

Early Praise for Programming Phoenix

Programming Phoenix is an excellent introduction to Phoenix. You are taken from
the basics to a full-blown application that covers the MVC layers, real-time client-
server communication, and fault-tolerant reliance on 3rd party services. All tested,
and presented in a gradual and coherent way. You’ll be amazed at what you’ll be
able to build following this book.

➤ Xavier Noria
Rails Core Team

I write Elixir for a living, and Programming Phoenix was exactly what I needed. It
filled in the sticky details, like how to tie authentication into web applications and
channels. It also showed me how to layer services with OTP. The experience of
Chris and José makes all of the difference in the world.

➤ Eric Meadows-Jönsson
Elixir Core Team

A valuable introduction to the Phoenix framework. Many small details and tips
from the creators of the language and the framework, and a leader in using Phoenix
in production.

➤ Kosmas Chatzimichalis
Software Engineer, Mach7x

Programming Phoenix is mandatory reading for anyone looking to write web appli-
cations in Elixir. Every few pages I found myself putting the book down so I could
immediately apply something I’d learned in my existing Phoenix applications.
More than merely teaching the mechanics of using the Phoenix framework, the
authors have done a fantastic job imparting the underlying philosophy behind it.

➤ Adam Kittelson
Principal Software Engineer, Brightcove

Programming Phoenix
Productive |> Reliable |> Fast

Chris McCord
Bruce Tate

and José Valim

The Pragmatic Bookshelf
Dallas, Texas • Raleigh, North Carolina

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

Our Pragmatic courses, workshops, and other products can help you and your team create
better software and have more fun. For more information, as well as the latest Pragmatic
titles, please visit us at https://pragprog.com.

The team that produced this book includes:

Jacquelyn Carter (editor)
Potomac Indexing, LLC (index)
Eileen Cohen (copyedit)
Gilson Graphics (layout)
Janet Furlow (producer)

For customer support, please contact support@pragprog.com.

For international rights, please contact rights@pragprog.com.

Copyright © 2016 The Pragmatic Programmers, LLC.
All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,
without the prior consent of the publisher.

Printed in the United States of America.
ISBN-13: 978-1-68050-145-2
Encoded using the finest acid-free high-entropy binary digits.
Book version: P1.0—April 2016

https://pragprog.com
support@pragprog.com
rights@pragprog.com

Contents

Acknowledgments ix

1. Introducing Phoenix 1
Fast 2
Concurrent 3
Beautiful Code 4
Interactive 7
Reliable 8
Is This Book for You? 9
Online Resources 12

Part I — Building with Functional MVC

2. The Lay of the Land 15
Simple Functions 15
Installing Your Development Environment 18
Creating a Throwaway Project 20
Building a Feature 21
Going Deeper: The Request Pipeline 27
Wrapping Up 36

3. Controllers, Views, and Templates 37
The Controller 37
Creating Some Users 40
Building a Controller 43
Coding Views 45
Using Helpers 46
Showing a User 48
Wrapping Up 51

4. Ecto and Changesets 53
Understanding Ecto 53
Defining the User Schema and Migration 55
Using the Repository to Add Data 58
Building Forms 60
Creating Resources 64
Wrapping Up 68

5. Authenticating Users 69
Preparing for Authentication 69
Managing Registration Changesets 70
Creating Users 73
The Anatomy of a Plug 74
Writing an Authentication Plug 78
Implementing Login and Logout 83
Presenting User Account Links 86
Wrapping Up 88

6. Generators and Relationships 91
Using Generators 91
Building Relationships 99
Managing Related Data 101
Wrapping Up 104

7. Ecto Queries and Constraints 107
Adding Categories 107
Diving Deeper into Ecto Queries 114
Constraints 120
Wrapping Up 127

8. Testing MVC 129
Understanding ExUnit 130
Using Mix to Run Phoenix Tests 131
Integration Tests 134
Unit-Testing Plugs 141
Testing Views and Templates 147
Splitting Side Effects in Model Tests 148
Wrapping Up 153

Contents • vi

Part II — Writing Interactive and Maintainable Applications

9. Watching Videos 157
Watching Videos 157
Adding JavaScript 160
Creating Slugs 164
Wrapping Up 171

10. Using Channels 173
The Channel 174
Phoenix Clients with ES6 175
Preparing Our Server for the Channel 177
Creating the Channel 180
Sending and Receiving Events 182
Socket Authentication 186
Persisting Annotations 189
Handling Disconnects 195
Wrapping Up 198

11. OTP 199
Managing State with Processes 199
Building GenServers for OTP 202
Supervision Strategies 208
Designing an Information System with OTP 212
Building the Wolfram Info System 216
Wrapping Up 227

12. Observer and Umbrellas 229
Introspecting with Observer 229
Using Umbrellas 231
Wrapping Up 238

13. Testing Channels and OTP 239
Testing the Information System 239
Isolating Wolfram 245
Adding Tests to Channels 250
Authenticating a Test Socket 252
Communicating with a Test Channel 252
Wrapping Up 257

Contents • vii

14. What’s Next? 259
Other Interesting Features 260
What’s Coming Next 264
Good Luck 266

Index 267

Contents • viii

Acknowledgments
Most of this book is written in a collective voice, but acknowledgments are
deep and personal things. For this chapter alone, we’ll speak some as a team
but also in each of our individual voices. You’ll notice that Chris has more to
say than the rest of us, and as the creator of Phoenix, it’s right and proper
that he does so.

As a team, we’d like to thank this production crew. It’s been the finest any of
us have ever worked with. Potomac Indexing, LLC handled our indexing,
Eileen Cohen did our copyedit, and Janet Furlow managed the endless pro-
duction details.

These contributions were invaluable, but we’d also like to single a couple out
for deeper praise. Jackie Carter, our longtime friend and editor, has as much
to say about the quality of this book as any of the authors on this team. Your
voice is constant, and your gentle encouragement pushed us at the right
times and in the right ways. Also, Dave Thomas did the layout and cover for
this book, but he’s also served as a tireless advocate for Elixir and Phoenix
and has shared many plates of Indian food with this team. Your friendship
and guidance are always appreciated. We might not have had the opportunity
to write this book without your tireless contributions. The next plate of Indian
is on us. And we mean it.

Our reviewers worked hard to provide excellent feedback, even though the
code serving as the foundation for this book was constantly shifting. Bryan
Weber, Eric Meadows-Jönsson, Colby Blaisdel, Adam Guyot, Adam Kittelson,
Jason Stiebs, Ian Warshak, Xavier Noria, George Guimaraes, Carlos Antonio
da Silva, Bernardo Chaves, Ian Dees, Vince Foley, Brian Hogan, and Lauro
Caetano all did various levels of reviews for us. Xavier Noria stands out for
providing extraordinary service while going through broken examples and
also providing excellent feedback for the concepts in this book. Thanks also
to the beta readers who did great work for us.

report erratum • discuss

http://pragprog.com/titles/phoenix/errata/add
http://forums.pragprog.com/forums/phoenix

José Valim
Elixir has been a labor of love and a project that has exceeded my wildest
expectations. Elixir wouldn’t exist without the support of my partners at
Plataformatec. They were the first to believe Elixir could make a dent in the
world, and their investments in the community have helped Elixir grow with
strength and grace.

Getting this far wouldn’t be possible without the unconditional support of
my wife, Małgosia. Most of Elixir was written on a small desk placed in the
corner of our bedroom. Of all the corners in the world, I can’t imagine a better
one. Finally, I want to thank my parents and friends for teaching me the
lessons that still guide me on this journey.

Bruce Tate
I would like to thank my family as always, especially Maggie. You inspire me;
you make bad days better and good days impossibly great. I couldn’t do any
of this without you. Also, thanks to Paul Janowitz at icanmakeitbetter.com.
While going through an acquisition, you allowed me research time to spend
on projects like this one. We both believe that the world is a better place when
we can give back to the projects that contribute to our success. Thanks for
putting your money where your mouth is. Ian, your journey continues to
inspire me. It’s been great having you in this community, and I can’t wait for
the great things you’ll do here. Also, to the Elixir Mafia, molte grazie. You
know who you are.

Chris McCord
First, I would like to thank José Valim for creating Elixir, for his contributions
to Phoenix, and for building a community that has been such a pleasure to
be a part of. It goes without saying that Phoenix wouldn’t be possible without
his work on Elixir, but it goes deeper than that. He has my deepest gratitude
for setting in motion my dream career, sharing his wisdom on running large
open source projects, and being a helpful friend in between hectic releases.
He has shared with the world a true gift, and I can’t wait to see where his
creativity leads.

Thanks also go to Bruce Tate for contributing his superb writing skills,
helping to form the abstractions behind Phoenix, and encouraging me to seek
out José’s help with the project. His craftsmanship in this book really shows,
and it’s been a pleasure having him on the team.

Acknowledgments • x

report erratum • discuss

http://pragprog.com/titles/phoenix/errata/add
http://forums.pragprog.com/forums/phoenix

I extend my warmest thanks to Brian Cardarella and DockYard, for making
early bets on Phoenix, supporting the project’s development to get to where
we are today, and giving me the chance to work with some of the finest folks
in the industry.

Behind many of the open source projects or books you reference day to day
is an understanding spouse who bears late nights and all too much laptop
time. My deepest love and appreciation goes out to my lovely wife, Jaclyn, for
all her support and encouragement throughout the years along the path to
Phoenix and writing this book. A life with you is a truly happy one.

And finally, to the community for this great project, I extend both heartfelt
appreciation and bright hope that we might continue to build something
special, together.

report erratum • discuss

Chris McCord • xi

http://pragprog.com/titles/phoenix/errata/add
http://forums.pragprog.com/forums/phoenix

CHAPTER 1

Introducing Phoenix
In the first few paragraphs to open this book, you probably expect us to tell
you that Phoenix is radically different—newer and better than anything that’s
come before. We know that Phoenix is a bold name for a bold framework, but
look. By now, you’ve likely seen enough web frameworks to know most of our
ideas aren’t new. It’s the combination of so many of the best ideas from so
many other places that has so many people excited.

You’ll find metaprogramming capabilities that remind you of Lisp and domain-
specific languages (DSLs) that remind you at times of Ruby. Our method of
composing services with a series of functional transformations is reminiscent
of Clojure’s Ring. We achieved such throughput and reliability by climbing
onto the shoulders of Erlang and even native Cowboy. Similarly, some of the
groundbreaking features like channels and reactive-friendly APIs combine
the best features of some of the best JavaScript frameworks you’ll find else-
where. The precise cocktail of features seems to fit, where each feature mul-
tiplies the impact of the next.

We spent time on the right base abstractions for simplicity, and later we
noticed that things weren’t just fast, but among the fastest in the industry.
When we pushed on performance and concurrency, we got functions that
composed better and were simpler to manage. When our focus was on the
right abstractions, we got better community participation. We now find our-
selves in a firestorm of improvement. Phoenix just feels right.

After using and writing about frameworks spanning a half a dozen languages
across a couple of decades, we think the precise bundle of goodness that we’ll
share is powerful enough for the most serious problems you throw at it,
beautiful enough to be maintainable for years to come, and—most impor-
tant—fun to code. Give us a couple of pages and you’ll find that the framework
represents a great philosophy, one that leverages the reliability and grace of

report erratum • discuss

http://pragprog.com/titles/phoenix/errata/add
http://forums.pragprog.com/forums/phoenix

Elixir. You’ll have a front-row seat to understand how we made the decisions
that define Phoenix and how best to use them to your advantage.

Simply put, Phoenix is about fast, concurrent, beautiful, interactive, and
reliable applications. Let’s break each of these claims down.

Fast
Let’s cut to the chase. Elixir is both fast and concurrent, as you’d expect from
a language running on the Erlang virtual machine. If you’re looking for raw
speed, Phoenix is hard to beat. In July 2015, we (Chris McCord) compared
Phoenix with Ruby on Rails. The firebird was nearly an order of magnitude
faster than the locomotive, and it used just over one fourth of the processing
power and just under one sixth of the total memory. Those numbers are
staggering, but not many Rails users are after naked power.

Let’s compare Phoenix with some other popular frameworks. Check out the
measurements of some major web frameworks at the Phoenix/mroth show-
down.1 Those results are impressive, rivaling the best in the industry. Among
these servers are some of the fastest available. As these numbers rolled in,
the core team got increasingly excited. Little did we know that the story was
only beginning.

We kept noticing that as you add cores, the story gets even better. Another
run of this benchmark on the most powerful machines at Rackspace2 tells
an even more compelling story. Check the link for details, but you can see
the bare bones here:

Consistency (σ ms)Latency (ms)Throughput (req/s)Framework

2.220.63198328.21Plug

1.040.61179685.94Phoenix 0.13.1

0.570.65176156.41Gin

14.171.89171236.03Play

0.300.59169030.24Phoenix 0.9.0

1.071.2492064.94Express Cluster

2.523.3532077.24Martini

2.533.5030561.95Sinatra

4.078.5011903.48Rails

1. https://github.com/mroth/phoenix-showdown/blob/master/README.md
2. https://gist.github.com/omnibs/e5e72b31e6bd25caf39a

Chapter 1. Introducing Phoenix • 2

report erratum • discuss

https://github.com/mroth/phoenix-showdown/blob/master/README.md
https://gist.github.com/omnibs/e5e72b31e6bd25caf39a
http://pragprog.com/titles/phoenix/errata/add
http://forums.pragprog.com/forums/phoenix

Throughput is the total number of transactions, latency is the total waiting
time between transactions, and consistency is a statistical measurement of
the consistency of the response. Phoenix is the fastest framework in the
benchmark and among the most consistent. The slowest request won’t be
that much slower than the fastest. The reason is that Elixir’s lightweight
concurrency removes the need for stop-the-world garbage collectors. You can
see results for Plug, the Elixir library that serves as a foundation for Phoenix,
as well as results for two different versions of Phoenix. You can see that over
time, Phoenix performance is getting better, and the performance is in the
same ballpark with the lower-level Plug.

You’ll see several reasons for this blindingly fast performance:

• Erlang has a great model for concurrency. Facebook bought WhatsApp
for $21 billion. That application achieved two million concurrently running
connections on a single node.

• The router compiles down to the cat-quick pattern matching. You won’t
have to spend days on performance tuning before you even leave the
routing layer.

• Templates are precompiled. Phoenix doesn’t need to copy strings for each
rendered template. At the hardware level, you’ll see caching come into
play for these strings where it never did before.

• Functional languages do better on the web. Throughout this book, you’ll
learn why.

Performance with Phoenix isn’t an afterthought. Nor will you have to trade
beautiful, maintainable code to get it.

Concurrent
If you’re using an object-oriented web framework, chances are that you’re
watching the evolution of multicore architectures anxiously. You probably
already know that the existing imperative models won’t scale to handle the
types of concurrency we’ll need to run on hardware with thousands of cores.
The problem is that languages like Java and C# place the burden of managing
concurrency squarely on the shoulders of the programmer. Languages like
PHP and Ruby make threading difficult to the point where many developers
try to support only one web connection per operating-system process, or some
structure that is marginally better. In fact, many people that come to Phoenix
find us precisely because concurrency is so easy.

report erratum • discuss

Concurrent • 3

http://pragprog.com/titles/phoenix/errata/add
http://forums.pragprog.com/forums/phoenix

Consider PhoenixDelayedJob or ElixirResque—complex packages that exist only to
spin off reliable processes as a separate web task. You don’t need one. Don’t
get us wrong. In Ruby, such packages are well conceived and a critical part
of any well-crafted solution. In Elixir, those frameworks turn into primitives.
The Elixir programming model makes reasoning about concurrent systems
almost as easy as reasoning about single-threaded ones. When you have two
database fetches, you won’t have to artificially batch them together with a
stored procedure or a complex query. You can let them work at the same time:

company_task = Task.async(fn -> find_company(cid) end)
user_task = Task.async(fn -> find_user(uid) end)
cart_task = Task.async(fn -> find_cart(cart_id) end)

company = Task.await(company_task)
user = Task.await(user_task)
cart = Task.await(cart_task)

...

You don’t have to wait for the combined time for three database requests.
Your code will take as long as the single longest database request. You’ll be
able to use more of your database’s available power, and other types of
work—like web requests or long exports—will complete much more quickly.

In aggregate, your code will spend less time waiting and more time working.

Here’s the kicker. This code is more reliable. Elixir is based on the libraries
that form the backbone of the most reliable systems in the world. You can
start concurrent tasks and services that are fully supervised. When one
crashes, Elixir can restart it in the last known good state, along with any
tainted related service.

Reliability and performance don’t need to be mutually exclusive.

Beautiful Code
Elixir is perhaps the first functional language to support Lisp-style macros
with a more natural syntax. This feature, like a template for code, is not always
the right tool for everyday users, but macros are invaluable for extending the
Elixir language to add the common features all web servers need to support.

For example, web servers need to map routes onto functions that do the job:

pipeline :browser do
plug :accepts, ["html"]
plug :fetch_session
plug :protect_from_forgery

end

Chapter 1. Introducing Phoenix • 4

report erratum • discuss

http://pragprog.com/titles/phoenix/errata/add
http://forums.pragprog.com/forums/phoenix

pipeline :api do
plug :accepts, ["json"]

end

scope "/", MyApp do
pipe_through :browser
get "/users", UserController, :index
...

end

scope "/api/", MyApp do
pipe_through :api
...

end

You’ll see this code a little later. You don’t have to understand exactly what
it does. For now, know that the first group of functions will run for all
browser-based applications, and the second group of functions will run for
all JSON-based applications. The third and fourth blocks define which URLs
will go to which controller.

You’ve likely seen code like this before. Here’s the point. You don’t have to
sacrifice beautiful code to use a functional language. Your code organization
can be even better. In Phoenix, you won’t have to read through dozens of
skip_before_filter commands to know how your code works. You’ll just build a
pipeline for each group of routes that work the same way.

You can find an embarrassing number of frameworks that break this kind of
code down into something that is horribly inefficient. Consultancies have
made millions on performance tuning by doing nothing more than tuning
route tables. This Phoenix example reduces your router to pattern matching
that’s further optimized by the virtual machine, becoming extremely fast.
We’ve built a layer that ties together Elixir’s pattern matching with the macro
syntax to provide an excellent routing layer, and one that fits the Phoenix
framework well.

You’ll find many more examples like this one, such as Ecto’s elegant query
syntax or how we express controllers as a pipeline of functions that compose
well and run quickly. In each case, you’re left with code that’s easier to read,
write, and understand.

We’re not here to tell you that macros are the solution to all problems, or that
you should use a DSL when a function call should do. We’ll use macros when
they can dramatically simplify your daily tasks, making them easier to
understand and produce. When we do build a DSL, you can bet that we’ve
done our best to make it fast and intelligent.

report erratum • discuss

Beautiful Code • 5

http://pragprog.com/titles/phoenix/errata/add
http://forums.pragprog.com/forums/phoenix

Simple Abstractions
One continuous problem with web frameworks is that they tend to bloat over
time, sometimes fatally. If the underlying abstractions for extending the
framework are wrong, each new feature will increase complexity until the
framework collapses under its own weight. Sometimes, the problem is that
the web framework doesn’t include enough, and the abstractions for extending
the framework aren’t right.

This problem is particularly acute with object-oriented languages. Inheritance
is simply not a rich enough abstraction to represent the entire ecosystem of
a web platform. Inheritance works best when a single feature extends a
framework across a single dimension. Unfortunately, many ambitious features
span several different dimensions.

Think about authentication, a feature that will impact every layer in your
system. Database models must be aware, because authentication schemes
require a set of fields to be present, and passwords must be hashed before
being saved. Controllers are not immune, because signed-in users must be
treated differently from those who are not. View layers, too, must be aware,
because the contents of a user interface can change based on whether a user
is signed in. Each of those areas must then be customized by the programmer.

Effortlessly Extensible
The Phoenix framework gives you the right set of abstractions for extension.
Your applications will break down into individual functions. Rather than rely
on other mechanisms like inheritance that hide intentions, you’ll roll up your
functions into explicit lists called pipelines, where each function feeds into
the next. It’s like building a shopping list for your requests.

In this book, you’ll write your own authentication code, based on secure open
standards. You’ll see how easy it is to tune behavior to your needs and extend
it when you need to.

The Phoenix abstractions, in their current incarnation, are new, but each has
withstood the test of time. When it’s time to extend Phoenix—whether you’re
plugging in your own session store or doing something as comprehensive as
attaching third-party applications like a Twitter wrapper—you’ll have the
right abstractions available to ensure that the ideas can scale as well as they
did when you wrote the first line of code.

Chapter 1. Introducing Phoenix • 6

report erratum • discuss

http://pragprog.com/titles/phoenix/errata/add
http://forums.pragprog.com/forums/phoenix

Interactive
Chris started the Phoenix project after working to build real-time events into
his Ruby on Rails applications. As he started to implement the solution, he
had a threading API called Event Machine and noticed that his threads would
occasionally die. He then found himself implementing code to detect dead
threads.

Over time, the whole architecture began to frustrate him. He was convinced
that he could make it work, but he didn’t think he could ever make it beautiful
or reliable.

If you’re building interactive applications on a traditional web stack, you’re
probably working harder than you need to. There’s a reason for that. In the
years before web programming was popular, client-server applications were
simple. A client process or two communicated to its own process on the
server. Programmers had a difficult time making applications scale. Each
application connection required its own resources: an operating-system pro-
cess, a network connection, a database connection, and its own memory.
Hardware didn’t have enough resources to do that work efficiently, and lan-
guages couldn’t support many processes, so scalability was limited.

Scaling by Forgetting
Traditional web servers solve the scalability problem by treating each tiny
piece of a user interaction as an identical request. The application doesn’t
save state at all. It simply looks up the user and simultaneously looks up the
context of the conversation in a user session. Presto. All scalability problems
go away because there’s only one type of connection.

But there’s a cost. The developer must keep track of the state for each request,
and that burden can be particularly arduous for newer, more interactive
applications with intimate, long-running rich interactions. As a developer,
until now, you’ve been forced to make a choice between applications that
intentionally forget important details to scale and applications that try to
remember too much and break under load.

Processes and Channels
With Elixir, you can have both performance and productivity, because it
supports a feature called lightweight processes. In this book, when you read
the word process, you should think about Elixir lightweight processes rather
than operating-system processes. You can create hundreds of thousands of
processes without breaking a sweat. Lightweight processes also mean

report erratum • discuss

Interactive • 7

http://pragprog.com/titles/phoenix/errata/add
http://forums.pragprog.com/forums/phoenix

lightweight connections, and that matters because connections can be conver-
sations. Whether you’re building a chat on a game channel or a map to the
grocery store, you won’t have to juggle the details by hand anymore. This
application style is called channels, and Phoenix makes it easy. Here’s what
a typical channels feature might look like:

def handle_in("new_annotation", params, socket) do
broadcast! socket, "new_annotation", %{

user: %{username: "anon"},
body: params["body"],
at: params["at"]

}

{:reply, :ok, socket}
end

You don’t have to understand the details. Just understand that when your
application doesn’t need to juggle the past details of a conversation, your code
can get much simpler and faster.

Even now, you’ll see many different types of frameworks begin to support
channel-style features, from Java to JavaScript and even Ruby. Here’s the
problem. None of them comes with the simple guarantees that Phoenix has:
isolation and concurrency. Isolation guarantees that if a bug affects one
channel, all other channels continue running. Breaking one feature won’t
bleed into other site functionality. Concurrency means one channel can never
block another one, whether code is waiting on the database or crunching
data. This key advantage means that the UI never becomes unresponsive
because the user started a heavy action. Without those guarantees, the
development bogs down into a quagmire of low-level concurrency details.

Building applications without these guarantees is usually possible but never
pleasant. The results will almost universally be infected with reliability and
scalability problems, and your users will never be as satisfied as you’d like
to make them.

Reliable
As Chris followed José into the Elixir community, he learned to appreciate
the frameworks that Erlang programmers have used to make the most reliable
applications in the world. Before Elixir, the language of linked and monitored
processes wasn’t part of his vocabulary. After spending some time with Elixir,
he found the missing pieces he’d been seeking.

You see, you might have beautiful, concurrent, responsive code, but it doesn’t
matter unless your code is reliable. Erlang applications have always been

Chapter 1. Introducing Phoenix • 8

report erratum • discuss

http://pragprog.com/titles/phoenix/errata/add
http://forums.pragprog.com/forums/phoenix

more reliable than others in the industry. The secret is the process linking
structure and the process communication, which allow effective supervision.
Erlang’s supervisors can have supervisors too, so that your whole application
will have a tree of supervisors.

Here’s the kicker. By default, Phoenix has set up most of the supervision
structure for you. For example, if you want to talk to the database, you need
to keep a pool of database connections, and Phoenix provides one out of the
box. As you’ll see later on, we can monitor and introspect this pool. It’s
straightforward to study bottlenecks and even emulate failures by crashing
a database connections on purpose, only to see supervisors establishing new
connections in their place. As a programmer, these abstractions will give you
the freedom of a carpenter building on a fresh clean slab, but your foundation
solves many of your hardest problems before you even start. As an administra-
tor, you’ll thank us every day of the week because of the support calls that
don’t come in.

Now that we’ve shown you some of the advantages of Phoenix, let’s decide
whether this book is right for you.

Is This Book for You?
If you’ve followed Phoenix for any period of time, you already know that this
book is the definitive resource for Phoenix programming. If you’re using
Phoenix or are seriously considering doing professional Elixir development,
you’re going to want this book. It’s packed with insights from the team that
created it. Find just one tip in these pages, and the book will pay for itself
many times over. This section seeks to answer a different question, though.
Beyond folks who’ve already decided to make an investment in Phoenix, who
should buy this book?

Programmers Embracing the Functional Paradigm
Every twenty years or so, new programming paradigms emerge. The industry
is currently in the midst of a shift from object-oriented programming to
functional programming. If you’ve noticed this trend, you know that a half
dozen or so functional languages are competing for mindshare. The best way
to understand a programming language is to go beyond basic online tutorials
to see how to approach nontrivial programs.

With Programming Phoenix, we don’t shy away from difficult problems such
as customizing authentication, designing for scale, or interactive web pages.
As you explore the language, you’ll learn how the pieces fit together to solve

report erratum • discuss

Is This Book for You? • 9

http://pragprog.com/titles/phoenix/errata/add
http://forums.pragprog.com/forums/phoenix

difficult problems and how functional programming helps us do it elegantly.
When you’re done, you might not choose Phoenix, but you’ll at least under-
stand the critical pieces that make it popular and if those pieces are likely to
work for you.

Rails Developers Seeking Solutions
If you follow the Rails community closely, you know that it has experienced
some attrition. Bear in mind that this team believes that Ruby on Rails was
great for our industry. Rails still solves some problems well, and for those
problems it can be a productive solution. The problem for Rails developers is
that the scope of problems it’s best able to solve is rapidly narrowing.

In fact, the early growth of Elixir is partially fueled by Rails developers like
you. The similar syntax provided an attractive base for learning the language,
but the radically improved programming paradigms, introspectable runtime,
and concurrency models all provide the solid foundation that those who push
Rails the hardest find lacking.

Phoenix measures response times in microseconds, and it has been shown
to handle millions of concurrent WebSocket connections on a single machine
without sacrificing the productivity we’ve come to appreciate.

If you’re pushing Rails to be more scalable or more interactive, you’re not
alone. You’re going to find Phoenix powerful and interesting.

Dynamic Programmers Looking for a Mature Environment
Like the authors of this book, you may be a fan of dynamic languages like
Ruby, Python, and JavaScript. You may have used them in production or
even contributed to those ecosystems. Many developers like us are looking
for similar flexibility but with a more robust runtime experience. We may love
the programming experience in those languages, but we often find ourselves
worn out by the many compromises we have to make for performance, con-
currency, and maintainability. Phoenix resonates with us because many of
the creators of this ecosystem built it to solve these problems.

Elixir is a modern dynamic language built on the three-decades-old, battle-
tested Erlang runtime. Elixir macros bring a lot of the flexibility that Ruby,
Python, and JavaScript developers came to love, but those dynamic features
are quarantined to compile time. With Elixir, during runtime, you have a
consistent system with great type support that’s generally unseen in other
dynamic languages.

Chapter 1. Introducing Phoenix • 10

report erratum • discuss

http://pragprog.com/titles/phoenix/errata/add
http://forums.pragprog.com/forums/phoenix

Mix these features with the concurrency power, and you’ll see why Phoenix
provides such excellent performance for everything on the web, and beyond.

Java Developers Seeking More
When Java emerged twenty years ago, it had everything a frustrated C++
community was missing. It was object-oriented, secure, ready for the Internet,
and simple, especially when compared to the C++ alternatives at the time. As
the Java community flourished and consolidated, the tools and support came.
Just about everyone supported Java, and that ubiquity led to a language
dominance that we’d never seen before.

As Java has aged, it’s lost some of that luster. As the committees that shaped
Java compromised, Java lost some of the edge and leadership that the small
leadership team provided in early versions. Backward compatibility means
that the language evolves slowly as new solutions emerge. All of that early
ubiquity has led to a fragmented and bloated ecosystem that moves too
slowly and takes years to master, but delivers a fraction of the punch of
emerging languages. The Java concurrency story places too much of a burden
on the developer, leaving libraries that may or may not be safe for production
systems.

New languages are emerging on the JVM, and some of those are rich in terms
of features and programming models. This team respects those languages
tremendously, but we didn’t find the same connection there that we found
elsewhere. We also had a hard time separating the good from the bad in the
Java ecosystem.

If you’re a Java developer looking for where to go next, or a JVM-language
developer looking for a better concurrency story, Phoenix would mean leaving
the JVM behind. Maybe that’s a good thing. You’ll find a unified, integrated
story in Phoenix with sound abstractions on top. You’ll see a syntax that
provides Clojure-style metaprogramming on syntax that we think is richer
and cleaner than Scala’s. You’ll find an existing ecosystem from the Erlang
community that has a wide range of preexisting libraries, but ones built from
the ground up to support not only concurrency, but also distributed software.

Erlang Developers Doing Integrated Web Development
Curiously, we’re not seeing a heavy proliferation of Erlang developers in the
Elixir community so far. We expect that to change. The toolchain for Phoenix
is spectacular, and many of the tools that exist for Erlang can work in this
ecosystem as well. If you’re an Erlang developer, you may want to take
advantage of Mix’s excellent scripting for the development, build, and testing

report erratum • discuss

Is This Book for You? • 11

http://pragprog.com/titles/phoenix/errata/add
http://forums.pragprog.com/forums/phoenix

workflow. You may like the package management in Hex, or the neat compo-
sition of concerns in the Plug library. You may want to use macros to extend
the language for your business, or test with greater leverage. You’ll have new
programming features like protocols or structs.

If you do decide to embrace Elixir, that doesn’t mean you need to leave Erlang
behind. You’ll still be able to use the Erlang libraries you enjoy today,
including the Erlang process model and full OTP integration. You’ll be able
to access your OTP GenServers directly from the Elixir environment, and
directly call libraries without the need for extra complex syntax. If these terms
aren’t familiar to you, don’t worry. We’ll explore each of them over the course
of the book.

Heat Seekers
If you need raw power supported by a rich language, we have a solution and
the numbers to back it up. You’ll have to work for it, but you’ll get much
better speed and reliability when you’re done. We’ve run a single chat room
on one box supporting two million users. That means that each new message
had to go out two million times. We’ve run benchmarks among the best in
the industry, and our numbers seem to be improving as more cores are added.
If you need speed, we have the tonic for what ails you.

Others
Certainly, this book isn’t for everyone. We do think that if you’re in one of
these groups, you’ll find something you like here. We’re equally confident that
folks that we haven’t described will pick up this book and find something
valuable. If you’re one of those types, let us know your story.

Online Resources
The apps and examples shown in this book can be found at the Pragmatic
Programmers website for this book.3 You’ll also find the community forum
and the errata-submission form, where you can report problems with the text
or make suggestions for future versions.

In the next chapter, you’ll dive right in. From the beginning, you’ll build a
quick application, and we’ll walk you through each layer of Phoenix. The
water is fine. Come on in!

3. http://pragprog.com/book/phoenix/programming-phoenix

Chapter 1. Introducing Phoenix • 12

report erratum • discuss

http://pragprog.com/book/phoenix/programming-phoenix
http://pragprog.com/titles/phoenix/errata/add
http://forums.pragprog.com/forums/phoenix

Part I

Building with Functional MVC

In Part I, we’ll talk about traditional request/response web applications. We’ll walk
through the basic layers of Phoenix in great detail. You’ll learn how to structure your
application into small functions, with each one transforming the results of the previous
ones. This pipeline of small functions will lead to the controller, from where we call
models and views, but splitting the responsibilities slightly differently from what you’ve
seen elsewhere. You’ll explore a new, functional take on the existing model-view-con-
troller pattern. You’ll also learn to integrate databases through the Ecto persistence
layer and even build your own authentication API. Then, you’ll learn to test what
you’ve built so far. In short, you’ll learn to build traditional applications that are faster,
more reliable, and easier to understand.

CHAPTER 2

The Lay of the Land
Welcome to Phoenix. In this chapter, we’re not going to try to sell you too
hard. We think that once you begin the work of learning this framework, the
benefits will quickly become evident.

You can think of any web server as a function. Each time you type a URL,
think of it as a function call to some remote server. That function takes your
request and generates some response. A web server is a natural problem for
a functional language to solve.

When all is said and done, each Phoenix application is made of functions. In
this chapter, we’re going to break down a typical web request, and we’ll talk
about what happens from the moment the user types the URL to the moment
Phoenix returns some result.

Simple Functions
Phoenix is built on Elixir, which is a beautiful language, so we’re going to use
Elixir to talk about the way the layers of Phoenix fit together. In Elixir, we
might have a couple of functions like these:

def inc(x), do: x + 1
def dec(x), do: x - 1

We can chain together several different function calls like this:

2 |> inc |> inc |> dec

The |>, or pipe operator, takes the value on the left and passes it as the first
argument to the function on the right. We call these compositions pipes or
pipelines, and we call each individual function a segment or pipe segment.

There’s a side benefit, though. Pipelines are also functions. That means you
can make pipelines of pipelines. This idea will help you understand how the

report erratum • discuss

http://pragprog.com/titles/phoenix/errata/add
http://forums.pragprog.com/forums/phoenix

various layers fit together. Let’s take a look at what a Phoenix program might
look like, using pipes:

connection |> phoenix

Most of the time, you’d write phoenix(connection), but bear with us for a moment.
We’re going to expand that phoenix function in a bit. We don’t care how the
request gets to Phoenix. At some point, we know that a browser establishes
a connection with an end user, and then there’s this big hairy function called
phoenix. We pipe the connection into phoenix, it does its magic, and we’re done.

In Phoenix, that connection is the whole universe of things we need to know
about a user’s request. It is a struct, which is a map with a known set of fields.
The connection comes in with information about the request: whether it’s
HTTP or HTTPS, what the URL is, what the parameters look like. Then, each
layer of Phoenix makes a little change to that connection. When Phoenix is
done, that connection will have the response in it.

Where Are All of the Diagrams?
In this book, we’re going to try something a little different. We’re going to use
an experimental alternative to architectural diagrams.

For example, let’s say we’re showing you how to bake a cake. We could have
a little diagram with boxes representing process steps that have beautiful
bevels or drop shadows or other embellishments. Such a diagram would give
you a quick mental picture of what’s happening. Then, you could mentally
translate that diagram into code.

We can do better, though. Instead, we could choose to express the same idea
with an Elixir pipe, like this:

ingredients
|> mix
|> bake

That code isn’t as beautiful as a blinking diagram with fountain fills, but it’s
tremendously exciting. That ugly text shows you exactly what the layers are,
and also how the functions work together. It also helps you build a mental
picture of what’s happening, because in Phoenix it is what’s happening. When
you understand that diagram, you understand Phoenix. You’ll actually see
code like that throughout the Phoenix framework, so we think it’s an excellent
way to show how the parts fit together.

Chapter 2. The Lay of the Land • 16

report erratum • discuss

http://pragprog.com/titles/phoenix/errata/add
http://forums.pragprog.com/forums/phoenix

Now you know what the API of every layer of Phoenix looks like. Functions
call other functions, and the first argument for each of those other functions
is the connection.

The Layers of Phoenix
Let’s take our simplified version of Phoenix and break it down a bit. Let’s say
that the request is a classic HTTP-style request. (The book will cover the more
interactive channels API a little later, but the basic premise will be the same.)
As we drill down to the next layer of detail, here’s what you see:

connection
|> endpoint
|> router
|> pipelines
|> controller

Each request comes in through an endpoint, the first point of contact. It’s liter-
ally the end, or the beginning, of the Phoenix world. A request comes into an
endpoint. From there, requests go into our router layer, which directs a request
into the appropriate controller, after passing it through a series of pipelines. As
you might expect, a pipeline groups functions together to handle common
tasks. You might have a pipeline for browser requests, and another for JSON
requests.

Inside Controllers
Web frameworks have been around for a long time. The main pattern we use
has been around even longer. The Smalltalk language introduced a pattern
called model-view-controller (MVC). Models access data, views present data,
and controllers coordinate between the two. In a sense, the purpose of a web
server is to get requests to functions that perform the right task. In most web
frameworks, including Phoenix, that task is called an action, and we group
like functions together in controllers.

To give you a little more perspective, the controller is also a pipeline of func-
tions, one that looks like this:

connection
|> controller
|> common_services
|> action

This view of the world may look much like what you’d expect from a typical
web framework. The connection flows into the controller and calls common

report erratum • discuss

Simple Functions • 17

http://pragprog.com/titles/phoenix/errata/add
http://forums.pragprog.com/forums/phoenix

services. In Phoenix, those common services are implemented with Plug. You’ll
get more details as we go. For now, think of Plug as a strategy for building
web applications and a library with a few simple tools to enable that strategy.

In this book our actions will do many different things, from accessing other
websites to authenticating a user. Most often, our actions will access a
database and render a view. Here’s what an action to show a user might look
like:

connection
|> find_user
|> view
|> template

If you’re using a database in Phoenix, you’ll probably use Ecto, the persistence
layer. In Phoenix, whenever it’s possible, we try to limit side effects—functions
that touch and possibly change the outside world—to the controller. We’ll try
to keep the functions in our models and views pure, so that calling the same
function with the same arguments will always yield the same results.

If you’re a diehard MVC person, you might have to reimagine the job of the
model layer. In Phoenix, you’ll want to separate the code that calls another
web server, or fetches code from a database, from the code that processes
that data. We process data in the model; we read or write that data through
the controller. Ecto allows us to organize our code in this way. It separates
the code with side effects, which changes the world around us, from the code
that’s only transforming data.

There you have it. You don’t have to memorize all of these layers now, but
you’ve seen the major pieces, and you know how they fit together. After a few
pages of theory, you’re probably eager to roll up your sleeves and get started.

Installing Your Development Environment
Like many great programming projects, Phoenix builds on some of the best
open source projects available. You’ll install all of those dependencies now,
using the best resources you can find for your own environment.

Elixir Needs Erlang
Erlang provides the base programming virtual machine. It supports our base
programming model for concurrency, failover, and distribution. It also provides
an exhaustive programming library that’s the foundation of the Elixir language.

Chapter 2. The Lay of the Land • 18

report erratum • discuss

http://pragprog.com/titles/phoenix/errata/add
http://forums.pragprog.com/forums/phoenix

Go download Erlang,1 choosing the best installation for your environment.
You’ll want version 17 or greater.

Phoenix Needs Elixir
The Elixir programming language powers Phoenix. You can find installation
instructions on the Elixir2 site. You’ll want version 1.1.0 or greater. Before
you work through this book, it would be helpful to know Elixir. Good online
resources3 exist, but we recommend the excellent book , by Dave Thomas,
which will get you all of the way through concurrency concepts and OTP. For
now, think of OTP as the layer for managing concurrent, distributed services.
Rest assured that you’ll get more details on OTP later.

You can check to see that Elixir and Erlang are working correctly, like this:

$ elixir -v
Elixir 1.1.0

Let’s also install Hex, Elixir’s package manager:

$ mix local.hex
* creating ~/.mix/archives/hex-0.10.4.ez

Elixir is working, and if you were building strictly a JSON API or a very simple
application it would be enough. For this application, since you’ll be building
both front end and backend with Phoenix, you need to install the code that
will help you manage assets. That means you’ll have to install Node.js.

Ecto Needs PostgreSQL
Ecto uses the PostgreSQL4 database adapter by default, and Phoenix adopts
this default. It’s the database engine we’ll be using throughout the book, so
you’ll need version 9.2 or greater. You can check your local version like this:

$ psql --version
psql (PostgreSQL) 9.2.1

Node.js for Assets
Web development often requires web assets to be processed for deployment.
Rather than reinvent the wheel, developers can optionally use Node.js tools
for those services. Phoenix will use brunch.io to compile static assets such as
JavaScript and CSS by default, and Brunch.io uses npm, the Node.js package

1. http://www.erlang.org
2. http://elixir-lang.org
3. http://elixir-lang.org/getting-started/introduction.html
4. http://www.postgresql.org/download/

report erratum • discuss

Installing Your Development Environment • 19

http://www.erlang.org
http://elixir-lang.org
http://elixir-lang.org/getting-started/introduction.html
http://www.postgresql.org/download/
http://pragprog.com/titles/phoenix/errata/add
http://forums.pragprog.com/forums/phoenix

manager, to install its dependencies. Once it’s installed, Phoenix will rely on
them for asset management. Follow the directions on the Node.js5 site and
make sure you have version 5.3.0 or greater. Test your installation like this:

$ node --version
v5.3.0

Phoenix has a feature called live reloading, which automatically reloads web
pages as our assets and templates change. If you’re running Linux, you’re
also going to need to install inotify6 to support live reloading. Other operating
systems are covered.

We’re finally ready for Phoenix.

Phoenix
You’re going to work in the Elixir language to write your code, so you’ll use
the Mix utility to run development tasks. Let’s use Mix to install the Phoenix
archive, and then to install Phoenix itself:

$ mix archive.install https://github.com/phoenixframework/archives/raw/
/master/phoenix_new.ez
* creating ~/.mix/archives/phoenix_new.ez

Now you’re ready to roll!

Creating a Throwaway Project
Since C programmers wrote the first Hello, World examples in 1978, the first
traditional program you write when learning almost any language has been
Hello, World. So we don’t break with tradition, we’re going to create a Hello,
World application as our first project. It will help you get your feet wet. When
you’re done, you’ll get to see all of those layers we talked about in practice.

You now have a shiny new Phoenix installation. It’s time to build a project.
You’re in a functional language, so you’re going to spend all of your time
writing functions. This common project structure will help you organize things
so you don’t have to reimagine it for each project.

In Elixir, repetitive tasks that manage the programming cycle will run in Mix.
Each time you call this utility, you specify a task—an Elixir script—to run.
Let’s use a task now to create our first Phoenix project, like this:

$ mix phoenix.new hello
* creating hello/config/config.exs

5. http://nodejs.org
6. http://www.phoenixframework.org/docs/installation#section-inotify-tools-for-linux-users-

Chapter 2. The Lay of the Land • 20

report erratum • discuss

http://nodejs.org
http://www.phoenixframework.org/docs/installation#section-inotify-tools-for-linux-users-
http://pragprog.com/titles/phoenix/errata/add
http://forums.pragprog.com/forums/phoenix

...

Fetch and install dependencies? [Yn] y
* running mix deps.get
* running npm install && node node_modules/brunch/bin/brunch build

We’re all set! Run your Phoenix application:

$ cd hello
$ mix ecto.create
$ mix phoenix.server

If you receive database errors when running mix ecto.create, double-check your
Hello.Repo username and password values in config/dev.exs and match your system
settings where necessary.

You can also run your app inside Interactive Elixir (IEx) as:

$ iex -S mix phoenix.server

The phoenix.new Mix task created a project, including all of the files needed to
compile and run it. You’ll see how the basic tools work, and then what the
directories are and where things go as we build the project. For now, we need
to do a little bit more.

At the bottom of the mix phoenix.new output, you can see a few sentences that
tell you what to do next. We’ll skip the instructions related to ecto, since our
application won’t use a database for now. We want to start Phoenix, though.
Change into the hello directory and run the Phoenix web server through Mix,
which will start looking for requests on port 4000, like this:

$ cd hello

hello $ mix phoenix.server
[info] Running Hello.Endpoint with Cowboy on http://localhost:4000

$

You can see that the server started on port 4000. The [info] blocks tell you
exactly where this server is running. Point your browser to http://localhost:4000/.
You can see a simple Phoenix welcome page on page 22.

And we’re live! There’s no way we’re going to get a million-dollar valuation
with this product, though. Let’s begin to change that by building our first
feature.

Building a Feature
Our first feature won’t be complicated. It’ll print a string when you load a
specific URL. To build that feature, we’re going to use a small fraction of the

report erratum • discuss

Building a Feature • 21

http://pragprog.com/titles/phoenix/errata/add
http://forums.pragprog.com/forums/phoenix

files that mix phoenix.new created. Don’t worry. You’ll get a tour of the whole tree
a little later. For now, everything we need is in the web subdirectory. We’ll edit
router.ex to point a URL to our code. We’ll also add a controller to the web/con-
trollers subdirectory, a view to web/views, and a template to web/templates.

First things first. We want to map requests coming in to a specific URL to the
code that satisfies our request. We’ll tie a URL to a function on a controller,
and that function to a view. You’ll do so in the routing layer, as you would
for other web frameworks. Routes in Phoenix go in web/router.ex by default. The
.ex extension is for compiled Elixir files. Take a look at that file now. Scroll to
the bottom, and you’ll find a block that looks like this:

getting_started/listings/hello/web/router.ex
scope "/", Hello do

pipe_through :browser

get "/", PageController, :index
end

You can see a block of requests, scoped to /. That means that this group of
routes will attempt to match all routes beginning with /. The pipe_through
:browser macro handles some housekeeping for all common browser-style
requests. You can see one route that takes requests that look like / and sends

Chapter 2. The Lay of the Land • 22

report erratum • discuss

http://media.pragprog.com/titles/phoenix/code/getting_started/listings/hello/web/router.ex
http://pragprog.com/titles/phoenix/errata/add
http://forums.pragprog.com/forums/phoenix

them to the :index action on the PageController. This looks like the right place to
add our route. Add the following route above the existing route:

get "/hello", HelloController, :world
get "/", PageController, :index

This new code will match routes starting with /hello and send them to the :world
function on the HelloController module. If you’d like, you can point your browser
to localhost:4000/hello, but you’ll get an error page because our controller module
doesn’t exist yet:

Let’s fix that. All controllers in Phoenix are in web/controllers. Create a web/con-
trollers/hello_controller.ex file that looks like this:

getting_started/listings/hello/web/controllers/hello_controller.ex
defmodule Hello.HelloController do

use Hello.Web, :controller

def world(conn, _params) do
render conn, "world.html"

end
end

This controller is simple. If you’re new to Elixir, you’ll often see use SomeModule
to introduce specific functionality to a module. The use Hello.Web, :controller call
prepares us to use the Phoenix Controller API, including making some func-
tions available that we’ll want to use later. The router will call the world action
on our controller, passing all of the information we need. We call the functions
invoked by the router on our controller’s actions, but don’t get confused.
They’re just functions.

report erratum • discuss

Building a Feature • 23

http://media.pragprog.com/titles/phoenix/code/getting_started/listings/hello/web/controllers/hello_controller.ex
http://pragprog.com/titles/phoenix/errata/add
http://forums.pragprog.com/forums/phoenix

Once again, you might point your browser to localhost:4000/hello, but you’d find
that it’s still not working. We have yet to create our view, so Phoenix reports:

undefined function: Hello.HelloView.render/2
(module Hello.HelloView is not available)

That makes sense. Let’s easily fix that problem by creating a view called
web/views/hello_view.ex with the following contents:

getting_started/listings/hello/web/views/hello_view.ex
defmodule Hello.HelloView do

use Hello.Web, :view
end

That file doesn’t actually do any work beyond tying the view for world with
some code to render a template. We’ll rely on the defaults to render a template,
which doesn’t yet exist. One more time, you see an error when you point your
browser to localhost:4000/hello:

Could not render "world.html" for Hello.HelloView, please define
a clause for render/2 or define a template at "web/templates/hello".
No templates were compiled for this module.

We’re getting closer. Create the following template at web/templates/hel-
lo/world.html.eex, and we’re done:

getting_started/listings/hello/web/templates/hello/world.html.eex
<h1>From template: Hello world!</h1>

As soon as you save your code, notice that the web page reloads! We have
live reloading enabled, so whenever we touch templates or template assets,
you’ll see an automatic page reload.

The .eex extension denotes a template, which Phoenix will compile into a
function. If you look closely, you can see that the page we loaded has a
header. We’re implicitly using the layout defined in the web/views/layout_view.ex
view and the template defined in web/templates/layout/app.html.eex. We’ll work more
with views a little later. For now, it’s enough for you to know it’s there.

Enjoy the results. It’s not a fully operational death star, but you’re well on
your way.

Using Routes and Params
Right now, there’s no dynamic information in our route, and we don’t need
any yet, but later we’ll need to grab dynamic data from the URL to look up
data from our database. Let’s use our sandbox to see how that works. We’ll

Chapter 2. The Lay of the Land • 24

report erratum • discuss

http://media.pragprog.com/titles/phoenix/code/getting_started/listings/hello/web/views/hello_view.ex
http://media.pragprog.com/titles/phoenix/code/getting_started/listings/hello/web/templates/hello/world.html.eex
http://pragprog.com/titles/phoenix/errata/add
http://forums.pragprog.com/forums/phoenix

use dynamic routes closely with Elixir’s pattern matching. First, let’s revise
our route. Replace the first route in web/router.ex with this one:

get "/hello/:name", HelloController, :world

Notice that we’re matching a URL pattern—/hello, as before—but we also add
/:name to the route. The : tells Phoenix to create a parameter called :name in
our route and pass that name as a parameter to the controller. Change the
world function on web/controllers/hello_controller.ex to look like this:

def world(conn, %{"name" => name}) do
render conn, "world.html", name: name

end

Our new action uses the second argument, which is a map of inbound
parameters. We match to capture the name key in the name variable, and pass
the result to render in a keyword list. If you’re new to Elixir, that function
header looks a little different from what you might have seen before. Something
special is happening, so let’s look at it in a little more detail. If you already
understand pattern matching, you can skip to the next section.

Pattern Matching in Functions
The Elixir language has an excellent feature called pattern matching. When
Elixir encounters a = operator, it means “make the thing on the left match
the thing on the right.” You can use this feature in two different ways: to take
data structures apart, or to test. Let’s look at an example:

iex> {first, second, third} = {:lions, :tigers, :bears}
{:lions, :tigers, :bears}

iex> first
:lions

iex> {first, second, :bears} = {:lions, :tigers, :bears}
{:lions, :tigers, :bears}

iex> {first, second, :armadillos} = {:lions, :tigers, :bears}
** (MatchError) no match of right hand side value: {:lions, :tigers, :bears}

In the first statement, we’re matching a 3-tuple to {:lions, :tigers, :bears}. Elixir
tries to make the expression on the left match, and it can do so by assigning
first to :lions, and second to :tigers. In this case, we’re using the pattern match to
pick off pieces of the inside of the data structure.

In the third or fourth statement, we’re doing something different. We’re
matching to do a test. When the interpreter tries to match the two, it succeeds
and passes on, or fails and throws an exception.

report erratum • discuss

Building a Feature • 25

http://pragprog.com/titles/phoenix/errata/add
http://forums.pragprog.com/forums/phoenix

You can also use pattern-matching syntax within your function heads in both
of these ways. Type the following into your console:

iex> austin = %{city: "Austin", state: "Tx"}
%{city: "Austin", state: "Tx"}

iex> defmodule Place do
...> def city(%{city: city}), do: city
...> def texas?(%{state: "Tx"}), do: true
...> def texas?(_), do: false
...> end

This module uses pattern matching in two different ways. The first function
uses pattern matching to destructure the data, or take it apart. We use it to
extract the city. It grabs the value for the :city key from any map. Although this
bit of destructuring is trivial, sometimes the data structures can be deep, and
you can reach in and grab the attributes you need with a surgeon’s precision.

The second function, texas?, is using a pattern match as a test. If the inbound
map has a :state keyword that’s set to Tx, it’ll match. Otherwise, it’ll fall through
to the next function, returning false. If we wanted to, we could:

• Match all maps with a given key, as in has_state?(%{state: _}), where the
underscore _ will match anything

• Use strings as keys instead of atoms, as in has_state?(%{"state" => "Tx"})
• Match a state, and assign the whole map to a variable, as in
has_state?(%{"state" => "Tx"} = place)

The point is, pattern matching is a huge part of Elixir and Phoenix program-
ming. We’ll use it to grab only certain types of connections, and also to grab
individual pieces of the connection, conveniently within the function heading.

With all of that in mind, let’s look at our controller action again:

def world(conn, %{"name" => name}) do
render conn, "world.html", name: name

end

That makes more sense now. We’re grabbing the name field from the second
argument, which contains the inbound parameters. Our controller then ren-
ders the world.html template, passing in the local data. The local data prepares
a map of variables for use by the templates. Now our views can access the
name variable we’ve specified.

Chapter 2. The Lay of the Land • 26

report erratum • discuss

http://pragprog.com/titles/phoenix/errata/add
http://forums.pragprog.com/forums/phoenix

Chris says:

Atom Keys vs. String Keys?
In the world action in our controllers, the external parameters have string keys, "name"
=> name, while internally we use name: name. That’s a convention followed throughout
Phoenix. External data can’t safely be converted to atoms, because the atom table
isn’t garbage-collected. Instead, we explicitly match on the string keys, and then our
application boundaries like controllers and channels will convert them into atom
keys, which we’ll rely on everywhere else inside Phoenix.

Using Assigns in Templates
Now, all that remains is to tweak our template in web/templates/hello/world.html.eex
to make use of the value. You can access the name specified in the world action
as @name, like this:

<h1>Hello <%= String.capitalize @name %>!</h1>

The <%= %> brackets surround the code we want to substitute into the ren-
dered page. @name will have the value of the :name option that we passed to
render. We’ve worked for this reward, so point your browser to localhost:4000/hel-
lo/phoenix. It’s ALIVE!

We’ve done a lot in a short time. Some of this plumbing might seem like
magic to you, but you’ll find that Phoenix is marvelously explicit, so it’s easy
to understand exactly what’s happening, when, for each request. It’s time to
make this magic more tangible.

Going Deeper: The Request Pipeline
When we created the hello project, Mix created a bunch of directories and files.
It’s time to take a more detailed look at what all of those files do and, by
extension, how Phoenix helps you organize applications.

When you think about it, typical web applications are just big functions. Each
web request is a function call taking a single formatted string—the URL—as
an argument. That function returns a response that’s nothing more than a

report erratum • discuss

Going Deeper: The Request Pipeline • 27

http://pragprog.com/titles/phoenix/errata/add
http://forums.pragprog.com/forums/phoenix

formatted string. If you look at your application in this way, your goal is to
understand how functions are composed to make the one big function call
that handles each request. In some web frameworks, that task is easier said
than done. Most frameworks have hidden functions that are only exposed to
those with deep, intimate internal knowledge.

The Phoenix experience is different because it encourages breaking big func-
tions down into smaller ones. Then, it provides a place to explicitly register
each smaller function in a way that’s easy to understand and replace. We’ll
tie all of these functions together with the Plug library.

Think of the Plug library as a specification for building applications that
connect to the web. Each plug consumes and produces a common data
structure called Plug.Conn. Remember, that struct represents the whole universe
for a given request, because it has things that web applications need: the
inbound request, the protocol, the parsed parameters, and so on.

Think of each individual plug as a function that takes a conn, does something
small, and returns a slightly changed conn. The web server provides the initial
data for our request, and then Phoenix calls one plug after another. Each
plug can transform the conn in some small way until you eventually send a
response back to the user.

Even responses are just transformations on the connection. When you hear
words like request and response, you might be tempted to think that a request
is a plug function call, and a response is the return value. That’s not what
happens. A response is just one more action on the connection, like this:

conn
|> ...
|> render_response

The whole Phoenix framework is made up of organizing functions that do
something small to connections, even rendering the result. Said another way…

Plugs are functions.

Your web applications are pipelines of plugs.

Phoenix File Structure
If web applications in Phoenix are functions, the next logical step is to learn
where to find those individual functions and how they fit together to build a
coherent application. Let’s work through the project directory structure,

Chapter 2. The Lay of the Land • 28

report erratum • discuss

http://pragprog.com/titles/phoenix/errata/add
http://forums.pragprog.com/forums/phoenix

focusing on only the most important ones for now. Here’s what your directories
look like now:

...
├── config
├── lib
├── test
├── web
...

Phoenix configuration goes into config, your supervision trees and long-running
processes go into lib, tests in test, and your web-related code—including
models, views, templates, and controllers—goes in web.

José says:

What Goes in web vs. lib?
Lots of people have asked me what goes in each directory, expecting a complicated
answer. It’s simple. When you have code reloading turned on, the code in web is
reloaded, and the code in lib isn’t, making lib the perfect place to put long-running
services, like Phoenix’s PubSub system, the database connection pool, or your own
supervised processes.

In this section, you’ll walk through each of these pieces, including the pieces
you created and many other ones that Phoenix generated. To sleuth out the
entire pipeline of functions for a full web request, you need to start at the
beginning. You’ll start with the basic code that Elixir and Erlang depend on.

Elixir Configuration
Since Phoenix projects are Elixir applications, they have the same structure
as other Mix projects. Let’s look at the basic files in the project:

...
├── lib
│ ├── hello
│ │ ├── endpoint.ex
│ │ └── ...
│ └── hello.ex
├── mix.exs
├── mix.lock
├── test
...

We’ve already encountered the .ex files, which are to be compiled to .beam files
that run on the Erlang virtual machine. The .exs files are Elixir scripts. They’re

report erratum • discuss

Going Deeper: The Request Pipeline • 29

http://pragprog.com/titles/phoenix/errata/add
http://forums.pragprog.com/forums/phoenix

not compiled to .beam files. The compilation happens in memory, each time
they are run. They’re excellent for quick-changing scripts or stand-alone
development-time tasks.

The project we created is a Mix project, named after the build tool that nearly
all Elixir projects use. All Mix projects have a common structure. Each project
has a configuration file, mix.exs, containing basic information about the project
that supports tasks like compiling files, starting the server, and managing
dependencies. When we add dependencies to our project, we’ll need to make
sure they show up here. Also, after we compile the project, mix.lock will include
the specific versions of the libraries we depend on, so we guarantee that our
production machines use exactly the same versions that we used during
development and in our build servers.

Each Mix project also has a lib directory. Support for starting, stopping, and
supervising each application is in lib/hello.ex.

Also, each Mix project has a test directory that hosts all tests. Phoenix adds
some files to this test structure to support testing-specific files like controllers
and views. We haven’t yet written any tests, but when we do, they’ll live in
test.

Environments and Endpoints
Your application will run in an environment. The environment contains spe-
cific configuration that your web application needs. You can find that config-
uration in config:

...
├── config
│ ├── config.exs
│ ├── dev.exs
│ ├── prod.exs
│ ├── prod.secret.exs
│ └── test.exs
...

Phoenix supports a master configuration file plus an additional file for each
environment you plan to run in. The environments supported by default are
development (dev.exs), test (test.exs), and production (prod.exs), but you can add
any others that you want.

You can see the three environment files, the master config.exs file containing
application-wide configuration concerns, and a file that has secret production
passwords that you’d likely want to keep out of version control. It’s called
prod.secret.exs. This file is usually populated by deployment tasks.

Chapter 2. The Lay of the Land • 30

report erratum • discuss

http://pragprog.com/titles/phoenix/errata/add
http://forums.pragprog.com/forums/phoenix

You switch between prod, dev, and test environments via the MIX_ENV environment
variable. We’ll spend most of our time in this book in dev and test modes.
That’ll be easy, because your Mix task will have you working in dev by default,
and it’ll shift to test when you run automated tests with mix.

The master configuration file, config/config.exs, initially contains information
about logging, and endpoints. Remember when we said that your web appli-
cations were just functions? An endpoint is the boundary where the web
server hands off the connection to our application code. Now, you’ll see that
config/config.exs contains a single endpoint called Hello.Endpoint. Open the file
called config/config.exs in your editor:

use Mix.Config

Configures the endpoint
config :hello, Hello.Endpoint,

url: [host: "localhost"],
root: Path.dirname(__DIR__),
secret_key_base: "QNU... ...Oo/eLnw",
render_errors: [accepts: ~w(html json)],
pubsub: [name: Hello.PubSub,

adapter: Phoenix.PubSub.PG2]

Even though you might not understand this entire block of code, you can see
that this code has our endpoint, which is the beginning of our world. The
config function call configures the Hello.Endpoint endpoint in our :hello application,
giving a keyword list with configuration options. Let’s look at that endpoint,
which we find in lib/hello/endpoint.ex:

defmodule Hello.Endpoint do
use Phoenix.Endpoint, otp_app: :hello

plug Plug.Static, ...
plug Plug.RequestId
plug Plug.Logger

plug Plug.Parsers, ...
plug Plug.MethodOverride
plug Plug.Head

plug Plug.Session, ...
plug Hello.Router

end

You can see that this chain of functions, or plugs, does the typical things
that almost all production web servers need to do: deal with static content,
log requests, parse parameters, and the like. Remember, you already know
how to read this code. It’ll translate to a pipeline of functions, like this:

report erratum • discuss

Going Deeper: The Request Pipeline • 31

http://pragprog.com/titles/phoenix/errata/add
http://forums.pragprog.com/forums/phoenix

connection
|> Plug.Static.call
|> Plug.RequestId.call
|> Plug.Logger.call
|> Plug.Parsers.call
|> Plug.MethodOverride.call
|> Plug.Head.call
|> Plug.Session.call
|> Hello.Router.call

That’s an oversimplification, but the basic premise is correct. Endpoints are
the chain of functions at the beginning of each request.

Now you can get a better sense of what’s going on. Each request that comes
in will be piped through this full list of functions. If you want to change the
logging layer, you can change logging for all requests by specifying a different
logging function here.

Summarizing what we have so far: an endpoint is a plug, one that’s made up
of other plugs. Your application is a series of plugs, beginning with an endpoint
and ending with a controller:

connection
|> endpoint
|> plug
|> plug
...
|> router
|> HelloController

We know that the last plug in the endpoint is the router, and we know we
can find that file in web/router.ex.

José says:

Can I Have More Than One Endpoint?
Although applications usually have a single endpoint, Phoenix doesn’t limit the
number of endpoints your application can have. For example, you could have your
main application endpoint running on port 80 (HTTP) and 443 (HTTPS), as well as a
specific admin endpoint running on a special port—let’s say 8080 (HTTPS)—with
specific characteristics and security constraints.

Even better, we could break those endpoints into separate applications but still run
them side by side. You’ll explore this later on when learning about umbrella projects
in Chapter 11, OTP, on page 199.

Chapter 2. The Lay of the Land • 32

report erratum • discuss

http://pragprog.com/titles/phoenix/errata/add
http://forums.pragprog.com/forums/phoenix

The Router Flow
Now that you know what plugs are, let’s take a fresh look at our router. Crack
open web/router.ex. You can see that it’s made up of two parts: pipelines and a
route table. Here’s the first part:

getting_started/listings/hello/web/router.ex
defmodule Hello.Router do

use Hello.Web, :router

pipeline :browser do
plug :accepts, ["html"]
plug :fetch_session
plug :fetch_flash
plug :protect_from_forgery
plug :put_secure_browser_headers

end

pipeline :api do
plug :accepts, ["json"]

end

Sometimes, you’ll want to perform a common set of tasks, or transformations,
for some logical group of functions. Not surprisingly, you’ll do each transfor-
mation step with a plug and group these plugs into pipelines. When you think
about it, a pipeline is just a bigger plug that takes a conn struct and returns
one too.

In router.ex, you can see two pipelines, both of which do reasonable things for
a typical web application. The browser pipeline accepts only HTML. It provides
some common services such as fetching the session and a user message
system called the flash, used for brief user notifications. It also provides some
security services, such as request forgery protection.

We’d use the second pipeline of functions for a typical JSON API. This stack
only calls the function that accepts only JSON requests, so if you had the
brilliant idea of converting the whole API site to accept only XML, you could
do so by changing one plug in one place.

