Python Scripting
for Computational Science

Hans Petter Langtangen

Simula Research Laboratory
and

Department of Informatics
University of Oslo

v

Preface

The primary purpose of this book is to help scientists and engineers who
work intensively with computers to become more productive, have more fun,
and increase the reliability of their investigations. Scripting in the Python
programming language can be a key tool for reaching these goals [28,30].

The term scripting means different things to different people. By scripting
I mean developing programs of an administering nature, mostly to organize
your work, using languages where the abstraction level is higher and program-
ming is more convenient than in Fortran, C, C++, or Java. Perl, Python,
Ruby, Scheme, and Tcl are examples of languages supporting such high-level
programming or scripting. To some extent Matlab and similar scientific com-
puting environments also fall into this category, but these environments are
mainly used for computing and visualization with built-in tools, while script-
ing aims at gluing a range of different tools for computing, visualization, data
analysis, file/directory management, user interfaces, and Internet communi-
cation. So, although Matlab is perhaps the scripting language of choice in
computational science today, my use of the term scripting goes beyond typi-
cal Matlab scripts. Python stands out as the language of choice for scripting in
computational science because of its very clean syntax, outstanding modular-
ization features, good support for numerical computing, and rapidly growing
popularity.

What Scripting is About. The simplest application of scripting is to write
short programs (scripts) that automate manual interaction with the com-
puter. That is, scripts often glue stand-alone applications and operating sys-
tem commands. A primary example is automating simulation and visual-
ization: from an effective user interface the script extracts information and
generates input files for a simulation program, runs the program, archive data
files, prepares input for a visualization program, creates plots and animations,
and perhaps performs some data analysis.

More advanced use of scripting includes searching and manipulating text
(data) files, managing files and directories, rapid construction of graphical
user interfaces (GUIs), tailoring visualization and image processing environ-
ments to your own needs, administering large sets of computer experiments,
and managing your existing Fortran, C, or C++ libraries and applications
directly from scripts.

Scripts are often considerably faster to develop than the corresponding
programs in a traditional language like Fortran, C, C++, or Java, and the
code is normally much shorter. In fact, the high-level programming style and
tools used in scripts open up new possibilities you would hardly consider as
a Fortran or C programmer. Furthermore, scripts are for the most part truly
cross-platform, so what you write on Windows runs without modifications

VI Preface

on Unix and Macintosh, also when graphical user interfaces and operating
system interactions are involved.

The interest in scripting with Python has exploded among Internet service
developers and computer system administrators. However, Python scripting
has a significant potential in computational science and engineering (CSE)
as well. Software systems such as Maple, Mathematica, Matlab, and R/S-
Plus are primary examples of very popular, widespread tools because of their
simple and effective user interface. Python resembles the nature of these
interfaces, but is a full-fledged, advanced, and very powerful programming
language. With Python and the techniques explained in this book, you can
actually create your own easy-to-use computational environment, which mir-
rors the working style of Matlab-like tools, but tailored to your own number
crunching codes and favorite visualization systems.

Scripting enables you to develop scientific software that combines ”the
best of all worlds”, i.e., highly different tools and programming styles for
accomplishing a task. As a simple example, one can think of using a C++
library for creating a computational grid, a Fortran 77 library for solving
partial differential equations on the grid, a C code for visualizing the solution,
and Python for gluing the tools together in a high-level program, perhaps with
an easy-to-use graphical interface.

Special Features of This Book. The current book addresses applications of
scripting in CSE and is tailored to professionals and students in this field. The
book differs from other scripting books on the market in that it has a different
pedagogical strategy, a different composition of topics, and a different target
audience.

Practitioners in computational science and engineering seldom have the
interest and time to sit down with a pure computer language book and figure
out how to apply the new tools to their problem areas. Instead, they want
to get quickly started with examples from their own world of applications
and learn the tools while using them. The present book is written in this
spirit — we dive into simple yet useful examples and learn about syntax and
programming techniques during dissection of the examples. The idea is to get
the reader started such that further development of the examples towards
real-life applications can be done with the aid of online manuals or Python
reference books.

Contents. The contents of the book can be briefly sketched as follows. Chap-
ter 1 gives an introduction to what scripting is and what it can be good for in
a computational science context. A quick introduction to scripting with Py-
thin, using examples of relevance to computational scientists and engineers,
is provided in Chapter 2. Chapter 3 presents an overview of basic Python
functionality, including file handling, data structures, functions, and oper-
ating system interaction. Numerical computing in Python, with particular
focus on efficient array processing, is the subject of Chapter 4. Python can
easily call up Fortran, C, and C++ code, which is demonstrated in Chapter 5.

Preface VII

A quick tutorial on building graphical user interfaces appears in Chapter 6,
while Chapter 7 builds the same user interfaces as interactive Web pages.

Chapters 8-12 concern more advanced features of Python. In Chapter 8
we discuss regular expressions, persistent data, class programming, and ef-
ficiency issues. Migrating slow loops over large array structures to Fortran,
C, and C++ is the topic of Chapters 9 and 10. More advanced GUI pro-
gramming, involving plot widgets, event bindings, animated graphics, and
automatic generation of GUIs are treated in Chapter 11. More advanced
tools and examples of relevance for problem solving environments in science
and engineering, tying together many techniques from previous chapters, are
presented in Chapter 12.

Readers of this book need to have a considerable amount of software mod-
ules installed in order to be able to run all examples successfully. Appendix A
explains how to install Python and many of its modules as well as other soft-
ware packages. All the software needed for this book is available for free over
the Internet.

Good software engineering practice is outlined in a scripting context in
Appendix B. This includes building modules and packages, documentation
techniques and tools, coding styles, verification of programs through auto-
mated regression tests, and application of version control systems.

Required Background. This book is aimed at readers with programming ex-
perience. Many of the comments throughout the text address Fortran or C
programmers and try to show how much faster and more convenient Python
code development turns out to be. Other comments, especially in the parts
of the book that deal with class programming, are meant for C++ and Java
programmers. No previous experience with scripting languages like Perl or
Tecl is assumed, but there are scattered remarks on technical differences be-
tween Python and other scripting languages (Perl in particular). I hope to
convince computational scientists having experience with Perl that Python
is a preferable alternative, especially for large long-term projects.

Matlab programmers constitute an important target audience. These will
pick up simple Python programming quite easily, but to take advantage of
class programming at the level of Chapter 12 they probably need another
source for introducing object-oriented programming and get experience with
the dominating languages in that field, C++ or Java.

Most of the examples are relevant for computational science. This means
that the examples have a root in mathematical subjects, but the amount
of mathematical details is kept as low as possible to enlarge the audience
and allow focusing on software and not mathematics. To appreciate and see
the relevance of the examples, it is advantageous to be familiar with basic
mathematical modeling and numerical computations. The usefulness of the
book is meant to scale with the reader’s amount of experience with numerical
simulations.

VIII Preface

Acknowledgements.

The author appreciates the constructive comments from Arild Burud,
Roger Hansen, and Tom Thorvaldsen on an earlier version of the manuscript.
I will in particular thank the anonymous Springer referees of an even earlier
version who made very useful suggestions, which led to a major revision and
improvement of the book.

Sylfest Glimsdal is thanked for his careful reading and detection of many
errors in the present version of the book. I will also acknowledge all the input
I have received from our enthusiastic team of scripters at Simula Research
Laboratory: Are Magnus Bruaset, Xing Cai, Kent-Andre Mardal, Halvard
Moe, Ola Skavhaug, Gunnar Staff, Magne Westlie, and Asmund @degard.

The author has received financial support from the Norwegian Non-fiction
Literature Fund.

Software, updates, and an errata list associated with this book can be
found on the Web page http://folk.uio.no/hpl/scripting.

Oslo, April 2004 Hans Petter Langtangen

Table of Contents

1 Introduction........... 1
1.1 Scripting versus Traditional Programming 1
1.1.1 Why Scripting is Useful in Computational Science 2

1.1.2 Classification of Programming Languages 4

1.1.3 Productive Pairs of Programming Languages 5

1.1.4 Gluing Existing Applications 6

1.1.5 Scripting Yields Shorter Code 7

1.1.6 Efficiencyo.voui i e 8

1.1.7 Type-Specification (Declaration) of Variables.......... 9

1.1.8 Flexible Function Interfaces 11

1.1.9 Interactive Computing........... 12
1.1.10 Creating Code at Run Time......................... 13
1.1.11 Nested Heterogeneous Data Structures 14
1.1.12 GUI Programmingcoueenninnenneennen... 16
1.1.13 Mixed Language Programming 17
1.1.14 When to Choose a Dynamically Typed Language 19
1.1.15 Why Python? 20
1.1.16 Script or Program? 21

1.2 Preparations for Working with This Book 22
2 Getting Started with Python Scripting 27
2.1 A Scientific Hello World Script 27
2.1.1 Executing Python Scripts 28

2.1.2 Dissection of the Scientific Hello World Script 29

2.2 Reading and Writing Data Files 32
2.2.1 Problem Specification L. 32

2.2.2 The Complete Code 33

2.2.3 Dissection 33

2.2.4 Working with Files in Memory 36

2.2.5 Efficiency Measurementsccoveuuiueen.... 37

2.2.6 EXErCISesvuinini i 38

2.3 Automating Simulation and Visualization 40
2.3.1 The Simulation Code............, 41

2.3.2 Using Gnuplot to Visualize Curves 43

2.3.3 Functionality of the Script 44

2.3.4 The Complete Code 45

2.3.5 Dissection i 47

2.3.6 EXErcCiSeso.iuiiini 49

2.4 Conducting Numerical Experiments......................... 52

2.4.1 Wrapping a Loop Around Another Script 53

X Table of Contents

2.4.2 Generating an HTML Report 54

2.4.3 Making Animations i i, 56

2.4.4 Varying Any Parameter, 57

245 EXEICISEs . ..vvii i 60

2.5 File Format Conversioncocuiuiininiinenenn... 60
2.5.1 The First Version of the Script 61

2.5.2 The Second Version of the Script 62

3 Basic Python............. ... 65
3.1 Introductory Topics 65
3.1.1 Recommended Python Documentation 65

3.1.2 Testing Statements in the Interactive Shell 67

3.1.3 Control Statements i 68

3.1.4 Running an Application 69

3.1.5 File Reading and Writing 70

3.1.6 Output Formatting o, 72

3. 1.7 EXETCISES .« vttt e 73

3.2 Variables of Different Types 74
3.2.1 Boolean Typesoiuiini i 74

3.2.2 The None Variable........ 75

3.2.3 Numbers and Numerical Expressions 76

3.24 Listsand Tuples ... 78

3.2.5 Dictionaries i 84

3.2.6 Splitting and Joining Text 87

3.2.7 String Operations. i 88

3.2.8 Text Processing i 89

3.2.9 The Basics of a Python Class 91
3.2.10 Determining a Variable’s Type 93
3.2.11 EXEICISES .t vvn ettt e e 96

3.3 Functions 101
3.3.1 Keyword Argumentsco. .. 102

3.3.2 DocC Strings . ..ot e 103

3.3.3 Variable Number of Arguments 103

3.34 Callby Referenceo i, 104

3.3.5 Treatment of Input and Output Arguments 106

3.3.6 Function Objectscc. iy 107

3.4 Working with Files and Directories 108
3.4.1 Listing Files in a Directory............. 109

3.4.2 Testing File Types i 109

3.4.3 Copying and Renaming Files 110

3.4.4 Removing Files and Directories 111

3.4.5 Splitting Pathnames 111

3.4.6 Creating and Moving to Directories 112

3.4.7 Traversing Directory Trees 112

3.4.8 EXOICISES .t v vttt e 115

Table of Contents XI

4 Numerical Computing in Python 121
4.1 A Quick NumPy Primer....... i 123
4.1.1 Creating AITaysooein it 123

4.1.2 Array Indexing ...t 124

4.1.3 Array Computationsc.oooeiiinniieen... 126

4.1.4 Type Testing 127

4.1.5 Hidden Temporary Arraysc..ccoveuneuneen.... 129

4.1.6 EXETCISES .t otv ittt e e e 130

4.2 Vectorized Algorithms 131
4.2.1 Arrays as Function Arguments 132

4.2.2 SHCING. o ot 133

4.2.3 Remark on Efficiency........ i 134

4.2.4 EXETCISES .t tv ittt e e 136

4.3 More Advanced Array Computingcoivon... 137
4.3.1 Random Numbers i, 137

4.3.2 Linear Algebra 139

4.3.3 The Gnuplot Module 139

4.3.4 Example: Curve Fitting 142

4.3.5 Arrays on Structured Grids 144

4.3.6 File I/O with NumPy Arrays...............ccoou... 146

4.3.7 Reading and Writing Tables with NumPy Arrays 147

4.3.8 Functionality in the Numpytools Module 150

4.3.9 EXETCISES .t tvt et e 152

4.4 Other Tools for Numerical Computations.................... 156
4.4.1 The ScientificPython Package 156

4.4.2 The SciPy Package........ o i i 161

4.4.3 The Python-Matlab Interface 165

4.4.4 Some Useful Python Modules 166

4.5 A Database for NumPy Arrays.......o oot 167
4.5.1 The Structure of the Database 168

4.5.2 Pickling 170

4.5.3 Formatted ASCII Storage...........covvviie... 171

4.5.4 Shelvingoooi 172

4.5.5 Comparing the Various Techniques................... 173

5 Combining Python with Fortran, C, and C++..... 175
5.1 About Mixed Language Programming. 175
5.1.1 Applications of Mixed Language Programming 176

