

Early Praise for Programming Phoenix 1.4

Programming Phoenix offers a very engaging hands-on approach without compro-
mising depth in content, making it a balanced source of knowledge for beginners
and hackers alike. The authors’ credibility comes not only from the fact that they
are creators of Elixir and Phoenix, but for their experience in the field designing,
building, and scaling big apps—and that completely shows in this book.

➤ João Augusto B.C. Alves
Software Consultant, Plataformatec

Programming Phoenix will provide you with the most in-depth, cutting-edge insights
into how to harness the full power of the Phoenix framework. If you want to be
the best, learn from the best.

➤ Tetiana Dushenkivska
Creator of ElixirCards, Clever Bunny

I write Elixir for a living, and Programming Phoenix was exactly what I needed. It
filled in the sticky details, like how to tie authentication into web applications and
channels. It also showed me how to layer services with OTP. The experience of
Chris and José makes all of the difference in the world.

➤ Eric Meadows-Jönsson
Elixir Core Team

Phoenix gives you all the tools needed to handle very complex problems in a very
elegant way. Programming Phoenix gives you all the tips you need to solve such
problems. It’s a must have.

➤ Marcos Ramos
Senior Elixir Developer, Plataformatec

Even if you have no current plans to write a Phoenix web app, you need to read
Programming Phoenix. The insights this book gives into Elixir, Erlang, and OTP—
their strengths, and the corresponding thoughtful design patterns that went into
the Phoenix framework—are invaluable to any developer in the Elixir/Erlang
ecosystem.

➤ Mike Binns
Senior Software Engineer, Dockyard

Programming Phoenix ≥ 1.4
Productive |> Reliable |> Fast

Chris McCord
Bruce Tate
José Valim

The Pragmatic Bookshelf
Raleigh, North Carolina

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

Our Pragmatic books, screencasts, and audio books can help you and your team create
better software and have more fun. Visit us at https://pragprog.com.

The team that produced this book includes:

Publisher: Andy Hunt
VP of Operations: Janet Furlow
Managing Editor: Susan Conant
Development Editor: Jacquelyn Carter
Copy Editor: Jasmine Kwityn
Indexing: Potomac Indexing, LLC
Layout: Gilson Graphics

For sales, volume licensing, and support, please contact support@pragprog.com.

For international rights, please contact rights@pragprog.com.

Copyright © 2019 The Pragmatic Programmers, LLC.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system,
or transmitted, in any form, or by any means, electronic, mechanical, photocopying, recording,
or otherwise, without the prior consent of the publisher.

ISBN-13: 978-1-68050-226-8
Encoded using the finest acid-free high-entropy binary digits.
Book version: P1.0—October 2019

https://pragprog.com
support@pragprog.com
rights@pragprog.com

Contents

Acknowledgments ix

Preface xiii

1. Introducing Phoenix 1
Productive 2
Concurrent 4
Beautiful Code 8
Interactive 10
Reliable 13

Part I — Building with Functional MVC

2. The Lay of the Land 17
Simple Functions 17
Installing Your Development Environment 20
Creating a Throwaway Project 22
Building a Feature 23
Going Deeper: The Request Pipeline 30
Wrapping Up 38

3. Controllers 41
Understanding Controllers 41
Building a Controller 49
Coding Views 50
Using Helpers 52
Showing a User 54
Wrapping Up 58

4. Ecto and Changesets 59
Understanding Ecto 59

Defining the User Schema and Migration 60
Using the Repository to Add Data 63
Building Forms 66
Creating Resources 70
Wrapping Up 75

5. Authenticating Users 77
Preparing for Authentication 77
Managing Registration Changesets 79
Creating Users 82
The Anatomy of a Plug 85
Writing an Authentication Plug 88
Implementing Login and Logout 93
Presenting User Account Links 97
Wrapping Up 100

6. Generators and Relationships 101
Using Generators 101
Building Relationships 110
Managing Related Data 113
In-context Relationships 117
Wrapping Up 122

7. Ecto Queries and Constraints 123
Seeding and Associating Categories 123
Diving Deeper into Ecto Queries 130
Constraints 136
Wrapping Up 143

8. Testing MVC 145
Understanding ExUnit 146
Testing Contexts 150
Using Ecto Sandbox for Test Isolation and Concurrency 157
Integration Tests 158
Unit-Testing Plugs 167
Testing Views and Templates 172
Wrapping Up 174

Contents • vi

Part II — Writing Interactive and Maintainable Applications

9. Watching Videos 177
Watching Videos 177
Adding JavaScript 181
Creating Slugs 186
Wrapping Up 192

10. Using Channels 193
The Channel 194
Phoenix Clients with ES6 195
Preparing Our Server for the Channel 198
Creating the Channel 200
Sending and Receiving Events 202
Socket Authentication 207
Persisting Annotations 210
Handling Disconnects 217
Tracking Presence on a Channel 220
Wrapping Up 226

11. Observer and Umbrellas 229
Introspecting Applications with Observer 230
Using Umbrellas 233
Extracting Rumbl and RumblWeb 236
Wrapping Up 241

12. OTP 243
Managing State with Processes 243
Building GenServers for OTP 247
Designing an Information System with OTP 257
Building the Wolfram Info System 265
Integrating OTP Services with Channels 274
Wrapping Up 277

13. Testing Channels and OTP 279
Testing the Information System 280
Isolating Wolfram 285
Adding Tests to Channels 289
Authenticating a Test Socket 290
Communicating with a Test Channel 291
Wrapping Up 296

Contents • vii

14. What’s Next? 297
Other Interesting Features 298
Phoenix LiveView 302
Phoenix PubSub 2.0 313
Phoenix and Telemetry Integration 314
Good Luck! 316

Index 317

Contents • viii

Acknowledgments
Most of this book is written in a collective voice, but acknowledgments are
deep and personal things. We’ll speak a little here as a team before expressing
some individual gratitude. You’ll notice that of the three of us Chris has the
most to say, which is fitting since he is the creator of Phoenix and has been
invested in it from the very beginning.

The endeavor of writing a book touches each author in their own way. Writing
a beta book means this process often happens in the public eye so each
author’s job is made simultaneously more difficult. Criticisms are levied
against an unfinished product, but adjustments can be made in real time
resulting in a better book and surprising interactions with readers. Thanks
to all of our beta readers who waited with patience as Chris released two
versions of Phoenix and LiveView.

As a team, we’d like to thank this production crew. It’s been the finest any of
us have ever worked with. Potomac Indexing, LLC, handled our indexing,
Jasmine Kwityn did our copyedit, and Janet Furlow managed the endless
production details.

These contributions were invaluable, but we’d also like to single one out for
deeper praise. Jackie Carter is more than an editor. After working with us
year after year, the relationship has transcended mere editorial advice. She’s
a friend and mentor. This book was trying but your voice shaped it reliably
and skillfully.

Our reviewers worked hard to provide excellent feedback, even though the
code serving as the foundation for this book was constantly shifting. Of course,
we had our formal technical reviews. We’d like to thank Lance Halvorsen,
Doug Yun, Marcos Ramos, Elaine Watanabe, Luke Imhoff, Mike Binns, and
João Britto for providing excellent feedback.

This book spent a long time in beta; perhaps too long. You will ultimately
benefit from that with a better book. The advice and care our beta readers
took to fill in errors and make suggestions was fantastic. Finally, thanks to

report erratum • discuss

http://pragprog.com/titles/phoenix14/errata/add
http://forums.pragprog.com/forums/phoenix14

all of the folks who have supported us with reviews, kind words, and mean-
ingful conversations.

José Valim
Elixir has been a labor of love and a project that has exceeded my wildest
expectations. Elixir wouldn’t exist without the support of my partners at
Plataformatec. They were the first to believe Elixir could make a dent in the
world, and their investments in the community have helped Elixir grow with
strength and grace.

Getting this far wouldn’t have been possible without the unconditional sup-
port of my wife, Małgosia. Most of Elixir was written on a small desk placed
in the corner of our bedroom. Of all the corners in the world, I can’t imagine
a better one.

Bruce Tate
A completed book fills a hole on many bookshelves but leaves other holes
behind. Thanks to Maggie, my joy and inspiration, for sharing me with a
smile. Introducing a new language to the world is demanding. Sharing our
home with this metaphorical guest (which led to more than a few corporal
guests) is going above and beyond. What can I say besides thank you? Julia
and Kayla, it’s been a joy raising you and knowing that you are growing from
the two wide-eyed does watching the world change to two tigresses doing the
changing. Get ready, world!

Thanks to José and Chris for taking this journey with me; to Francesco for
your friendship and companionship; to Brett Wise who has become an
extension of me for the great things we want to do in the world. Thanks to
JEG2 and Chris K. for being contrarian voices in a world of sameness.

To my mentees, especially Doc, Grace, and Ram (Richard to those who might
not know him well), thanks for believing in me and working to be the best
people you can. You inspire me.

Chris McCord
First, I would like to thank José Valim for creating Elixir, for his contributions
to Phoenix, and for building a community that has been such a pleasure to
be a part of. It goes without saying that Phoenix wouldn’t be possible without
his work on Elixir, but it goes deeper than that. He has my deepest gratitude
for setting in motion my dream career, sharing his wisdom on running large
open source projects, and being a helpful friend in between hectic releases.

Acknowledgments • x

report erratum • discuss

http://pragprog.com/titles/phoenix14/errata/add
http://forums.pragprog.com/forums/phoenix14

He has shared with the world a true gift, and I can’t wait to see where his
creativity leads.

Thanks also go to Bruce Tate for contributing his superb writing skills,
helping to form the abstractions behind Phoenix, and encouraging me to seek
out José’s help with the project. His craftsmanship in this book really shows,
and it’s been a pleasure having him on the team.

I extend my warmest thanks to Brian Cardarella and DockYard, for making
early bets on Phoenix, supporting the project’s development to get to where
we are today, and giving me the chance to work with some of the finest folks
in the industry.

Behind many of the open source projects or books you reference day to day
is an understanding spouse who bears late nights and all too much laptop
time. My deepest love and appreciation goes out to my lovely wife, Jaclyn, for
all her support and encouragement throughout the years along the path to
Phoenix and writing this book. A life with you is a truly happy one.

And finally, to the community for this great project, I extend both heartfelt
appreciation and bright hope that we might continue to build something
special, together.

report erratum • discuss

Chris McCord • xi

http://pragprog.com/titles/phoenix14/errata/add
http://forums.pragprog.com/forums/phoenix14

Preface
It doesn’t seem possible, but it’s been three years since we released the first
edition of this book. Indeed, the Phoenix team has been busy. The additions
of Channel Presence and LiveView are changing the way all programmers
think about web development. The underlying directories have changed,
having a rippling impact on all of the code in this book. Ecto has also produced
a major release.

Through it all, one thing remains constant. Phoenix is still positioned as one
of the most productive and scalable web development platforms available
anywhere. From cryptocurrencies to media companies to commerce, Elixir
developers are using Phoenix to push the boundaries of what’s possible. In
this book, the same folks who built Elixir and Phoenix will show you how you
can do the same.

Is This Book for You?
If you’ve followed Phoenix for any period of time, you already know that this
book is the definitive resource for Phoenix programming. If you’re using
Phoenix or are seriously considering doing professional Elixir development,
you’re going to want this book. It’s packed with insights from the team that
created it. Find just one tip in these pages, and the book will pay for itself
many times over. This section seeks to answer a different question, though.
Beyond folks who’ve already decided to make an investment in Phoenix, who
should buy this book?

Programmers Embracing the Functional Paradigm
Every twenty years or so, new programming paradigms emerge. The industry
is currently in the midst of a shift from object-oriented programming to
functional programming. If you’ve noticed this trend, you know that a half
dozen or so functional languages are competing for mindshare. The best way
to understand a programming language is to go beyond basic online tutorials
to see how to approach nontrivial programs.

report erratum • discuss

http://pragprog.com/titles/phoenix14/errata/add
http://forums.pragprog.com/forums/phoenix14

With Programming Phoenix, we don’t shy away from difficult problems such
as customizing authentication, designing for scale, or creating interactive web
pages. As you explore the language, you’ll learn how the pieces fit together
to solve difficult problems and how functional programming helps us do it
elegantly. When you’re done, you might not choose Phoenix, but you’ll at least
understand the critical pieces that make it popular and if those pieces are
likely to work for you.

Developers Seeking to Modernize
Developers from many web frameworks written in many languages can find
something here. Phoenix measures response times in microseconds, and it
has been shown to handle millions of concurrent WebSocket connections on
a single machine without sacrificing the productivity we’ve come to appreciate.
If you’re pushing your favorite framework to be more scalable or more inter-
active, you’re not alone. You’re going to find Phoenix powerful and interesting.
And if you are trying to build single page apps or provide a more consistent
or interactive experience for your user, you’ll find Elixir one of the best avail-
able languages for solving that problem, period.

Dynamic Programmers Looking for a Mature Environment
Like the authors of this book, you may be a fan of dynamic languages like
JavaScript, Python, and Ruby. You may have used them in production or
even contributed to those ecosystems. Many developers like us are looking
for similar flexibility but with a more robust runtime experience. We may love
the programming experience in those languages, but we often find ourselves
worn out by the many compromises we have to make for performance, con-
currency, and maintainability. Phoenix resonates with us because many of
the creators of this ecosystem built it to solve these problems.

Elixir is a modern dynamic language built on the three-decades-old, battle-
tested Erlang runtime. Elixir macros bring a lot of the flexibility that Ruby,
Python, and JavaScript developers came to love, but those dynamic features
are quarantined to compile time. With Elixir, during runtime, you have a
consistent system with great type support that’s generally unseen in other
dynamic languages.

Mix these features with the concurrency power, and you’ll see why Phoenix
provides such excellent performance for everything on the web, and beyond.

Preface • xiv

report erratum • discuss

http://pragprog.com/titles/phoenix14/errata/add
http://forums.pragprog.com/forums/phoenix14

Java Developers Seeking More
When Java emerged twenty years ago, it had everything a frustrated C++
community was missing. It was object-oriented, secure, ready for the Internet,
and simple, especially when compared to other C++ alternatives at the time.
As the Java community flourished and consolidated, the tools and support
came. Just about everyone supported Java, and that ubiquity led to a language
dominance that we’d never seen before.

As Java has aged, it’s lost some of that luster. As the committees that shaped
Java compromised, Java lost some of the edge and leadership that the small
leadership team provided in early versions. Backward compatibility means
that the language evolves slowly as new solutions emerge. You might find
that all of that early ubiquity has led to an experience that’s more fragmented
or bloated than you like it. You may enjoy the extra punch of emerging lan-
guages like Elixir. The Java concurrency story does place plenty of burden
on the developer, leaving libraries that may or may not be safe for production
systems to cope with increasingly parallel designs.

If you’re a Java developer looking for where to go next, or a JVM-language
developer looking for a better concurrency story, Phoenix would mean leaving
the JVM behind. Maybe that’s a good thing. You’ll find a unified, integrated
story in Phoenix with sound abstractions on top. The choice is up to you.

Erlang Developers Doing Integrated Web Development
As time goes on, the number of Erlang developers who also gain proficiency in
Elixir is growing. The toolchain for Phoenix is spectacular, and many of the tools
that exist for Erlang can work in this ecosystem as well. If you’re an Erlang
developer, you may want to take advantage of Mix’s excellent scripting for the
development, build, and testing workflow. You may like the package manage-
ment in Hex, or the neat composition of concerns in the Plug library. You may
want to use macros to extend the language for your business, or test with greater
leverage. You’ll have new programming features like protocols or structs.

If you do decide to embrace Elixir, that doesn’t mean you need to leave Erlang
behind. You’ll still be able to use the Erlang libraries you enjoy today, including
the Erlang process model and full OTP integration. You’ll be able to access your
OTP ‘GenServer‘s directly from the Elixir environment, and directly call libraries
without the need for extra complex syntax. If these terms aren’t familiar to
you, don’t worry. We’ll explore each of them over the course of the book.

report erratum • discuss

Is This Book for You? • xv

http://pragprog.com/titles/phoenix14/errata/add
http://forums.pragprog.com/forums/phoenix14

Heat Seekers
As web demands grow, an increasing number of developers require infrastruc-
ture that will serve more users reliably. If you need raw power supported by
a rich language, we have a solution and the numbers to back it up. You’ll
have to work for it, but you’ll get much better speed and reliability when
you’re done. We’ve run a single chat room on one box supporting two million
users. That means that each new message had to go out two million times.
Phoenix performs well out of the box and our numbers improve as more cores
are added. If you need speed, we have the tonic for what ails you.

Others
Certainly, this book isn’t for everyone. We do think that if you’re in one of
these groups, you’ll find something you like here. We’re equally confident that
folks that we haven’t described will pick up this book and find something
valuable. If you’re one of those types, let us know your story.

About this Book
This book is about building web applications with the primary web framework
for the Elixir language, Phoenix. In its pages we will walk you through building
a web application, piece by piece.

In Part I, we will show you how to build a traditional model-view-controller
(MVC) application. We’ll guide you through the Phoenix landscape, showing
you in intimate detail how things are stitched together. We will show you how
to build a controller and how to organize your business logic into modules
called contexts. Along the way, we’ll build our own authentication and build
database-backed code with a database library called Ecto.

In Part II, we will explore channels and presence, Phoenix features that allow
a highly interactive experience. Then we’ll learn to tie those interactive features
into Elixir’s extensive OTP, a framework for building concurrent, self-healing
projects. We will focus on techniques for productively writing code that will
be easier to maintain in the future.

To illustrate both parts of this book fully, we will build a web application
together. The application will let users take videos and annotate them with
real-time events.

Preface • xvi

report erratum • discuss

http://pragprog.com/titles/phoenix14/errata/add
http://forums.pragprog.com/forums/phoenix14

Online Resources
The apps and examples shown in this book can be found at the Pragmatic
Programmers website for this book.1 You’ll also find the errata-submission
form, where you can report problems with the text or make suggestions for
future versions.

When you’re ready, turn the page and we’ll get started. Let’s build something
together!

1. http://pragprog.com/book/phoenix14/

report erratum • discuss

Online Resources • xvii

http://pragprog.com/book/phoenix14/
http://pragprog.com/titles/phoenix14/errata/add
http://forums.pragprog.com/forums/phoenix14

CHAPTER 1

Introducing Phoenix
The web has gone real time. The days of clicking links to load full pages are
over. Websites are as interactive as desktop applications these days, if not
more so. Servers manipulate widgets on a page with small data exchanges.
Pages ship form data up piece by piece as it becomes available instead of
waiting for one massive update. Today’s web developers need a framework
designed from the ground up around a real-time architecture, and Phoenix
is that framework.

Ironically, most of the individual pieces from Phoenix can also be found in
other places. You’ll find metaprogramming capabilities that remind you of
Lisp and domain-specific languages (DSLs) that remind you at times of Ruby.
Our method of composing services with a series of functional transformations
is reminiscent of Clojure’s Ring. We achieved high throughput and reliability
by climbing onto the shoulders of Erlang. Similarly, some of the groundbreak-
ing features like channels and reactive-friendly APIs combine the best features
of some of the best JavaScript frameworks but Phoenix makes it work at
scale. This precise cocktail of features, where each feature multiplies the
impact of the next, can’t be found elsewhere and that’s what makes Phoenix
stand out. Phoenix just feels right.

After using (and writing about) frameworks spanning a half dozen languages
across a couple of decades, we think the precise bundle of goodness that we’ll
share is powerful enough for the most serious problems you throw at it,
beautiful enough to be maintainable for years to come, and—most impor-
tant—fun to code. Give us a couple of pages and you’ll find that the framework
represents a great philosophy, one that leverages the reliability and grace of
Elixir. You’ll have a front-row seat to understand how we made the decisions
that define Phoenix and how best to use them to your advantage.

report erratum • discuss

http://pragprog.com/titles/phoenix14/errata/add
http://forums.pragprog.com/forums/phoenix14

Simply put, Phoenix is about productive, concurrent, beautiful, interactive,
and reliable applications. Let’s break each of these claims down.

Productive
Phoenix makes programmers productive. Right out of the box, Phoenix gives
you everything you’d expect from a web framework:

• A base architecture for your application
• A database access and management library for connecting to databases
• A routing layer for connecting web requests to your code
• A templating language and helpers for you to write HTML
• Flexible and performant JSON encoding and decoding for external APIs
• Internationalization strategies for taking your application to the world
• All the breadth and power behind Erlang and Elixir so you can grow

Like all web frameworks, Phoenix provides a good cross section of features
as functions so users don’t have to code their own. However, features are not
enough.

Productivity vs. Maintainability
All framework designers must walk a tightrope. Frameworks must anticipate
change by allowing customization, but presenting customization options
introduces complexity. Each new feature simply makes the high wire act more
treacherous. Let’s call one side of the line productivity and the other maintain-
ability.

When developers have to learn too much too soon, they must slow down to
absorb information. One way to keep developers productive early on is hiding
details. When a framework designer leans too far this way, developers must
pay a price because at some point, the framework will hide information their
users need to solve a critical problem. Unusual customizations lead to hours
of tedious searching for some mystery incantation to make things work.

Use such a framework long enough and you’ll inevitably make changes that
cause your application to drift away from the designers’ intentions, setting
yourself up for an eternal upstream battle against the framework. Whether
it’s a conflicting upgrade or an optimization that isn’t compatible with your
change doesn’t matter. The framework developer’s desire for short-term pro-
ductivity has cost users long-term maintainability. You can find plenty of
stale issues inside the issue trackers for both private and commercial web
frameworks, telling this tale with stark clarity.

Chapter 1. Introducing Phoenix • 2

report erratum • discuss

http://pragprog.com/titles/phoenix14/errata/add
http://forums.pragprog.com/forums/phoenix14

Sometimes, understanding this limitation, framework designers lean too far
in the opposite direction. Too many options in too many places can also have
rippling consequences. Options presented in the wrong way force users to
make early uninformed decisions. Crippling detail work slowly starves users
of the time they need at the beginning of a project, when productivity is the
most important.

Phoenix takes a slightly different approach as it walks this tightrope. Phoenix
is an opinionated framework that favors convention over configuration. But
rather than hiding complexity, it layers complexity, providing details piece by
piece.

Phoenix lets users see exactly what’s happening by providing an explicit list
of every bit of code a specific route will invoke, one after another. Phoenix
hides details in layers by breaking its functionality into small functions and
modules and naming them well so they can tell the story. Every application
using Phoenix has an endpoint that looks like this:

defmodule MyApp.Endpoint do
use Phoenix.Endpoint, otp_app: :my_app

plug Plug.Static, ...
plug Plug.RequestId
plug Plug.Telemetry, ...
plug Plug.Parsers, ...
plug Plug.MethodOverride
plug Plug.Head
plug Plug.Session, ...
plug MyApp.Router

end

We are going to dive deep into the mechanics later in the book. For now, what
matters is that we have an overview of what our web application provides at
a high level.

Rather than forcing users to configure the server with thousands of tiny
decisions, Phoenix provides a default outline. If all you want to do is peek
under the hood, you can open up a file. You don’t need to modify this base
outline at all, but when it’s time to make that obscure change, you can edit
this outline to your heart’s content.

So often, productivity means avoiding blocks, and that means developers
must have adequate information. Couple the layered architecture with Elixir’s
fantastic tools for documentation and you have the tools to be quite productive.
For example, you can learn more about any of the components above by

report erratum • discuss

Productive • 3

http://pragprog.com/titles/phoenix14/errata/add
http://forums.pragprog.com/forums/phoenix14

simply typing h Plug.Session in your Elixir terminal, or by accessing the docu-
mentation online1 or directly in your favorite editor.

At the end of the day, Phoenix wants to optimize both productivity and maintain-
ability. After all, maintainability means productivity over time.

Functional Programming 101: Immutability
One of the secrets for Phoenix’s long-term productivity comes from a trait
shared across many functional programming languages: immutability.

Imagine the following code:

list = [1, 2, 3]
do_something(list)
list

In most programming languages, you cannot assert with a 100% guarantee
the list will still be [1, 2, 3] after calling do_something. That’s because do_something
can change the list in place. In Elixir, that’s simply not possible. Our data
structures are immutable, so instead of changing the list, we can only build
new lists. Therefore our code is written as a series of small functions that
receive everything they have to work with as input and return everything they
have changed.

This plays a very important role in code readability and maintainability. You
will spend much less time and brain cycles trying to figure out what object
changed what or what is the current state of a certain component.

While this is a small example, you will find working with Elixir and functional
programming to be full of small changes and improvements that make your
code easier to understand, both for your teammates and your future self.

Concurrent
Over the last decade, we have been hearing more and more about concurrency.
If you have never used a language with first-class concurrency support before,
you may be wondering what all the fuss is about. In this section, we will
cover why concurrency matters in the context of web applications and how
Phoenix developers leverage it to build fast, performant applications. First
let’s talk about the different types of concurrency.

1. https://hexdocs.pm/plug/Plug.Session.html

Chapter 1. Introducing Phoenix • 4

report erratum • discuss

https://hexdocs.pm/plug/Plug.Session.html
http://pragprog.com/titles/phoenix14/errata/add
http://forums.pragprog.com/forums/phoenix14

Types of Concurrency
For our purposes, let’s think of concurrency as a web application’s ability to
process two or more web requests at the same time. The simplest way to
handle multiple requests is by executing them one right after the other, but
that strategy isn’t very efficient. To process a request, most web apps need to
perform I/O such as making database requests or communicating with an
external API. While you’re waiting for those external services to complete, you
could start working on the next request. This is I/O concurrency. Most program-
ming languages provide I/O concurrency out of the box or via libraries. Some-
times, however, the I/O concurrency abstraction ends up leaking to the devel-
oper, who must write code in a confusing way, with callbacks of some form.

Another type of concurrency is multi-core concurrency, which focuses on the
CPU. If your machine has more than one core, one core processes one request
while a second core processes another one. For the rest of this discussion,
we will consider machines with four cores in our examples, which is common-
place, as even smart watches have multiple cores today.

There are two main ways to leverage multi-core concurrency:

• With an operating system process per core: If your machine has four
cores, you will start four different instances of your web application.

• With user space routines: If your machine has four cores, you start a
single instance of your web application that is capable of using all cores
efficiently.

The downside of using operating system processes is that those four instances
cannot share memory. This solution typically leads to higher resource usage
and more complex solutions.

Thanks to the Erlang VM, Elixir provides I/O concurrency without callbacks,
with user-space multi-core concurrency. In a nutshell, this means Elixir
developers write code in the simplest and most straightforward fashion and
the virtual machine takes care of using all of the resources, both CPU and
I/O, for you. The result is a better application. Let’s talk about why.

Simpler Solutions
One issue with concurrency via operating system processes is the poor
resource usage. Each core needs a separate instance of your application. If
you have 16 cores, you need 16 instances, each on its own memory space.

report erratum • discuss

Concurrent • 5

http://pragprog.com/titles/phoenix14/errata/add
http://forums.pragprog.com/forums/phoenix14

With user space concurrency, you always start a single instance of your
application. As you receive new requests, they are naturally spread throughout
all cores. Furthermore, they all share the same memory. This small drawback
might seem a little vague, so let’s make it more explicit by looking at one
specific problem, a common dashboard.

Imagine each user in your application has a dashboard. The data in this
dashboard takes around 200ms to load and it takes about 100kB in memory.
Since we want to provide good experience to users, we decide to cache this
data. Let’s say your web application supports only operating system process
concurrency. That means each application instance needs to keep its own
cache. For ten thousand (10,000) active users, that’s a 1GB data cache for
all of the dashboards per instance. For 16 cores with 16 instances, that’s
16GB of cache, and it’s only for the dashboard data. Furthermore, since each
instance has its own cache shared across all users, each cache will be less
effective at startup time because cache hit rates will be lower, leading to poor
startup times.

To save memory and improve the hit rates, you may decide to put the data
in an external caching system, such as Redis or memcached. This external
cache increases your complexity for both development and deployment con-
cerns because you now have a new external dependency. Your application is
much faster than it would be if you were simply querying the database, but
every time users access the dashboard, your application still needs to go over
the network, load the cache data, and deserialize it.

In Elixir, since we start a single web application instance across all cores, we
have a single cache of 1GB, shared across all cores, regardless of whether
the machine has 1, 4, or 16 cores. We don’t need to add external dependencies
and we can serve the dashboard as quickly as possible because we don’t need
to go over the network.

Does this mean Elixir eliminates the need for caching systems? Surely not.
For example, if you have a high number of machines running in production,
you may still want an external caching system as a fallback to the local one.
We just don’t need external cache systems nearly as often. Elixir developers
typically get a lot of mileage from their servers, without a need to resort to
external caching. For example, Bleacher Report was able to replace 150
instances running Ruby on Rails with 5 Phoenix instances, which has been
proven to handle eight times their average load at a fraction of the cost.2

2. https://www.techworld.com/apps-wearables/how-elixir-helped-bleacher-report-handle-8x-more-traffic-3653957/

Chapter 1. Introducing Phoenix • 6

report erratum • discuss

https://www.techworld.com/apps-wearables/how-elixir-helped-bleacher-report-handle-8x-more-traffic-3653957/
http://pragprog.com/titles/phoenix14/errata/add
http://forums.pragprog.com/forums/phoenix14

And while this is just one example, we have the option to make similar trade-
offs at different times in our stacks. For simple asynchronous processing,
you don’t need a background job framework. For real-time messaging across
nodes, you don’t need an external queue system. We may still use those tools,
but Elixir developers don’t need to reach for them as often as other developers
might. We can avoid or delay buying into complex solutions, spending more
time on domain and business logic.

Performance for Developers
Developers are users too. Elixir’s concurrency can have a dramatic impact
on our experience as we write software. When we compile software, run tests,
or even fetch dependencies, Elixir is using all cores in your machine, and
these shorter cycles over the course of a day can stack up.

Here is a fun story. In its first versions, Elixir used to start as many tests
concurrently as the number of cores in your machine. For instance, if your
machine has four cores, it would run at most four tests at the same time.
This is a great choice if your tests are mostly using the CPU.

However, for web applications, it is most likely that your tests are also waiting
on I/O, due to the database or external systems. Based on this insight, the
Elixir team bumped the default number of concurrent tests to double the
number of cores. The result? Users reported their test suites became 20%-30%
faster. Overall, it is not uncommon for us to hear about web applications
running thousands of tests in under 10 seconds.

But Concurrency Is Hard
You may have heard that concurrency is hard and we don’t dispute that. We
do claim that traditional languages make concurrency considerably harder
than it should be. Many of the issues with concurrency in traditional program-
ming languages come from in-memory race conditions, caused by mutability.

Let’s take an example. If you have two user space routines trying to remove
an element from the same list, you can have a segmentation fault or similarly
scary error, as those routines may change the same address in memory at
the same time. This means developers need to track where all of the state is
and how it is changing across multiple routines.

In functional programming languages, such as Elixir, the data is immutable.
If you want to remove an element from a list, you don’t change that list in
memory. You create a new list instead. That means as a functional developer,
you don’t need to be concerned with bugs that are caused by concurrent

report erratum • discuss

Concurrent • 7

http://pragprog.com/titles/phoenix14/errata/add
http://forums.pragprog.com/forums/phoenix14

access to memory. You’ll deal only with concurrency issues that are natural
to your domain.

For example, what is the issue with this code sample?

product = get_product_from_the_database(id)
product = set_product_pageviews(get_product_pageviews(product) + 1)
update_product_in_the_database(product)

Consider a product with 100 pageviews. Now imagine two requests are hap-
pening at the same time. Each request reads the product from the database,
sees that the counter is 100, increments the counter to 101, and updates the
product in the database. When both requests are done, the end result could
be 101 in the database while we expected it to be 102. This is a race condition
that will happen regardless of the programming language you are using. Dif-
ferent databases will have different solutions to the problem. The simplest
one is to perform the increment atomically in the database.

Therefore, when talking about web applications, concurrency issues are nat-
ural. Using a language like Elixir and a framework such as Phoenix makes
all of the difference in the world. When your chosen environment is equipped
with excellent tools to reason about concurrency, you’ll have all of the tools
you need to grow as a developer and improve your reasoning about concur-
rency in the wild.

In Elixir, our user-space abstraction for concurrency is also called processes,
but do not confuse them with operating system processes. Elixir processes
are abstractions inside the Erlang VM that are very cheap and very lightweight.
Here is how you can start 100,000 of them in a couple of seconds:

for i <- 1..100_000 do
spawn(fn -> Process.sleep(:infinity) end)

end

From now on, when you read the word process, you should think about Elixir’s
lightweight processes rather than operating system processes. That’s enough
about concurrency for now but we will be sure to revisit this topic later.

Beautiful Code
Elixir is perhaps the first functional language to support Lisp-style macros
with a more natural syntax. This feature, like a template for code, is not
always the right tool for everyday users, but macros are invaluable for
extending the Elixir language to add the common features all web servers
need to support.

Chapter 1. Introducing Phoenix • 8

report erratum • discuss

http://pragprog.com/titles/phoenix14/errata/add
http://forums.pragprog.com/forums/phoenix14

For example, web servers need to map routes onto functions that do the job:

pipeline :browser do
plug :accepts, ["html"]
plug :fetch_session
plug :protect_from_forgery

end

pipeline :api do
plug :accepts, ["json"]

end

scope "/", MyApp do
pipe_through :browser

get "/users", UserController, :index
...

end

scope "/api/", MyApp do
pipe_through :api

...
end

You’ll see this code a little later. You don’t have to understand exactly what
it does. For now, know that the first group of functions will run for all
browser-based applications, and the second group of functions will run for
all JSON-based applications. The third and fourth blocks define which URLs
will go to which controller.

You’ve likely seen code like this before. Here’s the point. You don’t have to
sacrifice beautiful code to use a functional language. Your code organization
can be even better. In Phoenix, you won’t have to read through inheritance
chains to know how your code works. You’ll just build a pipeline for each group
of routes that work the same way.

You can find an embarrassing number of frameworks that break this kind of
code down into something that is horribly inefficient. Consultancies have
made millions on performance tuning by doing nothing more than tuning
route tables. This Phoenix example reduces your router to pattern matching
that’s further optimized by the virtual machine, becoming extremely fast.
We’ve built a layer that ties together Elixir’s pattern matching with the macro
syntax to provide an excellent routing layer, and one that fits the Phoenix
framework well.

You’ll find many more examples like this one, such as Ecto’s elegant query
syntax or how we express requests as a pipeline of functions that compose

report erratum • discuss

Beautiful Code • 9

http://pragprog.com/titles/phoenix14/errata/add
http://forums.pragprog.com/forums/phoenix14

well and run quickly. In each case, you’re left with code that’s easier to read,
write, and understand.

We’re not here to tell you that macros are the solution to all problems, or that
you should use a DSL when a function call should do. We’ll use macros when
they can dramatically simplify your daily tasks, making them easier to
understand and produce. When we do build a DSL, you can bet that we’ve
done our best to make it fast and intelligent.

Effortlessly Extensible Architecture
The Phoenix framework gives you the right set of abstractions for extension.
Your applications will break down into individual functions. Rather than rely
on other mechanisms like inheritance that hide intentions, you’ll roll up your
functions into pipelines, where each function feeds into the next. It’s like
building a shopping list for your requests.

In this book, you’ll write your own authentication code, based on secure open
standards. You’ll see how easy it is to tune behavior to your needs and extend
it when you need to.

The Phoenix abstractions, in their current incarnation, are new, but each has
withstood the test of time. When it’s time to extend Phoenix—whether you’re
plugging in your own session store or doing something as comprehensive as
attaching third-party applications like a Twitter wrapper—you’ll have the
right abstractions available to ensure that the ideas can scale as well as they
did when you wrote the first line of code.

Interactive
By this point, you may be noticing that each concept builds on the previous
one. Elixir makes productive, explicit layers available to programmers who
can use them to build concurrent applications. Phoenix introduces beautiful,
concurrent abstractions for use in beautiful APIs.

For the first four years, the Phoenix team worked at building this infrastruc-
ture, and this past year we’ve seen the culmination of this investment in new,
exciting APIs for building interactive applications. The best example is Phoenix
LiveView, a library for building applications without custom JavaScript. Until
the right infrastructure was in place, LiveView could be only a dream.

Building interactive applications does require APIs that shield many different
concerns from an end user, but APIs are just the tip of the iceberg. Underneath
that tip is a tremendous amount of infrastructure. Let’s take a peak beneath
the surface.

Chapter 1. Introducing Phoenix • 10

report erratum • discuss

http://pragprog.com/titles/phoenix14/errata/add
http://forums.pragprog.com/forums/phoenix14

Scaling by Forgetting
Traditional web servers scale by treating each tiny user interaction as an
identical stateless request. The application doesn’t save state between requests
at all. It simply looks up the user and simultaneously looks up the context
of the conversation in a user session. Presto. All scalability problems go away
because there’s only one type of connection.

But there’s a cost. The developer must keep track of the state for each request,
and that burden can be particularly arduous for newer, more interactive
applications with intimate, long-running rich interactions. As a developer,
until now, you’ve been forced to make a choice between applications that
intentionally forget important details to scale and applications that try to
remember too much and break under load.

Processes and Channels
With Elixir, you can create hundreds of thousands of lightweight processes
without breaking a sweat. Lightweight processes also mean lightweight con-
nections, and that matters because connections can be conversations. Whether
you’re building a chat on a game channel or a map to the grocery store, you
won’t have to juggle the details by hand anymore. This application style is
called channels, and Phoenix makes it easy. Here’s what a typical channels
feature might look like:

def handle_in("new_annotation", params, socket) do
broadcast! socket, "new_annotation", %{

user: %{username: "anon"},
body: params["body"],
at: params["at"]

}

{:reply, :ok, socket}
end

You don’t have to understand the details. Just understand that when your
application needs to connect your users and broadcast information in real
time, your code can get much simpler and faster.

Even now, you’ll see many different types of frameworks begin to support
channel-style features, from Java to JavaScript and even Ruby. Here’s the
problem. None of them comes with the simple guarantees that Phoenix has:
isolation and concurrency. Isolation guarantees that if a bug affects one
channel, all other channels continue running. Breaking one feature won’t
bleed into other site functionality. Concurrency means one channel can never

report erratum • discuss

Interactive • 11

http://pragprog.com/titles/phoenix14/errata/add
http://forums.pragprog.com/forums/phoenix14

block another one, whether code is waiting on the database or crunching
data. This key advantage means that the UI never becomes unresponsive
because the user started a heavy action. Without those guarantees, the
development bogs down into a quagmire of low-level concurrency details.

You may also be wondering whether keeping an open connection per user
can scale. The Phoenix team decided to benchmark their channels abstraction
and they were able to reach two million connections on a single node.3 And
while that proves Phoenix Channels scale vertically (i.e., on powerful
machines), it also scales horizontally. If you need to run a cluster of Phoenix
instances, Phoenix will broadcast messages across all nodes out of the box,
without a need for external dependencies.

It’s true, you can build these kinds of applications without Phoenix, but
building them without the guarantees of isolation and concurrency is never
pleasant. The results will almost universally be infected with reliability and
scalability problems, and your users will never be as satisfied as you’d like
to make them.

Presence and LiveView
As Phoenix grows and matures, the team continues to provide tools developers
can use to build interactive applications. The first addition was support for
tracking presence. Tracking which users are connected to a cluster of
machines is a notoriously difficult problem. But in Phoenix, it takes as little
as ten lines of code to track which users, fridges, cars, doors, or houses are
connected to your application. In a world that is getting more and more con-
nected, this feature is essential.

The best part about presence is that it doesn’t require any external dependen-
cies. Regardless of whether you are running two Phoenix nodes or twenty,
those nodes will communicate with each other, making sure to track connec-
tions regardless of where they happen in the cluster. You get a fantastic feature
set right out of the box.

The most recent interactive development tool is LiveView. LiveView allows devel-
opers to build rich, interactive real-time applications without writing custom
JavaScript.4 For the JavaScript developers out there, it can be summarized
as “server-side React”. Here is a simple counter built with LiveView:

3. https://phoenixframework.org/blog/the-road-to-2-million-websocket-connections
4. https://dockyard.com/blog/2018/12/12/phoenix-liveview-interactive-real-time-apps-no-need-to-write-javascript

Chapter 1. Introducing Phoenix • 12

report erratum • discuss

https://phoenixframework.org/blog/the-road-to-2-million-websocket-connections
https://dockyard.com/blog/2018/12/12/phoenix-liveview-interactive-real-time-apps-no-need-to-write-javascript
http://pragprog.com/titles/phoenix14/errata/add
http://forums.pragprog.com/forums/phoenix14

defmodule DemoWeb.CounterLive do
use Phoenix.LiveView

def render(assigns) do
~L"""
<%= @val %>
<button phx-click="inc">+</button>
"""

end

def mount(_session, socket) do
{:ok, assign(socket, val: 0)}

end

def handle_event("inc", _, socket) do
{:noreply, update(socket, :val, &(&1 + 1))}

end
end

When Phoenix renders the page the first time, it works just like any other
static page. That means browsers get a fast first-page view and search engines
have something to index. Once rendered, Phoenix connects to the LiveView
on the server, using WebSockets and Channels. LiveView applications are
breathtakingly simple:

• A function renders a web page.
• That function accepts state as an input and returns a web page as output.
• Events can change that state, bit by bit.

State is a simple data structure that can hold whatever you want it to. Events
that change your state can come from a button or a form on a web page.
Other events can come from your application, like a low-battery sensor else-
where in your application.

The best part is that LiveView is smart enough to send only what changes,
and only when it changes. And once again, all you need to make this work is
Phoenix.

Combine LiveView with Phoenix’s ability to broadcast changes and track users
in a cluster and you have the most complete tooling for building rich and
interactive applications out of the box.

Reliable
As Chris followed José into the Elixir community, he learned to appreciate
the frameworks that Erlang programmers have used to make the most reliable
applications in the world. Before Elixir, the language of linked and supervised

report erratum • discuss

Reliable • 13

http://pragprog.com/titles/phoenix14/errata/add
http://forums.pragprog.com/forums/phoenix14

processes wasn’t part of his vocabulary. After spending some time with Elixir,
he found the missing pieces he’d been seeking.

You see, you might have interactive applications built from beautiful, concur-
rent, responsive code, but it doesn’t matter unless your code is reliable. Erlang
applications have always been more reliable than others in the industry. The
secret is the process linking structure and the process communication, which
allow effective supervision. You can start concurrent tasks and services that
are fully supervised. When one crashes, Elixir can restart it in the last known
good state, along with any tainted related service. Erlang’s supervisors can
have supervisors too, so your whole application will have a tree of supervisors.

The nice thing is that you won’t have to write that supervision code yourself.
By default, Phoenix has set up most of the supervision structure for you. For
example, if you want to talk to the database, you need to keep a pool of
database connections, and Phoenix provides one out of the box. As you’ll see
later on, we can monitor and introspect this pool. It’s straightforward to study
bottlenecks and even emulate failures by crashing database connections on
purpose, only to see supervisors establishing new connections in their place.
As a programmer, these abstractions will give you the freedom of a carpenter
building on a fresh clean slab, but your foundation solves many of your
hardest problems before you even start. As an administrator, you’ll thank us
every day of the week because of the support calls that don’t come in.

In the next chapter, you’ll dive right in. From the beginning, you’ll build a
quick application, and we’ll walk you through each layer of Phoenix. The
water is fine. Come on in!

Chapter 1. Introducing Phoenix • 14

report erratum • discuss

http://pragprog.com/titles/phoenix14/errata/add
http://forums.pragprog.com/forums/phoenix14

Part I

Building with Functional MVC

In Part I, we’ll talk about traditional request/response web applications. We’ll walk
through the basic layers of Phoenix in great detail. You’ll learn how to structure your
application into small functions, with each one transforming the results of the previous
ones. This pipeline of small functions will lead to the controller, from where we call
your model domain and views, but splitting the responsibilities slightly differently
from what you’ve seen elsewhere. You’ll also learn to integrate databases through
the Ecto persistence layer and even build your own authentication API. Then, you’ll
learn to test what you’ve built so far. In short, you’ll learn to build traditional applica-
tions that are faster, more reliable, and easier to understand.

CHAPTER 2

The Lay of the Land
Welcome to Phoenix. In this chapter, we’re not going to try to sell you too
hard. We think that once you begin the work of learning this framework, the
benefits will quickly become evident.

You can think of any web server as a function. Each time you type a URL,
think of it as a function call to some remote server. That function takes your
request and generates some response. As we will see, a web server is a natural
problem for a functional language to solve.

When all is said and done, each Phoenix application is made of functions. In
this chapter, we’re going to break down a typical web request, and we’ll talk
about what happens from the moment the user types the URL to the moment
Phoenix returns some result.

Simple Functions
Phoenix is built on Elixir, which is a beautiful language, so we’re going to use
Elixir to talk about the way the layers of Phoenix fit together. In Elixir, we
might have a couple of functions like these:

def inc(x), do: x + 1
def dec(x), do: x - 1

We can chain together several different function calls like this:

2 |> inc |> inc |> dec

The |>, or pipe operator, takes the value on the left and passes it as the first
argument to the function on the right. We call these compositions pipes or
pipelines, and we call each individual function a segment or pipe segment.

There’s a side benefit, though. Pipelines are also functions. That means you
can make pipelines of pipelines. This idea will help you understand how the

report erratum • discuss

http://pragprog.com/titles/phoenix14/errata/add
http://forums.pragprog.com/forums/phoenix14

various layers fit together. Let’s take a look at what a Phoenix program might
look like, using pipes:

connection |> phoenix

Most of the time, you’d write phoenix(connection), but bear with us for a moment.
We’re going to expand that phoenix function in a bit. We don’t care how the
request gets to Phoenix. At some point, we know that a browser establishes
a connection with an end user, and then there’s this big hairy function called
phoenix. We pipe the connection into phoenix, it does its magic, and we’re done.

In Phoenix, that connection is the whole universe of things we need to know
about a user’s request. It is a struct, which is a map with a known set of fields.
The connection comes in with information about the request: whether it’s
HTTP or HTTPS, what the URL is, what the parameters look like. Then, each
layer of Phoenix makes a little change to that connection. When Phoenix is
done, that connection will have the response in it.

Where Are All of the Diagrams?
In this book, we’re going to try something a little different. We’re going to use
an experimental alternative to architectural diagrams.

For example, let’s say we’re showing you how to bake a cake. We could have
a little diagram with boxes representing process steps that have beautiful
bevels or drop shadows or other embellishments. Such a diagram would give
you a quick mental picture of what’s happening. Then, you could mentally
translate that diagram into code.

We can do better, though. Instead, we could choose to express the same idea
with an Elixir pipe, like this:

ingredients
|> mix()
|> bake()

That code isn’t as beautiful as a blinking diagram with fountain fills, but it’s
tremendously exciting. That ugly text shows you exactly what the layers are,
and also how the functions work together. It also helps you build a mental
picture of what’s happening, because in Phoenix it is what’s happening. When
you understand that diagram, you understand Phoenix. You’ll actually see
code like that throughout the Phoenix framework, so we think it’s an excellent
way to show how the parts fit together.

Chapter 2. The Lay of the Land • 18

report erratum • discuss

http://pragprog.com/titles/phoenix14/errata/add
http://forums.pragprog.com/forums/phoenix14

Now you know what the API of every layer of Phoenix looks like. Functions
call other functions, and the first argument for each of those other functions
is the connection.

The Layers of Phoenix
Let’s take our simplified version of Phoenix and break it down a bit. Let’s say
that the request is a classic HTTP-style request. (The book will cover the more
interactive channels API a little later, but the basic premise will be the same.)
As we drill down to the next layer of detail, here’s what you see:

connection
|> endpoint()
|> router()
|> pipelines()
|> controller()

Each request comes in through an endpoint, the first point of contact. It’s liter-
ally the end, or the beginning, of the Phoenix world. A request comes into an
endpoint. From there, requests go into our router layer, which directs a request
into the appropriate controller, after passing it through a series of pipelines. As
you might expect, a pipeline groups functions together to handle common
tasks. You might have a pipeline for browser requests, and another for JSON
requests.

Inside Controllers
Web frameworks have been around for a long time. The main pattern we use
has been around even longer. The Smalltalk language introduced a pattern
called model-view-controller (MVC). Models access data, views present data,
and controllers coordinate between the two. In a sense, the purpose of a web
server is to get requests to functions that perform the right task. In most web
frameworks, including Phoenix, that task is called an action, and we group
like functions together in controllers.

To give you a little more perspective, the controller is also a pipeline of func-
tions, one that looks like this:

connection
|> controller()
|> common_services()
|> action()

This view of the world may look much like what you’d expect from a typical
web framework. The connection flows into the controller and calls common

report erratum • discuss

Simple Functions • 19

http://pragprog.com/titles/phoenix14/errata/add
http://forums.pragprog.com/forums/phoenix14

services. In Phoenix, those common services are implemented with Plug. You’ll
get more details as we go. For now, think of Plug as a strategy for building
web applications and a library with a few simple tools to enable that strategy.

In this book our actions will do many different things, from accessing other
websites to authenticating a user. Most often, our actions will access a database
and render a view. Here’s what an action to show a user might look like:

connection
|> find_user()
|> view()
|> template()

In Phoenix, we like to encapsulate all business logic in simple modules called
contexts. If you’re using a database in Phoenix, you’ll probably use Ecto, the
persistence layer. If you want to talk to another web application, there are
many HTTP clients to choose from. Whether that code interacts with another
web server or a database, you will want to keep the controllers clean and
skinny.

There you have it. You don’t have to memorize all of these layers now, but
you’ve seen the major pieces, and you know how they fit together. After a few
pages of theory, you’re probably eager to roll up your sleeves and get started.

Installing Your Development Environment
Like many great programming projects, Phoenix builds on some of the best
open source projects available. You’ll install all of those dependencies now,
using the best resources you can find for your own environment.

Elixir Needs Erlang
Erlang provides the base programming virtual machine. It supports our base
programming model for concurrency, failover, and distribution. It also provides
an exhaustive programming library that’s the foundation of the Elixir language.
Go download Erlang,1 choosing the best installation for your environment.
You’ll want version 20.0 or greater.

Phoenix Needs Elixir
The Elixir programming language powers Phoenix. You can find installation
instructions on the Elixir2 site. You’ll want version 1.6 or greater. Before you

1. http://www.erlang.org
2. http://elixir-lang.org

Chapter 2. The Lay of the Land • 20

report erratum • discuss

http://www.erlang.org
http://elixir-lang.org
http://pragprog.com/titles/phoenix14/errata/add
http://forums.pragprog.com/forums/phoenix14

work through this book, it would be helpful to know Elixir. Good online
resources3 exist, but we recommend the excellent book Programming Elixir
[Tho16], by Dave Thomas, which will get you all of the way through concur-
rency concepts and OTP. For now, think of OTP as the layer for managing
concurrent, distributed services. Rest assured that you’ll get more details on
OTP later.

You can check to see that Elixir and Erlang are working correctly, like this:

$ elixir -v
Elixir 1.8.0

Let’s also install Hex, Elixir’s package manager:

$ mix local.hex
* creating ~/.mix/archives/hex-0.19.0

Elixir is working, and if you were building strictly a JSON API or a very simple
application it would be enough. For this application, since you’ll be building
both frontend and backend with Phoenix, you need to install a database and
the code that will help you manage assets. That means you’ll have to install
PostgreSQL and Node.js.

Ecto Needs PostgreSQL
Ecto uses the PostgreSQL4 database adapter by default, and Phoenix adopts
this default. It’s the database engine we’ll be using throughout the book, so
you’ll need version 9.5 or greater. You can check your local version like this:

$ psql --version
psql (PostgreSQL) 9.5.1

Node.js for Assets
Web development often requires web assets to be processed for deployment.
Rather than reinvent the wheel, developers can optionally use Node.js tools
for those services. Phoenix will use webpack.js.org to compile static assets such as
JavaScript and CSS by default, and webpack uses npm, the Node.js package
manager, to install its dependencies. Once it’s installed, Phoenix will rely on
them for asset management. Follow the directions on the Node.js5 site and
make sure you have version 5.3.0 or greater. Test your installation like this:

$ node --version
v5.3.0

3. http://elixir-lang.org/getting-started/introduction.html
4. http://www.postgresql.org/download/
5. http://nodejs.org

report erratum • discuss

Installing Your Development Environment • 21

http://elixir-lang.org/getting-started/introduction.html
http://www.postgresql.org/download/
http://nodejs.org
http://pragprog.com/titles/phoenix14/errata/add
http://forums.pragprog.com/forums/phoenix14

Phoenix has a feature called live reloading, which automatically reloads web
pages as our assets and templates change. If you’re running Linux, you’re
also going to need to install inotify6 to support live reloading. Other operating
systems are covered.

We’re finally ready for Phoenix.

Phoenix
You’re going to work in the Elixir language to write your code, so you’ll use
the Mix utility to run development tasks. Let’s use Mix to install the Phoenix
archive, and then to install Phoenix itself:

$ mix archive.install hex phx_new

* creating ~/.mix/archives/phx_new

In case you already had Phoenix installed, make sure you have version v1.4.7
or later:

$ mix phx.new -v
Phoenix v1.4.7

Now you’re ready to roll!

Creating a Throwaway Project
Since C programmers wrote the first “Hello, World” examples in 1978, it’s
traditionally been the first program you write when learning almost any lan-
guage. So we don’t break with tradition, we’re going to create a “Hello, World”
application as our first project. It will help you get your feet wet. When you’re
done, you’ll get to see all of those layers we talked about in practice.

You now have a shiny new Phoenix installation. It’s time to build a project.
You’re in a functional language, so you’re going to spend all of your time
writing functions. This common project structure will help you organize things
so you don’t have to reimagine it for each project.

In Elixir, repetitive tasks that manage the programming cycle will run in Mix.
Each time you call this utility, you specify a task—an Elixir script—to run.
Let’s use a task now to create our first Phoenix project, like this:

$ mix phx.new hello
* creating hello/config/config.exs
...

6. https://hexdocs.pm/phoenix/installation.html#inotify-tools-for-linux-users

Chapter 2. The Lay of the Land • 22

report erratum • discuss

https://hexdocs.pm/phoenix/installation.html#inotify-tools-for-linux-users
http://pragprog.com/titles/phoenix14/errata/add
http://forums.pragprog.com/forums/phoenix14

Fetch and install dependencies? [Yn] y
* running mix deps.get
* running mix deps.compile
...

$ cd hello
$ cd assets
$ npm install
...
$ cd ..

We’re all set! We created a new project and built our static assets. At the
bottom of the mix phx.new output, you can see a few sentences that tell you
what to do next. Change into the hello directory and run the mix tasks to create
the database and boot up the Phoenix web server, which will start looking
for requests on port 4000.

Run your Phoenix application like this:

$ mix ecto.create
$ mix phx.server

Database errors

If you receive database errors when running mix ecto.create, double-
check your Hello.Repo username and password values in config/dev.exs
and match your system settings where necessary.

You can see that the server started on port 4000. The [info] blocks tell you
exactly where this server is running. Point your browser to http://localhost:4000/.
You can see a simple Phoenix welcome page on page 24.

And we’re live! There’s no way we’re going to get a million-dollar valuation
with this product, though. Let’s begin to change that by building our first
feature.

Building a Feature
Our first feature won’t be complicated. It’ll print a string when you load a
specific URL. To build that feature, we’re going to use a small fraction of the
files that mix phx.new created. Don’t worry. You’ll get a tour of the whole tree a
little later. For now, everything we need is in the lib/hello_web subdirectory. We’ll
edit router.ex to point a URL to our code. We’ll also add a controller to the
lib/hello_web/controllers subdirectory, a view to lib/hello_web/views, and a template to
lib/hello_web/templates.

First things first. We want to map requests coming in to a specific URL to the
code that satisfies our request. We’ll tie a URL to a function on a controller,

report erratum • discuss

Building a Feature • 23

http://pragprog.com/titles/phoenix14/errata/add
http://forums.pragprog.com/forums/phoenix14

and that function to a view. You’ll do so in the routing layer, as you would
for other web frameworks. Routes in Phoenix go in lib/hello_web/router.ex by
default. The .ex extension is for compiled Elixir files. Take a look at that file
now. Scroll to the bottom, and you’ll find a block that looks like this:

getting_started/listings/hello/lib/hello_web/router.ex
scope "/", HelloWeb do

pipe_through :browser # Use the default browser stack

get "/", PageController, :index
end

You can see a block of requests, scoped to /. That means that this group of
routes will attempt to match all routes beginning with /. The pipe_through
:browser macro handles some housekeeping for all common browser-style
requests. You can see one route that takes requests that look like / and sends
them to the :index action on the PageController. This looks like the right place to
add our route. Add the following route above the existing route:

get "/hello", HelloController, :world
get "/", PageController, :index

This new code will match routes starting with /hello and send them to the :world
function on the HelloController module. If you’d like, you can point your browser

Chapter 2. The Lay of the Land • 24

report erratum • discuss

http://media.pragprog.com/titles/phoenix14/code/getting_started/listings/hello/lib/hello_web/router.ex
http://pragprog.com/titles/phoenix14/errata/add
http://forums.pragprog.com/forums/phoenix14

to localhost:4000/hello, but you’ll get an error page because our controller module
doesn’t exist yet:

Before moving forward, let’s briefly review the error page. At the top of the
page we get the exception name: UndefinedFunctionError. Next, we see the error
message. It seems HelloWeb.HelloController.init, which expects one argument, is
undefined because the module does not exist. That’s a good start and you
can also see the detailed code related to the error.

The lefthand pane will usually show the relevant code snippets. Because the
module in this case does not exist, there is no code snippet loaded by default,
but you can populate this pane by clicking any of the stacktrace entries on
the righthand side. In the stack trace, orange dots denote calls within the
application and gray ones identify dependency code. Finally the bottom of
the page has general request information, such as request headers, cookies,
session, and the like.

Let’s fix that error now. All controllers in Phoenix are in lib/hello_web/controllers.
Create a lib/hello_web/controllers/hello_controller.ex file that looks like this:

getting_started/listings/hello/lib/hello_web/controllers/hello_controller.ex
defmodule HelloWeb.HelloController do

use HelloWeb, :controller

def world(conn, _params) do
render(conn, "world.html")

end
end

report erratum • discuss

Building a Feature • 25

http://media.pragprog.com/titles/phoenix14/code/getting_started/listings/hello/lib/hello_web/controllers/hello_controller.ex
http://pragprog.com/titles/phoenix14/errata/add
http://forums.pragprog.com/forums/phoenix14

This controller is simple. If you’re new to Elixir, you’ll often see use SomeModule
to introduce specific functionality to a module. The use HelloWeb, :controller call
prepares us to use the Phoenix Controller API, including making some func-
tions available that we’ll want to use later. The router will call the world action
on our controller, passing all of the information we need. We call the functions
invoked by the router on our controller’s actions, but don’t get confused.
They’re just functions.

Once again, you might point your browser to localhost:4000/hello, but you’d find
that it’s still not working. We have yet to create our view, so Phoenix reports:

undefined function: HelloWeb.HelloView.render/2
(module HelloWeb.HelloView is not available)

That makes sense. Let’s easily fix that problem by creating a view called
lib/hello_web/views/hello_view.ex with the following contents:

getting_started/listings/hello/lib/hello_web/views/hello_view.ex
defmodule HelloWeb.HelloView do

use HelloWeb, :view
end

That file doesn’t actually do any work beyond tying the view for world with
some code to render a template. We’ll rely on the defaults to render a template,
which doesn’t yet exist. One more time, you see an error when you point your
browser to localhost:4000/hello:

Could not render "world.html" for HelloWeb.HelloView, please define a matching
clause for render/2 or define a template at "lib/hello_web/templates/hello".

No templates were compiled for this module.

We are getting closer. Create the following template at lib/hello_web/templates/hel-
lo/world.html.eex, and we’re done:

getting_started/listings/hello/lib/hello_web/templates/hello/world.html.eex
<h1>From template: Hello world!</h1>

As soon as you save your code, notice that the web page reloads! We have
live reloading enabled, so whenever we touch templates or template assets,
you’ll see an automatic page reload.

The .eex extension denotes a template, which Phoenix will compile into a
function. If you look closely, you can see the page we loaded has a header.
We’re implicitly using the layout defined in the lib/hello_web/views/layout_view.ex
view and the template defined in lib/hello_web/templates/layout/app.html.eex. We’ll
work more with views a little later. For now, it’s enough for you to know it’s
there.

Chapter 2. The Lay of the Land • 26

report erratum • discuss

http://media.pragprog.com/titles/phoenix14/code/getting_started/listings/hello/lib/hello_web/views/hello_view.ex
http://media.pragprog.com/titles/phoenix14/code/getting_started/listings/hello/lib/hello_web/templates/hello/world.html.eex
http://pragprog.com/titles/phoenix14/errata/add
http://forums.pragprog.com/forums/phoenix14

Enjoy the results. It’s not a fully operational death star, but you’re well on
your way.

Using Routes and Params
Right now, there’s no dynamic information in our route, and we don’t need
any yet, but later we’ll need to grab dynamic data from the URL to look up
data from our database. Let’s use our sandbox to see how that works. We’ll
use dynamic routes closely with Elixir’s pattern matching. First, let’s revise
our route. Replace the first route in lib/hello_web/router.ex with this one:

get "/hello/:name", HelloController, :world

Notice that we’re matching a URL pattern—/hello, as before—but we also add
/:name to the route. The : tells Phoenix to create a parameter called :name in
our route and pass that name as a parameter to the controller. Change the
world function on lib/hello_web/controllers/hello_controller.ex to look like this:

def world(conn, %{"name" => name}) do
render(conn, "world.html", name: name)

end

Since it’s the first time we’re using the shorthand hash notation, we’ll give it
a brief introduction. The code name: name is shorthand for :name => name. They
are both shorthand notations for representing key-value pairs. [name: name] is
shorthand for [{:name, name}]. Finally, since name: name is the last argument, of
a function, we can omit the brackets. That means render(conn, "world.html", name:
name) is shorthand for render(conn, "world.html", [name: name]). Whew. Now, on to
the code.

Our new action uses the second argument, which is a map of inbound
parameters. We match to capture the name key in the name variable, and pass
the result to render in a keyword list. If you’re new to Elixir, that function
header looks a little different from what you might have seen before. Something
special is happening, so let’s look at it in a little more detail. If you already
understand pattern matching, you can skip to the next section.

Pattern Matching in Functions
The Elixir language has an excellent feature called pattern matching. When
Elixir encounters a = operator, it means “make the thing on the left match
the thing on the right.” You can use this feature in two different ways: to take
data structures apart, or to test. Let’s look at an example. Open up interactive
Elixir by typing iex in your OS shell and follow this script:

report erratum • discuss

Building a Feature • 27

http://pragprog.com/titles/phoenix14/errata/add
http://forums.pragprog.com/forums/phoenix14

iex> {first, second, third} = {:lions, :tigers, :bears}
{:lions, :tigers, :bears}

iex> first
:lions

iex> {first, second, :bears} = {:lions, :tigers, :bears}
{:lions, :tigers, :bears}

iex> {first, second, :armadillos} = {:lions, :tigers, :bears}
** (MatchError) no match of right hand side value: {:lions, :tigers, :bears}

In the first statement, we’re matching a 3-tuple to {:lions, :tigers, :bears}. Elixir
tries to make the expression on the left match, and it can do so by assigning
first to :lions, and second to :tigers. In this case, we’re using the pattern match to
pick off pieces of the inside of the data structure.

In the third or fourth statement, we’re doing something different. We’re
matching to do a test. When the interpreter tries to match the two, it succeeds
and passes on, or fails and throws an exception.

You can also use pattern-matching syntax within your function heads in both
of these ways. Type the following into your console:

iex> austin = %{city: "Austin", state: "Tx"}
%{city: "Austin", state: "Tx"}

iex> defmodule Place do
...> def city(%{city: city}), do: city
...> def texas?(%{state: "Tx"}), do: true
...> def texas?(_), do: false
...> end

This module uses pattern matching in two different ways. The first function
uses pattern matching to destructure the data, or take it apart. We use it to
extract the city. It grabs the value for the :city key from any map. Although this
bit of destructuring is trivial, sometimes the data structures can be deep, and
you can reach in and grab the attributes you need with a surgeon’s precision.

The second function, texas?, is using a pattern match as a test. If the inbound
map has a :state keyword that’s set to Tx, it’ll match. Otherwise, it’ll fall through
to the next function, returning false. If we wanted to, we could:

• Match all maps with a given key, as in has_state?(%{state: _}), where the
underscore _ will match anything

• Use strings as keys instead of atoms, as in has_state?(%{"state" => "Tx"})

• Match a state, and assign the whole map to a variable, as in
has_state?(%{"state" => "Tx"} = place)

Chapter 2. The Lay of the Land • 28

report erratum • discuss

http://pragprog.com/titles/phoenix14/errata/add
http://forums.pragprog.com/forums/phoenix14

The point is, pattern matching is a huge part of Elixir and Phoenix program-
ming. We’ll use it to grab only certain types of connections, and also to grab
individual pieces of the connection, conveniently within the function heading.

With all of that in mind, let’s look at our controller action again:

def world(conn, %{"name" => name}) do
render(conn, "world.html", name: name)

end

That makes more sense now. We’re grabbing the name field from the second
argument, which contains the inbound parameters. Our controller then ren-
ders the world.html template, passing in the local data. The local data prepares
a map of variables for use by the templates. Now our views can access the
name variable we’ve specified.

Chris says:

Atom Keys vs. String Keys?
In the world action in our controllers, the external parameters have string keys, "name"
=> name, while internally we use name: name. That’s a convention followed throughout
Phoenix. External data can’t safely be converted to atoms, because the atom table
isn’t garbage-collected. Instead, we explicitly match on the string keys, and then our
application boundaries like controllers and channels will convert them into atom
keys, which we’ll rely on everywhere else inside Phoenix.

Using Assigns in Templates
Now, all that remains is to tweak our template in lib/hello_web/templates/hel-
lo/world.html.eex to make use of the value. You can access the name specified in
the world action as @name, like this:

<h1>Hello <%= String.capitalize(@name) %>!</h1>

The <%= %> brackets surround the code we want to substitute into the ren-
dered page. @name will have the value of the :name option that we passed to
render. We’ve worked for this reward, so point your browser to localhost:4000/hel-
lo/phoenix. It’s ALIVE!

report erratum • discuss

Building a Feature • 29

http://pragprog.com/titles/phoenix14/errata/add
http://forums.pragprog.com/forums/phoenix14

We’ve done a lot in a short time. Some of this plumbing might seem like
magic to you, but you’ll find that Phoenix is marvelously explicit, so it’s easy
to understand exactly what’s happening, when, for each request. It’s time to
make this magic more tangible.

Going Deeper: The Request Pipeline
When we created the hello project, Mix created a bunch of directories and files.
It’s time to take a more detailed look at what all of those files do and, by
extension, how Phoenix helps you organize applications.

When you think about it, typical web applications are just big functions. Each
web request is a function call taking a single formatted string—the URL—as
an argument. That function returns a response that’s nothing more than a
formatted string. If you look at your application in this way, your goal is to
understand how functions are composed to make the one big function call
that handles each request. In some web frameworks, that task is easier said
than done. Most frameworks have hidden functions that are only exposed to
those with deep, intimate internal knowledge.

The Phoenix experience is different because it encourages breaking big func-
tions down into smaller ones. Then, it provides a place to explicitly register
each smaller function in a way that’s easy to understand and replace. We’ll
tie all of these functions together with the Plug library.

Think of the Plug library as a specification for building applications that
connect to the web. Each plug consumes and produces a common data
structure called Plug.Conn. Remember, that struct represents the whole universe
for a given request, because it has things that web applications need: the
inbound request, the protocol, the parsed parameters, and so on.

Think of each individual plug as a function that takes a conn, does something
small, and returns a slightly changed conn. The web server provides the initial
data for our request, and then Phoenix calls one plug after another. Each
plug can transform the conn in some small way until you eventually send a
response back to the user.

Even responses are just transformations on the connection. When you hear
words like request and response, you might be tempted to think that a request
is a plug function call, and a response is the return value. That’s not what
happens. A response is just one more action on the connection, like this:

Chapter 2. The Lay of the Land • 30

report erratum • discuss

http://pragprog.com/titles/phoenix14/errata/add
http://forums.pragprog.com/forums/phoenix14

conn
|> ...
|> render_response()

The whole Phoenix framework is made up of organizing functions that do
something small to connections, even rendering the result. Said another way…

Plugs are functions.

Your web applications are pipelines of plugs.

Phoenix File Structure
If web applications in Phoenix are functions, the next logical step is to learn
where to find those individual functions and how they fit together to build a
coherent application. Let’s work through the project directory structure,
focusing on only the most important ones for now. Here’s what your directories
look like now:

...
├── assets
├── config
├── lib
├──── hello
├──── hello_web
├── test
...

Browser files like JavaScript and CSS go into assets and the Phoenix configu-
ration goes into config. Your supervision trees (we’ll explore those more in
chapters to come), long-running processes, and application business logic go
into lib/hello. Your web-related code—including controllers, views, and tem-
plates—goes in lib/hello_web. Predictably, you’ll put tests in test.

In this section, you will walk through each of these pieces, including the
pieces you created and many other ones that Phoenix generated. To sleuth
out the entire pipeline of functions for a full web request, you need to start
at the beginning. You will start with the basic code that Elixir and Erlang
depend on.

Elixir Configuration
Since Phoenix projects are Elixir applications, they have the same structure
as other Mix projects. Let’s look at the basic files in the project:

report erratum • discuss

Going Deeper: The Request Pipeline • 31

http://pragprog.com/titles/phoenix14/errata/add
http://forums.pragprog.com/forums/phoenix14

...
├── lib
│ ├── hello
│ ├── hello_web
│ │ ├── endpoint.ex
│ │ └── ...
│ ├── hello.ex
│ └── hello_web.ex
├── mix.exs
├── mix.lock
├── test
...

We’ve already encountered the .ex files. These contain Elixir code which you’ll
compile to the .beam files that run on the Erlang virtual machine. The .exs files
are Elixir scripts. They’re not compiled to .beam files. The compilation happens
in memory, each time they are run. They’re excellent for quick-changing
scripts or standalone development-time tasks.

The project we created is a Mix project, named after the build tool that nearly
all Elixir projects use. All Mix projects have a common structure. Each project
has a configuration file, mix.exs, containing basic information about the project
that supports tasks like compiling files, starting the server, and managing
dependencies. When we add dependencies to our project, we’ll need to make
sure they show up here. Also, after we compile the project, mix.lock will include
the specific versions of the libraries we depend on, so we guarantee that our
production machines use exactly the same versions that we used during
development and in our build servers.

Each Mix project also has a lib directory. Support for starting, stopping, and
supervising each application is in lib/hello/application.ex.

Also, each Mix project has a test directory that hosts all tests. Phoenix adds
some files to this test structure to support testing-specific files like controllers
and views. We have not yet written any tests, but when we do, they will live
in test.

Environments and Endpoints
Your application will run in an environment. The environment contains spe-
cific configuration that your web application needs. You can find that config-
uration in config:

Chapter 2. The Lay of the Land • 32

report erratum • discuss

http://pragprog.com/titles/phoenix14/errata/add
http://forums.pragprog.com/forums/phoenix14

...
├── config
│ ├── config.exs
│ ├── dev.exs
│ ├── prod.exs
│ ├── prod.secret.exs
│ └── test.exs
...

Phoenix supports a master configuration file plus an additional file for each
environment you plan to run in. The environments supported by default are
development (dev.exs), test (test.exs), and production (prod.exs), but you can add
any others that you want.

You can see the three environment files, the master config.exs file containing
application-wide configuration concerns, and a file called prod.secret.exs, which
is responsible to load secrets and other configuration values from environment
variables. Those environment variables are usually populated by deployment
tasks.

You switch between prod, dev, and test environments via the MIX_ENV environment
variable. We’ll spend most of our time in this book in dev and test modes.
That’ll be easy, because your Mix task will have you working in dev by default,
and it’ll shift to test when you run automated tests with mix.

The master configuration file, config/config.exs, initially contains information
about logging, and endpoints. Remember when we said that your web appli-
cations were just functions? An endpoint is the boundary where the web
server hands off the connection to our application code. Now, you’ll see that
config/config.exs contains a single endpoint called Hello.Endpoint. Open the file
called config/config.exs in your editor:

use Mix.Config

Configures the endpoint
config :hello, HelloWeb.Endpoint,

url: [host: "localhost"],
secret_key_base: "U8VmJ...hNnTsFFvrhmD",
render_errors: [view: HelloWeb.ErrorView, accepts: ~w(html json)],
pubsub: [name: Hello.PubSub,

adapter: Phoenix.PubSub.PG2]

Even though you might not understand this entire block of code, you can see
that this code has our endpoint, which is the beginning of our world. The
config function call configures the HelloWeb.Endpoint endpoint in our :hello applica-
tion, giving a keyword list with configuration options. Let’s look at that end-
point, which we find in lib/hello_web/endpoint.ex:

report erratum • discuss

Going Deeper: The Request Pipeline • 33

http://pragprog.com/titles/phoenix14/errata/add
http://forums.pragprog.com/forums/phoenix14

defmodule HelloWeb.Endpoint do
use Phoenix.Endpoint, otp_app: :hello

plug Plug.Static, ...
plug Plug.RequestId
plug Plug.Telemetry, ...

plug Plug.Parsers, ...
plug Plug.MethodOverride
plug Plug.Head

plug Plug.Session, ...
plug HelloWeb.Router

end

You can see that this chain of functions, or plugs, does the typical things
that almost all production web servers need to do: deal with static content,
log requests, parse parameters, and the like. Remember, you already know
how to read this code. It’ll translate to a pipeline of functions, like this:

connection
|> Plug.Static.call()
|> Plug.RequestId.call()
|> Plug.Telemetry.call()
|> Plug.Parsers.call()
|> Plug.MethodOverride.call()
|> Plug.Head.call()
|> Plug.Session.call()
|> HelloWeb.Router.call()

That’s an oversimplification, but the basic premise is correct. Endpoints are
the chain of functions at the beginning of each request.

Now you can get a better sense of what’s going on. Each request that comes
in will be piped through this full list of functions. If you want to change the
logging layer, you can change logging for all requests by specifying a different
logging function here.

Summarizing what we have so far: an endpoint is a plug, one that’s made up
of other plugs. Your application is a series of plugs, beginning with an endpoint
and ending with a controller:

connection
|> endpoint()
|> plug()
|> plug()
...
|> router()
|> HelloWebController()

Chapter 2. The Lay of the Land • 34

report erratum • discuss

http://pragprog.com/titles/phoenix14/errata/add
http://forums.pragprog.com/forums/phoenix14

We know that the last plug in the endpoint is the router, and we know we
can find that file in lib/hello_web/router.ex.

José says:

Can I Have More Than One Endpoint?
Although applications usually have a single endpoint, Phoenix doesn’t limit the
number of endpoints your application can have. For example, you could have your
main application endpoint running on port 80 (HTTP) and 443 (HTTPS), as well as a
specific admin endpoint running on a special port—let’s say 8443 (HTTPS)—with
specific characteristics and security constraints.

Alternatively, we could break those endpoints into separate applications but still run
them side by side. You’ll explore this later on when learning about umbrella projects.

The Router Flow
Now that you know what plugs are, let’s take a fresh look at our router. Crack
open lib/hello_web/router.ex. You can see that it’s made up of two parts: pipelines
and a route table. Here’s the first part:

getting_started/listings/hello/lib/hello_web/router.ex
defmodule HelloWeb.Router do

use HelloWeb, :router

pipeline :browser do
plug :accepts, ["html"]
plug :fetch_session
plug :fetch_flash
plug :protect_from_forgery
plug :put_secure_browser_headers

end

pipeline :api do
plug :accepts, ["json"]

end

Sometimes, you’ll want to perform a common set of tasks, or transformations,
for some logical group of functions. Not surprisingly, you’ll do each transfor-
mation step with a plug and group these plugs into pipelines. When you think
about it, a pipeline is just a bigger plug that takes a conn struct and returns
one too.

In router.ex, you can see two pipelines, both of which do reasonable things for
a typical web application. The browser pipeline accepts only HTML. It provides
some common services such as fetching the session and a user message

report erratum • discuss

Going Deeper: The Request Pipeline • 35

http://media.pragprog.com/titles/phoenix14/code/getting_started/listings/hello/lib/hello_web/router.ex
http://pragprog.com/titles/phoenix14/errata/add
http://forums.pragprog.com/forums/phoenix14

system called the flash, used for brief user notifications. It also provides some
security services, such as request forgery protection.

We’d use the second pipeline of functions for a typical JSON API. This stack
strictly calls the function that accepts only JSON requests, so if you had the
idea of converting the whole API site to accept only XML, you could do so by
changing one plug in one place.

Our hello application uses the browser pipeline, like this:

getting_started/listings/hello/lib/hello_web/router.ex
scope "/", HelloWeb do

pipe_through :browser # Use the default browser stack

get "/", PageController, :index
end

Now you can tell exactly what the pipeline does. All the routes after pipe_through
:browser—all the routes in our application—go through the browser pipeline.
Then, the router triggers the controller.

In general, the router is the last plug in the endpoint. It gets a connection,
calls a pipeline, and then calls a controller. When you break it down, every
traditional Phoenix application looks like this:

connection
|> endpoint()
|> router()
|> pipeline()
|> controller()

• The endpoint has functions that happen for every request.

• The connection goes through a named pipeline, which has common functions
for each major type of request.

• The controller invokes the model and renders a template through a view.

Let’s look at the final piece of this pipeline, the controller.

Controllers, Views, and Templates
From the previous section, you know that a request comes through an end-
point, through the router, through a pipeline, and into the controller. The
controller is the gateway for the bulk of a traditional web application. Like a
puppet master, your controller pulls the strings for this application, making
data available in the connection for consumption by the view. It potentially

Chapter 2. The Lay of the Land • 36

report erratum • discuss

http://media.pragprog.com/titles/phoenix14/code/getting_started/listings/hello/lib/hello_web/router.ex
http://pragprog.com/titles/phoenix14/errata/add
http://forums.pragprog.com/forums/phoenix14

fetches database data to stash in the connection and then redirects or renders
a view. The view substitutes values for a template.

For Phoenix, your web-related code, including controllers, views, and templates
goes into the lib/hello_web/ directory. Right now, that directory looks like:

├── hello
│ ├── application.ex
│ └── repo.ex
├── hello.ex
│
├── hello_web
│ ├── channels
│ │ └── user_socket.ex
│ ├── controllers
│ │ ├── hello_controller.ex
│ │ └── page_controller.ex
│ ├── endpoint.ex
│ ├── gettext.ex
│ ├── router.ex
│ ├── templates
│ │ ├── hello
│ │ │ └── world.html.eex
│ │ ├── layout
│ │ │ └── app.html.eex
│ │ └── page
│ │ │ └── index.html.eex
│ └── views
│ ├── error_helpers.ex
│ ├── error_view.ex
│ ├── hello_view.ex
│ ├── layout_view.ex
│ └── page_view.ex
└── hello_web.ex

You can see two top-level files, hello.ex and hello_web.ex. The Hello module is an
empty module which defines the top-level interface and documentation for
your application. The HelloWeb module contains some glue code that defines
the overall structure to the web-related modules of your application.