Our hello application uses the browser pipeline, like this:

getting_started/listings/hello/web/router.ex
scope "/", Hello do

pipe_through :browser

get "/", PageController, :index
end

report erratum • discuss

Going Deeper: The Request Pipeline • 33

http://media.pragprog.com/titles/phoenix/code/getting_started/listings/hello/web/router.ex
http://media.pragprog.com/titles/phoenix/code/getting_started/listings/hello/web/router.ex
http://pragprog.com/titles/phoenix/errata/add
http://forums.pragprog.com/forums/phoenix

Now you can tell exactly what the pipeline does. All of the routes after
pipe_through :browser—all of the routes in our application—go through the
browser pipeline. Then, the router triggers the controller.

In general, the router is the last plug in the endpoint. It gets a connection,
calls a pipeline, and then calls a controller. When you break it down, every
traditional Phoenix application looks like this:

connection
|> endpoint
|> router
|> pipeline
|> controller

• The endpoint has functions that happen for every request.

• The connection goes through a named pipeline, which has common
functions for each major type of request.

• The controller invokes the model and renders a template through a view.

Let’s look at the final piece of this pipeline, the controller.

Controllers, Views, and Templates
From the previous section, you know that a request comes through an end-
point, through the router, through a pipeline, and into the controller. The
controller is the gateway for the bulk of a traditional web application. Like a
puppet master, your controller pulls the strings for this application, making
data available in the connection for consumption by the view. It potentially
fetches database data to stash in the connection and then redirects or renders
a view. The view substitutes values for a template.

For Phoenix, your application code, including your HTML and JavaScript,
goes mostly into the web directory. Right now, that directory looks like the
figure on page 35.

You can see two top-level files, router.ex and web.ex. You’ve already seen router.ex,
which tells Phoenix what to do with each inbound request. web.ex contains
some glue code that defines the overall application structure.

The second part of this book will be dedicated to applications that use the
channels directory, so let’s skip that for now. You’ve already coded a simple
controller, so you know what the basic structure looks like.

Chapter 2. The Lay of the Land • 34

report erratum • discuss

http://pragprog.com/titles/phoenix/errata/add
http://forums.pragprog.com/forums/phoenix

...
└── web

├── channels
├── controllers
│ ├── page_controller.ex
│ └── hello_controller.ex
├── models
├── static
├── templates
│ ├── hello
│ │ └── world.html.eex
│ ├── layout
│ │ └── app.html.eex
│ ├── page
│ │ └── index.html.eex
├── views
│ ├── error_view.ex
│ ├── layout_view.ex
│ ├── page_view.ex
│ └── hello_view.ex
├── router.ex
└── web.ex

...

As you might expect for the support of old-style MVC applications, you can
see that web contains directories for models, views, and controllers. There’s
also a directory for templates—because Phoenix separates the views from the
templates themselves—as well as a directory for static content.

We’ve created code in the controller, views, and templates/hello directories, and
we’ve added code to router.ex as well. This application is fairly complete. After
all, it’s handling plenty of production-level concerns for you:

• The Erlang virtual machine and OTP engine will help the application scale.

• The endpoint will filter out static requests and also parse the request into
pieces, and trigger the router.

• The browser pipeline will honor Accept headers, fetch the session, and
protect from attacks like Cross-Site Request Forgery (CSRF).

All of these features are quickly available to you for tailoring, but they’re also
conveniently stashed out of your way in a structure that’s robust, fast, and
easy to extend. In fact, there’s no magic at all. You have a good picture of
exactly which functions Phoenix calls on a request to /hello, and where that
code lives within the code base:

report erratum • discuss

Going Deeper: The Request Pipeline • 35

http://pragprog.com/titles/phoenix/errata/add
http://forums.pragprog.com/forums/phoenix

connection # Plug.Conn
|> endpoint # lib/hello/endpoint.ex
|> browser # web/router.ex
|> HelloController.world # web/controllers/hello_controller.ex
|> HelloView.render(# web/views/hello_view.ex

"world.html") # web/templates/hello/world.html.eex

It’s easy to gloss over these details and go straight to the web directory, and
entrust the rest of the details to Phoenix. We encourage you instead to stop
and take a look at exactly what happens for each request, from top to bottom.

Wrapping Up
We’ve gotten off to a strong start. You’ve created a first project. Though all of
the concepts might still be a bit hazy, you now have a high-level understanding
of how Phoenix projects hang together. The core concepts are these:

• We installed Phoenix, which is built using Erlang and OTP for the service
layer, Elixir for the language, and Node.js for packaging static assets.

• We used the Elixir build tool mix to create a new project and start our
server.

• Web applications in Phoenix are pipelines of plugs.

• The basic flow of traditional applications is endpoint, router, pipeline,
controller.

• Routers distribute requests.

• Controllers call services and set up intermediate data for views.

In the next chapter, we’re going to build a more hardy controller. You’ll see
how data flows through Phoenix, from the controller all the way into templates.
You’ll learn about concepts like layouts along the way. Let’s get cracking!

Chapter 2. The Lay of the Land • 36

report erratum • discuss

http://pragprog.com/titles/phoenix/errata/add
http://forums.pragprog.com/forums/phoenix

CHAPTER 3

Controllers, Views, and Templates
By now, you should have a loose grasp of how Phoenix applications work.
You know that a typical request starts at an endpoint, flows through a router,
and then flows into a controller. You should be starting to appreciate that
web programming is a functional problem, and that it’s natural to represent
it using a functional language.

As we promised, we’re going to abandon our brief Hello, World application.
For the rest of the book, we’re going to work in a new project, and we’ll con-
tinue developing it through to the end. Before we get started, though, let’s
take a deeper look at how controllers work.

The Controller
In this chapter, we focus on building the controllers, views, and templates.
Though Phoenix has generators that could generate much of a simple web
app from scratch, we’re going to build part of it by hand so we can appreciate
how the parts fit together. Before we fire up the generators, let’s talk about
how the controller hangs together.

Our application will be called rumbl. When we’re all done, the application will
allow us to take videos (hosted elsewhere) and attach comments to them in
real time and play them back alongside the comments of other users. Think
of it as Mystery Science Theater 3000 meets Twitter: At scale, this application
will be tremendously demanding because each user will record and play back
comments that must be saved and served quickly so that the content stays
relevant:

report erratum • discuss

http://pragprog.com/titles/phoenix/errata/add
http://forums.pragprog.com/forums/phoenix

Before we get to the heavy lifting of videos and comments, we’re going to
handle users so you can get fully grounded in basic concepts first. Initially,
we’ll focus on a controller that handles our users. Let’s talk about what we
want to happen when a request for our user controller comes in via a browser:

connection
|> endpoint
|> router
|> browser_pipeline
|> UserController

A request enters through the endpoint (lib/rumbl/endpoint.ex) and then goes into
the router (web/router.ex). The router matches the URL pattern and dispatches
the connection through the browser pipeline, which then calls UserController.
Let’s break that last part down a little further, assuming that the request
invokes the index action:

connection
|> UserController.index
|> UserView.render("index.html")

We need to build the controller to do the work for our individual request, the
view to render our template, and the template. We also need to connect the
route.

Chapter 3. Controllers, Views, and Templates • 38

report erratum • discuss

http://pragprog.com/titles/phoenix/errata/add
http://forums.pragprog.com/forums/phoenix

We need to do one more bit of housekeeping. Controller actions can do many
different kinds of tasks. Often, that work consists of connecting to some kind
of data source, like another website or a database. In this chapter, most of
our actions will need access to users. For example, the UserController.index
function will need to read users from a database. But first, we’re going to
retrieve our users from a hand-coded bucket called a repository. We’re
choosing this strategy because it helps us separate the data itself from the
ceremony surrounding how it’s saved. Ecto, the database library, uses a
similar pattern. That way, we won’t have to overwhelm you with Ecto’s features
as you’re learning about controllers. When the time is right, we’ll simply
replace our basic repository with something more fully functional.

With the theory out of the way, it’s time to do some real work. Let’s get
started.

Creating the Project
Let’s go ahead and create a new application, called rumbl, with mix phoenix.new:

$ mix phoenix.new rumbl

Fetch and install dependencies? [Yn] y
* running mix deps.get
* running npm install && node node_modules/brunch/bin/brunch build

We are all set! Run your Phoenix application:

$ cd rumbl
$ mix phoenix.server

You can also run your app inside IEx:

$ iex -S mix phoenix.server

Before moving on, configure your database in `config/dev.exs` and run:

$ mix ecto.create

$

First, run mix ecto.create to prep your database for later use. Next, start the app
up with mix phoenix.server to make sure it’s working, and point your browser to
http://localhost:4000/. You see the familiar Phoenix home page. That’s not exactly
what we’re looking for. We can steal some of that goodness to build our own
messaging.

report erratum • discuss

The Controller • 39

http://pragprog.com/titles/phoenix/errata/add
http://forums.pragprog.com/forums/phoenix

A Simple Home Page
The default web page is a simple template that has HTML. For now, we can
use it to form the foundation of our home page. Let’s start to tweak it right
now. Make your web/templates/page/index.html.eex look like this:

controllers_views_templates/listings/rumbl/web/templates/page/index.html.eex
<div class="jumbotron">

<h2>Welcome to Rumbl.io!</h2>
<p class="lead">Rumble out loud.</p>

</div>

Now we have a home page started. Notice that your browser has already
changed:

Now that we have a home page, more or less, we can start to think about
what to do about our users.

Creating Some Users
Rather than bog down in a digression on databases, data libraries, and
related concerns, let’s agree to keep things simple in the beginning. We’ll start
with a few hard-coded users. This strategy will help us in the long run too,
because it’ll allow us to test our actions, views, and templates quickly, without
needing to create a full database underneath.

Let’s define a Rumbl.User module with the fields id, name, username, and password:

controllers_views_templates/listings/rumbl/web/models/user.ex
defmodule Rumbl.User do

defstruct [:id, :name, :username, :password]
end

The User module defines an Elixir struct, which is Elixir’s main abstraction
for working with structured data.

Chapter 3. Controllers, Views, and Templates • 40

report erratum • discuss

http://media.pragprog.com/titles/phoenix/code/controllers_views_templates/listings/rumbl/web/templates/page/index.html.eex
http://media.pragprog.com/titles/phoenix/code/controllers_views_templates/listings/rumbl/web/models/user.ex
http://pragprog.com/titles/phoenix/errata/add
http://forums.pragprog.com/forums/phoenix

Elixir Structs
Elixir structs are built on top of maps. You’ve already seen maps in use.
Sometimes, we have maps with clearly defined keys. Let’s say we have a map
for users. Run iex -S mix to start an interactive Elixir within our application
but without running the Phoenix server:

iex> alias Rumbl.User
iex> user = %{usernmae: "jose", password: "elixir"}
%{password: "elixir", usernmae: "jose"}
iex> user.username
** (KeyError) key :username not found in: %{password: "elixir", usernmae: "jose"}

You may have noticed that we misspelled username as usernmae. A limitation of
maps is that they offer protection for bad keys only at runtime, when we
effectively access the key. However, many times we’d like to know about such
errors as soon as possible, often at compilation time. Structs solve this exact
problem. Let’s try again but this time using our newly defined Rumbl.User struct:

iex> jose = %User{name: "Jose Valim"}
%User{id: nil, name: "Jose Valim", username: nil, password: nil}

iex> jose.name
"Jose Valim"

One of the first things to notice is default values. Even though we specified
only the :name field when creating the struct, Elixir conveniently filled in the
remaining ones. Now, if we misspell a key, we’re protected:

iex> chris = %User{nmae: "chris"}
** (CompileError) iex:3: unknown key :nmae for struct User

...

We misspelled the name: key and got an error. Nice.

Notice that the syntax for structs and maps is nearly identical, except for the
name of the struct. There’s a good reason for that. A struct is a map that has
a __struct__ key:

iex> jose.__struct__
Rumbl.User

It’s time to stub out a cheap and dirty database. We’ll package those users
into an API that follows a pattern called a repository.

Working with Repositories
A repository is an API for holding things. Let’s build a data interface that’ll
make it easy to snap in a quick stub that’s fast and backed by hardcoded

report erratum • discuss

Creating Some Users • 41

http://pragprog.com/titles/phoenix/errata/add
http://forums.pragprog.com/forums/phoenix

data for the short term. This interface should allow us to rapidly test the
application as we build it, and also to test our views and templates with
simple hardcoded maps. Later, we can replace our hardcoded implementation
with a full database-backed repository. Said another way, we want to separate
the concerns of the data from concerns of the database. We can hack our
homegrown repository together in Elixir using a few quick lines of code.

Replace the default repository implementation in lib/rumbl/repo.ex with this shell:

defmodule Rumbl.Repo do

@moduledoc """
In memory repository.
"""

end

At the bottom, before the trailing end, we want to add a function to get all of
our users:

controllers_views_templates/listings/rumbl/lib/rumbl/repo.ex
def all(Rumbl.User) do

[%Rumbl.User{id: "1", name: "José", username: "josevalim", password: "elixir"},
%Rumbl.User{id: "2", name: "Bruce", username: "redrapids", password: "7langs"},
%Rumbl.User{id: "3", name: "Chris", username: "chrismccord", password: "phx"}]

end
def all(_module), do: []

Let’s also add a couple of functions to get a user by id, or by a custom attribute:

controllers_views_templates/listings/rumbl/lib/rumbl/repo.ex
def get(module, id) do

Enum.find all(module), fn map -> map.id == id end
end

def get_by(module, params) do
Enum.find all(module), fn map ->

Enum.all?(params, fn {key, val} -> Map.get(map, key) == val end)
end

end

Now, our Repo is complete. We need to do a little housekeeping. Right now,
the application tries to start the Rumbl.Repo by default. Since our file is no
longer an Ecto repository, we should comment that out. In lib/rumbl.ex, comment
out the line that starts the repository:

Start the Ecto repository
supervisor(Rumbl.Repo, []),

Chapter 3. Controllers, Views, and Templates • 42

report erratum • discuss

http://media.pragprog.com/titles/phoenix/code/controllers_views_templates/listings/rumbl/lib/rumbl/repo.ex
http://media.pragprog.com/titles/phoenix/code/controllers_views_templates/listings/rumbl/lib/rumbl/repo.ex
http://pragprog.com/titles/phoenix/errata/add
http://forums.pragprog.com/forums/phoenix

Now, our application has an interface that looks like a read-only database
from the outside but is a dumb list of maps from the inside. Let’s take it for
a spin. Start the console with iex -S mix:

iex> alias Rumbl.User
iex> alias Rumbl.Repo

iex> Repo.all User
[%Rumbl.User{id: "1", name: "José", password: "elixir", username: "josevalim"},
%Rumbl.User{id: "3", name: "Chris", password: "phoenix", username: "cmccord"},
%Rumbl.User{id: "2", name: "Bruce", password: "7langs", username: "redrapids"}]

iex> Repo.all Rumbl.Other
[]

iex> Repo.get User, "1"
%Rumbl.User{id: "1", name: "José", password: "elixir", username: "josevalim"}

iex> Repo.get_by User, name: "Bruce"
%Rumbl.User{id: "2", name: "Bruce", password: "7langs", username: "redrapids"}

And presto, we have a working fake repository. Our controller will work fine.
In fact, our tests will work fine with a repository stub as well. With some minor
tweaks, this strategy will serve us well as we take the controller through its
paces.

Now that we have users, we can move ahead to the actual code that fetches
and renders them.

Building a Controller
You’ve already built a simple controller, so you know the drill. At this point,
we could create all of the routes needed by a user automatically, but we’re
going to play the boring community lifeguard that yells “Walk!” If you under-
stand how a single route works, it’ll be much easier to explore the powerful
shortcuts later. Specifically, we need two routes. UserController.index will show
a list of users, and UserController.show will show a single user. As always, create
the routes in router.ex:

controllers_views_templates/listings/rumbl/web/router.ex
scope "/", Rumbl do

pipe_through :browser
get "/users", UserController, :index
get "/users/:id", UserController, :show
get "/", PageController, :index

end

Notice that we have our two new routes and the default route for /. Our two
new routes use the new UserController, which doesn’t yet exist, with the :show
and :index actions. The names and URLs we’ve chosen for these actions aren’t

report erratum • discuss

Building a Controller • 43

http://media.pragprog.com/titles/phoenix/code/controllers_views_templates/listings/rumbl/web/router.ex
http://pragprog.com/titles/phoenix/errata/add
http://forums.pragprog.com/forums/phoenix

random. The :show, :index, :new, :create, :edit, :update, and :delete actions are all
frequently used in Phoenix. For now, follow along strictly, and you’ll learn
the shortcuts later.

Let’s take a closer look at the :index route:

get "/users", UserController, :index

You’ve seen the get macro before. The route matches HTTP GET requests to a
URL that looks like /users and sends them to the UserController, calling the index
action. That route stores :index—the action we intend to invoke—in the conn
and then calls the right pipeline.

Now, restart your server and point your browser to http://localhost:4000/users. You
get some debugging information, but you don’t have to go beyond the title to
find this message:

UndefinedFunctionError at GET /users

undefined function: Rumbl.UserController.init/1
(module Rumbl.UserController is not available)

That makes sense; we haven’t written the controller yet. Let’s create a con-
troller in web/controllers/user_controller.ex and include one function, called index,
which will find :users from our repository:

controllers_views_templates/listings/rumbl/web/controllers/user_controller.ex
defmodule Rumbl.UserController do

use Rumbl.Web, :controller

def index(conn, _params) do
users = Repo.all(Rumbl.User)
render conn, "index.html", users: users

end
end

Let’s take that code apart. There’s a little bit of ceremony at the top of the file
that defines our module and announces that we’re going to use the :controller
API. Right now, the only action is index.

If you access the users page again, you can see that we’re getting an error
message, but we’ve traded up:

UndefinedFunctionError at GET /users

undefined function: Rumbl.UserView.render/2
(module Rumbl.UserView is not available)

Progress! Next, we need to code a view.

Chapter 3. Controllers, Views, and Templates • 44

report erratum • discuss

http://media.pragprog.com/titles/phoenix/code/controllers_views_templates/listings/rumbl/web/controllers/user_controller.ex
http://pragprog.com/titles/phoenix/errata/add
http://forums.pragprog.com/forums/phoenix

Coding Views
This is your second pass through this process. The first time, you built a
Hello, World style feature, one with a controller, view, and template. Now it’s
time for the more detailed explanation that you were promised earlier. In
many other web frameworks, the terms view and template are often used
synonymously. It’s enough for users to know that when a controller finishes
a task, a view is somehow rendered.

In Phoenix, the terminology is a little more explicit. A view is a module con-
taining rendering functions that convert data into a format the end user will
consume, like HTML or JSON. You can write such functions as you would
any other Elixir function. Those rendering functions can also be defined from
templates. A template is a function on that module, compiled from a file con-
taining a raw markup language and embedded Elixir code to process substi-
tutions and loops. The separation of the view and template concepts makes
it easy to render data any way you want, be it with a raw function, an
embedded Elixir engine, or any other template engine.

In short, views are modules responsible for rendering. Templates are web
pages or fragments that allow both static markup and native code to build
response pages, compiled into a function. In Phoenix, you eventually compile
both to functions. Let’s build a view in web/views/user_view.ex:

controllers_views_templates/listings/rumbl/web/views/user_view.ex
defmodule Rumbl.UserView do

use Rumbl.Web, :view
alias Rumbl.User

def first_name(%User{name: name}) do
name
|> String.split(" ")
|> Enum.at(0)

end
end

We add a simple first_name function to parse a user’s first name from that user’s
name field. Next, in web/templates, we create a user directory and a new index
template in web/templates/user/index.html.eex:

controllers_views_templates/listings/rumbl/web/templates/user/index.html.eex
<h1>Listing Users</h1>

<table class="table">
<%= for user <- @users do %>

<tr>
<td><%= first_name(user) %> (<%= user.id %>)</td>
<td><%= link "View", to: user_path(@conn, :show, user.id) %></td>

report erratum • discuss

Coding Views • 45

http://media.pragprog.com/titles/phoenix/code/controllers_views_templates/listings/rumbl/web/views/user_view.ex
http://media.pragprog.com/titles/phoenix/code/controllers_views_templates/listings/rumbl/web/templates/user/index.html.eex
http://pragprog.com/titles/phoenix/errata/add
http://forums.pragprog.com/forums/phoenix

</tr>
<% end %>

</table>

That’s mostly HTML markup, with a little Elixir mixed in. At runtime, Phoenix
will translate this template to a function, but think of it this way. EEx executes
Elixir code that’s within <%= %> tags, injecting the result into the template.
EEx evaluates code within <% %> tags without injecting the result. We’ll try to
use code without side effects in views wherever possible, so we’ll use mostly
the <%= %> form. You’ve seen template code before, but you’ll walk through
it anyway.

The expression for user <- @users walks through the users, rendering each user
using the template code inside the do block, and rolling up the result into the
template. Remember, we’ve already populated @users within our index action.

Each user is a map. We render the name field, the id field, and a link. That
link comes from a helper function.

Chris says:

Why Are Templates So Fast in Phoenix?
After compilation, templates are functions. Since Phoenix builds templates using
linked lists rather than string concatenation the way many imperative languages do,
one of the traditional bottlenecks of many web frameworks goes away. Phoenix doesn’t
have to make huge copies of giant strings.

Since Elixir has only a single copy of the largest and most frequently used strings in
your application, the hardware caching features of most CPUs can come into play.
The book’s introduction talked about the performance of the routing layer. The per-
formance of the view layer is just as important.

Using Helpers
That link function packs a surprising amount of punch into a small package.
Phoenix helpers provide a convenient way to drop common HTML structures
onto your view. There’s nothing special about them. Helpers are simply Elixir
functions. For example, you can call the functions directly in IEx:

$ iex -S mix

iex> Phoenix.HTML.Link.link("Home", to: "/")
{:safe, ["", "Home", ""]}

iex> Phoenix.HTML.Link.link("Delete", to: "/", method: "delete")
{:safe,

Chapter 3. Controllers, Views, and Templates • 46

report erratum • discuss

http://pragprog.com/titles/phoenix/errata/add
http://forums.pragprog.com/forums/phoenix

[["<form action=\"/\" class=\"link\" method=\"post\">",
"<input name=\"_method\" type=\"hidden\" value=\"delete\">
<input name=\"_csrf_token\" type=\"hidden\" value=\"UhdjBFUcOh...\">"],

["<a data-submit=\"parent\" href=\"#\">", "[x]", ""], "</form>"]}

The second argument to our link function is a keyword list, with the to: argu-
ment specifying the target. We use a path that’s automatically created for our
:show route to specify the link target. Now you can see that our list has the
three users we fetched from our repository:

At this point you may be wondering where the HTML helpers come from. At
the top of each view, you can find the following definition: use Rumbl.Web, :view.
This code snippet is the one responsible for setting up our view modules,
importing all required functionality. Open up web/web.ex to see exactly what’s
imported into each view:

controllers_views_templates/rumbl/web/web.ex
def view do

quote do
use Phoenix.View, root: "web/templates"

Import convenience functions from controllers
import Phoenix.Controller, only: [get_csrf_token: 0,

get_flash: 2,
view_module: 1]

Use all HTML functionality (forms, tags, etc)
use Phoenix.HTML

import Rumbl.Router.Helpers
import Rumbl.ErrorHelpers
import Rumbl.Gettext

end
end

Phoenix.HTML is responsible for the HTML functionality in views, from generating
links to working with forms. Phoenix.HTML also provides HTML safety: by default,
applications are safe from cross-site scripting (XSS) attacks, because only the
markup generated by Phoenix.HTML functions is considered safe. That’s why the
link function returns a tuple. The first element of the tuple—the :safe
atom—indicates that the content in the second element is known to be safe.

report erratum • discuss

Using Helpers • 47

http://media.pragprog.com/titles/phoenix/code/controllers_views_templates/rumbl/web/web.ex
http://pragprog.com/titles/phoenix/errata/add
http://forums.pragprog.com/forums/phoenix

To learn about existing HTML helpers, visit the Phoenix.HTML documentation.1

Keep in mind that the web.ex file is not a place to attach your own functions.
You want to keep this file skinny and easy to understand. For example, the
contents of the view function will be macro-expanded to each and every view!
So remember, in web.ex, prefer import statements to defining your own functions.

That’s a good amount of progress so far. Let’s create one more action, and
the corresponding template, to round out our actions.

Showing a User
Now that we’ve created the code to show a list of users, we can work on
showing a single user. To refresh your memory, let’s look at the route we
created earlier:

get "/users/:id", UserController, :show

That’s easy enough. On a request to /users/:id, where :id is part of the inbound
URL, the router will add at least two things we’ll need to conn, including the
:id that’s part of the URL, and the action name, :show. Then, the router will
call the plugs in our pipeline, and then the UserController. To show a single user
using this request, we need a controller action, which we add to web/con-
trollers/user_controller.ex:

controllers_views_templates/listings/rumbl/web/controllers/user_controller.change1.ex
def show(conn, %{"id" => id}) do

user = Repo.get(Rumbl.User, id)
render conn, "show.html", user: user

end

Now, you can see why Plug breaks out the params part of the inbound conn.
We can use params to extract the individual elements our action needs. In this
case, we’re matching on the "id" key to populate the id variable. We then use
that to fetch a record from Repo, and use that to render the result.

When you point the browser to localhost:4000/users/1, predictably, Phoenix screams
at you. You’ve not yet built the template.

Add that to web/templates/user/show.html.eex:

controllers_views_templates/listings/rumbl/web/templates/user/show.html.eex
<h1>Showing User</h1>
<%= first_name(@user) %> (<%= @user.id %>)

1. http://hexdocs.pm/phoenix_html

Chapter 3. Controllers, Views, and Templates • 48

report erratum • discuss

http://media.pragprog.com/titles/phoenix/code/controllers_views_templates/listings/rumbl/web/controllers/user_controller.change1.ex
http://media.pragprog.com/titles/phoenix/code/controllers_views_templates/listings/rumbl/web/templates/user/show.html.eex
http://hexdocs.pm/phoenix_html
http://pragprog.com/titles/phoenix/errata/add
http://forums.pragprog.com/forums/phoenix

Point your browser to /users/1. You can see the first user, with the dynamic
content piped in as we require.

Naming Conventions
When Phoenix renders templates from a controller, it infers the name of the
view module, Rumbl.UserView, from the name of the controller module, Rumbl.User-
Controller. The view modules infer their template locations from the view module
name. In our example, our Rumbl.UserView would look for templates in the
web/templates/user/ directory. Phoenix uses singular names throughout, avoiding
confusing pluralization rules and naming inconsistencies.

You’ll see how to customize these conventions later. For now, know that you
can let Phoenix save you some time by letting the good old computer do the
work for you. Break the rules if you have to, but if you’re smart about it, you’ll
save some tedious ceremony along the way.

Nesting Templates
Often there’s a need to reduce duplication in the templates themselves. For
example, both of our templates have common code that renders a user. Take
the common code and create a user template in web/templates/user/user.html.eex:

<%= first_name(@user) %> (<%= @user.id %>)

We create another template to render a user. Then, whenever we build tables
or listings of users in many different contexts, we can share the code that we
update only once. Now, change your show.html.eex template to render it:

<h1>Showing User</h1>
<%= render "user.html", user: @user %>

Also, change your index.html.eex template to render it:

<tr>
<td><%= render "user.html", user: user %></td>
<td><%= link "View", to: user_path(@conn, :show, user.id) %></td>

</tr>

At this point, it’s worth emphasizing that a view in Phoenix is just a module,
and templates are just functions. When we add a template named web/tem-
plates/user/user.html.eex, the view extracts the template from the filesystem and
makes it a function in the view itself. That’s why we need the view in the first
place. Let’s build on this thought inside iex -S mix:

iex> user = Rumbl.Repo.get Rumbl.User, "1"
%Rumbl.User{...}

report erratum • discuss

Showing a User • 49

http://pragprog.com/titles/phoenix/errata/add
http://forums.pragprog.com/forums/phoenix

iex> view = Rumbl.UserView.render("user.html", user: user)
{:safe, [[[[["" | ""] | "José"] | " ("] | "1"] | ")\n"]}

iex> Phoenix.HTML.safe_to_string(view)
"José (1)\n"

We fetch a user from the repository and then render the template directly.
Because Phoenix has the notion of HTML safety, render returns a tuple, tagged
as :safe, and the contents are stored in a list for performance. We convert this
safe and fast representation into a string by calling Phoenix.HTML.safe_to_string.

Each template in our application becomes a render(template_name, assigns) clause
in its respective view. So, rendering a template is a combination of pattern
matching on the template name and executing the function. Because the
rendering contract is so simple, nothing is stopping developers from defining
render clauses directly on the view module, skipping the whole template. This
is the technique used in Rumbl.ErrorView, a view invoked by Phoenix whenever
our application contains errors:

controllers_views_templates/rumbl/web/views/error_view.ex
def render("404.html", _assigns) do

"Page not found"
end

def render("500.html", _assigns) do
"Server internal error"

end

The Phoenix.View module—the one used to define the views themselves—also
provides functions for rendering views, including a function to render and
convert the rendered template into a string in one pass:

iex> user = Rumbl.Repo.get Rumbl.User, "1"
%Rumbl.User{...}

iex> Phoenix.View.render(Rumbl.UserView, "user.html", user: user)
{:safe, [[[[["" | ""] | "José"] | " ("] | "1"] | ")\n"]}

iex> Phoenix.View.render_to_string(Rumbl.UserView, "user.html", user: user)
"José (1)\n"

Behind the scenes, Phoenix.View calls render in the given view and adds some
small conveniences, like wrapping our templates in layouts whenever one is
available. Let’s find out how.

Layouts
When we call render in our controller, instead of rendering the desired view
directly, the controller first renders the layout view, which then renders the

Chapter 3. Controllers, Views, and Templates • 50

report erratum • discuss

http://media.pragprog.com/titles/phoenix/code/controllers_views_templates/rumbl/web/views/error_view.ex
http://pragprog.com/titles/phoenix/errata/add
http://forums.pragprog.com/forums/phoenix

actual template in a predefined markup. This allows developers to provide a
consistent markup across all pages without duplicating it over and over again.

Since layouts are regular views with templates, all the knowledge that you’ve
gained so far applies to them. In particular, each template receives a couple
of special assigns when rendering, namely @view_module and @view_template. You
can see these in web/templates/layout/app.html.eex:

controllers_views_templates/rumbl/web/templates/layout/app.html.eex
<p class="alert alert-info" role="alert"><%= get_flash(@conn, :info) %></p>
<p class="alert alert-danger" role="alert"><%= get_flash(@conn, :error) %></p>

<%= render @view_module, @view_template, assigns %>

</div> <!-- /container -->
<script src="<%= static_path(@conn, "/js/app.js") %>"></script>

It’s just pure HTML with a render call of render @view_module, @view_template, assigns,
but it doesn’t need to be restricted to HTML. As in any other template, the
connection is also available in layouts as @conn, giving you access to any
other helper in Phoenix. When you call render in your controller, you’re actu-
ally rendering with the :layout option set by default. This allows you to render
the view and template for your controller action in the layout with a plain
render function call. No magic is happening here.

We can tweak the existing layout to be a little more friendly to our application.
Rather than slog through a bunch of CSS and HTML here, we’ll let you work
out your own design. If you choose to do so, replace the layout you find at
web/templates/layout/app.html.eex with one you like better. As always, you’ll see
your browser autoupdate.

We’re just about done here. By now, our growing company valuation is
somewhere north of, well, the tree house you built in the third grade. Don’t
worry, though: things will pick up in a hurry. You’re going to go deeper faster
than you thought possible.

Wrapping Up
We packed a ton into this chapter. Let’s summarize what you’ve done:

• We created a simple repository. We did so to simplify your plunge into
the world of controllers and views.

• We created actions, which serve as the main point of control for each
request.

• We created views, which exist to render templates.

report erratum • discuss

Wrapping Up • 51

http://media.pragprog.com/titles/phoenix/code/controllers_views_templates/rumbl/web/templates/layout/app.html.eex
http://pragprog.com/titles/phoenix/errata/add
http://forums.pragprog.com/forums/phoenix

• We created templates, which generate HTML for our users.

• We employed helpers, which are simple Phoenix functions used in tem-
plates.

• We used layouts, which are HTML templates that embed an action’s HTML.

In the next chapter, we’re going to replace our homegrown repository with a
database-backed one using Ecto. By the time we’re done, we’ll be reading our
users from the database and entering new users with forms.

Don’t stop now! Things are just getting interesting.

Chapter 3. Controllers, Views, and Templates • 52

report erratum • discuss

http://pragprog.com/titles/phoenix/errata/add
http://forums.pragprog.com/forums/phoenix

CHAPTER 4

Ecto and Changesets
Up to now, we’ve been focusing on our application’s presentation layer with
views and templates, and controlling those views with controllers. Our backend
uses a simple in-memory repository instead of a real database. There’s a
method to our madness, though. That repository uses the same API as Ecto,
the Elixir framework for persistence. In this chapter, we’ll convert our appli-
cation to use a real Ecto repository backed by a Postgres database. By the
time you’re done, your repository will be able to save users and search for
them using an advanced query API.

Understanding Ecto
If you’ve used persistence frameworks like LINQ in .NET or Active Record in
Rails, you’ll see some common threads in Ecto but also some significant dif-
ferences. Ecto is a wrapper that’s primarily intended for relational databases,
allowing developers to read and persist data to underlying storage such as
PostgreSQL. It has an encapsulated query language that you can use to build
layered queries that can then be composed into more-sophisticated ones.

Ecto also has a feature called changesets that holds all changes you want to
perform on the database. It encapsulates the whole process of receiving
external data, casting and validating it before writing it to the database.

In this chapter, we’ll start with a basic database-backed repository. We’ll then
move on to creating data and managing updates with changesets, saving most
of the query language for later.

Ecto is likely going to be a little different from many of the persistence layers
you’ve used before. If you want Ecto to get something, you have to explicitly
ask for it. This feature will probably seem a little tedious to you at first, but

report erratum • discuss

http://pragprog.com/titles/phoenix/errata/add
http://forums.pragprog.com/forums/phoenix

it’s the only way to guarantee that your application has predictable perfor-
mance when the amount of data grows.

We’re going to use Ecto’s first-ever implementation, PostgreSQL. Install
PostgreSQL, consulting the Postgres homepage1 for details if necessary.

When we set up our in-memory repository, we briefly changed lib/rumbl/repo.ex
to remove the default Ecto repository. Let’s change it back to what Phoenix
included by default, like this:

ecto/listings/rumbl/lib/rumbl/repo.ex
defmodule Rumbl.Repo do

use Ecto.Repo, otp_app: :rumbl
end

We also disabled the Ecto Repo supervisor in our supervision tree. Let’s reen-
able it by uncommenting the supervisor in lib/rumbl.ex:

ecto/listings/rumbl/lib/rumbl.change1.ex
supervisor(Rumbl.Endpoint, []),
Start the Ecto repository
supervisor(Rumbl.Repo, []),

Ecto is an Elixir library, and it’s configured like any other application. You
can find the development configuration in config/dev.exs:

ecto/rumbl/config/dev.exs
config :rumbl, Rumbl.Repo,

adapter: Ecto.Adapters.Postgres,
username: "postgres",
password: "postgres",
database: "rumbl_dev",
hostname: "localhost",
pool_size: 10

We specify the default repository for our application and also the database
adapter it’ll use. We also tell Ecto to use our Postgres database, and we
specify the username, password, and database parameters. You need to replace
those with your own database username and password. We’ll use the Postgres
adapter, which is included by Phoenix. If you’d like, you can configure Ecto
with MySQL, MSSQL, SQLite, and more. You can expect this list to grow.

Now it’s time to create a real database-backed Ecto repository. When you type
the following command, Ecto creates the underlying database, if it’s not
already there:

$ mix ecto.create

1. http://www.postgresql.org/

Chapter 4. Ecto and Changesets • 54

report erratum • discuss

http://media.pragprog.com/titles/phoenix/code/ecto/listings/rumbl/lib/rumbl/repo.ex
http://media.pragprog.com/titles/phoenix/code/ecto/listings/rumbl/lib/rumbl.change1.ex
http://media.pragprog.com/titles/phoenix/code/ecto/rumbl/config/dev.exs
http://www.postgresql.org/
http://pragprog.com/titles/phoenix/errata/add
http://forums.pragprog.com/forums/phoenix

The database for Rumbl.Repo has been created.

As yet, we haven’t done the heavy lifting to specify our users. We’ve only tied
Phoenix to this Postgres database. Let’s create some schemas and tie those
tables to code.

Defining the User Schema and Migration
Ecto has a DSL that specifies the fields in a struct and the mapping between
those fields and the database tables. Let’s use that now. To define our schema,
replace the contents in web/models/user.ex with the following:

ecto/listings/rumbl/web/models/user.ex
defmodule Rumbl.User do

use Rumbl.Web, :model

schema "users" do
field :name, :string
field :username, :string
field :password, :string, virtual: true
field :password_hash, :string

timestamps
end

end

This DSL is built with Elixir macros. The schema and field macros let us specify
both the underlying database table and the Elixir struct. Each field corresponds
to both a field in the database and a field in our local User struct. The primary
key is automatically defined and defaults to :id. We also add a virtual field for
our password, since we need an intermediate field before hashing the password
in the password_hash field. Virtual fields are not persisted to the database. After
the schema definition, Ecto defines an Elixir struct for us, which we can create
by calling %Rumbl.User{} as we did before.

Finally, our schema uses use Rumbl.Web, :model at the top. Take a look at web/web.ex
to see everything it injects into our Rumbl.User module:

ecto/rumbl/web/web.ex
def model do

quote do
use Ecto.Schema

import Ecto
import Ecto.Changeset
import Ecto.Query, only: [from: 1, from: 2]

end
end

report erratum • discuss

Defining the User Schema and Migration • 55

http://media.pragprog.com/titles/phoenix/code/ecto/listings/rumbl/web/models/user.ex
http://media.pragprog.com/titles/phoenix/code/ecto/rumbl/web/web.ex
http://pragprog.com/titles/phoenix/errata/add
http://forums.pragprog.com/forums/phoenix

For now, it only uses Ecto.Schema and imports functions to work with changesets
and queries, but this function serves as an extension point that’ll let us
explicitly alias, import, or use the various libraries our model layer might
need. With Ecto, you needn’t worry about plugins and external packages
adding or removing functionality behind the scenes.

We’ve treated our code with care, and we should give our database at least
the same level of respect. Now that we have our Repo and User schema config-
ured, we need to make the database reflect the structure of our application.
Phoenix uses migrations for that purpose. A migration changes a database
to match the structure our application needs. For our new feature, we need
to add a migration to create our users table with columns matching our User
schema.

$ mix ecto.gen.migration create_user
* creating priv/repo/migrations
* creating priv/repo/migrations/20150916023702_create_user.exs

The mix ecto.gen.migration creates a migration file for us with a special timestamp
to ensure ordering of our database migrations. Note that your migration file-
name is different from ours because Ecto prepends a timestamp to maintain
the ordering of migrations. Key in these changes within your empty change
function:

ecto/listings/rumbl/priv/repo/migrations/20150916023702_create_user.exs
defmodule Rumbl.Repo.Migrations.CreateUser do

use Ecto.Migration

def change do
create table(:users) do
add :name, :string
add :username, :string, null: false
add :password_hash, :string

timestamps
end

create unique_index(:users, [:username])
end

end

In the dark days of persistence frameworks, before migrations were common-
place, changes to the database weren’t versioned with the source code. Often,
those changes weren’t even automated. That strategy was fine if new code
worked the first time, but it opened the door for problems:

• When deploying new code, programmers often introduced errors when
changing the database.

Chapter 4. Ecto and Changesets • 56

report erratum • discuss

http://media.pragprog.com/titles/phoenix/code/ecto/listings/rumbl/priv/repo/migrations/20150916023702_create_user.exs
http://pragprog.com/titles/phoenix/errata/add
http://forums.pragprog.com/forums/phoenix

What Is a Model?

At this point, you may be asking yourself, "What is a model?" In Phoenix, models,
controllers, and views are layers of functions. Just as a controller is a layer to trans-
form requests and responses according to a communication protocol, the model is
nothing more than a group of functions to transform data according to our business
requirements.

In this book, we use the word schema to describe the native form of the data, and
the word struct to refer to the data itself, but structs are not models. In fact, many
functions from our model layer might not deal with our application’s structs at all.
They can manipulate other structures such as changesets and queries. The important
thing to understand is that the model is the layer of functions that supports our
business rules rather than the data that flows through those functions.

• The high stress of code rollbacks led to frequent mistakes when changes
were rolled back under pressure.

• Building a fresh development environment was tough because the schema
history was too fragmented.

In general, migrating a database, both up for a successful deploy and down
for an unsuccessful deploy, should be an automated and repeatable process.
The Ecto.Migration API2 provides several functions to create, remove, and change
database tables, fields, and indexes. These functions also have counterparts
to do the reverse. Here, we used the create, add, and timestamps macros to build
our users table and matched the fields with our User schema. For example,
add creates a new field, and timestamps creates a couple of fields for us, inserted_at
and updated_at.

Now all that’s left is to migrate up our database:

$ mix ecto.migrate
[info] == Running Rumbl.Repo.Migrations.CreateUser.change/0 forward
[info] create table users
[info] create index users_username_index
[info] == Migrated in 0.3s

Be careful. The ecto.migrate task will migrate the database for your current
environment. So far, we’ve been running the dev environment. To change the
environment, you’d set the MIX_ENV operating-system environment variable.

Now, our database is configured, and the schema exists. Phoenix is built on
top of OTP, a layer for reliably managing services. We can use OTP to start
key services like Ecto repositories in a supervised process so that Ecto and

2. http://hexdocs.pm/ecto/Ecto.Migration.html

report erratum • discuss

Defining the User Schema and Migration • 57

http://hexdocs.pm/ecto/Ecto.Migration.html
http://pragprog.com/titles/phoenix/errata/add
http://forums.pragprog.com/forums/phoenix

Phoenix can do the right thing in case our repository crashes. The process
that manages all this is called Rumbl.Repo, and we start it in our application’s
supervision tree in lib/rumbl.ex, like this:

children = [
...
Start the Ecto repository
supervisor(Rumbl.Repo, []),
...

]

Now that our configuration is established, let’s take it for a spin.

Using the Repository to Add Data
With our database ready, we can begin to persist our User structs. Let’s hop
into an IEx shell and create the users that we previously hard-coded in our
in-memory repository. We’ll worry about hashing the password later.

This Is a Bad Idea

You don’t want to store plain-text passwords into your database!
We’ll temporarily save plain-text passwords only as an intermediate
step toward a more sophisticated user authentication system.

Spin up your console with iex -S mix, and insert some data:

iex> alias Rumbl.Repo
iex> alias Rumbl.User

iex> Repo.insert(%User{
...> name: "José", username: "josevalim", password_hash: "<3<3elixir"
...> })
[debug] INSERT INTO "users" ("inserted_at", "name", "password_hash", ...
{:ok,
%Rumbl.User{__meta__: #Ecto.Schema.Metadata<:loaded>, id: 1,
inserted_at: #Ecto.DateTime<2015-09-23T03:23:32Z>, name: "José",
password: nil, password_hash: "<3<3elixir",
updated_at: #Ecto.DateTime<2015-09-23T03:23:32Z>,
username: "josevalim"}}

iex> Repo.insert(%User{
...> name: "Bruce", username: "redrapids", password_hash: "7langs"
...> })

...
iex> Repo.insert(%User{
...> name: "Chris", username: "cmccord", password_hash: "phoenix"
...> })

Chapter 4. Ecto and Changesets • 58

report erratum • discuss

http://pragprog.com/titles/phoenix/errata/add
http://forums.pragprog.com/forums/phoenix

And we’re up! You can see that Ecto is creating the id field and populating
our timestamps for us. You might be curious to see whether we can use it
the same way we used our UserController to find users. Let’s take a look:

iex> Repo.all(User)
[debug] SELECT u0."id", u0."name", u0."username", u0."password_hash",

u0."inserted_at", u0."updated_at" FROM "users" AS u0 [] OK query=229.4ms)
[%Rumbl.User{__meta__: #Ecto.Schema.Metadata<:loaded>,

id: 1, ..., name: "José", password_hash: "<3<3elixir", ... },
%Rumbl.User{__meta__: #Ecto.Schema.Metadata<:loaded>,

id: 2, ..., name: "Bruce", password_hash: "7langs", ... },
%Rumbl.User{__meta__: #Ecto.Schema.Metadata<:loaded>,
id: 3, ..., name: "Chris", password_hash: "phoenix",...}]

iex> Repo.get(User, 1)
[debug] SELECT u0."id", u0."name", u0."username",

u0."password_hash", u0."inserted_at",
u0."updated_at" FROM "users"
AS u0
WHERE (u0."id" = $1) [1] OK query=136.6ms queue=20.0ms

%Rumbl.User{__meta__: #Ecto.Schema.Metadata<:loaded>,
id: 1, ..., name: "José", password_hash: "<3<3elixir", ... }

We haven’t touched the controller at all, but you’ll find that our changes are
already working for us. Our Repo API remains exactly the same, but we’re
fetching records from the database instead. That’s one of the strengths of
repositories. One interface can have many different implementations, and
even configurations. Visit our users page and view the logs to see the inserted
records:

$ mix phoenix.server
[info] Running Hello.Endpoint with Cowboy on http://localhost:4000

Now visit http://localhost:4000/users as before, but watch the logs to see Ecto’s SQL
statements being executed:

[info] GET /users
[debug] Processing by Rumbl.UserController.index/2

Parameters: %{}
Pipelines: [:browser]

[debug] SELECT u0."id", u0."name", u0."username", u0."password_hash",
u0."inserted_at", u0."updated_at" FROM "users" AS u0 [] (3.6ms)

[info] Sent 200 in 1ms

You can see that we’re fetching data from the database instead of the in-
memory store. We’re making plenty of progress here, but there’s still work to
do. Let’s build some forms to create new users via a web interface.

report erratum • discuss

Using the Repository to Add Data • 59

http://pragprog.com/titles/phoenix/errata/add
http://forums.pragprog.com/forums/phoenix

Building Forms
Now that we have a database-backed repository, let’s add the ability to create
new users in our system. We’re going to use Phoenix’s form builders for that
purpose. First, open up your controller at web/controllers/user_controller.ex and set
up a new user record for our new template, like this:

ecto/listings/rumbl/web/controllers/user_controller.change1.ex
alias Rumbl.User

def new(conn, _params) do
changeset = User.changeset(%User{})
render conn, "new.html", changeset: changeset

end

Notice the User.changeset function. This function receives a struct and the con-
troller parameter, and returns an Ecto.Changeset. Changesets let Ecto manage
record changes, cast parameters, and perform validations. We use a changeset
to build a customized strategy for dealing with each specific kind of change,
such as creating a user or updating sensitive information. Let’s add a changeset
function to our User module in web/models/user.ex with some essential validations:

ecto/listings/rumbl/web/models/user.change1.ex
def changeset(model, params \\ :empty) do

model
|> cast(params, ~w(name username), [])
|> validate_length(:username, min: 1, max: 20)

end

Our changeset accepts a User struct and parameters. We then pass the cast
function a list of words to tell Ecto that name and username are required, and
there are no optional fields. cast makes sure we provide all necessary required
fields. Then, it casts all required and optional values to their schema types,
rejecting everything else.

We pipe cast, which returns an Ecto.Changeset, into validate_length to validate the
username length. Ecto.Changeset defines both cast and validate_length, so we import
it as part of the model function in web/web.ex.

For now, because we haven’t listed password as either a required or optional
field, our changeset ignores it. This is superb, given that our password-
hashing system still isn’t in place, and storing passwords in clear text would
be dangerous.

Chapter 4. Ecto and Changesets • 60

report erratum • discuss

http://media.pragprog.com/titles/phoenix/code/ecto/listings/rumbl/web/controllers/user_controller.change1.ex
http://media.pragprog.com/titles/phoenix/code/ecto/listings/rumbl/web/models/user.change1.ex
http://pragprog.com/titles/phoenix/errata/add
http://forums.pragprog.com/forums/phoenix

Chris says:

Why Is the Second Parameter :empty?
If no parameters are specified, we can’t just default to an empty map, because that
would be indistinguishable from a blank form submission. Instead, we default params
to the :empty atom. By convention, Ecto will produce an invalid changeset, with empty
parameters.

At this point, you might wonder why Ecto adds this little bit of complexity
through changesets. You may have seen other frameworks that add validations
directly to the schema. We could simply write a set of one-size-fits-all valida-
tions and then pass a set of updated attributes to the create or update API.

When conventional persistence frameworks allow one-size-fits-all validations,
they’re forced to work harder and manage change across multiple concerns.
Here’s the problem. Imagine that your boss lays down the requirement of
logging into your application through Facebook. That update requires a dif-
ferent kind of password validation, and a different kind of enforcement for
password rules, so you build a custom validation and tweak your model layer
in clever ways to trigger the right password rules at the right time. Then, your
increasingly irritating boss asks for a JSON API, and your JSON programmers
aren’t content with the cute “Oops, we broke something” error messages that
seemed to work fine for end users. You dig deeply into the persistence API
and decide that the error reporting no longer works for you. Your stomach
sinks as it does for that first roller coaster drop while you hope against hope
that the car will rise again, but you instinctively know that this ride is at its
zenith. It’s always downhill from here.

One size does not fit all when it comes to update strategies. Validations, error
reporting, security, and the like can change. When they do, if your single
update policy is tightly coupled to a schema, it’ll hurt. The changeset lets Ecto
decouple update policy from the schema, and that’s a good thing because
you can handle each update policy in its own separate changeset function.
You’ll see a good example of this policy segregation when your learn about
authentication.

Now that we’ve updated our models and controllers to handle new users, we
need to add the new action to our router. Replace your main router scope with
the following code:

report erratum • discuss

Building Forms • 61

http://pragprog.com/titles/phoenix/errata/add
http://forums.pragprog.com/forums/phoenix

ecto/listings/rumbl/web/router.change1.ex
scope "/", Rumbl do

pipe_through :browser

get "/", PageController, :index
resources "/users", UserController, only: [:index, :show, :new, :create]

end

resources is a shorthand implementation for a common set of actions that follow
a convention called REST. In general, REST allows users to use the web almost
like a database, using create, read, update, and delete operations to access
resources via simple HTTP verbs. We use the resources macro to add a bunch
of common routes that we’d otherwise need to write by hand. Since index and
show already followed this convention, we remove the two get macros for the
:index and :show actions, and we replace them with the resources macro. Since
we don’t need the edit or delete actions, we pass the :only option to explicitly list
the routes we want generated. The following would be equivalent to a resources
"/users", UserController declaration:

get "/users", UserController, :index
get "/users/:id/edit", UserController, :edit
get "/users/new", UserController, :new
get "/users/:id", UserController, :show
post "/users", UserController, :create
patch "/users/:id", UserController, :update
put "/users/:id", UserController, :update
delete "/users/:id", UserController, :delete

Sure, the resources macro has been known to reduce carpal tunnel syndrome
almost as much as an ergonomic workspace, but it’s more than a keystroke
saver. By keeping to these conventions where you can, you’re also communi-
cating in a language that other programmers also understand. Creating these
routes also makes additional functions available. You can use routes by name
to build links, HTML elements, and the like.

If at any time you want to see all available routes, you can run the phoenix.routes
Mix task, like this:

$ mix phoenix.routes
page_path GET / Rumbl.PageController :index
user_path GET /users Rumbl.UserController :index
user_path GET /users/new Rumbl.UserController :new
user_path GET /users/:id Rumbl.UserController :show
user_path POST /users Rumbl.UserController :create

With the route behind us, let’s move on to the template. Now create a new
file named web/templates/user/new.html.eex and add this:

Chapter 4. Ecto and Changesets • 62

report erratum • discuss

http://media.pragprog.com/titles/phoenix/code/ecto/listings/rumbl/web/router.change1.ex
http://pragprog.com/titles/phoenix/errata/add
http://forums.pragprog.com/forums/phoenix

ecto/listings/rumbl/web/templates/user/new.html.eex
<h1>New User</h1>

<%= form_for @changeset, user_path(@conn, :create), fn f -> %>
<div class="form-group">

<%= text_input f, :name, placeholder: "Name", class: "form-control" %>
</div>
<div class="form-group">

<%= text_input f, :username, placeholder: "Username", class: "form-control" %>
</div>
<div class="form-group">

<%= password_input f, :password, placeholder: "Password", class: "form-control" %>
</div>
<%= submit "Create User", class: "btn btn-primary" %>

<% end %>

Use a helper function, rather than HTML tags, to build the form, giving it an
anonymous function. form_for provides conveniences like security, UTF-8
encoding, and more. The function takes three arguments: a changeset, a
path, and an anonymous function. That function takes one argument, the
form data we’re labeling f. We’re asking the template engine to build a function
returning everything in the template between fn f -> and end. You can see the
additional helpers in play as well. These build three input fields and a submit
tag. Similar to link, all those helpers are documented in the Phoenix.HTML library.3

If we visit http://localhost:4000/users/new in our browser to inspect the generated
HTML, we see the following markup:

<form accept-charset="UTF-8" action="/users" method="post">
<input name="_csrf_token"

type="hidden"
value="MFgTPhAieHUgGzJ2OiRDXXw3Luc7wV7h/reiiA==">

<input name="_utf8" type="hidden" value="✓">
<div class="form-group">

<input class="form-control"
id="user_name"
name="user[name]"
placeholder="Name"
type="text">

</div>
<div class="form-group">

<input class="form-control"
id="user_username"
name="user[username]"
placeholder="Username"
type="text">

</div>

3. http://hexdocs.pm/phoenix_html

report erratum • discuss

Building Forms • 63

http://media.pragprog.com/titles/phoenix/code/ecto/listings/rumbl/web/templates/user/new.html.eex
http://hexdocs.pm/phoenix_html
http://pragprog.com/titles/phoenix/errata/add
http://forums.pragprog.com/forums/phoenix

<div class="form-group">
<input class="form-control"

id="user_password"
name="user[password]"
placeholder="Password"
type="password">

</div>
<input class="btn btn-primary" type="submit" value="Create User">

</form>

You can see all of the work the form_for tag and the other helper functions are
doing for you. The special _csrf_token hidden parameter was injected for us,
and it makes sure that a user’s requests are hard to spoof across sites. Also,
though we didn’t specify the name user with each of our text fields, the
parameter names like user[name] and user[password] were pulled from our
changeset.

José says:

How Does Phoenix Know Which Data to Show in
the Form?

Our application passes a changeset from Ecto to the form_for helper. The Phoenix team
had a problem. How should we make the changes in the changeset available to the
form? We could have hard-coded form_for to directly use Ecto.Changeset, but we weren’t
happy with that choice. It would be brittle and hard to extend.

Imagine that your company decides to build an in-house data abstraction for some
new technology and you want to integrate it with Phoenix. With forms tightly coupled
to changesets, you’d be lost. You’d have to either rewrite forms or fork Phoenix. We
needed a contract. Elixir protocols are the perfect solution to this problem.

To solve the form_for coupling problem, we defined a protocol named Phoenix.HTML.Form-
Data, which separates the interface from the implementation. Ecto.Changeset implements
this protocol to convert its internal data to the structure required by Phoenix forms,
all properly documented in the Phoenix.HTML.FormData contract.

You can probably guess where the data will go. The form will send a POST
request to "/users", but we haven’t yet created the action for it. Let’s do that
now.

Creating Resources
Recall our changes to the router.ex file, when we added the resources "/users" macro
to router.ex to build a set of conventional routes. One new route maps posts to
"/users" to the UserController.create action. Add a create function to UserController:

Chapter 4. Ecto and Changesets • 64

report erratum • discuss

http://pragprog.com/titles/phoenix/errata/add
http://forums.pragprog.com/forums/phoenix

ecto/listings/rumbl/web/controllers/user_controller.change2.ex
def create(conn, %{"user" => user_params}) do

changeset = User.changeset(%User{}, user_params)
{:ok, user} = Repo.insert(changeset)

conn
|> put_flash(:info, "#{user.name} created!")
|> redirect(to: user_path(conn, :index))

end

This pattern of code should be getting familiar to you by now. We keep piping
functions together until the conn has the final result that we want. Each
function does an isolated transform step. We do the backend code first, cre-
ating the changeset and then inserting it into the repository. Then, we take
the connection and transform it twice, adding a flash message with the put_flash
function, and then add a redirect instruction with the redirect function. Both
of these are simple plug functions that we use to transform the connection,
one step at a time.

Now let’s try it out by visiting http://localhost:4000/users/new:

And when we click Create User, we should be sent back to the users index
page to see our inserted user:

report erratum • discuss

Creating Resources • 65

http://media.pragprog.com/titles/phoenix/code/ecto/listings/rumbl/web/controllers/user_controller.change2.ex
http://pragprog.com/titles/phoenix/errata/add
http://forums.pragprog.com/forums/phoenix

We still have work to do, though. Type a username that’s too long, and you’re
greeted with Phoenix’s debug error page with the error “no match of right
hand side value.”

We were expecting a result of the shape {:ok, user} but got {:error, changeset}. Our
validations failed, and we got a result indicating so. To fix this problem, let’s
check for both outcomes, showing relevant validation errors upon failure.
First we need to update our UserController to react to an invalid changeset:

ecto/listings/rumbl/web/controllers/user_controller.change3.ex
def create(conn, %{"user" => user_params}) do

changeset = User.changeset(%User{}, user_params)
case Repo.insert(changeset) do

{:ok, user} ->
conn
|> put_flash(:info, "#{user.name} created!")
|> redirect(to: user_path(conn, :index))

{:error, changeset} ->
render(conn, "new.html", changeset: changeset)

end
end

We insert the new user record and then match on the return code. On success,
we add a flash message to the conn and then redirect to the user_path, which
takes us to the index action. On error, we simply render the new.html template,
passing the conn and the changeset with the failed validations.

Next, let’s show the validation errors for each form input field in web/tem-
plates/user/new.html.eex:

ecto/listings/rumbl/web/templates/user/new.change1.html.eex
<%= if @changeset.action do %>

<div class="alert alert-danger">
<p>Oops, something went wrong! Please check the errors below.</p>

</div>
<% end %>

<div class="form-group">
<%= text_input f, :name, placeholder: "Name", class: "form-control" %>
<%= error_tag f, :name %>

</div>
<div class="form-group">

<%= text_input f, :username, placeholder: "Username", class: "form-control" %>
<%= error_tag f, :username %>

</div>
<div class="form-group">

<%= password_input f, :password, placeholder: "Password", class: "form-control" %>
<%= error_tag f, :password %>

</div>

Chapter 4. Ecto and Changesets • 66

report erratum • discuss

http://media.pragprog.com/titles/phoenix/code/ecto/listings/rumbl/web/controllers/user_controller.change3.ex
http://media.pragprog.com/titles/phoenix/code/ecto/listings/rumbl/web/templates/user/new.change1.html.eex
http://pragprog.com/titles/phoenix/errata/add
http://forums.pragprog.com/forums/phoenix

The :action field of a changeset indicates an action we tried to perform on it,
such as :insert in this case. By default it’s nil when we build a new changeset,
so if our form is rendered with any truthy action, we know validation errors
have occurred. In our code, we first check for the existence of @changeset.action.
If it’s present, we show a validation notice at the top of the form. Next, we use
the error_tag helper defined in web/views/error_helpers.ex to display an error tag next
to each form input with the validation error for each field.

Now try again to submit your form with invalid fields:

Presto!

If you’ve not yet appreciated the Ecto strategy for changesets, this code should
help. The changeset had all validation errors because the Ecto changeset
carries the validations and stores this information for later use. In addition
to validation errors, the changesets also track changes!

Let’s see how that works. Crack open IEx:

iex> changeset = Rumbl.User.changeset(%Rumbl.User{username: "eric"})
%Ecto.Changeset{changes: %{}, ...}

iex> import Ecto.Changeset
nil

iex> changeset = put_change(changeset, :username, "ericmj")
%Ecto.Changeset{changes: %{username: "ericmj"}, ...}

iex> changeset.changes
%{username: "ericmj"}

iex> get_change(changeset, :username)
"ericmj"

report erratum • discuss

Creating Resources • 67

http://pragprog.com/titles/phoenix/errata/add
http://forums.pragprog.com/forums/phoenix

Now you have a more complete picture. Ecto is using changesets as a bucket
to hold everything related to a database change, before and after persistence.
You can use this information to do more than see what changed. Ecto lets
you write code to do the minimal required database operation to update a
record. If a particular change must be checked against a database constraint,
such as a unique index, changesets do that. If Ecto can enforce validations
without hitting the database, you can do that too. You’ll explore the broader
changeset API, validations, and strategies as we build out the rest of our
application.

Wrapping Up
It’s a good time to pause and take stock of what we’ve done. It’s been a busy
chapter.

• We began the chapter by introducing Ecto and announcing our intention
to replace the in-memory repository with a database-backed repository
using Ecto.

• We configured our new database and connected it to OTP, so that Elixir
could do the right thing in the event of a Phoenix or Ecto crash.

• We created a schema, complete with information about each necessary
field.

• We created a migration, to help us specify our database tables and auto-
mate doing and undoing any database changes.

• We created a changeset so Ecto could efficiently track and manage each
change requested by our application.

• We integrated this change into our application.

We’ve already come a long way, and we’re only a few chapters in. We’re ready
to handle some more-sophisticated application features. Let’s get rolling. In
the next chapter, you’ll use some of these new features to authenticate a user.

Chapter 4. Ecto and Changesets • 68

report erratum • discuss

http://pragprog.com/titles/phoenix/errata/add
http://forums.pragprog.com/forums/phoenix

CHAPTER 5

Authenticating Users
We have something that is starting to look like an application. Our database-
backed repository is wired to our controller using changesets and forms. Let’s
ramp up the sophistication with real login forms, sessions, and password
hashing. Rather than use something off the shelf, we can build it ourselves.
Along the way you’ll learn more about Ecto changesets and plugs, and we’ll
introduce session handling.

As you’ve seen, Phoenix makes it easy to add functionality to your application
from bottom to top. Authentication forms the foundation for your whole
application’s security system, though, so we’re going to be sure each decision
is right.

Preparing for Authentication
Authentication is one of those features that can make or break your whole
application experience. Programmers need to be able to easily layer on the
right services and to direct requests where they need to go. Administrators
need to trust the underlying policies, and also to configure the password
constraints. Initially, we’ll plan our approach and install the necessary
dependencies.

Our approach to authentication will be a conventional one. Users will provide
credentials when registering. We’ll store those in the database in a secure
way. A user starting a session will need to provide the credentials, and we’ll
check those against our database. We’ll mark each user as authenticated in
the session, so that users are granted access until their sessions expire or
they log out.

Above all else, we want this system to be secure. We won’t write the dicey
parts ourselves, and we’ll make sure that we use approaches that are well

report erratum • discuss

http://pragprog.com/titles/phoenix/errata/add
http://forums.pragprog.com/forums/phoenix

understood to be secure. We’ll use as much as we can from Phoenix, and we’ll
rely on the comeonin package to handle the critical hashing piece.

We’re going to start with the hashing of the user’s password. We’ll use comeonin
because it uses up-to-date and secure hashing schemes. Like the best tools,
it’s also easy to use, so there’s less to break. Add :comeonin to your mix.exs
dependencies to handle password hashing, like this:

defp deps do
[...,
{:comeonin, "~> 2.0"}]

end

Next, add :comeonin to your applications list so it’s started with your app:

authentication/listings/rumbl/mix.change1.exs
def application do

[mod: {Rumbl, []},
applications: [:phoenix, :phoenix_html, :cowboy, :logger, :gettext,

:phoenix_ecto, :postgrex, :comeonin]]
end

An application is what you think it is: a collection of modules that work
together and can be managed as a whole. They generally handle critical ser-
vices, like the ones in the list in mix.change1.exs. So far, our application relies
on :phoenix and :phoenix_ecto, as you’d expect, but also :logger for logging services,
the :postgrex database driver, :gettext for internationalization, and now :comeonin
for managing our password hashing.

Now run mix deps.get to fetch your new dependencies, like this:

$ mix deps.get

When you’re done, the :comeonin application library is in the deps directory,
and it’s started before your own :rumbl application is started. Now that our
preparations are out of the way, we’re ready to begin the implementation.

Managing Registration Changesets
You’ve already seen a changeset for creating a new user—the one that handles
the name and username. Let’s review that now:

authentication/rumbl/web/models/user.ex
def changeset(model, params \\ :empty) do

model
|> cast(params, ~w(name username), [])
|> validate_length(:username, min: 1, max: 20)

end

Chapter 5. Authenticating Users • 70

report erratum • discuss

http://media.pragprog.com/titles/phoenix/code/authentication/listings/rumbl/mix.change1.exs
http://media.pragprog.com/titles/phoenix/code/authentication/rumbl/web/models/user.ex
http://pragprog.com/titles/phoenix/errata/add
http://forums.pragprog.com/forums/phoenix

The Ecto.Changeset.cast function converts that naked map to a changeset and,
for security purposes, limits the inbound parameters to the ones you specify.
Then, we fire a validation limiting the length of valid usernames to one to
twenty characters. Remember, we need to supply :empty parameters instead
of an empty map so Ecto can distinguish our blank new changeset from an
empty form submission and skip validations. A failing validation sets errors
in the changeset that we can then display to the user.