5.1.2 Calling C from Python 176

5.1.3 Automatic Generation of Wrapper Code 178

5.2 Scientific Hello World Examples 180
5.2.1 Combining Python and Fortran...................... 181

5.2.2 Combining Pythonand C........ 186

5.2.3 Combining Python and C++ Functions 192

5.2.4 Combining Python and C++ Classes................. 194

XII

Table of Contents

5.2.5 EXEICISES .ottt 198

5.3 A Simple Computational Steering Example 198
5.3.1 Modified Time Loop for Repeated Simulations......... 199

5.3.2 Creating a Python Interface............ 200

5.3.3 The Steering Python Script 202

5.3.4 Equipping the Steering Script with a GUL............. 205

5.4 Scripting Interfaces to Large Libraries.................... ... 207
6 Introduction to GUI Programming 211
6.1 Scientific Hello World GUT 211
6.1.1 Introductory Topics 211

6.1.2 The First Python/Tkinter Encounter................. 214

6.1.3 Binding Events 217

6.1.4 Changing the Layout......... 218

6.1.5 The Final Scientific Hello World GUI................. 223

6.1.6 An Alternative to Tkinter Variables 224

6.1.7 About the Pack Command 225

6.1.8 An Introduction to the Grid Geometry Manager 227

6.1.9 Implementinga GUl asa Class...................... 229
6.1.10 A Simple Graphical Function Evaluator 231
6.1.11 EXETCISES . v tvn ettt e 233

6.2 Adding GUIs to Scripts ... vvvi vt 235
6.2.1 A Simulation and Visualization Script with a GUT 235

6.2.2 Improving the Layout 238

6.2.3 EXEICISES ...ttt 241

6.3 A List of Common Widget Operations 242
6.3.1 Frameco i 245

6.3.2 Label 245

6.3.3 Button 247

6.3.4 Text Entry.o 247

6.3.5 BalloonHelp i 249

6.3.6 Option Menu......... ...ty 250

6.3.7 SHAer 250

6.3.8 Check Button i 251

6.3.9 Making a Simple Megawidget 251
6.3.10 Menu Bar. i 252
6.3.11 List Data ..o 254
6.3.12 ListboX . ..ottt 255
6.3.13 Radio Button i 258
6.3.14 Combo Boxo 259
6.3.15 Message Box ... i 260
6.3.16 User-Defined Dialogsc..coiiiiiiiiin .. 262
6.3.17 Color-Picker Dialogs, 263
6.3.18 File Selection Dialogs ciiiiiiii.. 266

6.3.19 Toplevel 267

Table of Contents XIII

6.3.20 Some Other Types of Widgets oot 268
6.3.21 Adapting Widgets to the User’s Resize Actions 269
6.3.22 Customizing Fonts and Colors 271
6.3.23 Widget Overviewc.oiuiiniiiinin ey 273
6.3.24 EXEICISES ..ttt 275

7 Web Interfaces and CGI Programming.............. 281
7.1 Introductory CGI Scripts., 282
7.1.1 Web Forms and CGI Scripts 283

7.1.2 Generating Forms in CGI Scripts 285

7.1.3 Debugging CGI Scripts, 287

7.1.4 Security Issues ... 289

7.1.5 A General Shell Script Wrapper for CGI Scripts 290

7.2 Making a Web Interface to a Script 292
7.2.1 A Class for Form Parameters........................ 292

7.2.2 Calling Other Programs, 295

7.2.3 Running Simulations i oL 296

7.2.4 Getting a CGI Script to Work 297

7.2.5 Using Web Services from Scripts..................... 300

7.2.6 EXErCISesuuiuiiin i 302

8 Advanced Python, 305
8.1 Miscellaneous Topicsov i 305
8.1.1 Parsing Command-Line Arguments 305

8.1.2 Platform-Dependent Operations 308

8.1.3 Run-Time Generation of Code....................... 309

8.1.4 EXEICISES .ttt 310

8.2 Regular Expressions and Text Processing................. ... 311
8.2.1 Motivationvvu i e 312

8.2.2 Special Charactersc.oiiiiiinnnan.. 315

8.2.3 Regular Expressions for Real Numbers 316

8.2.4 Using Groups to Extract Parts of a Text.............. 320

8.2.5 Extracting Interval Limits 320

8.2.6 Extracting Multiple Matches 325

8.2.7 Splitting Text ... 329

8.2.8 Pattern-Matching Modifiers 330

8.2.9 Substitution and Backreferences 333
8.2.10 Example: Swapping Arguments in Function Calls 333
8.2.11 A General Substitution Script 337
8.2.12 Debugging Regular Expressions................ 338
8.2.13 EXEICISES .t vv ittt 340

8.3 Tools for Handling Data in Files 350
8.3.1 Writing and Reading Python Data Structures 350

8.3.2 Pickling Objects 352

8.3.3 Shelving Objects. 354

XIV

8.4

8.5

8.6

8.7

8.8

8.9

Table of Contents

8.3.4 Writing and Reading Zip Archive Files 355
8.3.5 Downloading Internet Files............. 356
8.3.6 Binary Input/Outputccoiiiiiiiiiio.. 357
8.3.7T EXEICISES .ottt 359
Scripts Involving Local and Remote Hosts 359
8.4.1 Secure Shell Commands, 360
8.4.2 Distributed Simulation and Visualization 361
8.4.3 Client/Server Programming 363
8.4.4 Threadso 363
ClaSSES o vt 365
8.5.1 Class Programming 365
8.5.2 Checking the Class Typec.ociiiiiiiii.. 369
8.5.3 Private Data 370
8.5.4 Static Data 370
8.5.5 Special Attributes 371
8.5.6 Special Methods i 371
8.5.7 Multiple Inheritance 373
8.5.8 Using a Class as a C-like Structure................... 373
8.5.9 Attribute Access via String Names 374
8.5.10 Example: Turning String Formulas into Functions. 375
8.5.11 Example: Class for Structured Grids 376
8.5.12 New-Style Classes.ovuriin .. 379
8.5.13 Implementing Get/Set Functions via Properties. 379
8.5.14 Subclassing Built-in Types oot 381
8.5.15 Copy and Assignmentooviiiiieen. .. 383
8.5.16 Building Class Interfaces at Run Time................ 386
8.5.17 Building Flexible Class Interfaces 389
8.5.18 EXEICISES . v vv ittt 396
Scope of Variables 399
8.6.1 Global, Local, and Class Variables 399
8.6.2 Nested Functions 401
8.6.3 Dictionaries of Variables in Namespaces 402
Exceptions 404
8.7.1 Handling Exceptions 405
8.7.2 Raising Exceptions. i . 406
Tteratorso 407
8.8.1 Constructing an Iterator 407
8.8.2 A Pointwise Grid Iterator........................... 409
8.8.3 A Vectorized Grid Iterator 413
8.8.4 Generators...........iuiiit i 415
8.8.5 Some Aspects of Generic Programming 417
Investigating Efficiencyo i i 421
8.9.1 CPU-Time Measurements.c.ouuenenvenen.. 421
8.9.2 Profiling Python Scripts o i 424

8.9.3 Optimization of Python Code 425

Table of Contents XV

9 Fortran Programming with NumPy Arrays 429
9.1 Problem Definition 429
9.2 Filling an Array in Fortran o .. 432

9.2.1 The Fortran Subroutine 432
9.2.2 Building and Inspecting the Extension Module 433
9.3 Array Storage ISsues ... 435
9.3.1 Generating an Erroneous Interface 435
9.3.2 Array Storage in C and Fortran 437
9.3.3 Input and Output Arrays as Function Arguments 438
9.3.4 F2PY Interface Files 444
9.3.5 Hiding Work Arrays.c.cooiiiiiiiniinn.. 448
9.4 Increasing Callback Efficiency 449
9.4.1 Callbacks to Vectorized Python Functions 449
9.4.2 Avoiding Callbacks to Python 452
9.4.3 Compiled Inline Callback Functions 453
9.5 SUMMATY . . ottt e e e e e 456
9.6 EXEICISES . oot vttt e 456
9.6.1 EXEICISES . vttt 456

10C and C++ Programming with NumPy Arrays ... 461

10.1 C Programming with NumPy Arrays 462
10.1.1 Basics of the NumPy C APT 462
10.1.2 The Handwritten Extension Code.................... 464
10.1.3 Sending Arguments from Pythonto C................ 465
10.1.4 Consistency Checks oo, 466
10.1.5 Computing Array Values oot 467
10.1.6 Returning an Output Array, 469
10.1.7 Convenient Macros.uuuviiuneneenenen .. 470
10.1.8 Module Initialization 471
10.1.9 Extension Module Template............. 472
10.1.10 Compiling, Linking, and Debugging the Module 474
10.1.11 Writing a Wrapper for a C Function 475

10.2 C++4 Programming with NumPy Arrays 478
10.2.1 Wrapping a NumPy Array in a C++ Object 479
10.2.2 Using SCXX ..ot e 481
10.2.3 NumPy-C++ Class Conversion...................... 483

10.3 Comparison of the Implementations 492
10.3.1 Efficiencyoooii i e 492
10.3.2 Error Handling 495
10.3.3 SUMMATY « .ottt e e e 496

10.3.4 EXEICISES . vttt e e e e e 497

XVI Table of Contents

11 More Advanced GUI Programming.................. 503
11.1 Adding Plot Areas in GUIs 503
11.1.1 The BLT Graph Widget 504
11.1.2 Animation of Functions in BLT Graph Widgets........ 510
11.1.3 Other Tools for Making GUIs with Plots.............. 512
11.1.4 EXEICiSeS .« o vvv vttt e e e e e e e 514

11.2 Event Bindings i 517
11.2.1 Binding Events to Functions with Arguments.......... 517
11.2.2 A Text Widget with Tailored Keyboard Bindings 520
11.2.3 A Fancy List Widget 523

11.3 Animated Graphics with Canvas Widgets.................... 526
11.3.1 The First Canvas Encounter 527
11.3.2 Coordinate Systemsouiiiiininennen .. 528
11.3.3 The Mathematical Model Class 532
11.3.4 The Planet Class, 533
11.3.5 Drawing and Moving Planets 535
11.3.6 Dragging Planets to New Positions................... 536
11.3.7 Using Pmw’s Scrolled Canvas Widget 540

11.4 Tools for Simulation & Visualization Scripts 542
11.4.1 Restructuring the Script 543
11.4.2 Representing a Parameter by a Class 545
11.4.3 Improved Command-Line Script 559
11.4.4 TImproved GUI Scriptcovvieni i 560
11.4.5 Improved CGI Scripto 561
11.4.6 Parameters with Physical Dimensions 562
11.4.7 Adding a Curve Plot Area 564
11.4.8 Automatic Generation of Scripts..................... 566
11.4.9 Applications of the Tools 567
11.4.10 Allowing Physical Units in Input Files................ 572
11.4.11 Converting Input Files to GUIs 576
12Tools and Examples 579
12.1 Running Series of Computer Experiments 579
12.1.1 Multiple Values of Input Parameters 580
12.1.2 Implementation Details 583
12.1.3 Further Applications oo, 588

12.2 Tools for Representing Functions 592
12.2.1 Functions Defined by String Formulas 592
12.2.2 A Unified Interface to Functions 594
12.2.3 Interactive Drawing of Functions 600
12.2.4 A Notebook for Selecting Functions 606

12.3 Solving Partial Differential Equations 612
12.3.1 Numerical Methods for 1D Wave Equations 613
12.3.2 Implementations of 1D Wave Equations 616

12.3.3 Classes for Solving 1D Wave Equations 622

Table of Contents XVII

12.3.4 A Problem Solving Environment 629
12.3.5 Numerical Methods for 2D Wave Equations 635
12.3.6 Implementations of 2D Wave Equations 638