The second part of this book will be dedicated to applications that use the
channels directory, so let’s skip that for now. You’ve already coded a simple
controller, so you know what the basic structure looks like.

As you might expect for the support of old-style MVC applications, you can
see that lib/hello_web contains directories for views, and controllers. There’s also
a directory for templates—because Phoenix separates the views from the
templates themselves.

report erratum • discuss

Going Deeper: The Request Pipeline • 37

http://pragprog.com/titles/phoenix14/errata/add
http://forums.pragprog.com/forums/phoenix14

We’ve created code in the controller, views, and templates/hello directories, and
we’ve added code to router.ex as well. This application is fairly complete. After
all, it’s handling plenty of production-level concerns for you:

• The Erlang virtual machine and OTP engine will help the application scale.

• The endpoint will filter out static requests and also parse the request into
pieces, and trigger the router.

• The browser pipeline will honor Accept headers, fetch the session, and
protect from attacks like cross-site request forgery (CSRF).

All of these features are quickly available to you for tailoring, but they’re also
conveniently stashed out of your way in a structure that’s robust, fast, and
easy to extend. In fact, there’s no magic at all. You have a good picture of
exactly which functions Phoenix calls on a request to /hello, and where that
code lives within the code base:

connection # Plug.Conn
|> endpoint() # lib/hello_web/endpoint.ex
|> browser() # lib/hello_web/router.ex
|> HelloController.world() # lib/hello_web/controllers/hello_controller.ex
|> HelloView.render(# lib/hello_web/views/hello_view.ex

"world.html") # lib/hello_web/templates/hello/world.html.eex

It’s easy to gloss over these details and go straight to the hello_web directory,
and entrust the rest of the details to Phoenix. We encourage you instead to
stop and take a look at exactly what happens for each request, from top to
bottom.

Wrapping Up
We’ve gotten off to a strong start. You’ve created a first project. Though all of
the concepts might still be a bit hazy, you now have a high-level understanding
of how Phoenix projects hang together. The core concepts are these:

• We installed Phoenix, which is built using Erlang and OTP for the service
layer, Elixir for the language, and Node.js for packaging static assets.

• We used the Elixir build tool mix to create a new project and start our
server.

• Web applications in Phoenix are pipelines of plugs.

• The basic flow of traditional applications is endpoint, router, pipeline,
controller.

Chapter 2. The Lay of the Land • 38

report erratum • discuss

http://pragprog.com/titles/phoenix14/errata/add
http://forums.pragprog.com/forums/phoenix14

• Routers distribute requests.

• Controllers call services and set up intermediate data for views.

In the next chapter, we’re going to build a more hardy controller. You’ll see
how data flows through Phoenix, from the controller all the way into templates.
You’ll learn about concepts like layouts along the way. Let’s get cracking!

report erratum • discuss

Wrapping Up • 39

http://pragprog.com/titles/phoenix14/errata/add
http://forums.pragprog.com/forums/phoenix14

CHAPTER 3

Controllers
By now, you should have a loose grasp of how Phoenix applications work.
You know that a typical request starts at an endpoint, flows through a router,
and then flows into a controller. You should be starting to appreciate that
web programming is a functional problem, and that it’s natural to represent
it using a functional language.

The “Hello, World” application we built in the previous chapter was a toy. It
was the appropriate way to introduce you to Phoenix and the basics, but we’re
going to abandon it now so we can grapple with code organization and problem
solving. For the rest of the book, we’re going to work in a new project, and
we’ll continue developing it through to the end. Before we get started, though,
let’s take a deeper look at how controllers work. In addition, we’ll introduce
all of the things controllers touch, including views, templates, and contexts.

Understanding Controllers
In this chapter, we focus on building the controllers and the pieces of the
application they touch. Though Phoenix has generators that could generate
much of a simple web app from scratch, we’re going to build part of it by hand
so we can appreciate how the parts fit together. Before we fire up the genera-
tors, let’s talk about how the controller hangs together.

Our application will be called rumbl. When we’re all done, the application will
allow us to take videos (hosted elsewhere), and attach comments to them in
real time and play them back alongside the comments of other users. Think
of it as Mystery Science Theater 3000 meets Twitter. At scale, this application
will be tremendously demanding because each user will record and play back
comments that must be saved and served quickly so that the content stays
relevant. The figure on page 42 shows what it will look like.

report erratum • discuss

http://pragprog.com/titles/phoenix14/errata/add
http://forums.pragprog.com/forums/phoenix14

Before we get to the heavy lifting of videos and comments, we’re going to
handle users so you can get fully grounded in basic concepts first. Initially,
we’ll focus on a controller that handles our users. Let’s talk about what we
want to happen when a request for our user controller comes in via a browser:

connection
|> endpoint()
|> router()
|> browser_pipeline()
|> UserController.action()

A request enters through the endpoint (lib/rumbl_web/endpoint.ex) and then goes
into the router (lib/rumbl_web/router.ex). The router matches the URL pattern,
dispatches the connection through the browser pipeline, and then calls the
UserController action. Let’s break that last part down a little further, assuming
that the request invokes the index action:

connection
|> UserController.index()
|> UserView.render("index.html")

We need to build the controller to do the work for our individual request, the
view to render our template, and the template.

Chapter 3. Controllers • 42

report erratum • discuss

http://pragprog.com/titles/phoenix14/errata/add
http://forums.pragprog.com/forums/phoenix14

In order to respond to browser requests, we have to implement our business
logic. For example, the UserController.index might be a simple function that returns
all users in our application, but where are those users stored? What informa-
tion does the index view require for each user? Do users have different roles?
Is all user information publicly available? Those are business concerns that
will vary from application to application.

We could write all of this business logic directly in our controllers but there’s
a better way. We’ll isolate our business logic into a simple API layer called
the context.

The Context
A context in Phoenix is nothing more than a module that groups functions
with a shared purpose. For example, our application will need to read, modify,
and delete user accounts. We will strive to keep all of this code in a single
module.

Generally speaking, a context encapsulates all business logic for a common
purpose. This way, we can interact with our business logic from controllers,
channels, or remote APIs, without having to duplicate code. In a nutshell, a
controller exists to work with context functions. It parses end user requests,
calls context functions, and translates those results into something the end
user can understand. Each slice of code has an isolated purpose. The context
doesn’t know about the controller, and the controller doesn’t know about the
business rules.

As we will see, organizing our code in contexts also does wonders for main-
tainability. We can add many new features, fixes, or business logic changes
by simply changing contexts, without touching the web layer at all. We can
also unit test our business logic thoroughly via the context API while focusing
our integration tests on the controller.

With a master plan in our pocket, we can start to build our project. Let’s get
started.

Creating the Project
Let’s go ahead and create a new application, called rumbl, with mix phx.new. To
save some later heartache, we’ll go ahead and create the Ecto configuration
so we’ll have it down the road:

report erratum • discuss

Understanding Controllers • 43

http://pragprog.com/titles/phoenix14/errata/add
http://forums.pragprog.com/forums/phoenix14

$ mix phx.new rumbl

Fetch and install dependencies? [Yn] y
* running mix deps.get
* running mix deps.compile
* running cd assets && npm install && \

node node_modules/webpack/bin/webpack.js --mode development

We are all set! Go into your application by running:

$ cd rumbl

Then configure your database in config/dev.exs and run:

$ mix ecto.create

Start your Phoenix app with:

$ mix phx.server

You can also run your app inside IEx (Interactive Elixir) as:

$ iex -S mix phx.server

$

First, run mix ecto.create to prep your database for later use. Next, start the app
up with mix phx.server to make sure it’s working, and point your browser to
http://localhost:4000/. You see the familiar Phoenix home page. That’s not exactly
what we’re looking for. We can steal some of that goodness to build our own
messaging.

A Simple Home Page
The default web page is a simple template that has HTML. For now, we can
use it to form the foundation of our home page. Let’s start to tweak it right
now. Make your lib/rumbl_web/templates/page/index.html.eex look like this:

controllers_views_templates/listings/rumbl/lib/rumbl_web/templates/page/index.html.eex
<section class="phx-hero">

<h1><%= gettext "Welcome to %{name}!", name: "Rumbl.io" %></h1>
<p>Rumbl out loud.</p>

</section>

Now we have a home page started. Notice that your browser has already
changed as shown in the figure on page 45.

We have a crude home page so we should start to think about what to do
about our users. We’re not quite ready to integrate a real database, but we
can start thinking about the way we will make them available to our controller.
For that, we’ll build a context.

Chapter 3. Controllers • 44

report erratum • discuss

http://media.pragprog.com/titles/phoenix14/code/controllers_views_templates/listings/rumbl/lib/rumbl_web/templates/page/index.html.eex
http://pragprog.com/titles/phoenix14/errata/add
http://forums.pragprog.com/forums/phoenix14

Working with Contexts
All good application programmers must learn how to break down complex
ideas into discrete steps. The opposite is also true. To build a beautiful API,
you must be able to coalesce discrete functions into ideas by strategically
layering and grouping functions.

Every library we use, and even Elixir itself, is structured based on those ideas.
For example, any time you call Logger.debug from Elixir’s standard library, you
are accessing the Logger context. Internally, Logger may be broken into multiple
modules, but for us, everything is exposed through a simple, well-defined
public API of the Logger module.

Phoenix projects are structured like Elixir libraries and projects. We split our
code into contexts. A context will group related functionality, such as posts
and comments, often encapsulating patterns such as data access and data
validation, all driven by our business needs. By using contexts, we decouple
and isolate our systems into manageable, independent parts. Done correctly,
these APIs expose critical logical concepts while hiding both complexity and
implementation details.

With those goals in mind we’ll build a context backed by hardcoded data for
the short term. This interface should allow us to rapidly test the application
as we build it, and also to test our controllers, views, and templates with
simple data-only structs. Later, we can replace our hardcoded implementation
with a full database-backed Ecto repository, and our public interface will
remain unchanged.

Let’s think about where our user functionality should live. User accounts will
be a core part of rumbl so let’s create a module called Accounts to group those
concerns together. As rumbl grows, we can extend that code with other
related functions such as authentication or password resets.

report erratum • discuss

Understanding Controllers • 45

http://pragprog.com/titles/phoenix14/errata/add
http://forums.pragprog.com/forums/phoenix14

Now that we know we need an Accounts context, we can create the bits and
pieces we’ll need to flesh it out. We’ll need a data structure for representing
a user, so create a new file in lib/rumbl/accounts/user.ex and key this in:

controllers_views_templates/listings/rumbl/lib/rumbl/accounts/user.ex
defmodule Rumbl.Accounts.User do

defstruct [:id, :name, :username]
end

We defined a Rumbl.Accounts.User struct with the fields id, name, and username. A
struct is Elixir’s main abstraction for working with structured data.

Elixir Structs
Elixir structs are built on top of maps. We could have implemented our User
with a simple map. Maps would work just fine, but any developer could mis-
spell a key or make a similar mistake. Let’s see that problem play out in
action. Run iex -S mix to start an interactive Elixir within our application but
without running the Phoenix server:

iex> alias Rumbl.Accounts.User
iex> user = %{usernmae: "jose"}
%{usernmae: "jose"}
iex> user.username
** (KeyError) key :username not found in: %{usernmae: "jose"}

You may have noticed that we misspelled username as usernmae. A limitation of
maps is that they offer protection for bad keys only at runtime, when we
effectively access the key. However, many times we’d like to know about such
errors as soon as possible, often at compilation time. Structs solve this exact
problem. If you know exactly which keys should be in a map, a struct is a
better choice. For example, our User has clearly defined keys. Let’s try again
but this time using our newly defined Rumbl.Accounts.User struct:

iex> jose = %User{name: "Jose Valim"}
%Rumbl.Accounts.User{id: nil, name: "Jose Valim", username: nil}

iex> jose.name
"Jose Valim"

One of the first things to notice is default values. Even though we specified
only the :name field when creating the struct, Elixir conveniently filled in the
remaining ones. Now, if we misspell a key, we’re protected:

iex> chris = %User{nmae: "chris"}
** (KeyError) key :nmae not found in:
%Rumbl.Accounts.User{id: nil, name: nil, username: nil}

We misspelled the name: key and got an error. Nice.

Chapter 3. Controllers • 46

report erratum • discuss

http://media.pragprog.com/titles/phoenix14/code/controllers_views_templates/listings/rumbl/lib/rumbl/accounts/user.ex
http://pragprog.com/titles/phoenix14/errata/add
http://forums.pragprog.com/forums/phoenix14

Notice that the syntax for structs and maps is nearly identical, except for the
name of the struct. There’s a good reason for that. A struct is a map that has
a __struct__ key:

iex> jose.__struct__
Rumbl.Accounts.User

With our user in place, let’s define our Accounts context. We will add a couple
of functions which will allow user account fetching. Let’s create a new file in
lib/rumbl/accounts.ex and key this in:

controllers_views_templates/listings/rumbl/lib/rumbl/accounts.ex
defmodule Rumbl.Accounts doLine 1

@moduledoc """-

The Accounts context.-

"""-

5

alias Rumbl.Accounts.User-

-

def list_users do-

[-

%User{id: "1", name: "José", username: "josevalim"},10

%User{id: "2", name: "Bruce", username: "redrapids"},-

%User{id: "3", name: "Chris", username: "chrismccord"}-

]-

end-

15

def get_user(id) do-

Enum.find(list_users(), fn map -> map.id == id end)-

end-

-

def get_user_by(params) do20

Enum.find(list_users(), fn map ->-

Enum.all?(params, fn {key, val} -> Map.get(map, key) == val end)-

end)-

end-

end25

In our new module, we defined some of the typical functions you’d expect to
find to manage a list of User structs. The list_users() function returns a list of all
user structs in our system. Similarly, get_user and get_user_by functions fetch a
single user from the system matching an ID or list of attributes.

Now our application has an interface to fetch user accounts in the system.
Callers don’t know that we’re returning hardcoded data instead of talking to
the database, and that’s the point. We can make our data storage more
sophisticated later while building out our greater application design.

report erratum • discuss

Understanding Controllers • 47

http://media.pragprog.com/titles/phoenix14/code/controllers_views_templates/listings/rumbl/lib/rumbl/accounts.ex
http://pragprog.com/titles/phoenix14/errata/add
http://forums.pragprog.com/forums/phoenix14

Let’s take the context for a spin. Start the console with iex -S mix. The -S mix
option starts IEx in the context of the Mix script, giving us access to all
modules in our application directly in IEx:

iex> alias Rumbl.Accounts
iex> alias Rumbl.Accounts.User

iex> Accounts.list_users()
[

%Rumbl.Accounts.User{
id: "1",
name: "José",
username: "josevalim"

},
%Rumbl.Accounts.User{

id: "2",
name: "Bruce",
username: "redrapids"

},
%Rumbl.Accounts.User{

id: "3",
name: "Chris",
username: "chrismccord"

}
]

iex> Accounts.get_user("1")
%Rumbl.Accounts.User{

id: "1",
name: "José",
username: "josevalim"

}

iex> Accounts.get_user_by(name: "Bruce")
%Rumbl.Accounts.User{

id: "2",
name: "Bruce",
username: "redrapids"

}

And presto, we have a working user account system. Our controller will work
fine. In fact, our tests will work fine as well. With some minor tweaks, this
strategy will serve us well as we take the controller through its paces.

Now that we have user accounts, we can move ahead to the actual code that
fetches and renders them.

Chapter 3. Controllers • 48

report erratum • discuss

http://pragprog.com/titles/phoenix14/errata/add
http://forums.pragprog.com/forums/phoenix14

Building a Controller
You’ve already built a simple controller, so you know the drill. At this point,
we could create all of the routes needed by a user automatically with the
resources macro, but we are going to play the teacher and say “Show your work!”
If you understand how a single route works, it’ll be much easier to explore
the powerful shortcuts later. Specifically, we need two routes. UserController.index
will show a list of users, and UserController.show will show a single user. As
always, create the routes in router.ex:

controllers_views_templates/listings/rumbl/lib/rumbl_web/router.ex
scope "/", RumblWeb do

pipe_through :browser

get "/users", UserController, :index
get "/users/:id", UserController, :show
get "/", PageController, :index

end

Notice that we have our two new routes and the default route for /. Our two new
routes use the new UserController, which doesn’t yet exist, with the :show and :index
actions. The names and URLs we’ve chosen for these actions aren’t random.
The :show, :index, :new, :create, :edit, :update, and :delete actions are all frequently used
in Phoenix. For now, follow along strictly, and you’ll learn the shortcuts later.

Let’s take a closer look at the :index route:

get "/users", UserController, :index

You’ve seen the get macro before. The route matches HTTP GET requests to a
URL that looks like /users and sends them to the UserController, calling the index
action. That route stores :index—the action we intend to invoke—in the conn
and then calls the right pipeline.

Now, restart your server and point your browser to http://localhost:4000/users. You
get some debugging information, but you don’t have to go beyond the title to
find this message:

UndefinedFunctionError at GET /users

function RumblWeb.UserController.init/1 is undefined
(module RumblWeb.UserController is not available)

That makes sense; we haven’t written the controller yet.

report erratum • discuss

Building a Controller • 49

http://media.pragprog.com/titles/phoenix14/code/controllers_views_templates/listings/rumbl/lib/rumbl_web/router.ex
http://pragprog.com/titles/phoenix14/errata/add
http://forums.pragprog.com/forums/phoenix14

Let’s create a controller in lib/rumbl_web/controllers/user_controller.ex. Initially, we’ll
include one function called index to find the users from our Accounts context:

controllers_views_templates/listings/rumbl/lib/rumbl_web/controllers/user_controller.ex
defmodule RumblWeb.UserController do

use RumblWeb, :controller

alias Rumbl.Accounts

def index(conn, _params) do
users = Accounts.list_users()
render(conn, "index.html", users: users)

end
end

Let’s take that code apart. There’s a little bit of ceremony at the top of the file
that defines our module and announces that we’re going to use the :controller
API. Right now, the only action is index.

If you access the users page again, you can see that we’re getting an error
message, but we’ve traded up:

UndefinedFunctionError at GET /users

undefined function: RumblWeb.UserView.render/2
(module RumblWeb.UserView is not available)

Progress! We have a controller, but we still need to code a view.

Coding Views
This is your second pass through this process. The first time, you built a
“Hello, World”-style feature, one with a controller, view, and template. Now
it’s time for the more detailed explanation that you were promised earlier. In
many other web frameworks, the terms view and template are often used
synonymously. It’s enough for users to know that when a controller finishes
a task, a view is somehow rendered.

In Phoenix, the terminology is a little more explicit. A view is a module con-
taining rendering functions that convert data into a format the end user will
consume, like HTML or JSON. You can write such functions as you would
any other Elixir function. Those rendering functions can also be defined from
templates. A template is a function on that module, compiled from a file con-
taining a raw markup language and embedded Elixir code to process substi-
tutions and loops. The separation of the view and template concepts makes it
easy to render data any way you want, be it with a raw function, an embedded
Elixir engine, or any other template engine.

Chapter 3. Controllers • 50

report erratum • discuss

http://media.pragprog.com/titles/phoenix14/code/controllers_views_templates/listings/rumbl/lib/rumbl_web/controllers/user_controller.ex
http://pragprog.com/titles/phoenix14/errata/add
http://forums.pragprog.com/forums/phoenix14

In short, views are modules responsible for rendering. Templates are web
pages or fragments that allow both static markup and native code to build
response pages, compiled into a function.

Let’s build a view in lib/rumbl_web/views/user_view.ex:

controllers_views_templates/listings/rumbl/lib/rumbl_web/views/user_view.ex
defmodule RumblWeb.UserView do

use RumblWeb, :view

alias Rumbl.Accounts

def first_name(%Accounts.User{name: name}) do
name
|> String.split(" ")
|> Enum.at(0)

end
end

We added a simple first_name function to parse a user’s first name from that
user’s name field. Next, in lib/rumbl_web/templates, we created a user directory and
a new index template in lib/rumbl_web/templates/user/index.html.eex:

controllers_views_templates/listings/rumbl/lib/rumbl_web/templates/user/index.html.eex
<h1>Listing Users</h1>

<table>
<%= for user <- @users do %>

<tr>
<td><%= first_name(user) %> (<%= user.id %>)</td>
<td><%= link "View", to: Routes.user_path(@conn, :show, user.id) %></td>

</tr>
<% end %>

</table>

That’s mostly HTML markup, with a little Elixir mixed in. This template lan-
guage is called EEx, which stands for Embedded Elixir, and is part of the
Elixir’s standard library. At runtime, Phoenix will translate this template to
a function using this strategy. EEx executes Elixir code that’s within <%= %>
tags, injecting the result into the template. EEx evaluates code within <% %>
tags without injecting the result, meaning we’ll use them for code with side
effects. Since we generally try to keep side effects out of views wherever pos-
sible, we’ll use mostly the <%= %> form. You’ve seen template code before,
but we’ll walk through it anyway.

The expression for user <- @users walks through the users, rendering each user
using the template code inside the do block, and rolling up the result into the
template. Remember, we’ve already populated @users within our index action.

report erratum • discuss

Coding Views • 51

http://media.pragprog.com/titles/phoenix14/code/controllers_views_templates/listings/rumbl/lib/rumbl_web/views/user_view.ex
http://media.pragprog.com/titles/phoenix14/code/controllers_views_templates/listings/rumbl/lib/rumbl_web/templates/user/index.html.eex
http://pragprog.com/titles/phoenix14/errata/add
http://forums.pragprog.com/forums/phoenix14

Each user is a map. We render the name field, the id field, and a link. That
link comes from a helper function.

Chris says:

Why Are Templates So Fast in Phoenix?
After compilation, templates are functions. Since Phoenix builds templates using
linked lists rather than string concatenation the way many imperative languages do,
one of the traditional bottlenecks of many web frameworks goes away. Phoenix doesn’t
have to make huge copies of giant strings.

Since Elixir has only a single copy of the largest and most frequently used strings in
your application, the hardware caching features of most CPUs can come into play.
The book’s introduction talked about the performance of the routing layer. The per-
formance of the view layer is just as important. For more details, see Elixir RAM and
the Template of Doom.a

a. www.evanmiller.org/elixir-ram-and-the-template-of-doom.html

Using Helpers
That link function packs a surprising amount of punch into a small package.
Phoenix helpers provide a convenient way to drop common HTML structures
onto your view. There’s nothing special about them. Helpers are simply Elixir
functions. For example, you can call the functions directly in IEx:

$ iex -S mix

iex> Phoenix.HTML.Link.link("Home", to: "/")
{:safe, [60, "a", [[32, "href", 61, 34, "/", 34]],
62, "Home", 60, 47, "a", 62]}

The return value might look a little odd. We received a tuple with :safe, followed
by an unusual looking list of values. This list is known as an I/O list. I/O
lists are simply lists of values which allow data to be efficiently used for I/O,
such as writing values to a socket. Let’s convert this result into a human-
readable form by calling Phoenix.HTML.safe_to_string/1:

iex> Phoenix.HTML.Link.link("Home", to: "/") |> Phoenix.HTML.safe_to_string()
"Home"

The second argument to our link function is a keyword list, with the to: argu-
ment specifying the target. We use a path that’s automatically created for our
:show route to specify the link target. Now you can see that our list has the
three users we fetched from our repository as shown in the figure on page 53.

Chapter 3. Controllers • 52

report erratum • discuss

https://www.evanmiller.org/elixir-ram-and-the-template-of-doom.html
http://pragprog.com/titles/phoenix14/errata/add
http://forums.pragprog.com/forums/phoenix14

At this point you may be wondering where the HTML helpers come from. At
the top of each view, you can find the following definition: use RumblWeb, :view.
This code snippet is the one responsible for setting up our view modules,
importing all required functionality. Open up lib/rumbl_web.ex to see exactly
what’s imported into each view:

controllers_views_templates/rumbl/lib/rumbl_web.ex
def view do

quote do
use Phoenix.View, root: "lib/rumbl_web/templates",

namespace: RumblWeb

Import convenience functions from controllers
import Phoenix.Controller,

only: [get_flash: 1, get_flash: 2, view_module: 1]

Use all HTML functionality (forms, tags, etc)
use Phoenix.HTML

import RumblWeb.ErrorHelpers
import RumblWeb.Gettext
alias RumblWeb.Router.Helpers, as: Routes

end
end

The view function uses Elixir’s quote to inject a chunk of code into each view.
Since the contents of each quote are executed for each view, you want to keep
it short and sweet, limiting these chunks only to imports, uses, and aliases.
In our case, one of those injected statements is use Phoenix.HTML.

Phoenix.HTML is responsible for the HTML functionality in views, from generating
links to working with forms. Phoenix.HTML also provides HTML safety: by default,
applications are safe from cross-site scripting (XSS) attacks, because only the
markup generated by Phoenix.HTML functions is considered safe. That’s why
the link function returns a tuple. The first element of the tuple—the :safe
atom—indicates that the content in the second element is known to be safe.

report erratum • discuss

Using Helpers • 53

http://media.pragprog.com/titles/phoenix14/code/controllers_views_templates/rumbl/lib/rumbl_web.ex
http://pragprog.com/titles/phoenix14/errata/add
http://forums.pragprog.com/forums/phoenix14

To learn about existing HTML helpers, visit the Phoenix.HTML documentation.1

Keep in mind that the rumbl_web.ex file is not a place to attach your own func-
tions. You want to keep this file skinny and easy to understand. For example,
the contents of the view function will be macro-expanded to each and every
view! So remember, in rumbl_web.ex, prefer import statements to defining your
own functions.

That’s a good amount of progress so far. Let’s create one more action, and
the corresponding template, to round out our actions.

Showing a User
Now that we’ve created the code to show a list of users, we can work on
showing a single user. To refresh your memory, let’s look at the route we
created earlier:

get "/users/:id", UserController, :show

That’s easy enough. On a request to /users/:id, where :id is part of the inbound
URL, the router will add at least two things we’ll need to conn, including the
:id that’s part of the URL, and the action name, :show. Then, the router will
call the plugs in our pipeline, and then the UserController. To show a single user
using this request, we need a controller action, which we add to lib/rumbl_web/con-
trollers/user_controller.ex:

controllers_views_templates/listings/rumbl/lib/rumbl_web/controllers/user_controller.change1.ex
def show(conn, %{"id" => id}) do

user = Accounts.get_user(id)
render(conn, "show.html", user: user)

end

Now, you can see why Plug breaks out the params part of the inbound conn.
We can use params to extract the individual elements our action needs. In this
case, we’re matching on the "id" key to populate the id variable. We then use
that to ask the Accounts context for the given user, and use that to render
the result.

When you point the browser to localhost:4000/users/1, predictably, Phoenix screams
at you. You’ve not yet built the template.

Add this to lib/rumbl_web/templates/user/show.html.eex:

controllers_views_templates/listings/rumbl/lib/rumbl_web/templates/user/show.html.eex
<h1>Showing User</h1>
<%= first_name(@user) %> (<%= @user.id %>)

1. http://hexdocs.pm/phoenix_html

Chapter 3. Controllers • 54

report erratum • discuss

http://media.pragprog.com/titles/phoenix14/code/controllers_views_templates/listings/rumbl/lib/rumbl_web/controllers/user_controller.change1.ex
http://media.pragprog.com/titles/phoenix14/code/controllers_views_templates/listings/rumbl/lib/rumbl_web/templates/user/show.html.eex
http://hexdocs.pm/phoenix_html
http://pragprog.com/titles/phoenix14/errata/add
http://forums.pragprog.com/forums/phoenix14

Point your browser to /users/1. You can see the first user, with the dynamic
content piped in as we require.

Naming Conventions
When Phoenix renders templates from a controller, it infers the name of the
view module, RumblWeb.UserView, from the name of the controller module, Rum-
blWeb.UserController. The view modules infer their template locations from the
view module name. In our example, our RumblWeb.UserView would look for tem-
plates in the web/templates/user/ directory. Phoenix uses the explicit names you
provide throughout, whether singular or plural. That strategy avoids confusing
pluralization rules and naming inconsistencies you might find in other
frameworks.

You’ll see how to customize these conventions later. For now, know that you
can let Phoenix save you some time by letting the good old computer do the
work for you. Break the rules if you have to, but if you’re smart about it, you’ll
save some tedious ceremony along the way.

Nesting Templates
Often there’s a need to reduce duplication in the templates themselves. For ex-
ample, both of our templates have common code that renders a user. Take the
common code and create a user template in lib/rumbl_web/templates/user/user.html.eex:

<%= first_name(@user) %> (<%= @user.id %>)

We created another template to render a user. Then, whenever we build tables
or listings of users, we can re-use this template. Now, change your show.html.eex
template to render it:

<h1>Showing User</h1>
<%= render "user.html", user: @user %>

Also, change your index.html.eex template to render it:

<tr>
<td><%= render "user.html", user: user %></td>
<td><%= link "View", to: Routes.user_path(@conn, :show, user.id) %></td>

</tr>

At this point, it’s worth emphasizing that a view in Phoenix is just a module,
and templates are just functions. When we add a template named lib/rumbl_web/tem-
plates/user/user.html.eex, the view extracts the template from the filesystem and
makes it a function in the view itself. That’s why we need the view in the first
place. Let’s build on this thought inside iex -S mix:

report erratum • discuss

Showing a User • 55

http://pragprog.com/titles/phoenix14/errata/add
http://forums.pragprog.com/forums/phoenix14

iex> user = Rumbl.Accounts.get_user("1")
%Rumbl.Accounts.User{...}

iex> view = RumblWeb.UserView.render("user.html", user: user)
{:safe, [[[[["" | ""] | "José"] | " ("] | "1"] | ")\n"]}

iex> Phoenix.HTML.safe_to_string(view)
"José (1)\n"

We fetch a user from the repository and then render the template directly.
Because Phoenix has the notion of HTML safety, we can see that render returns
a tuple, tagged as :safe just as we saw with our link helper. Likewise, the con-
tents are also stored in an I/O list for performance.

Each template in our application becomes a render(template_name, assigns) clause in
its respective view. So, rendering a template is a combination of pattern
matching on the template name and executing the function. The assigns argument
is simply a holding hash for user-defined values containing values set by plugs
and controller functions. Because the rendering contract is so simple, nothing
is stopping developers from defining render clauses directly on the view module,
skipping the whole template. For example, in your RumblWeb.ErrorView, you could
respond to 404 or 500 status codes with basic error messages by simply
implementing the following functions:

def render("404.html", _assigns) do
"Page not found"

end

def render("500.html", _assigns) do
"Internal server error"

end

By default, your generated error view implements the template_not_found/2 callback
which renders these basic error messages for you. You can see this in action
in your own RumblWeb.ErrorView, which contains:

controllers_views_templates/rumbl/lib/rumbl_web/views/error_view.ex
By default, Phoenix returns the status message from
the template name. For example, "404.html" becomes
"Not Found".
def template_not_found(template, _assigns) do

Phoenix.Controller.status_message_from_template(template)
end

The Phoenix.View module—the one used to define the views themselves—also
provides functions for rendering views, including a function to render and
convert the rendered template into a string in one pass:

Chapter 3. Controllers • 56

report erratum • discuss

http://media.pragprog.com/titles/phoenix14/code/controllers_views_templates/rumbl/lib/rumbl_web/views/error_view.ex
http://pragprog.com/titles/phoenix14/errata/add
http://forums.pragprog.com/forums/phoenix14

iex> user = Rumbl.Accounts.get_user("1")
%Rumbl.Accounts.User{...}

iex> Phoenix.View.render(RumblWeb.UserView, "user.html", user: user)
{:safe, [[[[["" | ""] | "José"] | " ("] | "1"] | ")\n"]}

iex> Phoenix.View.render_to_string(RumblWeb.UserView, "user.html", user: user)
"José (1)\n"

Behind the scenes, Phoenix.View calls render in the given view and adds some
small conveniences, like wrapping our templates in layouts whenever one is
available. Let’s find out how.

Layouts
When we call render in our controller, instead of rendering the desired view
directly, the controller first renders the layout view, which then renders the
actual template in a predefined markup. This allows developers to provide a
consistent markup across all pages without duplicating it over and over again.

Since layouts are regular views with templates, all the knowledge that you’ve
gained so far applies to them. In particular, each template receives a couple
of special assigns when rendering, namely @view_module and @view_template. You
can see these in lib/rumbl_web/templates/layout/app.html.eex:

controllers_views_templates/rumbl/lib/rumbl_web/templates/layout/app.html.eex
<main role="main" class="container">

<p class="alert alert-info" role="alert">
<%= get_flash(@conn, :info) %>

</p>
<p class="alert alert-danger" role="alert">

<%= get_flash(@conn, :error) %>
</p>
<%= render @view_module, @view_template, assigns %>

</main>

It’s just pure HTML with a render call of render @view_module, @view_template, assigns,
but it doesn’t need to be restricted to HTML. As in any other template, the
connection is also available in layouts as @conn, giving you access to any
other helper in Phoenix. When you call render in your controller, you’re actu-
ally rendering with the :layout option set by default. This allows you to render
the view and template for your controller action in the layout with a plain
render function call. No magic is happening here.

We can tweak the existing layout to be a little more friendly to our application.
Rather than slog through a bunch of CSS and HTML here, we’ll let you work
out your own design. If you choose to do so, replace the layout you find at

report erratum • discuss

Showing a User • 57

http://media.pragprog.com/titles/phoenix14/code/controllers_views_templates/rumbl/lib/rumbl_web/templates/layout/app.html.eex
http://pragprog.com/titles/phoenix14/errata/add
http://forums.pragprog.com/forums/phoenix14

lib/rumbl_web/templates/layout/app.html.eex with one you like better. As always, you’ll
see your browser autoupdate.

We’re just about done here. By now, our growing company valuation is some-
where north of, well, the tree house you built in the third grade. Don’t worry,
though; things will pick up in a hurry. You’re going to go deeper faster than
you thought possible.

Wrapping Up
We packed a ton into this chapter. Let’s summarize what you’ve done:

• We created our first context that encapsulates all of the logic related to
account management.

• We created actions, which serve as the main point of control for each
request.

• We created views, which exist to render templates.

• We created templates, which generate HTML for our users.

• We employed helpers, which are simple Phoenix functions used in tem-
plates.

• We used layouts, which are HTML templates that embed an action’s HTML.

In the next chapter, we’re going to go back to the context, which we’ve imple-
mented with a simple in-memory list, with a database backend using Ecto.
By the time we’re done, we’ll be reading our users from the database and
entering new users with forms. Along the way, we’ll start to see how a little
upfront design effort with contexts paves the way for our growing feature set.

Don’t stop now! Things are just getting interesting.

Chapter 3. Controllers • 58

report erratum • discuss

http://pragprog.com/titles/phoenix14/errata/add
http://forums.pragprog.com/forums/phoenix14

CHAPTER 4

Ecto and Changesets
Up to now, we’ve been focusing on our application’s presentation layer with
views and templates, and controlling those views with controllers. Rather
than bogging down into technical details, we used an application API to
encapsulate all of our business concerns. Our single Accounts context keeps
all the data directly in the code instead of using a real database. There’s a
method to our madness. With very little work, we can now replace our in-
memory data structures with a real database and all of our controller code
can remain unchanged.

Ecto is the Elixir framework for persisting data. In this chapter, we’ll convert
our Accounts context to use an Ecto repository backed by a PostgreSQL
database. By the time you’re done, your accounts context will be able to save
users and search for them using an advanced query API.

Understanding Ecto
If you’ve used data frameworks like LINQ in .NET or persistence frameworks
like Active Record in Rails, you’ll see some common threads in Ecto but also
some significant differences. Ecto is a wrapper that’s primarily intended for
relational databases, allowing developers to read and persist data to underlying
storage such as PostgreSQL. It has an encapsulated query language that you
can use to build layered queries that can then be composed into more-
sophisticated ones.

Ecto also has a feature called changesets that holds all changes you want to
perform on the database. It encapsulates the whole process of receiving
external data, casting and validating it before writing it to the database.

report erratum • discuss

http://pragprog.com/titles/phoenix14/errata/add
http://forums.pragprog.com/forums/phoenix14

In this chapter, we’ll start with a basic database-backed repository. We’ll then
move on to creating data and managing updates with changesets, saving most
of the query language for later.

When we created our application, Phoenix generated an Ecto repository, called
Rumble.Repo:

ecto/rumbl/lib/rumbl/repo.ex
defmodule Rumbl.Repo do

use Ecto.Repo,
otp_app: :rumbl,
adapter: Ecto.Adapters.Postgres

end

Our repository uses Ecto’s default database adapter, PostgreSQL. If you
haven’t already done so, install PostgreSQL now.

You can configure the repository and the development credentials to access
the database in config/dev.exs:

ecto/rumbl/config/dev.exs
Configure your database
config :rumbl, Rumbl.Repo,

username: "postgres",
password: "postgres",
database: "rumbl_dev",
hostname: "localhost",
pool_size: 10

We specify the username, password, and database parameters. You need to replace
those with your own database username and password.

Let’s verify our credentials are correct. Type the following command and Ecto
will create the underlying database, if it’s not already there:

$ mix ecto.create
The database for Rumbl.Repo has been created.

We haven’t yet done the heavy lifting to specify our users. We’ve only tied
Ecto to this PostgreSQL database. Let’s create some schemas and tie those
tables to code in our Accounts context.

Defining the User Schema and Migration
At its core, Ecto lets you specify a struct that ties individual fields to the
fields in database tables through a DSL. Let’s use that now. To define our

Chapter 4. Ecto and Changesets • 60

report erratum • discuss

http://media.pragprog.com/titles/phoenix14/code/ecto/rumbl/lib/rumbl/repo.ex
http://media.pragprog.com/titles/phoenix14/code/ecto/rumbl/config/dev.exs
http://pragprog.com/titles/phoenix14/errata/add
http://forums.pragprog.com/forums/phoenix14

schema, let’s replace our bare user struct in lib/rumbl/accounts/user.ex with the
following:

ecto/listings/rumbl/lib/rumbl/accounts/user.change1.ex
defmodule Rumbl.Accounts.User do

use Ecto.Schema
import Ecto.Changeset

schema "users" do
field :name, :string
field :username, :string

timestamps()
end

end

This DSL is built with Elixir macros. The schema and field macros let us spec-
ify both the underlying database table and the Elixir struct at the same time.
Each field corresponds to both a field in the database and a field in our local
Accounts.User struct. By default, Ecto defines the primary key called :id auto-
matically. From the schema definition, Ecto automatically defines an Elixir
struct for us, which we can create by calling %Rumbl.Accounts.User{} as we did
before.

Finally, our schema uses use Ecto.Schema at the top and it also imports
Ecto.Changeset functions which will allow us to work more easily with changesets
later on.

We’ve treated our code with care, and we should give our database at least
the same level of respect. Now that we have our Repo and User schema config-
ured, we need to make the database reflect the structure of our application.
Ecto uses migrations for that purpose. A migration changes a database to
match the structure our application needs. For our new feature, we need to
add a migration to create our users table with columns matching our User
schema. Let’s generate one:

$ mix ecto.gen.migration create_users
* creating priv/repo/migrations
* creating priv/repo/migrations/20180315023132_create_users.exs

The mix ecto.gen.migration command creates a migration file for us with a special
timestamp to ensure ordering of our database migrations. For this reason,
your migration filename will have a different prefix than ours. Key in these
changes within your empty change function:

report erratum • discuss

Defining the User Schema and Migration • 61

http://media.pragprog.com/titles/phoenix14/code/ecto/listings/rumbl/lib/rumbl/accounts/user.change1.ex
http://pragprog.com/titles/phoenix14/errata/add
http://forums.pragprog.com/forums/phoenix14

ecto/listings/rumbl/priv/repo/migrations/20180315023132_create_users.exs
defmodule Rumbl.Repo.Migrations.CreateUsers do

use Ecto.Migration

def change do
create table(:users) do
add :name, :string
add :username, :string, null: false
add :password_hash, :string

timestamps()
end

create unique_index(:users, [:username])
end

end

In the dark days of persistence frameworks, before migrations were common-
place, changes to the database weren’t versioned with the source code. Often,
those changes weren’t even automated. That strategy was fine if new code
worked the first time, but it opened the door for problems:

• When deploying new code, programmers often introduced errors when
changing the database.

• The high stress of code rollbacks led to frequent mistakes when changes
were rolled back under pressure.

• Building a fresh development environment was tough because the schema
history was too fragmented.

In general, migrating a database, both up for a successful deploy and down
for an unsuccessful deploy, should be an automated and repeatable process.
The Ecto.Migration API1 provides several functions to create, remove, and change
database tables, fields, and indexes. These functions also have counterparts
to do the reverse. Here, we used the create, add, and timestamps macros to build
our users table and matched the fields with our User schema. For example,
add creates a new field, and timestamps creates a couple of fields for us, inserted_at
and updated_at.

Overall, we created a table with six fields: the auto-generated id, the inserted_at
and updated_at timestamps, name, username, and password_hash. We added pass-
word_hash to the database but we didn’t list password_hash as a schema field for
now. We will introduce it when it’s time to discuss authentication in Chapter
5, Authenticating Users, on page 77. Finally, we add a unique index to guar-
antee that the username field is unique across the whole table.

1. http://hexdocs.pm/ecto/Ecto.Migration.html

Chapter 4. Ecto and Changesets • 62

report erratum • discuss

http://media.pragprog.com/titles/phoenix14/code/ecto/listings/rumbl/priv/repo/migrations/20180315023132_create_users.exs
http://hexdocs.pm/ecto/Ecto.Migration.html
http://pragprog.com/titles/phoenix14/errata/add
http://forums.pragprog.com/forums/phoenix14

Now all that’s left is to migrate up our database:

$ mix ecto.migrate

[info] == Running Rumbl.Repo.Migrations.CreateUsers.change/0 forward
[info] create table users
[info] create index users_username_index
[info] == Migrated in 0.0s

Be careful. The ecto.migrate task will migrate the database for your current
environment. So far, we’ve been running the dev environment. To change the
environment, you’d set the MIX_ENV operating-system environment variable.

We’ve configured our database and created the schema with a migration. We
are ready to use our repository through the Accounts context. We just need to
make sure our repository services are up and running.

Phoenix is built on top of OTP, a layer for reliably managing services. We can
use OTP to start key services like Ecto repositories in a supervised process
so that Ecto and Phoenix can do the right thing in case our repository
crashes. To do so, we simply need to list the Rumbl.Repo as a child in our
supervision tree. Phoenix already did that for us. Open up lib/rumbl/application.ex
and you will find this:

children = [
...
Start the Ecto repository
Rumbl.Repo,
...

]

Now that our configuration is established, let’s take it for a spin.

Using the Repository to Add Data
With our database ready, we can begin to persist our Accounts.User structs. Let’s
hop into an IEx shell and create the users that we previously hardcoded in
our Accounts context.

Spin up your console with iex -S mix, and insert some data:

iex> alias Rumbl.Repo
iex> alias Rumbl.Accounts.User

iex> Repo.insert(%User{
...> name: "José", username: "josevalim"
...> })
[debug] QUERY OK db=5.0ms
INSERT INTO "users" ("name","username","inserted_at",
...

report erratum • discuss

Using the Repository to Add Data • 63

http://pragprog.com/titles/phoenix14/errata/add
http://forums.pragprog.com/forums/phoenix14

{:ok,
%Rumbl.Accounts.User{__meta__: #Ecto.Schema.Metadata<:loaded, "users">,
id: 1,
inserted_at: ~N[2017-10-25 19:13:28.878179],
name: "José",
updated_at: ~N[2017-10-25 19:13:28.879737],
username: "josevalim"}}

iex> Repo.insert(%User{
...> name: "Bruce", username: "redrapids"
...> })

...
iex> Repo.insert(%User{
...> name: "Chris", username: "mccord"
...> })

And we’re up! You can see that Ecto is creating the id field and populating
our timestamps for us. It’s great to persist data, but how do we use Ecto to
retrieve it? Let’s take a look:

iex> Repo.all(User)
[debug] QUERY OK source="users" db=3.2ms decode=0.1ms queue=0.1ms
SELECT u0."id", u0."name", u0."username", u0."inserted_at", u0."updated_at"
FROM "users" AS u0 []

[
%Rumbl.Accounts.User{

id: 1,
name: "José",
username: "josevalim",
...

},
%Rumbl.Accounts.User{

id: 2,
name: "Bruce",
username: "redrapids",
...

},
%Rumbl.Accounts.User{

id: 3,
name: "Chris",
username: "mccord",
...

}
]

iex> Repo.get(User, 1)
[debug] QUERY OK source="users" db=3.4ms
SELECT u0."id", u0."name", u0."username",
u0."inserted_at", u0."updated_at"
FROM "users" AS u0 WHERE (u0."id" = $1) [1]

Chapter 4. Ecto and Changesets • 64

report erratum • discuss

http://pragprog.com/titles/phoenix14/errata/add
http://forums.pragprog.com/forums/phoenix14

%Rumbl.Accounts.User{
id: 1,
name: "José",
username: "josevalim",
...

}

Now that we can persist users to our repo and pull the accounts back out,
we’re ready to wire up database access to our Accounts context. Make the fol-
lowing changes to your lib/rumbl/accounts.ex file:

ecto/listings/rumbl/lib/rumbl/accounts.change1.ex
alias Rumbl.Repo
alias Rumbl.Accounts.User

def get_user(id) do
Repo.get(User, id)

end

def get_user!(id) do
Repo.get!(User, id)

end

def get_user_by(params) do
Repo.get_by(User, params)

end

def list_users do
Repo.all(User)

end

We replaced our get_user, get_user_by, and list_users functions with calls into our
Ecto repo. We added a new get_user! which raises an Ecto.NotFoundError when
looking up a user that does not exist.

If you’ve seen plenty of MVC applications in the past, you know how easy it
is for that design to get away from you. It’s easy to see the concerns about
persistence creep into the controller. As controller actions grow, business
logic creeps in and the overall separation of concerns devolves, eroding design
quality and crippling maintainability.

Contrast that with our context, where there’s a logical parking place for all
of these concerns. You can already see the benefits of our Accounts context in
action. With our repo calls in place, we’re ready to try it out even though we
haven’t touched our controller code at all.

Restart your server and then visit our users page at http://localhost:4000/users and
view the logs to see the inserted records:

$ mix phx.server
[info] Running RumblWeb.Endpoint with Cowboy on http://localhost:4000

report erratum • discuss

Using the Repository to Add Data • 65

http://media.pragprog.com/titles/phoenix14/code/ecto/listings/rumbl/lib/rumbl/accounts.change1.ex
http://pragprog.com/titles/phoenix14/errata/add
http://forums.pragprog.com/forums/phoenix14

Now visit http://localhost:4000/users as before, but watch the logs to see Ecto’s SQL
statements being executed:

[info] GET /users
[debug] Processing with RumblWeb.UserController.index/2

Parameters: %{}
Pipelines: [:browser]

[debug] QUERY OK source="users" db=1.0ms
SELECT u0."id", u0."name", u0."username", ...
[info] Sent 200 in 1ms

You can see that we’re fetching data from the database instead of the in-memory
hardcoded data. We’re making plenty of progress here, but there’s still work to
do. Let’s build some forms to register new users via a web interface.

Building Forms
Now that we have a database-backed context, let’s add the ability to create
new users in our system. We’re going to use Phoenix’s form builders for that
purpose. First, open up your controller at lib/rumbl_web/controllers/user_controller.ex
and set up a new user account struct for our new template, like this:

ecto/listings/rumbl/lib/rumbl_web/controllers/user_controller.change1.ex
alias Rumbl.Accounts.User

def new(conn, _params) do
changeset = Accounts.change_user(%User{})
render(conn, "new.html", changeset: changeset)

end

Notice the Accounts.change_user function. This function receives a struct, and
returns an Ecto.Changeset. Changesets let Ecto manage record changes, cast
parameters, and perform validations. We use a changeset to build a customized
strategy for dealing with each specific kind of change, such as creating a user
or updating sensitive information. Let’s add a changeset function to our User
struct in lib/rumbl/accounts/user.ex with some essential validations:

ecto/listings/rumbl/lib/rumbl/accounts/user.change2.ex
def changeset(user, attrs) do

user
|> cast(attrs, [:name, :username])
|> validate_required([:name, :username])
|> validate_length(:username, min: 1, max: 20)

end

Our changeset accepts an Accounts.User struct and attributes. We then pass
the cast function a list of fields to tell Ecto that name and username are allowed
to be cast as user input. This casts all allowable user input values to their

Chapter 4. Ecto and Changesets • 66

report erratum • discuss

http://media.pragprog.com/titles/phoenix14/code/ecto/listings/rumbl/lib/rumbl_web/controllers/user_controller.change1.ex
http://media.pragprog.com/titles/phoenix14/code/ecto/listings/rumbl/lib/rumbl/accounts/user.change2.ex
http://pragprog.com/titles/phoenix14/errata/add
http://forums.pragprog.com/forums/phoenix14

schema types and rejects everything else. Next, we used validate_required which
makes sure we provide all necessary required fields.

We pipe validate_required, which returns an Ecto.Changeset, into validate_length to
validate the username length. Ecto.Changeset defines cast, validate_required, and vali-
date_length, which we’ve imported at the top of our schema module.

Next, we need to expose our new functionality from our public Accounts context.
Add a new change_user function which calls our user changeset:

ecto/listings/rumbl/lib/rumbl/accounts.change2.ex
def change_user(%User{} = user) do

User.changeset(user, %{})
end

When we’re designing the business logic for our accounts, we need to decide
what’s public and what’s private. The Accounts module itself is the only public
API our controllers (or any other external components) should touch, but that
doesn’t mean all logic related to accounts should live there. In this example,
we added some private logic to Accounts.User which the context exposes via the
Accounts.change_user function.

We’re using layers to hide private logic behind a public API. There are many
good ways to organize your code inside the context. You’ll choose the best
one based on how you want to document, structure, and test the context
internals.

At this point, you might wonder why Ecto adds this little bit of complexity
through changesets. You may have seen other frameworks that add validations
directly to the schema. We could simply write a set of one-size-fits-all valida-
tions and then pass a set of updated attributes to create or update functions,
but that strategy might lead to problems. Here’s why.

Handling Update Policies
When conventional persistence frameworks allow one-size-fits-all validations,
they’re forced to work harder and manage change across multiple concerns.
Here’s the problem. Say you have an account and your new, simple application
saves a simple password, hashed for security sake, along with the record.

Next, imagine that your boss lays down the requirement of logging into your
application through Facebook. That update requires a different kind of pass-
word validation, and a different kind of enforcement for password rules, so
you build a custom validation and tweak your code in clever ways to trigger
the right password rules at the right time. That second policy makes your
update_account validations more complex, but they’re manageable.

report erratum • discuss

Building Forms • 67

http://media.pragprog.com/titles/phoenix14/code/ecto/listings/rumbl/lib/rumbl/accounts.change2.ex
http://pragprog.com/titles/phoenix14/errata/add
http://forums.pragprog.com/forums/phoenix14

Then, your increasingly irritating boss asks for a JSON API, and your API
programmers aren’t content with the cute “Oops, an error was found” error
messages that seemed to work fine for end users. You need to provide more
information about what went wrong. You dig deeply into the persistence API
and decide that the error reporting no longer works for you. Your stomach
sinks as it does for that first rollercoaster drop while you hope against hope
that the car will rise again, but you instinctively know that this ride is at its
zenith. It’s always downhill from here.

Here’s the problem. Your code has a single update mechanism but multiple
update policies. Your code will continue to get more complex and difficult to
maintain until you separate your update mechanisms. Ecto changesets allow
you to do exactly that.

One size does not fit all when it comes to update strategies. Validations, error
reporting, security, and the like can change. When they do, if your single
update policy is tightly coupled to a schema, it’ll hurt. The changeset lets Ecto
decouple update policy from the schema, and that’s a good thing because
you can handle each update policy in its own separate changeset function.
You’ll see a good example of this policy segregation when you learn about
authentication.

Building Resource Routes
Now that we’ve updated our schema, context, and controller to handle new
users, we need to add the new action to our router. Replace your main router
scope with the following code:

ecto/listings/rumbl/lib/rumbl_web/router.change1.ex
scope "/", RumblWeb do

pipe_through :browser

get "/", PageController, :index
resources "/users", UserController, only: [:index, :show, :new, :create]

end

resources is a shorthand implementation for a common set of actions that define
create, read, update, and delete operations (commonly referred to as CRUD)
to access resources via simple HTTP verbs. We use the resources macro to add
a bunch of common routes that we’d otherwise need to write by hand. Since
index and show already followed this convention, we remove the two get macros
for the :index and :show actions, and we replace them with the resources macro.
Since we don’t need the edit or delete actions, we pass the :only option to
explicitly list the routes we want generated. The following would be equivalent
to a resources "/users", UserController declaration:

Chapter 4. Ecto and Changesets • 68

report erratum • discuss

http://media.pragprog.com/titles/phoenix14/code/ecto/listings/rumbl/lib/rumbl_web/router.change1.ex
http://pragprog.com/titles/phoenix14/errata/add
http://forums.pragprog.com/forums/phoenix14

get "/users", UserController, :index
get "/users/:id/edit", UserController, :edit
get "/users/new", UserController, :new
get "/users/:id", UserController, :show
post "/users", UserController, :create
patch "/users/:id", UserController, :update
put "/users/:id", UserController, :update
delete "/users/:id", UserController, :delete

Sure, the resources macro has been known to reduce carpal tunnel syndrome
almost as much as an ergonomic workspace, but it’s more than a keystroke
saver. By keeping to these conventions where you can, you’re also communi-
cating in a language that other programmers also understand. Creating these
routes also makes additional functions available. You can use routes by name
to build links, HTML elements, and the like.

If at any time you want to see all available routes, you can run the phx.routes
Mix task, like this:

$ mix phx.routes

page_path GET / RumblWeb.PageController :index
user_path GET /users RumblWeb.UserController :index
user_path GET /users/new RumblWeb.UserController :new
user_path GET /users/:id RumblWeb.UserController :show
user_path POST /users RumblWeb.UserController :create

With the route behind us, let’s move on to the template. Now create a new
file named lib/rumbl_web/templates/user/new.html.eex and add this:

ecto/listings/rumbl/lib/rumbl_web/templates/user/new.html.eex
<h1>New User</h1>

<%= form_for @changeset, Routes.user_path(@conn, :create), fn f -> %>
<div>

<%= text_input f, :name, placeholder: "Name" %>
</div>
<div>

<%= text_input f, :username, placeholder: "Username" %>
</div>
<%= submit "Create User" %>

<% end %>

We use a function, rather than HTML tags, to build the form, giving it an anony-
mous function. form_for provides conveniences like security, UTF-8 encoding, and
more. The function takes three arguments: a changeset, a path, and an anonymous
function. That function takes one argument, the form data we’re labeling f. We’re
asking the template engine to build a function returning everything in the template
between fn f -> and end. You can see the additional functions in play as well. These

report erratum • discuss

Building Forms • 69

http://media.pragprog.com/titles/phoenix14/code/ecto/listings/rumbl/lib/rumbl_web/templates/user/new.html.eex
http://pragprog.com/titles/phoenix14/errata/add
http://forums.pragprog.com/forums/phoenix14

build two input fields and a submit tag. Similar to link, all those functions are docu-
mented in the Phoenix.HTML library.2

If we visit http://localhost:4000/users/new in our browser to inspect the generated
HTML, we see the following markup:

<form accept-charset="UTF-8" action="/users" method="post">
<input name="_csrf_token"

type="hidden"
value="MFgTPhAieHUgGzJ2OiRDXXw3Luc7wV7h/reiiA==">

<input name="_utf8" type="hidden" value="✓">
<div>

<input id="user_name"
name="user[name]"
placeholder="Name"
type="text">

</div>
<div>

<input id="user_username"
name="user[username]"
placeholder="Username"
type="text">

</div>
<button type="submit" value="Create User"></button>

</form>

You can see all of the work the form_for tag and the other functions are doing
for you. The special _csrf_token hidden parameter was injected for us, and it
makes sure that a user’s requests are hard to spoof across sites. Also, though
we didn’t specify the name user with each of our text fields, the parameter
names like user[name] were pulled from our changeset.

You can probably guess where the data will go. The form will send a POST
request to "/users", but we haven’t yet created the action for it. Let’s do that now.

Creating Resources
We have a form that submits the data for a new user. It’s time to surface this
new feature in our controller. This work should happen in our context. Let’s
extend Accounts to create users. Open up lib/rumbl/accounts.ex and key this in:

ecto/listings/rumbl/lib/rumbl/accounts.change3.ex
def create_user(attrs \\ %{}) do

%User{}
|> User.changeset(attrs)
|> Repo.insert()

end

2. http://hexdocs.pm/phoenix_html

Chapter 4. Ecto and Changesets • 70

report erratum • discuss

http://media.pragprog.com/titles/phoenix14/code/ecto/listings/rumbl/lib/rumbl/accounts.change3.ex
http://hexdocs.pm/phoenix_html
http://pragprog.com/titles/phoenix14/errata/add
http://forums.pragprog.com/forums/phoenix14

José says:

How Does Phoenix Know Which Data to Show
in the Form?

Our application passes a changeset from Ecto to the form_for function. The Phoenix
team had a problem. How should we make the changes in the changeset available to
the form? We could have hardcoded form_for to directly use Ecto.Changeset, but we weren’t
happy with that choice. It would be brittle and hard to extend.

Imagine that your company decides to build an in-house data abstraction for some
new technology and you want to integrate it with Phoenix. With forms tightly coupled
to changesets, you’d be lost. You’d have to either rewrite forms or fork Phoenix. We
needed a contract. Elixir protocols are the perfect solution to this problem.

To solve the form_for coupling problem, we defined a protocol named Phoenix.HTML.Form-
Data, which separates the interface from the implementation. Ecto.Changeset implements
this protocol to convert its internal data to the structure required by Phoenix forms,
all properly documented in the Phoenix.HTML.FormData contract.

Take a look at the new short create_user function. We save our controller from
this tiny bit of complexity. Our function has a short pipeline that starts with
an empty user, applies a changeset, and then inserts it into the repository.
The controller shouldn’t care about these short persistence details, but neither
should the schema. We isolate change policy to a single place.

With the context ready, we can plug the changes into the controller. The
question is where this work should happen. Recall our changes to the router.ex
file, when we added the resources "/users" macro to router.ex to build a set of con-
ventional routes. One new route maps posts to "/users" to the UserController.create
action. Add a create function to UserController:

ecto/listings/rumbl/lib/rumbl_web/controllers/user_controller.change2.ex
def create(conn, %{"user" => user_params}) do

{:ok, user} = Accounts.create_user(user_params)

conn
|> put_flash(:info, "#{user.name} created!")
|> redirect(to: Routes.user_path(conn, :index))

end

This pattern of code should be getting familiar to you by now. We keep piping
functions together until the conn has the final result that we want. Each
function does an isolated transform step. We call into our context first, regis-
tering our user in the application. Then, we take the connection and transform
it twice, adding a flash message with the put_flash function, and then add a

report erratum • discuss

Creating Resources • 71

http://media.pragprog.com/titles/phoenix14/code/ecto/listings/rumbl/lib/rumbl_web/controllers/user_controller.change2.ex
http://pragprog.com/titles/phoenix14/errata/add
http://forums.pragprog.com/forums/phoenix14

redirect instruction with the redirect function. Both of these are simple plug
functions that we use to transform the connection, one step at a time.

Let’s examine one tiny detail here first. In some places, we’re going to need
to refer to specific routes in the application. Generally, these get automatically
generated, and you can access them from the YourApplication.Router.Helpers module.
That’s a lot to type each time you need a route. In the auto-generated rumbl_web
file, you’ll find the following snippet:

ecto/rumbl/lib/rumbl_web.ex
def controller do

quote do
use Phoenix.Controller, namespace: RumblWeb

import Plug.Conn
import RumblWeb.Gettext
alias RumblWeb.Router.Helpers, as: Routes

end
end

That’s the ticket. The line alias RumblWeb.Router.Helpers, as: Routes gives us exactly
what we need. Here’s why.

Phoenix automatically generates the Helpers inside your router which contains
named helpers to help developers generate and keep their routes up to date.
Routes is a simple alias for Router.Helpers. That’s why you can get any route
through Routes.some_path!

Getting back to work, we can try out our shiny new create action. Go visit
http://localhost:4000/users/new:

And when we click Create User, we should be sent back to the users index
page to see our inserted user as shown in the figure on page 73.

We still have work to do, though. Type a username that’s too long, and you’re
greeted with Phoenix’s debug error page with the error “no match of right
hand side value.”

Chapter 4. Ecto and Changesets • 72

report erratum • discuss

http://media.pragprog.com/titles/phoenix14/code/ecto/rumbl/lib/rumbl_web.ex
http://pragprog.com/titles/phoenix14/errata/add
http://forums.pragprog.com/forums/phoenix14

We were expecting a result of the shape {:ok, user} but got {:error, %Ecto.Change-
set{}}. Our validations failed, throwing an error page. To fix this problem, let’s
check for both :ok and :error outcomes, showing validation errors upon failure.
First we need to update our UserController to react to an invalid changeset:

ecto/listings/rumbl/lib/rumbl_web/controllers/user_controller.change3.ex
def create(conn, %{"user" => user_params}) do

case Accounts.create_user(user_params) do
{:ok, user} ->
conn
|> put_flash(:info, "#{user.name} created!")
|> redirect(to: Routes.user_path(conn, :index))

{:error, %Ecto.Changeset{} = changeset} ->
render(conn, "new.html", changeset: changeset)

end
end

Easy enough. We insert the new user record and then match on the return
code. On :ok, we add a flash message to the conn and then redirect to the
user_path. That route takes us to the index action. On error, we simply re-render
new.html, passing the conn and the changeset with the failed validations. We’ll
use the Phoenix input fields to handle the problem.

Show the validation errors for each form input field in lib/rumbl_web/tem-
plates/user/new.html.eex, like this:

report erratum • discuss

Creating Resources • 73

http://media.pragprog.com/titles/phoenix14/code/ecto/listings/rumbl/lib/rumbl_web/controllers/user_controller.change3.ex
http://pragprog.com/titles/phoenix14/errata/add
http://forums.pragprog.com/forums/phoenix14

ecto/listings/rumbl/lib/rumbl_web/templates/user/new.change1.html.eex
<%= if @changeset.action do %>

<div class="alert alert-danger">
<p>Oops, something went wrong! Please check the errors below.</p>

</div>
<% end %>

<div>
<%= text_input f, :name, placeholder: "Name" %>
<%= error_tag f, :name %>

</div>
<div>

<%= text_input f, :username, placeholder: "Username" %>
<%= error_tag f, :username %>

</div>

The :action field of a changeset indicates an action we tried to perform on it,
such as :insert. When we build a new changeset, the field is nil. If Phoenix
renders our form with any action, we know the form action had validation
errors. In our code, we first check for the existence of @changeset.action. If it’s
present, we show a validation notice at the top of the form. Next, we use the
error_tag function defined in lib/rumbl_web/views/error_helpers.ex to display an error
tag next to each form input with the validation error for each field.

Now try again to submit your form with invalid fields:

Presto!

If you’ve not yet appreciated the Ecto strategy for changesets, this code should
help. The changeset had all validation errors because the Ecto changeset

Chapter 4. Ecto and Changesets • 74

report erratum • discuss

http://media.pragprog.com/titles/phoenix14/code/ecto/listings/rumbl/lib/rumbl_web/templates/user/new.change1.html.eex
http://pragprog.com/titles/phoenix14/errata/add
http://forums.pragprog.com/forums/phoenix14

carries the validations and stores this information for later use. In addition
to validation errors, the changesets also track changes!

Remember, we don’t have to compromise our context by letting Ecto persis-
tence details bleed through. We’re actually surfacing Phoenix form details
because changesets implement the Phoenix.HTML.FormData protocol.

Let’s see how that works. Crack open IEx. If you have an old window already
open, you can just recompile the current project:

iex> recompile()
iex> alias Rumbl.Accounts.User
iex> changeset = User.changeset(%User{username: "eric", name: "Eric"}, %{})
%Ecto.Changeset{changes: %{}, ...}

iex> import Ecto.Changeset
Ecto.Changeset

iex> changeset = put_change(changeset, :username, "ericmj")
%Ecto.Changeset{changes: %{username: "ericmj"}, ...}

iex> changeset.changes
%{username: "ericmj"}

iex> get_change(changeset, :username)
"ericmj"

Now you have a more complete picture. Ecto is using changesets as a bucket
to hold everything related to a database change, before and after persistence.
You can use this information to do more than see what changed. Ecto lets
you write code to do the minimal required database operation to update a
record. If a particular change must be checked against a database constraint,
such as a unique index, changesets do that. If Ecto can enforce validations
without hitting the database, you can do that too. You’ll explore the broader
changeset API, validations, and strategies as we build out the rest of our
application.

Wrapping Up
It’s a good time to pause and take stock of what we’ve done. It’s been a busy
chapter.

• We began the chapter by introducing Ecto and announcing our intention
to replace the naive implementation in our context with a database-backed
Ecto repository.

• We configured our new database and connected it to OTP, so that Elixir
could do the right thing in the event our repository crashes.

report erratum • discuss

Wrapping Up • 75

http://pragprog.com/titles/phoenix14/errata/add
http://forums.pragprog.com/forums/phoenix14

• We created a schema, complete with information about each necessary
field.

• We created a migration, to help us specify our database tables and auto-
mate doing and undoing any database changes.

• We created a changeset so Ecto could efficiently track and manage each
change requested by our application.

• We integrated this change into our application.

We’ve already come a long way, and we’re only a few chapters in. We’re ready
to handle some more sophisticated application features. Let’s get rolling. In
the next chapter, you’ll use some of these new features to authenticate a user.

Chapter 4. Ecto and Changesets • 76

report erratum • discuss

http://pragprog.com/titles/phoenix14/errata/add
http://forums.pragprog.com/forums/phoenix14

CHAPTER 5

Authenticating Users
We have something that is starting to look like an application. Our database-
backed Accounts context is wired to our controller using changesets and forms.
Let’s ramp up the sophistication with real login forms and sessions. Rather
than use something off the shelf, we can build it ourselves. Along the way
you’ll learn more about managing change with Ecto changesets and chaining
together functions using plugs. Finally, we’ll introduce session handling so
our application can track logged-in users.

As you’ve seen, Phoenix makes it easy to add functionality to your application
from bottom to top. Authentication forms the foundation for your whole
application’s security system, though, so we’re going to be sure each decision
is right.

Preparing for Authentication
Authentication is one of those features that can make or break your whole
application experience. Programmers need to be able to easily layer on the
right services and to direct requests where they need to go. Administrators
need to trust the underlying policies, and also to configure the password
constraints. Initially, we’ll plan our approach and install the necessary
dependencies.

Our approach to authentication will be a conventional one. Users will provide
credentials when registering. We’ll store those in the database in a secure
way. In our application, a session will contain the data about each individual
user. We’ll let Phoenix manage the details. A user starting a session will need
to provide the credentials, and we’ll check those against our database. We’ll
mark each user as authenticated in the session, so that users are granted
access until their sessions expire or they log out. We will build these functions
and expose those ideas into the Accounts context.

report erratum • discuss

http://pragprog.com/titles/phoenix14/errata/add
http://forums.pragprog.com/forums/phoenix14

Above all else, we want this system to be secure. We won’t write the dicey
parts ourselves, and we’ll make sure that we use approaches that are well
understood to be secure. We’ll use as much as we can from Phoenix, and we’ll
rely on Comeonin to handle the critical hashing piece.

Comeonin1 is a specification for password hashing libraries. It provides up-
to-date and secure hashing schemes. We will use the Pbkdf2 password
hashing technique, as it does not require any native dependencies, but there
are other options listed on Comeonin’s documentation. Add :pbkdf2_elixir to
your mix.exs dependencies to handle password hashing, like this:

defp deps do
[

...,
{:pbkdf2_elixir, "~> 1.0"}

]
end

:pbkdf2_elixir, like our other dependencies in mix.exs, is an application. An application
is what you think it is: a collection of modules that work together and can be
managed as a whole. So far, our application depends on :phoenix and :phoenix_ecto,
as you’d expect, but also the :postgrex database driver, :gettext for internationaliza-
tion, and now :pbkdf2_elixir for managing our password hashing.

Our application also relies on applications that ship as part of Elixir and
Erlang. Those are not listed under deps, but within the application function in
your mix.exs:

authentication/rumbl/mix.exs
def application do

[
mod: {Rumbl.Application, []},
extra_applications: [:logger, :runtime_tools]

]
end

The application function tells Mix how to start our :rumbl application, and we con-
figure Elixir to start :logger and :runtime_tools, which are part of the standard library.

Now run mix deps.get to fetch your new dependencies, like this:

$ mix deps.get

This command downloads the :pbkdf2_elixir dependency into deps directory. Elixir
will make sure to start it before your own :rumbl application. Now that our
preparations are out of the way, we’re ready to begin the implementation.

1. https://github.com/riverrun/comeonin

Chapter 5. Authenticating Users • 78

report erratum • discuss

http://media.pragprog.com/titles/phoenix14/code/authentication/rumbl/mix.exs
https://github.com/riverrun/comeonin
http://pragprog.com/titles/phoenix14/errata/add
http://forums.pragprog.com/forums/phoenix14

Managing Registration Changesets
You’ve already seen a changeset for creating a new user, the one that handles
the name and username. Let’s review that now:

authentication/rumbl/lib/rumbl/accounts/user.ex
def changeset(user, attrs) do

user
|> cast(attrs, [:name, :username])
|> validate_required([:name, :username])
|> validate_length(:username, min: 1, max: 20)

end

The Ecto.Changeset.cast function converts a raw map of user input to a changeset,
accepting only the :name and :username keys. Then, we fire a validation limiting
the length of valid usernames to twenty characters. A failing validation places
errors in the changeset so we can display them to the user.

As you might expect, you’ll use one changeset per use case. Our existing changeset
handles all the attributes except passwords. We can safely use it for updating
nonsensitive information such as a form on a profile page. We’ll build a separate
changeset to manage more sensitive data such as credential changes.

For the password changeset, we’ll add two new fields, :password and :pass-
word_hash. The :password field will contain the password in plain text, but for
security reasons we won’t store that field in the database. Instead, we will
hash the password in the :password_hash field we added to the users table way
back in Chapter 4, Ecto and Changesets, on page 59. Now, we’ll define those
two fields in the schema:

authentication/listings/rumbl/lib/rumbl/accounts/user.change1.ex
field :password, :string, virtual: true
field :password_hash, :string

We marked the :password field as virtual: true. Virtual schema fields in Ecto exist
only in the struct, not the database.

Now let’s create our separate changeset to handle user registrations:

authentication/listings/rumbl/lib/rumbl/accounts/user.change1.ex
def registration_changeset(user, params) do

user
|> changeset(params)
|> cast(params, [:password])
|> validate_required([:password])
|> validate_length(:password, min: 6, max: 100)
|> put_pass_hash()

end

report erratum • discuss

Managing Registration Changesets • 79

http://media.pragprog.com/titles/phoenix14/code/authentication/rumbl/lib/rumbl/accounts/user.ex
http://media.pragprog.com/titles/phoenix14/code/authentication/listings/rumbl/lib/rumbl/accounts/user.change1.ex
http://media.pragprog.com/titles/phoenix14/code/authentication/listings/rumbl/lib/rumbl/accounts/user.change1.ex
http://pragprog.com/titles/phoenix14/errata/add
http://forums.pragprog.com/forums/phoenix14

There’s not much to see here. We defined a registration_changeset function which
creates a new changeset, casts the :password field and validates it. Then, our
function delegates to the put_pass_hash function to compute and store the user
hash in the database, like this:

authentication/listings/rumbl/lib/rumbl/accounts/user.change1.ex
defp put_pass_hash(changeset) do

case changeset do
%Ecto.Changeset{valid?: true, changes: %{password: pass}} ->
put_change(changeset, :password_hash, Pbkdf2.hash_pwd_salt(pass))

_ ->
changeset

end
end

We check to see if the changeset is valid so we won’t waste time hashing an
invalid or missing password. Then, we use comeonin to hash our password,
following the instructions in its readme file. Finally, we put the result into the
changeset as password_hash. If the changeset is invalid, we simply return it to
the caller.

These password rules are light

We’re creating an intentionally lax password so readers can focus
on learning concepts instead of memorizing passwords. You will
want to use more strict password requirements in a production
system.

Here you can see how easy it is to compose with changesets. We used our
base User.changeset function to cast and validate the name and username parame-
ters. Then we validated our virtual password field inside our registration
changeset. Notice that it’s trivial to validate our virtual password field, though
we’re not actually storing that value in the database! Persistence is not
strongly coupled to our change policies.

Keep in mind that this is an example application, and you should configure
your own password rules to fit your scenario. If you would like, OWASP2 has
an excellent set of guidelines you can follow depending on your specific
requirements.

Let’s take it for a spin.

2. https://github.com/OWASP/CheatSheetSeries

Chapter 5. Authenticating Users • 80

report erratum • discuss

http://media.pragprog.com/titles/phoenix14/code/authentication/listings/rumbl/lib/rumbl/accounts/user.change1.ex
https://github.com/OWASP/CheatSheetSeries
http://pragprog.com/titles/phoenix14/errata/add
http://forums.pragprog.com/forums/phoenix14

Open up a console and follow along. If you’ve been following along and aren’t
working on a new console, you can safely skip alias RumblWeb.Router.Helpers, as:
Routes.

Let’s try out our changeset:

iex> alias Rumbl.Accounts.User
iex> alias RumblWeb.Router.Helpers, as: Routes
iex> changeset = User.registration_changeset(%User{}, %{
...> username: "max", name: "Max", password: "123"
...> })
#Ecto.Changeset<...>
iex> changeset.valid?
false

iex> changeset.changes
%{

name: "Max",
username: "max",
password: "123"

}

As we expected, creating a user with our registration changeset and a bad
password results in an invalid changeset. When we inspect the changeset.changes,
we can see that password_hash is missing because we didn’t bother hashing a
password we knew to be invalid.

Let’s continue and see what happens when we create a valid registration
changeset:

iex> changeset = User.registration_changeset(%User{}, %{
...> username: "max", name: "Max", password: "asecret"
...> })
#Ecto.Changeset<

action: nil,
changes: %{

name: "Max",
username: "max",
password: "asecret",
password_hash:
"$pbkdf2-sha512$r7zRM4aQgSUGlOy4483cFe1UouMC/9emcOI75MhgDQ6A9WNWBpfr."

},
errors: [],
data: #Rumbl.Accounts.User<>,
valid?: true

>

report erratum • discuss

Managing Registration Changesets • 81

http://pragprog.com/titles/phoenix14/errata/add
http://forums.pragprog.com/forums/phoenix14

Check to see if it’s valid, and see the changes:

iex> changeset.valid?
true

iex> changeset.changes
%{

name: "Max",
username: "max",
password: "asecret",
password_hash:

"$pbkdf2-sha512$r7zRM4aQgSUGlOy4483cFe1UouMC/9emcOI75MhgDQ6A9WNWBpfr."
}

When given a valid username and password, our changeset applies the
put_pass_hash function and puts a change for our password_hash field, but we now
have an issue. The users we inserted up to this point lack account passwords,
which won’t be valid with the system’s new behavior where we expect all
accounts to have one. Let’s fix that now by updating our existing users with
properly hashed temporary passwords. Key this into your IEx session. If you’re
using an existing window, you may need to recompile with recompile:

iex> recompile()
iex> alias Rumbl.Repo
iex> for u <- Repo.all(User) do
...> Repo.update!(User.registration_changeset(u, %{password: "temppass"}))
...> end

Now our new and existing users alike will have valid, secure passwords.

Creating Users
Now that things are working smoothly and safely, let’s integrate that new
code with our web layer through the public API we expose through the Accounts
context. We’ll need to replace Accounts.create_user with a function that performs
proper account registration with passwords.

Since our UserController currently calls the Accounts.create_user function, we hope
to get by with minimal changes. Our approach works fine but internally we
are only using the base User.changeset which doesn’t yet include our password
hashing.

At this point, we could change the Accounts.create_user function to use the regis-
tration_changeset. Instead, we will explicitly build a new function to manage
registration details. We’ll maintain create_user to expose the details any other
API will need to build users. So often, applications must create accounts to
satisfy a number of different use cases, such as seeding example data, imports,

Chapter 5. Authenticating Users • 82

report erratum • discuss

http://pragprog.com/titles/phoenix14/errata/add
http://forums.pragprog.com/forums/phoenix14

or sending user invitations. For these cases, we want a workflow in our
Accounts context that allows us to create a user without the full ceremony
that end users use.

We will write a new Accounts.register_user function which wraps up all the details
of end-user registration, while maintaining our API for simply creating a new
user in the system. While we are at it, let’s add a function to expose the reg-
istration changeset in the User schema. Open up your Accounts context and add
these functions:

authentication/listings/rumbl/lib/rumbl/accounts.change1.ex
def change_registration(%User{} = user, params) do

User.registration_changeset(user, params)
end

def register_user(attrs \\ %{}) do
%User{}
|> User.registration_changeset(attrs)
|> Repo.insert()

end

Any view that requires the user passwords will need to use a specific
changeset for registration. This new function isn’t very exciting, but as we
grow our application, our purpose-built functions will pay dividends by sim-
plifying interactions with our controller. For example, as soon as we’re ready
to send welcome emails when a new user registers, we have a perfect place
for this new code to live.

Next, we need to make a tiny change in the UserController. The create action must
now call our new register_user function and the new action must pull in our
registration changeset, like this:

authentication/listings/rumbl/lib/rumbl_web/controllers/user_controller.change1.ex
def new(conn, _params) do

changeset = Accounts.change_registration(%User{}, %{})
render(conn, "new.html", changeset: changeset)

end

def create(conn, %{"user" => user_params}) do
case Accounts.register_user(user_params) do

{:ok, user} ->
conn
|> put_flash(:info, "#{user.name} created!")
|> redirect(to: Routes.user_path(conn, :index))

{:error, %Ecto.Changeset{} = changeset} ->
render(conn, "new.html", changeset: changeset)

end
end

report erratum • discuss

Creating Users • 83

http://media.pragprog.com/titles/phoenix14/code/authentication/listings/rumbl/lib/rumbl/accounts.change1.ex
http://media.pragprog.com/titles/phoenix14/code/authentication/listings/rumbl/lib/rumbl_web/controllers/user_controller.change1.ex
http://pragprog.com/titles/phoenix14/errata/add
http://forums.pragprog.com/forums/phoenix14

In create we use pattern matching to pick off the user_params and pass them to
our new Accounts.register_user function. If our registration was successful, we
redirect as before. If not, we simply render the new template again, with the
changeset, which now has the errors from our failed validations.

Finally, we need to make one small change to our new user registration form
to accept the user password. Open up lib/rumbl_web/templates/user/new.html.eex and
add the following code above the submit button:

authentication/listings/rumbl/lib/rumbl_web/templates/user/new.change1.html.eex
<div>

<%= password_input f, :password, placeholder: "Password" %>
<%= error_tag f, :password %>

</div>

Now, we’re ready to load the registration form at http://localhost:4000/users/new:

You should be smiling now. Like plug pipelines, validations are a pipeline of
functions that transform the changeset. Each validation is a step that transforms
the changeset, explicitly tracking the changes and their validity. The actual
change happens only when we call the repository in the context.