We use the preceding changeset to handle all of the attributes except the
password, so we can use it for updating nonsensitive information, as a user
would do on that user’s profile page. The next changeset manages our pass-
word, like this:

authentication/listings/rumbl/web/models/user.change1.ex
def registration_changeset(model, params) do

model
|> changeset(params)
|> cast(params, ~w(password), [])
|> validate_length(:password, min: 6, max: 100)
|> put_pass_hash()

end

We need to convert the password to a more secure hashed value for the
database. That changeset calls the first changeset, casts it to accept the
password parameter, validates the length of our password, and then calls a
private function to hash our password and add it to the results.

Here you can see how easy it is to compose with changesets. We used our
base changeset function to apply the required parameters to the username valida-
tion. Then we validated our virtual password field. Notice that it’s trivial to
validate our virtual password field, though we’re not actually storing that value
in the database! Persistence is not strongly coupled to our change policies.

Next, we pipe to a put_pass_hash function that performs our password hashing.
Let’s see how that works:

authentication/listings/rumbl/web/models/user.change1.ex
defp put_pass_hash(changeset) do

case changeset do
%Ecto.Changeset{valid?: true, changes: %{password: pass}} ->
put_change(changeset, :password_hash, Comeonin.Bcrypt.hashpwsalt(pass))

_ ->
changeset

end
end

report erratum • discuss

Managing Registration Changesets • 71

http://media.pragprog.com/titles/phoenix/code/authentication/listings/rumbl/web/models/user.change1.ex
http://media.pragprog.com/titles/phoenix/code/authentication/listings/rumbl/web/models/user.change1.ex
http://pragprog.com/titles/phoenix/errata/add
http://forums.pragprog.com/forums/phoenix

We first check if the changeset is valid so we won’t waste time hashing an
invalid or missing password. Then, we use comeonin to hash our password,
following the instructions in the readme file. Finally, we put the result into the
changeset as password_hash. If the changeset is invalid, we simply return it to
the caller.

The changesets make our code slightly more complex for trivial cases. Rather
than marking the schema with specific validations that all callers must use,
we must specify independent changesets. In the long run, we bet that changes
from multiple clients with different validation and tracking requirements will
make our application much simpler. If our experience with past applications
is any indication, it’s a pretty safe bet.

Let’s take it for a spin:

iex> alias Rumbl.User
iex> changeset = User.registration_changeset(%User{}, %{
...> username: "max", name: "Max", password: "123"
... })
%Ecto.Changeset{action: nil,
changes: %{name: "Max", password: "123", username: "max"}, constraints: [],
errors: [password: {"should be at least %{count} character(s)", [count: ...

iex> changeset.valid?
false

iex> changeset.changes
%{name: "Max", password: "123", username: "max"}

As we expected, creating a user with our registration changeset and a bad
password results in an invalid changeset. When we inspect the changeset.changes,
we can see that password_hash is missing because we didn’t bother hashing a
password we knew to be invalid. Let’s continue and see what happens when
we create a valid registration changeset:

iex> changeset = User.registration_changeset(%User{}, %{
...> username: "max", name: "Max", password: "123 super secret"
...> })
%Ecto.Changeset{action: nil,
changes: %{name: "Max", password: "123 super secret",

password_hash: "$2b$12$UM7/YxK02GSwumyIoHtnIH8J4iHKLOXyim",
username: "max"}, constraints: [], errors: [], filters: %{}, ...

iex> changeset.valid?
true

iex> changeset.changes
%{name: "Max", password: "123 super secret",

password_hash: "$2b$12$UM7/YxK02GSwUIQl1M5QK.57IpucPnmumyIoHtnIH8J4iHKLOXyim",
username: "max"}

Chapter 5. Authenticating Users • 72

report erratum • discuss

http://pragprog.com/titles/phoenix/errata/add
http://forums.pragprog.com/forums/phoenix

When given a valid password, our changeset applies the put_pass_hash function
and puts a change for our password_hash field, but we now have an issue. The
users we inserted up to this point all have plain-text passwords, which won’t
be valid with the system’s new password-hashing behavior. Let’s fix that now
by updating our existing users with properly hashed passwords. Key this into
your IEx session:

iex>
for u <- Rumbl.Repo.all(User) do

Rumbl.Repo.update!(User.registration_changeset(u, %{
password: u.password_hash || "temppass"

}))
end

Now our new and existing users alike will have valid, secure passwords. The
readers with a strong security background can now exhale. We’re no longer
storing passwords in the clear in our database. There’s no longer any danger
that this toxic early prototype could escape from the lab. Now that things are
working more safely, let’s integrate that new code into our controller.

Creating Users
The create action in the UserController must now use our new registration_changeset,
like this:

authentication/listings/rumbl/web/controllers/user_controller.change1.ex
def create(conn, %{"user" => user_params}) do

changeset = User.registration_changeset(%User{}, user_params)
case Repo.insert(changeset) do

{:ok, user} ->
conn
|> put_flash(:info, "#{user.name} created!")
|> redirect(to: user_path(conn, :index))

{:error, changeset} ->
render(conn, "new.html", changeset: changeset)

end
end

We use pattern matching to pick off the user_params from the inbound form.
We create a registration changeset, and if it’s valid, we insert it and present
the result to the user. If not, we simply render the new template again, with
the changeset, which now has the errors from our failed validations.

You should be smiling now. Our changeset insulates our controller from the
change policies encoded in our model layer while keeping the model free of
side effects. Similar to connection pipelines, validations are a pipeline of
functions that transform the changeset. The changeset is a data structure

report erratum • discuss

Creating Users • 73

http://media.pragprog.com/titles/phoenix/code/authentication/listings/rumbl/web/controllers/user_controller.change1.ex
http://pragprog.com/titles/phoenix/errata/add
http://forums.pragprog.com/forums/phoenix

that explicitly tracks changes and their validity. The actual change happens
only when we call the repository in the controller.

Now we should be able to visit http://localhost:4000/users/new and create new users
with our registration changeset. We have a problem, though. Newly registered
users are not automatically logged in, and users still can’t log in or log out
at will.

We need to create an authentication service and make it available throughout
our system. You’ve used plugs created by others, but for this job it’s time you
learn to create your own. We’ll implement authentication as a plug. That way
we can add it to a pipeline in our router so other controllers can use it as
needed.

The Anatomy of a Plug
Before we build our plug, let’s take a deep dive into the Plug library and learn
how plugs work from the inside. There are two kinds of plugs: module plugs
and function plugs. A function plug is a single function. A module plug is a
module that provides two functions with some configuration details. Either
way, they work the same.

We have seen both kinds of plugs in use. From the endpoint module in
lib/rumbl/endpoint.ex, you can see an example of a module plug:

plug Plug.Logger

You specify a module plug by providing the module name. In the router, you
can see an example of a function plug:

plug :protect_from_forgery

You specify a function plug with the name of the function as an atom. Because
a module is just a collection of functions, it strengthens the idea that plugs
are just functions.

For our first plug, we’ll write a module plug that encapsulates all the
authentication logic in one place.

Module Plugs
Sometimes you might want to share a plug across more than one module. In
that case, you can use a module plug. To satisfy the Plug specification, a
module plug must have two functions, named init and call.

The simplest possible module plug returns the given options on init and the
given connection on call. This plug does nothing:

Chapter 5. Authenticating Users • 74

report erratum • discuss

http://pragprog.com/titles/phoenix/errata/add
http://forums.pragprog.com/forums/phoenix

defmodule NothingPlug do
def init(opts) do

opts
end

def call(conn, _opts) do
conn

end
end

Remember, a typical plug transforms a connection. The main work of a
module plug happens in call. In our NothingPlug, we simply pass the connection
through without changes. The call will happen at runtime.

Sometimes, you might want to let the programmer change the behavior of a
plug. We can do that work in the second argument to call, options. In our
NothingPlug, we don’t need any more information to do our job, so we ignore
the options.

Sometimes, you might need Phoenix to do some heavy lifting to transform
options. That’s the job of the init function. init will happen at compile time. Plug
uses the result of init as the second argument to call. Because init is called at
compilation time, it’s the perfect place to validate options and prepare some
of the work. That way, call can be as fast as possible. Since call is the workhorse,
we want it to do as little work as possible.

For both module and function plugs, the request interface is the same. conn,
the first argument, is the data we pass through every plug. It has the details
for any request, and we morph it in tiny steps until we eventually send a
response. All plugs take a conn and return a conn.

You’ll see piped functions using a common data structure over and over in
Elixir. The trick that makes this tactic work is having the right common data
structure. Since Plug works with web APIs, our data structure will specify
the typical details of the web server’s domain.

In Phoenix, you’ll see connections, usually abbreviated conn, literally every-
where. At the end of the day, the conn is only a Plug.Conn struct, and it forms
the foundation for Plug.

Plug.Conn Fields
You can find great online documentation for Plug.Conn.1 This structure has the
various fields that web applications need to understand about web requests
and responses. Let’s look at some of the supported fields.

1. http://hexdocs.pm/plug/Plug.Conn.html

report erratum • discuss

The Anatomy of a Plug • 75

http://hexdocs.pm/plug/Plug.Conn.html
http://pragprog.com/titles/phoenix/errata/add
http://forums.pragprog.com/forums/phoenix

Request fields contain information about the inbound request. They’re parsed
by the adapter for the web server you’re using. Cowboy is the default web
server that Phoenix uses, but you can also choose to plug in your own. These
fields contain strings, except where otherwise specified:

host
The requested host. For example, www.pragprog.com.

method
The request method. For example, GET or POST.

path_info
The path, split into a List of segments. For example, ["admin", "users"].

req_headers
A list of request headers. For example, [{"content-type", "text/plain"}].

scheme
The request protocol as an atom. For example, :https.

You can get other information as well, such as the query string, the remote
IP address, the port, and the like. For Phoenix, if a web request’s information
is available from the web server’s adapter, it’s in Plug.Conn.

Next comes a set of fetchable fields. A fetchable field is empty until you
explicitly request it. These fields require a little time to process, so they’re left
out of the connection by default until you want to explicitly fetch them:

cookies
These are the request cookies with the response cookies.

params
These are the request parameters. Some plugs help to parse these
parameters from the query string, or from the request body.

Next are a series of fields that are used to process web requests. These fields
help to encrypt cookies, process user-defined functions, and the like. Here
are some of the fields you’ll encounter:

assigns
This user-defined map contains anything you want to put in it.

halted
Sometimes a connection must be halted, such as a failed authorization.
In this case, the halting plug sets this flag.

Chapter 5. Authenticating Users • 76

report erratum • discuss

http://pragprog.com/titles/phoenix/errata/add
http://forums.pragprog.com/forums/phoenix

state
This field contains the state of the connection. You can know if a response
has been :set, :sent, or more by introspecting it.

You can also find a secret_key_base for everything related to encryption.

Since the Plug framework handles the whole life cycle of a request, including
both the request and the response, Plug.Conn provides fields for the response:

resp_body
Initially an empty string, the response body will contain the HTTP response
string when it’s available.

resp_cookies
The resp_cookies has the outbound cookies for the response.

resp_headers
These headers follow the HTTP specification and contain information such
as the response type and caching rules.

status
The response code generally contains 200–299 for success, 300–399 for
redirects, 400–499 for not-found, and 500+ for errors.

Finally, Plug supports some private fields reserved for the adapter and
frameworks:

adapter
Information about the adapter is created here.

private
This field has a map for the private use of frameworks.

Initially, a conn comes in almost blank and is filled out progressively by different
plugs in the pipeline. For example, the endpoint may parse parameters, and
the application developer will set fields primarily in assigns. Functions that
render set the response fields such as status, change the state, and so on.

Plug.Conn also defines many functions that directly manipulate those fields,
which makes abstracting the work of doing more complex operations such
as managing cookies or sending files straightforward.

Now that you have a little more knowledge, we’re ready to transform the
connection by writing our first plug.

report erratum • discuss

The Anatomy of a Plug • 77

http://pragprog.com/titles/phoenix/errata/add
http://forums.pragprog.com/forums/phoenix

Writing an Authentication Plug
The authentication process works in two stages. First, we’ll store the user ID
in the session every time a new user registers or a user logs in. Second, we’ll
check if there’s a new user in the session and store it in conn.assigns for every
incoming request, so it can be accessed in our controllers and views. Let’s
start with the second part because it’s a little easier to follow.

Create a file called web/controllers/auth.ex that looks like this:

authentication/listings/rumbl/web/controllers/auth.ex
defmodule Rumbl.Auth do

import Plug.Conn

def init(opts) do
Keyword.fetch!(opts, :repo)

end

def call(conn, repo) do
user_id = get_session(conn, :user_id)
user = user_id && repo.get(Rumbl.User, user_id)
assign(conn, :current_user, user)

end
end

In the init function, we take the given options, extracting the repository. Key-
word.fetch! raises an exception if the given key doesn’t exist, so Rumbl.Auth always
requires the :repo option.

call receives the repository from init and then checks if a :user_id is stored in the
session. If one exists, we look it up and assign the result in the connection.
assign is a function imported from Plug.Conn that slightly transforms the connec-
tion—in this case, storing the user (or nil) in conn.assigns. That way, the :cur-
rent_user will be available in all downstream functions including controllers
and views.

Let’s add our plug to the router, at the end of the browser pipeline:

authentication/listings/rumbl/web/router.change1.ex
pipeline :browser do

plug :accepts, ["html"]
plug :fetch_session
plug :fetch_flash
plug :protect_from_forgery
plug :put_secure_browser_headers
plug Rumbl.Auth, repo: Rumbl.Repo

end

With our plug in place, we can begin to use this information downstream.

Chapter 5. Authenticating Users • 78

report erratum • discuss

http://media.pragprog.com/titles/phoenix/code/authentication/listings/rumbl/web/controllers/auth.ex
http://media.pragprog.com/titles/phoenix/code/authentication/listings/rumbl/web/router.change1.ex
http://pragprog.com/titles/phoenix/errata/add
http://forums.pragprog.com/forums/phoenix

Restricting Access
The Rumbl.Auth plug processes the request information and transforms the conn,
adding :current_user to conn.assigns. Now, downstream plugs can use it to find
out if a user is logged in.

We’ll use this information to restrict access to pages where we list or show
user information. Specifically, we don’t want to allow users to access the :index
and :show actions of Rumbl.UserController unless they’re logged in.

Open up Rumbl.UserController and add the following function:

authentication/listings/rumbl/web/controllers/user_controller.change2.ex
defp authenticate(conn) do

if conn.assigns.current_user do
conn

else
conn
|> put_flash(:error, "You must be logged in to access that page")
|> redirect(to: page_path(conn, :index))
|> halt()

end
end

If there’s a current user, we return the connection unchanged. Otherwise we
store a flash message and redirect back to our application root. We use halt(conn)
to stop any downstream transformations.

Let’s invoke the authenticate function from index to try it out:

authentication/listings/rumbl/web/controllers/user_controller.change2.ex
def index(conn, _params) do

case authenticate(conn) do
%Plug.Conn{halted: true} = conn ->
conn

conn ->
users = Repo.all(User)
render conn, "index.html", users: users

end
end

Now visit http://localhost:4000/users, where we’re redirected back to the root with
a message telling us to log in, as shown in the screenshot on page 80.

We could make the same changes to the show action, invoking our plug and
honoring halt. And we could do the same thing every time we require authen-
tication. We’d also have code that’s repetitive, ugly, and error prone. We need
to plug the authenticate function for the actions to be protected. Let’s do that.

report erratum • discuss

Writing an Authentication Plug • 79

http://media.pragprog.com/titles/phoenix/code/authentication/listings/rumbl/web/controllers/user_controller.change2.ex
http://media.pragprog.com/titles/phoenix/code/authentication/listings/rumbl/web/controllers/user_controller.change2.ex
http://pragprog.com/titles/phoenix/errata/add
http://forums.pragprog.com/forums/phoenix

Like endpoints and routers, controllers also have their own plug pipeline.
Each plug in the controller pipeline is executed in order, before the action is
invoked. The controller pipeline lets us explicitly choose which actions fire
any given plug.

To plug the authenticate function, we must first make it a function plug. A
function plug is any function that receives two arguments—the connection
and a set of options—and returns the connection. With a minor tweak, we
can satisfy that contract. You need only add an options variable, which you’ll
ignore:

authentication/listings/rumbl/web/controllers/user_controller.change3.ex
defp authenticate(conn, _opts) do

if conn.assigns.current_user do
conn

else
conn
|> put_flash(:error, "You must be logged in to access that page")
|> redirect(to: page_path(conn, :index))
|> halt()

end
end

Now let’s plug it in our controller, right after use Rumbl.Web:

authentication/listings/rumbl/web/controllers/user_controller.change3.ex
plug :authenticate when action in [:index, :show]

Then, change the index action back to its previous state, like this:

Chapter 5. Authenticating Users • 80

report erratum • discuss

http://media.pragprog.com/titles/phoenix/code/authentication/listings/rumbl/web/controllers/user_controller.change3.ex
http://media.pragprog.com/titles/phoenix/code/authentication/listings/rumbl/web/controllers/user_controller.change3.ex
http://pragprog.com/titles/phoenix/errata/add
http://forums.pragprog.com/forums/phoenix

authentication/listings/rumbl/web/controllers/user_controller.change3.ex
def index(conn, _params) do

users = Repo.all(Rumbl.User)
render conn, "index.html", users: users

end

Visit http://localhost:4000/users to see our plug in action. We redirect, exactly as
we should.

Let’s take a minute to appreciate the code we’ve written so far. A small change
to our authentication lets us plug it before every action. We can also share it
with any other controllers or even move it to a router pipeline, restricting
whole sections of our application with minor changes. None of these features
relies on magical inheritance mechanisms, only our explicit lists of functions
in our plug pipelines.

At this point, you may also be wondering what happened with halt. When we
changed the index action, we had to explicitly check if the connection halted
or not, before acting on it. Plug pipelines explicitly check for halted: true between
every plug invocation, so the halting concern is neatly solved by Plug.

In fact, you’re seeing Elixir macro expansion in action. Let’s take an arbitrary
example. Suppose you write code like this:

plug :one
plug Two
plug :three, some: :option

It would compile to:

case one(conn, []) do
%{halted: true} = conn -> conn
conn ->

case Two.call(conn, Two.init([])) do
%{halted: true} = conn -> conn
conn ->

case three(conn, some: :option) do
%{halted: true} = conn -> conn
conn -> conn

end
end

end

Elixir macros and macro expansion are beyond the scope of this book. What
you need to know is that at some point in the compile process, Elixir would
translate the first example to the second. Conceptually, not much is happening
here, and that’s exactly the beauty behind Plug. For each plug, we invoke it
with the given options, check if the returned connection halted, and move

report erratum • discuss

Writing an Authentication Plug • 81

http://media.pragprog.com/titles/phoenix/code/authentication/listings/rumbl/web/controllers/user_controller.change3.ex
http://pragprog.com/titles/phoenix/errata/add
http://forums.pragprog.com/forums/phoenix

forward if it didn’t. It’s a simple abstraction that allows us to express and
compose both simple and complex functionality.

With all that said, we already have a mechanism for loading data from the
session and using it to restrict user access. But we still don’t have a mecha-
nism to log the users in.

Logging In
Let’s add a tiny function to Rumbl.Auth that receives the connection and the
user, and stores the user ID in the session:

authentication/listings/rumbl/web/controllers/auth.change1.ex
def login(conn, user) do

conn
|> assign(:current_user, user)
|> put_session(:user_id, user.id)
|> configure_session(renew: true)

end

As you recall, the Plug.Conn struct has a field called assigns. We call setting a
value in that structure an assign. Our function stores the given user as the
:current_user assign, puts the user ID in the session, and finally configures the
session, setting the :renew option to true. The last step is extremely important
and it protects us from session fixation attacks. It tells Plug to send the session
cookie back to the client with a different identifier, in case an attacker knew,
by any chance, the previous one.

Let’s go back to the Rumbl.UserController.create action and change it to call the
login function after we insert the user in the database:

authentication/listings/rumbl/web/controllers/user_controller.change2.ex
def create(conn, %{"user" => user_params}) do

changeset = User.registration_changeset(%User{}, user_params)
case Repo.insert(changeset) do

{:ok, user} ->
conn
|> Rumbl.Auth.login(user)
|> put_flash(:info, "#{user.name} created!")
|> redirect(to: user_path(conn, :index))

{:error, changeset} ->
render(conn, "new.html", changeset: changeset)

end
end

Now visit http://localhost:4000/users/new, register a new user, and try to access the
pages that we restricted previously. As you can see, the user can finally access
them.

Chapter 5. Authenticating Users • 82

report erratum • discuss

http://media.pragprog.com/titles/phoenix/code/authentication/listings/rumbl/web/controllers/auth.change1.ex
http://media.pragprog.com/titles/phoenix/code/authentication/listings/rumbl/web/controllers/user_controller.change2.ex
http://pragprog.com/titles/phoenix/errata/add
http://forums.pragprog.com/forums/phoenix

Implementing Login and Logout
We made great progress in the last section. We created a module plug that
loads information from the session, used this information to restrict user
access and then created the functionality that allows us to finally store users
in the session.

We’re almost done with our authentication feature. We need to implement
both login and logout functionality, as well as change the layout to include
links to those pages.

First things first. We need to add some new routes to web/router.ex:

authentication/listings/rumbl/web/router.change2.ex
scope "/", Rumbl do

pipe_through :browser # Use the default browser stack

get "/", PageController, :index
resources "/users", UserController, only: [:index, :show, :new, :create]
resources "/sessions", SessionController, only: [:new, :create, :delete]

end

We add three of the prepackaged REST routes for /sessions. We use the REST
routes for GET /sessions/new to show a new session login form, POST /sessions to log
in, and DELETE /sessions/:id to log out.

Next, we need a SessionController to handle those actions. Create a web/controllers/ses-
sion_controller.ex, like this:

authentication/listings/rumbl/web/controllers/session_controller.ex
defmodule Rumbl.SessionController do

use Rumbl.Web, :controller

def new(conn, _) do
render conn, "new.html"

end
end

The new action simply renders our login form. We need a second action, create,
to handle the form submission, like this:

report erratum • discuss

Implementing Login and Logout • 83

http://media.pragprog.com/titles/phoenix/code/authentication/listings/rumbl/web/router.change2.ex
http://media.pragprog.com/titles/phoenix/code/authentication/listings/rumbl/web/controllers/session_controller.ex
http://pragprog.com/titles/phoenix/errata/add
http://forums.pragprog.com/forums/phoenix

authentication/listings/rumbl/web/controllers/session_controller.change1.ex
def create(conn, %{"session" => %{"username" => user, "password" =>

pass}}) do
case Rumbl.Auth.login_by_username_and_pass(conn, user, pass, repo:

Repo) do
{:ok, conn} ->
conn
|> put_flash(:info, "Welcome back!")
|> redirect(to: page_path(conn, :index))

{:error, _reason, conn} ->
conn
|> put_flash(:error, "Invalid username/password combination")
|> render("new.html")

end
end

That create action picks off the inbound arguments for username as user, and
for password as pass. Then, we call an as-yet-undefined helper function called
Rumbl.Auth.login_by_username_and_pass. On success, we report a success flash
message to the user and redirect to page_path. Otherwise, we report a failure
message to our user and render new again.

Let’s implement Rumbl.Auth.login_by_username_and_pass next, alongside the
remaining authentication logic:

authentication/listings/rumbl/web/controllers/auth.change2.ex
import Comeonin.Bcrypt, only: [checkpw: 2, dummy_checkpw: 0]

def login_by_username_and_pass(conn, username, given_pass, opts) do
repo = Keyword.fetch!(opts, :repo)
user = repo.get_by(Rumbl.User, username: username)

cond do
user && checkpw(given_pass, user.password_hash) ->
{:ok, login(conn, user)}

user ->
{:error, :unauthorized, conn}

true ->
dummy_checkpw()
{:error, :not_found, conn}

end
end

We fetch the repository from the given opts and look up a user with the specified
username. If we find a matching user, we log in, setting up the proper assigns
and updating the session. If the password doesn’t match but a user exists,
we return :unauthorized; otherwise we return :not_found. When a user isn’t found,
we use comeonin’s dummy_checkpw() function to simulate a password check with

Chapter 5. Authenticating Users • 84

report erratum • discuss

http://media.pragprog.com/titles/phoenix/code/authentication/listings/rumbl/web/controllers/session_controller.change1.ex
http://media.pragprog.com/titles/phoenix/code/authentication/listings/rumbl/web/controllers/auth.change2.ex
http://pragprog.com/titles/phoenix/errata/add
http://forums.pragprog.com/forums/phoenix

variable timing. This hardens our authentication layer against timing attacks,2

which is crucial to keeping our application secure.

We still need to create our view and template. Create a new web/views/ses-
sion_view.ex file that looks like this:

authentication/listings/rumbl/web/views/session_view.ex
defmodule Rumbl.SessionView do

use Rumbl.Web, :view
end

Next, we need a session directory for our new view, so create a web/templates/ses-
sion/new.html.eex with our new login form, like this:

authentication/listings/rumbl/web/templates/session/new.html.eex
<h1>Login</h1>

<%= form_for @conn, session_path(@conn, :create), [as: :session], fn f -> %>
<div class="form-group">

<%= text_input f, :username, placeholder: "Username", class: "form-control" %>
</div>
<div class="form-group">

<%= password_input f, :password, placeholder: "Password", class: "form-control" %>
</div>
<%= submit "Log in", class: "btn btn-primary" %>

<% end %>

We use form_for as in our new-user forms, but instead of passing a changeset,
we pass the %Plug.Conn{} struct. This technique is useful when you’re creating
forms that aren’t backed by a changeset, such as a login or search form. Let’s
visit /sessions/new in our browser and try some login attempts.

With a bad login, we see an error flash notice and our template rerendered:

Now let’s try a good login:

2. https://en.wikipedia.org/wiki/Timing_attack

report erratum • discuss

Implementing Login and Logout • 85

http://media.pragprog.com/titles/phoenix/code/authentication/listings/rumbl/web/views/session_view.ex
http://media.pragprog.com/titles/phoenix/code/authentication/listings/rumbl/web/templates/session/new.html.eex
https://en.wikipedia.org/wiki/Timing_attack
http://pragprog.com/titles/phoenix/errata/add
http://forums.pragprog.com/forums/phoenix

It works!

Presenting User Account Links
We’ve come a long way. We can now authenticate a user in a secure way.
We’re using a single function that we can reliably share across each feature
of the application that needs it. Now, we can turn our attention to showing
customized headers in our layout based on a user’s authentication status.
Let’s start with a welcome message and a logout link.

We want to change the layout of the application to handle the new user fea-
tures so that other views can also take advantage of these features. Let’s
update the layout in web/templates/layout/app.html.eex. Change it to look like this:

authentication/listings/rumbl/web/templates/layout/app.change1.html.eex
<div class="header">

<ol class="breadcrumb text-right">
<%= if @current_user do %>
<%= @current_user.username %>

<%= link "Log out", to: session_path(@conn, :delete, @current_user),
method: "delete" %>

<% else %>
<%= link "Register", to: user_path(@conn, :new) %>
<%= link "Log in", to: session_path(@conn, :new) %>

<% end %>

</div>

You can see our strategy. We test whether the user is authenticated by
checking if the @current_user is present. Because the user is stored in
conn.assigns.current_user, it’s automatically available as @current_user in our views.
To put it more broadly, everything in conn.assigns is available in our views.

If the user is available, we show the name, followed by a logout link. Otherwise,
we allow users to register themselves or log in. If you’re watching closely, you

Chapter 5. Authenticating Users • 86

report erratum • discuss

http://media.pragprog.com/titles/phoenix/code/authentication/listings/rumbl/web/templates/layout/app.change1.html.eex
http://pragprog.com/titles/phoenix/errata/add
http://forums.pragprog.com/forums/phoenix

can see that this template uses the session_path twice when building the login
and logout links. Each link function uses it a little differently, as you’ll see
when we break it down.

The code uses the Phoenix helpers to build a link:

link "Log out",
to: session_path(@conn, :delete, @current_user),
method: "delete"

The link:

• Has the text Log out

• Links to the session_path path with the @conn connection, the :delete action,
and the @current_user argument

• Uses the HTTP delete method

By passing the :method option to link, Phoenix generates a form tag instead of
an anchor tag. Links without a specified HTTP method will default to GET, and
Phoenix will render a simple link.

Let’s head back to our browser and try it out. When we visit http://localhost:4000,
we see the Log in link in the header:

report erratum • discuss

Presenting User Account Links • 87

http://pragprog.com/titles/phoenix/errata/add
http://forums.pragprog.com/forums/phoenix

Now sign in with one of the accounts you created earlier:

And it works.

Now that we have a working dynamic header with a Log out link, we need to
implement the delete action in our SessionController and handle clearing the
user’s session in our auth module. That’s nearly trivial to do.

First let’s do the work to delete the session in Rumbl.Auth:

authentication/listings/rumbl/web/controllers/auth.change2.ex
def logout(conn) do

configure_session(conn, drop: true)
end

This time we’re invoking configure_session and setting :drop to true, which will drop
the whole session at the end of the request. If you want to keep the session
around, you could also delete only the user ID information by calling
delete_session(conn, :user_id).

Now, we need only add the controller action. In web/controllers/session_controller.ex,
add the delete action, like this:

authentication/listings/rumbl/web/controllers/session_controller.change2.ex
def delete(conn, _) do

conn
|> Rumbl.Auth.logout()
|> redirect(to: page_path(conn, :index))

end

Following the link in our layout will now clear out the session and redirect
us to the root.

Wrapping Up
This chapter has been challenging, but we’ve come a long way. Let’s take
stock:

Chapter 5. Authenticating Users • 88

report erratum • discuss

http://media.pragprog.com/titles/phoenix/code/authentication/listings/rumbl/web/controllers/auth.change2.ex
http://media.pragprog.com/titles/phoenix/code/authentication/listings/rumbl/web/controllers/session_controller.change2.ex
http://pragprog.com/titles/phoenix/errata/add
http://forums.pragprog.com/forums/phoenix

• We added the comeonin dependency to our project.

• We built our own authentication layer.

• We built the associated changesets to handle validation of passwords.

• We implemented a module plug that loads the user from the session and
made it part of our browser pipeline.

• We implemented a function plug and used it alongside some specific
actions in our controller pipeline.

In the next chapter, you’ll dive deeper into Ecto’s waters by exploring relation-
ships. We’ll also begin to flesh out our application, using code generators to
speed us along.

report erratum • discuss

Wrapping Up • 89

http://pragprog.com/titles/phoenix/errata/add
http://forums.pragprog.com/forums/phoenix

CHAPTER 6

Generators and Relationships
So far, our look at Ecto has been pretty basic. We’ve fetched and written data
to the repository, but we still haven’t connected any models together. Rela-
tional databases like Postgres are named that way for a reason. Dealing with
related data is the defining characteristic of that whole family of databases,
so management of relationships is the feature that makes or breaks any
persistence layer. This chapter takes you on a deeper dive into Ecto by
exploring how to tie our schemas together in the database. We’ll use code
generators to accelerate the process, and you’ll walk through what these
generators do for us.

When you’re through, you’ll know how to take greater advantage of some of
the code generators in Phoenix, and you’ll have a better understanding of
Ecto relationships.

Using Generators
To dig into Ecto, we’re going to have to define relationships, and for that we
need to extend the domain of our application. That’s great, because our
application is going to need those features. Let’s define our problem in a little
more detail.

Adding Videos and Annotations
The rumbl application will let users choose a video. Then, they can attach their
comments, in real time. Users can play back these videos with comments
over time. See what it looks like in the figure on page 92.

Users create videos. Then, users can create annotations on those videos. If
you’ve ever seen Mystery Science Theater 3000, you know exactly what we’re
going for. In that show, some robots sat on the bottom of the screen, throwing
in their opinions about bad science fiction.

report erratum • discuss

http://pragprog.com/titles/phoenix/errata/add
http://forums.pragprog.com/forums/phoenix

User

Video

Annotation

Here’s how it’s going to work. Rather than building everything by hand as we
did with the User model, we’re going to use generators to build the skele-
ton—including the migration, controllers, and templates to bootstrap the
process for us. It’s going to happen fast, and we’re going to move through the
boilerplate quickly, so be sure to follow closely.

Generating Resources
Phoenix includes two Mix tasks to bootstrap applications. phoenix.gen.html creates
a simple HTTP scaffold with HTML pages, and phoenix.gen.json does the same
for a REST-based API using JSON. They give you a simple scaffold for a tradi-
tional web-based application with CRUD (create, read, update, and delete)
operations. You get migrations, controllers, and templates for basic CRUD
operations of a resource, as well as tests so you can hit the ground running.
You won’t write all your Phoenix code this way, but the generators are a great
way to get up and running quickly. They can also help new users learn how
the Phoenix layers fit together in the context of a working application.

Our application will need videos. We’ll start with a few fields, including:

• An associated User
• A creation time for the video
• A URL of the video location
• A title
• The type of the video

Later, our application will let users decorate these videos with annotations.
But first, we need users to be able to create and show their videos. Let’s use
the phoenix.gen.html Mix task to generate our resource, like this:

$ mix phoenix.gen.html Video videos user_id:references:users \
url:string title:string description:text

* creating priv/repo/migrations/20150826023759_create_video.exs
* creating web/models/video.ex
* creating test/models/video_test.exs
* creating web/controllers/video_controller.ex
* creating web/templates/video/edit.html.eex
* creating web/templates/video/form.html.eex

Chapter 6. Generators and Relationships • 92

report erratum • discuss

http://pragprog.com/titles/phoenix/errata/add
http://forums.pragprog.com/forums/phoenix

* creating web/templates/video/index.html.eex
* creating web/templates/video/new.html.eex
* creating web/templates/video/show.html.eex
* creating web/views/video_view.ex
* creating test/controllers/video_controller_test.exs

Add the resource to your browser scope in web/router.ex:

resources "/videos", VideoController

Remember to update your repository by running migrations:

$ mix ecto.migrate

All of the preceding files should look familiar to you, because you wrote a
similar stack of code for the user layer. Let’s break that command down.
Following the mix phoenix.gen.html command, we have:

• The name of the module that defines the model
• The plural form of the model name
• Each field, with some type information

This mix command may be more verbose than you’ve seen elsewhere. In some
frameworks, you might use simple one-time generator commands, which
leave it up to the framework to inflect plural and singular forms as requests
come and go. At the end of the day, it ends up adding complexity to the
framework—and, indirectly, to your application—only to save a few keystrokes
every once in a while.

This is a place where it pays to be explicit. For all things internal, Phoenix
frees you from memorizing unnecessary singular and plural conventions by
consistently using singular forms in models, controllers, and views. In your
application boundaries, such as URLs and table names, you provide a bit
more information, because you can use pluralized names. Since creating
plural forms is imperfect and rife with exceptions, the generator command is
the perfect place to tell Phoenix exactly what we need.

It’s time to follow up on the remaining instructions printed by the generator.
First, we need to add the route to web/router.ex:

resources "/videos", VideoController

The question is: in which pipeline? Let’s review what we know and come back
to that question shortly.

Our Video is a REST resource, and these routes work just like the ones we
created for User. As with the index and show actions in UserController, we also want
to restrict the video actions to logged-in users. We’ve already written the code
for authentication in the user controller. Let’s recap that now:

report erratum • discuss

Using Generators • 93

http://pragprog.com/titles/phoenix/errata/add
http://forums.pragprog.com/forums/phoenix

authentication/listings/rumbl/web/controllers/user_controller.change3.ex
defp authenticate(conn, _opts) do

if conn.assigns.current_user do
conn

else
conn
|> put_flash(:error, "You must be logged in to access that page")
|> redirect(to: page_path(conn, :index))
|> halt()

end
end

To share this function between routers and controllers, move it to Rumbl.Auth,
call it authenticate_user for clarity, make it public (use def instead of defp), import
our controller functions for put_flash and redirect, and alias our router helpers:

relationships/listings/rumbl/web/controllers/auth.change1.ex
import Phoenix.Controller
alias Rumbl.Router.Helpers

def authenticate_user(conn, _opts) do
if conn.assigns.current_user do

conn
else

conn
|> put_flash(:error, "You must be logged in to access that page")
|> redirect(to: Helpers.page_path(conn, :index))
|> halt()

end
end

You could be tempted to also import the router helpers, but we want to use
Rumbl.Auth in our router, so that would lead to a circular dependency between
the router and the auth module. An alias will suffice. Save the auth.ex file and
open up web/web.ex. Let’s share our new function across all controllers:

relationships/listings/rumbl/web/web.change1.ex
def controller do

quote do
use Phoenix.Controller

alias Rumbl.Repo
import Ecto
import Ecto.Query, only: [from: 1, from: 2]

import Rumbl.Router.Helpers
import Rumbl.Gettext
import Rumbl.Auth, only: [authenticate_user: 2] # New import

end
end

And let’s share it with the router:

Chapter 6. Generators and Relationships • 94

report erratum • discuss

http://media.pragprog.com/titles/phoenix/code/authentication/listings/rumbl/web/controllers/user_controller.change3.ex
http://media.pragprog.com/titles/phoenix/code/relationships/listings/rumbl/web/controllers/auth.change1.ex
http://media.pragprog.com/titles/phoenix/code/relationships/listings/rumbl/web/web.change1.ex
http://pragprog.com/titles/phoenix/errata/add
http://forums.pragprog.com/forums/phoenix

relationships/listings/rumbl/web/web.change1.ex
def router do

quote do
use Phoenix.Router

import Rumbl.Auth, only: [authenticate_user: 2] # New import
end

end

Next, we need to rename the :authenticate plug to :authenticate_user in our UserCon-
troller so it uses the newly imported function:

relationships/listings/rumbl/web/controllers/user_controller.change1.ex
plug :authenticate_user when action in [:index, :show]

Now, back to the router. Let’s define a new scope called /manage containing
the video resources. This scope pipes through the browser pipeline and our
newly imported authenticate_user function, like this:

relationships/listings/rumbl/web/router.change1.ex
scope "/manage", Rumbl do

pipe_through [:browser, :authenticate_user]

resources "/videos", VideoController
end

pipe_through works with a single pipeline, and it also supports a list of them.
Furthermore, because pipelines are also plugs, nothing is stopping us from
giving a plug, like authenticate_user, to pipe_through.

We now have a whole group of actions that allow the users to manage content.
In a business application, many of those groups of tasks would have a policy,
or checklist. Our combination of plugs with pipe_through allows developers to
mix and match those policies at will. Applications can use as many plugs and
pipelines as they need to do a job, organizing them in scopes.

We’re almost ready to give the generated code a try. Let’s run the last
instruction from the generator and update the database by running migrations:

$ mix ecto.migrate
Generated rumbl app
00:23:35.119 [info] == Running

Rumbl.Repo.Migrations.CreateVideo.change/0 forward
00:23:35.119 [info] create table videos
00:23:35.132 [info] create index videos_user_id_index
00:23:35.135 [info] == Migrated in 0.1s

Next start your server:

$ mix phoenix.server

report erratum • discuss

Using Generators • 95

http://media.pragprog.com/titles/phoenix/code/relationships/listings/rumbl/web/web.change1.ex
http://media.pragprog.com/titles/phoenix/code/relationships/listings/rumbl/web/controllers/user_controller.change1.ex
http://media.pragprog.com/titles/phoenix/code/relationships/listings/rumbl/web/router.change1.ex
http://pragprog.com/titles/phoenix/errata/add
http://forums.pragprog.com/forums/phoenix

And we’re all set. Head over to your browser and visit http://localhost:4000/man-
age/videos as a logged-in user. We see an empty list of videos:

Now let’s click New video to create a video. We see the generated form for a
new video:

Chapter 6. Generators and Relationships • 96

report erratum • discuss

http://pragprog.com/titles/phoenix/errata/add
http://forums.pragprog.com/forums/phoenix

Fill out the form and click Submit. You see a list of your new videos, just as
you should. We’re not yet scoping those to a given user, but we still have a
great start. We know that code generators like this one aren’t unique, that
dozens of other tools and languages do the same. Still, it’s a useful exercise
that can rapidly ramp up your understanding of Phoenix and even Elixir.
Let’s take a quick glance at what was generated.

Examining the Generated Controller and View
The generated controller is complete: it contains all REST actions, where both
create and update manipulate changesets before inserting or updating the
respective entry in the database.

The VideoController, like any other controller, also has a pipeline, and the Phoenix
generator plugs a function called scrub_params for the create and update actions:

plug :scrub_params, "video" when action in [:create, :update]

HTML forms don’t have the concept of nil, so every time blank input is sent
through the form, it arrives as an empty string to our Phoenix application. If
we didn’t scrub those empty strings out, they would leak throughout our
whole application, forcing us to differentiate between nil and blank strings
everywhere.

Instead, we can use the scrub_params function, letting us deal with that problem
right at the boundary. scrub_params checks and transforms any empty string
into nil for any data inside the video parameter, allowing us to treat our data
in a much more uniform way.

Finally, the view looks like an empty module, but at this point we know that
it’ll pick all templates in web/templates/video and transform them into functions,
such as render("index.html", assigns):

relationships/listings/rumbl/web/views/video_view.ex
defmodule Rumbl.VideoView do

use Rumbl.Web, :view
end

Take some time and read through the template files in web/templates/video/ to
see how Phoenix uses forms, links, and other HTML helpers. Next, you’ll read
about Ecto relationships, starting with the generated migration.

report erratum • discuss

Using Generators • 97

http://media.pragprog.com/titles/phoenix/code/relationships/listings/rumbl/web/views/video_view.ex
http://pragprog.com/titles/phoenix/errata/add
http://forums.pragprog.com/forums/phoenix

Generated Migrations
Let’s open up the video migration in priv/repo/migrations:

relationships/listings/rumbl/priv/repo/migrations/20150918023013_create_video.exs
def change do

create table(:videos) do
add :url, :string
add :title, :string
add :description, :text
add :user_id, references(:users, on_delete: :nothing)
timestamps

end

create index(:videos, [:user_id])
end

Phoenix generates a migration for all the fields that we passed on the command
line, like the migration we created by hand for our users table. You can see
that our generator made effective use of the type hints we provided. In rela-
tional databases, primary keys, such as our automatically generated id field,
identify rows. Foreign keys, such as our user_id field, point from one table to
the primary key in another one. At the database level, this foreign key lets
the database get in on the act of maintaining consistency across our two
relationships. Ecto is helping us to do the right thing.

The change function handles two database changes: one for migrating up and
one for migrating down. A migration up applies a migration, and a migration
down reverts it. This way, if you make a mistake and need to move a single
migration up or down, you can do so.

For example, let’s say you meant to add a view_count field to your generated
create_video migration before you migrated the database up. You could create
a new migration that adds your new field. Since you haven’t pushed your
changes upstream yet, you can roll back, make your changes, and then
migrate up again. First, you’d roll back your changes:

$ mix ecto.rollback
02:46:54.058 [info] == Running
Rumbl.Repo.Migrations.CreateVideo.change/0 backward
02:46:54.059 [info] drop index videos_user_id_index
02:46:54.060 [info] drop table videos
02:46:54.065 [info] == Migrated in 0.0s
$

We verify that our database was fully migrated up. Then we run mix ecto.rollback
to undo our CreateVideo migration. At this point, we could add our missing

Chapter 6. Generators and Relationships • 98

report erratum • discuss

http://media.pragprog.com/titles/phoenix/code/relationships/listings/rumbl/priv/repo/migrations/20150918023013_create_video.exs
http://pragprog.com/titles/phoenix/errata/add
http://forums.pragprog.com/forums/phoenix

view_count field. We don’t need a view_count at the moment, so let’s migrate back
up and carry on:

$ mix ecto.migrate
02:50:21.714 [info] == Running
Rumbl.Repo.Migrations.CreateVideo.change/0 forward
02:50:21.715 [info] create table videos
02:50:21.724 [info] create index videos_user_id_index
02:50:21.729 [info] == Migrated in 0.1s

The migration sets up the basic relationships between our tables and—now
that we’ve migrated back up—we’re ready to leverage those relationships in
our schemas.

Building Relationships
After the migration, Ecto generated a schema. This file is responsible for
identifying the fields in a way that ties in to both the database table and the
Elixir struct. Now let’s take a look at the schema in web/models/video.ex:

relationships/listings/rumbl/web/models/video.ex
schema "videos" do

field :url, :string
field :title, :string
field :description, :string
belongs_to :user, Rumbl.User

timestamps
end

Our schema sets up a belongs_to association, defining a :user_id field of type
:integer and an association field. Our migration defines a :user_id foreign key.
Ecto will use these elements to build the right association between our models.

The video module also includes a changeset function, similar to the one that
we defined for User. The only difference is between the required and optional
fields in two module attributes, making it easier for us to reuse them later:

relationships/listings/rumbl/web/models/video.ex
@required_fields ~w(url title description)
@optional_fields ~w()

def changeset(model, params \\ :empty) do
model
|> cast(params, @required_fields, @optional_fields)

end

The :user_id field is neither required nor optional in the previous example,
because many times the field doesn’t come from external data such as forms

report erratum • discuss

Building Relationships • 99

http://media.pragprog.com/titles/phoenix/code/relationships/listings/rumbl/web/models/video.ex
http://media.pragprog.com/titles/phoenix/code/relationships/listings/rumbl/web/models/video.ex
http://pragprog.com/titles/phoenix/errata/add
http://forums.pragprog.com/forums/phoenix

but, rather, directly from the application. That’s exactly our case. We’ll make
sure to associate the current user from the session to each new video.

To do so, let’s make sure our relationship goes both ways in our schemas. If
a video belongs to a user, we should add a has_many relationship to our User
schema in web/models/user.ex, like this:

relationships/listings/rumbl/web/models/user.change1.ex
schema "users" do

field :name, :string
field :username, :string
field :password, :string, virtual: true
field :password_hash, :string
has_many :videos, Rumbl.Video

timestamps
end

With the has_many statement, we now have a complete one-to-many association.
Now a user effectively has many videos. By defining these relationships, we can
now use Ecto’s association features. Fire up a new iex -S mix session, and let’s
fetch a user from the database and grab that user’s videos:

iex> alias Rumbl.Repo
iex> alias Rumbl.User
iex> import Ecto.Query

iex> user = Repo.get_by!(User, username: "josevalim")
%Rumbl.User{...}

iex> user.videos
#Ecto.Association.NotLoaded<association :videos is not loaded>

Ecto associations are explicit! When you want Ecto to fetch some records,
you need to ask. When you don’t ask, you can be sure that you won’t get
them. This decision may seem tedious at first, but it’s useful. One of the most
time-consuming things about dealing with persistence frameworks is that
they can often fetch rows you don’t need or fetch in inefficient ways. When
these kinds of changes cascade, you can quickly run up a tab that you’re
unable to pay.

Digging deeper, you can see that referencing videos returns Ecto.Assocation.Not-
Loaded. Let’s load some videos, like this:

iex> user = Repo.preload(user, :videos)
%Rumbl.User{...},

iex> user.videos
[]

Chapter 6. Generators and Relationships • 100

report erratum • discuss

http://media.pragprog.com/titles/phoenix/code/relationships/listings/rumbl/web/models/user.change1.ex
http://pragprog.com/titles/phoenix/errata/add
http://forums.pragprog.com/forums/phoenix

That’s the ticket. Repo.preload accepts one or a collection of association names,
and it can fetch all associated data—in this case, :videos. After Ecto fetches
the association, we can reference the user.videos. To make this more meaningful,
we need some associated data. Let’s create a video for one of our users:

iex> user = Repo.get_by!(User, username: "josevalim")
%Rumbl.User{...}

iex> attrs = %{title: "hi", description: "says hi", url: "example.com"}
iex> video = Ecto.build_assoc(user, :videos, attrs)
%Rumbl.Video{...}

iex> video = Repo.insert!(video)
%Rumbl.Video{...}

Ecto.build_assoc allows us to build a struct, with the proper relationship fields
already set. In this case, calling build_assoc is equivalent to this:

iex> %Rumbl.Video{user_id: user.id, title: "hi",
...> description: "says hi", url: "example.com"}
%Rumbl.Video{...}

Now that our user has at least one video, let’s try preload again:

iex> user = Repo.get_by!(User, username: "josevalim")
%Rumbl.User{...}

iex> user = Repo.preload(user, :videos)
%Rumbl.User{...}

iex> user.videos
[%Rumbl.Video{...}]

Preload is great for bundling data. Other times we want to fetch the videos
associated with a user, without storing them in the user struct, like this:

iex> query = Ecto.assoc(user, :videos)
#Ecto.Query<...>

iex> Repo.all(query)
[%Rumbl.Video{...}]

assoc is another convenient function from Ecto that returns an Ecto.Query with
all videos scoped to the given user, or to a list of users. We convert this query
into data by calling Repo.all. As you’ll learn in the next chapter, we’ll be able
to further manipulate this query, allowing us to slice the data in any way we
want. For now, let’s dig deeper into related data.

Managing Related Data
Our generated video controller gave us the CRUD basics, but as with any
generated code, we’re going to need to tailor it to our needs. We want to link

report erratum • discuss

Managing Related Data • 101

http://pragprog.com/titles/phoenix/errata/add
http://forums.pragprog.com/forums/phoenix

videos with users for this social platform. To do so, we need to grab the current
user from the connection and scope our operations against the user. Open
up your web/controllers/video_controller.ex, and let’s take a look at the new action:

def new(conn, _params) do
changeset = Video.changeset(%Video{})
render(conn, "new.html", changeset: changeset)

end

We need to change it so the video is built with the user_id pointing to the id of
the user currently stored in the connection at conn.assigns.current_user. We know
that the build_assoc function in Ecto does that and, if we look at web/web.ex, we
see that all controllers import Ecto, so the function is already available. Let’s
rewrite the action:

def new(conn, _params) do
changeset =

conn.assigns.current_user
|> build_assoc(:videos)
|> Video.changeset()

render(conn, "new.html", changeset: changeset)
end

This gives us what we want, mostly. We could move conn.assigns.current_user to
a private function and use it in all other actions in our controller, but let’s
explore a different solution. Since all actions depend on the current_user, Phoenix
allows us to make this dependency clearer while also removing the boilerplate
with a custom action function in the controller:

relationships/listings/rumbl/web/controllers/video_controller.change1.ex
def action(conn, _) do

apply(__MODULE__, action_name(conn),
[conn, conn.params, conn.assigns.current_user])

end

Every controller has its own default action function. It’s a plug that dispatches
to the proper action at the end of the controller pipeline. We’re replacing it
because we want to change the API for our controller actions. It’s easy enough.
We call apply to call our action the way we want. The apply function takes the
module, the action name, and the arguments. Rather than explicitly using
the name of our module, we use the __MODULE__ directive, which expands to
the current module, in atom form. Now, if our module name changes, we don’t
have to change our code along with it. The arguments are now the connection,
the parameters, and the current user.

Let’s tweak new and create actions to receive all three parameters:

Chapter 6. Generators and Relationships • 102

report erratum • discuss

http://media.pragprog.com/titles/phoenix/code/relationships/listings/rumbl/web/controllers/video_controller.change1.ex
http://pragprog.com/titles/phoenix/errata/add
http://forums.pragprog.com/forums/phoenix

relationships/listings/rumbl/web/controllers/video_controller.change1.ex
def new(conn, _params, user) do

changeset =
user
|> build_assoc(:videos)
|> Video.changeset()

render(conn, "new.html", changeset: changeset)
end

def create(conn, %{"video" => video_params}, user) do
changeset =

user
|> build_assoc(:videos)
|> Video.changeset(video_params)

case Repo.insert(changeset) do
{:ok, _video} ->
conn
|> put_flash(:info, "Video created successfully.")
|> redirect(to: video_path(conn, :index))

{:error, changeset} ->
render(conn, "new.html", changeset: changeset)

end
end

The preceding changes guarantee that every video created is properly associ-
ated to the current user. For the remaining actions, let’s allow users to access
and manipulate only their videos. For such, we need a function to look up all
videos for a user:

relationships/listings/rumbl/web/controllers/video_controller.change1.ex
defp user_videos(user) do

assoc(user, :videos)
end

We use the assoc function, also imported from Ecto, to return a query of all
videos scoped to the given user. Next, we use the new user_videos function in
the index and show actions:

relationships/listings/rumbl/web/controllers/video_controller.change1.ex
def index(conn, _params, user) do

videos = Repo.all(user_videos(user))
render(conn, "index.html", videos: videos)

end

def show(conn, %{"id" => id}, user) do
video = Repo.get!(user_videos(user), id)
render(conn, "show.html", video: video)

end

report erratum • discuss

Managing Related Data • 103

http://media.pragprog.com/titles/phoenix/code/relationships/listings/rumbl/web/controllers/video_controller.change1.ex
http://media.pragprog.com/titles/phoenix/code/relationships/listings/rumbl/web/controllers/video_controller.change1.ex
http://media.pragprog.com/titles/phoenix/code/relationships/listings/rumbl/web/controllers/video_controller.change1.ex
http://pragprog.com/titles/phoenix/errata/add
http://forums.pragprog.com/forums/phoenix

The only difference is that we’re using our new query instead of the default
one that returns all videos. Notice that we’re using user_videos even in the show
action that fetches videos by ID. This guarantees that users can only access
the information from videos they own. If the ID of a video the user doesn’t
own is given, Ecto raises an error saying that the record couldn’t be found.
Let’s do the same change to edit and update to ensure that they can only change
videos coming from the association:

relationships/listings/rumbl/web/controllers/video_controller.change1.ex
def edit(conn, %{"id" => id}, user) do

video = Repo.get!(user_videos(user), id)
changeset = Video.changeset(video)
render(conn, "edit.html", video: video, changeset: changeset)

end

def update(conn, %{"id" => id, "video" => video_params}, user) do
video = Repo.get!(user_videos(user), id)
changeset = Video.changeset(video, video_params)

case Repo.update(changeset) do
{:ok, video} ->
conn
|> put_flash(:info, "Video updated successfully.")
|> redirect(to: video_path(conn, :show, video))

{:error, changeset} ->
render(conn, "edit.html", video: video, changeset: changeset)

end
end

Finally, we need to do the same for delete:

relationships/listings/rumbl/web/controllers/video_controller.change1.ex
def delete(conn, %{"id" => id}, user) do

video = Repo.get!(user_videos(user), id)
Repo.delete!(video)

conn
|> put_flash(:info, "Video deleted successfully.")
|> redirect(to: video_path(conn, :index))

end

Once again, we fetch a video from the scoped list of user videos. After those
changes, our users have a panel for managing their videos in a safe way.
Using Ecto.assoc, we built a simple authorization rule restricting deletes and
updates to the video’s owner.

Wrapping Up
In this chapter, we generated a Video resource with a relationship to User and
made changes to the generated code, learning a lot along the way:

Chapter 6. Generators and Relationships • 104

report erratum • discuss

http://media.pragprog.com/titles/phoenix/code/relationships/listings/rumbl/web/controllers/video_controller.change1.ex
http://media.pragprog.com/titles/phoenix/code/relationships/listings/rumbl/web/controllers/video_controller.change1.ex
http://pragprog.com/titles/phoenix/errata/add
http://forums.pragprog.com/forums/phoenix

• We converted a private plug into a public function and shared it with our
controllers and routers.

• You learned how to migrate and roll back changes to the database.

• We defined relationships between User and Video schemas and used func-
tions from Ecto to build and retrieve associated data.

• You learned that Ecto uses strictly explicit semantics to determine if a
relationship is loaded or not.

The next chapter will take everything up a notch by exploring Ecto queries
and leveraging the database constraints. When we’re done, you’ll be able to
ensure data uniqueness and use the database to maintain data integrity.
Turn the page, and let’s get started!

report erratum • discuss

Wrapping Up • 105

http://pragprog.com/titles/phoenix/errata/add
http://forums.pragprog.com/forums/phoenix

CHAPTER 7

Ecto Queries and Constraints
In the last chapter, we extended our application domain by associating videos
to users. Now we’ll let users organize their videos with categories. We want
our users to select which category a video belongs to upon video creation. To
build this feature, you’ll need to learn more about Ecto queries and the differ-
ent ways you can retrieve data from the database.

We want to build our feature safely so that corrupt data can’t creep into our
database, so we’ll spend some time working with database constraints.
Database engines like Postgres are called relational for a reason. A tremendous
amount of time and effort has gone into tools and features that help developers
define and enforce the relationships between tables. Instead of treating the
database as pure dumb storage, Ecto uses the strengths of the database to
help keep the data consistent. You’ll learn about error-reporting strategies
so you’ll know when to report an error and when to let it crash, letting other
application layers handle the problem.

Let’s get started.

Adding Categories
In this section, we’re going to add some categories. We’ll use many of the
same techniques we discovered in our user-to-video relationship to manage the
relationships between videos and categories. A video optionally belongs to a
category, one chosen by the end user. First, let’s generate the model and
migration, using phoenix.gen.model, like this:

$ mix phoenix.gen.model Category categories name:string

* creating priv/repo/migrations/20150829145417_create_category.exs
* creating web/models/category.ex
* creating test/models/category_test.exs

report erratum • discuss

http://pragprog.com/titles/phoenix/errata/add
http://forums.pragprog.com/forums/phoenix

This generator will build the model with a schema and migration for us.

Generating Category Migrations
Next let’s edit our migration to mark the name field as NOT NULL and create an
unique index for it:

queries/listings/rumbl/priv/repo/migrations/20150918041601_create_category.exs
defmodule Rumbl.Repo.Migrations.CreateCategory do

use Ecto.Migration

def change do
create table(:categories) do
add :name, :string, null: false

timestamps
end

create unique_index(:categories, [:name])
end

end

Next, we add the referential constraints to our Video schema, like this:

queries/listings/rumbl/web/models/video.change1.ex
schema "videos" doLine 1

field :url, :string-

field :title, :string-

field :description, :string-

belongs_to :user, Rumbl.User5

belongs_to :category, Rumbl.Category-

-

timestamps-

end-

10

@required_fields ~w(url title description)-

@optional_fields ~w(category_id)-

On lines 6 and 12, we create a simple belongs-to relationship and make a
new category_id field optional.

Let’s use mix ecto.gen.migration to build a migration that adds category_id to video:

$ mix ecto.gen.migration add_category_id_to_video
* creating priv/repo/migrations
* creating
priv/repo/migrations/20150829190252_add_category_id_to_video.exs

Chapter 7. Ecto Queries and Constraints • 108

report erratum • discuss

http://media.pragprog.com/titles/phoenix/code/queries/listings/rumbl/priv/repo/migrations/20150918041601_create_category.exs
http://media.pragprog.com/titles/phoenix/code/queries/listings/rumbl/web/models/video.change1.ex
http://pragprog.com/titles/phoenix/errata/add
http://forums.pragprog.com/forums/phoenix

This relationship allows us to add a new category ID to our existing videos.
Now open up your new priv/repo/migrations/20150829190252_add_category_id_to_video.exs
and key this in:

queries/listings/rumbl/priv/repo/migrations/20150918042635_add_category_id_to_video.exs
def change do

alter table(:videos) do
add :category_id, references(:categories)

end
end

This code means that we want the database to enforce a constraint between
videos and categories. The database will help make sure that the category_id
specified in the video exists, similar to what we’ve done between videos and
users. Finally, migrate your database with your two new migrations:

$ mix ecto.migrate

15:05:52.249 [info] ==
Running Rumbl.Repo.Migrations.CreateCategory.change/0 forward

15:05:52.249 [info] create table categories

15:05:52.494 [info] == Migrated in 2.4s

15:05:52.573 [info] ==
Running Rumbl.Repo.Migrations.AddCategoryIdToVideo.change/0 forward

15:05:52.573 [info] alter table videos

15:05:52.587 [info] == Migrated in 0.1s

We migrated our categories and added the proper foreign keys. The database
will maintain the database integrity, regardless of what we do on the Phoenix
side. It’s time to populate our database with some categories.

Setting Up Category Seed Data
We expect our categories to be fixed. After we define a few of them, we don’t
expect them to change. For this reason, we don’t need to create a controller
with a view and templates to manage them. Instead, let’s create one small
script that we can run every time we need to insert data in the database.

Phoenix already defines a convention for seeding data. Open up priv/repo/seeds.exs
and read the comments Phoenix generated for us. Phoenix will make sure
that our database is appropriately populated. We only need to drop in a script
that uses our repository to directly add the data we want. Then, we’ll be able
to run Mix commands when it’s time to create the data.

report erratum • discuss

Adding Categories • 109

http://media.pragprog.com/titles/phoenix/code/queries/listings/rumbl/priv/repo/migrations/20150918042635_add_category_id_to_video.exs
http://pragprog.com/titles/phoenix/errata/add
http://forums.pragprog.com/forums/phoenix

Let’s add the following to the end of the seeds file:

queries/listings/rumbl/priv/repo/seeds.change1.exs
alias Rumbl.Repo
alias Rumbl.Category

for category <- ~w(Action Drama Romance Comedy Sci-fi) do
Repo.insert!(%Category{name: category})

end

We set up some aliases and then traverse a list of category names, writing
them to the database. Let’s run the seeds file with mix run:

$ mix run priv/repo/seeds.exs

Presto! We have categories. Before we move on, let’s look at a potential error
condition here. We’ve all been in situations where small developer mistakes
snowballed, creating bigger problems. Consider the case in which a developer
accidentally adds our categories twice. Then, before the developer discovers
the mistake, an end user uses two different categories of the same name. Then,
the developer mistakenly deletes a category with user data, and our snowball
rolls on, picking up destructive mass and speed.

Let’s check to see what happens if someone runs the seeds file twice:

$ mix run priv/repo/seeds.exs
** (Ecto.ConstraintError) constraint error when attempting to insert
model:

* unique: categories_name_index

One of the constraints we added to the database was a unique constraint for
the name column. When we try to insert an existing category, the database
refuses and Ecto throws an exception, as it should. Our developer’s snowball
is snuffed out from the very beginning, before the tiny mistake has any chance
to grow. We can do better, though. Let’s prevent an error in the first place by
simply checking if the category exists before creating it:

queries/listings/rumbl/priv/repo/seeds.change2.exs
alias Rumbl.Repo
alias Rumbl.Category

for category <- ~w(Action Drama Romance Comedy Sci-fi) do
Repo.get_by(Category, name: category) ||

Repo.insert!(%Category{name: category})
end

For a script, that’s an adequate solution. We’re not going to run it that often,
and we’re likely to be able to address any problems quickly. However, for
production code—which might process thousands of requests per second—we

Chapter 7. Ecto Queries and Constraints • 110

report erratum • discuss

http://media.pragprog.com/titles/phoenix/code/queries/listings/rumbl/priv/repo/seeds.change1.exs
http://media.pragprog.com/titles/phoenix/code/queries/listings/rumbl/priv/repo/seeds.change2.exs
http://pragprog.com/titles/phoenix/errata/add
http://forums.pragprog.com/forums/phoenix

need a more robust error strategy that works with the protections we’ve built
into the database. You’ll explore such strategies later on in this chapter when
you read about constraints.

Associating Videos and Categories
Now that we’ve populated our database with categories, we want to allow
users to choose a category when creating or editing a video. To do so, we’ll
do all of the following:

• Fetch all categories names and IDs from the database
• Sort them by the name
• Pass them into the view as part of a select input

To build this feature, we want to write a query. Let’s spend a little time with
Ecto exploring queries a little more deeply. Fire up your project in IEx, and
let’s warm up with some queries:

iex> import Ecto.Query
iex> alias Rumbl.Repo
iex> alias Rumbl.Category

iex> Repo.all from c in Category,
...> select: c.name

The Repo.all function takes an Ecto query, and we’ve passed it a basic one. In
this case:

• Repo.all means return all rows.
• from is a macro that builds a query.
• c in Category means we’re pulling rows (labeled c) from the Category schema.
• select: c.name means we’re going to return only the name field.