A Setting up the Required Software Environment. ... 649
A.1 Installation on Unix Systems.coiiiniinninnen .. 649
A.1.1 A Suggested Directory Structure..................... 650
A.1.2 Setting Some Environment Variables 650
A.1.3 Installing Tcl/Tk and Additional Modules 651
A.1.4 TInstalling Python oo oo, 652
A.1.5 Installing Python Modules 654
A.1.6 Installing Gnuplot i, 658
A.1.7 TInstalling SWIGo 658
A.1.8 Summary of Environment Variables 659
A.1.9 Testing the Installation of Scripting Utilities 659

A.2 Installation on Windows Systems 660
B Elements of Software Engineering.................... 665
B.1 DBuilding and Using Modules 665
B.1.1 Single-File Modules i, 665
B.1.2 Multi-File Modules 668
B.1.3 Debugging and Troubleshooting 670

B.2 Tools for Documenting Python Software..................... 672
B.2.1 Doc Stringsooui i e 673
B.2.2 Tools for Automatic Documentation.................. 674

B.3 Coding Standardscouiiuniiniiii i 678
B.3.1 Style Guide 678
B.3.2 Pythonic Programming 682

B.4 Verification of Scripts i 687
B.4.1 Automating Regression Tests........... 687
B.4.2 Implementing a Tool for Regression Tests 692
B.4.3 Writing a Test Script........ ..o, 695
B.4.4 Verifying Output from Numerical Computations 696
B.4.5 Automatic Doc String Testing 700
B.4.6 Unit Testing i 702

B.5 Version Control Managementc.oiiienaen .. 704
B.5.1 Getting Started with CVS oo .. 705
B.5.2 Building Scripts to Simplify the Use of CVS........... 709

B.6 EXErcises 709

List of Exercises

Exercise 2.1
Exercise 2.2
Exercise 2.3
Exercise 2.4
Exercise 2.5
Exercise 2.6
Exercise 2.7
Exercise 2.8
Exercise 2.9
Exercise 2.10
Exercise 2.11
Exercise 2.12
Exercise 2.13
Exercise 2.14
Exercise 2.15
Exercise 2.16
Exercise 2.17
Exercise 3.1
Exercise 3.2
Exercise 3.3
Exercise 3.4
Exercise 3.5
Exercise 3.6
Exercise 3.7
Exercise 3.8
Exercise 3.9
Exercise 3.10
Exercise 3.11
Exercise 3.12
Exercise 3.13
Exercise 3.14
Exercise 3.15
Exercise 3.16
Exercise 3.17
Exercise 3.18
Exercise 3.19
Exercise 3.20
Exercise 3.21
Exercise 4.1
Exercise 4.2

Become familiar with the electronic documentation 31
Extend Exercise 2.1 with aloop 38
Find five errors in a script 38
Basic use of control structures 38
Replace exception handling by an if-test 39
Use standard input/output instead of files............. 39
Read streams of (z,y) pairs from the command line 39
Estimate the chance of an event in a dice game 40
Determine if you win or loose a hazard game 40
Generate an HTML report from the simvizl.py script .. 49
Generate a ITEX report from the simvizi.py script 50
Compute time step values in the simvizl.py script 51
Use Matlab for curve plotting in the simvizl.py script .. 51
Combine curves from two simulations in one plot....... 55
Make an animated oscillating system figure............ 60
Improve an automatically generated HTML report 60
Combine two-column data files to a multi-column file ... 64
Write format specifications in printf-style 73
Write your own function for joining strings 96
Write an improved function for joining strings 96
Never modify a list you are iteratingon............... 97
Pack a collection of files 98
Make a specialized sort function 98
Check if your system has a specific program 99
Find the paths to a collection of programs 99
Use Exercise 3.8 to improve the simvizl.py script 100
Use Exercise 3.8 to improve the loop4simviz2.py script . 100
Find the version number of a utility 100
Automate execution of a family of similar commands ... 115
Remove temporary files in a directory tree 116
Find old and large files in a directory tree............. 116
Remove redundant files in a directory tree 116
Annotate a filename with the current date 118
Automatic backup of recently modified files 118
Search for a text in files with certain extensions........ 118
Search directories for plots and make HTML report 119
Fix Unix/Windows Line Ends 119
Improve the scripts in Exercise 3.20 120
Matrix-vector multiply with NumPy arrays............ 130
Replace lists by NumPy arrays 130

XX

Exercise 4.3
Exercise 4.4
Exercise 4.5
Exercise 4.6
Exercise 4.7
Exercise 4.8
Exercise 4.9
Exercise 4.10
Exercise 4.11
Exercise 4.12
Exercise 4.13
Exercise 4.14
Exercise 4.15
Exercise 4.16
Exercise 4.17
Exercise 4.18
Exercise 5.1
Exercise 5.2
Exercise 5.3
Exercise 6.1
Exercise 6.2
Exercise 6.3
Exercise 6.4
Exercise 6.5
Exercise 6.6
Exercise 6.7
Exercise 6.8
Exercise 6.9
Exercise 6.10
Exercise 6.11
Exercise 6.12
Exercise 6.13
Exercise 6.14
Exercise 6.15
Exercise 6.16
Exercise 6.17
Exercise 6.18
Exercise 6.19
Exercise 7.1
Exercise 7.2
Exercise 7.3
Exercise 7.4
Exercise 7.5
Exercise 8.1
Exercise 8.2

List of Exercises

Efficiency of NumPy array initialization...............
Assignment and in-place NumPy array modifications . ..
Process comma-separated numbers in a file
Vectorized constant function
Vectorize a numerical integration rule
Vectorize a formula containing an if condition
Vectorized Box-Miiller method for normal variates
Implement Exercise 2.8 using NumPy arrays
Implement Exercise 2.9 using NumPy arrays
Use the Gnuplot module in the simvizl.py script
NumPy arrays and binary files.......................
One-dimensional Monte Carlo integration
Higher-dimensional Monte Carlo integration
Load data file into NumPy array and visualize
Analyze trends in the data from Exercise 4.16
Computing a function over a 3D grid
Implement a numerical integration rule in F77
Implement a numerical integration rule in C
Implement a numerical integration rule in C++........
Modify the Scientific Hello World GUI
Change the layout of the GUI in Exercise 6.1
Control a layout with the grid geometry manager
Make a demo of Newton’s method
Program with Pmw.EntryField in hwGUI10.py
Program with Pmw.EntryField in simvizGUI2.py
Replace Tkinter variables by set/get-like functions
Use simvizl.py as a module in simvizGUI2.py
Apply Matlab for visualization in simvizGUI2.py
Program with Pmw.OptionMenu in simvizGUI2.py

Study the nonlinear motion of a pendulum
Add error handling with an associated message box
Add a message bar to a balloon help
Select a file from a list and perform an action..........
Make a GUI for finding and selecting font names
Launch a GUI when command-line options are missing .
Write a GUI for Exercise 3.15
Write a GUI for selecting files to be plotted
Write an easy-to-use GUI generator
Write a CGI debugging tool
Make a Web calculator
Make a Web service for registering participants
Make a Web service for numerical experimentation
Become a “nobody” user on a Web server
Use the getopt/optparse module in simvizi.py
Store command-line options in a dictionary............

Exercise 8.3

Exercise 8.4

Exercise 8.5

Exercise 8.6

Exercise 8.7

Exercise 8.8

Exercise 8.9

Exercise 8.10
Exercise 8.11
Exercise 8.12
Exercise 8.13
Exercise 8.14
Exercise 8.15
Exercise 8.16
Exercise 8.17
Exercise 8.18
Exercise 8.19
Exercise 8.20
Exercise 8.21
Exercise 8.22
Exercise 8.23
Exercise 8.24
Exercise 8.25
Exercise 8.26
Exercise 8.27
Exercise 8.28
Exercise 8.29
Exercise 8.30
Exercise 8.31
Exercise 8.32
Exercise 8.33
Exercise 8.34
Exercise 8.35
Exercise 8.36
Exercise 9.1

Exercise 9.2

Exercise 9.3

Exercise 9.4

Exercise 9.5

Exercise 9.6

Exercise 10.1
Exercise 10.2
Exercise 10.3
Exercise 10.4
Exercise 10.5

List of Exercises ~ XXI
Turn files with commands into Python variables 311
A grep script ..o 340
Experiment with a regex for real numbers............. 340
Find errors in regular expressions 340
Generate data from a user-supplied formula 341
Explain the behavior of regular expressions............ 342
Edit extensions in filenames 342
Extract info from a program code 342
Regex for splitting a pathname 343
Rename a collection of files according to a pattern 343
Reimplement the re.findall function................. 343
Interpret a regex code and find programming errors 344
Automatic fine tuning of PostScript figures............ 344
Prefix name of digital image files with date and time ... 345
Transform a list of lines to a list of paragraphs......... 346

Copy computer codes into HTML documents directly from source files346

A very useful script for all writers.................... 347
Read Fortran 90 files with namelists 348
Interpret Fortran 90 array subscripting syntax 348
Regex for matching I¥TEX commands 348
Automatic update of function calls in C++ files 349
Read/write (x,y) pairs from/to binary files............ 359
Use the XDR format in the script from Exercise 8.24 ... 359
Using a Web site for distributed simulation............ 362
Convert data structures to/from strings............... 396
Implement a class for vectorsin 3D 396
Extend the class from Exericse 8.28 397
Make a dictionary type with ordered keys 397
Make a smarter integration function 398
Extend the Grid2D class.......... ... oL, 398
Extend the functionality of class Grid2D at run time 399
Make a boundary iterator in a 2D grid................ 413
Make a generator for odd numbers 417
Make a class for sparse vectors................oou.o... 417
Extend Exercise 5.1 with a callback to Python......... 456
Compile callback functions in Exercise 9.1............. 457
Smoothing of time series 457
Smoothing of 3D datao L. 458
Type incompatibility between Python and Fortran 458
Problematic callbacks to Python from Fortran 459
Extend Exercise 5.2 or 5.3 with a callback to Python ... 497

Apply C/C++ function pointers in Exercise 5.3........ 497

Investigate the efficiency of vector operations 498
Make callbacks to vectorized Python functions......... 498
Avoid Python callbacks in extension modules 498

XXII List of Exercises

Exercise 10.6 Extend Exercise 9.4 with C and C++ code............
Exercise 10.7 Apply SWIG to an array class in C++
Exercise 10.8 Build a dictionary in C o i,
Exercise 10.9 Make a C module for computing random numbers.
Exercise 10.10 Almost automatic generation of C extension modules . . .
Exercise 10.11 Introduce C++ array objects in Exercise 10.10
Exercise 10.12 Introduce SCXX in Exercise 10.11
Exercise 11.1 Incorporate a BLT graph widget in simvizl.py.........
Exercise 11.2 Plot a two-column datafile in a Pmw.Blt widget
Exercise 11.3 Use a BLT graph widget in simvizGUI2.py.............
Exercise 11.4 Extend Exercise 11.3 to handle multiple curves
Exercise 11.5 Use a BLT graph widget in Exercise 6.4
Exercise 11.6 Interactive dump of snapshot plots in an animation
Exercise 11.7 Extend the animate.py GUL
Exercise 11.8 Animate a curve in a BLT graph widget
Exercise 11.9 Add animations to the GUI in Exercise 11.5...........
Exercise 11.10 Extend the GUI in Exercise 6.17 with a fancy list
Exercise 11.11 Remove canvas items,
Exercise 11.12 Introducing properties in class Parameters
Exercise 12.1 Allow multiple values of parameters in input files
Exercise 12.2 Turn mathematical formulas into Fortran functions.
Exercise 12.3 Move a wave source during simulation
Exercise 12.4 Include damping in a 1D wave simulator
Exercise 12.5 Use iterators in finite difference schemes
Exercise B.1 Pack modules and packages using Distutils
Exercise B.2 Distribute mixed-language code using Distutils
Exercise B.3 Make a Python module of simvizl.py
Exercise B.4 Use tools to document the script in Exercise 3.15
Exercise B.5 Make a regression test for a trivial script
Exercise B.6 Make a regression test for a script with I/O
Exercise B.7 Repeat Exercise B.5 using the test script tools.........
Exercise B.8 Make a regression test for a file traversal script
Exercise B.9 Make a regression test for the script in Exercise 3.15 ...
Exercise B.10 Approximate floats in Exercise B.5
Exercise B.11 Make a tar/zip archive of files associated with a script . .
Exercise B.12 Semi-automatic evaluation of a student project

Chapter 1

Introduction

In this introductory chapter we first look at some arguments why scripting
is a promising programming style for computational scientists and engineers
and how scripting differs from more traditional programming in Fortran, C,
C++, and Java. The chapter continues with a section on how to set up
your software environment such that you are ready to get started with the
introduction to Python scripting in Chapter 2. Eager readers who want to
get started with Python scripting as quickly as possible can safely jump to
Chapter 1.2 to set up their environment and get ready to dive into examples
in Chapter 2.

