Texts in Computational Science

and Engineering

derooive (self) :

SelTy0 = [self.p('y0'], 0.0]

£eem-pydcs . numpytocls Amport -

FalIl. ¢t = sequencsilss

& yvac(), 0] # y(t)
Blciat', ‘w') W
% gig(self.y, selfit)i.
‘-c::te('\g #g\n' 3 (t, ¥))

Hans Petter Langtangen

Python Scripting
for Computational
Science

Third Edition

Editorial
Board:

T.J).Barth

M. Griebel

D. E. Keyes

R. M. Nieminen
D. Roose

T. Schlick

‘@ Springer

Texts in Computational Science
and Engineering

Editors

Timothy J. Barth
Michael Griebel
David E. Keyes
Risto M. Nieminen
Dirk Roose

Tamar Schlick

Hans Petter Langtangen

Python Scripting
for Computational
Science

Third Edition

With 62 Figures

@ Springer

Hans Petter Langtangen

Simula Research Laboratory
Martin Linges vei 17, Fornebu
P.O. Box 134

1325 Lysaker, Norway

hpl@simula.no

On leave from:

Department of Informatics
University of Oslo

P.O. Box 1080 Blindern
0316 Oslo, Norway

http://folk.uio.no/hpl

The author of this book has received financial support from the NFF - Norsk faglitteraer
forfatter- og oversetterforening.

ISBN 978-3-540-73915-9 e-ISBN 978-3-540-73916-6

DOI 10.1007/978-3-540-73916-6

Texts in Computational Science and Engineering ISSN 1611-0994

Library of Congress Control Number: 2007940499

Mathematics Subject Classification (2000): 65Y99, 68No1, 68N15, 68N19, 68N30, 97U50, 97U70
© 2008, 2006, 2004 Springer-Verlag Berlin Heidelberg

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broad-
casting, reproduction on microfilm or in any other way, and storage in data banks. Duplication of
this publication or parts thereof is permitted only under the provisions of the German Copyright Law
of September 9, 1965, in its current version, and permission for use must always be obtained from
Springer. Violations are liable to prosecution under the German Copyright Law.

The use of general descriptive names, registered names, trademarks, etc. in this publication does
not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.

Typesetting: by the author using a Springer TgX macro package
Cover design: WMX Design GmbH, Heidelberg
Production: LE-TgX Jelonek, Schmidt & Vockler GbR, Leipzig

Printed on acid-free paper
987654321

springer.com

Preface to the Third Edition

Numerous readers of the second edition have notified me about misprints and
possible improvements of the text and the associated computer codes. The
resulting modifications have been incorporated in this new edition and its
accompanying software.

The major change between the second and third editions, however, is
caused by the new implementation of Numerical Python, now called numpy.
The new numpy package encourages a slightly different syntax compared to
the old Numeric implementation, which was used in the previous editions.
Since Numerical Python functionality appears in a lot of places in the book,
there are hence a huge number of updates to the new suggested numpy syntax,
especially in Chapters 4, 9, and 10.

The second edition was based on Python version 2.3, while the third
edition contains updates for version 2.5. Recent Python features, such as
generator expressions (Chapter 8.9.4), Ctypes for interfacing shared libraries
in C (Chapter 5.2.2), the with statement (Chapter 3.1.4), and the subprocess
module for running external processes (Chapter 3.1.3) have been exemplified
to make the reader aware of new tools. Regarding Chapter 3.1.3, os.system
is not used in the book anymore, instead we recommend the commands or
subprocess modules.

Chapter 4.4.4 is new and gives a taste of symbolic mathematics in Python.
Chapters 5 and 10 have been extended with new material. For example,
F2PY and the Instant tool are very convenient for interfacing C code, and
this topic is treated in detail in Chapters 5.2.2, 10.1.1, and 10.1.2 in the
new edition. Installation of Python itself and the many add-on modules have
become increasingly simpler over the years with setup.py scripts, which has
made it natural to simplify the descriptions in Appendix A.

The py4cs package with software tools associated with this book has un-
dergone a major revision and extension, and the package is now maintained
under the name scitools and distributed separately. The name py4cs is still
offered as a nickname for scitools to make old scripts work. The new scitools
package is backward compatible with py4cs from the second edition.

Several people has helped me with preparing the new edition. In par-
ticular, the substantial efforts of Pearu Peterson, Ilmar Wilbers, Johannes
H. Ring, and Rolv E. Bredesen are highly appreciated.

The Springer staff has, as always, been a great pleasure to work with.
Special thanks go to Martin Peters, Thanh-Ha Le Thi, and Andrea Kd&hler
for their extensive help with this and other book projects.

Oslo, September 2007 Hans Petter Langtangen

Preface to the Second Edition

The second edition features new material, reorganization of text, improved
examples and software tools, updated information, and correction of errors.
This is mainly the result of numerous eager readers around the world who
have detected misprints, tested program examples, and suggested alternative
ways of doing things. I am greatful to everyone who has sent emails and
contributed with improvements. The most important changes in the second
edition are briefly listed below.

Already in the introductory examples in Chapter 2 the reader now gets a
glimpse of Numerical Python arrays, interactive computing with the IPython
shell, debugging scripts with the aid of IPython and Pdb, and turning “flat”
scripts into reusable modules (Chapters 2.2.5, 2.2.6, and 2.5.3 are added).
Several parts of Chapter 4 on numerical computing have been extended (es-
pecially Chapters 4.3.5, 4.3.6, 4.3.7, and 4.4). Many smaller changes have
been implemented in Chapter 8; the larger ones concern exemplifying Tar
archives instead of ZIP archives in Chapter 8.3.4, rewriting of the mate-
rial on generators in Chapter 8.9.4, and an example in Chapter 8.6.13 on
adding new methods to a class without touching the original source code
and without changing the class name. Revised and additional tips on opti-
mizing Python code have been included in Chapter 8.10.3, while the new
Chapter 8.10.4 contains a case study on the efficiency of various implemen-
tations of a matrix-vector product. To optimize Python code, we now also
introduce the Psyco and Weave tools (see Chapters 8.10.4, 9.1, 10.1.3, and
10.4.1). To reduce complexity of the principal software example in Chapters 9
and 10, I have removed evaluation of string formulas. Instead, one can use
the revised StringFunction tool from Chapter 12.2.1 (the text and software
regarding this tool have been completely rewritten). Appendix B.5 has been
totally rewritten: now I introduce Subversion instead of CVS, which results
in simpler recipes and shorter text. Many new Python tools have emerged
since the first printing and comments about some of these are inserted many
places in the text.

Numerous sections or paragraphs have been expanded, condensed, or re-
moved. The sequence of chapters is hardly changed, but a couple of sections
have been moved. The numbering of the exercises is altered as a result of
both adding and removing exerises.

Finally, I want to thank Martin Peters, Thanh-Ha Le Thi, and Andrea
Kohler in the Springer system for all their help with preparing a new edition.

Oslo, October 2005 Hans Petter Langtangen

Preface to the First Edition

The primary purpose of this book is to help scientists and engineers work-
ing intensively with computers to become more productive, have more fun,
and increase the reliability of their investigations. Scripting in the Python
programming language can be a key tool for reaching these goals [27,29)].

The term scripting means different things to different people. By scripting
I mean developing programs of an administering nature, mostly to organize
your work, using languages where the abstraction level is higher and program-
ming is more convenient than in Fortran, C, C++, or Java. Perl, Python,
Ruby, Scheme, and Tcl are examples of languages supporting such high-level
programming or scripting. To some extent Matlab and similar scientific com-
puting environments also fall into this category, but these environments are
mainly used for computing and visualization with built-in tools, while script-
ing aims at gluing a range of different tools for computing, visualization, data
analysis, file/directory management, user interfaces, and Internet communi-
cation. So, although Matlab is perhaps the scripting language of choice in
computational science today, my use of the term scripting goes beyond typi-
cal Matlab scripts. Python stands out as the language of choice for scripting
in computational science because of its very clean syntax, rich modulariza-
tion features, good support for numerical computing, and rapidly growing
popularity.

What Scripting is About. The simplest application of scripting is to write
short programs (scripts) that automate manual interaction with the com-
puter. That is, scripts often glue stand-alone applications and operating sys-
tem commands. A primary example is automating simulation and visual-
ization: from an effective user interface the script extracts information and
generates input files for a simulation program, runs the program, archive data
files, prepares input for a visualization program, creates plots and animations,
and perhaps performs some data analysis.

More advanced use of scripting includes rapid construction of graphical
user interfaces (GUIs), searching and manipulating text (data) files, manag-
ing files and directories, tailoring visualization and image processing environ-
ments to your own needs, administering large sets of computer experiments,
and managing your existing Fortran, C, or C++ libraries and applications
directly from scripts.

Scripts are often considerably faster to develop than the corresponding
programs in a traditional language like Fortran, C, C++, or Java, and the
code is normally much shorter. In fact, the high-level programming style and
tools used in scripts open up new possibilities you would hardly consider as
a Fortran or C programmer. Furthermore, scripts are for the most part truly
cross-platform, so what you write on Windows runs without modifications

VIII Preface to the First Edition

on Unix and Macintosh, also when graphical user interfaces and operating
system interactions are involved.

The interest in scripting with Python has exploded among Internet service
developers and computer system administrators. However, Python scripting
has a significant potential in computational science and engineering (CSE) as
well. Software systems such as Maple, Mathematica, Matlab, and S-PLUS/R
are primary examples of very popular, widespread tools because of their
simple and effective user interface. Python resembles the nature of these
interfaces, but is a full-fledged, advanced, and very powerful programming
language. With Python and the techniques explained in this book, you can
actually create your own easy-to-use computational environment, which mir-
rors the working style of Matlab-like tools, but tailored to your own number
crunching codes and favorite visualization systems.

Scripting enables you to develop scientific software that combines ”the
best of all worlds”, i.e., highly different tools and programming styles for
accomplishing a task. As a simple example, one can think of using a C++
library for creating a computational grid, a Fortran 77 library for solving
partial differential equations on the grid, a C code for visualizing the solution,
and Python for gluing the tools together in a high-level program, perhaps with
an easy-to-use graphical interface.

Special Features of This Book. The current book addresses applications of
scripting in CSE and is tailored to professionals and students in this field. The
book differs from other scripting books on the market in that it has a different
pedagogical strategy, a different composition of topics, and a different target
audience.

Practitioners in computational science and engineering seldom have the
interest and time to sit down with a pure computer language book and figure
out how to apply the new tools to their problem areas. Instead, they want
to get quickly started with examples from their own world of applications
and learn the tools while using them. The present book is written in this
spirit — we dive into simple yet useful examples and learn about syntax and
programming techniques during dissection of the examples. The idea is to get
the reader started such that further development of the examples towards
real-life applications can be done with the aid of online manuals or Python
reference books.

Contents. The contents of the book can be briefly sketched as follows. Chap-
ter 1 gives an introduction to what scripting is and what it can be good for
in a computational science context. A quick introduction to scripting with
Python, using examples of relevance to computational scientists and engi-
neers, is provided in Chapter 2. Chapter 3 presents an overview of basic
Python functionality, including file handling, data structures, functions, and
operating system interaction. Numerical computing in Python, with particu-
lar focus on efficient array processing, is the subject of Chapter 4. Python can
easily call up Fortran, C, and C++ code, which is demonstrated in Chapter 5.

Preface to the First Edition IX

A quick tutorial on building graphical user interfaces appears in Chapter 6,
while Chapter 7 builds the same user interfaces as interactive Web pages.

Chapters 8-12 concern more advanced features of Python. In Chapter 8
we discuss regular expressions, persistent data, class programming, and ef-
ficiency issues. Migrating slow loops over large array structures to Fortran,
C, and C++ is the topic of Chapters 9 and 10. More advanced GUI pro-
gramming, involving plot widgets, event bindings, animated graphics, and
automatic generation of GUIs are treated in Chapter 11. More advanced
tools and examples of relevance for problem solving environments in science
and engineering, tying together many techniques from previous chapters, are
presented in Chapter 12.

Readers of this book need to have a considerable amount of software
installed in order to be able to run all examples successfully. Appendix A
explains how to install Python and many of its modules as well as other
software packages. All the software needed for this book is available for free
over the Internet.

Good software engineering practice is outlined in a scripting context in
Appendix B. This includes building modules and packages, documentation
techniques and tools, coding styles, verification of programs through auto-
mated regression tests, and application of version control systems.

Required Background. This book is aimed at readers with programming ex-
perience. Many of the comments throughout the text address Fortran or C
programmers and try to show how much faster and more convenient Python
code development turns out to be. Other comments, especially in the parts
of the book that deal with class programming, are meant for C++ and Java
programmers. No previous experience with scripting languages like Perl or
Tcl is assumed, but there are scattered remarks on technical differences be-
tween Python and other scripting languages (Perl in particular). T hope to
convince computational scientists having experience with Perl that Python
is a preferable alternative, especially for large long-term projects.

Matlab programmers constitute an important target audience. These will
pick up simple Python programming quite easily, but to take advantage of
class programming at the level of Chapter 12 they probably need another
source for introducing object-oriented programming and get experience with
the dominating languages in that field, C4++ or Java.

Most of the examples are relevant for computational science. This means
that the examples have a root in mathematical subjects, but the amount
of mathematical details is kept as low as possible to enlarge the audience
and allow focusing on software and not mathematics. To appreciate and see
the relevance of the examples, it is advantageous to be familiar with basic
mathematical modeling and numerical computations. The usefulness of the
book is meant to scale with the reader’s amount of experience with numerical
simulations.

X Preface to the First Edition

Acknowledgements. The author appreciates the constructive comments from
Arild Burud, Roger Hansen, and Tom Thorvaldsen on an earlier version of
the manuscript. I will in particular thank the anonymous Springer referees
of an even earlier version who made very useful suggestions, which led to a
major revision and improvement of the book.

Sylfest Glimsdal is thanked for his careful reading and detection of many
errors in the present version of the book. I will also acknowledge all the input
I have received from our enthusiastic team of scripters at Simula Research
Laboratory: Are Magnus Bruaset, Xing Cai, Kent-Andre Mardal, Halvard
Moe, Ola Skavhaug, Gunnar Staff, Magne Westlie, and Asmund @degard. As
always, the prompt support and advice from Martin Peters, Frank Holzwarth,
Leonie Kunz, Peggy Glauch, and Thanh-Ha Le Thi at Springer have been
essential to complete the book project.

Software, updates, and an errata list associated with this book can be
found on the Web page http://folk.uio.no/hpl/scripting. From this page
you can also download a PDF version of the book. The PDF version is search-
able, and references are hyperlinks, thus making it convenient to navigate in
the text during software development.

Oslo, April 2004 Hans Petter Langtangen

Table of Contents

1 Introduction.............. 1
1.1 Scripting versus Traditional Programming................. 1
1.1.1 Why Scripting is Useful in Computational Science... 2

1.1.2 Classification of Programming Languages 4

1.1.3 Productive Pairs of Programming Languages 5

1.1.4 Gluing Existing Applications 6

1.1.5 Scripting Yields Shorter Code 7

1.1.6 Efficiencyo i 8

1.1.7 Type-Specification (Declaration) of Variables 9

1.1.8 Flexible Function Interfaces 11

1.1.9 Interactive Computing 12
1.1.10 Creating Code at Run Time 13
1.1.11 Nested Heterogeneous Data Structures............. 14
1.1.12 GUI Programmingoveeieineen. .. 16
1.1.13 Mixed Language Programming 17
1.1.14 When to Choose a Dynamically Typed Language ... 19
1.1.15 Why Python? 20
1.1.16 Script or Program?........... 21

1.2 Preparations for Working with This Book 22
2 Getting Started with Python Scripting 27
2.1 A Scientific Hello World Script 27
2.1.1 Executing Python Scripts 28

2.1.2 Dissection of the Scientific Hello World Script 29

2.2 Working with Files and Data 32
2.2.1 Problem Specification 32

2.2.2 The Complete Codeo ... 33

2.2.3 Dissection....... ... 33

2.2.4 Working with Files in Memory.................... 36

225 Array Computingc.cooviiiiiiiiinaen... 37

2.2.6 Interactive Computing and Debugging 39

2.2.7 Efficiency Measurements 42

2.2.8 EXEICISES .. .vititit i 43

2.3 Gluing Stand-Alone Applications 46
2.3.1 The Simulation Code 47

2.3.2 Using Gnuplot to Visualize Curves 49

2.3.3 Functionality of the Script 50

2.3.4 The Complete Codeco .. 51

2.3.5 Dissection....... ... 53

2.3.6 EXEICiSesc.iuininii i 55

2.4 Conducting Numerical Experiments 58

2.4.1 Wrapping a Loop Around Another Script 59

XII

Table of Contents
2.4.2 Generating an HTML Report..................... 60
2.4.3 Making Animations 61
24.4 Varying Any Parameter.......................... 63
2.5 File Format Conversioncouiiiuneennen.... 66
2.5.1 A Simple Read/Write Script................ 66
2.5.2 Storing Data in Dictionaries and Lists 68
2.5.3 Making a Module with Functions 69
2.5.4 EXEICISES .. .vvtit i 71
Basic Python......... 73
3.1 Introductory Topicsot 74
3.1.1 Recommended Python Documentation............. 74
3.1.2 Control Statements 75
3.1.3 Running Applications 76
3.1.4 File Reading and Writing 78
3.1.5 Output Formatting............. 79
3.2 Variables of Different Types 81
321 Boolean Types...... ..o, 81
3.2.2 The None Variable 82
3.2.3 Numbers and Numerical Expressions 82
324 Listsand Tuples 84
3.2.5 Dictionaries 90
3.2.6 Splitting and Joining Text 94
3.2.7 String Operations, 95
3.28 Text Processing.......... ... o i, 96
3.2.9 The Basics of a Python Class..................... 98
3.2.10 Copy and Assignmentccoueeon... 100
3.2.11 Determining a Variable’s Type.................... 104
3.2.12 EXEICISeSttt 106
3.3 Functions 110
3.3.1 Keyword Arguments 111
3.3.2 Doc Stringscooiiiiii 112
3.3.3 Variable Number of Arguments 112
3.3.4 Call by Reference i, 114
3.3.5 Treatment of Input and Output Arguments 115
3.3.6 Function Objects i, 116
3.4 Working with Files and Directories 117
3.4.1 Listing Files in a Directory 118
3.4.2 Testing File Typesoo .. 118
3.4.3 Removing Files and Directories 119
3.4.4 Copying and Renaming Files 120
3.4.5 Splitting Pathnames............... 121
3.4.6 Creating and Moving to Directories 122
3.4.7 Traversing Directory Trees 122

3.4.8 EXEICISES ..ot 125

Table of Contents XIII

4 Numerical Computing in Python 131
4.1 A Quick NumPy Primer 132
4.1.1 Creating ATTaysoourniiineeneenna.. 132

4.1.2 ArrayIndexing i 136

4.1.3 LoOps Over AITAySovuviniin e 138

4.1.4 Array Computationscooviinnn... 139

4.1.5 More Array Functionality 142

416 TypeTesting 144

4.1.7 Matrix Objectst 145

4.1.8 EXErcisesooiiiiiiii 146

4.2 Vectorized Algorithms 147
4.2.1 From Scalar to Array in Function Arguments....... 147

4.2.2 SHCING . o ottt 149

4.2.3 EXErcisesc.iiiiiiiii 150

4.3 More Advanced Array Computing........................ 151
4.3.1 Random Numbers.......... 152

4.3.2 Linear Algebra i 153

4.3.3 Plotting ... 154

4.3.4 Example: Curve Fitting, 157

4.3.5 Arrays on Structured Grids 159

4.3.6 File I/O with NumPy Arrays..................... 163

4.3.7 Functionality in the Numpyutils Module 165

4.3.8 EXErcisesi.iiii 168

4.4 Other Tools for Numerical Computations 173
4.4.1 The ScientificPython Package 173

4.4.2 The SciPy Package 178

4.4.3 The Python—Matlab Interface 183

4.4.4 Symbolic Computing in Python................... 184

4.4.5 Some Useful Python Modules..................... 186

5 Combining Python with Fortran, C, and C++.... 189
5.1 About Mixed Language Programming 189
5.1.1 Applications of Mixed Language Programming. 190

5.1.2 Calling C from Python 190

5.1.3 Automatic Generation of Wrapper Code 192

5.2 Scientific Hello World Examples 194
5.2.1 Combining Python and Fortran................ ... 195

5.2.2 Combining Pythonand C 201

5.2.3 Combining Python and C++ Functions............ 208

5.2.4 Combining Python and C++ Classes 210

5.2.5 Exercises 214

5.3 A Simple Computational Steering Example................ 215
5.3.1 Modified Time Loop for Repeated Simulations. 216

5.3.2 Creating a Python Interface 217

5.3.3 The Steering Python Script 218

5.3.4 Equipping the Steering Script with a GUL.......... 222

5.4 Scripting Interfaces to Large Libraries 223

XIV ~ Table of Contents

6 Introduction to GUI Programming 227
6.1 Scientific Hello World GUI 228
6.1.1 Introductory Topicsco .. 228

6.1.2 The First Python/Tkinter Encounter 230

6.1.3 Binding Events 233

6.1.4 Changing the Layout 234

6.1.5 The Final Scientific Hello World GUT.............. 238

6.1.6 An Alternative to Tkinter Variables 240

6.1.7 About the Pack Command 241

6.1.8 An Introduction to the Grid Geometry Manager 243

6.1.9 Implementing a GUl asa Class 245
6.1.10 A Simple Graphical Function Evaluator............ 247
6.1.11 EXEercisesc.uuiniiinin .. 248

6.2 Adding GUIs to Scripts vovvinii e 250
6.2.1 A Simulation and Visualization Script with a GUI .. 250

6.2.2 Improving the Layout 253

6.2.3 EXErcisesi.iiiiii 256

6.3 A List of Common Widget Operations.................... 257
6.3.1 Frame 259

6.3.2 Label..... ... 260

6.3.3 Button 262

6.34 Text Entry...... 262

6.3.5 BalloonHelp 264

6.3.6 Option Menu 265

6.3.7 Slder 265

6.3.8 Check Button i 266

6.3.9 Making a Simple Megawidget..................... 266
6.3.10 MenuBar....... 267
6.3.11 List Dataoo i 269
6.3.12 Listboxoooi 269
6.3.13 RadioButton 272
6.3.14 Combo Box 274
6.3.15 Message Boxl 275
6.3.16 User-Defined Dialogs 277
6.3.17 Color-Picker Dialogs. 278
6.3.18 File Selection Dialogs........... o 279
6.3.19 Toplevel 280
6.3.20 Some Other Types of Widgets 281
6.3.21 Adapting Widgets to the User’s Resize Actions 282
6.3.22 Customizing Fonts and Colors 284
6.3.23 Widget Overview i, 286

6.3.24 EXErCiSESi i 289

Table of Contents XV

7 Web Interfaces and CGI Programming............. 295
7.1 Introductory CGI Scripts 296
7.1.1 Web Forms and CGI Scripts...................... 297

7.1.2 Generating Forms in CGI Scripts 299

7.1.3 Debugging CGI Scripts, 301

7.1.4 A General Shell Script Wrapper for CGI Scripts 302

7.1.5 Security Issues........ ... i 304

7.2 Adding Web Interfaces to Scripts 306
7.2.1 A Class for Form Parameters..................... 306

7.2.2 Calling Other Programs 308

7.2.3 Running Simulations 309

7.2.4 Getting a CGI Script to Work 311

7.2.5 Using Web Applications from Scripts 313

726 Exercises 316

8 Advanced Python 319
8.1 Miscellaneous Topicsot 319
8.1.1 Parsing Command-Line Arguments................ 319

8.1.2 Platform-Dependent Operations 322

8.1.3 Run-Time Generation of Code 323

8.1.4 EXEICiSesivininii i 324

8.2 Regular Expressions and Text Processing 326
8.2.1 Motivationc. i 326

8.2.2 Special Characters oo, 329

8.2.3 Regular Expressions for Real Numbers............. 331

8.2.4 Using Groups to Extract Parts of a Text 334

8.2.5 Extracting Interval Limits.............. 335

8.2.6 Extracting Multiple Matches 339

8.2.7 Splitting Text ... 344

8.2.8 Pattern-Matching Modifiers 345

8.2.9 Substitution and Backreferences 347
8.2.10 Example: Swapping Arguments in Function Calls ... 348
8.2.11 A General Substitution Script 351
8.2.12 Debugging Regular Expressions 353
8.2.13 EXercisesiiiii i 354

8.3 Tools for Handling Data in Files 362
8.3.1 Writing and Reading Python Data Structures 362

8.3.2 Pickling Objects ... 364

8.3.3 Shelving Objectso .. 366

8.3.4 Writing and Reading Zip and Tar Archive Files 366

8.3.5 Downloading Internet Files................. 367

8.3.6 Binary Input/Output............. 368

8.3.7 EXErcCiSesouiuiniin i 371

8.4 A Database for NumPy Arrays 371
8.4.1 The Structure of the Database.................... 371

8.4.2 Pickling 374

8.4.3 Formatted ASCII Storage 375

XVI

Table of Contents

8.5

8.6

8.7

8.8

8.9

8.10

8.4.4 Shelving 376
8.4.5 Comparing the Various Techniques 377
Scripts Involving Local and Remote Hosts................. 378
8.5.1 Secure Shell Commands 378
8.5.2 Distributed Simulation and Visualization 380
8.5.3 Client/Server Programming 382
8.5.4 Threadscooi 382
ClaSSES .« v vttt et 384
8.6.1 Class Programming 384
8.6.2 Checking the Class Type...........co.ooiii... 388
8.6.3 PrivateData i 389
8.6.4 StaticData 390
8.6.5 Special Attributes......... 390
8.6.6 Special Methods 391
8.6.7 Multiple Inheritance........... 392
8.6.8 Using a Class as a C-like Structure 393
8.6.9 Attribute Access via String Names 394
8.6.10 New-Style Classesot 394
8.6.11 Implementing Get/Set Functions via Properties. 395
8.6.12 Subclassing Built-in Types 396
8.6.13 Building Class Interfaces at Run Time 399
8.6.14 Building Flexible Class Interfaces 403
8.6.15 EXErcisesc.iuiniiiii i 409
Scope of Variables 413
8.7.1 Global, Local, and Class Variables 413
8.7.2 Nested Functions 415
8.7.3 Dictionaries of Variables in Namespaces............ 416
Exceptions 418
8.8.1 Handling Exceptions 419
8.8.2 Raising Exceptions 420
Tterators o 421
8.9.1 Constructing an Iterator 421
8.9.2 A Pointwise Grid Iterator 423
8.9.3 A Vectorized Grid Tterator 427
8.9.4 Generatorsiii i 428
8.9.5 Some Aspects of Generic Programming 432
8.9.6 Exercises 436
Investigating Efficiency i 437
8.10.1 CPU-Time Measurements 437
8.10.2 Profiling Python Scripts 441
8.10.3 Optimization of Python Code 442

8.10.4 Case Study on Numerical Efficiency 445

10

Table of Contents XVII

Fortran Programming with NumPy Arrays
9.1 Problem Definition
9.2 Filling an Array in Fortran........
9.2.1 The Fortran Subroutine..........................
9.2.2 Building and Inspecting the Extension Module.
9.3 Array Storage Issues i i
9.3.1 Generating an Erroneous Interface
9.3.2 Array Storage in C and Fortran...................
9.3.3 Input and Output Arrays as Function Arguments . . .
9.3.4 F2PY Interface Files
9.3.5 Hiding Work Arrays............oouiiiiiiinaon..
9.4 Increasing Callback Efficiency
9.4.1 Callbacks to Vectorized Python Functions..........
9.4.2 Avoiding Callbacks to Python
9.4.3 Compiled Inline Callback Functions
0.5 SUMIMNATY © ettt ettt et e e e e e e
9.6 EXEICISES ..ottt e

C and C++4 Programming with NumPy Arrays ..
10.1 Automatic Interfacing of C/C++4 Code
10.1.1 Using F2PYo
10.1.2 Using Instant..........
10.1.3 Using Weaveottt
10.2 C Programming with NumPy Arrays
10.2.1 The Basics of the NumPy C API..................
10.2.2 The Handwritten Extension Code
10.2.3 Sending Arguments from Python to C
10.2.4 Consistency Checks i,
10.2.5 Computing Array Values.........................
10.2.6 Returning an Output Array
10.2.7 Convenient Macrosc.ovouiiineinenenn...
10.2.8 Module Initialization
10.2.9 Extension Module Template
10.2.10 Compiling, Linking, and Debugging the Module.
10.2.11 Writing a Wrapper for a C Function...............
10.3 C++ Programming with NumPy Arrays
10.3.1 Wrapping a NumPy Array in a C++ Object
10.3.2 Using SCXX ..ot
10.3.3 NumPy—-C++ Class Conversion
10.4 Comparison of the Implementations
10.4.1 Efficiency ...
10.4.2 Error Handling i,
10.4.3 SUMINATY « .ttt
10.5 EXETCISES .« .o vttt