Now we should be able to visit http://localhost:4000/users/new and create new users
with our registration changeset. We have a problem, though. Newly registered
users are not automatically logged in, and users still can’t log in or log out
at will.

We need to create an authentication service and make it available throughout
our system. You’ve used plugs created by others, but for this job it’s time you
learn to create your own. We’ll implement authentication as a plug. That way

Chapter 5. Authenticating Users • 84

report erratum • discuss

http://media.pragprog.com/titles/phoenix14/code/authentication/listings/rumbl/lib/rumbl_web/templates/user/new.change1.html.eex
http://pragprog.com/titles/phoenix14/errata/add
http://forums.pragprog.com/forums/phoenix14

we can add it to a pipeline in our router so other controllers can use it as
needed.

The Anatomy of a Plug
Before we build our plug, let’s take a deep dive into the Plug library and learn
how plugs work from the inside. There are two kinds of plugs: module plugs
and function plugs. A function plug is a single function. A module plug is a
module that provides two functions with some configuration details. Either
way, they work the same.

We have seen both kinds of plugs in use. From the endpoint module in
lib/rumbl_web/endpoint.ex, you can see an example of a module plug:

plug Plug.RequestId

You specify a module plug by providing the module name. In the router, you
can see an example of a function plug:

plug :protect_from_forgery

You specify a function plug with the name of the function as an atom. Because
a module is just a collection of functions, it strengthens the idea that plugs
are just functions.

For our first plug, we’ll write a module plug that encapsulates all the
authentication logic in one place.

Module Plugs
Sometimes you might want to share a plug across more than one module. In
that case, you can use a module plug. To satisfy the Plug specification, a
module plug must have two functions, named init and call.

The simplest possible module plug returns the given options on init and the
given connection on call. This plug does nothing:

defmodule NothingPlug do
def init(opts) do

opts
end

def call(conn, _opts) do
conn

end
end

report erratum • discuss

The Anatomy of a Plug • 85

http://pragprog.com/titles/phoenix14/errata/add
http://forums.pragprog.com/forums/phoenix14

Remember, a typical plug transforms a connection. The main work of a
module plug happens in call. In our NothingPlug, we simply pass the connection
through without changes. The call will happen at runtime.

Sometimes, you might want to let the programmer change the behavior of a
plug. We can do that work in the second argument to call, options. In our
NothingPlug, we don’t need any more information to do our job, so we ignore
the options.

Sometimes, you might need Phoenix to do some heavy lifting to transform
options. That’s the job of the init function. Plug uses the result of init as the
second argument to call. In development mode, Phoenix calls init at runtime,
but in production mode, init is called only once, at compile time. This strategy
makes init the perfect place to validate and transform options without slowing
down every request so call can be as fast as possible. Since call is the workhorse
of Plug, we want it to do as little work as possible.

For both module and function plugs, the request interface is the same. conn,
the first argument, is the data we pass through every plug. It has the details
for any request, and we morph it in tiny steps until we eventually send a
response. All plugs take a conn and return a conn.

You’ll see piped functions using a common data structure over and over in
Elixir. The trick that makes this tactic work is having the right common data
structure. Since Plug works with web APIs, our data structure will specify
the typical details of the web server’s domain.

In Phoenix, you’ll see connections, usually abbreviated conn, literally every-
where. At the end of the day, the conn is only a Plug.Conn struct, and it forms
the foundation for Plug.

Plug.Conn Fields
You can find great online documentation for Plug.Conn.3 This structure has the
various fields that web applications need to understand about web requests
and responses. Let’s look at some of the supported fields.

Request fields contain information about the inbound request. They’re parsed
by the adapter for the web server you’re using. Cowboy is the default web
server that Phoenix uses, but you can also choose to plug in your own. These
fields contain strings, except where otherwise specified:

3. http://hexdocs.pm/plug/Plug.Conn.html

Chapter 5. Authenticating Users • 86

report erratum • discuss

http://hexdocs.pm/plug/Plug.Conn.html
http://pragprog.com/titles/phoenix14/errata/add
http://forums.pragprog.com/forums/phoenix14

host
The requested host. For example, www.pragprog.com.

method
The request method. For example, GET or POST.

path_info
The path, split into a List of segments. For example, ["admin", "users"].

req_headers
A list of request headers. For example, [{"content-type", "text/plain"}].

scheme
The request protocol as an atom. For example, :https.

You can get other information as well, such as the query string, the remote
IP address, the port, and the like. For Phoenix, if a web request’s information
is available from the web server’s adapter, it’s in Plug.Conn.

Next comes a set of fetchable fields. A fetchable field is empty until you
explicitly request it. These fields require a little time to process, so they’re left
out of the connection by default until you want to explicitly fetch them:

cookies
These are the request cookies with the response cookies.

params
These are the request parameters. Some plugs help to parse these
parameters from the query string, or from the request body.

Next are a series of fields that are used to process web requests and keep
information about the plug pipeline. Here are some of the fields you’ll
encounter:

assigns
This user-defined map contains anything you want to put in it. For
instance, this is where we will keep the authenticated user for the current
request.

halted
Sometimes a connection must be halted, such as a failed authorization.
In this case, the halting plug sets this flag.

You can also find a secret_key_base for everything related to encryption.

report erratum • discuss

The Anatomy of a Plug • 87

http://pragprog.com/titles/phoenix14/errata/add
http://forums.pragprog.com/forums/phoenix14

Since the Plug framework handles the whole life cycle of a request, including
both the request and the response, Plug.Conn provides fields for the response:

resp_body
Initially an empty string, the response body will contain the HTTP response
string when it’s available.

resp_cookies
The resp_cookies has the outbound cookies for the response.

resp_headers
These headers follow the HTTP specification and contain information such
as the response type and caching rules.

status
The response code generally contains 200–299 for success, 300–399 for
redirects, 400–499 for bad client requests such as not-found, and 500+ for
server errors.

Finally, Plug supports some private fields reserved for the adapter and
frameworks:

adapter
Information about the underlying web server is stored here.

private
This field has a map for the private use of frameworks.

Initially, a conn comes in almost blank and is filled out progressively by different
plugs in the pipeline. For example, the endpoint may parse parameters, and
the application developer will set fields primarily in assigns. Functions that
render set the response fields such as status, change the state, and so on.

Plug.Conn also defines many functions that directly manipulate those fields,
which makes abstracting the work of doing more complex operations such
as managing cookies or sending files straightforward.

Now that you have a little more knowledge, we’re ready to transform the
connection by writing our first plug.

Writing an Authentication Plug
The authentication process works in two stages. First, we’ll store the user ID
in the session every time a new user registers or a user logs in. Second, we’ll
check if there’s a new user in the session and store it in conn.assigns for every
incoming request, so it can be accessed in our controllers and views. Let’s
start with the second part because it’s a little easier to follow.

Chapter 5. Authenticating Users • 88

report erratum • discuss

http://pragprog.com/titles/phoenix14/errata/add
http://forums.pragprog.com/forums/phoenix14

Create a file called lib/rumbl_web/controllers/auth.ex that looks like this:

authentication/listings/rumbl/lib/rumbl_web/controllers/auth.ex
defmodule RumblWeb.Auth do

import Plug.Conn

def init(opts), do: opts

def call(conn, _opts) do
user_id = get_session(conn, :user_id)
user = user_id && Rumbl.Accounts.get_user(user_id)
assign(conn, :current_user, user)

end
end

Don’t let the init function throw you off. It’s just a simple function to allow
compile time options. Plugs allow data to flow through an application at run
time through the context. Without init, our plug can’t accept any compile time
options.

call checks if a :user_id is stored in the session. If one exists, we look it up and
assign the result in the connection. assign is a function imported from Plug.Conn
that slightly transforms the connection—in this case, storing the user (or nil)
in conn.assigns. That way, the :current_user will be available in all downstream
functions including controllers and views.

Let’s add our plug to the router, at the end of the browser pipeline:

authentication/listings/rumbl/lib/rumbl_web/router.change1.ex
pipeline :browser do

plug :accepts, ["html"]
plug :fetch_session
plug :fetch_flash
plug :protect_from_forgery
plug :put_secure_browser_headers
plug RumblWeb.Auth

end

With our plug in place, we can begin to use this information downstream.

Restricting Access
The RumblWeb.Auth plug processes the request information and transforms the
conn, adding :current_user to conn.assigns. Now, downstream plugs can use it to
find out if a user is logged in.

We’ll use this information to restrict access to pages where we list or show
user information. Specifically, we don’t want to allow users to access the :index
and :show actions of RumblWeb.UserController unless they’re logged in.

report erratum • discuss

Writing an Authentication Plug • 89

http://media.pragprog.com/titles/phoenix14/code/authentication/listings/rumbl/lib/rumbl_web/controllers/auth.ex
http://media.pragprog.com/titles/phoenix14/code/authentication/listings/rumbl/lib/rumbl_web/router.change1.ex
http://pragprog.com/titles/phoenix14/errata/add
http://forums.pragprog.com/forums/phoenix14

Open up RumblWeb.UserController and add the following function:

authentication/listings/rumbl/lib/rumbl_web/controllers/user_controller.change2.ex
defp authenticate(conn) do

if conn.assigns.current_user do
conn

else
conn
|> put_flash(:error, "You must be logged in to access that page")
|> redirect(to: Routes.page_path(conn, :index))
|> halt()

end
end

If there’s a current user, we return the connection unchanged. Otherwise we
store a flash message and redirect back to our application root. We use halt(conn)
to stop any downstream transformations.

Let’s invoke the authenticate function from index to try it out:

authentication/listings/rumbl/lib/rumbl_web/controllers/user_controller.change2.ex
def index(conn, _params) do

case authenticate(conn) do
%Plug.Conn{halted: true} = conn ->
conn

conn ->
users = Accounts.list_users()
render(conn, "index.html", users: users)

end
end

Now visit http://localhost:4000/users, where we’re redirected back to the root with
a message telling us to log in, as shown in the figure on page 91.

We could make the same changes to the show action, invoking our plug and
honoring halt. And we could do the same thing every time we require authen-
tication. We’d also have code that’s repetitive, ugly, and error prone. We need
to plug the authenticate function for the actions to be protected. Let’s do that.

Like endpoints and routers, controllers also have their own plug pipeline.
Each plug in the controller pipeline is executed in order, before the action is
invoked. The controller pipeline lets us explicitly choose which actions fire
any given plug.

To plug the authenticate function, we must first make it a function plug. A
function plug is any function that receives two arguments—the connection

Chapter 5. Authenticating Users • 90

report erratum • discuss

http://media.pragprog.com/titles/phoenix14/code/authentication/listings/rumbl/lib/rumbl_web/controllers/user_controller.change2.ex
http://media.pragprog.com/titles/phoenix14/code/authentication/listings/rumbl/lib/rumbl_web/controllers/user_controller.change2.ex
http://pragprog.com/titles/phoenix14/errata/add
http://forums.pragprog.com/forums/phoenix14

and a set of options—and returns the connection. With a minor tweak, we
can satisfy that contract. You need only add an options variable, which you’ll
ignore:

authentication/listings/rumbl/lib/rumbl_web/controllers/user_controller.change3.ex
defp authenticate(conn, _opts) do

if conn.assigns.current_user do
conn

else
conn
|> put_flash(:error, "You must be logged in to access that page")
|> redirect(to: Routes.page_path(conn, :index))
|> halt()

end
end

Now let’s plug it in our controller, right after alias Rumbl.Accounts.User:

authentication/listings/rumbl/lib/rumbl_web/controllers/user_controller.change3.ex
plug :authenticate when action in [:index, :show]

Then, change the index action back to its previous state, like this:

authentication/listings/rumbl/lib/rumbl_web/controllers/user_controller.change3.ex
def index(conn, _params) do

users = Accounts.list_users()
render(conn, "index.html", users: users)

end

Visit http://localhost:4000/users to see our plug in action. We redirect, exactly as
we should.

report erratum • discuss

Writing an Authentication Plug • 91

http://media.pragprog.com/titles/phoenix14/code/authentication/listings/rumbl/lib/rumbl_web/controllers/user_controller.change3.ex
http://media.pragprog.com/titles/phoenix14/code/authentication/listings/rumbl/lib/rumbl_web/controllers/user_controller.change3.ex
http://media.pragprog.com/titles/phoenix14/code/authentication/listings/rumbl/lib/rumbl_web/controllers/user_controller.change3.ex
http://pragprog.com/titles/phoenix14/errata/add
http://forums.pragprog.com/forums/phoenix14

Let’s take a minute to appreciate the code we’ve written so far. A small change
to our authentication lets us plug it before every action. We can also share it
with any other controllers or even move it to a router pipeline, restricting
whole sections of our application with minor changes. None of these features
relies on magical inheritance mechanisms, only our explicit lists of functions
in our plug pipelines.

At this point, you may also be wondering what happened with halt. When we
changed the index action, we had to explicitly check if the connection halted
or not, before acting on it. Plug pipelines explicitly check for halted: true between
every plug invocation, so the halting concern is neatly solved by Plug.

In fact, you’re seeing Elixir macro expansion in action. Let’s take an arbitrary
example. Suppose you write code like this:

plug :one
plug Two
plug :three, some: :option

It would compile to:

case one(conn, []) do
%Plug.Conn{halted: true} = conn -> conn
conn ->

case Two.call(conn, Two.init([])) do
%Plug.Conn{halted: true} = conn -> conn
conn ->

case three(conn, some: :option) do
%Plug.Conn{halted: true} = conn -> conn
conn -> conn

end
end

end

Elixir macros and macro expansion are beyond the scope of this book. What
you need to know is that at some point in the compile process, Elixir would
translate the first example to the second. Conceptually, not much is happening
here, and that’s exactly the beauty behind Plug. For each plug, we invoke it
with the given options, check if the returned connection halted, and move
forward if it didn’t. It’s a simple abstraction that allows us to express and
compose both simple and complex functionality.

With all that said, we already have a mechanism for loading data from the
session and using it to restrict user access. But we still don’t have a mecha-
nism to log the users in.

Chapter 5. Authenticating Users • 92

report erratum • discuss

http://pragprog.com/titles/phoenix14/errata/add
http://forums.pragprog.com/forums/phoenix14

Logging In
Let’s add a tiny function to RumblWeb.Auth that receives the connection and the
user, and stores the user ID in the session:

authentication/listings/rumbl/lib/rumbl_web/controllers/auth.change1.ex
def login(conn, user) do

conn
|> assign(:current_user, user)
|> put_session(:user_id, user.id)
|> configure_session(renew: true)

end

As you recall, the Plug.Conn struct has a field called assigns. We call setting a
value in that structure an assign. Our function stores the given user as the
:current_user assign, puts the user ID in the session, and finally configures the
session, setting the :renew option to true. The last step is extremely important
and it protects us from session fixation attacks. It tells Plug to send the session
cookie back to the client with a different identifier, in case an attacker knew,
by any chance, the previous one.

Let’s go back to the RumblWeb.UserController.create action and change it to call the
login function after we insert the user in the database:

authentication/listings/rumbl/lib/rumbl_web/controllers/user_controller.change2.ex
def create(conn, %{"user" => user_params}) do

case Accounts.register_user(user_params) do
{:ok, user} ->
conn
|> RumblWeb.Auth.login(user)
|> put_flash(:info, "#{user.name} created!")
|> redirect(to: Routes.user_path(conn, :index))

{:error, %Ecto.Changeset{} = changeset} ->
render(conn, "new.html", changeset: changeset)

end
end

Now visit http://localhost:4000/users/new, register a new user, and try to access the
pages we restricted previously. As you can see, the user can finally access them.

Implementing Login and Logout
We made great progress in the last section. We created a module plug that
loads information from the session, used this information to restrict user
access, and finally stored users in the session.

report erratum • discuss

Implementing Login and Logout • 93

http://media.pragprog.com/titles/phoenix14/code/authentication/listings/rumbl/lib/rumbl_web/controllers/auth.change1.ex
http://media.pragprog.com/titles/phoenix14/code/authentication/listings/rumbl/lib/rumbl_web/controllers/user_controller.change2.ex
http://pragprog.com/titles/phoenix14/errata/add
http://forums.pragprog.com/forums/phoenix14

We’re almost done with our authentication feature. We need to implement
both login and logout functionality, as well as change the layout to include
links to those pages.

First things first. Before changing our controllers and views, let’s expose a
function that authenticates a given username and password. We will look up
a user by username in the database and securely ensure that the user’s
password matches the one in the database. The Accounts context is a perfect
place to define this function. Open up rumbl/accounts.ex and add the new function
authenticate_by_username_and_pass, like this:

authentication/listings/rumbl/lib/rumbl/accounts.change2.ex
def authenticate_by_username_and_pass(username, given_pass) do

user = get_user_by(username: username)

cond do
user && Pbkdf2.verify_pass(given_pass, user.password_hash) ->
{:ok, user}

user ->
{:error, :unauthorized}

true ->
Pbkdf2.no_user_verify()
{:error, :not_found}

end
end

We use the existing get_user_by function to look up a User by username. If the user
isn’t found, we use comeonin’s no_user_verify() function to simulate a password
check with variable timing. This hardens our authentication layer against
timing attacks,4 which is crucial to keeping our application secure. If we find
our user and the password matches, we return the user wrapped in an :ok
tuple, otherwise we return {:error, :unauthorized} for a bad password, or {:error,
:not_found} if the user does not exist for the given username.

Now we are ready to work on our login and logout pages. Let’s add some new
routes to lib/rumbl_web/router.ex:

authentication/listings/rumbl/lib/rumbl_web/router.change2.ex
scope "/", RumblWeb do

pipe_through :browser # Use the default browser stack

get "/", PageController, :index
resources "/users", UserController, only: [:index, :show, :new, :create]
resources "/sessions", SessionController, only: [:new, :create, :delete]

end

4. https://en.wikipedia.org/wiki/Timing_attack

Chapter 5. Authenticating Users • 94

report erratum • discuss

http://media.pragprog.com/titles/phoenix14/code/authentication/listings/rumbl/lib/rumbl/accounts.change2.ex
http://media.pragprog.com/titles/phoenix14/code/authentication/listings/rumbl/lib/rumbl_web/router.change2.ex
https://en.wikipedia.org/wiki/Timing_attack
http://pragprog.com/titles/phoenix14/errata/add
http://forums.pragprog.com/forums/phoenix14

We add three of the prepackaged REST routes for /sessions. We use the REST
routes for GET /sessions/new to show a new session login form, POST /sessions to log
in, and DELETE /sessions/:id to log out.

Next, we need a SessionController to handle those actions. Create a lib/rumbl_web/con-
trollers/session_controller.ex, like this:

authentication/listings/rumbl/lib/rumbl_web/controllers/session_controller.ex
defmodule RumblWeb.SessionController do

use RumblWeb, :controller

def new(conn, _) do
render(conn, "new.html")

end
end

The new action simply renders our login form. We need a second action, create,
to handle the form submission, like this:

authentication/listings/rumbl/lib/rumbl_web/controllers/session_controller.change1.ex
def create(

conn,
%{"session" => %{"username" => username, "password" => pass}}

) do
case Rumbl.Accounts.authenticate_by_username_and_pass(username, pass) do

{:ok, user} ->
conn
|> RumblWeb.Auth.login(user)
|> put_flash(:info, "Welcome back!")
|> redirect(to: Routes.page_path(conn, :index))

{:error, _reason} ->
conn
|> put_flash(:error, "Invalid username/password combination")
|> render("new.html")

end
end

That create action picks off the inbound arguments for username as username,
and for password as pass. Then, we call authenticate_by_username_and_pass. On success,
we report a success flash message to the user and redirect to Routes.page_path.
Otherwise, we report a failure message to our user and render new again.

Here we can appreciate the benefits of contexts once again. Instead of the
controller dealing with all of the complexity, our context handles three return
types: {:ok, user}, {:error, :not_found}, and {:error, :unauthorized}. The controller does
not care about the details of how authentication works. The controller’s job

report erratum • discuss

Implementing Login and Logout • 95

http://media.pragprog.com/titles/phoenix14/code/authentication/listings/rumbl/lib/rumbl_web/controllers/session_controller.ex
http://media.pragprog.com/titles/phoenix14/code/authentication/listings/rumbl/lib/rumbl_web/controllers/session_controller.change1.ex
http://pragprog.com/titles/phoenix14/errata/add
http://forums.pragprog.com/forums/phoenix14

is to translate whatever our business logic returns into something meaningful
for the user, which is quite trivial to do with pattern matching.

In particular, we choose to match only on {:error, _} to ignore the :unauthorized
and :not_found reason codes, returning only a vague “Invalid username/pass-
word combination” message. We could have returned something like “Invalid
password for username” or “Username not found”, but this approach might
raise privacy issues as anyone would be able to find whether an email is
registered on the website.

We still need to create our view and template. Create a new lib/rumbl_web/views/ses-
sion_view.ex file that looks like this:

authentication/listings/rumbl/lib/rumbl_web/views/session_view.ex
defmodule RumblWeb.SessionView do

use RumblWeb, :view
end

Next, we need a session directory for our new view, so create a lib/rumbl_web/tem-
plates/session/new.html.eex with our new login form, like this:

authentication/listings/rumbl/lib/rumbl_web/templates/session/new.html.eex
<h1>Login</h1>

<%= form_for @conn,
Routes.session_path(@conn, :create),
[as: :session],
fn f -> %>

<div>
<%= text_input f, :username, placeholder: "Username" %>

</div>
<div>

<%= password_input f, :password, placeholder: "Password" %>
</div>
<%= submit "Log in" %>

<% end %>

We use form_for as in our new-user forms, but instead of passing a changeset,
we pass the %Plug.Conn{} struct. Plug.conn structs are useful when you’re creating
forms that aren’t backed by a changeset, such as a login or search form. To
try out the new page, we have to logout, but we haven’t written that function-
ality yet. As a temporary workaround, instead of logging out you can clear
your browser cookies or start a new session in incognito mode, then visit
/sessions/new to try some login attempts.

With a bad login, we see an error flash notice and our template rerendered
as shown in the figure on page 97.

Chapter 5. Authenticating Users • 96

report erratum • discuss

http://media.pragprog.com/titles/phoenix14/code/authentication/listings/rumbl/lib/rumbl_web/views/session_view.ex
http://media.pragprog.com/titles/phoenix14/code/authentication/listings/rumbl/lib/rumbl_web/templates/session/new.html.eex
http://pragprog.com/titles/phoenix14/errata/add
http://forums.pragprog.com/forums/phoenix14

Now let’s try a good login:

It works!

Presenting User Account Links
We’ve come a long way. We can now authenticate a user in a secure way.
We’re using a single function that we can reliably share across each feature
of the application that needs it. Now, we can turn our attention to showing
customized headers in our layout based on a user’s authentication status.
Let’s start with a welcome message and a logout link.

We want to change the layout of the application to handle the new user fea-
tures so that other views can also take advantage of these features. Let’s
update the layout in lib/rumbl_web/templates/layout/app.html.eex. Replace your <nav>
section to look like this:

report erratum • discuss

Presenting User Account Links • 97

http://pragprog.com/titles/phoenix14/errata/add
http://forums.pragprog.com/forums/phoenix14

authentication/listings/rumbl/lib/rumbl_web/templates/layout/app.change1.html.eex
<section class="container">

<nav role="navigation">

<%= if @current_user do %>

<%= @current_user.username %>

<%= link "Log out",
to: Routes.session_path(@conn, :delete, @current_user),
method: "delete" %>

<% else %>

<%= link "Register", to: Routes.user_path(@conn, :new) %>
<%= link "Log in", to: Routes.session_path(@conn, :new) %>

<% end %>

</nav>

<img src="<%= Routes.static_url(@conn, "/images/phoenix.png") %>"
alt="Phoenix Framework Logo"/>

</section>

You can see our strategy. We test whether the user is authenticated by
checking if the @current_user is present. Because RumblWeb.Auth.login stored the
user under conn.assigns.current_user, it’s automatically available as @current_user
in our views. To put it more broadly, everything in conn.assigns is available in
our views.

If the user is available, we show the username, followed by a logout link.
Otherwise, we allow users to register themselves or log in. If you’re watching
closely, you can see that this template uses the Routes.session_path twice when
building the login and logout links. Each link function uses it a little differ-
ently, as you’ll see when we break it down.

The code uses the Phoenix helpers to build a link:

link "Log out",
to: Routes.session_path(@conn, :delete, @current_user),
method: "delete"

The link:

• Has the text Log out

• Links to the Routes.session_path path with the @conn connection, the :delete
action, and the @current_user argument

• Uses the HTTP delete method

Chapter 5. Authenticating Users • 98

report erratum • discuss

http://media.pragprog.com/titles/phoenix14/code/authentication/listings/rumbl/lib/rumbl_web/templates/layout/app.change1.html.eex
http://pragprog.com/titles/phoenix14/errata/add
http://forums.pragprog.com/forums/phoenix14

By passing the :method option to link, Phoenix generates a form tag instead of
an anchor tag. Links without a specified HTTP method will default to GET, and
Phoenix will render a simple link.

Let’s head back to our browser and try it out. When we visit http://localhost:4000,
we see the Log in link in the header:

Now sign in with one of the accounts you created earlier:

And it works.

Now that we have a working dynamic header with a “Log out” link, we need
to implement the delete action in our SessionController and handle clearing the
user’s session in our auth module. That’s nearly trivial to do.

First let’s do the work to delete the session in RumblWeb.Auth:

authentication/listings/rumbl/lib/rumbl_web/controllers/auth.change2.ex
def logout(conn) do

configure_session(conn, drop: true)
end

report erratum • discuss

Presenting User Account Links • 99

http://media.pragprog.com/titles/phoenix14/code/authentication/listings/rumbl/lib/rumbl_web/controllers/auth.change2.ex
http://pragprog.com/titles/phoenix14/errata/add
http://forums.pragprog.com/forums/phoenix14

This time we are invoking configure_session and setting :drop to true, which will
drop the whole session at the end of the request. If you want to keep the
session around, you could also delete only the user ID information by calling
delete_session(conn, :user_id).

Now, we need only add the controller action. In lib/rumbl_web/controllers/session_con-
troller.ex, add the delete action, like this:

authentication/listings/rumbl/lib/rumbl_web/controllers/session_controller.change2.ex
def delete(conn, _) do

conn
|> RumblWeb.Auth.logout()
|> redirect(to: Routes.page_path(conn, :index))

end

Following the link in our layout will now clear out the session and redirect
us to the root.

Wrapping Up
This chapter has been challenging, but we have come a long way. Let’s take
stock:

• We used our existing Accounts context to look up session users.

• We added the pbkdf2_elixir dependency to our project for password hashing.

• We built our own authentication layer.

• We built the associated changesets to handle validation of passwords.

• We implemented a module plug that loads the user from the session and
made it part of our browser pipeline.

• We implemented a function plug and used it alongside some specific
actions in our controller pipeline.

In the next chapter, you’ll dive deeper into Ecto’s waters by exploring relation-
ships. We’ll also begin to flesh out our application, using code generators to
speed us along.

Chapter 5. Authenticating Users • 100

report erratum • discuss

http://media.pragprog.com/titles/phoenix14/code/authentication/listings/rumbl/lib/rumbl_web/controllers/session_controller.change2.ex
http://pragprog.com/titles/phoenix14/errata/add
http://forums.pragprog.com/forums/phoenix14

CHAPTER 6

Generators and Relationships
So far, our Ecto tour has been pretty basic. We’ve read and written repository
data, but we still haven’t connected any schemas together. Relational databases
like PostgreSQL are named that way for a reason. Dealing with related data
is the defining characteristic of that whole family of databases, so management
of relationships is the feature that makes or breaks any persistence layer.
This chapter takes you on a deeper dive into Ecto by exploring how to tie our
schemas together in the database.

Throughout this process, we’ll make some design decisions. Our contexts will
continue to be the overarching API that our controllers will access. Sometimes
those contexts will tie together united concepts. Other times we’ll use contexts
to segregate the different concerns of our application.

Along the way, we’ll use code generators to accelerate the process where it’s
possible, and you’ll walk through what each of these generators does for us.
When you’re through, you’ll know how to take greater advantage of some of
the code generators in Phoenix, and you’ll have a better understanding of
how to layer together individual Ecto schemas with relationships, and group
together related concepts in contexts.

Using Generators
To dig into Ecto, we’re going to have to define relationships, and for that we need
to extend the domain of our application. That’s great, because our application
is going to need those features. Let’s define our problem in a little more detail.

Adding Videos and Annotations
The rumbl application will let users choose a video. Then, they can attach their
comments, in real time. Users can play back these videos with comments
over time. See what it looks like in the figure on page 102.

report erratum • discuss

http://pragprog.com/titles/phoenix14/errata/add
http://forums.pragprog.com/forums/phoenix14

User

Video

Annotation

Users create videos. Then, users can create annotations on those videos. If
you’ve ever seen Mystery Science Theater 3000, you know exactly what we’re
going for. In that show, some robots sat on the bottom of the screen, throwing
in their opinions about bad science fiction.

Here’s how it’s going to work. Rather than building everything by hand as we
did with the Accounts context and its User schema, we’re going to use generators
to build the skeleton—including the migration, context, controllers, and
templates to bootstrap the process for us. It’s going to happen fast, and we’re
going to move through the boilerplate quickly, so be sure to follow closely.

Generating Web Interfaces
Phoenix includes two Mix tasks to bootstrap web interfaces. phx.gen.html creates
a simple HTTP scaffold with HTML pages, and phx.gen.json does the same for
a REST-based API using JSON. They give you a simple scaffold for a traditional
web-based application with CRUD (create, read, update, and delete) operations.
You get migrations, a basic context, controllers, and templates for simple
CRUD operations of a resource, as well as tests so you can hit the ground run-
ning. You won’t write all your Phoenix code this way, but the generators are a
great way to get up and running quickly. They can also help new users learn
how the Phoenix layers fit together in the context of a working application.

Our application allows users to annotate videos in real time. We know up-
front that we’ll need a video resource, but we need to figure out where it will
live within our application. When you’re organizing code, think contexts first.
Rumbl enables users to interact around videos in real time, and we can
imagine a future expansion to real-time conversations around all types of
multimedia-–-images, books, etc.—so a Multimedia context will give us a nice
place to group this functionality.

Now that we know where videos will live, we’ll start with a few fields, including:

• An associated User
• A creation time for the video
• A URL of the video location
• A title
• The type of the video

Chapter 6. Generators and Relationships • 102

report erratum • discuss

http://pragprog.com/titles/phoenix14/errata/add
http://forums.pragprog.com/forums/phoenix14

Later, our application will let users decorate these videos with annotations.
But first, we need users to be able to create and show their videos. Let’s use
the phx.gen.html Mix task to generate our resource, like this:

$ mix phx.gen.html Multimedia Video videos user_id:references:users \
url:string title:string description:text

* creating lib/rumbl_web/controllers/video_controller.ex
* creating lib/rumbl_web/templates/video/edit.html.eex
* creating lib/rumbl_web/templates/video/form.html.eex
* creating lib/rumbl_web/templates/video/index.html.eex
* creating lib/rumbl_web/templates/video/new.html.eex
* creating lib/rumbl_web/templates/video/show.html.eex
* creating lib/rumbl_web/views/video_view.ex
* creating test/rumbl_web/controllers/video_controller_test.exs
* creating lib/rumbl/multimedia/video.ex
* creating priv/repo/migrations/20180408024739_create_videos.exs
* creating lib/rumbl/multimedia.ex
* injecting lib/rumbl/multimedia.ex
* creating test/rumbl/multimedia_test.exs
* injecting test/rumbl/multimedia_test.exs

Add the resource to your browser scope in lib/rumbl_web/router.ex:

resources "/videos", VideoController

All of the preceding files should look familiar, because you wrote a similar
stack of code for the user accounts layer by hand. Let’s break that command
down. Following the mix phx.gen.html command, we have:

• The name of the context: Multimedia
• The name of the module that defines the schema: Video
• The plural form of the schema name: videos
• Each field, with some type information

This mix command may be more verbose than you’ve seen elsewhere. In some
frameworks, you might use simple one-time generator commands, which
leave it up to the framework to inflect plural and singular forms as requests
come and go. It ends up adding complexity to the framework, and indirectly,
to your application. At the end of the day, you save only a few keystrokes
every once in a while. Such generators optimize the wrong thing.

Sometimes it pays to be explicit. For all things internal, Phoenix frees you
from memorizing unnecessary singular and plural conventions by consistently
using singular forms in schemas, controllers, and views in most cases. In
your application boundaries, such as URLs and table names, you provide a
bit more information, because you can use pluralized names. Since creating

report erratum • discuss

Using Generators • 103

http://pragprog.com/titles/phoenix14/errata/add
http://forums.pragprog.com/forums/phoenix14

plural forms is imperfect and rife with exceptions, the generator command is
the perfect place to tell Phoenix exactly what we need.

It’s time to follow up on the remaining instructions printed by the generator.
First, we need to add the route to lib/rumbl_web/router.ex:

resources "/videos", VideoController

The question is: in which pipeline? Let’s review what we know and come back
to that question shortly.

Our Multimedia.Video is a REST resource, and these routes work just like the ones
we created for Accounts.User. As with the index and show actions in UserController, we
also want to restrict the video actions to logged-in users. We’ve already written
the code for authentication in the user controller. Let’s recap that now:

authentication/listings/rumbl/lib/rumbl_web/controllers/user_controller.change3.ex
defp authenticate(conn, _opts) do

if conn.assigns.current_user do
conn

else
conn
|> put_flash(:error, "You must be logged in to access that page")
|> redirect(to: Routes.page_path(conn, :index))
|> halt()

end
end

To share this function between routers and controllers, move it to RumblWeb.Auth,
call it authenticate_user for clarity, make it public (use def instead of defp), import
our controller functions for put_flash and redirect, and alias our router helpers:

relationships/listings/rumbl/lib/rumbl_web/controllers/auth.change1.ex
import Phoenix.Controller
alias RumblWeb.Router.Helpers, as: Routes

def authenticate_user(conn, _opts) do
if conn.assigns.current_user do

conn
else

conn
|> put_flash(:error, "You must be logged in to access that page")
|> redirect(to: Routes.page_path(conn, :index))
|> halt()

end
end

You might be tempted to import RumblWeb.Router.Helpers instead of defining an
alias, but hold off on that impulse. The router depends on Rumbl.Auth so

Chapter 6. Generators and Relationships • 104

report erratum • discuss

http://media.pragprog.com/titles/phoenix14/code/authentication/listings/rumbl/lib/rumbl_web/controllers/user_controller.change3.ex
http://media.pragprog.com/titles/phoenix14/code/relationships/listings/rumbl/lib/rumbl_web/controllers/auth.change1.ex
http://pragprog.com/titles/phoenix14/errata/add
http://forums.pragprog.com/forums/phoenix14

importing the router helpers in Rumbl.Auth would lead to a circular dependency
and compilation would fail.

Save the auth.ex file. Since that module provides services our entire application
will use, we’ll want to make it easier to integrate. An import should do the
trick. First, let’s share authenticate_user function across all controllers and
routers. We will write import RumblWeb.Auth, only: [authenticate_user: 2], where the
number 2 is the number of arguments expected by authenticate_user. Crack open
lib/rumbl_web.ex and make this change to your controller function:

relationships/listings/rumbl/lib/rumbl_web.change1.ex
def controller do

quote do
use Phoenix.Controller, namespace: RumblWeb

import Plug.Conn
import RumblWeb.Gettext
import RumblWeb.Auth, only: [authenticate_user: 2] # New import
alias RumblWeb.Router.Helpers, as: Routes

end
end

In the same file, make a similar change to your router function:

relationships/listings/rumbl/lib/rumbl_web.change1.ex
def router do

quote do
use Phoenix.Router
import Plug.Conn
import Phoenix.Controller
import RumblWeb.Auth, only: [authenticate_user: 2] # New import

end
end

Next, in UserController, we want to use the newly imported function. Rename
authenticate to authenticate_user, like this:

relationships/listings/rumbl/lib/rumbl_web/controllers/user_controller.change1.ex
plug :authenticate_user when action in [:index, :show]

Now, back to the router. Let’s define a new scope called /manage containing
the video resources. This scope pipes through the browser pipeline and our
newly imported authenticate_user function, like this:

relationships/listings/rumbl/lib/rumbl_web/router.change1.ex
scope "/manage", RumblWeb do

pipe_through [:browser, :authenticate_user]

resources "/videos", VideoController
end

report erratum • discuss

Using Generators • 105

http://media.pragprog.com/titles/phoenix14/code/relationships/listings/rumbl/lib/rumbl_web.change1.ex
http://media.pragprog.com/titles/phoenix14/code/relationships/listings/rumbl/lib/rumbl_web.change1.ex
http://media.pragprog.com/titles/phoenix14/code/relationships/listings/rumbl/lib/rumbl_web/controllers/user_controller.change1.ex
http://media.pragprog.com/titles/phoenix14/code/relationships/listings/rumbl/lib/rumbl_web/router.change1.ex
http://pragprog.com/titles/phoenix14/errata/add
http://forums.pragprog.com/forums/phoenix14

pipe_through can work with a single pipeline, and it also supports a list of them.
Furthermore, because pipelines are also plugs, we can use authenticate_user
directly in pipe_through.

We now have a whole group of actions that allow the users to manage content.
In a business application, many of those groups of tasks would have a policy,
or checklist. Our combination of plugs with pipe_through allows developers to
mix and match those policies at will. You can use these techniques for any
group of users that share your plug’s policies, whether they are admins or
anonymous users. Applications can use as many plugs and pipelines as they
need to do a job, organizing them in scopes.

We’re almost ready to give the generated code a try, but first we need to run
the last of the generator’s instructions. Go ahead and update the database
by running migrations:

$ mix ecto.migrate
Compiling 24 files (.ex)
Generated rumbl app
[info] == Running Rumbl.Repo.Migrations.CreateVideos.change/0 forward
[info] create table videos
[info] create index videos_user_id_index

Next start your server:

$ mix phx.server

And we’re all set. The migration created the new video table and an index to
keep it fast. Head over to your browser and visit http://localhost:4000/manage/videos
as a logged-in user. We see an empty list of videos:

Now take it for a test drive. Click “New video” to create a video. We see the
generated form for a new video in the figure on page 107.

Chapter 6. Generators and Relationships • 106

report erratum • discuss

http://pragprog.com/titles/phoenix14/errata/add
http://forums.pragprog.com/forums/phoenix14

Fill out the form and click “Save”. The application should create your video
and redirect. We’re not yet scoping our video lists to a given user, but we still
have a great start. We know that code generators like this one aren’t unique,
that dozens of other tools and languages do the same. Still, it’s a useful
exercise that can rapidly ramp up your understanding of Phoenix and even
Elixir. Let’s take a quick glance at what was generated.

Examining the Generated Context, Controller, and View
The generated controller is complete. It contains the full spectrum of REST
actions. The Multimedia context handles all of our heavy lifting.

The view looks like an empty module, but at this point we already know that
it will pick all templates in lib/rumbl_web/templates/video and transform them into
functions, such as render("index.html", assigns):

relationships/rumbl/lib/rumbl_web/views/video_view.ex
defmodule RumblWeb.VideoView do

use RumblWeb, :view
end

report erratum • discuss

Using Generators • 107

http://media.pragprog.com/titles/phoenix14/code/relationships/rumbl/lib/rumbl_web/views/video_view.ex
http://pragprog.com/titles/phoenix14/errata/add
http://forums.pragprog.com/forums/phoenix14

Take some time and read through the template files in lib/rumbl_web/templates/video/
to see how Phoenix uses forms, links, and other HTML functions. There’s no
magic with Phoenix. Everything is explicit so you can see exactly what each
function does. With the application boilerplate generated, we can shift our
focus to Ecto relationships, starting with the generated migration.

First let’s take a look at the generated Multimedia context in lib/rumbl/multimedia.ex:

relationships/listings/rumbl/lib/rumbl/multimedia.ex
defmodule Rumbl.Multimedia do

import Ecto.Query, warn: false
alias Rumbl.Repo
alias Rumbl.Multimedia.Video

def list_videos do
Repo.all(Video)

end

def get_video!(id), do: Repo.get!(Video, id)

def create_video(attrs \\ %{}) do
%Video{}
|> Video.changeset(attrs)
|> Repo.insert()

end

def update_video(%Video{} = video, attrs) do
video
|> Video.changeset(attrs)
|> Repo.update()

end

def delete_video(%Video{} = video) do
Repo.delete(video)

end

def change_video(%Video{} = video) do
Video.changeset(video, %{})

end
end

The Accounts context we wrote by hand is similar, so this context should look
familiar to you. It contains a logical grouping of functions you can use to work
with our videos. After all, grouping like functions is what contexts is all about.
Let’s shift to the migrations code that will interact directly with the database
to create our schema.

Generated Migrations
Let’s open up the video migration in priv/repo/migrations:

Chapter 6. Generators and Relationships • 108

report erratum • discuss

http://media.pragprog.com/titles/phoenix14/code/relationships/listings/rumbl/lib/rumbl/multimedia.ex
http://pragprog.com/titles/phoenix14/errata/add
http://forums.pragprog.com/forums/phoenix14

relationships/listings/rumbl/priv/repo/migrations/20180408024739_create_videos.exs
def change do

create table(:videos) do
add :url, :string
add :title, :string
add :description, :text
add :user_id, references(:users, on_delete: :nothing)

timestamps()
end

create index(:videos, [:user_id])
end

Phoenix generates a migration for all the fields that we passed on the command
line, like the migration we created by hand for our users table. You can see
that our generator made effective use of the type hints we provided. In rela-
tional databases, primary keys, such as our automatically generated id field,
identify rows. Foreign keys, such as our user_id field, point from one table to
the primary key in another one. At the database level, this foreign key lets
the database get in on the act of maintaining consistency across our two
relationships. Ecto is helping us to do the right thing.

The change function handles two database changes: one for migrating up and
one for migrating down. A migration up applies a migration, and a migration
down reverts it. This way, if you make a mistake and need to move a single
migration up or down, you can do so.

For example, let’s say you meant to add a view_count field to your generated
create_video migration before you migrated the database up. You could create
a new migration that adds your new field. Since you haven’t pushed your
changes upstream yet, you can roll back, make your changes, and then
migrate up again. First, you’d roll back your changes:

$ mix ecto.rollback
[info] == Running Rumbl.Repo.Migrations.CreateVideos.change/0 backward
[info] drop index videos_user_id_index
[info] drop table videos
[info] == Migrated in 0.0s

We verify that our database was fully migrated up. Then we run mix ecto.rollback
to undo our CreateVideos migration. At this point, we could add our missing
view_count field. We don’t need a view_count at the moment, so let’s migrate back
up and carry on:

$ mix ecto.migrate
[info] == Running Rumbl.Repo.Migrations.CreateVideos.change/0 forward
[info] create table videos
[info] create index videos_user_id_index

report erratum • discuss

Using Generators • 109

http://media.pragprog.com/titles/phoenix14/code/relationships/listings/rumbl/priv/repo/migrations/20180408024739_create_videos.exs
http://pragprog.com/titles/phoenix14/errata/add
http://forums.pragprog.com/forums/phoenix14

The migration sets up the basic relationships between our tables and—now
that we’ve migrated back up—we’re ready to leverage those relationships in
our schemas.

Building Relationships
After the migration, Ecto generated a schema. This file is responsible for
identifying the fields in a way that ties in to both the database table and the
Elixir struct. Now let’s take a look at the schema in lib/rumbl/multimedia/video.ex:

relationships/listings/rumbl/lib/rumbl/multimedia/video.ex
schema "videos" do

field :description, :string
field :title, :string
field :url, :string
field :user_id, :id

timestamps()
end

Our schema sets up a user_id field, of type :id, while our migration defines a
:user_id foreign key. To relate our data at the schema level, we need to tell Ecto
about our Video to User association. Replace your field :user_id, :id line in your
video schema with the following association:

belongs_to :user, Rumbl.Accounts.User

Ecto will now use this information to build the right association between our
schemas.

The video module also includes a changeset function, similar to the one that
we defined for Accounts.User. The top of the pipeline kicks it all off. The cast
function prepares tainted user input containing your specified fields for safe
inclusion into the database. We require all fields to be present. cast uses a
whitelist to tell Ecto which fields from user-input may be allowed in the input.
validate_required is a validation that tells Ecto which fields must be present from
that list of fields‘.

relationships/listings/rumbl/lib/rumbl/multimedia/video.ex
@doc false
def changeset(video, attrs) do

video
|> cast(attrs, [:url, :title, :description])
|> validate_required([:url, :title, :description])

end

Chapter 6. Generators and Relationships • 110

report erratum • discuss

http://media.pragprog.com/titles/phoenix14/code/relationships/listings/rumbl/lib/rumbl/multimedia/video.ex
http://media.pragprog.com/titles/phoenix14/code/relationships/listings/rumbl/lib/rumbl/multimedia/video.ex
http://pragprog.com/titles/phoenix14/errata/add
http://forums.pragprog.com/forums/phoenix14

The :user_id field is neither castable nor required in the previous example,
because many times the field doesn’t come from external data such as forms
but, rather, directly from the application. That’s exactly our case. We’ll make
sure to associate the current user from the session to each new video.

With our belongs_to in place, we now have a complete one-to-many association.
Now a user effectively has many videos. By defining these relationships, we can
now use Ecto’s association features. Fire up a new iex -S mix session so we can
put the new Video code through its paces.

Let’s create a new video to see how our new association ties things together:

iex> {:ok, video} = Rumbl.Multimedia.create_video(%{
...> title: "New Video", url: "http://example.com", description: "new video"
...> })
{:ok, %Rumbl.Multimedia.Video{...}}

iex> video.user
#Ecto.Association.NotLoaded<association :user is not loaded>

Ecto associations are explicit! When you want Ecto to fetch some records,
you need to ask. When you don’t ask, you can be sure that you won’t get
them. This decision may seem tedious at first, but it’s useful. One of the most
time-consuming things about dealing with persistence frameworks is that
they can often fetch rows you don’t need or fetch in inefficient ways. When
these kinds of changes cascade, you can quickly run up a tab that you’re
unable to pay.

Digging deeper, you can see that referencing video.user returns Ecto.Assocation.Not-
Loaded.

Let’s load some videos, like this:

iex> video = Rumbl.Repo.preload(video, :user)

iex> video.user
nil

There’s not much to see here yet, but we are making progress. Repo.preload
accepts one name or a collection of association names. It loads the associated
data for you—in this case, :user. After Ecto tries to fetch the association, we
can reference the video.user, which returns nil since our video doesn’t yet have
an associated user. To make this even more meaningful, we need some associ-
ated data.

report erratum • discuss

Building Relationships • 111

http://pragprog.com/titles/phoenix14/errata/add
http://forums.pragprog.com/forums/phoenix14

Let’s attach a video to one of our users:

iex> alias Ecto.Changeset
iex> alias Rumbl.Repo

iex> user = Rumbl.Accounts.get_user_by(username: "josevalim")
%Rumbl.Accounts.User{...}

iex> changeset =
...> video |> Changeset.change() |> Changeset.put_assoc(:user, user)
#Ecto.Changeset<...>

iex> video = Repo.update!(changeset)
%Rumbl.Multimedia.Video{...}

iex> video.user
%Rumbl.Accounts.User{username: "josevalim"}

Part of a framework’s job is to make tedious things easier. In this case,
Ecto.Changeset.put_assoc allows us to place an association as a change into the
changeset with a little less ceremony. This is how you would make the same
change without the useful put_assoc function:

iex> video = \
...> video \
...> |> Changeset.change() \
...> |> Changeset.put_change(:user_id, user.id) \
...> |> Repo.update!()

%Rumbl.Multimedia.Video{}

You didn’t even have to remember the specific foreign key for the User associ-
ation. Now that our video has a user, let’s try preload again:

iex> video = Repo.get(Rumbl.Multimedia.Video, video.id)
%Rumbl.Multimedia.Video{

...,
user: #Ecto.Association.NotLoaded<association :user is not loaded>,

}

iex> video = Repo.preload(video, :user)
%Rumbl.Multimedia.Video{

...,
user: %Rumbl.Accounts.User{username: "josevalim"}
user_id: 1

}

Preload is great for bundling data. Other times we may want to fetch the user
associated with a video, without storing the user in the video struct, like this:

Chapter 6. Generators and Relationships • 112

report erratum • discuss

http://pragprog.com/titles/phoenix14/errata/add
http://forums.pragprog.com/forums/phoenix14

iex> query = Ecto.assoc(video, :user)
#Ecto.Query<...>

iex> Repo.one(query)
%Rumbl.Accounts.User{username: "josevalim"}

assoc is another convenient function from Ecto that returns an Ecto.Query with
the user scoped to the given video. We convert this query into data by calling
Repo.one. As you’ll learn in the next chapter, we’ll be able to further manipulate
this query, allowing us to slice the data in any way we want.

If you’re a careful reader, you might have noticed the one-way relationship
between videos and users. We generally want to avoid having cyclic dependen-
cies between our contexts. It is expected for the Video schema to depend on
User, but if we also allow the User schema to reach out to schemas in other
contexts, the responsibilities between the accounts and multimedia contexts
will blur over time.

Now let’s dig deeper into related data.

Managing Related Data
Our generated video controller gave us the CRUD basics, but as with any
generated code, we’re going to need to tailor it to our needs. We want to link
videos with users for this social platform. To do so, we need to grab the current
user from the connection and scope our operations against the user. Open
up your lib/rumbl_web/controllers/video_controller.ex, and scroll to the create action:

def create(conn, %{"video" => video_params}) do
case Multimedia.create_video(video_params) do

{:ok, video} ->
conn
|> put_flash(:info, "Video created successfully.")
|> redirect(to: Routes.video_path(conn, :show, video))

{:error, %Ecto.Changeset{} = changeset} ->
render(conn, "new.html", changeset: changeset)

end
end

That’s simple enough. We create a video with the create_video function and then
redirect if it’s successful, otherwise we render the errors. That’s a good start,
but it’s not sufficient. We need to associate the video with the current user’s
session. That user is already in the connection at conn.assigns.current_user. We

report erratum • discuss

Managing Related Data • 113

http://pragprog.com/titles/phoenix14/errata/add
http://forums.pragprog.com/forums/phoenix14

know that the put_assoc function in Ecto.Changeset does just that. Our multimedia
context’s create_video function has all of the basics and is ready for extension.

Let’s rewrite our create_video to receive and associate a user to the video,
like this:

relationships/listings/rumbl/lib/rumbl/multimedia.change1.ex
alias Rumbl.Accounts

def create_video(%Accounts.User{} = user, attrs \\ %{}) do
%Video{}
|> Video.changeset(attrs)
|> Ecto.Changeset.put_assoc(:user, user)
|> Repo.insert()

end

Our new implementation receives the user and puts it in the changeset with
Ecto.Changeset.put_assoc, just like we did in iex. The last step is to provide the
current user from the controller to the new create_video function we wrote in
the Multimedia context. Similarly, we need to touch up the new and edit actions
to use current_user in the change_video function, like this:

relationships/listings/rumbl/lib/rumbl_web/controllers/video_controller.change1.ex
def create(conn, %{"video" => video_params}) doLine 1

case Multimedia.create_video(conn.assigns.current_user, video_params) do-

{:ok, video} ->-

conn-

|> put_flash(:info, "Video created successfully.")5

|> redirect(to: Routes.video_path(conn, :show, video))-

-

{:error, %Ecto.Changeset{} = changeset} ->-

render(conn, "new.html", changeset: changeset)-

end10

end-

On line 2 we passed our current user to our modified multimedia context
function. This code gives us what we want, mostly. Notice the code
conn.assigns.current_user. That code has a crucial task, and it’s a task we’re going
to use in nearly all the actions of this controller. Though that code seems
concise, it’s code with a common job and we’ll wind up repeating it often. We
could define a current_user(conn) function, but we can do better. Let’s add the
current_user to the argument list for our actions. We’ll do so with the custom
action function in the controller, like this:

relationships/listings/rumbl/lib/rumbl_web/controllers/video_controller.change2.ex
def action(conn, _) do

args = [conn, conn.params, conn.assigns.current_user]
apply(__MODULE__, action_name(conn), args)

end

Chapter 6. Generators and Relationships • 114

report erratum • discuss

http://media.pragprog.com/titles/phoenix14/code/relationships/listings/rumbl/lib/rumbl/multimedia.change1.ex
http://media.pragprog.com/titles/phoenix14/code/relationships/listings/rumbl/lib/rumbl_web/controllers/video_controller.change1.ex
http://media.pragprog.com/titles/phoenix14/code/relationships/listings/rumbl/lib/rumbl_web/controllers/video_controller.change2.ex
http://pragprog.com/titles/phoenix14/errata/add
http://forums.pragprog.com/forums/phoenix14

Each controller is also a plug. To call a controller, Phoenix invokes the default
action function at the end of the controller pipeline. We’re replacing it because
we want to change the API for all of our controller actions. It’s easy enough.
We call apply to call our action the way we want. The apply function takes the
module, the action name, and the arguments. Rather than explicitly using
our module’s name, we use the __MODULE__ directive, which expands to the
current module, in atom form. Now, if our module name changes, we do not
have to change our code along with it. The arguments are now the connec-
tion, the parameters, and the current user. Presto. Each action has a new
signature.

Let’s tweak new and create actions to receive all three parameters:

relationships/listings/rumbl/lib/rumbl_web/controllers/video_controller.change2.ex
def new(conn, _params, _current_user) do

changeset = Multimedia.change_video(%Video{})
render(conn, "new.html", changeset: changeset)

end

def create(conn, %{"video" => video_params}, current_user) do
case Multimedia.create_video(current_user, video_params) do

{:ok, video} ->
conn
|> put_flash(:info, "Video created successfully.")
|> redirect(to: Routes.video_path(conn, :show, video))

{:error, %Ecto.Changeset{} = changeset} ->
render(conn, "new.html", changeset: changeset)

end
end

The new action does not need to associate videos with users because new does
not insert data into the database. However, if you want to associate them at
this moment, there would be no harm either. Next, we make use of the new
current_user parameter in the create action. This change is not just for utility.
current_user can also help make our application more secure by reminding us
to first scope any list of videos to the current user.

For all of the remaining actions, we will want to let each user manage only
the videos that they created. We will need to expose a function in our Multimedia
context to look up the videos for a given user. We will do so in two parts.
user_videos_query will define an Ecto query to return a user’s videos. Then, both
the list_user_videos and get_user_video! functions will scope a request to the videos
a user can see.

Let’s do that now:

report erratum • discuss

Managing Related Data • 115

http://media.pragprog.com/titles/phoenix14/code/relationships/listings/rumbl/lib/rumbl_web/controllers/video_controller.change2.ex
http://pragprog.com/titles/phoenix14/errata/add
http://forums.pragprog.com/forums/phoenix14

relationships/listings/rumbl/lib/rumbl/multimedia.change2.ex
def list_user_videos(%Accounts.User{} = user) do

Video
|> user_videos_query(user)
|> Repo.all()

end

def get_user_video!(%Accounts.User{} = user, id) do
Video
|> user_videos_query(user)
|> Repo.get!(id)

end

defp user_videos_query(query, %Accounts.User{id: user_id}) do
from(v in query, where: v.user_id == ^user_id)

end

The user_videos_query query fetches all of the videos with a matching user ID.
list_user_videos and get_user_video! make use of that shared query. We also see the
composeable nature of Ecto queries. For the most part, our new functions
are similar to the original list_videos and get_video! functions. The only difference
is that we pipe videos through the user query before invoking the repository.
Now, we need only use the new functions in the index, show, edit, update, and
delete actions:

relationships/listings/rumbl/lib/rumbl_web/controllers/video_controller.change2.ex
def index(conn, _params, current_user) doLine 1

videos = Multimedia.list_user_videos(current_user)2

render(conn, "index.html", videos: videos)3

end4

5

def show(conn, %{"id" => id}, current_user) do6

video = Multimedia.get_user_video!(current_user, id)7

render(conn, "show.html", video: video)8

end9

On lines 2 and 7, we grabbed our current_user from the action and called our
new Multimedia.list_user_videos and Multimedia.get_user_video! functions to authorize
access. Now, users can only access the information from videos they own. If
the user provides an id from any other video, Ecto raises a not found error. Let’s
do the same change to edit and update to ensure that they can only change
videos coming from the association. Now that we have the supporting func-
tions, the change is easy:

relationships/listings/rumbl/lib/rumbl_web/controllers/video_controller.change2.ex
def edit(conn, %{"id" => id}, current_user) doLine 1

video = Multimedia.get_user_video!(current_user, id)-

changeset = Multimedia.change_video(video)-

render(conn, "edit.html", video: video, changeset: changeset)-

end5

Chapter 6. Generators and Relationships • 116

report erratum • discuss

http://media.pragprog.com/titles/phoenix14/code/relationships/listings/rumbl/lib/rumbl/multimedia.change2.ex
http://media.pragprog.com/titles/phoenix14/code/relationships/listings/rumbl/lib/rumbl_web/controllers/video_controller.change2.ex
http://media.pragprog.com/titles/phoenix14/code/relationships/listings/rumbl/lib/rumbl_web/controllers/video_controller.change2.ex
http://pragprog.com/titles/phoenix14/errata/add
http://forums.pragprog.com/forums/phoenix14

-

def update(conn, %{"id" => id, "video" => video_params}, current_user) do-

video = Multimedia.get_user_video!(current_user, id)-

-

case Multimedia.update_video(video, video_params) do10

{:ok, video} ->-

conn-

|> put_flash(:info, "Video updated successfully.")-

|> redirect(to: Routes.video_path(conn, :show, video))-

15

{:error, %Ecto.Changeset{} = changeset} ->-

render(conn, "edit.html", video: video, changeset: changeset)-

end-

end-

On lines 2 and 8 we called our new functions to authorize access. As before,
we’ll reject any other requests to change another’s content, whether those
change requests are malicious or simply our own bugs.

Finally, we need to do the same for delete:

relationships/listings/rumbl/lib/rumbl_web/controllers/video_controller.change2.ex
def delete(conn, %{"id" => id}, current_user) doLine 1

video = Multimedia.get_user_video!(current_user, id)2

{:ok, _video} = Multimedia.delete_video(video)3

4

conn5

|> put_flash(:info, "Video deleted successfully.")6

|> redirect(to: Routes.video_path(conn, :index))7

end8

Once again, we use Multimedia.get_user_video! to properly lock down access. After
those changes, our users have a panel for managing their videos in a safe
way. Using simple Ecto queries with well-named context functions, we built
a solid authorization rule restricting deletes and updates to the video’s formal
owner. Our application is easier to read and more secure thanks to these
changes.

In-context Relationships
So far, we’ve created a new context each time we create a new resource.
However, one of the important ideas behind contexts is to group similar
resources, meaning sometimes new resources should go into existing contexts.
We already talked about how the Multimedia context could manage related
entities such as videos, books and the like in the future.

Sometimes we’ll define relationships within the same context. For example,
let’s add categories to our videos. Categories are simple resources. They have a
single category name field that will be something like action, comedy or sci-fi.

report erratum • discuss

In-context Relationships • 117

http://media.pragprog.com/titles/phoenix14/code/relationships/listings/rumbl/lib/rumbl_web/controllers/video_controller.change2.ex
http://pragprog.com/titles/phoenix14/errata/add
http://forums.pragprog.com/forums/phoenix14

We expect our categories to be mostly fixed. After we define a few of them, we
don’t expect them to change often. For this reason, we don’t need to create a
controller with a view and templates to manage them from user input. We
can create them programatically instead.

Since all multimedia resources have categories and categories are only avail-
able to multimedia resources, it makes sense to define these categories
within the Multimedia context. We will define the category schema as Multime-
dia.Category.

Should I Create Another Context?

Sometimes it may be tricky to determine if two resources belong
to the same context or not. The fact two resources are related in
the database does not imply they belong in the same context.
Otherwise, almost all schemas would be within the Accounts context,
as the majority of entities in a system belong to a user.

For example, users and videos are related, but they clearly belong
in different contexts. On the other hand, categories and videos are
also related, but we put them together, as categories are only
available to multimedia resources and they do not bring much
complexity on their own. In cases you are unsure how to group
your resources, prefer distinct contexts per resource and refactor
later if necessary. Otherwise you can easily end up with large
contexts of loosely related entities. Similarly, if a context grows
too large over time, you can always break it apart. To sum it up:
When in doubt, put your new resource in its own context.

Let’s once again use generators to define our categories, but this time we’ll
use a different generator. Let’s study our options.

Schema and Context Generators
Up to this point, we’ve used the mix ecto.gen.migration generator and mix phx.gen.html.
Those generators operate at two different ends of the spectrum when it comes
to building our app. The migration generator has a very specific concern and
generates only migration files while the html and json generators generate
migrations, schemas, contexts, as well as controllers, views, and templates.

It just so happens there are two generators that fit between the HTML gener-
ator and the migration: context and schema generators. Let’s briefly discuss
those generators and when to use them. Remember, you can get more infor-
mation about any generator by typing mix help GENERATOR_NAME in your terminal.

Chapter 6. Generators and Relationships • 118

report erratum • discuss

http://pragprog.com/titles/phoenix14/errata/add
http://forums.pragprog.com/forums/phoenix14

In the following examples, we’ll use the upcoming Multimedia.Category as an
example. Once we explore all options, we can make an informed generator
choice. The candidates are:

• mix phx.gen.html Multimedia Category categories name:string. This command generates
a controller, view, and template on the frontend. On the backend, it gen-
erates a Multimedia context, a Multimedia.Category schema, and a migration.
This generator, and the similar mix phx.gen.json generator, are typically used
when we want to define all conveniences to expose a resource over the
web interface.

• mix phx.gen.context Multimedia Category categories name:string. This command makes
a Multimedia context, a Multimedia.Category schema and the associated migra-
tion. This generator is useful for generating a resource with all of its
context functions without exposing that resource via the web interface.
Note that if the context already exists, which is the case for Multimedia,
the generator will inject the new category functions into the existing
context.

• mix phx.gen.schemaMultimedia.Category categories name:string. This command creates
a schema with a migration. It’s useful for creating a resource when you
want to define the context functions yourself.

• mix ecto.gen.migration create_categories. This generator builds a new empty
migration. Useful when the schema and context are already laid out, and
all you need is to update the database

In our case, we know our categories won’t be managed via a web interface.
That rules out mix phx.gen.html. We also know that we want a schema, so we
can associate it with videos. That rules out mix ecto.gen.migration, as it does too
little.

Therefore, we need to choose between mix phx.gen.context and mix phx.gen.schema.
Both choices work fine. If you want Phoenix to generate more code than you
need and then trim from there, you’ll generate the context. If you’d rather
generate the minimum amount of code and build what you need from scratch,
you’ll use the schema generator. Since categories don’t need a web interface,
our hunch is that we won’t need most of the generated context functions so
we’ll pick the schema generator.

Enough exposition. Let’s get down to business.

report erratum • discuss

In-context Relationships • 119

http://pragprog.com/titles/phoenix14/errata/add
http://forums.pragprog.com/forums/phoenix14

Generating Category Migrations
Generate the Multimedia.Category schema like this:

$ mix phx.gen.schema Multimedia.Category categories name:string

* creating lib/rumbl/multimedia/category.ex
* creating priv/repo/migrations/20180513025558_create_categories.exs

...

$ mix ecto.migrate
---- END OF OUTPUT ----

As expected, the command generated a category schema and a migration.
The schema is backed by the “categories” database table with a name column
of type string.

Next, let’s edit our migration to mark the name field as NOT NULL and create a
unique index for it:

relationships/listings/rumbl/priv/repo/migrations/20180513025558_create_categories.change1.exs
defmodule Rumbl.Repo.Migrations.CreateCategories do

use Ecto.Migration

def change do
create table(:categories) do
add :name, :string, null: false

timestamps()
end

create unique_index(:categories, [:name])
end

end

Now we can add the referential constraints to our Video schema. A Video belongs
to a Category, like so:

relationships/listings/rumbl/lib/rumbl/multimedia/video.change1.ex
schema "videos" doLine 1

field :description, :string2

field :title, :string3

field :url, :string4

5

belongs_to :user, Rumbl.Accounts.User6

belongs_to :category, Rumbl.Multimedia.Category7

8

timestamps()9

end10

We created a simple belongs-to relationship, so we need to add the category_id
to the permitted fields for our changeset:

Chapter 6. Generators and Relationships • 120

report erratum • discuss

http://media.pragprog.com/titles/phoenix14/code/relationships/listings/rumbl/priv/repo/migrations/20180513025558_create_categories.change1.exs
http://media.pragprog.com/titles/phoenix14/code/relationships/listings/rumbl/lib/rumbl/multimedia/video.change1.ex
http://pragprog.com/titles/phoenix14/errata/add
http://forums.pragprog.com/forums/phoenix14

relationships/listings/rumbl/lib/rumbl/multimedia/video.change1.ex
@doc falseLine 1

def changeset(video, attrs) do2

video3

|> cast(attrs, [:url, :title, :description, :category_id])4

|> validate_required([:url, :title, :description])5

end6

Now our API users can safely use category_id in the user input we provide to
our changeset. Use mix ecto.gen.migration to generate a migration to add the cate-
gory_id to our video table:

$ mix ecto.gen.migration add_category_id_to_video
* creating priv/repo/migrations
* creating priv/repo/migrations/20180513030504_add_category_id_to_video.exs

With the database table updated, this relationship will allow us to add a new
category ID to our existing videos. Now open up your new priv/repo/migra-
tions/xxx_add_category_id_to_video.exs and key this in:

relationships/listings/rumbl/priv/repo/migratio … 80513030504_add_category_id_to_video.change1.exs
def change do

alter table(:videos) do
add :category_id, references(:categories)

end
end

This code sets up a database constraint between videos and categories, one
that will ensure that the category_id for a video exists. Finally, migrate your
database with your two new migrations:

$ mix ecto.migrate

[info] == Running Rumbl.Repo.Migrations.CreateCategories.change/0 forward
[info] create table categories
[info] create index categories_name_index
[info] == Migrated in 0.0s
[info] == Running Rumbl.Repo.Migrations.AddCategoryIdToVideo.change/0 forward
[info] alter table videos
[info] == Migrated in 0.0s

We migrated our categories and added the proper foreign keys. The database
will maintain the database integrity, regardless of what we do on the Phoenix
side. With our relationships established, we can safely associate videos with
categories in our user interface, by presenting a list of categories whenever
a user creates or edits a video. To do that, we need to learn how to effectively
query data. That’s exactly what we have in store for you in the next chapter.

report erratum • discuss

In-context Relationships • 121

http://media.pragprog.com/titles/phoenix14/code/relationships/listings/rumbl/lib/rumbl/multimedia/video.change1.ex
http://media.pragprog.com/titles/phoenix14/code/relationships/listings/rumbl/priv/repo/migratio � 80513030504_add_category_id_to_video.change1.exs
http://pragprog.com/titles/phoenix14/errata/add
http://forums.pragprog.com/forums/phoenix14

Wrapping Up
In this chapter, we generated a Video resource with a relationship to User and
made changes to the generated code, learning a lot along the way:

• We used contexts throughout to craft an easy-to-maintain API layer for
our application.

• We converted a private plug into a public function and shared it with our
controllers and routers.

• You learned how to migrate and roll back changes to the database.

• We defined relationships between User and Video schemas and used func-
tions from Ecto to build and retrieve associated data.

• We discussed the main generators Phoenix provides to scaffold our
applications.

The next chapter will take everything up a notch by exploring Ecto queries
and leveraging the database constraints. When we’re done, you’ll be able to
ensure data uniqueness and use the database to maintain data integrity.
Turn the page, and let’s get started!

Chapter 6. Generators and Relationships • 122

report erratum • discuss

http://pragprog.com/titles/phoenix14/errata/add
http://forums.pragprog.com/forums/phoenix14

CHAPTER 7

Ecto Queries and Constraints
In the previous chapter, we extended our application domain by associating
videos to users and categories. Now we want our users to select which cate-
gory a video belongs to upon video creation. To build this feature, you’ll need
to learn how to programmatically populate the database with a hardcoded
list of categories and add those new features to our context. Along the way
we’ll explore some of the different ways you can use Ecto to retrieve data from
the database.

We want to build our feature safely so that corrupt data can’t creep into our
database, so we’ll spend some time working with database constraints. Database
engines like PostgreSQL are called relational for a reason. A tremendous
amount of time and effort has gone into tools and features that help developers
define and enforce the relationships between tables. Instead of treating the
database as pure dumb storage, Ecto uses the strengths of the database to
help keep the data consistent. You’ll learn about error-reporting strategies
so you’ll know when to report an error and when to let it crash, letting other
application layers handle the problem.

Let’s get started.

Seeding and Associating Categories
Let’s associate videos and categories. The first step is to make sure categories
actually exist in our database by using seed data. Then we will change our
web interface to allow users to pick the category for a new video.

Setting Up Category Seed Data
We need to define a handful of initial categories for our application to use.
We could start an IEx session and directly invoke the repository to do that,

report erratum • discuss

http://pragprog.com/titles/phoenix14/errata/add
http://forums.pragprog.com/forums/phoenix14

but this approach has some issues. If we do this work manually, each team-
mate will have to do the same as soon as they want to take our application
for a spin. Once our application grows in size, having to populate each table
in our application with relevant data can get long and tedious.

Furthermore, categories won’t have a web interface where we can manage
them, so we need a mechanism to create them in production programatically.
Elixir is a great language for writing scripts so let’s create a small one to insert
data in the database. We’ll let that new script use a function in our Multimedia
context to create the necessary records.

Phoenix already defines a convention for seeding data. Open up priv/repo/seeds.exs
and read the comments Phoenix generated for us. Phoenix will make sure
that our database is appropriately populated. We only need to drop in a script
that uses our repository to directly add the data we want. Then, we’ll be able
to run Mix commands when it’s time to create the data.

Since the seed script may be executed multiple times, namely every time more
seed data is added, we need to make sure our seed script won’t fail or won’t
generate duplicated categories every time it runs.

Let’s see what happens when we create a category that already exists. Open
up IEx and key this in:

iex> Rumbl.Repo.insert! %Rumbl.Multimedia.Category{name: "Test"}
%Rumbl.Multimedia.Category{

__meta__: #Ecto.Schema.Metadata<:loaded, "categories">,
id: 1,
inserted_at: ~N[2019-05-19 13:06:12],
name: "hello",
updated_at: ~N[2019-05-19 13:06:12]

}

So far, so good. We used the insert! repository function, which will raise an
error if anything goes wrong. Let’s run the same command again:

iex> Rumbl.Repo.insert! %Rumbl.Multimedia.Category{name: "Test"}
** (Ecto.ConstraintError) constraint error when attempting to insert struct:

* categories_name_index (unique_constraint)

...

The changeset has not defined any constraint.

Now Ecto has raised an a ConstraintError, letting us know that the unique_constraint
defined in our database did not allow the operation to succeed. Ecto also tells
us how to convert this constraint error into a changeset error, a technique
we will employ later in this chapter.

Chapter 7. Ecto Queries and Constraints • 124

report erratum • discuss

http://pragprog.com/titles/phoenix14/errata/add
http://forums.pragprog.com/forums/phoenix14

However, in this particular case, instead of returning errors as part of a
changeset, we would rather create the category only if it doesn’t exist. Perhaps,
we could write this operation as:

Repo.get_by(Category, name: name) || Repo.insert!(%Category{name: name})

While this behavior would likely be fine for our seed scripts, this idiom is
inherently unsafe, and we should generally avoid it. For instance, if two
users are trying to create a new category with the same name at the same
time, the Repo.get_by(Category, name: name) would return nil to both, causing both
of them to insert the same category. Thanks to our uniqueness constraint,
only one of those operations will succeed and we will not get duplicate cat-
egories, but the other user would get an error page, leading to a poor user
experience.

The answer to the problem is once more to let the database manage the data
integrity. In particular, we want to let the database manage what happens
when there is a conflict with the data we are inserting. This feature is com-
monly known as an “Upsert” because it is common to update the data
whenever there is a conflict during an insert. In this case, we want to simply
ignore the conflict.

Ecto allows us to do exactly that via the :on_conflict option:

iex> Rumbl.Repo.insert! %Rumbl.Multimedia.Category{name: "hello"},
...> on_conflict: :nothing
%Rumbl.Multimedia.Category{

__meta__: #Ecto.Schema.Metadata<:loaded, "categories">,
id: nil,
inserted_at: ~N[2019-05-19 13:06:22],
name: "hello",
updated_at: ~N[2019-05-19 13:06:22]

}

The default value for :on_conflict is :raise. Once we change it to :nothing, no exceptions
are raised and you can see the returned category has a nil id, indicating that
indeed the category was not inserted. Upserts allow us to do many different
things in case of conflicts, from updating certain fields to even performing
whole queries. The downside is that the upsert behavour is often database
specific, so make sure to explore the different options available to your
database of choice. You can learn more about upserts in the documention
for Repo.insert.1

1. https://hexdocs.pm/ecto/Ecto.Repo.html#c:insert/2-upserts

report erratum • discuss

Seeding and Associating Categories • 125

https://hexdocs.pm/ecto/Ecto.Repo.html#c:insert/2-upserts
http://pragprog.com/titles/phoenix14/errata/add
http://forums.pragprog.com/forums/phoenix14

Finally, let’s expose this operation in our Multimedia context with a new function
called create_category!, like this:

queries/listings/rumbl/lib/rumbl/multimedia.change1.ex
alias Rumbl.Multimedia.Category

def create_category!(name) do
Repo.insert!(%Category{name: name}, on_conflict: :nothing)

end

Now, use the new function in the seeds script like this:

queries/listings/rumbl/priv/repo/seeds.change1.exs
alias Rumbl.Multimedia

for category <- ~w(Action Drama Romance Comedy Sci-fi) do
Multimedia.create_category!(category)

end

We use the sigil ~w to define a list of words. Each word represents a category.
We then traverse the list of category names, writing them to the database
with the new Multimedia.create_category! function.

Let’s run the seeds file with mix run:

$ mix run priv/repo/seeds.exs

Presto! We have categories.

Associating Videos and Categories

Now that we’ve populated our database with categories, we want to allow
users to choose a category when creating or editing a video. To do so, we’ll
do all of the following:

• Fetch all category names and IDs from the database
• Sort them by the name
• Pass them into the view as part of a select input

To build this feature, we’ll need to start with a query. Let’s spend a little time
with Ecto exploring queries a little more deeply. Fire up your project in IEx,
and let’s warm up with some queries:

iex> import Ecto.Query
iex> alias Rumbl.Repo
iex> alias Rumbl.Multimedia.Category

Importing Ecto.Query makes the Ecto query language available to us. That module
plays some games with macros to provide a simple and beautiful query syntax

Chapter 7. Ecto Queries and Constraints • 126

report erratum • discuss

http://media.pragprog.com/titles/phoenix14/code/queries/listings/rumbl/lib/rumbl/multimedia.change1.ex
http://media.pragprog.com/titles/phoenix14/code/queries/listings/rumbl/priv/repo/seeds.change1.exs
http://pragprog.com/titles/phoenix14/errata/add
http://forums.pragprog.com/forums/phoenix14

with as little ceremony as possible. Since it’s a framework in such a central
part of database development, the tradeoff of more complexity for the library
against more productivity for users makes sense. We also alias Repo and Cate-
gory. If you find yourself always issuing the same set of commands in a project
directory, you can include them in a file called .iex.exs. If you want more details,
you can read about customizing iex.2

iex> query = from c in Category,
...> select: c.name
iex> Repo.all query

First, we create a query. In this case:

• from is a macro that builds a query.
• c in Category means we’re pulling rows (labeled c) from the Category schema.
• select: c.name means we’re going to return only the name field.

Repo.all is simply a repository function that takes a query and returns all rows.
You can see Ecto returns a few debugging lines that contain the exact SQL
query we’re sending to the database, and the resulting five category names:

[debug] QUERY OK source="categories" db=1.9ms
SELECT c0."name" FROM "categories" AS c0 []

["Action", "Drama", "Romance", "Comedy", "Sci-fi"]

Ecto’s real purpose is to efficiently translate Elixir concepts into a language
the database understands. For us, that language will be SQL. We can order
category names alphabetically by passing the :order_by option to our query.
We can also return a tuple from both the id and name fields.

Let’s give it another try:

iex> Repo.all from c in Category,
...> order_by: c.name,
...> select: {c.name, c.id}
[

{"Action", 1},
{"Comedy", 4},
{"Drama", 2},
{"Romance", 3},
{"Sci-fi", 5}

]

However, we rarely need to define the whole query at once. Ecto queries are
composable, which means you can define the query bit by bit:

2. https://hexdocs.pm/iex/IEx.html

report erratum • discuss

Seeding and Associating Categories • 127

https://hexdocs.pm/iex/IEx.html
http://pragprog.com/titles/phoenix14/errata/add
http://forums.pragprog.com/forums/phoenix14

iex> query = Category
Category
iex> query = from c in query, order_by: c.name
#Ecto.Query<>

iex> query = from c in query, select: {c.name, c.id}
#Ecto.Query<>

iex> Repo.all(query)
[

{"Action", 1},
{"Comedy", 4},
{"Drama", 2},
{"Romance", 3},
{"Sci-fi", 5}

]

This time, instead of building the whole query at once, we write it in small
steps, adding a little more information along the way. You’ll see this strategy
quite frequently in Elixir because it allows us to use pipes to build complex
queries from simpler ones, bit by bit. This strategy works because Ecto defines
something called the queryable protocol. from receives a queryable, and you can
use any queryable as a base for a new query. A queryable is an Elixir protocol.
Recall that protocols like Enumerable (for Enum) define APIs for specific language
features. This one defines the API for something that can be queried.

That’s also why we can call Repo.all either as Repo.all(Category) or Repo.all(query):
because both Category and query implement the so-called Ecto.Queryable protocol.
By abiding by the protocol, you can quickly layer together sophisticated
queries with Ecto.Query, maintaining clear boundaries between your layers and
adding sophistication without complexity.

Let’s talk briefly about which pieces of our categories will go where. We’ll put
query functions in our schema layer. Complex interactions, such as those
between our multimedia and users, will go in in contexts. This organization
will leave controllers as thin and simple as possible.

Let’s implement the layered, composable query strategy. To make our queries
compose well, we need functions that take a query as the first argument and
return a query. We’ll add an alphabetical function to our Category module which
will sort the results:

queries/listings/rumbl/lib/rumbl/multimedia/category.change1.ex
import Ecto.Query

def alphabetical(query) do
from c in query, order_by: c.name

end

Chapter 7. Ecto Queries and Constraints • 128

report erratum • discuss

http://media.pragprog.com/titles/phoenix14/code/queries/listings/rumbl/lib/rumbl/multimedia/category.change1.ex
http://pragprog.com/titles/phoenix14/errata/add
http://forums.pragprog.com/forums/phoenix14

To be more precise, our alphabetical function must receive and return a
queryable. With our function in place, let’s expose this new feature from a well-
named function in our Multimedia context:

queries/listings/rumbl/lib/rumbl/multimedia.change1.ex
def list_alphabetical_categories do

Category
|> Category.alphabetical()
|> Repo.all()

end

In our user interface, we plan to build a picker that will need names for our
users and ids for our backend relationships. We added a Multimedia.list_alphabet-
ical_categories to fetch the data in the order we want. Let’s complete the circle
by using our new functions to load all the categories in our VideoController and
shape the data into a select drop-down within our VideoView:

queries/listings/rumbl/lib/rumbl_web/controllers/video_controller.change1.ex
plug :load_categories when action in [:new, :create, :edit, :update]

defp load_categories(conn, _) do
assign(conn, :categories, Multimedia.list_alphabetical_categories())

end

We define a plug that calls our new Multimedia.list_alphabetical_categories function.
We also specify the actions that need the categories in the when clause. Now,
all sorted categories are available inside @categories in our templates for the
actions we specified. You can see how adding our context layer simplifies our
controller code.