1.1 Scripting versus Traditional Programming

The purpose of this section is to point out differences between scripting and
traditional programming. These are two quite different programming styles,
often with different goals and utilizing different types of programming lan-
guages. Traditional programming, also often referred to as system program-
ming, refers to building (usually large, monolithic) applications (systems) us-
ing languages such as Fortran', C, C++, or Java. In the context of this book,
scripting means programming at a high and flexible abstraction level, utiliz-
ing languages like Perl, Python, Ruby, Scheme, or Tcl. Very often the script
integrates operation system actions, text processing and report writing, with
functionality in monolithic systems. There is a continuous transition from
scripting to traditional programming, but this chapter will be more focused
on the features that distinguish these programming styles.

Hopefully, the present section motivates the reader for getting started with
scripting in Chapter 2. Much of what is written in this section may make more
sense after you have experience with scripting, so you are encouraged to go
back and read it again at a later stage to get a more thorough view of how
scripting fits in with other programming techniques.

! By “Fortran” we mean all versions of Fortran (77, 90/95, 2000), unless a specific
version is mentioned. Comments on Java and C++ will often apply to Fortran
2000 although we do not state it explicitly.

2 1. Introduction

1.1.1 Why Scripting is Useful in Computational Science

Scientists Are on the Move. During the last decade, the popularity of scien-
tific computing environments such as Maple, Mathematica, Matlab, and S-
Plus/R has increased considerably. Scientists and engineers simply feel more
productive in such environments. One reason is the simple and clean syntax
of the command languages in these environments. Another factor is the tight
integration of simulation and visualization: in Maple, Matlab, S-Plus/R and
similar environments you can quickly and conveniently visualize what you
just have computed.

Build Your Own Environment. One problem with the mentioned environ-
ments is that they do not work, at least not in an easy way, with other types
of numerical software and visualization systems. Many of the environment-
specific programming languages are also quite simple or primitive. At this
point scripting in Python comes in. Python offers the clean and simple syn-
tax of the popular scientific computing environments, the language is very
powerful, and there are lots of tools for gluing your favorite simulation, vi-
sualization, and data analysis programs the way you want. Phrased differ-
ently, Python allows you to build your own Matlab-like scientific computing
environment, tailored to your specific needs and based on your favorite high-
performance Fortran, C, or C++ codes.

Scientific Computing Is More Than Number Crunching. Many computa-
tional scientists work with their own numerical software development and
realize that much of the work is not only writing computationally intensive
number-crunching loops. Very often programming is about shuffling data in
and out of different tools, converting one data format to another, extracting
numerical data from a text, and administering numerical experiments involv-
ing a large number of data files and directories. Such tasks are much faster
to accomplish in a language like Python than in Fortran, C, C++, or Java.
Chapter 3 presents lots of examples in this context.

Graphical User Interfaces. GUIs are becoming increasingly more important
in scientific software, but (normally) computational scientists and engineers
have neither the interest nor the time to read thick books about GUI pro-
gramming. What you need is a quick “how-to” description of wrapping GUIs
to your applications. The Tk-based GUI tools available through Python make
it easy to wrap existing programs with a GUIL. Chapter 6 provides an intro-
duction.

Demos. Scripting is particularly attractive for building demos related to
teaching or project presentations. Such demos benefit greatly from a GUI,
which offers input data specification, calls up a simulation code, and visualizes
the results. The simple and intuitive syntax of Python encourages users to
modify and extend demos on their own, even if they are newcomers to Python.

1.1. Scripting versus Traditional Programming 3

Some relevant demo examples can be found in Chapters 2.3, 6.2, 7.2, 11.4,
and 12.3.

Modern Interfaces to Old Sitmulation Codes. Many Fortran and C program-
mers want to take advantage of new programming paradigms and languages,
but at the same time they want to reuse their old well-tested and efficient
codes. Instead of migrating these codes to C++, recent Fortran versions, or
Java, one can wrap the codes with a scripting interface. Calling Fortran, C,
or C++ from Python is particularly easy, and the Python interfaces can take
advantage of object-oriented design and simple coupling to GUIs, visualiza-
tion, or other programs. Computing with your Fortran or C libraries from
these interfaces can then be done either in short scripts or in a fully interac-
tive manner through a Python shell. Roughly speaking, you can use Python
interfaces to your existing libraries as a way of creating your own tailored
problem solving environment. Chapter 5 explains how Python code can call
Fortran, C, and C++.

Unix Power on Windows. We also mention that many computational sci-
entists are tied to and take great advantage of the Unix operating system.
Moving to Microsoft Windows environments can for many be a frustrating
process. Scripting languages are very much inspired by Unix, yet cross plat-
form. Using scripts to create your working environment actually gives you to
the power of Unix (and more!) also on Windows and Macintosh machines. In
fact, a script-based working environment can give you the combined power
of the Unix and Windows/Macintosh working styles. Many examples of op-
erating system interaction through Python are given in Chapter 3.

Python versus Matlab. Some readers may wonder why an environment such
as Matlab or something similar (like Octave, Scilab, Rlab, Euler, Tela, Yorick)
is not sufficient. Matlab is a de facto standard, which to some extent offers
many of the important features mentioned in the previous paragraphs. Matlab
and Python have indeed many things in common, including no declaration of
variables, simple and convenient syntax, easy creation of GUIs, and gluing of
simulation and visualization. Nevertheless, in my opinion Python has some
clear advantageous over Matlab and similar environments:

— the Python programming language is more powerful,

— the Python environment is completely open and made for integration
with external tools,

— a complete toolbox/module with lots of functions and classes can be
contained in a single file (in contrast to a bunch of M-files),

— transferring functions as arguments to functions is simpler,
— nested, heterogeneous data structures are simple to construct and use,

— object-oriented programming is more convenient,

4 1. Introduction

— interfacing C, C++, and Fortran code is better supported and therefore
simpler,

— scalar functions work with array arguments to a larger extent (without
modifications of arithmetic operators),

— the source is free and runs on more platforms.

Having said this, we must add that Matlab has significantly more compre-
hensive numerical functionality than Python (linear algebra, ODE solvers,
optimization, time series analysis, image analysis, etc.). The graphical capa-
bilities of Matlab are also more convenient than those of Python, since Python
graphics relies on external packages that must be installed separately. There
is an interface pymat that allows Python programs to use Matlab as a compu-
tational and graphics engine (see Chapter 4.4.3). At the time of this writing,
Python’s support for numerical computing and visualization is rapidly grow-
ing, especially through the SciPy project (see Chapter 4.4.2).

1.1.2 Classification of Programming Languages

It is convenient to have a term for the languages used for traditional scientific
programming and the languages used for scripting. We propose to use type-
safe languages and dynamically typed languages, respectively. These terms
distinguish the languages by the flexibility of the variables, i.e., whether vari-
ables must be declared with a specific type or whether variables can hold data
of any type. This is a clear and important distinction of the functionality of
the two classes of programming languages.

Many other characteristics are candidates for classifying these languages.
Some speak about compiled languages versus interpreted languages (Java
complicates these matters, as it is type-safe, but have the nature of being
both interpreted and compiled). Scripting languages and system program-
ming languages are also very common terms [28], i.e., classifying languages
by their typical associated programming style. Others refer to high-level and
low-level languages. High and low in this context implies no judgment of
quality. High-level languages are characterized by constructs and data types
close to natural language specifications of algorithms, whereas low-level lan-
guages work with constructs and data types reflecting the hardware level.
This distinction may well describe the difference between Perl and Python,
as high-level languages, versus C and Fortran, as low-level languages. C++
and Java come somewhat in between. High-level languages are also often re-
ferred to as very high-level languages, indicating the problem of choosing a
common scale when measuring the level of languages.

Our focus is on programming style rather than on language. This book
teaches scripting as a way of working and programming, using Python as the
preferred computer language. A synonym for scripting could well be high-level
programming, but the expression sometimes leaves a confusion about how to

1.1. Scripting versus Traditional Programming 5

measure the level. Why I use the term scripting instead of just programming
is explained in Chapter 1.1.16. Already now the reader may have in mind
that I use the term scripting in a broader meaning than many others.

1.1.3 Productive Pairs of Programming Languages

Unix and C. Unix evolved to be a very productive software development
environment based on two programming tools of different nature: the classical
system programming language C for CPU-critical tasks, often involving non-
trivial data structures, and the Unix shell for gluing C programs to form new
applications. With only a handful of basic C programs as building blocks, a
user can solve a new problem by writing a tailored shell program combining
existing tools in a simple way. For example, there is no basic Unix tool that
enables browsing a sorted list of the disk usage in the directories of a user,
but it is trivial to combine three C programs, du for summarizing disk usage,
sort for sorting lines of text, and less for browsing text files, together with
the pipe functionality of Unix shells, to build the desired tool as a one-line
shell instruction:

du -a $HOME | sort -rn | less

In this way, we glue three programs that are in principle completely indepen-
dent of each other. This is the power of Unix in a nutshell. Without the gluing
capabilities of Unix shells, we would need to write a tailored C program, of
a much larger complexity, to solve the present problem.

A Unix command interpreter, or shell as it is normally called, provides
a language for gluing applications. There are many shells: Bourne shell (sh)
and C shell (csh) are classical, whereas Bourne Again shell (bash), Korn shell
(ksh), and Z shell (zsh) are popular modern shells. A program written in a
shell is often referred to as a script. Although the Unix shells have many
useful high-level features that contribute to keep the size of scripts small, the
shells are quite primitive programming languages, at least when viewed by
modern programmers.

C is a low-level language, often claimed to be designed for computers and
not humans. However, low-level system programming languages like C and
Fortran 77 were introduced as alternatives to the much more low-level as-
sembly languages and have been successful for making computationally fast
code, yet with a reasonable abstraction level. Fortran 77 and C give nearly
complete control of memory usage and CPU-critical program segments, but
the amount of details at a low code level is unfortunately huge. The need
for programming tools that increase the human productivity led to a devel-
opment of more powerful languages, both for classical system programming
and for scripting.

6 1. Introduction

C++ and VisualBasic. Under the Windows family of operating systems,
efficient program development evolved as a combination of the type-safe lan-
guage C++ for classical system programming and the VisualBasic language
for scripting. C++ is a richer (and much more complicated) language than
C and supports working with high-level abstractions through concepts like
object-oriented and gemeric programming. VisualBasic is also a richer lan-
guage than Unix shells.

Java. Especially for tasks related to Internet programming, Java is taking
over as the preferred language for building large software systems. Many
regard JavaScript as some kind of scripting companion in Web pages. PHP
and Java are also a popular pair. However, Java is much of a self-contained
language, and being simpler and safer to apply than C++, it has become
very popular and widespread for classical system programming. A promising
scripting companion to Java is Jython, the Java implementation of Python.

Modern Scripting Languanges. During the last decade several powerful dy-
namically typed languages have emerged and developed to a mature state.
Bash, Perl, Python (and Jython), Ruby, Scheme, and Tcl are examples of
general-purpose, modern, widespread languages that are popular for script-
ing tasks. PHP is a related language, but more specialized towards making
Web services.

1.1.4 Gluing Existing Applications

Dynamically typed languages are often used for gluing stand-alone applica-
tions (typically coded in a type-safe language) and offer for this purpose rich
interfaces to operating system functionality, file handling, and text process-
ing. A relevant example for computational scientists and engineers is gluing
a simulation program, a visualization program, and perhaps a data analysis
program, to form an easy-to-use tool for problem solving. Running a program,
grabbing and modifying its output, and directing data to another program
are central tasks when gluing applications, and these tasks are easier to ac-
complish in a language like Python than in Fortran, C, C++, or Java. A
script that glues existing components to form a new application often needs
a graphical user interface (GUI), and adding a GUI is normally a simpler
task in dynamically typed languages than in the type-safe languages.

There are basically two ways of gluing existing applications. The simplest
approach is to launch stand-alone programs and let such programs commu-
nicate through files. This is exemplified already in Chapter 2.3. The other
more sophisticated way of gluing consists in letting the script call functions
in the applications. This can be done through direct calls to the functions
and using pointers to transfer data structures between the applications. Al-
ternatively, one can use a layer of, e.g., CORBA or COM objects between the
script and the applications. The latter approach is very flexible as the appli-

1.1. Scripting versus Traditional Programming 7

cations can easily run on different machines, but data structures need to be
copied between the applications and the script. Passing large data structures
by pointers in direct calls of functions in the applications therefore seems at-
tractive for high-performance computing. The topic is treated in Chapters 9
and 10.

1.1.5 Scripting Yields Shorter Code

Powerful dynamically typed languages, such as Python, support numerous
high-level constructs and data structures enabling you to write programs
that are significantly shorter than programs with corresponding functionality
coded in Fortran, C, C++, or Java. In other words, more work is done (on
average) per statement. A simple example is reading an a priori unknown
number of real numbers from a file, where several numbers may appear at one
line and blank lines are permitted. This task is accomplished by two Python
statements?:

F = open(filename, ’r’); n = F.read().split()

Trying to do this in Fortran, C, C4++, or Java requires at least a loop, and in
some of the languages several statements needed for dealing with a variable
number of reals per line.