XVIII Table of Contents

11 More Advanced GUI Programming................. 529
11.1 Adding Plot Areasin GUIs........... ... oo, 529
11.1.1 The BLT Graph Widget 530
11.1.2 Animation of Functions in BLT Graph Widgets 536
11.1.3 Other Tools for Making GUIs with Plots 538
11.1.4 EXErCiSesottt 539

11.2 Event Bindings i 541
11.2.1 Binding Events to Functions with Arguments....... 542
11.2.2 A Text Widget with Tailored Keyboard Bindings ... 544
11.2.3 A Fancy List Widget it 547

11.3 Animated Graphics with Canvas Widgets 550
11.3.1 The First Canvas Encounter...................... 551
11.3.2 Coordinate Systemscooiiiii.... 552
11.3.3 The Mathematical Model Class 556
11.3.4 The Planet Classcoiiiiiiniinn .. 557
11.3.5 Drawing and Moving Planets 559
11.3.6 Dragging Planets to New Positions 560
11.3.7 Using Pmw’s Scrolled Canvas Widget.............. 564

11.4 Simulation and Visualization Scripts 566
11.4.1 Restructuring the Script 567
11.4.2 Representing a Parameter by a Class 569
11.4.3 TImproved Command-Line Script 583
11.4.4 TImproved GUI Script 584
11.4.5 TImproved CGI Script 585
11.4.6 Parameters with Physical Dimensions 586
11.4.7 Adding a Curve Plot Area 588
11.4.8 Automatic Generation of Scripts 589
11.4.9 Applications of the Tools 590
11.4.10 Allowing Physical Units in Input Files 596
11.4.11 Converting Input Files to GUIs 601

12 Tools and Examples....................... 605
12.1 Running Series of Computer Experiments 605
12.1.1 Multiple Values of Input Parameters 606
12.1.2 TImplementation Details 609
12.1.3 Further Applications 614

12.2 Tools for Representing Functions. 618
12.2.1 Functions Defined by String Formulas 618
12.2.2 A Unified Interface to Functions 623
12.2.3 Interactive Drawing of Functions.................. 629
12.2.4 A Notebook for Selecting Functions 633

12.3 Solving Partial Differential Equations.................. ... 640
12.3.1 Numerical Methods for 1D Wave Equations 641
12.3.2 Implementations of 1D Wave Equations............ 644
12.3.3 Classes for Solving 1D Wave Equations 651
12.3.4 A Problem Solving Environment 657

12.3.5 Numerical Methods for 2D Wave Equations 663

Table of Contents XIX

12.3.6 Implementations of 2D Wave Equations............ 666
12.3.7 EXErcisesouiiiiiiiiiiii i 675

A Setting up the Required Software Environment. .. 677
A.1 Installation on Unix Systemsccooviinn. .. 677
A.1.1 A Suggested Directory Structure 677
A.1.2 Setting Some Environment Variables 678
A.1.3 Installing Tcl/Tk and Additional Modules 679
A.1.4 TInstalling Python 680
A.1.5 Installing Python Modules 681
A.1.6 Installing Gnuplot, 683
A.1.7 Installing SWIG ... i 684
A.1.8 Summary of Environment Variables 684
A.1.9 Testing the Installation of Scripting Utilities. 685

A.2 Installation on Windows Systems 685
B Elements of Software Engineering................... 689
B.1 Building and Using Modules................ 689
B.1.1 Single-File Modules, 689
B.1.2 Multi-File Modules 693
B.1.3 Debugging and Troubleshooting................... 694

B.2 Tools for Documenting Python Software 696
B.2.1 Doc Stringsooiiiiii i 696
B.2.2 Tools for Automatic Documentation............... 698

B.3 Coding Standards i 702
B.3.1 StyleGuide o 702
B.3.2 Pythonic Programming 706

B.4 Verification of Scripts. i 711
B.4.1 Automating Regression Tests 711
B.4.2 TImplementing a Tool for Regression Tests 715
B.4.3 Writing a Test Script i i 719
B.4.4 Verifying Output from Numerical Computations 720
B.4.5 Automatic Doc String Testing 724
B.4.6 Unit Testingcoiiiiiiiii .. 726

B.5 Version Control Management 728
B.5.1 Mercurial ... 729
B.5.2 Subversion 732

B.6 EXErcisescuiiiii 734
Bibliography 739

List of Exercises

Exercise 2.1
Exercise 2.2
Exercise 2.3
Exercise 2.4
Exercise 2.5
Exercise 2.6
Exercise 2.7
Exercise 2.8
Exercise 2.9
Exercise 2.10
Exercise 2.11
Exercise 2.12
Exercise 2.13
Exercise 2.14
Exercise 2.15
Exercise 2.16
Exercise 2.17
Exercise 3.1
Exercise 3.2
Exercise 3.3
Exercise 3.4
Exercise 3.5
Exercise 3.6
Exercise 3.7
Exercise 3.8
Exercise 3.9
Exercise 3.10
Exercise 3.11
Exercise 3.12
Exercise 3.13
Exercise 3.14
Exercise 3.15
Exercise 3.16
Exercise 3.17
Exercise 3.18
Exercise 3.19
Exercise 4.1
Exercise 4.2
Exercise 4.3
Exercise 4.4

Become familiar with the electronic documentation.
Extend Exercise 2.1 with a loop
Find five errors in a script
Basic use of control structures
Use standard input/output instead of files.............
Read streams of (x,y) pairs from the command line
Test for specific exceptions
Sum columnsinafile...........
Estimate the chance of an event in a dice game
Determine if you win or loose a hazard game
Generate an HTML report from the simvizl.py script ..
Generate a IMTEX report from the simvizi.py script
Compute time step values in the simviz1.py script
Use Matlab for curve plotting in the simviz1i.py script . .
Combine curves from two simulations in one plot.
Combine two-column data files to a multi-column file . . .
Read/write Excel data files in Python
Write format specifications in printf-style
Write your own function for joining strings
Write an improved function for joining strings
Never modify a list you are iterating on
Make a specialized sort function
Check if your system has a specific program
Find the paths to a collection of programs
Use Exercise 3.7 to improve the simvizl.py script
Use Exercise 3.7 to improve the loop4simviz2.py script .
Find the version number of a utility
Automate execution of a family of similar commands . . .
Remove temporary files in a directory tree
Find old and large files in a directory tree
Remove redundant files in a directory tree
Annotate a filename with the current date
Automatic backup of recently modified files
Search for a text in files with certain extensions........
Search directories for plots and make HTML report
Fix Unix/Windows Line Ends
Matrix-vector multiply with NumPy arrays............
Work with slicing and matrix multiplication
Assignment and in-place NumPy array modifications . ..
Vectorize a constant function

XXII

Exercise 4.5
Exercise 4.6
Exercise 4.7
Exercise 4.8
Exercise 4.9
Exercise 4.10
Exercise 4.11
Exercise 4.12
Exercise 4.13
Exercise 4.14
Exercise 4.15
Exercise 4.16
Exercise 4.17
Exercise 4.18
Exercise 4.19
Exercise 5.1
Exercise 5.2
Exercise 5.3
Exercise 6.1
Exercise 6.2
Exercise 6.3
Exercise 6.4
Exercise 6.5
Exercise 6.6
Exercise 6.7
Exercise 6.8
Exercise 6.9
Exercise 6.10
Exercise 6.11
Exercise 6.12
Exercise 6.13
Exercise 6.14
Exercise 6.15
Exercise 6.16
Exercise 6.17
Exercise 6.18
Exercise 6.19
Exercise 7.1
Exercise 7.2
Exercise 7.3
Exercise 7.4
Exercise 7.5
Exercise 8.1
Exercise 8.2
Exercise 8.3

List of Exercises

Vectorize a numerical integration rule
Vectorize a formula containing an if condition
Slicing of two-dimensional arrays.....................
Implement Exercise 2.9 using NumPy arrays

Implement Exercise 2.10 using NumPy arrays
Replace lists by NumPy arrays in convert2.py
Use Easyviz in the simvizl.py script
Extension of Exercise 2.8
NumPy arrays and binary files.
One-dimensional Monte Carlo integration
Higher-dimensional Monte Carlo integration
Load data file into NumPy array and visualize
Analyze trends in the data from Exercise 4.16
Evaluate a function over a 3D grid
Evaluate a function over a plane or line in a 3D grid. . ..
Implement a numerical integration rule in F77
Implement a numerical integration rule in C
Implement a numerical integration rule in C+4........
Modify the Scientific Hello World GUT................
Change the layout of the GUI in Exercise 6.1
Control a layout with the grid geometry manager
Make a demo of Newton’s method
Program with Pmw.EntryField in hwGUI10.py
Program with Pmw.EntryField in simvizGUI2.py
Replace Tkinter variables by set/get-like functions
Use simvizl.py as a module in simvizGUI2.py..........
Apply Matlab for visualization in simvizGUI2.py
Program with Pmw.OptionMenu in simvizGUI2.py

Study the nonlinear motion of a pendulum
Add error handling with an associated message box
Add a message bar to a balloon help
Select a file from a list and perform an action..........
Make a GUI for finding and selecting font names
Launch a GUI when command-line options are missing .
Write a GUI for Exercise 3.14
Write a GUI for selecting files to be plotted
Write an easy-to-use GUI generator
Write a CGI debugging tool
Make a web calculator
Make a web application for registering participants
Make a web application for numerical experiments
Become a “nobody” user on a web server
Use the getopt/optparse module in simviz1.py
Store command-line options in a dictionary............
Turn files with commands into Python variables

Exercise 8.4

Exercise 8.5

Exercise 8.6

Exercise 8.7

Exercise 8.8

Exercise 8.9

Exercise 8.10
Exercise 8.11
Exercise 8.12
Exercise 8.13
Exercise 8.14
Exercise 8.15
Exercise 8.16
Exercise 8.17
Exercise 8.18
Exercise 8.19
Exercise 8.20
Exercise 8.21
Exercise 8.22
Exercise 8.23
Exercise 8.24
Exercise 8.25
Exercise 8.26
Exercise 8.27
Exercise 8.28
Exercise 8.29
Exercise 8.30
Exercise 8.31
Exercise 8.32
Exercise 8.33
Exercise 8.34
Exercise 8.35
Exercise 9.1

Exercise 9.2

Exercise 9.3

Exercise 9.4

Exercise 9.5

Exercise 9.6

Exercise 9.7

Exercise 10.1
Exercise 10.2
Exercise 10.3
Exercise 10.4
Exercise 10.5
Exercise 10.6

List of Exercises XXIII
A grep SCript . oo vt 354
Experiment with a regex for real numbers............. 355
Find errors in regular expressions 355
Generate data from a user-supplied formula 356
Explain the behavior of regular expressions............ 356
Edit extensions in filenames 357
Extract info from a program code 357
Regex for splitting a pathname 357
Rename a collection of files according to a pattern 358
Reimplement the re.findall function................. 358
Interpret a regex code and find programming errors 358
Automatic fine tuning of PostScript figures............ 359
Transform a list of lines to a list of paragraphs......... 360
Copy computer codes into documents. 360
A very useful script for all writers.................... 361
Read Fortran 90 files with namelists.................. 361
Automatic update of function calls in C++ files 361
Read/write (z,y) pairs from/to binary files............ 371
Use the XDR format in the script from Exercise 8.21 ... 371
Archive all files needed in a BTEX document 371
Using a web site for distributed simulation 381
Convert data structures to/from strings............... 409
Implement a class for vectors in 3D 410
Extend the class from Exericse 8.26 410
Make a tuple with cyclic indices 411
Make a dictionary type with ordered keys 411
Make a smarter integration function.................. 412
Equip class Grid2D with subscripting 412
Extend the functionality of class Grid2D............... 412
Make a boundary iterator in a 2D grid................ 436
Make a generator for odd numbers 436
Make a class for sparse vectors....................... 436
Extend Exercise 5.1 with a callback to Python......... 479

Compile callback functions in Exercise 9.1............. 479

Smoothing of time series 480
Smoothing of 3D data 480
Type incompatibility between Python and Fortran 481
Problematic callbacks to Python from Fortran 481
Array look-up efficiency: Python vs. Fortran........... 482
Extend Exercise 5.2 or 5.3 with a callback to Python ... 525
Investigate the efficiency of vector operations 525
Debug a C extension module 525
Make callbacks to vectorized Python functions......... 526
Avoid Python callbacks in extension modules.......... 526
Extend Exercise 9.4 with C and C++ code............ 526

XXIV List of Exercises

Exercise 10.7 Apply SWIG to an array class in C++4
Exercise 10.8 Build a dictionary in C
Exercise 10.9 Make a C module for computing random numbers.
Exercise 10.10 Almost automatic generation of C extension modules . . .
Exercise 10.11 Introduce C++ array objects in Exercise 10.10
Exercise 10.12 Introduce SCXX in Exercise 10.11
Exercise 11.1 Incorporate a BLT graph widget in simvizl.py.........
Exercise 11.2 Plot a two-column datafile in a Pmw.Blt widget
Exercise 11.3 Use a BLT graph widget in simvizGUI2.py.............
Exercise 11.4 Extend Exercise 11.3 to handle multiple curves
Exercise 11.5 Use a BLT graph widget in Exercise 6.4
Exercise 11.6 Interactive dump of snapshot plots in an animation
Exercise 11.7 Extend the animate.py GUI
Exercise 11.8 Animate a curve in a BLT graph widget
Exercise 11.9 Add animations to the GUI in Exercise 11.5...........
Exercise 11.10 Extend the GUI in Exercise 6.17 with a fancy list
Exercise 11.11 Remove canvas items
Exercise 11.12 Introduce properties in class Parameters.
Exercise 11.13 Convert command file into Python objects
Exercise 12.1 Allow multiple values of parameters in input files
Exercise 12.2 Turn mathematical formulas into Fortran functions.
Exercise 12.3 Move a wave source during simulation
Exercise 12.4 Include damping in a 1D wave simulator
Exercise 12.5 Add a NumPy database to a PDE simulator...........
Exercise 12.6 Use iterators in finite difference schemes
Exercise 12.7 Set vectorized boundary conditions in 3D grids
Exercise B.1 Make a Python module of simvizl.py
Exercise B.2 Pack modules and packages using Distutils
Exercise B.3 Distribute mixed-language code using Distutils
Exercise B.4 Use tools to document the script in Exercise 3.14
Exercise B.5 Make a regression test for a trivial script..............
Exercise B.6 Repeat Exercise B.5 using the test script tools.........
Exercise B.7 Make a regression test for a script with I/O
Exercise B.8 Make a regression test for the script in Exercise 3.14 ...
Exercise B.9 Approximate floats in Exercise B.5
Exercise B.10 Make tests for grid iterators
Exercise B.11 Make a tar/zip archive of files associated with a script . .
Exercise B.12 Semi-automatic evaluation of a student project

Chapter 1

Introduction

In this introductory chapter we first look at some arguments why scripting
is a promising programming style for computational scientists and engineers
and how scripting differs from more traditional programming in Fortran, C,
C++, C+#, and Java. The chapter continues with a section on how to set up
your software environment such that you are ready to get started with the
introduction to Python scripting in Chapter 2. Eager readers who want to
get started with Python scripting as quickly as possible can safely jump to
Chapter 1.2 to set up their environment and get ready to dive into examples
in Chapter 2.

1.1 Scripting versus Traditional Programming

The purpose of this section is to point out differences between scripting and
traditional programming. These are two quite different programming styles,
often with different goals and utilizing different types of programming lan-
guages. Traditional programming, also often referred to as system program-
ming, refers to building (usually large, monolithic) applications (systems)
using languages such as Fortran®, C, C4++, C#, or Java. In the context of
this book, scripting means programming at a high and flexible abstraction
level, utilizing languages like Perl, Python, Ruby, Scheme, or Tcl. Very of-
ten the script integrates operation system actions, text processing and report
writing, with functionality in monolithic systems. There is a continuous tran-
sition from scripting to traditional programming, but this section will be more
focused on the features that distinguish these programming styles.

Hopefully, the present section motivates the reader to get started with
scripting in Chapter 2. Much of what is written in this section may make
more sense after you have experience with scripting, so you are encouraged
to go back and read it again at a later stage to get a more thorough view of
how scripting fits in with other programming techniques.

! By “Fortran” I mean all versions of Fortran (77, 90/95, 2003), unless a specific
version is mentioned. Comments on Java, C+4, and C# will often apply to
Fortran 2003 although we do not state it explicitly.

2 1. Introduction

1.1.1 Why Scripting is Useful in Computational Science

Scientists Are on the Move. During the last decade, the popularity of sci-
entific computing environments such as IDL, Maple, Mathematica, Matlab,
Octave, and S-PLUS/R has increased considerably. Scientists and engineers
simply feel more productive in such environments. One reason is the simple
and clean syntax of the command languages in these environments. Another
factor is the tight integration of simulation and visualization: in Maple, Mat-
lab, S-PLUS/R and similar environments you can quickly and conveniently
visualize what you just have computed.

Build Your Own Environment. One problem with the mentioned environ-
ments is that they do not work, at least not in an easy way, with other types
of numerical software and visualization systems. Many of the environment-
specific programming languages are also quite simple or primitive. At this
point scripting in Python comes in. Python offers the clean and simple syn-
tax of the popular scientific computing environments, the language is very
powerful, and there are lots of tools for gluing your favorite simulation, vi-
sualization, and data analysis programs the way you want. Phrased differ-
ently, Python allows you to build your own Matlab-like scientific computing
environment, tailored to your specific needs and based on your favorite high-
performance Fortran, C, or C++ codes.

Scientific Computing Is More Than Number Crunching. Many computa-
tional scientists work with their own numerical software development and
realize that much of the work is not only writing computationally intensive
number-crunching loops. Very often programming is about shuffling data in
and out of different tools, converting one data format to another, extracting
numerical data from a text, and administering numerical experiments involv-
ing a large number of data files and directories. Such tasks are much faster
to accomplish in a language like Python than in Fortran, C, C++, C#, or
Java. Chapter 3 presents lots of examples in this context.

Graphical User Interfaces. GUlIs are becoming increasingly more important
in scientific software, but (normally) computational scientists and engineers
have neither the interest nor the time to read thick books about GUI pro-
gramming. What you need is a quick “how-to” description of wrapping GUIs
to your applications. The Tk-based GUI tools available through Python make
it easy to wrap existing programs with a GUI. Chapter 6 provides an intro-
duction.

Demos. Scripting is particularly attractive for building demos related to
teaching or project presentations. Such demos benefit greatly from a GUI,
which offers input data specification, calls up a simulation code, and visualizes
the results. The simple and intuitive syntax of Python encourages users to
modify and extend demos on their own, even if they are newcomers to Python.

1.1. Scripting versus Traditional Programming 3

Some relevant demo examples can be found in Chapters 2.3, 6.2, 7.2, 11.4,
and 12.3.

Modern Interfaces to Old Simulation Codes. Many Fortran and C program-
mers want to take advantage of new programming paradigms and languages,
but at the same time they want to reuse their old well-tested and efficient
codes. Instead of migrating these codes to C++, recent Fortran versions, or
Java, one can wrap the codes with a scripting interface. Calling Fortran, C,
or C++ from Python is particularly easy, and the Python interfaces can take
advantage of object-oriented design and simple coupling to GUIs, visualiza-
tion, or other programs. Computing with your Fortran or C libraries from
these interfaces can then be done either in short scripts or in a fully interac-
tive manner through a Python shell. Roughly speaking, you can use Python
interfaces to your existing libraries as a way of creating your own tailored
problem solving environment. Chapter 5 explains how Python code can call
Fortran, C, and C++.

Unix Power on Windows. We also mention that many computational sci-
entists are tied to and take great advantage of the Unix operating system.
Moving to Microsoft Windows environments can for many be a frustrating
process. Scripting languages are very much inspired by Unix, yet cross plat-
form. Using scripts to create your working environment actually gives you the
power of Unix (and more!) also on Windows and Macintosh machines. In fact,
a script-based working environment can give you the combined power of the
Unix and Windows/Macintosh working styles. Many examples of operating
system interaction through Python are given in Chapter 3.

Python versus Matlab. Some readers may wonder why an environment such
as Matlab or something similar (like Octave, Scilab, Rlab, Euler, Tela, Yorick)
is not sufficient. Matlab is a de facto standard, which to some extent offers
many of the important features mentioned in the previous paragraphs. Matlab
and Python have indeed many things in common, including no declaration of
variables, simple and convenient syntax, easy creation of GUIs, and gluing of
simulation and visualization. Nevertheless, in my opinion Python has some
clear advantageous over Matlab and similar environments:

— the Python programming language is more powerful,

— the Python environment is completely open and made for integration
with external tools,

— a complete toolbox/module with lots of functions and classes can be
contained in a single file (in contrast to a bunch of M-files),

— transferring functions as arguments to functions is simpler,
— nested, heterogeneous data structures are simple to construct and use,
— object-oriented programming is more convenient,

— interfacing C, C++, and Fortran code is better supported and therefore
simpler,

4 1. Introduction

— scalar functions work with array arguments to a larger extent (without
modifications of arithmetic operators),

— the source is free and runs on more platforms.

Having said this, we must add that Matlab appears as a more self-contained
environment, while Python needs to combined with several additional pack-
ages to form an environment of competitive functionality. There is an inter-
face pymat that allows Python programs to use Matlab as a computational
and graphics engine (see Chapter 4.4.3). At the time of this writing, Python’s
support for numerical computing and visualization is rapidly growing, espe-
cially through the SciPy project (see Chapter 4.4.2).

1.1.2 Classification of Programming Languages

It is convenient to have a term for the languages used for traditional scientific
programming and the languages used for scripting. We propose to use type-
safe languages and dynamically typed languages, respectively. These terms
distinguish the languages by the flexibility of the variables, i.e., whether vari-
ables must be declared with a specific type or whether variables can hold data
of any type. This is a clear and important distinction of the functionality of
the two classes of programming languages.

Many other characteristics are candidates for classifying these languages.
Some speak about compiled languages versus interpreted languages (Java
complicates these matters, as it is type-safe, but have the nature of being
both interpreted and compiled). Scripting languages and system program-
ming languages are also very common terms [27], i.e., classifying languages
by their typical associated programming style. Others refer to high-level and
low-level languages. High and low in this context implies no judgment of
quality. High-level languages are characterized by constructs and data types
close to natural language specifications of algorithms, whereas low-level lan-
guages work with constructs and data types reflecting the hardware level.
This distinction may well describe the difference between Perl and Python,
as high-level languages, versus C and Fortran, as low-level languages. C++,
C#, and Java come somewhat in between. High-level languages are also often
referred to as very high-level languages, indicating the problem of choosing
a common scale when measuring the level of languages.

Our focus is on programming style rather than on language. This book
teaches scripting as a way of working and programming, using Python as the
preferred computer language. A synonym for scripting could well be high-level
programming, but the expression sometimes leaves a confusion about how to
measure the level. Why I use the term scripting instead of just programming
is explained in Chapter 1.1.16. Already now the reader may have in mind
that I use the term scripting in a broader meaning than many others.

1.1. Scripting versus Traditional Programming 5

1.1.3 Productive Pairs of Programming Languages

Unix and C. Unix evolved to be a very productive software development
environment based on two programming tools of different nature: the classical
system programming language C for CPU-critical tasks, often involving non-
trivial data structures, and the Unix shell for gluing C programs to form new
applications. With only a handful of basic C programs as building blocks, a
user can solve a new problem by writing a tailored shell program combining
existing tools in a simple way. For example, there is no basic Unix tool that
enables browsing a sorted list of the disk usage in the directories of a user,
but it is trivial to combine three C programs, du for summarizing disk usage,
sort for sorting lines of text, and less for browsing text files, together with
the pipe functionality of Unix shells, to build the desired tool as a one-line
shell instruction:

du -a $HOME | sort -rn | less

In this way, we glue three programs that are in principle completely indepen-
dent of each other. This is the power of Unix in a nutshell. Without the gluing
capabilities of Unix shells, we would need to write a tailored C program, of
a much larger complexity, to solve the present problem.

A Unix command interpreter, or shell as it is normally called, provides
a language for gluing applications. There are many shells: Bourne shell (sh)
and C shell (csh) are classical, whereas Bourne Again shell (bash), Korn shell
(ksh), and Z shell (zsh) are popular modern shells. A program written in a
shell is often referred to as a script. Although the Unix shells have many
useful high-level features that contribute to keep the size of scripts small, the
shells are quite primitive programming languages, at least when viewed by
modern programmers.

C is a low-level language, often claimed to be designed for computers and
not humans. However, low-level system programming languages like C and
Fortran 77 were introduced as alternatives to the much more low-level as-
sembly languages and have been successful for making computationally fast
code, yet with a reasonable abstraction level. Fortran 77 and C give nearly
complete control of memory usage and CPU-critical program segments, but
the amount of details at a low code level is unfortunately huge. The need
for programming tools that increase the human productivity led to a devel-
opment of more powerful languages, both for classical system programming
and for scripting.

C++ and VisualBasic. Under the Windows family of operating systems,
efficient program development evolved as a combination of the type-safe lan-
guage C++ for classical system programming and the VisualBasic language
for scripting. C++ is a richer (and much more complicated) language than
C and supports working with high-level abstractions through concepts like

6 1. Introduction

object-oriented and generic programming. VisualBasic is also a richer lan-
guage than Unix shells.

Java. Especially for tasks related to Internet programming, Java was from
the mid 1990s taking over as the preferred language for building large software
systems. Many regard JavaScript as some kind of scripting companion in web
pages. PHP and Java are also a popular pair. However, Java is much of a self-
contained language, and being simpler and safer to apply than C++, it has
become very popular and widespread for classical system programming. A
promising scripting companion to Java is Jython, the Java implementation
of Python. On the .NET platform, C# plays a Java-like role and can be
combined with Python to form a pair of system and scripting language.

Modern Scripting Languanges. During the last decade several powerful dy-
namically typed languages have emerged and developed to a mature state.
Bash, Perl, Python (and Jython), Ruby, Scheme, and Tcl are examples of
general-purpose, modern, widespread languages that are popular for script-
ing tasks. PHP is a related language, but more specialized towards making
web applications.

1.1.4 Gluing Existing Applications

Dynamically typed languages are often used for gluing stand-alone applica-
tions (typically coded in a type-safe language) and offer for this purpose rich
interfaces to operating system functionality, file handling, and text process-
ing. A relevant example for computational scientists and engineers is gluing
a simulation program, a visualization program, and perhaps a data analysis
program, to form an easy-to-use tool for problem solving. Running a program,
grabbing and modifying its output, and directing data to another program
are central tasks when gluing applications, and these tasks are easier to ac-
complish in a language like Python than in Fortran, C, C++, C#, or Java. A
script that glues existing components to form a new application often needs
a graphical user interface (GUI), and adding a GUI is normally a simpler
task in dynamically typed languages than in the type-safe languages.

There are basically two ways of gluing existing applications. The simplest
approach is to launch stand-alone programs and let such programs commu-
nicate through files. This is exemplified already in Chapter 2.3. The other
more sophisticated way of gluing consists in letting the script call functions
in the applications. This can be done through direct calls to the functions
and using pointers to transfer data structures between the applications. Al-
ternatively, one can use a layer of, e.g., CORBA or COM objects between the
script and the applications. The latter approach is very flexible as the appli-
cations can easily run on different machines, but data structures need to be
copied between the applications and the script. Passing large data structures
by pointers in direct calls of functions in the applications therefore seems at-

1.1. Scripting versus Traditional Programming 7

tractive for high-performance computing. The topic is treated in Chapters 9
and 10.

1.1.5 Scripting Yields Shorter Code

Powerful dynamically typed languages, such as Python, support numerous
high-level constructs and data structures enabling you to write programs
that are significantly shorter than programs with corresponding functionality
coded in Fortran, C, C++, C#, or Java. In other words, more work is done
(on average) per statement. A simple example is reading an a priori unknown
number of real numbers from a file, where several numbers may appear at one
line and blank lines are permitted. This task is accomplished by two Python
statements?:

F = open(filename, ’r’); n = F.read().split()

Trying to do this in Fortran, C, C++, or Java requires at least a loop, and in
some of the languages several statements needed for dealing with a variable
number of reals per line.