And Ecto returns a few debugging lines that contain the exact SQL query
we’re sending to the database, and the resulting five category names:

[debug] SELECT c0."name" FROM "categories" AS c0 [] OK query=0.7ms
["Action", "Drama", "Romance", "Comedy", "Sci-fi"]

We can order category names alphabetically by passing the :order_by option to
our query. We can also return a tuple from both the id and name fields. Let’s
give it another try:

iex> Repo.all from c in Category,
...> order_by: c.name,
...> select: {c.name, c.id}
[{"Action", 1}, {"Comedy", 4}, {"Drama", 2},
{"Romance", 3}, {"Sci-fi", 5}]

report erratum • discuss

Adding Categories • 111

http://pragprog.com/titles/phoenix/errata/add
http://forums.pragprog.com/forums/phoenix

However, we rarely need to define the whole query at once. Ecto queries are
composable, which means you can define the query bit by bit:

iex> query = Category
Category
iex> query = from c in query, order_by: c.name
#Ecto.Query<>
iex> query = from c in query, select: {c.name, c.id}
#Ecto.Query<>
iex> Repo.all query
[{"Action", 1}, {"Comedy", 4}, {"Drama", 2},
{"Romance", 3}, {"Sci-fi", 5}]

This time, instead of building the whole query at once, we write it in small
steps, adding a little more information along the way. This strategy works
because Ecto defines something called the queryable protocol. from receives a
queryable, and you can use any queryable as a base for a new query. A queryable
is an Elixir protocol. Recall that protocols like Enumerable (for Enum) define APIs
for specific language features. This one defines the API for something that
can be queried.

That’s also why we can call Repo.all either as Repo.all(Category) or Repo.all(query):
because both Category and query implement the so-called Ecto.Queryable protocol.
By abiding by the protocol, you can quickly layer together sophisticated
queries with Ecto.Query, maintaining clear boundaries between your layers and
adding sophistication without complexity.

Use what you’ve learned to associate videos and categories in our application.
As with changesets, add code that builds and transforms queries to models
while all interaction with the repository belongs to the controller—because
the controller is the place we want complex interactions to live.

Let’s add two functions to our Category module, one that sorts the results and
another that fetches names and IDs:

queries/listings/rumbl/web/models/category.change1.ex
def alphabetical(query) do

from c in query, order_by: c.name
end

def names_and_ids(query) do
from c in query, select: {c.name, c.id}

end

Those functions receive queries, or more precisely, queryables, and return
queryables. With our functions in place, you can now load all categories in
VideoController:

Chapter 7. Ecto Queries and Constraints • 112

report erratum • discuss

http://media.pragprog.com/titles/phoenix/code/queries/listings/rumbl/web/models/category.change1.ex
http://pragprog.com/titles/phoenix/errata/add
http://forums.pragprog.com/forums/phoenix

queries/listings/rumbl/web/controllers/video_controller.change1.ex
alias Rumbl.Category

plug :load_categories when action in [:new, :create, :edit, :update]

defp load_categories(conn, _) do
query =

Category
|> Category.alphabetical
|> Category.names_and_ids

categories = Repo.all query
assign(conn, :categories, categories)

end

We define a plug that builds a query by composing multiple functions that
we define in our Category model. Once the query is built, we hand it off to the
repository, which fetches the names and IDs tuples and assigns them to the
connection. Now, those names and IDs are available as @categories in our
templates for the actions we specify in our when clause. We’ll use the name as
the label for each option in a select and the id as the option value.

Let’s change the video form template at web/templates/video/form.html.eex to include
a new select field:

queries/listings/rumbl/web/templates/video/form.change1.html.eex
<div class="form-group">

<%= label f, :category_id, "Category", class: "control-label" %>
<%= select f, :category_id, @categories, class: "form-control",

prompt: "Choose a category" %>
</div>

And change video/new.html.eex to pass the @categories in conn.assigns when rendering
the form:

queries/listings/rumbl/web/templates/video/new.change1.html.eex
<h2>New video</h2>

<%= render "form.html", changeset: @changeset, categories: @categories,
action: video_path(@conn, :create) %>

<%= link "Back", to: video_path(@conn, :index) %>

Also change video/edit.html.eex:

queries/listings/rumbl/web/templates/video/edit.change1.html.eex
<h2>Edit video</h2>

<%= render "form.html", changeset: @changeset, categories: @categories,
action: video_path(@conn, :update, @video) %>

<%= link "Back", to: video_path(@conn, :index) %>

report erratum • discuss

Adding Categories • 113

http://media.pragprog.com/titles/phoenix/code/queries/listings/rumbl/web/controllers/video_controller.change1.ex
http://media.pragprog.com/titles/phoenix/code/queries/listings/rumbl/web/templates/video/form.change1.html.eex
http://media.pragprog.com/titles/phoenix/code/queries/listings/rumbl/web/templates/video/new.change1.html.eex
http://media.pragprog.com/titles/phoenix/code/queries/listings/rumbl/web/templates/video/edit.change1.html.eex
http://pragprog.com/titles/phoenix/errata/add
http://forums.pragprog.com/forums/phoenix

That’s it. Now we can create videos with optional categories. We’re doing so
with query logic that lives in its own module so we’ll be able to better test and
extend those features. Try it out by visiting http://localhost:4000/manage/videos/new:

Before we finish this chapter, we’ll add the proper mechanisms to ensure that
the category sent by the user is valid. But first, let’s take this opportunity to
explore Ecto queries a little more deeply.

Diving Deeper into Ecto Queries
So far, you know Ecto queries like a YouTube dog knows how to ride a bike.
We’ve written our first query and we know that queries compose, but we still
haven’t explored many concepts. It’s time to take off the training wheels and
see more-advanced examples.

Open up IEx once more, and let’s retrieve a single user:

iex> import Ecto.Query
iex> alias Rumbl.Repo
iex> alias Rumbl.User

iex> username = "josevalim"
"josevalim"

iex> Repo.one(from u in User, where: u.username == ^username)
...
%Rumbl.User{username: "josevalim", ...}

We’re using the same concepts you learned before:

Chapter 7. Ecto Queries and Constraints • 114

report erratum • discuss

http://pragprog.com/titles/phoenix/errata/add
http://forums.pragprog.com/forums/phoenix

• Repo.one means return one row.

• from u in User means we’re reading from the User schema.

• where: u.username == ^username means return the row where u.username ==
^username. Remember, the ^ operator (called the pin operator) means we
want to keep ^username the same.

• When the select part is omitted, the whole struct is returned, as if we’d
written select: u.

Repo.one doesn’t mean “return the first result.” It means “one result is expected,
so if there’s more, fail.” This query language is a little different from what you
may have seen before. This API is not just a composition of strings. By relying
on Elixir macros, Ecto knows where user-defined variables are located, so it’s
easier to protect the user from security flaws like SQL-injection attacks.

Ecto queries also do a good part of the query normalization at compile time,
so you’ll see better performance while leveraging the information in our
schemas for casting values at runtime. Let’s see some of these concepts in
action by using an incorrect type in a query:

iex> username = 123
123

iex> Repo.all(from u in User, where: u.username == ^username)
** (Ecto.CastError) iex:4: value `123` in `where`

cannot be cast to type :string in query:
from u in Rumbl.User,
where: u.username == ^123

The ^ operator interpolates values into our queries where Ecto can scrub
them and safely put them to use, without the risk of SQL injection. Armed
with our schema definition, Ecto is able to cast the values properly for us and
match up Elixir types with the expected database types.

In other words, we define the repository and schemas and let Ecto changesets
and queries tie them up together. This strategy gives developers the proper
level of isolation because we mostly work with data, which is straightforward,
and leave all complex operations to the repository.

You already know a bit about the differences between traditional MVC and
Phoenix’s tweak from the perspective of controllers. More explicitly, we’d like
to keep functions with side effects—the ones that change the world around
us—in the controller while the model and view layers remain side effect free.
Since Ecto splits the responsibilities between the repository and its data API,
it fits our world view perfectly. This figure shows how it all fits together:

report erratum • discuss

Diving Deeper into Ecto Queries • 115

http://pragprog.com/titles/phoenix/errata/add
http://forums.pragprog.com/forums/phoenix

When a request comes in, the controller is invoked. The controller might read
data from the socket (a side effect) and parse it into data structures, like the
params map. When we have the parsed data, we send it to the model, which
transforms those parameters into changesets or queries.

Elixir structs, Ecto changesets, and queries are just data. We can build or
transform any of them by passing them from function to function, slightly
modifying the data on each step. When we’ve molded the data to the shape
of our business-model requirements, we invoke the entities that can change
the world around us, like the repository (Repo) or the system responsible for
delivering emails (Mail). Finally, we can invoke the view. The view converts
the model data, such as changesets and structs, into view data, such as JSON
maps or HTML strings, which is then written to the socket via the con-
troller—another side effect.

Because the controller already encapsulates side effects by reading and
writing to the socket, it’s the perfect place to put interactions with the
repository, while the model and view layers are kept free of side effects. When
you get the layers of an application right, you often see that these kinds of
benefits come in bunches. The same strategy that improves the manageability
of our code will also make our code easier to test.

The Query API
So far, we’ve used only the == operator in queries, but Ecto supports a wide
range of them:

• Comparison operators: ==, !=, <=, >=, <, >
• Boolean operators: and, or, not
• Inclusion operator: in
• Search functions: like and ilike

Chapter 7. Ecto Queries and Constraints • 116

report erratum • discuss

http://pragprog.com/titles/phoenix/errata/add
http://forums.pragprog.com/forums/phoenix

• Null check functions: is_nil
• Aggregates: count, avg, sum, min, max
• Date/time intervals: datetime_add, date_add
• General: fragment, field, and type

In short, you can use many of the same comparison, inclusion, search, and
aggregate operations for a typical query that you’d use in Elixir. You can see
documentation and examples for many of them in the Ecto.Query.API documen-
tation.1 Those are the basic features you’re going to use as you build queries.
You’ll use them from two APIs: keywords syntax and pipe syntax. Let’s see
what each API looks like.

Writing Queries with Keywords Syntax
The first syntax expresses different parts of the query by using a keyword
list. For example, take a look at this code for counting all users with user-
names starting with j or c. You can see keys for both :select and :where:

iex> Repo.one from u in User,
...> select: count(u.id),
...> where: ilike(u.username, ^"j%") or
...> ilike(u.username, ^"c%")

2

The u variable is bound as part of Ecto’s from macro. Throughout the query,
it represents entries from the User schema. If you attempt to access u.unknown
or match against an invalid type, Ecto raises an error. Bindings are useful
when our queries need to join across multiple schemas. Each join in a query
gets a specific binding.

Let’s also build a query to count all users:

iex> users_count = from u in User, select: count(u.id)

#Ecto.Query<from u in Rumbl.User, select: count(u.id)>

Simple enough. We use from to build a query, selecting count(u.id). Now, let’s
say that we want to take advantage of this fantastic count feature to build some
more-complex queries. Since the best usernames have a j, let’s count the
users that match a case-insensitive search for j, like this:

iex> j_users = from u in users_count, where: ilike(u.username, ^"%j%")
#Ecto.Query<from u in Rumbl.User, where: ilike(u.username, ^"%j%"),
select: count(u.id)>

1. http://hexdocs.pm/ecto/Ecto.Query.API.html

report erratum • discuss

Diving Deeper into Ecto Queries • 117

http://hexdocs.pm/ecto/Ecto.Query.API.html
http://pragprog.com/titles/phoenix/errata/add
http://forums.pragprog.com/forums/phoenix

Beautiful. You’ve built a new query, based on the old one. Although we’ve
used the same binding as before, u, we didn’t have to. You’re free to name
your query variables however you like, because Ecto doesn’t use their names.
The following query is equivalent to the previous one:

iex> j_users = from q in users_count, where: ilike(q.username, ^"%j%")
#Ecto.Query<from u in Rumbl.User, where: ilike(u.username, ^"%j%"),
select: count(u.id)>

You can use that composition wherever you have a query, be it written with
the keyword syntax or the pipe syntax that you’ll learn next.

Using Queries with the Pipe Syntax
Let’s look at some other expressions. For example, let’s build some queries
with the Elixir pipe.

You’ve seen different query expressions constructed with key-value pairs.
You can also build queries by piping through query macros.

Most often, you’ll want to import from to build up a query against a queryable,
but you can also use other query macros such as where and select where it
makes sense. Each takes a queryable and returns a queryable, so you can pipe
them together like this:

iex> User |>
select([u], count(u.id)) |>
where([u], ilike(u.username, ^"j%") or ilike(u.username, ^"c%")) |>
Repo.one()

[debug] SELECT count(u0.id)
FROM "users" AS u0
WHERE (u0."username" ILIKE $1 OR u0."username" ILIKE $2) ["j%", "c%"]

OK query=0.9ms
2

Because each query is independent of others, we need to specify the binding
manually for each one as part of a list. This binding is conceptually the same
as the one we used in from u in User. We have a single binding, so we use a list
with a single element, but we could use a longer list with more bindings if
our query had joins.

The query syntax you choose depends on your taste and the problems you’re
trying to solve. The former syntax is probably more convenient for pulling
together ad-hoc queries and solving one-off problems. The latter is probably
better for building an application’s unique complex layered query API. Each
approach has its advantages.

Chapter 7. Ecto Queries and Constraints • 118

report erratum • discuss

http://pragprog.com/titles/phoenix/errata/add
http://forums.pragprog.com/forums/phoenix

Fragments
A poorly designed API will break down if it doesn’t provide every feature that
you need from the underlying storage you’re trying to access. If Ecto gives
you everything you need from the database layer beneath, that’s great. If not,
you don’t have to panic and fork Ecto to build your own mapping layer. Since
we can’t represent all possible queries in Elixir’s syntax, we need a backup
plan.

A programming truism is that the best abstractions offer an escape hatch,
one that exposes the user to one deeper level of abstraction on demand. Ecto
has such a feature, called the query fragment. A query fragment sends part
of a query directly to the database but allows you to construct the query string
in a safe way.

Imagine that you want to look up the user by username in a case-insensitive
way. Though Ecto doesn’t give us everything we need, you can access that
feature by using an Ecto SQL fragment, like this:

from(u in User,
where: fragment("lower(username) = ?",

^String.downcase(uname)))

Using a fragment allows us to construct a fragment of SQL for the query but
safely interpolate the String.downcase(uname) code using a prepared statement.
Whether the interpolated values are Ecto query expressions or Postgres SQL
fragments, Ecto safely escapes all interpolated values.

When everything else fails and even fragments aren’t enough, you can always
run direct SQL with Ecto.Adapters.SQL.query:

iex> Ecto.Adapters.SQL.query(Rumbl.Repo, "SELECT power($1, $2)", [2, 10])
[debug] SELECT power($1, $2) [2, 10] OK query=2.5ms
{:ok, %{columns: ["power"], command: :select, num_rows: 1, rows: [[1024.0]]}}

From the query result, you can fetch all kinds of information, such as the
returned columns, the number of rows, and the result set itself. It’s best to
stick to Ecto query expressions wherever possible, but you have a safe escape
hatch when you need it.

Querying Relationships
Ecto queries also offer support for associations. When working with relation-
ships, you learned that Ecto associations are explicit, and we used Repo.preload
to fetch associated data. Let’s recap:

report erratum • discuss

Diving Deeper into Ecto Queries • 119

http://pragprog.com/titles/phoenix/errata/add
http://forums.pragprog.com/forums/phoenix

iex> user = Repo.one from(u in User, limit: 1)
%Rumbl.User{...}

iex> user.videos
#Ecto.Association.NotLoaded<association :videos is not loaded>

iex> user = Repo.preload(user, :videos)
%Rumbl.User{...}

iex> user.videos
[]

However, we don’t always need to preload associations as a separate step.
Ecto allows us to preload associations directly as part of a query, like this:

iex> user = Repo.one from(u in User, limit: 1, preload: [:videos])
%Rumbl.User{...}

iex> user.videos
[]

Ecto also allows us to join on associations inside queries, filtering them in
any way that makes sense:

iex> Repo.all from u in User,
...> join: v in assoc(u, :videos),
...> join: c in assoc(v, :category),
...> where: c.name == "Comedy",
...> select: {u, v}
[{%Rumbl.User{...}, %Rumbl.Video{...}}]

This time, Ecto returns users and videos side by side as long as the video
belongs to the Comedy category. We use a tuple in select, but we could also
return each entry in a list, or even a map.

We expect that you’ll find plenty of joy when you work with Ecto queries.
They’re flexible but also extremely readable. They’re composable enough to
flex but also rigid enough to offer type support and security when it comes
to interacting with tainted external data. However, not all problems can be
solved with queries. Sometimes, you’ll need to use the underlying database
to help manage database integrity. For those cases, Ecto provides constraints.

Constraints
Constraints allow us to use underlying relational database features to help
us maintain database integrity. For example, let’s validate our categories.
When we create a video, we need to make sure that our category exists. We
might be tempted to solve this problem by simply performing a query, but
such an approach would be unsafe due to race conditions. In most cases, we
would expect it to work like this:

Chapter 7. Ecto Queries and Constraints • 120

report erratum • discuss

http://pragprog.com/titles/phoenix/errata/add
http://forums.pragprog.com/forums/phoenix

1. The user sends a category ID through the form.

2. We perform a query to check if the category ID exists in the database.

3. If the category ID does exist in the database, we add the video with the
category ID to the database.

However, someone could delete the category between steps 2 and 3, allowing
us to ultimately insert a video without an existing category in the database.
In any sufficiently busy application, that approach will lead to inconsistent
data over time. Ecto has relentlessly pushed us to define references and
indexes in our database because sometimes, doing a query won’t be enough
and we’ll need to rely on database constraints.

In Phoenix, we use constraints to manage change in a way that combines the
harsh protections of the database with Ecto’s gentle guiding hand to report
errors without crashing. Let’s firm up some terminology before we get too far:

constraint
An explicit database constraint. This might be a uniqueness constraint
on an index, or an integrity constraint between primary and foreign keys.

constraint error
The Ecto.ConstraintError, which you saw when we tried to add a category twice.

changeset constraint
A constraint annotation added to the changeset that allows Ecto to convert
constraint errors into changeset error messages.

changeset error messages
Beautiful error messages for the consumption of humans.

Relational databases deal with relationships between tables. A database
constraint is a mechanism for restricting data in a table based on the needs
of an application. For example, a given user_id must exist as the id field in a
users table, or an email field must be unique. Ensuring data is consistent across
records is a critical job that all database-backed applications need to handle.

You have three approaches to solving this problem, and all have trade-offs.
First, you might decide to let the application (and the web framework) manage
relationships for you. This approach, adopted by frameworks like Rails, leads
to simpler code and database layers that are much more portable, but at a
cost. At best, the integration and error reporting is likely to suffer. At worst,
these features won’t be available or get used at all, leading to race conditions
and inconsistent data.

report erratum • discuss

Constraints • 121

http://pragprog.com/titles/phoenix/errata/add
http://forums.pragprog.com/forums/phoenix

Second, you could let the database manage all code that touches data.
Through the use of layers such as stored procedures, this extreme approach
will lead to excellent database integrity but is difficult to maintain and harder
to code. This approach was famous just before the turn of the century, but
not many people advocate using it any more.

The third approach is a hybrid approach whereby the application layer (and
web server) use database services like referential integrity and transactions
to strike a balance between the needs of the application layer and the needs
of the database. This is the approach of Ecto and also most database layers.

Ecto allows developers to enjoy many of the guarantees databases offer in
terms of data integrity. In fact, Ecto rewards developers for doing exactly this,
both in the short term, by transforming constraint errors into user feedback,
and in the long term by guaranteeing you won’t be awake at 3:00 a.m. fixing
bugs caused by inconsistent data. In the remainder of this chapter, we’re
going to walk you through how Ecto manages constraints.

Validating Unique Data
When we created the users table, we edited the migration to index the user-
name field as unique:

create unique_index(:users, [:username])

Let’s see what happens if we try to create a user with an existing username:

Oops. Our application blows up with a constraint error, similar to the one we
saw when creating duplicated categories. If we inspect the error message in
the terminal, or in the browser, we see:

[error] #PID<0.848.0> running Rumbl.Endpoint terminated
Server: localhost:4000 (http)
Request: POST /users
** (exit) an exception was raised:

** (Ecto.ConstraintError) constraint error when attempting to insert struct:
* unique: users_username_index

Chapter 7. Ecto Queries and Constraints • 122

report erratum • discuss

http://pragprog.com/titles/phoenix/errata/add
http://forums.pragprog.com/forums/phoenix

If you would like to convert this constraint into an error, please
call unique_constraint/3 in your changeset and define the proper
constraint name. The changeset has not defined any constraint.

The error message has everything we need to do in order to move on. It says
our application failed because the unique constraint on the users_username_index
was violated. It also mentions we can convert the constraint error into a
changeset error message by calling unique_constraint in the changeset.

Let’s do that. Open up web/models/user.ex and change the changeset function:

queries/listings/rumbl/web/models/user.change1.ex
def changeset(model, params \\ :empty) do

model
|> cast(params, ~w(name username), [])
|> validate_length(:username, min: 1, max: 20)
|> unique_constraint(:username)

end

We pipe the changeset into unique_constraint. By default, Ecto infers the constraint
name for us, but it can also be given with the :name option. Calling unique_con-
straint won’t perform any validation on the spot. Instead, it stores all the rele-
vant information in the changeset. When it’s time, the repository can convert
those constraints into a human-readable error.

Let’s try creating a user with an existing username once again.

Excellent, this is exactly what we expected: a nice, beautiful, human-readable
error. unique_constraint is only one of the different constraint mappings that
changesets offer. The next kind of constraint is a foreign-key check.

report erratum • discuss

Constraints • 123

http://media.pragprog.com/titles/phoenix/code/queries/listings/rumbl/web/models/user.change1.ex
http://pragprog.com/titles/phoenix/errata/add
http://forums.pragprog.com/forums/phoenix

Validating Foreign Keys
After taking some time to appreciate our unique_constraint, let’s continue with
our category relationship. When the user picks a category for the video, we
could provide some meaningful feedback if the operation fails. Let’s update
our Video changeset, like this:

queries/listings/rumbl/web/models/video.change2.ex
def changeset(model, params \\ :empty) do

model
|> cast(params, @required_fields, @optional_fields)
|> assoc_constraint(:category)

end

That assoc_constraint converts foreign-key constraint errors into human-readable
error messages and guarantees that a video is created only if the category
exists in the database. Taking it for a spin, let’s load some data inside iex -S
mix:

iex> alias Rumbl.Category
iex> alias Rumbl.Video
iex> alias Rumbl.Repo
iex> import Ecto.Query

iex> category = Repo.get_by Category, name: "Drama"
%Rumbl.Category{...}
iex> video = Repo.one(from v in Video, limit: 1)
...
%Rumbl.Video{...}

Now let’s use the video changeset to associate the video with the category:

iex> changeset = Video.changeset(video, %{category_id:
category.id})
iex> Repo.update(changeset)
...
{:ok, %Rumbl.Video{...}}

We updated our video with a category that exists. The update works, but
suppose tried to update a video with a bad category:

iex> changeset = Video.changeset(video, %{category_id: 12345})
iex> Repo.update(changeset)
...
{:error, %Ecto.Changeset{}}

Oops. We couldn’t update the video. Let’s inspect the returned changeset
further. IEx allows us to fetch a previous value by using v(n), where n is the
number of the expression. You can also pass a negative value to grab the last
nth expression:

Chapter 7. Ecto Queries and Constraints • 124

report erratum • discuss

http://media.pragprog.com/titles/phoenix/code/queries/listings/rumbl/web/models/video.change2.ex
http://pragprog.com/titles/phoenix/errata/add
http://forums.pragprog.com/forums/phoenix

iex> {:error, changeset} = v(-1)
iex> changeset.errors
[category: "does not exist"]

As with unique_constraint, when we set up assoc_constraint, we no longer get
Ecto.ConstraintError. Instead, they’re converted into changeset error messages.

You can try to reproduce this constraint error via our web application in a
couple of ways. For example, you could load the page, then remove the cate-
gory from the database and submit the form after choosing the removed cat-
egory. If you feel a bit more sneaky, you can fiddle the select options in the
browser console, changing their value and then submitting the form.

As we move forward, you’ll see how changesets are an essential part of Ecto.
Each changeset encapsulates the whole change policy, including allowed fields,
detecting change, validations, and messaging the user.

On Delete
Our constraints have helped us insert and update database data safely. They
should also apply when we remove data. Let’s open up IEx once more:

iex> alias Rumbl.Repo
iex> category = Repo.get_by Rumbl.Category, name: "Drama"
%Rumbl.Category{...}
iex> Repo.delete category
** (Ecto.ConstraintError) constraint error when attempting to delete
struct

We pick the Drama category because we added a video to it in the previous
section. A video is tied to the category, so we can’t delete the category because
it would leave orphaned records.

We could solve this problem in several ways, described briefly here, that you
can explore further on your own. The first one is to use changeset constraints.
Like insert and update, Repo.delete also accepts a changeset, and you can use
foreign_key_constraint to ensure that no associated videos exist when a category
is deleted; otherwise you get a nice error message. The foreign_key_constraint
function is like the assoc_constraint we used earlier, except it doesn’t inflect the
foreign key from the relationship. This is particularly useful when you want
to show the user why you can’t delete the category:

iex> import Ecto.Changeset
iex> changeset = Ecto.Changeset.change(category)
iex> changeset = foreign_key_constraint(changeset, :videos,

name: :videos_category_id_fkey, message: "still exist")
iex> Repo.delete changeset
{:error, changeset}

report erratum • discuss

Constraints • 125

http://pragprog.com/titles/phoenix/errata/add
http://forums.pragprog.com/forums/phoenix

This time, we had to be a bit more explicit in the foreign_key_constraint call,
because the foreign key has been set in the videos table. If needed, we could
also add no_assoc_constraint to do the dirty work of lifting up the foreign-key
name and setting a good error message. Check the Ecto docs for more infor-
mation on no_assoc_constraint and other changeset constraint mappings.

Second, you could configure the database references to either cascade the
deletions or simply make the videos.category_id columns NULL on delete. Let’s
open up the add_category_id_to_video migration:

add :category_id, references(:categories)

The references function accepts the :on_delete option with one of the following:

:nothing
The default.

:delete_all
When the category is deleted, all videos in that category are deleted.

:nilify_all
When a category is deleted, the category_id of all associated videos is set to
NULL.

There’s no best option here. For the category, which supports a has_many :videos
relationship, :nilify_all seems like a good choice, because the category isn’t an
essential part of the video. However, when deleting a user, you likely want to
delete all the videos created by that user, purging all of the user’s data.

The final choice is to set up :on_delete when configuring has_many or belongs_to
relationships in your schema, moving the logic effectively to the application
domain. This choice, however, is only recommended when you can’t perform
one of the preceding operations. After all, the work best suited to the database
must be done in the database.

Let It Crash
You might be expecting us to proceed to add *_constraint functions to all of our
changesets, ensuring that all failed constraint checks are converted into
human-readable error messages.

We’re not going to do so, and we shouldn’t. When we added a foreign_key_constraint
to the video belongs_to :category relationship, we knew we wanted to allow the
user to choose the video category later on. If a category is removed at some
point between the user loading the page and submitting the request to publish

Chapter 7. Ecto Queries and Constraints • 126

report erratum • discuss

http://pragprog.com/titles/phoenix/errata/add
http://forums.pragprog.com/forums/phoenix

the video, setting the changeset constraint allows us to show a nice error
message telling the user to pick something else.

This isn’t so uncommon. Maybe you’ve started to publish a new video on
Friday at 5:00 p.m. but decide to finish the process next Monday. Someone
has the whole weekend to remove a category, making your form data outdated.

On the other hand, let’s take the user has_many :videos relationship. Our applica-
tion is the one responsible for setting up the relationship between videos and
users. If a constraint is violated, it can only be a bug in our application or a
data-integrity issue.

In such cases, the user can do nothing to fix the error, so crashing is the best
option. Something unexpected really happened. But that’s OK. We know Elixir
was designed to handle failures, and Phoenix allows us to convert them into
nice status pages. Furthermore, we also recommend setting up a notification
system that aggregates and emails errors coming from your application, so
you can discover and act on potential bugs when your software is running in
production.

Putting it another way: the *_constraint changeset functions are useful when
the constraint being mapped is triggered by external data, often as part of
the user request. Using changeset constraints only makes sense if the error
message can be something the user can take action on.

Wrapping Up
In this chapter, we pushed Ecto a little harder. We started with queries and
went deep into the query API. We explored constraints and how Ecto integrates
with the database, ensuring that our data is kept clean and consistent. We
also built a category layer. Along the way, you learned many things about the
Phoenix philosophy:

• We used Ecto’s query API, which is independent of the repository API, to
do some basic queries.

• We used two forms of queries, a keyword list–based syntax and a pipe-
based syntax.

• We used fragments to pass SQL commands through the query API
unchanged.

• We explored the different ways Ecto queries work with relationships,
beyond data preloading.

report erratum • discuss

Wrapping Up • 127

http://pragprog.com/titles/phoenix/errata/add
http://forums.pragprog.com/forums/phoenix

• We wrote constraint-style validations for unique indexes and foreign-key
violations.

• We learned how to choose between letting constraint errors go and when
to report them to the user.

Next, you’ll learn how to test everything we’ve seen so far.

Chapter 7. Ecto Queries and Constraints • 128

report erratum • discuss

http://pragprog.com/titles/phoenix/errata/add
http://forums.pragprog.com/forums/phoenix

CHAPTER 8

Testing MVC
After reading through so many chapters, you might be wondering, “Where
are all of the tests?” We strongly believe in writing tests as you go, but such
an approach could be repetitive, awkward, and distracting in a book. Rather
than present tests as we go, we decided to focus on presenting one concept
at a time and save the tests for the end of each part. In this chapter, you’ll
see us use techniques to test everything we built in the first part of the book.
We might not test every single line of code we’ve written so far, but we’ll cover
all of the concepts you’ll need to test everything.

Regardless of what you’re building or the language that you’re using, many
testing principles remain the same. Let’s look at some of the principles we’d
like to emphasize:

• Fast – We’re going to make sure our tests run quickly and can run con-
currently wherever possible.

• Isolated – We want to have the right level of isolation in our tests. Tests
that are too isolated won’t have enough context to be useful. Tests that
aren’t isolated enough will be difficult to understand and maintain.

• DRY (Don’t Repeat Yourself) – We want to eliminate unnecessary repetition
in our tests.

• Repeatable – We want the same test on the same code to always yield the
same result.

You can probably already tell that the decisions made throughout the Phoenix
platform make testing a joy. Clean contracts between layers of the application
make it easy to get to the right level of isolation. The focus on immutability,
concurrency, and speed will help our tests run quickly. Functional program-
ming will help keep our tests DRY and repeatable.

report erratum • discuss

http://pragprog.com/titles/phoenix/errata/add
http://forums.pragprog.com/forums/phoenix

Before we go too much further, let’s settle on some common terminology,
since different testing terms mean different things depending on which
framework or language you’re using.

A unit test exercises a function for one layer of your application. For example,
if you’re testing a web calculator, unit tests would exercise the Calculator module
supporting your arithmetic. You might dedicate one or more tests to the add
function on your calculator module.

An integration test focuses on the way different layers of an application fit
together. Our integration tests in this chapter will generally do a request to
a controller to use the things we’ve created so far. A single test will begin at
our endpoint, run through our pipelines, read from the database, and render
templates through views just as Phoenix requests would.

You may also encounter types of tests that we don’t cover here. For a larger
project, you’d also possibly want to test how multiple actions work together.
For example, a single acceptance test case might sign the user on, perform
several calculations that might build on each other, and then sign off. You
might also consider performance testing to see how your application performs
under load. In this book, we focus strictly on unit and integration tests.

Enough background! We’re going to work through the various layers of our
application. We’ll start with some of the tools we can use to run tests and
shape the tests we write. Next, we’ll work through some integration tests and
then focus on unit-testing the individual components.

Let’s get started.

Understanding ExUnit
When you’re testing with Phoenix, the framework builds default tests for you
that help you keep the basic structure of your tests straight. Those templates
even go a long way toward showing you how to build tests to cover your MVC
code. Still, it’s best to start at the beginning: a walkthrough of using ExUnit,
Elixir’s testing framework. Let’s take a look at a basic Elixir test, one without
Phoenix involved at all.

ExUnit has three main macros. The setup macro specifies some setup code
that runs once before each test. The test macro defines a single isolated test.
The assert macro specifies something we believe to be true about our code. If
the assertion is true, the test passes. If it’s false, the test fails. Either way,
ExUnit reports the results, accumulating a list of failures and exceptions.
Let’s use these three macros in a simple test:

Chapter 8. Testing MVC • 130

report erratum • discuss

http://pragprog.com/titles/phoenix/errata/add
http://forums.pragprog.com/forums/phoenix

defmodule MyTest do
use ExUnit.Case, async: true

setup do
run some tedious setup code
:ok

end

test "pass" do
assert true

end

test "fail" do
assert false

end
end

This code runs two tests. The first runs the setup function and then the pass
test. The second again runs the setup function and the then fail test. The output
will include a passing test and a failing test.

If you need to know more about Elixir tests, excellent online resources exist,
such as the ExUnit documentation.1 For now, let’s move on to specifically
testing Phoenix functions.

Using Mix to Run Phoenix Tests
Whether you knew it or not, Phoenix has already been generating default
tests for you, such as test/controllers/video_controller_test.exs. We can go ahead and
remove that file since it’s built for generic REST actions, not the features we’ve
specifically built into our controller. We’ve added user authentication, valida-
tions, and the like to our videos, so we’ll start fresh with our VideoController
tests. Delete the test/controllers/video_controller_test.exs file now, and then let’s see
where our test suite stands:

$ mix test
...

1) test GET / (Rumbl.PageControllerTest)
test/controllers/page_controller_test.exs:4
Assertion with =~ failed
code: html_response(conn, 200) =~ "Welcome to Phoenix!"
lhs: "<!DOCTYPE html>\n<html lang=\"en\">\n ..."
rhs: "Welcome to Phoenix!"
stacktrace:

test/controllers/page_controller_test.exs:6
....
Finished in 0.5 seconds (0.5s on load, 0.05s on tests)
8 tests, 1 failure

1. http://elixir-lang.org/docs/stable/ex_unit/ExUnit.Case.html

report erratum • discuss

Using Mix to Run Phoenix Tests • 131

http://elixir-lang.org/docs/stable/ex_unit/ExUnit.Case.html
http://pragprog.com/titles/phoenix/errata/add
http://forums.pragprog.com/forums/phoenix

We have one basic test that was generated along with the standard Phoenix
installation. Since our controller has some changes, the tests fail. Let’s open
this file and take a look:

testing_mvc/rumbl/test/controllers/page_controller_test.exs
defmodule Rumbl.PageControllerTest do

use Rumbl.ConnCase

test "GET /", %{conn: conn} do
conn = get conn, "/"
assert html_response(conn, 200) =~ "Welcome to Phoenix!"

end
end

This test is pretty sparse, but let’s see what we can glean. Notice Rumbl.ConnCase.
Phoenix adds a test/support/conn_case.ex file to each new project. That file extends
Phoenix.ConnTest to provide services to your test suite, such as support for setting
up connections and calling your endpoint with specific routes. Open that
module to see what’s provided by default in the Rumbl.ConnCase module:

testing_mvc/rumbl/test/support/conn_case.ex
defmodule Rumbl.ConnCase do

@moduledoc """
This module defines the test case to be used by tests that require setting up
a connection.

Such tests rely on `Phoenix.ConnTest` and also imports other functionality to
make it easier to build and query models.

Finally, if the test case interacts with the database, it cannot be async. For
this reason, every test runs inside a transaction which is reset at the
beginning of the test unless the test case is marked as async.
"""

use ExUnit.CaseTemplate

using do
quote do
Import conveniences for testing with connections
use Phoenix.ConnTest

alias Rumbl.Repo
import Ecto
import Ecto.Changeset
import Ecto.Query, only: [from: 1, from: 2]

import Rumbl.Router.Helpers

The default endpoint for testing
@endpoint Rumbl.Endpoint

end
end

setup tags do

Chapter 8. Testing MVC • 132

report erratum • discuss

http://media.pragprog.com/titles/phoenix/code/testing_mvc/rumbl/test/controllers/page_controller_test.exs
http://media.pragprog.com/titles/phoenix/code/testing_mvc/rumbl/test/support/conn_case.ex
http://pragprog.com/titles/phoenix/errata/add
http://forums.pragprog.com/forums/phoenix

unless tags[:async] do
Ecto.Adapters.SQL.restart_test_transaction(Rumbl.Repo, [])

end

{:ok, conn: Phoenix.ConnTest.conn()}
end

end

As you’d expect, we use Phoenix.ConnTest to set up that API. Next, it imports
convenient aliases we’ll use throughout our tests. Finally, it sets the @endpoint
module attribute, which is required for Phoenix.ConnTest. This attribute lets
Phoenix know which endpoint to call when you directly call a route in your
tests.

Also notice our setup block. It receives the test tags as arguments alongside
any test metadata. If a given test isn’t asynchronous, we assume that the test
needs the database and restart the database transaction to guarantee that
it’ll run on clean slate. Then setup places a base conn into our test metadata
and returns a new context with this connection, which flows into our
page_controller_test as an optional second argument to the test macro. Using the
ConnCase, you can call your controller code through your endpoints, using all
of the relevant pipelines, just as the Phoenix framework would.

For example, in your page_controller_test, we called our controller with get conn,
"/" rather than calling the index action on our controller directly. This practice
gives us the right level of isolation because we’re using the controller the same
way Phoenix does.

Phoenix also gives us some helpers to test responses and keep our tests clean,
such as the assertion from page_controller_test:

assert html_response(conn, 200) =~ "Welcome to Phoenix!"

These functions pack a lot of punch in a single function call. The simple
statement html_response(conn, 200) does the following:

• Asserts that the conn’s response was 200
• Asserts that the response content-type was text/html
• Returns the response body, allowing us to match on the contents

If our request had been a JSON response, we could have used another
response assertion called json_response to match on any field of a response body.
For example, you might write a json_response assertion like this:

assert %{user_id: user.id} = json_response(conn, 200)

Rumbl.ConnCase is just a foundation. You can personalize it to your own appli-
cation. Now let’s address our failing test. It looks like we were expecting our

report erratum • discuss

Using Mix to Run Phoenix Tests • 133

http://pragprog.com/titles/phoenix/errata/add
http://forums.pragprog.com/forums/phoenix

“Welcome to Phoenix!” message to exist, but we’ve changed that message
along the way. Let’s update the test:

testing_mvc/listings/rumbl/test/controllers/page_controller_test.change1.exs
test "GET /", %{conn: conn} do

conn = get conn, "/"
assert html_response(conn, 200) =~ "Welcome to Rumbl.io!"

end

Now you can run your test with a better result. This time, let’s run a single
test, like this:

$ mix test test/controllers/page_controller_test.exs:4
.

It passes! The page test we just fixed is an integration test. Let’s learn more
about them by writing our own VideoController integration tests from scratch.

Integration Tests
One of our basic principles for testing is isolation, but that doesn’t mean that
the most extreme isolation is always the right answer. The interactions among
parts of your software are the very things that make it interesting. When you
test your Phoenix applications, getting the right level of isolation is critical.
Sometimes, a function is the perfect level of isolation. Sometimes, though,
you’ll want to run a test that encompasses multiple layers of your application.
This is the realm of the integration test.

Fortunately, we have a natural architectural barrier that enforces the perfect
balance. We’re going to fully test the route through the endpoint, as a real
web request will do. That way, we’ll execute each plug and pick up all of the
little transformations that occur along the way. We won’t have to do any
complex test setup, and we won’t have any mismatch between the ways the
tests and production server use our application. To top it off, testing through
the endpoint is superfast, so we pay virtually no penalty.

Creating Test Data
We’re going to focus on implementing tests for our video controller. To do so,
we need to be able to rapidly create video and user records to support our
tests. Let’s create some persistence helpers for creating users and videos.
Create a test/support/test_helpers.ex file and key this in:

testing_mvc/listings/rumbl/test/support/test_helpers.ex
defmodule Rumbl.TestHelpers do

alias Rumbl.Repo

def insert_user(attrs \\ %{}) do

Chapter 8. Testing MVC • 134

report erratum • discuss

http://media.pragprog.com/titles/phoenix/code/testing_mvc/listings/rumbl/test/controllers/page_controller_test.change1.exs
http://media.pragprog.com/titles/phoenix/code/testing_mvc/listings/rumbl/test/support/test_helpers.ex
http://pragprog.com/titles/phoenix/errata/add
http://forums.pragprog.com/forums/phoenix

changes = Dict.merge(%{
name: "Some User",
username: "user#{Base.encode16(:crypto.rand_bytes(8))}",
password: "supersecret",

}, attrs)

%Rumbl.User{}
|> Rumbl.User.registration_changeset(changes)
|> Repo.insert!()

end

def insert_video(user, attrs \\ %{}) do
user
|> Ecto.build_assoc(:videos, attrs)
|> Repo.insert!()

end
end

We add an insert_user function that accepts a set of attributes and creates a
persistent user with them. Then, we do the same with a function called
insert_video. That function must also take the user that created the video. We’ll
use this file as a convenient base for common helpers like this.

You might be tempted to automatically reach for complex factory libraries,
as you would in other languages, or approaches that let you specify fixtures.
For simple data with a few well-defined relationships and mostly static
attributes, you might find that simple functions work better. For applications
like ours, such an approach has much less ceremony and will serve perfectly
well.

Keep in mind, though, that absolutes of any kind can get you into trouble. A
contract exists between your tests and your test data, whether you choose
to make it explicit or not. The best approach is to start slowly with functions.
Later, as your needs—such as unique sequences and faked unique data—grow,
you can decide to adopt a library based on the specific needs of your applica-
tion. Libraries are like macros. Don’t use one when a simple function will do
the job.

Testing Logged-Out Users
With that warning out of the way, it’s time to add our factory helpers to our
application. You can add import Rumbl.TestHelpers to your ConnCase using block so
we bring in our helpers in all our connection-related tests, like this:

testing_mvc/listings/rumbl/test/support/conn_case.change1.ex
using doLine 1

quote do-

Import conveniences for testing with connections-

report erratum • discuss

Integration Tests • 135

http://media.pragprog.com/titles/phoenix/code/testing_mvc/listings/rumbl/test/support/conn_case.change1.ex
http://pragprog.com/titles/phoenix/errata/add
http://forums.pragprog.com/forums/phoenix

use Phoenix.ConnTest-

5

alias Rumbl.Repo-

import Ecto-

import Ecto.Changeset-

import Ecto.Query, only: [from: 1, from: 2]-

10

import Rumbl.Router.Helpers-

import Rumbl.TestHelpers-

-

The default endpoint for testing-

@endpoint Rumbl.Endpoint15

end-

end-

On line 12, we import our test helpers. We can now use our new insert_user
and insert_video functions to create our test data as needed.

We’re finally ready to start testing our VideoController. Create a file called
test/controllers/video_controller_test.exs and make it look like this:

testing_mvc/listings/rumbl/test/controllers/video_controller_test.exs
defmodule Rumbl.VideoControllerTest do

use Rumbl.ConnCase

test "requires user authentication on all actions", %{conn: conn} do
Enum.each([
get(conn, video_path(conn, :new)),
get(conn, video_path(conn, :index)),
get(conn, video_path(conn, :show, "123")),
get(conn, video_path(conn, :edit, "123")),
put(conn, video_path(conn, :update, "123", %{})),
post(conn, video_path(conn, :create, %{})),
delete(conn, video_path(conn, :delete, "123")),

], fn conn ->
assert html_response(conn, 302)
assert conn.halted

end)
end

end

Since our video controller is locked behind user authentication, we want to
make sure that every action is halted. Since all of those tests are the same
except for the routes, we use Enum.each to iterate over all of the routes we want,
and we make the same assertion for each response. Since we’re verifying a
halted connection that kicks logged out visitors back to the home page, we
assert a html_response of 302.

Let’s try our tests out:

$ mix test

Chapter 8. Testing MVC • 136

report erratum • discuss

http://media.pragprog.com/titles/phoenix/code/testing_mvc/listings/rumbl/test/controllers/video_controller_test.exs
http://pragprog.com/titles/phoenix/errata/add
http://forums.pragprog.com/forums/phoenix

.........

Finished in 0.6 seconds (0.5s on load, 0.1s on tests)
9 tests, 0 failures

And they pass. Now we need to test the actions with a logged-in user.

Preparing for Logged-In Users
You might be tempted to place the user_id in the session for the Auth plug to
pick up:

conn()
|> fetch_session()
|> put_session(:user_id, user.id)
|> get("/videos")

This approach is a little messy. We don’t want to store anything directly in
the session, because we don’t want to leak implementation details. Alterna-
tively, we could do a direct request to the session controller. However, this
would quickly become expensive, because most tests will require a logged-in
user.

Instead, we choose to test our login mechanism in isolation and build a bypass
mechanism for the rest of our test cases. We simply pass any user through in
our conn.assigns as a pass-through for our Auth plug. Update your web/con-
trollers/auth.ex, like this:

testing_mvc/listings/rumbl/web/controllers/auth.change1.ex
def call(conn, repo) do

user_id = get_session(conn, :user_id)

cond do
user = conn.assigns[:current_user] ->
conn

user = user_id && repo.get(Rumbl.User, user_id) ->
assign(conn, :current_user, user)

true ->
assign(conn, :current_user, nil)

end
end

We’ve rewritten our call function using cond to check for multiple conditions,
with our new condition at the top. Its sole job is to match on the current_user
already in place in the assigns. If we see that we already have a current_user,
we return the connection as is.

Let’s be clear. What we’re doing here is controversial. We’re adding this code
to make our implementation more testable. We think the trade-off is worth
it. We’re improving the contract. If a user is in the conn.assigns, we honor it, no

report erratum • discuss

Integration Tests • 137

http://media.pragprog.com/titles/phoenix/code/testing_mvc/listings/rumbl/web/controllers/auth.change1.ex
http://pragprog.com/titles/phoenix/errata/add
http://forums.pragprog.com/forums/phoenix

matter how it got there. We have an improved testing story that doesn’t require
us to write mocks or any other elaborate scaffolding.

Now, all of our tests for logged-in users will be much cleaner.

Testing Logged-In Users
Now, we’re free to add tests. We add a new test for the /videos route to test/con-
trollers/video_controller_test.exs, like this:

testing_mvc/listings/rumbl/test/controllers/video_controller_test.change1.exs
setup do

user = insert_user(username: "max")
conn = assign(conn(), :current_user, user)
{:ok, conn: conn, user: user}

end

test "lists all user's videos on index", %{conn: conn, user: user} do
user_video = insert_video(user, title: "funny cats")
other_video = insert_video(insert_user(username: "other"), title: "another video")

conn = get conn, video_path(conn, :index)
assert html_response(conn, 200) =~ ~r/Listing videos/
assert String.contains?(conn.resp_body, user_video.title)
refute String.contains?(conn.resp_body, other_video.title)

end

In our setup block, we seed a user to the database by using our insert_user helper
function. ConnCase takes care of running our tests in isolation. Any seeded
fixtures in the database will be wiped between test blocks.

However, our new setup block causes the previous tests to break, because
they expect a connection without a user logged in. To solve our test failures,
let’s learn a technique called tagging to specify which tests need logged-in
users and which ones don’t.

Controlling Duplication with Tagging
Some of our tests require logging in and some don’t. When setup requirements
are different from test to test, ExUnit tags can help. When you specify a tag,
ExUnit makes that information available within the setup block via callbacks.
We’re going to use tags to determine whether to log in our user.

Let’s add a tag called :login_as to signify that we should insert a user and log
that user into the connection. Otherwise, we’ll skip the login requirement.

testing_mvc/listings/rumbl/test/controllers/video_controller_test.change2.exs
setup %{conn: conn} = config doLine 1

if username = config[:login_as] do-

user = insert_user(username: username)-

Chapter 8. Testing MVC • 138

report erratum • discuss

http://media.pragprog.com/titles/phoenix/code/testing_mvc/listings/rumbl/test/controllers/video_controller_test.change1.exs
http://media.pragprog.com/titles/phoenix/code/testing_mvc/listings/rumbl/test/controllers/video_controller_test.change2.exs
http://pragprog.com/titles/phoenix/errata/add
http://forums.pragprog.com/forums/phoenix

conn = assign(conn, :current_user, user)-

{:ok, conn: conn, user: user}5

else-

:ok-

end-

end-

10

@tag login_as: "max"-

test "lists all user's videos on index", %{conn: conn, user: user} do-

user_video = insert_video(user, title: "funny cats")-

other_video = insert_video(insert_user(username: "other"), title: "another video")-

15

conn = get conn, video_path(conn, :index)-

assert html_response(conn, 200) =~ ~r/Listing videos/-

assert String.contains?(conn.resp_body, user_video.title)-

refute String.contains?(conn.resp_body, other_video.title)-

end20

On line 11, we add a :login_as tag with our username. The tag module attribute
accepts a keyword list or an atom. Passing an atom is a shorthand way to set
flag style options. For example @tag :logged_in is equivalent to @tag logged_in: true.
We rewrite our setup block to grab the config map, which holds our metadata
with the conn and tags. If login_as has a value, we use it to log the user in and
return the updated connection alongside the user; otherwise, we return :ok.

Our tests now pass, because they only seed the database when necessary.
We can also use the tags to run tests only matching a particular tag, like this:

$ mix test test/controllers --only login_as
Including tags: [:login_as]
Excluding tags: [:test]
.

Finished in 0.4 seconds (0.3s on load, 0.04s on tests)
3 tests, 0 failures, 2 skipped

Perfect. In short, we’ll use tags anywhere we want to identify a block of tests.
If many tests need to share the same tag, for example the :login_as one, we
could also move it to ConnCase itself.

Our tests now exercise the video listing, but we still haven’t used the controller
to create a video. Let’s build a test to create a video, like this:

testing_mvc/listings/rumbl/test/controllers/video_controller_test.change3.exs
alias Rumbl.Video
@valid_attrs %{url: "http://youtu.be", title: "vid", description: "a vid"}
@invalid_attrs %{title: "invalid"}

defp video_count(query), do: Repo.one(from v in query, select: count(v.id))

@tag login_as: "max"

report erratum • discuss

Integration Tests • 139

http://media.pragprog.com/titles/phoenix/code/testing_mvc/listings/rumbl/test/controllers/video_controller_test.change3.exs
http://pragprog.com/titles/phoenix/errata/add
http://forums.pragprog.com/forums/phoenix

test "creates user video and redirects", %{conn: conn, user: user} do
conn = post conn, video_path(conn, :create), video: @valid_attrs
assert redirected_to(conn) == video_path(conn, :index)
assert Repo.get_by!(Video, @valid_attrs).user_id == user.id

end

@tag login_as: "max"
test "does not create video and renders errors when invalid", %{conn: conn} do

count_before = video_count(Video)
conn = post conn, video_path(conn, :create), video: @invalid_attrs
assert html_response(conn, 200) =~ "check the errors"
assert video_count(Video) == count_before

end

In this example, we want to test the successful and unsuccessful paths for
creating a video. To keep things clear and easy to understand, we create some
module attributes for both valid and invalid changesets. This touch keeps
our intentions clear. With one tweak, we can keep our tests DRY so changes
in validations require only trivial changes to our controller tests. We’ll have
another set of tests we can use to fully handle our changesets, but for now
this strategy will work fine.

Next, we create the test case for the successful case. We use the create route
with our valid attributes and then assert that we’re returning the right values
and redirecting to the right place. Then, we confirm that our test impacts the
database in the ways we expect. We don’t need to test all of the attributes,
but we should pay attention to the elements of this operation that are likely
to break. We assert that our new record exists and has the correct owner. This
test makes sure that our happy path is indeed happy.

Writing negative tests is a delicate balance. We don’t want to cover all possible
failure conditions. Instead, we’re handling concerns we choose to expose to
the user, especially those that change the flow of our code. We test the case
of trying to create an invalid video, the redirect, error messages, and so on.

Our other persistence tests will follow much the same approach. You can find
the full CRUD test listing in the downloadable source code for the book.2

As you recall, we left a hole in our code coverage when we worked around
authentication. Let’s shift gears and handle the authorization cases of our
controller. We must test that other users cannot view, edit, update, or destroy
videos of another user. Crack open our test case and key this in:

testing_mvc/listings/rumbl/test/controllers/video_controller_test.change4.exs
@tag login_as: "max"

2. http://pragprog.com/book/phoenix/source_code

Chapter 8. Testing MVC • 140

report erratum • discuss

http://media.pragprog.com/titles/phoenix/code/testing_mvc/listings/rumbl/test/controllers/video_controller_test.change4.exs
http://pragprog.com/book/phoenix/source_code
http://pragprog.com/titles/phoenix/errata/add
http://forums.pragprog.com/forums/phoenix

test "authorizes actions against access by other users",
%{user: owner, conn: conn} do

video = insert_video(owner, @valid_attrs)
non_owner = insert_user(username: "sneaky")
conn = assign(conn, :current_user, non_owner)

assert_error_sent :not_found, fn ->
get(conn, video_path(conn, :show, video))

end
assert_error_sent :not_found, fn ->

get(conn, video_path(conn, :edit, video))
end
assert_error_sent :not_found, fn ->

put(conn, video_path(conn, :update, video, video: @valid_attrs))
end
assert_error_sent :not_found, fn ->

delete(conn, video_path(conn, :delete, video))
end

end

We first insert a video for our test user, max. Then, we set up our conn to log
in a newly created user named sneaky, one that doesn’t own our existing video.
We use the same approach that we used when we tested the basic path
without logging in. We call all of the actions and ensure that they raise an
error, which results in a 404 or :not_found response status. In this case, the
controllers are raising the Ecto.NoResultsError, which the adapter will translate
to a 404 error for our production deployment.

Though our tests don’t cover every controller action, these test cases provide
a pretty good cross section for the overall approach. For practice, you can
use these techniques to round out our integration tests.

As we work from the top down, we have one plug that we extracted into its
own module, since it plays a critical role across multiple sections of our
application. We’ll test that plug next, in isolation. We’re going to adhere to
our principle for getting the right level of isolation.

Unit-Testing Plugs
If your code is worth writing, it’s worth testing. Earlier, we bypassed our
authentication plug, so we should test it now. The good news is that since
our plug is essentially a function, it’s relatively easy to build a set of tests
that will confirm that it does what we need.

Create a test/controllers/auth_test.exs and key in the following contents. We’re going
to break the test file into parts to keep things simple.

report erratum • discuss

Unit-Testing Plugs • 141

http://pragprog.com/titles/phoenix/errata/add
http://forums.pragprog.com/forums/phoenix

First, test the authenticate_user function that does the lion’s share of the work:

testing_mvc/listings/rumbl/test/controllers/auth_test.exs
defmodule Rumbl.AuthTest do

use Rumbl.ConnCase
alias Rumbl.Auth

test "authenticate_user halts when no current_user exists",
%{conn: conn} do

conn = Auth.authenticate_user(conn, [])
assert conn.halted

end

test "authenticate_user continues when the current_user exists",
%{conn: conn} do

conn =
conn
|> assign(:current_user, %Rumbl.User{})
|> Auth.authenticate_user([])

refute conn.halted
end

end

That’s as simple as it gets. If we try to authenticate without a user, we
shouldn’t authenticate. Otherwise, we should. Let’s run that much to make
sure things continue to work:

$ mix test test/controllers/auth_test.exs

1) test authenticate_user halts when no current_user exists
(Rumbl.AuthTest)
test/controllers/auth_test.exs:5
** (KeyError) key :current_user not found in: %{}
stacktrace:
(rumbl) web/controllers/auth.ex:53: Rumbl.Auth.authenticate_user/2
test/controllers/auth_test.exs:8

Finished in 0.3 seconds (0.3s on load, 0.01s on tests)
2 tests, 1 failure

That was surprising. What happened?

Since our Auth plug assumes that a :current_user assign exists in the connection,
the test errors. Let’s try to quickly fix this by injecting a nil :current_user in our
first test case, like this:

conn =
conn
|> assign(:current_user, nil)
|> Auth.authenticate_user([])

Chapter 8. Testing MVC • 142

report erratum • discuss

http://media.pragprog.com/titles/phoenix/code/testing_mvc/listings/rumbl/test/controllers/auth_test.exs
http://pragprog.com/titles/phoenix/errata/add
http://forums.pragprog.com/forums/phoenix

Now let’s rerun the tests:

$ mix test test/controllers/auth_test.exs

1) test authenticate_user halts when no current_user exists
(Rumbl.AuthTest)
test/controllers/auth_test.exs:5
** (ArgumentError) flash not fetched, call fetch_flash/2
stacktrace:
(phoenix) lib/phoenix/controller.ex:997: Phoenix.Controller.get_flash/1
(phoenix) lib/phoenix/controller.ex:982: Phoenix.Controller.put_flash/3
(rumbl) web/controllers/auth.ex:57: Rumbl.Auth.authenticate_user/2
test/controllers/auth_test.exs:11

Finished in 0.4 seconds (0.4s on load, 0.01s on tests)
2 tests, 1 failure

Another error. It looks like our fetch_flash raised an error because the auth_test
puts a message in the flash, which isn’t available. Try to simply call fetch_flash,
like this:

conn =
conn()
|> fetch_flash()
|> Auth.authenticate_user([])

We receive a ** (ArgumentError) session not fetched, call fetch_session/2 error. And down
the rabbit hole we go.

These are the kinds of issues that integration testing through the endpoint
avoids. For unit tests, Phoenix includes a bypass_through test helper to prepare
a connection. The bypass_through helper that ConnCase provides allows you to
send a connection through the endpoint, router, and desired pipelines but
bypass the route dispatch. This approach gives you a connection wired up
with all the transformations your specific tests require, such as fetching the
session and adding flash messages:

report erratum • discuss

Unit-Testing Plugs • 143

http://pragprog.com/titles/phoenix/errata/add
http://forums.pragprog.com/forums/phoenix

testing_mvc/listings/rumbl/test/controllers/auth_test.change1.exs
setup %{conn: conn} do

conn =
conn
|> bypass_through(Rumbl.Router, :browser)
|> get("/")

{:ok, %{conn: conn}}
end

test "authenticate_user halts when no current_user exists", %{conn: conn} do
conn = Auth.authenticate_user(conn, [])
assert conn.halted

end

test "authenticate_user continues when the current_user exists", %{conn: conn} do
conn =

conn
|> assign(:current_user, %Rumbl.User{})
|> Auth.authenticate_user([])

refute conn.halted
end

We add a setup block, which calls bypass_through, passing our router and the
:browser pipeline to invoke. Then we perform a request with get, which accesses
the endpoint and stops at the browser pipeline, as requested. The path given
to get isn’t used by the router when bypassing; it’s simply stored in the con-
nection. This gives us all the requirements for a plug with a valid session and
flash message support. Next, we pull the conn from the context passed to the
test macro and use our bypassed conn as the base for our test blocks. Now let’s
rerun our tests:

$ mix test test/controllers/auth_test.exs
..

Finished in 0.4 seconds (0.4s on load, 0.02s on tests)
2 test, 0 failures

And boom. Now test the rest of our Auth plug, like the login and logout features:

testing_mvc/listings/rumbl/test/controllers/auth_test.change2.exs
test "login puts the user in the session", %{conn: conn} do

login_conn =
conn
|> Auth.login(%Rumbl.User{id: 123})
|> send_resp(:ok, "")

next_conn = get(login_conn, "/")
assert get_session(next_conn, :user_id) == 123

end

Chapter 8. Testing MVC • 144

report erratum • discuss

http://media.pragprog.com/titles/phoenix/code/testing_mvc/listings/rumbl/test/controllers/auth_test.change1.exs
http://media.pragprog.com/titles/phoenix/code/testing_mvc/listings/rumbl/test/controllers/auth_test.change2.exs
http://pragprog.com/titles/phoenix/errata/add
http://forums.pragprog.com/forums/phoenix

Here, we test our ability to log in. We create a new connection called login_conn.
We take a basic conn, log the user in with Auth.login, and call send_resp, which
sends the response to the client with a given status and response body. To
make sure that our new user survives the next request, we make a new request
with that connection and make sure the user is still in the session. That’s
easy enough. A test for logout is similar:

testing_mvc/listings/rumbl/test/controllers/auth_test.change2.exs
test "logout drops the session", %{conn: conn} do

logout_conn =
conn
|> put_session(:user_id, 123)
|> Auth.logout()
|> send_resp(:ok, "")

next_conn = get(logout_conn, "/")
refute get_session(next_conn, :user_id)

end

We create a connection, put a user_id into our session, and then call Auth.logout.
To make sure the logout will persist through a request, we then make a request
with get, and finally make that no user_id is in the session.

Now, let’s test the main interface for our plug—the call function, which calls
the plug directly to wire up the current_user from the session:

testing_mvc/listings/rumbl/test/controllers/auth_test.change3.exs
test "call places user from session into assigns", %{conn: conn} doLine 1

user = insert_user()-

conn =-

conn-

|> put_session(:user_id, user.id)5

|> Auth.call(Repo)-

-

assert conn.assigns.current_user.id == user.id-

end-

10

test "call with no session sets current_user assign to nil", %{conn: conn} do-

conn = Auth.call(conn, Repo)-

assert conn.assigns.current_user == nil-

end-

The tests are simple and light. On line 2, we create a user for the test. Next,
on line 5, we place that user’s ID in the session. On line 6, we call Auth.call,
and then assert that the current_user in conn.assigns matches our seeded user.
We know that logged-in users can get in.

We have a workable positive test, but it’s also important to test the negative
condition. We want to make sure that logged-out users stay out. The test looks

report erratum • discuss

Unit-Testing Plugs • 145

http://media.pragprog.com/titles/phoenix/code/testing_mvc/listings/rumbl/test/controllers/auth_test.change2.exs
http://media.pragprog.com/titles/phoenix/code/testing_mvc/listings/rumbl/test/controllers/auth_test.change3.exs
http://pragprog.com/titles/phoenix/errata/add
http://forums.pragprog.com/forums/phoenix

a lot like the positive test, but we never put any user in the session, and we
match on nil instead.

The only feature left is to test our Auth.login_by_username_and_pass function. That’s
pretty easy:

testing_mvc/listings/rumbl/test/controllers/auth_test.change4.exs
test "login with a valid username and pass", %{conn: conn} doLine 1

user = insert_user(username: "me", password: "secret")-

{:ok, conn} =-

Auth.login_by_username_and_pass(conn, "me", "secret", repo: Repo)-

5

assert conn.assigns.current_user.id == user.id-

end-

-

test "login with a not found user", %{conn: conn} do-

assert {:error, :not_found, _conn} =10

Auth.login_by_username_and_pass(conn, "me", "secret", repo: Repo)-

end-

-

test "login with password mismatch", %{conn: conn} do-

_ = insert_user(username: "me", password: "secret")15

assert {:error, :unauthorized, _conn} =-

Auth.login_by_username_and_pass(conn, "me", "wrong", repo: Repo)-

end-

We have three basic tests. The test on line 1 seeds a user and then authenti-
cates it. So far so good. Our positive case passes. Once again, our negative
tests will closely resemble the positive ones.

We have two negative cases to cover. On line 9 we test the case where no user
exists, and on line 14 we test an incorrect password.

Now let’s run our tests:

$ mix test
.....................

Finished in 4.8 seconds (0.6s on load, 4.1s on tests)
22 tests, 0 failures

All pass, but if you look closely, we have a problem. We’re waiting five seconds
for twenty-two small tests. The test time is growing quickly. You’ve probably
been noticing how the test times have crept up as we’ve seeded more and
more users. If your tests are slow, you won’t run them as much. We have to
fix it.

The reason our tests are slow is that we seed users with our registration
changeset, which hashes passwords. Hashing passwords is intentionally
expensive. Doing this extra bit of work makes our passwords harder to crack,

Chapter 8. Testing MVC • 146

report erratum • discuss

http://media.pragprog.com/titles/phoenix/code/testing_mvc/listings/rumbl/test/controllers/auth_test.change4.exs
http://pragprog.com/titles/phoenix/errata/add
http://forums.pragprog.com/forums/phoenix

but we don’t need all of that security in the test environment. Let’s ease up
the number of hashing rounds to speed up our test suite by adding these
configuration lines to config/test.exs:

testing_mvc/listings/rumbl/config/test.change1.exs
config :comeonin, :bcrypt_log_rounds, 4
config :comeonin, :pbkdf2_rounds, 1

Now let’s rerun our tests:

$ mix test
.....................

Finished in 0.6 seconds (0.5s on load, 0.2s on tests)
22 tests, 0 failures

Less than a second! Time to shift into views.

Testing Views and Templates
As we’ve said, any code worth writing is code worth testing, and your views
are no exception. As you saw in Chapter 3, Controllers, Views, and Templates,
on page 37, Phoenix templates are simply functions in a parent’s view module.
You can test these functions like any other. In this section, you’ll see how to
test views and templates in isolation.