As another example, think about reading a complex number expressed in
a text format like (-3.1,4). We can easily extract the real part —3.1 and the
imaginary part 4 from the string (-3.1,4) using a regular erpression, also
when optional whitespace is included in the text format. Regular expressions
are particularly well supported by dynamically typed languages. The relevant
Python statements read?

m = re.search(r’\(\sx([~,]+)\sx,\sx([~,]+)\s*\)’, *> (-3.1, 4) ?)
re, im = [float(x) for x in m.groups()]

We can alternatively strip off the parenthesis and then split the string ’-3.1,4°
with respect to the comma character:

m=" (-3.1, 4) ’.strip()[1:-1]
re, im = [float(x) for x in m.split(’,’)]

This solution applies string operations and a convenient indexing syntax in-
stead of regular expressions. Extracting the real and imaginary numbers in

2 Do not try to understand the details of the statements. The size of the code is
what matters at this point. The meaning of the statements will be evident from
Chapter 2.

3 The code examples may look cryptic for a novice, but the meaning of the sequence
of strange characters (in the regular expressions) should be evident from reading
just a few pages in Chapter 8.2.

8 1. Introduction

Fortran or C code requires many more instructions, doing string searching
and manipulations at the character array level.

The special text of comma-separated numbers enclosed in parenthesis,
like (-3.1,4), is a valid textual representation of a standard list (tuple) in
Python. This allows us in fact to convert the text to a list variable and from
there extract the list elements by a very simple code:

re, im = eval(’(-3.1, 4)’)

The ability to convert textual representation of lists (including nested, het-
erogeneous lists) to list variables is a very convenient feature of scripting. In
Python you can have a variable q holding, e.g., a list of various data and say
s=str(q) to convert q to a string s and g=eval(s) to convert the string back
to a list variable again. This feature makes writing and reading non-trivial
data structures trivial, which we demonstrate in Chapter 8.3.1.

Ousterhout’s article [28] about scripting refers to several examples where
the code-size ratio and the implementation-time ratio between type-safe lan-
guages and the dynamically typed Tcl language vary from 2 to 60, in favor of
Tcl. For example, the implementation of a database application in C++ took
two months, while the reimplementation in Tcl, with additional functional-
ity, took only one day. A database library was implemented in C++ during
a period of 2-3 months and reimplemented in Tcl in about one week. The
Tcl implementation of an application for displaying oil well curves required
two weeks of labor, while the reimplementation in C needed three months.
Another application, involving a simulator with a graphical user interface,
was first implemented in Tcl, requiring 1600 lines of code and one week of
labor. A corresponding Java version, with less functionality, required 3400
lines of code and 3-4 weeks of programming.

1.1.6 Efficiency

Scripts are first compiled to hardware-independent byte-code and then the
byte-code is interpreted. Type-safe languages, with the exception of Java, are
compiled in the sense that all code is nailed down to hardware-dependent
machine instructions before the program is executed. The interpreted, high-
level, flexible data structures used in scripts imply a speed penalty, especially
when traversing data structures of some size [0].

However, for a wide range of tasks, dynamically typed languages are ef-
ficient enough on today’s computers. A factor of 10 slower code might not
be crucial when the statements in the scripts are executed in a few seconds
or less, and this is very often the case. Another important aspect is that
dynamically typed languages can sometimes give you optimal efficiency. The
previously shown one-line Python code for splitting a file into numbers calls
up highly optimized C code to perform the splitting. You need to be a very
clever C programmer to beat the efficiency of Python in this example. The

1.1. Scripting versus Traditional Programming 9

same operation in Perl runs even faster, and the underlying C code has been
optimized by many people around the world over a decade so your chances
of creating something more efficient are most probably zero. A consequence
is that in the area of text processing, dynamically typed languages will often
provide optimal efficiency both from a human and a computer point of view.

Another attractive feature of dynamically typed languages is that they
were designed for migrating CPU-critical code segments to C, C++, or For-
tran. This can often resolve bottlenecks, especially in numerical computing. If
you can solve your problem using, for example, fixed-size, contiguous arrays
and traverse these arrays in a C, C++, or Fortran code, and thereby uti-
lize the compilers’ sophisticated optimization techniques, the compiled code
will run much faster than the similar script code. The speed-up we are talk-
ing about here can easily be a factor of 100 (Chapters 9 and 10 presents
examples).

1.1.7 Type-Specification (Declaration) of Variables

Type-safe languages require each variable to be explicitly declared of a specific
type. The compiler makes use of this information to control that the right type
of data is combined with the right type of algorithms. Some refer to statically
typed and strongly typed languages. Static, being opposite of dynamic, means
that a variable’s type is fixed at compiled time. This distinguishes, e.g., C
from Python. Strong versus weak typing refers to if something of one type
can be automatically used as another type, i.e., if implicit type conversion
may take place. Variables in Perl may be weakly typed in the sense that

$b = °1.2°; $c = 5.1*$b

is valid: $b gets converted to a float in the multiplication. The same operation
in Python is not legal, a string cannot suddenly act as a float?.

The advantage of type-safe languages is less bugs and safer programming,
at a cost of decreased flexibility. In large projects with many programmers
the strong typing certainly helps managing complexity. Nevertheless, reuse
of code is not always supported by strong typing since a piece of code only
works with a particular type of data. Object-oriented and especially generic
programming provide important tools to relax the rigidity of a strongly typed
environment.

In dynamically typed languages variables are not declared to be of any
type, and there are no a priori restrictions on how variables and functions are
combined. When you need a variable, simply assign it a value — there is no
need to mention the type. This gives great flexibility, but also undesired side
effects from typing errors. Fortunately, dynamically typed languages usually

4 With user-defined types in Python you are free to control implicit type conversion
in arithmetic operators.

10 1. Introduction

perform extensive run-time checks (at a cost of decreased efficiency, of course)
for consistent use of variables and functions. At least experienced program-
mers will not be annoyed by errors arising from the lack of strong typing:
they will easily recognize typing errors or type mismatches from the run-time
messages. The benefits of no explicit typing is that a piece of code can be
applied in many contexts. This reduces the amount of code and thereby the
number of bugs.

Here is an example of a generic Python function for dumping a data
structure with a leading text:

def debug(leading_text, variable):
if os.environ.get(’MYDEBUG’, ’0°) == ’1°:
print leading_text, variable

The function performs the print action only if the environment variable
MYDEBUG is defined and has the value ’1’. By adjusting MYDEBUG in the op-
erating system environment one can turn on and off the output from debug
in any script.

The main point here is that the debug function actually works with any
built-in data structure. We may send integers, floating-point numbers, com-
plex numbers, arrays, and nested heterogeneous lists of user-defined objects
(provided these have defined how to print themselves). With three lines of
code we have made a very convenient tool. Such quick and useful code devel-
opment is typical for scripting.

In a sense, templates in C++ mimics the nature of dynamically typed
languages. The similar function in C++ reads

template <class T>

void debug(std::ostream& o,
const std::string& leading_text,
const T& variable)

char* c = getenv("MYDEBUG");
bool defined = false;
if (¢ != NULL) { // if MYDEBUG is defined ...

if (std::string(c) == "1") { // if MYDEBUG is true ...
defined = true;
}
}
if (defined) {
0 << 1leading_text << " " << variable << std::endl;
}

}

In Fortran, C, and Java one needs to make different versions of debug for
different types of the variable variable.

Object-oriented programming is also used to parameterize types of vari-
ables. In Java or C++ we could write the debug function to work with ref-
erences variable of type A and call a (virtual) print function in A objects.
The debug function would then work with all instances variable of subclasses

1.1. Scripting versus Traditional Programming 11

of A. This requires us to explicitly register a special type as subclass of A,
which implies some work. The advantage is that we (and the compiler) have
full control of what types that are allowed to be sent to debug. The Python
debug function is much quicker to write and use, but we have no control of
the type of variables that we try to print. For the present example this is
irrelevant, but in large systems unintended transactions of objects may be
critical. Strong typing may then help, at the cost quite some extra work.

1.1.8 Flexible Function Interfaces

Problem solving environments such as Maple, Mathematica, Matlab, and
S-Plus/R have simple-to-use command languages. One particular feature of
these command languages, which enhances user friendliness, is the possibility
of using keyword or mamed arguments in function calls. As an illustration,
consider a typical plot session®

f = calculate(...) # calculate something
plot (£f)

Whatever we calculate is stored in £, and plot accepts £ variables of different
types. In the simple plot(£f) call, the function relies on default options for
axis, labels, etc. More control is obtained by adding parameters in the plot
call, e.g.,

plot(f, label=’elevation’, xrange=[0,10])

Here we specify a label to mark the curve and the extent of the x axis.
Arguments with a name, say label, and a value, say ’elevation’, are called
keyword or named arguments. The advantage of such arguments is three-fold:
(i) the user can specify just a few arguments and rely on default values for the
rest, (ii) the sequence of the arguments is arbitrary, and (iii) the keywords
help to document and explain the call. The more experienced user will often
need to fine tune a plot, and in that case a range of additional arguments
can be specified, for instance something like

plot(f, label=’elevation’, xrange=[0,10], title=’Variable bottom’,
linetype=’dashed’, linecolor=’red’, yrange=[-1,1])

Python offers keyword arguments in functions, exactly as explained here. The
plot calls are in fact written with Python syntax (but the plot function itself
is not a built-in Python feature: it is here supposed to be some user-defined
function).

An argument can be of different types inside the plot function. Con-
sider, for example, the xrange parameter. One could offer the specification

® In this book, three dots (...) are used to indicate some irrelevant code that is
left out to reduce the amount of details.

12 1. Introduction

of this parameter in several ways: (i) as a list [xmin,xmax], (ii) as a string
'xmin:xmax’, or (iii) as a single floating-point number xmax, assuming that
the minimum value is zero. These three cases can easily be dealt with inside
the plot function, because Python enables checking the type of xrange (the
details are explained in Chapter 3.2.10).

Some functions, debug in Chapter 1.1.7 being an example, accept any type
of argument, but Python issues run-time error messages when an operation
is incompatible with the supplied type of argument. The plot function above
accepts only a limited set of argument types and could convert different types
to a uniform representation (floating-point numbers xmin and xmax) within
the function.

The nature and functionality of Python give you a full-fledged, advanced
programming language at disposal, with the clean and easy-to-use interface
syntax that has obtained great popularity through environments like Maple
and Matlab. The function programming interface offered by type-safe lan-
guages is more comprehensive, less flexible, and less user friendly. Having
said this, we should add that user friendliness has, of course, many aspects
and depends on personal taste. Strong typing and comprehensive syntax may
provide a reliability that some people find more user friendly than the pro-
gramming style we advocate in this text.

1.1.9 Interactive Computing

Many of the most popular computational environments, such as Maple, Mat-
lab, and S-Plus/R, offer interactive computing. The user can type a com-
mand and immediately see the effect of it. Previous commands can quickly
be recalled and edited on the fly. Since mistakes are easily discovered and
corrected, interactive environments are ideal for exploring the steps of a
computational problem. When all details of the computations are clear, the
commands can be collected in a file and run as a program.

Python offers an interactive shell, which provides the type of interactive
environment just described. A very simple session could do some basic cal-
culations:

>>> from math import *
>>> w=1

>>> sin(wx2.5)*cos (1+w*3)
-0.39118749925811952

The first line gives us access to functions like sin and cos. The next line
defines a variable w, which is used in the computations in the proceeding line.
User input follows after the >>> prompt, while the result of a command is
printed without any prompt.

A less trival session could involve integrals of the Bessel functions J, (z):

>>> from scipy.special import jn
>>> def f(x):

1.1. Scripting versus Traditional Programming 13

return jn(n,x)

>>> from scipy import integrate

>>> n=2

>>> integrate.quad(myfunc, 0, 10)
(0.98006581161901407, 9.1588489241801687e-14)
>>> n=4

>>> integrate.quad(myfunc, 0, 10)
(0.86330705300864041, 1.0255758932352094e-13)

Bessel functions, together with lots of other mathematical functions, can be
imported from a library scipy.special. We define a function, here just J,,(x),
import an integration module from scipy, and call a numerical integration
routine®. The result of the call are two numbers, the value of the integral
and an estimation of the numerical error. These numbers are echoed in the
interactive shell. We could alternatively store the return values in variables
and use these in further calculations:

>>> v, e = integrate.quad(myfunc, 0, 10)
>>> q = vxexp(-0.02%140)

>>> q

3.05589193585e-05

Since previous commands are reached by the up-arrow key, we can easily fetch
and edit an n assignment and re-run the corresponding integral computation.
There are Python modules for efficient array computing and for visualization
so the interactive shell may act as an alternative to other interactive scientific
computing environments.