As another example, think about reading a complex number expressed in
a text format like (-3.1,4). We can easily extract the real part —3.1 and the
imaginary part 4 from the string (-3.1,4) using a reqular expression, also
when optional whitespace is included in the text format. Regular expressions
are particularly well supported by dynamically typed languages. The relevant
Python statements read®

m = re.search(r’\(\s*x([",1+)\s*,\s*x([7,1+)\s*\)’, * (-3.1, 4))
re, im = [float(x) for x in m.groups()]

We can alternatively strip off the parenthesis and then split the string ’-3.1,4°
with respect to the comma character:

m=" (-3.1, 4) ’.strip(Q[1:-1]
re, im = [float(x) for x in m.split(’,’)]

This solution applies string operations and a convenient indexing syntax in-
stead of regular expressions. Extracting the real and imaginary numbers in
Fortran or C code requires many more instructions, doing string searching
and manipulations at the character array level.

The special text of comma-separated numbers enclosed in parenthesis,
like (-3.1,4), is a valid textual representation of a standard list (tuple) in

2 Do not try to understand the details of the statements. The size of the code is
what matters at this point. The meaning of the statements will be evident from
Chapter 2.

3 The code examples may look cryptic for a novice, but the meaning of the sequence
of strange characters (in the regular expressions) should be evident from reading
just a few pages in Chapter 8.2.

8 1. Introduction

Python. This allows us in fact to convert the text to a list variable and from
there extract the list elements by a very simple code:

re, im = eval(’(-3.1, 4)°)

The ability to convert textual representation of lists (including nested, het-
erogeneous lists) to list variables is a very convenient feature of scripting. In
Python you can have a variable q holding, e.g., a list of various data and say
s=str(q) to convert q to a string s and g=eval(s) to convert the string back
to a list variable again. This feature makes writing and reading non-trivial
data structures trivial, which we demonstrate in Chapter 8.3.1.

Ousterhout’s article [27] about scripting refers to several examples where
the code-size ratio and the implementation-time ratio between type-safe lan-
guages and the dynamically typed Tcl language vary from 2 to 60, in favor of
Tecl. For example, the implementation of a database application in C4++ took
two months, while the reimplementation in Tcl, with additional functional-
ity, took only one day. A database library was implemented in C++ during
a period of 2-3 months and reimplemented in Tcl in about one week. The
Tel implementation of an application for displaying oil well curves required
two weeks of labor, while the reimplementation in C needed three months.
Another application, involving a simulator with a graphical user interface,
was first implemented in Tcl, requiring 1600 lines of code and one week of
labor. A corresponding Java version, with less functionality, required 3400
lines of code and 3-4 weeks of programming.

1.1.6 Efficiency

Scripts are first compiled to hardware-independent byte-code and then the
byte-code is interpreted. Type-safe languages, with the exception of Java, are
compiled in the sense that all code is nailed down to hardware-dependent
machine instructions before the program is executed. The interpreted, high-
level, flexible data structures used in scripts imply a speed penalty, especially
when traversing data structures of some size [6].

However, for a wide range of tasks, dynamically typed languages are ef-
ficient enough on today’s computers. A factor of 10 slower code might not
be crucial when the statements in the scripts are executed in a few seconds
or less, and this is very often the case. Another important aspect is that
dynamically typed languages can sometimes give you optimal efficiency. The
previously shown one-line Python code for splitting a file into numbers calls
up highly optimized C code to perform the splitting. You need to be a very
clever C programmer to beat the efficiency of Python in this example. The
same operation in Perl runs even faster, and the underlying C code has been
optimized by many people around the world over a decade so your chances
of creating something more efficient are most probably zero. A consequence

1.1. Scripting versus Traditional Programming 9

is that in the area of text processing, dynamically typed languages will often
provide optimal efficiency both from a human and a computer point of view.

Another attractive feature of dynamically typed languages is that they
were designed for migrating CPU-critical code segments to C, C++, or For-
tran. This can often resolve bottlenecks, especially in numerical computing. If
you can solve your problem using, for example, fixed-size, contiguous arrays
and traverse these arrays in a C, C++, or Fortran code, and thereby uti-
lize the compilers’ sophisticated optimization techniques, the compiled code
will run much faster than the similar script code. The speed-up we are talk-
ing about here can easily be a factor of 100 (Chapters 9 and 10 presents
examples).

1.1.7 Type-Specification (Declaration) of Variables

Type-safe languages require each variable to be explicitly declared with a
specific type. The compiler makes use of this information to control that
the right type of data is combined with the right type of algorithms. Some
refer to statically typed and strongly typed languages. Static, being opposite
of dynamic, means that a variable’s type is fixed at compiled time. This
distinguishes, e.g., C from Python. Strong versus weak typing refers to if
something of one type can be automatically used as another type, i.e., if
implicit type conversion can take place. Variables in Perl may be weakly
typed in the sense that

$b = ’1.2°; $c = 5.1x$b

is valid: $b gets converted from a string to a float in the multiplication. The
same operation in Python is not legal, a string cannot suddenly act as a
float?.

The advantage of type-safe languages is less bugs and safer programming,
at a cost of decreased flexibility. In large projects with many programmers
the static typing certainly helps managing complexity. Nevertheless, reuse of
code is not always well supported by static typing since a piece of code only
works with a particular type of data. Object-oriented and especially generic
programming provide important tools to relax the rigidity of a statically
typed environment.

In dynamically typed languages variables are not declared to be of any
type, and there are no a priori restrictions on how variables and functions are
combined. When you need a variable, simply assign it a value — there is no
need to mention the type. This gives great flexibility, but also undesired side
effects from typing errors. Fortunately, dynamically typed languages usually
perform extensive run-time checks (at a cost of decreased efficiency, of course)

4 With user-defined types in Python you are free to control implicit type conversion
in arithmetic operators.

10 1. Introduction

for consistent use of variables and functions. At least experienced program-
mers will not be annoyed by errors arising from the lack of static typing: they
will easily recognize typos or type mismatches from the run-time messages.
The benefits of no explicit typing is that a piece of code can be applied in
many contexts. This reduces the amount of code and thereby the number of
bugs.

Here is an example of a generic Python function for dumping a data
structure with a leading text:

def debug(leading_text, variable):
if os.environ.get(’MYDEBUG’, ’0’) == ’1°:
print leading_text, variable

The function performs the print action only if the environment variable
MYDEBUG is defined and has the value ’1’. By adjusting MYDEBUG in the op-
erating system environment one can turn on and off the output from debug
in any script.

The main point here is that the debug function actually works with any
built-in data structure. We may send integers, floating-point numbers, com-
plex numbers, arrays, and nested heterogeneous lists of user-defined objects
(provided these have defined how to print themselves). With three lines of
code we have made a very convenient tool. Such quick and useful code devel-
opment is typical for scripting.

In a sense, templates in C+-+ mimics the nature of dynamically typed
languages. The similar function in C++4 reads

template <class T>

void debug(std::ostream& o,
const std::string& leading_text,
const T& variable)

char* c = getenv("MYDEBUG");
bool defined = false;
if (¢ != NULL) { // if MYDEBUG is defined ...

if (std::string(c) == "1") { // if MYDEBUG is true ...
defined = true;

}

}

if (defined) {
0 << 1leading_text << " " << variable << std::endl;

}

¥

In Fortran, C, and Java one needs to make different versions of debug for
different types of the variable variable.

Object-oriented programming is also used to parameterize types of vari-
ables. In Java or C++ we could write the debug function to work with ref-
erences variable of type A and call a (virtual) print function in A objects.
The debug function would then work with all instances variable of subclasses
of A. This requires us to explicitly register a special type as subclass of A,

1.1. Scripting versus Traditional Programming 11

which implies some work. The advantage is that we (and the compiler) have
full control of what types that are allowed to be sent to debug. The Python
debug function is much quicker to write and use, but we have no control of
the type of variables that we try to print. For the present example this is
irrelevant, but in large systems unintended transactions of objects may be
critical. Static typing may then help, at the cost quite some extra work.

1.1.8 Flexible Function Interfaces

Problem solving environments such as IDL, Maple, Mathematica, Matlab,
Octave, Scilab, and S-PLUS/R have simple-to-use command languages. One
particular feature of these command languages, which enhances user friend-
liness, is the possibility of using keyword or named arguments in function
calls. As an illustration, consider a typical plot session®

f = calculate(...) # calculate something
plot (£f)

Whatever we calculate is stored in £, and plot accepts £ variables of different
types. In the simple plot(£f) call, the function relies on default options for
axis, labels, etc. More control is obtained by adding parameters in the plot
call, e.g.,

plot(f, label=’elevation’, xrange=[0,10])

Here we specify a label to mark the curve and the extent of the x axis.
Arguments with a name, say label, and a value, say ’elevation’, are called
keyword or named arguments. The advantage of such arguments is three-fold:
(i) the user can specify just a few arguments and rely on default values for the
rest, (ii) the sequence of the arguments is arbitrary, and (iii) the keywords
help to document and explain the call. The more experienced user will often
need to fine tune a plot, and in that case a range of additional arguments
can be specified, for instance something like

plot(f, label=’elevation’, xrange=[0,10], title=’Variable bottom’,
linetype=’dashed’, linecolor=’red’, yrange=[-1,1])

Python offers keyword arguments in functions, exactly as explained here. The
plot calls are in fact written with Python syntax (but the plot function itself
is not a built-in Python feature: it is here supposed to be some user-defined
function).

An argument can be of different types inside the plot function. Con-
sider, for example, the xrange parameter. One could offer the specification
of this parameter in several ways: (i) as a list [xmin,xmax], (ii) as a string

5 In this book, three dots (...) are used to indicate some irrelevant code that is
left out to reduce the amount of details.

12 1. Introduction

'ymin:xmax’, or (iii) as a single floating-point number xmax, assuming that
the minimum value is zero. These three cases can easily be dealt with inside
the plot function, because Python enables checking the type of xrange (the
details are explained in Chapter 3.2.11).

Some functions, debug in Chapter 1.1.7 being an example, accept any type
of argument, but Python issues run-time error messages when an operation
is incompatible with the supplied type of argument. The plot function above
accepts only a limited set of argument types and could convert different types
to a uniform representation (floating-point numbers xmin and xmax) within
the function.

The nature and functionality of Python give you a full-fledged, advanced
programming language at disposal, with the clean and easy-to-use interface
syntax that has obtained great popularity through environments like Maple
and Matlab. The function programming interface offered by type-safe lan-
guages is more comprehensive, less flexible, and less user friendly. Having
said this, we should add that user friendliness has, of course, many aspects
and depends on personal taste. Static typing and comprehensive syntax may
provide a reliability that some people find more user friendly than the pro-
gramming style we advocate in this text.

1.1.9 Interactive Computing

Many of the most popular computational environments, such as IDL, Maple,
Matlab, and S-PLUS/R, offer interactive computing. The user can type a
command and immediately see the effect of it. Previous commands can quickly
be recalled and edited on the fly. Since mistakes are easily discovered and cor-
rected, interactive environments are ideal for exploring the steps of a compu-
tational problem. When all details of the computations are clear, the com-
mands can be collected in a file and run as a program.

Python offers an interactive shell, which provides the type of interactive
environment just described. A very simple session could do some basic cal-
culations:

>>> from math import *
>>> w=1

>>> sin(w*2.5)*cos (1+w*3)
-0.39118749925811952

The first line gives us access to functions like sin and cos. The next line
defines a variable w, which is used in the computations in the proceeding line.
User input follows after the >>> prompt, while the result of a command is
printed without any prompt.

A less trival session could involve integrals of the Bessel functions J, (z):

>>> from scipy.special import jn
>>> def myfunc(x):

1.1. Scripting versus Traditional Programming 13

return jn(n,x)

>>> from scipy import integrate

>>> n=2

>>> integrate.quad(myfunc, 0, 10)
(0.98006581161901407, 9.1588489241801687e-14)
>>> n=4

>>> integrate.quad(myfunc, 0, 10)
(0.86330705300864041, 1.0255758932352094e-13)

Bessel functions, together with lots of other mathematical functions, can be
imported from a library scipy.special. We define a function, here just J,, (),
import an integration module from scipy, and call a numerical integration
routine®. The result of the call are two numbers: the value of the integral
and an estimation of the numerical error. These numbers are echoed in the
interactive shell. We could alternatively store the return values in variables
and use these in further calculations:

>>> v, e = integrate.quad(myfunc, 0, 10)
>>> q = v¥exp(-0.02x140)

>>> q

3.05589193585e-05

Since previous commands are reached by the up-arrow key, we can easily fetch
and edit an n assignment and re-run the corresponding integral computation.
There are Python modules for efficient array computing and for visualization
so the interactive shell may act as an alternative to other interactive scientific
computing environments.

1.1.10 Creating Code at Run Time

Since scripts are interpreted, new code can be generated while the script
is running. This makes it possible to build tailored code, a function for in-
stance, depending on input data in a script. A very simple example is a
script that evaluates mathematical formulas provided as input to the script.
For example, in a GUI we may write the text ’sin(1.2%x) + x**a’ as a rep-
resentation of the mathematical function f(z) = sin(1.2z) + z®. If x and a
are assigned values, the Python script can grab the string and execute it
as Python code and thereby evaluate the user-given mathematical expres-
sion (see Chapters 6.1.10, 12.2.1, and 11.2.1 for details). This run-time code
generation provides a flexibility not offered by compiled, type-safe languages.

As another example, consider an input file to a program with the syntax

a=1.2
no of iterations = 100
solution strategy = ’implicit’

6 integrate.quad is actually a Fortran routine in the classical QUADPACK library
from Netlib [25].

14 1. Introduction
cl =0
c2 =20.1
A =14

c3 = StringFunction(’Axsin(x)’)

The following generic Python code segment reads the file information and
creates Python variables a, no_of_iterations, solution_strategy, cl, c2, A,
and c3 with the values as given in the file (!):

file = open(’inputfile.dat’, ’r’)
for line in file:

variable, value = [word.strip() for word in line.split(’=’)]
variable names cannot contain blanks; replace space by _
variable = variable.replace(’ ’, ’_’)

pycode = variable + ’=’ + value

exec pycode

Moreover, c3 is in fact a function c3(x) as specified in the file (see Chap-
ter 12.2.1 to see what the StringFunction tool really is). The presented code
segment handles any such input file, regardless of the number of and name
of the variables. This is a striking example on the usefulness and power of
run-time code generation. (A further, useful generalization of this example is
developed in Exercise 11.13 on page 600.)

Our general tool for turning input file commands into variables in a code
can be extended with support for physical units. With some more code (the
details appear in Chapter 11.4.10) we could read a file with

a=1.2 km
c2 = 0.1 MPa
A=4s

Here, a may be converted from km to m, c2 may be converted from MPa
to bar, and A may be kept in seconds. Such convenient handling of units
cannot be exaggerated — most computational scientists and engineers know
how much confusion that can arise from unit conversion.

1.1.11 Nested Heterogeneous Data Structures

Fortran, C, C++, C#, and Java programmers will normally represent tabular
data by plain arrays. In a language like Python, one can very often reach
a better solution by tailoring some flexible built-in data structures to the
problem at hand. As an example, suppose you want to automate a test of
compilers for a particular program you have. The purpose of the test is to
run through several types of compilers and various combinations of compiler
flags to find the optimal combination of compiler and flags (and perhaps also
hardware). This is a very useful (but boring) thing to do when heavy scientific
computations lead to large CPU times.

We could set up the different compiler commands and associated flags by
means of a table:

1.1. Scripting versus Traditional Programming 15

type name options 1libs flags

GNU 3.0 gr7 -Wall -1f2c -01, -03, -03 -funroll-loops
Fujitsu 1.0 £95 -v9bs -01, -03, -03 -Kloop

Sun 5.2 £f77 -01, -fast

For each compiler, we have information about the vendor and the version
(type), the name of the compiler program (name), some standard options and
required libraries (options and libs), and a list of compiler flag combinations
(e.g., we want to test the GNU g77 compiler with the options -01, -03, and
finally -03 —funroll—loops)

How would you store such information in a program? An array-oriented
programmer could think of creating a two-dimensional array of strings, with
seven columns and as many rows as we have compilers. Unfortunately, the
missing entries in this array call for special treatments inside loops over com-
pilers and options. Another inconvenience arises when adding more flags for a
compiler as this requires the dimensions of the array to be explicitly changed
and also most likely some special coding in the loops.

In a language like Python, the compiler data would naturally be repre-
sented by a dictionary, also called hash, HashMap, or associative array. These
are ragged arrays indexed by strings instead of integers. In Python we would
store the GNU compiler data as

compiler_datal[’GNU’] [’type’] = ’GNU 3.0’
compiler_data[’GNU’] [’name’] = ’g77’
compiler_data[’GNU’] [’options’] = ’-Wall’
compiler_datal[’GNU’] [’1libs’] = ’-1f2c’
compiler_datal[’GNU’] [’test’] = ’-Wall’

compiler_datal[’GNU’] [’flags’] = (°-01’,°-03’,’-03 -funroll-loops’)

Note that the entries are not of the same type: the [’GNU’] [’flags’] entry
is a list of strings, whereas the other entries are plain strings. Such heteroge-
neous data structures are trivially created and handled in dynamically typed
languages since we do not need to specify the type of the entries in a data
structure. The loop over compilers can be written as

for compiler in compiler_data:

¢ = compiler_datalcompiler] # 'GNU’, ’Sun’, etc.
cmd = > °.join([c[’name’], c[’options’], c[’libs’]])
for flag in c[flags]:

oscmd = ’ ’.join([cmd, flag, ’ -o app ’, files])

failure, output = commands.getstatusoutput(oscmd)
<run program and measure CPU time>

Adding a new compiler or new flags is a matter of inserting the new data in
the compiler_data dictionary. The loop and the rest of the program remain
the same. Another strength is the ease of inserting compiler_data or parts of
it into other data structures. We might, for example, want to run the compiler
test on different machines. A dictionary test is here indexed by the machine
name and holds a list of compiler data structures:

16 1. Introduction

c = compiler_data # abbreviation

test[’ella.simula.no’] (c[’GNU’], c[’Fujitsu’l)
test[’tva.ifi.uio.no’] (c[’GNU’], c[’Sun’], c[’Portland’])
test[’pico.uio.no’] (c[’GNU’], c[’HP’], c[’Fujitsu’])

The Python program can run through the test array, log on to each machine,
run the loop over different compilers and the loop over the flags, compile the
application, run it, and measure the CPU time.

A real compiler investigation of the type outlined here is found in the
src/app/wavesim2D/F77 directory of the software associated with the book.

1.1.12 GUI Programming

Modern applications are often equipped with graphical user interfaces. GUI
programming in C is extremely tedious and error-prone. Some libraries pro-
viding higher-level GUI abstractions are available in C++, C#, and Java,
but the amount of programming is still more than what is needed in dynam-
ically typed languages like Perl, Python, Ruby, and Tcl. Many dynamically
typed languages have bindings to the Tk library for GUI programming. An
example from [27] will illustrate why Tk-based GUIs are easy and fast to
code.

Consider a button with the text “Hello!”, written in a 16-point Times font.
When the user clicks the button, a message “hello” is written on standard
output. The Python code for defining this button and its behavior can be
written compactly as

def out(): print ’hello’ # the button calls this function
Button(root, text="Hello!", font="Times 16", command=out).pack()

Thanks to keyword arguments, the properties of the button can be specified
in any order, and only the properties we want to control are apparent: there
are more than 20 properties left unspecified (at their default values) in this
example. The equivalent code using Java requires 7 lines of code in two func-
tions, while with Microsoft Foundation Classes (MFC) one needs 25 lines of
code in three functions [27]. As an example, setting the font in MFC leads to
several lines of code:

CFont* fontPtr = new CFont();

fontPtr->CreateFont (16, 0, 0,0,700, 0, O, O, ANSI_CHARSET,
OUT_DEFAULT_PRECIS,CLIP_DEFAULT_PRECIS, DEFAULT_QUALITY,
DEFAULT_PITCH|FF_DONTCARE, "Times New Roman");

buttonPtr->SetFont (fontPtr) ;

Static typing in C++, C#, and Java makes GUI codes more complicated than
in dynamically typed languages. (Some readers may at this point argue that
GUI programming is seldom required as one can apply a graphical interface
for developing the GUI. However, creating GUIs that are portable across
Windows, Unix, and Mac normally requires some hand programming, and

1.1. Scripting versus Traditional Programming 17

reusable scripting components based on, for instance, Tk and its extensions
are in this respect an effective solution.)

Many people turn to dynamically typed languages for creating GUI ap-
plications. If you have lots of text-driven applications, a short script can glue
the existing applications and wrap them with a tailored graphical user inter-
face. The recipe is provided in Chapter 6.2. In fact, the nature of scripting
encourages you to write independent applications with flexible text-based in-
terfaces and provide a GUI on top when needed, rather than to write huge
stand-alone applications wired with complicated GUIs. The latter type of
programs are hard to combine efficiently with other programs.

Dynamic web pages, where the user fills in information and gets feedback,
constitute a special kind of GUI of great importance in the Internet age.
When the data processing takes place on the web server, the communication
between the user and the running program involves lots of text processing.
Languages like Perl, PHP, Python, and Ruby have therefore been particularly
popular for creating such server-side programs, and these languages offer very
user-friendly modules for rapid development of web applications. In fact, the
recent “explosive” interest in scripting languages is very much related to
their popularity and effectiveness in creating Internet applications. This type
of programs are referred to as CGI scripts, and CGI programming is treated
in Chapter 7.

1.1.13 Mixed Language Programming

Using different languages for different tasks in a software system is often a
sound strategy. Dynamically typed languages are normally implemented in C
and therefore have well-documented recipes for how to extend the language
with new functions written in C. Python can also be easily integrated with
C++ and Fortran. A special version of Python, called Jython, implements
basic functionality in Java instead of C, and Jython thus offers a seamless
integration of Python and Java.

Type-safe languages can also be combined with each other. However, call-
ing C from Java is a more complicated task than calling C from Python. The
initial design of the languages were different: Python was meant to be ex-
tended with new C and C++ software, whereas Fortran, C, C4++, C#, and
Java were designed to build large applications in one language. This differ-
ing philosophy makes dynamically typed languages simpler and more flexible
for multi-language programming. In Chapter 5 we shall encounter two tools,
F2PY and SWIG, which (almost) automatically make Fortran, C, and C++
code callable from Python.

Multi-language programming is of particular interest to the computa-
tional scientist or engineer who is concerned with numerical efficiency. Using
Python as the administrator of computations and visualizations, one can

18 1. Introduction

create a user-friendly environment with interactivity and high-level syntax,
where computationally slow Python code is migrated to Fortran or C/C++.

An example may illustrate the importance of migrating numerical code
to Fortran or C/C++. Suppose you work with a very long list of floating-
point numbers. Doing a mathematical operation on each item in this list is
normally a very slow operation. The Python segment

x is a list
for i in range(len(x)): # i=0,1,2,...,n-1 n=len(x) is large
x[1] = sin(x[i])

runs 20 times faster if the operation is implemented in Fortran 77 or C. Since
such mathematical operations are common in scientific computing, a special
numerical package, called Numerical Python, was developed. This package
offers a contiguous array type and optimized array operations implemented
in C. The above loop over x can be coded like this:

x = sin(x)

where x is a Numerical Python array. The statement sin(x) invokes a C
function, basically performing x[i]=sin(x[i]) for all entries x[i]. Such a loop,
operating on data in a plain C array, is easy to optimize for a compiler. There
is some overhead of the statement x=sin(x) compared to a plain Fortran or
C code, so the Numerical Python statement runs only 13 times faster than
the equivalent plain Python loop.

You can easily write your own C, C++, or Fortran code for efficient
computing with a Numerical Python array. The combination of Python and
Fortran is particularly simple. To illustrate this, suppose we want to migrate
the loop

for i in range(1,len(u)-1,1): # n=1,2,...,n-2 n=len(u)
u_new[i] = uli] + cx(ul[i-1] - 2*u[i] + ul[i+1])

to Fortran. Here, u and u_new are Numerical Python arrays and c is a given
floating-point number. We write the Fortran routine as

subroutine diffusion(c, u_new, u, n)
integer n, i
real*8 u(0:n-1), u_new(0:n-1), c
Cf2py intent(in, out) u_new
doi=1, n-2
u_new(i) = u(i) + cx(u(i-1) - 2%u(i) + u(i+1))
end do
return
end

This routine is placed in a file diffusion.f. Using the tool F2PY, we can
create a Python interface to the Fortran function by a single command:

f2py -c¢ -m f£77comp diffusion.f

1.1. Scripting versus Traditional Programming 19

The result is a compiled Python module, named £77comp, whose diffusion
function can be called:

from £77comp import diffusion
<create and init u and u_new (Numerical Python arrays)>
c=0.7
for i in range(no_of_timesteps):
u_new = diffusion(c, u_new, u) # can omit the length n (!)

F2PY makes an interface where the output argument u_new in the diffusion
function is returned, as this is the usual way of handling output arguments
in Python.

With this example you should understand that Numerical Python arrays
look like Python objects in Python and plain Fortran arrays in Fortran.
(Doing this in C or C++ is a lot more complicated.)

1.1.14 When to Choose a Dynamically Typed Language

Having looked at different features of type-safe and dynamically typed lan-
guages, we can formulate some guidelines for choosing the appropriate type
of language in a given programming project. A positive answer to one of the
following questions [27] indicates that a type-safe language might be a good
choice.

— Does the application implement complicated algorithms and data struc-
tures where low-level control of implementational details is important?

— Does the application manipulate large datasets so that detailed control
of the memory handling is critical?

— Are the application’s functions well-defined and changing slowly?

— Will static typing be an advantage, e.g., in large development teams?
Dynamically typed languages are most appropriate if one of the next char-
acteristics are present in the project.

— The application’s main task is to connect together existing components.

— The application includes a graphical user interface.

— The application performs extensive text manipulation.

— The design of the application code is expected to change significantly.

— The CPU-time intensive parts of the application are located in small
program segments, and if necessary, these can be migrated to C, C++,
or Fortran.

— The application can be made short if it operates heavily on (possibly het-
erogeneous, nested) list or dictionary structures with automatic memory
administration.

20

1. Introduction

The application is supposed to communicate with web servers.

The application should run without modifications on Unix, Windows,
and Macintosh computers, also when a GUI is included.

The last two features are supported by Java as well.

The optimal programming tool often turns out to be a combination of

type-safe and dynamically typed languages. You need to know both classes
of languages to determine the most efficient tool for a given subtask in a
programming project.

1.1.15 Why Python?

Assuming that you have experience with programming in some type-safe lan-
guage, this book aims at upgrading your knowledge about scripting, focusing

on

the Python language. Python has many attractive features that in my

view makes it stand out from other dynamically typed languages:

Python is easy to learn because of the very clean syntax,

extensive built-in run-time checks help to detect bugs and decrease de-
velopment time,

programming with nested, heterogeneous data structures is easy,
object-oriented programming is very convenient,

there is support for efficient numerical computing, and

the integration of Python with C, C++, Fortran, and Java is very well
supported.

If you come from Fortran, C, C++, or Java, you will probably find the

following features of scripting with Python particularly advantageous:

1.

Since the type of variables and function arguments are not explicitly writ-
ten, a code segment has a larger application area and a better potential
for reuse.

There is no need to administer dynamic memory: just create variables
when needed, and Python will destroy them automatically.

Keyword arguments give increased call flexibility and help to document
the code.

The ease of setting up and working with arbitrarily nested, heterogeneous
lists and dictionaries often avoids the need to write your own classes to
represent non-trivial data structures.

Any Python data structure can be dumped to the screen or to file with
a single command, a highly convenient feature for debugging or saving
data between executions.

1.1. Scripting versus Traditional Programming 21

6. GUI programming at a high level is easily accessible.

7. Python has many advanced features appreciated by C++ programmers:
classes, single and multiple inheritance, templates’, namespaces, and op-
erator overloading.

8. Regular expressions and associated tools simplify reading and interpret-
ing text considerably.

9. The clean Python syntax makes it possible to write code that can be
read and understood by a large audience, even if they do not have much
experience with Python.

10. The interactive Python shell makes it easy to test code segments before
writing them into a source code. The shell can also be utilized for gaining
a high level of interactivity in an application.

11. Although dynamically typed languages are often used for smaller codes,
Python’s module and package system makes it well suited for large-scale
development projects.

12. Python is much more dynamic than compiled languages, meaning that
you can, at run-time, generate code, add new variables to classes, etc.

13. Program development in Python is faster than in Fortran, C, C++, or
Java, thus making Python well suited for rapid prototyping of new appli-
cations. Also in dual programming (programming two independent ver-
sions of an application, for debugging and verification purposes), rapid
code generation in Python is an attractive feature.