Let’s change the video form template at lib/rumbl_web/templates/video/form.html.eex
to include a new select field:

queries/listings/rumbl/lib/rumbl_web/templates/video/form.change1.html.eex
<%= label f, :category_id, "Category"%>
<%= select f, :category_id, category_select_options(@categories),

prompt: "Choose a category" %>

We added a new select field which builds a list of section options using catego-
ry_select_options. Since that function is new, let’s implement it inside our video
view in lib/rumbl_web/views/video_view.ex, like this:

queries/listings/rumbl/lib/rumbl_web/views/video_view.change1.ex
defmodule RumblWeb.VideoView do

use RumblWeb, :view

def category_select_options(categories) do
for category <- categories, do: {category.name, category.id}

end
end

report erratum • discuss

Seeding and Associating Categories • 129

http://media.pragprog.com/titles/phoenix14/code/queries/listings/rumbl/lib/rumbl/multimedia.change1.ex
http://media.pragprog.com/titles/phoenix14/code/queries/listings/rumbl/lib/rumbl_web/controllers/video_controller.change1.ex
http://media.pragprog.com/titles/phoenix14/code/queries/listings/rumbl/lib/rumbl_web/templates/video/form.change1.html.eex
http://media.pragprog.com/titles/phoenix14/code/queries/listings/rumbl/lib/rumbl_web/views/video_view.change1.ex
http://pragprog.com/titles/phoenix14/errata/add
http://forums.pragprog.com/forums/phoenix14

Remember, views are just modules with pure functions. We’ll use the name
as the label for each option in a select, and the id as the option value, and a
simple for comprehension to walk through the available categories.

That’s it. Now we can create videos with optional categories. We’re doing so
with query logic that lives in its own module so we’ll be able to better test and
extend those features. Try it out by visiting http://localhost:4000/manage/videos/new:

Before we finish this chapter, we’ll add the proper mechanisms to ensure that
the category sent by the user is valid. But first, let’s take this opportunity to
explore Ecto queries a little more deeply.

Diving Deeper into Ecto Queries
So far, you know Ecto queries like a YouTube dog knows how to ride a bike.
We’ve written our first query and we know that queries compose, but we still
haven’t explored many concepts. It’s time to take off the training wheels and
see more-advanced examples.

Chapter 7. Ecto Queries and Constraints • 130

report erratum • discuss

http://pragprog.com/titles/phoenix14/errata/add
http://forums.pragprog.com/forums/phoenix14

Open up IEx once more, and let’s retrieve a single user:

iex> import Ecto.Query
iex> alias Rumbl.Repo
iex> alias Rumbl.Accounts.User
iex> alias Rumbl.Multimedia.Video

iex> username = "josevalim"
"josevalim"

iex> Repo.one(from u in User, where: u.username == ^username)
...
%Rumbl.Accounts.User{username: "josevalim", ...}

We’re using the same concepts you learned before:

• Repo.one means return one row.

• from u in User means we’re reading from the Accounts.User schema.

• where: u.username == ^username means return the row where u.username ==
^username. The ^ (caret) is used for injecting a value or expression for
interpolation into an Ecto query

• When the select part is omitted, the whole struct is returned, as if we’d
written select: u.

Repo.one doesn’t mean “return the first result.” It means “one result is expected,
so if there’s more, fail.” This query language is a little different from what you
may have seen before. This API is not just a composition of strings. By relying
on Elixir macros, Ecto knows where user-defined variables are located, so it’s
easier to protect the user from security flaws like SQL-injection attacks.

Ecto queries also do a good part of the query normalization at compile time,
so you’ll see better performance while leveraging the information in our
schemas for casting values at runtime. Let’s see some of these concepts in
action by using an incorrect type in a query:

iex> username = 123
123

iex> Repo.all(from u in User, where: u.username == ^username)

** (Ecto.Query.CastError) iex:7: value `123` in `where`
cannot be cast to type :string in query:

from u in Rumbl.Accounts.User,
where: u.username == ^123,
select: u

report erratum • discuss

Diving Deeper into Ecto Queries • 131

http://pragprog.com/titles/phoenix14/errata/add
http://forums.pragprog.com/forums/phoenix14

The ^ operator interpolates values into our queries where Ecto can scrub
them and safely put them to use, without the risk of SQL injection. Armed
with our schema definition, Ecto is able to cast the values properly for us and
match up Elixir types with the expected database types.

In other words, we define the repository and schemas and let Ecto changesets
and queries tie them up together. This strategy gives developers the proper
level of isolation because we mostly work with data, which is straightforward,
and leave all complex operations to the repository.

The Query API
So far, we’ve used only the == operator in queries, but Ecto supports a wide
range of them:

• Comparison operators: ==, !=, <=, >=, <, >
• Boolean operators: and, or, not
• Inclusion operator: in
• Search functions: like and ilike
• Null check functions: is_nil
• Aggregates: count, avg, sum, min, max
• Date/time intervals: datetime_add, date_add
• General: fragment, field, and type

In short, you can use many of the same comparison, inclusion, search, and
aggregate operations for a typical query that you’d use in Elixir. You can see
documentation and examples for many of them in the Ecto.Query.API documen-
tation.3 Those are the basic features you’re going to use as you build queries.
You’ll use them from two APIs: keywords syntax and pipe syntax. Let’s see
what each API looks like.

Writing Queries with Keywords Syntax
The first syntax expresses different parts of the query by using a keyword
list. For example, take a look at this code for counting all users with user-
names starting with j or c. You can see keys for both :select and :where:

iex> Repo.one from u in User,
...> select: count(u.id),
...> where: ilike(u.username, "j%") or
...> ilike(u.username, "c%")

2

3. http://hexdocs.pm/ecto/Ecto.Query.API.html

Chapter 7. Ecto Queries and Constraints • 132

report erratum • discuss

http://hexdocs.pm/ecto/Ecto.Query.API.html
http://pragprog.com/titles/phoenix14/errata/add
http://forums.pragprog.com/forums/phoenix14

The u variable is bound as part of Ecto’s from macro. Throughout the query,
it represents entries from the User schema. If you attempt to access u.unknown
or match against an invalid type, Ecto raises an error. Bindings are useful
when our queries need to join across multiple schemas. Each join in a query
gets a specific binding.

Let’s also build a query to count all users:

iex> users_count = from u in User, select: count(u.id)

#Ecto.Query<from u in Rumbl.Accounts.User, select: count(u.id)>

Simple enough. We use from to build a query, selecting count(u.id). Now, let’s
say that we want to take advantage of this fantastic count feature to build some
more-complex queries. Since the best usernames have a j, let’s count the
users that match a case-insensitive search for j, like this:

iex> j_users = from u in users_count, where: ilike(u.username, ^"%j%")

#Ecto.Query<from u in Rumbl.Accounts.User,
where: ilike(u.username, ^"%j%"), select: count(u.id)>

Beautiful. You’ve built a new query, based on the old one. Although we’ve
used the same binding as before, u, we didn’t have to. You’re free to name
your query variables however you like, because Ecto doesn’t use their names.
The following query is equivalent to the previous one:

iex> j_users = from q in users_count, where: ilike(q.username, ^"%j%")

#Ecto.Query<from u in Rumbl.Accounts.User,
where: ilike(u.username, ^"%j%"), select: count(u.id)>

You can use that composition wherever you have a query, be it written with
the keyword syntax or the pipe syntax that you’ll learn next.

Using Queries with the Pipe Syntax
Let’s look at some other expressions. For example, let’s build some queries
with the Elixir pipe.

You’ve seen different query expressions constructed with key-value pairs.
You can also build queries by piping through query macros.

Most often, you’ll want to import from to build up a query against a queryable,
but you can also use other query macros such as where and select where it
makes sense. Each takes a queryable and returns a queryable, so you can pipe
them together like this:

report erratum • discuss

Diving Deeper into Ecto Queries • 133

http://pragprog.com/titles/phoenix14/errata/add
http://forums.pragprog.com/forums/phoenix14

iex> User \
...> |> select([u], count(u.id)) \
...> |> where([u], ilike(u.username, ^"j%") or ilike(u.username, ^"c%")) \
...> |> Repo.one()

[debug] QUERY OK source="users" db=1.9ms
SELECT count(u0."id") FROM "users" AS u0 WHERE
((u0."username" ILIKE $1) OR (u0."username" ILIKE $2)) ["j%", "c%"]
2

Because each query is independent of others, we need to specify the binding
manually for each one as part of a list. This binding is conceptually the same
as the one we used in from u in User. We have a single binding, so we use a list
with a single element, but we could use a longer list with more bindings if
our query had joins.

The query syntax you choose depends on your taste and the problems you’re
trying to solve. The former syntax is probably more convenient for pulling
together ad-hoc queries and solving one-off problems. The latter is probably
better for building an application’s unique complex layered query API. Each
approach has its advantages.

Fragments
A poorly designed API will break down if it does not provide every feature that
you need from the underlying storage you are trying to access. If Ecto gives
you everything you need from the database layer beneath, that’s great. If not,
you do not have to panic and fork Ecto to build your own mapping layer.
Since we cannot represent all possible queries in Elixir’s syntax, we need a
backup plan.

A programming truism is that the best abstractions offer an escape hatch,
one that exposes the user to one deeper level of abstraction on demand. Ecto
has such a feature, called the query fragment. A query fragment sends part
of a query directly to the database but allows you to construct the query string
in a safe way.

Imagine that you want to look up the user by username in a case-insensitive
way. Though Ecto doesn’t give us everything we need, you can access that
feature by using an Ecto SQL fragment, like this:

from u in User,
where: fragment("lower(username) = ?", ^String.downcase(name))

Using a fragment allows us to construct a fragment of SQL for the query but
safely interpolate the String.downcase(name) code using a prepared statement.

Chapter 7. Ecto Queries and Constraints • 134

report erratum • discuss

http://pragprog.com/titles/phoenix14/errata/add
http://forums.pragprog.com/forums/phoenix14

Whether the interpolated values are Ecto query expressions or SQL fragments,
Ecto safely escapes all interpolated values.

When everything else fails and even fragments aren’t enough, you can always
run direct SQL with Ecto.Adapters.SQL.query:

iex> Ecto.Adapters.SQL.query(Repo, "SELECT power($1, $2)", [2, 10])
[debug] QUERY OK db=2.0ms
SELECT power($1, $2) [2, 10]
{:ok,
%Postgrex.Result{

columns: ["power"],
command: :select,
connection_id: 33727,
num_rows: 1,
rows: [[1024.0]]

}}

From the query result, you can fetch all kinds of information, such as the
returned columns, the number of rows, and the result set itself. It’s best to
stick to Ecto query expressions wherever possible, but you have a safe escape
hatch when you need it.

Querying Relationships
Ecto queries also offer support for associations. When working with relation-
ships, you learned that Ecto associations are explicit, and we used Repo.preload
to fetch associated data. Let’s recap:

iex> video = Repo.one(from v in Video, limit: 1)
%Rumbl.Multimedia.Video{...}

iex> video.user
#Ecto.Association.NotLoaded<association :user is not loaded>

iex> video = Repo.preload(video, :user)
%Rumbl.Multimedia.Video{...}

iex> video.user
%Rumbl.Accounts.User{...}

However, we don’t always need to preload associations as a separate step.
Ecto allows us to preload associations directly as part of a query, like this:

iex> video = Repo.one(from v in Video, limit: 1,
...> preload: [:user])

%Rumbl.Multimedia.Video{...}

iex> video.user
%Rumbl.Accounts.User{...}

report erratum • discuss

Diving Deeper into Ecto Queries • 135

http://pragprog.com/titles/phoenix14/errata/add
http://forums.pragprog.com/forums/phoenix14

Ecto also allows us to join on associations inside queries, filtering them in
any way that makes sense:

iex> Repo.all from v in Video,
...> join: u in assoc(v, :user),
...> join: c in assoc(v, :category),
...> where: c.name == "Comedy",
...> select: {u, v}

[{%Rumbl.Accounts.User{...}, %Rumbl.Multimedia.Video{...}}]

This time, Ecto returns users and videos side by side as long as the video
belongs to the Comedy category. We use a tuple in select, but we could also
return each entry in a list, or even a map.

We expect that you’ll find plenty of joy when you work with Ecto queries.
They’re flexible but also extremely readable. They’re composable enough to
flex but also rigid enough to offer type support and security when it comes
to interacting with tainted external data. However, not all problems can be
solved with queries. Sometimes, you’ll need to use the underlying database
to help manage database integrity. For those cases, Ecto provides constraints.

Constraints
Constraints allow us to use underlying relational database features to help
us maintain database integrity. We used constraints to prevent duplicate
categories in our application. There are many other ways we can leverage
constraints.

For instance, when we create a video, we need to make sure that our category
exists. We might be tempted to solve this problem by simply performing a
query, but such an approach would be unsafe due to race conditions. In most
cases, we would expect it to work like this:

1. The user sends a category ID through the form.
2. We perform a query to check if the category ID exists in the database.
3. If the category ID does exist in the database, we add the video with the

category ID to the database.

However, someone could delete the category between steps 2 and 3, allowing
us to ultimately insert a video without an existing category in the database.
In any sufficiently busy application, that approach will lead to inconsistent
data over time. Ecto has relentlessly pushed us to define references and
indexes in our database because sometimes, doing a query won’t be enough
and we’ll need to rely on database constraints.

Chapter 7. Ecto Queries and Constraints • 136

report erratum • discuss

http://pragprog.com/titles/phoenix14/errata/add
http://forums.pragprog.com/forums/phoenix14

In Phoenix, we use constraints to manage change in a way that combines the
harsh protections of the database with Ecto’s gentle guiding hand to report
errors without crashing.

Let’s firm up some terminology before we get too far:

constraint
An explicit database constraint. This might be a uniqueness constraint
on an index, or an integrity constraint between primary and foreign keys.

constraint error
The Ecto.ConstraintError. This happens when Ecto identifies a constraint prob-
lem, such as trying to insert a record without specifying a required key.

changeset constraint
A constraint annotation added to the changeset that allows Ecto to convert
constraint errors into changeset error messages.

changeset error messages
Beautiful error messages for the consumption of humans.

Relational databases deal with relationships between tables. A database
constraint is a mechanism for restricting data in a table based on the needs
of an application. For example, a given user_id must exist as the id field in a
users table, or an email field must be unique. Ensuring data is consistent
across records is a critical job that all database-backed applications need
to handle.

Ecto allows developers to enjoy many of the guarantees databases offer in
terms of data integrity. In fact, Ecto rewards developers for doing exactly this,
both in the short term, by transforming constraint errors into user feedback,
and in the long term by guaranteeing you won’t be awake at 3:00 a.m. fixing
bugs caused by inconsistent data. In the remainder of this chapter, we’re
going to walk you through how Ecto manages constraints.

Validating Unique Data
When we created the users table, we edited the migration to index the user-
name field as unique:

create unique_index(:users, [:username])

Let’s see what happens if we try to create a user with an existing username
(as shown in the figure on page 138).

report erratum • discuss

Constraints • 137

http://pragprog.com/titles/phoenix14/errata/add
http://forums.pragprog.com/forums/phoenix14

Oops. Our application blows up with a constraint error, similar to the one we
saw when creating duplicated categories. If we inspect the error message in
the terminal, or in the browser, we see:

[error] #PID<0.403.0> running RumblWeb.Endpoint terminated
Server: localhost:4000 (http)
Request: POST /users
** (exit) an exception was raised:

** (Ecto.ConstraintError) constraint error when attempting to insert struct:

* unique: users_username_index

If you would like to convert this constraint into an error, please
call unique_constraint/3 in your changeset and define the proper
constraint name. The changeset has not defined any constraint.

We have seen ConstraintErrors before when inserting duplicate categories. For
categories, we prevented the error by changing the referential constraints,
but for duplicate usernames, we need to inform users filling in the form.

The previous error message tells us how to proceed next. It suggests converting
the constraint error into a changeset error message by calling unique_constraint
in the changeset.

Let’s do that. Open up lib/rumbl/accounts/user.ex and change the changeset function:

queries/listings/rumbl/lib/rumbl/accounts/user.change1.ex
def changeset(user, attrs) do

user
|> cast(attrs, [:name, :username])
|> validate_required([:name, :username])
|> validate_length(:username, min: 1, max: 20)
|> unique_constraint(:username)

end

Chapter 7. Ecto Queries and Constraints • 138

report erratum • discuss

http://media.pragprog.com/titles/phoenix14/code/queries/listings/rumbl/lib/rumbl/accounts/user.change1.ex
http://pragprog.com/titles/phoenix14/errata/add
http://forums.pragprog.com/forums/phoenix14

We pipe the changeset into unique_constraint. By default, Ecto infers the constraint
name for us, but it can also be given with the :name option. Calling unique_con-
straint won’t perform any validation on the spot. Instead, it stores all the rele-
vant information in the changeset. When it’s time, the repository can convert
those constraints into a human-readable error.

Let’s try creating a user with an existing username once again:

Excellent, this is exactly what we expected: a nice, beautiful, human-readable
error. unique_constraint is only one of the different constraint mappings that
changesets offer. The next kind of constraint is a foreign-key check.

Validating Foreign Keys
After taking some time to appreciate our unique_constraint, let’s continue with
our category relationship. When the user picks a category for the video, we
could provide some meaningful feedback if the operation fails. Let’s update
our Video changeset, like this:

queries/listings/rumbl/lib/rumbl/multimedia/video.change1.ex
def changeset(video, attrs) do

video
|> cast(attrs, [:url, :title, :description, :category_id])
|> validate_required([:url, :title, :description])
|> assoc_constraint(:category)

end

report erratum • discuss

Constraints • 139

http://media.pragprog.com/titles/phoenix14/code/queries/listings/rumbl/lib/rumbl/multimedia/video.change1.ex
http://pragprog.com/titles/phoenix14/errata/add
http://forums.pragprog.com/forums/phoenix14

That assoc_constraint converts foreign-key constraint errors into human-readable
error messages and guarantees that a video is created only if the category
exists in the database. Taking it for a spin, let’s load some data inside iex -S mix:

iex> import Ecto.Query
iex> alias Rumbl.Repo
iex> alias Rumbl.Multimedia.{Video, Category}

iex> category = Repo.get_by(Category, name: "Drama")
%Rumbl.Multimedia.Category{...}

iex> video = Repo.one(from v in Video, limit: 1)
...
%Rumbl.Multimedia.Video{...}

Now let’s use the video changeset to associate the video with the category:

iex> changeset = Video.changeset(video, %{category_id: category.id})
iex> Repo.update(changeset)
...
{:ok, %Rumbl.Multimedia.Video{...}}

We updated our video with a category that exists. The update works, but
suppose we tried to update a video with a bad category:

iex> changeset = Video.changeset(video, %{category_id: 12345})
iex> Repo.update(changeset)
...
{:error, %Ecto.Changeset{}}

Oops. We couldn’t update the video. Let’s inspect the returned changeset
further. IEx allows us to fetch a previous value by using v(n), where n is the
number of the expression. You can also pass a negative value to grab the last
nth expression:

iex> {:error, changeset} = v(-1)
iex> changeset.errors
[category: {"does not exist", []}]

As with unique_constraint, when we set up assoc_constraint, we no longer get Ecto.Con-
straintError. Instead, they’re converted into changeset error messages.

You can try to reproduce this constraint error via our web application in a
couple of ways. For example, you could load the page, then remove the cate-
gory from the database and submit the form after choosing the removed cat-
egory. If you feel a bit more sneaky, you can fiddle the select options in the
browser console, changing their value and then submitting the form.

Chapter 7. Ecto Queries and Constraints • 140

report erratum • discuss

http://pragprog.com/titles/phoenix14/errata/add
http://forums.pragprog.com/forums/phoenix14

As we move forward, you’ll see how changesets are an essential part of Ecto.
Each changeset encapsulates the whole change policy, including allowed fields,
detecting change, validations, and messaging the user.

On Delete
Our constraints have helped us insert and update database data safely. They
should also apply when we remove data.

Let’s open up IEx once more:

iex> alias Rumbl.Repo
iex> alias Rumbl.Multimedia.Category

iex> category = Repo.get_by(Category, name: "Drama")
%Rumbl.Multimedia.Category{...}

iex> Repo.delete(category)
** (Ecto.ConstraintError) constraint error when attempting to delete
struct

We pick the Drama category because we added a video to it in the previous
section. A video is tied to the category, so we can’t delete the category because
it would leave orphaned records.

We could solve this problem in several ways, described briefly here, that you
can explore further on your own. The first one is to use changeset constraints.
Like insert and update, Repo.delete also accepts a changeset, and you can use
foreign_key_constraint to ensure that no associated videos exist when a category
is deleted; otherwise you get a nice error message. The foreign_key_constraint
function is like the assoc_constraint we used earlier, except it doesn’t inflect the
foreign key from the relationship. This is particularly useful when you want
to show the user why you can’t delete the category:

iex> import Ecto.Changeset
iex> changeset = change(category)
iex> changeset = foreign_key_constraint(changeset, :videos,

name: :videos_category_id_fkey, message: "still exist")

iex> Repo.delete(changeset)
{:error,
#Ecto.Changeset<

...,
errors: [videos: {"still exist", []}],
valid?: false

>}

report erratum • discuss

Constraints • 141

http://pragprog.com/titles/phoenix14/errata/add
http://forums.pragprog.com/forums/phoenix14

This time, we had to be a bit more explicit in the foreign_key_constraint call,
because the foreign key has been set in the videos table. If needed, we could
also add no_assoc_constraint to do the dirty work of lifting up the foreign-key
name and setting a good error message. Check the Ecto docs for more infor-
mation on no_assoc_constraint and other changeset constraint mappings.

Second, you could configure the database references to either cascade the
deletions or simply make the videos.category_id columns NULL on delete. Let’s
open up the add_category_id_to_video migration:

add :category_id, references(:categories)

The references function accepts the :on_delete option, such as references(:categories,
on_delete: :nothing), with one of the following:

:nothing
The default.

:delete_all
When the category is deleted, all videos in that category are deleted.

:nilify_all
When a category is deleted, the category_id of all associated videos is set to
NULL.

There’s no best option here. For the category, which supports a has_many :videos
relationship, :nilify_all seems like a good choice, because the category isn’t an
essential part of the video. However, when deleting a user, you likely want to
delete all the videos created by that user, purging all of the user’s data.

The final choice is to set up :on_delete when configuring has_many or belongs_to
relationships in your schema, moving the logic effectively to the application
domain. This choice, however, is only recommended when you can’t perform
one of the preceding operations. After all, the work best suited to the database
must be done in the database.

Let It Crash
You might be expecting us to proceed to add *_constraint functions to all of our
changesets, ensuring that all failed constraint checks are converted into
human-readable error messages.

We’re not going to do so, and we shouldn’t. When we added a foreign_key_constraint
to the video belongs_to :category relationship, we knew we wanted to allow the
user to choose the video category later on. If a category is removed at some
point between the user loading the page and submitting the request to publish

Chapter 7. Ecto Queries and Constraints • 142

report erratum • discuss

http://pragprog.com/titles/phoenix14/errata/add
http://forums.pragprog.com/forums/phoenix14

the video, setting the changeset constraint allows us to show a nice error
message telling the user to pick something else.

This isn’t so uncommon. Maybe you’ve started to publish a new video on
Friday at 5:00 p.m. but decide to finish the process next Monday. Someone
has the whole weekend to remove a category, making your form data outdated.

On the other hand, let’s take the :video belongs_to :user relationship. Our applica-
tion is the one responsible for setting up the relationship between videos and
users. If a constraint is violated, it can only be a bug in our application or a
data-integrity issue.

In such cases, the user can do nothing to fix the error, so crashing is the best
option. Something unexpected really happened. But that’s OK. We know Elixir
was designed to handle failures, and Phoenix allows us to convert them into
nice status pages. Furthermore, we also recommend setting up a notification
system that aggregates and emails errors coming from your application, so
you can discover and act on potential bugs when your software is running in
production.

Putting it another way: the *_constraint changeset functions are useful when
the constraint being mapped is triggered by external data, often as part of
the user request. Using changeset constraints only makes sense if the error
message can be something the user can take action on.

Wrapping Up
In this chapter, we pushed Ecto a little harder. We started with queries and
went deep into the query API. We explored constraints and how Ecto integrates
with the database, ensuring that our data is kept clean and consistent. We
also built a category layer. Along the way, you learned many things about the
Phoenix philosophy:

• We learned how to seed data and how to use the :on_conflict option to
manage data conflicts.

• We used Ecto’s query API, which is independent of the repository API, to
do some basic queries.

• We used two forms of queries, a keyword list–based syntax and a pipe-
based syntax.

• We used fragments to pass SQL commands through the query API
unchanged.

report erratum • discuss

Wrapping Up • 143

http://pragprog.com/titles/phoenix14/errata/add
http://forums.pragprog.com/forums/phoenix14

• We explored the different ways Ecto queries work with relationships,
beyond data preloading.

• We wrote constraint-style validations for unique indexes and foreign-key
violations.

• We learned how to choose between letting constraint errors go and when
to report them to the user.

Next, you’ll learn how to test everything we’ve seen so far.

Chapter 7. Ecto Queries and Constraints • 144

report erratum • discuss

http://pragprog.com/titles/phoenix14/errata/add
http://forums.pragprog.com/forums/phoenix14

CHAPTER 8

Testing MVC
After reading through so many chapters, you might be wondering, “Where
are all of the tests?” We strongly believe in writing tests as you go, but such
an approach could be repetitive, awkward, and distracting in a book. Rather
than present tests as we go, we decided to focus on presenting one concept
at a time and save the tests for the end of each part. In this chapter, you’ll
see us use techniques to test everything we built in the first part of the book.
We might not test every single line of code we’ve written so far, but we’ll cover
all of the concepts you’ll need to test everything.

Regardless of what you’re building or the language that you’re using, many
testing principles remain the same. Let’s look at some of the principles we’d
like to emphasize:

• Fast: We’re going to make sure our tests run quickly and can run concur-
rently wherever possible.

• Isolated: We want to have the right level of isolation in our tests. Tests
that are too isolated won’t have enough context to be useful. Tests that
aren’t isolated enough will be difficult to understand and maintain.

• DRY (Don’t Repeat Yourself): We want to eliminate unnecessary repetition
in our tests.

• Repeatable: We want the same test on the same code to always yield the
same result.

Both the Phoenix platform and Elixir have many features that simplify testing.
Clean contracts between layers of the application make it easy to get to the
right level of isolation. The focus on immutability, concurrency, and speed
will help our tests run quickly. Functional programming will help keep our
tests DRY and repeatable.

report erratum • discuss

http://pragprog.com/titles/phoenix14/errata/add
http://forums.pragprog.com/forums/phoenix14

Before we go too much further, let’s settle on some common terminology,
since different testing terms mean different things depending on which
framework or language you’re using.

A unit test exercises a function for one layer of your application. For example,
if you’re testing a web calculator, unit tests would exercise the Calculator module
supporting your arithmetic. You might dedicate one or more tests to the add
function on your calculator module.

An integration test focuses on the way different layers of an application fit
together. Our integration tests in this chapter will generally do a request to
a controller to use the things we’ve created so far. A single test will begin at
our endpoint, run through our pipelines, read from the database, and render
templates through views just as Phoenix requests would.

You may also encounter types of tests that we don’t cover here. For a larger
project, you’d also possibly want to test how multiple actions work together.
For example, a single acceptance test case might sign the user on, perform
several calculations that might build on each other, and then sign off. You
might also consider performance testing to see how your application performs
under load. In this book, we focus strictly on unit and integration tests.

Enough background! We’re going to work through the various layers of our
application. We’ll start with some of the tools we can use to run tests and
shape the tests we write. Next, we’ll work through some integration tests and
then focus on unit-testing the individual components.

Let’s get started.

Understanding ExUnit
When you’re testing with Phoenix, the framework builds default tests for you
that help you keep the basic structure of your tests straight. Those templates
even go a long way toward showing you how to build tests to cover your MVC
code. Still, it’s best to start at the beginning: a walkthrough of using ExUnit,
Elixir’s testing framework. Let’s take a look at a basic Elixir test, one without
Phoenix involved at all.

ExUnit has three main macros. The setup macro specifies some setup code
that runs once before each test. The test macro defines a single isolated test.
The assert macro specifies something we believe to be true about our code. If
the assertion is true, the test passes. If it’s false, the test fails. Either way,
ExUnit reports the results, accumulating a list of failures and exceptions.
Let’s use these three macros in a simple test:

Chapter 8. Testing MVC • 146

report erratum • discuss

http://pragprog.com/titles/phoenix14/errata/add
http://forums.pragprog.com/forums/phoenix14

defmodule MyTest do
use ExUnit.Case, async: true

setup do
run some tedious setup code
:ok

end

test "pass" do
assert true

end

test "fail" do
assert false

end
end

This code runs two tests. The first runs the setup function and then the pass
test. The second again runs the setup function and then the fail test. The output
will include a passing test and a failing test.

The async: true flag allows the tests in this module to run concurrently with
tests defined in other modules. However, tests in the same module are always
executed sequentially, in random order to avoid implicit dependencies between
tests.

If you need to know more about Elixir tests, excellent online resources exist,
such as the ExUnit documentation.1 For now, let’s move on to specifically
testing Phoenix functions.

Using Mix to Run Tests
Most developers, including the authors of this book, write tests as they build
their application, piece by piece. Such a flow works well for a developer’s day,
but might seem repetitive when writing a book. In our case, we’re going to
write tests at the end of the two main parts of our book. This one captures
testing contexts and controllers.

Whether you knew it or not, Phoenix has already been generating default tests
for you, such as test/rumbl_web/controllers/video_controller_test.exs, test/rumbl/accounts/, and
test/rumbl/multimedia/. You can use those tests to better understand the overall
testing philosophy and structure behind Phoenix. We can go ahead and remove
those files and directories since they were built for generic functionality, not the
features we’ve specifically built into our controller and contexts. We’ve added
user authentication, validations, and the like to our videos, so we’ll start fresh
with our VideoController tests. Delete the test/rumbl_web/controllers/video_controller_test.exs

1. http://elixir-lang.org/docs/stable/ex_unit/ExUnit.Case.html

report erratum • discuss

Understanding ExUnit • 147

http://elixir-lang.org/docs/stable/ex_unit/ExUnit.Case.html
http://pragprog.com/titles/phoenix14/errata/add
http://forums.pragprog.com/forums/phoenix14

file now, followed by the test/rumbl/accounts and test/rumbl/multimedia directories, and
then let’s see where our test suite stands:

$ mix test

1) test GET / (RumblWeb.PageControllerTest)
test/rumbl_web/controllers/page_controller_test.exs:4
Assertion with =~ failed
code: assert html_response(conn, 200) =~ "Welcome to Phoenix!"
left: "<!DOCTYPE html>\n<html lang=\"en\">\n <head>\n
<meta charset=\"utf-8\"/>\n
<meta http-equiv=\"X-UA-Compatible\" content=\"IE=edge\"/>\n..."
right: "Welcome to Phoenix!"
stacktrace:

test/rumbl_web/controllers/page_controller_test.exs:6: (test)

Finished in 0.09 seconds
3 tests, 1 failure

We have one basic test that was generated along with the standard Phoenix
installation. Since our controller has some changes, the tests fail. Let’s fix
that so we can start our test additions clean and green, from a passing state.
It looks like we were expecting our “Welcome to Phoenix!” message to exist,
but we’ve changed that message along the way. Let’s update the test:

testing_mvc/listings/rumbl/test/rumbl_web/controllers/page_controller_test.change1.exs
test "GET /", %{conn: conn} do

conn = get conn, "/"
assert html_response(conn, 200) =~ "Welcome to Rumbl.io!"

end

Now you can run your test with a better result. This time, let’s run a single
test, like this:

$ mix test test/rumbl_web/controllers/page_controller_test.exs:4
Including tags: [line: "4"]
Excluding tags: [:test]

.

Finished in 0.07 seconds
1 test, 0 failures

It passes! The page test we just fixed is an integration test because it tests
the integration of our basic contexts with the Phoenix features that make it
available with the web, page by page. We’ll write plenty of those in a bit. Let’s
start with the context and application tests. Then, we’ll test their integration
with our web stack.

Chapter 8. Testing MVC • 148

report erratum • discuss

http://media.pragprog.com/titles/phoenix14/code/testing_mvc/listings/rumbl/test/rumbl_web/controllers/page_controller_test.change1.exs
http://pragprog.com/titles/phoenix14/errata/add
http://forums.pragprog.com/forums/phoenix14

Creating Test Data
In this chapter we’re going to write tests for user registration and our video
controller. To do so, we need to be able to rapidly create video and user records
to support our tests. Let’s create some fixture functions for creating users
and videos. Create a test/support/test_helpers.ex file and key this in:

testing_mvc/listings/rumbl/test/support/test_helpers.ex
defmodule Rumbl.TestHelpers do

alias Rumbl.{
Accounts,
Multimedia

}

def user_fixture(attrs \\ %{}) do
{:ok, user} =
attrs
|> Enum.into(%{

name: "Some User",
username: "user#{System.unique_integer([:positive])}",
password: attrs[:password] || "supersecret"

})
|> Accounts.register_user()

user
end

def video_fixture(%Accounts.User{} = user, attrs \\ %{}) do
attrs =
Enum.into(attrs, %{

title: "A Title",
url: "http://example.com",
description: "a description"

})

{:ok, video} = Multimedia.create_video(user, attrs)

video
end

end

We add a user_fixture function that accepts a map of attributes and creates a
persistent user with them. Then, we do the same with a function called
video_fixture. That function must also take the Accounts.User that created the video.
We’ll use this file as a convenient base for common helpers like user_fixture.

Notice that the functions in those two files are extremely thin. They simply
integrate with the context features we’ve already written. Such thin functions
don’t necessarily mean that your design is right, but it is a data point. By
testing, we force our context APIs to satisfy the needs of two clients, both
controllers and tests, and that often gives a good sanity check for our designs.

report erratum • discuss

Understanding ExUnit • 149

http://media.pragprog.com/titles/phoenix14/code/testing_mvc/listings/rumbl/test/support/test_helpers.ex
http://pragprog.com/titles/phoenix14/errata/add
http://forums.pragprog.com/forums/phoenix14

You might be tempted to automatically reach for complex factory libraries,
as you would in other languages, or approaches that let you specify fixtures.
For simple data with a few well-defined relationships and mostly static
attributes, you might find that simple functions work much better. For
applications like ours, such an approach has much less ceremony and will
serve perfectly well.

Keep in mind, though, that absolutes of any kind can get you into trouble. A
contract exists between your tests and your test data, whether you choose
to make it explicit or not. The best approach is to start slowly with functions.
Later, as your needs—such as faked unique or structured data—grow, you
can decide to adopt a library based on the specific needs of your application.
The context is the right place to anchor such data generation clients. Libraries
are like macros. Don’t use one when a simple function will do the job.

Testing Contexts
It’s time to test the M of the MVC, models. Phoenix generates a module in
test/support/data_case.ex to serve as a foundation for your tests that interact with
the database. In our case, Accounts and Multimedia contexts both work with the
database. The data_case handles setup and teardown of the database and
integrates with Ecto.Sandbox to allow concurrent transactional tests. Crack it
open and import the fixtures we just defined:

testing_mvc/listings/rumbl/test/support/data_case.change1.ex
defmodule Rumbl.DataCase doLine 1

use ExUnit.CaseTemplate-

-

using do-

quote do5

alias Rumbl.Repo-

-

import Ecto-

import Ecto.Changeset-

import Ecto.Query10

import Rumbl.DataCase-

import Rumbl.TestHelpers-

end-

end-

15

setup tags do-

:ok = Ecto.Adapters.SQL.Sandbox.checkout(Rumbl.Repo)-

-

unless tags[:async] do-

Ecto.Adapters.SQL.Sandbox.mode(Rumbl.Repo, {:shared, self()})20

end-

-

Chapter 8. Testing MVC • 150

report erratum • discuss

http://media.pragprog.com/titles/phoenix14/code/testing_mvc/listings/rumbl/test/support/data_case.change1.ex
http://pragprog.com/titles/phoenix14/errata/add
http://forums.pragprog.com/forums/phoenix14

:ok-

end-

25

def errors_on(changeset) do-

Ecto.Changeset.traverse_errors(changeset, fn {message, opts} ->-

Regex.replace(~r"%{(\w+)}", message, fn _, key ->-

opts |> Keyword.get(String.to_existing_atom(key), key) |> to_string()-

end)30

end)-

end-

end-

Let’s take a look in more detail.

On line 12 we import our test helpers inside the using block. The using block serves
as a place for defining macros, common imports and aliases. We also see a setup
block for handling transactional tests. A transactional test runs a test and rolls
back any changes made during the test. This transactional technique allows
tests to reset the database to a known state quickly between tests.

Phoenix also generates an errors_on function for quickly accessing a list of error
messages for attributes on a given schema. You’ll see that function come into
play as we write tests for our contexts.

Testing User Accounts
Let’s start with user account registration. In truth, most context-related
functionality will be tested with our integration tests as they insert and update
records, but not all. Error and exception flows are some of the trickiest parts
of our application to get right. We will explicitly try to catch some error condi-
tions as close to the breaking point as possible. For us, since our context layer
is the one that interacts directly with our database code, we’ll build such
cases there. Create a new file test/rumbl/accounts_test.exs that looks like this:

testing_mvc/listings/rumbl/test/rumbl/accounts_test.exs
defmodule Rumbl.AccountsTest doLine 1

use Rumbl.DataCase, async: true-

-

alias Rumbl.Accounts-

alias Rumbl.Accounts.User5

-

describe "register_user/1" do-

@valid_attrs %{-

name: "User",-

username: "eva",10

password: "secret"-

}-

@invalid_attrs %{}-

-

report erratum • discuss

Testing Contexts • 151

http://media.pragprog.com/titles/phoenix14/code/testing_mvc/listings/rumbl/test/rumbl/accounts_test.exs
http://pragprog.com/titles/phoenix14/errata/add
http://forums.pragprog.com/forums/phoenix14

test "with valid data inserts user" do15

assert {:ok, %User{id: id}=user} = Accounts.register_user(@valid_attrs)-

assert user.name == "User"-

assert user.username == "eva"-

assert [%User{id: ^id}] = Accounts.list_users()-

end20

-

test "with invalid data does not insert user" do-

assert {:error, _changeset} = Accounts.register_user(@invalid_attrs)-

assert Accounts.list_users() == []-

end25

-

test "enforces unique usernames" do-

assert {:ok, %User{id: id}} = Accounts.register_user(@valid_attrs)-

assert {:error, changeset} = Accounts.register_user(@valid_attrs)-

30

assert %{username: ["has already been taken"]} =-

errors_on(changeset)-

-

assert [%User{id: ^id}] = Accounts.list_users()-

end35

-

test "does not accept long usernames" do-

attrs = Map.put(@valid_attrs, :username, String.duplicate("a", 30))-

{:error, changeset} = Accounts.register_user(attrs)-

40

assert %{username: ["should be at most 20 character(s)"]} =-

errors_on(changeset)-

assert Accounts.list_users() == []-

end-

45

test "requires password to be at least 6 chars long" do-

attrs = Map.put(@valid_attrs, :password, "12345")-

{:error, changeset} = Accounts.register_user(attrs)-

-

assert %{password: ["should be at least 6 character(s)"]} =50

errors_on(changeset)-

assert Accounts.list_users() == []-

end-

end-

end55

On line 2, we use Rumbl.DataCase to set up our DB dependent tests. We pass
the async: true option so the test runs concurrently. Then, on lines 15 and 22,
we build valid and invalid users and assert the expected results of trying to
register a new user account with Accounts.register_user. In the remaining tests,
on lines 37, 46, and 27, our error checking is a bit more intentional. We set
a username that’s too long and assert that we got a specific error back. Likewise,
we set a password that is too short and then test for a specific error.

Chapter 8. Testing MVC • 152

report erratum • discuss

http://pragprog.com/titles/phoenix14/errata/add
http://forums.pragprog.com/forums/phoenix14

We close by setting a password that is too short and then test for a specific
error. For these tests, we use the errors_on function defined on Rumbl.DataCase.
errors_on is convenient for quickly retrieving errors from the changeset. Keep in
mind errors_on is just a function. You can create a custom version if you need
to test custom behavior.

Now let’s run our tests:

$ mix test test/rumbl/accounts_test.exs
.......

Finished in 0.1 seconds
5 tests, 0 failures

All green.

Next, let’s introduce a testing feature in ExUnit called the describe block. Some-
times, you need to apply the same setup code to many different tests. Describe
blocks allow us to apply different test setups to a whole block of tests. For
example, we need a user record to test Accounts.authenticate_by_username_and_pass,
so we create a describe block with its own setup and three tests, like this:

testing_mvc/listings/rumbl/test/rumbl/accounts_test.change1.exs
describe "authenticate_by_username_and_pass/2" doLine 1

@pass "123456"-

-

setup do-

{:ok, user: user_fixture(password: @pass)}5

end-

-

test "returns user with correct password", %{user: user} do-

assert {:ok, auth_user} =-

Accounts.authenticate_by_username_and_pass(user.username, @pass)10

-

assert auth_user.id == user.id-

end-

-

test "returns unauthorized error with invalid password", %{user: user} do15

assert {:error, :unauthorized} =-

Accounts.authenticate_by_username_and_pass(user.username, "badpass")-

end-

-

test "returns not found error with no matching user for email" do20

assert {:error, :not_found} =-

Accounts.authenticate_by_username_and_pass("unknownuser", @pass)-

end-

end-

Let’s break it down. We start by defining a new describe block on line 4 which
creates a user fixture having a hardcoded valid email and password.

report erratum • discuss

Testing Contexts • 153

http://media.pragprog.com/titles/phoenix14/code/testing_mvc/listings/rumbl/test/rumbl/accounts_test.change1.exs
http://pragprog.com/titles/phoenix14/errata/add
http://forums.pragprog.com/forums/phoenix14

Next, on line 8, we test that authenticate_by_username_and_pass returns our user
when we provide a correct email and password. Following our valid authenti-
cation tests, we then test for the two possibile user authentication failures,
a bad password or missing email on lines 15 and 20.

Now let’s run our tests again:

$ mix test test/rumbl/accounts_test.exs
.......

Finished in 0.1 seconds
8 tests, 0 failures

We’re still happily green.

Testing the Multimedia Context
Let’s test the data access features in our Multimedia context. Create a new
file at test/rumbl/multimedia_test.exs that looks like this:

testing_mvc/listings/rumbl/test/rumbl/multimedia_test.exs
defmodule Rumbl.MultimediaTest do

use Rumbl.DataCase, async: true

alias Rumbl.Multimedia
alias Rumbl.Multimedia.Category

describe "categories" do
test "list_alphabetical_categories/0" do
for name <- ~w(Drama Action Comedy) do

Multimedia.create_category!(name)
end

alpha_names =
for %Category{name: name} <-

Multimedia.list_alphabetical_categories() do

name
end

assert alpha_names == ~w(Action Comedy Drama)
end

end
end

We programmatically create categories and later fetch them. Our tests verify
that they are in alphabetical order. Now let’s run our tests:

$ mix test test/rumbl/multimedia_test.exs
.

Finished in 0.07 seconds
1 test, 0 failures

Chapter 8. Testing MVC • 154

report erratum • discuss

http://media.pragprog.com/titles/phoenix14/code/testing_mvc/listings/rumbl/test/rumbl/multimedia_test.exs
http://pragprog.com/titles/phoenix14/errata/add
http://forums.pragprog.com/forums/phoenix14

Success!

Everything looks good, so let’s now test the video functions of our Multimedia
context, which is a little more involved than the previous tests:

testing_mvc/listings/rumbl/test/rumbl/multimedia_test.change1.exs
describe "videos" doLine 1

alias Rumbl.Multimedia.Video-

-

@valid_attrs %{description: "desc", title: "title", url: "http://local"}-

@invalid_attrs %{description: nil, title: nil, url: nil}5

-

test "list_videos/0 returns all videos" do-

owner = user_fixture()-

%Video{id: id1} = video_fixture(owner)-

assert [%Video{id: ^id1}] = Multimedia.list_videos()10

%Video{id: id2} = video_fixture(owner)-

assert [%Video{id: ^id1}, %Video{id: ^id2}] = Multimedia.list_videos()-

end-

-

test "get_video!/1 returns the video with given id" do15

owner = user_fixture()-

%Video{id: id} = video_fixture(owner)-

assert %Video{id: ^id} = Multimedia.get_video!(id)-

end-

20

test "create_video/2 with valid data creates a video" do-

owner = user_fixture()-

-

assert {:ok, %Video{} = video} =-

Multimedia.create_video(owner, @valid_attrs)25

-

assert video.description == "desc"-

assert video.title == "title"-

assert video.url == "http://local"-

end30

-

test "create_video/2 with invalid data returns error changeset" do-

owner = user_fixture()-

assert {:error, %Ecto.Changeset{}} =-

Multimedia.create_video(owner, @invalid_attrs)35

end-

-

test "update_video/2 with valid data updates the video" do-

owner = user_fixture()-

video = video_fixture(owner)40

assert {:ok, video} =-

Multimedia.update_video(video, %{title: "updated title"})-

assert %Video{} = video-

assert video.title == "updated title"-

end45

-

report erratum • discuss

Testing Contexts • 155

http://media.pragprog.com/titles/phoenix14/code/testing_mvc/listings/rumbl/test/rumbl/multimedia_test.change1.exs
http://pragprog.com/titles/phoenix14/errata/add
http://forums.pragprog.com/forums/phoenix14

test "update_video/2 with invalid data returns error changeset" do-

owner = user_fixture()-

%Video{id: id} = video = video_fixture(owner)-

50

assert {:error, %Ecto.Changeset{}} =-

Multimedia.update_video(video, @invalid_attrs)-

-

assert %Video{id: ^id} = Multimedia.get_video!(id)-

end55

-

test "delete_video/1 deletes the video" do-

owner = user_fixture()-

video = video_fixture(owner)-

assert {:ok, %Video{}} = Multimedia.delete_video(video)60

assert Multimedia.list_videos() == []-

end-

-

test "change_video/1 returns a video changeset" do-

owner = user_fixture()65

video = video_fixture(owner)-

assert %Ecto.Changeset{} = Multimedia.change_video(video)-

end-

end-

We started by grouping our tests together with a new describe block for testing
video functionality. On line 7, we create a video, picking off the id field with
a pattern match. When we fetch a video, we verify correctness by matching
against the id key of the Video record. Then, we do the same with a second
video record. This test handles fetching a list of videos. Next, on line 15, we
test the get_video function. We use the same technique to fetch a single video
using get_video.

Next, on line 21 and 32 we test creation of videos with both valid and invalid
user input. We verify a few attributes for the valid test and match against an
error tuple for the invalid one. We’re specifically testing our change set func-
tionality. We used a similar approach to test video updates on lines 38 and 47.

Next, we tested delete_video. We ran assertions to verify both the :ok tuple and
that the video no longer exists on a subsequent fetch.

Finally, we checked out the ability to return a changeset for tracking video
changes on line 64. These tests cover a lot of ground, but they’re quite simple.

Now let’s run our tests:

$ mix test test/rumbl/multimedia_test.exs
.........

Finished in 0.2 seconds
9 tests, 0 failures

Chapter 8. Testing MVC • 156

report erratum • discuss

http://pragprog.com/titles/phoenix14/errata/add
http://forums.pragprog.com/forums/phoenix14

As expected, they are all green. Before we write more tests, let’s take a short
break and talk about the Ecto Sandbox.

Using Ecto Sandbox for Test Isolation and Concurrency
We mentioned that DataCase uses some aliases, imports, and macros to give
us the functionality our tests need. One of the features that file provides is
the Ecto Sandbox. The role of the sandbox is to undo all changes we have
done to the database during our tests. These database transaction rollbacks
give us test isolation.

The way the sandbox operates is quite efficient too: instead of deleting all of
the data once the suite finishes, which would be expensive, it just wraps each
test in a transaction. Once the test is done, the transaction is rolled back and
everything behaves as if the data was never there.

While a database sandbox is commonplace in many web frameworks or
database libraries, what sets the Ecto Sandbox apart is that it enables con-
current testing within the same database. In other words, you can run multiple
tests that interact with the database at the same time, and they won’t affect
each other. This is a big deal since most developers must make compromises
between slow tests that sequentially hit the DB and “fast” tests that stub out
all DB calls altogether. With the Ecto Sandbox, we can make full use of the
database and still use all of our machine resources, making sure the test
suite runs as fast as it possibly can. We can do all of this without having to
manage multiple database instances.

Note, however, that tests do not run concurrently by default. In order to enable
concurrency, we need to pass the async: true true option when using Rumbl.Data-
Case, which is exactly what we have done in both AccountsTest and MultimediaTest:

defmodule Rumbl.AccountsTest do
use Rumbl.DataCase, async: true

Then back in Rumbl.DataCase, Phoenix defines a setup block that configures the
sandbox for us:

testing_mvc/rumbl/test/support/data_case.ex
setup tags doLine 1

:ok = Ecto.Adapters.SQL.Sandbox.checkout(Rumbl.Repo)2

3

unless tags[:async] do4

Ecto.Adapters.SQL.Sandbox.mode(Rumbl.Repo, {:shared, self()})5

end6

7

:ok8

end9

report erratum • discuss

Using Ecto Sandbox for Test Isolation and Concurrency • 157

http://media.pragprog.com/titles/phoenix14/code/testing_mvc/rumbl/test/support/data_case.ex
http://pragprog.com/titles/phoenix14/errata/add
http://forums.pragprog.com/forums/phoenix14

On line 2, we check out a connection from the sandbox. The sandbox wraps
the connection in a transaction which is automatically rolled back at the end
of the test. Then we check if the test is running asynchronously. If the test
is not asynchronous, we make sure the connection is shared across all pro-
cesses on line 5. We are going to see a use case for sharing the connection
in Chapter 13, Testing Channels and OTP, on page 279.

You can find out more about how the sandbox works by checking out the
Hex documentation.2 Now let’s move on to views and controllers.

Integration Tests
We’ve begun by testing our contexts. Since our contexts deal with database-
backed applications, those tests checked the way we created, deleted, fetched,
and updated data from the database. We also paid special attention to how
we processed changes and errors. Our context API exposed those features
through changesets.

Now it’s time to shift to integration tests. One of our basic principles for
testing is isolation, but that doesn’t mean that the most extreme isolation is
always the right answer. The interactions among parts of your software are
the very things that make it interesting. When you test your Phoenix applica-
tions, getting the right level of isolation is critical. Sometimes, a function is
the perfect level of isolation. Sometimes, though, you’ll want to run a test
that encompasses multiple layers of your application. This is the realm of the
integration test.

Fortunately, we have a natural architectural barrier that enforces the perfect
balance. We’re going to fully test the route through the endpoint, as a real
web request will do. That way, we’ll execute each plug and pick up all of the
little transformations that occur along the way. We won’t have to do any
complex test setup, and we won’t have any mismatch between the ways the
tests and production server use our application. We’ll make sure our controller
actions return success, redirect, or error codes as they should. We will test
the behaviors we expect for authorization. To top it off, testing through the
endpoint is superfast, so we pay virtually no penalty.

Warming Up with the Page Controller
Let’s get started. Start by opening test/rumbl_web/controllers/page_controller_test.exs to
take another look:

2. https://hexdocs.pm/ecto_sql/Ecto.Adapters.SQL.Sandbox.html

Chapter 8. Testing MVC • 158

report erratum • discuss

https://hexdocs.pm/ecto_sql/Ecto.Adapters.SQL.Sandbox.html
http://pragprog.com/titles/phoenix14/errata/add
http://forums.pragprog.com/forums/phoenix14

testing_mvc/rumbl/test/rumbl_web/controllers/page_controller_test.exs
defmodule RumblWeb.PageControllerTest do

use RumblWeb.ConnCase

test "GET /", %{conn: conn} do
conn = get conn, "/"
assert html_response(conn, 200) =~ "Welcome to Rumbl.io!"

end
end

This test is pretty sparse, but let’s see what we can glean. Notice RumblWeb.ConnCase.
Phoenix adds a test/support/conn_case.ex file to each new project. That file extends
Phoenix.ConnTest to provide the services your test suite will need to run locally. It
will help your tests set up connections, call your endpoints with specific routes
and the like. Open RumblWeb.ConnCase to see what’s provided by default:

testing_mvc/rumbl/test/support/conn_case.ex
defmodule RumblWeb.ConnCase do

use ExUnit.CaseTemplate

using do
quote do
Import conveniences for testing with connections
use Phoenix.ConnTest
alias RumblWeb.Router.Helpers, as: Routes

The default endpoint for testing
@endpoint RumblWeb.Endpoint

end
end

setup tags do
:ok = Ecto.Adapters.SQL.Sandbox.checkout(Rumbl.Repo)

unless tags[:async] do
Ecto.Adapters.SQL.Sandbox.mode(Rumbl.Repo, {:shared, self()})

end

{:ok, conn: Phoenix.ConnTest.build_conn()}
end

end

As you’d expect, we use Phoenix.ConnTest to set up that API. Next, it imports conve-
nient aliases we’ll use throughout our tests. Finally, it sets the @endpoint module
attribute, which is required for Phoenix.ConnTest. This attribute lets Phoenix know
which endpoint to call when you directly call a route in your tests.

Also notice our setup block. It sets up the Ecto Sandbox, as in DataCase, but
the last line here is different. It returns {:ok, conn: ...}, which places a base conn
into our test metadata, which flows into our page_controller_test as an optional
second argument to the test macro.

report erratum • discuss

Integration Tests • 159

http://media.pragprog.com/titles/phoenix14/code/testing_mvc/rumbl/test/rumbl_web/controllers/page_controller_test.exs
http://media.pragprog.com/titles/phoenix14/code/testing_mvc/rumbl/test/support/conn_case.ex
http://pragprog.com/titles/phoenix14/errata/add
http://forums.pragprog.com/forums/phoenix14

These small bits of code let Phoenix tests use real endpoints, pipelines, and
Plug.Conn connections that pass through your application code, just as the
Phoenix framework would. After all, these are integration tests that should
use the same paths production code uses whenever possible.

For example, in your page_controller_test, we called our controller with get conn,
"/" rather than calling the index action on our controller directly. This practice
ensures that we’re testing the router and pipelines because we’re using the
controller the same way Phoenix does.

Phoenix also gives us some helpers to test responses and keep our tests clean,
such as the assertion from page_controller_test:

assert html_response(conn, 200) =~ "Welcome to Rumbl.io!"

These functions pack a lot of punch in a single function call. The simple
statement html_response(conn, 200) does the following:

• Asserts that the conn’s response was 200
• Asserts that the response content-type was text/html
• Returns the response body, allowing us to match on the contents

If our request had been a JSON response, we could have used another
response assertion called json_response to match on any field of a response body.
For example, you might write a json_response assertion like this:

assert %{user_id: ^user_id} = json_response(conn, 200)

Keep in mind RumblWeb.ConnCase is just a foundation. You can personalize it to
your own application as needed. Let’s learn more about integration tests by
writing our own VideoController tests from scratch, starting with the actions
available while logged out.

Testing Logged-Out Users
We will need to create data so we will add factory helpers to our application
so we can use user_fixture and video_fixture. Add import Rumbl.TestHelpers to your
ConnCase using block to bring in our helpers in all our connection-related tests,
like this:

testing_mvc/listings/rumbl/test/support/conn_case.change1.ex
using doLine 1

quote do-

Import conveniences for testing with connections-

use Phoenix.ConnTest-

import Rumbl.TestHelpers5

alias RumblWeb.Router.Helpers, as: Routes-

-

Chapter 8. Testing MVC • 160

report erratum • discuss

http://media.pragprog.com/titles/phoenix14/code/testing_mvc/listings/rumbl/test/support/conn_case.change1.ex
http://pragprog.com/titles/phoenix14/errata/add
http://forums.pragprog.com/forums/phoenix14

The default endpoint for testing-

@endpoint RumblWeb.Endpoint-

end10

end-

With our fixture functions accessible, we can start testing our VideoController.
Create a file called test/rumbl_web/controllers/video_controller_test.exs and make it look
like this:

testing_mvc/listings/rumbl/test/rumbl_web/controllers/video_controller_test.exs
defmodule RumblWeb.VideoControllerTest do

use RumblWeb.ConnCase, async: true

test "requires user authentication on all actions", %{conn: conn} do
Enum.each([
get(conn, Routes.video_path(conn, :new)),
get(conn, Routes.video_path(conn, :index)),
get(conn, Routes.video_path(conn, :show, "123")),
get(conn, Routes.video_path(conn, :edit, "123")),
put(conn, Routes.video_path(conn, :update, "123", %{})),
post(conn, Routes.video_path(conn, :create, %{})),
delete(conn, Routes.video_path(conn, :delete, "123")),

], fn conn ->
assert html_response(conn, 302)
assert conn.halted

end)
end

end

Since our video controller is locked behind user authentication, we want to
make sure that our authentication pipeline halts every action. Since all of
those tests are the same except for the routes, we use Enum.each to iterate over
all of the routes we want, and we make the same assertion for each response.
Since we’re verifying a halted connection that kicks logged-out visitors back
to the home page, we assert a html_response of 302.

Let’s try our tests out:

$ mix test test/rumbl_web
....

Finished in 0.1 seconds
4 tests, 0 failures

And they pass. Now that we’ve tested all routes as logged-out users, we need
to check the behavior as logged-in users.

report erratum • discuss

Integration Tests • 161

http://media.pragprog.com/titles/phoenix14/code/testing_mvc/listings/rumbl/test/rumbl_web/controllers/video_controller_test.exs
http://pragprog.com/titles/phoenix14/errata/add
http://forums.pragprog.com/forums/phoenix14

Preparing for Logged-In Users
You might be tempted to place the user_id in the session for the Auth plug to
pick up, like this:

conn()
|> fetch_session()
|> put_session(:user_id, user.id)
|> get("/videos")

This approach is a little messy because it assumes an implementation. We
don’t want to store anything directly in the session, because we don’t want
to leak implementation details. Alternatively, we could do a direct request to
the session controller every time we want to log in. However, this would
quickly become expensive, because most tests will require a logged-in user.
There’s a better way.

Instead, we choose to test our login mechanism in isolation and build a bypass
mechanism for the rest of our test cases. We simply pass any user through in
our conn.assigns as a pass-through for our Auth plug. Update your web/con-
trollers/auth.ex, like this:

testing_mvc/listings/rumbl/lib/rumbl_web/controllers/auth.change1.ex
def call(conn, _opts) do

user_id = get_session(conn, :user_id)

cond do
conn.assigns[:current_user] ->
conn

user = user_id && Rumbl.Accounts.get_user(user_id) ->
assign(conn, :current_user, user)

true ->
assign(conn, :current_user, nil)

end
end

We’ve rewritten our call function using cond to check for multiple conditions,
with our new condition at the top. Its sole job is to match on the current_user
already in place in the assigns. If we see that we already have a current_user,
we return the connection as is.

Let’s be clear. What we’re doing here is controversial. We’re adding this code
to make our implementation more testable. We think the trade-off is worth
it. We are improving the contract. If a user is in the conn.assigns, we honor it, no

Chapter 8. Testing MVC • 162

report erratum • discuss

http://media.pragprog.com/titles/phoenix14/code/testing_mvc/listings/rumbl/lib/rumbl_web/controllers/auth.change1.ex
http://pragprog.com/titles/phoenix14/errata/add
http://forums.pragprog.com/forums/phoenix14

matter how it got there. We have an improved testing story that doesn’t require
us to write mocks or any other elaborate scaffolding.

Now, all of our tests for logged-in users will be much cleaner.

Testing Logged-In Users
Now, we’re free to add tests. We add a new test for /videos to test/rumbl_web/con-
trollers/video_controller_test.exs, like this:

testing_mvc/listings/rumbl/test/rumbl_web/controllers/video_controller_test.change1.exs
setup %{conn: conn, login_as: username} do

user = user_fixture(username: username)
conn = assign(conn, :current_user, user)

{:ok, conn: conn, user: user}
end

test "lists all user's videos on index", %{conn: conn, user: user} do
user_video = video_fixture(user, title: "funny cats")
other_video = video_fixture(

user_fixture(username: "other"),
title: "another video")

conn = get conn, Routes.video_path(conn, :index)
assert html_response(conn, 200) =~ ~r/Listing Videos/
assert String.contains?(conn.resp_body, user_video.title)
refute String.contains?(conn.resp_body, other_video.title)

end

In our setup block, we seed a user to the database by using our user_fixture
helper function. ConnCase takes care of running our tests in isolation. Any
seeded fixtures in the database will be wiped between test blocks.

However, our new setup block causes the previous tests to break, because
they expect a connection without a logged-in user. To fix our failing tests,
let’s use describe blocks and tags.

Using Tags
Some of our tests require logging in and some don’t. Let’s wrap our new test
case in a describe block to allow setup for only logged-in users. We’ll also use
a :login_as tag to specify which user we’d like to log in. Tagging allows you to
mark specific tests with attributes you can use later. You can access these
attributes from the test context blocks. Tests outside of the describe block
will then skip the login requirement:

report erratum • discuss

Integration Tests • 163

http://media.pragprog.com/titles/phoenix14/code/testing_mvc/listings/rumbl/test/rumbl_web/controllers/video_controller_test.change1.exs
http://pragprog.com/titles/phoenix14/errata/add
http://forums.pragprog.com/forums/phoenix14

testing_mvc/listings/rumbl/test/rumbl_web/controllers/video_controller_test.change2.exs
describe "with a logged-in user" doLine 1

-

setup %{conn: conn, login_as: username} do-

user = user_fixture(username: username)-

conn = assign(conn, :current_user, user)5

-

{:ok, conn: conn, user: user}-

end-

-

@tag login_as: "max"10

test "lists all user's videos on index", %{conn: conn, user: user} do-

user_video = video_fixture(user, title: "funny cats")-

other_video = video_fixture(-

user_fixture(username: "other"),-

title: "another video")15

-

conn = get conn, Routes.video_path(conn, :index)-

response = html_response(conn, 200)-

assert response =~ ~r/Listing Videos/-

assert response =~ user_video.title20

refute response =~ other_video.title-

end-

end-

We wrapped our setup block and video listing tests in a new describe block.
Then, on line 10, we add a :login_as tag with our username. We consume that
:login_as tag on line 3. Since Ex::Unit passes tags along with the test context,
we can simply match on the tag, grabbing the value opposite the :login_as tag
as username.

The tag module attribute accepts a keyword list or an atom. Passing an atom
is a shorthand way to set flag style options. For example @tag :logged_in is
equivalent to @tag logged_in: true. We rewrite our setup block to grab the config
map, which holds our metadata with the conn and tags which we use to pop-
ulate our user fixture.

Our tests now pass, because they only seed the database when necessary.
We can also use the tags to run tests only matching a particular tag, like this:

$ mix test test/rumbl_web --only login_as
Including tags: [:login_as]
Excluding tags: [:test]

.

Finished in 0.1 seconds
5 tests, 0 failures, 4 skipped

Chapter 8. Testing MVC • 164

report erratum • discuss

http://media.pragprog.com/titles/phoenix14/code/testing_mvc/listings/rumbl/test/rumbl_web/controllers/video_controller_test.change2.exs
http://pragprog.com/titles/phoenix14/errata/add
http://forums.pragprog.com/forums/phoenix14

Perfect. In short, we’ll use tags anywhere we want to mark attributes for a
block of tests and describes to scope setups to a block of tests. Our tests now
exercise the video listing, but we still haven’t used the controller to create a
video. Let’s build a test to create a video, making sure to define the new code
inside our logged-in describe block like this:

testing_mvc/listings/rumbl/test/rumbl_web/controllers/video_controller_test.change3.exs
alias Rumbl.Multimedia

@create_attrs %{
url: "http://youtu.be",
title: "vid",
description: "a vid"}

@invalid_attrs %{title: "invalid"}

defp video_count, do: Enum.count(Multimedia.list_videos())

@tag login_as: "max"
test "creates user video and redirects", %{conn: conn, user: user} do

create_conn =
post conn, Routes.video_path(conn, :create), video: @create_attrs

assert %{id: id} = redirected_params(create_conn)
assert redirected_to(create_conn) ==

Routes.video_path(create_conn, :show, id)

conn = get conn, Routes.video_path(conn, :show, id)
assert html_response(conn, 200) =~ "Show Video"

assert Multimedia.get_video!(id).user_id == user.id
end

@tag login_as: "max"
test "does not create vid, renders errors when invalid", %{conn: conn} do

count_before = video_count()
conn =

post conn, Routes.video_path(conn, :create), video: @invalid_attrs
assert html_response(conn, 200) =~ "check the errors"
assert video_count() == count_before

end

In this example, we want to test the successful and unsuccessful paths for
creating a video. To keep things clear and easy to understand, we create some
module attributes for both valid and invalid changesets. This touch keeps
our intentions clear. With one tweak, we can keep our tests DRY so changes
in validations require only trivial adjustments to our controller tests. We’ll
have another set of tests we can use to fully handle our changesets, but for
now this strategy will work fine.

report erratum • discuss

Integration Tests • 165

http://media.pragprog.com/titles/phoenix14/code/testing_mvc/listings/rumbl/test/rumbl_web/controllers/video_controller_test.change3.exs
http://pragprog.com/titles/phoenix14/errata/add
http://forums.pragprog.com/forums/phoenix14

Next, we create the test case for the successful case. We use the create route
with our valid attributes and then assert that we’re returning the right values
and redirecting to the right place. Then, we confirm that our test impacts the
database in the ways we expect. We don’t need to test all of the attributes,
but we should pay attention to the elements of this operation that are likely
to break. We assert that our new record exists and has the correct owner. This
test makes sure that our happy path is indeed happy.

Writing negative integration tests is a delicate balance. We don’t want to
cover all possible failure conditions, as those must be fully covered when unit
testing the context. Instead, we’re handling concerns we choose to expose to
the user, especially those that change the flow of our code. We test the case
of trying to create an invalid video, the redirect, error messages, and so on.

Our other persistence tests will follow much the same approach. You can find
the full CRUD test listing in the downloadable source code for the book.3

As you recall, we left a hole in our code coverage when we worked around
authentication. Let’s shift gears and handle the authorization cases of our
controller. We must test that other users cannot view, edit, update, or destroy
videos of another user. Crack open our test case and key this in. Remember,
since we’re not logged in, we want to add this test outside of our logged-in
describe block:

testing_mvc/listings/rumbl/test/rumbl_web/controllers/video_controller_test.change4.exs
test "authorizes actions against access by other users", %{conn: conn} do

owner = user_fixture(username: "owner")
video = video_fixture(owner, @create_attrs)
non_owner = user_fixture(username: "sneaky")
conn = assign(conn, :current_user, non_owner)

assert_error_sent :not_found, fn ->
get(conn, Routes.video_path(conn, :show, video))

end
assert_error_sent :not_found, fn ->

get(conn, Routes.video_path(conn, :edit, video))
end
assert_error_sent :not_found, fn ->

put(conn, Routes.video_path(conn, :update, video, video: @create_attrs))
end
assert_error_sent :not_found, fn ->

delete(conn, Routes.video_path(conn, :delete, video))
end

end

3. http://pragprog.com/book/phoenix/source_code

Chapter 8. Testing MVC • 166

report erratum • discuss

http://media.pragprog.com/titles/phoenix14/code/testing_mvc/listings/rumbl/test/rumbl_web/controllers/video_controller_test.change4.exs
http://pragprog.com/book/phoenix/source_code
http://pragprog.com/titles/phoenix14/errata/add
http://forums.pragprog.com/forums/phoenix14

That test does a lot, so let’s break it down. First we create a new user to act
as the owner for a video. Then, we set up our conn to log in a newly created user
named sneaky, one that doesn’t own our existing video. Using descriptive
variable names in tests can provide that extra bit of documentation to make
your test’s intentions clear.

We use the same approach we used when we tested the basic path without
logging in. In this case, the context is raising the Ecto.NoResultsError, since there
is no video with the given ID associated to the given user. Instead of letting this
error blow up in the user’s face, there is a protocol between Plug and Ecto
where Plug is told to treat all Ecto.NoResultsError as a 404 response status, which
we can also refer to as :not_found. We use a new function called assert_error_sent
to test precisely that an error happened but it became a 404 when handled
by Phoenix.

Though we don’t cover every controller action, these test cases provide a
pretty good cross section for the overall approach. For practice, you can use
these techniques to round out our integration tests.

As we work from the top down, we have one plug that we extracted into its
own module, since it plays a critical role across multiple sections of our
application. We’ll test that plug next, in isolation. We’re going to adhere to
our principle for getting the right level of isolation.

Unit-Testing Plugs
If your code is worth writing, it’s worth testing. Earlier, we bypassed our
authentication plug, so we should test it now. The good news is that since
our plug is essentially a function, it’s relatively easy to build a set of tests
that will confirm that it does what we need.

Create a test/rumbl_web/controllers/auth_test.exs and key in the following contents.
We’re going to break the test file into parts to keep things simple.

First, test the authenticate_user function that does the lion’s share of the work:

testing_mvc/listings/rumbl/test/rumbl_web/controllers/auth_test.exs
defmodule RumblWeb.AuthTest do

use RumblWeb.ConnCase, async: true
alias RumblWeb.Auth

test "authenticate_user halts when no current_user exists",
%{conn: conn} do

conn = Auth.authenticate_user(conn, [])
assert conn.halted

end

report erratum • discuss

Unit-Testing Plugs • 167

http://media.pragprog.com/titles/phoenix14/code/testing_mvc/listings/rumbl/test/rumbl_web/controllers/auth_test.exs
http://pragprog.com/titles/phoenix14/errata/add
http://forums.pragprog.com/forums/phoenix14

test "authenticate_user for existing current_user",
%{conn: conn} do

conn =
conn
|> assign(:current_user, %Rumbl.Accounts.User{})
|> Auth.authenticate_user([])

refute conn.halted
end

end

That’s as simple as it gets. If we try to authenticate without a user, we
shouldn’t authenticate. Otherwise, we should.

Let’s run that much to make sure things continue to work:

$ mix test test/rumbl_web/controllers/auth_test.exs
.

1)
test authenticate_user halts when no current_user exists (RumblWeb.AuthTest)
test/rumbl_web/controllers/auth_test.exs:5
** (KeyError) key :current_user not found in: %{}
code: conn = Auth.authenticate_user(conn, [])
stacktrace:

(rumbl) lib/rumbl_web/controllers/auth.ex:47: Auth.authenticate_user/2
test/rumbl_web/controllers/auth_test.exs:8: (test)

Finished in 0.05 seconds
2 tests, 1 failure

That was surprising. What happened?

Since our Auth plug assumes that a :current_user assign exists in the connection,
the test errors.

Let’s try to quickly fix this by injecting a nil :current_user in our first test case,
like this:

conn =
conn
|> assign(:current_user, nil)
|> Auth.authenticate_user([])

Now let’s rerun the tests:

$ mix test test/rumbl_web/controllers/auth_test.exs

1)
test authenticate_user halts when no current_user exists (RumblWeb.AuthTest)
test/rumbl_web/controllers/auth_test.exs:5
** (ArgumentError) flash not fetched, call fetch_flash/2
code: |> Auth.authenticate_user([])

Chapter 8. Testing MVC • 168

report erratum • discuss

http://pragprog.com/titles/phoenix14/errata/add
http://forums.pragprog.com/forums/phoenix14

stacktrace:
(phoenix) lib/phoenix/controller.ex:1265: Phoenix.Controller.get_flash/1
(phoenix) lib/phoenix/controller.ex:1247: Phoenix.Controller.put_flash/3
(rumbl) lib/rumbl_web/controllers/auth.ex:51: Auth.authenticate_user/2
test/rumbl_web/controllers/auth_test.exs:11: (test)

Finished in 0.06 seconds
2 tests, 1 failure

Another error.

It looks like our authenticate_user raised an error because it puts a message in
the flash, which isn’t available. If you look at the :browser pipeline in the router,
you see that it plugs fetch_flash to set up the flash.

So let’s do the same:

conn =
conn()
|> fetch_flash()
|> Auth.authenticate_user([])

We receive a ** (ArgumentError) session not fetched, call fetch_session/2 error. We could
attempt to solve this one too, but we would get yet another error about the
Plug.Session not being configured.

The issue here is that we want to unit test authenticate_user but it depends on
other functionality from the Plug pipeline. These are the kinds of issues that
integration testing through the endpoint avoids.

We could reimplement our whole endpoint and router pipeline in order to test
authenticate_user but Phoenix gives us another option. For unit tests, Phoenix
includes a bypass_through test helper that allows us to do a request that goes
through the whole pipeline but bypasses the router dispatch. This approach
gives you a connection wired up with all the transformations your specific
tests require, such as fetching the session and adding flash messages:

testing_mvc/listings/rumbl/test/rumbl_web/controllers/auth_test.change1.exs
setup %{conn: conn} do

conn =
conn
|> bypass_through(RumblWeb.Router, :browser)
|> get("/")

{:ok, %{conn: conn}}
end

test "authenticate_user halts when no current_user exists", %{conn: conn} do
conn = Auth.authenticate_user(conn, [])
assert conn.halted

end

report erratum • discuss

Unit-Testing Plugs • 169

http://media.pragprog.com/titles/phoenix14/code/testing_mvc/listings/rumbl/test/rumbl_web/controllers/auth_test.change1.exs
http://pragprog.com/titles/phoenix14/errata/add
http://forums.pragprog.com/forums/phoenix14

test "authenticate_user for existing current_user", %{conn: conn} do
conn =

conn
|> assign(:current_user, %Rumbl.Accounts.User{})
|> Auth.authenticate_user([])

refute conn.halted
end

We add a setup block, which calls bypass_through, passing our router and the
:browser pipeline to invoke. Then we perform a request with get, which accesses
the endpoint and stops at the browser pipeline, as requested. The path given
to get isn’t used by the router when bypassing; it’s simply stored in the con-
nection. This gives us all the requirements for a plug with a valid session and
flash message support. Next, we pull the conn from the context passed to the
test macro and use our bypassed conn as the base for our test blocks.

Now let’s rerun our tests:

$ mix test test/rumbl_web/controllers/auth_test.exs
..

Finished in 0.08 seconds
2 tests, 0 failures

And boom. Now test the rest of our Auth plug, like the login and logout features:

testing_mvc/listings/rumbl/test/rumbl_web/controllers/auth_test.change2.exs
test "login puts the user in the session", %{conn: conn} do

login_conn =
conn
|> Auth.login(%Rumbl.Accounts.User{id: 123})
|> send_resp(:ok, "")

next_conn = get(login_conn, "/")
assert get_session(next_conn, :user_id) == 123

end

Here, we test our ability to log in. We create a new connection called login_conn.
We take a basic conn, log the user in with Auth.login, and call send_resp, which
sends the response to the client with a given status and response body. To
make sure that our new user survives the next request, we make a new request
with that connection and make sure the user is still in the session. That’s
easy enough. A test for logout is similar:

Chapter 8. Testing MVC • 170

report erratum • discuss

http://media.pragprog.com/titles/phoenix14/code/testing_mvc/listings/rumbl/test/rumbl_web/controllers/auth_test.change2.exs
http://pragprog.com/titles/phoenix14/errata/add
http://forums.pragprog.com/forums/phoenix14

testing_mvc/listings/rumbl/test/rumbl_web/controllers/auth_test.change2.exs
test "logout drops the session", %{conn: conn} do

logout_conn =
conn
|> put_session(:user_id, 123)
|> Auth.logout()
|> send_resp(:ok, "")

next_conn = get(logout_conn, "/")
refute get_session(next_conn, :user_id)

end

We create a connection, put a user_id into our session, and then call Auth.logout.
To make sure the logout will persist through a request, we then make a request
with get, and finally make sure that no user_id is in the session.

Now, let’s test the main interface for our plug—the call function, which calls
the plug directly to wire up the current_user from the session:

testing_mvc/listings/rumbl/test/rumbl_web/controllers/auth_test.change3.exs
test "call places user from session into assigns", %{conn: conn} doLine 1

user = user_fixture()-

conn =-

conn-

|> put_session(:user_id, user.id)5

|> Auth.call(Auth.init([]))-

-

assert conn.assigns.current_user.id == user.id-

end-

10

test "call with no session sets current_user assign to nil", %{conn: conn} do-

conn = Auth.call(conn, Auth.init([]))-

assert conn.assigns.current_user == nil-

end-

The tests are simple and light. On line 2, we create a user for the test. Next,
on line 5, we place that user’s ID in the session. On line 6, we call Auth.call,
and then assert that the current_user in conn.assigns matches our seeded user.
We know that logged-in users can get in.

We have a workable positive test, but it’s also important to test the negative
condition. We want to make sure that logged-out users stay out. The test looks
a lot like the positive test, but we never put any user in the session, and we
match on nil instead.

report erratum • discuss

Unit-Testing Plugs • 171

http://media.pragprog.com/titles/phoenix14/code/testing_mvc/listings/rumbl/test/rumbl_web/controllers/auth_test.change2.exs
http://media.pragprog.com/titles/phoenix14/code/testing_mvc/listings/rumbl/test/rumbl_web/controllers/auth_test.change3.exs
http://pragprog.com/titles/phoenix14/errata/add
http://forums.pragprog.com/forums/phoenix14

Now let’s run our new tests:

$ mix test test/rumbl_web/controllers/auth_test.exs
.........

Finished in 1.9 seconds
9 tests, 0 failures

All pass, but if you look closely, we have a problem. We are waiting two sec-
onds for nine small tests. The test time is growing quickly. You have probably
been noticing how the test times have crept up as we have seeded more and
more users. If your tests are slow, you won’t run them as much. We have to
fix it.

The reason our tests are slow is that we seed users with our registration
changeset, which hashes passwords. Hashing passwords is intentionally
expensive. Doing this extra bit of work makes our passwords harder to crack,
but we don’t need all of that security in the test environment.

Let’s ease up the number of hashing rounds to speed up our test suite by
adding this configuration line to config/test.exs:

testing_mvc/listings/rumbl/config/test.change1.exs
config :pbkdf2_elixir, :rounds, 1

Now let’s rerun our authentication tests:

$ mix test test/rumbl_web/controllers/auth_test.exs
.........

Finished in 0.1 seconds
9 tests, 0 failures

One-tenth of a second! Time to shift into views.

Testing Views and Templates
As we’ve said, any code worth writing is code worth testing, and your views
are no exception. As you saw in Chapter 3, Controllers, on page 41, Phoenix
templates are simply functions in a parent’s view module. You can test these
functions like any other. In this section, you’ll see how to test views and
templates in isolation.