1.1.10 Creating Code at Run Time

Since scripts are interpreted, new code can be generated while the script is
running. This makes it possible to build tailored code, a function for instance,
depending on input data in a script. A very simple example is a script that
evaluates mathematical formulas provided as input to the script. For example,
in a GUI we may write the text ’sin(1.2*x) + x**a’ as a representation of the
mathematical function f(x) = sin1.2z + 22. If x and a are assigned values,
the Python script can grab the string and execute it as Python code and
thereby evaluate the user-given mathematical expression (see Chapter 11.2.1
for details). This run-time code generation provides a flexibility not offered
by compiled, type-safe languages.

As another example, consider an input file to a program with the syntax

a=1.2

no of iterations = 100
solution strategy = ’implicit’

5 integrate.quad is actually a Fortran routine in the classical QUADPACK library
from Netlib [20].

14 1. Introduction
cl =0
c2 =0.1
A =4

c3 = StringFunction(’A*sin(x)’)

The following generic Python code segment reads the file information and
creates Python variables a, no_of_iterations, solution_strategy, cl, c2, A,
and c3 with the values as given in the file (!):
file = open(’inputfile.dat’, ’r’)
for line in file:
first replace blanks on the left-hand side of = by _
variable, value = [word.strip() for word in line.split(’=’)]
variable = variable.replace(’ ’, ’_’)

pycode = variable + ’=’ + value
exec pycode

Moreover, ¢3 is in fact a function c¢3(x) as specified in the file (see Chap-
ters 8.5.10 or 12.2.1 to see what the StringFunction tool really is). The pre-
sented code segment handles any such input file, regardless of the number of
and name of the variables. This is a striking example on the usefulness and
power of run-time code generation.

Our general tool for turning input file commands into variables in a code
can be extended with support for physical units. With some more code (the
details appear in Chapter 11.4.10) we could read a file with

a=1.2 km
c2 = 0.1 MPa
A=4s

Here, a may be converted from km to m, ¢2 may be converted from MPa to
bar, and A may be kept in seconds, but we could also have written A = 0.001111 h
and converted hours to seconds. Such convenient handling of units cannot be
exaggerated — most computational scientists and engineers know how much
confusion that may arise from unit conversion.

1.1.11 Nested Heterogeneous Data Structures

Fortran, C, C++, and Java programmers will normally represent tabular
data by plain arrays. In a language like Python, one can very often reach
a better solution by tailoring some flexible built-in data structures to the
problem at hand. As an example, suppose you want to automate a test of
compilers for a particular program you have. The purpose of the test is to
run through several types of compilers and various combinations of compiler
flags to find the optimal combination of compiler and flags (and perhaps also
hardware). This is a very useful (but boring) thing to do when heavy scientific
computations lead to large CPU times.

We could set up the different compiler commands and associated flags by
means of a table:

1.1. Scripting versus Traditional Programming 15

type name options 1libs flags

GNU 3.0 gr7 -Wall -1f2c -01, -03, -03 -funroll-loops
Fujitsu 1.0 £95 -v95s -01, -03, -03 -Kloop

Sun 5.2 £77 -01, -fast

For each compiler, we have information about the vendor and the version
(type), the name of the compiler program (name), some standard options and
required libraries (options and libs), and a list of compiler flag combinations
(e.g., we want to test the GNU g77 compiler with the options -01, -03, and
finally -03 -funroll-loops).

How would you store such information in a program? An array-oriented
programmer could think of creating a two-dimensional array of strings, with
seven columns and as many rows as we have compilers. Unfortunately, the
missing entries in this array call for special treatments inside loops over com-
pilers and options. Another inconvenience arises when adding more flags for a
compiler as this requires the dimensions of the array to be explicitly changed
and also most likely some special coding in the loops.

In a language like Python, the compiler data would naturally be repre-
sented by a dictionary, also called hash or associative array. These are ragged
arrays indexed by strings instead of integers. In Python we would store the
GNU compiler data as

compiler_data[’GNU’] [*type’] = ’GNU 3.0’

compiler_datal[’GNU’] [’name’] = ’g77’

compiler_data[’GNU’] [’options’] = ’-Wall’

compiler_data[’GNU’] [’libs’] = ’-1f2¢’

compiler_data[’GNU’] [’test’] = ’-Wall’

compiler_data[’GNU’] [’flags’] = (°-01’, ’-03’, ’-03 -funroll-loops’)

Note that the entries are not of the same type: the [’GNU’] [’flags’] entry
is a list of strings, whereas the other entries are plain strings. Such heteroge-
neous data structures are trivially created and handled in dynamically typed
languages since we do not need to specify the type of the entries in a data
structure. The loop over compilers can be written as

for compiler in compiler_data:

¢ = compiler_datalcompiler] # ’GNU’, ’Sun’, etc.
cmd =’ ’.join([c[’name’], c[’options’], c[’libs’]])
for flag in c[flags]:

os.system(’ ’.join([cmd, flag, ’ -o app ’, files]))

<run program and measure CPU time>

Adding a new compiler or new flags is a matter of inserting the new data in
the compiler_data dictionary. The loop and the rest of the program remain
the same. Another strength is the ease of inserting compiler_data or parts of
it into other data structures. We might, for example, want to run the compiler
test on different machines. A dictionary test is here indexed by the machine
name and holds a list of compiler data structures:

16 1. Introduction

c = compiler_data # abbreviation

test[’ella.simula.no’] (c[’GNU’], c[’Fujitsu’])
test[’tva.ifi.uio.no’] (c[’GNU’], c[’Sun’], c[’Portland’])
test[’pico.uio.no’] (c[’GNU’], c[’HP’], c[’Fujitsu’])

The Python program can run through the test array, log on to each machine,
run the loop over different compilers and the loop over the flags, compile the
application, run it, and measure the CPU time.

A real compiler investigation of the type outlined here is found in the
src/app/wavesim2D/F77 directory of the software associated with the book.

1.1.12 GUI Programming

Modern applications are often equipped with graphical user interfaces. GUI
programming in C is extremely tedious and error-prone. Some libraries pro-
viding higher-level GUI abstractions are available in C++ and Java, but the
amount of programming is still more than what is needed in dynamically
typed languages like Perl, Python, Ruby, and Tcl. Many dynamically typed
languages have bindings to the Tk library for GUI programming. An example
from [28] will illustrate why Tk-based GUIs are easy and fast to code.

Consider a button with the text “Hello!”, written in a 16-point Times font.
When the user clicks the button, a message “hello” is written on standard
output. The Python code for defining this button and its behavior can be
written compactly as

def out(): print ’hello’ # the button calls this function
Button(root, text="Hello!", font="Times 16", command=out).pack()

Thanks to keyword arguments, the properties of the button can be specified
in any order, and only the properties we want to control are apparent: there
are more than 20 properties left unspecified (at their default values) in this
example. The equivalent code using Java requires 7 lines of code in two func-
tions, while with Microsoft Foundation Classes (MFC) one needs 25 lines of
code in three functions [28]. As an example, setting the font in MFC leads to
several lines of code:

CFont* fontPtr = new CFont();

fontPtr->CreateFont (16, 0, 0,0,700, O, O, O, ANSI_CHARSET,
OUT_DEFAULT_PRECIS,CLIP_DEFAULT_PRECIS, DEFAULT_QUALITY,
DEFAULT_PITCH|FF_DONTCARE, "Times New Roman");

buttonPtr->SetFont (fontPtr) ;

Strong typing in C++ and Java makes GUI codes more complicated than
in dynamically typed languages. (Some readers may at this point argue that
GUI programming is seldom required as one can apply a graphical interface
for developing the GUI. However, creating GUIs that are portable across
Windows, Unix, and Mac normally requires some hand programming, and

1.1. Scripting versus Traditional Programming 17

reusable scripting components based on, for instance, Tk and its extensions
are in this respect an effective solution.)

Many people turn to dynamically typed languages for creating GUI ap-
plications. If you have lots of text-driven applications, a short script can glue
the existing applications and wrap them with a tailored graphical user inter-
face. The recipe is provided in Chapter 6.2. In fact, the nature of scripting
encourages you to write independent applications with flexible text-based in-
terfaces and provide a GUI on top when needed, rather than to write huge
stand-alone applications wired with complicated GUIs. The latter type of
programs are hard to combine efficiently with other programs.

Dynamic Web pages, where the user fills in information and gets feedback,
constitute a special kind of GUI of great importance in the Internet age.
When the data processing takes place on the Web server, the communication
between the user and the running program involves lots of text processing.
Languages like Perl, PHP, Python, and Ruby have therefore been particularly
popular for creating such server-side programs, and these languages offer
very user-friendly modules for rapid development of Web services. In fact,
the recent “explosive” interest in scripting languages is very much related to
their popularity and effectiveness in creating Internet applications. This type
of programs are referred to as CGI scripts, and CGI programming is treated
in Chapter 7.

1.1.13 Mixed Language Programming

Using different languages for different tasks in a software system is often a
sound strategy. Dynamically typed languages are normally implemented in C
and therefore have well-documented recipes for how to extend the language
with new functions written in C. Python can also be easily integrated with
C++ and Fortran. A special version of Python, called Jython, implements
basic functionality in Java instead of C, and Jython thus offers a seamless
integration of Python and Java.

Type-safe languages can also be combined with each other. However, call-
ing C from Java is a more complicated task than calling C from Python. The
initial design of the languages were different: Python was meant to be ex-
tended with new C and C++ software, whereas Fortran, C, C++, and Java
were designed to build large applications in one language. This differing phi-
losophy makes dynamically typed languages simpler and more flexible for
multi-language programming. In Chapter 5 we shall encounter two tools,
F2PY and SWIG, which (almost) automatically makes Fortran, C, and C++
code callable from Python.

Multi-language programming is of particular interest to the computational
scientist or engineer who is concerned with computational efficiency. Using
Python as the administrator of computations and visualizations, one can

18 1. Introduction

create a user-friendly environment with interactivity and high-level syntax,
where computationally slow Python code is migrated to Fortran or C/C++.

An example may illustrate the importance of migrating numerical code
to Fortran or C/C++. Suppose you work with a very long list of floating-
point numbers. Doing a mathematical operation on each item in this list is
normally a very slow operation. The Python segment

x is a list
for i in range(len(x)): # i=0,1,2,...,n-1 n=len(x) is large
x[i] = sin(x[il)

runs 20 times faster if the operation is implemented in Fortran 77 or C (the
length of x was 5 million in my test). Since such mathematical operations are
common in scientific computing, a special numerical package, called Numer-
ical Python, was developed. This package offers a contiguous array type and
optimized array operations implemented in C. The above loop over x can be
coded like this:

x = sin(x)

where x is a Numerical Python array. The statement sin(x) invokes a C
function, basically performing x[il=sin(x[i]) for all entries x[i]. Such a loop,
operating on data in a plain C array, is easy to optimize for a compiler. There
is some overhead of the statement x=sin(x) compared to a plain Fortran or
C code, so the Numerical Python statement runs only 13 times faster than
the equivalent plain Python loop.

You can easily write your own C, C++, or Fortran code for efficient
computing with a Numerical Python array. The combination of Python and
Fortran is particularly simple. To illustrate this, suppose we want to migrate
the loop

for i in range(1,len(uw)-1,1): # n=1,2,...,n-2 n=len(u)
u_new[i] = uli] + cx(uli-1] - 2*uli] + uli+1])

to Fortran. Here, u and u_new are Numerical Python arrays and c is a given
floating-point number. We write the Fortran routine as

subroutine diffusion(c, u_new, u, n)
integer n, i
real*8 u(0:n-1), u_new(0:n-1), c
Cf2py intent(in, out) u_new
doi=1, n-2
u_new(i) = u(i) + cx(u(i-1) - 2*u(i) + u(i+1))
end do
return
end

This routine is placed in a file diffusion.f. Using the tool F2PY, we can
create a Python interface to the Fortran function by a single command:

f2py -c¢ -m f77comp diffusion.f

1.1. Scripting versus Traditional Programming 19

The result is a compiled Python module, named £77comp, whose diffusion
function can be called:

from £77comp import diffusion
<create and init u and u_new (Numerical Python arrays)>
c=0.7
for i in range(no_of_timesteps):
u_new = diffusion(c, u_new, u) # can omit the length (!)

F2PY makes an interface where the output argument u_new in the diffusion
function is returned, as this is the usual way of handling output arguments
in Python.

With this example you should understand that Numerical Python arrays
look like Python objects in Python and plain Fortran arrays in Fortran.
(Doing this in C or C++ is slightly more complicated.)