Most of these points imply much shorter code and thereby faster develop-
ment time. You will most likely adopt Python as the preferred programming
language and turn to type-safe languages only when strictly needed.

Once you know Python, it is easy to pick up the basics of Perl. To encour-
age and help the reader in doing so, there is a companion note [16] having
the same organization and containing the same examples as the introduc-
tory Python material in Chapters 2 and 3. The companion note also covers
a similar introduction to scripting with Tcl/Tk.

1.1.16 Script or Program?

The term script was originally used for a set of interactive operating sys-
tem commands put in a file, that is, the script was a way of automating
otherwise interactive sessions. Although this is still an important application
when writing code in an advanced language like Python, such a language
is often also used for much more complicated tasks. Are we then writing
scripts or programs? The Perl FAQ® has a question “Is it a Perl program or

7 Since variables are not declared with type, the flexibility of templates in C++ is
an inherent feature of dynamically typed languages.
8 Type perldoc -q script (you need to have Perl installed).

22 1. Introduction

a Perl script?”. The bottom line of the answer, which applies equally well in
a Python context, is that it does not matter what term we use®.

In a scientific computing context I prefer to distinguish between scripts
and programs. The programs we traditionally make in science and engineer-
ing are often large and computationally intensive, involving complicated data
structures. The implementation is normally in a low-level language like For-
tran 77 or C, with an associated demanding debugging and verification phase.
Extending such programs is non-trivial and require experts. The programs in
this book, on the other hand, have more an administering nature, they are
written in a language supporting commands at a significantly higher level
than in Fortran and C (also higher than C++ and Java), the programs are
short and commonly under continuous development to optimize your work-
ing environment. Using the term script distinguishes such programs from the
common numerically intensive codes that are so dominating in science and
engineering.

Many people use scripting as a synonym for gluing applications as one
typically performs in Unix shell scripts, or for collecting some commands in a
primitive, tailored command-language associated with a specific monolithic
system. This flavor of “scripting” often points in the direction of very sim-
plified programming that anyone can do. My meaning of scripting is much
wider, and is a programming style recognized by

1. gluing stand-alone applications, operating system commands, and other
scripts,

2. flexible use of variables and function arguments as enabled by dynamic
typing,

3. flexible data structures (e.g., nested heterogeneous lists/dictionaries), reg-

ular expressions, and other features that make the code compact and
“high level”.

1.2 Preparations for Working with This Book

This book makes lots of references to complete source codes for scripts de-
scribed in the text. All such scripts are available in electronic form, packed
in a single file, which can be downloaded from the author’s web page

http://www.simula.no/ hpl/scripting

Unpacking the file should be done in some directory, say scripting under
your home directory, unless others have already made the software available
on your computer system.

9 This can be summarized by an amusing quote from Larry Wall, the creator of
Perl: “A script is what you give the actors. A program is what you give the
audience.”

1.2. Preparations for Working with This Book 23

Along with this book we also distribute a package called scitools, which
contains a set of useful Python modules and scripts for scientific work. There
are numerous references to scitools throughout the text so you should down-
load the package from the address above.

The following Unix commands perform the necessary tasks of installing
both the book examples and the scitools package in a subdirectory scripting
under your home directory:

cd $HOME

mkdir scripting

cd scripting

firefox http://www.simula.no/~hpl/scripting

download TCSE3-3rd-examples.tar.gz and scitools.tar.gz
gunzip TCSE3-3rd-examples.tar.gz scitools.tar.gz

tar xvf TCSE3-3rd-examples.tar.gz

rm TCSE3-3rd-examples.tar

tar xvf scitools.tar

rm scitools.tar

On Windows machines you can use WinZip to pack out the compressed
tarfiles.

Packing out the tarfiles results in two subdirectories, src and scitools.
The former tarfile also contains a file doc.html (at the same level as src).
The doc.html file provides convenient access to lots of manuals, man pages,
tutorials, etc. You are strongly recommended to add this file as a bookmark in
your browser. There are lots of references to doc.html throughout this book.
The bibliography at the end of the book contains quite few items — most of
the references needed throughout the text have been collected in doc.html
instead. The rapid change of links and steady appearance of new tools makes
it difficult to maintain the references in a static book.

The reader must set an environment variable $scripting equal to the root
of the directory tree containing the examples and documentation associated
with the present book. For example, in a Bourne Again shell (Bash) start-up
file, usually named .profile or .bashrc, you can write

export scripting=$HOME/scripting

and in C shell-like start-up files (.cshrc or .tcshre) the magic line is

setenv scripting $HOME/scripting

Of course, this requires that the scripting directory, referred to in the pre-
vious subsection, is placed in your home directory as indicated.

Mac OS X users can just follow the Unix instructions to have the Python
tools running on a Mac. For some of the tools used in this book Mac users
need to have X11 installed.

In Windows 2000/XP/Vista, environment variables are set interactively in
a dialog. Right-click My Computer, then click Properties, choose the Advanced
tab, and click Environment Variables. Click New to add a new environment
variable with a name and a value, e.g., scripting as name and

24 1. Introduction

C:\Documents and Settings\hpl\My Documents\scripting

as value. An alternative method is to define environment variables in the
C:\autoexec.bat file if you have administrator privileges (note that this is
the only method in Windows 95/98/ME). The syntax is set name=value on
one line.

Note the following: All references in this text to source code for scripts
are relative to the $scripting directory. As an example, if a specific script is
said to be located in src/py/intro, it means that it is found in the directory

$scripting/src/py/intro

Two especially important environment variables are PATH and PYTHONPATH.
The operating system searches in the directories contained in the PATH vari-
able to find executable files. Similarly, Python searches modules to be im-
ported in the directories contained in the PYTHONPATH variable. For running
the examples in the present text without annoying technical problems, you
should set PATH and PYTHONPATH as follows in your Bash start-up file:

export PYTHONPATH=$scripting/src/tools:$scripting/scitools/1lib
PATH=$PATH: $scripting/src/tools:$scripting/scitools/bin

C shell-like start-up files can make use of the following C shell code:

setenv PYTHONPATH $scripting/src/tools:$scripting/scitools/lib
set path=($path $scripting/src/tools $scripting/scitools/bin)

As an alternative, you can go to the scitools directory and run setup.py to
install tools from this book (see Appendix A.1.5).

In the examples on commands in set-up files elsewhere in the book we
apply the Bash syntax. The same syntax can be used also for Korn shell
(ksh) and Z shell (zsh) users. If you are a TC shell (tcsh) user, you therefore
need to translate the Bash statements to the proper TC shell syntax. The
parallel examples shown so far provide some basic information about the
translation.

On Windows you can set PATH to

#PATHY ; %scriptingl\src\tools;%scriptingl\scitools\bin

and PYTHONPATH to

%scriptingl\src\tools;scriptingl\scitools\1ib

The second path, after ;, is not necessary if you use setup.py to install
scitools properly (see Appendix A.1.5).

On Unix systems with different types of hardware, compiled programs can
conveniently be stored in directories whose names reflect the type of hardware
the programs were compiled for. We suggest to introduce an environment
variable MACHINE_TYPE and set this to, e.g., the output of the uname command:

1.2. Preparations for Working with This Book 25

export MACHINE_TYPE=‘uname*

A directory $scripting/$MACHINE_TYPE/bin for compiled programs must be
made, and this directory must be added to the PATH variable:

PATH=$PATH: $scripting/$MACHINE_TYPE/bin

If you employ the external software set-up suggested in Appendix A.1, the
contents of the PATH and PYTHONPATH environment variables must be extended,
see pages 678 and 682.

There are numerous utilities you need to successfully run the examples
and work with the exercises in this book. Of course, you need Python and
many of its modules. In addition, you need Tcl/Tk, Perl, ImageMagick, to
mention some other software. Appendix A.1.9 describes test scripts in the
src/tools directory that you can use to find missing utilities.

Right now you should try to run the command

python $scripting/src/tools/test_allutils.py

on a Unix machine, or

python "Yscripting/\src\tools\test_allutils.py"

on a Windows machine. If these commands will not run, the scripting en-
vironment variable is not properly defined (log out and in again and retry).
When successfully run, test_allutils.py will check if you have everything
you need for this book on the computer.

Chapter 2

Getting Started with Python Scripting

This chapter contains a quick and efficient introduction to scripting in Python
with the aim of getting you started with real projects as fast as possible.
Our pedagogical strategy for achieving this goal is to dive into examples of
relevance for computational scientists and dissect the codes line by line.

The present chapter starts with an extension of the obligatory “Hello,
World!” program. The next example covers reading and writing data from
and to files, implementing functions, storing data in lists, and traversing
list structures. Thereafter we create a script for automating the execution
of a simulation and a visualization program. This script parses command-
line arguments and performs some operating system tasks such as removing
and creating directories. The final example concerns converting a data file
format and involves programming with a convenient data structure called
dictionary. A more thorough description of the various data structures and
program constructions encountered in the introductory examples appears in
Chapter 3, together with lots of additional Python functionality.

You are strongly encouraged to download and install the software associ-
ated with this book and set up your environment as described in Chapter 1.2
before proceeding. All Python scripts referred to in this introductory chap-
ter are found in the directory src/py/intro under the root reflected by the
scripting environment variable.

In the work with exercises you may need access to reference manuals. The
file $scripting/doc.html is a good starting point so you should bookmark
this page in your favorite browser. Chapter 3.1.1 provides information on
recommended Python documentation to acompany the present book.

2.1 A Scientific Hello World Script

It is common to introduce new programming languages by presenting a trivial
program writing “Hello, World!” to the screen. We shall follow this tradition
when introducing Python, but since we deal with scripting in a computational
science context, we have extended the traditional Hello World program a bit:
A number is read from the command line, and the program writes the sine of
this number along with the text “Hello, World!”. Providing the number 1.4
as the first command-line argument yields this output of the script:

Hello, World! sin(1.4)=0.985449729988

28 2. Getting Started with Python Scripting

This Scientific Hello World script will demonstrate

— how to work with variables,

— how to initialize a variable from the command line,

how to call a math library for computing the sine of a number, and

— how to print a combination of numbers and plain text.
The complete script can take the following form in Python:

#!/usr/bin/env python

import sys, math # load system and math module

r = float(sys.argv[1]) # extract the 1st command-line argument
s = math.sin(r)

print "Hello, World! sin(" + str(r) + ")=" + str(s)

2.1.1 Executing Python Scripts

Python scripts normally have the extension .py, but this is not required. If
the code listed above is stored in a file hw.py, you can execute the script by
the command

python hw.py 1.4

This command specifies explicitly that a program python is to be used to
interpret the contents of the hw.py file. The number 1.4 is a command-line
argument to be fetched by the script.

For the python hw.py ... command to work, you need to be in a console
window, also known as a terminal window on Unix, and as a command prompt
or MS-DOS prompt on Windows. The Windows habit of double-clicking on
the file icon does not work for scripts requiring command-line information,
unless you have installed PythonWin.

In case the file is given execute permission’ on a Unix system, you can
also run the script by just typing the name of the file:

1

./hw.py 1.4

or

hw.py 1.4

if you have a dot (.) in your path?.
On Windows you can write just the filename hw.py instead of python hw.py
if the .py is associated with a Python interpreter (see Appendix A.2).
When you do not precede the filename by python on Unix, the first line of
the script is taken as a specification of the program to be used for interpreting
the script. In our example the first line reads

! This is achieved by the Unix command chmod a+x hw.py.
2 There are serious security issues related to having a dot, i.e., the current working
directory, in your path. Check out the site policy with your system administrator.

2.1. A Scientific Hello World Script 29

#!/usr/bin/env python

This particular heading implies interpretation of the script by a program
named python. In case there are several python programs (e.g., different
Python versions) on your system, the first python program encountered in the
directories listed in your PATH environment variable will be used3. Executing
./hw.py with this heading is equivalent to running the script as python hw.py.
You can run src/py/examples/headers.py to get a text explaining the syntax
of headers in Python scripts. For a Python novice there is no need to un-
derstand the first line. Simply make it a habit to start all scripts with this
particular line.

2.1.2 Dissection of the Scientific Hello World Script

The first real statement in our Hello World script is

import sys, math

meaning that we give our script access to the functions and data structures in
the system module and in the math module. For example, the system module
sys has a list argv that holds all strings on the command line. We can extract
the first command-line argument using the syntax

r = sys.argv[1]

Like any other Python list (or array), sys.argv starts at 0. The first element,
sys.argv[0], contains the name of the script file, whereas the rest of the
elements hold the arguments given to the script on the command line.

As in other dynamically typed languages there is no need to explicitly
declare variables with a type. Python has, however, data structures of differ-
ent types, and sometimes you need to do explicit type conversion. Our first
script illustrates this point. The data element sys.argv[1] is a string, but r is
supposed to be a floating-point number, because the sine function expects a
number and not a string. We therefore need to convert the string sys.argv[1]
to a floating-point number:

r = float(sys.argv[1])

Thereafter, math.sin(r) will call the sine function in the math module and
return a floating-point number, which we store in the variable s.
At the end of the script we invoke Python’s print function:

print "Hello, World! sin(" + str(r) + ")=" + str(s)

3 On many Unix systems you can write which python to see the complete path of
this python program.

30 2. Getting Started with Python Scripting

The print function automatically appends a newline character to the output
string. Observe that text strings are concatenated by the + operator and that
the floating-point numbers r and s need to be converted to strings, using the
str function, prior to the concatenation (i.e., addition of numbers and strings
is not supported).

We could of course work with r and s as string variables as well, e.g.,

r = sys.argv[1]
s = str(math.sin(float(r)))
print "Hello, World! sin(" + r + ")=" + s

Python will abort the script and report run-time errors if we mix strings and
floating-point numbers. For example, running

r = sys.argv[1]
s = math.sin(r) # sine of a string...
results in

Traceback (most recent call last):
File "./hw.py", line 4, in 7
s = math.sin(r)
TypeError: illegal argument type for built-in operation

So, despite the fact that we do not declare variables with a specific type,
Python performs run-time checks on the type validity and reports inconsis-
tencies.

The math module can be imported in an alternative way such that we can
avoid prefixing mathematical functions with math:

import just the sin function from the math module:
from math import sin

or import all functions in math:

from math import *

s = sin(x)

Using import math avoids name clashes between different modules, e.g., the
sin function in math and a sin function in some other module. On the other
hand, from math import * enables writing mathematical expressions in the
familiar form used in most other computer languages.

The string to be printed can be constructed in many different ways. A
popular syntax employs variable interpolation, also called variable substitu-
tion. This means that Python variables are inserted as part of the string. In
our original hw.py script we could replace the output statement by

print "Hello, World! sin(%(r)g)=%(s)12.5e" % vars()

The syntax %(r)g indicates that a variable with name r is to be substituted
in the string, written in a format described by the character g. The g format
implies writing a floating-point number as compactly as possible, i.e., the

2.1. A Scientific Hello World Script 31

output space is minimized. The text %(s)12.5e means that the value of the
variable s is to be inserted, written in the 12.5e format, which means a
floating-point number in scientific notation with five decimals in a field of
total width 12 characters. The final % vars() is an essential part of the string
syntax, but there is no need to understand this now?. An example of the
output is

Hello, World! sin(1.4)= 9.85450e-01

A list of some common format statements is provided on page 80.

Python also supports the output format used in the popular “printf”
family of functions in C, Perl, and many other languages. The names of the
variables do not appear inside the string but are listed after the string:

print "Hello, World! sin(%g)=%12.5e" % (r,s)

If desired, the output text can be stored in a string prior to printing, e.g.,

output = "Hello, World! sin(%g)=%12.5e" % (r,s)
print output

This demonstrates that the printf-style formatting is a special type of string
specification in Python®.

Exercise 2.1. Become familiar with the electronic documentation.

Write a script that prints a uniformly distributed random number between
—1 and 1. The number should be written with four decimals as implied by
the ¥%.4f format.

To create the script file, you can use a standard editor such as Emacs
or Vim on Unix-like systems. On Windows you must use an editor for pure
text files — Notepad is a possibility, but I prefer to use Emacs or the “IDLE”
editor that comes with Python (you usually find IDLE on the start menu,
choose File-New Window to open up the editor). IDLE supports standard key
bindings from Unix, Windows, or Mac (choose Options—Configure IDLE... and
Keys to specify the type of bindings).

The standard Python module for generation of uniform random numbers
is called random. To figure out how to use this module, you can look up the
description of the module in the Python Library Reference [34]. Load the
file $scripting/doc.html into a web browser and click on the link Python
Library Reference: Index. You will then see the index of Python functions,
modules, data structures, etc. Find the item “random (standard module)”
in the index and follow the link. This will bring you to the manual page for
the random module. In the bottom part of this page you will find information
about functions for drawing random numbers from various distributions (do

4 More information on the construction appears on page 416.
5 Readers familiar with languages such as Awk, C, and Perl will recognize the
similarity with the functions printf for printing and sprintf for creating strings.

32 2. Getting Started with Python Scripting

not use the classes in the module, use plain functions). Also apply pydoc to
look up documentation of the random module: just write pydoc random on the
command line.

Remark: Do not name the file with this script random.py. This will give
a name clash with the Python module random when you try to import that
module (your own script will be imported instead). S

2.2 Working with Files and Data

Let us continue our Python encounter with a script that has some relevance
for the computational scientist or engineer. We want to do some simple math-
ematical operations on data in a file. The tasks in such a script include read-
ing numbers from a file, performing numerical operations on them, and then
writing the new numbers to a file again. This will demonstrate

— file opening, reading, writing, and closing,

— how to define and call functions,

— loops and if-tests, and

— how to work with lists and arrays.

We shall also show how Python can be used for interactive computing and
how this can be combined with a debugger for detecting programming errors.

2.2.1 Problem Specification

Suppose you have a data file containing a curve represented as a set of (x,y)
points and that you want to transform all the y values using some function
f(y). That is, we want to read the data file with (z,y) pairs and write out a
new file with (z, f(y)) pairs. Each line in the input file is supposed to contain
one x and one y value. Here is an example of such a file format:

The output file should have the same format, but the f(y) values in the second
column are to be written in scientific notation, in a field of width 12 charac-
ters, with five decimals (i.e., the number —0.25 is written as -2.50000E-01).

The script, called datatransi.py, can take the input and output data files
as command-line arguments. The usage is hence as follows:

python datatransl.py infile outfile

Inside the script we need to do the following tasks:

2.2. Working with Files and Data 33

read the input and output filenames from the command line,
open the input and output files,
define a function f(y),

Ll O e

for each line in the input file:
(a) read the line,

(b

(c
(d

) extract the x and y values from the line,
) apply the function f to y,
) write out « and f(y) in the proper format.

First we present the complete script, and thereafter we explain in detail what
is going on in each statement.

2.2.2 The Complete Code

#!/usr/bin/env python
import sys, math

try:

infilename = sys.argv[1]; outfilename = sys.argv[2]
except:

print "Usage:",sys.argv[0], "infile outfile"; sys.exit(1)

ifile
ofile

= open(infilename, ’r’) # open file for reading
= open(outfilename, ’w’) # open file for writing
def myfunc(y):
if y >= 0.0:
return y**5*math.exp(-y)
else:
return 0.0

read ifile line by line and write out transformed values:
for line in ifile:

pair = line.split()

x = float(pair[0]); y = float(pair[1])

fy = myfunc(y) # transform y value

ofile.write(’%g %12.5e\n’ % (x,fy))
ifile.close(); ofile.close()

The script is stored in src/py/intro/datatransi.py. Recall that this path is
relative to the scripting environment variable, see Chapter 1.2.

2.2.3 Dissection

The most obvious difference between Python and other programming lan-
guages is that the indentation of the statements is significant. Looking, for
example, at the for loop, a programmer with background in C, C++, Java,

34 2. Getting Started with Python Scripting

or Perl would expect braces to enclose the block inside the loop. Other lan-
guages may have other “begin” and “end” marks for such blocks. However,
Python employs just indentation®.

The script needs two modules: sys and math, which we load in the top of
the script. Alternatively, one can load a module at the place where it is first
needed.

The next statement contains a try-except block, which is the preferred
Python style for handling potential errors. We want to load the first two
command-line arguments into two strings. However, it might happen that
the user of the script failed to provide two command-line arguments. In that
case, subscripting the sys.argv list leads to an index out of bounds error,
which causes Python to report this error and abort the script. This may not
be exactly the behavior we want: if something goes wrong with extracting
command-line arguments, we assume that the script is misused. Our recovery
from such misuse consists of printing a usage message before terminating the
script. In the implementation, we first try to execute some statements in a
try block, and then we recover from a potential error in an except block:

try:

infilename = sys.argv[1]; outfilename = sys.argv[2]
except:

print "Usage:",sys.argv[0], "infile outfile"; sys.exit(1)

As soon as any error’ occurs in the try block, the program jumps to the
except block. This is recognized as exception handling in Python, a topic
which is covered in more detail in Chapter 8.8.

The name of the script being executed is stored in sys.argv[0], and this
information is used in the usage message. Calling the function sys.exit aborts
the script. Any integer argument to the sys.exit function different from 0
signifies exit due to an error. The value of the integer argument to sys.exit
is available in the environment that executes the script and can be used to
check if the execution of the script was successful. For example, in a Unix
environment, the variable $7 contains the value of the argument to sys.exit.
If $7 is different from 0, the execution of the last command was unsuccessful.

Observe that more than one Python statement can appear at the same
line if a semi-colon is used as separator between the statements. You do not
need to end a statement with semi-colon if there is only one statement on
the line.

% A popular Python slogan reads “life is happier without braces”. I am not com-
pletely sure — no braces imply nicely formatted code, but you must be very careful
with the indentation when inserting if tests or loops in the middle of a block.
Using a Python-aware editor (like Emacs) to adjust indentation of large blocks
of code has been essential for me.

7 We have for simplicity at this introductory stage just tested for any error in the
except block. See Exercise 2.7 for comments and how the error testing should be
improved.

2.2. Working with Files and Data 35
A file is opened by the open function, taking the filename as first argument
and a read/write indication (*r’ or ’w’) as second argument:

ifile
ofile

open(infilename, ’r’) # open file for reading
open(outfilename, ’w’) # open file for writing

The open function returns a Python file object that we use for reading from
or writing to a file.

At this point we should mention that there is no difference between single
and double quotes when defining strings. That is, ’r’ is the same as "r". This
is true also in printf-style formatted strings and when using variable interpo-
lation. There are other ways of specifying strings as well, and an overview is
provided on page 95.

The next block of statements regards the implementation of a function

ye v,y >0,

ﬂw={Q <0,

Such a function, here called myfunc, can in Python be coded as

def myfunc(y):
if y >= 0.0:
return y**5*math.exp(-y)
else:
return 0.0

A shorter syntax is also possible:

def myfunc(y):
return (y**5*math.exp(-y) if y >= 0 else 0.0)

Any function in Python must be defined before it can be called.
The file is read line by line using the following construction:

for line in ifile:
process line

Python code written before version 2.2 became available applies another con-
struction for reading a file line by line:

while 1:
line = ifile.readline()
if not line: break # jump out of the loop
process line

This construction is still useful in many occasions. Each line is read using the
file object’s readline function. When the end of the file is reached, readline
returns an empty string, and we need to jump out of the loop using a break
statement. The termination condition is hence inside the loop, not in the
while test (actually, the while 1 implies a loop that runs forever, unless there
is a break statement inside the loop).

36 2. Getting Started with Python Scripting

The processing of a line consists of splitting the text into an x and y
value, modifying the y value by calling myfunc, and finally writing the new
pair of values to the output file. The splitting of a string into a list of words
is accomplished by the split operation

pair = line.split()

Python string objects have many built-in functions, and split is one of them.
The split function returns in our case a list of two strings, containing the
x and y values. The variable pair is set equal to this list of two strings.
However, we would like to have z and y available as floating-point numbers,
not strings, such that we can perform numerical computations. An explicit
conversion of the strings in pair to real numbers x and y reads

x = float(pair[0]); y = float(pair[1])

We can then transform y using our mathematical function myfunc:
fy = myfunc(y)

Thereafter, we write x and fy to the output file in a specified format: x is
written as compactly as possible (%g format), whereas fy is written in scientific
notation with 5 decimals in a field of width 12 characters (%12.5e format):

ofile.write(’%g %12.5e\n’ % (x, fy))

One should notice a difference between the print statement (for writing to
standard output) and a file object’s write function (for writing to files): print
automatically adds a newline at the of the string, whereas write dumps the
string as is. In the present case we want each pair of curve points to appear
on separate lines so we need to end each string with newline, i.e., \n.

2.2.4 Working with Files in Memory

Instead of reading and processing lines one by one, scripters often load the
whole file into a data structure in memory as this can in many occasions
simplify further processing. In our next version of the script, we want to (i)
read the file into a list of lines, (ii) extract the z and y numbers from each
line and store them in two separate floating-point arrays x and y, and (iii)
run through the x and y arrays and write out the transformed data pairs.
This version of our data transformation example will hence introduce some
basic concepts of array or list processing. In a Python context, array and list
often mean the same thing, but we shall stick to the term list. We reserve the
term array for data structures that are based on an underlying contiguous
memory segment (i.e., a plain C array). Such data structures are available
in the Numerical Python package and are well suited for efficient numerical
computing. A taste is given in Chapters 2.2.5 and 2.2.6, while Chapter 4.1
contains more comprehensive information.
Loading the file into a list of lines is performed by the statement

2.2. Working with Files and Data 37

lines = ifile.readlines()

Storing the x and y values in two separate lists can be realized with the
following loop:

x=[]; y=1[0 # start with empty lists

for line in lines:
xval, yval = line.split()
x.append(float(xval)); y.append(float(yval))

The first line creates two empty lists x and y. One always has to start with
an empty list before filling in entries with the append function (Python will
give an error message in case you forget the initialization). The statement
for line in lines sets up a loop where, in each pass, line equals the next
entry in the lines list. Splitting the line string into its individual words
is accomplished as in the first version of the script, i.e., by line.split().
However, this time we illustrate a different syntax: individual variables xval
and yval are listed on the left-hand side of = and assigned values from the
sequence of elements in the list on the right-hand side. The next line in
the loop converts the strings xval and yval to floating-point variables and
appends these to the x and y lists.

Running through the x and y lists and transforming the y values can be
implemented as a C-style for loop over an index:

for i in range(0, len(x), 1):
fy = myfunc(y[i]) # transform y value
ofile.write(’%g %12.5e\n’ % (x[il, £fy))

The range(from, to, step) function returns a set of integers, here to be used
as loop counters, starting at from and ending in to-1, with steps as indicated
by step. Calling range with only one value implies the very frequently en-
countered case where from is 0 and step is 1. Utilizing range with a just single
argument, we could in the present example write for i in range(len(x)).

The complete alternative version of the script appears in datatrans2.py
in the directory src/py/intro.

If your programming experience mainly concerns Fortran and C, you prob-
ably see already now that Python programs are much shorter and simpler
because each statement is more powerful than what you are used to. You
might be concerned with efficiency, and that topic is dealt with in the next
paragraph.

2.2.5 Array Computing

Sometimes we want to load file data into arrays in a script and perform nu-
merical computing with the arrays. We exemplified this in the datatrans2.py
script in Chapter 2.2.4. However, there are Python tools that allows more ef-
ficient and convenient “Matlab-style” array computing. These tools are based

38 2. Getting Started with Python Scripting

on an extension to Python, called Numerical Python, or just NumPy, which
is presented in Chapter 4. In the present section we shall just indicate how
we can load array data in a file into NumPy arrays and compute with them.

In the datatrans2.py script we have the file data in lists x and y. These
can be turned into NumPy arrays by the statements

from numpy import *
x = array(x); y = array(y) # convert lists to efficient arrays

Using the file reading tools from Chapter 4.3.6, available through the module
scitools.filetable, we can read tabular numerical data in a file directly into
NumPy arrays more compactly than we managed in the datatrans2.py script:

import scitools.filetable

f = open(infilename, ’r’)

X, y = scitools.filetable.read_columns(f)
f.close()

Here, x and y are NumPy arrays holding the first and second column of data
in the file, respectively.

We may now compute directly with the x and y arrays, e.g., scale the z
coordinates by a factor of 10 and transform the y values according to the
formula 2y 4+ 0.1 - sin 2

10*x
2%y + 0.1*sin(x)

X

y

These statements are more compact and much more efficient than writing
the equivalent loops with indexing:

for i in range(len(x)):
x[i] = 10*x[i]
for i in range(len(x)):
y[i] = 2*y[i] + 0.1*sin(x[i])

We can also compute y with the aid of a function:

def transform(x, y):
return 2*y + 0.1*sin(x)

y = transform(x, y)

This transform function works with both scalar and array arguments. With
Numerical Python available, (most) arithmetic expressions work with scalars
and arrays. However, our myfunc function from the datatransi.py script in
Chapter 2.2.2 does unfortunately not work with array arguments because of
the if test. The cause of this problem and a remedy is explained in detail in
Chapter 4.2.