Create a test/rumbl_web/views/video_view_test.exs and key this in:

testing_mvc/listings/rumbl/test/rumbl_web/views/video_view_test.exs
defmodule RumblWeb.VideoViewTest doLine 1

use RumblWeb.ConnCase, async: true-

import Phoenix.View-

-

Chapter 8. Testing MVC • 172

report erratum • discuss

http://media.pragprog.com/titles/phoenix14/code/testing_mvc/listings/rumbl/config/test.change1.exs
http://media.pragprog.com/titles/phoenix14/code/testing_mvc/listings/rumbl/test/rumbl_web/views/video_view_test.exs
http://pragprog.com/titles/phoenix14/errata/add
http://forums.pragprog.com/forums/phoenix14

test "renders index.html", %{conn: conn} do5

videos = [-

%Rumbl.Multimedia.Video{id: "1", title: "dogs"},-

%Rumbl.Multimedia.Video{id: "2", title: "cats"}-

]-

10

content = render_to_string(-

RumblWeb.VideoView,-

"index.html",-

conn: conn,-

videos: videos)15

-

assert String.contains?(content, "Listing Videos")-

-

for video <- videos do-

assert String.contains?(content, video.title)20

end-

end-

-

test "renders new.html", %{conn: conn} do-

owner = %Rumbl.Accounts.User{}25

changeset = Rumbl.Multimedia.change_video(%Rumbl.Multimedia.Video{})-

categories = [%Rumbl.Multimedia.Category{id: 123, name: "cats"}]-

-

content =-

render_to_string(RumblWeb.VideoView, "new.html",30

conn: conn,-

changeset: changeset,-

categories: categories-

)-

35

assert String.contains?(content, "New Video")-

end-

end-

Our test needs some videos, so on line 5, we set up our required @videos assigns.
With all of the prerequisites in place, we call Phoenix.View.render_to_string to render
our HTML template as a simple string. Then, we make sure that all of the
video titles are present on the page.

On line 24, we again set up our necessary @changeset and @categories assigns
before rendering our template as a string and asserting that our render con-
tents place us on the new video page.

Sometimes, views are simple enough that your integration tests will be enough.
Many other times, you won’t test the templates directly, but the functions
that you create to help move the logic away from the templates and into code.
Our goal with this section is to once again highlight the fact that because a
template is just a function in the view, templates are easy to test because

report erratum • discuss

Testing Views and Templates • 173

http://pragprog.com/titles/phoenix14/errata/add
http://forums.pragprog.com/forums/phoenix14

they aren’t coupled with the controller layer. And this will apply to any function
you create in your view, because all arguments are received explicitly. With
Phoenix, you’ll have all of the tools you need to do so easily. We’ve covered a
lot of ground so it’s a good time to wrap up.

Wrapping Up
With these final tests, we’re finally done. We’ve accomplished a lot.

We started by writing some unit tests. The goal of these tests is to check a
single layer of our application in isolation. We tested our basic contexts, the
user and multimedia contexts. Since both of these contexts provided persis-
tence services, we made sure to exercise the database. The Ecto.Sandbox pre-
served isolation and allowed concurrent testing and the describe keyword
allowed us to apply setup code to multiple tests at once, saving duplication.
We paid special attention to change sets which surface errors and change
tracking through the API.

Next we worked with integration tests. The goal of integration tests is to test
the layers of our application working together. Our integration tests used not
only controller code but also the entire Phoenix pipeline and used actual
endpoints to make sure to exercise the whole application stack. We used
tagging to specify individual users to create data or log in. We also used
Phoenix helpers to make multiple assertions in a compact way. To preserve
the entire Plug pipeline, we wrote a bypass to skip only the authentication
plugs.

Finally, we tested our plugs and views. Since these were simple functions, it
was easy and fast to test them.

Raise a cheer, because we’re through Part I! You should now be able to use
Plug, Ecto, and Phoenix to build traditional request/response features for
your application and test each of those concepts. Part II will be even more
exciting, focusing on the features that prompted the creation of Phoenix. You’ll
see channels, OTP, and more. Get ready. We’re going to push Phoenix harder.

Chapter 8. Testing MVC • 174

report erratum • discuss

http://pragprog.com/titles/phoenix14/errata/add
http://forums.pragprog.com/forums/phoenix14

Part II

Writing Interactive and Maintainable
Applications

In Part II, we’ll explore the features that will help you build a new generation of web
applications. You’ll learn to use channels to build highly concurrent interactive appli-
cations using a new set of abstractions. Then, you’ll learn to build service layers with
the OTP API, the famous Erlang library for building supervised, fault-tolerant services.
You’ll manage all of this with Mix, Elixir’s build tool, allowing us to break a single
monolithic application into smaller ones, separately maintainable but conveniently
integrated. Finally, you’ll learn to test channels and OTP features. You’ll learn to build
interactive applications that scale well and are easy to understand.

CHAPTER 9

Watching Videos
We’ve accomplished quite a bit. We’ve built some basic web application fea-
tures in a short time. We used Plug to build pipelines of functions that let us
build organized, DRY code. We used Ecto to deal with our relational database
in a functional way, favoring explicitness over hidden behaviors. We also
organized our code into contexts to provide the domain API for other layers
of our application to use. Phoenix wired it all together into a streamlined
workflow, with live reloading, HTML support, and more.

Everything we’ve done so far highlights how well Phoenix encourages beautiful
and maintainable applications. Those improvements bring a slightly different
look to traditional web development, but nothing you’ve seen up to now is
drastically different from what you already knew.

Now you’re ready to see what makes Phoenix shine. This chapter starts with
preparing some common ground by adding a page to watch videos. Then you’ll
look into Ecto custom types, which allow you to integrate your own require-
ments into queries, changesets, and structs. Along the way, we’ll continue to
expand our business logic within the Multimedia context, adding new appli-
cation features one at a time. At the close of this chapter you’ll customize
URLs by tapping into the extensible power behind Elixir’s protocols.

Tighten your seat belts. This ride will be unforgettable.

Watching Videos
Our rumbl application will allow us to add messages to videos in real time.
We’ll do some groundwork to make this process more convenient when the
time comes. We’ll tweak our views to make it easy to watch videos. Then, we’ll

report erratum • discuss

http://pragprog.com/titles/phoenix14/errata/add
http://forums.pragprog.com/forums/phoenix14

create a new controller explicitly for watching a video, along with its view and
template. Next, we’ll tweak the router to pick up our new routes. Finally, we’ll
add some JavaScript to plug in to YouTube’s API. You’ll work through these
features quickly, because they don’t involve much new ground.

Let’s let the user watch a video. First let’s enhance our layout header with a
link to My Videos for the current user in lib/rumbl_web/templates/layout/app.html.eex:

watching_videos/listings/rumbl/lib/rumbl_web/templates/layout/app.change1.html.eex
<nav role="navigation">

<%= if @current_user do %>
<%= @current_user.username %>
<%= link "My Videos", to: Routes.video_path(@conn, :index) %>

<%= link "Log out",
to: Routes.session_path(@conn, :delete, @current_user),
method: "delete" %>

<% else %>
<%= link "Register", to: Routes.user_path(@conn, :new) %>
<%= link "Log in", to: Routes.session_path(@conn, :new) %>

<% end %>

</nav>

Clicking My Videos routes a logged-in user directly to VideoController.index action.

This action is restricted to the current user, thanks to our scoping rules in
the controller. In fact, there’s no public URL we can share with our friends
when it comes to watching videos. Let’s address this by creating a WatchController
for watching user videos, available to any user. Create a new lib/rumbl_web/con-
trollers/watch_controller.ex file and key this in:

watching_videos/listings/rumbl/lib/rumbl_web/controllers/watch_controller.ex
defmodule RumblWeb.WatchController do

use RumblWeb, :controller

alias Rumbl.Multimedia

def show(conn, %{"id" => id}) do
video = Multimedia.get_video!(id)
render(conn, "show.html", video: video)

end
end

Now, let’s create a new template directory for the controller in lib/rumbl_web/tem-
plates/watch and add a new show.html.eex template file with these contents:

Chapter 9. Watching Videos • 178

report erratum • discuss

http://media.pragprog.com/titles/phoenix14/code/watching_videos/listings/rumbl/lib/rumbl_web/templates/layout/app.change1.html.eex
http://media.pragprog.com/titles/phoenix14/code/watching_videos/listings/rumbl/lib/rumbl_web/controllers/watch_controller.ex
http://pragprog.com/titles/phoenix14/errata/add
http://forums.pragprog.com/forums/phoenix14

watching_videos/listings/rumbl/lib/rumbl_web/templates/watch/show.html.eex
<div class="row">

<div class="column column-60">
<h1><%= @video.title %></h1>
<%= content_tag :div, id: "video",

data: [id: @video.id, player_id: player_id(@video)] do %>
<% end %>

</div>

<div class="column annotations">
<h3>Annotations</h3>

<div id="msg-container">
</div>

<div>
<textarea id="msg-input"

rows="3"
placeholder="Comment..."></textarea>

<button id="msg-submit" class="button column"
type="submit">

Post
</button>

</div>
</div>

</div>

The template is mostly markup, with the exception of the title and the video
div, which includes the id, data-id, and data-player-id attributes. We extract the
player ID from the video url field by a function aptly named player_id. Since
templates are just functions in the view module, the view is the perfect place
to define such a function.

Create a new lib/rumbl_web/views/watch_view.ex and make it look like this:

watching_videos/listings/rumbl/lib/rumbl_web/views/watch_view.ex
defmodule RumblWeb.WatchView do

use RumblWeb, :view

def player_id(video) do
~r{^.*(?:youtu\.be/|\w+/|v=)(?<id>[^#&?]*)}
|> Regex.named_captures(video.url)
|> get_in(["id"])

end
end

Unfortunately, YouTube URLs come in a variety of formats. We need a regular
expression to extract the video ID from the URL. Regular expressions are
beyond the scope of this book, but here are the basics. A regular expression1

1. http://www.regular-expressions.info/

report erratum • discuss

Watching Videos • 179

http://media.pragprog.com/titles/phoenix14/code/watching_videos/listings/rumbl/lib/rumbl_web/templates/watch/show.html.eex
http://media.pragprog.com/titles/phoenix14/code/watching_videos/listings/rumbl/lib/rumbl_web/views/watch_view.ex
http://www.regular-expressions.info/
http://pragprog.com/titles/phoenix14/errata/add
http://forums.pragprog.com/forums/phoenix14

uses patterns to match specific patterns within strings. We’re naming a pattern
called id and then piping our expression into a function called named_captures,
which extracts the id field given our URL name. Then, we build a map that
returns the id key with its value.

Finally, let’s add an entry to our router’s :browser pipeline to the new WatchController:

watching_videos/listings/rumbl/lib/rumbl_web/router.change1.ex
scope "/", RumblWeb do

pipe_through :browser # Use the default browser stack

get "/", PageController, :index
resources "/users", UserController, only: [:index, :show, :new, :create]
resources "/sessions", SessionController, only: [:new, :create, :delete]
get "/watch/:id", WatchController, :show

end

Now let’s change the link for each entry in the My Videos page to point to
watch instead of show. Open up lib/rumbl_web/templates/video/index.html.eex and replace
show with this:

watching_videos/listings/rumbl/lib/rumbl_web/templates/video/index.change1.html.eex
<table>

<thead>
<tr>
<th>Title</th>
<th></th>
<th></th>
<th></th>

</tr>
</thead>
<tbody>

<%= for video <- @videos do %>
<tr>
<td><%= video.title %></td>
<td><%= link "Edit", to: Routes.video_path(@conn, :edit, video) %></td>
<td>

<%= link "Delete", to: Routes.video_path(@conn, :delete, video),
method: :delete,
data: [confirm: "Are you sure?"] %>

</td>
<td>

<%= link "Watch", to: Routes.watch_path(@conn, :show, video),
class: "button" %>

</td>
</tr>

<% end %>
</tbody>

</table>

Chapter 9. Watching Videos • 180

report erratum • discuss

http://media.pragprog.com/titles/phoenix14/code/watching_videos/listings/rumbl/lib/rumbl_web/router.change1.ex
http://media.pragprog.com/titles/phoenix14/code/watching_videos/listings/rumbl/lib/rumbl_web/templates/video/index.change1.html.eex
http://pragprog.com/titles/phoenix14/errata/add
http://forums.pragprog.com/forums/phoenix14

First, we changed the table header to simplify the listing. We trimmed the
headings to only the title with three empty headings for our edit, delete, and
watch links. To match, we removed our url and description columns. We used
the Routes.watch_path helper generated by the new route.

Not much exciting is happening here but this early preparation will lead to a
great fireworks show later. Now, things will start to get a little more interesting.
Let’s add the JavaScript required to let us watch videos.

Adding JavaScript
webpack2 is a build tool written in Node.js. We’ll use webpack to build,
transform, and minify3 JavaScript and CSS code. Processing assets in this
way makes your page load much more efficiently. webpack not only takes
care of JavaScript but also CSS and all of our application assets, such as
images.

The asset structure is laid out in the assets directory:

assets/
├── css/
├── js/
├── static/
├── vendor/
├── package.json
└── webpack.config.js

We put everything in assets/static that doesn’t need to be transformed by web-
pack. The build tool will simply copy those static assets just as they are to
priv/static, where they’ll be served by Plug.Static in our endpoint.

We keep CSS and JavaScript files in their respective directories. The vendor
directory is used to keep any third-party tools you need, such as jQuery. This
structure helps us organize code, but we’re also being practical. Let’s see why.

Open up assets/js/app.js and take a look as its contents:

// We need to import the CSS so that webpack will load it
import css from "../css/app.css"

// webpack automatically bundles all modules in your
// entry points. Those entry points can be configured
// in "webpack.config.js".
//
// Import dependencies
//

2. https://webpack.js.org
3. https://blog.stackpath.com/glossary/minification/

report erratum • discuss

Adding JavaScript • 181

https://webpack.js.org
https://blog.stackpath.com/glossary/minification/
http://pragprog.com/titles/phoenix14/errata/add
http://forums.pragprog.com/forums/phoenix14

import "phoenix_html"

// Import local files
// ...
// import socket from "./socket"

Phoenix configures webpack to use ECMAScript 6 (ES6)—the latest JavaScript
specification we’ll use in this book—to provide the necessary import statements.
webpack wraps the contents for each JavaScript file you add to assets/js in a
function and collects them into priv/static/js/app.js. That’s the file loaded by
browsers at the end of lib/rumbl_web/templates/layout/app.html.eex when we call
Routes.static_url(@conn, "/js/app.js").

Since each file is wrapped in a function, it won’t be automatically executed
by browsers unless you explicitly import it in your app.js file. In this way, the
app.js file is like a manifest. It’s where you import and wire up your JavaScript
dependencies. For example, we have imported phoenix_html as it provides some
functionality to our HTML forms and buttons.

The assets/vendor directory is the exception to this rule. If you add an external
JavaScript file to assets/vendor, it’ll be automatically concatenated to your
priv/static/app.js bundle and executed when your page loads. That way, external
dependencies are never imported and available on the global JavaScript scope,
such as window.

You can configure the webpack tool in the assets/webpack.config.js file. Take a
look at it on your own time. The file is short and simple, so you can easily
tell what’s happening.

webpack ships with a command-line tool, and using it is straightforward. You
need to know only a few commands:

$ webpack
$ webpack --watch
$ webpack --mode production

Since each of these commands builds your assets for a different context, let’s
talk about each in turn. webpack just compiles the assets into static files and
copies the results to priv/static before exiting. During development as you’re
actively working on your JavaScript, you can add the -watch option. After you
do so, webpack will monitor the files and automatically recompile them as
they change. Use the --mode production flag to do everything you need to gener-
ally prepare your JavaScripts and style sheets for production, such as
building and minifying them.

Chapter 9. Watching Videos • 182

report erratum • discuss

http://pragprog.com/titles/phoenix14/errata/add
http://forums.pragprog.com/forums/phoenix14

In all likelihood, you’ll never type the first couple commands directly, because
Phoenix does it for you. If you open up your config/dev.exs, you see this line:

watchers: [node: ["node_modules/webpack/bin/webpack.js",
"--mode", "development", "--watch-stdin", "--colors",
cd: Path.expand("../assets", __DIR__)]]

That code will automatically run webpack --watch-stdin when your Phoenix app
starts in development. The --watch-stdin option makes the webpack program abort
when Phoenix shuts down.

With the webpack introduction out of the way, it’s time to write some Java-
Script. First, we’ll create a Player object to receive the data-player-id and embed
the YouTube video. Later, we’ll use the Player object to send and receive infor-
mation about the video so we’ll know exactly when an annotation is added.

Create a new file called assets/js/player.js with these contents:

watching_videos/listings/rumbl/assets/js/player.js
let Player = {

player: null,

init(domId, playerId, onReady){
window.onYouTubeIframeAPIReady = () => {
this.onIframeReady(domId, playerId, onReady)

}
let youtubeScriptTag = document.createElement("script")
youtubeScriptTag.src = "//www.youtube.com/iframe_api"
document.head.appendChild(youtubeScriptTag)

},

onIframeReady(domId, playerId, onReady){
this.player = new YT.Player(domId, {
height: "360",
width: "420",
videoId: playerId,
events: {

"onReady": (event => onReady(event)),
"onStateChange": (event => this.onPlayerStateChange(event))

}
})

},

onPlayerStateChange(event){ },
getCurrentTime(){ return Math.floor(this.player.getCurrentTime() * 1000) },
seekTo(millsec){ return this.player.seekTo(millsec / 1000) }

}
export default Player

That’s a fairly long example, so we should break it down piece by piece.

report erratum • discuss

Adding JavaScript • 183

http://media.pragprog.com/titles/phoenix14/code/watching_videos/listings/rumbl/assets/js/player.js
http://pragprog.com/titles/phoenix14/errata/add
http://forums.pragprog.com/forums/phoenix14

First, we will be creating a Player object that wires up YouTube’s special win-
dow.onYouTubeIframeAPIReady callback. We inject a YouTube iframe tag, which will
trigger our event when the player is ready.

Next, we implement a onIframeReady function to create the player with the
YouTube iframe API. We finish by adding convenience functions like getCurrent-
Time and seekTo, since we want to bind messages to a point in time for the
video playback.

This abstraction is more than a convenient wrapper. It builds an API for video
players with the most important features for our application. Our Player API will
insulate us from changes in YouTube and also let us add other video players over
time. Our onYouTubeReady function needs the HTML container ID to hold the iframe.
We’ll pass this in from higher up in our JavaScript stack in a moment.

Chris says:

Why webpack?
Instead of building yet another asset-build tool, the Phoenix team decided to leverage
one of the many tools available in the Node.js ecosystem. webpack is the de facto
choice in the Node.js community and the Phoenix team loves its adoption, solid doc-
umentation, and minimal out-of-the-box configuration.

We know this choice might not resonate with all developers, so Phoenix allows you
to use the build tool of your choice. Not a single line of code in Phoenix knows about
webpack. All the configuration is in your application. You can even skip webpack
altogether when creating a new app by using the --no-webpack option. If you can tell
your build tool to compile your static files to priv/static, you’re good to go. You can even
change your config/dev.exs file so Phoenix sets up a watcher for your favorite tool.

Our YouTube player is all set, but YouTube’s JavaScript API expects a specific
video ID, and all we have is the URL.

Remember, our player.js file won’t be executed unless we import it. Let’s do
this in assets/js/app.js by importing the Player and starting it with the video and
player ID if one exists:

watching_videos/listings/rumbl/assets/js/app.change1.js
import Player from "./player"
let video = document.getElementById("video")

if(video) {
Player.init(video.id, video.getAttribute("data-player-id"), () => {

console.log("player ready!")
})

}

Chapter 9. Watching Videos • 184

report erratum • discuss

http://media.pragprog.com/titles/phoenix14/code/watching_videos/listings/rumbl/assets/js/app.change1.js
http://pragprog.com/titles/phoenix14/errata/add
http://forums.pragprog.com/forums/phoenix14

Next, let’s tidy up our annotations box with a sprinkle of CSS. Create an
assets/css/video.css file and key this in:

watching_videos/listings/rumbl/assets/css/video.css
.annotations {

border-left: 1px solid #eaeaea;
}

#msg-container {
min-height: 260px;

}

Now we can import our new video.css file in assets/css/app.css so our application
can use it, like this:

watching_videos/listings/rumbl/assets/css/app.change1.css
/* This file is for your main application css. */

@import "./phoenix.css";
@import "./video.css";

We imported video.css after phoenix.css, a style sheet Phoenix includes for default
styling.

Next, we’ll create a new video with a YouTube URL, and you’re now ready to
watch it:

You can even start sharing the video URL with your friends with a URL that
looks like /watch/13—but that’s ugly. URLs for videos should use words, not
numbers. Let’s fix that.

report erratum • discuss

Adding JavaScript • 185

http://media.pragprog.com/titles/phoenix14/code/watching_videos/listings/rumbl/assets/css/video.css
http://media.pragprog.com/titles/phoenix14/code/watching_videos/listings/rumbl/assets/css/app.change1.css
http://pragprog.com/titles/phoenix14/errata/add
http://forums.pragprog.com/forums/phoenix14

Creating Slugs
We want our videos to have a unique URL-friendly identifier, called a slug.
This approach lets us have a unique identifier that will build URLs that are
friendlier to people and search engines. We need to create the slug from the
title so we can represent a video titled Programming Elixir as a URL-friendly
slug, such as 1-programming-elixir, where 1 is the video ID.

The first step is to add a slug column to the database:

$ mix ecto.gen.migration add_slug_to_videos

We generate a new migration. Remember, your name will differ based on the
timestamp attached to the front of the file, but you can find the new file in
the priv/repo/migrations directory. Let’s fill it in like this:

watching_videos/listings/rumbl/priv/repo/migrations/20180721193825_add_slug_to_videos.exs
def change do

alter table(:videos) do
add :slug, :string

end
end

Our new migration uses the alter macro, which changes the schema for both
up and down migrations. With the migration in place, let’s apply it to the
database:

$ mix ecto.migrate
[info] == Running Rumbl.Repo.Migrations.AddSlugToVideos.change/0 forward
[info] alter table videos
[info] == Migrated in 0.0s

Next, we need to add the new field to the video schema in lib/rumbl/multime-
dia/video.ex, beneath the other fields:

field :slug, :string

The whole premise of a slug is that you can automatically generate a perma-
nent field from other fields, some of which may be updatable. Let’s do this by
changing the changeset function, like this:

watching_videos/listings/rumbl/lib/rumbl/multimedia/video.change1.ex
def changeset(video, attrs) do

video
|> cast(attrs, [:url, :title, :description, :category_id])
|> validate_required([:url, :title, :description])
|> assoc_constraint(:category)
|> slugify_title()

end

Chapter 9. Watching Videos • 186

report erratum • discuss

http://media.pragprog.com/titles/phoenix14/code/watching_videos/listings/rumbl/priv/repo/migrations/20180721193825_add_slug_to_videos.exs
http://media.pragprog.com/titles/phoenix14/code/watching_videos/listings/rumbl/lib/rumbl/multimedia/video.change1.ex
http://pragprog.com/titles/phoenix14/errata/add
http://forums.pragprog.com/forums/phoenix14

defp slugify_title(changeset) do
case fetch_change(changeset, :title) do

{:ok, new_title} -> put_change(changeset, :slug, slugify(new_title))
:error -> changeset

end
end

defp slugify(str) do
str
|> String.downcase()
|> String.replace(~r/[^\w-]+/u, "-")

end

We modify the generated changeset, just as we did the changeset for the
password. We build the slug field within our changeset. The code couldn’t be sim-
pler. The pipe operator makes it easy for us to tell a story with code.

If a change is made to the title, we build a slug based on the new title with
the slugify function. Otherwise, we simply return the changeset. slugify down-
cases the string and replaces nonword characters with a - character. cast,
assoc_constraint, fetch_change and put_change are all functions defined in
Ecto.Changeset, imported at the top of our video module.

Don’t miss the importance of what we’ve done here. We’re once again able to
change how data gets into the system, without touching the controller and
without using callbacks or any other indirection. All of the changes to be
performed by the database are clearly outlined in the changeset. At this point,
you’ve learned all the concepts behind changesets, and the benefits are
becoming clearer:

• Because Ecto separates changesets from the definition of a given record,
we can have a separate change policy for each type of change. We could
easily add a JSON API that creates videos, including the slug field, for
example.

• Changesets filter and cast the incoming data, making sure sensitive fields
like a user role cannot be set externally, while conveniently casting them
to the type defined in the schema.

• Changesets can validate data—for example, the length or the format of a
field—on the fly, but validations that depend on data integrity are left to
the database in the shape of constraints.

• Changesets make our code easy to understand and implement because
they can compose easily, allowing us to specify each part of a change with
a function.

report erratum • discuss

Creating Slugs • 187

http://pragprog.com/titles/phoenix14/errata/add
http://forums.pragprog.com/forums/phoenix14

In short, Ecto cleanly encapsulates the concepts of change, and we benefit
tremendously as users. Now that we can generate slugs for the videos, let’s
make sure we use them in our links.

Extending Phoenix with Protocols
To use slugs when linking to the video page, let’s open up the lib/rumbl_web/tem-
plates/video/index.html.eex template and see how links are generated:

<%= link "Watch", to: Routes.watch_path(@conn, :show, video),
class: "button" %>

RumblWeb.Router generates the Routes.watch_path. It’s available to our controller
code because of the Routes alias in lib/rumbl_web.ex. When we pass a struct like
video to watch_path, Phoenix automatically extracts its ID to use in the returned
URL. To use slugs, we could simply change the route call to the following:

Routes.watch_path(@conn, :show, "#{video.id}-#{video.slug}")

This approach is easy to plug in, but it has a giant flaw. It’s brittle because
it’s not DRY. Each place we need a link, we need to build the URL with the
id and slug fields. If we forget to use the same structure in any of the future
watch_path calls, we’ll end up linking to the wrong URL. There’s a better way.

We can customize how Phoenix generates URLs for the videos. Phoenix and
Elixir have the perfect solution for this. Phoenix knows to use the id field in
a Video struct because Phoenix defines a protocol, called Phoenix.Param. By
default, this protocol extracts the id of the struct, if one exists.

However, since Phoenix.Param is an Elixir protocol, we can customize it for any
data type in the language, including the ones we define ourselves. Let’s do
so for the Video struct. Create a new lib/rumbl_web/param.ex file with the following
content:

watching_videos/listings/rumbl/lib/rumbl_web/param.ex
defimpl Phoenix.Param, for: Rumbl.Multimedia.Video do

def to_param(%{slug: slug, id: id}) do
"#{id}-#{slug}"

end
end

We’re implementing the Phoenix.Param protocol for the Rumbl.Multimedia.Video struct.
The protocol requires us to implement the to_param function, which receives
the video struct itself. We pattern-match on the video slug and ID and use it
to build a string as our slug. Our param.ex file will serve as a home for other
protocol implementations as we continue building our application.

Chapter 9. Watching Videos • 188

report erratum • discuss

http://media.pragprog.com/titles/phoenix14/code/watching_videos/listings/rumbl/lib/rumbl_web/param.ex
http://pragprog.com/titles/phoenix14/errata/add
http://forums.pragprog.com/forums/phoenix14

The beauty behind Elixir protocols is that we can implement them for any
data structure, anywhere, any time. We can place our implementation in the
same file as the video definition, or anywhere else that makes sense. Because
we can get Phoenix parameters without changing Phoenix or the Video module
itself, we get a much cleaner polymorphism than we would otherwise.

Let’s give this a try in IEx:

iex> video = %Rumbl.Multimedia.Video{id: 1, slug: "hello"}
%Rumbl.Multimedia.Video{id: 1, slug: "hello", ...}

iex> alias RumblWeb.Router.Helpers, as: Routes

iex> Routes.watch_path(%URI{}, :show, video)
"/watch/1-hello"

We build a video and then call Routes.watch_path, passing our video as an argument.
The new path uses both the id and slug fields. Note that we give the URI struct to
watch_path instead of the usual connection. The URI struct is part of Elixir’s
standard library, and all route functions accept it as their first argument. This
convenience is particularly useful when building URLs outside of your web
request. Think emails, messages, and so on. Let’s play a bit with this idea:

iex> url = URI.parse("http://example.com/prefix")
%URI{...}

iex> Routes.watch_path(url, :show, video)
"/prefix/watch/1-hello"

iex> Routes.watch_url(url, :show, video)
"http://example.com/prefix/watch/1-hello"

You can also ask your endpoint to return the struct_url, based on the values
you’ve defined in your configuration files:

iex> url = RumblWeb.Endpoint.struct_url()
%URI{...}
iex> Routes.watch_url(url, :show, video)
"http://localhost:4000/watch/1-hello"

With Phoenix.Param properly implemented for our videos, we can try it out. Start
your server back up with mix phx.server, then access “My Videos” and click the
“Watch” link for any existing video.

Well, that was less than ideal. You see a page with an error that looks some-
thing like this:

value `"13-hello-world"` in `where` cannot be cast to type :id in query:

from v in Rumbl.Multimedia.Video,
where: v.id == ^"13-",
select: v

report erratum • discuss

Creating Slugs • 189

http://pragprog.com/titles/phoenix14/errata/add
http://forums.pragprog.com/forums/phoenix14

Primary keys in Ecto have a default type of :id. For now, we can consider :id
to be an :integer. When a new request goes to /watch/13-hello-world, the router
matches 13-hello-world as the id parameter and sends it to the controller. In the
controller, we try to make a query by using the id, and it complains. Let’s look
at the source of the problem:

def show(conn, %{"id" => id}) do
video = Multimedia.get_video!(id)
render(conn, "show.html", video: video)

end

WatchController.show is taking the id parameter and passing it to our Multimedia.get_video
context function. Let’s continue digging and open up lib/rumbl/multimedia.ex:

def get_video!(id), do: Repo.get!(Video, id)

That’s the problem. We’re doing a Repo.get! by using the id field, which is now
a string instead of an integer. Let’s fix that now.

Before doing a database query comparing against the id column, we need to
cast 13-hello-world to an integer.

Extending Schemas with Ecto Types
Sometimes, the basic type information in our schemas isn’t enough. In those
cases, we’d like to improve our schemas with types that have a knowledge of
Ecto. For example, we might want to associate some behavior to our id fields.
A custom type allows us to do that. Let’s implement one and place it in
lib/rumbl/multimedia/permalink.ex. Our new behaviour, meaning an implementation
of our interface, looks like this:

watching_videos/listings/rumbl/lib/rumbl/multimedia/permalink.ex
defmodule Rumbl.Multimedia.Permalink do

@behaviour Ecto.Type

def type, do: :id

def cast(binary) when is_binary(binary) do
case Integer.parse(binary) do
{int, _} when int > 0 -> {:ok, int}
_ -> :error

end
end

def cast(integer) when is_integer(integer) do
{:ok, integer}

end

def cast(_) do
:error

end

Chapter 9. Watching Videos • 190

report erratum • discuss

http://media.pragprog.com/titles/phoenix14/code/watching_videos/listings/rumbl/lib/rumbl/multimedia/permalink.ex
http://pragprog.com/titles/phoenix14/errata/add
http://forums.pragprog.com/forums/phoenix14

def dump(integer) when is_integer(integer) do
{:ok, integer}

end

def load(integer) when is_integer(integer) do
{:ok, integer}

end
end

Behaviour or Behavior?

The Elixir and Erlang documentation use the European spelling
of “behaviour” so we’ll stick with that one when we refer to the
actual Elixir concept. We’ll use the “ior” spelling when we are
talking about “behavior,” the word.

Rumbl.Multimedia.Permalink is a custom type defined according to the Ecto.Type
behaviour. It expects us to define four functions:

Returns the underlying Ecto type. In this case, we’re building on top
of :id.

type

Called when external data is passed into Ecto. It’s invoked when values
in queries are interpolated or also by the cast function in changesets.

cast

Invoked when data is sent to the database.dump
Invoked when data is loaded from the database.load

By design, the cast function often processes end-user input. We should be
both lenient and careful when we parse it. For our slug—that means for
binaries—we call Integer.parse to extract only the leading integer. On the other
hand, dump and load handle the struct-to-database conversion. We can expect
to work only with integers at this point because cast does the dirty work of
sanitizing our input. Successful casts return integers. dump and load return
:ok tuples with integers or :error.

Let’s give our custom type a try with iex -S mix. Since we changed code in lib,
you need to restart any running session.

iex> alias Rumbl.Multimedia.Permalink, as: P
iex> P.cast("1")
{:ok, 1}
iex> P.cast(1)
{:ok, 1}

Integers and strings work as usual. That’s great. Let’s try something more
complex:

iex> P.cast("13-hello-world")
{:ok, 13}

report erratum • discuss

Creating Slugs • 191

http://pragprog.com/titles/phoenix14/errata/add
http://forums.pragprog.com/forums/phoenix14

Perfect. An integer followed by a string, such as the ones we build with our
protocol, works just as it should. Let’s try something that should break, like
a string followed by an integer:

iex> P.cast("hello-world-13")
:error

And it breaks, just as it should. As long as the string starts with a positive
integer, we’re good to go. The last step is to tell Ecto to use our custom type
for the id field in lib/rumbl/multimedia/video.ex:

watching_videos/listings/rumbl/lib/rumbl/multimedia/video.change2.ex
@primary_key {:id, Rumbl.Multimedia.Permalink, autogenerate: true}
schema "videos" do

Because Ecto automatically defines the id field for us, we can customize the
primary key with the @primary_key module attribute. Just give it a tuple with
the primary key name (:id). We tacked on the autogenerate: true option because
our database autogenerates id values.

And that’s that. Access the page once again, and it should load successfully.
By implementing a protocol and defining a custom type, we made Phoenix
work exactly how we wanted without tightly coupling it to our implementation.
Ecto types go way beyond simple casting, though. We’ve already seen the
community handle field encryption, data uploading, and more, all neatly
wrapped and contained inside an Ecto type.

Wrapping Up
In this chapter, we accomplished a lot. We built a controller for watching
videos and extended our context to provide the necessary domain logic. We
then laid some foundation so we can play our videos in YouTube. Finally, we
also created friendly URLs. Along the way:

• You learned to use webpack to support development-time reloading and
minimization for production code.

• We used generators to create an Ecto migration.

• We used changesets to create slugs.

• We used protocols to seamlessly build URLs from those new slugs.

In the next chapter, you’re going to reach the long-awaited channels topic.
You’ll learn to use Phoenix to build fully interactive features that show off
Elixir’s concurrency and consistency. Turn the page, because the energy only
goes up from here!

Chapter 9. Watching Videos • 192

report erratum • discuss

http://media.pragprog.com/titles/phoenix14/code/watching_videos/listings/rumbl/lib/rumbl/multimedia/video.change2.ex
http://pragprog.com/titles/phoenix14/errata/add
http://forums.pragprog.com/forums/phoenix14

CHAPTER 10

Using Channels
If you dabbled in Phoenix before buying this book, at this point you’re probably
wondering why we’ve come so far and barely mentioned channels. The truth
is that for the interactive applications we care about the most, channels are
simpler to build so there’s less to talk about.

Think about everything you’ve learned so far. Up until now, a browser made
an isolated request and Phoenix delivered an isolated response. We had to
spend plenty of time on pipelines and code organizational tools that let you
do everything necessary to tie an individual user to each request and
remember the exact state of the conversation. You know it well. A browser
makes a request and the web server returns a response:

We build applications that way for a good reason. Each request is stateless,
so it’s easy to scale. When the programming language simply can’t keep many
connections around, it makes sense to do a little extra work so the web
server can treat every request as a new one.

report erratum • discuss

http://pragprog.com/titles/phoenix14/errata/add
http://forums.pragprog.com/forums/phoenix14

Sometimes, though, that programming model has too much overhead for the
types of applications we want to build. Programs must be longer, programmers
must work harder to reason about them, and the server has to work harder
to process them.

This chapter will focus on the highly interactive problems that Phoenix solves
so well. These problems don’t lend themselves to a request/response flow.
Think live chats, Google Maps, kayak.com, and twitter.com. In that world, a
single client on a page connects directly with a process on the server called
a channel, like this:

It looks simpler because for the programmer it is simpler. Since Elixir can
scale to millions of simultaneous processes that manage millions of concurrent
connections, you don’t have to resort to request/response to make things
easy to scale or even manage. A client connects to a channel and then sends
and receives messages. That’s it.

It’s now cool again to have applications where the clients and servers just,
you know, talk directly to each other. That’s why this chapter is much
shorter than the request/response paradigm covered in Part I, and it’s also
why Phoenix is such a big deal.

The Channel
A Phoenix channel is a conversation. The channel sends messages, receives
messages, and keeps state. We call the messages events, and we put the state
in a struct called socket.

A Phoenix conversation is about a topic, and it maps onto application concepts
like a chat room, a local map, a game, or in our case, the annotations on a
video. More than one user might be interested in the same topic at the same
time. Channels give you tools to organize your code and the communication
among users. The concept that makes channels so powerful in Elixir is that
each user’s conversation on a topic has its own isolated, dedicated process.

Here’s the kicker. Whereas request/response interactions are stateless, con-
versations in a long-running process can be stateful. This means that for
more-sophisticated user interactions like interactive pages or multiplayer

Chapter 10. Using Channels • 194

report erratum • discuss

http://pragprog.com/titles/phoenix14/errata/add
http://forums.pragprog.com/forums/phoenix14

games, you don’t have to work so hard to keep track of the conversation by
using cookies, databases, or the like. Each call to a channel simply picks up
where the last one left off.

This approach only works if your foundation guarantees true isolation and
concurrency. True isolation means that one crashing process won’t impact
other subscribed users. True concurrency means lightweight abstractions
that won’t bleed into one another. Your channels will scale in the dimensions
that are most important to you, including code complexity, performance, and
manageability.

You may be thinking that channels can’t be this simple, but they are. Your
channels application will have to worry about three things, each on both the
client and the server:

• Making and breaking connections
• Sending messages
• Receiving messages

In this chapter, you’ll learn each of those basic building blocks in greater
detail. We’re primarily going to be building the interactive portion of our
application. We’ll allow users to build annotations in real time, and rumbl will
play back all video annotations for a user. We’ll do this in two parts. First,
on the client side, we need to build some client code to make a connection,
send messages, and receive messages. We’ll write our code in ES6, the latest
generation of JavaScript. Then, on the server side, we’ll do the same. We’ll
establish a connection and then write channels code to process each request
in the conversation.

When we’re done, we’ll take advantage of some Phoenix infrastructure called
Channel Presence. We’ll write a little bit of code so users of Rumbl will be
able to tell exactly who’s logged in.

There’s plenty to do, so let’s get started.

Phoenix Clients with ES6
We’re going to start on the client, using ECMAScript 61 JavaScript features.
We’ll build a bare-bones client to simply establish a connection. Over time,
we’ll build up our client to add annotations and play them back.

1. https://babeljs.io/docs/learn-es2015/

report erratum • discuss

Phoenix Clients with ES6 • 195

https://babeljs.io/docs/learn-es2015/
http://pragprog.com/titles/phoenix14/errata/add
http://forums.pragprog.com/forums/phoenix14

Remember, each Phoenix conversation is on a topic, so we’ll need to be able
to identify a topic. In our case, our topics will be videos. We’ll create a Video
object. That client-side construct will connect to Phoenix directly.

Chris says:

Why ES6/ES2015 JavaScript?
Language features you’ve wished for years to land in JavaScript—string interpolation,
a module system, destructuring assignment, and more—are now within reach. When
you transpile a language, you’re translating it to a more common form. Since it’s
possible to transpile ES6 to the widely available ES5 JavaScript, you can use ES6
today while supporting all mainstream browsers. This leaves you no reason to not
go all-in on ES6. Plus, planned browser enhancements mean you have the bonus of
waiting a couple years, and suddenly your ES6 code will be supported natively
throughout the web.

Let’s create a separate file for our Video object in assets/js/video.js. It’s a long file,
but it’s not too complicated, especially when broken into parts:

channels/listings/rumbl/assets/js/video.js
import Player from "./player"Line 1

-

let Video = {-

-

init(socket, element){ if(!element){ return }5

let playerId = element.getAttribute("data-player-id")-

let videoId = element.getAttribute("data-id")-

socket.connect()-

Player.init(element.id, playerId, () => {-

this.onReady(videoId, socket)10

})-

},-

-

onReady(videoId, socket){-

let msgContainer = document.getElementById("msg-container")15

let msgInput = document.getElementById("msg-input")-

let postButton = document.getElementById("msg-submit")-

let vidChannel = socket.channel("videos:" + videoId)-

// TODO join the vidChannel-

}20

}-

export default Video-

We first import our Player, the abstraction that lets us play videos and extract
the exact time for any given frame so we can correctly place our annotations.
Next, we define an init function to set up the player and pluck our video ID
from the element attributes. We will then start the socket connection with

Chapter 10. Using Channels • 196

report erratum • discuss

http://media.pragprog.com/titles/phoenix14/code/channels/listings/rumbl/assets/js/video.js
http://pragprog.com/titles/phoenix14/errata/add
http://forums.pragprog.com/forums/phoenix14

socket.connect() and initialize our player while running a this.onReady() callback
when the player has loaded. Within onReady, we define a handful of DOM
variables for our Video player. We have the container for annotations, the input
control, and the button for creating a new annotation. Pay special attention
to vidChannel, which we’ll use to connect our ES6 client to our Phoenix
VideoChannel. For now we just instantiate it, but we’ll join the conversation with
the server in a moment.

Our topics need an identifier. By convention, ours takes the form "videos:" +
videoId. In our application, this topic will let us easily send events to others
interested in the same topic.

Let’s tweak our video player to use this new Video object.

We were previously initializing and importing our video player in assets/js/app.js,
like this:

import Player from "./player"
let video = document.getElementById("video")

if(video) {
Player.init(video.id, video.getAttribute("data-player-id"), () => {

console.log("player ready!")
})

}

It would be better to tweak that code to compensate for the initialization we’re
doing in video.js. Let’s tweak it to start only the Video object, like this:

channels/listings/rumbl/assets/js/app.change1.js
import socket from "./socket"
import Video from "./video"

Video.init(socket, document.getElementById("video"))

We import the Video object that we just created from its local module path.
Next, we initialize the video with our connection called socket (more on this
later) and the DOM element whose ID is video. Now load up your last video,
and you should see it loaded into a YouTube player as before—but if you view
your browser’s JavaScript console, you see that the channel join is failing:

Unable to join > {reason: "unmatched topic"}

With our video up and running and vidChannel initialized, our client is trying
to join a video channel that we haven’t implemented yet. Let’s flip back to the
server side for a bit and fix this. It’s time to create a channel and establish
the conversation with our client.

report erratum • discuss

Phoenix Clients with ES6 • 197

http://media.pragprog.com/titles/phoenix14/code/channels/listings/rumbl/assets/js/app.change1.js
http://pragprog.com/titles/phoenix14/errata/add
http://forums.pragprog.com/forums/phoenix14

Preparing Our Server for the Channel
In the request/response world, each request established a connection, which
we represented in Plug.Conn. We then used ordinary functions to transform
that connection until it had the response we wanted to send back to the client.
Each plug didn’t use the same conn per se, but each transformation was con-
ceptually on the same request. Each time you had a new request, you’d start
from scratch with a new conn struct. Said another way, for each request, a
new conn would flow through all of the pipelines and then die.

In channels, the flow is different. A client establishes a new connection with
a socket. After the connection is made, that socket will be transformed through
the life of the connection.

At the high level, your socket is the ongoing conversation between client and
server. It has all of the information necessary to do its job. When you make
a connection, you’re creating your initial socket, and that same socket will be
transformed with each new received event, through the whole life of the whole
conversation.

You need to do a couple of things to make a connection. First, you decide
whether to allow the connection. Next, you create the initial socket, including
any custom application setup your application might need.

Let’s hack up a quick connection to see how things work. In our ES6 example,
Phoenix created an assets/js/socket.js with an example socket connection and
channel code. Replace the file contents with this minimal socket connection:

channels/listings/rumbl/assets/js/socket.change1.js
import {Socket} from "phoenix"

let socket = new Socket("/socket", {
params: {token: window.userToken},
logger: (kind, msg, data) => { console.log(`${kind}: ${msg}`, data) }

})

export default socket

That simple connection is as basic as it gets. Phoenix isn’t doing anything
fancy for us here. You can see that the ES6 client imports the Socket object.
Then let socket = new Socket("/socket", ...) causes Phoenix to instantiate a new
socket at our endpoint. We pass params and an optional logger callback, which
includes helpful debugging logging in the JavaScript console. If you peek in
lib/rumbl_web/endpoint.ex, you can see where the "/socket" is declared. This definition
is the socket mount point:

Chapter 10. Using Channels • 198

report erratum • discuss

http://media.pragprog.com/titles/phoenix14/code/channels/listings/rumbl/assets/js/socket.change1.js
http://pragprog.com/titles/phoenix14/errata/add
http://forums.pragprog.com/forums/phoenix14

socket "/socket", RumblWeb.UserSocket,
websocket: true,
longpoll: false

Each socket macro establishes a socket mount providing all configuration for a
single user socket. The UserSocket module serves as the starting point for all
socket connections. As you’ll see later in this chapter, it’s responsible for
authenticating, and also for wiring up default socket information for all channels.

Our socket mount also defines the transport layers that will handle the con-
nection between client and the server. You see the two default transport that
Phoenix supports, longpoll and websocket. You can even build your own transport
for more exotic use cases. Peek inside the lib/rumbl_web/channels/user_socket.ex to
see the UserSocket in action:

defmodule RumblWeb.UserSocket do
use Phoenix.Socket

channel "room:*", RumblWeb.RoomChannel

def connect(_params, socket, _connect_info) do
{:ok, socket}

end

def id(_socket), do: nil
end

UserSocket will use a single connection to the server to handle all of your channel
processes. Phoenix will handle getting the right message to the right channel.

Regardless of the transport, the end result is the same. You operate on a
shared socket abstraction, and Phoenix takes care of the rest. The beauty of
this is that you no longer have to worry how the user is connected. Whether
on older browsers over long-polling, native iOS WebSockets, or a custom
transport like CoAP2 for embedded devices, your backend channel code
remains precisely the same. This is the new web. You’ll be able to quickly
adapt your applications as new transport protocols become important to you.

In our UserSocket, we have two simple functions: connect and id. The id function
lets us identify the socket based on some state stored in the socket itself, like
the user ID. The connect function decides whether to make a connection. It
receives the connection parameters, the connection socket, and a map of
advanced connection information. In our case, id returns nil, and connect simply
lets everyone in. We’re effectively allowing all connections as anonymous users
by default.

2. http://coap.technology/

report erratum • discuss

Preparing Our Server for the Channel • 199

http://coap.technology/
http://pragprog.com/titles/phoenix14/errata/add
http://forums.pragprog.com/forums/phoenix14

We’ll be adding socket authentication with our RumblWeb.Auth system in a
moment, but for now, let’s leave these defaults. We added socket.connect() after
we initialized our Player in video.js to establish the connection to the server. If
we open up the JavaScript console in our browser and refresh one of our
video pages, we see the following logger output:

transport: connected to
ws://localhost:4000/socket/websocket?token=undefined&vsn=2.0.0

We have a working connection! Let’s create the channel on the Phoenix side.

Creating the Channel
It’s time to write some code to process connections. To review what you know
so far, a channel is a conversation on a topic. Our topic has an identifier of
videos:video_id, where video_id is a dynamic ID matching a record in the database.
In our application, we want a user to get all events for a topic, which to us
means a user will get all annotations for a given video, regardless of who
created them.

More generally, at their most basic level, topics are strings that serve as
identifiers. They often take the form of topic:subtopic, where topic is often a
resource name and subtopic is often an ID, but any string is a valid topic.

Since topics are organizing concepts, we’ll include topics where you’d expect:
as parameters to functions and in our URLs to identify conversations. Just
as the client passes a URL with an :id parameter to represent a resource for
a controller, we’ll provide a topic ID to scope our channel connections.

Joining a Channel
Now that we’ve established a socket connection, our users can join a channel.
In general, when clients join a channel, they must provide a topic. They’ll be
able to join any number of channels and any number of topics on a channel.

We need a VideoChannel for our application, so let’s start by including a channel
definition in our UserSocket:

channels/listings/rumbl/lib/rumbl_web/channels/user_socket.change1.ex
defmodule RumblWeb.UserSocket do

use Phoenix.Socket

Channels
channel "videos:*", RumblWeb.VideoChannel

Transports route events into your UserSocket, where they’re dispatched into
your channels based on topic patterns that you declare with the channel macro.

Chapter 10. Using Channels • 200

report erratum • discuss

http://media.pragprog.com/titles/phoenix14/code/channels/listings/rumbl/lib/rumbl_web/channels/user_socket.change1.ex
http://pragprog.com/titles/phoenix14/errata/add
http://forums.pragprog.com/forums/phoenix14

Our videos:* convention categorizes topics with a resource name, followed by
a resource ID.

Let’s move on to the code that will process each incoming event.

Building the Channel Module
Now, it’s time to create the module that will handle our specific VideoChannel.
It’ll allow connections through join and also let users disconnect and send
events. For consistency with OTP naming conventions, this book sometimes
refers to these features as callbacks. Let’s start with join. Create a file called
lib/rumbl_web/channels/video_channel.ex, like this:

channels/listings/rumbl/lib/rumbl_web/channels/video_channel.ex
defmodule RumblWeb.VideoChannel do

use RumblWeb, :channel

def join("videos:" <> video_id, _params, socket) do
{:ok, assign(socket, :video_id, String.to_integer(video_id))}

end
end

Here we see the first of our channel callbacks: join. Clients can join topics on
a channel. We return {:ok, socket} to authorize a join attempt or {:error, socket} to
deny one.

For now, we let all clients join any video topic. We extract the video ID using
pattern matching: "videos:" <> video_id will match all topics starting with "videos:"
and assign the rest of the topic to the video_id variable. We then add the video
ID to socket.assigns. Remember, sockets will hold all of the state for a given
conversation. Each socket can hold its own state in the socket.assigns field,
which typically holds a map.

For channels, the socket is transformed in a loop rather than a single pipeline.
In fact, the socket state will remain for the duration of a connection. That
means the socket state we add in join will be accessible later as events come
into and out of the channel. This small distinction leads to an enormous dif-
ference in efficiency between the channels API and the controllers API.

With our channel in place, let’s join it from the client. Open up assets/js/video.js
and update your listing:

channels/listings/rumbl/assets/js/video.change1.js
onReady(videoId, socket){Line 1

let msgContainer = document.getElementById("msg-container")2

let msgInput = document.getElementById("msg-input")3

let postButton = document.getElementById("msg-submit")4

let vidChannel = socket.channel("videos:" + videoId)5

report erratum • discuss

Creating the Channel • 201

http://media.pragprog.com/titles/phoenix14/code/channels/listings/rumbl/lib/rumbl_web/channels/video_channel.ex
http://media.pragprog.com/titles/phoenix14/code/channels/listings/rumbl/assets/js/video.change1.js
http://pragprog.com/titles/phoenix14/errata/add
http://forums.pragprog.com/forums/phoenix14

6

vidChannel.join()7

.receive("ok", resp => console.log("joined the video channel", resp))8

.receive("error", reason => console.log("join failed", reason))9

}10

On lines 5 through 9, we create a new channel object, vidChannel, from our
socket and give it our topic. We build the topic by joining the "videos:" string
with our video ID, which we plucked from the div element in our WatchView’s
show.html.eex template.

We see our joined message in the JavaScript web console output:

transport: connected to ws://localhost:4000/socket/websocket...
push: videos:1 phx_join (1, 1) – {}
receive: ok videos:1 phx_reply (1) – {response: {}, status: "ok"}
joined the video channel – {}

Likewise, our server output confirms that we’ve established our conversation:

[info] JOIN "videos:1" to RumblWeb.VideoChannel
Transport: :websocket
Serializer: Phoenix.Socket.V2.JSONSerializer
Parameters: %{}

[info] Replied videos:1 :ok

And we’re joined!

Sending and Receiving Events
Everything we’ve done so far is setting us up to do one thing: process events.
Just as controllers receive requests, channels receive events. With channels,
we receive a message containing an event name, such as new_message, and a
payload of arbitrary data.

Each channel module has three ways to receive events. You’ll learn more
about these callback functions in detail soon. For now, know that handle_in
receives direct channel events, handle_out intercepts broadcast events, and
handle_info receives OTP messages.

Taking Our Channels for a Trial Run
To test-drive everything we’ve put together so far, let’s make our join function
send our channel client a :ping message every five seconds, like this:

channels/listings/rumbl/lib/rumbl_web/channels/video_channel.change1.ex
def join("videos:" <> video_id, _params, socket) do

:timer.send_interval(5_000, :ping)
{:ok, socket}

end

Chapter 10. Using Channels • 202

report erratum • discuss

http://media.pragprog.com/titles/phoenix14/code/channels/listings/rumbl/lib/rumbl_web/channels/video_channel.change1.ex
http://pragprog.com/titles/phoenix14/errata/add
http://forums.pragprog.com/forums/phoenix14

def handle_info(:ping, socket) do
count = socket.assigns[:count] || 1
push(socket, "ping", %{count: count})

{:noreply, assign(socket, :count, count + 1)}
end

The handle_info callback is invoked whenever an Elixir message reaches the
channel. In this case, we match on the periodic :ping message and increase a
counter every time it arrives.

Our new handle_info takes our socket, takes the existing count (or a default of
1), and increases that count by 1. We then return a tagged tuple. :noreply means
we’re not sending a reply, and the assign function transforms our socket by
adding the new count. Conceptually, we’re taking a socket and returning a
transformed socket. This implementation bumps the count in :assigns by 1,
each time it’s called.

We’ve got the server-side implementation. We just need to call it now. Add
the following line to video.js, immediately below your vidChannel declaration:

vidChannel.on("ping", ({count}) => console.log("PING", count))

Now check out your web console, and you see a ping event being pushed from
the server every five seconds, with an accumulated counter:

receive: videos:1 ping
PING 1

receive: videos:1 ping
PING 2

receive: videos:1 ping
PING 3

Our channel process is alive and well!

handle_info is basically a loop. Each time, it returns the socket as the last tuple
element for all callbacks. This way, we can maintain state. We simply push
the ping event, and the JavaScript client picks up these events with the chan-
nel.on(event, callback) API. These events can arrive on the client at any time, but
later you’ll see how channels support synchronous messaging for handle_in
responses.

This is the primary difference between channels and controllers. Controllers
process a request. Channels hold a conversation.

report erratum • discuss

Sending and Receiving Events • 203

http://pragprog.com/titles/phoenix14/errata/add
http://forums.pragprog.com/forums/phoenix14

Annotating Videos
Our channels are functioning but they’re not doing any real work yet. Let’s
use them to build our real-time annotations. Since annotations need to
happen in real time to stay in sync with videos, channels is the perfect way
to build them. We’ll need to add video annotation to our multimedia context
and allow new users to access them as they join the channel. Before we get
too far into extending our Multimedia context, let’s start simple and build out
the channel messaging first. Later, we can circle back and complete the
annotation features when we’re happy with our client-server channel com-
munication.

Our WatchView’s show.html.eex template is already mocked up with an annotations
container and post button that we’ve plucked from the page to establish our
msgContainer and postButton variables. Let’s use these two elements to begin our
real-time annotations support. Open up your video.js and update the listing
below your vidChannel declaration with the following code:

channels/listings/rumbl/assets/js/video.change3.js
let vidChannel = socket.channel("videos:" + videoId)Line 1

-

postButton.addEventListener("click", e => {-

let payload = {body: msgInput.value, at: Player.getCurrentTime()}-

vidChannel.push("new_annotation", payload)5

.receive("error", e => console.log(e))-

msgInput.value = ""-

})-

-

vidChannel.on("new_annotation", (resp) => {10

this.renderAnnotation(msgContainer, resp)-

})-

-

vidChannel.join()-

.receive("ok", resp => console.log("joined the video channel", resp))15

.receive("error", reason => console.log("join failed", reason))-

},-

-

renderAnnotation(msgContainer, {user, body, at}){-

// TODO append annotation to msgContainer20

}-

Let’s break it down. First, we handle the click event on the post button. The
push function on our vidChannel takes the contents of our message input and
sends it to the server, then clears the input control.

On lines 5 and 6, you can see the channel’s synchronous messaging in action.
When we push an event to the server, we can opt to receive a response. It’s not
a true synchronous operation, but it’s a big win for code readability. It lets

Chapter 10. Using Channels • 204

report erratum • discuss

http://media.pragprog.com/titles/phoenix14/code/channels/listings/rumbl/assets/js/video.change3.js
http://pragprog.com/titles/phoenix14/errata/add
http://forums.pragprog.com/forums/phoenix14

us compose client-side messaging in line with our Elixir process handling. It
also provides request/response–style messaging over a socket connection.

Now, we have to handle new events sent by the server. When users post new
annotations, the server will broadcast those new events to the client, triggering
a new_annotation event. On line 10, we receive those new_annotation events, calling
a stubbed renderAnnotation function. Let’s now implement renderAnnotation to display
our annotations on the page. You will need to update your listing with the
following code:

channels/listings/rumbl/assets/js/video.change4.js
esc(str){Line 1

let div = document.createElement("div")-

div.appendChild(document.createTextNode(str))-

return div.innerHTML-

},5

-

renderAnnotation(msgContainer, {user, body, at}){-

let template = document.createElement("div")-

-

template.innerHTML = `10

-

${this.esc(user.username)}: ${this.esc(body)}-

-

`-

msgContainer.appendChild(template)15

msgContainer.scrollTop = msgContainer.scrollHeight-

}-

We implement the renderAnnotation function to append an annotation to our
message container. First, we define an esc function on line 1 to safely escape
user input before injecting values into the page. This strategy protects our
users from XSS attacks. Next, on line 7, we use our esc function to safely
build a DOM node with the user’s name and annotation body and append
it to the msgContainer list. Then, we finish by scrolling the container to the
right point.

Adding Annotations on the Server
With our client-side event handling in place, let’s wire up the server side of
the conversation. Replace your VideoChannel with this:

channels/listings/rumbl/lib/rumbl_web/channels/video_channel.change2.ex
defmodule RumblWeb.VideoChannel do

use RumblWeb, :channel

def join("videos:" <> video_id, _params, socket) do
{:ok, socket}

end

report erratum • discuss

Sending and Receiving Events • 205

http://media.pragprog.com/titles/phoenix14/code/channels/listings/rumbl/assets/js/video.change4.js
http://media.pragprog.com/titles/phoenix14/code/channels/listings/rumbl/lib/rumbl_web/channels/video_channel.change2.ex
http://pragprog.com/titles/phoenix14/errata/add
http://forums.pragprog.com/forums/phoenix14

def handle_in("new_annotation", params, socket) do
broadcast!(socket, "new_annotation", %{
user: %{username: "anon"},
body: params["body"],
at: params["at"]

})

{:reply, :ok, socket}
end

end

We ditch our ping messaging and add the second major kind of callback, han-
dle_in. This function will handle all incoming messages to a channel, pushed
directly from the remote client.

Look at the function head. This particular callback handles the new_annotation
events pushed from the client. Since we aren’t persisting to the database yet, we
simply broadcast new_annotation events to all the clients on this topic with broadcast!

The broadcast! function sends an event to all users on the current topic. It takes
three arguments: the socket, the name of the event, and a payload, which is
an arbitrary map. Within the body of our callback, we can send as many
messages as we’d like.

Behind the scenes, broadcast! uses Phoenix’s Publish and Subscribe (PubSub)
system to send the message to all processes listening on the given topic.
Phoenix PubSub is distributed out of the box; if there are multiple machines
running Phoenix, they will all receive the message as long as they are connect-
ed via distributed Erlang.

When we’re done with the function, we send back a reply with a status and
the socket. The status is the customary Elixir :ok or :error. We could also have
used :noreply with the socket if we didn’t want to reply to the client.

Let’s try it out. This time, open up multiple browser windows side by side to see
how broadcast! is relaying messages to all users who’ve joined our video topic:

Chapter 10. Using Channels • 206

report erratum • discuss

http://pragprog.com/titles/phoenix14/errata/add
http://forums.pragprog.com/forums/phoenix14

It works! We now have a conversation going between client and server, and
you can get a glimpse into how our real-time annotations will be orchestrated.

This Is a Bad Idea

Forwarding a raw message payload without inspection is a big
security risk.

Note that we didn’t forward along the raw payload, such as:

broadcast!(socket, "new_annotation", Map.put(params, "user", %{
username: "anon"

}))

This would have worked, but it would have been extremely dangerous.
Broadcasting events delivers the payload to all clients on this topic. If we don’t
properly structure the payload from the remote client before forwarding the
message along as a broadcast, we’re effectively allowing a client to broadcast
arbitrary payloads across our channel. If you want your application to be
secure, you want to control the payload as closely as you can.

We’ve delivered our annotations to the client, but we’ve yet to persist them.
Before we can do that, we need to have the current user in the socket in our
channels. We’ve put it off as long as we can. It’s time to tackle authentication.

Socket Authentication
For request/response–type applications, session-based authentication makes
sense. For channels, token authentication works better because the connection
is a long-duration connection. With token authentication, we assign a unique
token to each user. Tokens allow for a secure authentication mechanism that
doesn’t rely on any specific transport.

Programmers often ask why they can’t access their session cookies in a
channel. The answer is that this would be insecure over WebSockets because
of cross-domain attacks. Also, cookies would couple channel code to the
WebSocket transport, eliminating future transport layers. Fortunately, Phoenix
has a better way: the Phoenix.Token.

Our current_user is already authenticated in the application by our RumblWeb.Auth
plug. All we need to do is generate a token for our authenticated user and
pass that to our socket on the frontend. The first step is to expose the token
to the client side in our lib/rumbl_web/templates/layout/app.html.eex layout, like this:

report erratum • discuss

Socket Authentication • 207

http://pragprog.com/titles/phoenix14/errata/add
http://forums.pragprog.com/forums/phoenix14

channels/listings/rumbl/lib/rumbl_web/templates/layout/app.change1.html.eex
<script>window.userToken = "<%= assigns[:user_token] %>"</script>
<script type="text/javascript"

src="<%= Routes.static_url(@conn, "/js/app.js") %>"></script>
</body>

Just before our app.js script, we render a script tag that attaches a userToken
variable to the window from our layout assigns.

Next, we need to add the :user_token to conn.assigns whenever we have a current
user. We already have code to assign the current user in RumblWeb.Auth, so let’s
handle this there:

channels/listings/rumbl/lib/rumbl_web/controllers/auth.change1.ex
def call(conn, _opts) doLine 1

user_id = get_session(conn, :user_id)-

-

cond do-

user = conn.assigns[:current_user] ->5

put_current_user(conn, user)-

-

user = user_id && Rumbl.Accounts.get_user(user_id) ->-

put_current_user(conn, user)-

10

true ->-

assign(conn, :current_user, nil)-

end-

end-

15

def login(conn, user) do-

conn-

|> put_current_user(user)-

|> put_session(:user_id, user.id)-

|> configure_session(renew: true)20

end-

-

defp put_current_user(conn, user) do-

token = Phoenix.Token.sign(conn, "user socket", user.id)-

25

conn-

|> assign(:current_user, user)-

|> assign(:user_token, token)-

end-

We add a private put_current_user function to place a freshly generated user
token and the current_user into conn.assigns, which we call on lines 6, 9, and 18.
Now, any time a user session exists, both :current_user and :user_token will be set,
and the :user_token will hold the signed-in user ID.

The last step is to pass the user token to the Socket constructor on the client,
and then verify it in our UserSocket.connect callback. If you open up your

Chapter 10. Using Channels • 208

report erratum • discuss

http://media.pragprog.com/titles/phoenix14/code/channels/listings/rumbl/lib/rumbl_web/templates/layout/app.change1.html.eex
http://media.pragprog.com/titles/phoenix14/code/channels/listings/rumbl/lib/rumbl_web/controllers/auth.change1.ex
http://pragprog.com/titles/phoenix14/errata/add
http://forums.pragprog.com/forums/phoenix14

assets/js/socket.js file, you can see that we prepared for this by passing up the
window.userToken value as a token parameter, like this:

channels/listings/rumbl/assets/js/socket.change1.js
let socket = new Socket("/socket", {

params: {token: window.userToken},
logger: (kind, msg, data) => { console.log(`${kind}: ${msg}`, data) }

})

Any :params we pass to the socket constructor will be available as the first
argument in UserSocket.connect. Let’s verify the params on connect and store
our current_user ID in the socket. Update your UserSocket with the following code:

channels/listings/rumbl/lib/rumbl_web/channels/user_socket.change2.ex
@max_age 2 * 7 * 24 * 60 * 60

def connect(%{"token" => token}, socket, _connect_info) do
case Phoenix.Token.verify(

socket,
"user socket",
token,
max_age: @max_age

) do
{:ok, user_id} ->
{:ok, assign(socket, :user_id, user_id)}

{:error, _reason} ->
:error

end
end

def connect(_params, _socket, _connect_info), do: :error

def id(socket), do: "users_socket:#{socket.assigns.user_id}"

We use Phoenix.Token.verify to verify the user token provided by the client. We
pass a max_age, ensuring that tokens are only valid for a certain period of time;
in this case, we set the value to about two weeks. If the token is valid, we
receive the user_id and store it in our socket.assigns while returning {:ok, socket}
to establish the connection. If the token is invalid, we return :error, denying
the connection attempt by the client.

Remember, the socket keeps its state for the whole duration of the connection,
not just for a single response. Any socket.assigns you place in the socket during
connect will be available in your channel’s socket.assigns map.

Now, refresh your page. The application should work as before, but now with
user authentication. We have a logged-in user. so we can move on to persist
our annotations.

report erratum • discuss

Socket Authentication • 209

http://media.pragprog.com/titles/phoenix14/code/channels/listings/rumbl/assets/js/socket.change1.js
http://media.pragprog.com/titles/phoenix14/code/channels/listings/rumbl/lib/rumbl_web/channels/user_socket.change2.ex
http://pragprog.com/titles/phoenix14/errata/add
http://forums.pragprog.com/forums/phoenix14

Persisting Annotations
Now that we have in-memory annotations going across all connected clients
through an authenticated user, let’s extend our multimedia context to attach
those annotations to videos and users in the database. You’ve seen how we
manage schemas and relationships with Ecto so the process will be straight-
forward. In this case, we’re creating annotations on videos. Each new anno-
tation will belong to both a user and a video.

You can use the phx.gen.schema generator, like this:

$ mix phx.gen.schema Multimedia.Annotation annotations body:text \
at:integer user_id:references:users video_id:references:videos

* creating lib/rumbl/multimedia/annotation.ex
* creating priv/repo/migrations/20180726203443_create_annotations.exs

Remember to update your repository by running migrations:

$ mix ecto.migrate
$
---- END OF OUTPUT ----

And now you can migrate your database:

$ mix ecto.migrate

[info] == Running Rumbl.Repo.Migrations.CreateAnnotations.change/0 forward
[info] create table annotations
[info] create index annotations_user_id_index
[info] create index annotations_video_id_index
[info] == Migrated in 0.1s

$

Our migrations are in, with our new table and two new indexes.

Next, we need to wire up our new relationships to our Accounts.User and Multime-
dia.Video schemas. Both users and videos will have annotations, but we need
to decide where to surface these schema details within our contexts. Details
like these will make or break an API. Allowing access to every possible type
of data that may ever be associated with a user would probably lead to a
tedious, bloated API and conflate the purpose of our Accounts context. We’ll
provide only enough functions to comfortably do the job at hand.

For now, we’ll tentatively expose annotations strictly through the Multimedia
context since the Accounts.User schema should not need to know about Multime-
dia.Annotations. If an application needs change in the future, we can revisit this
decision. Add the has_many relationship to the Multimedia.Video schema blocks in
lib/rumbl/multimedia/video.ex, like this:

Chapter 10. Using Channels • 210

report erratum • discuss

http://pragprog.com/titles/phoenix14/errata/add
http://forums.pragprog.com/forums/phoenix14

has_many :annotations, Rumbl.Multimedia.Annotation

Next, let’s update our generated Annotation schema in lib/rumbl/multimedia/annota-
tion.ex. Right now, both user_id and video_id are simple schema fields. We’ll want
to manage annotation lists through Ecto so let’s upgrade them to be first
class belongs_to relationships, like this:

channels/listings/rumbl/lib/rumbl/multimedia/annotation.change1.ex
schema "annotations" do

field :at, :integer
field :body, :string

belongs_to :user, Rumbl.Accounts.User
belongs_to :video, Rumbl.Multimedia.Video

timestamps()
end

We will want to read and write our video annotations from within our channels.
Just as we did within our controllers, we’ll want to access those features from
our Multimedia context rather than the schema. Let’s add those features to our
context. Open up lib/rumbl/multimedia.ex and add functions to list and create
annotations, like so:

channels/listings/rumbl/lib/rumbl/multimedia.change1.ex
alias Rumbl.Multimedia.AnnotationLine 1

-

def annotate_video(%Accounts.User{id: user_id}, video_id, attrs) do-

%Annotation{video_id: video_id, user_id: user_id}-

|> Annotation.changeset(attrs)5

|> Repo.insert()-

end-

-

def list_annotations(%Video{} = video) do-

Repo.all(10

from a in Ecto.assoc(video, :annotations),-

order_by: [asc: a.at, asc: a.id],-

limit: 500,-

preload: [:user]-

)15

end-

On line 3, we added an annotate_video function, which accepts a user, video ID,
and attributes for the annotation. In that function, we build an annotation
struct with the video ID and user ID. We pipe that struct to changeset to create
our changeset, and then pipe the completed record to Repo.insert. We could
have used Ecto.Changeset.put_assoc to put both user and video associations, but
setting the foreign keys directly gives the same end result.

report erratum • discuss

Persisting Annotations • 211

http://media.pragprog.com/titles/phoenix14/code/channels/listings/rumbl/lib/rumbl/multimedia/annotation.change1.ex
http://media.pragprog.com/titles/phoenix14/code/channels/listings/rumbl/lib/rumbl/multimedia.change1.ex
http://pragprog.com/titles/phoenix14/errata/add
http://forums.pragprog.com/forums/phoenix14

To fetch a list of annotations for a given video, we defined the list_annotations on
line 9. It’s just a simple Ecto query. We put in a high limit to make sure we
don’t bring back too many records to handle, and we preloaded the user.
Remember, if you want to use data in an association, you need to fetch it
explicitly. You’ve seen queries like this before in Chapter 6, Generators and
Relationships, on page 101.

Now, all that remains is to head back to our VideoChannel and integrate our
callbacks to use the new context features. Open up the video channel and
make these modifications:

channels/listings/rumbl/lib/rumbl_web/channels/video_channel.change3.ex
alias Rumbl.{Accounts, Multimedia}Line 1

-

def join("videos:" <> video_id, _params, socket) do-

{:ok, assign(socket, :video_id, String.to_integer(video_id))}-

end5

-

def handle_in(event, params, socket) do-

user = Accounts.get_user!(socket.assigns.user_id)-

handle_in(event, params, user, socket)-

end10

-

def handle_in("new_annotation", params, user, socket) do-

case Multimedia.annotate_video(user, socket.assigns.video_id, params) do-

{:ok, annotation} ->-

broadcast!(socket, "new_annotation", %{15

id: annotation.id,-

user: RumblWeb.UserView.render("user.json", %{user: user}),-

body: annotation.body,-

at: annotation.at-

})20

{:reply, :ok, socket}-

-

{:error, changeset} ->-

{:reply, {:error, %{errors: changeset}}, socket}-

end25

end-

First, we ensure that all incoming events have the current user by defining
a new handle_in/3 function on line 7. It catches all incoming events, looks up
the user from the socket assigns, and then calls a handle_in/4 clause with the
socket user as a third argument.

Next, we call our Multimedia.annotate_video function. On success, we broadcast to all
subscribers as before. Otherwise, we return a response with the changeset errors.
After we broadcast, we acknowledge the success by returning {:reply, :ok, socket}.

Chapter 10. Using Channels • 212

report erratum • discuss

http://media.pragprog.com/titles/phoenix14/code/channels/listings/rumbl/lib/rumbl_web/channels/video_channel.change3.ex
http://pragprog.com/titles/phoenix14/errata/add
http://forums.pragprog.com/forums/phoenix14

We could have decided not to send a reply with {:noreply, socket}, but it’s common
practice to acknowledge the result of the pushed message from the client.
This approach allows the client to easily implement UI features such as
loading statuses and error notifications, even if we’re only replying with an
:ok or :error status and no other information.

Since we also want to notify subscribers about the user who posted the
annotation, we render a user.json template from our UserView on line 17. Let’s
implement that now:

channels/listings/rumbl/lib/rumbl_web/views/user_view.change1.ex
defmodule RumblWeb.UserView do

use RumblWeb, :view
alias Rumbl.Accounts

def first_name(%Accounts.User{name: name}) do
name
|> String.split(" ")
|> Enum.at(0)

end

def render("user.json", %{user: user}) do
%{id: user.id, username: user.username}

end
end

Now let’s head back to the app and post a few annotations. Watch your
server logs as the posts are submitted, and you can see your insert logs:

[debug] INCOMING "new_annotation" on "videos:1" to RumblWeb.VideoChannel
Parameters: %{"at" => 0, "body" => "testing"}

begin []
[debug] QUERY OK db=20.3ms
INSERT INTO "annotations" ("at","body","user_id","video_id",...
[debug] QUERY OK db=0.6ms
commit []

And we have persisted data!

We have a problem, though. Refresh your page, and the messages disappear
from the UI. They’re still in the database, but we need to pass the messages
to the client when a user joins the channel. We could do this by pushing an
event to the client after each user joins, but Phoenix provides a 3-tuple join
signature to both join the channel and send a join response at the same time.

Let’s update our VideoChannel’s join callback to pass down a list of annotations:

report erratum • discuss

Persisting Annotations • 213

http://media.pragprog.com/titles/phoenix14/code/channels/listings/rumbl/lib/rumbl_web/views/user_view.change1.ex
http://pragprog.com/titles/phoenix14/errata/add
http://forums.pragprog.com/forums/phoenix14

channels/listings/rumbl/lib/rumbl_web/channels/video_channel.change4.ex
alias RumblWeb.AnnotationView

def join("videos:" <> video_id, _params, socket) do
video_id = String.to_integer(video_id)
video = Multimedia.get_video!(video_id)

annotations =
video
|> Multimedia.list_annotations()
|> Phoenix.View.render_many(AnnotationView, "annotation.json")

{:ok, %{annotations: annotations}, assign(socket, :video_id, video_id)}
end

Here, we rewrite join to get the video from our Multimedia context. Then, we
list the video’s annotations combined with something new. We compose a
response by rendering an annotation.json view for every annotation in our list.
Instead of building the list by hand, we use Phoenix.View.render_many. The ren-
der_many function collects the render results for all elements in the enumerable
passed to it. We use the view to present our data, so we offload this work to
the view layer so the channel layer can focus on messaging.

Create an AnnotationView in lib/rumbl_web/views/annotation_view.ex to serve as each
individual annotation, like this:

channels/listings/rumbl/lib/rumbl_web/views/annotation_view.ex
defmodule RumblWeb.AnnotationView do

use RumblWeb, :view

def render("annotation.json", %{annotation: annotation}) do
%{
id: annotation.id,
body: annotation.body,
at: annotation.at,
user: render_one(annotation.user, RumblWeb.UserView, "user.json")

}
end

end

Notice the render_one call for the annotation’s user. Phoenix’s view layer neatly
embraces functional composition. The render_one function provides conveniences
such as handling possible nil results.

Lastly, we return a 3-tuple from join of the form {:ok, response, socket} to pass the
response down to the join event. Let’s pick up this response on the client to
build the list of messages.

Update your vidChannel.join() callbacks to render a list of annotations received
on join:

Chapter 10. Using Channels • 214

report erratum • discuss

http://media.pragprog.com/titles/phoenix14/code/channels/listings/rumbl/lib/rumbl_web/channels/video_channel.change4.ex
http://media.pragprog.com/titles/phoenix14/code/channels/listings/rumbl/lib/rumbl_web/views/annotation_view.ex
http://pragprog.com/titles/phoenix14/errata/add
http://forums.pragprog.com/forums/phoenix14

channels/listings/rumbl/assets/js/video.change5.js
vidChannel.join()

.receive("ok", ({annotations}) => {
annotations.forEach(ann => this.renderAnnotation(msgContainer, ann))

})
.receive("error", reason => console.log("join failed", reason))

Refresh your browser and see your history of messages appear immediately!

Now that we have our message history on join, we need to schedule the
annotations to appear synced up with the video playback. Update video.js, like
the following:

channels/listings/rumbl/assets/js/video.change6.js
vidChannel.join()

.receive("ok", resp => {
this.scheduleMessages(msgContainer, resp.annotations)

})
.receive("error", reason => console.log("join failed", reason))

},

renderAnnotation(msgContainer, {user, body, at}){
let template = document.createElement("div")
template.innerHTML = `

[${this.formatTime(at)}]
${this.esc(user.username)}: ${this.esc(body)}

`
msgContainer.appendChild(template)
msgContainer.scrollTop = msgContainer.scrollHeight

},

scheduleMessages(msgContainer, annotations){
clearTimeout(this.scheduleTimer)
this.schedulerTimer = setTimeout(() => {

let ctime = Player.getCurrentTime()
let remaining = this.renderAtTime(annotations, ctime, msgContainer)
this.scheduleMessages(msgContainer, remaining)

}, 1000)
},

report erratum • discuss

Persisting Annotations • 215

http://media.pragprog.com/titles/phoenix14/code/channels/listings/rumbl/assets/js/video.change5.js
http://media.pragprog.com/titles/phoenix14/code/channels/listings/rumbl/assets/js/video.change6.js
http://pragprog.com/titles/phoenix14/errata/add
http://forums.pragprog.com/forums/phoenix14

renderAtTime(annotations, seconds, msgContainer){
return annotations.filter(ann => {

if(ann.at > seconds){
return true

} else {
this.renderAnnotation(msgContainer, ann)
return false

}
})

},

formatTime(at){
let date = new Date(null)
date.setSeconds(at / 1000)
return date.toISOString().substr(14, 5)

},

There’s a lot of code here, but it’s relatively simple. Instead of rendering all
annotations immediately on join, we schedule them to render based on the
current player time. The scheduleMessages function starts an interval timer that
fires every second. Now, each time our timer ticks, we call renderAtTime to find
all annotations occurring at or before the current player time.

In renderAtTime, we filter all the messages by time while rendering those that
should appear in the timeline. For those yet to appear, we return true to keep
a tab on the remaining annotations to filter on the next call. Otherwise, we
render the annotation and return false to exclude it from the remaining set.

You can see the end result. We have a second-by-second annotation feed
based on the current video playback. Refresh your browser and let’s give it a
shot. Try posting a few new annotations at different points, and then refresh.
Start playing the video, and then watch your annotations appear synced up
with the playback time, as you can see in the screenshot on page 217.