Create a test/views/video_view_test.exs and key this in:

testing_mvc/listings/rumbl/test/views/video_view_test.exs
defmodule Rumbl.VideoViewTest doLine 1

use Rumbl.ConnCase, async: true-

import Phoenix.View-

-

test "renders index.html", %{conn: conn} do5

videos = [%Rumbl.Video{id: "1", title: "dogs"},-

%Rumbl.Video{id: "2", title: "cats"}]-

content = render_to_string(Rumbl.VideoView, "index.html",-

conn: conn, videos: videos)-

10

assert String.contains?(content, "Listing videos")-

for video <- videos do-

assert String.contains?(content, video.title)-

end-

end15

-
-

test "renders new.html", %{conn: conn} do-

changeset = Rumbl.Video.changeset(%Rumbl.Video{})-

categories = [{"cats", 123}]20

content = render_to_string(Rumbl.VideoView, "new.html",-

conn: conn, changeset: changeset, categories: categories)-

report erratum • discuss

Testing Views and Templates • 147

http://media.pragprog.com/titles/phoenix/code/testing_mvc/listings/rumbl/config/test.change1.exs
http://media.pragprog.com/titles/phoenix/code/testing_mvc/listings/rumbl/test/views/video_view_test.exs
http://pragprog.com/titles/phoenix/errata/add
http://forums.pragprog.com/forums/phoenix

-

assert String.contains?(content, "New video")-

end25

end-

Our test needs some videos, so on line 5, we set up our required @videos
assigns. With all of the prerequisites in place, we call Phoenix.View.render_to_string
to render our HTML template as a simple string. Then, we make sure that all
of the video titles are present on the page.

On line 18, we again set up our necessary @changeset and @categories assigns
before rendering our template as a string and asserting that our render con-
tents place us on the new video page.

Sometimes, views are simple enough that your integration tests will be enough.
Many other times, you won’t test the templates directly, but the functions
that you create to help move the logic away from the templates and into code.
Our goal with this section is to once again highlight the fact that because a
template is just a function in the view, templates are easy to test because
they aren’t coupled with the controller layer. And this will apply to any function
you create in your view, because all arguments are received explicitly. With
Phoenix, you’ll have all of the tools you need to do so easily. Let’s move on to
models.

Splitting Side Effects in Model Tests
It’s time to test the M of the MVC: the model. We’ll split model tests by their
reliance on side effects. Phoenix, like Rumbl.ConnCase, generates a module in
test/support/model_case.ex to serve as a foundation for your model tests. Crack it
open so you can import our TestHelpers, like this:

testing_mvc/listings/rumbl/test/support/model_case.change1.ex
defmodule Rumbl.ModelCase doLine 1

use ExUnit.CaseTemplate-

-

using do-

quote do5

alias Rumbl.Repo-

-

import Ecto-

import Ecto.Changeset-

import Ecto.Query, only: [from: 1, from: 2]10

import Rumbl.TestHelpers-

import Rumbl.ModelCase-

end-

end-

15

setup tags do-

Chapter 8. Testing MVC • 148

report erratum • discuss

http://media.pragprog.com/titles/phoenix/code/testing_mvc/listings/rumbl/test/support/model_case.change1.ex
http://pragprog.com/titles/phoenix/errata/add
http://forums.pragprog.com/forums/phoenix

unless tags[:async] do-

Ecto.Adapters.SQL.restart_test_transaction(Rumbl.Repo, [])-

end-

20

:ok-

end-

-

def errors_on(model, data) do-

model.__struct__.changeset(model, data).errors25

end-

end-

The using block serves as a place for common imports and aliases, and we
again see a setup block for handling transactional tests. Recall that transac-
tional tests run a test and roll back any changes made during the test. This
allows tests to reset the database to a known state quickly between tests.

Phoenix also generates an errors_on function for quickly accessing a list of error
messages for attributes on a given model. You’ll see that function come into
play when we write tests for our changesets.

Testing Side Effect–Free Model Code
If you’re new to functional programming, recall that code with side effects
changes the outside world. Some examples include writing to the database,
removing a file from the filesystem, or changing some global state. Code that
just transforms data, like our functions that build changesets and transform
queries, is free of side effects. We start by creating a test/models/user_test.exs for
holding unit tests that don’t have side effects or touch the database. Open it
and key this in:

testing_mvc/listings/rumbl/test/models/user_test.exs
defmodule Rumbl.UserTest doLine 1

use Rumbl.ModelCase, async: true-

alias Rumbl.User-

-

@valid_attrs %{name: "A User", username: "eva", password: "secret"}5

@invalid_attrs %{}-

-

test "changeset with valid attributes" do-

changeset = User.changeset(%User{}, @valid_attrs)-

assert changeset.valid?10

end-

-

test "changeset with invalid attributes" do-

changeset = User.changeset(%User{}, @invalid_attrs)-

refute changeset.valid?15

end-

-

report erratum • discuss

Splitting Side Effects in Model Tests • 149

http://media.pragprog.com/titles/phoenix/code/testing_mvc/listings/rumbl/test/models/user_test.exs
http://pragprog.com/titles/phoenix/errata/add
http://forums.pragprog.com/forums/phoenix

test "changeset does not accept long usernames" do-

attrs = Map.put(@valid_attrs, :username, String.duplicate("a", 30))-

assert {:username, {"should be at most %{count} character(s)", [count: 20]}} in20

errors_on(%User{}, attrs)-

end-

end-

On line 2, we use Rumbl.ModelCase to set up our model tests. We also make sure
to set our test as async: true, because one of our primary motivations for isolating
side effects is that we can execute tests concurrently. Since we have side
effect–free tests, we can run these in parallel for faster execution times because
we can be certain they won’t conflict with other tests for database or some
other shared state.

As we did in previous tests, we set up a few module attributes for valid and
invalid fields to keep our tests DRY and maintainable as our requirements
change. Then, on lines 8 and 13, we build valid and invalid changesets and
assert the expected results of changeset.valid?. You can see one of the benefits
of separating change management from persistence. These tests don’t require
accessing the database. In this case, it’s perfectly reasonable to test this code
in isolation.

In the third test, on line 18, our error checking is a bit more intentional. We
set a username that’s too long and assert that we got a specific error back. For
this test, we use the errors_on function defined on Rumbl.ModelCase. errors_on is
convenient for quickly retrieving errors from the changeset function, or you can
improvise something by hand if you need to test custom behavior, such as
our code in the registration_changeset.

Our Rumbl.User module is small, but our password policies are important to
us. We want to explicitly cover those requirements in specific test cases, like
this:

testing_mvc/listings/rumbl/test/models/user_test.change1.exs
test "registration_changeset password must be at least 6 chars long" doLine 1

attrs = Map.put(@valid_attrs, :password, "12345")-

changeset = User.registration_changeset(%User{}, attrs)-

assert {:password, {"should be at least %{count} character(s)", count: 6}}-

in changeset.errors5

end-

-

test "registration_changeset with valid attributes hashes password" do-

attrs = Map.put(@valid_attrs, :password, "123456")-

changeset = User.registration_changeset(%User{}, attrs)10

%{password: pass, password_hash: pass_hash} = changeset.changes-

-

assert changeset.valid?-

Chapter 8. Testing MVC • 150

report erratum • discuss

http://media.pragprog.com/titles/phoenix/code/testing_mvc/listings/rumbl/test/models/user_test.change1.exs
http://pragprog.com/titles/phoenix/errata/add
http://forums.pragprog.com/forums/phoenix

assert pass_hash-

assert Comeonin.Bcrypt.checkpw(pass, pass_hash)15

end-

We first test the registration_changeset with an invalid password length. We assert
that changeset.errors includes our expected error.

Next, we encode a specific security requirement. We don’t want passwords
to be stored in the clear. On line 8, we use valid user registration data, and
we explicitly test that password_hash is properly hashed from the plain-text
password.

Now let’s run our tests:

$ mix test test/models/user_test.exs
.....

Finished in 0.3 seconds (0.2s on load, 0.02s on tests)
5 tests, 0 failures

They pass!

In the future, as we continue to build features, we’ll try to make as much of
our application side effect free as possible, as we do throughout Phoenix. All
of these tests will go into user_test. Those tests will be easier to understand
and will run faster.

Testing Code with Side Effects
Now let’s handle the cases where we have side effects. We’ll call these reposi-
tory tests because the side effects manifest themselves in the repository.

In truth, most repository-related functionality will be tested with our integra-
tion tests as they insert and update records, but we want to be sure we catch
some error conditions as close to the breaking point as possible. One such
example is a uniqueness constraint checks in our changeset. It has side
effects because we’re going to need to explicitly create an existing record and
then test against it.

Create a test/models/user_repo_test.exs file and key this in:

report erratum • discuss

Splitting Side Effects in Model Tests • 151

http://pragprog.com/titles/phoenix/errata/add
http://forums.pragprog.com/forums/phoenix

testing_mvc/listings/rumbl/test/models/user_repo_test.exs
defmodule Rumbl.UserRepoTest doLine 1

use Rumbl.ModelCase-

alias Rumbl.User-

-

@valid_attrs %{name: "A User", username: "eva"}5

-

test "converts unique_constraint on username to error" do-

insert_user(username: "eric")-

attrs = Map.put(@valid_attrs, :username, "eric")-

changeset = User.changeset(%User{}, attrs)10

-

assert {:error, changeset} = Repo.insert(changeset)-

assert {:username, "has already been taken"} in changeset.errors-

end-

end15

Once again, we start by using ModelCase, but this time we go with the default
async: false option because side effects prevent us from running these tests in
isolation. At the top of our test, we insert a user named eric. On line 12, we
attempt to add another user with the same name. Then, we assert that it was
properly converted to a changeset error.

Now, let’s run our test:

$ mix test test/models/user_repo_test.exs
.

Finished in 0.3 seconds (0.2s on load, 0.05s on tests)
1 test, 0 failures

And it passes! We have one more model test against our Repo. Our Category
module contains an alphabetical function that composes an Ecto query. Let’s
test this function against Repo by creating a test/models/category_repo_test.exs:

testing_mvc/listings/rumbl/test/models/category_repo_test.exs
defmodule Rumbl.CategoryRepoTest do

use Rumbl.ModelCase
alias Rumbl.Category

test "alphabetical/1 orders by name" do
Repo.insert!(%Category{name: "c"})
Repo.insert!(%Category{name: "a"})
Repo.insert!(%Category{name: "b"})

query = Category |> Category.alphabetical()
query = from c in query, select: c.name
assert Repo.all(query) == ~w(a b c)

end
end

Chapter 8. Testing MVC • 152

report erratum • discuss

http://media.pragprog.com/titles/phoenix/code/testing_mvc/listings/rumbl/test/models/user_repo_test.exs
http://media.pragprog.com/titles/phoenix/code/testing_mvc/listings/rumbl/test/models/category_repo_test.exs
http://pragprog.com/titles/phoenix/errata/add
http://forums.pragprog.com/forums/phoenix

We add a single test case that inserts a few categories, then queries against
the Repo to check that they’re returned alphabetically as requested. We also
test that our alphabetical function can compose with an existing queryable
argument. Now let’s run our tests:

$ mix test test/models/category_repo_test.exs
.

Finished in 0.2 seconds (0.2s on load, 0.02s on tests)
1 test, 0 failures

Clean and green!

Though such queries’ functions are just transforming data, you’ll often test
them with side effects because you want to verify what the queries do, not
how they’re composed. You can see that the code organization of models in
Ecto provides an excellent separation for breaking your tests along the side-
effect boundary.

Wrapping Up
With these final tests, we’re finally done. We’ve accomplished a lot:

• We examined how tests work in Phoenix.

• We set up some basic testing functions to insert users and videos, and
shared those across all of our potential test cases.

• We wrote some basic integration tests, bypassing only our authentication
plug.

• We used Phoenix test helpers to make multiple assertions in a compact
way.

• We tested our authentication plug in isolation.

• We tested our views.

• We tested models with and without side effects.

Raise a cheer, because we’re through Part I! You should now be able to use
Plug, Ecto, and Phoenix to build traditional request/response features for
your application and test each of those concepts. Part II will be even more
exciting, focusing on the features that prompted the creation of Phoenix. You’ll
see channels, OTP, and more. Get ready. We’re going to push Phoenix harder.

report erratum • discuss

Wrapping Up • 153

http://pragprog.com/titles/phoenix/errata/add
http://forums.pragprog.com/forums/phoenix

Part II

Writing Interactive and Maintainable
Applications

In Part II, we’ll explore the features that will help you build a new generation of web
applications. You’ll learn to use channels to build highly concurrent interactive appli-
cations using a new set of abstractions. Then, you’ll learn to build service layers with
the OTP API, the famous Erlang library for building supervised, fault-tolerant services.
You’ll manage all of this with Mix, Elixir’s build tool, allowing us to break a single
monolithic application into smaller ones, separately maintainable but conveniently
integrated. Finally, you’ll learn to test channels and OTP features. You’ll learn to build
interactive applications that scale well and are easy to understand.

CHAPTER 9

Watching Videos
We’ve accomplished quite a bit. We’ve built some basic web application fea-
tures in a short time. We used Plug to build pipelines of functions that let us
build organized, DRY code. We used Ecto to deal with our relational database
in a functional way, favoring explicitness by separating the model from the
repository. Phoenix wired it all together into a streamlined workflow, with live
reloading, HTML support, and more.

Everything we’ve done so far highlights how well Phoenix encourages beautiful
and maintainable applications. Those improvements bring a slightly different
look to how people have done web development for the last ten years, but
nothing you’ve seen up to now is drastically different from what you already
knew.

Now you’re ready to see what makes Phoenix shine. This chapter starts with
preparing some common ground by adding a page to watch videos. Then you’ll
look into Ecto custom types, which allow you to integrate your own require-
ments into queries, changesets, and structs. At the close of this chapter you’ll
learn about the extensible power behind Elixir’s protocols.

Tighten your seat belts. This ride will be unforgettable.

Watching Videos
Our rumbl application will allow us to add messages to videos in real time.
We’ll do some groundwork to make this process more convenient when the
time comes. We’ll tweak our views to make it easy to watch videos. Then, we’ll
create a new controller explicitly for watching a video, along with its view and
template. Next, we’ll tweak the router to pick up our new routes. Finally, we’ll
add some JavaScript to plug in to YouTube’s API. You’ll work through these
features quickly, because they don’t involve much new ground.

report erratum • discuss

http://pragprog.com/titles/phoenix/errata/add
http://forums.pragprog.com/forums/phoenix

Let’s let the user watch a video. First let’s enhance our layout header with a
link to My Videos for the current user in web/templates/layout/app.html.eex:

watching_videos/listings/rumbl/web/templates/layout/app.change1.html.eex
<div class="header">

<ol class="breadcrumb text-right">
<%= if @current_user do %>
<%= @current_user.username %>
<%= link "My Videos", to: video_path(@conn, :index) %>

<%= link "Log out", to: session_path(@conn, :delete, @current_user),
method: "delete" %>

<% else %>
<%= link "Register", to: user_path(@conn, :new) %>
<%= link "Log in", to: session_path(@conn, :new) %>

<% end %>

</div>

Clicking My Videos routes a logged-in user directly to VideoController.index action.

This action is restricted to the current user, thanks to our scoping rules in
the controller. In fact, there’s no public URL we can share with our friends
when it comes to watching videos. Let’s address this by creating a WatchController
for watching user videos, available to any user. Create a new web/con-
trollers/watch_controller.ex file and key this in:

watching_videos/listings/rumbl/web/controllers/watch_controller.ex
defmodule Rumbl.WatchController do

use Rumbl.Web, :controller
alias Rumbl.Video

def show(conn, %{"id" => id}) do
video = Repo.get!(Video, id)
render conn, "show.html", video: video

end
end

Now, let’s create a new template directory for the controller in web/templates/watch
and add a new show.html.eex template file with these contents:

watching_videos/listings/rumbl/web/templates/watch/show.html.eex
<h2><%= @video.title %></h2>
<div class="row">

<div class="col-sm-7">
<%= content_tag :div, id: "video",

data: [id: @video.id, player_id: player_id(@video)] do %>
<% end %>

</div>

Chapter 9. Watching Videos • 158

report erratum • discuss

http://media.pragprog.com/titles/phoenix/code/watching_videos/listings/rumbl/web/templates/layout/app.change1.html.eex
http://media.pragprog.com/titles/phoenix/code/watching_videos/listings/rumbl/web/controllers/watch_controller.ex
http://media.pragprog.com/titles/phoenix/code/watching_videos/listings/rumbl/web/templates/watch/show.html.eex
http://pragprog.com/titles/phoenix/errata/add
http://forums.pragprog.com/forums/phoenix

<div class="col-sm-5">
<div class="panel panel-default">
<div class="panel-heading">

<h3 class="panel-title">Annotations</h3>
</div>
<div id="msg-container" class="panel-body annotations">

</div>
<div class="panel-footer">

<textarea id="msg-input"
rows="3"
class="form-control"
placeholder="Comment..."></textarea>

<button id="msg-submit" class="btn btn-primary form-control"
type="submit">

Post
</button>

</div>
</div>

</div>
</div>

The template is mostly markup, with the exception of the title and the video
div, which includes the id, data-id, and data-player-id attributes. We extract the
player ID from the video url field by a function aptly named player_id. Since
templates are just functions in the view module, the view is the perfect place
to define such a function.

Create a new web/views/watch_view.ex and make it look like this:

watching_videos/listings/rumbl/web/views/watch_view.ex
defmodule Rumbl.WatchView do

use Rumbl.Web, :view

def player_id(video) do
~r{^.*(?:youtu\.be/|\w+/|v=)(?<id>[^#&?]*)}
|> Regex.named_captures(video.url)
|> get_in(["id"])

end
end

Unfortunately, YouTube URLs come in a variety of formats. We need a regular
expression to extract the video ID from the URL. Regular expressions are
beyond the scope of this book, but here are the basics. A regular expression1

uses patterns to match specific patterns within strings. We’re naming a pattern
called id and then piping our expression into a function called named_captures,

1. http://www.regular-expressions.info/

report erratum • discuss

Watching Videos • 159

http://media.pragprog.com/titles/phoenix/code/watching_videos/listings/rumbl/web/views/watch_view.ex
http://www.regular-expressions.info/
http://pragprog.com/titles/phoenix/errata/add
http://forums.pragprog.com/forums/phoenix

which extracts the id field given our URL name. Then, we build a map that
returns the id key with its value.

Finally, let’s add an entry to our router’s :browser pipeline to the new WatchCon-
troller:

watching_videos/listings/rumbl/web/router.change1.ex
scope "/", Rumbl do

pipe_through :browser # Use the default browser stack

get "/", PageController, :index
resources "/users", UserController, only: [:index, :show, :new, :create]
resources "/sessions", SessionController, only: [:new, :create, :delete]
get "/watch/:id", WatchController, :show

end

Now let’s change the link for each entry in the My Videos page to point to
watch instead of show. Open up web/templates/video/index.html.eex and replace show
with this:

watching_videos/listings/rumbl/web/templates/video/index.change1.html.eex
<td class="text-right">

<%= link "Watch", to: watch_path(@conn, :show, video),
class: "btn btn-default btn-xs" %>

<%= link "Edit", to: video_path(@conn, :edit, video),
class: "btn btn-default btn-xs" %>

<%= link "Delete", to: video_path(@conn, :delete, video),
method: :delete,
data: [confirm: "Are you sure?"],
class: "btn btn-danger btn-xs" %>

</td>

Notice the link. We use our new watch_path helper, generated by the new route.

Not much that’s exciting is happening here, but this preparation will lead to
a great fireworks show later. Now, things will start to get a little more inter-
esting. Let’s add the JavaScript required to let us watch videos.

Adding JavaScript
Brunch2 is a build tool written in Node.js. We’ll use Brunch to build, transform,
and minify JavaScript code. Processing assets in this way makes your page
load much more efficiently. Brunch not only takes care of JavaScript but also
CSS and all of our application assets, such as images.

The Brunch structure is laid out in the web/static directory:

2. http://brunch.io

Chapter 9. Watching Videos • 160

report erratum • discuss

http://media.pragprog.com/titles/phoenix/code/watching_videos/listings/rumbl/web/router.change1.ex
http://media.pragprog.com/titles/phoenix/code/watching_videos/listings/rumbl/web/templates/video/index.change1.html.eex
http://brunch.io
http://pragprog.com/titles/phoenix/errata/add
http://forums.pragprog.com/forums/phoenix

...
├── assets
├── css
├── js
├── vendor
...

We put everything in assets that doesn’t need to be transformed by Brunch.
The build tool will simply copy those assets just as they are to priv/static, where
they’ll be served by Phoenix.Static in our endpoint.

We keep CSS and JavaScript files in their respective directories. The vendor
directory is used to keep any third-party tools you need, such as jQuery. This
structure helps us organize code, but we’re also being practical. Let’s see why.

Open up web/static/js/app.js and take a look as its contents:

// Import dependencies
// ...
import "phoenix_html"

// Import local files
// ...
// import socket from "./socket"

Phoenix configures Brunch to use ECMAScript 6 (ES6)—the upcoming Java-
Script version we’ll use in this book—to provide the necessary import state-
ments. Phoenix wraps the contents for each JavaScript file you add to
web/static/js in a function and collects them into priv/static/js/app.js. That’s the file
loaded by browsers at the end of web/templates/layout.html.eex when we call stat-
ic_path(@conn, "/js/app.js").

Since each file is wrapped in a function, it won’t be automatically executed
by browsers unless you explicitly import it in your app.js file. In this way, the
app.js file is like a manifest. It’s where you import and wire up your JavaScript
dependencies.

The vendor directory is the exception to this rule. If you add an external Java-
Script file to web/static/vendor, it’ll be automatically executed at the bottom of
our layout. That way, external dependencies are never imported.

You can configure the Brunch tool in the brunch-config.js file. Take a look at it
on your own time. The file is heavily commented, so you can easily tell what’s
happening.

Brunch ships with a command-line tool, and using it is straightforward. You
need to know only three commands:

$ brunch build

report erratum • discuss

Adding JavaScript • 161

http://pragprog.com/titles/phoenix/errata/add
http://forums.pragprog.com/forums/phoenix

$ brunch build --production
$ brunch watch

The first command builds all of your static files, compiling and copying the
results to priv/static. The second one builds and minifies them, doing everything
you’d expect for deploying JavaScript and style sheets to production. The
third command is used during development, so Brunch automatically
recompiles the files as they change.

In all likelihood, you’ll never type the last command directly, because Phoenix
does it for you. If you open up your config/dev.exs, you see the following line:

watchers: [node: ["node_modules/brunch/bin/brunch", "watch", "--stdin"]]

That code will automatically run brunch watch --stdin when your Phoenix app
starts in development. The --stdin option makes the brunch program abort when
Phoenix shuts down.

With the Brunch introduction out of the way, it’s time to write some Java-
Script. First, we’ll create a Player object to receive the data-player-id and embed
the YouTube video. Later, we’ll use the Player object to send and receive infor-
mation about the video so we’ll know exactly when an annotation is added.

Create a new file called web/static/js/player.js with these contents:

watching_videos/listings/rumbl/web/static/js/player.js
let Player = {

player: null,

init(domId, playerId, onReady){
window.onYouTubeIframeAPIReady = () => {
this.onIframeReady(domId, playerId, onReady)

}
let youtubeScriptTag = document.createElement("script")
youtubeScriptTag.src = "//www.youtube.com/iframe_api"
document.head.appendChild(youtubeScriptTag)

},

onIframeReady(domId, playerId, onReady){
this.player = new YT.Player(domId, {
height: "360",
width: "420",
videoId: playerId,
events: {

"onReady": (event => onReady(event)),
"onStateChange": (event => this.onPlayerStateChange(event))

}
})

},

onPlayerStateChange(event){ },

Chapter 9. Watching Videos • 162

report erratum • discuss

http://media.pragprog.com/titles/phoenix/code/watching_videos/listings/rumbl/web/static/js/player.js
http://pragprog.com/titles/phoenix/errata/add
http://forums.pragprog.com/forums/phoenix

getCurrentTime(){ return Math.floor(this.player.getCurrentTime() * 1000) },
seekTo(millsec){ return this.player.seekTo(millsec / 1000) }

}
export default Player

That’s a fairly long example, so we should break it down piece by piece.

First, we create a Player object that wires up YouTube’s special window.onY-
ouTubeIframeAPIReady callback. We inject a YouTube iframe tag, which will trigger
our event when the player is ready.

Next, we implement a onIframeReady function to create the player with the
YouTube iframe API. We finish by adding convenience functions like getCurrent-
Time and seekTo, since we want to bind messages to a point in time for the
video playback.

This abstraction is more than a convenient wrapper. It builds an API for video
players with the most important features for our application. Our Player API
will insulate us from changes in YouTube and also let us add other video
players over time. Our onYouTubeReady function needs the HTML container ID
to hold the iframe. We’ll pass this in from higher up in our JavaScript stack
in a moment.

Chris says:

Why Brunch?
Instead of building yet another asset-build tool, the Phoenix team decided to leverage
one of the many tools available in the Node.js ecosystem. We spent several weeks
evaluating, using, and deploying many of the options available. Brunch was our first
choice because it’s simple to use, configurable, and fast.

We know this choice might not resonate with all developers, so Phoenix allows you
to use the build tool of your choice. Not a single line of code in Phoenix knows about
Brunch. All the configuration is in your application. You can even skip Brunch alto-
gether when creating a new app by using the --no-brunch option. If you can tell your
build tool to compile your static files to priv/static, you’re good to go. You can even
change your config/dev.exs file so Phoenix sets up a watcher for your favorite tool.

Our YouTube player is all set, but YouTube’s JavaScript API expects a specific
video ID, and all we have is the URL.

Remember, our player.js file won’t be executed unless we import it. Let’s do
this in web/static/js/app.js by importing the Player and starting it with the video
and player ID if one exists:

report erratum • discuss

Adding JavaScript • 163

http://pragprog.com/titles/phoenix/errata/add
http://forums.pragprog.com/forums/phoenix

watching_videos/listings/rumbl/web/static/js/app.change1.js
import Player from "./player"
let video = document.getElementById("video")

if(video) {
Player.init(video.id, video.getAttribute("data-player-id"), () => {

console.log("player ready!")
})

}

Next, let’s tidy up our annotations box with a sprinkle of CSS. Create a
web/static/css/video.css file and key this in:

watching_videos/listings/rumbl/web/static/css/video.css
#msg-container {

min-height: 190px;
}

Create a new video with a YouTube URL, and you’re now ready to watch it:

You can even start sharing the video URL with your friends with a URL that
looks like /watch/13—but that’s ugly. URLs for videos should use words, not
numbers. Let’s fix that.

Creating Slugs
We want our videos to have a unique URL-friendly identifier, called a slug.
This approach lets us have a unique identifier that will build URLs that are
friendlier to people and search engines. We need to create the slug from the
title so we can represent a video titled Programming Elixir as a URL-friendly
slug, such as 1-programming-elixir, where 1 is the video ID.

Chapter 9. Watching Videos • 164

report erratum • discuss

http://media.pragprog.com/titles/phoenix/code/watching_videos/listings/rumbl/web/static/js/app.change1.js
http://media.pragprog.com/titles/phoenix/code/watching_videos/listings/rumbl/web/static/css/video.css
http://pragprog.com/titles/phoenix/errata/add
http://forums.pragprog.com/forums/phoenix

The first step is to add a slug column to the database:

$ mix ecto.gen.migration add_slug_to_video

We generate a new migration. Remember, your name will differ based on the
timestamp attached to the front of the file, but you can find the new file in
the priv/repo/migrations directory. Let’s fill it in like this:

watching_videos/listings/rumbl/priv/repo/migrations/20150919152919_add_slug_to_video.exs
def change do

alter table(:videos) do
add :slug, :string

end
end

Our new migration uses the alter macro, which changes the schema for both
up and down migrations. With the migration in place, let’s apply it to the
database:

$ mix ecto.migrate
10:28:04.589 [info] == Running
Rumbl.Repo.Migrations.AddSlugToVideo.change/0 forward

10:28:04.590 [info] alter table videos

10:28:04.591 [info] == Migrated in 0.0s

Next, we need to add the new field to the video schema in web/models/video.ex,
beneath the other fields:

field :slug, :string

The whole premise of a slug is that you can automatically generate a perma-
nent field from other fields, some of which may be updatable. Let’s do this by
changing the Video.changeset in web/models/video.ex, like this:

watching_videos/listings/rumbl/web/models/video.change1.ex
def changeset(model, params \\ :empty) do

model
|> cast(params, @required_fields, @optional_fields)
|> slugify_title()
|> assoc_constraint(:category)

end

defp slugify_title(changeset) do
if title = get_change(changeset, :title) do

put_change(changeset, :slug, slugify(title))
else

changeset
end

end

defp slugify(str) do

report erratum • discuss

Creating Slugs • 165

http://media.pragprog.com/titles/phoenix/code/watching_videos/listings/rumbl/priv/repo/migrations/20150919152919_add_slug_to_video.exs
http://media.pragprog.com/titles/phoenix/code/watching_videos/listings/rumbl/web/models/video.change1.ex
http://pragprog.com/titles/phoenix/errata/add
http://forums.pragprog.com/forums/phoenix

str
|> String.downcase()
|> String.replace(~r/[^\w-]+/u, "-")

end

We modify the generated changeset, just as we did the changeset for the
password. We build the slug field within our changeset. The code couldn’t be sim-
pler. The pipe operator makes it easy for us to tell a story with code.

If a change is made to the title, we build a slug based on the new title with
the slugify function. Otherwise, we simply return the changeset. slugify down-
cases the string and replaces nonword characters with a - character. cast,
assoc_constraint, get_change and put_change are all functions defined in Ecto.Changeset,
imported by default in your model in web/web.ex.

Don’t miss the importance of what we’ve done here. We’re once again able to
change how data gets into the system, without touching the controller and
without using callbacks or any other indirection. All of the changes to be
performed by the database are clearly outlined in the changeset. At this point,
you’ve learned all the concepts behind changesets, and the benefits are
becoming clearer:

• Because Ecto separates changesets from the definition of a given record,
we can have a separate change policy for each type of change. We could
easily add a JSON API that creates videos, including the slug field, for
example.

• Changesets filter and cast the incoming data, making sure sensitive fields
like a user role cannot be set externally, while conveniently casting them
to the type defined in the schema.

• Changesets can validate data—for example, the length or the format of a
field—on the fly, but validations that depend on data integrity are left to
the database in the shape of constraints.

• Changesets make our code easy to understand and implement because
they can compose easily, allowing us to specify each part of a change with
a function.

In short, Ecto cleanly encapsulates the concepts of change, and we benefit
tremendously as users. Now that we can generate slugs for the videos, let’s
make sure we use them in our links.

Chapter 9. Watching Videos • 166

report erratum • discuss

http://pragprog.com/titles/phoenix/errata/add
http://forums.pragprog.com/forums/phoenix

Extending Phoenix with Protocols
To use slugs when linking to the video page, let’s open up the web/tem-
plates/video/index.html.eex template and see how links are generated:

<%= link "Watch", to: watch_path(@conn, :show, video),
class: "btn btn-default btn-xs" %>

watch_path is a helper generated by the Rumbl.Router and imported into controllers
and views in web/web.ex. When we pass a struct like video to watch_path, Phoenix
automatically extracts its ID to use in the returned URL. To use slugs, we
could simply change the helper call to the following:

watch_path(@conn, :show, "#{video.id}-#{video.slug}")

This approach may seem simple, but it has one big flaw. It’s brittle because
it’s not DRY. Each place we build a link, we need to build the URL with the
id and slug fields. If we forget to use the same structure in any of the future
watch_path calls, we’ll end up linking to the wrong URL. There’s a better way.

We can customize how Phoenix generates URLs for the videos. Phoenix and
Elixir have the perfect solution for this. Phoenix knows to use the id field in
a Video struct because Phoenix defines a protocol, called Phoenix.Param. By
default, this protocol extracts the id of the struct, if one exists.

However, since Phoenix.Param is an Elixir protocol, we can customize it for any
data type in the language, including the ones we define ourselves. Let’s do
so for the Video struct. Add the following snippet to the bottom of your
web/models/video.ex file:

watching_videos/listings/rumbl/web/models/video.change2.ex
defimpl Phoenix.Param, for: Rumbl.Video do

def to_param(%{slug: slug, id: id}) do
"#{id}-#{slug}"

end
end

We’re implementing the Phoenix.Param protocol for the Rumbl.Video struct. The
protocol requires us to implement the to_param function, which receives the
video struct itself. We pattern-match on the video slug and ID and use it to
build a string as our slug.

The beauty behind Elixir protocols is that we can implement them for any
data structure, anywhere, any time. Though we place our implementation in
the same file as the video definition, it could as easily exist elsewhere. We get
clean polymorphism because we can extend Phoenix parameters without
changing Phoenix or the Video module itself.

report erratum • discuss

Creating Slugs • 167

http://media.pragprog.com/titles/phoenix/code/watching_videos/listings/rumbl/web/models/video.change2.ex
http://pragprog.com/titles/phoenix/errata/add
http://forums.pragprog.com/forums/phoenix

Let’s give this a try in IEx:

iex> video = %Rumbl.Video{id: 1, slug: "hello"}
%Rumbl.Video{id: 1, slug: "hello", ...}
iex> Rumbl.Router.Helpers.watch_path(%URI{}, :show, video)
"/watch/1-hello"

We build a video and then call watch_path, passing our video as an argument.
The new path uses both the id and slug fields. Note that we give the URI struct
to watch_path instead of the usual connection. The URI struct is part of Elixir’s
standard library, and all helpers accept it as their first argument. This conve-
nience is particularly useful when needed to build URLs outside of your web
request. Think emails, messages, and so on. Let’s play a bit with this idea:

iex> url = URI.parse("http://example.com/prefix")
%URI{...}
iex> Rumbl.Router.Helpers.watch_path(url, :show, video)
"/prefix/watch/1-hello"
iex> Rumbl.Router.Helpers.watch_url(url, :show, video)
"http://example.com/prefix/watch/1-hello"

You can also ask your endpoint to return the struct_url, based on the values
you’ve defined in your configuration files:

iex> url = Rumbl.Endpoint.struct_url
%URI{...}
iex> Rumbl.Router.Helpers.watch_url(url, :show, video)
"http://localhost:4000/watch/1-hello"

With Phoenix.Param properly implemented for our videos, it’s time to give it a
try. Access My Videos and click the Watch link for an existing video.

You see a page with an error that looks something like this:

value `"13-hello-world"` in `where` cannot be cast to type :id in query:

from v in Rumbl.Video,
where: v.id == ^"13-hello-world"

Error when casting value to `Rumbl.Video.id`

Primary keys in Ecto have a default type of :id. For now, we can consider :id
to be an :integer. When a new request goes to /watch/13-hello-world, the router
matches 13-hello-world as the id parameter and sends it to the controller. In the
controller, we try to make a query by using the id, and it complains. Let’s look
at the source of the problem:

def show(conn, %{"id" => id}) do
video = Repo.get!(Video, id)
render conn, "show.html", video: video

end

Chapter 9. Watching Videos • 168

report erratum • discuss

http://pragprog.com/titles/phoenix/errata/add
http://forums.pragprog.com/forums/phoenix

That’s the problem. We’re doing a get by using the id field. Let’s fix that now.

Before doing a database query comparing against the id column, we need to
cast 13-hello-world to an integer—for this particular slug, the number 13.

Extending Schemas with Ecto Types
Sometimes, the basic type information in our schemas isn’t enough. In those
cases, we’d like to improve our schemas with types that have a knowledge of
Ecto. For example, we might want to associate some behavior to our id fields.
A custom type allows us to do that. Let’s implement one and place it in
lib/rumbl/permalink.ex. Remember, there’s no difference between lib and web except
for code reloading. We’re placing this code in lib only because it’s supporting
code, tied closely to Ecto. Our new behavior, meaning an implementation of
our interface, looks like this:

watching_videos/listings/rumbl/lib/rumbl/permalink.ex
defmodule Rumbl.Permalink do

@behaviour Ecto.Type

def type, do: :id

def cast(binary) when is_binary(binary) do
case Integer.parse(binary) do
{int, _} when int > 0 -> {:ok, int}
_ -> :error

end
end

def cast(integer) when is_integer(integer) do
{:ok, integer}

end

def cast(_) do
:error

end

def dump(integer) when is_integer(integer) do
{:ok, integer}

end

def load(integer) when is_integer(integer) do
{:ok, integer}

end
end

Rumbl.Permalink is a custom type defined according to the Ecto.Type behavior. It
expects us to define four functions:

Returns the underlying Ecto type. In this case, we’re building on top
of :id.

type

report erratum • discuss

Creating Slugs • 169

http://media.pragprog.com/titles/phoenix/code/watching_videos/listings/rumbl/lib/rumbl/permalink.ex
http://pragprog.com/titles/phoenix/errata/add
http://forums.pragprog.com/forums/phoenix

Called when external data is passed into Ecto. It’s invoked when values
in queries are interpolated or also by the cast function in changesets.

cast

Invoked when data is sent to the database.dump
Invoked when data is loaded from the database.load

By design, the cast function often processes end-user input. We should be
both lenient and careful when we parse it. For our slug—that means for
binaries—we call Integer.parse to extract only the leading integer. On the other
hand, dump and load handle the struct-to-database conversion. We can expect
to work only with integers at this point because cast does the dirty work of
sanitizing our input. Successful casts return integers. dump and load return
:ok tuples with integers or :error.

Let’s give our custom type a try with iex -S mix. Since we changed code in lib,
you need to restart any running session.

iex> alias Rumbl.Permalink, as: P
iex> P.cast "1"
{:ok, 1}
iex> P.cast 1
{:ok, 1}

Integers and strings work as usual. That’s great. Let’s try something more
complex:

iex> P.cast "13-hello-world"
{:ok, 13}
iex> P.cast "hello-world-13"
:error

As long as the string starts with a positive integer, we’re good to go.

The last step is to tell Ecto to use our custom type for the id field. This defini-
tion must go after use Rumbl.Web and before the schema call in web/models/video.ex:

watching_videos/listings/rumbl/web/models/video.change3.ex
@primary_key {:id, Rumbl.Permalink, autogenerate: true}
schema "videos" do

Because Ecto automatically defines the id field for us, customizing the primary
key is done with the @primary_key module attribute. We give it a tuple, with the
primary key name (:id), our new type, and the autogenerate: true option because
id values are generated by the database.

And that’s that. Access the page once again, and it should load successfully.
By implementing a protocol and defining a custom type, we made Phoenix
work exactly how we wanted without tightly coupling it to our implementation.

Chapter 9. Watching Videos • 170

report erratum • discuss

http://media.pragprog.com/titles/phoenix/code/watching_videos/listings/rumbl/web/models/video.change3.ex
http://pragprog.com/titles/phoenix/errata/add
http://forums.pragprog.com/forums/phoenix

Ecto types go way beyond simple casting, though. We’ve already seen the
community handle field encryption, data uploading, and more, all neatly
wrapped and contained inside an Ecto type.

Wrapping Up
In this chapter, we accomplished a lot. We built a controller for watching
videos and laid some foundation so we can play our videos in YouTube. We
also created friendly URLs. Along the way:

• You learned to use Brunch to support development-time reloading and
minimization for production code.

• We used generators to create an Ecto migration.

• We used changesets to create slugs.

• We used protocols to seamlessly build URLs from those new slugs.

In the next chapter, you’re going to reach the long-awaited channels topic.
You’ll learn to use Phoenix to build fully interactive features that show off
Elixir’s concurrency and consistency. Turn the page, because the energy only
goes up from here!

report erratum • discuss

Wrapping Up • 171

http://pragprog.com/titles/phoenix/errata/add
http://forums.pragprog.com/forums/phoenix

CHAPTER 10

Using Channels
If you dabbled in Phoenix before buying this book, at this point you’re probably
wondering why we’ve come so far and barely mentioned channels. The truth
is that for the interactive applications we care about the most, channels are
simpler to build so there’s less to talk about.

Think about everything you’ve learned so far. Up until now, a browser made
an isolated request and Phoenix delivered an isolated response. We had to
spend plenty of time on pipelines and code organizational tools that let you
do everything necessary to tie an individual user to each request and
remember the exact state of the conversation. You know it well. A browser
makes a request and the web server returns a response:

We build applications that way for a good reason. Each request is stateless,
so it’s easy to scale. When the programming language simply can’t keep many
connections around, it makes sense to do a little extra work so the web
server can treat every request as a new one.

report erratum • discuss

http://pragprog.com/titles/phoenix/errata/add
http://forums.pragprog.com/forums/phoenix

Sometimes, though, that programming model has too much overhead for the
types of applications we want to build. Programs must be longer, programmers
must work harder to reason about them, and the server has to work harder
to process them.

This chapter will focus on the highly interactive problems that Phoenix solves
so well. These problems don’t lend themselves to a request/response flow.
Think live chats, Google Maps, kayak.com, and foursquare.com. In that world,
a single client on a page connects directly with a process on the server called
a channel, like this:

It looks simpler because for the programmer it is simpler. Since Elixir can
scale to millions of simultaneous processes that manage millions of concurrent
connections, you don’t have to resort to request/response to make things
easy to scale or even manage. A client connects to a channel and then sends
and receives messages. That’s it.

It’s now cool again to have applications where the clients and servers just,
you know, talk directly to each other. That’s why this chapter is shorter than
the entire request/response section of the book, and it’s also why Phoenix is
such a big deal.

The Channel
A Phoenix channel is a conversation. The channel sends messages, receives
messages, and keeps state. We call the messages events, and we put the state
in a struct called socket.

A Phoenix conversation is about a topic, and it maps onto application concepts
like a chat room, a local map, a game, or in our case, the annotations on a
video. More than one user might be interested in the same topic at the same
time. Channels give you tools to organize your code and the communication
among users. The concept that makes channels so powerful in Elixir is that
each user’s conversation on a topic has its own isolated, dedicated process.

Here’s the kicker. Whereas request/response interactions are stateless, con-
versations in a long-running process can be stateful. This means that for
more-sophisticated user interactions like interactive pages or multiplayer

Chapter 10. Using Channels • 174

report erratum • discuss

http://pragprog.com/titles/phoenix/errata/add
http://forums.pragprog.com/forums/phoenix

games, you don’t have to work so hard to keep track of the conversation by
using cookies, databases, or the like. Each call to a channel simply picks up
where the last one left off.

This approach only works if your foundation guarantees true isolation and
concurrency. True isolation means that one crashing process won’t impact
other subscribed users. True concurrency means lightweight abstractions
that won’t bleed into one another. Your channels will scale in the dimensions
that are most important to you, including code complexity, performance, and
manageability.

You may be thinking that channels can’t be this simple, but they are. Your
channels application will have to worry about three things, each on both the
client and the server:

• Making and breaking connections

• Sending messages

• Receiving messages

In this chapter, you’ll learn each of those basic building blocks in greater
detail. We’re primarily going to be building the interactive portion of our
application. We’ll allow users to build annotations in real time, and rumbl will
play back all video annotations for a user. We’ll do this in two parts. First,
on the client side, we need to build some client code to make a connection,
send messages, and receive messages. We’ll write our code in ES6, the next
generation of JavaScript. Then, on the server side, we’ll do the same. We’ll
establish a connection and then write channels code to process each request
in the conversation.

Let’s get started.

Phoenix Clients with ES6
We’re going to start on the client, using the latest ECMAScript 61 JavaScript
features. We’ll build a bare-bones client to simply establish a connection.
Over time, we’ll build up our client to add annotations and play them back.

Remember, each Phoenix conversation is on a topic, so we’ll need to be able
to identify a topic. In our case, our topics will be videos. We’ll create a Video
object. That client-side construct will connect to Phoenix directly.

1. https://babeljs.io/docs/learn-es2015/

report erratum • discuss

Phoenix Clients with ES6 • 175

https://babeljs.io/docs/learn-es2015/
http://pragprog.com/titles/phoenix/errata/add
http://forums.pragprog.com/forums/phoenix

Chris says:

Why ES6/ES2015 JavaScript?
Language features you’ve wished for years to land in JavaScript—string interpolation,
a module system, destructuring assignment, and more—are now within reach. When
you transpile a language, you’re translating it to a more common form. Since it’s
possible to transpile ES6 to the widely available ES5 JavaScript, you can use ES6
today while supporting all mainstream browsers. This leaves you no reason to not
go all-in on ES6. Plus, planned browser enhancements mean you have the bonus of
waiting a couple years, and suddenly your ES6 code will be supported natively
throughout the web.

Let’s create a separate file for our Video object in web/static/js/video.js. It’s a long
file, but it’s not too complicated, especially when broken into parts:

channels/listings/rumbl/web/static/js/video.js
import Player from "./player"Line 1

-

let Video = {-

-

init(socket, element){ if(!element){ return }5

let playerId = element.getAttribute("data-player-id")-

let videoId = element.getAttribute("data-id")-

socket.connect()-

Player.init(element.id, playerId, () => {-

this.onReady(videoId, socket)10

})-

},-

-

onReady(videoId, socket){-

let msgContainer = document.getElementById("msg-container")15

let msgInput = document.getElementById("msg-input")-

let postButton = document.getElementById("msg-submit")-

let vidChannel = socket.channel("videos:" + videoId)-

// TODO join the vidChannel-

}20

}-

export default Video-

We first import our Player, the abstraction that lets us play videos and extract
the exact time for any given frame so we can correctly place our annotations.
Next, we define an init function to set up the player and pluck our video ID
from the element attributes. We then start the socket connection with sock-
et.connect() and initialize our player while running a this.onReady() callback when
the player has loaded. Within onReady, we define a handful of DOM variables
for our Video player. We have the container for annotations, the input control,

Chapter 10. Using Channels • 176

report erratum • discuss

http://media.pragprog.com/titles/phoenix/code/channels/listings/rumbl/web/static/js/video.js
http://pragprog.com/titles/phoenix/errata/add
http://forums.pragprog.com/forums/phoenix

and the button for creating a new annotation. Pay special attention to vidChannel,
which we’ll use to connect our ES6 client to our Phoenix VideoChannel. For now
we just instantiate it, but we’ll join the conversation with the server in a
moment.

Our topics need an identifier. By convention, ours takes the form "videos:" +
videoId. In our application, this topic will let us easily send events to others
interested in the same topic.

Let’s tweak our video player to use this new Video object.

We were previously initializing and importing our video player in web/stat-
ic/js/app.js, like this:

import Player from "./player"
let video = document.getElementById("video")

if(video) {
Player.init(video.id, video.getAttribute("data-player-id"))

}

It would be better to tweak that code to compensate for the initialization we’re
doing in video.js. Let’s tweak it to start only the Video object, like this:

channels/listings/rumbl/web/static/js/app.change1.js
import socket from "./socket"
import Video from "./video"

Video.init(socket, document.getElementById("video"))

We import the Video object that we just created from its local module path.
Next, we initialize the video with our connection called socket (more on this
later) and the DOM element whose ID is video. Now load up your last video,
and you should see it loaded into a YouTube player as before—but if you view
your browser’s JavaScript console, you see that the channel join is failing:

Unable to join > {reason: "unmatched topic"}

With our video up and running and vidChannel initialized, our client is trying
to join a video channel that we haven’t implemented yet. Let’s flip back to the
server side for a bit and fix this. It’s time to create a channel and establish
the conversation with our client.

Preparing Our Server for the Channel
In the request/response world, each request established a connection, which
we represented in Plug.Conn. We then used ordinary functions to transform
that connection until it had the response we wanted to send back to the client.
Each plug didn’t use the same conn per se, but each transformation was con-

report erratum • discuss

Preparing Our Server for the Channel • 177

http://media.pragprog.com/titles/phoenix/code/channels/listings/rumbl/web/static/js/app.change1.js
http://pragprog.com/titles/phoenix/errata/add
http://forums.pragprog.com/forums/phoenix

ceptually on the same request. Each time you had a new request, you’d start
from scratch with a new conn struct. Said another way, for each request, a
new conn would flow through all of the pipelines and then die.

In channels, the flow is different. A client establishes a new connection with
a socket. After the connection is made, that socket will be transformed through
the life of the connection.

At the high level, your socket is the ongoing conversation between client and
server. It has all of the information necessary to do its job. When you make
a connection, you’re creating your initial socket, and that same socket will be
transformed with each new received event, through the whole life of the whole
conversation.

You need to do a couple of things to make a connection. First, you decide
whether to allow the connection. Next, you create the initial socket, including
any custom application setup your application might need.

Let’s hack up a quick connection to see how things work. In our ES6 example,
Phoenix created a web/static/js/socket.js with an example socket connection and
channel code. Replace the file contents with this minimal socket connection:

channels/listings/rumbl/web/static/js/socket.change1.js
import {Socket} from "phoenix"

let socket = new Socket("/socket", {
params: {token: window.userToken},
logger: (kind, msg, data) => { console.log(`${kind}: ${msg}`, data) }

})

export default socket

That simple connection is as basic as it gets. Phoenix isn’t doing anything
fancy for us here. You can see that the ES6 client imports the Socket object.
Then let socket = new Socket("/socket", ...) causes Phoenix to instantiate a new
socket at our endpoint. We pass an optional logger callback, which includes
helpful debugging logging in the JavaScript console. If you peek in lib/rumbl/end-
point.ex, you can see where the "/socket" is declared. This definition is the socket
mount point:

socket "/socket", Rumbl.UserSocket

Notice UserSocket. That module serves as the starting point for all socket con-
nections. As you’ll see later in this chapter, it’s responsible for authenticating.
But it’s also responsible for wiring up default socket information for all
channels. Peek inside the web/channels/user_socket.ex to see it in action:

defmodule Rumbl.UserSocket do

Chapter 10. Using Channels • 178

report erratum • discuss

http://media.pragprog.com/titles/phoenix/code/channels/listings/rumbl/web/static/js/socket.change1.js
http://pragprog.com/titles/phoenix/errata/add
http://forums.pragprog.com/forums/phoenix

use Phoenix.Socket

Transports
transport :websocket, Phoenix.Transports.WebSocket
transport :longpoll, Phoenix.Transports.LongPoll

def connect(_params, socket) do
{:ok, socket}

end

def id(_socket), do: nil
end

UserSocket uses a single connection to the server to handle all your channel
processes. The socket also defines the transport layers that will handle the
connection between your client and the server. You see the two default
transport protocols that Phoenix supports. You can build your own for more
exotic use cases.

Regardless of the transport, the end result is the same. You operate on a
shared socket abstraction, and Phoenix takes care of the rest. The beauty of
this is that you no longer have to worry how the user is connected. Whether
on older browsers over long-polling, native iOS WebSockets, or a custom
transport like CoAP2 for embedded devices, your backend channel code
remains precisely the same. This is the new web. You’ll be able to quickly
adapt your applications as new transport protocols become important to you.

In our UserSocket, we have two simple functions: connect and id. The id function
lets us identify the socket based on some state stored in the socket itself, like
the user ID. The connect function decides whether to make a connection. In
our case, id returns nil, and connect simply lets everyone in. We’re effectively
allowing all connections as anonymous users by default.

We’ll be adding socket authentication with our Rumbl.Auth system in a moment,
but for now, let’s leave these defaults. We added socket.connect() after we initial-
ized our Player in video.js to establish the connection to the server. If we open
up the JavaScript console in our browser and refresh one of our video pages,
we see the following logger output:

transport: connected to
ws://localhost:4000/socket/websocket?token=undefined&vsn=1.0.0

We have a working connection! Let’s create the channel on the Phoenix side.

2. http://coap.technology/

report erratum • discuss

Preparing Our Server for the Channel • 179

http://coap.technology/
http://pragprog.com/titles/phoenix/errata/add
http://forums.pragprog.com/forums/phoenix

Creating the Channel
It’s time to write some code to process connections. To review what you know
so far, a channel is a conversation on a topic. Our topic has an identifier of
videos:video_id, where video_id is a dynamic ID matching a record in the database.
In our application, we want a user to get all events for a topic, which to us
means a user will get all annotations for a given video, regardless of who
created them.

More generally, at their most basic level, topics are strings that serve as
identifiers. They take the form of topic:subtopic, where topic is often a resource
name and subtopic is often an ID.

Since topics are organizing concepts, we’ll include topics where you’d expect:
as parameters to functions and in our URLs to identify conversations. Just
as the client passes a URL with an :id parameter to represent a resource for
a controller, we’ll provide a topic ID to scope our channel connections.

Joining a Channel
Now that we’ve established a socket connection, our users can join a channel.
In general, when clients join a channel, they must provide a topic. They’ll be
able to join any number of channels and any number of topics on a channel.

We need a VideoChannel for our application, so let’s start by including a channel
definition in our UserSocket:

channels/listings/rumbl/web/channels/user_socket.change1.ex
defmodule Rumbl.UserSocket do

use Phoenix.Socket

Channels
channel "videos:*", Rumbl.VideoChannel

Transports route events into your UserSocket, where they’re dispatched into
your channels based on topic patterns that you declare with the channel macro.
Our videos:* convention categorizes topics with a resource name, followed by
a resource ID.

Let’s move on to the code that will process each incoming event.

Building the Channel Module
Now, it’s time to create the module that will handle our specific Video channel.
It’ll allow connections through join and also let users disconnect and send
events. For consistency with OTP naming conventions, this book sometimes

Chapter 10. Using Channels • 180

report erratum • discuss

http://media.pragprog.com/titles/phoenix/code/channels/listings/rumbl/web/channels/user_socket.change1.ex
http://pragprog.com/titles/phoenix/errata/add
http://forums.pragprog.com/forums/phoenix

refers to these features as callbacks. Let’s start with join. Create a file called
web/channels/video_channel.ex, like this:

channels/listings/rumbl/web/channels/video_channel.ex
defmodule Rumbl.VideoChannel do

use Rumbl.Web, :channel

def join("videos:" <> video_id, _params, socket) do
{:ok, assign(socket, :video_id, String.to_integer(video_id))}

end
end

Here we see the first of our channel callbacks: join. Clients can join topics on
a channel. We return {:ok, socket} to authorize a join attempt or {:error, socket} to
deny one.

For now, we let all clients join any video topic, and we add the video ID from
our topic to socket.assigns. Remember, sockets will hold all of the state for a
given conversation. Each socket can hold its own state in the socket.assigns
field, which typically holds a map.

For channels, the socket is transformed in a loop rather than a single pipeline.
In fact, the socket state will remain for the duration of a connection. That
means the socket state we add in join will be accessible later as events come
into and out of the channel. This small distinction leads to an enormous dif-
ference in efficiency between the channels API and the controllers API.

With our channel in place, let’s join it from the client. Open up web/static/js/video.js
and update your listing:

channels/listings/rumbl/web/static/js/video.change1.js
onReady(videoId, socket){Line 1

let msgContainer = document.getElementById("msg-container")2

let msgInput = document.getElementById("msg-input")3

let postButton = document.getElementById("msg-submit")4

let vidChannel = socket.channel("videos:" + videoId)5

6

vidChannel.join()7

.receive("ok", resp => console.log("joined the video channel", resp))8

.receive("error", reason => console.log("join failed", reason))9

}10

On lines 5 through 9, we create a new channel object, vidChannel, from our
socket and give it our topic. We build the topic by joining the "videos:" string
with our video ID, which we plucked from the div element in our WatchView’s
show.html.eex template.

We see our joined message in the JavaScript web console output:

push: videos:2 phx_join (1)

report erratum • discuss

Creating the Channel • 181

http://media.pragprog.com/titles/phoenix/code/channels/listings/rumbl/web/channels/video_channel.ex
http://media.pragprog.com/titles/phoenix/code/channels/listings/rumbl/web/static/js/video.change1.js
http://pragprog.com/titles/phoenix/errata/add
http://forums.pragprog.com/forums/phoenix

transport: connected to ws://localhost:4000/socket/websocket...
receive: ok videos:2 phx_reply (1)
joined the video channel

Likewise, our server output confirms that we’ve established our conversation:

[info] JOIN videos:2 to Rumbl.VideoChannel
Transport: Phoenix.Transports.WebSocket
Parameters: %{}

[info] Replied videos:2 :ok

And we’re joined!

Sending and Receiving Events
Everything we’ve done so far is setting us up to do one thing: process events.
Just as controllers receive requests, channels receive events. With channels,
we receive a message containing an event name, such as new_message, and a
payload of arbitrary data.

Each channel module has three ways to receive events. You’ll learn more
about these callback functions in detail soon. For now, know that handle_in
receives direct channel events, handle_out intercepts broadcast events, and
handle_info receives OTP messages.

Taking Our Channels for a Trial Run
To test-drive everything we’ve put together so far, let’s make our join function
send our channel a :ping message every five seconds, like this:

channels/listings/rumbl/web/channels/video_channel.change1.ex
def join("videos:" <> video_id, _params, socket) do

:timer.send_interval(5_000, :ping)
{:ok, socket}

end

def handle_info(:ping, socket) do
count = socket.assigns[:count] || 1
push socket, "ping", %{count: count}

{:noreply, assign(socket, :count, count + 1)}
end

The handle_info callback is invoked whenever an Elixir message reaches the
channel. In this case, we match on the periodic :ping message and increase a
counter every time it arrives.

Our new handle_info takes our socket, takes the existing count (or a default of
1), and increases that count by one. We then return a tagged tuple. :noreply
means we’re not sending a reply, and the assign function transforms our

Chapter 10. Using Channels • 182

report erratum • discuss

http://media.pragprog.com/titles/phoenix/code/channels/listings/rumbl/web/channels/video_channel.change1.ex
http://pragprog.com/titles/phoenix/errata/add
http://forums.pragprog.com/forums/phoenix

socket by adding the new count. Conceptually, we’re taking a socket and
returning a transformed socket. This implementation bumps the count in
:assigns by one, each time it’s called.

We’ve got the server-side implementation. We just need to call it now. Add
the following line to video.js, immediately below your vidChannel declaration:

vidChannel.on("ping", ({count}) => console.log("PING", count))

Now check out your web console, and you see a ping event being pushed from
the server every five seconds, with an accumulated counter:

receive: videos:2 ping
PING 1

receive: videos:2 ping
PING 2

receive: videos:2 ping
PING 3

Our channel process is alive and well!

handle_info is basically a loop. Each time, it returns the socket as the last tuple
element for all callbacks. This way, we can maintain a state. We simply push
the ping event, and the client picks up these events with the channel.on(event,
callback) API. These events can arrive on the client at any time, but later you’ll
see how channels support synchronous messaging for handle_in responses.

This is the primary difference between channels and controllers. Controllers
process a request. Channels hold a conversation.

Annotating Videos
Our channels are functioning but not doing any real work yet. Let’s use them
to build our real-time annotations. We’ll need an Annotation model to persist
our user annotations, but let’s start simple and build out the channel mes-
saging first. Later, we can circle back and persist the annotation when we’re
happy with our client-server channel communication.

Our WatchView’s show.html.eex template is already mocked up with an annotations
container and post button that we’ve plucked from the page to establish our
msgContainer and postButton variables. Let’s use these two elements to begin our
real-time annotations support. Open up your video.js and update the listing
below your vidChannel declaration with the following code:

channels/listings/rumbl/web/static/js/video.change3.js
let vidChannel = socket.channel("videos:" + videoId)Line 1

-

report erratum • discuss

Sending and Receiving Events • 183

http://media.pragprog.com/titles/phoenix/code/channels/listings/rumbl/web/static/js/video.change3.js
http://pragprog.com/titles/phoenix/errata/add
http://forums.pragprog.com/forums/phoenix

postButton.addEventListener("click", e => {-

let payload = {body: msgInput.value, at: Player.getCurrentTime()}-

vidChannel.push("new_annotation", payload)5

.receive("error", e => console.log(e))-

msgInput.value = ""-

})-

-

vidChannel.on("new_annotation", (resp) => {10

this.renderAnnotation(msgContainer, resp)-

})-

-

vidChannel.join()-

.receive("ok", resp => console.log("joined the video channel", resp))15

.receive("error", reason => console.log("join failed", reason))-

},-

-

renderAnnotation(msgContainer, {user, body, at}){-

// TODO append annotation to msgContainer20

}-

Let’s break it down. First, we handle the click event on the post button. The
push function on our vidChannel takes the contents of our message input and
sends it to the server, then clears the input control.

On lines 5 and 6, you can see the channel’s synchronous messaging in action.
When we push an event to the server, we can opt to receive a response. It’s not
a true synchronous operation, but it’s a big win for code readability. It lets
us compose client-side messaging in line with our Elixir process handling. It
also provides request/response–style messaging over a socket connection.

Now, we have to handle new events sent by the server. When users post new
annotations, the server will broadcast those new events to the client, triggering
a new_annotation event. On line 10, we receive those new_annotation events, calling
a stubbed renderAnnotation function. Let’s implement renderAnnotation to display
our annotations on the page. Update your listing with the following code:

channels/listings/rumbl/web/static/js/video.change4.js
esc(str){Line 1

let div = document.createElement("div")-

div.appendChild(document.createTextNode(str))-

return div.innerHTML-

},5

-

renderAnnotation(msgContainer, {user, body, at}){-

let template = document.createElement("div")-

-

template.innerHTML = `10

-

${this.esc(user.username)}: ${this.esc(body)}-

-

Chapter 10. Using Channels • 184

report erratum • discuss

http://media.pragprog.com/titles/phoenix/code/channels/listings/rumbl/web/static/js/video.change4.js
http://pragprog.com/titles/phoenix/errata/add
http://forums.pragprog.com/forums/phoenix

`-

msgContainer.appendChild(template)15

msgContainer.scrollTop = msgContainer.scrollHeight-

}-

We implement the renderAnnotation function to append an annotation to our
message container. First, we define an esc function on line 1 to safely escape
user input before injecting values into the page. This strategy protects our
users from XSS attacks. Next, on line 7, we use our esc function to safely
build a DOM node with the user’s name and annotation body and append it
to the msgContainer list. We finish by scrolling the container to the right point.

Adding Annotations on the Server
With our client-side event handling in place, let’s wire up the server side of
the conversation. Replace your VideoChannel with this:

channels/listings/rumbl/web/channels/video_channel.change2.ex
defmodule Rumbl.VideoChannel do

use Rumbl.Web, :channel

def join("videos:" <> video_id, _params, socket) do
{:ok, socket}

end

def handle_in("new_annotation", params, socket) do
broadcast! socket, "new_annotation", %{
user: %{username: "anon"},
body: params["body"],
at: params["at"]

}

{:reply, :ok, socket}
end

end

We ditch our ping messaging and add the second major kind of callback, han-
dle_in. This function will handle all incoming messages to a channel, pushed
directly from the remote client.

Look at the function head. This particular callback handles the new_annotation
events pushed from the client. Since we aren’t persisting to the database yet,
we simply broadcast new_annotation events to all the clients on this topic with
broadcast!

The broadcast! function sends an event to all users on the current topic. It takes
three arguments: the socket, the name of the event, and a payload, which is
an arbitrary map. Within the body of our callback, we can send as many
messages as we’d like.

report erratum • discuss

Sending and Receiving Events • 185

http://media.pragprog.com/titles/phoenix/code/channels/listings/rumbl/web/channels/video_channel.change2.ex
http://pragprog.com/titles/phoenix/errata/add
http://forums.pragprog.com/forums/phoenix

When we’re done with the function, we send back a reply with a status and
the socket. The status is the customary Elixir :ok or :error. We could also have
used :noreply with the socket if we didn’t want to reply to the client.

Let’s try it out in the browser. This time, open up multiple browser windows
side by side to see how broadcast! is relaying messages to all users who’ve joined
our video topic:

It works! We now have a conversation going between client and server, and
you can get a glimpse into how our real-time annotations will be orchestrated.

This Is a Bad Idea

Forwarding a raw message payload without inspection is a big
security risk.

Note that we didn’t forward along the raw payload, such as:

broadcast! socket, "new_annotation", Map.put(params, "user", %{
username: "anon"

})

This would have worked, but it would have been extremely dangerous.
Broadcasting events delivers the payload to all clients on this topic. If we don’t
properly structure the payload from the remote client before forwarding the
message along as a broadcast, we’re effectively allowing a client to broadcast
arbitrary payloads across our channel. If you want your application to be
secure, you want to control the payload as closely as you can.

We’ve delivered our annotations to the client, but we’ve yet to persist them.
Before we can do that, we need to have the current user in the socket in our
channels. We’ve put it off as long as we can. It’s time to tackle authentication.

Socket Authentication
For request/response–type applications, session-based authentication makes
sense. For channels, token authentication works better because the connection

Chapter 10. Using Channels • 186

report erratum • discuss

http://pragprog.com/titles/phoenix/errata/add
http://forums.pragprog.com/forums/phoenix

is a long-duration connection. With token authentication, we assign a unique
token to each user. Tokens allow for a secure authentication mechanism that
doesn’t rely on any specific transport.