Writing the x and new y back to a file again can also utilize the tools from
from Chapter 4.3.6:

2.2. Working with Files and Data 39

f = open(outfilename, ’w’)
scitools.filetable.write_columns(f, x, y)
f.close()

Here is another typical action, where we generate a coordinate array in
the script and compute curves:

x = linspace(0, 1, 1001) # 0.0, 0.001, 0.002, ..., 1.0
y1 = sin(2xpixx)
y2 = y1 + 0.2xsin(30%2*pi*x)

Many more details about such array computing are found in Chapter 4.
We can also quickly plot the data:

from scitools.easyviz import *
plot(x, y1, ’b-’, x, y2, ’r-’, legend=(’sine’, ’sine w/noise’),
title=’plotting arrays’, xlabel=’x’, ylabel=’y’)

hardcopy (’tmpl.ps’) # dump plot to file

You can type pydoc scitools.easyviz to get more information about Easyviz,
a unified interface to various popular plotting packages. Easyviz offers a sim-
ple Matlab-like interface to curve plotting, see Chapter 4.3.3.

The statements above are collected in a script called datatrans3.py. A
modified script, where the arrays can be sent to a version of the myfunc
function from datatransi.py, is realized as datatrans3a.py.

2.2.6 Interactive Computing and Debugging

IPython. Instead of collecting Python statements in scripts and executing
the scripts, you can run commands interactively in a Python shell. There are
many types of Python shells, and all of them make Python behave much
like interactive computing environments such as IDL, Maple, Mathematica,
Matlab, Octave, Scilab, and S-PLUS/R. I recommend to use a particularly
powerful Python shell called IPython. Just write ipython on the command
line to invoke this shell. After the In [1]: prompt you can execute any valid
Python statement or get the result of any valid Python expression. Here are
some examples on using the shell as calculator:

In [1]:3%4-1
Out[1]:11

In [2]:from math import *
In [3]:x = 1.2

In [4]:y = sin(x)

In [5]:
Out [5]:

=
N

40 2. Getting Started with Python Scripting

In [6]:y
Out [6] :0.93203908596722629

In [7]:_ + 1
Out[7]:1.93203908596722629

Observe that just writing the name of a variable dumps its value to the screen.
The _ variable holds the last output, __ holds the next last output, and _X
holds the output from input command no. X.

Help on Python functionality is available as

In [8]:help math.floor
In [9]:help str.split

With the arrows you can recall previous commands. In the session above,
we can hit the up arrow four times to recall the assignment to x, edit this
command to x=0.001, hit the up arrow four times to recall the computation
of y and press return to re-run this command, and then write y to see the
result (sin0.001).

Invoking a Debugger. With the run command you can also execute script
files inside IPython:

In [1]:run datatrans3.py .datatrans_infile tmpl

This is very useful if errors arise because IPython can automatically in-
voke Python’s standard debugger pdb when an exception is raised. Let us
demonstrate the principle by inserting a possibly erroneous statement in the
datatrans3.py file (the file with the error is named datatrans3_err.py):

def f(x):
p = x+1
pl10]l =0
return p
x = f(x)

If the array x has length less than 11, the assignment to p[10] will raise an
exception (IndexError). Write

In [1]:%pdb on

to make IPython invoke the debugger automatically after an exception is
raised. When we run the script and an exception occurs, we get a nice printout
that illustrates clearly the call sequence leading to the exception. In the
present case we see that the exception arises at the line p[10] = 0, and we
can thereafter dump the contents of p and check its length. The session looks
like this:

2.2. Working with Files and Data 41

In [23]:run datatrans3_err.py .datatrans_infile tmpl

/some/path/src/py/intro/datatrans3_err.py
19 pl10] = 0
20 return p

---> 21 x = f(x) # leads to an exception if len(x) < 11
22
23 x = 10*x
/some/path/src/py/intro/datatrans3_err.py in f(x)
17 def £(x):
18 p = x+1
——-> 19 pl10] =0
20 return p

21 x = £f(x) # leads to an exception if len(x) < 11

IndexError: index out of bounds

> /some/path/src/py/intro/datatrans3_err.py(19)f()
-> p[10] =0

(Pdb) print p

(2. 3. 4. 5.1]

(Pdb) len(p)

4

After the debugger’s (Pdb) prompt, writing print var or just p var prints
the contents of the variable var. This is often enough to uncover bugs, but
pdb is a full-fledged debugger that allows you to execute the code statement
by statement, or set break points, view source code files, examine variables,
execute alternative statements, etc. You use run -d to start the pdb debugger
in IPython:

In [24]:run -d datatrans3.py .datatrans_infile tmpl

(Pdb)
At the (Pdb) prompt you can run pdb commands, say s or step for executing
one statement at a time, or the alternative n or next command which does

the same as s except that pdb does not step into functions (just the call is
performed). Here is a sample session for illustration:

(Pdb) s

> /home/work/scripting/src/py/intro/datatrans3.py(11)7()
-> import sys

(Pdb) s

> /home/work/scripting/src/py/intro/datatrans3.py(12)7()
-> try:

(Pdb) s

> /home/work/scripting/src/py/intro/datatrans3.py(13)7()
-> infilename = sys.argv[1]; outfilename = sys.argv[2]
(Pdb) s

> /home/work/scripting/src/py/intro/datatrans3.py(20)7()
-> x, y = scitools.filetable.read_columns (f)

(Pdb) n

> /home/work/scripting/src/py/intro/datatrans3.py(21)7()

42 2. Getting Started with Python Scripting

-> f.close()
(Pdb) x
Out [25] :array([0.1, 0.2, 0.3, 0.4])

A nice introduction to pdb is found in Chapter 9 of the Python Library Ref-
erence (you may follow the link from the pdb item in the index). I encourage
you to learn some basic pdb commands and use pdb on or run -d as illustrated
above — this makes debugging Python scripts fast and effective.

A script can also invoke an interactive mode at the end of the code such
that you can examine variables defined, etc. This is done with the -i option
to run (or python -i on the command line):

In [26]:run -i datatrans2.py .datatrans_infile tmpl

In [27]:y
Out [27]:[1.1000000000000001, 1.8, 2.2222200000000001, 1.8]

This technique is useful if you need an initialization script before you start
with interactive work.

IPython can do much more than what we have outlined here. I therefore
recommend you to browse through the documentation (comes with the source
code, or you can follow the link in doc.html) to see the capabilities of this
very useful tool for Python programmers.

IDLE. The core Python source code comes with a tool called IDLE (Inte-
grated DeveLopment Environment) containing an interactive shell, an editor,
a debugger, as well as class and module browsers. The interactive shell works
much like IPython, but is less sophisticated. One feature of the IDLE shell
and editor is very nice: when you write a function call, a small window pops
up with the sequence of function arguments and a help line. The IDLE debug-
ger and editor are graphically coupled such that you can watch a step-by-step
execution in the editor window. This may look more graphically appealing
than using IPython/pdb when showing live demos. More information about
the capabilities and usage of IDLE can be obtained by following the “Intro-
duction to IDLE” link in doc.html.

There are several other IDEs (Integrated Development Environments)
for Python offering editors, debuggers, class browsers, etc. The doc.html file
contains a link to a web page with an overview of Python IDEs.

2.2.7 Efficiency Measurements

You may wonder how slow interpreted languages, such as Python, are in
comparison with compiled languages like Fortran, C, or C4++. I created an
input file with 100,000 data points® and compared small datatransi.py-like
programs in the dynamically typed languages Python, Perl, and Tcl with

8 The script described in Exercise 8.7 on page 356 is convenient for this purpose.

2.2. Working with Files and Data 43

similar programs in the compiled languages C and C++. Setting the execu-
tion time of the fastest program (0.9 s) to one time unit, the time units for
the various language implementations were as follows®.

C, 1/O with fscanf/fprintf: 1.0; Python: 4.3; C++, I/O with fstream:
4.0; C++, I/O with ostringstream: 2.6; Perl: 3.1; Tcl: 10.7. These timings re-
flect reality in a relevant way: Perl is somewhat faster than Python, and com-
piled languages are not dramatically faster for this type of program. A spe-
cial Python version (datatrans3b.py) utilizing Numerical Python and TableI0
runs faster than the best C++ implementation (see Chapter 4.3.6 for details
of implementations and timings).

One can question whether the comparison here is fair as the scripts make
use of the general split functions while the C and C++ codes read the num-
bers consecutively from file. Another issue is that the large data set used in
the test is likely to be stored in binary format in a real application. Working
with binary files would make the differences in execution speed much smaller.

The efficiency tests are automated in datatrans-eff.sh (Bourne shell
script) or datatrans-eff.py (Python version) so you can repeat them on
other computers.

2.2.8 Exercises

Exercise 2.2. Extend Exercise 2.1 with a loop.

Extend the script from Exercise 2.1 such that you draw n random uni-
formly distributed numbers, where n is given on the command line, and
compute the average of these numbers. o

Exercise 2.3. Find five errors in a script.
The file src/misc/averagerandom2.py contains the following Python code:

#!/usr/bin/ env python
import sys, random
def compute(n):
i=0;s=0
while i <= n:
s += random.random()
i+=1
return s/n

n = sys.argv[1]
print ’average of %d random numbers is %g" % (n, compute(n))

There are five errors in this file — find them! o

9 These and other timing tests in the book were mostly performed with an IBM
X30 laptop, 1.2 GHz and 512 Mb RAM, running Debian Linux, Python 2.3, and
gce 3.3.

44 2. Getting Started with Python Scripting

Ezercise 2.4. Basic use of control structures.

To get some hands-on experience with writing basic control structures and
functions in Python, we consider an extension of the Scientific Hello World
script hw.py from Chapter 2.1. The script is now supposed to read an arbitrary
number of command-line arguments and write the natural logarithm of each
number to the screen. For example, if we provide the command-line arguments

1.0 -0.9 2.1

the script writes out

In(1) =0
In(-0.9) is illegal
In(2.1) = 0.741937

Implement four types of loops over the command-line entries:

— a for r in sys.argv[i:] loop (i.e., a loop over the entries in sys.argv,
starting with index 1 and ending with the last valid index),

— a for loop with an integer counter i running over the relevant indices in
sys.argv (use the range function to generate the indices),

— a while loop with an integer counter running over the relevant indices in
sys.argv,

— an “infinite” while 1: loop of the type shown on page 35, with an integer
counter and a try-except block where we break out of the loop when
sys.argv[i] is an illegal operation.

Look up the documentation of the math module in the Python Library Ref-
erence (index “math”) to see how to compute the natural logarithm of a
number. Since the bodies of the loops are quite similar, you should collect
the common statement in a function (say print_ln(r), which converts r to a
float object, tests on r>0 and prints the appropriate strings). o

Ezercise 2.5. Use standard input/output instead of files.

Modify the datatransi.py script such that it reads its numbers from stan-
dard input, sys.stdin, and writes the results to standard output, sys.stdout.
You can work with sys.stdin and sys.stdout as the ordinary file objects you
already have in datatransl.py, except that you do not need to open and close
them.

You can feed data into the script directly from the terminal window (after
you have started the script, of course) and terminate input with Ctrl-D.
Alternatively, you can send a file into the script using a pipe, and if desired,
redirect output to a file:

cat inputfile | datatranslstdio.py > res

(datatransistdio.py is the name of the modified script.) A suitable input file
for testing the script is src/py/intro/.datatrans_infile. o

2.2. Working with Files and Data 45

Ezercise 2.6. Read streams of (x,y) pairs from the command line.

Modify the datatransi.py script such that it reads a stream of (x,y) pairs
from the command line and writes the modified pairs (z, f(y)) to a file. The
usage of the new script, here called datatransib.py, should be like this:

python datatranslb.py tmp.out 1.1 3 2.6 8.3 7 -0.1675

resulting in an output file tmp.out:

1.1 1.20983e+01
2.6 9.78918e+00
7 0.00000e+00

Hint: Run through the sys.argv array in a for loop and use the range function
with appropriate start index and increment. o

Exercise 2.7. Test for specific exceptions.
Consider the datatransi.py script with a typo (sys.arg) in the try block:

try:

infilename = sys.arg[1]; outfilename = sys.argv[2]
except:

print "Usage:",sys.argv[0], "infile outfile"; sys.exit(1)

Run this script and observe that whatever you write as filenames, the script
aborts with the usage message. The reason is that we test for any exception in
the except block. We should rather test for specific exceptions, i.e., the type
of errors that we want to recover from in the try block. In the present case we
are worried about too few command-line arguments. Read about exceptions
in Chapter 8.8 and figure out how the except block is to be modified. Run
the modified script and observe the impact of the typo.

Extend the script with an appropriate try-except block around the first
open statement. You should test for a specific exception caused by a non-
existing input file.

Finally, it is a good habit to write error messages to standard error
(sys.stderr) and not standard output (where the print statements go). Make
the corresponding modifications of the print statements.

o

Exercise 2.8. Sum columns in a file.

Extend the datatransi.py script such that you can read a file with an
arbitrary number of columns of real numbers. Find the average of the numbers
on each line and write to a new file the original columns plus a final column
with the averages. All numbers in the output file should have the format
12.6f. <o

Exzxercise 2.9. Estimate the chance of an event in a dice game.
What is the probability of getting at least one 6 when throwing two dice?
This question can be analyzed theoretically by methods from probability

46 2. Getting Started with Python Scripting

theory (see the last paragraph of this exercise). However, a much simpler and
much more general alternative is to let a computer program “throw” two dice
a large number of times and count how many times a 6 shows up. Such type
of computer experiments, involving uncertain events, is often called Monte
Carlo simulation (see also Exercise 4.14).

Create a script that in a loop from 1 to n draws two uniform random
numbers between 1 and 6 and counts how many times p a 6 shows up. Write
out the estimated probability p/float(n) together with the exact result 11/36.
Run the script a few times with different n values (preferably read from the
command line) and determine from the experiments how large n must be to
get the first three decimals (0.306) of the probability correct.

Use the random module to draw random uniformly distributed integers in
a specified interval.

The exact probability of getting at least one 6 when throwing two dice
can be analyzed as follows. Let A be the event that die 1 shows 6 and let B
be the event that die 2 shows 6. We seek P(A U B), which from probability
theory equals P(A) + P(B) — P(AN B) = P(A) + P(B) — P(A)P(B) (A
and B are independent events). Since P(A) = P(B) = 1/6, the probability
becomes 11/36 ~ 0.306. o

Ezercise 2.10. Determine if you win or loose a hazard game.

Somebody suggests the following game. You pay 1 unit of money and are
allowed to throw four dice. If the sum of the eyes on the dice is less than 9,
you win 10 units of money, otherwise you loose your investment. Should you
play this game?

Hint: Use the simulation method from Exercise 2.9. o

2.3 Gluing Stand-Alone Applications

One of the simplest yet most useful applications of scripting is automation of
manual interaction with the computer. Basically, this means running stand-
alone programs and operating system commands with some glue in between.
The next example concerns automating the execution of a simulation code
and visualization of the results. Such an example is of particular value to
a computational scientist or engineer. The simulation code used here in-
volves an oscillating system, i.e., solution of an ordinary differential equation,
whereas the visualization is a matter of plotting a time series. The mathe-
matical simplicity of this application allows us to keep the technical details
of the simulation code and the visualization process at a minimum.

2.3. Gluing Stand-Alone Applications 47

2.3.1 The Simulation Code

Problem Specification. We consider an oscillating system, say a pendu-
lum, a moored ship, or a jumping washing machine. The one-dimensional
back-and-forth movement of a reference point in the system is supposed to
be adequately described by a function y(t) solving the ordinary differential
equation ,
dvy dy
Mg TV
This equation usually arises from Newton’s second law (or a variant of it: the
equation of angular momentum). The first term reflects the mass times the
acceleration of the system, the bdy/dt term denotes damping forces, cf(y)
is a spring-like force, while A coswt is an external oscillating force applied
to the system. The parameters m, b, ¢, A, and w are prescribed constants.
Engineers prefer to make a sketch of such a generic oscillating system using
graphical elements as shown in Figure 2.1.

+cf(y) = Acoswt. (2.1)

Acos(wt)

Fig. 2.1. Sketch of an oscillating system. The goal is to compute how the vertical
position y(t) of the mass changes in time. The symbols correspond to the names of
the variables in and the options to the script performing simulation and visualiza-
tion of this system.

Along with the differential equation we need two initial conditions:

dy
=0. 2.2
dt|,_, 0 (2.2)

y(0) = vo,

This means that the system starts from rest with an initial displacement yyq.
For simple choices of f(y), in particular f(y) = y, mathematical solution
techniques for (2.1) result in simple analytical formulas for y(t), but in gen-

48 2. Getting Started with Python Scripting

eral a numerical solution procedure must be applied for solving (2.1). Here we
assume that there exists a program oscillator which solves (2.1) using appro-
priate numerical methods!'®. This program computes y(t) when 0 < t < tstops
and the solution is produced at discrete times 0, At, 2At, 3At, and so forth.
The At parameter controls the numerical accuracy. A smaller value results
in a more accurate numerical approximation to the exact solution of (2.1).

Installing the Simulation Code. A Fortran 77 version of the oscillator code
is found in the directory src/app/oscillator/F77. Try to write oscillator and
see if the cursor is hanging (waiting for input). If not, you need to compile,
link, and install the program. The Bourne shell script make.sh, in the same di-
rectory as the source code, automates the process on Unix system. Neverthe-
less, be prepared for platform- or compiler-specific edits of make.sh. The exe-
cutable file oscillator is placed in a directory $scripting/$MACHINE_TYPE/bin,
which must be in your PATH variable. Of course, you can place the executable
file in any other directory in PATH.

If you do not have an F77 compiler, you can look for implementations
of the simulator in other languages in subdirectories of src/app/oscillator.
For example, there is a subdirectory C-f2c with a C version of the F77 code
automatically generated by the £2c program (an F77 to C source code trans-
lator). Since most numerical codes are written in compiled high-performance
languages, like Fortran or C, we think it is a point to work with such type of
simulation programs in the present section. However, there is also a directory
src/app/oscillator/Python containing a Python version, oscillator.py, of
the simulator. Copy this file to $scripting/$MACHINE_TYPE/bin/oscillator if
you work on a Unix system and do not get the compiled versions to work
properly. Note that the name of the executable file must be oscillator, not
oscillator.py, exactly as in the Fortran case, otherwise our forthcoming
script will not work. On Windows there is no need to move oscillator.py,
see Appendix A.2.

Simulation Code Usage. Our simulation code oscillator reads the following
parameters from standard input, in the listed order: m, b, ¢, name of f(y)
function, A, w, Yo, tstop, and At. The valid names of the implemented f(y)
functions are y for f(y) = y, siny for f(y) = siny, and y3 for f(y) =y —y>/6
(the first two terms of a Taylor series for siny).

The values of the input parameters can be conveniently placed in a file

(say) prms:

(ol \Ne]

O OUI U100 =

10 Our implementations of oscillator employ a two-stage Runge-Kutta scheme.

2.3. Gluing Stand-Alone Applications 49

30.0
0.05

The program can then be run as

oscillator < prms

One may argue that the program is not very user friendly: missing the correct
order of the numbers makes the input corrupt. However, the purpose of our
script is to add a more user-friendly handling of the input data and avoid the
user’s direct interaction with the oscillator code.

The output from the oscillator program is a file sim.dat containing data

points (t;,y(t;)), ¢ = 0,1,2,..., on the solution curve. Here is an extract from
such a file:

0.0500 0.2047

0.1000 0.2167

0.1500 0.2328

0.2000 0.2493

0.2500 0.2621

0.3000 0.2674

0.3500 0.2621

0.4000 0.2437

2.3.2 Using Gnuplot to Visualize Curves

The data are easily visualized using a standard program for displaying curves.
We shall apply the freely available Gnuplot!'! program, which runs on most
platforms. One writes gnuplot to invoke the program, and thereafter one can
issue the command

plot ’sim.dat’ title ’y(t)’ with lines

A separate window with the plot will now appear on the screen, containing
the (z,y) data in the file sim.dat visualized as a curve with label y(t).
A PostScript file with the plot is easily produced in Gnuplot:

set term postscript eps monochrome dashed ’Times-Roman’ 28
set output ’myplot.ps’

followed by the plot command. The plot is then available in the file myplot.ps
and ready for inclusion in a report. If you want the output in the PNG format
with colored lines, the following commands do the job:

set term png small
set output ’myplot.png’

11 Exercise 2.14 explains how easy it is to replace Gnuplot by Matlab in the resulting
script. Exercise 11.1 applies the BLT graph widget from Chapter 11.1.1 instead.

50 2. Getting Started with Python Scripting

The resulting file myplot.png is suited for inclusion in a web page. The vi-
sualization of the time series in hardcopy plots is normally improved when
reducing the aspect ratio of the plot. To this end, one can try

set size ratio 0.3 1.5, 1.0

prior to the plot command. This command should not be used for screen
plots. We refer to the Gnuplot manual (see link in doc.html) for more infor-
mation on what the listed Gnuplot commands mean and the various available
options.

Instead of operating Gnuplot interactively one can collect all the com-
mands in a file, hereafter called Gnuplot script. For example,

gnuplot cmd

runs Gnuplot with the commands in the file cmnd in a Unix environment. The
Gnuplot option -persist is required if we want the plot window(s) on the
screen to be visible after the commands in cmd are executed. A standard
X11 option -geometry can be used to set the geometry of the window. In the
present application with time series it is convenient to have a wide window,
e.g., 800 x 200 pixels as specified by the option -geometry 800x200.

Gnuplot behaves differently on Windows and Unix. For example, the name
of the Gnuplot script file must be GNUPLOT. INI on Windows, and the existence
of such a file implies that Gnuplot reads its commands from this file. I have
made two small scripts (see page 687) that comes with this book’s software
and makes the gnuplot command behave in almost the same way on Win-
dows and Unix. The major difference is that some of the command-line argu-
ments on Unix have no effect on Windows. The previously shown examples
on running Gnuplot can therefore be run in Windows environments without
modifications. This allows us to make a cross-platform script for simulation
and visualization.

2.3.3 Functionality of the Script

Our goal now is to simplify the user’s interaction with the oscillator and
gnuplot programs. With a script simvizi.py it should be possible to adjust
the m, b, At, and other mathematical parameters through command-line
options, e.g.,

-m 2.3 -b 0.9 -dt 0.05

The result should be PostScript and PNG plots as well as an optional plot on
the screen. Since running the script will produce some files, it is convenient to
create a subdirectory and store the files there. The name of the subdirectory
and the corresponding files should be adjustable as a command-line option
to the script.

Let us list the complete functionality of the script:

2.3. Gluing Stand-Alone Applications 51

1. Set appropriate default values for all input variables.

2. Run through the command-line arguments and set script variables ac-
cordingly. The following options should be available: -m for m, -b for b,
-c for ¢, -func for the name of the f(y) function, -A for A, -w for w,
-dt for At, -tstop for tsop, ~noscreenplot for turning off the plot on the
screen'?, and -case for the name of the subdirectory and the stem of the

filenames of all generated files.

3. Remove the subdirectory if it exists. Create the subdirectory and change
the current working directory to the new subdirectory.

4. Make an appropriate input file for the oscillator code.
5. Run the oscillator code.

6. Make a file with the Gnuplot script, containing the Gnuplot commands
for making hardcopy plots in the PostScript and PNG formats, and (op-
tionally) a plot on the screen.

7. Run Gnuplot.

2.3.4 The Complete Code

#!/usr/bin/env python
import sys, math

default values of input parameters:

m=1.0; b=20.7; ¢ =5.0; func = ’y’; A = 5.0; w = 2*math.pi
yO = 0.2; tstop = 30.0; dt = 0.05; case = ’tmpl’

screenplot = True

read variables from the command line, one by one:
while len(sys.argv) > 1:

option = sys.argv[1i]; del sys.argv[1]
if option == ’-m’:

m = float(sys.argv[1]); del sys.argv[1i]
elif option == ’-b’:

b = float(sys.argv[1]); del sys.argvl[i]
elif option == ’-c’:

¢ = float(sys.argv[1]); del sys.argv[1i]
elif option == ’-func’:

func = sys.argv[1]; del sys.argv[1]
elif option == ’-A’:

A = float(sys.argv[1il); del sys.argv[i]
elif option == ’-w’:

w = float(sys.argv[1]); del sys.argv[1i]
elif option == ’-y0’:

yO = float(sys.argv[1]); del sys.argv[1]
elif option == ’-tstop’:

tstop = float(sys.argv[1]); del sys.argv[i]
elif option == ’-dt’:

12 Avoiding lots of graphics on the screen is useful when running large sets of ex-
periments as we exemplify in Chapter 2.4.

52 2. Getting Started with Python Scripting

dt = float(sys.argv[1]); del sys.argv[1]
elif option == ’-noscreenplot’:

screenplot = False
elif option == ’-case’:

case = sys.argv[i]; del sys.argv[1]
else:

print sys.argv[0],’: invalid option’,option

sys.exit(1)

create a subdirectory:

d = case # name of subdirectory

import os, shutil

if os.path.isdir(d):
shutil.rmtree(d)

os.mkdir(d)

os.chdir(d)

does d exist?
yes, remove old directory
make new directory d
move to new directory d
make input file to the program:
= open(’Ys.i’ ¥ case, ’w’)
write a multi-line (triple-quoted) string with
variable interpolation:
.write(" nn

hlm)g

h(b)g

h(c)g

%(func)s

h(Dg

hw)g

h(yOg

%(tstop)g

%h(dt)g

nnn % vars())
f.close()
run simulator:
cmd = ’oscillator < %s.i’ % case # command to run
import commands
failure, output = commands.getstatusoutput (cmd)
if failure:

print ’running the oscillator code failed\nis\n’s’ % \
(cmd, output); sys.exit(1)

H o H R

make file with gnuplot commands:
f = open(case + ’.gnuplot’, ’w’)
f.write("""
set title ’%s: m=lhg b=lg c=lg f(y)=hs A=lg w=lg yO=hg dt=lg’;
mn 9% (case, m, b, ¢, func, A, w, yO, dt))
if screenplot:
f.write("plot ’sim.dat’ title ’y(t)’ with lines;\n")
f.write("""
set size ratio 0.3 1.5, 1.0;
define the postscript output format:
set term postscript eps monochrome dashed ’Times-Roman’ 28;
output file containing the plot:
set output ’%s.ps’;
basic plot command:
plot ’sim.dat’ title ’y(t)’ with lines;
make a plot in PNG format:

2.3. Gluing Stand-Alone Applications 53

set term png small;
set output ’Y%s.png’;
plot ’sim.dat’ title ’y(t)’ with lines;
nuwn Y (case, case))
f.close()
make plot:
cmd = ’gnuplot -geometry 800x200 -persist ’ + case + ’.gnuplot’
failure, output = commands.getstatusoutput(cmd)
if failure:
print ’running gnuplot failed\n¥s\n%s’ % \
(cmd, output); sys.exit(1)

You can find the script in src/py/intro/simviz1.py.

2.3.5 Dissection

After a standard opening of Python scripts, we start with assigning ap-
propriate default values to all variables that can be adjusted through the
script’s command-line options. The next task is to parse the command-line
arguments. This is done in a while loop where we look for the option in
sys.argv[1], remove this list element by a del sys.argv[1] statement, and

thereafter assign a value, the new sys.argv[1] entry, to the associated vari-
able:

read variables from the command line, one by one:
while len(sys.argv) > 1:

option = sys.argv[1]; del sys.argv[1]
if option == ’-m’:

m = float(sys.argv[1]); del sys.argv[1i]
elif option == ’-b’:

b = float(sys.argv([1]); del sys.argv[1i]
else:

print sys.argv[0],’: invalid option’,option

sys.exit(1)

The loop is executed until there are less than two entries left in sys.argv
(recall that the first entry is the name of the script, and we need at least one
option to continue parsing).

We remark that Python has built-in alternatives to our manual parsing of
command-line options: the getopt and optparse modules, see Chapter 8.1.1.
Exercise 8.1 asks you to use getopt or optparse in simvizl.py. An alternative
tool is developed in Exercise 8.2.

