer yourself before looking at the solution from the website.

Exercise 4-1: What are the two fundamental design rules to follow when making your own
designs in C++?

Exercise 4-2: Suppose you have the following card class. The class supports only the normal
cards in a card deck and does not need to support so-called joker cards.

class Card
public:
enum class Number { Ace, Two, Three, Four, Five, Six, Seven, Eight,
Nine, Ten, Jack, Queen, King };
enum class Figure { Diamond, Heart, Spade, Club };

Ccard() {};
Card (Number number, Figure figure)
: m_number { number }, m figure { figure } {}
private:
Number m_number { Number::Ace };
Figure m_figure { Figure::Diamond };

Exercises | 167

What do you think of the following use of the card class to represent a deck of cards? Are
there any improvements you can think of?

int main()

{

Card deck[52];
/] ...
}

Exercise 4-3: Suppose together with a friend you came up with a nice idea for making a 3-D
game for mobile devices. You have an Android device, while your friend has an Apple iPhone,
and of course you want the game to be playable on both devices. Explain on a high level how
you will handle those two different mobile platforms and how you will prepare for starting
development of the game.

Exercise 4-4: Given the following big-O complexities: O(n), O(n?), O(log n), and O(1), can
you order them according to increasing complexity? What are their names? Can you think of
any complexities that are even worse than these?

Designing with Objects

WHAT'S IN THIS CHAPTER?

> What object-oriented programming design is
> What classes, objects, properties, and behaviors are

> How you can define relationships between different objects

Now that you have developed an appreciation for good software design from Chapter 4,
“Designing Professional C++ Programs,” it’s time to pair the notion of objects with the concept
of good design. The difference between programmers who use objects in their code and those
who truly grasp object-oriented programming comes down to the way their objects relate to
each other and to the overall design of the program.

This chapter begins with a brief description of procedural programming (C-style), followed by
a detailed discussion of object-oriented programming (OOP). Even if you’ve been using objects
for years, you will want to read this chapter for some new ideas regarding how to think about
objects. I will discuss the different kinds of relationships between objects, including pitfalls
programmers often succumb to when building an object-oriented program.

When thinking about procedural programming or object-oriented programming, the most
important point to remember is that they just represent different ways of reasoning about
what’s going on in your program. Too often, programmers get bogged down in the syntax

and jargon of OOP before they adequately understand what an object is. This chapter is light
on code and heavy on concepts and ideas. Chapters 8, “Gaining Proficiency with Classes and
Objects,” 9, “Mastering Classes and Objects,” and 10, “Discovering Inheritance Techniques,” go
deeper in on C++ object syntax.

Professional C++, Fifth Edition. Marc Gregoire.
© 2021 John Wiley & Sons, Inc. Published 2021 by John Wiley & Sons, Inc.

170 | CHAPTERS5 DESIGNING WITH OBJECTS

AM | THINKING PROCEDURALLY?

A procedural language, such as C, divides code into small pieces, each of which (ideally) accomplishes
a single task. Without procedures in C, all your code would be lumped together inside main (). Your
code would be difficult to read, and your co-workers would be annoyed, to say the least.

The computer doesn’t care if all your code is in main () or if it’s split into bite-sized pieces with
descriptive names and comments. Procedures are an abstraction that exists to help you, the program-
mer, as well as those who read and maintain your code. The concept is built around a fundamental
question about your program—What does this program do? By answering that question in English,
you are thinking procedurally. For example, you might begin designing a stock selection program by
answering as follows: First, the program obtains stock quotes from the Internet. Then, it sorts this
data by specific metrics. Next, it performs analysis on the sorted data. Finally, it outputs a list of buy
and sell recommendations. When you start coding, you might directly turn this mental model into C
functions: retrieveQuotes () , sortQuotes (), analyzeQuotes(), and outputRecommendations ().

NOTE Even though C refers to procedures as “functions,” C is not a functional
language. The term functional is different from procedural and refers to lan-
guages like Lisp, which use an entirely different abstraction.

The procedural approach tends to work well when your program follows a specific list of steps. How-
ever, in large, modern applications, there is rarely a linear sequence of events. Often a user is able to
perform any command at any time. Procedural thinking also says nothing about data representation.
In the previous example, there was no discussion of what a stock quote actually is.

If the procedural mode of thought sounds like the way you approach a program, don’t worry. Once
you realize that OOP is simply an alternative, more flexible way of thinking about software, it’ll
come naturally.