Programmers often ask why they can’t access their session cookies in a
channel. The answer is that this would be insecure over WebSockets because
of cross-domain attacks. Also, cookies would couple channel code to the
WebSocket transport, eliminating future transport layers. Fortunately, Phoenix
has a better way: the Phoenix.Token.

Our current_user is already authenticated in the application by our Rumbl.Auth
plug. All we need to do is generate a token for our authenticated user and
pass that to our socket on the front end. The first step is to expose the token
to the client side in our web/templates/layout/app.html.eex layout, like this:

channels/listings/rumbl/web/templates/layout/app.change1.html.eex
</div> <!-- /container -->
<script>window.userToken = "<%= assigns[:user_token] %>"</script>
<script src="<%= static_path(@conn, "/js/app.js") %>"></script>

Just before our app.js script, we render a script tag that attaches a userToken
variable to the window from our layout assigns.

Next, we need to add the :user_token to conn.assigns whenever we have a current
user. We already have code to assign the current user in Rumbl.Auth, so let’s
handle this there:

channels/listings/rumbl/web/controllers/auth.change1.ex
def call(conn, repo) doLine 1

user_id = get_session(conn, :user_id)-

-

cond do-

user = conn.assigns[:current_user] ->5

put_current_user(conn, user)-

user = user_id && repo.get(Rumbl.User, user_id) ->-

put_current_user(conn, user)-

true ->-

assign(conn, :current_user, nil)10

end-

end-

-

def login(conn, user) do-

conn15

|> put_current_user(user)-

|> put_session(:user_id, user.id)-

|> configure_session(renew: true)-

end-

20

defp put_current_user(conn, user) do-

report erratum • discuss

Socket Authentication • 187

http://media.pragprog.com/titles/phoenix/code/channels/listings/rumbl/web/templates/layout/app.change1.html.eex
http://media.pragprog.com/titles/phoenix/code/channels/listings/rumbl/web/controllers/auth.change1.ex
http://pragprog.com/titles/phoenix/errata/add
http://forums.pragprog.com/forums/phoenix

token = Phoenix.Token.sign(conn, "user socket", user.id)-

-

conn-

|> assign(:current_user, user)25

|> assign(:user_token, token)-

end-

We add a private put_current_user function to place a freshly generated user
token and the current_user into conn.assigns, which we call on lines 6 and 16.
Now, any time a user session exists, both :current_user and :user_token will be set,
and the :user_token will hold the signed-in user ID.

The last step is to pass the user token to the socket.connect and verify it in our
UserSocket.connect callback. If you open up your web/static/js/socket.js file, you can
see that we prepared for this by passing up the window.userToken value as a token
parameter, like this:

channels/listings/rumbl/web/static/js/socket.change1.js
let socket = new Socket("/socket", {

params: {token: window.userToken},
logger: (kind, msg, data) => { console.log(`${kind}: ${msg}`, data) }

})

Any :params we pass to the socket constructor will be available as the first
argument in UserSocket.connect. Let’s verify the params on connect and store
our current_user. Update your UserSocket with the following code:

channels/listings/rumbl/web/channels/user_socket.change2.ex
@max_age 2 * 7 * 24 * 60 * 60

def connect(%{"token" => token}, socket) do
case Phoenix.Token.verify(socket, "user socket", token, max_age: @max_age) do

{:ok, user_id} ->
{:ok, assign(socket, :user_id, user_id)}

{:error, _reason} ->
:error

end
end
def connect(_params, _socket), do: :error

def id(socket), do: "users_socket:#{socket.assigns.user_id}"

We use Phoenix.Token.verify to verify the user token provided by the client. If we
want to, we can pass a max_age, ensuring that tokens are only valid for a certain
period of time; in this case, we set the value to about two weeks. If the token
is valid, we receive the user_id and store it in our socket.assigns while returning
{:ok, socket} to establish the connection. If the token is invalid, we return :error,
denying the connection attempt by the client.

Chapter 10. Using Channels • 188

report erratum • discuss

http://media.pragprog.com/titles/phoenix/code/channels/listings/rumbl/web/static/js/socket.change1.js
http://media.pragprog.com/titles/phoenix/code/channels/listings/rumbl/web/channels/user_socket.change2.ex
http://pragprog.com/titles/phoenix/errata/add
http://forums.pragprog.com/forums/phoenix

Remember, the socket keeps its state for the whole duration of the connection,
not just for a single response. Any socket.assigns you place in the socket during
connect will be available in your channel’s socket.assigns map.

Now, refresh your page. The application should work as before, but now with
user authentication. We have a logged-in user. so we can move on to persist
our annotations.

Persisting Annotations
Now that we have in-memory annotations going across all connected clients
through an authenticated user, let’s create an Annotation model. You’ve seen
how we manage models and relationships with Ecto. In this case, we’re creat-
ing annotations on videos. Each new annotation will belong to both a user
and a video.

You can use the phoenix.gen.model generator, like this:

$ mix phoenix.gen.model Annotation annotations body:text at:integer \
user_id:references:users video_id:references:videos

* creating priv/repo/migrations/20150921162814_create_annotation.exs
* creating web/models/annotation.ex
* creating test/models/annotation_test.exs

$

And now you can migrate our database:

$ mix ecto.migrate

[info] == Running Rumbl.Repo.Migrations.CreateAnnotation.change/0 forward
[info] create table annotations
[info] create index annotations_user_id_index
[info] create index annotations_video_id_index
[info] == Migrated in 0.9s

$

Our migrations are in, with our new table and two new indexes.

Next, we need to wire up our new relationships to our User and Video schemas.
Both users and videos will have annotations, so add the has_many relationship
to both your User and Video schema blocks in web/models/user.ex and web/mod-
els/video.ex, like this:

has_many :annotations, Rumbl.Annotation

Now, it’s time to head back to our VideoChannel and persist the annotations:

channels/listings/rumbl/web/channels/video_channel.change3.ex
def join("videos:" <> video_id, _params, socket) doLine 1

report erratum • discuss

Persisting Annotations • 189

http://media.pragprog.com/titles/phoenix/code/channels/listings/rumbl/web/channels/video_channel.change3.ex
http://pragprog.com/titles/phoenix/errata/add
http://forums.pragprog.com/forums/phoenix

{:ok, assign(socket, :video_id, String.to_integer(video_id))}-

end-

-

def handle_in(event, params, socket) do5

user = Repo.get(Rumbl.User, socket.assigns.user_id)-

handle_in(event, params, user, socket)-

end-

-

def handle_in("new_annotation", params, user, socket) do10

changeset =-

user-

|> build_assoc(:annotations, video_id: socket.assigns.video_id)-

|> Rumbl.Annotation.changeset(params)-

15

case Repo.insert(changeset) do-

{:ok, annotation} ->-

broadcast! socket, "new_annotation", %{-

id: annotation.id,-

user: Rumbl.UserView.render("user.json", %{user: user}),20

body: annotation.body,-

at: annotation.at-

}-

{:reply, :ok, socket}-

25

{:error, changeset} ->-

{:reply, {:error, %{errors: changeset}}, socket}-

end-

end-

end30

First, we ensure that all incoming events have the current user by defining
a new handle_in/3 function on line 5. It catches all incoming events, looks up
the user from the socket assigns, and then calls a handle_in/4 clause with the
socket user as a third argument. Next, we extend our new_annotation message
handling to build an annotation changeset for our user and persist it with
our repo. If the insert is successful, we broadcast to all subscribers as before;
otherwise, we return a response with the changeset errors. After we broadcast,
we acknowledge the success with a {:reply, :ok, socket} return.

We could have decided not to send a reply with {:noreply, socket}, but it’s common
practice to acknowledge the result of the pushed message from the client.
This approach allows the client to easily implement UI features such as
loading statuses and error notifications, even if we’re only replying with an
:ok or :error status and no other information.

Since we also want to notify subscribers about the user who posted the
annotation, we render a user.json template from our UserView on line 20. Let’s
implement that now:

Chapter 10. Using Channels • 190

report erratum • discuss

http://pragprog.com/titles/phoenix/errata/add
http://forums.pragprog.com/forums/phoenix

channels/listings/rumbl/web/views/user_view.change1.ex
defmodule Rumbl.UserView do

use Rumbl.Web, :view
alias Rumbl.User

def first_name(%User{name: name}) do
name
|> String.split(" ")
|> Enum.at(0)

end

def render("user.json", %{user: user}) do
%{id: user.id, username: user.username}

end
end

Now let’s head back to the app and post a few annotations. Watch your
server logs as the posts are submitted, and you can see your insert logs:

[debug] INSERT INTO "annotations" ("at", "body", "inserted_at",
"updated_at", "user_id", "video_id") VALUES ($1, $2, $3, $4, $5, $6)
RETURNING "id" [0, "testing 123", {{2015, 9, 22}, {1, 20, 32, 0}},
{{2015, 9, 22}, {1, 20, 32, 0}}, 1, nil] OK query=1.6ms
[debug] COMMIT [] OK query=0.8ms

And we have persisted data!

We have a problem, though. Refresh your page, and the messages disappear
from the UI. They’re still in the database, but we need to pass the messages
to the client when a user joins the channel. We could do this by pushing an
event to the client after each user joins, but Phoenix provides a 3-tuple join
signature to both join the channel and send a join response at the same time.
Let’s update our VideoChannel’s join callback to pass down a list of annotations:

channels/listings/rumbl/web/channels/video_channel.change4.ex
alias Rumbl.AnnotationView

def join("videos:" <> video_id, _params, socket) do
video_id = String.to_integer(video_id)
video = Repo.get!(Rumbl.Video, video_id)

annotations = Repo.all(
from a in assoc(video, :annotations),
order_by: [asc: a.at, asc: a.id],
limit: 200,
preload: [:user]

)

resp = %{annotations: Phoenix.View.render_many(annotations, AnnotationView,
"annotation.json")}

{:ok, resp, assign(socket, :video_id, video_id)}
end

report erratum • discuss

Persisting Annotations • 191

http://media.pragprog.com/titles/phoenix/code/channels/listings/rumbl/web/views/user_view.change1.ex
http://media.pragprog.com/titles/phoenix/code/channels/listings/rumbl/web/channels/video_channel.change4.ex
http://pragprog.com/titles/phoenix/errata/add
http://forums.pragprog.com/forums/phoenix

Here, we rewrite join to fetch the video from our repo. Then, we fetch the video’s
annotations. Remember, if you want to use data in an association, you need
to fetch it explicitly, so we preload the :user association. We’ll need to expose
this information to the client. You’ve seen queries like this before in Chapter
6, Generators and Relationships, on page 91.

Then we do something new. We compose a response by rendering an annota-
tion.json view for every annotation in our list. Instead of building the list by
hand, we use Phoenix.View.render_many. The render_many function collects the render
results for all elements in the enumerable passed to it. We use the view to
present our data, so we offload this work to the view layer so the channel
layer can focus on messaging.

Create an AnnotationView in web/views/annotation_view.ex to serve as each individual
annotation, like this:

channels/listings/rumbl/web/views/annotation_view.ex
defmodule Rumbl.AnnotationView do

use Rumbl.Web, :view

def render("annotation.json", %{annotation: ann}) do
%{
id: ann.id,
body: ann.body,
at: ann.at,
user: render_one(ann.user, Rumbl.UserView, "user.json")

}
end

end

Notice the render_one call for the annotation’s user. Phoenix’s view layer neatly
embraces functional composition. The render_one function provides conveniences
such as handling possible nil results.

Lastly, we return a 3-tuple from join of the form {:ok, response, socket} to pass the
response down to the join event. Let’s pick up this response on the client to
build the list of messages.

Update your vidChannel.join() callbacks to render a list of annotations received
on join:

channels/listings/rumbl/web/static/js/video.change5.js
vidChannel.join()

.receive("ok", ({annotations}) => {
annotations.forEach(ann => this.renderAnnotation(msgContainer, ann))

})
.receive("error", reason => console.log("join failed", reason))

Refresh your browser and see your history of messages appear immediately!

Chapter 10. Using Channels • 192

report erratum • discuss

http://media.pragprog.com/titles/phoenix/code/channels/listings/rumbl/web/views/annotation_view.ex
http://media.pragprog.com/titles/phoenix/code/channels/listings/rumbl/web/static/js/video.change5.js
http://pragprog.com/titles/phoenix/errata/add
http://forums.pragprog.com/forums/phoenix

Now that we have our message history on join, we need to schedule the
annotations to appear synced up with the video playback. Update video.js, like
this:

channels/listings/rumbl/web/static/js/video.change6.js
vidChannel.join()

.receive("ok", resp => {
this.scheduleMessages(msgContainer, resp.annotations)

})
.receive("error", reason => console.log("join failed", reason))

},

renderAnnotation(msgContainer, {user, body, at}){
let template = document.createElement("div")
template.innerHTML = `

[${this.formatTime(at)}]
${this.esc(user.username)}: ${this.esc(body)}

`
msgContainer.appendChild(template)
msgContainer.scrollTop = msgContainer.scrollHeight

},

scheduleMessages(msgContainer, annotations){
setTimeout(() => {

let ctime = Player.getCurrentTime()
let remaining = this.renderAtTime(annotations, ctime, msgContainer)
this.scheduleMessages(msgContainer, remaining)

}, 1000)
},

renderAtTime(annotations, seconds, msgContainer){
return annotations.filter(ann => {

if(ann.at > seconds){
return true

} else {
this.renderAnnotation(msgContainer, ann)
return false

}

report erratum • discuss

Persisting Annotations • 193

http://media.pragprog.com/titles/phoenix/code/channels/listings/rumbl/web/static/js/video.change6.js
http://pragprog.com/titles/phoenix/errata/add
http://forums.pragprog.com/forums/phoenix

})
},

formatTime(at){
let date = new Date(null)
date.setSeconds(at / 1000)
return date.toISOString().substr(14, 5)

},

There’s a lot of code here, but it’s relatively simple. Instead of rendering all
annotations immediately on join, we schedule them to render based on the
current player time. The scheduleMessages function starts an interval timer that
fires every second. Now, each time our timer ticks, we call renderAtTime to find
all annotations occurring at or before the current player time.

In renderAtTime, we filter all the messages by time while rendering those that
should appear in the timeline. For those yet to appear, we return true to keep
a tab on the remaining annotations to filter on the next call. Otherwise, we
render the annotation and return false to exclude it from the remaining set.

You can see the end result. We have a second-by-second annotation feed
based on the current video playback. Refresh your browser and let’s give it a
shot. Try posting a few new annotations at different points, and then refresh.
Start playing the video, and then watch your annotations appear synced up
with the playback time, as you can see in the screenshot on page 195.

We wired up a data-seek attribute on our renderAnnotation template, but we haven’t
done anything with it yet. Let’s support having the annotations clickable so
we can jump to the exact time the annotation was made by clicking it. Add
this click handler above your vidChannel.join():

channels/listings/rumbl/web/static/js/video.change6.js
msgContainer.addEventListener("click", e => {

e.preventDefault()
let seconds = e.target.getAttribute("data-seek") ||

e.target.parentNode.getAttribute("data-seek")
if(!seconds){ return }

Player.seekTo(seconds)
})

Now, clicking an annotation will move the player to the time the annotation
was made. Cool!

Before we get too excited, we have one more problem to solve. We need to
address a critical issue when dealing with disconnects between the client and
server.

Chapter 10. Using Channels • 194

report erratum • discuss

http://media.pragprog.com/titles/phoenix/code/channels/listings/rumbl/web/static/js/video.change6.js
http://pragprog.com/titles/phoenix/errata/add
http://forums.pragprog.com/forums/phoenix

Handling Disconnects
Any stateful conversation between a client and server must handle data that
gets out of sync. This problem can happen with unexpected disconnects, or
a broadcast that isn’t received while a client is away. We need to handle both
cases. Let’s find out how.

Our JavaScript client can disconnect and reconnect for a number of different
reasons. Our server might be restarted, a rumbler might drive under a bridge,
or our Internet connection may just be poor. We simply can’t assume network
reliability when designing our real-time systems. Fire up your server and
visit one of your videos. Post a few annotations and then kill the server in
your terminal. The client immediately begins trying to reestablish a connection
using exponential back-off. Wait a few seconds. Then, you can restart the
server with mix phoenix.server. Within a few seconds, you’ll see something like
this by your video:

report erratum • discuss

Handling Disconnects • 195

http://pragprog.com/titles/phoenix/errata/add
http://forums.pragprog.com/forums/phoenix

That’s not good. When the client reconnected, our client rejoined our
VideoChannel and the server returned all the annotations for this video, causing
our client to append duplicate annotations to the ones it already had. You
might be tempted to have the client detect duplicate annotations and ignore
them, but we want to fetch as little data as required from the server, so there’s
a better way.

We can track a last_seen_id on the client and bump this value every time we
see a new annotation. Then whenever we rejoin following a crash or disconnect,
we can send our last_seen_id to the server. That way, we send only the data we
missed. This technique keeps us from worrying about buffering messages on
the server for clients that might never reconnect. We get back only the data
that we need. Let’s make it happen.

Open up your web/static/js/video.js and make the following changes:

channels/listings/rumbl/web/static/js/video.change7.js
vidChannel.on("new_annotation", (resp) => {Line 1

vidChannel.params.last_seen_id = resp.id-

this.renderAnnotation(msgContainer, resp)-

})-

5

vidChannel.join()-

.receive("ok", resp => {-

let ids = resp.annotations.map(ann => ann.id)-

if(ids.length > 0){ vidChannel.params.last_seen_id = Math.max(...ids) }-

this.scheduleMessages(msgContainer, resp.annotations)10

Chapter 10. Using Channels • 196

report erratum • discuss

http://media.pragprog.com/titles/phoenix/code/channels/listings/rumbl/web/static/js/video.change7.js
http://pragprog.com/titles/phoenix/errata/add
http://forums.pragprog.com/forums/phoenix

})-

.receive("error", reason => console.log("join failed", reason))-

On line 2, we use channel params for the first time. A channel on the client
holds a params object and sends it to the server every time we call channel.join().
We can modify this object to store a last_seen_id whenever we receive a
new_annotation event from the server.

Next, we use a similar approach on line 8 within our ok callback on join. We
receive the list of annotations in the response as before, but this time we grab
the max annotation ID from the list and store it in the channel params as
our last_seen_id. Now, whenever we call vidChannel.join()—such as after recon-
nects—we provide the last_seen_id. Let’s handle this new parameter on the
server side within our VideoChannel. Open up your web/channels/video_channel.ex file
and update the join function:

channels/listings/rumbl/web/channels/video_channel.change5.ex
def join("videos:" <> video_id, params, socket) doLine 1

last_seen_id = params["last_seen_id"] || 0-

video_id = String.to_integer(video_id)-

video = Repo.get!(Rumbl.Video, video_id)-

5

annotations = Repo.all(-

from a in assoc(video, :annotations),-

where: a.id > ^last_seen_id,-

order_by: [asc: a.at, asc: a.id],-

limit: 200,10

preload: [:user]-

)-

-

resp = %{annotations: Phoenix.View.render_many(annotations, AnnotationView,-

"annotation.json")}15

{:ok, resp, assign(socket, :video_id, video_id)}-

end-

On line 2, we use the params as the second argument to join/3. We check for an
existing last_seen_id value. To cover a fresh connection, we provide a default
value of 0 since the user has yet to see an annotation.

Next, we modify our annotations query by adding a where clause on line 8 to
only grab IDs greater than the last_seen_id.

That’s it! If we try to re-create our duplicate entries, we’ll see the client and
server remain properly in sync across disconnects and reconnects using the
last_seen_id approach in the channel params. Our approach is simple and direct.

We’ve done a lot of work in this chapter. It’s time to review.

report erratum • discuss

Handling Disconnects • 197

http://media.pragprog.com/titles/phoenix/code/channels/listings/rumbl/web/channels/video_channel.change5.ex
http://pragprog.com/titles/phoenix/errata/add
http://forums.pragprog.com/forums/phoenix

Wrapping Up
In this chapter, you learned to build simple client/server APIs with Phoenix
channels. Though the problem had many layers, it was easy to understand
the flow because clients connected to servers, and both sides maintained the
connection until the conversation was over. Along the way:

• You learned to connect to a server-side channel through an ES6 client.

• We built a server-side channel with both long-polling and WebSocket
support.

• We built a simple API to let users join a channel.

• We processed inbound messages from OTP with handle_info and channels
with handle_in.

• We sent broadcast messages with broadcast!.

• We authenticated users with Phoenix.Token.

• We persisted annotations with Ecto.

Though channels are by far the most exciting feature of Phoenix, it was far
easier to build this code than it was to build the request/response counter-
parts for our users. We’re not done yet, though! In the next chapter, you’ll
learn to implement reliable services with OTP. You’ll also learn to better
organize your applications by using umbrellas. Stay tuned!

Chapter 10. Using Channels • 198

report erratum • discuss

http://pragprog.com/titles/phoenix/errata/add
http://forums.pragprog.com/forums/phoenix

CHAPTER 11

OTP
You’ve now had your first taste of Phoenix channels and should be developing
a good intuition for the strength of Phoenix for highly interactive applications.
You have everything you need to create beautiful code and then run it reliably
at breakneck speeds.

Phoenix isn’t just about user interfaces, though. You also have the experience
and elegance of Erlang’s OTP framework. In general, OTP is a way to think
about concurrency and distribution. It uses a few patterns that allow you to
use concurrency to build state without language features that rely on muta-
bility. OTP also has rich abstractions for supervision and monitoring. In this
chapter, we’ll use OTP to build an information system.

Rather than read a wave of dry prose that tells you what OTP does, you’ll
start with the basics by building a simple service. We’ll build a counter that
runs in a separate process. Then, we’ll supervise it, restarting on failure.
You’ll see how you can hold state in an immutable world.

On its own, that knowledge will help you understand Phoenix, which is itself
an OTP application. We’ll use these principles to build an information service.
When we’re done, we’ll be ready to move that service under an umbrella
application in the next chapter. This neat bit of organization will let you break
existing code into bite-sized pieces that are easier to manage, understand,
and test.

Managing State with Processes
Functional programs are stateless, but we still need to be able to manage
state. In Elixir, we use concurrent processes and recursion to handle this
task. That may sound counterintuitive, but let’s take a look at how it works
with a simple program.

report erratum • discuss

http://pragprog.com/titles/phoenix/errata/add
http://forums.pragprog.com/forums/phoenix

Let’s create a Counter server that counts up or down. Create a lib/rumbl/counter.ex
file and key this in:

otp/listings/rumbl/lib/rumbl/counter.ex
defmodule Rumbl.Counter doLine 1

-

def inc(pid), do: send(pid, :inc)-

-

def dec(pid), do: send(pid, :dec)5

-

def val(pid, timeout \\ 5000) do-

ref = make_ref()-

send(pid, {:val, self(), ref})-

receive do10

{^ref, val} -> val-

after timeout -> exit(:timeout)-

end-

end-

15

def start_link(initial_val) do-

{:ok, spawn_link(fn -> listen(initial_val) end)}-

end-

-

defp listen(val) do20

receive do-

:inc -> listen(val + 1)-

:dec -> listen(val - 1)-

{:val, sender, ref} ->-

send sender, {ref, val}25

listen(val)-

end-

end-

end-

Our module implements a Counter server as well as functions for interacting
with it as a client. The client serves as the API and exists only to send messages
to the process that does the work. It’s the interface for our counter. The
server is a process that recursively loops, processing a message and sending
updated state to itself. Our server is the implementation.

Building the Counter API
Our API sends messages to increment (:inc) and decrement (:dec) the counter,
and another message called :val to get the counter’s value. Let’s look at each
one of these in turn.

:inc and :dec take only the process ID for the server process—called pid for
process ID—and a single atom command. These skinny functions exist only

Chapter 11. OTP • 200

report erratum • discuss

http://media.pragprog.com/titles/phoenix/code/otp/listings/rumbl/lib/rumbl/counter.ex
http://pragprog.com/titles/phoenix/errata/add
http://forums.pragprog.com/forums/phoenix

to send :inc and :dec messages to our server process. These are asynchronous.
We just send a message and don’t bother to await any reply.

The val function on line 7 is a little different. It must send a request for the
value of the counter and await the response. Since we need to associate a
response with this particular request, we create a unique reference with
make_ref(). This unique reference is just a value that’s guaranteed to be globally
unique. Then, we send a message to our counter with the send function. Our
message payload is a 3-tuple with an atom designating the command we want
to do, :val, followed by our pid and the globally unique reference.

Then, we await a response, matching on the reference. The ^ operator means
that rather than reassigning the value of ref, we match only tuples that have
that exact ref. That way, we can make sure to match only responses related
to our explicit request. If there’s no match in a given period, we exit the current
process with the :timeout reason code.

We start by defining the client API to interact with our counter. First, we
create inc and dec functions to increment and decrement our counter. These
functions fire off an async message to the counter process without waiting
for a response. Our val function sends message to the counter but then blocks
the caller process while waiting for a response.

Let’s take a look at our server.

As you’ll see later on, OTP requires a start_link function. Ours, on line 16,
accepts the initial state of our counter. Its only job is to spawn a process and
return {:ok, pid}, where pid identifies the spawned process. The spawned process
calls the private function named listen, which listens for messages and process-
es them.

Let’s look at that listen function on line 20, the engine for our counter. You
don’t see any global variables that hold state, but our listener has a trick up
its sleeve. We can exploit recursion to manage state. For each call to listen,
the tiny function blocks to wait for a message. Then, we process the trivial
:inc, :dec, and :val messages. The last thing any receive clause does is call listen
again with the updated state.

Said another way: the state of the server is wrapped up in the execution of
the recursive function. We can use Elixir’s message passing to listen in on
the process to find the value of the state at any time. When the last thing you
do in a function is to call the function itself, the function is tail recursive,
meaning it optimizes to a loop instead of a function call. That means this loop
can run indefinitely! In many languages, burning a thread for such a trivial

report erratum • discuss

Managing State with Processes • 201

http://pragprog.com/titles/phoenix/errata/add
http://forums.pragprog.com/forums/phoenix

task can be expensive, but in Elixir processes are incredibly cheap, so this
strategy is a great way to manage state.

Taking Our Counter for a Spin
This code is pretty simple, so you already know what’ll happen. Still, let’s try
it out in IEx:

iex> alias Rumbl.Counter
nil

iex> {:ok, counter} = Counter.start_link(0)
{:ok, #PID<0.253.0>}

iex> Counter.inc(counter)
:inc
iex> Counter.inc(counter)
:inc
iex> Counter.val(counter)
2

iex> Counter.dec(counter)
:dec
iex> Counter.val(counter)
1

It works perfectly, just as you expected. Think about the techniques used:

• We used concurrency and recursion to maintain state.

• We separated the interface from the implementation.

• We used different abstractions for asynchronous and synchronous com-
munication with our server.

As you might imagine, this approach is common and important enough for
us to package it for reuse. In fact, this approach has been around a while in
the form of the Erlang OTP library. Let’s take a look.

Building GenServers for OTP
Though our counter is an oversimplification, the basic approach has been
used for over thirty years to manage both concurrent state and behavior for
most important Erlang applications. The library encapsulating that approach
is called OTP, and the abstraction is called a generic server, or GenServer. Let’s
modify our counter to use OTP to create our counter, instead.

We don’t need to change too much. Instead of creating specific functions to
handle inc, dec, and val, we use specific OTP abstractions instead. Update your
counter.ex file with these contents:

Chapter 11. OTP • 202

report erratum • discuss

http://pragprog.com/titles/phoenix/errata/add
http://forums.pragprog.com/forums/phoenix

otp/listings/rumbl/lib/rumbl/counter.change1.ex
defmodule Rumbl.Counter doLine 1

use GenServer-

-

def inc(pid), do: GenServer.cast(pid, :inc)-

5

def dec(pid), do: GenServer.cast(pid, :dec)-

-

def val(pid) do-

GenServer.call(pid, :val)-

end10

-

def start_link(initial_val) do-

GenServer.start_link(__MODULE__, initial_val)-

end-

15

def init(initial_val) do-

{:ok, initial_val}-

end-

-

def handle_cast(:inc, val) do20

{:noreply, val + 1}-

end-

-

def handle_cast(:dec, val) do-

{:noreply, val - 1}25

end-

-

def handle_call(:val, _from, val) do-

{:reply, val, val}-

end30

end-

We’ve changed the terminology some, but not the implementation. When we
want to send asynchronous messages such as our inc and dec messages, we
use GenServer.cast, as you can see on line 4. Notice that these functions don’t
send a return reply. When we want to send synchronous messages that return
the state of the server, we use GenServer.call as we do on line 8. Notice the _from
in the function head. You can use an argument leading with an underscore,
just as you’d use a _ as wildcard match. With this feature, we can explicitly
describe the argument while ignoring the contents.

On the server side, the implementation is much the same: we use a handle_cast
line for :inc and one for :dec, each returning a noreply alongside the new state,
and we also use handle_call to handle :val, and specify the return value. We
explicitly tell OTP when to send a reply and when not to send one. We also
have to tweak the start_link to start a GenServer, giving it the current module
name and the counter. This function spawns a new process and invokes the

report erratum • discuss

Building GenServers for OTP • 203

http://media.pragprog.com/titles/phoenix/code/otp/listings/rumbl/lib/rumbl/counter.change1.ex
http://pragprog.com/titles/phoenix/errata/add
http://forums.pragprog.com/forums/phoenix

Rumbl.Counter.init function inside this new process to set up its initial state. Let’s
take that much for a spin:

iex> alias Rumbl.Counter
nil
iex> {:ok, counter} = Counter.start_link(10)
{:ok, #PID<0.96.0>}
iex> Counter.dec(counter)
:ok
iex> Counter.dec(counter)
:ok
iex> Counter.val(counter)
8

Our first counter was split into client and server code. This segregation
remains when we write our GenServer. init, handle_call, and handle_cast run in the
server. All other functions are part of the client.

Our OTP counter server works exactly as before, but we’ve gained much by
moving it to a GenServer. On the surface, we no longer need to worry about
setting up references for synchronous messages. Those are taken care of for
us by GenServer.call. Second, the GenServer module is now in control of the receive
loop, allowing it to provide great features like code upgrading and handling
of system messages, which will be useful when we introspect our system with
Observer later on. A GenServer is one of many OTP behaviors. We’ll continue
exploring them as we build our information system.

Adding Failover
The benefits of OTP go beyond simply managing concurrent state and
behavior. It also handles the linking and supervision of processes. Now let’s
explore how process supervision works. We’ll supervise our new counter.

Though our counter is a trivial service, we’ll play with supervision strategies.
Our supervisor needs to be able to restart each service the right way,
according to the policies that are best for the application. For example, if a
database dies, you might want to automatically kill and restart the associated
connection pool. This policy decision should not impact code that uses the
database. If we replace a simple supervisor process with a supervisor tree,
we can build much more robust fault-tolerance and recovery software.

In Phoenix, you didn’t see too much code attempting to deal with the fallout
for every possible exception. Instead, we trust the error reporting to log the
errors so that we can fix what’s broken, and in the meantime, we can auto-
matically restart services in the last good state. The beauty of OTP is that it
captures these clean abstractions in a coherent library, allowing us to declare

Chapter 11. OTP • 204

report erratum • discuss

http://pragprog.com/titles/phoenix/errata/add
http://forums.pragprog.com/forums/phoenix

the supervision properties that most interest us without bogging down the
meaning of each individual application. With a supervision tree having a
configurable policy, you can build robust self-healing software without
building complex self-healing software.

Let’s add our Counter server to our application’s supervision tree by including
it as a worker in our supervisor’s child spec. In lib/rumbl.ex, add your new server
as a worker, like this:

otp/listings/rumbl/lib/rumbl.change1.ex
children = [

supervisor(Rumbl.Endpoint, []),
supervisor(Rumbl.Repo, []),
worker(Rumbl.Counter, [5]), # new counter worker

]

opts = [strategy: :one_for_one, name: Rumbl.Supervisor]
Supervisor.start_link(children, opts)

A child spec defines the children that an Elixir application will start. In this
case, we add our new counter to our existing list of children. With the worker,
we pass the arguments for the worker’s start_link. In our case, we pass the initial
state, or 5.

In opts, you can see the policy that our application will use if something goes
wrong. OTP calls this policy the supervision strategy. In this case, we’re using
the :one_for_one strategy. This strategy means that if the child dies, only that
child will be restarted. If all resources depended on some common service,
we could have specified :one_for_all to kill and restart all child process if any
child dies. We’ll explore those strategies later on.

Now if we fire up our application with iex -S mix, we don’t see anything particu-
lar, since our counter is running but we aren’t interacting with it. Let’s add
a periodic tick to our counter to see it work in action in our supervision tree.

Modify your Counter’s init function and add a new handle_info callback, like this:

otp/listings/rumbl/lib/rumbl/counter.change2.ex
def init(initial_val) do

Process.send_after(self, :tick, 1000)
{:ok, initial_val}

end

def handle_info(:tick, val) do
IO.puts "tick #{val}"
Process.send_after(self, :tick, 1000)
{:noreply, val - 1}

end

report erratum • discuss

Building GenServers for OTP • 205

http://media.pragprog.com/titles/phoenix/code/otp/listings/rumbl/lib/rumbl.change1.ex
http://media.pragprog.com/titles/phoenix/code/otp/listings/rumbl/lib/rumbl/counter.change2.ex
http://pragprog.com/titles/phoenix/errata/add
http://forums.pragprog.com/forums/phoenix

We tweak init in the counter process to send itself a :tick message every 1,000
milliseconds, and then we add a function to process those ticks, simulating
a countdown. As with channels, out-of-band messages are handled inside
the handle_info callback, which sets up a new tick and decrements the state.

Now you can fire our application back up with iex -S mix and see our counter
worker in action:

iex> tick 5
tick 4
tick 3
tick 2
tick 1
^C

This isn’t terribly exciting, but it gets interesting when we deal with our
workers crashing. Let’s crash our counter if it ticks below a certain value:

otp/listings/rumbl/lib/rumbl/counter.change3.ex
def handle_info(:tick, val) when val <= 0, do: raise "boom!"
def handle_info(:tick, val) do

IO.puts "tick #{val}"
Process.send_after(self, :tick, 1000)
{:noreply, val - 1}

end

We add a :tick clause for cases when the value is less than zero, and we raise
an error that crashes our process. Let’s fire up iex -S mix again and see what
happens:

iex> tick 5
tick 4
tick 3
tick 2
tick 1
[error] GenServer #PID<0.327.0> terminating
** (RuntimeError) boom!

(rumbl) lib/rumbl/counter.ex:21: Rumbl.Counter.handle_info/2
(stdlib) gen_server.erl:615: :gen_server.try_dispatch/4
(stdlib) gen_server.erl:681: :gen_server.handle_msg/5
(stdlib) proc_lib.erl:239: :proc_lib.init_p_do_apply/3

Last message: :tick
State: 0
tick 5
tick 4
tick 3
tick 2
tick 1
^C

Chapter 11. OTP • 206

report erratum • discuss

http://media.pragprog.com/titles/phoenix/code/otp/listings/rumbl/lib/rumbl/counter.change3.ex
http://pragprog.com/titles/phoenix/errata/add
http://forums.pragprog.com/forums/phoenix

As expected, our server crashed—but then it restarted! That’s the magic of
supervision. When our counter crashed, it was restarted with its initial state
of [5]. In short, our program crashed, the supervisor identified the crash, and
then it restarted the process in a known good state. We don’t have to add any
extra code to fully supervise every process. We need only configure a policy
to tell OTP how to handle each crash.

The basic building blocks of isolated application processes and a supervision
structure to manage them have been the cornerstone of Erlang reliabili-
ty—whether you’re running a trivial counter, a server with a million processes,
or a worldwide distributed application with tens of millions of processes. The
principles are the same, and they’ve been proven to work.

To apply these principles, you need to know how to tell Elixir what supervision
behavior you expect. Here are the basics.

Restart Strategies
The first decision you need to make is to tell OTP what should happen if your
process crashes. By default, child processes have a restart strategy of :perma-
nent. A supervisor will always restart a :permanent GenServer, whether the process
crashed or terminated gracefully. If we wanted to explicitly specify a :permanent
restart strategy, we could have done so like this:

worker(Rumbl.Counter, [5], restart: :permanent),

:permanent is the default restart strategy, and the trailing options are fully
optional, so we could have written the command as worker(Rumbl.Counter, [5]).
Child specifications support the following restart values:

:permanent
The child is always restarted (default).

:temporary
The child is never restarted.

:transient
The child is restarted only if it terminates abnormally, with an exit reason
other than :normal, :shutdown, or {:shutdown, term}.

Let’s say we have a situation in which mostly dead isn’t good enough. When
a counter dies, we want it to really die. Perhaps restarting the application
would cause harm. Let’s try changing our restart strategy to :temporary and
observe the crash:

worker(Rumbl.Counter, [5], restart: :temporary),

report erratum • discuss

Building GenServers for OTP • 207

http://pragprog.com/titles/phoenix/errata/add
http://forums.pragprog.com/forums/phoenix

Now let’s fire our project back up with iex -S mix:

iex(1)> tick 5
tick 4
tick 3
tick 2
tick 1
[error] GenServer #PID<0.393.0> terminating
** (RuntimeError) boom!

(rumbl) lib/rumbl/counter.ex:21: Rumbl.Counter.handle_info/2
(stdlib) gen_server.erl:615: :gen_server.try_dispatch/4
(stdlib) gen_server.erl:681: :gen_server.handle_msg/5
(stdlib) proc_lib.erl:239: :proc_lib.init_p_do_apply/3

Last message: :tick
State: 0

As you’d expect, when our counter dies it stays dead. The :temporary strategy
is useful when a restart is unlikely to resolve the problem, or when restarting
doesn’t make sense based on the flow of the application.

Sometimes, you may want OTP to retry an operation a few times before failing.
You can do exactly that with a pair of options called max_restarts and max_seconds.
OTP will only restart an application max_restarts times in max_seconds before
failing and reporting the error up the supervision tree. By default, Elixir will
allow 3 restarts in 5 seconds, but you can configure these values to whatever
you want. In general, you’ll use the restart strategies your specific application
requires.

Supervision Strategies
Just as child workers have different restart strategies, supervisors have con-
figurable supervision strategies. The most basic and the default for new
Phoenix applications is :one_for_one. When a :one_for_one supervisor detects a
crash, it restarts a worker of the same type without any other consideration.
Sometimes, processes depend on one another. When that happens, sometimes
when a process dies, more than one must restart. In all, you have four major
strategies:

:one_for_one
If a child terminates, a supervisor restarts only that process.

:one_for_all
If a child terminates, a supervisor terminates all children and then restarts
all children.

Chapter 11. OTP • 208

report erratum • discuss

http://pragprog.com/titles/phoenix/errata/add
http://forums.pragprog.com/forums/phoenix

:rest_for_one
If a child terminates, a supervisor terminates all child processes defined
after the one that dies. Then the supervisor restarts all terminated pro-
cesses.

:simple_one_for_one
Similar to :one_for_one but used when a supervisor needs to dynamically
supervise processes. For example, a web server would use it to supervise
web requests, which may be 10, 1,000, or 100,000 concurrently running
processes.

These strategies are all relatively straightforward. To get a taste of them, let’s
change our counter-restart strategy back to the default :permanent and tem-
porarily change our application supervisor’s strategy to :one_for_all, like this:

otp/listings/rumbl/lib/rumbl.change2.ex
children = [

supervisor(Rumbl.Endpoint, []),
supervisor(Rumbl.Repo, []),
worker(Rumbl.Counter, [5]),

]

opts = [strategy: :one_for_all, name: Rumbl.Supervisor]
Supervisor.start_link(children, opts)

Now if you start up the application with our endpoint’s web server running
via $ iex -S mix phoenix.server, you can see how the change in strategy cascades
to all children:

[info] Running Rumbl.Endpoint with Cowboy on http://localhost:4000
03 Nov 20:16:51 - info: compiled 8 files into 2 files, copied 3 in 1951ms
iex> tick 5
tick 4
tick 3
tick 2
tick 1
[info] Running Rumbl.Endpoint with Cowboy on http://localhost:4000
03 Nov 20:16:57 - info: compiled 8 files into 2 files, copied 3 in 1892ms
[error] GenServer #PID<0.322.0> terminating
** (RuntimeError) boom!
...
tick 5
tick 4
^C

Here, you can see the :one_for_all strategy in action. Notice the Rumbl.Endpoint
restart after our counter crashes. In general, the top-level strategy for our
application makes sense as :one_for_one—because it houses all main services
of the application with their own supervision trees and more-specific strate-

report erratum • discuss

Supervision Strategies • 209

http://media.pragprog.com/titles/phoenix/code/otp/listings/rumbl/lib/rumbl.change2.ex
http://pragprog.com/titles/phoenix/errata/add
http://forums.pragprog.com/forums/phoenix

gies—but this gives you a taste of how different strategies compose together
to form resilient applications.

Now that our counter experiments are over, let’s change our lib/rumbl.ex back
to the original supervision tree and restart strategy:

otp/rumbl/lib/rumbl.ex
children = [

supervisor(Rumbl.Endpoint, []),
supervisor(Rumbl.Repo, []),

]

opts = [strategy: :one_for_one, name: Rumbl.Supervisor]
Supervisor.start_link(children, opts)

The GenServer is the foundation of many different abstractions throughout
Elixir and Phoenix. Knowing these small details will make you a much better
programmer. Let’s see a couple more examples.

Using Agents
It turns out that a still simpler abstraction has many of the benefits of a
GenServer. It’s called an agent. With an agent, you have only five main functions:
start_link initializes the agent, stop stops the agent, update changes the state of
the agent, get retrieves the agent’s current value, and get_and_update performs
the last two operations simultaneously. Here’s what our counter would look
like with an agent:

iex> import Agent
nil
iex> {:ok, agent} = start_link fn -> 5 end
{:ok, #PID<0.57.0>}
iex> update agent, &(&1 + 1)
:ok
iex> get agent, &(&1)
6
iex> stop agent
:ok

To initialize an agent, you pass a function returning the state you want. To
update the agent, you pass a function taking the current state and returning
the new state. That’s all there is to it. Behind the scenes, this agent is an OTP
GenServer, and plenty of options are available to customize it as needed. One
such option is called :name.

Chapter 11. OTP • 210

report erratum • discuss

http://media.pragprog.com/titles/phoenix/code/otp/rumbl/lib/rumbl.ex
http://pragprog.com/titles/phoenix/errata/add
http://forums.pragprog.com/forums/phoenix

Registering Processes
With OTP, we can register a process by name. Our named process can be
either local, meaning visible to a single node, or global, meaning visible to all
connected nodes. OTP automatically provides this feature with the :name option
in start_link. After we register a process by name, we can send messages to it
using the registered name instead of the pid. Let’s rewrite the previous
example using a named agent:

iex> import Agent
nil
iex> {:ok, agent} = start_link fn -> 5 end, name: MyAgent
{:ok, #PID<0.57.0>}
iex> update MyAgent, &(&1 + 1)
:ok
iex> get MyAgent, &(&1)
6
iex> stop MyAgent
:ok

If a process already exists with the registered name, we can’t start the agent:

iex> import Agent
nil
iex> {:ok, agent} = start_link fn -> 5 end, name: MyAgent
{:ok, #PID<0.57.0>}
iex> {:ok, agent} = start_link fn -> 5 end, name: MyAgent
** (MatchError) no match of right hand side value:

{:error, {:already_started, #PID<0.57.0>}}

Agents are one of the many constructs built on top of OTP. You’ve already
seen another, the Phoenix.Channel. Let’s take a look.

OTP and Channels
If we were building a supervisor for a couple of application components, the
simple default :one_for_one strategy might be all we’d need. Our goal is bigger,
though. We don’t reach occasionally for supervisors as tiny isolated services.
We intentionally build all of our infrastructure with a tree of supervisors,
where each node of the tree knows how to restart any major service if it fails.

When you coded your channels in the last chapter, you might not have known
it, but you were building an OTP application. Each new channel was a process
built to serve a single user in the context of a single conversation on a topic.
Though Phoenix is new, we’re standing on the shoulders of giants. Erlang’s
OTP has been around as long as Erlang has been popular—we know that it
works. Much of the world’s text-messaging traffic runs on OTP infrastructure.

report erratum • discuss

Supervision Strategies • 211

http://pragprog.com/titles/phoenix/errata/add
http://forums.pragprog.com/forums/phoenix

That’s way more than Twitter has ever experienced. You can count on this
infrastructure always being up and available because it’s built on a reliable
foundation.

Designing an Information System with OTP
With these high-level basics demystified, let’s use another OTP abstraction
to enhance our application. Let’s take our video annotations to another level
with some OTP-backed information services. We’re going to use some common
web APIs to enhance our application.

For any request, we’re going to ask our information system for highly relevant
facts that we can inject. We’ll be providing enhanced question/answer–style
annotations as the video is playing. This’ll give our live viewers and replayed
visits alike an enhanced experience about the video that’s showing.

The goal for our application is to have multiple information systems. We might
pull from an API like WolframAlpha while at the same time referencing a local
database. WolframAlpha is a service that allows users to ask natural-language
questions and get rich responses. We’d like our design to start multiple
information system queries in parallel and accumulate the results. Then, we
can take the best matching responses.

Choosing a Supervision Strategy
Think about our information system requirements. We want to fetch the most
relevant information for a user in real time, across different backends. Since
we’re fetching results in parallel, a failure likely means that the network or
one of our third-party services failed. That’s out of our control. It doesn’t make
sense for us to retry the computation. because this operation is time sensi-
tive—a video is playing. Instead, we want to spawn processes in parallel and
let them do their work, and we’ll take as many results as we can get. If one
of ten of our information systems crashes, it’s not a problem. We’ll use the
results from the other nine, so we’ll use the :temporary restart strategy.

Armed with our restart strategy, let’s make our supervisor in lib/rum-
bl/info_sys/supervisor.ex, like this:

otp/listings/rumbl/lib/rumbl/info_sys/supervisor.ex
defmodule Rumbl.InfoSys.Supervisor do

use Supervisor

def start_link() do
Supervisor.start_link(__MODULE__, [], name: __MODULE__)

end

def init(_opts) do

Chapter 11. OTP • 212

report erratum • discuss

http://media.pragprog.com/titles/phoenix/code/otp/listings/rumbl/lib/rumbl/info_sys/supervisor.ex
http://pragprog.com/titles/phoenix/errata/add
http://forums.pragprog.com/forums/phoenix

children = [
worker(Rumbl.InfoSys, [], restart: :temporary)

]

supervise children, strategy: :simple_one_for_one
end

end

Let’s break it down. We use Supervisor to prepare our code to use the Supervisor
API. We’re actually implementing a behavior, which is an API contract. The
start_link function starts the supervisor, and init is the function, required by the
contract, that initializes our workers.

Similarly to GenServer.start_link, the Supervisor.start_link function requires the name
of the module implementing the supervisor behavior and the initial value that
we provide in init. We use the __MODULE__ compiler directive to pick up this
current module’s name. We also pass the initial state of an empty list, which
we don’t intend to use. Finally, we pass our own module name as the :name
option, which is a convenient way to allow us to reach the supervisor from
anywhere with the given module’s name instead of using its pid.

The next function that we implement is init. In that function, we call a function
supervise to begin to supervise all of our workers. We start with our child spec.
The only child is a GenServer worker defined in Rumbl.InfoSys, which we’ll define
in a moment. It has an initial state of [] and a restart strategy of :temporary.

After we have our children identified, we can start our supervisor with supervise,
passing the supervision strategy of :simple_one_for_one. That strategy doesn’t
start any children. Instead, it waits for us to explicitly ask it to start a child
process, handling any crashes just as a :one_for_one supervisor would.

Now you’re ready to add the new supervisor into our application’s supervision
tree in lib/rumbl.ex, like this:

otp/listings/rumbl/lib/rumbl.change3.ex
children = [

supervisor(Rumbl.Endpoint, []),
supervisor(Rumbl.InfoSys.Supervisor, []), # new supervisor
supervisor(Rumbl.Repo, []),

]

With that accomplished, we’re ready to code our service. Since you’re new to
Elixir, you don’t need to hide your glee. You’ve just done a bunch of things
that are traditionally tremendously difficult. You’ve ensured that a single
crash in an isolated information system won’t impact the rest of your applica-
tion. You’ve also configured a supervisor that will in turn be supervised by
the application. The result goes beyond simple monitoring. You’ve made some

report erratum • discuss

Designing an Information System with OTP • 213

http://media.pragprog.com/titles/phoenix/code/otp/listings/rumbl/lib/rumbl.change3.ex
http://pragprog.com/titles/phoenix/errata/add
http://forums.pragprog.com/forums/phoenix

policy decisions to customize our transient information systems into the
overall application.

Keep in mind that we’re protected in both directions. Applications that crash
will need to be restarted at appropriate times. Also, if the Phoenix server
crashes, we’ll bring down all existing information systems and all other
related services so we won’t have to worry about leaking resources.

Enough gloating. We still need to build the information system. You’ll find
that with the error behaviors out of the way, we’re free to focus on the main
task of the information system, and we can let the error cases crash. The real
work is simpler than you think.

Building a start_link Proxy
We’ve chosen a supervision strategy, one that allows us to start children
dynamically. Before we create our worker process, we should take a little time
to decide how our supervisor works, and how we’ll use it to start our service.
We’d like to be able to choose from several different backends—say. one for
Google, one for WolframAlpha, and so on—like this:

That seems right. When a user makes a query, our supervisor will start up
as many different queries as we have backends. Then, we’ll collect the results
from each and choose the best one to send to the user. We have an open
question, though. We have several different kinds of backends and only one
supervisor. How can we create a single worker that knows how to start a
variety of backends?

Chapter 11. OTP • 214

report erratum • discuss

http://pragprog.com/titles/phoenix/errata/add
http://forums.pragprog.com/forums/phoenix

The answer is surprisingly simple. Let’s use a technique called proxying. A
proxy function is a lightweight function that stands between the original caller
and the original implementation to do some simple task. Our generic start_link
will proxy individual start_link functions for each of our backends. More
specifically, we’ll build a generic information system interface that knows
about available backends and spawns a process to query each available
backend service, fetches the result, and picks the best result from all possible
candidates.

Create our proxy in lib/rumbl/info_sys.ex, like this:

otp/listings/rumbl/lib/rumbl/info_sys.ex
defmodule Rumbl.InfoSys doLine 1

@backends [Rumbl.InfoSys.Wolfram]-

-

defmodule Result do-

defstruct score: 0, text: nil, url: nil, backend: nil5

end-

-

def start_link(backend, query, query_ref, owner, limit) do-

backend.start_link(query, query_ref, owner, limit)-

end10

-

def compute(query, opts \\ []) do-

limit = opts[:limit] || 10-

backends = opts[:backends] || @backends-

15

backends-

|> Enum.map(&spawn_query(&1, query, limit))-

end-

-

defp spawn_query(backend, query, limit) do20

query_ref = make_ref()-

opts = [backend, query, query_ref, self(), limit]-

{:ok, pid} = Supervisor.start_child(Rumbl.InfoSys.Supervisor, opts)-

{pid, query_ref}-

end25

end-

Of the three hypothetical backends, we’re going to focus on WolframAlpha.
Let’s break that down.

Notice that our InfoSys is a little different from typical GenServer modules. There’s
a good reason for that. We’ve built a generic module to spawn computations
for queries. These backends are their own processes, but InfoSys isn’t. We put
all of the results into a single list, wait for each response from each spawned
child, and finally pick the best one to return to the user.

report erratum • discuss

Designing an Information System with OTP • 215

http://media.pragprog.com/titles/phoenix/code/otp/listings/rumbl/lib/rumbl/info_sys.ex
http://pragprog.com/titles/phoenix/errata/add
http://forums.pragprog.com/forums/phoenix

At the top of our module, we use a module attribute to build a list of all the
backends we support, which is initially only Rumbl.InfoSys.Wolfram. We leave this
API open so we can add other backends over time.

Next, we define a Result struct to hold each search result. We have a score for
storing relevance, text to describe the result, the URL it came from, and the
backend to use for the computation.

On line 8, you can see our start_link function. If you’re not paying attention,
you can miss what’s really going on here. That start_link is our proxy. It calls
the start_link to the one defined in our specific backend. Our InfoSys is a :sim-
ple_one_for_one worker. Whenever our supervisor calls Supervisor.start_child for
InfoSys, it invokes InfoSys.start_link. That function then starts the backend to
compute its own results.

On line 12, we define compute. That function maps over all backends, calling
a spawn_query function for each one. spawn_query starts a child, giving it some
options including a unique reference named ref that in our case represents a
single response. The function returns the child pid and the unique reference,
which we’ll await later on. When you consider how much this code is doing,
it’s a remarkably compact listing.

Let’s move on to our backend.

Building the Wolfram Info System
Now that we have our generic InfoSys module in place, we can work on specific
backends. We’ll start with only one, our Wolfram backend. This module will
call WolframAlpha to retrieve relevant information about our users’ annota-
tions.

We need an XML parser to handle WolframAlpha’s XML responses. Let’s add
:sweet_xml to our deps list in mix.exs to take care of this:

otp/listings/rumbl/mix.change1.exs
{:sweet_xml, "~> 0.5.0"},

Next, run $mix deps.get to grab the dependency from Hex. With our XML library
in place, we’re ready to sign up as a WolframAlpha API developer and retrieve
our application ID. Visit the WolframAlpha developer portal,1 sign up for a
new account, and follow the instructions to get your AppID.

Now that we have a developer API key, we could place it directly in config/dev.exs,
but there’s a better way. We shouldn’t check in private credentials under

1. https://developer.wolframalpha.com/portal/signup.html

Chapter 11. OTP • 216

report erratum • discuss

http://media.pragprog.com/titles/phoenix/code/otp/listings/rumbl/mix.change1.exs
https://developer.wolframalpha.com/portal/signup.html
http://pragprog.com/titles/phoenix/errata/add
http://forums.pragprog.com/forums/phoenix

version control. In fact, Phoenix points us in the right direction with the
generated config/prod.secret.exs file. This file is ignored from version control so
we can include sensitive credentials properly. Let’s use this same technique
for development. Create a config/dev.secret.exs file and include your WolframAlpha
key under Mix.Config, like this:

use Mix.Config
config :rumbl, :wolfram, app_id: "12345-923429EAE6"

Next, add config/dev.secret.exs to the bottom of your .gitignore file so we don’t check
in our private development credentials:

/config/prod.secret.exs
/config/dev.secret.exs

Finally, we need to call import_config at the bottom of config/dev.exs to import our
development secrets:

import_config "dev.secret.exs"

With setup out of the way, now you can implement our Wolfram backend in
lib/rumbl/info_sys/wolfram.ex, like this:

otp/listings/rumbl/lib/rumbl/info_sys/wolfram.ex
defmodule Rumbl.InfoSys.Wolfram doLine 1

import SweetXml-

alias Rumbl.InfoSys.Result-

-

def start_link(query, query_ref, owner, limit) do5

Task.start_link(__MODULE__, :fetch, [query, query_ref, owner, limit])-

end-

-

def fetch(query_str, query_ref, owner, _limit) do-

query_str10

|> fetch_xml()-

|> xpath(~x"/queryresult/pod[contains(@title, 'Result') or-

contains(@title, 'Definitions')]-

/subpod/plaintext/text()")-

|> send_results(query_ref, owner)15

end-

-

defp send_results(nil, query_ref, owner) do-

send(owner, {:results, query_ref, []})-

end20

defp send_results(answer, query_ref, owner) do-

results = [%Result{backend: "wolfram", score: 95, text: to_string(answer)}]-

send(owner, {:results, query_ref, results})-

end-

25

defp fetch_xml(query_str) do-

{:ok, {_, _, body}} = :httpc.request(-

report erratum • discuss

Building the Wolfram Info System • 217

http://media.pragprog.com/titles/phoenix/code/otp/listings/rumbl/lib/rumbl/info_sys/wolfram.ex
http://pragprog.com/titles/phoenix/errata/add
http://forums.pragprog.com/forums/phoenix

String.to_char_list("http://api.wolframalpha.com/v2/query" <>-

"?appid=#{app_id()}" <>-

"&input=#{URI.encode(query_str)}&format=plaintext"))30

body-

end-

-

defp app_id, do: Application.get_env(:rumbl, :wolfram)[:app_id]-

end35

You might have spotted the start_link, but still, our module doesn’t have all of
the ceremony that you might have expected out of a GenServer. That’s because
this process is a task. Because GenServer’s are meant to be generic servers,
they hold both computation and state. However, in many cases, we want a
process only to store state or only to execute a particular function. We’ve seen
how an agent is a simple GenServer that manages state. A task is a simple
process that executes the given function.

To start our module, we import the functions we’ll need and set up a single
alias. SweetXml will help us parse the XML we receive, and Result has the struct
for the results we’ll use.

Within our start_link on line 5, we call Task.start_link, specifying the module and
function name to be invoked, as well as the arguments to be given to the
function, specifying the work we want our task to do. In our case, the fetch
function defines that work.

In fetch on line 9, we build a pipe to take our query, fetch the XML we’ll need,
extract the results using the xpath function from SweetXml, and then send the
results. Next, we’ll look at the functions that do each one of these tasks.

In fetch_xml on line 26, we contact WolframAlpha with the query string that
interests us. We use :httpc, which ships within Erlang’s standard library, to
do the straight HTTP request, matching against :ok and the body that we return
to the calling client. We use a private function to extract our API key from
our application configuration.

In send_results on line 18, we want to send our results back to the requester.
Remember that the client is waiting on our results, and we have the pid for
that caller in owner.

We have two different forms of send_results, depending on whether we get results
back or not. We match on the first argument in our function head. On nil, we
need only send the owner an empty list. Otherwise, we build a result struct
with our expected results and score. Then, we build a tuple with our results
and send it back to owner.

Chapter 11. OTP • 218

report erratum • discuss

http://pragprog.com/titles/phoenix/errata/add
http://forums.pragprog.com/forums/phoenix

Let’s try it out with iex -S mix. First, start a query. We’ve designed our backend
to report results to the calling process so we can issue compute requests
directly. Remember, each backend will return a pid and a reference, like this:

iex> Rumbl.InfoSys.compute("what is elixir?")
[{#PID<0.1703.0>, #Reference<0.0.3.8938>}]

That query fires off a single Wolfram backend query and then presumably sends
results to the calling process. That result should be waiting for us in our
current process. Let’s use the flush helper from IEx to see any messages we’ve
received:

iex> Rumbl.InfoSys.compute("what is elixir?")
iex> flush()
[{:results, #Reference<0.0.1.9227>,

[%Rumbl.InfoSys.Result{backend: "wolfram", score: 95,
text: "1 | noun | a sweet flavored liquid (usually containing ...",
url: nil}]}]

Brilliant. Our Wolfram service is working exactly as we expect. We get back our
:results tuple with a reference and a list of results. For every result you see in
the list, which may not be the same as what you see here, you get our hard-
coded score of 95 percent. Remember, flush() can just return :ok if the message
isn’t yet in your inbox. If it happens to you, wait a few seconds and try again.

To make these services usable for our clients, we need to make a few
enhancements.

First, let’s detect when a backend crashes so we don’t wait for results that
might never arrive.

Next, we need to order the results we get from all the backends by our rele-
vance score. Then it’ll be easier to pick the best one.

Finally, we need a timeout. If the information systems take longer than we
want to wait, we need to kill the processes we started and move on.

Let’s make those changes now.

Monitoring Processes
We can use Process.monitor to detect backend crashes while we’re waiting on
results. Once a monitor is set, we’ll get a message when the monitored process
dies. For example, you can see this concept at work in IEx:

report erratum • discuss

Building the Wolfram Info System • 219

http://pragprog.com/titles/phoenix/errata/add
http://forums.pragprog.com/forums/phoenix

iex> pid = spawn(fn -> :ok end)
iex> Process.monitor(pid)
#Reference<0.0.2.2850>

We spawn a pid with a trivial function. We set up a monitor with Process.monitor.
We get a reference back to identify this monitor. Meanwhile, the pid process
dies immediately because it has no work to do. Let’s use flush to check out
our IEx mailbox, like this:

iex> flush()
{:DOWN, #Reference<0.0.2.2850>, :process, #PID<0.405.0>, :normal}
:ok

Nice! We receive a regular Elixir message as a {:DOWN, ...} tuple, informing us
that our process died. We can easily apply this concept to our InfoSys client
by automatically collecting results and ignoring the ones from crashed back-
ends, making our services more predictable and safe. Extend your lib/rum-
bl/info_sys.ex, like this:

otp/listings/rumbl/lib/rumbl/info_sys.change1.ex
defmodule Rumbl.InfoSys doLine 1

@backends [Rumbl.InfoSys.Wolfram]-

-

defmodule Result do-

defstruct score: 0, text: nil, url: nil, backend: nil5

end-

-

def start_link(backend, query, query_ref, owner, limit) do-

backend.start_link(query, query_ref, owner, limit)-

end10

-

def compute(query, opts \\ []) do-

limit = opts[:limit] || 10-

backends = opts[:backends] || @backends-

15

backends-

|> Enum.map(&spawn_query(&1, query, limit))-

|> await_results(opts)-

|> Enum.sort(&(&1.score >= &2.score))-

|> Enum.take(limit)20

end-

-

defp spawn_query(backend, query, limit) do-

query_ref = make_ref()-

opts = [backend, query, query_ref, self(), limit]25

{:ok, pid} = Supervisor.start_child(Rumbl.InfoSys.Supervisor, opts)-

monitor_ref = Process.monitor(pid)-

{pid, monitor_ref, query_ref}-

end-

30

defp await_results(children, _opts) do-

Chapter 11. OTP • 220

report erratum • discuss

http://media.pragprog.com/titles/phoenix/code/otp/listings/rumbl/lib/rumbl/info_sys.change1.ex
http://pragprog.com/titles/phoenix/errata/add
http://forums.pragprog.com/forums/phoenix

await_result(children, [], :infinity)-

end-

-

defp await_result([head|tail], acc, timeout) do35

{pid, monitor_ref, query_ref} = head-

-

receive do-

{:results, ^query_ref, results} ->-

Process.demonitor(monitor_ref, [:flush])40

await_result(tail, results ++ acc, timeout)-

{:DOWN, ^monitor_ref, :process, ^pid, _reason} ->-

await_result(tail, acc, timeout)-

end-

end45

-

defp await_result([], acc, _) do-

acc-

end-

end50

This listing shows our revised info_sys.ex, with some changes for reliability. The
compute function now automatically waits for results. When the results are
retrieved, we sort them by score and report the top ones. Let’s study this flow
in detail.

As before, we call spawn_query for each backend. spawn_query is mostly the same,
except it now monitors the child process on line 27 and returns a tuple with
the child pid, the monitor reference, and the query reference.

After we spawn all children, we call await_results. This function uses a common
recursive technique called accumulation. await_result does the bulk of the work.
The first two arguments are the ones to watch. The first is a list of results to
process. These are spawned backends. As we recurse, we reduce the children,
one by one. Each time, we add an entry to the second argument, our accumu-
lator. With each call to await_result, if all goes well, we add a result to the list.
By the time we’re done, the first list will be empty and the accumulator will
have the completed result set. We pass a timeout of :infinity as the third argu-
ment, which we’ll use later.

await_results recurses over all of the spawned backends. Initially, the first
argument has all of the children and the accumulator is empty. We process
each result, adding each to the accumulator. For each one, we receive a
message.

On line 39, we first want to try to receive the next valid result. We know that
valid results match {:results, ^query_ref, result}, so we receive the result and then
process it. We drop our monitor. The [:flush] option guarantees that the :DOWN

report erratum • discuss

Building the Wolfram Info System • 221

http://pragprog.com/titles/phoenix/errata/add
http://forums.pragprog.com/forums/phoenix

message is removed from our inbox in case it’s delivered before we drop the
monitor. Next, we recurse, using the remaining children and adding one more
result to our accumulator.

On line 42, we’re receiving a :DOWN message from our monitor. Notice that
we’re matching on the monitor’s ref instead of the one for the query. That
makes sense, because :DOWN messages come from the monitor, not our
GenServer. We recurse with the remaining children without adding any results
to our accumulator.

The second await_result clause on line 47 serves only to break our recursion
after the list of children is completely consumed. That one returns the accu-
mulated results.

Now that our code has working monitors, we’re left with only results that
complete successfully, ensuring that we won’t wait forever for a message from
a process that’s already crashed. That’s the beauty of monitors. They allow
us a tidy way to handle resources that could otherwise leak. Let’s give it a
try:

iex> Rumbl.InfoSys.compute("what is the meaning of life?")
[%Rumbl.InfoSys.Result{backend: %Rumbl.User{...}, score: 95,
text: "42\n(according to the book The Hitchhiker", url: nil}]

Although monitors allow us to handle failures, a service can still take arbitrar-
ily long. For example, we don’t want to wait one minute for WolframAlpha in
case its system is slow. To fix this, let’s add timeouts to our information sys-
tem. That way, we can terminate a backend if it takes too long.