The next step is to remove the working directory d if it exists (to avoid
mixing old and new files), create the directory, and move to d. These operating
system tasks are offered by Python’s os, os.path, and shutil modules:

d = case # name of subdirectory

import os, shutil

if os.path.isdir(d): # does d exist?
shutil.rmtree(d) # yes, remove old directory

54 2. Getting Started with Python Scripting

os.mkdir (d) # make new directory d
os.chdir(d) # move to new directory d

Then we are ready to execute the simulator by running the command

oscillator < case.i

where case.i is an input file to oscillator. The filestem case is set by the
-case option to the script. Creating the input file is here accomplished by a
multi-line Python string with variable interpolation:

f = open(’Ys.i’ ¥ case, ’w’)
f.write("""
h(m)g
%(b)g
%(c)g
%(func)s
YACNY:s
h(g
%(y0)g
%(tstop)g
%(dt)g
nnn % vars ())
f.close()

Triple quoted strings """...""" can span several lines, and newlines are pre-
served in the output.

Running an application like oscillator is conveniently done by the func-
tion getstatusoutput in the commands module:

cmd = ’oscillator < %s.i’ % case # command to run

import commands

failure, output = commands.getstatusoutput (cmd)

if failure:
print ’running the oscillator code failed\nJs\n’s’ % \
(cmd, output); sys.exit(1)

The output from running the command cmd is captured in the text string
output. Something went wrong with the command if the function returns a
value different from zero!s.

Having run the simulator, we are ready for producing plots of the solu-
tion. This requires running Gnuplot with a file containing all the relevant
commands. First we write the file, this time using a multi-line (triple double

quoted) string with standard printf-style formatting:

f.write("""
set title ’%s: m=hg b=lg c=lkg f(y)=hs A=lg w=lg yO=hg dt=lg’;
w9 (case, m, b, c, func, A, w, yO, dt))
if screenplot:

f.write("plot ’sim.dat’ title ’y(t)’ with lines;\n")
f.write("""

13 Note that if failure is equivalent to if failure != 0.

2.3. Gluing Stand-Alone Applications 55

set size ratio 0.3 1.5, 1.0;

define the postscript output format:
set term postscript eps monochrome dashed ’Times-Roman’ 28;
output file containing the plot:

set output ’%s.ps’;

basic plot command

plot ’sim.dat’ title ’y(t)’ with lines;
make a plot in PNG format:

set term png small;

set output ’%s.png’;

plot ’sim.dat’ title ’y(t)’ with lines;
nnn Y (case, case))

f.close()

Gnuplot accepts comments starting with #, which we here use to make the
file more readable. In the next step we run Gnuplot and check if something
went wrong:

cmd = ’gnuplot -geometry 800x200 -persist ’ + case + ’.gnuplot’
failure, output = commands.getstatusoutput (cmd)
if failure:

print ’running gnuplot failed\n¥s\nis’ % \

(cmd, output); sys.exit(1)

Let us test the script:

python simvizl.py -m 2 -case tmp2

The results are in a new subdirectory tmp2 containing, among other files, the
plot tmp2.ps, which is displayed in Figure 2.2. To kill a Gnuplot window on
the screen, you can type 'q’ when window is in focus.

With the simvizl.py script at our disposal, we can effectively perform
numerical experiments with the oscillating system model since the interface is
so much simpler than running the simulator and plotting program manually.
Chapter 2.4 shows how to run large sets of experiments using the simviz1.py
script inside a loop in another script.

2.3.6 Exercises

Exercise 2.11. Generate an HTML report from the simvizl.py script.
Extend the simviz1.py script such that it writes an HTML file containing
the values of the physical and numerical parameters, a sketch of the system
(src/py/misc/figs/simviz2.xfig.t.gif is a suitable file), and a PNG plot of
the solution. In case you are not familiar with writing HTML code, I have
made a quick introduction, particularly relevant for this exercise, in the file

src/misc/html-intro/oscillator.html

In Python, you can conveniently generate HI'ML pages by using multi-line
(triple quoted) strings, combined with variable interpolation, as outlined be-
low:

56 2. Getting Started with Python Scripting

tmp2: m=2 b=0.7 ¢=5 f(y)=y A=5 w=6.28319 y0=0.2 dt=0.05

03 ‘
y) ——

01 r 1

-01]
-02 +]

'03 L I L
0 5 10 15 20 25 30

Fig. 2.2. A plot of the solution y(t) of (2.1) as produced by the simvizl.py script.

htmlfile.write("""
<html>

The following equation was solved:

<center>

%(m)gDDy + %(b)gDy + %(c)gh(func)s = %(A)gcos(/(w)g*t),
y(0)=%(y0)g, Dy(0)=0

</center>

with time step %(dt)g for times in the interval

[0,% (tstop)g] .

;::uhg src="%(case)s.png">

</ I'rtm1>

nnn % vars())
It is recommended to design and write the HTML page manually in a separate
file, insert the HTML text from the file inside a triple-quoted Python string,

and replace relevant parts of the HTML text by variables in the script.
o

Exercise 2.12. Generate a B'TEX report from the simvizl.py script.

Extend the simvizl.py script so that it writes a I¥TEX file containing
the values of the physical and numerical parameters, a sketch of the system
(src/misc/figs/simviz.xfig.eps is a suitable file), and a PostScript plot of
the solution. I¥TEX files are conveniently written by Python scripts using
triple quoted raw strings (to preserve the meaning of backslash). Here is an
example:

latexfile.write(z"""
%% Automatically generated LaTeX file
\documentclass[11pt]{article}

The following equation was solved:
\[%(m)g\frac{d"2 yH{dt 2} + %(b)\frac{dy}{dt} + %(c)gh(lfunc)s

2.3. Gluing Stand-Alone Applications 57

= %(M)g\cos (%h(w)gt), \quad
y(0)=%(y0)g, \frac{dy(0)}{dt}=0\]
with time step $\Delta t = %(dt)g$ for times in the interval
$[0,%(tstop)gl$.

iéﬁd{document}
nnn % vars())

The 1func variable holds the typesetting of func in IXTEX (e.g., 1func is
r’\sin y’ if func is siny).

It is smart to write the M TEX page manually in a separate file, insert
the IMTEX text from the file inside a triple-quoted Python string, and replace
parts of the IMTEX text by variables in the script.

Comments in BTEX start with %, but this character is normally used for
formatting in the write statements, so a double % is needed to achieve the
correct formatting (see the first line in the output statement above — only a
single % appears in the generated file).

Note that this exercise is very similar to Exercise 2.11. o

Exercise 2.13. Compute time step values in the simvizl.py script.

The value of At, unless set by the -dt command-line option, could be
chosen as a fraction of T, where T is the typical period of the oscillations. T'
will be dominated by the period of free vibrations in the system, 27/ \/ c/m,
or the period of the forcing term, 27 /w. Let T' be the smallest of these two
values and set At = T/40 if the user of the script did not apply the -dt
option. (Hint: use 0 as default value of dt to detect whether the user has
given dt or not.) o

Exercise 2.14. Use Matlab for curve plotting in the simvizl.py script.

The plots in the simvizi.py script can easily be generated by another
plotting program than Gnuplot. For example, you can use Matlab. Some
possible Matlab statements for generating a plot on the screen, as well as
hardcopies in PostScript and PNG format, are listed next.

load sim.dat % read sim.dat into a matrix sim
plot(sim(:,1),sim(:,2)) % plot 1st column of sim as x, 2nd as y
legend(’y(t)’)

title("testl: m=5 b=0.5 c=2 f(y)=y A=1 w=1 yO=1 dt=0.2’)

outfile = ’testl.ps’; print(’-dps’, outfile)

outfile = ’testl.png’; print(’-dpng’, outfile)

The name of the case is in this example taken as test1. The plot statements
can be placed in an M-file (Matlab script) with extension .m. At the end of
the M-file one can issue the command pause(30) to make the plot live for 30
seconds on the screen. Thereafter, it is appropriate to shut down Matlab by
the exit command. The pause command should be omitted when no screen
plot is desired.

Running Matlab in the background without any graphics on the screen
can be accomplished by the command

58 2. Getting Started with Python Scripting

matlab -nodisplay -nojvm -r testl

if the name of the M-file is test1.m. To get a plot on the screen, run

matlab -nodesktop -r testl > /dev/null &

Here, we direct the output from the interactive Matlab terminal session to
the “trash can” /dev/null on Unix systems. We also place the Matlab exe-
cution in the background (&) since screen plots are associated with a pause
command (otherwise the Python script would not terminate before Matlab
has terminated).

Modify a copy of the simvizl.py script and replace the use of Gnuplot
by Matlab. Hint: In printf-like strings, the character % must be written as
%%, because % has a special meaning as start of a format specification. Hence,
Matlab comments must start with %% if you employ printf-like strings or
variable interpolation when writing the M-file.

o

2.4 Conducting Numerical Experiments

Suppose we want to run a series of different m values, where m is a physical
parameter, the mass of the oscillator, in Equation (2.1). We can of course
just execute the simviz1.py script from Chapter 2.3 manually with different
values for the -m option, but here we want to automate the process by cre-
ating another script loop4simvizi.py, which calls simiviz1.py inside a loop
over the desired m values. The loop4simvizl.py script can have the following
command-line options:

m_min m_max dm [options as for simvizl.py]

The first three command-line arguments define a sequence of m values, start-
ing with m_min and stepping dm at a time until the maximum value m_max is
reached. The rest of the command-line arguments are supposed to be valid
options for simviz1.py and are simply passed on to that script.

Besides just running a loop over m values, we shall also let the script

— generate an HTML report with plots of the solution for each m value and
a movie reflecting how the solution varies with increasing m,

— collect PostScript plots of all the solutions in a compact file suitable for
printing, and

— run a loop over any input parameter to the oscillator code, not just m.

2.4. Conducting Numerical Experiments 59

2.4.1 Wrapping a Loop Around Another Script

We start the loop4simvizl.py script by grabbing the first three command-line
arguments:

try:

m_min = float(sys.argv[1])

m_max = float(sys.argv[2])

dm = float(sys.argv[3])

except IndexError:
print ’Usage:’,sys.argv[0],\
‘m_min m_max m_increment [simvizl.py options]°
sys.exit(1)

The next command-line arguments are extracted as sys.argv[4:]. The sub-
script [4:] means index 4, 5, 6, and so on until the end of the list. These
list items must be concatenated to a string before we can use them in the
execution command for the simviz1i.py script. For example, if sys.argv[4:]
is the list [’-c’,’3.27,7-A",710’], the list items must be combined to the
string ’-c 3.2 -A 10’. Joining elements in a list into a string, with a specified
delimiter, here space, is accomplished by

simvizl_options = ’ ’.join(sys.argv[4:])

We are now ready to make a loop over the m values. Unfortunately, the
range function can only generate a sequence of integers, so a for loop over
real-valued m values, like for m in range(...), will not work. A while loop
is a more appropriate choice:

m = m_min
while m <= m_max:
case = ’tmp_m_%g’ % m
cmd = ’python simvizl.py %s -m %g -case %s’ % \
(simvizl_options, m, case)
failure, output = commands.getstatusoutput (cmd)
m += dm

Inside the loop, we let the case name of each experiment reflect the value of m.
Using this name in the -case option after the user-given options ensures that
our automatically generated case name overrides any value of -case provided
by the user.

Notice that we run the simvizl.py script by writing python simvizil.py.
This construction works safely on all platforms. The simvizi.py file must
in this case be located in the same directory as the loop4simvizl.py script,
otherwise we need to write the complete filepath of simviz1.py, or drop the
python “prefix” and put the simvizl.py script in a directory contained in the
PATH variable.

60 2. Getting Started with Python Scripting

2.4.2 Generating an HTML Report

To make the script even more useful, we could collect the various plots in
a common document. For example, all the PNG plots could appear in an
HTML file for browsing. This is achieved by opening the HTML file, writing
a header and footer before and after the while loop, and writing an IMG tag
with the associated image file inside the loop:

html = open(’tmp_mruns.html’, ’w’)
html.write(’<HTML><BODY BGCOLOR="white">\n’)

m = m_min
while m <= m_max:
case = ’tmp_m_%g’ % m
cmd = ’python simvizl.py %s -m %g -case %s’ % \
(simvizl_options, m, case)
failure, output = commands.getstatusoutput(cmd)
html.write(’<H1>m=Y,g</H1> \n’ \
% (m, os.path.join(case, case+’.png’)))
m += dm
html.write(’</BODY></HTML>\n’)

One can in this way browse through all the figures in tmp_mruns.html using
a standard web browser.
The previous code segment employs a construction

os.path.join(case, case+’.png’)

for creating the correct path to the PNG file in the case subdirectory. The
os.path.join function joins its arguments with the appropriate directory sep-
arator for the operating system in question (the separator is / on Unix, : on
Macintosh, and \ on DOS/Windows, although / works well in paths inside
Python on newer Windows systems).

We can also make a PostScript file containing the various PostScript plots.
Such a file is convenient for compact printing and viewing of the experi-
ments. A Perl script epsmerge (see doc.html for a link) merges Encapsulated
PostScript files into a single file. For example,

epsmerge -o figs.ps -x 2 -y 3 -par filel.ps file2.ps ...

fills up a file figs.ps with plots filel.ps, file2.ps, and so on, such that each
page in figs.ps has three rows with two plots in each row, as specified by the
-x 2 -y 3 options. The -par option preserves the aspect ratio of the plots.

In the loop4simvizi.py script we need to collect the names of all the
PostScript files and at the end execute the epsmerge command:

14 Check out src/misc/html-intro/oscillator.html and Exercise 2.11 if you are
not familiar with basic HTML coding.

2.4. Conducting Numerical Experiments 61

psfiles = [] # plot files in PostScript format

m = m_min
while m <= m_max:
case = ’tmp_m_%g’ % m

psfiles.append(os.path.join(case,case+’.ps’))

cmd = ’epsmerge -o tmp_mruns.ps -x 2 -y 3 -par ’+’ ’.join(psfiles)
failure, output = commands.getstatusoutput (cmd)
To make the tmp_mruns.ps file more widely accessible, we can convert the
document to PDF format. A simple tool is the ps2pdf script that comes with
Ghostview (gs):

failure, output = commands.getstatusoutput(’ps2pdf tmp_mruns.ps’)

The reader is encouraged to try the loopdsimvizl.py script and view the
resulting documents. It is quite amazing how much we have accomplished
with just a few lines: any number of m values can be tried, each run is
archived in a separate directory, and all the plots are compactly collected in
documents for convenient browsing. Automating numerical experiments in
this way increases the reliability of your work as larger sets of experiments
are encouraged and there are no questions about which input parameters
that produced a particular plot.

Exercise 2.15. Combine curves from two simulations in one plot.

Modify the simviz1.py script such that when func is different from y, the
plot contains two curves, one based on computations with the func function
and one based on computations with the linear counterpart (func equals y).
It is hence easy to see the effect of a nonlinear spring force. The following
one-line plot command in Gnuplot combines two curves in the same plot:

plot ’runl/sim.dat’ title ’nonlinear spring’ with lines, \
’run2/sim.dat’ title ’linear spring’ with lines

The script in this exercise can be realized in two different ways. For example,
you can stay within a copy of simvizl.py and run oscillator twice, with
two different input files, and rename the data file sim.dat from the first run
to another name (os.rename is an appropriate command for this purpose,
cf. Chapter 3.4.4 on page 120). You can alternatively create a script on top
of simvizl.py, that is, call simviz1.py twice, with different options, and then
create a plot of the curves from the two runs. In this latter case you need to
propagate the command-line arguments to the simvizl.py script.

2.4.3 Making Animations

Making Animated GIF Pictures. As an alternative to collecting all the
plots from a series of experiments in a common document, as we did in the

<

62 2. Getting Started with Python Scripting

previous example, we can make an animation. For the present case, where
we run through a sequence of m values, it means that m is a kind of time
dimension. The resulting movie will show how the solution y(t) develops as
m increases.

With the convert utility, which is a part of the ImageMagick package
(see doc.html for links), we can easily create an animated GIF file from the
collection of PNG plots'®:

convert -delay 50 -loop 1000 -crop 0x0 \
plotl.png plot2.png plot3.png plot4.png ... movie.gif

One can view the resulting file movie.gif with the ImageMagick utilities
display or animate:

display movie.gif
animate movie.gif

With display, you need to type return to move to the next frame in the
animation. You can also display the movie in an HTML file by loading the
animated GIF image as an ordinary image:

When creating the animated GIF file in our script we need to be careful with
the sequence of PNG plots. This implies that the script must make a list of
all generated PNG files, in the correct order.

A more complicated problem is that the scale on the y axis in the plots
must be fixed in the movie. Gnuplot automatically scales the axis to fit the
maximum and minimum values of the current curve. Fixing the scale forces us
to make modifications of simviz1.py. To distinguish the new from the old ver-
sions, we call the new versions of the scripts simviz2.py and loop4simviz2.py.
The reader should realize that the modifications we are going to make are
small and very easily accomplished. This is a typical feature of scripting: just
edit and run until you have an effective working environment.

The simviz2.py script has an additional command-line option -yaxis fol-
lowed by two numbers, the minimum and maximum y values on the axis.
The relevant new statements in simviz2.py are listed next.

no specification of y axis in plots by default:
ymin = None; ymax = None

elif option == ’-yaxis’:
ymin = float(sys.argv[1]); ymax = float(sys.argv[2])
del sys.argv[1]; del sys.argv[1]
1't.r;1ake gnuplot script:

if ymin is not None and ymax is not None:
f.write(’set yrange [Vg:%gl;\n’ % (ymin, ymax))

15 The -delay option controls the “speed” of the resulting movie. In this example
-delay 50 means 50 - 0.1s = 0.5s between each frame.

2.4. Conducting Numerical Experiments 63

The None value is frequently used in Python scripts to bring a variable into
play, but indicate that its value is “undefined”. We can then use constructs
like if ymin is Nonme or if ymin is not Nome to test whether a variable is
“undefined” or not.

The loop4simviz2.py script calls simviz2.py and produces the animated
GIF file. A list pngfiles of PNG files can be built as we did with the
PostScript files in loop4simvizl.py. Running convert to make an animated
GIF image can then be accomplished as follows:

cmd = ’convert -delay 50 -loop 1000 -crop 0xO %s tmp_m.gif’\
% ’ ?.join(pngfiles)
failure, output = commands.getstatusoutput (cmd)

Making an MPEG Movie. As an alternative to the animated GIF file, we
can make a movie in the MPEG format. The script ps2mpeg.py (in src/tools)
converts a set of uniformly sized PostScript files, listed on the command line,
into an MPEG movie file named movie.mpeg. Inside our script we can write

failure, output = commands.getstatusoutput (\
’ps2mpeg.py %s’ % ’ ’.join(psfiles))

We can easily create a link to the MPEG movie in the HTML file, e.g.,

html.write(’<H1>MPEG Movie</H1>\n’)

2.4.4 Varying Any Parameter

Another useful feature of loopdsimviz2.py is that we actually allow a loop
over any of the real-valued input parameters to simvizi.py and simviz2.py,
not just m! This is accomplished by specifying the option name (without the
leading hyphen), the minimum value, the maximum value, and the increment
as command-line arguments:

option_name min max incr [options as for simviz2.py]

An example might be

b 02 0.25 -yaxis -0.5 0.5 -A 4

This implies executing a set of experiments where the b parameter is varied.
All the hardcoding of m as variable and part of filenames etc. in loop4simvizl.py
must be parameterized using a variable holding the option name. This vari-
able has the name option_name and the associated numerical value is stored in
value in the loop4simviz2.py script. For example, the value parameter runs
from 0 to 2 in steps of 0.25 and option_name equals b in the previous exam-
ple on a specific loop4simviz2.py command. The complete loopdsimviz2.py
script appears next.

64

2. Getting Started with Python Scripting

#!/usr/bin/env python
nnn
As loop4simvizl.py, but here we call simviz2.py, make movies,
and also allow any simviz2.py option to be varied in a loop.
nnn
import sys, os, commands
usage = ’Usage: %s parameter min max increment ’\
’[simviz2.py options]’ % sys.argv[0]

try:

option_name = sys.argv[1]

min = float(sys.argv[2])

max = float(sys.argv[3])

incr = float(sys.argv[4])
except:

print usage; sys.exit(1)

simviz2_options = ’ ’.join(sys.argv[5:])

html = open(’tmp_%s_runs.html’ % option_name, ’w’)
html.write(’<HTML><BODY BGCOLOR="white">\n’)
psfiles = [] # plot files in PostScript format
pngfiles = [1 # plot files in PNG format

value = min
while value <= max:
case = ’tmp_Y%s_%g’ % (option_name, value)
cmd = ’python simviz2.py %s -%s %g -case %s’ % \
(simviz2_options, option_name, value, case)
print ’running’, cmd
failure, output = commands.getstatusoutput (cmd)
psfile = os.path.join(case,case+’.ps’)
pngfile = os.path.join(case,case+’.png’)
html.write(’<H1>Ys=)g</H1> \n’ \
% (option_name, value, pngfile))
psfiles.append(psfile)
pngfiles.append(pngfile)
value += incr
cmd = ’convert -delay 50 -loop 1000 %s tmp_%s.gif’ \
% (> °.join(pngfiles), option_name)
print ’converting PNG files to animated GIF:\n’, cmd
failure, output = commands.getstatusoutput (cmd)
html.write(’<H1>Movie</H1> \n’ % \
option_name)
cmd = ’ps2mpeg.py %s’ % ’ ’.join(psfiles)
print ’converting PostScript files to an MPEG movie:\n’, cmd
failure, output = commands.getstatusoutput (cmd)
os.rename(’movie.mpeg’, ’tmp_Y%s.mpeg’ % option_name)
html.write(’<H1>MPEG Movie</H1>\n’ \
% option_name)
html.write(’</BODY></HTML>\n’)
html.close()

cmd = ’epsmerge -o tmp_%s_runs.ps -x 2 -y 3 -par %s’ \
% (option_name, ’ ’.join(psfiles))
print cmd

failure, output = commands.getstatusoutput(cmd)
failure, output = commands.getstatusoutput(\
’ps2pdf tmp_Y%s_runs.ps’ % option_name)

2.4. Conducting Numerical Experiments 65

Note that all file and directory names generated by this script start with tmp_
so it becomes easy to clean up all files from a sequence of experiments (in
Unix you can just write rm -rf tmp_x).

With this script we can perform many different types of numerical exper-
iments. Some examples on command-line arguments to loop4simviz2.py are
given below.

— study the impact of increasing the mass:
m 0.1 6.1 0.5 -yaxis -0.5 0.5 -noscreenplot

— study the impact of increasing the damping:
b 02 0.25 -yaxis -0.5 0.5 -A 4 -noscreenplot

— study the impact of increasing a nonlinear spring force:
c 530 2 -yaxis -0.7 0.7 -b 0.5 -func siny -noscreenplot

For example, in the experiment involving the spring parameter ¢ you get
the following files, which can help you in understanding how this parameter
affects the y(t) solution:

tmp_c.gif # animated GIF movie

tmp_c.mpeg # MPEG movie

tmp_c_runs.html # browsable HTML document with plots and movies
tmp_c_runs.ps # printable PostScript document with plots
tmp_c_runs.pdf # PDF version of tmp_c_runs.ps

The reader is strongly encouraged to run, e.g., one of the three suggested
experiments just shown and look at the generated HTML and PostScript
files as this will illustrate the details explained in the text. Do not forget to
clean up all the tmp* files after having played around with the loop4simviz2.py
script.

A more general and advanced tool for running series of numerical exper-
iments, where several parameters may have multiple values, is presented in
Chapter 12.1.

Other Applications. From the example with the oscillator simulations in
this section you should have some ideas of how scripting makes it easy to
run, archive, and browse series of numerical experiments in your application
areas of interest. More complicated applications may involve large directory
trees and many nested HTML files, all automatically generated by a steering
script. Those who prefer reports in N TEX format can easily adapt our example
on writing HTML files (see Exercise 2.12 for useful hints). With Numerical
Python (Chapter 4) you can also conveniently load simulation results into
the Python script for analysis and further processing.

You may well stop reading at this point and start exploring Python script-
ing in your own projects. Since the book is thick, there is much more to learn
and take advantage of in computational science projects, but the philosophy
of the simviz1.py and loop4simviz2.py examples has the potential of making
a significant impact on how you conduct your investigations with a computer.

66 2. Getting Started with Python Scripting

2.5 File Format Conversion

The next application is related to the file writing and reading example in
Chapter 2.2. The aim now is to read a data file with several time series
stored column-wise and write the time series to individual files. Through this
project we shall learn more about list and file processing and meet a useful
data structure called dictionary (referred to as hash, HashMap, or associative
array in other languages). We shall also collect parts of the script in reusable
functions, which can be called when the script file is imported as a module
in other scripts.

Here is an example of the format of the input file with several time series:

some comment line

1.5
measurements modell model2
0.0 0.1 1.0
0.1 0.1 0.188
0.2 0.2 0.25

The first line is a comment line. The second line contains the time lag At
in the forthcoming data. Names of the time series appear in the third line,
and thereafter the time series are listed in columns. We can denote the i-th
time series by y;(kAt), where k is a counter in time, k = 0,1,2,...,m. The
script is supposed to store the i-th time series in a file with the same name
as the ¢-th word in the headings in the third line, appended with a extension
.dat. That file contains two columns, one with the time points kAt and the
other with the y;(kAt) values, k = 0,1,...,m. For example, when the script
acts on the file listed above, three new files measurements.dat, modell.dat,
and model2.dat are created. The file modell.dat contains the data

w = o
[é)]
[oNeoNe]
N =

Most plotting programs can read and visualize time series stored in this
simple two-column format.

2.5.1 A Simple Read/Write Script

The program flow of the script is listed below.
1. Open the input file, whose name is given as the first command-line argu-
ment. Provide a usage message if the command-line argument is missing.
2. Read and skip the first (comment) line in the input file.
3. Extract At from the second line.

2.5. File Format Conversion 67

4. Read the names of the output files by splitting the third line into words.
Make a list of file objects for the different files.

5. Read the rest of the file, line by line, split the lines into the y; values and
write each value to the corresponding file together with the current time
value.

The resulting script can be built of constructions met earlier in this book.
The reader is encouraged to examine the script code as a kind of summary
of the material so far.

#!/usr/bin/env python
import sys, math, string
usage = ’Usage: %s infile’ ¥ sys.argv[0]

try:

infilename = sys.argv[1]
except:

print usage; sys.exit(1)

ifile = open(infilename, ’r’) # open file for reading

read first comment line (no further use of it here):
line = ifile.readline()

next line contains the increment in t values:
dt = float(ifile.readline())

next line contains the name of the curves:
ynames = ifile.readline().split()

list of output files:
outfiles = []
for name in ynames:
outfiles.append(open(name + ’.dat’, ’w’))

t =0.0 # t value
read the rest of the file line by line:
for line in ifile:
yvalues = line.split()
if len(yvalues) == 0: continue # skip blank lines
for i in range(len(outfiles)):
outfiles[i] .write(’%12g %12.5e\n’ 7% \
(t, float(yvalues[il)))
t += dt
for file in outfiles: file.close()

The source is found in src/py/intro/convertl.py. You can test it with the
input file .convert_infilel located in the same directory as the script.

68 2. Getting Started with Python Scripting

2.5.2 Storing Data in Dictionaries and Lists

We shall make a slightly different version of the script in order to demonstrate
some other widely used programming techniques and data structures. First
we load all the lines of the input file into a list of lines:

f = open(infilename, ’r’); lines = f.readlines(); f.close()

The At value is found from lines[1] (the second line). The y;(kAt) values
are now to be stored in a data structure y with two indices: one is the name
of the time series, as found from the third line in the input file, and the
other is the k£ counter. The Python syntax for looking up the 3rd value in a
time series having the name modell reads y[’model1’] [2]. Technically, y is a
dictionary of lists of floats. One can think of a dictionary as a list indexed
by a string. The index is called a key. Each entry in our dictionary y is a list
of floating-point values. The following code segment reads the names of the
time series curves and initializes the data structure y:

the third line contains the name of the time series:
ynames = lines[2].split()

store y data in a dictionary of lists of floats:

y={} # declare empty dictionary
for name in ynames:
y[name] = [] # empty list (of y values of a time series)

load data from the rest of the lines:
for line in lines[3:]:
yvalues = [float(x) for x in line.split()]
if len(yvalues) == 0: continue # skip blank lines
i =0 # counter for yvalues
for name in ynames:
y[name] .append(yvalues[i]); i += 1

The syntax lines[3:] means the sublist of lines starting with index 3 and
continuing to the end, making it very convenient to iterate over a part of a
list. The statement

yvalues = [float(x) for x in line.split()]

splits line into words, i.e. list of strings, and then converts this list to a
list of floating-point numbers by applying the function float to each word.
More information about this compact element-by-element manipulation of
lists appears on page 87. The continue statement, here executed if the line is
blank (i.e., the yvalues list is empty), drops the rest of the loop and continues
with the next iteration.