1.1.14 When to Choose a Dynamically Typed Language

Having looked at different features of type-safe and dynamically typed lan-
guages, we can formulate some guidelines for choosing the appropriate type
of language in a given programming project. A positive answer to one of the
following questions [28] indicates that a type-safe language might be a good
choice.

Does the application implement complicated algorithms and data struc-
tures where low-level control of implementational details is important?

— Does the application manipulate large datasets so that detailed control
of the memory handling is critical?

— Are the application’s functions well-defined and changing slowly?

— Will strong typing be an advantage, e.g., in large development teams?
Dynamically typed languages are most appropriate if one of the next char-
acteristics are present in the project.

— The application’s main task is to connect together existing components.

— The application includes a graphical user interface.

— The application performs extensive text manipulation.

— The design of the application code is expected to change significantly.

— The CPU-time intensive parts of the application are located in small
program segments, and if necessary, these can be migrated to C, C++,
or Fortran.

— The application can be made short if it operates heavily on (possibly het-
erogeneous, nested) list or dictionary structures with automatic memory
administration.

20

1. Introduction

The application is supposed to communicate with Web servers.

The application should run without modifications on Unix, Windows,
and Macintosh computers, also when a GUI is included.

The last two features are supported by Java as well.

The optimal programming tool often turns out to be a combination of

type-safe and dynamically typed languages. You need to know both classes
of languages to determine the most efficient tool for a given subtask in a
programming project.

1.1.15 Why Python?

Assuming that you have experience with programming in some type-safe lan-
guage, this book aims at upgrading your knowledge about scripting, focusing

on

the Python language. Python has many attractive features that in my

view makes it stand out from other dynamically typed languages:

Python is easy to learn because of the very clean syntax,

extensive built-in run-time checks help to detect bugs and decrease de-
velopment time,

programming with nested, heterogeneous data structures is easy,
object-oriented programming is convenient,

there is support for efficient numerical computing, and

the integration of Python with C, C++, Fortran, and Java is (almost)

automatic.

If you come from Fortran, C, C++, or Java, you will probably find the

following features of scripting with Python particularly advantageous:

1.

Since the type of variables and function arguments are not explicitly writ-
ten, a code segment has a larger application area and a better potential
for reuse.

There is no need to administer dynamic memory: just create variables
when needed, and Python will destroy them automatically.

Keyword arguments give increased call flexibility and help to document
the code.

The ease of setting up and working with arbitrarily nested, heterogeneous
lists and dictionaries often avoids the need to write your own classes to
represent non-trivial data structures.

Any Python data structure can be dumped to the screen or to file with
a single command, a highly convenient feature for debugging or saving
data between executions.

1.1. Scripting versus Traditional Programming 21

6. GUI programming at a high level is easily accessible.

7. Python has many advanced features appreciated by C++ programmers:
classes, single and multiple inheritance, templates”, namespaces, and op-
erator overloading.

8. Regular expressions and associated tools simplify reading and interpret-
ing text considerably.

9. The clean Python syntax makes it possible to write code that can be
read and understood by a large audience, even if they do not have much
experience with Python.

10. The interactive Python shell makes it easy to test code segments before
writing them into a source code. The shell can also be utilized for gaining
a high level of interactivity in an application.

11. Although dynamically typed languages are often used for smaller codes,
Python’s module and package system makes it well suited for large-scale
development projects.

12. Python is much more dynamic® than compiled languages, meaning that
you can, at run-time, generate code, add new variables to classes, etc.

13. Program development in Python is faster than in Fortran, C, C++, or
Java, thus making Python well suited for rapid prototyping of new appli-
cations. Also in dual programming (programming two independent ver-
sions of an application, for debugging and verification purposes), rapid
code generation in Python is an attractive feature.

Most of these points imply much shorter code and thereby faster develop-
ment time. You will most likely adopt Python as the preferred programming
language and turn to type-safe languages only when strictly needed.

Once you know Python, it is easy to pick up the basics of Perl. To encour-
age and help the reader in doing so, there is a companion note [15] having
the same organization and containing the same examples as the introduc-
tory Python material in Chapters 2 and 3. The companion note also covers
a similar introduction to scripting with Tcl/Tk.

1.1.16 Script or Program?

The term script was originally used for a set of interactive operating sys-
tem commands put in a file, that is, the script was a way of automating
otherwise interactive sessions. Although this is still an important application

7 Since variables are not declared with type, the flexibility of templates in C++ is
an inherent feature of dynamically typed languages.

8 If the dynamic nature of Python is of importance in your project, you should
also consider the Ruby programming language, which is — in some sense — a mix
of Perl and Python. Ruby has more dynamic features than Python.

22 1. Introduction

when writing code in an advanced language like Python, such a language
is often also used for much more complicated tasks. Are we then writing
scripts or programs? The Perl FAQ? has a question “Is it a Perl program or
a Perl script?”. The bottom line of the answer, which applies equally well in
a Python context, is that it does not matter what term we use'°.

In a scientific computing context I have chosen to distinguish between
scripts and programs. The programs we traditionally make in science and
engineering are often large and computationally intensive, involving compli-
cated data structures. The implementation is normally in a low-level language
like Fortran 77 or C, with an associated demanding debugging and verifica-
tion phase. Extending such programs is non-trivial and require experts. The
programs in this book, on the other hand, have more an administering na-
ture, they are written in a language supporting commands at a significantly
higher level than in Fortran and C (also higher than C++ and Java), the
programs are short and commonly under continuous development to opti-
mize your working environment. Using the term script distinguishes such
programs from the common numerically intensive codes that are so dominat-
ing in science and engineering.

Many people use scripting as a synonym for gluing applications as one
typically performs in Unix shell scripts, or for collecting some commands in a
primitive, tailored command-language associated with a specific monolithic
system. This flavor of “scripting” often points in the direction of very sim-
plified programming that anyone can do. My meaning of scripting is much
wider, and is a programming style recognized by

1. gluing stand-alone applications, operating system commands, and other
scripts,

2. flexible use of variables and function arguments as enabled by dynamic
typing,

3. flexible data structures (e.g., nested heterogeneous lists/dictionaries), reg-

ular expressions, and other features that make the code compact and
“high level”.

1.2 Preparations for Working with This Book

This book makes lots of references to complete source codes for scripts de-
scribed in the text. All such scripts are available in electronic form, packed
in a single file, which can be downloaded from the author’s web page

http://folk.uio.no/hpl/scripting

9 Type perldoc -q script (you need to have Perl installed).

10 This can be summarized by an amusing quote from Larry Wall, the creator of
Perl: “A script is what you give the actors. A program is what you give the
audience.”

1.2. Preparations for Working with This Book 23

Packing out the file should be done in some directory, say scripting under
your home directory, unless others have already made the software available
on your computer system.

Looking up electronic documentation during programming of scripts is
simplified by using a Web browser and (for speed) a local set of documentation
files. A collection of useful electronic documents are packed in another file,
found on the download page just cited. This file is to be packed out in the
same directory where the file with the examples codes was unpacked.

The following Unix commands perform the necessary tasks of installing
both scripts and documentation in your home directory:

cd $HOME

mkdir scripting

mv scripting

mozilla http://folk.uio.no/hpl/scripting

download scripting-src.tgz and scripting-doc.tgz
gunzip scripting-src.tgz scripting-doc.tgz

tar xvf scripting-src.tar

rm scripting-src.tar

tar xvf scripting-doc.tar

rm scripting-doc.tar

On Windows machines you can use WinZip to pack out the compressed
tarfiles.

Packing out the scripting-src.tar and scripting-doc.tar files results in
two subdirectories, src and doc, respectively. The former tarfile also contains
a file doc.html (at the same level as src). The doc.html file contains conve-
nient access to lots of manuals, man pages, tutorials, etc. You are strongly
recommended to add this file as a bookmark in your browser. There are lots of
references to doc.html throughout this book. The bibliography at the end of
the book contains quite few items — most of the references needed through-
out the text have been collected in doc.html instead. The rapid change of
links and steady appearance of new tools make it difficult to maintain the
references in a static book.

The reader must set an environment variable $scripting equal to the root
of the directory tree containing the examples and documentation associated
with the present book. For example, in a Bourne Again shell (Bash) start-up
file, usually named .profile or .bashrc, you can write

export scripting=$HOME/scripting

and in C shell-like start-up files (.cshrc or .tcshrc) the magic line is

setenv scripting $HOME/scripting

Of course, this requires that the scripting directory, referred to in the pre-
vious subsection, is placed in your home directory.

On Windows machines you can add a line to the autoexec.bat file in the
top directory of the file system to define the scripting environment variable,

e.g.,

24 1. Introduction

set scripting=C:\scripting

Note the following: All references in this text to source code for scripts
are relative to the $scripting directory. As an example, if a specific script is
said to be located in src/py/intro, it means that it is found in the directory

$scripting/src/py/intro

Two especially important environment variables are PATH and PYTHONPATH.
The operating system searches in the directories contained in the PATH vari-
able to find executable files. Similarly, Python searches modules to be im-
ported in the directories contained in the PYTHONPATH variable. For running
the examples in the present text without annoying technical problems, you
should set PATH and PYTHONPATH as follows in your Bash start-up file:

export PYTHONPATH=$PYTHONPATH:$scripting/src/tools
PATH=$PATH: $scripting/src/tools

C shell-like start-up files can make use of the following C shell code:

if ($7PYTHONPATH) then
setenv PYTHONPATH $PYTHONPATH’:’$scripting/src/tools
else
setenv PYTHONPATH $scripting/src/tools
endif
set path=($path $scripting/src/tools)

In the examples on commands in set-up files elsewhere in the book we apply

the Bash syntax. The same syntax can be used also for Korn shell (ksh) and

Z shell (zsh) users. If you are a TC shell (tcsh) user, you therefore need to

translate the Bash statements to the proper TC shell syntax. The parallel

examples shown so far provide some basic information about the translation.
On Windows you add the following lines to autoexec.bat:

set PATH=Y,PATH},;scripting/\src\tools
set PYTHONPATH=Yscripting}\src\tools

On Unix systems with different types of hardware, compiled programs can
conveniently be stored in directories whose names reflect the type of hardware
the programs were compiled for. We suggest to introduce an environment
variable MACHINE_TYPE and set this to, e.g., the output of the uname command:

export MACHINE_TYPE=‘uname‘

You can then create a directory for compiled programs,

mkdir $scripting/$MACHINE_TYPE/bin

and add this to the PATH variable:

PATH=$PATH: $scripting/$MACHINE_TYPE/bin

1.2. Preparations for Working with This Book 25

If you employ the external software set-up suggested in Appendix A.1, the
contents of the PATH and PYTHONPATH environment variables must be extended,
see pages 651 and 655.

There are numerous utilities you need to successfully run the examples
and work with the exercises in this book. Of course, you need Python and
many of its modules. In addition, you need Tcl/Tk, Perl, ImageMagick, to
mention some other software. Appendix A.1.9 describes test scripts in the
src/tools directory that you can use to find missing utilities.

Right now you should try to run the command

python $scripting/src/tools/test_allutils.py

on a Unix machine, or

python "Yscripting/\src\tools\test_allutils.py"

on a Windows machine. If these commands will not run, the scripting en-
vironment variable is not properly defined (log out and in again and retry).
When successfully run, test_allutils.py will check if you have everything
you need for this book on the computer.

26 1. Introduction

Chapter 2

Getting Started with Python Scripting

This chapter contains a quick and efficient introduction to scripting in Python
with the aim of getting you started with real projects as fast as possible.
Our pedagogical strategy for achieving this goal is to dive into examples of
relevance for computational scientists and dissect the codes line by line.

The present chapter starts with an extension of the obligatory “Hello,
World!” program. The next example covers reading and writing data from
and to files, implementing functions, storing data in lists, and traversing
list structures. Thereafter we create a script for automating the execution
of a simulation and a visualization program. This script parses command-
line arguments and performs some operating system tasks such as removing
and creating directories. The final example concerns converting a data file
format and involves programming with a convenient data structure called
dictionary. A more thorough description of the various data structures and
program constructions encountered in the introductory examples appears in
Chapter 3, together with lots of additional Python functionality.

You are strongly encouraged to download and install the software associ-
ated with this book and set up your environment as described in Chapter 1.2
before proceeding. All Python scripts referred to in this introductory chap-
ter are found in the directory src/py/intro under the root reflected by the
scripting environment variable.