Timing Out
Every time we attempt to receive messages, we can use the after clause to
specify a time in milliseconds. That time represents the maximum amount
of time we’re willing to wait in a receive clause. Let’s try it out:

iex> receive do
...> :this_will_never_arrive -> :ok
...> after
...> 1_000 -> :timedout
...> end
:timedout

We could use this mechanism in our information system, specifying a timeout
for every message we expect from each information system, but there’s a
hidden problem. This approach is cumulative. Imagine that we changed receive
in await_result to use a timeout of 5_000 milliseconds. If we have three information

Chapter 11. OTP • 222

report erratum • discuss

http://pragprog.com/titles/phoenix/errata/add
http://forums.pragprog.com/forums/phoenix

systems and all of them time out, we’ll wait five seconds for every backend,
halting altogether for a total of fifteen seconds.

We need to use a slightly different approach. Instead of using the after clause,
we’ll use Process.send_after to send ourselves a :timedout message. At first, we’ll
collect messages from the backends as usual, using the timeout of :infinity
until we receive the :timedout message. When we reach the timeout, we’ll flip
the timeout from :infinity to 0, indicating that we’re no longer willing to wait for
the backend response. In other words, we’ll use the :timedout message to indi-
cate if we should wait for the reply or not. Let’s check our new await_results
function:

otp/listings/rumbl/lib/rumbl/info_sys.change2.ex
defp await_results(children, opts) doLine 1

timeout = opts[:timeout] || 5000-

timer = Process.send_after(self(), :timedout, timeout)-

results = await_result(children, [], :infinity)-

cleanup(timer)5

results-

end-

-

defp await_result([head|tail], acc, timeout) do-

{pid, monitor_ref, query_ref} = head10

-

receive do-

{:results, ^query_ref, results} ->-

Process.demonitor(monitor_ref, [:flush])-

await_result(tail, results ++ acc, timeout)15

{:DOWN, ^monitor_ref, :process, ^pid, _reason} ->-

await_result(tail, acc, timeout)-

:timedout ->-

kill(pid, monitor_ref)-

await_result(tail, acc, 0)20

after-

timeout ->-

kill(pid, monitor_ref)-

await_result(tail, acc, 0)-

end25

end-

-

defp await_result([], acc, _) do-

acc-

end30

-

defp kill(pid, ref) do-

Process.demonitor(ref, [:flush])-

Process.exit(pid, :kill)-

end35

-

defp cleanup(timer) do-

report erratum • discuss

Building the Wolfram Info System • 223

http://media.pragprog.com/titles/phoenix/code/otp/listings/rumbl/lib/rumbl/info_sys.change2.ex
http://pragprog.com/titles/phoenix/errata/add
http://forums.pragprog.com/forums/phoenix

:erlang.cancel_timer(timer)-

receive do-

:timedout -> :ok40

after-

0 -> :ok-

end-

end-

The new await_results retrieves the timeout option and uses Process.send_after to
send itself a message after the given timeout value, on line 3. We handle this
new message in our receive call in the await_result function on line 18. Every
time a timeout occurs, we kill the backend we are currently waiting on and
move on to await the next one. When we receive the :timedout message, we
change the call to await_result to use a timeout of 0. That timeout triggers the
after branch of the receive call for subsequent backends unless a reply is already
in the process inbox.

In both the :timedout and after clauses, we use the kill function defined on line
32 to shut down the backend. The function simply removes the monitor and
sends a :kill exit signal to the backend process.

Finally, after we collect all results, we call the cleanup function with the timer
returned by Process.send_after. The cleanup function, on line 37, uses :erlang.can-
cel_timer to cancel the timer, in case it wasn’t yet triggered, and flush the
:timedout message from our inbox if it was already sent.

Our information system now handles timeouts exactly as we desire. We were
able to add complexity such as monitoring and timeouts to the information
system altogether without changing the backends themselves. Because each
backend is a new process, we could leverage everything in OTP to make our
system resilient without changing the business code.

Integrating OTP Services with Channels
Now that we have a complete information system, let’s integrate it with our
VideoChannel.

Make the following changes to your web/channels/video_channel.ex. Our goal is to
call into our information system any time a user posts an annotation, to see
if we have relevant results to add to that user’s conversation. Since the compute
function is a blocking call, we want to make it asynchronous in our channel
so our user gets the annotation broadcast right away. Let’s first use a task
to spawn a function call for our InfoSys computation:

otp/listings/rumbl/web/channels/video_channel.change1.ex
def handle_in("new_annotation", params, user, socket) doLine 1

Chapter 11. OTP • 224

report erratum • discuss

http://media.pragprog.com/titles/phoenix/code/otp/listings/rumbl/web/channels/video_channel.change1.ex
http://pragprog.com/titles/phoenix/errata/add
http://forums.pragprog.com/forums/phoenix

José says:

What About Task.async/await?
If you’re familiar with Elixir, you may be wondering why we haven’t used Task.async
and Task.await to write our information system. One of the criteria for our information
system is that, if one of the backends crashes, we don’t want it to affect the caller. If
we used async/await, that’s exactly what would happen, because async/await automatically
links the spawned task to the caller.

In Elixir v1.2, the standard library ships with a Task.Supervisor.async_nolink function that
will start a task as a child process of a supervisor without links, much like our
information system. However, we don’t plan to update this section to use such features,
because the goal of this chapter is to explore OTP foundations and patterns.

changeset =-

user-

|> build_assoc(:annotations, video_id: socket.assigns.video_id)-

|> Rumbl.Annotation.changeset(params)5

-

case Repo.insert(changeset) do-

{:ok, ann} ->-

broadcast_annotation(socket, ann)-

Task.start_link(fn -> compute_additional_info(ann, socket) end)10

{:reply, :ok, socket}-

-

{:error, changeset} ->-

{:reply, {:error, %{errors: changeset}}, socket}-

end15

end-

-

defp broadcast_annotation(socket, annotation) do-

annotation = Repo.preload(annotation, :user)-

rendered_ann = Phoenix.View.render(AnnotationView, "annotation.json", %{20

annotation: annotation-

})-

broadcast! socket, "new_annotation", rendered_ann-

end-

On line 9, we extract our broadcast to a shared broadcast_annotation function so
our information system can make use of it when it has relevant results to
share. Next, we spawn a task on line 10 to asynchronously call a new com-
pute_additional_info function, which we’ll write in a moment. We use Task.start_link
because we don’t care about the task result. It’s important that we use a task
here so we don’t block on any particular messages arriving to the channel.

Now, let’s write compute_additional_info to ask our InfoSys for relevant results:

report erratum • discuss

Building the Wolfram Info System • 225

http://pragprog.com/titles/phoenix/errata/add
http://forums.pragprog.com/forums/phoenix

otp/listings/rumbl/web/channels/video_channel.change1.ex
defp compute_additional_info(ann, socket) do

for result <- Rumbl.InfoSys.compute(ann.body, limit: 1, timeout: 10_000) do
attrs = %{url: result.url, body: result.text, at: ann.at}
info_changeset =
Repo.get_by!(Rumbl.User, username: result.backend)
|> build_assoc(:annotations, video_id: ann.video_id)
|> Rumbl.Annotation.changeset(attrs)

case Repo.insert(info_changeset) do
{:ok, info_ann} -> broadcast_annotation(socket, info_ann)
{:error, _changeset} -> :ignore

end
end

end

First, we call into our information system, asking it for only one result, and
telling it we are willing to wait ten seconds for an answer. Next, we comprehend
over the results and query the database for a user representing each search
result backend. Then we insert a new changeset and use our shared broadcast_anno-
tation function on line 18 to report the new annotation to all subscribers on
this topic. The integration is tight and smooth, and it’s done.

We need to seed our database with a wolfram user to post annotations along
with our real user conversations. Create a priv/repo/backend_seeds.exs, like this:

otp/listings/rumbl/priv/repo/backend_seeds.exs
alias Rumbl.Repo
alias Rumbl.User

Repo.insert!(%User{name: "Wolfram", username: "wolfram"})

Now, you can run these seeds with mix run, like this:

$ mix run priv/repo/backend_seeds.exs
[debug] BEGIN [] OK query=143.4ms queue=4.1ms
[debug] INSERT INTO "users" ("inserted_at", "name", ...
[debug] COMMIT [] OK query=2.3ms

Given that the preceding text made such a big deal about changesets, you
may have had to choke down a gasp, or at least a snicker. In this case, we’re
controlling our user input directly. Since we’re not dealing directly with user
input, this script is no more or less safe than any other code in our codebase.

Let’s try it out on the front end:

Chapter 11. OTP • 226

report erratum • discuss

http://media.pragprog.com/titles/phoenix/code/otp/listings/rumbl/web/channels/video_channel.change1.ex
http://media.pragprog.com/titles/phoenix/code/otp/listings/rumbl/priv/repo/backend_seeds.exs
http://pragprog.com/titles/phoenix/errata/add
http://forums.pragprog.com/forums/phoenix

It works!

At this point, you can use this template to add services to our information
system. Bing has an API that you might use to retrieve search results for
linking. You could also build your own service. The important thing is that
you have a framework to add services to.

We’re at a convenient breaking point. It’s time to wrap up.

Wrapping Up
In this chapter dedicated to OTP services, we first took our time so you could
build a solid understanding of how OTP uses concurrency and message
passing to safely encapsulate state without implicit state, or instance or
global variables. Then, we built an information system for our annotations.
Along the way:

• We built a counter that demonstrates how some OTP behaviors work.

• You looked at several OTP supervision and restart strategies.

• You saw examples of a full OTP service as GenServer.

• You learned how tasks wrap behavior and agents encapsulate state.

• We implemented an information system abstract front end with concrete
backends.

• You learned to fetch WolframAlpha results from an HTTP service and
share them with our channels.

Next, we’ll see how to break our application into manageable pieces. When
we’re done, you’ll be able to develop and test the pieces in isolation.

report erratum • discuss

Wrapping Up • 227

http://pragprog.com/titles/phoenix/errata/add
http://forums.pragprog.com/forums/phoenix

CHAPTER 12

Observer and Umbrellas
As we add sophistication to our rumbl application, you should begin to notice
that the information system isn’t like some of the other parts of the application.
For the first time, we have a feature that’s reasonably complete on its own—one
that’s both robust and complex. It would be nice to separate this feature out
as a project that can live side by side with the rest of our project but can be
developed and tested independently.

If we were working with code, we’d refactor it. In this chapter, you’ll see how
to refactor your whole application. Umbrella projects allow you to develop
and test multiple child applications in isolation side by side while providing
conveniences for configuring and building them only once. The combination
of Mix and OTP make this abstraction a good one for separating core concerns
and dealing with complexity.

Introspecting with Observer
We’re considering using an umbrella because our rumbl application is growing
wider in terms of responsibilities and becoming more complex. We not only
serve web requests, but we also now provide a complete information system
that might provide dozens of backends in the future. As this grows, it would
be great to be able to build and test this project in isolation.

Right now, we only have a gut feeling. Let’s try to visualize this growing con-
cern in a more concrete way. Once we can see it, we can act on it with much
more confidence. Luckily, Erlang ships with a fantastic tool called Observer.
To take it for spin, start a new iex -S mix session and run this command:

iex> :observer.start
nil

report erratum • discuss

http://pragprog.com/titles/phoenix/errata/add
http://forums.pragprog.com/forums/phoenix

That command opens up an application that looks like this:

Observer is a great tool for understanding all running processes for your
application. When you open it up, the initial tab gives you general information
about Erlang and also statistics about your system and your application. The
tabs let you access charts to visualize different aspects of your system, check
out memory allocation, look at running processes, and the like.

You Might Not Have Observer Installed

Some package managers like to break the Erlang standard library
into multiple packages. If :observer.start doesn’t work, you might be
missing the erlang-observer (or similar) package.

Consider the Processes tab. You can see a list of all running processes in
your system, providing a tremendous amount of visibility into the system.
Remember that in Elixir, all state exists in your processes. With Observer,
we can see the state of our entire system and who’s responsible for each piece.

There’s more. Since communication happens with message passing, you can
easily identify bottlenecks by finding the processes with the largest message
queues. From there, you can double-click any process row to get more infor-
mation about it.

Chapter 12. Observer and Umbrellas • 230

report erratum • discuss

http://pragprog.com/titles/phoenix/errata/add
http://forums.pragprog.com/forums/phoenix

You won’t explore all tabs now, but let’s look at one more in particular:
Applications. There, you can see the applications that run on your system as
well as each application’s supervision tree. Click the Applications tab and
then the Rumbl link on the left-side panel. You can see something like this:

That’s the rumbl supervision tree, more or less. Because we started iex -S mix
and not iex -S mix phoenix.server, the server is missing from the tree. Inspecting
our supervision trees is a great way to analyze how complex our systems are.
If a supervision tree is growing too big or too wide, it’s a great opportunity to
act on it.

Furthermore, the supervision tree tells us exactly how to break a big system
apart. We can find a robust branch from a supervision tree. When we find a
convenient logical separation point, we can break it out into another applica-
tion. All of the initial state and initialization is inside the supervision tree, so
that subtree is easy to extract because we know where all of the complex
parts of the system reside.

Let’s do that now. We’re going to extract the newly built information system
from our rumbl application. When we’re done, we’ll effectively have two appli-
cations: :rumbl and :info_sys. However, instead of breaking them into multiple
applications in distinct source-code repositories, which would add too much
overhead to our development workflow, we are going to rely on Elixir
umbrella projects.

Using Umbrellas
Now that we’ve confirmed our intuition by using Observer, we can get down
to the work of splitting these applications. Each umbrella project has a parent
directory that defines:

report erratum • discuss

Using Umbrellas • 231

http://pragprog.com/titles/phoenix/errata/add
http://forums.pragprog.com/forums/phoenix

• The shared configuration of the project
• The dependencies for that project
• The apps directory with child applications

To get started, let’s create an umbrella project called rumbrella. Instead of using
mix phoenix.new to build a Phoenix application, we’ll use mix new, which ships
with Elixir, and pass it the --umbrella flag. Let’s run the command outside of
the rumbl application, like this:

$ mix new rumbrella --umbrella

* creating .gitignore
* creating README.md
* creating mix.exs
* creating apps
* creating config
* creating config/config.exs

Your umbrella project was created successfully.

You can see that the structure is much simpler than a full Phoenix project.
You get a mix.exs file, a config directory with config.exs, and the apps directory.
That’s it.

Moving InfoSys Under rumbrella
Now that we’ve created our umbrella, we can work on the umbrella projects.
rumbrella is our umbrella. The projects underneath it will be InfoSys, our infor-
mation system, and rumbl, the rest of our application.

Let’s create a regular Elixir application inside the apps directory that will host
the information system. Since this application has a supervision tree, let’s
pass the --sup flag to mix new, like this:

$ cd rumbrella/apps
$ mix new info_sys --sup

* creating README.md
* creating .gitignore
* creating mix.exs
* creating config
* creating config/config.exs
* creating lib
* creating lib/info_sys.ex
* creating test
* creating test/test_helper.exs
* creating test/info_sys_test.exs

Your Mix project was created successfully.
You can use "mix" to compile it, test it, and more:

Chapter 12. Observer and Umbrellas • 232

report erratum • discuss

http://pragprog.com/titles/phoenix/errata/add
http://forums.pragprog.com/forums/phoenix

cd info_sys
mix test

Run "mix help" for more commands.

$ cd info_sys

Notice that what we’re doing now has little to do with Phoenix. We’re building
a basic blank Elixir application with a supervisor tree. All we need to do now
is extract our information system from rumbl and then add it to info_sys. Open
up the info_sys/lib/info_sys.ex file:

defmodule InfoSys do
use Application

See http://elixir-lang.org/docs/stable/elixir/Application.html
for more information on OTP Applications
def start(_type, _args) do

import Supervisor.Spec, warn: false

children = [
Define workers and child supervisors to be supervised
worker(InfoSys.Worker, [arg1, arg2, arg3]),

]

See http://elixir-lang.org/docs/stable/elixir/Supervisor.html
for other strategies and supported options
opts = [strategy: :one_for_one, name: InfoSys.Supervisor]
Supervisor.start_link(children, opts)

end
end

This file is similar to the one that Phoenix created at rumbl/lib/rumbl.ex. It’s
responsible for starting the InfoSys supervision tree. We already have a super-
visor, so replace the one in the previous listing with the following:

defmodule InfoSys do
use Application

def start(_type, _args) do
InfoSys.Supervisor.start_link()

end
end

This module starts the application. Recall that for OTP, that means that it
starts the supervision tree. You may have noticed that the InfoSys module is
no longer in the same namespace as Rumbl.InfoSys. Let’s remedy that now. We’re
going to move some things around and change the name of references to our
InfoSys module. We are not strictly required to do so, but since we’re breaking
the applications apart, we think it’s worth it.

report erratum • discuss

Using Umbrellas • 233

http://pragprog.com/titles/phoenix/errata/add
http://forums.pragprog.com/forums/phoenix

You’re Moving Code Without the Help of Corresponding Listings

If you’re following along but mostly paying attention to listings,
it’ll be easy for you to miss these next few changes, because the
listings for the code you’ll be moving aren’t shown. Make sure you
follow the directions in the following paragraph and numbered
sequence.

Let’s migrate the supervisor and the rest of the information system. We’re
going to do two things. We’ll change the names of references to our new
module in our code, and we’ll move all information system code to our new
umbrella structure. Let’s do that now:

1. Rename the Rumbl.InfoSys module at rumbl/lib/rumbl/info_sys.ex to InfoSys and
move it to info_sys/lib/info_sys.ex. Remember to keep the use Application and the
start function that we defined in the preceding listing.

2. Rename the Rumbl.InfoSys.Supervisor module at rumbl/lib/rumbl/info_sys/supervisor.ex
to InfoSys.Supervisor and move it to info_sys/lib/info_sys/supervisor.ex.

3. Rename the Rumbl.InfoSys.Wolfram module at rumbl/lib/rumbl/info_sys/wolfram.ex to
InfoSys.Wolfram and move it to info_sys/lib/info_sys/wolfram.ex.

4. Use your editor to find and replace all occurrences of Rumbl.InfoSys in your
project with InfoSys.

Our information system is almost ready to go, but we need to make two final
changes.

First, let’s retrieve Wolfram’s application ID from the :info_sys application instead
of :rumbl. In the file lib/info_sys/wolfram.ex, find this line:

defp app_id, do: Application.get_env(:rumbl, :wolfram)[:app_id]

Change it to this:

defp app_id, do: Application.get_env(:info_sys, :wolfram)[:app_id]

That way, we’ll fetch the :wolfram application key from the right application.
We also need to make :sweet_xml a dependency of InfoSys. That’s done in the
mix.exs file—specifically, the one for the :info_sys application. In rumbrel-
la/apps/info_sys/mix.exs, add :sweet_xml to deps, like this:

def deps do
[{:sweet_xml, "~> 0.5.0"}]

end

Chapter 12. Observer and Umbrellas • 234

report erratum • discuss

http://pragprog.com/titles/phoenix/errata/add
http://forums.pragprog.com/forums/phoenix

Let’s make sure that the code compiles and the system boots by fetching
dependencies and running tests for info_sys, from the root of rumbrella, like this:

$ mix deps.get
$ mix test
==> info_sys
.

Finished in 0.06 seconds (0.06s on load, 0.00s on tests)
1 test, 0 failures

Excellent! We’ve successfully extracted our information system from rumbl.
Now, we can develop and test those features in isolation. As a bonus, we can
use that umbrella project in other projects as well.

Making rumbl an Umbrella Child
Now that info_sys is a child application under our rumbrella project, we can
safely move rumbl to the apps directory. Before we do so, let’s take a look at the
project function generated inside InfoSys’s mix.exs:

def project do
[app: :info_sys,
version: "0.0.1",
build_path: "../../_build",
config_path: "../../config/config.exs",
deps_path: "../../deps",
lockfile: "../../mix.lock",
elixir: "~> 1.2",
build_embedded: Mix.env == :prod,
start_permanent: Mix.env == :prod,
deps: deps]

end

You can see the configurations for :build_path, :config_path, :deps_path, and :lockfile.
That’s all it takes to make something an umbrella child. At the end of the
day, Elixir simply configures the project to use the configuration, dependen-
cies, and build paths from the parent application.

This List Will Look Different for Earlier Versions of Elixir

If you are using Elixir v1.1 or earlier, you’ll notice that the :build_path
and :config_path path keys won’t be generated for your mix.exs file.
That’s expected, because those options aren’t supported on earlier
versions. Therefore, don’t add those options to your rumbl applica-
tion. Just copy the :deps_path and :lockfile keys.

report erratum • discuss

Using Umbrellas • 235

http://pragprog.com/titles/phoenix/errata/add
http://forums.pragprog.com/forums/phoenix

Since we don’t need to change any module names this time, it’ll be easy to
convert this application to an umbrella child application. We’re just changing
a line here and there, so we’ll give you only the changes:

1. Move the rumbl directory into apps. Now, you should have two projects in
apps: rumbl and info_sys.

2. Change rumbl’s rumbrella/apps/rumbl/mix.exs project function to include the same
configurations as InfoSys, like this:

build_path: "../../_build",
config_path: "../../config/config.exs",
deps_path: "../../deps",
lockfile: "../../mix.lock",

3. Since the rumbl application depends on InfoSys, we need to add it to our
application list. Inside the application function in mix.exs, add:

def application do
[mod: {Rumbl, []},
applications: [:phoenix, :phoenix_html, :cowboy, :logger, :gettext,

:phoenix_ecto, :postgrex, :comeonin, :info_sys]]
end

4. Update your dependencies. Since we no longer need :sweet_xml, we can
remove it. And since the rumbl application depends on InfoSys, we need to
add it as a dependency. Inside the deps function, add info_sys and remove
sweet_xml, like this:

{:info_sys, in_umbrella: true}

5. Change the rumbl/lib/rumbl.ex supervision tree to remove the Rumbl.InfoSys
worker—because starting it is now the responsibility of the InfoSys applica-
tion—like this:

children = [
supervisor(Rumbl.Endpoint, []),
supervisor(Rumbl.Repo, []),

]

6. Change the compute_additional_info function in web/channels/video_channel.ex to
call InfoSys instead of Rumbl.InfoSys

for result <- InfoSys.compute(ann.body, limit: 1, timeout: 10_000) do

7. Change the config/dev.secrets.exs file from config :rumbl, :wolfram, app_id: ... to config
:info_sys, :wolfram, app_id: ...

Chapter 12. Observer and Umbrellas • 236

report erratum • discuss

http://pragprog.com/titles/phoenix/errata/add
http://forums.pragprog.com/forums/phoenix

Whew. Let’s review what we did. We physically moved our application to our
rumbrella project, under the apps directory. We made some changes to mix.exs to
tell Elixir where to find the umbrella files, which applications to start, and
which dependencies to track. We then removed info_sys from our supervisor
child list, because starting that project is the responsibility of the umbrella
project now. We then changed Rumbl.InfoSys references to InfoSys to conform to
our namespace changes. And finally, we changed our :wolfram project key to
pull it from the umbrella project to remove our product key.

Now we need to tweak the paths in our front-end code. Because we moved
the dependencies directory to the umbrella, we need to tell Brunch, our assets
builder, to look for phoenix and phoenix_html in their new location. Open up
package.json and change the phoenix and phoenix_html keys to the following:

"phoenix": "file:../../deps/phoenix",
"phoenix_html": "file:../../deps/phoenix_html"

As always, you can fetch your dependencies with mix deps.get and then run mix
test to verify that our tests still pass:

$ cd rumbrella
$ mix deps.get
...
$ mix test
==> info_sys
.

Finished in 0.06 seconds (0.06s on load, 0.00s on tests)
1 test, 0 failures

Randomized with seed 344855
==> rumbl
.....................................

Finished in 0.1 seconds
37 tests, 0 failures

Notice that you can run mix test from the umbrella root, testing all projects at
once, or in isolation inside each application directory.

Take note of the big win here. All of our work for our clean InfoSys interface
has paid off. We can treat this service as if someone else had built it. When-
ever you’re developing code for the project, you can focus your efforts on a
single place. As your project grows—if you pay attention to clean, logical
interfaces—you can continue to extract services to their own umbrella projects.

It’s a good time to wrap up what we’ve done.

report erratum • discuss

Using Umbrellas • 237

http://pragprog.com/titles/phoenix/errata/add
http://forums.pragprog.com/forums/phoenix

Wrapping Up
In this chapter, we took some time to break our growing project into bite-sized
pieces. We used umbrellas, an Elixir construct that allows us to develop and
test projects in isolation but integrate them into a whole. Along the way:

• We used Observer to view our application.

• We found a convenient place to split our application.

• We moved our information system into its own child umbrella project.

• We moved rumbl into its own child umbrella project.

• We learned to identify configuration changes, including dependencies,
supervision trees, and application configuration.

In the next chapter, you’ll look at how to test your applications. You’ll see
how to test channels and OTP, and also how our umbrella project will help
us manage all of it. Don’t stop now—you’re almost done!

Chapter 12. Observer and Umbrellas • 238

report erratum • discuss

http://pragprog.com/titles/phoenix/errata/add
http://forums.pragprog.com/forums/phoenix

CHAPTER 13

Testing Channels and OTP
The last few chapters were packed with new features. We’ve spent quite a bit
of time and effort establishing new features that are interactive, compelling,
and fast. Our information system uses an external API with flexible backends.
Our channels-based API offers real-time web support for a rich user interface,
one extremely sensitive to good server performance. Our channels allow peer-
to-peer messaging. We’re missing only one thing. Tests.

In this chapter, you’ll see how to test OTP processes in isolation. You’ll learn
to use the Phoenix helpers to simplify channels testing. Before we dive in,
let’s briefly talk about what you can expect.

Recall that in Part I, the test cases for our controllers used Phoenix test helpers
in ConnCase. We tested our HTTP-backed features, the router, controller, and
views. Our integrated tests also hit the database. We used helpers such as
html_response to remove some of the boilerplate from our typical tests.

In Part II, our code stack is fundamentally different. The MVC code gave way
to channels and OTP. Still, the basic approach will be the same. We’ll build
tests that hit a single channel call, one that integrates everything down to
the database.

We’ll draw the line at the external requests. Since we want to run our integra-
tion tests within our sphere of control, we’ll want our usual test stack to focus
on everything we’ve built except our external HTTP request to WolframAlpha.
We’ll want to isolate our tests from that piece of code.

Let’s start our testing process with our information system.

Testing the Information System
We’ll start with perhaps our most significant testing challenge. We have quite
a bit of behavior to cover, such as timeouts and forced backend termination.

report erratum • discuss

http://pragprog.com/titles/phoenix/errata/add
http://forums.pragprog.com/forums/phoenix

You’ll be surprised at how quickly we can cover all this functionality with a
few short and sweet test cases. Let’s get started.

A natural first step for testing our InfoSys is to simply look for successful results.
Replace your rumbrella/apps/info_sys/test/info_sys_test.exs with the following code:

testing_otp/listings/rumbrella/apps/info_sys/test/info_sys_test.change1.exs
defmodule InfoSysTest doLine 1

use ExUnit.Case-

alias InfoSys.Result-

-

defmodule TestBackend do5

def start_link(query, ref, owner, limit) do-

Task.start_link(__MODULE__, :fetch, [query, ref, owner, limit])-

end-

def fetch("result", ref, owner, _limit) do-

send(owner, {:results, ref, [%Result{backend: "test", text: "result"}]})10

end-

def fetch("none", ref, owner, _limit) do-

send(owner, {:results, ref, []})-

end-

end15

-

test "compute/2 with backend results" do-

assert [%Result{backend: "test", text: "result"}] =-

InfoSys.compute("result", backends: [TestBackend])-

end20

-

test "compute/2 with no backend results" do-

assert [] = InfoSys.compute("none", backends: [TestBackend])-

end-

end25

We start off by defining a stub TestBackend module on line 5. This module will
act like our Wolfram backend, returning a response in the format that we
expect. Since we don’t use the URL query string to do actual work, we can
use this string to identify specific types of results we want our test backend
to fetch.

We’ll use this module to test specific behavior like returning successful results
or no results based on the query it gets. With our stub in place, on line 17,
we define a test case for computing successful results. We pass a query string
of "result", which we handle in our TestBackend to send fake results. Finally, we
assert that the result set is what we expect.

That takes care of the cases in which backends properly report results. Next,
we need to cover the edge cases, like backend timeouts.

Chapter 13. Testing Channels and OTP • 240

report erratum • discuss

http://media.pragprog.com/titles/phoenix/code/testing_otp/listings/rumbrella/apps/info_sys/test/info_sys_test.change1.exs
http://pragprog.com/titles/phoenix/errata/add
http://forums.pragprog.com/forums/phoenix

Chris says:

What’s the Difference Between a Stub and a Mock?
Stubs and mocks are both testing fixtures that replace real-world implementations.
A stub replaces real-world libraries with simpler, predictable behavior. With a stub,
a programmer can bypass code that would otherwise be difficult to test. Other than
that, the stub has nothing to say about whether a test passes or fails. For example,
a http_send stub might always return a fixed JSON response. In other words, a stub
is a simple scaffold implementation standing in for a more complex real-world
implementation.

A mock is similar, but it has a greater role. It replaces real-world behavior just as a
stub does, but it does so by allowing a programmer to specify expectations and results,
playing back those results at runtime. A mock will fail a test if the test code doesn’t
receive the expected function calls. For example, a programmer might create a mock
for http_send that expects the test argument, returning the value :ok, followed by the
test2 argument, returning :ok. If the test code doesn’t call the mock first with the value
test and next with the value test2, it’ll fail. In other words, a mock is an implementation
that records expected behavior at definition time and plays it back at runtime,
enforcing those expectations.

Incorporating Timeouts in Our Tests
A backend might time out. To test timeouts, we need a way to simulate a
backend taking longer than expected. We also need to be able to make sure
that the information system terminates the backend in such cases, as we
expect it to. We want to do all of this in a fast test.

You might be tempted at this point to write a test using refute Process.alive?(pid)
to verify that the backend is down, but we would be introducing a race condi-
tion. Let’s examine why. In the event of a timeout, the information system
calls the Process.exit function to terminate the backend with an asynchronous
exit signal. If the exit signal arrives before the refute call, your test will pass;
if not, your test will fail, leading to intermittent test failures. The worst answer
a computer can ever give you is maybe, so we should rarely use Process.alive?(pid)
in our tests. Instead, call Process.monitor to deliver a DOWN message when the
monitored process exits. We used the same technique to monitor backends
in Chapter 11, OTP, on page 199.

Fortunately, our TestBackend and ExUnit testing helpers make writing this test
super simple. Update your test with the following code:

report erratum • discuss

Testing the Information System • 241

http://pragprog.com/titles/phoenix/errata/add
http://forums.pragprog.com/forums/phoenix

testing_otp/listings/rumbrella/apps/info_sys/test/info_sys_test.change2.exs
defmodule TestBackend doLine 1

def start_link(query, ref, owner, limit) do-

Task.start_link(__MODULE__, :fetch, [query, ref, owner, limit])-

end-

def fetch("result", ref, owner, _limit) do5

send(owner, {:results, ref, [%Result{backend: "test", text: "result"}]})-

end-

def fetch("none", ref, owner, _limit) do-

send(owner, {:results, ref, []})-

end10

def fetch("timeout", _ref, owner, _limit) do-

send(owner, {:backend, self()})-

:timer.sleep(:infinity)-

end-

end15

-

test "compute/2 with timeout returns no results and kills workers" do-

results = InfoSys.compute("timeout", backends: [TestBackend], timeout: 10)-

assert results == []-

assert_receive {:backend, backend_pid}20

ref = Process.monitor(backend_pid)-

assert_receive {:DOWN, ^ref, :process, _pid, _reason}-

refute_received {:DOWN, _, _, _, _}-

refute_received :timedout-

end25

As you might expect, we solve this problem by cheating with our fetch
parameter, passing a specific string that makes our stub time out. The tech-
nique works because our testing stub isn’t built to deliver information based
on the fetch parameter, as our information system is. Our test stub is built to
simulate difficult behavior based on the fetch parameter. It may feel like
cheating a little bit, but we do so with a clear conscience.

On line 11, we add a fetch clause to match on a "timeout" query string. Our test
performs a :timer.sleep(:infinity) to simulate a request that takes too long. So that
the client can monitor our backend process, we send our own pid before
sleeping.

With a long request properly simulated, on line 17, we add a test case for
timeouts and call InfoSys.compute with a short timeout of 10ms. We ensure that
we get zero results back after our timeout period.

That’s not enough. We need to make sure that our backend receives the data
we expect. ExUnit provides the assert_receive assertion for this purpose. We also
need to make sure we receive our {:backend, backend_pid} message on line 20.
With that backend_pid, we monitor the backend process and verify that we

Chapter 13. Testing Channels and OTP • 242

report erratum • discuss

http://media.pragprog.com/titles/phoenix/code/testing_otp/listings/rumbrella/apps/info_sys/test/info_sys_test.change2.exs
http://pragprog.com/titles/phoenix/errata/add
http://forums.pragprog.com/forums/phoenix

receive a :DOWN message, ensuring that our code successfully killed the
backend after timing out.

assert_receive keeps our tests compact, allowing us to simultaneously verify
that we successfully receive a message and match the result. assert_receive by
default waits for 100ms before failing the test. You can explicitly pass a
timeout as an optional second argument for cases when you’re willing to wait
a longer period.

After the test, call refute_received to confirm that no further :DOWN or :timedout
messages are in our inbox. When we wrote the compute function, we made sure
that the code cleans up after itself, guaranteeing it doesn’t leave messages in
the process inbox. Those assertions help us validate our cleanup code.

Notice that we use refute_received instead of refute_receive. These functions are
different. Use refute_receive to wait 100ms and make sure that no matching
message arrives at the inbox. Because we don’t expect messages to arrive in
the first place, calling refute_receive multiple times can quickly become expensive,
because each call waits 100ms. Since we’ve already made sure that the
backend is down, we needn’t wait, because the messages we’re refuting would
already be in our inbox if they leaked. We can use refute_received for this pur-
pose. Saving a few milliseconds might not seem like much, but across hun-
dreds of tests, they add up.

Managing Crashes
Another edge case is a crashing backend. We want to ensure that the crash
is isolated from the caller and that the compute function doesn’t leave extra
messages in our inbox. As with our "timeout" request, let’s stub a query that
simulates a crash, like this:

testing_otp/listings/rumbrella/apps/info_sys/test/info_sys_test.change3.exs
defmodule TestBackend doLine 1

def start_link(query, ref, owner, limit) do-

Task.start_link(__MODULE__, :fetch, [query, ref, owner, limit])-

end-

def fetch("result", ref, owner, _limit) do5

send(owner, {:results, ref, [%Result{backend: "test", text: "result"}]})-

end-

def fetch("none", ref, owner, _limit) do-

send(owner, {:results, ref, []})-

end10

def fetch("timeout", _ref, owner, _limit) do-

send(owner, {:backend, self()})-

:timer.sleep(:infinity)-

end-

def fetch("boom", _ref, _owner, _limit) do15

report erratum • discuss

Testing the Information System • 243

http://media.pragprog.com/titles/phoenix/code/testing_otp/listings/rumbrella/apps/info_sys/test/info_sys_test.change3.exs
http://pragprog.com/titles/phoenix/errata/add
http://forums.pragprog.com/forums/phoenix

raise "boom!"-

end-

end-

-

test "compute/2 discards backend errors" do20

assert InfoSys.compute("boom", backends: [TestBackend]) == []-

refute_received {:DOWN, _, _, _, _}-

refute_received :timedout-

end-

Again, we cheat. Our fetch clause matches a specific query string, in this case,
"boom". On line 15, our new clause simply raises an exception any time we
send the "boom" query string to simulate a crash. Then, on line 20, we define
a test that passes our "boom" query, and we assert that our code returns an
empty list for our results.

Now let’s run the tests:

$ mix test
==> info_sys
..[error] Task #PID<0.270.0> started from InfoSys.Supervisor terminating
** (RuntimeError) boom!

test/info_sys_test.exs:21: InfoSysTest.TestBackend.fetch/4
(elixir) lib/task/supervised.ex:89: Task.Supervised.do_apply/2
(stdlib) proc_lib.erl:239: :proc_lib.init_p_do_apply/3

Function: &InfoSysTest.TestBackend.fetch/4
Args: ["boom", #Reference<0.0.2.2806>, #PID<0.269.0>, 10]

....

Finished in 0.3 seconds (0.1s on load, 0.1s on tests)
4 tests, 0 failures

Randomized with seed 291545
==> rumbl
....................................

Finished in 0.3 seconds
31 tests, 0 failures

If you look closely, you can see that our tests pass, but we got a wicked error
message. The [error] report is the logged crash of the Wolfram worker process.
Cleanup on aisle 12!

Let’s silence this error by adding the @tag :capture_log before our test. With this
tag, we can capture all log messages, and they’ll only be shown for failing
tests. Now our test output is kept nice and tidy:

Chapter 13. Testing Channels and OTP • 244

report erratum • discuss

http://pragprog.com/titles/phoenix/errata/add
http://forums.pragprog.com/forums/phoenix

testing_otp/listings/rumbrella/apps/info_sys/test/info_sys_test.change4.exs
@tag :capture_log
test "compute/2 discards backend errors" do

assert InfoSys.compute("boom", backends: [TestBackend]) == []
refute_received {:DOWN, _, _, _, _}
refute_received :timedout

end

You can find more about log capturing in the ExUnit.CaptureLog module. Besides
supporting tags, it also provides a function named capture_log that returns the
log entries as a string so we can match against a specific result in our tests.
This module, along with its sibling ExUnit.CaptureIO, is useful for testing logs
and I/O in your tests.

And now let’s rerun the tests:

$ mix test
==> info_sys
......

Finished in 0.4 seconds (0.2s on load, 0.2s on tests)
4 tests, 0 failures

Randomized with seed 262462
==> rumbl
....................................

Finished in 0.3 seconds
31 tests, 0 failures

Our new tests are nice and tidy, just like we want them. We’ve done pretty
well with our generic information system, but there’s still some supporting
Wolfram code that we’d like to test in isolation.

Isolating Wolfram
We’d like to keep our Wolfram tests isolated, but we have a problem. Our
code makes an HTTP request to the WolframAlpha API, which isn’t something
we want to perform within our test suite. You might be thinking, “Let’s write
a bunch of mocks!”

Within the Elixir community, we want to avoid mocking whenever possible.
Most mocking libraries, including dynamic stubbing libraries, end up
changing global behavior—for example, by replacing a function in the HTTP
client library to return some particular result. These function replacements
are global, so a change in one place would change all code running at the
same time. That means tests written in this way can no longer run concurrently.
These kinds of strategies can snowball, requiring more and more mocking
until the dependencies among components are completely hidden.

report erratum • discuss

Isolating Wolfram • 245

http://media.pragprog.com/titles/phoenix/code/testing_otp/listings/rumbrella/apps/info_sys/test/info_sys_test.change4.exs
http://pragprog.com/titles/phoenix/errata/add
http://forums.pragprog.com/forums/phoenix

The better strategy is to identify code that’s difficult to test live, and to build
a configurable, replaceable testing implementation rather than a dynamic
mock. We’ll make our HTTP service pluggable. Our development and produc-
tion code will use our simple :httpc client, and our testing code can instead
use a stub that we’ll call as part of our tests. Let’s update our Wolfram
backend to accept an HTTP client from the application configuration, or a
default of :httpc. Update rumbrella/apps/info_sys/lib/info_sys/wolfram.ex with this code:

testing_otp/listings/rumbrella/apps/info_sys/lib/info_sys/wolfram.change1.ex
@http Application.get_env(:info_sys, :wolfram)[:http_client] || :httpcLine 1

defp fetch_xml(query_str) do2

{:ok, {_, _, body}} = @http.request(3

String.to_char_list("http://api.wolframalpha.com/v2/query" <>4

"?appid=#{app_id()}" <>5

"&input=#{URI.encode_www_form(query_str)}&format=plaintext"))6

body7

end8

We’ve made only a minor change to this file. First, we look up an :http_client
module from our mix configuration and default it to the :httpc module. We
bake that module into an @http module attribute at compile time for speedy
runtime use. Next, we replace our :httpc.request call with an @http.request invoca-
tion.

The result is simple and elegant. We simply call the function as before, using
our environment’s HTTP client instead of hard-coding the HTTP client. This
way, our behavior remains unchanged from before, but we can now stub our
HTTP client as desired.

Now let’s update our test configuration to use our stubbed client. Create a
new rumbrella/apps/info_sys/config/test.exs file, like this:

testing_otp/listings/rumbrella/apps/info_sys/config/test.exs
use Mix.Config

config :info_sys, :wolfram,
app_id: "1234",
http_client: InfoSys.Test.HTTPClient

Next, enable configuration loading in rumbrella/apps/info_sys/config/config.exs by
uncommenting your last line, so Elixir will load your configuration file for the
current environment:

import_config "#{Mix.env}.exs"

So we can load configuration for each environment, create bare configuration
files for config/dev.exs and config/prod.exs with the following contents:

use Mix.Config

Chapter 13. Testing Channels and OTP • 246

report erratum • discuss

http://media.pragprog.com/titles/phoenix/code/testing_otp/listings/rumbrella/apps/info_sys/lib/info_sys/wolfram.change1.ex
http://media.pragprog.com/titles/phoenix/code/testing_otp/listings/rumbrella/apps/info_sys/config/test.exs
http://pragprog.com/titles/phoenix/errata/add
http://forums.pragprog.com/forums/phoenix

Now on to the tests. To test our stubbed WolframAlpha API results, we need
an example XML payload. Wolfram conveniently includes an API explorer1

that accepts a search query and displays the XML response. We’ve grabbed
a result for you for a query of "1 + 1". Copy the entire XML file that follows into
a new rumbrella/apps/info_sys/test/fixtures/ directory and save it as wolfram.xml:

testing_otp/listings/rumbrella/apps/info_sys/test/fixtures/wolfram.xml
<?xml version='1.0' encoding='UTF-8'?>
<queryresult success='true'

error='false'
numpods='6'
datatypes='Math'
timedout=''
timedoutpods=''
timing='0.922'
parsetiming='0.136'
parsetimedout='false'
recalculate=''
id='MSPa24041ic5a62926318g34000048gd708f8iid6h17'
host='http://www4b.wolframalpha.com'
server='7'
related='http://www4b.wolframalpha.com/api/v2/relatedQueries.jsp'
version='2.6'>

With our fixture in place, let’s create the stubbed HTTP client that returns
fake XML results using our fixture. Create a new rumbrella/apps/info_sys/test/backends/
directory and add the following module to a new rumbrella/apps/info_sys/test/back-
ends/http_client.exs file:

testing_otp/listings/rumbrella/apps/info_sys/test/backends/http_client.exs
defmodule InfoSys.Test.HTTPClient doLine 1

@wolfram_xml File.read!("test/fixtures/wolfram.xml")2

def request(url) do3

url = to_string(url)4

cond do5

String.contains?(url, "1+%2B+1") -> {:ok, {[], [], @wolfram_xml}}6

true -> {:ok, {[], [], "<queryresult></queryresult>"}}7

end8

end9

end10

We define an InfoSys.Test.HTTPClient module that stubs our request function and
returns fake Wolfram results. We cheat as we did before. We check the fetched
url for the URI-encoded "1 + 1" string. If it matches, we simply return the XML
contents of our wolfram.xml fixture. For any other case, we return a fake request
for empty XML results.

1. http://products.wolframalpha.com/api/explorer.html

report erratum • discuss

Isolating Wolfram • 247

http://media.pragprog.com/titles/phoenix/code/testing_otp/listings/rumbrella/apps/info_sys/test/fixtures/wolfram.xml
http://media.pragprog.com/titles/phoenix/code/testing_otp/listings/rumbrella/apps/info_sys/test/backends/http_client.exs
http://products.wolframalpha.com/api/explorer.html
http://pragprog.com/titles/phoenix/errata/add
http://forums.pragprog.com/forums/phoenix

Our goal isn’t to test the Wolfram service, but make sure we can parse the
data that Wolfram provides. This code elegantly lets us write tests at any time
that return a result. To confirm our HTTPClient module is loaded for both our
rumbl and InfoSys applications, let’s require the file in each test suite. Add the
following line to the top of your rumbrella/apps/info_sys/test/test_helper.exs:

testing_otp/listings/rumbrella/apps/info_sys/test/test_helper.change1.exs
Code.require_file "backends/http_client.exs", __DIR__
ExUnit.start()

Next, do the same for your rumbrella/apps/rumbl/test/test_helper.exs file, but with the
appropriate path:

testing_otp/listings/rumbrella/apps/rumbl/test/test_helper.change1.exs
Code.require_file "../../info_sys/test/backends/http_client.exs", __DIR__
ExUnit.start

Mix.Task.run "ecto.create", ~w(-r Rumbl.Repo --quiet)
Mix.Task.run "ecto.migrate", ~w(-r Rumbl.Repo --quiet)
Ecto.Adapters.SQL.begin_test_transaction(Rumbl.Repo)

With our HTTP client in place, create a new rumbrella/apps/info_sys/test/backends/wol-
fram_test.exs file with the following contents:

testing_otp/listings/rumbrella/apps/info_sys/test/backends/wolfram_test.exs
defmodule InfoSys.Backends.WolframTest doLine 1

use ExUnit.Case, async: true-

alias InfoSys.Wolfram-

-

test "makes request, reports results, then terminates" do5

ref = make_ref()-

{:ok, _} = Wolfram.start_link("1 + 1", ref, self(), 1)-

-

assert_receive {:results, ^ref, [%InfoSys.Result{text: "2"}]}-

end10

end-

Using our stubbed HTTP client, we add our first test case on line 5. First, we
spawn a Wolfram backend with start_link. Next, we use assert_receive to ensure
that the backend reports the successful %InfoSys.Result{} that we asked for.

Chapter 13. Testing Channels and OTP • 248

report erratum • discuss

http://media.pragprog.com/titles/phoenix/code/testing_otp/listings/rumbrella/apps/info_sys/test/test_helper.change1.exs
http://media.pragprog.com/titles/phoenix/code/testing_otp/listings/rumbrella/apps/rumbl/test/test_helper.change1.exs
http://media.pragprog.com/titles/phoenix/code/testing_otp/listings/rumbrella/apps/info_sys/test/backends/wolfram_test.exs
http://pragprog.com/titles/phoenix/errata/add
http://forums.pragprog.com/forums/phoenix

Now let’s run the test:

$ mix test
..

Finished in 0.2 seconds (0.1s on load, 0.09s on tests)
5 tests, 0 failures

And they pass. Next, we’ll need to make sure that our backend terminates
after its work is complete. Let’s use Process.monitor again to test our Wolfram
termination. Update your test with the following listing:

testing_otp/listings/rumbrella/apps/info_sys/test/backends/wolfram_test.change1.exs
test "makes request, reports results, then terminates" do

ref = make_ref()
{:ok, pid} = Wolfram.start_link("1 + 1", ref, self(), 1)
Process.monitor(pid)

assert_receive {:results, ^ref, [%InfoSys.Result{text: "2"}]}
assert_receive {:DOWN, _ref, :process, ^pid, :normal}

end

We add Process.monitor(pid) to monitor our newly spawned Wolfram process.
Next, we assert that the process terminates normally with assert_receive.

Let’s run our tests again:

$ mix test
..

Finished in 0.2 seconds (0.1s on load, 0.09s on tests)
5 tests, 0 failures

José says:

At What Level Should We Apply Our Stubs/Mocks?
For the WolframAlpha API case, we chose to create a stub that replaces the :httpc
module. However, you might not be comfortable with skipping the whole HTTP stack
during the test. You’ll have to decide the best place to stub the HTTP layer. No single
strategy works for every case. It depends on your team’s confidence and the code
being tested. For example, if the communication with the endpoint requires passing
headers and handling different responses, you might want to make sure that all of
those parameters are sent correctly.

One possible solution is the Bypassa project. Bypass allows us to create a mock HTTP
server that our code can access during tests without resorting to dynamic mocking
techniques that introduce global changes and complicate the testing stack.

a. https://github.com/PSPDFKit-labs/bypass

report erratum • discuss

Isolating Wolfram • 249

http://media.pragprog.com/titles/phoenix/code/testing_otp/listings/rumbrella/apps/info_sys/test/backends/wolfram_test.change1.exs
https://github.com/PSPDFKit-labs/bypass
http://pragprog.com/titles/phoenix/errata/add
http://forums.pragprog.com/forums/phoenix

They’re green, and they’ll be consistently green because we make sure that
our measurements await the completion of our tests.

We have one more edge case. A query might return zero results from the API.
Let’s add a new test case to complete our coverage:

testing_otp/listings/rumbrella/apps/info_sys/test/backends/wolfram_test.change2.exs
test "no query results reports an empty list" do

ref = make_ref()
{:ok, _} = Wolfram.start_link("none", ref, self(), 1)

assert_receive {:results, ^ref, []}
end

As before, we start a new Wolfram process, but this time we give it a different
query string, causing our HTTPClient.request function to return a fake response
with zero API results. Next, we assert that the backend reported in with an
empty list of results, as expected.

Let’s run the tests:

$ mix test
..

Finished in 0.2 seconds (0.1s on load, 0.09s on tests)
6 tests, 0 failures

Perfect once again. You may have noticed that these tests are more involved
than the typical single-process tests you might be used to. But by using the
specific helpers that ExUnit provides and thinking through possible outcomes
and orderings, you’ll quickly get the hang of writing tests that aren’t too much
more difficult than synchronous ones. When you’re done, you’ll have one
major advantage. Your tests will run concurrently, meaning they’ll finish
much more quickly than their synchronous counterparts.

With our Wolfram backend covered, it’s time to move on to the last part of
our application: the channels. You’ll learn how to use the testing tools from
Phoenix.ChannelTest.

Adding Tests to Channels
We started this chapter by testing our information system, including unit-
testing our supporting code for the Wolfram backend. Now it’s time to test
our channels code. Remember that underneath, channels are also OTP servers.
Phoenix includes the Phoenix.ChannelTest module, which will simplify your testing
experience. With it, you can make several types of common assertions. For
example, you can assert that your application pushes messages to a client,
replies to a message, or sends broadcasts. Let’s look at some code.

Chapter 13. Testing Channels and OTP • 250

report erratum • discuss

http://media.pragprog.com/titles/phoenix/code/testing_otp/listings/rumbrella/apps/info_sys/test/backends/wolfram_test.change2.exs
http://pragprog.com/titles/phoenix/errata/add
http://forums.pragprog.com/forums/phoenix

The rumbrella/apps/rumbl/test/support/channel_case.ex is a file that was generated by
Mix when we generated the rumbl application. You’ve already seen a couple of
similar test cases with model_case and conn_case in Chapter 8, Testing MVC, on
page 129. Let’s take a deeper look at how those files work. Crack it open now:

testing_otp/rumbrella/apps/rumbl/test/support/channel_case.ex
defmodule Rumbl.ChannelCase do

use ExUnit.CaseTemplate

using do
quote do
Import conveniences for testing with channels
use Phoenix.ChannelTest

alias Rumbl.Repo
import Ecto
import Ecto.Changeset
import Ecto.Query, only: [from: 1, from: 2]

The default endpoint for testing
@endpoint Rumbl.Endpoint

end
end

setup tags do
unless tags[:async] do
Ecto.Adapters.SQL.restart_test_transaction(Rumbl.Repo, [])

end

:ok
end

end

Knowing what’s happening here in basic broad strokes is enough. First you
see use ExUnit.CaseTemplate, which establishes this file as a test case. Next is a
using block to start an inline macro, and a quote to specify the template for the
code that we want to inject. The use Phoenix.ChannelTest statement establishes
Phoenix.ChannelTest as the foundation for our test file. Then, we do a few imports
and aliases for convenience, and so on.

The result is a file that prepares your tests for the features you’re most likely
to use in your channel tests. Our application has just one channel: the
VideoChannel, which supports features like real-time annotations and integration
with our InfoSys layer. All of our tests go through a single endpoint.

Before we test the VideoChannel, let’s start where the channel process begins
by testing the UserSocket behavior.

report erratum • discuss

Adding Tests to Channels • 251

http://media.pragprog.com/titles/phoenix/code/testing_otp/rumbrella/apps/rumbl/test/support/channel_case.ex
http://pragprog.com/titles/phoenix/errata/add
http://forums.pragprog.com/forums/phoenix

Authenticating a Test Socket
Most of our channels code relies on an authenticated user. We’ll start our
tests with the socket authentication. Let’s do that now.

Create a rumbrella/apps/rumbl/test/channels/user_socket_test.exs file containing:

testing_otp/listings/rumbrella/apps/rumbl/test/channels/user_socket_test.exs
defmodule Rumbl.Channels.UserSocketTest doLine 1

use Rumbl.ChannelCase, async: true-

alias Rumbl.UserSocket-

-

test "socket authentication with valid token" do5

token = Phoenix.Token.sign(@endpoint, "user socket", "123")-

-

assert {:ok, socket} = connect(UserSocket, %{"token" => token})-

assert socket.assigns.user_id == "123"-

end10

-

test "socket authentication with invalid token" do-

assert :error = connect(UserSocket, %{"token" => "1313"})-

assert :error = connect(UserSocket, %{})-

end15

end-

On line 5, we make sure that a user with a valid token can open a new
socket connection. The test is pretty simple. We generate a valid token, use
the connect helper to simulate a UserSocket connection, and ensure that the
connection succeeds. That’s not enough. We also make sure that the socket’s
user_id is placed into the socket. With the happy path tested, we can move on
to the negative condition.

On line 12, we test the opposite case. We first try to log in with a nonexistent
token. Next, we test a simple edge condition, attempting to connect with no
token at all. Since these tests don’t require side effects such as database calls,
they can run independently and concurrently. In the use line, we set :async to
true, and we can feel a little happier inside. Our tiny test saves milliseconds,
but when we aggregate thousands of tests, we’ll be saving full minutes or
more. These tiny savings can add up to hours every day.

We can see the finish line. It’s finally time to test our video channel.

Communicating with a Test Channel
Let’s see how easy it is to test our VideoChannel features. Our plan is simple.
We’re going to set up some data to share across our tests and then sign the

Chapter 13. Testing Channels and OTP • 252

report erratum • discuss

http://media.pragprog.com/titles/phoenix/code/testing_otp/listings/rumbrella/apps/rumbl/test/channels/user_socket_test.exs
http://pragprog.com/titles/phoenix/errata/add
http://forums.pragprog.com/forums/phoenix

user in within our setup block. Then, we can write some independent tests
against that live connection.

Create a new rumbrella/apps/rumbl/test/channels/video_channel_test.exs file that looks
like this:

testing_otp/listings/rumbrella/apps/rumbl/test/channels/video_channel_test.exs
defmodule Rumbl.Channels.VideoChannelTest doLine 1

use Rumbl.ChannelCase-

import Rumbl.TestHelpers-

-

setup do5

user = insert_user(name: "Rebecca")-

video = insert_video(user, title: "Testing")-

token = Phoenix.Token.sign(@endpoint, "user socket", user.id)-

{:ok, socket} = connect(Rumbl.UserSocket, %{"token" => token})-

10

{:ok, socket: socket, user: user, video: video}-

end-

-

test "join replies with video annotations", %{socket: socket, video: vid} do-

for body <- ~w(one two) do15

vid-

|> build_assoc(:annotations, %{body: body})-

|> Repo.insert!()-

end-

{:ok, reply, socket} = subscribe_and_join(socket, "videos:#{vid.id}", %{})20

-

assert socket.assigns.video_id == vid.id-

assert %{annotations: [%{body: "one"}, %{body: "two"}]} = reply-

end-

end25

On line 5, we add a setup block to prepare our tests with a user and video.
Next, we use connect to start a simulated socket connection. We can use that
connection for each of our tests. We put the user, the video, and the connected
socket into our test context, one that we’ll be able to match for individual tests.

On line 14, we write our first test. Our function head matches the connected
socket and video, so our test can take advantage of the setup work we’ve done.
We first build a couple of annotations. Then we call the subscribe_and_join test
helper to attempt to join the channel responsible for the "video:#{vid.id}" topic.
If the join is successful, this helper function returns {:ok, reply, socket}. An
unsuccessful join fails the match and forces an error for our test.

Next, we make sure we’ve joined the right topic by comparing the video ID
from our connected test socket with the one returned from our test helper.
Then we make sure that the right annotations are in our reply by matching
them against our reply.

report erratum • discuss

Communicating with a Test Channel • 253

http://media.pragprog.com/titles/phoenix/code/testing_otp/listings/rumbrella/apps/rumbl/test/channels/video_channel_test.exs
http://pragprog.com/titles/phoenix/errata/add
http://forums.pragprog.com/forums/phoenix

Let’s try this much:

$ mix test
==> info_sys
......

Finished in 0.2 seconds (0.1s on load, 0.09s on tests)
6 tests, 0 failures

Randomized with seed 231514
==> rumbl
...................................

Finished in 0.3 seconds
35 tests, 0 failures

No problem! Our tests pass, and we know the following:

• Our user can successfully connect.
• Our user successfully joined a topic.
• The topic is the correct one.
• The reply has all of the annotations in the video.

That’s a good start. Now that we’ve tested that we can join the VideoChannel,
we can test a conversation with the client. Let’s test the incoming new_annotation
event. We want to simulate the creation of a new annotation, and we want to
make sure we correctly augment the state in the socket.

Code the new test in rumbrella/apps/rumbl/test/channels/video_channel_test.exs, like this:

testing_otp/listings/rumbrella/apps/rumbl/test/channels/video_channel_test.change1.exs
test "inserting new annotations", %{socket: socket, video: vid} do

{:ok, _, socket} = subscribe_and_join(socket, "videos:#{vid.id}", %{})
ref = push socket, "new_annotation", %{body: "the body", at: 0}
assert_reply ref, :ok, %{}
assert_broadcast "new_annotation", %{}

end

As before, our function head matches the vid and socket we created in setup.
Like last time, we subscribe and join with our helper. This time, we use the
push helper function to push a new event to the channel. We use assert_reply to
make sure we get a :ok response. We could also pass in additional key/value
pairs, but we don’t need to do so in this case, so we pass an empty map.

Chapter 13. Testing Channels and OTP • 254

report erratum • discuss

http://media.pragprog.com/titles/phoenix/code/testing_otp/listings/rumbrella/apps/rumbl/test/channels/video_channel_test.change1.exs
http://pragprog.com/titles/phoenix/errata/add
http://forums.pragprog.com/forums/phoenix

Finally, we use the assert_broadcast function to make sure that our annotation
gets broadcast to any waiting subscribers. The assert_reply and assert_broadcast
functions are provided by Phoenix and built on top of the assert_receive function
that we used in the previous section.

Notice how our test process works as a client of the channel, because we were
able to establish a test connection using subscribe_and_join. In the same way,
the browser is a channel client. That’s why we can assert that we’ve received
some particular reply. The test process also subscribes to the same topic as
its channel, explaining why we can assert that something was broadcast.

Let’s test the integration with our information system. Crack your test open
once again, and add this test to the end:

testing_otp/listings/rumbrella/apps/rumbl/test/channels/video_channel_test.change2.exs
test "new annotations triggers InfoSys", %{socket: socket, video: vid} do

{:ok, _, socket} = subscribe_and_join(socket, "videos:#{vid.id}", %{})
ref = push socket, "new_annotation", %{body: "1 + 1", at: 123}
assert_reply ref, :ok, %{}
assert_broadcast "new_annotation", %{body: "1 + 1", at: 123}
assert_broadcast "new_annotation", %{body: "2", at: 123}

end

As before, our function head picks off the things our test needs. We subscribe
and join, push a new annotation, and check the response. This time, use the
special stubbed "1 + 1" query to return fake answers. We verify that the original
response and the InfoSys annotation are both broadcast successfully.

Let’s try it out:

$ mix test

1) test new annotations triggers information system
(Rumbl.Channels.VideoChannelTest)
test/channels/video_channel_test.exs:40
** (EXIT from #PID<0.373.0>) an exception was raised:
** (Ecto.NoResultsError)
expected at least one result but got none in query:

from u in Rumbl.User,
where: u.username == ^"wolfram"

Sad face. If you recall, our VideoChannel.compute_additional_info function fetches a
user by backend name when we insert an annotation. That Wolfram user
becomes a necessary part of our testing setup. Let’s take a look at that func-
tion again to refresh our memory:

report erratum • discuss

Communicating with a Test Channel • 255

http://media.pragprog.com/titles/phoenix/code/testing_otp/listings/rumbrella/apps/rumbl/test/channels/video_channel_test.change2.exs
http://pragprog.com/titles/phoenix/errata/add
http://forums.pragprog.com/forums/phoenix

testing_otp/rumbrella/apps/rumbl/web/channels/video_channel.ex
defp compute_additional_info(ann, socket) doLine 1

for result <- InfoSys.compute(ann.body, limit: 1, timeout: 10_000) do-

attrs = %{url: result.url, body: result.text, at: ann.at}-

info_changeset =-

Repo.get_by!(Rumbl.User, username: result.backend)5

|> build_assoc(:annotations, video_id: ann.video_id)-

|> Rumbl.Annotation.changeset(attrs)-

-

case Repo.insert(info_changeset) do-

{:ok, info_ann} -> broadcast_annotation(socket, info_ann)10

{:error, _changeset} -> :ignore-

end-

end-

end-

On line 5, we fetch a user based on the result.backend name.

That’s easy enough to fix. You can just insert a new Wolfram user to satisfy
our tests, like this:

testing_otp/listings/rumbrella/apps/rumbl/test/channels/video_channel_test.change3.exs
test "new annotations triggers InfoSys", %{socket: socket, video: vid} do

insert_user(username: "wolfram")
{:ok, _, socket} = subscribe_and_join(socket, "videos:#{vid.id}", %{})
ref = push socket, "new_annotation", %{body: "1 + 1", at: 123}
assert_reply ref, :ok, %{}
assert_broadcast "new_annotation", %{body: "1 + 1", at: 123}
assert_broadcast "new_annotation", %{body: "2", at: 123}

end

With our new Wolfram user safely in the database, let’s retry our test:

$ mix test

==> info_sys
......

Finished in 0.2 seconds (0.1s on load, 0.09s on tests)
6 tests, 0 failures

Randomized with seed 602949
==> rumbl
....................................

Finished in 0.3 seconds
36 tests, 0 failures

And we pass!

As you can see, Phoenix provides plenty of support for testing your channels
code. These testing features are first-class features for our ecosystem. It’s a
good time to see how far we’ve come.

Chapter 13. Testing Channels and OTP • 256

report erratum • discuss

http://media.pragprog.com/titles/phoenix/code/testing_otp/rumbrella/apps/rumbl/web/channels/video_channel.ex
http://media.pragprog.com/titles/phoenix/code/testing_otp/listings/rumbrella/apps/rumbl/test/channels/video_channel_test.change3.exs
http://pragprog.com/titles/phoenix/errata/add
http://forums.pragprog.com/forums/phoenix

Wrapping Up
Amazingly, this is the last chapter wrapup in our book! In this chapter, we
tested the most sophisticated features in our entire application stack. You
probably noticed that the functional nature of Phoenix made testing the
application much easier than you might have expected. Our tests run quickly,
and they’re compact, thanks to the helpers that abstract concepts like
assert_reply, assert_broadcast, and assert_receive. Here’s what we accomplished:

• We tested our OTP layer for our InfoSys OTP application.

• We built a specific backend rather than a dynamic stub or mock to keep
our tests isolated, as our unit and integration tests should be.

• We tested our sockets authentication code.

• We used the Phoenix testing support to test our channels, just as our
end users would, through our endpoints.

By no means is this testing story complete. We didn’t cover user acceptance
testing. Nor did we cover performance testing. We did accomplish quite a bit
in a short time. These kinds of concurrent, interactive applications are noto-
riously difficult to test.

You’re almost done! Turn the page, and we’ll start wrapping up.

report erratum • discuss

Wrapping Up • 257

http://pragprog.com/titles/phoenix/errata/add
http://forums.pragprog.com/forums/phoenix

CHAPTER 14

What’s Next?
We hope you’ve enjoyed reading this book as much as we’ve enjoyed putting
it together for you. The Phoenix story is an incredible one, and the telling is
nowhere near done. If you’ve coded along with us, you should have a better
handle on how the bits of your code fit together to form scalable, reliable
applications. Let’s review what we’ve done so far.