The final loop above needs a counter i for indexing yvalues. A mnicer
syntax is

for name, yvalue in zip(ynames, yvalues):
y [name] . append (yvalue)

2.5. File Format Conversion 69

The zip construction allows iterating over multiple lists simultaneously with-
out using explicit integer indices (see also page 87).
At the end of the script we write the ¢ and y values to file:

for name in y: # run through all keys in y
ofile = open(name+’.dat’, ’w’)
for k in range(len(y[name])):
ofile.write(’%12g %12.5e\n’ % (k*dt, y[name][k]))
ofile.close()

We remark that we have no control of the order of the keys when we iter-
ate through them in the first for loop. This modified version of converti.py
is called convert2.py and found in the directory src/py/intro. A more ef-
ficient version, utilizing NumPy arrays, is suggested in Exercise 4.10. More
information on dictionary operations is listed in Chapter 3.2.5.

2.5.3 Making a Module with Functions

The previous script, convert2.py, reads a file, stores the data in the file in
a convenient data structure, and then dumps these data to a set of files. It
could be convenient to increase the flexibility such that we can read the file
into data structures, then optionally compute with these data structures, and
finally dump the data structures to new files. Such flexibility requires us to
do two things. First, we need to structure the script code in two functions
performing the principal actions: loading data and dumping data. Second, we
need to enable these functions to be called from another script. In this other
script, we must import the functions from a module.

Collecting Statements in Functions. The statements in convert2.py associ-
ated with loading the file data into a dictionary of lists can be collected in
a function load_data. We let the name of the file to read be an argument to
the function, and at the end we return the y dictionary of lists, plus the time
increment dt, to the calling code:

def load_data(filename):
f = open(filename, ’r’); lines = f.readlines(); f.close()
dt = float(lines[1])
ynames = lines[2].split()

y = {}
for name in ynames: # make y a dictionary of (empty) lists
y[namel = []

for line in lines[3:]:
yvalues = [float(yi) for yi in line.split()]
if len(yvalues) == 0: continue # skip blank lines
for name, value in zip(ynames, yvalues):
y [name] . append (value)
return y, dt

The load_data function returns two variables. This might look strange for
programmers coming from Fortran, C/C++, and Java. In those languages

70 2. Getting Started with Python Scripting

multiple output variables from functions are transferred via function argu-
ments, while in Python all output variables are (usually) returned as shown
above. The calling code will typically assign the result of the function call to
two variables:

y, dt = load_data(filename)

Chapter 3.3 contains more information on Python functions and how to han-
dle input and output arguments.

The function for dumping the dictionary of lists to files simply contains
the last for loop in convert2.py:

def dump_data(y, dt):
write out 2-column files with t and y[name] for each name:
for name in y.keys():
ofile = open(name+’.dat’, ’w’)
for k in range(len(y[namel)):
ofile.write(’%12g %12.5e\n’ % (k*dt, y[name][k]))
ofile.close()

Making a Module. To use these functions in other scripts, we should make
a module containing the two functions. This is easy: we just put the two
functions in a file, say convert3.py. We can then use this module convert3 as
follows in another script:

import convert3
y, timestep = convert3.load_data(’.convert_infilel’)
convert3.dump_data(y, timestep)

Having split the load and dump phases, we may add operations on the y
data in this script. For small computations we may well iterate over the
list, but for more heavy computations with large amounts of data, we should
convert each list in y to a NumPy array and use NumPy functions for efficient
computations (see Chapters 2.2.5 and 4).

Instead of writing a script that applies the convert3 module, we may use
the module in an interactive Python shell, such as IPython or the IDLE
shell (see Chapter 2.2.6). Typically, we would call 1load_data as an interactive
statement and then interactively inspect y and compute with its entries.

Eaxtending the Module with a Script. We showed above how to write a short
script for calling up the main functionality in the convert3 module. This script
is just an alternative implementation of the convert2.py script. However, the
application script is tightly connected to the convert3 module, and Python
therefore offers the possibility to let a file act as either a module or a script:
if it is imported it is a module, and if the file is executed it is a script. The
convention is to add the application script in an if block at the end of the
module file:

2.5. File Format Conversion 71

if __name__ == ’__main__"’:
usage = ’Usage: %s infile’ ¥ sys.argv[0]
import sys
try:
infilename = sys.argv[1]
except:
print usage; sys.exit(1)
y, dt = load_data(infilename)
dump_data(y, dt)

The __name__ variable is always present in a Python program or module. If
the file is executed as a script, __name__ has the value ’__main__’. Otherwise,
the file is imported as a module, and the if test evaluates to false. With
this if block we both show how the module functions can be used and we
provide a working script which performs the same steps as the “flat” script
convert2.py. The reader is referred to Appendix B.1 for more information on

building and using Python modules.

2.5.4 Exercises

Exercise 2.16. Combine two-column data files to a multi-column file.

Write a script inverseconvertl.py that performs the “inverse process” of
convertl.py (or convert2.py). For example, if we first apply convertl.py to
the specific test file . convert_infilel in src/py/intro, which looks like

some comment line

1.5
tmp-measurements tmp-modell tmp-model2
0.0 0.1 1.0
0.1 0.1 0.188
0.2 0.2 0.25

we get three two-column files tmp-measurements.dat, tmp-modell.dat, and
tmp-model2.dat. Running

python inverseconvertl.py outfile 1.5 \
tmp-measurements.dat tmp-modell.dat +tmp-model2.dat

should in this case create a file outfile, almost identical to .convert_infilel;
only the first line should differ (inverseconvertl.py can write anything on
the first line). For simplicity, we give the time step parameter explicitly as a
command-line argument (it could also be found from the data in the files).
Hint: When parsing the command-line arguments, one needs to extract the
name modell from a filename modell.dat stored in a string (say) s. This can
be done by s[:-4] (all characters in s except the last four ones). Chapter 3.4.5
describes some tools that allow for a more general solution to extracting the
name of the time series from a filename. o

72 2. Getting Started with Python Scripting

Ezercise 2.17. Read/write Excel data files in Python.

Spreadsheet programs, such as Microsoft Excel, can store their data in
a file using the so-called CSV (Comma Separated Values) data format. The
row in the spreadsheet is written as one line in the file with all column values
separated by commas. Here is an example, found as src/misc/excel_data.csv:

"E=10 Gpa, nu=0.3, eps=0.001",,,,
llrun 2"””

393

"x","model 1","model 2",,"measurements"

One could think of reading such comma-separated files in Python simply
by applying line.split(’,’) constructions. Explain why that will fail in the
present case. Fortunately, Python has a module csv that can be used to
read and write files in the CSV format and hence enable data exchange with
spreadsheet programs. The construction

import csv

f = open(filename, ’r’)
reader = csv.reader(f)
for row in reader:

gives access to each row in the spreadsheet as a list row, where the elements
contain the data in the corresponding columns. Read the excel_data.csv file
and print out the row list to see how the data are represented in Python.
Then extract the data in the columns in separate lists, subtract the model1
and measurements data to form a new list, say errors. We want to write a
new file in the CSV format containing the x and errors data in the first two
columns of a spreadsheet. The cvs module enables data writing by

f = open(filename, ’w’)
writer = csv.writer(f)
writer.writerows (rows)

where rows is a list of list such that rows[i] [j] holds the data in row i and
column j. Load the new CVS file into a spreadsheet program like Openoffice
or Excel and examine the data. o

Chapter 3

Basic Python

The present chapter provides an overview of functionality frequently needed
in Python scripts, including file reading and writing, list and dictionary oper-
ations, simple text processing, writing and calling Python functions, checking
a file’s type, size, and age, listing and removing files, creating and removing
directories, and traversing directory trees. In a sense, the overview is a kind
of quick reference with embedded examples containing useful code segments
in Python scripts. A corresponding overview of more advanced Python func-
tionality is provided in Chapter 8. For real, complete quick references, see
links in doc.html.

The many Python modules developed as part of this book project, and
referred to in this and other chapters, are collected in a package scitools. This
package must be downloaded and installed (by running a setup.py script)
as described in Chapter 1.2. The various modules in scitools are accessible
through the dot notation, e.g., scitools.misc denotes the misc module within
the scitools package. Many of the functions referred to in the forthcoming
sections are found in the misc module.

Lots of examples are from now on presented in interactive mode (see
Chapter 2.2.6) such that it is easy to see the result of Python expressions or
the contents of variables. According to the tradition in the Python literature,
we prefix interactive Python commands with the prompt >>>, while output
lines have no prefix. Continuation of an input line is indicated by the ...
prompt:

>>> x = 0.1
>>> def f(x):
. return math.sin(x)

>>> f(x)
0.099833416646828155

Note that these interactive sessions look different in IPython, because the
prompt is different, but the input and output are the same.

74 3. Basic Python

3.1 Introductory Topics

Some recommended Python documentation to be used in conjunction with
the presented book is mentioned in Chapter 3.1.1. Chapter 3.1.2 lists the
syntax of basic contol statements in Python: if tests, for loops, while loops,
and the break and continue statements. Running stand-alone programs (or
operating system commands in general) is the focus of Chapter 3.1.3. A
summary of basic file reading and writing is listed in Chapter 3.1.4, while
controlling the output format, especially in text containing numbers, is the
subject of Chapter 3.1.5.

3.1.1 Recommended Python Documentation

The exposition in this book is quite brief and focuses on “getting started”
examples and overview rather than in-depth treatment of language-specific
topics. In addition to the book you will therefore need complete references to
Python programming.

The primary Python reference is the official Python documentation to
which you can find relevant links in the file doc.html (the file comes with
the software associated with this book, see Chapter 1.2). The documents are
available as web pages and as printable PDF /PostScript files. Of particular
importance in the official documentation is the Python Library Reference
[34]. The doc.html file contains a useful link to the index of this reference.
The reader is strongly encouraged to become familiar with the Python Li-
brary Reference. The official Python documentation also contains a Python
Tutorial [35] with an overview of language constructs. The doc.html has a
link to a handy facility for searching the documents in the electronic Python
documentation.

Another important documentation is pydoc, which comes with the stan-
dard Python distribution. Writing pydoc X on the command line brings up
the documentation of any module or function X that Python can find, includ-
ing your own modules. The pydoc documentation is slightly different from
the Python Library Reference. Contrary to the latter, pydoc always lists all
classes and functions found in a module.

Beazley’s Python reference book [2] extends the material in the Python
Library Reference and is highly recommended. An excellent and more com-
prehensive reference book is Martelli’s “Python in a Nutshell” [22]. An even
more voluminous reference is [3] by Brown. A slimmer alternative, focusing
on Python’s standard library modules, is Lundh [18]. Windows users may
find “Python Programming on Win 32” [11] helpful. Many programmers find
quick references very handy: the pocket book [19] or the electronic quick
references to which there is a link in in doc.html.

3.1. Introductory Topics 75

A recommended textbook on the Python language, which also covers some
advanced material, is the “Quick Python Book” [12]. The “Learning Python”
book [21] represents an alternative tutorial. The treatment of GUI building
with Python in these books is quite limited, but there is fortunately a com-
prehensive textbook [10] devoted to creating professional GUIs with Python.
More advanced aspects of Python are very well treated in the second edition
of “Programming Python” [20]. A fairly complete collection of Python books
is available from the Python home page www.python.org.

3.1.2 Control Statements

If Tests and True/False Ezxpressions. The if-else statement can be illus-
trated as follows:

if answer == ’copy’:
copyfile = ’tmp.copy’

elif answer == ’run’ or answer == ’execute’:
run = True

elif answer == ’quit’ and not eps < eps_crit:
quit = True

else:

print ’Invalid answer’, answer

The test if var returns false if var is None, a numeric type with value 0, a
boolean with value False, an empty string (’’), an empty list ([1), an empty
tuple (Q)), or an empty dictionary ({}). Otherwise, the if test is true.

For Loops. Looping over a list is done with the for statement:

for arg in sys.argv[1:]:
work with string arg

An explicit integer index can also be used:

for i in range(l, len(sys.argv), 1):
work with string sys.argv[il

More advanced for loops are covered in Chapter 3.2.4.

While Loops. The syntax of a while loop is illustrated next:

r =0; dr = 0.1

while r <= 10:
print ’sin(%.1£f)=Yg’ % (r, math.sin(r))
r += dr

The range function only generates integers so for loops with a real number
counter are better implemented as while loops (which was illustrated above
for a counter r running as 0,0.1,0.2,...,9.9,10).

The while var condition evaluates to true or false in the same way as the
if var test.

76 3. Basic Python

Break and Continue for Modified Loop Behavior. The break statement breaks
out of a loop:

f = open(filename, ’r’)

while 1:
line = f.readline()
if line == ’’: # empty string means end of file

break # jump out of while loop
process line

With continue the program continues with the next iteration in the loop:

files = os.listdir(os.curdir) # all files/dirs in current dir.
for file in files:
if not os.path.isfile(file):
continue # not a regular file, continue with next
<process file>

3.1.3 Running Applications

A simple way of executing a stand-alone application, say

cmd = ’myprog -c file.1l -p’ # run application myprog

or any operating system command cmd, is to employ the technique used in
the simviz1.py script from Chapter 2.3.5:

import commands

failure, output = commands.getstatusoutput(cmd)

if failure:
print ’Execution of "Ys" failed!\n’ % cmd, output
sys.exit(1)

The returned output variable is a string containing the text written by the
command to both standard output and standard error. Processing this output
can be done by

for line in output.splitlines():
process line

The scitools.misc module has a function system that encapsulates an
operating system call, captures its output, and performs various actions
(sys.exit, raise excetion, print warning, or continue silently) in case of fail-
ure. This function can save quite some typing in scripts with many operating
system calls.

Python versions older than 2.4 had several tools for executing operat-
ing system commands (the commands and popen2 modules and functions like
os.system, os.popen*, os.spawn*, etc.). These tools are now replaced by the
subprocess module. The standard way of executing an application without
capturing its output is to use the call function:

3.1. Introductory Topics 7

from subprocess import call
try:
returncode = call(cmd, shell=True)
if returncode:
print ’Failure with returncode’, returncode; sys,exit(1)
except OSError, message:
print ’Execution failed!\n’, message; sys.exit(1)

More advanced use of subprocess employs its Popen object. For example,
capturing the output of a command is done by:

from subprocess import Popen, PIPE
p = Popen(cmd, shell=True, stdout=PIPE)
output, errors = p.communicate()

Here, output and errors are strings containing standard output and standard
error, respectively.

To feed data to an application, we can use a redirection of standard input
to a file:

cmd = ’myprog -c file.1l -p < input_file’

Alternatively, we can use Popen to feed data from the Python script to the
application. Here is an an example on how to instruct the interactive Gnuplot
program to draw a sine function in a plot window!:

pipe = Popen(’gnuplot -persist’, shell=True, stdin=PIPE).stdin
pipe.write(’set xrange [0:10]; set yrange [-2:2]\n’)
pipe.write(’plot sin(x)\n’)

pipe.write(’quit’) # quit Gnuplot

Sometimes it is desirable to establish a two-way communication with an
external application, i.e., we want to pipe data to the application and record
the application’s response. For this purpose the pexpect module is recom-
mended (rather than subprocess.Popen which may easily hang in two-way
communications). With pexpect (see doc.html for a link) it becomes possible
to automate execution of interactive programs.

The statement after an operating system command is not executed before
the operating system command has terminated. If the script is supposed to
continue with other task while the application is executing, one must run
the application in the background. This is enabled by adding an ampersand
& on Unix or begin the command with start on Windows. Coding of such
platform-specific actions is exemplified on page 323. An alternative solution is
to use threads (see Chapter 8.5.4) for running a system command in parallel
with the script. The simplest approach may look like this:

import threading
t = threading.Thread(target=commands.getstatusoutput, args=(cmd,))
t.start()

! This example does not work on Windows because the Windows version of Gnuplot
uses a GUI instead of standard input to fetch commands.

78 3. Basic Python

To capture the output, one has to derive a subclass of Thread and implement
a run method, see Chapter 8.5.4 for details.

3.1.4 File Reading and Writing

Here are some basic Python statements regarding file reading:

infilename = ’.myprog.cpp’
infile = open(infilename, ’r’) # open file for reading

read the file into a list of lines:
lines = infile.readlines()

for line in lines:
process line

read the file line by line:
for line in infile:
process line

alternative reading, line by line:
while 1:

line = infile.readline()

if not line: break

process line

load the file into a string instead:
filestr = infile.read()

read n characters (bytes) into a string:
chunck = infile.read(n)

infile.close()

The for line in infile construction is fine when we want to pass through
the whole file in one loop. The classical Python construction with an “infinite”
while loop and a termination criterion inside the loop is better suited when
different chunks of the file require different processing.

In case you open a non-existing file, Python will give a clear error message,
see the opening of Chapter 8.8.

Reading from standard input is like reading from a file object, and the
name of this object is sys.stdin. There is, of course, no need to open and close
sys.stdin. Reading data from the keyboard is normally done by the obvi-
ous command sys.stdin.readline(), or by the special function raw_input ().
With sys.stdin.read() one can read several lines, terminated by Ctrl-D.

Basic file writing is illustrated by the following code segment:

outfilename = ’.myprog2.cpp’
outfile = open(outfilename, ’w’) # open file for writing
line_no = 0 # count the line number in the output file
for line in list_of_lines:

line_no += 1

3.1. Introductory Topics 79

outfile.write(’%4d: %s’ % (line_no, line))
outfile.close()

Writing of a string is performed with write, whereas writing a list of lines is
performed with writelines:

outfile.write(some_string)
outfile.writelines(list_of_lines)

One can of course append text to a new or existing file, accomplished
by the string ’a’ as the second argument to the open function. Below is an
example of appending a block of text using Python’s multi-line (triple quoted)
string:

outfile = open(outfilename, ’a’) # open file for appending text
outfile.write("""
/*
This file, "%(outfilename)s", is a version
of ")(infilename)s" where each line is numbered
*/

nnn % vars())

For printing to standard output, one can use print or sys.stdout.write. The
sys.stdout object behaves like an ordinary file object. The print function
can also be used for writing to a file:

f = open(’somefile’, ’w’)
print >> f, ’text...’

Python 2.6 offers an alternative construction for reading and writing files,
using the new with statement. Until version 2.6 becomes available, one can
make the with keyword available by writing

from __future__ import with_statement

File reading can be done like this:

with open(somefile, ’r’) as f:
for line in f:
<process line>

When the execution leaves the with block the £ file object is automatically
closed.

3.1.5 Output Formatting

The following interactive Python shell session exemplifies alternative ways of
controlling the output format:

80

3. Basic Python

>>> r 1.2
>>> s = math.sin(r)

>>> # print adds a space between comma-separated arguments:
>>> print "sin(", r, ")=", s
sin(1.2)= 0.932039085967

>>> # use + between the strings to avoid any extra space:
>>> print ’sin(’ + str(r) + ’)=’ + str(s)
sin(1.2)=0.932039085967

>>> # format control via the printf-like syntax:
>>> print "sin(%g)=%12.5e" % (r,s)
sin(1.2)= 9.32039e-01

>>> # format control via variable interpolation:
>>> print ’sin(%(r)g)=%(s)12.5e’ % vars()
sin(1.2)= 9.32039e-01

Instead of print you can write to sys.stdout in the same way as you write
to file objects:

sys.stdout.write(’sin(lg)=%12.5e\n’ % (r,s))

Note that write does not add a newline, whereas print adds a newline unless
you end the print statement with a comma.

There are numerous specifications of a format string. Some examples are

listed below.

%d : an integer

%5d : an integer written in a field of width 5 chars

%-5d : an integer written in a field of width 5 chars,
but adjusted to the left

%05d : an integer written in a field of width 5 chars,
padded with zeroes from the left (e.g. 00041)

g : a float variable written in %f or ’%e notation

he : a float variable written in scientific notation

%E : as %e, but upper case E is used for the exponent

%G : as %g, but upper case E is used for the exponent

%11.3e : a float variable written in scientific notation
with 3 decimals in a field of width 11 chars

%.3e : a float variable written in scientific notation
with 3 decimals in a field of minimum width

%5.1f : a float variable written in fixed decimal notation
with 1 decimal in a field of width 5 chars

%.3f : a float variable written in fixed decimal form
with 3 decimals in a field of minimum width

%s : a string

%-20s : a string adjusted to the left in a field of
width 20 chars

The %s format can in fact be used for any variable x: an automatic string
conversion by str(x) is performed if x is not a string.

For a complete specification of the possible printf-style format strings,

follow the link from the item “printf-style formatting” in the index of the

3.2. Variables of Different Types 81

Python Library Reference. Other relevant index items in this context are
“vars” and “string formatting”. See also Chapter 8.7.
Variable interpolation does not work with list or dictionary entries, e.g.,

‘al%(i)dl=%(alil)g’ % vars() # illegal!

In this case you need to apply the printf-style formatting
*alidl=%g’ % (i, alil)

We mention here that there is a Python module Itpli5 (available on the
Internet), which offers the same type of interpolation as in Perl. That is, one
can work with expressions like ’a[$il=$al[i]’ in the previous example.

3.2 Variables of Different Types

The next sections describe basic operations with variables of Python’s most
common built-in types. Chapter 3.2.1 deals with boolean variables, Chap-
ter 3.2.2 with the handy None variable, and Chapter 3.2.3 discusses use of
numbers, i.e, integers, floating-point variables, and complex variables. Fre-
quent operations on lists and tuples are listed in Chapter 3.2.4, while Chap-
ter 3.2.5 addresses frequent operations on dictionaries. Chapters 3.2.6-3.2.8
deal with strings, including split and join operations, text searching, text
substitution, and an overview of common regular expression? functionality.
User-created variable types, defined through classes, are outlined in Chap-
ter 3.2.9, while more details of class programming are left for Chapter 8.6.
Examination of what b = a really means and how to copy objects in vari-
ous ways constitute the contents of Chapter 3.2.10. Finally, Chapter 3.2.11
explains how one can determine the type of a given variable.

3.2.1 Boolean Types

Originally, Python used integers (as in C) to represent boolean values: 0 cor-
responds to false, while all other integer values are considered true. However,
it is good programming practice to limit an integer’s values in a boolean
context to 0 and 1.

Recent Python versions offer a special boolean type, bool, whose values
are True or False. These values can be interchanged with 1 and 0, respectively.
The script src/py/intro/booldemo.py demonstrates how True and False can
be interchanged with integers.

2 Regular expressions are introduced and explained in detail in Chapter 8.2.

82 3. Basic Python

3.2.2 The None Variable

Python defines a special variable None denoting a “null object”, which is
convenient to use when a variable is available but its value is considered
“undefined”:

answer = None
<may update answer from other data...>
if answer is None:
quit = True
elif answer == ’quit’:
quit = True
else:
quit = False

To check if a variable answer is None or not, always use if answer is None or
if answer is not None. Testing just if not amswer is dangerous, because the
test is true if answer is an empty string (or empty list, dictionary, etc., see
pages 75 and 392), although it is also true if answer is None.

At this point we might mention the difference between the is and ==
operators: is tests for object identity, while == tests if two objects have the
same value (i.e., the same content). There is only one instance of the null
object None so if answer is None tests whether answer is the same object as
the null object. With if answer == None we test if the value of answer is the
same as the value of the null object (and that works well too). Chapter 3.2.10
has several examples on the difference between the is and == operators.

Instead of using None to mark a variable as “undefined”, we may set the
variable to an empty object of the appropriate kind and test if the variable
is true, see page 75.

3.2.3 Numbers and Numerical Expressions

There are four built-in numeric types in Python:

— Integers of type int: 0, 1, -3.

Long integers of type long: OL, 1L, -3L. These integers can have arbitrary
length.

Double precision real numbers of type float: 0., .1, -0.0165, 1.89E+14.

Double precision complex numbers of type complex: 0j, 1+.5j, -3.14-2j
(j denotes the imaginary unit v/—1).

Python’s int and float correspond to long int and double in C.

The real and imaginary parts of a complex variable r are obtained by
r.real and r.imag, respectively (these are float variables). The cmath module
implements the mathematical functions in math for complex types. The next
function works with cmath and complex numbers:

3.2. Variables of Different Types 83

def roots(a, b, c):
nnn
Return two roots of the quadratic algebraic equation
ax"2 + bx + ¢ = 0, where a, b, and c may be complex.
nnn
import cmath # complex functions
q = bxb - 4xaxc
rl = -(b - cmath.sqrt(q))/(2xa)
r2 = -(b + cmath.sqrt(q))/(2*a)
rl and r2 are complex because cmath.sqrt returns complex,
convert to real if possible:
if rl.imag == 0.0: rl = rl.real
if r2.imag == 0.0: r2 = r2.real
if rl == r2: 12 = None # use r2=None to indicate double root
return rl, r2

This code can be made more compact if we utilize the smarter sqrt func-
tion from SciPy (Chapter 4.4.2). That implementation of sqrt transparently
returns a float or a complex number, dependent on the argument3:

def roots(a, b, c):
from scipy import sqrt
q = bxb - 4xkaxc
if q == O:
return -b/(2.0*a), None
else:
return -(b - sqrt(q))/(2xa), -(b + sqrt(q))/(2*a)

Python supports the same numerical expressions as C. Programmers being
used to Perl or Tcl should notice that strings are not automatically trans-
formed to numbers when required. Here is a sample code:

b= 1.2 # b is a number

b=""1.2 # b is a string

a=0.5%*b # illegal: b is not converted to a real number
a = 0.5 * float(b) # this works

Number comparisons can easily confuse you if you happen to mix strings and
numbers. Suppose you load sys.argv[1] into a variable b and that 1.2 was
supplied as the first command-line argument. The test b < 100.0 is then false:
b is a string, and we compare a string and a floating-point number. No error
messages are issued in this case, showing how important it is to explicitly
convert input strings to the right type, here b=float (sys.argv[1]).

In Python, any type of objects (numbers, strings, user-defined classes,
etc.) are compared using the standard operators ==, !'= <, <= and so on.
In many other dynamically typed languages, such as Perl, Tcl, and Bash,
different operators are used for comparing numbers and strings.

3 Note the 2.0 factor when q==0 to ensure floating-point division. With just 2, the
fraction implies integer division if a and b are given as integers, cf. page 84. The
general root expressions have a sqrt call that returns float, which ensures correct
float division.

84 3. Basic Python

Conversion between strings and numbers can be performed as exemplified
below.

>>> s = ’13.8° # string

>>> float(s) # convert s to float
13.800000000000001

>>> int(s) # converting s to int does not work

ValueError: invalid literal for int(): 13.8

>>> f = float(s)

>>> int (f) # truncate decimals

13

>>> complex(s)

(13.800000000000001+03)

>>> # convert float to string (three different alternatives):
>>> Y (f)g’ h varsQ, kg’ h £, str(f)

(’13.8’, ’13.8°, ’13.8’)

Python programmers must be very careful with mathematical expressions
involving integers and the division operator. As in many other languages,
division of two integers implies integer division, i.e., for integers p and q, p/q
is the largest integer that when multiplied by q becomes less than or equal
to p.

>>> p=3; gq=6 # define two integers

>>> p/q # Python applies integer division

0

>>> float(p)/q # one float operand yields float division

0.5

>>> from __future__ import division # turn off integer division
>>> p/q # now this is float division

0.5

Integer division is a common source of error in numerical codes.

3.2.4 Lists and Tuples

Python lists can contain numbers, strings, and any other data structures in
an arbitrarily nested, heterogeneous fashion. A list is surrounded by square
brackets, and items are separated by commas, e.g.,

arglist = [myargl, ’displacement’, "tmp.ps"]

Note that myargl can be of any type, not necessarily a string as the two other
items.

Python has in some sense two types of lists: ordinary lists enclosed in
brackets,

[iteml, item2, ...]
and tuples enclosed in standard parenthesis:

(iteml, item2, ...)

3.2. Variables of Different Types 85

The parenthesis can sometimes be left out. This will be illustrated in forth-
coming examples.
Empty lists and tuples are created by

mylist = []
mytuple = ()

Ordinary lists are mutable, meaning that the contents can be changed
in-place. This makes lists behave like ordinary arrays known from Fortran or
C-like languages:

words = [’tuple’, ’rhymes with’, ’couple’]
words[1] = ’and’ # can change the second list item

Tuples are immutable objects whose contents cannot be altered:

words = (’tuple’, ’rhymes with’, ’couple’)
words[1] = ’and’ # illegal - Python issues an error message

Numbers, strings, and tuples are immutable objects while lists, dictionaries,
and instances of user-defined classes are mutable.

Tuples with One Item. A trailing comma is needed after the element in
tuples that has one element only, e.g., mytuple=(str1,). Without the comma,
(str1) is just a variable enclosed in parenthesis, and mytuple just becomes
a reference to stri. If you want mytuple to be a tuple, you need the trailing
comma. On the other hand, declaring a list with a single item needs no
comma, e.g., mylist=[str1], but a comma does not harm: mylist=[str1,].