We wired up a data-seek attribute on our renderAnnotation template, but we haven’t
done anything with it yet. Let’s support having the annotations clickable so
we can jump to the exact time the annotation was made by clicking it. Add
this click handler above your vidChannel.join():

channels/listings/rumbl/assets/js/video.change6.js
msgContainer.addEventListener("click", e => {

e.preventDefault()
let seconds = e.target.getAttribute("data-seek") ||

e.target.parentNode.getAttribute("data-seek")
if(!seconds){ return }

Player.seekTo(seconds)
})

Chapter 10. Using Channels • 216

report erratum • discuss

http://media.pragprog.com/titles/phoenix14/code/channels/listings/rumbl/assets/js/video.change6.js
http://pragprog.com/titles/phoenix14/errata/add
http://forums.pragprog.com/forums/phoenix14

Now, clicking an annotation will move the player to the time the annotation
was made. Cool!

Before we get too excited, we have one more problem to solve. We need to
address a critical issue when dealing with disconnects between the client
and server.

Handling Disconnects
Any stateful conversation between a client and server must handle data that
gets out of sync. This problem can happen with unexpected disconnects, or
a broadcast that isn’t received while a client is away. We need to handle both
cases. Let’s find out how.

Our JavaScript client can disconnect and reconnect for a number of different
reasons. Our server might be restarted, a rumbler might drive under a bridge,
or our Internet connection may just be poor. We simply can’t assume network
reliability when designing our real-time systems. Fire up your server and
visit one of your videos. Post a few annotations and then kill the server in
your terminal. The client immediately begins trying to reestablish a connection
using exponential back-off. Wait a few seconds. Then, you can restart the
server with mix phx.server. Within a few seconds, you’ll see something similiar
to what is shown in the screenshot on page 218.

report erratum • discuss

Handling Disconnects • 217

http://pragprog.com/titles/phoenix14/errata/add
http://forums.pragprog.com/forums/phoenix14

That’s not good. When the client reconnected, our client rejoined our
VideoChannel and the server returned all the annotations for this video, causing
our client to append duplicate annotations to the ones it already had. You
might be tempted to have the client detect duplicate annotations and ignore
them, but we want to fetch as little data as required from the server, so there’s
a better way.

We can track a last_seen_id on the client and bump this value every time we
see a new annotation. Then whenever we rejoin following a crash or disconnect,
we can send our last_seen_id to the server. That way, we send only the data we
missed. This technique keeps us from worrying about buffering messages on
the server for clients that might never reconnect. We get back only the data
that we need. Let’s make it happen.

Open up your assets/js/video.js and make the following changes to your vidChannel
instantiation:

channels/listings/rumbl/assets/js/video.change7.js
onReady(videoId, socket){Line 1

let msgContainer = document.getElementById("msg-container")2

let msgInput = document.getElementById("msg-input")3

let postButton = document.getElementById("msg-submit")4

let lastSeenId = 05

let vidChannel = socket.channel("videos:" + videoId, () => {6

return {last_seen_id: lastSeenId}7

})8

Chapter 10. Using Channels • 218

report erratum • discuss

http://media.pragprog.com/titles/phoenix14/code/channels/listings/rumbl/assets/js/video.change7.js
http://pragprog.com/titles/phoenix14/errata/add
http://forums.pragprog.com/forums/phoenix14

On line 7, we added a new variable declaration to track our client’s lastSeenId.
We also use channel params for the first time. The second argument to sock-
et.channel adds a params callback as a second argument. The socket.channel
function accepts an optional params object or callback. Phoenix will now
send those custom params when a user joins the channel. Our function
simply returns our last seen ID.

Our client is sending the last_seen_id parameter, but we still need to keep track
of this value. Let’s do that now:

channels/listings/rumbl/assets/js/video.change7.js
vidChannel.on("new_annotation", (resp) => {Line 1

lastSeenId = resp.id-

this.renderAnnotation(msgContainer, resp)-

})-

5

vidChannel.join()-

.receive("ok", resp => {-

let ids = resp.annotations.map(ann => ann.id)-

if(ids.length > 0){ lastSeenId = Math.max(...ids) }-

this.scheduleMessages(msgContainer, resp.annotations)10

})-

.receive("error", reason => console.log("join failed", reason))-

On line 2, we update lastSeenId. Our client will pass it up to the channel on
subsequent joins. We modify this value whenever we receive a new_annotation
event from the server.

Next, we use a similar approach on line 8 within our ok callback on join. We
receive the list of annotations in the response as before, but this time we grab
the max annotation ID from the list and store it as the lastSeenId. Now, when-
ever we call vidChannel.join()—such as after reconnects—our parameter function
will fire, providing the last_seen_id. Let’s handle this new parameter on the
server side within our VideoChannel. To list annotations since a given ID, we
need to expose this feature from our Multimedia context. Open up lib/rumbl/mul-
timedia.ex and make the following change to your list_annotations function:

channels/listings/rumbl/lib/rumbl/multimedia.change2.ex
def list_annotations(%Video{} = video, since_id \\ 0) doLine 1

Repo.all(2

from a in Ecto.assoc(video, :annotations),3

where: a.id > ^since_id,4

order_by: [asc: a.at, asc: a.id],5

limit: 500,6

preload: [:user]7

)8

end9

report erratum • discuss

Handling Disconnects • 219

http://media.pragprog.com/titles/phoenix14/code/channels/listings/rumbl/assets/js/video.change7.js
http://media.pragprog.com/titles/phoenix14/code/channels/listings/rumbl/lib/rumbl/multimedia.change2.ex
http://pragprog.com/titles/phoenix14/errata/add
http://forums.pragprog.com/forums/phoenix14

We added an optional since_id argument which defaults to zero. Then we added
a where clause in our query on line 4 to use this new value. With our context
changes in place, we need to update our channel to look for last_seen_id. Open
lib/rumbl_web/channels/video_channel.ex and update the join function:

channels/listings/rumbl/lib/rumbl_web/channels/video_channel.change5.ex
def join("videos:" <> video_id, params, socket) doLine 1

last_seen_id = params["last_seen_id"] || 0-

video_id = String.to_integer(video_id)-

video = Multimedia.get_video!(video_id)-

5

annotations =-

video-

|> Multimedia.list_annotations(last_seen_id)-

|> Phoenix.View.render_many(AnnotationView, "annotation.json")-

10

{:ok, %{annotations: annotations}, assign(socket, :video_id, video_id)}-

end-

On line 2, we use the params as the second argument to join/3. We check for an
existing last_seen_id value. To cover a fresh connection, we provide a default
value of 0 since the user has yet to see an annotation.

Next, we modify our call to Multimedia.list_annotations by passing our last_seen_id on
line 8.

That’s it! If we try to re-create our duplicate entries, we’ll see the client and
server remain properly in sync across disconnects and reconnects using the
last_seen_id approach in the channel params. Our approach is simple and direct.

Now our workers can do work on Rumbl and we know that work will leave
our data in a reliable state. Next, we’ll build a feature to make our application
feel a little more social. Let’s make a list of who’s online.

Tracking Presence on a Channel
Let’s track which users are watching a video. This problem may seem easy
on the surface, but it’s a notoriously difficult computer science problem when
multiple servers are involved. The users may be stored in different places,
and we’ll need to access them. We’ll also need to clean up the data when
users disconnect. If the connections between servers fail, we’ll need to make
some decisions about how to calculate and present exactly who is present.

Luckily, we won’t have to solve any of these problems because we can rely on
Channel Presence to solve them for us. When we’re done, we’ll have no single
point of failure and no single source of truth, an excellent attribute for a distributed

Chapter 10. Using Channels • 220

report erratum • discuss

http://media.pragprog.com/titles/phoenix14/code/channels/listings/rumbl/lib/rumbl_web/channels/video_channel.change5.ex
http://pragprog.com/titles/phoenix14/errata/add
http://forums.pragprog.com/forums/phoenix14

solution. Since the entire solution is based on the standard Elixir library, you
won’t have to add dependencies. Since it’s built on OTP, it is self-healing.

Generating Presence Files
We’ll write a shockingly small amount of code to do all of this work. To get
started, use the mix phx.gen.presence task to generate a presence module, like this:

$ mix phx.gen.presence
* creating lib/rumbl_web/channels/presence.ex
...

The generated lib/rumbl_web/channels/presence.ex file sets up the module for pres-
ence, defining the functions we require for tracking presence on a channel.
Next we need to add this module to our supervisor tree in lib/rumbl/application.ex,
like this:

children = [
...
RumblWeb.Presence

]

You’ve seen this code before. Presence is an OTP application so we need to add
it to our supervision tree. That’s all of the setup work we need to do.

Tracking Presence in Channels
Let’s see how easy it is to track which users are online in our VideoChannel. Open
up your lib/rumbl_web/channels/video_channel.ex file and make the following changes:

channels/listings/rumbl/lib/rumbl_web/channels/video_channel.change6.ex
def join("videos:" <> video_id, params, socket) doLine 1

send(self(), :after_join)-

last_seen_id = params["last_seen_id"] || 0-

video_id = String.to_integer(video_id)-

video = Multimedia.get_video!(video_id)5

-

annotations =-

video-

|> Multimedia.list_annotations(last_seen_id)-

|> Phoenix.View.render_many(AnnotationView, "annotation.json")10

-

{:ok, %{annotations: annotations}, assign(socket, :video_id, video_id)}-

end-

-

def handle_info(:after_join, socket) do15

push(socket, "presence_state", RumblWeb.Presence.list(socket))-

{:ok, _} = RumblWeb.Presence.track(-

socket,-

socket.assigns.user_id,-

report erratum • discuss

Tracking Presence on a Channel • 221

http://media.pragprog.com/titles/phoenix14/code/channels/listings/rumbl/lib/rumbl_web/channels/video_channel.change6.ex
http://pragprog.com/titles/phoenix14/errata/add
http://forums.pragprog.com/forums/phoenix14

%{device: "browser"})20

{:noreply, socket}-

end-

This code makes an important distinction between the user and a session. A
user is a unique entity within the presence. A user can have multiple sessions,
such as a single user with open browser tabs or multiple devices.

On line 2, we send ourself a user-defined message called :after_join. We’ll process
that message in a handle_info callback that will be invoked after join successfully
returns.

On line 15, we call a single presence function that does the lion’s share of
the work, RumblWeb.Presence.track. This function accepts our socket, a key to track,
and a map of metadata. The key is a unique user identity. We’ll pass user_id
because it’s unique per Rumbl user. The metadata is any arbitrary data we
want to associate with a session. We want to restrict this data to the essentials.
Presence will maintain this data for the life of the user. Here, we hardcode a
device as "browser" since we only support web clients today, but later a native
mobile app speaking to our phoenix channel could be written, and we could
show an icon next to our user list indicating the kind of device each user
connected with.

To finish, we simply return our unchanged socket. When we track presence,
we’re asking Phoenix to track broadcast messages to our socket’s topic about
users coming and going. These messages will automatically make it down the
client like any other channel broadcast. In just a few lines of code, we’ve done
all we need to do in our channel, so we can move on to our client.

Adding Presence to Templates
The JavaScript Presence API takes care of all the housekeeping of synchroniz-
ing user info as users come and go. It also synchronizes data on reconnect.
Before we display users on our web page, we need a place to show them. Open
up your lib/rumbl_web/templates/watch/show.html.eex and add a new div container to
the bottom of the file:

channels/listings/rumbl/lib/rumbl_web/templates/watch/show.html.eex
<hr/>
<div class="row">

<div class="column">
<h3>Users</h3>
<ul id="user-list">

</div>
</div>

Chapter 10. Using Channels • 222

report erratum • discuss

http://media.pragprog.com/titles/phoenix14/code/channels/listings/rumbl/lib/rumbl_web/templates/watch/show.html.eex
http://pragprog.com/titles/phoenix14/errata/add
http://forums.pragprog.com/forums/phoenix14

There’s no magic here. It’s just an empty li with an id of user-list. We’ll lean on
JavaScript to populate it.

Using Channel Presence in JavaScript
Next, add this line to the top of assets/js/video.js:

import {Presence} from "phoenix"

We’re importing the library we’ll need to handle Channel Presence. With our
HTML and import in place, make the following additions to your onReady
function in the same file:

channels/listings/rumbl/assets/js/video.change8.js
onReady(videoId, socket){Line 1

let msgContainer = document.getElementById("msg-container")-

let msgInput = document.getElementById("msg-input")-

let postButton = document.getElementById("msg-submit")-

let userList = document.getElementById("user-list")5

let lastSeenId = 0-

let vidChannel = socket.channel("videos:" + videoId, () => {-

return {last_seen_id: lastSeenId}-

})-

10

let presence = new Presence(vidChannel)-

-

presence.onSync(() => {-

userList.innerHTML = presence.list((id, {metas: [first, ...rest]}) => {-

let count = rest.length + 115

return `${id}: (${count})`-

}).join("")-

})-

On line 5, we create a new userList reference to our HTML container. Next, we
instantiate a new Presence object on line 11, passing in our vidChannel. Then,
on line 13, we call the onSync callback to render our users as list items when
users join or leave the application.

Here, we make use of the presence.list function that takes care of grouping any
given user’s multiple presences into a single object. Remember, a single user
in the system can be present on any number of browser tabs and devices.
That means each user_id might have multiple pieces of session metadata. Your
list function’s job is to determine which information to display about each
user, given a session metadata list.

In our callback, we simply render each user’s ID, and how many tabs or
devices they are connected from. We get the count by referencing the size of
their presence metadata list. Later, as Phoenix improves, we’ll show a

report erratum • discuss

Tracking Presence on a Channel • 223

http://media.pragprog.com/titles/phoenix14/code/channels/listings/rumbl/assets/js/video.change8.js
http://pragprog.com/titles/phoenix14/errata/add
http://forums.pragprog.com/forums/phoenix14

browser icon for browser tabs and a mobile icon for mobile devices. Save the
file so we can try it out. rumbl now has a list of users:

Though the output is a bit primitive, it works. We can see the users with ID
3 and 4 are online with a single tab open. Open and close additional tabs and
check user’s session counts. They update instantly!

Decorating Entries with Application Data
Showing the user ID isn’t very friendly, but we can do better. Since our goal
is to display a list of users online, we’ll need to add a username. While we
could place the user’s name in the metadata for the client, this approach is
frought with future misery. We’d be placing stale user data in our cluster and
Channel Presence would diligently replicate that stale information across our
cluster! There’s a better way.

Phoenix.Presence provides a fetch callback to solve this problem. As users join
and leave the application across your cluster, Phoenix batches these events
together to optimize performance and network chatter. Our fetch callback will
fetch the data for a batch of presences, not just a single presence. Let’s build
a context function to fetch the usernames for a list of ids in lib/rumbl/accounts.ex,
like this:

Chapter 10. Using Channels • 224

report erratum • discuss

http://pragprog.com/titles/phoenix14/errata/add
http://forums.pragprog.com/forums/phoenix14

channels/listings/rumbl/lib/rumbl/accounts.change1.ex
import Ecto.Query

def list_users_with_ids(ids) do
Repo.all(from(u in User, where: u.id in ^ids))

end

In list_users_with_ids, we use Ecto to fetch users in the list of the IDs we provide
and return users.

Now, we need to decorate our presence information in lib/rumbl_web/channels/pres-
ence.ex, like this:

channels/listings/rumbl/lib/rumbl_web/channels/presence.change1.ex
def fetch(_topic, entries) do

users =
entries
|> Map.keys()
|> Rumbl.Accounts.list_users_with_ids()
|> Enum.into(%{}, fn user ->
{to_string(user.id), %{username: user.username}}

end)

for {key, %{metas: metas}} <- entries, into: %{} do
{key, %{metas: metas, user: users[key]}}

end
end

We implement the optional fetch callback in our presence module. We take
the presence entries which is a map of user_id - session_metadata pairs. We pipe
those keys into our new context function and then pipe those users through
an anonymous function to build our metadata map with the usernames for
each user_id.

When we’re done building that users map, in a for comprehension we decorate our
original presence entries with usernames. We could decorate the entry map with
any data you please. Our only obligation is to carry over the original :metas infor-
mation as it has the data necessary for tracking presence data over a client.

All that remains is to wire the new information into the client. Head back over
to assets/js/video.js and make the following change to the presence.onSync callback:

channels/listings/rumbl/assets/js/video.change9.js
presence.onSync(() => {

userList.innerHTML = presence.list((id,
{user: user, metas: [first, ...rest]}) => {
let count = rest.length + 1
return `${user.username}: (${count})`

}).join("")
})

report erratum • discuss

Tracking Presence on a Channel • 225

http://media.pragprog.com/titles/phoenix14/code/channels/listings/rumbl/lib/rumbl/accounts.change1.ex
http://media.pragprog.com/titles/phoenix14/code/channels/listings/rumbl/lib/rumbl_web/channels/presence.change1.ex
http://media.pragprog.com/titles/phoenix14/code/channels/listings/rumbl/assets/js/video.change9.js
http://pragprog.com/titles/phoenix14/errata/add
http://forums.pragprog.com/forums/phoenix14

We modified our presence.onSync callback to destruct the new user key from our
presence information. Then, we modified our HTML string snippet to use the
user.username instead of our ID. Let’s try it out!

And it works! Our presence data now has friendly usernames. In a remarkably
few lines of code, we’ve implemented a distributed Channel Presence imple-
mentation that will allow our server to reliably track presence across a dis-
tributed cluster. We’ve done a lot of work in this chapter. It’s time to review.

Wrapping Up
In this chapter, you learned to build simple client/server APIs with Phoenix
channels. Though the problem had many layers, it was easy to understand
the flow because clients connected to servers, and both sides maintained the
connection until the conversation was over. Along the way:

• You learned to connect to a server-side channel through an ES6 client.

• We built a server-side channel with both long-polling and WebSocket
support.

• We built a simple API to let users join a channel.

Chapter 10. Using Channels • 226

report erratum • discuss

http://pragprog.com/titles/phoenix14/errata/add
http://forums.pragprog.com/forums/phoenix14

• We processed inbound messages from OTP with handle_info and channels
with handle_in.

• We sent broadcast messages with broadcast!.

• We authenticated users with Phoenix.Token.

• We persisted annotations with Ecto, and exposed those new features
through our Multimedia context.

• We used Channel Presence to track the list of users on a video channel.

Though channels are by far the most exciting feature of Phoenix, it was far
easier to build this code than it was to build the request/response counter-
parts for our users. In the next chapter, we’ll focus on code organization using
umbrellas. Along the way, we’ll use a visualization tool called Observer and
address how to manage configuration with subprojects. Stay tuned!

report erratum • discuss

Wrapping Up • 227

http://pragprog.com/titles/phoenix14/errata/add
http://forums.pragprog.com/forums/phoenix14

CHAPTER 11

Observer and Umbrellas
As we add sophistication to our rumbl application, you should begin to notice
that the web pieces of the system aren’t like some of the other parts of the
application. Both the channels and the MVC components support user interfaces
and communicate directly with the business backend. It would be nice to be
able to deal with the web and backend pieces of our system independently.

Most successful projects reach a point where it makes sense to break the
main piece into smaller units. In this chapter, we are going to take you through
the messy but necessary details of such a refactoring exercise. We’ll extract
the web-centered and backend pieces of our application into their own projects
called child applications. When we’re done, we’ll be able to test, develop and
deploy each child app independently. Even so, our Rumbl project has features
like user authentication, multimedia management, and persistence so we
want conveniences for configuring and building them only once. We need
some notion of a project that is a loose confederation of parts. In Elixir, that
notion is called the umbrella project. Each application under an umbrella is
called a child application.

It would have been easy to build our application from scratch as an umbrella.
It’s much harder to refactor existing applications into child apps under an
umbrella, but we know many of our readers have the need to break down
their growing monoliths. We’ll show you the refactoring process, but we’ll also
show you how to start a project from scratch should you be so inclined.

Before we get started, let’s build a deeper intuition of precisely what “applica-
tion” means in the context of an Elixir project. We will use a tool called
Observer that ships with Erlang to offer a visualization of exactly what’s
happening.

report erratum • discuss

http://pragprog.com/titles/phoenix14/errata/add
http://forums.pragprog.com/forums/phoenix14

Introspecting Applications with Observer
Every time we start our Rumbl application, we have multiple applications
running side by side. Each of our dependencies is in fact its own application.
Phoenix and Elixir itself are applications too! An Application in Elixir is a
runtime concern with these responsibilities:

• Applications package our code. Every time we compile our rumbl project,
Mix prints “Generated rumbl app”. Open the file _build/dev/lib/rumbl/ebin/rum-
bl.app. It mostly contains metadata about the application, such as its
modules, processes, a description and more.

• Supervisors can start and stop applications as a unit. An application may
have a supervision tree, which defines exactly which services to start
when the application starts, and which services to shutdown when the
application shuts down.

• Applications provide unified configuration. Each application has its own
environment, which is a key-value store to host application configuration.

All of those responsibilities may feel a bit abstract. Let’s open up the fantastic
Observer, a tool shipping with Erlang, to see how Applications look in practice.
To take it for spin, start a new iex -S mix session and run this command:

iex> :observer.start()
:ok

That command opens up an graphical user interface that looks like the
screenshot on page 231.

Observer is a great tool for understanding all running processes for your
application. When you open it up, the initial tab gives you general information
about Erlang and also statistics about your system and your application. The
tabs let you access charts to visualize different aspects of your system, check
out memory allocation, look at running processes, and the like.

You Might Not Have Observer Installed

Some package managers like to break the Erlang standard library
into multiple packages. If :observer.start doesn’t work, you might be
missing the erlang-observer (or similar) package.

Consider the Processes tab. You can see a list of all running processes in
your system, providing a tremendous amount of visibility into the system.
Remember that in Elixir, almost all state exists in your processes. With
Observer, we can see the state of our entire system and who’s responsible for

Chapter 11. Observer and Umbrellas • 230

report erratum • discuss

http://pragprog.com/titles/phoenix14/errata/add
http://forums.pragprog.com/forums/phoenix14

each piece. The process tab also includes the Message Queue (MsgQ) for each
process. If a process has a very large message queue, it is likely that it is a
bottleneck in your system. Therefore, ordering the processes by the Message
Queue size can be a great way to spot bottlenecks, and that’s exactly what
the Phoenix team did when optimizing their channels implementation to
support more than 2 million connections on a single node.1

You won’t explore all tabs now, but let’s look at one more in particular: Applica-
tions. There, you can see all of the applications that run on your system as well
as each application’s supervision tree. Click the Applications tab and explore
some of the applications on the left-side panel. When you are ready, click the
Rumbl entry. You can see something like the figure on page 232.

That’s the rumbl supervision tree, more or less. Because we started iex -S mix
and not iex -S mix phx.server, the server is missing from the tree. Still, there is a
lot for us to explore. We can see the database connection pool, the PubSub
system, and more. Inspecting our supervision trees is a great way to analyze
how complex our systems are. If a supervision tree is growing too big or too
wide, you can use Observer as a tool to help break the system apart.

1. https://phoenixframework.org/blog/the-road-to-2-million-websocket-connections

report erratum • discuss

Introspecting Applications with Observer • 231

https://phoenixframework.org/blog/the-road-to-2-million-websocket-connections
http://pragprog.com/titles/phoenix14/errata/add
http://forums.pragprog.com/forums/phoenix14

You May Have a Different Supervision Tree

By the time we finished this book, the Phoenix team was already
working on new features and enhancements to provide a more
granular supervision tree. So if you are running on a Phoenix
version later than Phoenix v1.4, you may see a slightly different
tree than the one we showed here. We will talk about what’s
coming in Chapter 14, What’s Next?, on page 297. Regardless of
the shape of the tree, all of the points made in this discussion still
apply.

Observer also allows us to trigger failures. You can right-click a process in
the tree, such as Rumbl.Repo and send it a kill signal, which will cause it to
terminate. You’ll find a crash report in the terminal. However, since our ser-
vices are supervised, the supervisor will notice the failure and start a new
instance of the same service in its place.

With a more solid understanding of what constitutes each application, let’s
consider whether we might break our existing application into two smaller
ones. Let’s be clear here: the main benefit is better boundaries. If all of the
code belongs to a single application, then it gets harder to visualize how all
of the modules in the same application depend on each other as the application
grows.

Chapter 11. Observer and Umbrellas • 232

report erratum • discuss

http://pragprog.com/titles/phoenix14/errata/add
http://forums.pragprog.com/forums/phoenix14

For instance, while we expect our RumblWeb modules to call into our backend,
we have an implicit understanding that it would be highly unexpected for
Rumbl to call into RumblWeb. After all, one of the intents behind Phoenix contexts
is to allow us to write our business rules without strongly coupling them to
our web frontend, be it HTML, JSON, or channels. However, those rules are
implicit in our Rumbl app today. By moving to an umbrella with two separate
applications underneath, we can keep the web and the backend as two distinct
applications which can only use each other if they have explicit dependencies
between them. For example, the web appplication will have to explicitly declare
that it depends on the backend. For some teams, this may be a small benefit,
but for others that enjoy strong boundaries, it makes a drastic difference.

You may have tried doing something similar to this in your previous work.
You had a large application, you broke it apart into different Git repositories,
and versioned them separately. Initially you were proud of the boundaries
you were able to define but after working for a couple months under this new
schema, you noticed you got less productive. A lot of time was spent navigating
and reviewing code between the different repositories. While each project had
their own version, their features were often developed together, and that
required you and your team to constantly match and upgrade many packages
whenever a new version of any given package was out. Umbrella projects
provide an alternative to this. Instead of breaking applications into multiple
distinct source-code repositories, which would add too much overhead to our
development workflow, the applications in an umbrella are managed and
versioned together, under the same repository.

Let’s work on separating rumbl from rumbl_web now. We’re going to extract all of
the web functionality to its own application. When we’re done, we’ll effectively
have two isolated applications, :rumbl and :rumbl_web, in the same umbrella project.
That approach will let us deploy, build, test, and package Rumbl as a whole.

Using Umbrellas
In this section, we’re going to split our application into rumbl_web, containing
the web components, and rumbl, containing all backend logic in our contexts.
Each umbrella project has a parent directory that defines:

• The shared configuration of the project
• The dependencies for that project
• The apps directory with child applications

report erratum • discuss

Using Umbrellas • 233

http://pragprog.com/titles/phoenix14/errata/add
http://forums.pragprog.com/forums/phoenix14

Let’s pick an approach that addresses each of these points. We need to choose
between using generators and adjusting our existing app.

Choosing an Approach
The main goal for umbrella applications is to give us the freedom to work with
distinct pieces of the application independently, while still allowing convenient
common overarching tasks. Now that we’ve identified the logical pieces to
separate, let’s take a peek into the different approaches we might take.

We could decide to roll all of this common structure and configuration by
hand. We’d need to create an apps directory. Then we’d put the code for each
child project into it’s own directory under apps. In each one, we’d create the
common configuration and the individual configuration for each child app.
Then we’d adjust the paths and application names where necessary within
the child apps.

It’s a process that works, but it’s also one that’s error prone. When possible,
it’s best to let Phoenix generators automate as much configuration as possible.
To prevent potential configuration errors, we’re not going to take this approach.

Now that we’ve ruled out refactoring by hand, we have two contenders to
choose from. We could use mix new with an --umbrella flag, or mix phx.new with an
--umbrella flag. We’ll choose the Phoenix generator since it will automate some
of the web-based paths and configuration we need.

Creating a Skeleton
Let’s create an umbrella project alongside the same directory of our existing
rumbl application. Be sure to run the command outside of the existing rumbl
application, like this:

[/rumbl]$ cd ..
[~]$ mix phx.new rumbl --umbrella
* creating rumbl_umbrella/config/config.exs
* creating rumbl_umbrella/config/dev.exs
* creating rumbl_umbrella/config/test.exs
* creating rumbl_umbrella/config/prod.exs
* creating rumbl_umbrella/config/prod.secret.exs
* creating rumbl_umbrella/mix.exs
* creating rumbl_umbrella/apps/rumbl_web/lib/rumbl_web.ex
* creating rumbl_umbrella/apps/rumbl_web/lib/rumbl_web/application.ex
...
* creating rumbl_umbrella/apps/rumbl_web/mix.exs
* creating rumbl_umbrella/apps/rumbl_web/README.md

Chapter 11. Observer and Umbrellas • 234

report erratum • discuss

http://pragprog.com/titles/phoenix14/errata/add
http://forums.pragprog.com/forums/phoenix14

* creating rumbl_umbrella/apps/rumbl_web/.gitignore
* creating rumbl_umbrella/apps/rumbl_web/test/test_helper.exs
* creating rumbl_umbrella/apps/rumbl_web/test/support/channel_case.ex
* creating rumbl_umbrella/apps/rumbl_web/test/support/conn_case.ex
...

Fetch and install dependencies? [Yn] n

...

Make sure to answer n to “Fetch and install dependencies?”. This project will
not be a new application. Instead, we plan to use it as a skeleton for our
existing application. We will need to copy our Elixir code and JavaScript
assets from rumbl into this new project.

You can see from the console output that Phoenix generated the rumbl_application
with a top-level configuration and mix file. In addition, you can see the new
apps directory that has two child applications, rumbl and rumbl_web. The gener-
ated rumbl application is a stock Elixir application with Ecto, and the rumbl_web
application is a standard Phoenix project. Now you will see the method to our
madness. Both projects are configured properly for an umbrella so we can
copy over our code from the rumbl application we’ve been building and touch
up some configuration code.

Understanding Umbrella Configuration
It’s a great time to look at the various pieces of configuration in the old rumbl
directory and our new project side by side as we go through this process.
Before we copy our applications, let’s get the lay of the land, starting with the
generated mix file for rumbl_web. Let’s look at the project and deps functions in
the new rumbl_umbrella/apps/rumbl_web/mix.exs:

def project do
[

app: :rumbl_web,
version: "0.1.0",
build_path: "../../_build",
config_path: "../../config/config.exs",
deps_path: "../../deps",
lockfile: "../../mix.lock",
elixir: "~> 1.5",
elixirc_paths: elixirc_paths(Mix.env()),
compilers: [:phoenix, :gettext] ++ Mix.compilers(),
start_permanent: Mix.env() == :prod,
aliases: aliases(),
deps: deps()

]
end

report erratum • discuss

Using Umbrellas • 235

http://pragprog.com/titles/phoenix14/errata/add
http://forums.pragprog.com/forums/phoenix14

defp deps do
[

{:phoenix, "~> 1.4.6"},
...
{:rumbl, in_umbrella: true},
...

]
end

Notice the in_umbrella flag in the dependency tuple for :rumbl. Now we can use
the :rumbl application as a dependency of :rumbl_web and Elixir will automatically
start it before starting the :rumbl_web server.

You can see the configurations for :build_path, :config_path, :deps_path, and :lockfile.
They point back to the umbrella application’s directory. That’s all it takes to
make something an umbrella child. At the end of the day, Elixir simply con-
figures the project to use the configuration, dependencies, and build paths
from the parent application.

This configuration also tells us something very important about umbrella
projects: all children applications share the same configuration and the same
dependencies. Therefore, you can’t have two different applications in the same
umbrella that depend on two different Phoenix versions. They all have to be
the same. Similarly, if you have 10 applications that use Phoenix and there
is a new Phoenix version, you can’t update the Phoenix version for each app
individually, you will have to update all 10 at the same time. So, while
umbrella projects do provide some isolation between children, all children
still run on the same VM instance, sharing configuration and dependencies.

Extracting Rumbl and RumblWeb
With our tentative skeleton in place, we can start to put some meat on the
bones. We have the code we need and it’s already organized as we want; we
just need to move it from one application to the other.

Let’s copy the critical pieces of rumbl to the right child application of rumbl_umbrel-
la/apps. We want to take advantage of the correct configuration that the phx.new
--umbrella command generated. After we’ve extracted our app and web, and
verified everything works, we’ll be in a good spot to build our information
system in a separate apps directory later.

Chapter 11. Observer and Umbrellas • 236

report erratum • discuss

http://pragprog.com/titles/phoenix14/errata/add
http://forums.pragprog.com/forums/phoenix14

You’re Moving Code Without the Help of Corresponding Listings

If you’re following along but mostly paying attention to the code
listings, it’ll be easy for you to miss these next few changes,
because the listings for the code you’ll be moving aren’t shown.
Make sure you follow the directions in the following paragraph
and numbered sequence.

Copying the rumbl Source Tree
The first step is to move the source code in lib from the old app to the new.
Copy the lib files from rumbl/lib/rumbl/ to rumbl_umbrella/apps/rumbl/lib, like this:

$ cp -R rumbl/lib/rumbl rumbl_umbrella/apps/rumbl/lib
$ cp rumbl/lib/rumbl.ex rumbl_umbrella/apps/rumbl/lib
$ cp -R rumbl/test/rumbl rumbl_umbrella/apps/rumbl/test
$ cp -R rumbl/priv/repo rumbl_umbrella/apps/rumbl/priv
$ cp rumbl/test/support/data_case.ex rumbl_umbrella/apps/rumbl/test/support
$ cp rumbl/test/support/test_helpers.ex \

rumbl_umbrella/apps/rumbl/test/support

These commands just copy our code from the old structure to the new. We
copy the lib files, then the rumbl.ex file, the tests, the repo, and specific test
support files from one structure to the other. Keep in mind we’re using the
Unix cp command and / directory navigation. If you’re using Windows, you
will want to use xcopy for directories, copy for files, and \ to separate directories.
Make sure you copy folders recursively!

Next, we need to establish our dependencies. Let’s add :pbkdf2_elixir for
authentication to the rumbl_umbrella/apps/rumbl/mix.exs deps function, like this:

defp deps do
[

{:ecto_sql, "~> 3.1"},
{:postgrex, ">= 0.0.0"},
{:pbkdf2_elixir, "~> 1.0"}

]
end

The new rumbl child app does not have a web component so it doesn’t need
an endpoint. We need to remove the Endpoint supervisor from the rumbl

report erratum • discuss

Extracting Rumbl and RumblWeb • 237

http://pragprog.com/titles/phoenix14/errata/add
http://forums.pragprog.com/forums/phoenix14

application’s supervision tree. Update the children list in rumbl_umbrella/apps/rum-
bl/lib/rumbl/application.ex, keeping only the repository, like this:

children = [
Rumbl.Repo,

]

Then remove the config_change function, as the endpoint is no longer a part of
this application. That should do it for the application cleanup.

Let’s move on to the web apps.

Copying the Web Source Files
The web source tree in lib includes our templates, views, controllers, and chan-
nels. We also need to move the top-level rumbl_web.ex and tests over as well. Let’s
do that now. Copy the files in rumbl/lib/rumbl_web to the new apps/rumbl_web directory:

$ cp -R rumbl/lib/rumbl_web rumbl_umbrella/apps/rumbl_web/lib
$ cp rumbl/lib/rumbl_web.ex rumbl_umbrella/apps/rumbl_web/lib
$ cp -R rumbl/test/rumbl_web rumbl_umbrella/apps/rumbl_web/test
$ cp rumbl/test/support/conn_case.ex \

rumbl_umbrella/apps/rumbl_web/test/support

Next, we need to update the use macro in endpoint.ex to point to the right otp_app.
Change the second line in rumbl_umbrella/apps/rumbl_web/lib/rumbl_web/endpoint.ex from
:rumbl to :rumbl_web, like this:

use Phoenix.Endpoint, otp_app: :rumbl_web

Make a similar change in Plug.Static’s :from option from :rumbl to :rumbl_web:

plug Plug.Static,
at: "/", from: :rumbl_web, gzip: false,
only: ~w(css fonts images js favicon.ico robots.txt)

That does it for endpoint.ex. We need to make similar changes in apps/rum-
bl_web/lib/rumbl_web/channels/presence.ex. Let’s provide the OTP app and the PubSub
name. Make them look like this:

use Phoenix.Presence,
otp_app: :rumbl_web,
pubsub_server: RumblWeb.PubSub

Finally, we need to list Presence as a child in apps/rumbl_web/lib/rumbl_web/application.ex,
like this:

children = [
RumblWeb.Endpoint,
RumblWeb.Presence

]

Chapter 11. Observer and Umbrellas • 238

report erratum • discuss

http://pragprog.com/titles/phoenix14/errata/add
http://forums.pragprog.com/forums/phoenix14

We can move on to static assets.

Moving Assets
We’ve moved our Elixir code, so it is time to work on the web assets. Copy
your JavaScript and CSS assets from the rumbl project to the umbrella rumbl_web
project, like so:

$ cp -R rumbl/assets/js rumbl_umbrella/apps/rumbl_web/assets/
$ cp -R rumbl/assets/css rumbl_umbrella/apps/rumbl_web/assets/

With all of the assets in a single folder, we can update the dependencies paths
in the apps/rumbl_web/assets/package.json to point to our new path structure, like
this:

"dependencies": {
"phoenix": "file:../../../deps/phoenix",
"phoenix_html": "file:../../../deps/phoenix_html"

},

Now we’re ready to give it all a try.

Running Tests
Let’s see if it all works. Fetch dependencies from the root of rumbl_umbrella, like
so:

(change to rumbl_umbrella)
$ mix deps.get
...

Now we can finally run the following npm install command inside the rumbl_umbrel-
la/apps/rumb_web/assets directory, like this:

$ cd apps/rumbl_web/assets
$ npm install
$ cd ../../..

Now we can run tests, like this:

$ mix test

==> rumbl
.................

Finished in 6.2 seconds
17 tests, 0 failures

Randomized with seed 1527
==> rumbl_web
...................

Finished in 4.2 seconds

report erratum • discuss

Extracting Rumbl and RumblWeb • 239

http://pragprog.com/titles/phoenix14/errata/add
http://forums.pragprog.com/forums/phoenix14

19 tests, 0 failures

Randomized with seed 1527

Excellent! All of our tests pass.

We still have a little bit of touching up to do. You may notice our tests are
too slow. If you recall, we added configuration to config/test.exs so we could
reduce the hash rounds of the Comeonin library, to make password hashing
faster within tests. We have extracted the applications, but we did not copy
that configuration over. Remember, configuration in umbrella projects are
shared across all children, so all configuration exists at the top level. Open
up rumbl_umbrella/config/test.exs and configure :pbkdf2_elixir once again:

config :pbkdf2_elixir, :rounds, 1

If you have done any other configuration while working on your application,
make sure to mirror it in the relevant config files.

Now when we run tests, the password hashes will happen much more
quickly. Let’s try them out:

==> rumbl
.................

Finished in 0.2 seconds
17 tests, 0 failures

Randomized with seed 823165
==> rumbl_web
...................

Finished in 0.2 seconds
19 tests, 0 failures

Ah, that’s much better. We are back to the speedy run times for each applica-
tion, so we’re done! We’ve successfully extracted our business logic and web
layers from rumbl, so we can fire up our server:

$ mix phx.server
[info] Running RumblWeb.Endpoint with cowboy 2.6.1 at http://localhost:4000

webpack is watching the files…

Here, we fired up rumbl_umbrella, but we can work with the pieces in isolation.
You can also fire up any of your child apps individually!

Notice we can successfully work with the application as a whole umbrella,
just as we did before. Now, we can also develop features in isolation by
switching to one of the applications inside rumbl_umbrella/apps.

Chapter 11. Observer and Umbrellas • 240

report erratum • discuss

http://pragprog.com/titles/phoenix14/errata/add
http://forums.pragprog.com/forums/phoenix14

Whew. Let’s review what we did. We physically split our application into two
parts by copying files over to our rumbl_umbrella project, under the apps directory.
We now have isolated our business logic from the web concerns of our
application.

Take note of the big win here. When you develop code for the project, you can
now focus on each application individually. If you pay attention to clean,
logical interfaces, as your project grows, you can continue to extract child
services to their own projects. If by the end of the book, you believe umbrella
projects give you a better workflow and boundaries, you can start your next
Phoenix project with umbrellas from the beginning by calling mix phx.new with
the --umbrella flag.

The next candidate for an umbrella child app will be the information system.
We’ll build that one from scratch so you’ll see both the refactoring workflow
and creating a child application from scratch in the next chapter.

Wrapping Up
In this chapter, we took some time to break our growing project into bite-sized
pieces. We used umbrellas, an Elixir construct that allows us to develop and
test projects in isolation but integrate them into a whole. Along the way:

• We used Observer to understand the importance behind applications.
• We extracted rumbl and rumbl_web into their own child umbrella project.
• We learned to identify configuration changes, including dependencies,

supervision trees, and application configuration.

Next, we’ll see how to build an independent, self-healing piece of infrastructure
with OTP. When we’re done, you’ll be able to develop and test the pieces in
isolation.

report erratum • discuss

Wrapping Up • 241

http://pragprog.com/titles/phoenix14/errata/add
http://forums.pragprog.com/forums/phoenix14

CHAPTER 12

OTP
You’ve now had your first Phoenix Channels experience and should be
developing a good intuition for the strength of Phoenix for highly interactive
applications. You’ve also lightly sampled OTP concepts including applications
and supervision trees. You have everything you need to create beautiful code
and then run it reliably at breakneck speeds.

Phoenix isn’t just about user interfaces, though. You also have the experience
and elegance of Erlang’s OTP framework. In general, OTP is a way to think
about fault-tolerance, concurrency, and distribution. It uses a few patterns
that allow you to use concurrency to build state without language features
that rely on mutability. OTP also has rich abstractions for supervision and
monitoring. In this chapter, we’ll use OTP to build an information system.

Rather than read a wave of dry prose that tells you what OTP does, you’ll
start with the basics by building a simple service. We’ll build a counter that
runs in a separate process. Then, we’ll supervise it, restarting on failure.
You’ll see how you can hold state in an immutable world.

On its own, that knowledge will help you understand Phoenix, which is itself
an OTP application. We’ll use these principles to build an information service
under our umbrella project, which we will develop, manage, and test in
isolation.

Managing State with Processes
Functional programs are stateless, but we still need to be able to manage
state. In Elixir, we use concurrent processes and recursion to handle this
task. That may sound counterintuitive, but let’s take a look at how it works
with a simple program.

report erratum • discuss

http://pragprog.com/titles/phoenix14/errata/add
http://forums.pragprog.com/forums/phoenix14

To start with, let’s create a child application. From the rumbl_umbrella root
directory, change to apps and create a new mix project, like this:

$ ➔ cd apps
$ ➔ mix new info_sys --sup
* creating README.md
...
$ ➔ cd info_sys

We create a brand new mix project under the apps directory. Later it will evolve
into our full service, but for now let’s create a Counter server that counts up
or down. Create a apps/info_sys/lib/info_sys/counter.ex file and key this in:

otp/listings/rumbl_umbrella/apps/info_sys/lib/info_sys/counter.ex
defmodule InfoSys.Counter doLine 1

def inc(pid), do: send(pid, :inc)-

-

def dec(pid), do: send(pid, :dec)-

5

def val(pid, timeout \\ 5000) do-

ref = make_ref()-

send(pid, {:val, self(), ref})-

-

receive do10

{^ref, val} -> val-

after-

timeout -> exit(:timeout)-

end-

end15

-

def start_link(initial_val) do-

{:ok, spawn_link(fn -> listen(initial_val) end)}-

end-

20

defp listen(val) do-

receive do-

:inc ->-

listen(val + 1)-

25

:dec ->-

listen(val - 1)-

-

{:val, sender, ref} ->-

send(sender, {ref, val})30

listen(val)-

end-

end-

end-

Chapter 12. OTP • 244

report erratum • discuss

http://media.pragprog.com/titles/phoenix14/code/otp/listings/rumbl_umbrella/apps/info_sys/lib/info_sys/counter.ex
http://pragprog.com/titles/phoenix14/errata/add
http://forums.pragprog.com/forums/phoenix14

Our module implements a Counter server as well as functions for interacting
with it as a client. The client serves as the API and exists only to send messages
to the process that does the work. It’s the interface for our counter. The
server is a process that recursively loops, processing a message and sending
updated state to itself. Our server is the implementation.

Building the Counter API
Our API sends messages to increment (:inc) and decrement (:dec) the counter,
and another message called :val to get the counter’s value. Let’s look at each
one of these in turn.

:inc and :dec take only the process ID for the server process—called pid for
process ID—and a single atom command. These skinny functions exist only
to send :inc and :dec messages to our server process. These are asynchronous,
meaning we send a message without awaiting any reply.

The val function on line 6 is a bit different. It must send a request for the value
of the counter and await the response. Since we need to associate a response
with this particular request, we create a unique reference with make_ref(). This
unique reference is just a value that’s guaranteed to be globally unique. Then,
we send a message to our counter with the send function. Our message payload
is a 3-tuple with an atom designating the command we want to do, :val, fol-
lowed by our process ID called pid and the globally unique reference.

Then, we await a response, matching on the reference. The ^ operator means
that rather than rebinding the value of ref, we match only tuples having that
exact ref. That way, we can make sure to match only responses related to our
explicit request. If there’s no match in a given period, we exit the current
process with the :timeout reason code.

We start by defining the client API to interact with our counter. First, we
create inc and dec functions to increment and decrement our counter. These
functions fire off an async message to the counter process without waiting
for a response. Our val function sends a message to the counter but then
blocks the caller process while waiting for a response.

Let’s take a look at our server.

As you’ll see later, OTP requires a start_link function. Ours, on line 17, accepts
the initial state of our counter. Its only job is to spawn a process and return
{:ok, pid}, where pid identifies the spawned process. The spawned process calls the
private function named listen, which listens for messages and processes them.

report erratum • discuss

Managing State with Processes • 245

http://pragprog.com/titles/phoenix14/errata/add
http://forums.pragprog.com/forums/phoenix14

Let’s look at that listen function on line 21, the engine for our counter. You
don’t see any global variables that hold state, but our listener has a trick up
its sleeve. We can exploit recursion to manage state. For each call to listen,
the tiny function blocks to wait for a message. Then, we process the trivial
:inc, :dec, and :val messages. The last thing any receive clause does is call listen
again with the updated state.

Said another way, the state of the server is wrapped up in the execution of
the recursive function. We can use Elixir’s message passing to listen in on
the process to find the value of the state at any time. When the last thing you
do in a function is to call the function itself, the function is tail recursive,
meaning it optimizes to a loop instead of a function call. That means this loop
can run indefinitely! In many languages, burning a thread for such a trivial
task can be expensive, but in Elixir processes are incredibly cheap, so this
strategy is a great way to manage state.

Taking Our Counter for a Spin
This code is pretty simple, so you already know what’ll happen. Still, let’s try
it out in IEx with iex -S mix:

iex> alias InfoSys.Counter
InfoSys.Counter

iex> {:ok, counter} = Counter.start_link(0)
{:ok, #PID<0.253.0>}

iex> Counter.inc(counter)
:inc
iex> Counter.inc(counter)
:inc
iex> Counter.val(counter)
2

iex> Counter.dec(counter)
:dec
iex> Counter.val(counter)
1

It works perfectly, just as you expected. Think about the techniques used:

• We used concurrency and recursion to maintain state.
• We separated the interface from the implementation.
• We used different abstractions for asynchronous and synchronous com-

munication with our server.

Chapter 12. OTP • 246

report erratum • discuss

http://pragprog.com/titles/phoenix14/errata/add
http://forums.pragprog.com/forums/phoenix14

As you might imagine, this approach is common and important enough for
us to package it for reuse. In fact, this approach has been around a while in
the form of the Erlang OTP library. Let’s take a look.

Building GenServers for OTP
Though our counter is an oversimplification, the basic approach has been
used for over thirty years to manage both concurrent state and behavior for
most important Erlang applications. The library encapsulating that approach
is called OTP, and the abstraction is called a generic server, or GenServer. Let’s
modify our counter to use OTP to create our counter, instead.

We don’t need to change too much. Instead of creating specific functions to
handle inc, dec, and val, we use specific OTP abstractions instead. Update your
counter.ex file with these contents:

otp/listings/rumbl_umbrella/apps/info_sys/lib/info_sys/counter.change1.ex
defmodule InfoSys.Counter doLine 1

use GenServer-

-

def inc(pid), do: GenServer.cast(pid, :inc)-

5

def dec(pid), do: GenServer.cast(pid, :dec)-

-

def val(pid) do-

GenServer.call(pid, :val)-

end10

-

def start_link(initial_val) do-

GenServer.start_link(__MODULE__, initial_val)-

end-

15

def init(initial_val) do-

{:ok, initial_val}-

end-

-

def handle_cast(:inc, val) do20

{:noreply, val + 1}-

end-

-

def handle_cast(:dec, val) do-

{:noreply, val - 1}25

end-

-

def handle_call(:val, _from, val) do-

{:reply, val, val}-

end30

end-

report erratum • discuss

Building GenServers for OTP • 247

http://media.pragprog.com/titles/phoenix14/code/otp/listings/rumbl_umbrella/apps/info_sys/lib/info_sys/counter.change1.ex
http://pragprog.com/titles/phoenix14/errata/add
http://forums.pragprog.com/forums/phoenix14

We’ve changed the terminology some, but not the implementation. When we
want to send asynchronous messages such as our inc and dec messages, we
use GenServer.cast, as you can see on line 4. Notice that these functions don’t
send a return reply. When we want to send synchronous messages that return
the state of the server, we use GenServer.call as we do on line 8. Notice the _from
in the function head. You can use an argument leading with an underscore,
just as you’d use a _ as wildcard match. With this feature, we can explicitly
describe the argument while ignoring the contents.

On the server side, the implementation is much the same: we use a handle_cast
line for :inc and one for :dec, each returning a noreply alongside the new state,
and we also use handle_call to handle :val, and specify the return value. We
explicitly tell OTP when to send a reply and when not to send one. We also
have to tweak the start_link to start a GenServer, giving it the current module
name and the counter. This function spawns a new process and invokes the
InfoSys.Counter.init function inside this new process to set up its initial state.

Let’s take that much for a spin:

iex> alias InfoSys.Counter
InfoSys.Counter
iex> {:ok, counter} = Counter.start_link(10)
{:ok, #PID<0.96.0>}
iex> Counter.dec(counter)
:ok
iex> Counter.dec(counter)
:ok
iex> Counter.val(counter)
8

Our first counter was split into client and server code. This segregation
remains when we write our GenServer. init, handle_call, and handle_cast run in the
server. All other functions are part of the client.

Our OTP counter server works exactly as before, but we’ve gained much by
moving it to a GenServer. On the surface, we no longer need to worry about
setting up references for synchronous messages. Those are taken care of for
us by GenServer.call. Second, the GenServer module is now in control of the receive
loop, allowing it to provide great features like code upgrading and handling
of system messages, which will be useful when we introspect our system with
Observer later on. A GenServer is one of many OTP behaviours. We’ll continue
exploring them as we build our information system.

Chapter 12. OTP • 248

report erratum • discuss

http://pragprog.com/titles/phoenix14/errata/add
http://forums.pragprog.com/forums/phoenix14

Adding Failover
The benefits of OTP go beyond simply managing concurrent state and
behavior. It also handles the linking and supervision of processes. Now let’s
explore how process supervision works. We’ll supervise our new counter.

Though our counter is a trivial service, we’ll play with supervision strategies.
Our supervisor needs to be able to restart each service the right way,
according to the policies that are best for the application. For example, if a
database dies, you might want to automatically kill and restart the associated
connection pool. This policy decision should not impact code that uses the
database. If we replace a simple supervisor process with a supervisor tree,
we can build much more robust fault-tolerance and recovery software.

In Phoenix, you didn’t see too much code attempting to deal with the fallout
for every possible exception. Instead, we trust the error reporting to log the
errors so that we can fix what’s broken, and in the meantime, we can auto-
matically restart services in the last good state. The beauty of OTP is that it
captures these clean abstractions in a coherent library, allowing us to declare
the supervision properties that most interest us without bogging down the
meaning of each individual application. With a supervision tree having a
configurable policy, you can build robust self-healing software without
building complex self-healing software.

We’ll manage the configuration of the supervision policies in a single location.
Since we’re under an umbrella, we’ll use the application.ex file for our info_sys. Let’s
add our Counter server to our application’s supervision tree. In lib/info_sys/application.ex,
add your new server as a child of your supervisor, like this:

otp/listings/rumbl_umbrella/apps/info_sys/lib/info_sys/application.change1.ex
children = [

{InfoSys.Counter, 5}, # new counter worker
]

To specify the children an Elixir application will start, we define a child spec.
In this case, we add our new counter to the existing list of children that our
application already defined. You’ll specify a single element containing a two-
tuple having the module you want to start and the value that will be received
on start_link by the GenServer. Alternatively, passing in only a module name
uses a default value of [].

For our Counter, we pass a tuple, which takes the module, and the argument
for the child’s start_link/1. In our case, we pass the initial state, as the number 5.

report erratum • discuss

Building GenServers for OTP • 249

http://media.pragprog.com/titles/phoenix14/code/otp/listings/rumbl_umbrella/apps/info_sys/lib/info_sys/application.change1.ex
http://pragprog.com/titles/phoenix14/errata/add
http://forums.pragprog.com/forums/phoenix14

In opts, you can see the policy that our application will use if something goes
wrong. OTP calls this policy the supervision strategy. In this case, we’re using
the :one_for_one strategy. This strategy means that if the child dies, only that
child will be restarted. If all resources depended on some common service,
we could have specified :one_for_all to kill and restart all child process if any
child dies. We’ll explore those strategies later on.

Now if we fire up our application with iex -S mix, we don’t see anything particu-
lar, since our counter is running but we aren’t interacting with it.

Let’s add a periodic tick to our counter to see it work in action in our super-
vision tree.

Modify your Counter’s init function and add a new handle_info callback, like this:

otp/listings/rumbl_umbrella/apps/info_sys/lib/info_sys/counter.change2.ex
def init(initial_val) do

Process.send_after(self(), :tick, 1000)
{:ok, initial_val}

end

def handle_info(:tick, val) do
IO.puts("tick #{val}")
Process.send_after(self(), :tick, 1000)
{:noreply, val - 1}

end

We tweak init in the counter process to send itself a :tick message every 1,000
milliseconds, and then we add a function to process those ticks, simulating
a countdown. As with channels, out-of-band messages are handled inside
the handle_info callback, which sets up a new tick and decrements the state.

Now you can fire our application back up with iex -S mix and see our counter
worker in action:

iex> tick 5
tick 4
tick 3
tick 2
tick 1
^C

This isn’t terribly exciting, but it gets interesting when we deal with our
workers crashing.

Let’s crash our counter if it ticks below a certain value:

Chapter 12. OTP • 250

report erratum • discuss

http://media.pragprog.com/titles/phoenix14/code/otp/listings/rumbl_umbrella/apps/info_sys/lib/info_sys/counter.change2.ex
http://pragprog.com/titles/phoenix14/errata/add
http://forums.pragprog.com/forums/phoenix14

otp/listings/rumbl_umbrella/apps/info_sys/lib/info_sys/counter.change3.ex
def handle_info(:tick, val) when val <= 0, do: raise "boom!"

def handle_info(:tick, val) do
IO.puts("tick #{val}")
Process.send_after(self(), :tick, 1000)
{:noreply, val - 1}

end

We add a :tick clause for cases when the value is less than zero, and we raise
an error that crashes our process. Let’s fire up iex -S mix again and see what
happens:

iex> tick 5
tick 4
tick 3
tick 2
tick 1
[error] GenServer #PID<0.119.0> terminating
** (RuntimeError) boom!

(info_sys) lib/info_sys/counter.ex:22: InfoSys.Counter.handle_info/2
(stdlib) gen_server.erl:616: :gen_server.try_dispatch/4
(stdlib) gen_server.erl:686: :gen_server.handle_msg/6
(stdlib) proc_lib.erl:247: :proc_lib.init_p_do_apply/3

Last message: :tick
State: 0
tick 5
tick 4
tick 3
tick 2
tick 1
^C

As expected, our server crashed—but then it restarted! That’s the magic of
supervision. When our counter crashed, it was restarted with its initial state
of 5. In short, our program crashed, the supervisor identified the crash, and
then it restarted the process in a known good state. We don’t have to add any
extra code to fully supervise every process. We need only configure a policy
to tell OTP how to handle each crash.

The basic building blocks of isolated application processes and a supervision
structure to manage them have been the cornerstone of Erlang reliabili-
ty—whether you’re running a trivial counter, a server with a million processes,
or a worldwide distributed application with tens of millions of processes. The
principles are the same, and they’ve been proven to work.

report erratum • discuss

Building GenServers for OTP • 251

http://media.pragprog.com/titles/phoenix14/code/otp/listings/rumbl_umbrella/apps/info_sys/lib/info_sys/counter.change3.ex
http://pragprog.com/titles/phoenix14/errata/add
http://forums.pragprog.com/forums/phoenix14

To apply these principles, you need to know how to tell Elixir what supervision
behavior you expect. Here are the basics.

Restart Strategies
The first decision you need to make is to tell OTP what should happen if your
process crashes. Think of these details as a software policy for dealing with
failure. If we decide to use anything beyond the module to start and the initial
value for the OTP server, we’ll need a way to specify those options. That’s
called a child spec which configures the policy for an OTP restart.

You have a couple of options for defining those options. First, you can do it
within the children definition in application.ex. To do so, you can use the
Supervisor.child_spec function. For example, if we wanted to explicitly specify a
:permanent restart strategy, you’d do so like this:

children = [
Supervisor.child_spec({InfoSys.Counter, 5}, restart: :permanent)

]

That’s fine for a single child spec, but having to specify the supervision
values every time we list our server would be repetitive and error prone.
Fortunately, Elixir allows us to also define those values directly in the Counter
module, like this:

defmodule InfoSys.Counter do
use GenServer, restart: :permanent
...

end

Behind the scenes, this code works because use GenServer defines a child_spec(arg)
function, which returns the child specification. Most of the time this high-
level using option is enough. When you need more, you can always define your
own child_spec(arg) function, like this:

defmodule InfoSys.Counter do
...
def child_spec(arg) do

%{
id: __MODULE__,
start: { __MODULE__, :start_link, [arg]},
restart: :temporary,
shutdown: 5000,
type: :worker

}
end
...

end

Chapter 12. OTP • 252

report erratum • discuss

http://pragprog.com/titles/phoenix14/errata/add
http://forums.pragprog.com/forums/phoenix14

The keys listed here are the module, the function, and arguments to call for
starting and restarting the server, the restart configuration, a shutdown value
in milliseconds, and the type of child. We’ll go into some of these options in
more detail throughout the chapter. See the Elixir documentation for child_spec1

for a complete list of options and more details. For now, let’s focus on the
restart option configuration. Child specifications support the following restart
values:

:permanent
The child is always restarted (default).

:temporary
The child is never restarted.

:transient
The child is restarted only if it terminates abnormally, with an exit reason
other than :normal, :shutdown, or {:shutdown, term}.

:permanent is the default restart strategy and the trailing options are fully
optional, so to specify a :permanent counter with an initial value of 5, we can
use worker(InfoSys.Counter, [5]).

Let’s say we have a situation in which mostly dead isn’t good enough. When a
counter dies, we want it to really die. Perhaps restarting the server would cause
harm. Let’s try changing our restart strategy to :temporary and observe the crash:

children = [
Supervisor.child_spec({InfoSys.Counter, 5}, restart: :temporary)

]

Now let’s fire our project back up with iex -S mix:

iex> tick 5
tick 4
tick 3
tick 2
tick 1
[error] GenServer #PID<0.306.0> terminating
[error] GenServer #PID<0.119.0> terminating
** (RuntimeError) boom!

(info_sys) lib/info_sys/counter.ex:22: InfoSys.Counter.handle_info/2
(stdlib) gen_server.erl:616: :gen_server.try_dispatch/4
(stdlib) gen_server.erl:686: :gen_server.handle_msg/6
(stdlib) proc_lib.erl:247: :proc_lib.init_p_do_apply/3

Last message: :tick
State: 0

1. https://hexdocs.pm/elixir/Supervisor.html#module-child_spec-1

report erratum • discuss

Building GenServers for OTP • 253

https://hexdocs.pm/elixir/Supervisor.html#module-child_spec-1
http://pragprog.com/titles/phoenix14/errata/add
http://forums.pragprog.com/forums/phoenix14

As you’d expect, when our counter dies it stays dead. The :temporary strategy
is useful when a restart is unlikely to resolve the problem, or when restarting
doesn’t make sense based on the flow of the application.

Sometimes, you may want OTP to retry an operation a few times before failing.
You can do exactly that with a pair of child spec options called max_restarts and
max_seconds. OTP will only restart an application max_restarts times in max_seconds
before failing and reporting the error up the supervision tree. By default, Elixir
will allow 3 restarts in 5 seconds, but you can configure these values to
whatever you want. In general, you’ll use the restart strategies your specific
application requires.

Supervision Strategies
Just as child workers have different restart strategies, supervisors have con-
figurable supervision strategies. The most basic and the default for new
Phoenix applications is :one_for_one. When a :one_for_one supervisor detects a
crash, it restarts a worker of the same type without any other consideration.
Most of the time, :one_for_one is enough but sometimes, processes depend on
one another. When such a process dies, more than one process must restart.
That’s why Elixir supports more than one restart strategy.

Let’s look at the ones that are available:

:one_for_one
If a child terminates, a supervisor restarts only that process.

:one_for_all
If a child terminates, a supervisor terminates all children and then restarts
all children.

:rest_for_one
If a child terminates, a supervisor terminates all child processes defined
after the one that dies. Then the supervisor restarts all terminated pro-
cesses.

These strategies are all relatively straightforward. To get a taste of them, let’s
start multiple counters and see how the termination of one of them affects
the others. Back in lib/info_sys/application.ex, change the start function to this:

children = [
{InfoSys.Counter, 15},
{InfoSys.Counter, 5},
{InfoSys.Counter, 10},

]

Chapter 12. OTP • 254

report erratum • discuss

http://pragprog.com/titles/phoenix14/errata/add
http://forums.pragprog.com/forums/phoenix14

opts = [strategy: :one_for_all, name: InfoSys.Supervisor] # new strategy
Supervisor.start_link(children, opts)

Now when you boot your application via $ iex -S mix, you will notice it won’t
even start, with this reason:

** (Mix) Could not start application info_sys:
InfoSys.Application.start(:normal, []) returned an error: bad child spec,
more than one child specification has the id: InfoSys.Counter.

If using maps as child specifications, make sure the :id keys are unique.
If using a module or {module, arg} as child, use Supervisor.child_spec/2
to change the :id, for example:

children = [
Supervisor.child_spec({MyWorker, arg}, id: :my_worker_1),
Supervisor.child_spec({MyWorker, arg}, id: :my_worker_2)

]

The error message shows us exactly what we need to do. We are starting
multiple counters but they all have the same ID. We need to pass distinct IDs
in each child_spec call, so let’s do that:

children = [
Supervisor.child_spec({InfoSys.Counter, 15}, id: :long),
Supervisor.child_spec({InfoSys.Counter, 5}, id: :short),
Supervisor.child_spec({InfoSys.Counter, 10}, id: :medium)

]

Restart the application with $ iex -Smix once more and you should see all servers
counting down at the same time. As soon as the “short” counter reaches 0,
it terminates, and then we can see all counters restarting from scratch. Feel
free to play with the other supervision strategies and see how the system will
behave.

Once the counter experiments are over, change our lib/rumbl/application.ex back
to the original supervision tree and restart strategy:

otp/listings/rumbl_umbrella/apps/info_sys/lib/info_sys/application.ex
def start(_type, _args) do

children = [
]

opts = [strategy: :one_for_one, name: InfoSys.Supervisor]
Supervisor.start_link(children, opts)

end

The GenServer is the foundation of many different abstractions throughout
Elixir and Phoenix. Knowing these small details will make you a much better
programmer. Let’s see a couple more examples.

report erratum • discuss

Building GenServers for OTP • 255

http://media.pragprog.com/titles/phoenix14/code/otp/listings/rumbl_umbrella/apps/info_sys/lib/info_sys/application.ex
http://pragprog.com/titles/phoenix14/errata/add
http://forums.pragprog.com/forums/phoenix14

Using Agents
It turns out that a still simpler abstraction has many of the benefits of a
GenServer. It’s called an agent. With an agent, you have only five main functions:
start_link initializes the agent, stop stops the agent, update changes the state of
the agent, get retrieves the agent’s current value, and get_and_update performs
the last two operations simultaneously. Here’s what our counter would look
like with an agent:

iex> import Agent
nil
iex> {:ok, agent} = start_link(fn -> 5 end)
{:ok, #PID<0.57.0>}
iex> update(agent, &(&1 + 1))
:ok
iex> get(agent, &(&1))
6
iex> stop(agent)
:ok

To initialize an agent, you pass a function returning the state you want. To
update the agent, you pass a function taking the current state and returning
the new state. That’s all there is to it. Behind the scenes, this agent is an OTP
GenServer, and plenty of options are available to customize it as needed. One
such option is called :name.

Registering Processes
With OTP, we can register a process by name with the :name option in start_link.
After we register a process by name, we can send messages to it using the
registered name instead of the pid.

Let’s rewrite the previous example using a named agent:

iex> import Agent
nil
iex> {:ok, agent} = start_link(fn -> 5 end, name: MyAgent)
{:ok, #PID<0.57.0>}
iex> update(MyAgent, &(&1 + 1))
:ok
iex> get(MyAgent, &(&1))
6
iex> stop(MyAgent)
:ok

If a process already exists with the registered name, we can’t start the agent:

iex> import Agent
nil

Chapter 12. OTP • 256

report erratum • discuss

http://pragprog.com/titles/phoenix14/errata/add
http://forums.pragprog.com/forums/phoenix14

iex> {:ok, agent} = start_link(fn -> 5 end, name: MyAgent)
{:ok, #PID<0.57.0>}
iex> {:ok, agent} = start_link fn -> 5 end, name: MyAgent
** (MatchError) no match of right hand side value:

{:error, {:already_started, #PID<0.57.0>}}

Agents are one of the many constructs built on top of OTP. You’ve already
seen another, the Phoenix.Channel. Let’s take a look.

OTP and Channels
If we were building a supervisor for a couple of application components, the
simple default :one_for_one strategy might be enough. The goal for Phoenix
Channels is bigger, though. To us, supervisors aren’t just tiny isolated services.
Channels are core infrastructure. We intentionally build all of our infrastruc-
ture with a tree of supervisors, where each node of the tree knows how to
restart any major service if it fails.

When you coded your channels in the previous chapter, you might not have
known it, but you were building an OTP application. Each new channel was
a process built to serve a single user in the context of a single conversation
on a topic. Though Phoenix is new, we’re standing on the shoulders of giants.
Erlang’s OTP has been around as long as Erlang has been popular—we know
that it works. Much of the world’s text-messaging traffic runs on OTP infras-
tructure. WhatsApp runs on Erlang to process more than tens of billions
messages every day. You can count on this infrastructure always being up
and available because it’s built on a reliable foundation.

Designing an Information System with OTP
With these high-level basics demystified, let’s use another OTP abstraction
to enhance our application. Let’s take our video annotations to another level
with some OTP-backed information services. We’re going to use some common
web APIs to enhance our application.

For any request, we’re going to ask our information system for highly relevant
facts that we can inject. We’ll be providing enhanced question/answer–style
annotations as the video is playing. This’ll give our live viewers and replayed
visits alike an enhanced experience about the video that’s showing.

The goal for our application is to have multiple information systems. We might
pull from an API like WolframAlpha while at the same time referencing a local
database. WolframAlpha is a service that allows users to ask natural-language
questions and get rich responses. We’d like our design to start multiple

report erratum • discuss

Designing an Information System with OTP • 257

http://pragprog.com/titles/phoenix14/errata/add
http://forums.pragprog.com/forums/phoenix14

information system queries in parallel and accumulate the results. Then, we
can take the best matching responses.

Planning our Supervision Strategy
Think about our information system requirements. We want to fetch the most
relevant information for a user in real time, across different backends. Since
we’re fetching results in parallel, a failure likely means the network or one of
our third-party services failed. That’s out of our control. It doesn’t make sense
for us to retry the computation because this operation is time sensitive—a video
is playing. Instead, we want to spawn processes in parallel and let them do their
work, and we’ll take as many results as we can get within some limited block
of time. Say we spawn requests from Google, WolframAlpha, and Bing. If one of
those three information system backends crashes, it’s not a problem, or at least
not a problem we can solve. Let’s think about how we might code those services.

If you find yourself in the position of spinning off some concurrent process
without the need to supervise that process, you can usually use a task without
having to specify any supervision at all. For the sake of performance, you’ll
often start several tasks to do high-latency jobs and then wait for them to
finish, like this:

task1 = Task.async(fn -> access_some_api() end)
task2 = Task.async(fn -> access_another_api() end)
Task.await(task1)
Task.await(task2)

Here’s what’s happening. The parent process is starting two asynchronous
tasks, which are linked processes. If either of them fails, they are linked so
our parent will also fail. This model is generally fine because of the linking.
When a child or parent dies, cleanup will happen exactly as it should.

But think about our InfoSys requirements. We don’t want to link those processes
because we can’t address a failure in, say, Bing, but we still want the parent to
continue. That means we can’t use Task.async and Task.await. You might think it
makes perfect sense to start a one-off fire-and-forget process for each service.

That would be a mistake. We always want to start processes inside supervision
trees for cleanup and discoverability. Each process we start should obey its
explicit start and shutdown rules, so we’ll clean up effectively and be able to
view those supervised processes through tools like Observer. Therefore, we’ll
start our tasks through Task.Supervisor.async_nolink instead of the typical Task.async.

Upon deeper inspection, we will also need another process in the supervisor
tree. Most external systems are rate-limited, or at the very least, resource

Chapter 12. OTP • 258

report erratum • discuss

http://pragprog.com/titles/phoenix14/errata/add
http://forums.pragprog.com/forums/phoenix14

constrained so we must limit our requests wherever possible. We will imple-
ment the cache system in a module yet to be created called InfoSys.Cache.

Both the InfoSys.Cache and Task.Supervisor will be part of our InfoSys supervision
tree, like this:

otp/listings/rumbl_umbrella/apps/info_sys/lib/info_sys/application.change2.ex
defmodule InfoSys.Application do

@moduledoc false

use Application

def start(_type, _args) do
children = [
InfoSys.Cache,
{Task.Supervisor, name: InfoSys.TaskSupervisor},

]

opts = [strategy: :one_for_one, name: InfoSys.Supervisor]
Supervisor.start_link(children, opts)

end
end

With that accomplished, we’re ready to code our service. Since we don’t have
to worry about managing error conditions, we’re free to focus on the main
task of the information system, and we can let the error cases crash. The real
work gets simpler.

Building a Cache Server Without Bottlenecks
Now that we’ve sketched a supervision tree that allows us to start tasks
dynamically under their own supervisor, we’ll need to create our information
retrievers. First, we need to consider one final detail. We need to decide how
our main interface will work with our Information System. We’d like to be
able to choose from several different backends—say one for Google, one for
WolframAlpha, and so on—as shown in the figure on page 260.

That seems right. When a user makes a query, our information system will
start up as many different task queries as we have backends. Then, we’ll
collect the results from each and choose the best one to send to the user,
caching the results of each request for better performance. We have an open
question, though. We may have multiple requests coming at the same time.
If all requests depend on a single process for caching, said process will become
a bottleneck and hurt the user experience.

The answer is surprisingly simple. We will use a shared service to write things
to memory. It turns out that Erlang already has such a service called :ets,
which stands for Erlang Term Storage (ETS). ETS is an in-memory storage

report erratum • discuss

Designing an Information System with OTP • 259

http://media.pragprog.com/titles/phoenix14/code/otp/listings/rumbl_umbrella/apps/info_sys/lib/info_sys/application.change2.ex
http://pragprog.com/titles/phoenix14/errata/add
http://forums.pragprog.com/forums/phoenix14

solution included with OTP that allows you to store and retrieve any valid
Erlang or Elixir data, and it’s super fast. That’s perfect for our caching service.
Using ETS with our cache will let us use a single cache server to handle the
cache expiration, while allowing concurrent reads and writes from every
possible client to happen directly in ETS. However, since the cache is in-
memory, it is not shared between different Phoenix nodes so every time the
node starts — during deployments, for example — the cache starts empty.

Create a new file in lib/info_sys/cache.ex and key this in:

otp/listings/rumbl_umbrella/apps/info_sys/lib/info_sys/cache.ex
defmodule InfoSys.Cache doLine 1

use GenServer-

-

def put(name \\ __MODULE__, key, value) do-

true = :ets.insert(tab_name(name), {key, value})5

:ok-

end-

-

def fetch(name \\ __MODULE__, key) do-

{:ok, :ets.lookup_element(tab_name(name), key, 2)}10

rescue-

ArgumentError -> :error-

end-

-

def start_link(opts) do15

opts = Keyword.put_new(opts, :name, __MODULE__)-

GenServer.start_link(__MODULE__, opts, name: opts[:name])-

end-

-

Chapter 12. OTP • 260

report erratum • discuss

http://media.pragprog.com/titles/phoenix14/code/otp/listings/rumbl_umbrella/apps/info_sys/lib/info_sys/cache.ex
http://pragprog.com/titles/phoenix14/errata/add
http://forums.pragprog.com/forums/phoenix14

def init(opts) do20

new_table(opts[:name])-

{:ok, %{}}-

end-

-

defp new_table(name) do25

name-

|> tab_name()-

|> :ets.new([-

:set,-

:named_table,30

:public,-

read_concurrency: true,-

write_concurrency: true])-

end-

35

defp tab_name(name), do: :"#{name}_cache"-

end-

Our server isn’t doing any stateful work yet, but for now we can focus on the
interface and ETS usage. We start by defining start_link on line 15, where we
ensure a :name option is present, which is used to name the GenServer.
Skipping put and fetch for a second, we default the server name to that of our
module, which will allow us to use a generic single cache for now, but start
other independent caches as needed. This approach will also come in handy
later when it comes to testing OTP services. Both functions make use of a
private tab_name function, which we defined on line 36. This function simply
returns an atom of the table name to use for our ETS table.

Now, let’s get back to our client cache interface. Any cache needs a read and
write. Ours are fetch and put on lines 4 and 9. In our put function, we call
:ets.insert, converting our GenServer’s name to a table name, and passing a
key and value pair to store in the table as a tuple. We match on the true result
to ensure it was successful, then return :ok to the caller. Our fetch function
wraps the somewhat clumsy API of ETS. We used :ets.lookup_element to fetch a
value out of our table for a given key, passing the one-based index of the
value—2 in our case. ETS unfortunately throws an ArgumentError if we try to
look up a key which does not exist, so we use rescue to translate the result
into an :error value.

Next, we begin the stateful work of our server by defining the init function. We
create and name our ETS table with new_table and return {:ok, %{}}, where the
empty map is the server state. ETS tables are owned by a single process, and
the table’s existence lives and dies with that of its owner. This is great because
we don’t have to worry about state values or cleanup when a process stops,
either naturally or via a crash.

report erratum • discuss

Designing an Information System with OTP • 261

http://pragprog.com/titles/phoenix14/errata/add
http://forums.pragprog.com/forums/phoenix14

Let’s break down new_table on line 25. We call :ets.new, passing our table name,
as well as a list of options. The options are important. :set is a type of ETS
table that acts as a key-value store. The :named_table option allow us to locate
this table by its name. Critically, :public lets processes other than the owner
read and write values. Finally, we enable read and write concurrency to
maximize the performance of our cache for concurrent workloads.

Our Cache isn’t quite complete, but let’s take what we have so far for a spin
in iex:

iex> alias InfoSys.Cache

iex> Cache.put("one plus one?", "two")
:ok

iex> Cache.fetch("one plus one?")
{:ok, "two"}

iex> Cache.fetch("not here")
:error

We have nothing too fancy yet, but it all works just fine, almost. We have a
problem, though. Our cache doesn’t yet expire old values. If we don’t remove
old values from our cache, our memory footprint will just continue to grow.
In our case, we only require a short-lived cache for remotely fetched data, so
let’s change that.

Here’s our strategy for sweeping the cache. We’ll change the shape of the state
data for our supervisor. We’ll have a map with these keys. :interval will define
the amount of time between sweeps, :timer will hold the pid for a timer, and
table will hold our ETS table. We will start a timer process after our interval to
schedule a sweep. Then the sweep will purge all of the values in our cache.
It’s not a sophisticated sweep strategy, but it should be enough for our pur-
poses to take some load off of the server for oft-used information requests.
Crack open cache.ex, add the schedule_clear function and call it from the handle_info,
like this:

otp/listings/rumbl_umbrella/apps/info_sys/lib/info_sys/cache.change1.ex
@clear_interval :timer.seconds(60)Line 1

-

def init(opts) do-

state = %{-

interval: opts[:clear_interval] || @clear_interval,5

timer: nil,-

table: new_table(opts[:name])-

}-

-

{:ok, schedule_clear(state)}10

end-

Chapter 12. OTP • 262

report erratum • discuss

http://media.pragprog.com/titles/phoenix14/code/otp/listings/rumbl_umbrella/apps/info_sys/lib/info_sys/cache.change1.ex
http://pragprog.com/titles/phoenix14/errata/add
http://forums.pragprog.com/forums/phoenix14

-

def handle_info(:clear, state) do-

:ets.delete_all_objects(state.table)-

{:noreply, schedule_clear(state)}15

end-

-

defp schedule_clear(state) do-

%{state | timer: Process.send_after(self(), :clear, state.interval)}-

end20

We rewrote our init function to build a map of state containing our :table, along
with new values for a :timer, as well as millisecond :interval for clearing the
cache, which we’ve defaulted to sixty seconds. Before returning from init, we
call to a new private schedule_clear function on line 18, which simply uses Pro-
cess.send_after to send our process a message in the future, after state.interval
milliseconds have passed. We then pick up the :clear messages inside a han-
dle_info callback, defined on line 13. This callback has two jobs. First, it purges
the cache of all values by calling :ets.delete_all_objects. Second, it reschedules
the next purge with schedule_clear.

Our cache expiration is a very basic sweep for now, but it will be perfect for
our use case. We can always update our cache sweeper if it proves to be
necessary, and our API will not need to change, only the supervisor implemen-
tation. Let’s try it out in iex:

iex> alias InfoSys.Cache
InfoSys.Cache

iex> Cache.put("one plus one?", "two")
:ok

iex> Cache.fetch("one plus one?")
{:ok, "two"}

iex> Process.sleep(60_000)
:ok

iex> Cache.fetch("one plus one?")
:error

We can see our cache expiration in action by inserting a cached query, waiting
for a minute, and fetching again. Our next query shows a cache miss, indicat-
ing our cache has been pruned. It works!

Using Tasks to Fetch Data
With our cache in place and our Task supervisor up and running, we can
build our generic information system. We want an interface that knows about
available backends. We’ll spawn tasks to concurrently query each available

report erratum • discuss

Designing an Information System with OTP • 263

http://pragprog.com/titles/phoenix14/errata/add
http://forums.pragprog.com/forums/phoenix14

backend service, fetch the response from each and cache the result. Then we
can pick the best result from all possible candidates. It sounds complicated,
but our layering will make building each service surprisingly simple. We’ll
lean on Elixir and OTP to handle the details.