First, we built a toy application so you could learn where to put each piece
of code. You worked with the Phoenix router table. You learned how connec-
tions flowed through plugs to controllers and views. You built a trivial con-
troller and a simple view that rendered a template.

Next, we started working on our rumbl application, one that you used
throughout the rest of the book. We created a controller, and rather than
integrating a full database right away, we built a simple repository stub for
our application so we could focus on the controller. We then created a couple
of actions, and some views and templates to render our results.

With that out of the way, we dove into Ecto to replace our in-memory stub
with a full database-backed repository. Initially, we focused on the initial
model for users. We built a migration and a changeset to help us manage
change. In the next few chapters, we used this model in our controller. We
created a plug to help integrate authentication in our application, and then
we built some more-sophisticated models with relationships. Then, we tested
the work we’d done so far.

Next, we moved into Part II. We built a channel to handle the real-time features
of our application. We learned that the Phoenix messaging allows us to build
applications with state, but without the performance penalties you generally
see with similar frameworks. We used these features to deliver real-time fea-
tures, allowing users to comment on a playing video in real time. We worked

report erratum • discuss

http://pragprog.com/titles/phoenix/errata/add
http://forums.pragprog.com/forums/phoenix

on the server in Elixir and paired it with an ES6 JavaScript client. We used
channels to let users post messages, and then broadcast those messages to
all other interested users. Then, we extended our authentication system,
adopting token-based authentication.

With the working interactive user interface built, we crafted an information
system service. We used OTP—a mechanism for building state into our
applications with concurrency, message passing, and recursive functions.
We also learned to use supervisors to keep our system reliable and take action
when things break.

We then extracted our information system into an umbrella application. Along
the way, we used Observer to get a full picture of what was happening with
our application in real time. The umbrella application let us isolate the
development and testing of individual units. Finally, we tested our channels
and OTP services.

We tried to build a broad and exciting application, but it was impossible to
cover all of the useful projects happening in the language, the Phoenix project,
or the community. Here are some of the things you can explore.

Other Interesting Features
In any successful development ecosystem, a tension always exists between
currency and stability. We’ve tried to walk as closely to currency as we could
without stepping over. Still, exciting things are happening, many of which
weren’t ready to include in this text. These are some exciting developments
you may want to explore.

Supporting Internationalization with Gettext
In version v1.1, Phoenix added integration with Gettext, an internationalization
(i18n) and localization (l10n) system commonly used for writing multilingual
programs. Gettext can automatically extract translations from your source
code, reducing the burden on the developer. Furthermore, since the Gettext
standard is used by so many communities, you can take advantage of a rich
set of tooling for both developers and translators.

When you ran mix phoenix.new rumbl, Phoenix generated a Rumbl.Gettext module at
web/gettext.ex. You can see it in use in the web/views/error_helpers.ex file, used to
translate the error messages coming from Ecto. Since programmers often
organize translations into namespaces called domains, Phoenix places Ecto
messages in the errors domain by default.

Chapter 14. What’s Next? • 260

report erratum • discuss

http://pragprog.com/titles/phoenix/errata/add
http://forums.pragprog.com/forums/phoenix

The translations for different languages are in the priv/gettext directory. There
you’ll find a default template for Ecto messages called errors.pot. A translation
for each language is placed in directories such as priv/gettext/en/LC_MESSAGES.

To learn more about the integration between Phoenix and Gettext, we recom-
mend this fantastic article by Rebecca Skinner entitled “Internationalization
using Gettext in the Phoenix framework.”1 For general information, check out
the Gettext documentation.2

Next, we’ll move from internationalization to intercept and handle, a couple of
functions that make it easier to manage channel messages.

Intercepting on Phoenix Channels
When you broadcast a message, Phoenix sends it to the Publish and Subscribe
(PubSub) system, which then broadcasts it directly to all user sockets. We
call this approach fastlaning because it completely bypasses the channel,
allowing us to encode the message once. Phoenix channels also provide a
feature called intercept, which allows channels to intercept a broadcast message
before it’s sent to the user.

For example, maybe we’d like to let the video’s creator edit all of its annota-
tions. For such a feature, we could append an is_editable field to the annotation
map when we broadcast it so the front end can adapt accordingly. Using
intercept, we could build this feature like this:

intercept ["new_annotation"]

For every new_annotation broadcast,
append an is_editable value for client metadata.
def handle_out("new_annotation", msg, socket) do

%{video: video, user_id: user_id} = socket.assigns
push socket, "new_annotation",

Map.merge(msg, %{is_editable: video.user_id == user_id})
{:noreply, socket}

end

For each event that we specify in intercept, we must define a handle_out clause
to handle the intercepted event. You can also intercept an event and choose
not to push it at all, in case you want to make sure that some clients don’t
receive specific events.

intercept is a nice feature, but you need to be careful. Imagine that you have
10,000 users watching a video at the same time. Instead of using intercept,

1. http://sevenseacat.net/2015/12/20/i18n-in-phoenix-apps.html
2. http://hexdocs.pm/gettext

report erratum • discuss

Other Interesting Features • 261

http://sevenseacat.net/2015/12/20/i18n-in-phoenix-apps.html
http://hexdocs.pm/gettext
http://pragprog.com/titles/phoenix/errata/add
http://forums.pragprog.com/forums/phoenix

you could write a few extra lines of code to include a :video_user_id field in the
message, letting the client decide whether the message is editable. For that
implementation, Phoenix would encode the broadcast once and send the
message to all sockets.

With the intercept implementation, Phoenix would send the message to the first
10,000 channel processes, one for each client. While processing the intercept,
each channel would independently modify the intercepted message and push
it to the socket to be encoded and sent. The cost of intercept is 10,000 extra
messages, one per channel, as well as encoding those messages 9,999
times—again. one per channel—compared to the one-time encoding of the
implementation without intercept. For those reasons, we recommend using
intercept with care.

On the other hand, intercept can be tremendously useful when we’re evolving
code. Imagine that in the future you build a new version of the annotations
feature, with new front-end and backend code, including a different payload
when new annotations are broadcast. However, imagine that you also have
old clients that can take a while to migrate. You could use the new annotation-
broadcast format throughout the new code and use intercept to retrofit the
new_annotation broadcast into the old one. For these cases, intercept would be an
ideal solution. You’d pay a temporary performance price to make your code
easier to build and understand.

For more information on intercept and handle, check the Phoenix documentation
on channels.3 Next, we’ll move on to live code reload.

Understanding Phoenix Live Reload
One of the features we used throughout the entire book was Phoenix Live
Reload, which allows us to see changes propagated to the browser as soon
as we save them to the filesystem. Phoenix Live Reload is composed of:

• A dependency called fs that watches the filesystem for changes

• A channel that receives events from the fs application and converts them
into broadcasts

• A plug that injects the live-reload iframe on every request and serves the
iframe content for web requests

There isn’t much to Live Reload, and that’s exactly why we recommend that
you to study its source code to learn more on how simple it is to extend

3. http://hexdocs.pm/phoenix/Phoenix.Channel.html

Chapter 14. What’s Next? • 262

report erratum • discuss

http://hexdocs.pm/phoenix/Phoenix.Channel.html
http://pragprog.com/titles/phoenix/errata/add
http://forums.pragprog.com/forums/phoenix

Phoenix. If the feature is something you might want to customize, you might
consider reading more or even following the project. You can find the source
code in our Phoenix Live Reload GitHub project.4

While we’re on the subject of customization, let’s see how you might customize
the Phoenix PubSub adapter.

Phoenix PubSub Adapter
By default, Phoenix PubSub uses Distributed Erlang to ensure that broadcasts
work across multiple nodes. This requires all machines to be connected
together according to the Erlang Distribution Protocol. Setting up Distributed
Erlang is straightforward, but it might not be directly supported in some
deployment platforms. For example, Heroku only recently launched a feature
called Private Spaces5 that would support such.

You needn’t worry, though. Phoenix PubSub is extensible—it supports multiple
adapters. One is the Redis adapter,6 maintained by the Phoenix team, which
empowers the PubSub system by using Redis as its message-distribution
mechanism. You can use one of these options or even write your own.

You’ve seen how to customize Phoenix messaging on the server side. Some
interesting things are happening on the client side too.

Phoenix Clients for Other Platforms

In our channels chapter, you saw how we customized the Phoenix transport
to work with our ES6 code. Phoenix channels support the nearly ubiquitous
JavaScript and also a wide range of other clients and platforms, including
C#, Java, Objective-C, and Swift.7

All these clients use WebSockets, but don’t forget that Phoenix channels are
transport agnostic. If you have special requirements, as in embedded software
or working on special platforms, you can always use a custom protocol to
talk to Phoenix. We also expect to see some exotic front-end options, such as
the Elm language, show up soon.

Let’s shift gears from the web layer to the database layer. Ecto has some
interesting features you can use today but that we didn’t have room to cover.

4. http://github.com/phoenixframework/phoenix_live_reload
5. https://blog.heroku.com/archives/2015/9/10/heroku_private_spaces_private_paas_delivered_as_a_service
6. https://github.com/phoenixframework/phoenix_pubsub_redis
7. https://github.com/livehelpnow/CSharpPhoenixClient, https://github.com/eoinsha/JavaPhoenixChannels,

https://github.com/livehelpnow/ObjCPhoenixClient, and https://github.com/davidstump/SwiftPhoenixClient.

report erratum • discuss

Other Interesting Features • 263

http://github.com/phoenixframework/phoenix_live_reload
https://blog.heroku.com/archives/2015/9/10/heroku_private_spaces_private_paas_delivered_as_a_service
https://github.com/phoenixframework/phoenix_pubsub_redis
https://github.com/livehelpnow/CSharpPhoenixClient
https://github.com/eoinsha/JavaPhoenixChannels
https://github.com/livehelpnow/ObjCPhoenixClient
https://github.com/davidstump/SwiftPhoenixClient
http://pragprog.com/titles/phoenix/errata/add
http://forums.pragprog.com/forums/phoenix

Casting Ecto Associations
We’ve covered all the main Ecto concepts in this book, from repositories to
queries and changesets. Although we also discussed associations, we haven’t
shown one feature: the ability to cast or change an association at the same
time that we modify its parent model.

This feature neatly integrates Phoenix and Ecto, allowing developers to build
different form sections for each associated record. For more information, we
recommend the walk-through written by the Plataformatec team called
“Working with Ecto associations and embeds.”8 That paper explores associa-
tions and Ecto’s support for embeds.

We’ve only scratched the surface. New features from this vibrant community
are emerging faster than we can write about them. Let’s talk about features
that are on the roadmap but weren’t available at the time of this printing.

What’s Coming Next
Phoenix was able to extend its reach beyond our wildest dreams in its first
few years, but we’re even more excited about what’s coming next. We’ve
ordered the next sections by delivery, highlighting first the changes we believe
will be released sooner, but we offer no guarantees!

Ecto 2.0
The Ecto team is working on Ecto v2.0, and it brings many and great
improvements to Ecto:

• Support for many_to_many associations will make it easier than ever to
model relationships like a post has many tags and tags have many posts.

• Support for concurrent transactional tests will allow faster tests. When
we wrote our model tests, we had to split our model tests into the ones
with side effects, which relied on the database, and the ones without,
which were database independent. One of the benefits of this split was
that the tests without side effects could run concurrently. Ecto v2.0 will
ship with an ownership-based mechanism that will allow even tests with
side effects to run concurrently, speeding up not only our model tests but
also any controller or integration test we write. Concurrency is important,
and Ecto v2.0 will allow us to leverage it in all of our tests.

8. http://blog.plataformatec.com.br/2015/08/working-with-ecto-associations-and-embeds/

Chapter 14. What’s Next? • 264

report erratum • discuss

http://blog.plataformatec.com.br/2015/08/working-with-ecto-associations-and-embeds/
http://pragprog.com/titles/phoenix/errata/add
http://forums.pragprog.com/forums/phoenix

• Support for insert_all will allow batch inserts. Ecto repositories support
update_all and delete_all to update multiple entries simultaneously but provide
no mechanism for inserting many entries. Ecto v2.0 will rectify that by
introducing insert_all.

Those are the major improvements. Expect many other features to be part of
Ecto v2.0, making developers more productive and your web applications
faster. Next, we’ll talk about one of the most often requested features in
Phoenix, called presence.

Phoenix Presence
Social interactive platforms often require some kind of answer to the question,
Who is using this channel right now? The Phoenix team is working on a feature
called Phoenix Presence that lets developers track which users are connected
to which channel. Such a feature would allow our rumbl application to answer
the question, Who is currently watching a video?

The Phoenix Presence will be built on top of the Phoenix PubSub system,
allowing developers to run clusters of Phoenix applications without needing
to configure extra dependencies like Redis.

Stay tuned!

Phoenix Components
One tool gathering a lot of attention on the front-end side is called GraphQL.9

Although the Phoenix team doesn’t plan to integrate GraphQL directly into
Phoenix, we believe GraphQL contains great ideas that may make building
real-time Phoenix applications simpler than it is today.

One such idea is GraphQL’s specification of templates with the data it needs,
all in the same place. If we bring similar ideas to Phoenix, developers could
provide components, which combine templates with a specification for the
data it requires. With components, Phoenix could automatically cache tem-
plates and provide real-time updates based on the true state of the data,
allowing Phoenix to automatically push data to clients whenever a record is
added, removed, or updated in your application.

This is an area we are actively researching, and we hope to have more news
on the topic in upcoming conferences and blog posts.

9. http://graphql.org

report erratum • discuss

What’s Coming Next • 265

http://graphql.org
http://pragprog.com/titles/phoenix/errata/add
http://forums.pragprog.com/forums/phoenix

Good Luck
That’s a brief taste of what’s happening in the Phoenix ecosystem right now.
With the rapid growth in this space, we hope and fully expect the community
to contribute ideas faster than we can write about them. We also expect that
you, our readers, will use the ideas in this book to change the way the world
thinks about what’s possible.

Good luck.

Chapter 14. What’s Next? • 266

report erratum • discuss

http://pragprog.com/titles/phoenix/errata/add
http://forums.pragprog.com/forums/phoenix

Index

SYMBOLS
!= operator, 116

/ for routes, 22, 43

: syntax, 25

< operator, 116

<%= %> tags, 27, 46

<= operator, 116

= operator, 25

== operator, 116

> operator, 116

>= operator, 116

^ (pin operator), 114, 201

_ (underscore) for arguments,
203

|> (pipe operator), 15

DIGITS
404 error, 141

A
abstractions, see also structs

OTP, 202
simplicity of Phoenix, 6

acceptance testing, 130

accumulation, 221

:action field, changesets, 67

action function, 102

actions
changesets, 67
default, 102
defined, 17
endpoints, 35
frequently used, 43
understanding layers, 17

adapter, Plug.Conn field, 77

add macro, 57

after, 222

agents, 210

aggregate operators, 116

aliasing
router helpers, 94
testing with, 133

alive?, 241

all
associating videos with

categories, 111
associating videos with

users, 101

alphabetical, 112, 152

alter macro, 165

and Boolean operator, 116

annotations, see also informa-
tion system with OTP

binding, 163
channels, 176, 182–186
clickable, 184, 194
container, 176, 183,

185, 190
CSS, 164
duplicate, 196
intercepting channels,

261
new button, 176
persisting, 189–194
rumbl app diagram, 91
seed data, 226
sending and receiving,

182–186
syncing with playback,

193–194
testing channels, 253–

256

AnnotationView, 192

application, 236

apply, 102

apps directory, 231–232, 236

assert, 130, 140

assert_broadcast, 254

assert_receive, 242, 248, 254

assert_reply, 254

asset management, 19

assigns
authentication plug, 78
categories, 113
logging in/out, 82, 84
Plug.Conn field, 76, 78, 82
sockets, 181–182
templates, 27, 51
tokens, 187

assigns Plug.Conn field, 76, 78,
82

assoc, 101, 103

assoc_constraint, 124, 166

associations
casting, 264
categories with videos,

111–114
deleting categories, 125
many_to_many support, 264
persisting annotations,

192
preloading, 120
queries, 119
users with videos, 99–104
using, 100–104
validating foreign keys,

124

async, 225

async_nolink, 225

atoms
pattern matching keys,

26–27
tagging, 139

authenticate_user, 94, 142

authentication, 69–89, see
also security; validations

adding videos, 93
changesets, 70–73
controller pattern match-

ing, 73
deleting session, 88
logging in/out, 74, 82–88
password hashing, 70–

73, 146, 151
plug, 78–88
preparation, 69
repositories, 21
restricting access, 79–81
sockets, 179, 186–189,

252
testing logged-in users,

137, 140
token, 186–189, 252
unit testing plug, 141–

147

autogenerate: true option, 170

avg, 116

await, 225

await_results, 221, 223–224

B
backend

crashes, 243–245
isolating, 245–250
testing, 239–256

backend_pid, 242

batch inserting, 264

.beam files, 29

belongs_to association, 99, 126

benchmarking, 2, 12

binding
annotations, 163
queries, 117–118

Bing, 227

Boolean operators, 116

broadcast!, 185

broadcast_annotation, 225

broadcasting
integrating info system,

224
intercepting channels,

261
persisting annotations,

190

security, 186
testing channels, 254
using, 185

browser pipeline
actions, 35
controller request flow,

38
flow, 33
pipe_through :browser macro,

22
security, 33, 35

Brunch
advantages, 163
installation, 19
separating information

system, 237
skipping, 163
watching videos, 160–164

build (Brunch), 161

build --production (Brunch), 161

build_assoc, 101–104

:build_path, 235

Bypass project, 249

bypass_through, 143

bypasses, testing with, 137,
143

C
C#, 263

caching, speed, 3, 46

call
module plugs, 74
testing logged-in users,

137
testing logging in/out,

145

callbacks, 180, see also func-
tions

cancel_timer, 224

capture_log, 244

CaptureIO, 244

case-insensitive queries, 117,
119

CaseTemplate, 251

cast
adding slugs, 166
Ecto associations, 264
Ecto types, 169
GenServer, 203
integers and, 170
new user form, 60

categories
adding, 107–114
associating with videos,

111–114

checking existence, 110
constraints, 108, 110,

120–127
deleting, 125–127
ordering, 111–112
seed data, 109–111
validating, 120

@categories assigns, 113

category_id, 108

change, 56, 98

changeset constraints, 121,
126

changeset error messages
converting from con-

straint errors, 123
defined, 121
model testing, 151
persisting annotations,

190

changesets
about, 53, 60
adding slugs, 166
advantages, 68, 166
allowing crashes, 126
associating users with

videos, 99
authentication, 70–73
constraints, 121, 126
controllers and, 73, 116
as data, 116
deleting categories, 125
:empty atom, 61, 71
generators, 97
integrating information

system, 226
integration testing, 140
model testing, 150
new user form, 60–68
parameters, 60–61, 71
persisting annotations,

190
schemas, 60
separation of interface

from input, 64, 73,
125, 166

tracking changes with, 67
validating foreign keys,

124
validations, 60, 66–68,

71–73, 166

channel macro, 180

channel_case, 251

channels, 173–198
advantages, 7, 173–175
concurrency, 8, 175
vs. controllers, 181, 183
creating, 175–182

Index • 268

creating ES6 client, 175–
178

defined, 174
diagram, 174
flow, 178
handling disconnects,

195–197
intercepting, 261
isolation, 8, 175
joining, 180, 253
live reloading, 262
naming, 180
OTP, 211, 224–227
parameters, 197
persisting annotations,

189–194
preparing servers for,

177–180
security, 187
sending and receiving

events, 182–186
socket authentication,

186–189
testing, 250–256

child processes
child spec, 205, 213
restart strategies, 207

child, umbrella, 235–237

cleanup, 224, 243

click, annotations, 184, 194

clients
annotating videos chan-

nel, 183
as API, 200
building GenServer, 202–

208
creating ES6 client, 175–

178
handling disconnects,

195–197
joining channels, 180
messaging, 184
persisting annotations,

191

CoAP, 179

code
beautiful, 4–5
for this book, 12, 51
illustrating with pipes, 16
organization, 5
separation with Ecto, 18,

39, 41
sharing with nesting

templates, 49

comeonin package, 69, 72, 84

common services, understand-
ing layers, 17

comparison operators, 116

compile time
init plug, 75
precompiled templates, 3
query normalization, 115

composability
changesets, 166
queries, 112

compute, 216, 221, 224, 243

compute_additional_info, 225, 236,
255

concurrency, see also OTP
advantages of Phoenix, 3
channels, 8, 175
dynamic language pro-

gramming, 10
Java, 11
speed, 3–4
testing, 264

config, file structure, 29–32

:config_path, 235

configuration
Brunch, 161
Ecto, 54–58
Elixir, 29
environments, 30–32
file structure, 29
master file, 30
umbrellas, 231

configure_session, logging in/out,
82, 88

Conn, fields, 75–77, 82

@conn, 51

ConnCase
default testing, 132–134
integration testing, 134–

141

connect, channels, 176, 179

connection
abbreviation, 75
controller request flow,

38
plugs, 75
understanding layers of

functions, 16–18

ConnTest, 132

consistency
benchmarking, 3
dynamic languages, 10
Phoenix, 3, 10

constraint errors, 121–123

constraints
advantages, 122
allowing crashes, 126

categories, 108, 110,
120–127

deleting and, 125–127
terms, 121
testing, 151
validating foreign keys,

124

containers, annotations, 176,
183, 185, 190

controllers
about, 34, 37–39
authentication pattern

matching, 73
building, 43–44
changesets and, 73, 116
vs. channels, 181, 183
creating, 23
default action feature, 102
diagram, 115
file structure, 29, 34–36
generators, 92–99
Hello, World example,

23–27, 34–36
layer, 17, 32
location, 23
model-view-controller

(MVC) pattern, 17, 35
naming conventions, 49
Phoenix Controller API,

23
plug pipelines, 80
rendering templates, 50
sharing functions, 94
side effects, 115
testing and concurrency,

264
testing with Mix, 131–134
tying URL to a function,

22

cookies
channels, 187
Plug.Conn field, 76

count, 116–117

counter for rumbl app, 199–
212

crashes
allowing changeset, 126
backend, 243–245

create
about, 43
associating videos with

users, 102
database errors, 21
Ecto, 39
generators, 97
integration testing, 140
user log in/out, 83

Index • 269

credentials, developer, 216

Cross-Site Request Forgery
(CSRF), 35

cross-site scripting (XSS), 47,
185, 187

CRUD
generators, 92
testing resources, 140

CSRF (Cross-Site Request
Forgery), 35

_csrf_token, 64

CSS
annotations, 164
asset management, 19
Brunch, 160

current_user
authentication plug, 78,

82, 86
managing relationships,

101
socket authentication,

186–189
testing, 137, 142–147

custom types, 169

D
data

adding with repositories,
58

annotations seed data,
226

atom keys vs. string keys,
27

category seed data, 109–
111

creating test data, 134
separating from context,

39, 41, 64, 166
separating from policy,

204
structs, changesets, and

queries as, 116
user seed data, 138
validating unique, 122
validating with change-

sets, 166

data-id, 159

data-player-id, 159

data-seek, 194

databases, see also cate-
gories; changesets; con-
straints; Ecto; migrations;
relationships; queries

authentication errors, 21
creating, 39

hand-coded, 39–41
relational, 107, 121

date/time operators, 116

date_add, 116

datetime_add, 116

:dec, 200, 203

def, 94

defp, 94

delete
about, 43
associating videos with

users, 104
categories, 125–127
logging in/out, 87–88
logging in/out links, 87

delete_all, 126

deleting
cascading deletions, 126
categories, 125–127
logging in/out links, 87
session, 88
users, 126
videos, 104

dependencies
fetching, 70
live reloading, 262

:deps_path, 235

destructuring with pattern
matching, 25

developers, credentials, 216

development (dev) environ-
ment, 18–20, 30

directories
structure, 28–36
umbrellas, 231

disconnects, handling, 195–
197

Distributed Erlang, PubSub
Adapter, 263

distribution, see OTP

div, watching videos, 159

downcase(uname), 119

DRY (Don’t Repeat Yourself)
principle, testing, 129,
140, 150

dummy_checkpw(), 84

dump, Ecto types, 169

duplication
annotations, 196
controlling with tagging,

138–141

dynamic languages, advan-
tages of Phoenix, 10

E
each, integration testing, 136

ECMAScript 6 (ES6)
advantages, 176
Brunch, 161
creating client, 175–178

Ecto, 53–68, see also associa-
tions; changesets; genera-
tors; migrations; relation-
ships; queries

about, 53
batch inserting, 264
code separation, 18, 39,

41
concurrent testing, 264
configuring, 54–58
creating database, 39
default repository, 54
embeds, 264
future developments, 264
internationalization, 260
PostgreSQL installation,

19
starting from OTP, 57
types, 169–171
versions, 264

edit, 43, 104

.eex files, 24

Elixir, see also helper func-
tions; Mix; pattern match-
ing; processes; protocols;
structs

as dynamic language, 10
concurrency, 3
configuration, 29
functions in, 15–18
installation, 19
macros, 4, 10, 81
Phoenix and, 2
reliability, 4
testing without Phoenix,

130
versions, 19, 235

embeds, 264

:empty atom, 61, 71

encryption, secret_key_base, 77

@endpoint module attribute,
133

endpoints
about, 31
actions, 35
controller request flow,

38
Hello, World example, 31
layer, 17
module plug example, 74
multiple, 32

Index • 270

as plugs, 31
routers and, 34
testing, 133

environments
changing, 31, 57
configuration, 30–32
installing development,

18–20
migrations, 57
stubbing HTTP client,

246
supported, 30

Erlang
advantages of Phoenix for

developers, 11
concurrency, 3
installation, 18
Observer, 229–231
PubSub Adapter, 263
reliability, 8
speed, 3
versions, 18

Erlang Distribution Protocol,
263

Erlang virtual machine
Phoenix, 2
scaling, 35

error_tag helper, 67

errors
constraints, 121, 123,

126
logging in/out, 84
model testing, 149
pattern matching, 50
showing validation, 66,

71–73

errors_on, 149

ErrorView, pattern matching, 50

ES6, see ECMAScript 6 (ES6)

esc, 185

escaping
interpolated values, 119
user input, 185

.ex files, 22

exit, 241

explorer, WolframAlpha API,
247

Express Cluster, 2

.exs files, 29

ExUnit
about, 130
CaseTemplate, 251
log capturing, 244
tagging, 138–141
testing helpers, 241–243

F
failover, 204–207

fastlaning, 261

fetch, 218, 242, 244

fetch_flash, 143

fetch_xml, 218

fetchable fields, 76

field macro, 55

field operator, 116

fields
categories, 108
fetchable, 76
Plug.Conn, 75–77
videos, 92

file structure, Phoenix, 28–36

first_name function, 45

flash, 33, 143

flush, 219, 222

for user <- @users, 46

foreign keys
categories migration, 109
defined, 98
deleting categories, 125
:user_id, 99
validating with con-

straints, 124

foreign_key_constraint, 125

form_for, 63–64, 85

forms
building, 60–68
form tags, 87
log in/out, 85, 87
new video, 96
video categories, 113

fragment, 116

fragments, query, 119

from macro, 111–112, 114,
117

function plugs, 74, 80, see
also plugs

functional languages
paradigm, 9
speed, 3

functions, see also helper
functions; pipelines; plugs

endpoints and, 31
grouping with controllers,

17
grouping with pipelines,

17, 65
vs. libraries, 135
models as layers of, 57
pattern matching, 25–27
pipelines as, 15

plugs as, 28, 74
proxy, 214–216
sharing, 94
templates as, 49
tying URLs, 22
understanding layers,

15–18
understanding pipelines,

27–36
web applications as, 27

G
garbage collection, 3

generators
model, 189
using, 91–99

GenServer
agents, 210
building, 202–208

get
agents, 210
unit testing, 144

getCurrentTime, 163

get_and_update, 210

get_change, 166

Gettext, 70, 260

Gin, 2

GraphQL, 265

H
halt, 79, 81

halted, Plug.Conn field, 76

handle, 261

handle_call, 203

handle_cast, 203

handle_in, 182, 185, 190

handle_info, 182, 205

handle_out, 182, 261

has_many, 100, 126

hashing passwords, 70–73,
146, 151

headers
customizing by user, 86–

88
Plug.Conn field, 76

Hello, World app
building, 20–27
file structure, 29–36

helper functions
about, 46–48, 51
documentation, 63
new user form template,

63
validation errors, 67

Index • 271

Heroku, 263

Hex, 11, 19

home page, simple, 40

host, Plug.Conn field, 76

HTML, see also templates
generators, 92
helper functions, 46, 63
safety, 47, 50
test helpers, 133, 136

html_response, 133, 136

HTTP
Bypass project, 249
connections, 16–17
delete method, 87
endpoints, 32
information system re-

quests, 218
resources macro, 62
response string, 77
stubbing to isolate back-

end, 246–250

:http_client, 246

:httpc, 218, 246

I
id

channels, 179
primary keys, 168
videos, 159, 168, 170

IEx
running apps in, 21
starting Elixir without

server, 41

iframe, 163

ilike, 116

import statements, ECMAScript
6 (ES6), 161

import_config, 217

in operator, 116

inbound parameters, 25

:inc, 200, 203

inclusion (in) operator, 116

index
associating videos with

users, 103
controller setup, 43
restricting access, 79–81

:infinity timeout, 221, 223

[info] blocks, 21

information system with OTP
crashes, 243–245
designing, 212–227
extracting, 231–237

queries, 214–224
testing, 239–256

inheritance, 6

init
module plugs, 74
supervisors, 205, 213

inotify, 20

insert_all, 264

insert_user, 135, 138, 141

insert_video, 135, 141

installation
asset management tools,

19
Brunch, 19
development environ-

ment, 18–20
Elixir, 19
Erlang, 18
Hex, 19
Node.js, 19
Observer, 230
Phoenix, 20
PostgreSQL, 19

integers, cast and, 170

integration testing, 134–141
concurrent testing, 264
defined, 130
repository tests, 151

Interactive Elixir (IEx), see IEx

interactivity, advantage of
Phoenix, 7

intercept, 261

internationalization, 70, 260

“Internationalization using
Gettext in the Phoenix
framework”, 261

interpolated values, escaping,
119

is_editable, 261

is_nil, 116

isolation
channels, 8, 175
queries, 115
side effects, 148–153
testing, 129, 133, 137–

138, 141, 147, 245–
250

J
Java

advantages of Phoenix for
developers, 11

concurrency, 11
Phoenix client, 263

JavaScript
asset management, 19
ECMAScript 6 (ES6), 161
watching videos, 160–164

join, 180, 191, 194, 197, 253

joining
channels, 180, 191, 194,

197, 253
querying associations,

120

JSON
generators, 92
Hello, World example, 33
persisting annotations,

190
testing responses, 133

json_response, 133

K
keys

developer credentials,
216

Ecto schema, 55
foreign, 98–99, 109, 124–

125
maps, 41
pattern matching, 26–27
primary, 98, 168, 170
secret_key_base, 77
validating with con-

straints, 124

keywords syntax, queries,
117

kill, 224

L
languages

dynamic, 10
functional, 3, 9
internationalization, 70,

260

last_seen_id, 196–197

latency benchmarking, 3

layers, understanding func-
tion, 15–18

:layout option, default, 51

layouts
adding My Videos link,

158
default, 50
logging in/out, 86–88

lib
Ecto types, 169
file structure, 29–30, 169
Mix project structure, 30

libraries, vs. functions, 135

Index • 272

lightweight processes,
see processes

like, 116

link function
as helper function, 46
logging in/out, 86–88
rumbl view setup, 46
watching videos, 160

Linux and live reloading, 20

listen, 201

lists, tagging, 139

live reloading, 20, 24, 262

load, Ecto types, 169

lock (Mix), 30

:lockfile, 235

log capturing, 244

logger, 70, 178

logging
crashes, 244
log capturing, 244
logger app, 70, 178
master configuration file,

31

logging in/out
links, 86–88
tagging, 138–141
testing logged-in users,

137, 140
testing logged-out users,

135
unit testing, 144–147
users, 74, 82–88

:login_as, 138–141

login_by_username_and_pass, 84,
146

login_conn, 145

M
macros

advantages, 4
as dynamic features, 10
expansion, 81
ExUnit, 130
queries, 118
syntax, 4

maintainability, dynamic lan-
guage programming, 10

make_ref(), 201

many_to_many associations, 264

maps, structs and, 41

Martini, 2

matching, see pattern match-
ing

max, 116

max_age, 188

max_restarts, 208

max_seconds, 208

message containers, annota-
tions, 176, 183, 185, 190

messages
browser pipeline, 33
client-side, 184
history, 192
intercepting, 261
state and OTP, 201, 203
timing out, 222–224

method, Plug.Conn field, 76

:method option, form tags, 87

Migration API, 57

migrations
adding slugs, 165–171
categories, 107–109
changing environments,

57
generators, 92, 95, 98
persisting annotations,

189
relationships, 98
rolling back, 98
supervisor and informa-

tion system, 234
up/down, 98, 165
using, 56–58

min, 116

minification, 160, 162

Mix
advantages for Erlang

developers, 11
Phoenix installation, 20
project structure, 30
running Phoenix web

server, 21
tasks in, 20
testing with, 131–134

MIX_ENV environment variable,
31

mocks
disadvantages, 245
vs. stubs, 241, 246

model-view-controller (MVC)
pattern, 17, 35

ModelCase, 148–153

models
categories, 107–109
controller diagram, 115
defined, 57
Ecto, 55
file structure, 29, 34–36
generating, 189

Hello, World example,
34–36

model-view-controller
(MVC) pattern, 17, 35

separation of interface
from input, 73

side effects, 115
testing, 148–153, 264

module plugs, 74, see al-
so plugs

modules
__MODULE__ directive, 102,

213
module plugs, 74
views as, 49

monitors, 219–222, 241, 249

mroth showdown, 2

msgContainer, 183

MVC (model-view-controller)
pattern, 17, 35

N
:name option

agents, 210
supervisors, 213

names_and_ids, 112

naming
channels, 180
constraints, 123
conventions, 49, 56, 93,

180
migrations, 56
processes, 211
singular form, 93

nesting templates, 49

new
about, 43
associating videos with

users, 102
creating projects with Mix

task, 21

new_annotation, 184–185, 190,
197, 254

nilify_all, 126

--no-brunch option, 163

no_assoc_constraint, 126

Node.js, 19, 257, see al-
so Brunch

:noreply, 182

NoResultsError, 141

normalization, 115

not Boolean operator, 116

:not_found, 141

nothing, 126

Index • 273

npm, 19

null check functions, 116

O
Objective-C, 263

Observer, 229–231

onIframeReady, 163

onReady, 176

onYouTubeIframeAPIReady, 163

onYouTubeReady, 163

on_delete, 126

one, 114

:one_for_all strategy, 208

:one_for_one strategy, 205, 208

:only option, 62

opts, 205

or Boolean operator, 116

:order_by option, 111–112

ordering, categories, 111–112

organization, code, 5

OTP, 199–227
about, 19, 199
abstractions, 202
agents, 210
building GenServer for,

202–208
channels, 211, 224–227
counter for rumbl app,

199–212
failover, 204–207
information system with,

212–227, 231–237,
239–256

messages, 182
monitoring processes,

219–222
naming conventions, 180
restarting with, 204–207,

212
retrying, 208
scaling, 35
starting key services, 57
supervision, 204–212
testing, 239–256
testing channels, 250–

256
timing out, 221–224

P
page_controller_test, 131–141

Param protocol, 167

parameters
changesets, 60–61, 71
channels, 197
:empty atom, 61, 71

Hello, World example,
24–27

pattern matching, 25–27
Plug.Conn field, 76
scrubbing empty, 97
separating elements, 48
slugging URLs, 167
socket authentication,

188
syntax, 25

params
Plug.Conn field, 76
separating elements, 48

password_hash, 72, 151

passwords, see also authenti-
cation

changesets, 60, 71–73
checking with variable

timing, 84
Ecto setup, 54
hashing, 70–73, 146, 151
logging in/out, 84
model testing, 150
new user form, 60
plain-text, 58
production, 30
Repo, 21, 54

path_info, Plug.Conn field, 76

pattern matching
authenticating users, 73
controller request flow,

38
extracting video IDs from

YouTube URLs, 159,
167

functions, 25–27
Hello, World example,

25–27
keys, 26–27
regular expressions, 159
router speed, 5
templates, 50
testing with, 25

payloads, 185

performance, see also speed
dynamic language pro-

gramming, 10
interactivity, 7
intercepting channels,

261
queries, 115
scaling, 7
testing, 130

performance testing, 130

permalinks, 169–171

:permanent restart strategy, 207

persistence, see Ecto

Phoenix
advantages, 1–4
clients for other plat-

forms, 263
file structure, 28–36
future developments,

264–265
installation, 20
installation of develop-

ment environment, 18–
20

running server with Mix,
21

Phoenix Components, 265

Phoenix Controller API, 23

phoenix function, 16

Phoenix Live Reload, 262

Phoenix Presence, 265

Phoenix PubSub
Adapter, 263
Presence, 265

pid, 200

pin operator (^), 114, 201

:ping, 182

pipe operator, 15

pipe segments, 15

pipe_through, 22, 95

pipelines
abstractions, 6
controller plugs, 80
defined, 15
as functions, 15
functions, grouping, 17,

65
generating resources, 93,

95
layer, 17
organizing code, 5
as plugs, 28, 33
queries, 117–118
router flow, 33
security, 33, 35
testing, 133
understanding, 27–36
understanding layers,

15–18
viewing code, 16

pipes, see pipelines

Plataformatec, 264

Play, 2

Player
channels, 176
watching videos, 162–164

Plug library, see also plugs
about, 17, 28

Index • 274

advantages for Erlang
developers, 11

common services, 17
speed, 2

%Plug.Conn{} struct, 85

plugs, see also Plug
authentication, 78–88
conn and, 75
controller pipelines, 80
endpoints as, 31
function, 74, 80
as functions, 28, 74
live reloading, 262
module, 74
pipelines as, 28, 33
queries, 113
structs and, 28
structure, 74–77
unit testing, 141–147

postButton, 183

PostgreSQL
adapter, 54
Ecto setup, 54
installation, 19
versions, 19

:postgrex, 70

preload, 101, 120

primary keys, 98, 168, 170

@primary_key module attribute,
170

private, Plug.Conn field, 77

Private Spaces, 263

processes
advantages, 7
file structure, 29
managing state with,

199–202
monitoring, 219–222
registering, 211
reliability, 8
spawning, 201, 214–216
supervision, 204–212
testing timeouts, 241
timing out, 221–224

production (prod) environment,
30

Programming Elixir, 19

programming styles and
Phoenix, 9–12

project, 235

protocols
adding slugs, 167–169
Erlang Distribution Proto-

col, 263

queryable, 112
separation of interface

from input, 64

proxy functions, 214–216

PubSub Adapter, 263

PubSub Presence, 265

push, annotations, 184

put_change, 166

put_current_user, 188

put_flash, 94

put_pass_hash, 71, 73

Q
queries

about, 111
associating videos with

categories, 111–114
associating videos with

users, 101, 103
associations, 119
bindings, 117–118
case-insensitive, 117,

119
categories, adding, 107–

114
categories, constraining,

120–127
as composable, 112
as data, 116
fragments, 119
information system, 214–

224
macros, 118
monitors, 219–222
normalization, 115
operators, 116
plugs, 113
security, 115
syntax, 117
testing, 152
timing out, 221–224
understanding, 114–120
WolframAlpha explorer,

247, 250

queryable, 112, 118

quote, 251

R
race conditions

constraints, 120
testing timeouts, 241

Rackspace, 2

Rails, 2, 10

receive, 184, 204, 223–224

recursion, 199, 201

redirect, 94

Redis adapter, 263

refute, 241

refute_received, 243

registration_changeset, testing,
151

regular expressions, 159

relationships
building, 99–104
categories, 107–114
migrations, 98
persisting annotations,

189
queries, 119

reliability
Elixir, 4
Erlang, 8
interactivity, 7
Phoenix, 4, 7–8, 12

reloading, live, 20, 24, 262

render, 48–51

renderAnnotation, 184, 194

renderAtTime, 194

render_many, 192

render_one, 192

repeatability, test, 129

Repo
adding data, 58
associating videos with

users, 100–104
configuring, 54–58
enabling/disabling super-

visor, 42, 54
preload, 101
security, 114
setup, 42
testing code with side ef-

fects, 151–153
username and password,

21, 54

repositories, see also Ecto
about, 41
adding data, 58
advantages, 59
associating videos with

users, 100–104
authentication, 21
controller diagram, 115
default Ecto, 54
hand-coded, 39–41
security, 114
testing, 151–153

req_headers, Plug.Conn field, 76

request, 246–247

resources
creating, 64

Index • 275

generating, 91–99
resources REST macro, 62,

83

resources macro, 62, 83

resp_body, Plug.Conn field, 77

resp_cookies, Plug.Conn field, 77

resp_headers, Plug.Conn field, 77

REST
generated controllers, 97
logging in/out routes, 83
resources macro, 62, 83
routes, 93

:rest_for_one strategy, 208

restarting with OTP, 204–
207, 212

Result struct, 216

:results, 219

retrying, OTP, 208

rolling back migrations, 98

route table, 33

routers
aliasing router helpers,

94
controller request flow,

38
endpoints and, 34
flow, 33
function plug example,

74
generating resources, 94–

95
Hello, World example, 33
layer, 17
logging in/out, 83
new user form, 61
speed, 3, 5
tying URL to a function,

22

routes
/ for, 22, 43
generating resources, 93
Hello, World example,

21–27
location, 22
logging in/out, 83
new user form, 61
pattern matching, 25–27
resources macro, 62, 83
REST, 93
rumbl controller, 43–44
testing, 133
tying URL to a function,

22
viewing all available, 62

routes task, 62

rumbl app
adding data, 58
associating videos with

users, 99–104
authentication, 69–89
categories, adding, 107–

114
categories, constraining,

120–127
channels, creating, 175–

182
channels, sending and

receiving events, 182–
186

configuring Ecto, 54–58
counter, 199–212
creating, 39
diagram, 91
errors and pattern

matching, 50
features, 37
generating resources, 91–

99
handling disconnects,

195–197
information system with

OTP, 212–227
information system with

OTP, extracting, 231–
237

introspecting with Observ-
er, 229–231

logging in/out, 74, 82–88
making an umbrella

child, 235–237
new user form, 60–68
persisting annotations,

189–194
setup, 37–51
showing single user, 48–

51
socket authentication,

186–189
syncing annotations with

playback, 193–194
testing controllers, 131–

147
timing out, 221–224
User module set up, 40–43
watching videos, 157–171

rumbrella, 232–235

runtime, call plug, 75

S
:safe, 47, 50

safe_to_string, 50

scaling
channels, 175

Erlang virtual machine
and OTP, 35

interactivity, 7

scheduleMessages, 193

schema macro, 55

schemas
changesets, 60
defined, 57
defining User, 55–58
deleting categories, 126
extending with types,

169–171
generated migrations, 99
migrating, 56–58
updates, 61

scheme, Plug.Conn field, 76

scrub_params, 97

search operators, 116, see
also queries

secret.exs file, 30, 216

secret_key_base, 77

secrets.exs file, 236

security, see also authentica-
tion

browser pipeline, 33, 35
channels, 187
Cross-Site Request

Forgery (CSRF), 35
cross-site scripting (XSS),

47, 185, 187
HTML helpers, 47, 50
password hashing, 70–

73, 146, 151
plain-text passwords, 58
queries, 115
raw message payloads,

186
repositories, 114
session fixation attacks,

82
spoofing, 64
timing attacks, 84

seed data
annotations, 226
categories, 109–111
testing users, 138

seekTo, 163

segments, see pipelines

segments, pipe, 15

select, 113–114, 118

send, 201

send_after, 223–224

send_resp, 145

send_results, 218

Index • 276

servers, see also channels
annotations, 185
as implementation, 200
building GenServer for,

202–208
diagram, 173
handling disconnects,

195–197
[info] blocks, 21
preparing for channels,

177–180
restarting, 195
running through Mix, 21

session, deleting, 88

session directory, 85

session fixation attacks, 82

session_path, 86

SessionController, 83–88

setup, 130, 133, 138, 144, 149

show
associating videos with

users, 103
controller setup, 43
restricting access, 79–81
showing single user, 48–

51

side effects
<%= %> tags, 46
concurrent testing, 264
controllers vs. models

and views, 115
defined, 149
isolating while testing,

148–153

:simple_one_for_one strategy,
208, 213, 216

Sinatra, 2

Skinner, Rebecca, 261

sleep, 242

slugify, 166

slugs, 164–171

socket, 177–178

socket mount point, 178

sockets
annotations, 186
authentication, 179, 186–

189, 252
creating channels, 176–

182
messaging, 184
state, 181, 189

spawn_query, 216, 221

spawning processes, 201,
214–216

speed, see also performance
concurrency, 3–4
other frameworks, 2
pattern matching, 5
Phoenix, 2, 10, 12
templates, 3, 46
testing, 129, 146, 150

spoofing, 64

SQL, querying directly, 119,
see also PostgreSQL

start, 234

start_link
GenServer, 201, 203, 210
information system, 214–

216, 218, 225
isolating backend, 248
proxy, 214–216
supervisors, 213
Task, 218

state, see also OTP
channels, 174, 181, 189,

195
disconnects, 195
GenServer for OTP, 202–

208
information system, 213
managing with processes,

199–202
Observer, 230
Plug.Conn field, 77
recursion, 199, 201
restarting, 207
sockets, 181, 189

state Plug.Conn field, 77

static assets, 19, 35, 162

static directory, Brunch, 160

static requests, filtering, 35

status, Plug.Conn field, 77

--stdin option (Brunch), 162

stop, 210

strings
cast and, 170
connecting to rendered

templates, 50
pattern matching keys,

26–27
printing when specifying

URL, 21–27
scrubbing empty, 97
slugifying, 166
topics as, 180

struct_url, 168

structs
about, 41
controller diagram, 116
as data, 116

defined, 16, 40, 57
vs. models, 57
plugs and, 28
struct_url, 168
syntax, 41

stubs
isolating backend, 246–

250
layers, 249
vs. mocks, 241, 246
simulating crashes, 243
testing OTP, 239–256

subscribe, 253

subscribe_and_join, 255

subtopic, 180

sum, 116

--sup flag, 232

supervise, 213

supervisor tree
flag, 232
reliability, 8
separating information

system, 233–236
viewing in Observer, 231

supervisors
enabling/disabling super-

visor, 42, 54
Observer, 231
OTP, 204–212
reliability, 8
restart strategies, 207,

212
supervision strategies,

205, 208–213
supervisor tree, 8, 204,

231–236
without links, 225

:sweet_xml, 216, 218, 234, 236

Swift, 263

T
@tag :capture_log, 244

tag module attribute , 139

tagging, 138–141

tail recursion, 201

tasks
async and await, 225
creating Hello, World app,

20
defined, 218
information system, 218,

225
Mix and, 20

templates
<%= %> tags, 46

Index • 277

assigns, 27, 51
categories, 113
creating, 24
defined, 45
directories, 35
.eex extension, 24
file structure, 29, 34–36
form helpers, 63
as functions, 49
generators, 92, 97
GraphQL components,

265
Hello, World example,

24–27, 34–36
layouts, 50
logging in/out, 85–88
naming conventions, 49
nesting, 49
new user form, 62–64
pattern matching, 50
rendering, 50
rumbl setup, 40, 45–51
showing single user, 48–

51
speed, 3, 46
testing, 147
testing channels, 251
views and, 24, 45
watching videos, 158

:temporary restart strategy,
207, 212

test
about, 130
file structure, 29–30
Mix project structure, 30
switching environments,

30

TestHelpers, 133–135

testing, 129–153, see also in-
tegration testing; unit test-
ing

acceptance, 130
channels, 250–256
concurrent testing, 264
controlling duplication

with tagging, 138–141
creating test data, 134
default, 132–134
documentation, 131
Elixir without Phoenix,

130
environment, 30
file structure, 29
helpers, 133–135, 143,

241–243
isolating backend, 245–

250

isolation, 129, 133–134,
137–138, 141, 147

logged-in users, 137, 140
logged-out users, 135
with Mix, 131–134
models, 148–153, 264
negative tests, 140, 145
OTP, 239–256
pattern matching, 25
performance, 130
principles, 129, 134, 140
queries, 152
repositories, 151–153
speed, 129, 146, 150
tagging, 138–141
templates, 147
terms, 130
timeouts, 241–243
transactional, 149, 264
views, 147

Thomas, Dave, 19

throughput benchmarking, 3

:tick, 206

timeouts, 221–224, 241–243

timestamps, migrations, 56,
59

timing attacks, 84

to_param, 167

token authentication, 186–
189, 252

topics
about, 175
defined, 174
identifiers, 177
IDs, 180
as strings, 180
testing channels, 253

transactional tests, 149, 264

:transient restart strategy, 207

transpiling and ES6, 176

type, Ecto types, 169

type operator, 116

types
custom, 169
Ecto, 169–171

U
u variable, 117

--umbrella flag, 232

umbrellas, 229–238

underscores for arguments,
203

unique constraints
categories, 108, 110

testing, 151
validating data, 122

unique references, 201

unique_constraint, 123

unit testing
defined, 130
isolation, 141
models, 148–153
plugs, 141–147
repositories, 151–153

update
about, 43
associating videos with

users, 104
generators, 97

updates
associating videos with

users, 104
generators, 97
schemas, 61
validations, 61

URI struct, 168

URLs
generating with protocols,

167
information system re-

sults, 216
permalinks, 169–171
printing string from spe-

cific, 21–27
slugs, 164–171
tying functions to, 22
videos, 159, 163–171
YouTube, 159, 163

use Application, 234

user message system, brows-
er pipeline, 33

User Module, see also authen-
tication; users

adding data, 58
authentication, 69–89
Ecto setup, 55
logging in/out, 74
new user form, 60–68
persisting annotations,

189
setup, 40–43
validation errors, 66–68,

71–73

:user_id, 99, 102–104

:user_token, 187

user_videos, 103

UserController
building, 43–44
logging in/out, 82–88
new user form, 62, 73

Index • 278

request flow, 38–39
restricting access, 79–81
showing single user, 48–

51

usernames, see also authenti-
cation

changesets, 60, 71
Ecto setup, 54
logging in/out, 84
new user form, 60
Repo, 21, 54

users, see also authentica-
tion; User Module

associating with videos,
99–104

creating test data, 135
deleting, 126
persisting annotations,

192
restricting access to

videos, 103
seeding, 138
tagging, 138–141
testing logged-in, 137,

140
testing logged-out, 135

UserSocket, see also sockets
creating channels, 178–

182
socket authentication,

188
testing channels, 251

using, 149, 251

V
v(n), 124

:val, 200

validate_length, 60, 71

validations, see also authenti-
cation

categories, 120
changesets, 60, 66–68,

71–73, 166
data with changesets,

166
data, unique, 122
foreign keys, 124
new user form, 60, 66–

68, 71–73
separation from change

policy, 73
showing errors, 66, 71–

73
updates, 61

values
fetching previous, 124
passing negative, 124

vendor directory, 161

verify, 188

versions
Ecto, 264
Elixir, 19, 235
Erlang, 18
migrations, 56
Node.js, 19
PostgreSQL, 19

vidChannel
creating channel, 176–

182
sending and receiving,

183–186

video app, see rumbl app

VideoChannel
annotations, 185
creating module, 180–

182
handling disconnects,

196–197
integrating info system,

224–227
persisting annotations,

189–194
testing, 251–256

VideoController
adding My Videos link,

158
generating resources, 93–

99
testing, 131–147

videos, see also rumbl app
associating with cate-

gories, 111–114
associating with users,

99–104
binding annotations, 163
categories, adding, 107–

114
categories, constraining,

120–127
channels, creating, 175–

182
channels, sending and

receiving events, 182–
186

channels, socket authen-
tication, 186–189

channels, testing, 251–
256

creating, 96
creating test data, 135
deleting, 104
fields, 92
generating resources, 91–

99

information system with
OTP, 212–227

JavaScript, 160–164
persisting annotations,

189–194
restricting access by us-

er, 103
rumbl app diagram, 91
slugs, 164–171
syncing annotations with

playback, 193–194
testing creation, 139
URLs, 159, 163–171
watching, 157–171

:view, helper functions, 47

@view_module, 51

@view_template, 51

views
controller diagram, 115
creating, 24
defined, 45
file structure, 29, 34–36
Hello, World example,

24–27, 34–36
helper functions, 46
layouts, 50
logging in/out, 85
model-view-controller

(MVC) pattern, 17, 35
as modules, 49
naming conventions, 49
persisting annotations,

190
rendering, 50
rumbl setup, 45–51
side effects, 115
speed, 46
templates and, 24, 45
testing, 147

W
watch, 160

watch (Brunch), 161

watch_path, 160, 167

WatchController, 158–171

watchers, 162–163

web
cautions, 47
file structure, 29, 34, 169

WebSockets, 263

WhatsApp, 3

where, 118

window.onYouTubeIframeAPIReady,
163

:wolfram application key, 234

Index • 279

WolframAlpha
about, 212, 216
API explorer, 247
building information sys-

tem, 216–224
crashes, 243–245
isolating, 245–250
proxy, 215
separating information

system, 233–235

testing, 239–256
testing channels, 255–

256

worker, 205

“Working with Ecto associa-
tions and embeds”, 264

X
XML

parsers, 216, 218, 234,
236

payload example, 247

xpath, 218

XSS, see cross-site scripting

Y
YouTube

URLs, 159, 163, 167
watching videos in rumbl,

157–171

Index • 280

Put the “Fun” in Functional
Elixir puts the “fun” back into functional programming, on top of the robust, battle-tested,
industrial-strength environment of Erlang.

Programming Elixir 1.2
You want to explore functional programming, but are
put off by the academic feel (tell me about monads just
one more time). You know you need concurrent appli-
cations, but also know these are almost impossible to
get right. Meet Elixir, a functional, concurrent language
built on the rock-solid Erlang VM. Elixir’s pragmatic
syntax and built-in support for metaprogramming will
make you productive and keep you interested for the
long haul. This book is the introduction to Elixir for
experienced programmers.

Maybe you need something that’s closer to Ruby, but
with a battle-proven environment that’s unrivaled for
massive scalability, concurrency, distribution, and
fault tolerance. Maybe the time is right for the Next
Big Thing. Maybe it’s Elixir.

This edition of the book has been updated to cover
Elixir 1.2, including the new with expression, the exrm
release manager, and the removal of deprecated types.

Dave Thomas
(354 pages) ISBN: 9781680501667. $38
https://pragprog.com/book/elixir12

Metaprogramming Elixir
Write code that writes code with Elixir macros. Macros
make metaprogramming possible and define the lan-
guage itself. In this book, you’ll learn how to use
macros to extend the language with fast, maintainable
code and share functionality in ways you never thought
possible. You’ll discover how to extend Elixir with your
own first-class features, optimize performance, and
create domain-specific languages.

Chris McCord
(128 pages) ISBN: 9781680500417. $17
https://pragprog.com/book/cmelixir

https://pragprog.com/book/elixir12
https://pragprog.com/book/cmelixir

Exercises and Teams
From exercises to make you a better programmer to techniques for creating better teams,
we’ve got you covered.

Exercises for Programmers
When you write software, you need to be at the top of
your game. Great programmers practice to keep their
skills sharp. Get sharp and stay sharp with more than
fifty practice exercises rooted in real-world scenarios.
If you’re a new programmer, these challenges will help
you learn what you need to break into the field, and if
you’re a seasoned pro, you can use these exercises to
learn that hot new language for your next gig.

Brian P. Hogan
(118 pages) ISBN: 9781680501223. $24
https://pragprog.com/book/bhwb

Creating Great Teams
People are happiest and most productive if they can
choose what they work on and who they work with.
Self-selecting teams give people that choice. Build well-
designed and efficient teams to get the most out of your
organization, with step-by-step instructions on how to
set up teams quickly and efficiently. You’ll create a
process that works for you, whether you need to form
teams from scratch, improve the design of existing
teams, or are on the verge of a big team re-shuffle.

Sandy Mamoli and David Mole
(102 pages) ISBN: 9781680501285. $17
https://pragprog.com/book/mmteams

https://pragprog.com/book/bhwb
https://pragprog.com/book/mmteams

The Joy of Mazes and Math
Rediscover the joy and fascinating weirdness of mazes and pure mathematics.

Mazes for Programmers
A book on mazes? Seriously?

Yes!

Not because you spend your day creating mazes, or
because you particularly like solving mazes.

But because it’s fun. Remember when programming
used to be fun? This book takes you back to those days
when you were starting to program, and you wanted
to make your code do things, draw things, and solve
puzzles. It’s fun because it lets you explore and grow
your code, and reminds you how it feels to just think.

Sometimes it feels like you live your life in a maze of
twisty little passages, all alike. Now you can code your
way out.

Jamis Buck
(286 pages) ISBN: 9781680500554. $38
https://pragprog.com/book/jbmaze

Good Math
Mathematics is beautiful—and it can be fun and excit-
ing as well as practical. Good Math is your guide to
some of the most intriguing topics from two thousand
years of mathematics: from Egyptian fractions to Tur-
ing machines; from the real meaning of numbers to
proof trees, group symmetry, and mechanical compu-
tation. If you’ve ever wondered what lay beyond the
proofs you struggled to complete in high school geom-
etry, or what limits the capabilities of the computer on
your desk, this is the book for you.

Mark C. Chu-Carroll
(282 pages) ISBN: 9781937785338. $34
https://pragprog.com/book/mcmath

https://pragprog.com/book/jbmaze
https://pragprog.com/book/mcmath

Past and Present
To see where we’re going, remember how we got here, and learn how to take a healthier
approach to programming.

Fire in the Valley
In the 1970s, while their contemporaries were
protesting the computer as a tool of dehumanization
and oppression, a motley collection of college dropouts,
hippies, and electronics fanatics were engaged in
something much more subversive. Obsessed with the
idea of getting computer power into their own hands,
they launched from their garages a hobbyist movement
that grew into an industry, and ultimately a social and
technological revolution. What they did was invent the
personal computer: not just a new device, but a water-
shed in the relationship between man and machine.
This is their story.

Michael Swaine and Paul Freiberger
(424 pages) ISBN: 9781937785765. $34
https://pragprog.com/book/fsfire

The Healthy Programmer
To keep doing what you love, you need to maintain
your own systems, not just the ones you write code
for. Regular exercise and proper nutrition help you
learn, remember, concentrate, and be creative—skills
critical to doing your job well. Learn how to change
your work habits, master exercises that make working
at a computer more comfortable, and develop a plan
to keep fit, healthy, and sharp for years to come.

This book is intended only as an informative guide for
those wishing to know more about health issues. In no
way is this book intended to replace, countermand, or
conflict with the advice given to you by your own
healthcare provider including Physician, Nurse Practi-
tioner, Physician Assistant, Registered Dietician, and
other licensed professionals.

Joe Kutner
(254 pages) ISBN: 9781937785314. $36
https://pragprog.com/book/jkthp

https://pragprog.com/book/fsfire
https://pragprog.com/book/jkthp

Long Live the Command Line!
Use tmux and Vim for incredible mouse-free productivity.

tmux
Your mouse is slowing you down. The time you spend
context switching between your editor and your con-
soles eats away at your productivity. Take control of
your environment with tmux, a terminal multiplexer
that you can tailor to your workflow. Learn how to
customize, script, and leverage tmux’s unique abilities
and keep your fingers on your keyboard’s home row.

Brian P. Hogan
(88 pages) ISBN: 9781934356968. $16.25
https://pragprog.com/book/bhtmux

Practical Vim, Second Edition
Vim is a fast and efficient text editor that will make
you a faster and more efficient developer. It’s available
on almost every OS, and if you master the techniques
in this book, you’ll never need another text editor. In
more than 120 Vim tips, you’ll quickly learn the editor’s
core functionality and tackle your trickiest editing and
writing tasks. This beloved bestseller has been revised
and updated to Vim 7.4 and includes three brand-new
tips and five fully revised tips.

Drew Neil
(354 pages) ISBN: 9781680501278. $29
https://pragprog.com/book/dnvim2

https://pragprog.com/book/bhtmux
https://pragprog.com/book/dnvim2

The Pragmatic Bookshelf
The Pragmatic Bookshelf features books written by developers for developers. The titles
continue the well-known Pragmatic Programmer style and continue to garner awards and
rave reviews. As development gets more and more difficult, the Pragmatic Programmers will
be there with more titles and products to help you stay on top of your game.

Visit Us Online
This Book’s Home Page
https://pragprog.com/book/phoenix
Source code from this book, errata, and other resources. Come give us feedback, too!

Register for Updates
https://pragprog.com/updates
Be notified when updates and new books become available.

Join the Community
https://pragprog.com/community
Read our weblogs, join our online discussions, participate in our mailing list, interact with
our wiki, and benefit from the experience of other Pragmatic Programmers.

New and Noteworthy
https://pragprog.com/news
Check out the latest pragmatic developments, new titles and other offerings.

Buy the Book
If you liked this eBook, perhaps you’d like to have a paper copy of the book. It’s available
for purchase at our store: https://pragprog.com/book/phoenix

Contact Us
https://pragprog.com/catalogOnline Orders:

support@pragprog.comCustomer Service:

translations@pragprog.comInternational Rights:

academic@pragprog.comAcademic Use:

http://write-for-us.pragprog.comWrite for Us:

+1 800-699-7764Or Call:

https://pragprog.com/book/phoenix
https://pragprog.com/updates
https://pragprog.com/community
https://pragprog.com/news
https://pragprog.com/book/phoenix
https://pragprog.com/catalog
support@pragprog.com
translations@pragprog.com
academic@pragprog.com
http://write-for-us.pragprog.com

	Cover
	Table of Contents
	Acknowledgments
	José Valim
	Bruce Tate
	Chris McCord

	1. Introducing Phoenix
	Fast
	Concurrent
	Beautiful Code
	Interactive
	Reliable
	Is This Book for You?
	Online Resources

	Part I—Building with Functional MVC
	2. The Lay of the Land
	Simple Functions
	Installing Your Development Environment
	Creating a Throwaway Project
	Building a Feature
	Going Deeper: The Request Pipeline
	Wrapping Up

	3. Controllers, Views, and Templates
	The Controller
	Creating Some Users
	Building a Controller
	Coding Views
	Using Helpers
	Showing a User
	Wrapping Up

	4. Ecto and Changesets
	Understanding Ecto
	Defining the User Schema and Migration
	Using the Repository to Add Data
	Building Forms
	Creating Resources
	Wrapping Up

	5. Authenticating Users
	Preparing for Authentication
	Managing Registration Changesets
	Creating Users
	The Anatomy of a Plug
	Writing an Authentication Plug
	Implementing Login and Logout
	Presenting User Account Links
	Wrapping Up

	6. Generators and Relationships
	Using Generators
	Building Relationships
	Managing Related Data
	Wrapping Up

	7. Ecto Queries and Constraints
	Adding Categories
	Diving Deeper into Ecto Queries
	Constraints
	Wrapping Up

	8. Testing MVC
	Understanding ExUnit
	Using Mix to Run Phoenix Tests
	Integration Tests
	Unit-Testing Plugs
	Testing Views and Templates
	Splitting Side Effects in Model Tests
	Wrapping Up

	Part II—Writing Interactive and Maintainable Applications
	9. Watching Videos
	Watching Videos
	Adding JavaScript
	Creating Slugs
	Wrapping Up

	10. Using Channels
	The Channel
	Phoenix Clients with ES6
	Preparing Our Server for the Channel
	Creating the Channel
	Sending and Receiving Events
	Socket Authentication
	Persisting Annotations
	Handling Disconnects
	Wrapping Up

	11. OTP
	Managing State with Processes
	Building GenServers for OTP
	Supervision Strategies
	Designing an Information System with OTP
	Building the Wolfram Info System
	Wrapping Up

	12. Observer and Umbrellas
	Introspecting with Observer
	Using Umbrellas
	Wrapping Up

	13. Testing Channels and OTP
	Testing the Information System
	Isolating Wolfram
	Adding Tests to Channels
	Authenticating a Test Socket
	Communicating with a Test Channel
	Wrapping Up

	14. What's Next?
	Other Interesting Features
	What’s Coming Next
	Good Luck

	Index
	– SYMBOLS –
	– DIGITS –
	– A –
	– B –
	– C –
	– D –
	– E –
	– F –
	– G –
	– H –
	– I –
	– J –
	– K –
	– L –
	– M –
	– N –
	– O –
	– P –
	– Q –
	– R –
	– S –
	– T –
	– U –
	– V –
	– W –
	– X –
	– Y –