2.1 A Scientific Hello World Script

It is common to introduce new programming languages by presenting a trivial
program writing “Hello, World!” to the screen. We shall follow this tradition
when introducing Python, but since we deal with scripting in a computational
science context, we have extended the traditional Hello World program a bit:
A number is read from the command line, and the program writes the sine of
this number along with the text “Hello, World!”. Providing the number 1.4
as the first command-line argument yields this output of the script:

Hello, World! sin(1.4)=0.985449729988
This Scientific Hello World script will demonstrate

— how to work with variables,

— how to initialize a variable from the command line,

28 2. Getting Started with Python Scripting

— how to call a math library for computing the sine of a number, and

— how to print a combination of numbers and plain text.
The complete script can take the following form in Python:

#!/usr/bin/env python

import sys, math # load system and math module

r = float(sys.argv[1]) # extract the 1st command-line arg.
s = math.sin(r)

print "Hello, World! sin(" + str(r) + ")=" + str(s)

2.1.1 Executing Python Scripts

Python scripts normally have the extension .py, but this is not required. If
the listed code is stored in a file hw.py, you can execute the script by the
command

python hw.py 1.4

This command specifies explicitly that a program python is to be used to
interpret the contents of the hw.py file. The number 1.4 is a command-line
argument to be fetched by the script.

For the python hw.py ... command to work, you need to be in a console
window, also known as a terminal window on Unix, and as a command prompt
or MS-DOS prompt on Windows. The Windows habit of double-clicking on
the file icon does not work for scripts requiring command-line information,
unless you have installed PythonWin.

In case the file is given execute permission’ on a Unix system, you can
also run the script by just typing the name of the file:

1

./hw.py 1.4

or

hw.py 1.4

if you have a dot (.) in your path?.
On Windows you can write just the filename hw.py instead of python hw.py
if the .py is associated with a Python interpreter (see Appendix A.2).
When you do not precede the filename by python on Unix, the first line of
the script is taken as a specification of the program to be used for interpreting
the script. In our example the first line reads

#!/usr/bin/env python

! This is achieved by the Unix command chmod a+x hw.py.
2 There are serious security issues related to having a dot, i.e., the current working
directory, in your path. Check out the site policy with your system administrator.

2.1. A Scientific Hello World Script 29

This particular heading implies interpretation of the script by a program
named python. In case there are several python programs (e.g., different
Python versions) on your system, the first python program encountered in the
directories listed in your PATH environment variable will be used®. Executing
./hw.py with this heading is equivalent to running the script as python hw.py.
You can run src/py/examples/headers.py to get a text explaining the syntax
of headers in Python scripts. For a Python novice there is no need to un-
derstand the first line. Simply make it a habit to start all scripts with this
particular line.

2.1.2 Dissection of the Scientific Hello World Script

The first real statement in our Hello World script is
import sys, math

meaning that we give our script access to the functions and data structures in
the system module and in the math module. For example, the system module
sys has a list argv that holds all strings on the command line. We can extract
the first command-line argument using the syntax

r = sys.argv[1]

Like any other Python list (or array), sys.argv starts at 0. The first element,
sys.argv[0], contains the name of the script file, whereas the rest of the
elements hold the arguments given to the script on the command line.

As in other dynamically typed languages there is no need to explicitly
declare variables with a type. Python has, however, data structures of differ-
ent types, and sometimes you need to do explicit type conversion. Our first
script illustrates this point. The data element sys.argv[1] is a string, but r is
supposed to be a floating-point number, because the sine function expects a
number and not a string. We therefore need to convert the string sys.argv[1]
to a floating-point number:

r = float(sys.argv[1])

Thereafter, math.sin(r) will call the sine function in the math module and
return a floating-point number, which we store in the variable s.
At the end of the script we invoke Python’s print function:

print "Hello, World! sin(" + str(r) + ")=" + str(s)

The print function automatically appends a newline character to the output
string. Observe that text strings are concatenated by the + operator and that

3 On many Unix systems you can write which python to see the complete path of
this python program.

30 2. Getting Started with Python Scripting

the floating-point numbers r and s need to be converted to strings, using the
str function, prior to the concatenation (i.e., addition of numbers and strings
is not supported).

We could of course work with r and s as string variables as well, e.g.,

r = sys.argv[1i]
s = str(math.sin(float(r)))
print "Hello, World! sin(" + r + ")=" + s

Python will abort the script and report run-time errors if we mix strings and
floating-point numbers. For example, running

r = sys.argv[1]
s = math.sin(r) # sine of a string...
results in

Traceback (most recent call last):
File "./hw.py", line 4, in 7
s = math.sin(r)
TypeError: illegal argument type for built-in operation

So, despite the fact that we do not declare variables with a specific type,
Python performs run-time checks on the type validity and reports inconsis-
tencies.

The math module can be imported in an alternative way such that we can
avoid prefixing mathematical functions with math:

import just the sin function from the math module:
from math import sin

or import all functions in math:

from math import *

s = sin(x)

Using import math avoids name clashes between different modules, e.g., the
sin function in math and a sin function in some other module. On the other
hand, from math import * enables writing mathematical expressions in the
familiar form used in most other computer languages.

The string to be printed can be constructed in many different ways. A
popular syntax employs variable interpolation, also called variable substitu-
tion. This means that Python variables are inserted as part of the string. In
our original hw.py script we could replace the output statement by

print "Hello, World! sin(%(r)g)=%(s)12.5e" % vars()

The syntax %(r)g indicates that a variable with name r is to be substituted
in the string, written in a format described by the character g. The g format
implies writing a floating-point number as compactly as possible, i.e., the
output space is minimized. The text %(s)12.5e means that the value of the
variable s is to be inserted, written in the 12.5e format, which means a

2.1. A Scientific Hello World Script 31

floating-point number in scientific notation with five decimals in a field of
total width 12 characters. The final % vars() is an essential part of the string
syntax, but there is no need to understand this now*. An example of the
output is

Hello, World! sin(1.4)= 9.85450e-01

A list of some common format statements is provided on page 72.

Python also supports the output format used in the popular “printf”
family of functions in C, Perl, and many other languages. The names of the
variables do not appear inside the string but are listed after the string:

print "Hello, World! sin(%g)=%12.5e" % (r,s)

If desired, the output text can be stored in a string prior to printing, e.g.,

output = "Hello, World! sin(%g)=12.5e" % (r,s)
print output

This demonstrates that the printf-style formatting is a special type of string
specification in Python®.

Ezercise 2.1. Become familiar with the electronic documentation.

Write a script that prints a uniformly distributed random number between
—1 and 1 on the screen. The number should be written with four decimals
as implied by the %.4f format.

The standard Python module for generation of uniform random numbers
is called random. To figure out how to use this module, you can look up the
description of the module in the Python Library Reference [35]. Load the
file $scripting/doc.html into a Web browser and click on the link Python
Library Reference: Index. You will then see the index of Python functions,
modules, data structures, etc. Find the item “random (standard module)”
in the index and follow the link. This will bring you to the manual page for
the random module. In the bottom part of this page you will find information
about functions for drawing random numbers from various distributions (do
not use the classes in the module, use plain functions). Use also pydoc to
look up documentation of the random module: just write pydoc random on the
command line.

Remark: Do not name the file with this script random.py. This will give
a name clash with the Python module random when you try to import that
module (your own script will be imported instead). o

4 More information on the construction appears on page 402.
5 Readers familiar with languages such as Awk, C, and Perl will recognize the
similarity with the functions printf for printing and sprintf for creating strings.

32 2. Getting Started with Python Scripting

2.2 Reading and Writing Data Files

Let us continue our Python encounter with a script that has some relevance
for the computational scientist or engineer. We want to do some simple math-
ematical operations on data in a file. The tasks in such a script include reading
numbers from a file, performing numerical operations on the them, and then
writing the new numbers to a file again. This will demonstrate

— file opening, reading, writing, and closing,

— how to define and call functions,

— loops and if-tests, and

— how to work with lists/arrays.

2.2.1 Problem Specification

Suppose you have a data file containing a curve represented as a set of (z,y)
points and that you want to transform all the y values using some function
f(y). That is, we want to read the data file with (x,y) pairs and write out a
new file with (z, f(y)) pairs. Each line in the input file is supposed to contain
one x and one y value. Here is an example of such a file format:

The output file should have the same format, but the f(y) values in the second
column are to be written in scientific notation, in a field of width 12 charac-
ters, with five decimals (i.e., the number —0.25 is written as -2.50000E-01).

The script, called datatransi.py, can take the input and output data files
as command-line arguments. The usage is hence as follows:

python datatransl.py infile outfile

Inside the script we need to do the following tasks:

1. read the input and output filenames from the command line,
2. open the input and output files,
3. define a function f(y),
4. for each line in the input file:
(a) read the line,
(b) extract the z and y values from the line,

(c) apply the function f to y,

2.2. Reading and Writing Data Files 33

(d) write out z and f(y) in the proper format.

First we present the complete script, and thereafter we explain in detail what
is going on in each statement.

2.2.2 The Complete Code

#!/usr/bin/env python
import sys, math

try:

infilename = sys.argv[1]; outfilename = sys.argv[2]
except:

print "Usage:",sys.argv[0], "infile outfile"; sys.exit(1)

ifile
ofile

open(infilename, ’r’) # open file for reading
open(outfilename, ’w’) # open file for writing

def myfunc(y):
if y >= 0.0: return y**5xmath.exp(-y)
else: return 0.0

read ifile line by line and write out transformed values:
for line in ifile:

pair = line.split()

x = float(pair[0]); y = float(pair[1])

fy = myfunc(y) # transform y value

ofile.write(’%g %12.5e\n’ % (x,fy))
ifile.close(); ofile.close()

The script is stored in src/py/intro/datatransi.py. Recall that this path is
relative to the scripting environment variable, see Chapter 1.2.

2.2.3 Dissection

The most obvious difference between Python and other programming lan-
guages is that the indentation of the statements is significant. Looking, for
example, at the for loop, a programmer with background in C, C++, Java,
or Perl would expect braces to enclose the block inside the loop. Other lan-
guages may have other “begin” and “end” marks for such blocks. However,
Python employs just indentation®.

The script needs two modules: sys and math, which we load in the top of
the script. Alternatively, one can load a module at the place where it is first
needed.

5 A popular Python slogan reads “life is happier without braces”. I am not com-
pletely sure — no braces imply nicely formatted code, but you must be very careful
with the indentation when inserting if tests or loops in the middle of a block.
Using a Python-aware editor (like Emacs) to adjust indentation of large blocks
of code has been essential for me.

34 2. Getting Started with Python Scripting

The next statement contains a try-except block, which is the preferred
Python style of handling potential errors. We want to load the first two
command-line arguments into two strings. However, it might happen that
the user of the script failed to provide two command-line arguments. In that
case, subscripting the sys.argv list leads to an index out of bounds error,
which causes Python to report this error and abort the script. This may not
be exactly the behavior we want: if something goes wrong with extracting
command-line arguments, we assume that the script is misused. Our recovery
from such misuse consists of printing a usage message before terminating the
script. In the implementation, we first try to execute some statements in a
try block, and then we recover from a potential error in an except block:

try:
infilename = sys.argv[1]; outfilename = sys.argv[2]

except:
print "Usage:",sys.argv[0], "infile outfile"; sys.exit(1)

As soon as any error occurs in the try block, the program jumps to the except
block. This is recognized as exception handling in Python, a topic which is
covered in more detail on page 404.

The name of the script being executed is stored in sys.argv[0], and this
information is used in the usage message. Calling the function sys.exit aborts
the script. Any integer argument to the sys.exit function different from 0
signifies exit due to an error’. Observe that more than one Python statement
can appear at the same line if a semi-colon is used as separator between the
statements. You do not need to end a statement with semi-colon if there is
only one statement on the line.

A file is opened by the open function, taking the filename as first argument
and a read/write indication (’r’ or ’w’) as second argument:

ifile
ofile

open(infilename, ’r’) # open file for reading
open(outfilename, ’w’) # open file for writing

The open function returns a Python file object that we use for reading from
or writing to a file.

At this point we should mention that there is no difference between single
and double quotes when defining strings. That is, *r’ is the same as "r". This
is true also in printf-style formatted strings and when using variable interpo-
lation. There are other ways of specifying strings as well, and an overview is
provided on page 88.

The next block of statements regards the implementation of a function

yPe v,y >0,

ﬂw{Q y<0.

" The value of the integer argument to sys.exit is available in the environment
that executes the script and can be used to check if the execution of the script
was successful. For example, in a Unix shell environment, the variable $? contains
the value of the argument to sys.exit. If $7 is different from 0, the execution of
the last command was unsuccessful.

2.2. Reading and Writing Data Files 35

Such a function, here called myfunc, can in Python be coded as

def myfunc(y):
if y >= 0.0:
return math.pow(y,5.0)*math.exp(-y)
else:
return 0.0

Any function in Python must be defined before it can be called.
The file is read line by line using the following construction:

for line in ifile:
process line

Python code written before version 2.2 became available applies another con-
struction for reading a file line by line:

while 1:
line = ifile.readline()
if not line: break # jump out of the loop
process line

This construction is still useful in many