Let’s create our interface in apps/info_sys/lib/info_sys.ex, like this:

otp/listings/rumbl_umbrella/apps/info_sys/lib/info_sys.ex
defmodule InfoSys doLine 1

-

@backends [InfoSys.Wolfram]-

-

defmodule Result do5

defstruct score: 0, text: nil, backend: nil-

end-

-

def compute(query, opts \\ []) do-

opts = Keyword.put_new(opts, :limit, 10)10

backends = opts[:backends] || @backends-

-

backends-

|> Enum.map(&async_query(&1, query, opts))-

end15

-

defp async_query(backend, query, opts) do-

Task.Supervisor.async_nolink(InfoSys.TaskSupervisor,-

backend, :compute, [query, opts], shutdown: :brutal_kill-

)20

end-

end-

Of the three hypothetical backends, we’re going to focus on WolframAlpha.
Building each of the others should be the same. Let’s break it down. Our
InfoSys is a generic module to spawn computations for queries. These backends
are their own processes, but InfoSys isn’t. We put all of the results into a single
list, wait for each response from each spawned task, and finally pick the best
one to return to the user.

At the top of our module, we use a module attribute called @backends to build
a list of all the backends we support, which is initially only InfoSys.Wolfram. We’ll
leave this API open so we can add other backends over time.

Next, we define a Result struct to hold each search result. Our struct has :score
for storing relevance, :text to describe the result, and the :backend to use for
the computation. With the preliminary supporting ceremony out of the way,
we move on to define a simple basic API. We’ll use compute as the main entry
point for our service and async_query to actually spawn off a task to do the
actual work.

Chapter 12. OTP • 264

report erratum • discuss

http://media.pragprog.com/titles/phoenix14/code/otp/listings/rumbl_umbrella/apps/info_sys/lib/info_sys.ex
http://pragprog.com/titles/phoenix14/errata/add
http://forums.pragprog.com/forums/phoenix14

On line 9, we define compute. That function maps over all backends, calling a
async_query function for each one. We start with only one of them, but the
implementation for multiple backends is exactly the same. This is the basic
API function. The magic all happens in async_query.

On line 17, you can see our Task Supervisor in action. There’s a lot going on,
so let’s break it down. We are invoking a task, so we need to provide the module,
function and arguments for our new task. We call Task.Supervisor.async_nolink to
spawn off the new task. That function spawns off a task in a new process, calling
the function we specify, complete with our query and limit attributes. We use
async_nolink to spawn the task isolated from our caller, allowing our clients to
query backends and not be worried about a crash or unexpected error. This
strategy makes sense for our application because we have real end-users waiting
on results. If a result doesn’t come back from one of our services, we’ll just dis-
card the result and the supervisor will kill it. The function returns the Task
struct, which we’ll await later on. When you consider how much this code is
doing, this listing is remarkably compact.

Now it’s time to build the actual Wolfram backend.

Building the Wolfram Info System
Now that we have our generic InfoSys module in place, we can work on specific
backends. We’ll start with only one, our Wolfram backend. This module will call
WolframAlpha to retrieve relevant information about our users’ annotations.

Our first step is to define our backend interface. Since all our backends will
have the same contract, this is a perfect use case for a backend behaviour.
A behaviour is a contract, a common API across modules. We have seen OTP
behaviours, such as GenServer and Supervisor, as well as behaviours from
libraries like Plug. Remember, each plug implements two functions, init/1 and
call/2. Our behaviour will be a tiny contract between the information system
and each backend, consisting of just two callbacks, name and compute. Create
a file in lib/info_sys/backend.ex, and key this in:

otp/listings/rumbl_umbrella/apps/info_sys/lib/info_sys/backend.ex
defmodule InfoSys.Backend do

@callback name() :: String.t()
@callback compute(query :: String.t(), opts :: Keyword.t()) ::

[%InfoSys.Result{}]
end

We define two functions. We don’t actually declare a function. Instead, we
use typespecs, which specify not just the name of our functions but also the
types of arguments and return values. In our case, the name function takes

report erratum • discuss

Building the Wolfram Info System • 265

http://media.pragprog.com/titles/phoenix14/code/otp/listings/rumbl_umbrella/apps/info_sys/lib/info_sys/backend.ex
http://pragprog.com/titles/phoenix14/errata/add
http://forums.pragprog.com/forums/phoenix14

no arguments but returns a String type, so you can see the String.t in the type-
spec. The compute function takes a String.t query, a Keyword.t list of options, and
returns a list of %InfoSys.Result{} structs.

With our behaviour in place, we can write our first backend. To do so, we’ll
need to establish our dependencies. Wolfram Alpha returns XML responses,
and we’ll use an XML parser to avoid processing those by hand. Let’s add
:sweet_xml to our deps list in mix.exs. We want to add the dependencies to info_sys
since umbrellas manage dependencies at the child applications:

otp/listings/rumbl_umbrella/apps/info_sys/mix.change1.exs
{:sweet_xml, "~> 0.6.5"},

Next, run $mix deps.get to grab the dependency from Hex. With our XML library
in place, we’re ready to sign up as a WolframAlpha API developer and retrieve
our application ID. Visit the WolframAlpha developer portal,2 sign up for a
new account, and follow the instructions to get your AppID.

Now that you have a developer API key, you could place it directly in con-
fig/dev.exs, but there’s a better way. You shouldn’t check in private credentials
under version control. In fact, Phoenix points you in the right direction with
the generated config/prod.secret.exs file. That file references environment variables
that are securely set on the production server, meaning you can establish
sensitive configuration in your local development environment without
checking secret values into version control. That way you can include sensitive
credentials properly. Let’s add our API key lookup to our development and
prod environments. Since tests will not hit the Wolfram API directly, we don’t
need to set a key for that environment. Add the following entry to your con-
fig/dev.exs and config/prod.secret.exs like this:

wolfram_app_id =
System.get_env("WOLFRAM_APP_ID") ||

raise """
environment variable WOLFRAM_APP_ID is missing.
"""

config :info_sys, :wolfram, app_id: wolfram_app_id

With setup out of the way, we can now implement our Wolfram backend in
lib/info_sys/wolfram.ex, like this:

otp/listings/rumbl_umbrella/apps/info_sys/lib/info_sys/wolfram.ex
defmodule InfoSys.Wolfram doLine 1

import SweetXml-

alias InfoSys.Result-

2. https://developer.wolframalpha.com/portal/signup.html

Chapter 12. OTP • 266

report erratum • discuss

http://media.pragprog.com/titles/phoenix14/code/otp/listings/rumbl_umbrella/apps/info_sys/mix.change1.exs
http://media.pragprog.com/titles/phoenix14/code/otp/listings/rumbl_umbrella/apps/info_sys/lib/info_sys/wolfram.ex
https://developer.wolframalpha.com/portal/signup.html
http://pragprog.com/titles/phoenix14/errata/add
http://forums.pragprog.com/forums/phoenix14

-

@behaviour InfoSys.Backend5

-

@base "http://api.wolframalpha.com/v2/query"-

-

@impl true-

def name, do: "wolfram"10

-

@impl true-

def compute(query_str, _opts) do-

query_str-

|> fetch_xml()15

|> xpath(~x"/queryresult/pod[contains(@title, 'Result') or-

contains(@title, 'Definitions')]-

/subpod/plaintext/text()")-

|> build_results()-

end20

-

defp build_results(nil), do: []-

-

defp build_results(answer) do-

[%Result{backend: __MODULE__, score: 95, text: to_string(answer)}]25

end-

-

defp fetch_xml(query) do-

{:ok, {_, _, body}} = :httpc.request(String.to_charlist(url(query)))-

30

body-

end-

-

defp url(input) do-

"#{@base}?" <>35

URI.encode_query(appid: id(), input: input, format: "plaintext")-

end-

-

defp id, do: Application.fetch_env!(:info_sys, :wolfram)[:app_id]-

end40

To start our module, we import the functions we’ll need and set up a single
alias. SweetXml will help us parse the XML we receive, and Result has the struct
for the results we’ll use.

Next, we establish our module as a implementation of the InfoSys.Backend
behaviour on line 5. In compute on line 13, we build a pipe to take our query,
fetch the XML we’ll need, extract the results using the xpath function from
SweetXml, and then build the results. We specify our compute function as an
implementation of a behaviour with the @impl true notation. That module
attribute is not required but it makes our intentions clear. Users of our
module can immediately tell which functions implement our behaviour and

report erratum • discuss

Building the Wolfram Info System • 267

http://pragprog.com/titles/phoenix14/errata/add
http://forums.pragprog.com/forums/phoenix14

which ones don’t. Next, we’ll look at the functions that do each one of these
tasks.

In fetch_xml on line 28, we contact WolframAlpha with the query string that
interests us. We use :httpc, which ships within Erlang’s standard library, to
do the straight HTTP request, matching against :ok and the body that we return
to the calling client. We use private functions to extract our API key from our
application configuration and build the full URL of our API request.

In build_results on line 22, we build a list of result structs. build_results has two
different forms, depending on whether we get results back or not. We match
on the first argument in our function head. On nil, we need only return an
empty list. Otherwise, we build a list of result structs with our expected results
and score, and return them to the caller.

Let’s try it out with iex -S mix. First, start a query. We’ve designed our backend
to return results to the calling process, which we’ve wrapped in Tasks inside
our InfoSys.compute. We don’t yet await the task completion inside compute, but
we can issue compute requests and await the tasks inside iex. Remember, each
backend will return a spawned Task, like this:

iex> InfoSys.compute("what is elixir?")
[

%Task{
owner: #PID<0.320.0>,
pid: #PID<0.340.0>,
ref: #Reference<0.4138658672.566755329.204828>

}
]

That query fires off a single Wolfram backend query and then the task sends
results to the calling process. We can call Task.await on our task, but the result
should be waiting for us in our current process when the task completes.

Let’s use the flush helper from IEx to see any messages we’ve received:

iex(13)> InfoSys.compute("what is elixir")
iex(14)> flush()
[

%InfoSys.Result{
backend: InfoSys.Wolfram,
score: 95,
text: "1 | noun | a sweet flavored liquid (usually containing a small ..."

}
]
...

Chapter 12. OTP • 268

report erratum • discuss

http://pragprog.com/titles/phoenix14/errata/add
http://forums.pragprog.com/forums/phoenix14

iex(15)> InfoSys.compute("what is firebird?")
iex(16)> flush()
[

%InfoSys.Result{
backend: InfoSys.Wolfram,
score: 95,
text: "1 | noun | the male is bright red with black wings and tail\n2..."

}
]
...

Brilliant. Our Wolfram service is working exactly as we expect. Once the task
is complete, we receive the results in our mailbox. We can wait for each task
to complete with Task.await. Your results may not be the same, but for every
result you see in the list, you get our hardcoded score of 95 percent.
Remember, flush() can just return :ok if the message isn’t yet in your inbox. If
that happens to you, wait a few seconds and try again.

Monitoring Processes
If you watched closely, you may have also noticed the {:DOWN, ...} message we
received, in addition to the task results. Internally, the Task library sets up
a monitor from the caller process to the Task. If we wanted to, we could use
Process.monitor to detect backend crashes while we’re waiting on results. Once
a monitor is set, we’ll get a message when the monitored process dies. For
example, you can see this concept at work in IEx:

iex> pid = spawn(fn -> :ok end)
iex> Process.monitor(pid)
#Reference<0.0.2.2850>

We spawn a pid with a trivial function. We set up a monitor with Process.mon-
itor. We get a reference back to identify this monitor. Meanwhile, the pid
process dies immediately because it has no work to do. Let’s use flush to
check out our IEx mailbox, like this:

iex> flush()
{:DOWN, #Reference<0.0.2.2850>, :process, #PID<0.405.0>, :normal} :ok

Nice! We receive a regular Elixir message as a {:DOWN, ...} tuple, informing us
that our process died. We won’t be monitoring our backends directly with
Process.monitor because the Task module calls it for us, but it’s nice to know
how the monitoring primitives work as they power much of the high-level OTP
tools you are used to using, such as supervisors and monitors.

report erratum • discuss

Building the Wolfram Info System • 269

http://pragprog.com/titles/phoenix14/errata/add
http://forums.pragprog.com/forums/phoenix14

To make our backends more friendly to our clients, we need to make a few
modifications. We’ll need to detect when a backend crashes so we don’t wait
for results that might never arrive. In addition, we need to order the results
we get from all the backends by our relevance score so it will be easier to pick
the best one. Finally, we need to specify a reasonable timeout so the informa-
tion systems that take too long won’t hold up other results. Let’s get started.

Working with Task Tools
Elixir’s Task module has a perfect feature for our requirements: task yielding.
While Task.await would crash the caller should a given task time out, Task.yield
blocks the caller, returning the result, an error, or nil, depending on whether
a reply is received. We also need the ability to wait on all tasks, taking no
more than a given time for total execution. Fortunately, Elixir provides
Task.yield_many, which gives us exactly that.

Let’s apply this feature to our InfoSys client. We’ll automatically collect results
and ignore responses from crashed or tardy backends, making our services
predictable and safe. Extend your apps/info_sys/lib/info_sys.ex, like this:

otp/listings/rumbl_umbrella/apps/info_sys/lib/info_sys.change1.ex
def compute(query, opts \\ []) doLine 1

timeout = opts[:timeout] || 10_000-

opts = Keyword.put_new(opts, :limit, 10)-

backends = opts[:backends] || @backends-

5

backends-

|> Enum.map(&async_query(&1, query, opts))-

|> Task.yield_many(timeout)-

|> Enum.map(fn {task, res} -> res || Task.shutdown(task, :brutal_kill) end)-

|> Enum.flat_map(fn10

{:ok, results} -> results-

_ -> []-

end)-

|> Enum.sort(&(&1.score >= &2.score))-

|> Enum.take(opts[:limit])15

end-

The compute function now automatically waits for results. When we receive
results, we sort them by score and report the top ones. The pipeline is inter-
esting. We start with our backends, and map over them with the queries we
fire to our backends. Starting on line 8, we take all spawned backend tasks
and call Task.yield_many with our timeout.

Chapter 12. OTP • 270

report erratum • discuss

http://media.pragprog.com/titles/phoenix14/code/otp/listings/rumbl_umbrella/apps/info_sys/lib/info_sys.change1.ex
http://pragprog.com/titles/phoenix14/errata/add
http://forums.pragprog.com/forums/phoenix14

Now, things get interesting. Let’s study the pipeline starting on line 9 through
the end of the function. It’s an extremely dense chunk of code, but it’s all
important.

First we need to walk through each of the task results. We map over each
result, which comes in the form of a task-result tuple. In the function head,
we match both to task and res for later use. For each one, we execute the
expression res || Task.shutdown(task, :brutal_kill). That little snippet is the lynchpin
of this block of code.

If we get a result back in res we simply return it, and the other half of the ||
operator never fires. If we get a nil back, we’ll process the right side. We shut
down the task with a :brutal_kill option, meaning it’s an immediate shutdown,
without waiting for completion. Note that this snippet also protects us from
a race condition. Theoretically, a task could complete between when we ask
for the yield_many and when we actually process the results. In this case, we
still want to make sure to kill the task.

The result of this map is tuples with either {:ok, result} or {:error, reason}, and
we’re ready to process those results. We grab successful results, ignore :error
results by returning a []. We sort by score, and then use Enum.take to return
up to the limit our client specifies.

And that’s a wrap. Whew.

Now that our code is yielding to our tasks, we’re left with only results that
complete successfully within the specified timeout. That’s the beauty of tasks.
They allow us a tidy way to handle resources that could otherwise leak.

Let’s give it a try:

iex> InfoSys.compute("what is the meaning of life?")
[

%InfoSys.Result{
backend: "wolfram",
score: 95,
text: "42\n(according to the book The Hitchhiker's Guide...",

}
]

Our information system now handles failures exactly as we desire. We were able
to add complexity such as isolated failures and timeouts to the combined infor-
mation system service without changing the policies for individual backends.

report erratum • discuss

Building the Wolfram Info System • 271

http://pragprog.com/titles/phoenix14/errata/add
http://forums.pragprog.com/forums/phoenix14

Because each backend is simply synchronous code running inside a new task
process, we can leverage everything in OTP to make our system resilient
without changing the business code.

Caching Results
With our asynchronous backend in place, we’re ready to integrate our Cache
server. Open up apps/info_sys/lib/info_sys.ex and add the compute function just below
the defstruct, like this:

otp/listings/rumbl_umbrella/apps/info_sys/lib/info_sys.change2.ex
alias InfoSys.CacheLine 1

-

def compute(query, opts \\ []) do-

timeout = opts[:timeout] || 10_000-

opts = Keyword.put_new(opts, :limit, 10)5

backends = opts[:backends] || @backends-

-

{uncached_backends, cached_results} =-

fetch_cached_results(backends, query, opts)-

10

uncached_backends-

|> Enum.map(&async_query(&1, query, opts))-

|> Task.yield_many(timeout)-

|> Enum.map(fn {task, res} ->-

res || Task.shutdown(task, :brutal_kill)15

end)-

|> Enum.flat_map(fn-

{:ok, results} -> results-

_ -> []-

end)20

|> write_results_to_cache(query, opts)-

|> Kernel.++(cached_results)-

|> Enum.sort(&(&1.score >= &2.score))-

|> Enum.take(opts[:limit])-

end25

We modified our compute function to read from the cache for each backend
given a query, join those values to the fetched results, and write new values
to the cache. First, we added a lookup to return results from uncached
backend queries, and merged those with existing cached results, on line 9.
Then we piped the filtered backends to our original pipeline, performing our
async task work as before. Next, we added a new pipe operation, where we
write the new results to the cache, then append the cached results before
sorting by score, on lines 21 and 22.

To support our new pipe operations, we wrote two private functions. Let’s
add the first of them now, below our new compute function:

Chapter 12. OTP • 272

report erratum • discuss

http://media.pragprog.com/titles/phoenix14/code/otp/listings/rumbl_umbrella/apps/info_sys/lib/info_sys.change2.ex
http://pragprog.com/titles/phoenix14/errata/add
http://forums.pragprog.com/forums/phoenix14

otp/listings/rumbl_umbrella/apps/info_sys/lib/info_sys.change2.ex
defp fetch_cached_results(backends, query, opts) doLine 1

{uncached_backends, results} =-

Enum.reduce(-

backends,-

{[], []},5

fn backend, {uncached_backends, acc_results} ->-

case Cache.fetch({backend.name(), query, opts[:limit]}) do-

{:ok, results} -> {uncached_backends, [results | acc_results]}-

:error -> {[backend | uncached_backends], acc_results}-

end10

end)-

-

{uncached_backends, List.flatten(results)}-

end-

On line 1, we defined a fetch_cached_results function to take all backends and
accumulate the cached results for the given query, as well as the backends
which contain no cached information. This way we can return both the cached
result set, as well as the remaining backends that need fresh queries. Now,
we can write the results, like this:

otp/listings/rumbl_umbrella/apps/info_sys/lib/info_sys.change2.ex
defp write_results_to_cache(results, query, opts) doLine 1

Enum.map(results, fn %Result{backend: backend} = result ->2

:ok = Cache.put({backend.name(), query, opts[:limit]}, result)3

4

result5

end)6

end7

On line 1, we defined a write_results_to_cache function which uses Cache.put to
write our uncached results to our cache using the backend, query, and rele-
vant options as our cache key. These previous three listings hold a moderately
large amount of code, but just about all of it is fulfilling the goal of organizing,
writing, and reading responses from the cache. Very little of the code is
related to the ceremony of managing our cache server. That code lives else-
where, in our supervisor. Let’s try it out in IEx:

iex> :timer.tc(InfoSys, :compute, ["how old is the universe?"])

{1306573,
[

%InfoSys.Result{
backend: InfoSys.Wolfram,
score: 95,
text: "1.4×10^10 a (Julian years)\n(time elapsed since the Big Bang)",

}
]}

report erratum • discuss

Building the Wolfram Info System • 273

http://media.pragprog.com/titles/phoenix14/code/otp/listings/rumbl_umbrella/apps/info_sys/lib/info_sys.change2.ex
http://media.pragprog.com/titles/phoenix14/code/otp/listings/rumbl_umbrella/apps/info_sys/lib/info_sys.change2.ex
http://pragprog.com/titles/phoenix14/errata/add
http://forums.pragprog.com/forums/phoenix14

iex> :timer.tc(InfoSys, :compute, ["how old is the universe?"])
{53,
[

%InfoSys.Result{
backend: InfoSys.Wolfram,
score: 95,
text: "1.4×10^10 a (Julian years)\n(time elapsed since the Big Bang)",

}
]}

iex> :timer.tc(InfoSys, :compute, ["1 + 1"])
{1121249,
[

%InfoSys.Result{
backend: InfoSys.Wolfram,
score: 95,
text: "2",

}
]}

iex> :timer.tc(InfoSys, :compute, ["1 + 1"])
{47,
[

%InfoSys.Result{
backend: InfoSys.Wolfram,
score: 95,
text: "2",

}
]}

We used :timer.tc to measure the execution time in microseconds to run the
given module, function and arguments. We can see our first call returned in
1.3s, while our second identical query returned in 53 microseconds. Issuing
a new query of “1 + 1”, yielded a similar result. The first query was uncached,
and had to make the remote hop to WolframAlpha, taking just over one second.
The next call hit the cache and returned in 47 microseconds. Not bad!

If you want to see the cache sweeping in action, wait 60 seconds, and re-issue
one of our cached queries. You’ll see higher latency since our Cache clear
operation is doing what it should. That wraps up our service. All that remains
is to tie it into our channels.

Integrating OTP Services with Channels
Now that we have a complete information system, let’s integrate it with our
web frontend. Our goal is to call into our information system any time a user
adds an annotation to a video, to see if we have relevant results to add to that
user’s conversation.

Chapter 12. OTP • 274

report erratum • discuss

http://pragprog.com/titles/phoenix14/errata/add
http://forums.pragprog.com/forums/phoenix14

First let’s make sure rumbl_web depends on info_sys. Open up apps/rumbl_web/mix.exs
and add this entry under deps:

{:info_sys, in_umbrella: true},

Note how we were able to build and test info_sys in complete isolation and now
we can introduce it as a dependency to any of the sibling applications that
need it. If an application doesn’t need info_sys, then it doesn’t have to depend
on it either.

Next let’s integrate InfoSys with the VideoChannel. Whenever we receive a new
annotation in handle_in, we want to invoke the compute function. Since the compute
function is a blocking call, we want to make it asynchronous in our channel
so our user gets the annotation broadcast right away. Let’s first use a task
to spawn a function call for our InfoSys computation by making the following
changes to your lib/rumbl_web/channels/video_channel.ex:

otp/listings/rumbl_umbrella/apps/rumbl_web/lib/rumbl_web/channels/video_channel.change1.ex
def handle_in("new_annotation", params, user, socket) doLine 1

case Multimedia.annotate_video(user, socket.assigns.video_id, params) do-

{:ok, annotation} ->-

broadcast_annotation(socket, user, annotation)-

Task.start(fn -> compute_additional_info(annotation, socket) end)5

{:reply, :ok, socket}-

-

{:error, changeset} ->-

{:reply, {:error, %{errors: changeset}}, socket}-

end10

end-

-

defp broadcast_annotation(socket, user, annotation) do-

broadcast!(socket, "new_annotation", %{-

id: annotation.id,15

user: RumblWeb.UserView.render("user.json", %{user: user}),-

body: annotation.body,-

at: annotation.at-

})-

end20

On line 4, we extract our broadcast to a shared broadcast_annotation function so
our information system can make use of it when it has relevant results to
share. Next, we spawn a task on line 5 to asynchronously call a new com-
pute_additional_info function, which we’ll write in a moment. We use Task.start
because we don’t care about the task result nor if it fails. It’s important that
we use a task here so we don’t block on any particular messages arriving to
the channel.

report erratum • discuss

Integrating OTP Services with Channels • 275

http://media.pragprog.com/titles/phoenix14/code/otp/listings/rumbl_umbrella/apps/rumbl_web/lib/rumbl_web/channels/video_channel.change1.ex
http://pragprog.com/titles/phoenix14/errata/add
http://forums.pragprog.com/forums/phoenix14

Now, let’s write compute_additional_info to ask our InfoSys for relevant results:

otp/listings/rumbl_umbrella/apps/rumbl_web/lib/rumbl_web/channels/video_channel.change1.ex
defp compute_additional_info(annotation, socket) do

for result <-
InfoSys.compute(annotation.body, limit: 1, timeout: 10_000) do

backend_user = Accounts.get_user_by(username: result.backend.name())
attrs = %{body: result.text, at: annotation.at}

case Multimedia.annotate_video(
backend_user, annotation.video_id, attrs) do

{:ok, info_ann} ->
broadcast_annotation(socket, backend_user, info_ann)

{:error, _changeset} -> :ignore
end

end
end

First, we call into our information system, asking for only one result. Our
service returns the best information it has, given our query. We tell it we are
willing to wait ten seconds for an answer. Next, we use a comprehension to
grab the backend user from our Accounts context, get the relevant attributes
and annotate our video with that information. Finally we call broadcast_annotation
on line 13 to report the new annotation to all subscribers on this topic. The
integration is tight and smooth, and it’s done. Our code is extremely efficient
with our caching layer. Imagine an active chat of users watching a sports
game or chanting the same message. Our service won’t waste any cycles
recomputing values.

We need to seed our database with a wolfram user to post annotations along
with our real user conversations. Create a priv/repo/backend_seeds.exs, like this:

otp/listings/rumbl_umbrella/apps/rumbl/priv/repo/backend_seeds.exs
{:ok, _} = Rumbl.Accounts.create_user(%{name: "Wolfram", username: "wolfram"})

Now, you can run these seeds with mix run, like this:

$ cd apps/rumbl
$ mix run priv/repo/backend_seeds.exs
[debug] QUERY OK db=0.8ms
begin []
[debug] QUERY OK db=80.9ms
INSERT INTO "users" ("name","username","inserted_at", ...
[debug] QUERY OK db=7.5ms
commit []

Note we’re using our internal create_user function instead of the user-facing
register_user function. The context function perfectly fits this scenario and allows

Chapter 12. OTP • 276

report erratum • discuss

http://media.pragprog.com/titles/phoenix14/code/otp/listings/rumbl_umbrella/apps/rumbl_web/lib/rumbl_web/channels/video_channel.change1.ex
http://media.pragprog.com/titles/phoenix14/code/otp/listings/rumbl_umbrella/apps/rumbl/priv/repo/backend_seeds.exs
http://pragprog.com/titles/phoenix14/errata/add
http://forums.pragprog.com/forums/phoenix14

us to not mix up end-user code paths with the path for internal users. Let’s
try it out on the frontend:

It works!

At this point, you can use this template to add services to our information
system. Bing has an API that you might use to retrieve search results for
linking. You could also build your own service. The important thing is that
you have a framework to add services to.

We’re at a convenient breaking point. It’s time to wrap up.

Wrapping Up
In this chapter dedicated to OTP services, we first took our time so you could
build a solid understanding of how OTP uses concurrency and message
passing to safely encapsulate state without implicit state, or instance or
global variables. Then, we built an information system for our annotations.
Along the way:

• We created a new child app under our umbrella.

• We built a counter that demonstrates how some OTP behaviours work.

• You looked at several OTP supervision and restart strategies.

• You saw examples of a full OTP service as GenServer.

• You learned how tasks wrap behavior and agents encapsulate state.

• You implemented an ETS backed cache, with GenServer powered cache
expiration.

report erratum • discuss

Wrapping Up • 277

http://pragprog.com/titles/phoenix14/errata/add
http://forums.pragprog.com/forums/phoenix14

• We implemented an information system abstract frontend with concrete
backends.

• You learned to fetch WolframAlpha results from an HTTP service and
share them with our channels.

In the next chapter, we’ll look at how to test your applications. You’ll see how
to test channels and OTP, and also how our umbrella project will help us
manage all of it. Don’t stop now—you’re almost done!

Chapter 12. OTP • 278

report erratum • discuss

http://pragprog.com/titles/phoenix14/errata/add
http://forums.pragprog.com/forums/phoenix14

CHAPTER 13

Testing Channels and OTP
The last few chapters were packed with new features. We’ve spent quite a bit
of time and effort establishing new features that are interactive, compelling,
and fast. Our information system uses an external API with flexible backends.
Our channels-based API offers real-time web support for a rich user interface,
one extremely sensitive to good server performance. Our channels allow peer-
to-peer messaging. We’re missing only one thing. Tests.

In this chapter, you’ll see how to test OTP processes in isolation. You’ll learn
to use the Phoenix helpers to simplify channels testing. Before we dive in,
let’s briefly talk about what you can expect.

Recall that in Part I, the test cases for our controllers used Phoenix test helpers
in ConnCase. We tested our HTTP-backed features, the router, controller, and
views. Our integrated tests also hit the database. We used helpers such as
html_response to remove some of the boilerplate from our typical tests.

In Part II, our code stack is fundamentally different. The MVC code gave way
to channels and OTP. Still, the basic approach will be the same. We’ll build
tests that hit a single channel call, one that integrates everything down to
the database.

We’ll draw the line at the external requests. Since we want to run our integra-
tion tests within our sphere of control, we’ll want our usual test stack to focus
on everything we’ve built except our external HTTP request to WolframAlpha.
We’ll want to isolate our tests from that piece of code.

Let’s start our testing process with our information system.

report erratum • discuss

http://pragprog.com/titles/phoenix14/errata/add
http://forums.pragprog.com/forums/phoenix14

Testing the Information System
To warm up, we’re going to start our tests with our independent caching layer.
Since our cache is made up of a standalone genserver, we can test it in isolation.
It’s a good place to start because our cache can do two things: fetch and put.

Testing Our Cache
For the most part, testing our cache will work like testing any other service.
We’ll create a cache and try some fetches and puts. Then we’ll use asserts to
check what actually happened against our expectations. Let’s begin with a
few basic tests and then we can handle corner cases for timeouts and shut-
down. Shift into the apps/info_sys directory and then make tests/cache_test.exs look
like this:

testing_otp/listings/rumbl_umbrella/apps/info_sys/test/cache_test.exs
defmodule InfoSysTest.CacheTest do

use ExUnit.Case, async: true
alias InfoSys.Cache
@moduletag clear_interval: 100

setup %{test: name, clear_interval: clear_interval} do
{:ok, pid} = Cache.start_link(name: name, clear_interval: clear_interval)
{:ok, name: name, pid: pid}

end

We’re creating a test, and including the usual ceremony. We have a module
tag to specify the interval for clearing a cache. We’ll use that feature to cus-
tomize the cache expiration during our tests.

We also set up the tests by creating a simple GenServer by calling the start_link
for our cache, passing in the shortened interval. Then we return the pid in
the test context.

Now, we’re ready to run a couple of tests. One will check puts and fetches,
and the other will check nonexistent keys:

testing_otp/listings/rumbl_umbrella/apps/info_sys/test/cache_test.exs
test "key value pairs can be put and fetched from cache", %{name: name} do

assert :ok = Cache.put(name, :key1, :value1)
assert :ok = Cache.put(name, :key2, :value2)

assert Cache.fetch(name, :key1) == {:ok, :value1}
assert Cache.fetch(name, :key2) == {:ok, :value2}

end

test "unfound entry returns error", %{name: name} do
assert Cache.fetch(name, :notexists) == :error

end
end

Chapter 13. Testing Channels and OTP • 280

report erratum • discuss

http://media.pragprog.com/titles/phoenix14/code/testing_otp/listings/rumbl_umbrella/apps/info_sys/test/cache_test.exs
http://media.pragprog.com/titles/phoenix14/code/testing_otp/listings/rumbl_umbrella/apps/info_sys/test/cache_test.exs
http://pragprog.com/titles/phoenix14/errata/add
http://forums.pragprog.com/forums/phoenix14

The first test puts a couple of keys and verifies an :ok result, and then verifies
both with fetches. The next test checks a simple fetch of a nonexistent key,
and verifies an :error.

If you’d like, you can run the test. You’ll find it clean and green:

$ mix test test/cache_test.exs
.

Finished in 0.02 seconds
1 test, 0 failures

The tests are dead simple so far, but we should check out a couple of corner
cases. We must make sure the GenServer shuts down cleanly and also make
sure we handle error conditions like timeouts. We’re going to need a couple
of test helper functions to assist us for each one. Above the test setup function,
key this in:

testing_otp/listings/rumbl_umbrella/apps/info_sys/test/cache_test.change1.exs
defp assert_shutdown(pid) do

ref = Process.monitor(pid)
Process.unlink(pid)
Process.exit(pid, :kill)

assert_receive {:DOWN, ^ref, :process, ^pid, :killed}
end

defp eventually(func) do
if func.() do

true
else

Process.sleep(10)
eventually(func)

end
end

That’s a bit more meaty. Let’s talk through those helpers. The first one will
serve as a custom set of assertions to verify a server shuts down cleanly. We
start a monitor and then unlink the process. We remove the link, otherwise
killing the server would make our test process also crash. Next we kill the process
and make sure we get a :DOWN message on the monitor. We break this code into
its own function because we’ll use it twice in the tests that follow.

The second helper is a small helper, to prevent tests from having to sleep for
long periods while the test waits on an expected result. Ideally, we want to
have our tests react only to messages. But when that’s not enough, we will
execute some function until it eventually returns true. Let’s see how these two
helpers work in the context of our tests. Add these tests to the bottom of
cache_test.exs:

report erratum • discuss

Testing the Information System • 281

http://media.pragprog.com/titles/phoenix14/code/testing_otp/listings/rumbl_umbrella/apps/info_sys/test/cache_test.change1.exs
http://pragprog.com/titles/phoenix14/errata/add
http://forums.pragprog.com/forums/phoenix14

testing_otp/listings/rumbl_umbrella/apps/info_sys/test/cache_test.change1.exs
test "clears all entries after clear interval", %{name: name} do

assert :ok = Cache.put(name, :key1, :value1)
assert Cache.fetch(name, :key1) == {:ok, :value1}
assert eventually(fn -> Cache.fetch(name, :key1) == :error end)

end

@tag clear_interval: 60_000
test "values are cleaned up on exit", %{name: name, pid: pid} do

assert :ok = Cache.put(name, :key1, :value1)
assert_shutdown(pid)
{:ok, _cache} = Cache.start_link(name: name)
assert Cache.fetch(name, :key1) == :error

end

Nice! The first test puts a key into the cache and then uses the eventually
function to check whether the values eventually clear. Recall that the @mod-
uletag at the top of the test module sets the clear_interval to 100 milliseconds.
After that waiting period, the cache should be cleared and our test will pass.
If all is well, the test runs as quickly as it can. If not, ExUnit will time out the
test after 60 seconds and we can fix the problem.

In the second test we verify that shutting down the cache actually erases all
cached entries. To do so, we use @tag to set the clear_interval to a high value,
overriding the value set in @moduletag. We do this to ensure clear_interval won’t
interfere with our tests since we want to check that the shutdown of the cache
erases all values, and not clear_interval. We do so by writing a key and shutting
down the server. The test awaits for the :DOWN message, which is only delivered
once the cache process exits. The test then checks to make sure the key is
not present.

You can see that testing GenServers is a bit trickier than testing pure functions,
but it’s not too bad. Our InfoSys has a new set of challenges, though, since it’s
pulling data from an external source. It’s time to attack that challenge.

Testing the InfoSys
We’ll move on to perhaps our most significant testing challenge, the InfoSys.
Since this information system interacts with an external interface, we have
some decisions to make. We also have quite a bit of behavior to cover, such
as timeouts and forced backend termination. You’ll be surprised at how
quickly we can cover all this functionality with a few short and sweet test
cases. Let’s get started.

A natural first step for testing our InfoSys is to simply look for successful results.
Create a new rumbl_umbrella/apps/info_sys/test/info_sys_test.exs with the following code:

Chapter 13. Testing Channels and OTP • 282

report erratum • discuss

http://media.pragprog.com/titles/phoenix14/code/testing_otp/listings/rumbl_umbrella/apps/info_sys/test/cache_test.change1.exs
http://pragprog.com/titles/phoenix14/errata/add
http://forums.pragprog.com/forums/phoenix14

testing_otp/listings/rumbl_umbrella/apps/info_sys/test/info_sys_test.exs
defmodule InfoSysTest doLine 1

use ExUnit.Case-

alias InfoSys.Result-

-

defmodule TestBackend do5

def name(), do: "Wolfram"-

-

def compute("result", _opts) do-

[%Result{backend: __MODULE__, text: "result"}]-

end10

def compute("none", _opts) do-

[]-

end-

def compute("timeout", _opts) do-

Process.sleep(:infinity)15

end-

def compute("boom", _opts) do-

raise "boom!"-

end-

end20

The top of the file has the typical module declaration and aliases. Then we
move to our first problem, how to isolate our test code from the internet
requests.

We solve this isolation problem by defining a stub called TestBackend on line 5.
This module will act like our Wolfram backend, returning a response in the
format that we expect. Since we don’t use the URL query string to do actual
work, we can use this string to identify specific types of results we want our
test backend to fetch:

testing_otp/listings/rumbl_umbrella/apps/info_sys/test/info_sys_test.exs
test "compute/2 with backend results" doLine 1

assert [%Result{backend: TestBackend, text: "result"}] =2

InfoSys.compute("result", backends: [TestBackend])3

end4

5

test "compute/2 with no backend results" do6

assert [] = InfoSys.compute("none", backends: [TestBackend])7

end8

With our stub in place, the tests will be remarkably simple. We define a test
case for computing successful results. We pass a query string of "result", sig-
naling our backend to send fake results. Then we assert that the result set
is what we expect. Next, we use the same approach to handle empty datasets.

That takes care of the cases in which backends properly report results. Next,
we need to cover the edge cases, like backend timeouts.

report erratum • discuss

Testing the Information System • 283

http://media.pragprog.com/titles/phoenix14/code/testing_otp/listings/rumbl_umbrella/apps/info_sys/test/info_sys_test.exs
http://media.pragprog.com/titles/phoenix14/code/testing_otp/listings/rumbl_umbrella/apps/info_sys/test/info_sys_test.exs
http://pragprog.com/titles/phoenix14/errata/add
http://forums.pragprog.com/forums/phoenix14

Chris says:

What’s the Difference Between a Stub and a Mock?
Stubs and mocks are both testing fixtures that replace real-world implementations.
A stub replaces real-world libraries with simpler, predictable behavior. With a stub,
a programmer can bypass code that would otherwise be difficult to test. Other than
that, the stub has nothing to say about whether a test passes or fails. For example,
a http_send stub might always return a fixed JSON response. In other words, a stub
is just a simple scaffold implementation standing in for a more complex real-world
implementation.

A mock is similar, but it has a greater role. It replaces real-world behavior just as a
stub does, but it does so by allowing a programmer to specify expectations and results,
playing back those results at runtime. A mock will fail a test if the test code doesn’t
receive the expected function calls. For example, a programmer might create a mock
for http_send that expects the test argument, returning the value :ok, followed by the
test2 argument, returning :ok. If the test code doesn’t call the mock first with the value
test and next with the value test2, it’ll fail. In other words, a mock is an implementation
that records expected behavior at definition time and plays it back at runtime,
enforcing those expectations.

Incorporating Timeouts in Our Tests
A backend might time out. To test timeouts, we need a way to simulate a
backend taking longer than expected. We also need to be able to make sure
that the information system terminates the backend in such cases, as we
expect it to. We want to do all of this in a fast test. Fortunately, with our
testing structure, it’s a simple job:

testing_otp/listings/rumbl_umbrella/apps/info_sys/test/info_sys_test.exs
test "compute/2 with timeout returns no results" doLine 1

results = InfoSys.compute("timeout", backends: [TestBackend], timeout: 10)2

assert results == []3

end4

end5

We want our test to be fast, so we shorten the timeout interval to 10 millisec-
onds. We simply call the correct stub and it sleeps forever. We assert that we
get an empty result. Mission accomplished.

Now we can shift to our last corner case. We need to check exceptions. It’s a
relatively easy job but we’ll need one tiny trick. To keep our tests from printing
out a bunch of noisy log messages when the exception fires we need to capture
the log. With that in mind, key this last test in:

Chapter 13. Testing Channels and OTP • 284

report erratum • discuss

http://media.pragprog.com/titles/phoenix14/code/testing_otp/listings/rumbl_umbrella/apps/info_sys/test/info_sys_test.exs
http://pragprog.com/titles/phoenix14/errata/add
http://forums.pragprog.com/forums/phoenix14

testing_otp/listings/rumbl_umbrella/apps/info_sys/test/info_sys_test.exs
@tag :capture_log
test "compute/2 discards backend errors" do

assert InfoSys.compute("boom", backends: [TestBackend]) == []
end

The test is short and, um, suite. We capture the log in a test tag. Then we
assert that no results are returned. Believe it or not, that’s all the testing we
need to do at this level. We are ready to fire our test up:

$ mix test test/info_sys_test.exs
....

Finished in 0.06 seconds
4 tests, 0 failures

Nice. It all works perfectly. Our new tests are nice and tidy, just like we want
them. We’ve done pretty well with our generic information system, but there’s
still some supporting Wolfram code that we’d like to test. Since that code has
an external interface, it’s better to test that part in isolation.

Isolating Wolfram
We’d like to keep our Wolfram tests isolated, but we have a problem. Our
code makes an HTTP request to the WolframAlpha API, which isn’t something
we want to perform within our test suite. You might be thinking, “Let’s write
a bunch of mocks!”

Within the Elixir community, we want to avoid mocking whenever possible.
Most mocking libraries, including dynamic stubbing libraries, end up
changing global behavior—for example, by replacing a function in the HTTP
client library to return some particular result. These function replacements
are global, so a change in one place would change all code running at the
same time. That means tests written in this way can no longer run concurrently.
These kinds of strategies can snowball, requiring more and more mocking
until the dependencies among components are completely hidden.

The better strategy is to identify code that’s difficult to test live, and to build a
configurable, replaceable testing implementation rather than a dynamic mock.
We’ll make our HTTP service pluggable. Our development and production code
will use our simple :httpc client, and our testing code can instead use a stub that
we’ll call as part of our tests. Let’s update our Wolfram backend to accept an
HTTP client from the application configuration, or a default of :httpc. Update
rumbl_umbrella/apps/info_sys/lib/info_sys/wolfram.ex with this code:

report erratum • discuss

Isolating Wolfram • 285

http://media.pragprog.com/titles/phoenix14/code/testing_otp/listings/rumbl_umbrella/apps/info_sys/test/info_sys_test.exs
http://pragprog.com/titles/phoenix14/errata/add
http://forums.pragprog.com/forums/phoenix14

testing_otp/listings/rumbl_umbrella/apps/info_sys/lib/info_sys/wolfram.ex
@http Application.get_env(:info_sys, :wolfram)[:http_client] || :httpcLine 1

defp fetch_xml(query) do2

{:ok, {_, _, body}} = @http.request(String.to_charlist(url(query)))3

4

body5

end6

We have made only a minor change to this file. First, we look up an :http_client
module from our mix configuration and default it to the :httpc module. We bake
that module into an @http module attribute at compile time for speedy runtime
use. Next, we replace our :httpc.request call with an @http.request invocation.

The result is simple and elegant. We simply call the function as before, using
our environment’s HTTP client instead of hardcoding the HTTP client. This
way, our behavior remains unchanged from before, but we can now stub our
HTTP client as desired.

Now let’s update our test configuration to use our stubbed client. Update the
config/test.exs file at the umbrella root, like this:

testing_otp/listings/rumbl_umbrella/config/test.exs
config :info_sys, :wolfram,

app_id: "1234",
http_client: InfoSys.Test.HTTPClient

This bit of configuration sets two configuration keys for Wolfram. One key is
the as-yet unwritten module for our test backend. The other is a fake config-
uration key that we can replace if we need to do some direct testing—for
example, as we’re creating data for our stub.

Now on to the tests. To test our stubbed WolframAlpha API results, we need
an example XML payload. Wolfram conveniently includes an API explorer1

that accepts a search query and displays the XML response. We’ve grabbed
a result for you for a query of "1 + 1". Keep in mind that this file is incomplete.
You will need to use the Wolfram service to build your own or copy our version
from the sample code for our book. Either way, place the entire XML response
into a new rumbl_umbrella/apps/info_sys/test/fixtures/ directory and save it as wolfram.xml:

<?xml version='1.0' encoding='UTF-8'?>
<queryresult success='true'

error='false'
numpods='6'
...

1. http://products.wolframalpha.com/api/explorer.html

Chapter 13. Testing Channels and OTP • 286

report erratum • discuss

http://media.pragprog.com/titles/phoenix14/code/testing_otp/listings/rumbl_umbrella/apps/info_sys/lib/info_sys/wolfram.ex
http://media.pragprog.com/titles/phoenix14/code/testing_otp/listings/rumbl_umbrella/config/test.exs
http://products.wolframalpha.com/api/explorer.html
http://pragprog.com/titles/phoenix14/errata/add
http://forums.pragprog.com/forums/phoenix14

With our fixture in place, now we need a stubbed HTTP client, one that returns
fake XML results using our fixture. Create a new rumbl_umbrella/apps/info_sys/test/back-
ends/ directory and add the following module to a new rumbl_umbrella/apps/info_sys/
test/backends/http_client.exs file:

testing_otp/listings/rumbl_umbrella/apps/info_sys/test/backends/http_client.exs
defmodule InfoSys.Test.HTTPClient do

@wolfram_xml File.read!("test/fixtures/wolfram.xml")
def request(url) do

url = to_string(url)
cond do
String.contains?(url, "1+%2B+1") -> {:ok, {[], [], @wolfram_xml}}
true -> {:ok, {[], [], "<queryresult></queryresult>"}}

end
end

end

We define an InfoSys.Test.HTTPClient module that stubs our request function and
returns fake Wolfram results. We cheat as we did before. We check the fetched
url for the URI-encoded "1 + 1" string. If it matches, we simply return the XML
contents of our wolfram.xml fixture. For any other case, we return a fake request
for empty XML results.

Our goal isn’t to test the Wolfram service, but make sure we can parse the
data Wolfram provides. This code elegantly lets us write tests at any time that
return a result. To confirm our HTTPClient module is loaded before our tests,
add the following line to the top of your rumbl_umbrella/apps/info_sys/test/test_helper.exs:

testing_otp/listings/rumbl_umbrella/apps/info_sys/test/test_helper.exs
Code.require_file "../../info_sys/test/backends/http_client.exs", __DIR__
ExUnit.start()

With our HTTP client in place, create a new rumbl_umbrella/apps/info_sys/test/back-
ends/wolfram_test.exs file with the following contents:

testing_otp/listings/rumbl_umbrella/apps/info_sys/test/backends/wolfram_test.exs
defmodule InfoSys.Backends.WolframTest do

use ExUnit.Case, async: true

test "makes request, reports results, then terminates" do
actual = hd InfoSys.compute("1 + 1", [])
assert actual.text == "2"

end

test "no query results reports an empty list" do
assert InfoSys.compute("none", [])

end
end

report erratum • discuss

Isolating Wolfram • 287

http://media.pragprog.com/titles/phoenix14/code/testing_otp/listings/rumbl_umbrella/apps/info_sys/test/backends/http_client.exs
http://media.pragprog.com/titles/phoenix14/code/testing_otp/listings/rumbl_umbrella/apps/info_sys/test/test_helper.exs
http://media.pragprog.com/titles/phoenix14/code/testing_otp/listings/rumbl_umbrella/apps/info_sys/test/backends/wolfram_test.exs
http://pragprog.com/titles/phoenix14/errata/add
http://forums.pragprog.com/forums/phoenix14

Since we’ve put in the hard work for testing the cache and generic InfoSys this
test will be light, and that’s exactly how we want tests that must consider
external interfaces. Using our stubbed HTTP client, we add test cases to
handle requests with and without results.

Now let’s run the test:

$ mix test
..

Finished in 0.2 seconds (0.1s on load, 0.09s on tests)
5 tests, 0 failures

And they pass. Since we’re handling the rest of the edge cases in our base
info_sys tests, that should wrap up the Wolfram tests!

José says:

At What Level Should We Apply Our Stubs/Mocks?
For the WolframAlpha API case, we chose to create a stub that replaces the :httpc
module. However, you might not be comfortable with skipping the whole HTTP stack
during the test. You’ll have to decide the best place to stub the HTTP layer. No single
strategy works for every case. It depends on your team’s confidence and the code
being tested. For example, if the communication with the endpoint requires passing
headers and handling different responses, you might want to make sure that all of
those parameters are sent correctly.

One possible solution is the Bypassa project. Bypass allows us to create a mock HTTP
server that our code can access during tests without resorting to dynamic mocking
techniques that introduce global changes and complicate the testing stack.

a. https://github.com/PSPDFKit-labs/bypass

Our tests are all green, and they’ll be consistently green because we make
sure that our measurements await the completion of our tests.

You may have noticed that these tests are more involved than the typical
single-process tests you might be used to. But by using the specific helpers
that ExUnit provides and thinking through possible outcomes and orderings,
you’ll quickly get the hang of writing tests that aren’t too much more difficult
than synchronous ones. When you’re done, you’ll have one major advantage.
Your tests will run concurrently, meaning they’ll finish much more quickly
than their synchronous counterparts.

Chapter 13. Testing Channels and OTP • 288

report erratum • discuss

https://github.com/PSPDFKit-labs/bypass
http://pragprog.com/titles/phoenix14/errata/add
http://forums.pragprog.com/forums/phoenix14

With our Wolfram backend covered, it’s time to move on to the last part of
our application: the channels. We’re ready to use the testing tools from
Phoenix.ChannelTest to set up your tests and finish out the rest of our tests.

Adding Tests to Channels
We started this chapter by testing our information system, including unit-
testing our supporting code for the Wolfram backend. Now it’s time to test
our channels code. Remember that underneath, channels are also OTP servers.
Phoenix includes the Phoenix.ChannelTest module, which will simplify your testing
experience. With it, you can make several types of common assertions. For
example, you can assert that your application pushes messages to a client,
replies to a message, or sends broadcasts. Let’s look at some code.

The rumbl_umbrella/apps/rumbl_web/test/support/channel_case.ex is a file that was gener-
ated by Mix when we generated the rumbl application. You’ve already seen a
couple of similar test cases with data_case and conn_case in Chapter 8, Testing
MVC, on page 145.

Let’s take a deeper look at how those files work. Crack it open now:

testing_otp/rumbl_umbrella/apps/rumbl_web/test/support/channel_case.ex
defmodule RumblWeb.ChannelCase do

@moduledoc """
This module defines the test case to be used by
channel tests.

Such tests rely on `Phoenix.ChannelTest` and also
import other functionality to make it easier
to build common data structures and query the data layer.

Finally, if the test case interacts with the database,
it cannot be async. For this reason, every test runs
inside a transaction which is reset at the beginning
of the test unless the test case is marked as async.
"""

use ExUnit.CaseTemplate

using do
quote do
Import conveniences for testing with channels
use Phoenix.ChannelTest

The default endpoint for testing
@endpoint RumblWeb.Endpoint

end
end

report erratum • discuss

Adding Tests to Channels • 289

http://media.pragprog.com/titles/phoenix14/code/testing_otp/rumbl_umbrella/apps/rumbl_web/test/support/channel_case.ex
http://pragprog.com/titles/phoenix14/errata/add
http://forums.pragprog.com/forums/phoenix14

setup tags do
:ok = Ecto.Adapters.SQL.Sandbox.checkout(Rumbl.Repo)

unless tags[:async] do
Ecto.Adapters.SQL.Sandbox.mode(Rumbl.Repo, {:shared, self()})

end

:ok
end

end

Knowing what’s happening here in basic broad strokes is enough. First you
see use ExUnit.CaseTemplate, which establishes this file as a test case. Next is a
using block to start an inline macro, and a quote to specify the template for the
code that we want to inject. The use Phoenix.ChannelTest statement establishes
Phoenix.ChannelTest as the foundation for our test file. Then, we do a few imports
and aliases for convenience, and so on.

The result is a file that prepares your tests for the features you’re most likely
to use in your channel tests. Our application has just one channel: the
VideoChannel, which supports features like real-time annotations and integration
with our InfoSys layer. All of our tests go through a single endpoint.

Before we test the VideoChannel, let’s start where the channel process begins
by testing the UserSocket module.

Authenticating a Test Socket
Most of our channels code relies on an authenticated user. We’ll start our
tests with the socket authentication. Let’s do that now.

Create a rumbl_umbrella/apps/rumbl_web/test/channels/user_socket_test.exs file containing:

testing_otp/listings/rumbl_umbrella/apps/rumbl_web/test/rumbl_web/channels/user_socket_test.exs
defmodule RumblWeb.Channels.UserSocketTest doLine 1

use RumblWeb.ChannelCase, async: true-

alias RumblWeb.UserSocket-

-

test "socket authentication with valid token" do5

token = Phoenix.Token.sign(@endpoint, "user socket", "123")-

-

assert {:ok, socket} = connect(UserSocket, %{"token" => token})-

assert socket.assigns.user_id == "123"-

end10

-

test "socket authentication with invalid token" do-

assert :error = connect(UserSocket, %{"token" => "1313"})-

assert :error = connect(UserSocket, %{})-

end15

end-

Chapter 13. Testing Channels and OTP • 290

report erratum • discuss

http://media.pragprog.com/titles/phoenix14/code/testing_otp/listings/rumbl_umbrella/apps/rumbl_web/test/rumbl_web/channels/user_socket_test.exs
http://pragprog.com/titles/phoenix14/errata/add
http://forums.pragprog.com/forums/phoenix14

On line 5, we make sure that a user with a valid token can open a new
socket connection. The test is pretty simple. We generate a valid token, use
the connect helper to simulate a UserSocket connection, and ensure that the
connection succeeds. That’s not enough. We also make sure that the socket’s
user_id is placed into the socket. With the happy path tested, we can move on
to the negative condition.

On line 12, we test the opposite case. We first try to log in with a nonexistent
token. Next, we test a simple edge condition, attempting to connect with no
token at all. Since these tests don’t require side effects such as database calls,
they can run independently and concurrently. In the use line, we set :async to
true, and we can feel a little happier inside. Our tiny test saves milliseconds,
but when we aggregate thousands of tests, we’ll be saving full minutes or
more. These tiny savings can add up to hours every day.

We can see the finish line. It’s finally time to test our video channel.

Communicating with a Test Channel
Let’s see how easy it is to test our VideoChannel features. Our plan is simple.
We’re going to set up some data to share across our tests and then sign the
user in within our setup block. Then, we can write some independent tests
against that live connection.

First we’ll need a few helper functions to make it easier to create users and
videos. Make the file test/support/test_helpers.ex look like this:

testing_otp/listings/rumbl_umbrella/apps/rumbl_web/test/support/test_helpers.ex
defmodule RumblWeb.TestHelpers do

defp default_user() do
%{
name: "Some User",
username: "user#{System.unique_integer([:positive])}",
password: "supersecret"

}
end

def insert_user(attrs \\ %{}) do
{:ok, user} =
attrs
|> Enum.into(default_user())
|> Rumbl.Accounts.register_user

user
end

report erratum • discuss

Communicating with a Test Channel • 291

http://media.pragprog.com/titles/phoenix14/code/testing_otp/listings/rumbl_umbrella/apps/rumbl_web/test/support/test_helpers.ex
http://pragprog.com/titles/phoenix14/errata/add
http://forums.pragprog.com/forums/phoenix14

The first part creates users. For convenience, we start with a default user
and then merge in keywords so a user can specify as many or few users as
they want. The context work we did earlier makes this easy. Next, we need
to do the same for videos.

testing_otp/listings/rumbl_umbrella/apps/rumbl_web/test/support/test_helpers.ex
defp default_video() do

%{
url: "test@example.com",
description: "a video",
body: "body"

}
end

def insert_video(user, attrs \\ %{}) do
video_fields = Enum.into(attrs, default_video())
{:ok, video} = Rumbl.Multimedia.create_video(user, video_fields)
video

end

Easy enough. We do the same thing. We start by creating a default video,
then merge in defaults, create a video, pattern match it out and finally return
the video to the user. Now all that remains is a quick helper to log a user in:

testing_otp/listings/rumbl_umbrella/apps/rumbl_web/test/support/test_helpers.ex
def login(%{conn: conn, login_as: username}) do

user = insert_user(username: username)
{Plug.Conn.assign(conn, :current_user, user), user}

end
def login(%{conn: conn}), do: {conn, :logged_out}

end

We insert a user and then merge the user into the conn. If there’s no user, we
just log the user out. Now we can put these functions to use.

Create a new rumbl_umbrella/apps/rumbl_web/test/channels/video_channel_test.exs file that
looks like this:

testing_otp/listings/rumbl_umbrella/apps/rumbl_web/test/rumbl_web/channels/video_channel_test.exs
defmodule RumblWeb.Channels.VideoChannelTest doLine 1

use RumblWeb.ChannelCase-

import RumblWeb.TestHelpers-

-

setup do5

user = insert_user(name: "Gary")-

video = insert_video(user, title: "Testing")-

token = Phoenix.Token.sign(@endpoint, "user socket", user.id)-

{:ok, socket} = connect(RumblWeb.UserSocket, %{"token" => token})-

10

{:ok, socket: socket, user: user, video: video}-

end-

Chapter 13. Testing Channels and OTP • 292

report erratum • discuss

http://media.pragprog.com/titles/phoenix14/code/testing_otp/listings/rumbl_umbrella/apps/rumbl_web/test/support/test_helpers.ex
http://media.pragprog.com/titles/phoenix14/code/testing_otp/listings/rumbl_umbrella/apps/rumbl_web/test/support/test_helpers.ex
http://media.pragprog.com/titles/phoenix14/code/testing_otp/listings/rumbl_umbrella/apps/rumbl_web/test/rumbl_web/channels/video_channel_test.exs
http://pragprog.com/titles/phoenix14/errata/add
http://forums.pragprog.com/forums/phoenix14

-

test "join replies with video annotations",-

%{socket: socket, video: vid, user: user} do15

for body <- ~w(one two) do-

Rumbl.Multimedia.annotate_video(user, vid.id, %{body: body, at: 0})-

end-

{:ok, reply, socket} = subscribe_and_join(socket, "videos:#{vid.id}", %{})-

20

assert socket.assigns.video_id == vid.id-

assert %{annotations: [%{body: "one"}, %{body: "two"}]} = reply-

end-

end-

On line 5, we add a setup block to prepare our tests with a user and video.
Next, we use connect to start a simulated socket connection. We can use that
connection for each of our tests. We put the user, the video, and the connected
socket into our test context, one that we’ll be able to match for individual tests.

Note we haven’t passed the async: true flag to the ChannelCase as we did to other
cases. Here’s why. In Ecto’s Sandbox mode, every process has its own connec-
tion. That’s not a problem in applications that limit database access to a
single process. The test case starts a transaction, modifies the database,
asserts results and then rolls back the transaction when the test completes.

This application is different. It has two or more processes talking to the
database at the same time, in the same test. Because processes might need
to acces the same data, the only way for them to share data in the sandbox
mode is to share the same connection. To maintain isolation for each test,
we can’t run tests concurrently. That means we can’t set async. It’s not ideal,
but since the rest of the tests run in async mode, we won’t fret too much.

In the test, the function head matches the connected socket and video, so our
test can take advantage of the setup work we’ve done. We then proceed to
create two annotations that we expect to be sent as a reply on join. We call
the subscribe_and_join test helper to attempt to join the channel responsible for
the "videos:#{vid.id}" topic. If the join is successful, this helper function returns
{:ok, reply, socket}. An unsuccessful join fails the match and forces an error for
our test. Then we assert the socket has a user_id assigned and the join reply
contains the previously creatrd annotations.

Let’s try this much:

$ mix test test/rumbl_web/channels/video_channel_test.exs
...

Finished in 0.2 seconds (0.1s on load, 0.09s on tests)
3 tests, 0 failures

report erratum • discuss

Communicating with a Test Channel • 293

http://pragprog.com/titles/phoenix14/errata/add
http://forums.pragprog.com/forums/phoenix14

No problem! Our tests pass, and we know the following:

• Our user can successfully connect.
• Our user successfully joined a topic.
• The topic is the correct one.
• The reply has all of the annotations in the video.

That’s a good start. Now that we’ve tested that we can join the VideoChannel,
we can test a conversation with the client. Let’s test the incoming new_annotation
event. We want to simulate the creation of a new annotation, and we want to
make sure we correctly augment the state in the socket.

Code the new test in rumbl_umbrella/apps/rumbl_web/test/channels/video_channel_test.exs,
like this:

testing_otp/listings/rumbl_umbrella/apps/rumbl_ … umbl_web/channels/video_channel_test.change1.exs
test "inserting new annotations", %{socket: socket, video: vid} do

{:ok, _, socket} = subscribe_and_join(socket, "videos:#{vid.id}", %{})
ref = push socket, "new_annotation", %{body: "the body", at: 0}
assert_reply ref, :ok, %{}
assert_broadcast "new_annotation", %{}

end

As before, our function head matches the video and socket we created in setup.
Like last time, we subscribe and join with our helper. This time, we use the
push helper function to push a new event to the channel. We use assert_reply to
make sure we get a :ok response. We could also pass in additional key/value
pairs to assert on specific parts of the reply, but we don’t need to do so in
this case, so we pass an empty map.

Finally, we use the assert_broadcast function to make sure that our annotation
were broadcast to subscribers. The assert_reply and assert_broadcast functions are
provided by Phoenix and built on top of the assert_receive function that we used
in the previous section.

Notice how our test process works as a client of the channel, because we were
able to establish a test connection using subscribe_and_join. In the same way,
the browser is a channel client. That’s why we can assert that we’ve received
some particular reply. The test process also subscribes to the same topic as
its channel, explaining why we can assert that something was broadcast.

Let’s test the integration with our information system. Crack your test open
once again, and add this test to the end:

Chapter 13. Testing Channels and OTP • 294

report erratum • discuss

http://media.pragprog.com/titles/phoenix14/code/testing_otp/listings/rumbl_umbrella/apps/rumbl_ � umbl_web/channels/video_channel_test.change1.exs
http://pragprog.com/titles/phoenix14/errata/add
http://forums.pragprog.com/forums/phoenix14

testing_otp/listings/rumbl_umbrella/apps/rumbl_ … umbl_web/channels/video_channel_test.change1.exs
test "new annotations triggers InfoSys", %{socket: socket, video: vid} do

insert_user(
username: "wolfram",
password: "supersecret"

)

{:ok, _, socket} = subscribe_and_join(socket, "videos:#{vid.id}", %{})
ref = push socket, "new_annotation", %{body: "1 + 1", at: 123}
assert_reply ref, :ok, %{}
assert_broadcast "new_annotation", %{body: "1 + 1", at: 123}
assert_broadcast "new_annotation", %{body: "2", at: 123}

end

We first need to insert the Wolfram user into the database because our compute_
additional_info needs to have a user named wolfram to post the additional info.

Then our function head picks off the things our test needs, just as we did in
the previous test. We subscribe and join, push a new annotation, and check
the response. This time, use the special stubbed "1 + 1" query to return fake
answers. We verify that the original response and the InfoSys annotation are
both broadcast successfully.

Let’s switch to the top-level directory and try our tests.

$ ➔ cd ../..
$ mix test
==> rumbl_web
Compiling 1 file (.ex)
==> info_sys
..........

Finished in 0.2 seconds
10 tests, 0 failures

Randomized with seed 292879
==> rumbl
.................

Finished in 0.1 seconds
17 tests, 0 failures

Randomized with seed 292879
==> rumbl_web
........................

Finished in 0.1 seconds
24 tests, 0 failures

Randomized with seed 292879

Everything passes!

report erratum • discuss

Communicating with a Test Channel • 295

http://media.pragprog.com/titles/phoenix14/code/testing_otp/listings/rumbl_umbrella/apps/rumbl_ � umbl_web/channels/video_channel_test.change1.exs
http://pragprog.com/titles/phoenix14/errata/add
http://forums.pragprog.com/forums/phoenix14

As you can see, Phoenix provides plenty of support for testing your channels
code. These testing features are first-class features for our ecosystem. It’s a
good time to see how far we’ve come.

Wrapping Up
Amazingly, this is the last chapter dealing with our Rumbl application! In
this chapter, we tested the most sophisticated features in our entire application
stack. You probably noticed that the functional nature of Phoenix made
testing the application much easier than you might have expected. Our tests
run quickly, and they’re compact, thanks to the helpers that abstract concepts
like assert_reply, assert_broadcast, and assert_receive. Here’s what we accomplished:

• We tested our OTP layer for our InfoSys OTP application.

• We split out an independent caching layer for performance.

• We built a specific backend rather than a dynamic stub or mock to keep
our tests isolated, as our unit and integration tests should be.

• We tested our sockets authentication code.

• We used the Phoenix testing support to test our channels.

By no means is this testing story complete. We didn’t cover user acceptance
testing. Nor did we cover performance testing. We did accomplish quite a bit
in a short time. These kinds of concurrent, interactive applications can be
notoriously difficult to test.

In the next chapter, we’ll wrap up. We’ll cover some features that didn’t make
it into our application such as internationalization. We will also cover the
newest Phoenix library, LiveView, and learn how you can build whole pages
without MVC-style controllers or JavaScript. Then, we’ll take a brief look at
what’s next for the Phoenix team.

We’re not quite done. Let’s go!

Chapter 13. Testing Channels and OTP • 296

report erratum • discuss

http://pragprog.com/titles/phoenix14/errata/add
http://forums.pragprog.com/forums/phoenix14

CHAPTER 14

What’s Next?
We hope you’ve enjoyed reading this book as much as we’ve enjoyed putting
it together for you. The Phoenix story is an incredible one, and the telling is
nowhere near done. If you’ve coded along with us, you should have a better
handle on how the bits of your code fit together to form interactive, scalable,
reliable applications. Let’s review what we’ve done so far.

First, we built a toy application so you could learn where to put each piece
of code. You worked with the Phoenix router. You learned how connections
flowed through plugs to controllers and views. You built a trivial controller
and a simple view that rendered a template.

Next, we started working on our rumbl application, one that you used
throughout the rest of the book. We created a controller, and rather than
integrating a full database right away, we defined the context as the API to
our business domain so we could focus on the controller. We then created a
couple of actions, and some views and templates to render our results.

With that out of the way, we dove into Ecto to integrate our context with a
full database-backed repository. Initially, we focused on the initial schema
for users. We built a migration and a changeset to help us manage change.
In the next few chapters, we improved our context to support iterations on
the frontend. We created a plug to help integrate authentication in our
application, and then we built some more sophisticated schemas and contexts
with relationships. Then, we tested the work we’d done so far.

Next, we moved into Part II. We built a channel to handle the real-time features
of our application. We learned that the Phoenix Channels allows us to build
applications with state, but without the performance penalties you generally
see with similar frameworks. We used these features to deliver real-time fea-
tures, allowing users to comment on a playing video in real time. We worked

report erratum • discuss

http://pragprog.com/titles/phoenix14/errata/add
http://forums.pragprog.com/forums/phoenix14

on the server in Elixir and paired it with an ES6 JavaScript client. We used
channels to let users post messages, and then broadcast those messages to
all other interested users. Then, we extended our authentication system,
adopting token-based authentication. We also built in Channel Presence to
detect when users come and go.

We then started to get more familiar with the underlying principles of building
applications in Elixir and converted our rumbl app into an umbrella project.
Along the way, we used Observer to get a full picture of what was happening
with our application in real time. The umbrella project let us isolate the
development and testing of individual applications.

Once our umbrella project was ready, we crafted an information system service
as a brand new application. We learned how to add state to our applications
with concurrency, message passing, and recursive functions. We also learned
to use supervisors to keep our system reliable and take action when things
break.

We tried to build a broad and exciting application, but it was impossible to
cover all of the useful projects happening in the language, the Phoenix project,
or the community. Here are some of the things you can explore.

Other Interesting Features
In any successful development ecosystem, a tension always exists between
currency and stability. We’ve tried to walk as closely to currency as we could
without stepping over. Still, exciting things are happening, many of which
weren’t ready to include in this text. These are some exciting features you
may want to use in your next project.

Supporting Internationalization with Gettext
In version v1.1, Phoenix added integration with Gettext, an internationalization
(i18n) and localization (l10n) system commonly used for writing multilingual
programs. Gettext can automatically extract translations from your source
code, reducing the burden on the developer. Furthermore, since the Gettext
standard is used by so many communities, you can take advantage of a rich
set of tooling for both developers and translators.

When you ran mix phx.new rumbl, Phoenix generated a RumblWeb.Gettext module
at lib/rumbl_web/gettext.ex. You can see it in use in the lib/rumbl_web/views/error_helpers.ex
file, used to translate the error messages coming from Ecto. Since program-
mers often organize translations into namespaces called domains, Phoenix
places Ecto messages in the errors domain by default.

Chapter 14. What’s Next? • 298

report erratum • discuss

http://pragprog.com/titles/phoenix14/errata/add
http://forums.pragprog.com/forums/phoenix14

The translations for different languages are in the priv/gettext directory. There
you’ll find a default template for Ecto messages called errors.pot. A translation
for each language is placed in directories such as priv/gettext/en/LC_MESSAGES.

To learn more about the integration between Phoenix and Gettext, we recom-
mend this fantastic article by Rebecca Skinner entitled “Internationalization
using Gettext in the Phoenix framework.”1 For general information, check out
the Gettext documentation.2

Next, we’ll move from internationalization to intercept and handle, a couple of
functions that make it easier to manage channel messages.

Intercepting on Phoenix Channels
When you broadcast a message, Phoenix sends it to the Publish and Subscribe
(PubSub) system, which then broadcasts it directly to all user sockets. We
call this approach fastlaning because it completely bypasses the channel,
allowing us to encode the message once. Phoenix Channels also provide a
feature called intercept, which allows channels to intercept a broadcast message
before it’s sent to the user.

For example, maybe we’d like to let the video’s creator edit all of its annota-
tions. For such a feature, we could append an is_editable field to the annotation
map when we broadcast it so the frontend can adapt accordingly. Using
intercept, we could build this feature like this:

intercept ["new_annotation"]

For every new_annotation broadcast,
append an is_editable value for client metadata.
def handle_out("new_annotation", msg, socket) do

%{video: video, user_id: user_id} = socket.assigns
push socket, "new_annotation",

Map.merge(msg, %{is_editable: video.user_id == user_id})
{:noreply, socket}

end

For each event that we specify in intercept, we must define a handle_out clause
to handle the intercepted event. You can also intercept an event and choose
not to push it at all, in case you want to make sure that some clients don’t
receive specific events.

intercept is a nice feature, but you need to be careful. Imagine that you have
10,000 users watching a video at the same time. Instead of using intercept,

1. http://sevenseacat.net/2015/12/20/i18n-in-phoenix-apps.html
2. http://hexdocs.pm/gettext

report erratum • discuss

Other Interesting Features • 299

http://sevenseacat.net/2015/12/20/i18n-in-phoenix-apps.html
http://hexdocs.pm/gettext
http://pragprog.com/titles/phoenix14/errata/add
http://forums.pragprog.com/forums/phoenix14

you could write a few extra lines of code to include a :video_user_id field in the
message, letting the client decide whether the message is editable. For that
implementation, Phoenix would encode the broadcast once and send the
message to all sockets.

With the intercept implementation, Phoenix would send the message to the first
10,000 channel processes, one for each client. While processing the intercept,
each channel would independently modify the intercepted message and push
it to the socket to be encoded and sent. The cost of intercept is 10,000 extra
messages, one per channel, as well as encoding those messages 9,999
times—again, once per channel—compared to the one-time encoding of the
implementation without intercept. For those reasons, we recommend using
intercept with care.

On the other hand, intercept can be tremendously useful when we’re evolving
code. Imagine building a new version of the annotations feature in the future,
with new frontend and backend code, including a different payload when new
annotations are broadcast. However, imagine that you also have old clients
that can take a while to migrate. You could use the new annotation-broadcast
format throughout the new code and use intercept to retrofit the new_annotation
broadcast into the old one. For these cases, intercept would be an ideal solution.
You’d pay a temporary performance price to make your code easier to build
and understand.

For more information on intercept and handle, check the Phoenix documentation
on channels.3 Next, we’ll move on to live code reload.

Understanding Phoenix Live Reload
One of the features we used throughout the entire book was Phoenix Live
Reload, which allows us to see changes propagated to the browser as soon
as we save them to the filesystem. Phoenix Live Reload is composed of:

• A dependency called file_system that watches the filesystem for changes

• A channel that receives events from the file_system application and converts
them into broadcasts

• A plug that injects the live-reload iframe on every request and serves the
iframe content for web requests

There isn’t much to Live Reload, and that’s exactly why we recommend that
you to study its source code to learn more about how simple it is to extend

3. http://hexdocs.pm/phoenix/Phoenix.Channel.html

Chapter 14. What’s Next? • 300

report erratum • discuss

http://hexdocs.pm/phoenix/Phoenix.Channel.html
http://pragprog.com/titles/phoenix14/errata/add
http://forums.pragprog.com/forums/phoenix14

Phoenix. If the feature is something you might want to customize, consider
reading more or even following the project. You can find the source code in
our Phoenix Live Reload GitHub project.4

While we’re on the subject of customization, let’s see how you might customize
the Phoenix PubSub adapter.

Phoenix PubSub Adapter
By default, Phoenix PubSub uses distributed Erlang to ensure that broadcasts
work across multiple nodes. This requires all machines to be connected
together according to the Erlang Distribution Protocol. Setting up distributed
Erlang is straightforward, but it might not be directly supported in some
deployment platforms.

You needn’t worry, though. Phoenix PubSub is extensible—it supports multiple
adapters. One is the Redis adapter,5 maintained by the Phoenix team, which
empowers the PubSub system by using Redis as its message-distribution
mechanism. You can use one of these options or even write your own.

You’ve seen how to customize Phoenix messaging on the server side. Some
interesting things are happening on the client side too.

Phoenix Clients for Other Platforms
In our channels chapter, you saw how we customized the Phoenix transport
to work with our ES6 code. Phoenix Channels support the nearly ubiquitous
JavaScript and also a wide range of other clients and platforms, including
C#, Java, Objective-C, and Swift.6

All these clients use WebSockets, but don’t forget that Phoenix Channels are
transport agnostic. If you have special requirements, as in embedded software
or working on special platforms, you can always use a custom protocol to
talk to Phoenix.

The Phoenix project has surpassed our expectations in its first few years, but
we’re even more excited about what’s coming next. In the next few sections,
we offer a preview, listing those we expect the soonest first. Be careful, though.
We offer no guarantees!

By far the most anticipated change is Phoenix Liveview. Let’s take a peek.

4. http://github.com/phoenixframework/phoenix_live_reload
5. https://github.com/phoenixframework/phoenix_pubsub_redis
6. https://github.com/livehelpnow/CSharpPhoenixClient, https://github.com/eoinsha/JavaPhoenixChannels,

https://github.com/livehelpnow/ObjCPhoenixClient, and https://github.com/davidstump/SwiftPhoenixClient.

report erratum • discuss

Other Interesting Features • 301

http://github.com/phoenixframework/phoenix_live_reload
https://github.com/phoenixframework/phoenix_pubsub_redis
https://github.com/livehelpnow/CSharpPhoenixClient
https://github.com/eoinsha/JavaPhoenixChannels
https://github.com/livehelpnow/ObjCPhoenixClient
https://github.com/davidstump/SwiftPhoenixClient
http://pragprog.com/titles/phoenix14/errata/add
http://forums.pragprog.com/forums/phoenix14

Phoenix LiveView
As the base infrastructure for channels matures, we’re seeing an acceleration
of higher level libraries that take advantage of them. LiveView is the perfect
example. In essence, it’s a library for building interactive, rich applications,
that are bi-directional. That much is not new. Throughout the second half of
this book, we’ve done very much the same thing with channels.

Here’s the best part, though. What if you could do the same thing without
writing custom JavaScript? In this short section, we’ll walk you through how
you can do exactly that. Don’t get us wrong. We love working with the Phoenix
toolchain including JavaScript, but juggling fewer frameworks means more
brainpower is available to attack the business problem.

Let’s look at how it all works. Conceptually, LiveView:

• Represents a web page as a function over web state
• Establishes messages and callbacks to change that state
• Allows browser events such as mouse clicks, form submits, and key

presses to send events

Though it’s a young library, LiveView users are already pushing the boundaries
of what can be done without writing JavaScript. It is excellent for a wide
variety of scenarios from form validation and autocompletion to handling
communication triggered by links and keystrokes. We’re not going to show
you an exhaustive list of LiveView use cases, but we’d love to show you how
some of the most important ones work.

To show the interplay of routes and events, we’ll walk you through a couple
of simple examples and then show progressively more complex scenarios.

We’ll start with a static page and progressively move to more advanced
examples. So that we can start with a foundation that’s going to stay up to
date, we’ll walk you through the Phoenix LiveView Example.7

Establishing a Static LiveView
To get things started, let’s build our own LiveView. For the simplest of exam-
ples, all of our code can live in two places: the router and the live view. First,
let’s start with the router.

7. https://github.com/chrismccord/phoenix_live_view_example

Chapter 14. What’s Next? • 302

report erratum • discuss

https://github.com/chrismccord/phoenix_live_view_example
http://pragprog.com/titles/phoenix14/errata/add
http://forums.pragprog.com/forums/phoenix14

We’ve set up LiveView according to the project instructions. It takes about
fifteen minutes or so the first few times. Once we’re done, we can add routes
to router.ex, like this:

import Phoenix.LiveView.Router

...

live "/welcome", WelcomeLive

We import the LiveView router code and use one of the imports, the live
function, to create a new route that points the /welcome route to a module
holding a live view. Now we’re ready to create the live view. We’ll put it in
lib/demo_web/live/welcome_live.ex, and make it look like this:

defmodule DemoWeb.WelcomeLive do
use Phoenix.LiveView

def render(assigns) do
~L"""
<div>
<h2>Welcome to LiveView, from Chris, José and Bruce</h2>

</div>
"""

end

def mount(_session, socket) do
{:ok, socket}

end
end

In every case, render/1 is a pure function that takes socket.assigns as its lone
argument. This structure is functional programming at its finest. Because
every LiveView page is a simple pure function, debugging is much easier than
you might find in alternatives. We’ll unlock some complexity over time. For
now, point your browser to our route, http://localhost:4000/welcome. You’ll see the
message “Welcome to LiveView, from Chris, José and Bruce.”

Let’s shed some light on what’s happening after Phoenix calls the route.
LiveView is a Phoenix Channels implementation so the live view for each end
user will run in its own process. When router.ex has a live route, it will call the
mount/2 function on that live view. The mount function’s job is to establish the
initial state of the live view. Dutifully, our function returns an :ok tuple with
an empty socket.

That’s not all, though. This function is analogous to an init function in an OTP
GenServer. When that’s done, LiveView will render the initial view. We’ll
simply render the HTML directly inline using the ~L""" sigil. As you might
expect, this sigil does everything necessary to render a LiveView.

report erratum • discuss

Phoenix LiveView • 303

http://pragprog.com/titles/phoenix14/errata/add
http://forums.pragprog.com/forums/phoenix14

What we’ve built is not a one-time render. It actually starts a process and will
loop over messages, calling render/1 each time there’s a new event.

Since pure HTML is not too interesting, let’s spice things up a little bit. Let’s
set some state in the socket within our mount, like this:

defmodule DemoWeb.WelcomeLive do
use Phoenix.LiveView

def render(assigns) do
~L"""
<div>
<h2><%= @salutation %></h2>

</div>
"""

end

def mount(_session, socket) do
salutation = "Welcome to LiveView, from the Programming Phoenix team!"
{:ok, assign(socket, salutation: salutation)}

end
end

We moved the changing text to the socket, and added a substitution to the
LiveView. Now, you can get a better look at how we’ll encorporate changing
state in the LiveView. We can simply define fields in socket.assigns, and access
those directly to do substitutions in LiveView. Whenever that state changes,
Phoenix LiveView will use channels to make sure that the changes (and only
the changes) to our state make it down to the client.