THE OBJECT-ORIENTED PHILOSOPHY

Unlike the procedural approach, which is based on the question “What does this program do?” the
object-oriented approach asks another question: “What real-world objects am I modeling?” OOP is
based on the notion that you should divide your program not into tasks but into models of physical
objects. While this seems abstract at first, it becomes clearer when you consider physical objects in
terms of their classes, components, properties, and bebaviors.

Classes

A class helps distinguish an object from its definition. Consider the orange. There’s a difference
between talking about oranges in general as tasty fruit that grows on trees and talking about a spe-
cific orange, such as the one that’s currently dripping juice on my keyboard.

The Object-Oriented Philosophy | 171

When answering the question “What are oranges?” you are talking about the class of things known
as oranges. All oranges are fruit. All oranges grow on trees. All oranges are some shade of orange. All
oranges have some particular flavor. A class is simply the encapsulation of what defines a classifica-
tion of objects.

When describing a specific orange, you are talking about an object. All objects belong to a particular
class. Because the object on my desk is an orange, I know that it belongs to the orange class. Thus,

I know that it is a fruit that grows on trees. I can further say that it is a medium shade of orange and
ranks “mighty tasty” in flavor. An object is an instance of a class—a particular item with characteris-
tics that distinguish it from other instances of the same class.

As a more concrete example, reconsider the stock selection application from earlier. In OOP, “stock
quote” is a class because it defines the abstract notion of what makes up a quote. A specific quote, such
as “current Microsoft stock quote,” would be an object because it is a particular instance of the class.

From a C background, think of classes and objects as analogous to types and variables. In fact,
Chapter 1, “A Crash Course in C++ and the Standard Library,” shows that the syntax for classes is
similar to the syntax for C structs.

Components

If you consider a complex real-world object, such as an airplane, it should be fairly easy to see that

it is made up of smaller components. There’s the fuselage, the controls, the landing gear, the engines,
and numerous other parts. The ability to think of objects in terms of their smaller components is
essential to OOP, just as the breaking up of complicated tasks into smaller procedures is fundamental
to procedural programming.

A component is essentially the same thing as a class, just smaller and more specific. A good object-
oriented program might have an Airplane class, but this class would be huge if it fully described an
airplane. Instead, the Airplane class deals with many smaller, more manageable, components. Each
of these components might have further subcomponents. For example, the landing gear is a compo-
nent of an airplane, and the wheel is a component of the landing gear.

Properties

Properties are what distinguish one object from another. Going back to the orange class, recall that
all oranges are defined as having some shade of orange and a particular flavor. These two character-
istics are properties. All oranges have the same properties, just with different values. My orange has a
“mighty tasty” flavor, but yours may have a “terribly unpleasant” flavor.

You can also think about properties on the class level. As recognized earlier, all oranges are fruit and
grow on trees. These are properties of the fruit class, whereas the specific shade of orange is deter-
mined by the particular fruit object. Class properties are shared by all objects of a class, while object
properties are present in all objects of the class, but with different values.

In the stock selection example, a stock quote has several object properties, including the name of the
company, its ticker symbol, the current price, and other statistics.

Properties are the characteristics that describe an object. They answer the question, “What makes this
object different?”

172

| CHAPTERS5 DESIGNING WITH OBJECTS

Behaviors

Behaviors answer either of two questions: “What does this object do?” or “What can I do to this
object?” In the case of an orange, it doesn’t do a whole lot, but we can do things to it. One behavior
is that it can be eaten. Like properties, you can think of behaviors on the class level or the object
level. All oranges can pretty much be eaten in the same way. However, they might differ in some other
behavior, such as being rolled down an incline, where the behavior of a perfectly round orange would
differ from that of a more oblate one.

The stock selection example provides some more practical behaviors. If you recall, when thinking
procedurally, I determined that my program needed to analyze stock quotes as one of its functions.
Thinking in OOP, you might decide that a stock quote object can analyze itself. Analysis becomes
a behavior of the stock quote object.

In object-oriented programming, the bulk of functional code is moved out of procedures and into
classes. By building classes that have certain behaviors and defining how they interact, OOP offers a
much richer mechanism for attaching code to the data on which it operates. Behaviors for classes are
implemented in so-called class methods.

Bringing It All Together

With these concepts, you could take another look at t