So the initial lifecycle for a LiveView before we consider events looks like this:

live(url, LiveView)
|> mount
|> render

You’ve already seen the basics so it’s time to add some interaction. Let’s take
a look at an example with some interaction, a clock.

Processing Events in a Clock
Now that you know how to handle an inbound route with the live macro, let’s
go to the ClockLive view within the Phoenix LiveView example project for help
with the next example. We’ll look at a clock. To keep things simple, we’ll strip
out a few of the bells and whistles.

In this case, we’ll use the Erlang :timer module to send periodic messages to
the end user’s live view process. Here’s how it works.

Chapter 14. What’s Next? • 304

report erratum • discuss

http://pragprog.com/titles/phoenix14/errata/add
http://forums.pragprog.com/forums/phoenix14

First, establish a route in lib/demo_web/router.ex, like this:

live "/clock", ClockLive

We create a route that will go to our live view. Now, let’s take a look at a live
view. For reference, if you are looking at the example, the file is in
lib/demo_web/live/clock_live.ex. It won’t look exactly like this one, but it will be close:

defmodule DemoWeb.ClockLive do
use Phoenix.LiveView
import Calendar.Strftime

def render(assigns) do
~L"""
<div>
<h2>It's <%= strftime!(@date, "%r") %></h2>

</div>
"""

end

That’s easy enough. We render a view, with just a little bit of dynamic data,
a @date field in assigns. We’ll initialize that value when we mount, and also
trigger a periodic message to our process like this:

def mount(_session, socket) do
if connected?(socket), do: :timer.send_interval(1000, self(), :tick)

{:ok, put_date(socket)}
end

defp put_date(socket) do
assign(socket, date: :calendar.local_time())

end

In the mount function, we call :timer.send_interval to send a simple :tick message every
1000 milliseconds to the self() PID, the id for our process. Then, we call a private
function called put_date that uses assign to initialize the @date field in socket.assigns
to the current date and time,so LiveView can render it after we mount.

We still have one more job to do. We need to handle the :tick message, like this:

def handle_info(:tick, socket) do
{:noreply, put_date(socket)}

end
end

Marvelous! Handling the :tick message is a simple handle_info. That’s because
under the hood, this LiveView is a GenServer! Straight process messages
come in through handle_info.

report erratum • discuss

Phoenix LiveView • 305

http://pragprog.com/titles/phoenix14/errata/add
http://forums.pragprog.com/forums/phoenix14

The only thing we need to do is to call our existing put_date(socket) to update
the socket with the current timestamp.

Browse on over to http://localhost:4000/clock and you’ll see the counting date! Keep
in mind that we didn’t have to create any custom JavaScript. Phoenix is
sending down only the parts of the page that need to change.

Let’s see how LiveView handles incoming events from the web page. Let’s
build a simple counter.

Handling Links in a Counter
Let’s say you had a web page and a few links on it for interacting with some
server side content. We could build a Phoenix MVC application. We’d have to
establish a separate route for each link and form. We’d then need to add in a
controller, a view, and we’d need to render HTML, either with functions or via
a template. We’d also possibly need some backend logic, fronted by a context.

Alternatively, we could build a channel and make all communication flow
over a channel. We’d segregate all backend code in the context, just as we do
for MVC apps. That’s a drastic improvement in user experience, and the only
cost is that we have to commit to working in two languages, JavaScript and
Elixir. Still, we can do better.

With LiveView, for the simplest of scenarios, all of our code can live in two
files, the live view and the route. Once we get to the point where we need to
segregate code, we are still free to break backend code into a context, and
frontend code into functions or templates. Let’s take a look.

In lib/demo_web/router.ex, you’ll see the familiar live route, like this:

live "/counter", CounterLive

Next, let’s look at the live view. First, here’s the counter code we’re rendering
from the example in lib/demo_web/live/counter.ex:

defmodule DemoWeb.CounterLive do
use Phoenix.LiveView

def render(assigns) do
~L"""
<div>
<h1>The count is: <%= @val %></h1>
<button phx-click="boom" class="alert-danger">BOOM</button>
<button phx-click="dec">-</button>
<button phx-click="inc">+</button>

</div>
"""

end

Chapter 14. What’s Next? • 306

report erratum • discuss

http://pragprog.com/titles/phoenix14/errata/add
http://forums.pragprog.com/forums/phoenix14

This render function is starting to have some real meat on the bones. After the
initial ceremony that defines the module and the use LiveView directive to
announce our intention to use LiveView directives, we do the work to render
our page. First we have a heading with our count, @val.

After the initial heading, we have three buttons. One calls an unsupported
message called boom. The other two operate our counter. The only difference
from pure HTML is that they support data attributes called phx-click. This
attribute signals the JavaScript code on the client to send a Phoenix Channels
message to the client!

You can already imagine what the rest of the app looks like. Here’s the initial
mount:

def mount(_session, socket) do
{:ok, assign(socket, :val, 0)}

end

We must initialize every assigns field so our mount function establishes the initial
value of our counter, a :val of 0. Then, we build the functions to handle our
events and update the server, like this:

def handle_event("inc", _, socket) do
{:noreply, update(socket, :val, &(&1 + 1))}

end

def handle_event("dec", _, socket) do
{:noreply, update(socket, :val, &(&1 - 1))}

end
end

These are custom LiveView events, but they work just like messages. The
channel process for a given user will get a handle_event message each time that
user clicks on an element with a phx-click data attribute. In this case, we have
events for inc and dec. They both work the same, so let’s look at just the inc
message.

We send a :noreply tuple, updating the :val field in socket with an anonymous
function to increment a counter, and…

we’re done! There’s no additional route for each action, no custom JavaScript
to parse the result, no work to determine which pieces of the page change
and which stay the same. LiveView handles it all.

Typically, the handle_event will update the state in some way, but it doesn’t
have to. Let’s take a look at a third use case, command-line completion.

report erratum • discuss

Phoenix LiveView • 307

http://pragprog.com/titles/phoenix14/errata/add
http://forums.pragprog.com/forums/phoenix14

Here’s what the pipeline looks like for an arbitrary event:

handle_event(event, data, socket)
|> render

While we’re here, open up your browser and navigate to the counter page.
Increment the counter a couple of times and you’ll see the count update.
Notice that it’s extremely snappy! It will usually remain so once you deploy
it live.

Let’s try one more thing. Remember, channels is built on OTP, and it wouldn’t
be an OTP demo without some kind of a crash. Click the boom button. We
haven’t implemented boom yet, so when you flip over to your Phoenix server
tab, you’ll see a stack trace like this one:

[error] GenServer #PID<0.568.0> terminating
** (FunctionClauseError) no function clause matching in

DemoWeb.CounterLive.handle_event/3
(demo) lib/demo_web/live/counter_live.ex:24:

DemoWeb.CounterLive.handle_event("boom", "",
%Phoenix.LiveView.Socket{assigns: %{val: 2},
changed: nil, connected?: true, ...})

...

Since we’re on OTP, our supervisor will start again! You’ll see a brief reloading
indicator. Then, you can go back to your browser to see the counter, restarted
to zero. Click it a few times. It still works:

Now that we can process links, we are ready to take the next step. Let’s take
an interactive use case for forms, autocomplete.

Implementing Autocomplete Forms
Command-line completion is typically a tedious use case that is a headache
to implement but also tremendously useful for users. This is what it looks
like with LiveView.

Rather than show you all of the example, let’s look at the bits that do the
most work.

First, here’s the view:

Chapter 14. What’s Next? • 308

report erratum • discuss

http://pragprog.com/titles/phoenix14/errata/add
http://forums.pragprog.com/forums/phoenix14

def render(assigns) do
~L"""
<form phx-change="suggest" phx-submit="search">

<input type="text" name="q" value="<%= @query %>" list="matches"
placeholder="Search..." <%= if @loading, do: "readonly" %>/>

As you might expect, the form is a pure HTML form. We tag the form with
two attributes. phx-change triggers an event when anything on the form changes
and phx-submit triggers an event whenever a user submits a form.

Note that we also introduce a @loading field so we can disable the text field when
we’re loading results.

Next, let’s look at the real HTML work, the rendering of the results.

<datalist id="matches">
<%= for match <- @matches do %>

<option value="<%= match %>"><%= match %></option>
<% end %>

</datalist>
<%= if @result do %><pre><%= @result %></pre><% end %>

</form>
"""

end

We present the results in two pieces: the @matches that we return on phx-change
and the @result we return on phx-submit.

We use for to produce an option for each of the @matches. We then conditionally
display a @result if one exists.

Here’s the cool part. LiveView will only send down the parts of the page that
need to change! If any typing triggers no change, the user’s browser will not
get an update command!

Here’s the handle_event that processes the suggest message that we asked for
with the phx-change data attribute:

def handle_event("suggest", %{"q" => query}, socket)
when byte_size(query) <= 100 do

{words, _} =
System.cmd("grep", ["^#{query}.*", "-m", "5", "/usr/share/dict/words"])

{:noreply, assign(socket, matches: String.split(words, "\n"))}
end

Note that this command is specific to Unix! This code simply calls an OS shell
command to look for results in a system dictionary and sets the state based
on the results.

report erratum • discuss

Phoenix LiveView • 309

http://pragprog.com/titles/phoenix14/errata/add
http://forums.pragprog.com/forums/phoenix14

Now, let’s look at a form submit:

def handle_event("search", %{"q" => query}, socket)
when byte_size(query) <= 100 do

send(self(), {:search, query})
{

:noreply,
assign(socket,
query: query,
result: "Searching...",
loading: true,
matches: [])

}
end

def handle_info({:search, query}, socket) do
... do search ...

end

We send an asynchronous message to ourselves so that we can report back
to the user while the system loads the results. As this application gets more
robust, we can break out the search and autocomplete business logic into its own
context.

If you’d like, you can open up the developer’s tools for your browser. In
Chrome, you can do so by inspecting an element on the page and then clicking
on the network tab. Type a few characters and you’ll see that LiveView is
sending down only the precise parts of the page that change!

We’ve touched on a basic form submission. Let’s take on a more complex
problem, form validation.

Validating Forms
You have seen the main two LiveView events. phx-change fires on each form
change and phx-submit fires on submit. Form validation is an especially tedious
use case for most web applications, but they are tremendously useful to users.

When a user’s head space can stay in one place, a live view, the problem gets
much easier to solve. Once again, we’ll go to the LiveView examples to find
the user_live demonstration.

In this file, you’ll find a more practical production code organization. In
lib/demo/context, you’ll find an accounts context much like the one we built for
Rumbl. We’ll use a few of these throughout the demo.

In lib/demo_web/live/user_live, you’ll find live views for various use cases. We’re
going to focus on new.ex.

Chapter 14. What’s Next? • 310

report erratum • discuss

http://pragprog.com/titles/phoenix14/errata/add
http://forums.pragprog.com/forums/phoenix14

First, let’s look at the mount function:

def mount(_session, socket) do
{:ok, assign(socket, changeset: Accounts.change_user(%User{}))}

end

Notice that we’re calling into our Accounts context to get a changeset for a User.
Otherwise, the mount looks exactly like the other examples you’ve seen.

Next, let’s look at the render. It may surprise you:

def render(assigns) do
Phoenix.View.render(DemoWeb.UserView, "new.html", assigns)

end

For the first time in one of these examples, you see us render a template
directly. We can also render other live views, but this one is similar to the
simple template Phoenix generates for a new generated resource. It’s a skinny
wrapper that in turn renders a form with fields that look like this:

<%= f = form_for @changeset,
"#",
[phx_change: :validate, phx_submit: :save] %>

...
<%= label f, :username %>
<%= text_input f, :username %>
<%= error_tag f, :username %>
...

There are no surprises here. We simply add the data attributes for phx_change
and phx_submit. The main thing to note for the rest of the form is that we have
the error_tag fields that will show messages for a changeset when errors are
present. Again, this code is not LiveView specific. These look exactly as they
would for any other MVC style template.

Let’s see what happens when a user submits a form:

def handle_event("save", %{"user" => user_params}, socket) do
case Accounts.create_user(user_params) do

{:ok, user} ->
{:stop,
socket
|> put_flash(:info, "user created")
|> redirect(to: Routes.live_path(socket, UserLive.Show, user))}

{:error, %Ecto.Changeset{} = changeset} ->
{:noreply, assign(socket, changeset: changeset)}

end
end

report erratum • discuss

Phoenix LiveView • 311

http://pragprog.com/titles/phoenix14/errata/add
http://forums.pragprog.com/forums/phoenix14

This code is remarkably simple. We use our context to create the user. Based
on the results, we either redirect directly to another live view, or we assign
the :changeset with errors to our existing socket.

That’s all we need to do to get full validation! If you type a partial email
address, you’ll get an error code until the email you type is valid, like this:

We’ve just coded validation with a full interactive experience, but with less
effort than we would put into an old school MVC application. The end result
is snappy, highly interactive, and easy to code.

Learning More
We’ve just scratched the surface. LiveView can process other kinds of events
too, including keystrokes. It’s not built for games but it’s fluid and efficient
enough to build them easily. Let’s briefly highlight some of the LiveView fea-
tures you have not seen yet.

• Live views can render other live views like this: live_render(@socket,
DemoWeb.ImageLive)

• When LiveView sends down new content for a page, it sends down only
changes since the last render. If there are no changes, nothing is sent.

• LiveView can handle other kinds of events too, including keystroke events
for both key up and key down.

• It works seamlessly with Phoenix PubSub. Therefore, you can push
changes down to the page at any time, like we did with channels.

Chapter 14. What’s Next? • 312

report erratum • discuss

http://pragprog.com/titles/phoenix14/errata/add
http://forums.pragprog.com/forums/phoenix14

You can see how LiveView might reshape how we write many of the web
applications that we develop every day. With it, you get three huge wins. You’ll
write much less code to solve a given problem; you won’t have to become a
JavaScript expert to build a nice interactive application; and you don’t need
to think about sending data between the client and the server. Removing
those burdens will represent tremendous gains for the typical Phoenix
developer.

Now that you’ve seen what’s happening in LiveView, it’s time to move on to
one of the foundational libraries that makes Phoenix click, the PubSub layer.

Phoenix PubSub 2.0

Phoenix PubSub is the heart of real-time Phoenix. It powers both Phoenix
Channels, via the Phoenix.PubSub module, and Channel Presence, via
Phoenix.Tracker. Originally, Phoenix PubSub was written as part of Phoenix,
and then extracted as its own project. Since then, many companies have
contributed to the project, especially to ensure that its implementation
scales to potentially millions of users.

For the upcoming Phoenix PubSub version, the Phoenix team is working
mostly on simplifying the implementation, streamlining the code and making
custom adapters easier to implement. On the Phoenix side of things, one
important change is also coming: Phoenix will no longer start the Phoenix
PubSub as part of the endpoint. Instead, you will need to explicitly start
Phoenix PubSub in your supervision tree.

In other words, the supervision tree that Phoenix generates in lib/rumbl/applica-
tion.ex will probably look something like this:

children = [
Start the Ecto repository
Rumbl.Repo,
Start the PubSub system
{Phoenix.PubSub, name: Rumbl.PubSub, adapter: Phoenix.PubSub.PG2},
Start the Endpoint when the application starts
RumblWeb.Endpoint,
Starts a Worker by calling: Rumbl.Worker.start_link(arg)
{Rumbl.Worker, arg},

]

This change is particularly important for umbrella projects, which probably
want to start Rumbl.PubSub as part of their non-web applications. (e.g. rumbl),
while consuming from Rumbl.PubSub in the web application (e.g. rumbl_web). With
this small tweak, you’ll be able to do exactly that.

report erratum • discuss

Phoenix PubSub 2.0 • 313

http://pragprog.com/titles/phoenix14/errata/add
http://forums.pragprog.com/forums/phoenix14

Phoenix and Telemetry Integration
As companies started using Phoenix production, there was a growing need
to get data out of their Phoenix applications. Because the Erlang VM provides
a huge amount of insight about the running system, developers had to reim-
plement the infrastructure that collects metrics over and over again, and write
the integration with their preferred metrics platforms.

Other teams would choose Application Performance Monitoring tools, such
as AppSignal,8 Scout App,9 New Relic,10 and others. However, when it came
to tracking app specific data, each of those tools would have distinct APIs
which you would need to learn.

The Elixir community decided to tackle this challenge by implementing the
Telemetry toolset. With Telemetry, developers have a unified API for dispatch-
ing metrics and instrumentation.11 Telemetry also provides a mechanism for
collecting built-in VM metrics12 and a shared vocabulary for consuming and
reporting those metrics.13

You might wonder what all of this means for Phoenix developers. In future
Phoenix versions, we will probably have a new lib/rumbl_web/telemetry.ex file that
outlines all the metrics you may want to extract from your system and how
they should be reported. At the moment, we don’t have all details in place,
but the file may look like this:

defmodule RumblWeb.Telemetry doLine 1

use Supervisor-

import Telemetry.Metrics-

-

def start_link(arg) do5

Supervisor.start_link(__MODULE__, arg, name: __MODULE__)-

end-

-

def init(_arg) do-

children = [10

{:telemetry_poller,-

measurements: periodic_measurements(),-

period: 10_000},-

{Telemetry.StatsD, metrics: metrics()}-

]15

8. https://appsignal.com/elixir
9. https://scoutapm.com/elixir-monitoring
10. https://newrelic.com/
11. https://github.com/beam-telemetry/telemetry
12. https://github.com/beam-telemetry/telemetry_poller
13. https://github.com/beam-telemetry/telemetry_metrics

Chapter 14. What’s Next? • 314

report erratum • discuss

https://appsignal.com/elixir
https://scoutapm.com/elixir-monitoring
https://newrelic.com/
https://github.com/beam-telemetry/telemetry
https://github.com/beam-telemetry/telemetry_poller
https://github.com/beam-telemetry/telemetry_metrics
http://pragprog.com/titles/phoenix14/errata/add
http://forums.pragprog.com/forums/phoenix14

-

Supervisor.init(children, strategy: :one_for_one)-

end-

-

defp metrics do20

[-

VM Metrics-

last_value("vm.memory.total", unit: :byte),-

last_value("vm.total_run_queue_lengths.total"),-

last_value("vm.total_run_queue_lengths.cpu"),25

last_value("vm.total_run_queue_lengths.io"),-

-

last_value("rumbl.worker.memory", unit: :byte),-

last_value("rumbl.worker.message_queue_len"),-

30

Database Time Metrics-

summary("rumbl.repo.query.total_time", unit: {:native, :millisecond}),-

summary("rumbl.repo.query.decode_time", unit: {:native, :millisecond}),-

summary("rumbl.repo.query.query_time", unit: {:native, :millisecond}),-

summary("rumbl.repo.query.queue_time", unit: {:native, :millisecond}),35

-

Phoenix Time Metrics-

summary("phoenix.endpoint.stop.duration",-

unit: {:native, :millisecond}),-

summary(40

"phoenix.route_dispatch.stop.duration",-

unit: {:native, :millisecond},-

tags: [:plug]-

)-

]45

end-

-

defp periodic_measurements do-

[-

{:process_info,50

event: [:rumbl, :worker],-

name: Rumbl.Worker,-

keys: [:message_queue_len, :memory]}-

]-

end55

end-

The new file starts by defining a supervisor. The supervisor has two children.
The first is a :telemetry_poller child that executes a list of measurements every
10 seconds. The second is a StatsD14 reporter on line 14. In this case, StatsD
is just an example for a metric aggregation tool. You may add others or you
may completely replace it. As the community and more companies rely on
Telemetry, we expect integration with many other reporters in the future.

14. https://github.com/statsd/statsd

report erratum • discuss

Phoenix and Telemetry Integration • 315

https://github.com/statsd/statsd
http://pragprog.com/titles/phoenix14/errata/add
http://forums.pragprog.com/forums/phoenix14

You can also see two private functions in the module. The supervisor will
invoke them when starting the supervision children as part of the init function.
In the metrics function, we list all of the metrics we want the reporter to publish.
These include VM metrics, such as memory usage and the run queue
length—which shows how busy the machine is while performing I/O and CPU
tasks. Then we list time measurements for database queries and Phoenix
operations.

Finally, in the periodic_measurements function, we define all periodic measure-
ments for a process. For example, you can collect information such as mem-
ory usage and message queue length from any process in the system. Other
custom measurements, such as ets_info, may be available in the future. This
can be useful to track memory usage per table, such as the ETS table used
by the InfoSys system.

Though the final API may change a little or a lot, the goal of integrating Phoenix
and Telemetry remains clear: help developers, teams, and companies extract
the maximum amount of insight possible from their production systems.

Good Luck!
That’s a brief taste of what’s happening in the Phoenix ecosystem right now.
With the continuous growth in this space, we hope and fully expect the
community to contribute ideas faster than we can write about them. We also
expect that you, our readers, will use the ideas in this book to change the
way the world thinks about what’s possible.

We’re excited to see what you do with Phoenix. Thanks for taking this journey
with us!

Chapter 14. What’s Next? • 316

report erratum • discuss

http://pragprog.com/titles/phoenix14/errata/add
http://forums.pragprog.com/forums/phoenix14

Index

SYMBOLS
!= operator, 132

/
copying and directory

navigation, 237
for routes, 24, 49

: syntax, 27

< operator, 132

<%= %> tags, 29, 51

<= operator, 132

= operator, 27–30

== operator, 132

> operator, 132

>= operator, 132

\, copying and directory navi-
gation, 237

^ (caret), 131, 245

_ (underscore) for arguments,
248

|> (pipe operator), 17

DIGITS
404 error, 167

A
abstractions, see also process-

es; structs
about, 10, 14
escape hatches and, 134
OTP, 243, 247, 257

acceptance testing, 146

:action field, 74

action function, 115

actions
changesets, 74

default, 115
defined, 19
endpoints, 38
frequently used, 49
understanding Phoenix

layers, 19

adapter field, 88

adapters, PubSub Adapter,
301

add macro, 62

:after_join, 222

agents, 256

aggregate operators, 132

aliasing
router helpers, 72, 104
testing with, 159

all, 127–130

alter macro, 186

and Boolean operator, 132

annotations
binding, 184
channels, 196, 202–207,

210–217, 299
clickable, 204, 216
container, 196, 204–205
CSS, 185
duplicate, 218
information system with

OTP, 257–277
intercepting channels,

299
listing, 212
new button, 196
persisting, 210–217
rumbl app diagram, 101
scheduling, 215
seed data, 276

sending and receiving,
202–207

syncing with playback,
215

testing, 291–296

APIs, 10

app.js file, 182

application function, 78

applications
creating, 78
default outline, 3
as functions, 30
introspection with Observ-

er, 230–233
as series of plugs, 34
starting/stopping with

Observer, 230, 232
versioning, 233

apply, 115

apps directory, 233

AppSignal, 314

arguments
restarting server with

OTP, 253
typespecs, 265

assert, 146, 160, 166

assert_broadcast, 294

assert_error_sent, 167

assert_receive, 281, 294

assert_reply, 294

assert_shutdown, 281

assets
asset management tools,

21
copying, 239
file structure, 181
umbrella projects, 239

assets directory, 181

assigns
about, 87
authentication plug, 89
categories, 129
LiveView, 303, 305, 307
logging in/out, 93
sockets, 201, 203
templates, 29, 56–57
testing with bypasses,

162
tokens, 208

assoc, 113

assoc_constraint, 140, 187

associations
categories with videos,

123, 126–130
categories, deleting, 141
persisting annotations,

214
preloading, 135
users with videos, 110–

117
using, 111–117
validating foreign keys,

139–141

async: flag, testing, 147, 152,
157, 291, 293

async_nolink, 258, 265

async_query, 265

atoms
pattern matching keys,

28–29
tagging, 164

authenticate_user, 167

authentication, 77–100, see
also security; validations

changesets, 79–82
deleting sessions, 99
logging in/out, 84, 93–

100
password hashing, 78–

82, 172
plug, 84, 88–100
preparation, 77–78
repositories, 23
restricting access, 89–92
session-based, 77, 207
sockets, 199, 207–209,

290
testing, 153, 158–172,

291
token, 207–209, 291

autogenerate: true option, 192

avg, 132

await, 268

B
backends, see also WolframAl-

pha
attributes, 264
cache server for, 259–

263, 272–274
diagram, 259
isolating, 285–289
testing, 279–296

@backends module attribute,
264

.beam files, 32

behaviours, see also GenServ-
er; plugs; supervision

backend, 265
term, 191

belongs_to association, 110,
120, 142, 211

binding
annotations, 184
queries, 133–134

Bing, 277

Bleacher Report, 6

Boolean operators, 132

bottlenecks
cache server for, 259–263
Message Queue (MsgQ),

230

broadcast!, 206

broadcast_annotation, 275

broadcasting
about, 202
integrating information

system, 275
intercepting channels,

299
persisting annotations,

212
security, 207
testing channels, 294
tracking user presence,

222
using, 206

browser pipeline
actions, 38
controller request flow,

42
flow, 35
pipe_through :browser macro,

24
security, 35, 38

browsers, developer’s tools,
310

:brutal_kill, 271

build_assoc, 113–117

:build_path, 236

build_results, 268

Bypass project, 288

bypass_through, 169

bypasses, testing with, 162,
169

C
C#, 301

caching
clearing cache, 262–263,

280
independent caches, 261
integrating with chan-

nels, 274–277
rumbl app information

system, 259–263, 272–
274, 280–282

speed, 52
testing, 280–282
user space concurrency,

6

call
authentication plug, 89
module plugs, 85
testing logged-in users,

162
testing logging in/out,

171

callbacks, 201, see also func-
tions

capture_log, 284

caret (^), 131, 245

case-insensitive queries, 133–
134

CaseTemplate, 290

cast
adding slugs, 187
associations, 110
Ecto types, 191
GenServer, 248
integers and, 191
new user form, 66, 79

categories
adding, 117, 120–121
associations, 123, 126–

130
constraints, 120, 123–

124, 136–143
deleting, 141–143
ordering, 127–130
seed data, 123–126
validating, 136

@categories assigns, 129

category_id, 120

Index • 318

change, 61, 109

Changeset, 61

changeset error messages,
137–139, 212

changesets
about, 66
advantages, 75, 187
allowing crashes, 142
associations, 110, 112
authentication, 79–82
constraints, 137, 141–

143
defined, 59
deleting categories, 141–

143
Ecto setup, 61
error messages, 137–

139, 212
new user form, 66–75
policies, 187
protocols, 71
schemas, 66
separation of interface

from input, 71, 141,
187

tracking changes with, 74
validations, 66–68, 73–

75, 79–82, 139–141,
187

channel macro, 200

Channel Presence, see Pres-
ence

channel_case, 289

ChannelCase, 293

channels, 193–227, see al-
so Presence

about, 11
advantages, 193–195
annotations, 210–217,

299
concurrency, 11, 195
vs. controllers, 201, 203
creating, 195–202
creating ES6 client, 195–

198
defined, 194
diagram, 194
flow, 198
handling disconnects,

217–220
intercepting, 299
isolation, 11, 194
joining, 200–202, 213,

216, 219, 293
live reloading, 300
naming, 201
OTP, 257, 274–277

parameters, 219
preparing servers for,

198–200
scaling, 12, 195
security, 207
sending and receiving

events, 202–207
socket authentication,

207–209
state, 194, 201, 209, 217
testing, 289–296
tracking user Presence,

220–226

ChannelTest, 290

child applications, umbrella
projects, 229, 233–241

child processes
child_spec, 252–254
restart strategies, 252–

254
supervision strategies,

250–255

child_spec, 249, 252–254

Chrome, developer’s tools,
310

clean up, after disconnection,
220

clear_interval, 282

click, annotations, 204, 216

clients
annotating videos chan-

nel, 204
as API, 245
building GenServer, 247–

255
creating ES6 client, 195–

198
handling disconnects,

217–220
joining channels, 200–

202
messaging, 204, 213, 215
persisting annotations,

213

clock example of LiveView,
304–306

CoAP, 199

code
for this book, xvii
copying source code, 237
CRUD testing resources,

166
illustrating with pipes, 18
organization, 9, 43, 102
public vs. private logic,

67

reliability, 13
separation with contexts,

20, 43, 45, 65
sharing with nesting

templates, 55
snippets in error pages,

25
source code for Phoenix

Live Reload, 301

Comeonin package, 78, 80, 94

comparison operators, 132

compile time
init plug, 86
query normalization, 131
script compilation, 32

composability
changesets, 187
queries, 127

concurrency, see also chan-
nels; OTP; processes

channels, 11, 195
dynamic languages, xiv
I/O, 5
Java, xv
multi-core, 5–8
performance, 7
testing with, 147, 152,

157
types, 5
understanding, 4–8

cond, 162

config file structure, 31–35

config.exs file, 33

config.js file, 182

:config_path, 236

configuration
applications and Observ-

er, 230
Ecto, 43, 60–63
Elixir, 31, 78
environments, 32–35
file structure, 31–35
master file, 33
supervision policies, 249
umbrella projects, 233,

235, 240
webpack, 182

configure_session, 93, 100

@conn, 57

Conn fields, 86–88

ConnCase, default testing, 159

connect(), channels, 196, 199

connection
abbreviation, 86
@conn access, 57

Index • 319

controller request flow,
42

halting, 87, 90, 92
integration testing, 159
plugs, 86–88
understanding Phoenix

layers, 18–20, 36
understanding plugs, 30

ConnTest, 159

constraints
about, 120, 123
allowing crashes, 142
changesets, 137, 141–

143
defined, 137
deleting and, 141–143
errors, 124, 137–140,

142
terms, 137
understanding, 136–143
validating foreign keys,

139–141

containers, annotations, 196,
204–205

contexts
code organization, 102
controllers and, 43
defined, 20, 43
generators, 102, 107, 118
grouping functions with,

45
grouping resources with,

117–118
hardcoded example, 45–

48
in-context relationships,

117–121
queries in, 128
separation with, 20, 43,

45, 65
testing, 147, 150–157

controller, 26

controllers
authentication plug, 90–

100
building, 49
vs. channels, 201, 203
creating, 25
creating resources, 70–75
default action feature, 115
file structure, 31, 36–38
generators, 102, 104–110
Hello, World example,

23–30, 36–38
location, 25
logging in/out, 93–100

model-view-controller
(MVC) pattern, 19, 37,
65

naming conventions, 55
Phoenix Controller API,

26
plug pipelines, 90
as plugs, 115
rendering templates, 56
rumbl app setup, 42–50
rumbl app, showing single

user, 54–58
rumbl app, watching

videos, 177–192
testing with Mix, 147
tying URL to a function,

23
understanding, 41–43
understanding Phoenix

layers, 19, 34

cookies
channels, 207
Plug.Conn field, 87
security, 93

copy, 237

copying
assets, 239
source code, 237

count, 132

counter example, 243–257,
306–308

Cowboy, 86

cp, 237

crashes
allowing changeset, 142
OTP and, 250
restart strategies, 252–

254
timeouts, 270

create
associating videos with

users, 115
databases, 23, 44
integration testing, 166
pattern matching in, 84
user log in/out, 95

:create action, 49

credentials, developer, 33,
266

cross-site request forgery
(CSRF), 38, 70

cross-site scripting (XSS), 53,
205, 207

CRUD
generators, 102

operations, 68
testing resources, 166

CSRF (cross-site request
forgery), 38, 70

_csrf_token, 70

CSS
annotations, 185
asset management, 21
webpack, 181

custom types, Ecto, 190–192

D
dashboard example, 6

data
adding with repositories,

63–66
annotations seed data,

276
atom keys vs. string keys,

29
category seed data, 123–

126
creating test data, 149
deleting, 141–143
destructuring, 28
fetching with tasks, 263
separating from context,

43, 71, 187
separating from policy,

249
user seed data, 163
validating unique, 137–

139
validating with change-

sets, 187

data-id, 179

data-player-id, 179

data-seek, 216

databases, see also associa-
tions; categories; change-
sets; constraints; migra-
tions; relationships; queries

accessing, 65
adding data, 63–66
creating, 44
errors, 23, 123
relational, 123, 137
testing contexts, 150–157
testing, transactional,

151, 157

DataCase, 150, 157

@date field, 305

date/time operators, 132

date_add, 132

datetime_add, 132

Index • 320

debugging
LiveView and, 303
sockets, 198

:dec, 245, 248

decoupling, with contexts, 45

def, 104

defp, 104

DELETE, sessions, 95

delete
associating videos with

users, 116–117
categories, 141–143
logging in/out, 98, 100
logging in/out links, 98

:delete action, controller setup,
49

:delete_all, 142

delete_all_objects, 263

delete_session, 100

deleting
cached items, 263
cascading deletions, 142
data, 141–143
logging in/out, 98, 100
sessions, 95, 99
testing, 156
users, 142
videos, 116–117, 156

dependencies
directory, 78
fetching, 78
live reloading, 300
umbrella projects, 233,

236–237, 239

deps directory, 78

:deps_path, 236

describe block, 153, 163

destructuring with pattern
matching, 28

developers, credentials, 33,
266

development environment,
20–22, 33

directories
about, xiii
dependencies, 78
session, 96
structure, 31–38
umbrella projects, 233

disconnects, handling, 217–
220

div, watching videos, 179

documentation, accessing, 3

down migrations, 109, 186

:drop, 100

DRY (Don’t Repeat Yourself)
principle, 145, 165

dump, 191

dynamic languages, Phoenix
advantages, xiv

E
each, 161

ECMAScript 6 (ES6)
advantages, 196
creating client, 198
creating client with chan-

nels, 195–197
webpack, 182

Ecto, see also associations;
changesets; constraints;
databases; Ecto Sandbox;
generators; migrations; rela-
tionships; queries

about, 20, 59
configuring, 43, 60–63
internationalization, 298
PostgreSQL installation,

21
starting from OTP, 63
types, 190–192

Ecto Sandbox
about, 157
isolating backend, 285–

289, 293
setup, 159
testing contexts, 150

:edit, 49, 116

.eex files, 26

EEx template language, 51

Elixir, see also macros; pat-
tern matching; processes;
protocols; structs

about, xiv
configuration, 31, 78
Embedded Elixir, 51
functions, understand-

ing, 17–20
installation, 20
resources on, 20, 147
testing without Phoenix,

146
versions, 20

Elixir RAM and the Template
of Doom, 52

Embedded Elixir, 51

encryption, secret_key_base, 87

@endpoint module attribute,
159

endpoints
actions, 38
controller request flow,

42
default outline, 3
defined, 19, 33
Hello, World example, 33
integration testing, 158–

167
module plug example, 85
multiple, 35
as plugs, 34
routers and, 36
umbrella projects, 238
understanding Phoenix

layers, 19, 34
understanding file struc-

ture, 32–35

Enum.each, 161

environment variables
storing in secret.exs file,

33, 266
switching environments,

33, 63

environments
applications and Observ-

er, 230
changing, 33, 63
configuration, 32–35
file structure, 32–35
installing development,

20–22
migrations, 63
supported, 33

Erlang, see also OTP
installation, 20
multi-core concurrency,

5
in Observer, 230
Phoenix advantages, xv
process model, xv
PubSub Adapter, 301
reliability, 14
scaling, 38
versions, 20

Erlang Distribution Protocol,
301

Erlang Term Storage (ETS),
259–263, 316

erlang-observer package, 230

error messages
constraints, 137–140
crashes, 143
generating, 56
Hello, World app, 25
listing, 151, 153

Index • 321

logging in/out, 95
persisting annotations,

212

error_tag, 74, 311

errors
constraints, 124, 137–

140, 142
databases, 23, 123
displaying, 74, 311
Ecto, 65
ETS, 261
forms with LiveView, 311
Hello, World app, 25
ignoring, 271
listing, 151, 153
NoResultsError, 167
pattern matching, 56
persisting annotations,

212
queries, 133
seed data, 124
spelling, 46
validations, 73–75, 79–82

errors_on, 151, 153

esc, 205

escaping
interpolated values, 134
user input, 205

ETS, see Erlang Term Storage
(ETS)

:ets, 259–263

event handlers
annotation button, 204,

216
LiveView, 302–313

events
broadcasting, 206
defined, 194
intercepting channels,

299
sending and receiving in

channels, 202–207

eventually, 281

.ex files, 23

exit, 281

explorer, WolframAlpha API,
286

.exs files, 32

extensions, about, 10

ExUnit, understanding, 146,
see also testing

F
failover, 249–252

fastlaning, 299

fetch, 224, 261, 280

fetch_flash, 169

fetch_xml, 268

fetchable fields, 87

field, 61, 132

fields
categories, 120
fetchable, 87
Plug.Conn, 86–88
videos, 102

file structure, Phoenix, 31–38

file_system, 300

filtering
annotation messages,

216
querying associations,

136

flash
about, 35
adding messages, 72
authentication plug, 90
logging in/out, 95
testing plugs, 169
validation error mes-

sages, 73

flush, 268

foreign keys
defined, 109
deleting categories, 141
:user_id, 110
validating with con-

straints, 139–141

foreign_key_constraint, 141

form_for, 69, 71, 96

FormData protocol, 75

forms
autocompletion, 308–310
building, 66–75
form tags, 99
FormData protocol, 75
LiveView, 302–304, 308–

312
log in/out, 96, 99
new user, 66–75, 82–85
new video, 106
plug structs, 96
validating, 310–312
video categories, 129

fragment, 132

fragments, query, 134

from macro, 127–131, 133

function plugs, 85, 90, see
also plugs

functional programming, shift
to, xiii

functions
applications as, 30
chaining, 17
endpoints as chains of,

34
grouping with contexts,

45
grouping with pipelines,

19, 71
helper functions, 52–54,

57, 72
vs. libraries, 150
LiveView pages as, 303
pattern matching, 27–30
pipelines as, 17
plugs as, 31, 85
restarting server with

OTP, 253
templates as, 50, 52, 55
tying URLs, 23
typespecs, 265
understanding layers,

17–20
understanding pipeline

structure, 30–38

G
generators

help command, 118
schema, 210
using, 101–110
web pages, 234

GenServer
about, xv
agents, 256
building, 247–255
LiveViews as, 305
testing cache, 280–282

GET, sessions, 95

get, 49, 170, 256

GET requests, 49

getCurrentTime, 184

get_and_update, 256

get_change, 187

Gettext, 78, 298

gettext directory, 299

H
halt, 90, 92

halted field, 87, 92

handle, 299

handle_call, 248

handle_cast, 248

handle_event, 307, 309

handle_in, 202, 206, 212

Index • 322

handle_info, 202–203, 222,
250, 305

handle_out, 202, 299

has_many, 142, 210

hashing passwords, 78–82,
172, 240

headers
customizing by user, 97–

100
Plug.Conn fields, 87–88

Hello, World app
building, 22–30
file structure, 31–38

help, generators, 118

helper functions
about, 57
aliasing, 72
resources on, 54
using, 52–54

Hex, xv, 21, 158

host field, 87

HTML
generators, 102, 118
helper functions, 52–54
safety, 53, 56
test helpers, 160–161

html_response, 160–161

HTTP
Bypass project, 288
information system re-

quests, 268
resources macro, 68
response fields, 88
response string, 88
stubbing to isolate back-

end, 285–289

:http_client, 286

:httpc, 268, 285

I
I/O concurrency, 5

I/O lists, 52

id
channels, 199
videos, 179, 189

:id key, 61, 190, 192

IEx
customizing, 126
starting Elixir without

server, 46

iframe, 184

ilike, 132

immutability
about, 4
testing and, 145

@impl true , 267

import statements, 54, 182

:in_umbrella, 236

in operator, 132

:inc, 245, 248

inclusion (in) operator, 132

:index action
associating videos with

users, 116
controller setup, 49
restricting access, 89–92

[info] blocks, 23

information system with OTP
caching results, 272–274
designing, 257–277
integrating with chan-

nels, 274–277
testing, 279–296

init
authentication plug, 89
GenServer, 248
module plugs, 85
supervisors, 250

inotify, 22

:insert (ETS), 261

insert (Repo), 211

inserted_at, 62

installation
asset management tools,

21
development environ-

ment, 20–22
Elixir, 20
Erlang, 20
Hex, 21
Node.js, 21
Observer, 230
Phoenix, 22
PostgreSQL, 21
webpack, 21

integers, protocols with cus-
tom types, 191

integration testing
defined, 146
negative tests, 166
OTP, 279
performance, 158
using, 158–167

Interactive Elixir (IEx), see IEx

interactivity, 10

intercept, 299

internationalization, 78, 298

“Internationalization using
Gettext in the Phoenix
framework”, 299

interpolated values, escaping,
134

:interval, 262

introspection with Observer,
229–233, 248

is_nil, 132

isolation
backend, 285–289
building apps, 275
change policy, 71
channels, 11, 194
with contexts, 45
Ecto Sandbox, 157, 285–

289, 293
grouping functions, 72
queries, 132
testing, 145, 157–158,

162–163, 167, 285–
289, 293

J
Java

concurrency, xv
Phoenix advantages, xv
Phoenix client, 301

JavaScript, see also EC-
MAScript 6 (ES6)

asset management, 21
dependencies in umbrella

projects, 239
Presence API, 222–224
watching videos, 181–185

join
channels, 201–202, 213,

216, 219, 293
querying associations,

136

joining
channels, 200–202, 213,

216, 219, 293
channels, testing, 291–

296
querying associations,

136

JSON
generators, 102, 118
Hello, World example, 36
persisting annotations,

213
testing responses, 160

json_response, 160

Index • 323

K
keys

developer credentials,
266

Ecto schema, 61
foreign, 109–110, 139–

141
key/value pairs for

caching, 261
maps, 46
pattern matching, 28–29
primary, 109, 190, 192
secret_key_base, 87
testing cache, 280
tracking user presence,

225
validating with con-

straints, 139–141

keystroke events and Live-
View, 312

keywords syntax, queries,
132

kill signal, 232

L
~L""" sigil, 303

languages
dynamic, xiv
functional, xiii
internationalization, 78,

298

last_seen_id, 218–220

layers
productivity with main-

tainability, 3
public vs. private logic,

67
queries and, 128
understanding, 17–20,

35–36

:layout option, default, 57

layouts
adding My Videos link,

178
default, 57
logging in/out, 93, 97–

100

lib
file structure, 31–32
Mix project structure, 32

libraries
file structure, 31–32
vs. functions, 150

lightweight processes,
see processes

like, 132

link function
as helper function, 52
logging in/out, 97–100
rumbl view setup, 52
watching videos, 180

links
generating, 188
in LiveViews, 306–308
permalinks, 190–192

Linux and live reloading, 22

list, 223

list_users_with_ids, 225

listen, 245

lists
annotations, 212
backends, 264
error messages, 151, 153
I/O lists, 52
listing words with ~w,

126
presences, 223, 225
processes in Observer,

230
tagging, 164
videos, 115

live, 303

live reloading, 22, 26, 300

live_render, 312

LiveView
about, xiii, 10, 12
forms, 302–304, 308–312
state, 13
using, 302–313

load, 191

@loading field, 309

localization, 298

lock (Mix), 32

:lockfile, 236

:logger, 78

logger (JavaScript), 198

logging
capturing log when test-

ing, 284
Elixir configuration, 78
with logger, 198
master configuration file,

33

logging in/out
forms, 96, 99
links, 97–100
tagging, 163
testing, 160–161, 170–

172
testing channels, 292

testing logged-in users,
162–167

users, 84, 93–100

:login_as, 163, 292

login_conn, 170

longpoll, 199

lookup_element, 261

M
macros

about, xiv
advantages, 8–10
expansion, 92
ExUnit, 146
performance, 9
queries, 126, 133

maintainability
contexts, 43
dynamic languages, xiv
vs. productivity, 2–4
readability and, 4

make_ref(), 245

maps, 46–47

@matches, 309

max, 132

max_age, 209

max_restarts, 254

max_seconds, 254

memory
allocation in Observer,

230
caching with ETS, 259,

262
metrics, 316
multi-core concurrency,

5
script compilation, 32

message containers, annota-
tions, 196, 204–205

Message Queue (MsgQ), 230

messages, see also annota-
tions; flash

client-side, 204, 215
intercepting, 299
OTP, 202
persisting annotations,

212
registering processes, 256
security, 207
state and OTP, 246, 248
testing channels, 294
tracking user presence,

222
using, 206

Index • 324

metadata, tracking user
presence, 222, 225

method field, 87

:method option, form tags, 99

metrics, 314–316

migrate task, 63

Migration API, 62

migration command, 61, 119

migrations
changing environments,

63
defined, 61
generators, 102, 108, 119
naming conventions, 61
rolling back, 109
up/down, 109, 186
using, 60–63

min, 132

minification, 181–182

Mix
about, xv
creating projects in, 22,

30
generators, 101–110
Phoenix installation, 22
project structure, 31
tasks in, 22
testing with, 147

MIX_ENV environment variable,
33

mocks
disadvantages, 285
strategies for, 288
vs. stubs, 284–285

model-view-controller (MVC)
pattern, 19, 37, 65

models
file structure, 31, 36–38
Hello, World example,

36–38
model-view-controller

(MVC) pattern, 19, 37,
65

__MODULE__ directive, 115

module plugs, 85, see al-
so plugs

modules
file structure, 37
__MODULE__ directive, 115
module plugs, 85
names, 55, 115
restarting server with

OTP, 253

tags for clearing cache,
280

views as, 51, 55, 130

monitors, 269, 281

mount, 303, 305, 307, 311

multi-core concurrency, 5–8

MVC (model-view-controller)
pattern, 19, 37, 65

N
name, backend behaviours,

265

:name option, agents, 256

:named_table (ETS), 262

naming
channels, 201
constraints, 139
conventions, 55, 61,

103, 201
migrations, 61
modules, 55, 115
pluralized form, 103
processes, 256
query variables, 133
registered names, 256
servers, 261
tables, 261
typespecs, 265

nesting templates, 55–57

new command
applications, 43
associating videos with

users, 115

:new controller action, 49

New Relic, 314

new_annotation, 205–206, 212,
219

:nilify_all, 142

--no-webpack option, 184

no_assoc_constraint, 142

no_user_verify(), 94

Node.js, 21

:noreply, 203, 206, 213

NoResultsError, 167

normalization, 131

not Boolean operator, 132

:not_found, 167

:nothing, 125, 142

notification system, crashes,
143

npm, 21

null check functions, 132

O
Objective-C, 301

Observer, 229–233, 248

onIframeReady, 184

onReady, 196, 223

onSync, 223, 226

onYouTubeIframeAPIReady, 184

onYouTubeReady, 184

:on_conflict, 125

:on_delete, 142

one, 113, 131

one-to-many associations,
111

:one_for_all strategy, 250, 254

:one_for_one strategy, 250, 254

:only option, 68

opts, 250

or Boolean operator, 132

:order_by option, 127

ordering
queries, 127–130
tests, 147

OTP
about, xv, 20, 243
abstractions, 247
agents, 256
building GenServer for,

247–255
channels, 257, 274–277
counter example, 243–

257, 306–308
failover, 249–252
information system with,

257–277, 279–296
messages, 202
naming conventions, 201
Presence, 221
registering processes, 256
restarting with, 249–254,

258
retrying, 254
scaling, 38
starting key services, 63
supervision, 249–258
testing, 279–296
testing channels, 289–

296

OWASP, 80

P
Param protocol, 188

parameters
changesets, 66
channels, 219

Index • 325

Hello, World example,
27–30

pattern matching, 27–30
Plug.Conn field, 87
separating elements, 54
slugging URLs, 188
socket authentication,

209
syntax, 27

params
handling channel discon-

nects, 220
Plug.Conn field, 87
separating elements, 54

parse, 191

parsing
strings, 191
XML, 266–267
XML, testing, 287

password_hash, 80

passwords, see also authenti-
cation

changesets, 79–82
checking with variable

timing, 94
Ecto setup, 60
hashing, 78–82, 172, 240
logging in/out, 95
Repo, 23, 60
resources on, 80
rules, 80
storing production pass-

words in secret.exs file,
33, 266

testing authentication,
153

path_info field, 87

pattern matching
channels, 201
controller request flow,

42
in create, 84
destructuring with, 28
extracting video IDs from

YouTube URLs, 179,
188

functions, 27–30
Hello, World example,

27–30
keys, 28–29
performance, 9
regular expressions, 179
templates, 56
testing with, 28

Pbkdf2 password hashing, 78

performance
concurrency, 7

dynamic languages, xiv
information system exam-

ple, 274
integration testing, 158
interactivity, 11
intercepting channels,

299
macros, 9
measuring execution

time, 274
password hashing, 172
pattern matching, 9
performance testing,

146, 296
Phoenix, xiv, xvi
queries, 131
scaling, 11
templates, 52
of tests, 145, 157, 172,

240, 288, 291

periodic_measurements, 316

permalinks, 190–192

:permanent restart strategy, 253

Phoenix, see also channels;
contexts; LiveView; plugs;
Presence; protocols

advantages, xiv–xvi, 1–8
clients for other plat-

forms, 301
development environment

installation, 20–22
features, 2
file structure, 31–38
installation, 22
layers, understanding,

17–20, 35–36
performance, xiv, xvi
productivity vs. maintain-

ability, 2–4
programming styles and,

xiii–xvi
versions, 22, 232, 236

Phoenix Controller API, 26

phoenix function, 18

Phoenix Live Reload, 22, 26,
300

Phoenix LiveView, see Live-
View

Phoenix PubSub
2.0, 313
Adapter, 301
broadcasting and, 206
fastlaning, 299
LiveView and, 312

phx-change, 309–310

phx-click, 307

phx-submit, 309–310

pid, 245

:ping example, 202

pipe operator (|>), 17

pipe segments, 17

pipe_through, 24, 106

pipelines
about, 10
controller plugs, 90
defined, 17
as functions, 17
functions, grouping with,

19, 71
generating resources, 106
generating web inter-

faces, 104
integration testing, 159
of pipelines, 17
as plugs, 31, 35
queries, 132–134
readability, 9
router flow, 35
security, 35, 38
understanding layers,

17–20
understanding structure,

30–38
validations as, 84
viewing code, 18

Plug library, xv, 4, 19, 30, see
also plugs

%Plug.Conn{} struct, 96

plugs
applications as series of,

34
authentication, 84, 88–

100
conn and, 86–88
Conn fields, 86–88
controller pipelines, 90
controllers as, 115
endpoints as, 34
function plugs, 85, 90
as functions, 31, 85
live reloading, 300
module plugs, 85
pipelines as, 31, 35
policies, 106
queries, 129
resources on, 4, 86
structs and, 30, 96
structure, 85–88
unit testing, 167–172

policies
changesets, 187
plugs, 106

POST, sessions, 95

Index • 326

PostgreSQL, see also databas-
es

adapter, 60
Ecto setup, 60
installation, 21
versions, 21

:postgrex, 78

preload, 111, 135

Presence, xiii, 12, 220–226

Presence object, 223

presence task, 221

primary keys, 109, 190, 192

@primary_key module attribute,
192

private, Plug.Conn field, 88

private vs. public logic, 67

process ID, 245

processes, see also child pro-
cesses; supervision

about, 8, 11
file structure, 31
killing, 232
listing in Observer, 230
managing state with,

243–247
metrics, 316
monitoring, 269
registering, 256
restart strategies, 252–

254
spawning, 245, 248
timeouts, 245, 280–281

production environment, 33

productivity vs. maintainabil-
ity, 2–4

Programming Elixir, 20

programming styles and
Phoenix, xiii–xvi

projects
contexts and structure,

45
creating, 22, 30, 43
file structure, 31–38

protocols
adding slugs, 188–190
FormData, 75
queryable, 128
separation of interface

from input, 71

public
converting private plugs

to, 104
vs. private logic, 67

:public (ETS), 262

Publish and Subscribe (Pub-
Sub), see Phoenix PubSub

PubSub Adapter, 301

push, 204, 294

put, 261, 273, 280

put_assoc, 112, 211

put_change, 187

put_date, 305

put_flash, 72, 104

put_pass_hash, 80, 82

Q
queries

associating videos with
categories, 126–130,
135

associating videos with
users, 113, 115

bindings, 133–134
case-insensitive, 133–134
categories, constraining,

136–143
as composable, 127
creating, 127–130
errors, 133
fragments, 134
information system exam-

ple, 268, 272–274, 276
listing annotations, 212
macros for, 126, 133
metrics, 316
normalization, 131
operators, 132
ordering, 127–130
performance, 131
plugs, 129
resources on, 132
retrieving a single user,

131
security, 131
syntax, 132–134
understanding, 130–136
WolframAlpha API explor-

er, 286

Query module, 126

queryable, 128, 133

quote, 53, 290

R
race conditions, 7, 136, 271

:raise value for conflicts, 125

readability
code organization, 9
maintainability and, 4
pipelines, 9

receive, 204, 248

recursion, 243, 246

redirect, 72, 104

Redis adapter, 301

registered names, 256

registered processes, 256

regular expressions, 179

relationships
building, 110–117
in-context, 117–121
managing, 113–117
migrations, 109
persisting annotations,

210
queries, 135

reliability
code, 13
Erlang, 14
Phoenix, 13

reloading, live, 22, 26, 300

render
annotations, 205, 214–

217
LiveView, 303, 305–311
templates, 54–58, 107,

173, 216

renderAnnotation, 205

renderAtTime, 216

render_many, 214

render_one, 214

render_to_string, 173

:renew option, 93

repeatability, tests, 145

Repo
adding data, 63–66
associating videos with

users, 111–117
configuring, 60–63
security, 131
username and password,

23, 60

repositories, see also Ecto
adding data, 63–66
associating videos with

users, 111–117
authentication, 23
security, 131
umbrella projects, 233

req_headers field, 87

request, 286–287

request fields, plugs, 86–88

res, 271

rescue, 261

resources
creating, 70–75

Index • 327

generating, 101–110
grouping with contexts,

117–118

resources for this book
channels, intercepting,

300
CRUD testing, 166
customizing IEx, 126
documentation, access-

ing, 3
Ecto Sandbox, 158
Elixir, 20, 147
Hex, 158
HTML functions, 69
HTML helpers, 54
internationalization, 299
passwords, 80
plugs, 4, 86
queries, 132
source code, xvii
testing, 147
upserts, 125

resources macro, 68

resp_body field, 88

resp_cookies field, 88

resp_headers field, 88

REST
generated controllers,

107
logging in/out routes, 95
routes, 104

:rest_for_one strategy, 254

restart, 253

restarting
with OTP, 249–254, 258
servers, 217

@result, 309

retrying, OTP, 254

rolling back migrations, 109

route table, 35

routers
aliasing router helpers,

72, 104
authentication plug, 89
autogenerated helpers,

72
bypassing in testing, 169
controller request flow,

42
endpoints and, 36
flow, 35
generating resources,

104–105
Hello, World example,

23–30, 35
LiveView, 302

logging in/out, 95
module plugs, 85
new user form, 68
tying URL to a function,

23
understanding layers,

19, 35–36

routes
/ for, 24, 49
adding, 24
generating web inter-

faces, 104
Hello, World example,

23–30
iterating over in testing,

161
LiveView, 305–308
location, 23
logging in/out, 95
new user form, 68
pattern matching, 27–30
resources macro, 68
REST, 104
rumbl controller, building,

49
testing, 159
tying URL to a function,

23
viewing all available, 69

routes task, 69

rumbl app, see also annota-
tions; queries; videos

about, 41
adding data, 63–66
associating videos with

categories, 126–130
associating videos with

users, 110–117
authentication, 77–100,

153, 158–172, 199,
207–209, 290

categories, adding, 117,
120–121

categories, constraining,
136–143

category seed data, 123–
126

channels, creating, 195–
202

channels, intercepting,
299

channels, joining, 200–
202, 293

channels, sending and
receiving events, 202–
207

channels, testing, 289–
296

configuring Ecto, 60–63
configuring for umbrella

projects, 235
creating, 43
deleting data, 141–143
diagram, 42, 101
generating resources,

101–110
handling disconnects,

217–220
information system with

OTP, 257–277, 279–
296

introspection with Observ-
er, 230–231

logging in/out, 84, 93–
100, 160–161, 163,
170–172, 292

new user form, 66–75,
82–85

restart strategies, 258
security, 115, 117
setup, 41–58
slugs, 186–192
socket authentication,

207–209, 290
supervisor tree, 231
testing authentication,

153, 158–172
testing cache, 280–282
testing contexts, 150–157
testing OTP, 279–296
testing user accounts,

151–154
testing video functions,

155–157
testing welcome page,

147–148
testing, creating test da-

ta, 149
testing, logging in/out,

160–167, 170–172
tracking user Presence,

220–226
umbrella version, 229,

233–241
user, retrieving a single,

131
user, showing single, 54–

58
users, creating new, 79–

85
validations, 66–68, 73–

75, 139–141
watching videos, 177–192

run queue length, 316

Index • 328

runtime
call plug, 86
init plug, 86

:runtime_tools, 78

S
:safe, 53, 56

safe_to_string, 56

sandbox, see Ecto Sandbox

scaling
channels, 12, 195
Erlang virtual machine

and OTP, 38
interactivity, 11

scheduleMessages, 216

scheduling annotations, 215

schema, 61, 210

schemas
changesets, 66
context generators, 118–

121
defining, 60–63
deleting categories, 142
extending with types,

190–192
generated migrations,

110
generating, 61, 210
migrating, 60–63
queries in schema layer,

128
updates, 68
virtual schema fields, 79

scheme field, 87

Scout App, 314

scripts
compilation, 32
.exs files, 32
seed script, 124

search operators, 132

secret.exs file, 33, 266

secret_key_base, 87

security, see also authentica-
tion; passwords

broadcasting, 207
browser pipeline, 35, 38
channels, 207
cross-site request forgery

(CSRF), 38, 70
cross-site scripting (XSS),

53, 205, 207
HTML helpers, 53, 56
password hashing, 78–

82, 172
queries, 131

raw message payloads,
207

repositories, 131
rumbl app, 115, 117
secrets, 33, 266
session fixation attacks,

93
spoofing, 70
SQL-injection attacks,

131
timing attacks, 94

seed data
annotations, 276
categories, 123–126
script for, 124
testing users, 163

seeds.exe, 124

seekTo, 184

segments, pipe, 17

select, 129, 131, 133

self(), 305

send, 245, 310

send_after, 263

send_interval, 305

send_resp, 170

servers, see also channels
adding annotations to,

205
building GenServer for,

247–255
cache server, 259–263,

272–274
default, 86
diagram, 193
handling disconnects,

217–220
as implementation, 245
[info] blocks, 23
names, 261
preparing for channels,

198–200
restarting, 217

session directory, 96

session fixation attacks, 93

session_path, 98

sessions
associating user data

with, 113–117
authentication, 77, 207
deleting, 95, 99
logging in/out, 93–100
session fixation attacks,

93
storing user ID, 88
vs. users in Channel

Presence, 222

:set (ETS), 262

setup
about, 146
integration testing, 159
testing channels, 293
testing with bypasses,

170
transactional tests, 151

:show action
associating videos with

users, 116
controller setup, 49
restricting access, 89–92
showing single user, 54–

58

side effects, <%= %> tags, 51

Skinner, Rebecca, 299

skipping, webpack, 184

sleep, 281

slugify, 187

slugs, 186–192

socket, 194, 197–198

socket mount point, 198

sockets
annotations, 206
authentication, 199, 207–

209, 290
creating channels, 196
debugging, 198
defined, 194
identifying, 199
messaging, 204, 213, 215
preparing for channels,

198–200
state, 201, 203, 209

source code
about, xvii
copying, 237
Phoenix Live Reload, 301

spawning processes, 245, 248

speed, see performance

spelling errors, 46

spoofing, 70

SQL, see also PostgreSQL
querying directly, 135
SQL-injection attacks,

131

stacktraces, error pages, 25

start, 275

start_link
about, 248
agents, 256
caching, 261

Index • 329

counter example, 245,
248

registering processes, 256

starting, see also restarting
applications with Observ-

er, 230
Ecto from OTP, 63
key services, 63
tasks, 275

state
agents, 256
channels, 194, 201, 209,

217
disconnects, 217
GenServer for OTP, 247–

255
LiveView, 13, 302–304
managing with processes,

243–247
messages, 246, 248
Observer, 230
recursion, 243, 246
restarting, 251
sockets, 201, 203, 209

static assets
asset management tools,

21
copying, 239
file structure, 181
umbrella projects, 239
webpack, 182

static directory, webpack, 181

statistics, Observer, 230

StatsD, 315

status field, 88

stop, 256

stopping
applications with Observ-

er, 230
connections, 87, 90, 92
processes, 232
supervision strategies,

254
tasks, 271, 275

strings
cast and, 191
connecting to rendered

templates, 56
parsing, 191
pattern matching keys,

28–29
printing when specifying

URL, 23–30
protocols with custom

types, 191
slugifying, 187
topics as, 200

struct_url, 189

structs
defined, 18, 46
plugs and, 30, 96
struct_url, 189
syntax, 47

stubs
isolating backend, 285–

289
vs. mocks, 284–285
strategies for, 288
testing OTP, 283

submit, 69

subscribe_and_join, 293–294

subtopic, 200

sum, 132

supervision
channels, 257
configuration, 249
LiveViews, 308
with Observer, 230–231
OTP, 249–258
PubSub 2.0, 313
reliability, 14
restart strategies, 252–

254, 258
strategies, 250–255, 258
Telemetry, 315

supervision tree
advantages, 249
defined, 230
Presence, 221
PubSub 2.0, 313
reliability, 14
viewing in Observer, 231

:sweet_xml, 266–267

Swift, 301

T
tables, ETS, 261

@tag, 282

tag module attribute, 164

tags
clearing cache, 280
testing with, 163

tail recursion, 246

task, 271

tasks
fetching data with, 263
Mix and, 22
monitoring processes,

269
starting, 275
stopping, 271
tools, 270

using without supervi-
sion, 258

waiting, 268
yielding, 270

Telemetry, 314–316

:telemetry_poller, 315

templates
<%= %> tags, 51
adding presence to, 222
assigns, 29, 57
categories, 129
creating, 26
defined, 50
directories, 37
.eex extension, 26
file structure, 31, 36–38
as functions, 50, 52, 55
generators, 102, 108
Hello, World example,

23, 26–30, 36–38
language for, 51
layouts, 57
logging in/out, 96–100
naming conventions, 55
nesting, 55–57
new user form, 69–70
pattern matching, 56
performance, 52
rendering, 56, 107, 173,

216
rumbl setup, 44, 50–58
rumbl, showing single us-

er, 54–58
testing, 172
testing channels, 290
views and, 50
watching videos, 178

:temporary restart strategy, 253

terminating
supervision strategies,

254
tasks, 271

test
about, 146
file structure, 31–32
Mix project structure, 32
switching environments,

33

TestHelpers, 149, 160

testing, see also integration
testing

acceptance, 146
authentication, 153, 158–

172, 291
with bypasses, 162, 169
cache, 280–282
channels, 289–296

Index • 330

concurrent tests, 147,
152, 157

contexts, 147, 150–157
creating test data, 149
creating tests, 280
default tests, 147, 159
deletions, 156
with describe blocks, 153,

163
with Ecto Sandbox, 150,

157–159, 285–289, 293
Elixir without Phoenix,

146
environment, 33
file structure, 31
generating tests, 147,

150
helpers, 149, 160, 169,

284
isolating backend, 285–

289
isolation, 145, 157–158,

162–163, 167
logged-in users, 162–167
logged-out users, 160–

161
with Mix, 147
negative tests, 166, 171
order of, 147
OTP, 279–296
with pattern matching,

27
performance of, 145,

157, 172, 240, 288,
291

performance testing,
146, 296

principles, 145, 165
resources on, 147
with tags, 163
templates, 172
terms, 146
timeouts, 280–281, 284
transactional, 151, 157
umbrella projects, 239
unit testing, 146, 167–

172
user acceptance tests,

296
user accounts, 151–154
video functions, 155–157
views, 172
XML parsing, 287

text_input, 69

time
checking passwords with

variable timing, 94
measuring execution, 274

timeouts
crashes, 270
processes, 245
testing, 280–281, 284

:timer, 262, 274, 304

timestamps
clock example, 306
migrations, 61, 64

timestamps macro, 61

timing attacks, 94

to_param, 188

token authentication, 207–
209, 291

topics
about, 194, 196
identifiers, 197
as strings, 200

tracking presence, see Pres-
ence

transactional tests, 151, 157

:transient restart strategy, 253

transpiling and ES6, 196

tuples, cast and, 191

type, 132, 191

types, Ecto, 190–192

typespecs, 265

U
u variable, 133

--umbrella flag, 234, 236, 241

umbrella projects
about, 35, 229
creating from Mix, 241
PubSub 2.0, 313
skeleton for, 234
testing, 239
using, 233–241
when to use, 229, 233–

234

underscore (_) for arguments,
248

unique constraints
categories, 120
errors, 124
validating data, 137–139

unique references, 245

unique user identity, 222

unique_constraint, 138

unique_index, 137

unit testing
defined, 146
isolation, 167
plugs, 167–172

unlink, 281

up migrations, 109, 186

:update
about, 49
agents, 256
associating videos with

users, 116

update policies, 67

updated_at, 62

upserts, 125

URI struct, 189

URLs
generating with protocols,

188
information system re-

sults, 264
permalinks, 190–192
printing string from spe-

cific, 23–30
slugs, 186–192
tying functions to, 23
videos, 179, 184–192
YouTube, 179, 184, 188

use, 238, 252, 307

user ID, storing in sessions,
88, 93

user acceptance tests, 296

user message system,
see flash

user space concurrency, 5–8,
see also processes

user_fixture, 149, 160, 163, 167

:user_id
associating videos with

users, 113–117
foreign keys, 110
testing authentication,

291
tracking user presence,

222–223, 225

:user_token, 208

usernames, see also authenti-
cation

changesets, 67
Ecto setup, 60
logging in/out, 95
new user form, 66, 79
Repo, 23, 60
tracking Channel Pres-

ence with, 224–226

users, see also authentication
associating with videos,

110–117
creating new, 79–85
creating test data, 149
deleting, 142

Index • 331

logging in/out, 84, 93–
100

new user form, 66–75,
82–85

persisting annotations,
214

restricting access, 89–
92, 115

retrieving a single, 131
seed data, 163
vs. sessions in Channel

Presence, 222
tagging, 163
testing logged-in, 162–

167
testing logged-out, 160–

161
testing user accounts,

151–154
tracking user Presence,

220–226
tracking user presence,

xiii, 12
unique user identity, 222
validation errors, 79–82

using, 151, 290

V
v(n), 140

:val, 245

validate_length, 67, 79

validate_required, 66, 79, 110

validations, see also authenti-
cation

categories, 136
changesets, 66–68, 73–

75, 79–82, 139–141,
187

data with changesets,
187

data, unique, 137–139
errors, 73–75, 79–82
foreign keys, 139–141
forms, 79–82, 310–312
as pipelines of functions,

84
rumbl app, 66–68, 73–75

values
default values for structs,

46
escaping interpolated,

134
fetching previous, 140
key/value pairs for

caching, 261
passing negative, 140

vendor directory, 181

verify, 209

versioning, umbrella projects,
233

versions
Elixir, 20
Erlang, 20
Node.js, 21
Phoenix, 22, 232, 236
PostgreSQL, 21

video app, see rumbl app

video_fixture, 149, 160, 167

videos, see also annotations
associating with users,

110–117
categories, 117, 120–121
categories, associating

with, 123, 126–130
categories, constraining,

136–143
channels, creating, 195–

202
channels, socket authen-

tication, 207–209
channels, testing, 290–

296
creating, 106, 113–115
creating test data, 149
deleting, 116–117, 156
extracting IDs from

YouTube URLs, 179,
188

extracting IDs in chan-
nels, 201

fields, 102
generating resources,

101–110
information system with

OTP, 257–277, 279–
296

JavaScript, 181–185
listing, 115
new video form, 106
restricting access by us-

er, 115
rumbl app diagram, 101
slugs, 186–192
testing creation, 165
testing video functions,

155–157
testing, integration, 158–

167
URLs, 179, 184–192
watching, 177–192

view function, 53

@view_module, 57

@view_template, 57

views, see also LiveView
coding, 50–58
creating, 26
defined, 50
file structure, 31, 36–38
generators, 107
Hello, World example,

23, 26–30, 36–38
helper functions, 52–54
layouts, 57
logging in/out, 96
model-view-controller

(MVC) pattern, 19, 37,
65

as modules, 51, 55, 130
naming conventions, 55
persisting annotations,

213
rendering, 54–58
rumbl setup, 50–58
speed, 52
templates and, 50
testing, 172

virtual machines
metrics, 316
multi-core concurrency,

5
scaling, 38

virtual schema fields, 79

W
~w for listing words, 126

watch, 180

--watch --mode production (web-
pack), 182

--watch (webpack), 182

--watch-stdin option (webpack),
183

watch_path, 181, 188

watchers, 183–184

web assets, see assets

webpack
advantages, 184
configuring, 182
installation, 21
skipping, 184
watching videos, 181–185

webpack command, 182

websocket, 199

WebSockets, 199, 301

WhatsApp, 257

where, 133, 220

WolframAlpha
about, 257, 264
API explorer, 286

Index • 332

building information sys-
tem, 257, 265–269

isolating, 285–289
signup as developer, 266
testing, 279–296
testing channels, 295–

296

words, listing with ~w, 126

worker, 249

X
xcopy, 237

XML
parsing, 266–267
parsing, testing, 287
payload example, 286

xpath, 267

XSS (cross-site scripting), 53,
205, 207

Y
yield, 270

yield_many, 270

YouTube
URLs, 179, 184, 188
watching videos in rumbl,

177–192

Index • 333

Thank you!
How did you enjoy this book? Please let us know. Take a moment and email
us at support@pragprog.com with your feedback. Tell us your story and you
could win free ebooks. Please use the subject line “Book Feedback.”

Ready for your next great Pragmatic Bookshelf book? Come on over to
https://pragprog.com and use the coupon code BUYANOTHER2019 to save 30%
on your next ebook.

Void where prohibited, restricted, or otherwise unwelcome. Do not use
ebooks near water. If rash persists, see a doctor. Doesn’t apply to The
Pragmatic Programmer ebook because it’s older than the Pragmatic Bookshelf
itself. Side effects may include increased knowledge and skill, increased
marketability, and deep satisfaction. Increase dosage regularly.

And thank you for your continued support,

Andy Hunt, Publisher

SAVE 30%!
Use coupon code
BUYANOTHER2019

https://pragprog.com

Real-Time Phoenix
Give users the real-time experience they expect, by
using Elixir and Phoenix Channels to build applications
that instantly react to changes and reflect the applica-
tion’s true state. Learn how Elixir and Phoenix make
it easy and enjoyable to create real-time applications
that scale to a large number of users. Apply system
design and development best practices to create appli-
cations that are easy to maintain. Gain confidence by
learning how to break your applications before your
users do. Deploy applications with minimized resource
use and maximized performance.

Stephen Bussey
(250 pages) ISBN: 9781680507195. $45.95
https://pragprog.com/book/sbsockets

Designing Elixir Systems with OTP
You know how to code in Elixir; now learn to think in
it. Learn to design libraries with intelligent layers that
shape the right data structures, flow from one function
into the next, and present the right APIs. Embrace the
same OTP that’s kept our telephone systems reliable
and fast for over 30 years. Move beyond understanding
the OTP functions to knowing what’s happening under
the hood, and why that matters. Using that knowledge,
instinctively know how to design systems that deliver
fast and resilient services to your users, all with an
Elixir focus.

James Edward Gray, II and Bruce A. Tate
(220 pages) ISBN: 9781680506617. $41.95
https://pragprog.com/book/jgotp

https://pragprog.com/book/sbsockets
https://pragprog.com/book/jgotp

Programming Ecto
Languages may come and go, but the relational
database endures. Learn how to use Ecto, the premier
database library for Elixir, to connect your Elixir and
Phoenix apps to databases. Get a firm handle on Ecto
fundamentals with a module-by-module tour of the
critical parts of Ecto. Then move on to more advanced
topics and advice on best practices with a series of
recipes that provide clear, step-by-step instructions
on scenarios commonly encountered by app developers.
Co-authored by the creator of Ecto, this title provides
all the essentials you need to use Ecto effectively.

Darin Wilson and Eric Meadows-Jönsson
(242 pages) ISBN: 9781680502824. $45.95
https://pragprog.com/book/wmecto

Property-Based Testing with PropEr, Erlang, and Elixir
Property-based testing helps you create better, more
solid tests with little code. By using the PropEr frame-
work in both Erlang and Elixir, this book teaches you
how to automatically generate test cases, test stateful
programs, and change how you design your software
for more principled and reliable approaches. You will
be able to better explore the problem space, validate
the assumptions you make when coming up with pro-
gram behavior, and expose unexpected weaknesses in
your design. PropEr will even show you how to repro-
duce the bugs it found. With this book, you will be
writing efficient property-based tests in no time.

Fred Hebert
(374 pages) ISBN: 9781680506211. $45.95
https://pragprog.com/book/fhproper

https://pragprog.com/book/wmecto
https://pragprog.com/book/fhproper

Craft GraphQL APIs in Elixir with Absinthe
Your domain is rich and interconnected, and your API
should be too. Upgrade your web API to GraphQL,
leveraging its flexible queries to empower your users,
and its declarative structure to simplify your code.
Absinthe is the GraphQL toolkit for Elixir, a functional
programming language designed to enable massive
concurrency atop robust application architectures.
Written by the creators of Absinthe, this book will help
you take full advantage of these two groundbreaking
technologies. Build your own flexible, high-performance
APIs using step-by-step guidance and expert advice
you won’t find anywhere else.

Bruce Williams and Ben Wilson
(302 pages) ISBN: 9781680502558. $47.95
https://pragprog.com/book/wwgraphql

Functional Web Development with Elixir, OTP, and Phoenix
Elixir and Phoenix are generating tremendous excite-
ment as an unbeatable platform for building modern
web applications. For decades OTP has helped develop-
ers create incredibly robust, scalable applications with
unparalleled uptime. Make the most of them as you
build a stateful web app with Elixir, OTP, and Phoenix.
Model domain entities without an ORM or a database.
Manage server state and keep your code clean with
OTP Behaviours. Layer on a Phoenix web interface
without coupling it to the business logic. Open doors
to powerful new techniques that will get you thinking
about web development in fundamentally new ways.

Lance Halvorsen
(218 pages) ISBN: 9781680502435. $45.95
https://pragprog.com/book/lhelph

https://pragprog.com/book/wwgraphql
https://pragprog.com/book/lhelph

The Pragmatic Bookshelf
The Pragmatic Bookshelf features books written by developers for developers. The titles
continue the well-known Pragmatic Programmer style and continue to garner awards and
rave reviews. As development gets more and more difficult, the Pragmatic Programmers will
be there with more titles and products to help you stay on top of your game.

Visit Us Online
This Book’s Home Page
https://pragprog.com/book/phoenix14
Source code from this book, errata, and other resources. Come give us feedback, too!

Keep Up to Date
https://pragprog.com
Join our announcement mailing list (low volume) or follow us on twitter @pragprog for new
titles, sales, coupons, hot tips, and more.

New and Noteworthy
https://pragprog.com/news
Check out the latest pragmatic developments, new titles and other offerings.

Buy the Book
If you liked this eBook, perhaps you’d like to have a paper copy of the book. It’s available
for purchase at our store: https://pragprog.com/book/phoenix14

Contact Us
https://pragprog.com/catalogOnline Orders:

support@pragprog.comCustomer Service:

translations@pragprog.comInternational Rights:

academic@pragprog.comAcademic Use:

http://write-for-us.pragprog.comWrite for Us:

+1 800-699-7764Or Call:

https://pragprog.com/book/phoenix14
https://pragprog.com
https://pragprog.com/news
https://pragprog.com/book/phoenix14
https://pragprog.com/catalog
support@pragprog.com
translations@pragprog.com
academic@pragprog.com
http://write-for-us.pragprog.com

	Cover
	Table of Contents
	Acknowledgments
	José Valim
	Bruce Tate
	Chris McCord

	Preface
	Is This Book for You?
	About this Book
	Online Resources

	1. Introducing Phoenix
	Productive
	Concurrent
	Beautiful Code
	Interactive
	Reliable

	Part I—Building with Functional MVC
	2. The Lay of the Land
	Simple Functions
	Installing Your Development Environment
	Creating a Throwaway Project
	Building a Feature
	Going Deeper: The Request Pipeline
	Wrapping Up

	3. Controllers
	Understanding Controllers
	Building a Controller
	Coding Views
	Using Helpers
	Showing a User
	Wrapping Up

	4. Ecto and Changesets
	Understanding Ecto
	Defining the User Schema and Migration
	Using the Repository to Add Data
	Building Forms
	Creating Resources
	Wrapping Up

	5. Authenticating Users
	Preparing for Authentication
	Managing Registration Changesets
	Creating Users
	The Anatomy of a Plug
	Writing an Authentication Plug
	Implementing Login and Logout
	Presenting User Account Links
	Wrapping Up

	6. Generators and Relationships
	Using Generators
	Building Relationships
	Managing Related Data
	In-context Relationships
	Wrapping Up

	7. Ecto Queries and Constraints
	Seeding and Associating Categories
	Diving Deeper into Ecto Queries
	Constraints
	Wrapping Up

	8. Testing MVC
	Understanding ExUnit
	Testing Contexts
	Using Ecto Sandbox for Test Isolation and Concurrency
	Integration Tests
	Unit-Testing Plugs
	Testing Views and Templates
	Wrapping Up

	Part II—Writing Interactive and Maintainable Applications
	9. Watching Videos
	Watching Videos
	Adding JavaScript
	Creating Slugs
	Wrapping Up

	10. Using Channels
	The Channel
	Phoenix Clients with ES6
	Preparing Our Server for the Channel
	Creating the Channel
	Sending and Receiving Events
	Socket Authentication
	Persisting Annotations
	Handling Disconnects
	Tracking Presence on a Channel
	Wrapping Up

	11. Observer and Umbrellas
	Introspecting Applications with Observer
	Using Umbrellas
	Extracting Rumbl and RumblWeb
	Wrapping Up

	12. OTP
	Managing State with Processes
	Building GenServers for OTP
	Designing an Information System with OTP
	Building the Wolfram Info System
	Integrating OTP Services with Channels
	Wrapping Up

	13. Testing Channels and OTP
	Testing the Information System
	Isolating Wolfram
	Adding Tests to Channels
	Authenticating a Test Socket
	Communicating with a Test Channel
	Wrapping Up

	14. What's Next?
	Other Interesting Features
	Phoenix LiveView
	Phoenix PubSub 2.0
	Phoenix and Telemetry Integration
	Good Luck!

	Index
	– SYMBOLS –
	– DIGITS –
	– A –
	– B –
	– C –
	– D –
	– E –
	– F –
	– G –
	– H –
	– I –
	– J –
	– K –
	– L –
	– M –
	– N –
	– O –
	– P –
	– Q –
	– R –
	– S –
	– T –
	– U –
	– V –
	– W –
	– X –
	– Y –