Adding, Indexing, Finding, and Removing List Items. Adding an object
myvar2 to the end of a list arglist is done with the append function:

arglist.append(myvar2)

Extracting list or tuple items in separate variables can be done through
these constructions:

[filename, plottitle, psfile] = arglist
or with tuples:

(filename, plottitle, psfile) = arglist
filename, plottitle, psfile = arglist

The arglist variable is a list or tuple and must in this case have exactly three
items, otherwise Python issues an error. Alternatively, one can use explicit
indexing:

filename = arglist[0]
plottitle = arglist[1]
psfile = arglist[2]

Searching for an item ’tmp.ps’ and deleting this item, if arglist is a list,
can be done with

86 3. Basic Python

i = arglist.index(’tmp.ps’) # find index of the ’tmp.ps’ item

del arglist[i] # delete item with index i
or simpler
arglist.remove(’tmp.ps’) # remove item with value ’tmp.ps’

The in operator can be used to check if a list or tuple contains a specific
element

if file in filelist:
filelist contains file as an item

More complete documentation of list functions is found by following the index
link “list type, operations on” in the Python Library Reference. The index
“tuple object” leads to an overview of legal operations on tuples.

Iterating over Lists. A loop over all items in a list or tuple is expressed by
the syntax

for item in arglist:
print ’item is ’, item

This is referred to as iterating over a list or tuple in Python terminology. One
can also iterate over a list or tuple using a C-style for loop over the array
indices:

start = 0; stop = len(arglist); step =1
for index in range(start, stop, step):
print ’arglist[%d]=Vs’ % (index, arglist[index])

Here we must emphasize that stop-step is the maximum index encountered
in this loop. As another example, the sequence 1,3,5,7,9 must be generated
by a call range(1,10,2). A single argument in range is also possible, implying
start at 0 and unit increment:

for index in range(len(arglist)):
print ’arglist[%d]l=Ys’ % (index, arglist[index])

We remark that Python data structures are normally not printed by explic-
itly looping over the entries. Instead you should just write print arglist,
and the output format is then valid Python code for initializing a list or a
tuple, cf. Chapter 8.3.1. The loop above is convenient, however, for explicitly
displaying the index of each list item.

The range function returns a list of integers, so for very long loops range
may imply significant storage demands. The xrange function is then an alter-
native. It works like range, but it consumes less memory and CPU time (see
footnote on page 138).

Iterating over several lists or tuples simultaneously can be done using a
loop over a common index,

3.2. Variables of Different Types 87

for i in range(len(xlist)):
x = xlist[i]; y = ylist[il; =z = zlist[il]
or more compactly: x, y, z = xlist[i], ylist[i], zlist[i]
work with x, y, and z

A shorter and more Pythonic alternative is to apply the zip function:

for x, y, z in zip(xlist, ylist, zlist):
work with x, y, and z

The size of this loop equals the length of the shortest list among x1ist, ylist,
and zlist.
List items can be changed in-place:

for i in range(len(A)):
if A[i] < 0.0: A[i] = 0.0

Now there are no negative elements in A. The following construction does not
work as intended?:

for r in A:
if r < 0.0: r = 0.0

Here r refers an item in the list A, but then we assign a new float object to
r. The corresponding list item is not affected (see Chapter 3.2.10 for more
material on this issue).

Compact Item-by-Item Manipulation of Lists. Occasionally, one wants to
manipulate each element in a list by a function. This can be compactly per-
formed by list comprehensions. A common example may be®

y = [float(yi) for yi in line.split()]

Here, a string line is split into a list of words, and for each element yi in
this list of strings, we apply the function float to transform the string to a
floating-point number. All the resulting numbers are then formed as a list,
which we assign to y.

The same task can also be carried out using the map function:

y = map(float, line.split())

Again, float is applied to each element in the line.split() list to form a
new list.
In general, we may write

new_list = [somefunc(x) for x in somelist]
or
new_list = map(somefunc, somelist)

4 The similar construction in Perl changes the list entries, a fact that might be
confusing for Python programmers with a background in Perl.

5 This construction is used to read numbers from file in the convert2.py script
from Chapter 2.5.

88 3. Basic Python

The somefunc function may be user defined, and its return value yields the
corresponding list element. With list comprehensions we can also have an
expression with the loop iterator instead of a call like somefunc(x). Here is
an example where we create n + 1 coordinates x; = a + th, h = 1/(n — 1),
1 =0,...,n

>>> a
>>> x

3.0; n=11; h = 1/float(n-1)
[a+i*h for i in range(n+1) 1]

List comprehensions may contain any number of nested lists, combined with
conditional expressions if desired:

>>> p = [(x,y) for x in range(-3,4,1) if x > 0 \
for y in range(-5,2,1) if y >= 0]

>>> p

(@, o, (1, 1, (2, 0, (2, 1, 3, 0, 3, D]

We refer to the chapter “Data Structures”, subsection “List Comprehen-
sions”, in the electronic Python Tutorial for more documentation on list
comprehensions.

The map function can do more than exemplified here, see the Python
Library Reference (index “map”). Expressions, such as a+ixh in the previous
example, must be implemented via lambda constructions (see page 116) in
conjunction with the map operation.

Nested Lists. Nested lists are constructed and indexed as exemplified in the
following code segment:

curvesl is a list of filenames and lists of (x,y) tuples:
curvesl = [’ul.dat’, [(0,0), (0.1,1.2), (0.3,0), (0.5,-1.9)],
’Hi.dat’, xyl] # xyl is a list of (x,y) tuples

x_coor = curves1[1][2][0] # yields 0.3
file = curvesl[2] # yields ’Hl.dat’
points = curvesi[1] # yields a list of points (x,y)

We see that curvesi is a list of different data types. Determining an item’s
type in heterogeneous lists or tuples is frequently needed, and this is covered
in Chapter 3.2.11. Now we know that curves1[1] is a list of 2-tuples, and
iterating over this list can be done conveniently by

for x,y in curvesi[1]:
yields x=0, y=0, then x=0.1, y=1.2, and so on

Let us reorganize the curvesi list to be a list of filename—points pairs:

curves2 = [[’ul.dat’, [(0,0), (0.1,1.2), (0.3,0), (0.5,-1.9)11,
[’Hl.dat’, xy1]l]] # xyl is a list of (x,y) tuples

Suppose we want to dump the list of points in curves2 to the files ui.dat and
Hi.dat. With the new organization of the data this is elegantly performed by

3.2. Variables of Different Types 89

for filename, points in curves2:
f = open(filename, ’w’)
for x,y in points: f.write(’%g\thg\n’ % (x,y))
f.close()

This type of attractive iteration over nested data structures requires that
each single list has elements of the same type. The curves2 list fulfills this
requirement, and it can therefore be argued that the design of curves2 is
better than that of curvesi.

Slicing. Python has some convenient mechanisms for slicing list and tuple
structures. Here is a demo session from the interactive Python shell:

>>> a = ’demonstrate slicing in Python’.split()

>>> print a

[’demonstrate’, ’slicing’, ’in’, ’Python’]

>>> a[-1] # the last entry

’Python’

>>> al[:-1] # everything up to but, not including, the last entry
[’demonstrate’, ’slicing’, ’in’]

>>> al:] # everything

[’demonstrate’, ’slicing’, ’in’, ’Python’]

>>> a[2:] # everything from index 2 and upwards
[’in’, ’Python’]

>>> a[-1:] # the last entry

[’Python’]

>>> al[-2:] # the last two entries

[’in’, ’Python’]

>>> a[1:3] # from index 1 to 3-1=2

[’slicing’, ’in’]

>>> a[:0] = ("here we’).split() # add list in the beginning
>>> print a

[’here’, ’we’, ’demonstrate’, ’slicing’, ’in’, ’Python’]

The next session illustrates assignment and slicing:

>>> a = [2.0]*6 # create list of 6 entries, each equal to 2.0
>>> a

[2.0, 2.0, 2.0, 2.0, 2.0, 2.0]

>>> a[1] = 10 # a[1] becomes the integer 10

>>> b = a[:3]

>>> b

[2.0, 10, 2.0]

>>> b[1] = 20 # is al[l] affected?

>>> a

[2.0, 10, 2.0, 2.0, 2.0, 2.0] # no b is a copy of al[:3]

>>> a[:3] = [-1] # first three entries are replaced by one entry
>>> a

[-1, 2.0, 2.0, 2.0]

These examples show that assignment to a slice is an in-place modification
of the original list, whereas assignment of a slice to a variable creates a copy
of the slice.

Reversing and Sorting Lists. Reversing the order of the entries in a list
mylist is performed by

90 3. Basic Python

mylist.reverse()

Sorting a list mylist is similarly done with

mylist.sort()

We remark that reverse and sort are in-place operations, changing the se-
quence of the list items. In Python2.4 a new function sorted appeared, which
returns a copy of a sorted sequence:

newlist = sorted(mylist)

By default, the sort and sorted functions sort the list using Python’s com-
parison operators (<, <=, > >=). This means that lists of strings are sorted in
ascending ASCII order, while list of numbers are sorted in ascending numeric
order. You can easily provide your own sort criterion as a function. Here is
an example:

def ignorecase_sort(sl, s2):
ignore case when sorting
sl = sl.lower(); s2 = s2.lower()
if sl < s2: return -1
elif s1 == s2: return O
else return 1

or an equivalent, shorter function, using the built-in
comparison function cmp:
def ignorecase_sort(sl, s2):

return cmp(sl.lower(), s2.lower())

apply the ignorecase_sort function:
mylist.sort(ignorecase_sort)
newlist = sorted(mylist, ignorecase_sort)

A function consisting of a single expression, like cmp(...), can be defined as
an anonymous inline function using the lambda construct (see page 116):

mylist.sort(lambda s1, s2: cmp(sl.lower(), s2.lower()))

Remark. List copying and list assignment are non-trivial topics dealt with
in Chapter 3.2.10.

3.2.5 Dictionaries

A dictionary, also called hash or associative array in other computer lan-
guages, is a kind of list where the index, referred to as key, can be an arbitrary
textS. The most widely used operations on a dictionary d are

5 1In fact, a key in a Python dictionary can be any immutable object! Strings,
numbers, and tuples can be used as keys, but lists can not.

3.2. Variables of Different Types 91

d[’at’] # extract item corresponding to key ’dt’

d.keys () # return copy of list of keys

d.has_key(’dt’) # does d have a key ’dt’?

’dt’ in d # same test as d.has_key(’dt’)

’dt’ not in d # same test as not d.has_key(’dt’)

d.get(’dt’, 1.0) # as d[’dt’] but a default value 1.0 is
returned if d does not have ’dt’ as key

d.items() # return list of (key,value) tuples

d.update(q) # update d with (key,value) from dict q

del d[’dt’] # delete an item

len(d) # the number of items

Example. Now we present an example showing the convenience of dictionar-

ies. All parameters that can be specified on the command line could be placed

in a dictionary in the script, with the name of the option (without the hyphen

prefix) as key. Hence, if we have two options -m and -tstop, the corresponding

parameters in the program will be cmlargs[’m’] and cmlargs[’tstop’].
Initializing items in a dictionary is done by

cmlargs = {} # initialize as empty dictionary
cmlargs[’m’] = 1.2 # add ’m’ key and its value
cmlargs[’tstop’] = 6.0

Alternatively, multiple (key,value) pairs can be initialized at once:

cmlargs = {’tstop’: 6.0, ’'m’: 1.2}
or
cmlargs = dict(tstop=6.0, m=1.2)

With such a dictionary we can easily process an arbitrary number of command-
line arguments and associated script variables:

loop through the command-line options
(assumed to be in pairs: -option value or --option value)
arg_counter = 1
while arg_counter < len(sys.argv):
option = sys.argv[arg_counter]
if option[0] == ’-’: option = option[1l:] # remove 1st hyphen
else:
not an option, proceed with next sys.argv entry
arg_counter += 1; continue
if option[0] == ’-’: option = option[1l:] # remove 2nd hyphen

if option in cmlargs:
next command-line argument is the value:
arg_counter += 1
value = sys.argv[arg_counter]
cmlargs[option] = value
else:
print ’The option %s is not registered’ J option
arg_counter += 1

The advantage with this technique is that each time you need to add a new pa-
rameter and a corresponding command-line option to the script, you can sim-
ply add a new item to the dictionary cmlargs. Exercise 8.1 on page 324 demon-
strates an interesting combination of cmlargs and the getopt or optparse

92 3. Basic Python

module. The downside with the code segment above is that all the variables
cmlargs[option] are of string type, i.e., we must explicit convert them to
floating-point numbers in order to perform arithmetic computations with
them. A more flexible, but also more advanced solution using the same ideas,
is presented in Chapter 11.4.

Dictionaries behave like lists when it comes to copying and assignment,
see Chapter 3.2.10 for the various options that are available.

Iterating over the keys in a dictionary is done with the standard Python
construction for element in data_structure, e.g.,

for key in cmlargs: # visit items, key by key
print "cmlargs[’%s’]=ls" 7% (key, cmlargsl[key])

There is no predefined sequence of the keys in a dictionary. Sometimes you
need to have control of the order in which the keys are processed. You can
then work with the keys in sorted order:

for option in sorted(cmlargs): # visit keys in sorted order
print "cmlargs[’%s’]=ls" ' (option, cmlargs[option])

This construction was new in Python 2.4. In older Python versions one had
to get the keys and sort this list in-place:

keys = cmlargs.keys()

keys.sort()

for option in keys:
print "cmlargs[’%s’]=s" % (option, cmlargs[option])

Environment Variables. — All environment variables a user has defined are
available in Python scripts throught the dictionary-like variable os.environ.
The syntax for accessing an environment variable X is os.environ[’X’]. One
can read and modify environment variables within the script. Child processes
(as started by the subprocess module, or commands.getstatusoutput, or sim-
ilar) inherit modified environment variables.

The get method in dictionary-like objects is particularly convenient for
testing the content of a specific environment variable, e.g.,

root = os.environ.get(’HOME’, °’/tmp’)

Here we set root as the home directory if HOME is defined as an environment
variable, otherwise we use /tmp. The alternative if test is more verbose:

if ’PATH’ in os.environ:

root = os.environ[’PATH’]
else:

root = ’/tmp’

Here is an example, where we add the directory $scripting/src/py/intro
to the PATH environment variable. This enables us to run scripts from the in-
troductory part of this book regardless of what the current working directory
is.

3.2. Variables of Different Types 93

if ’PATH’ in os.environ and ’scripting’ in os.environ:
os.environ[’PATH’] += os.pathsep + os.path.join(
os.environ[’scripting’], ’src’, ’py’, ’intro’)
The os.pathsep variable holds the separator in the PATH string, typically colon
on Unix and semi-colon on Windows. Recall that the os.path.join function
concatenates the individual directory names (and optionally a filename) to a
full path with the correct platform-specific separator. Our use of os.path. join
and os.pathsep makes the code valid on all operating systems supported by
Python. Running

failure, output = commands.getstatusoutput(’echo $PATH’)
print output

shows that the child process has inherited a PATH variable with our recently
added directory $scripting/src/py/intro at the end.

The example of modifying the PATH environment variable is particularly
useful when you want to run certain programs as an operating system com-
mand but do not know if the user of the script has the correct PATH variable
to “see” the programs. The technique is important in CGI scripts (see Chap-
ter 7.2). An alternative to extending the PATH variable is to construct the
complete path of the program, e.g.,

simvizl = os.path.join(os.environ[’scripting’], ’src’, ’py’,
’intro’, ’simvizl.py’)

However, this solution may easily fail on Windows machines if directories
contain blanks. Say your scripting variable is set to some name of a direc-
tory under C:\My Documents. A command running something like ’simviz1
> + ... will then actually try to run a program C:\My since the first space
is interpreted as a delimiter between the program and its command-line ar-
guments. Adding directories with spaces to the PATH variable works well, so
extending the PATH variable is the recommended cross-platform way of exe-
cuting programs in other directories.

The Unix-specific which command can easily be given a cross-platform
implementation in Python. The basic ingredients of a relevant code segment
consist of splitting the PATH variable into a list of its directories and checking
if the program is found in one of these directories. This is a typical example
of a task that is very convenient to perform in Python:

import os
program = ’vtk’ # a sample program to search for
pathdirs = os.environ[’PATH’] .split(os.pathsep)
for d in pathdirs:
if os.path.isdir(d): # skip non-existing directories

if os.path.isfile(os.path.join(d, program)):
program_path = d; break

try: # program was found if program_path is defined
print ’%s found in %s’ J (program, program_path)
except:
print ’%s not found’ % program

94 3. Basic Python

Exercises 3.6-3.10 develop some useful tools related to this code segment. A
professional which.py script is linked from the doc.html page.

3.2.6 Splitting and Joining Text

Splitting a string into words is done with the built-in split function in strings:

>>> files = ’casel.ps case2.ps case3.ps’
>>> files.split()
[’casel.ps’, ’case2.ps’, ’case3.ps’]

One can also specify a split with respect to a delimiter string, e.g.,

>>> files = ’casel.ps, case2.ps, case3.ps’

>>> files.split(’, ?)

[’casel.ps’, ’case2.ps’, ’case3.ps’]

>>> files.split(’, °’) # extra erroneous space after comma...

[’casel.ps, case2.ps, case3.ps’] # no split

Strings can also be split with respect to a general regular expression (as
explained in Chapter 8.2.7):

>>> files = ’casel.ps, case2.ps, case3.ps’
>>> import re

>>> re.split(xr’,\s*x’, files)

[’casel.ps’, ’case2.ps’, ’case3.ps’]

As another example, consider reading a series of real numbers from a file
of the form

1.432 5E-09
1.0

3.2 5 69 -111

478

That is, the file contains real numbers, but the number of reals on each line
differs, and some lines are empty. If we load the file content into a string,
extracting the numbers is trivial using a split with respect to whitespace and
converting each resulting word to a floating-point number:

f = open(somefile, ’r’)
numbers = [float(x) for x in f.read().split()]

Such an example demonstrates the potential increase in human efficiency
when programming in a language like Python with strong support for high-
level text processing (consider doing this in C!).

The inverse operation of splitting, i.e., combining a list (or tuple) of strings
into a single string, is accomplished by the join function in string objects.
For example,

3.2. Variables of Different Types 95

>>> filenames = [’casel.ps’, ’case2.ps’, ’case3.ps’]
>>> cmd = ’print ’ + ’ ’.join(filenames)
>>> cmd

’print casel.ps case2.ps case3.ps’

3.2.7 String Operations

Strings can be written in many ways in Python. Different types of quotes
can be used interchangeably: >, ", """ and ’’’, even when using printf-style
formatting or variable interpolation.

sl = ’with single quotes’

s2 = "with double quotes"

s3 = ’with single quotes and a variable: %g’ % rl
s4 = """as a triple double quoted string"""

sb = """triple double (or single) quoted strings
allow multi-line text (i.e., newline is preserved)
and there is no need for backslashes before embedded

quotes like " or °’
nnn

s6 = r’raw strings start with r and \ is always a backslash’
s7 = r’’’Windows paths such as C:\projects\sim\src
qualify for raw strings’’’

The raw strings, starting with r, are particularly suited in cases where back-
slashes appear frequently, e.g., in regular expressions, in I#TEX source code,
or in Windows/DOS paths. In the statement s8="\\t" the first backslash is
used to quote the next, i.e., preserve the meaning of the second backslash as
the character \. The result is that s8 contains \t. With raw strings, s8=r"\\t"
sets s8 to \\t. Hence, if you just want the text \t, the code becomes more
readable by using a raw string: s8=r"\t".
Strings are concatenated using the + operator:

myfile = filename + ’_tmp’ + ".dat"

As an example, the myfile variable becomes ’casel_tmp.dat’ if filename is
’casel’.
Substrings of filename are extracted by slicing:

>>> teststr = 20123456789’
>>> teststr[0:5]; teststr[:5]
’01234°

’01234°

>>> teststr[3:8]

?34567°

>>> teststr[3:]

73456789’

The need for checking if a string starts or ends with a specific text arises
frequently:

96 3. Basic Python

if filename.startswith(’tmp’):

if filename.endswith(’.py’):

Other widely used string operations are

s1.upper () # change sl to upper case
s1.lower() # change s2 to lower case

We refer to the Python Library Reference for a complete documentation of
built-in methods in strings (follow the “string object” link in the index and
proceed with the section on “String Methods”).

The String Module. In older Python code you may see use of the string
module instead of built-in methods in string objects. For example,

import string
lines = string.split(filestr, ’\n’)
filestr = string.join(lines, ’\n’)

is equivalent to

lines = filestr.splitlines() # or filestr.split(’\n’)
filestr = ’\n’.join(lines)

Most built-in string methods are found in the string module under the same
names (see the Python Library Reference for a complete documentation of
the string module).

3.2.8 Text Processing

Text Searching. There are several alternatives for testing whether a string
contains a specified text:

— Exact string match:
if line == ’double’:

line equals ’double’

if ’double’ in line:
line contains ’double’

equivalent, but less intuitive test:
if line.find(’double’) != -1:
line contains ’double’

— Matching with Unix shell-style wildcard notation:

import fnmatch
if fnmatch.fnmatch(line, ’double’):
line contains ’double’

3.2. Variables of Different Types 97

Here, double can be any valid wildcard expression, such as [Dd]ouble and
doublex.

— Matching with full regular expressions (Chapter 8.2):

import re
if re.search(r’double’, line):
line contains ’double’

In this example, double can actually be replaced by any valid regular
expression. Note that the raw string representation (see Chapter 3.2.7)
of double’ has no effect in this particular example, but it is a good habit
to use raw strings in regular expression specifications.

Text Substitution. Substitution of a string s by another string t in some
string r is done with the replace method in string objects:

r = r.replace(s, t)

Substitution of a regular expression pattern by some text replacement in a
string r goes as follows:

r = re.sub(pattern, replacement, r)

or:
cre = re.compile(pattern)
r = cre.sub(replacement, r)

Here is a complete example where double is substituted by float everywhere
in a file:

f = open(filename, ’r’)

filestr = f.read().replace(’float’, ’double’)
f.close()

f = open(filename, ’w’)

f.write(filestr)

f.close()

For safety, we should take a copy of the file before the overwrite.

Regular Expression Functionality. Text processing frequently makes heavy
use of regular expressions, a topic covered in Chapter 8.2. A list of common
Python functionality in the re module when working with regular expressions
is presented here as a quick reference.

— Compile a regular expression:

c = re.compile(pattern, flags)

— Match a pattern:

m
m

re.search(pattern, string, flags)
c.search(string)

98 3. Basic Python

— Substitute a pattern:

string = re.sub(pattern, replacement, string)
string = c.sub(replacement, string)

backreferences (in substitutions):

\1, \2, etc., or

\g<1>, \g<2>, etc., or

named groups: \g<namel>, \g<name2>, etc.

— Find multiple matches in a string:
list = re.findall(pattern, string)
list = c.findall(string)

— Split strings:

list
list

re.split(pattern, string)
c.split(string)

The re.search function returns a MatchObject instance, here stored in m, with
several useful methods:

— m.groups() returns a list of all groups in the match, m.group(3) returns
the 3rd matched group, and m.group(0) returns the entire match.

— string[m.start(2):m.end(2)] returns the part of string that is matched
by the 2nd group.

We mention that the re module has a function match for matching a
pattern at the beginning of the string, but in most cases the search function,
which searches for a match everywhere in the string, is what you want.

3.2.9 The Basics of a Python Class

Readers familiar with class programming” from, e.g., C++ or Java may get
started with Python classes through a simple example:

class MyBase:
def __init__(self, i, j): # constructor
self.i = i; self.j = j
def write(self): # member function
print ’MyBase: i=’, self.i, ’j=’, self.j

This class has two data members, i and j, recognized by the prefix self. These
members are called data attributes or just attributes in Python terminology.
Attributes can be “declared” anywhere in the class: just assign values to them
and they come into existence, as usual in dynamically typed languages.

The __init__ function is a constructor, used to initialize the instance at
creation time. For example,

7 If you are new to class programming, it might be better to jump to Chapter 8.6.1.

3.2. Variables of Different Types 99

instl = MyBase(6,9)

leads to a call to the constructor, resulting in i and j as the integers 6 and
9, respectively. An instance of class MyBase is created, and the variable inst1
is a reference to this instance. We can access the attributes as inst1.i and
inst1.j.

A function in a class is referred to as a method in Python terminology, and
every method must have self as the first argument. However, this argument
is not explicitly used when calling the method. The self variable is Python’s
counterpart to the this pointer in C++4, with the exception that Python
requires its use when accessing attributes or methods.

The write method is an example of an ordinary method, taking only the
required argument self. When called, self is omitted:

instl.write()

Inside the write method, the self argument becomes a reference to the inst1
instance.

Subclasses. A subclass MySub of MyBase can be created as follows:

class MySub(MyBase) :

def __init__(self, i, j, k): # constructor
MyBase.__init__(self, i, j) # call base class constructor
self.k = k

def write(self):
print ’MySub: i=’, self.i, ’j=’, self.j, ’k=’, self.k

The syntax should be self-explanatory: the subclass adds an attribute k and
defines its own version of the constructor and the write method. Since a
subclass inherits data attributes and methods from the base class, class MySub
contains three data attributes: i, j, and k.

Here is an interactive session demonstrating what we can do with our two
trivial classes:

>>> def write(v):
v.write()
>>> i1 = MyBase(’some’, ’text’)
>>> write(il)
MyBase: i= some j= text
>>> i2 = MySub(’text’, 1.1E+09, [1,9,7])
>>> write(i2)
MySub: i= text j= 1100000000.0 k= [1, 9, 7]

Classes with Function Behavior. A class implementing a method __call__
may act as an ordinary function. Let us look at an example:

class F:
def init__(self, a=1, b= c=1):

1)
b; self.c = c¢

self.a = a; self.b

100 3. Basic Python

def call__(self, x, y):

return self.a + self.b*x + self.cxy*y

£
v

F(a=2, b=4)
f(2, 1) + £(1.2, 0)

We make an instance £ of class F and call £ as if it were an ordinary func-
tion! The call £(1.2, 0) actually translates to £.__call__(1.2, 0) (see Chap-
ter 8.6.6). This feature is particularly useful for representing functions with
parameters, where we need to distinguish between the parameters and the
independent variables. Say we have a function

f(z,y50,b,¢) = a+bx +cy®.

Here x and y are independent variables, while a, b, and ¢ are parameters (we
have in the notation f(z,y;a,b,c) explicitly indicated this). If we want to
pass such a function to, e.g., an integration routine, that routine will assume
that the function takes two independent variables as arguments, but how
can the function then get the values of a, b, and ¢? The classical solution
from Fortran and C is to use global variables for the parameters and let the
function arguments coincide with the independent variables:

global a, b, c
def f(x, y):
return a + b*x + cky*y

A class like F above, where the parameters are attributes, is a better solution
since we avoid global variables. The parameters become a part of the instance
(“function object”) but not of the call syntax. In our example above, £(1.2,0)
evaluates f(1.2,0;2,4,1) =2+4-1.241-0-0. The parameters were set when
we constructed £, but we can alter these later by assigning values to the
attributes in F (e.g., £.c=6).

Instances of classes with __call__ methods are in this book referred to as
callable instances® and used in many places.

Chapter 8.6 contains much more information about classes in Python.
Extended material on callable instances appears in Chapter 12.2.2.

3.2.10 Copy and Assignment

Newcomers to Python can be confused about copying references and copying
objects in assignments. That is, in a statement like b = a, will b be a sort
of reference to a such that the contents of b are changed if those of a are
changed? Or will b be a true copy of a and hence immune to changes in a?
Variables in Python are references to Python objects. The assignment
b = a therefore makes b refer to the same object as a does. Changing a might

8 In C++ this is known as function objects or functors [1].

3.2. Variables of Different Types 101

or might not affect b — this depends on whether we perform in-place modifi-
cations in a or let a refer to a new object. Some examples will hopefully make
this clear. Consider

a=3
b =a
a=4

Here, a first refers to an int object with the value 3, b refers to the same
object as a, and then a refers to a new int object with the value 4, while b
remains referring to the int object with value 3. If the a=4 statement should
affect b, we must perform in-place modification of the int object that a refers
to, but this is not possible (number objects are immutable).

Deleting a variable may not imply destruction of the object referred to
by the variable unless there are no other references to the variable:

a=3

b=a

remove a, but not the int object since b still refers to it:
del a

print b # prints 3

remove b and the int object (no more references to the object):
del b

Python has an id function that returns an integer identification of an
object. We can either use id or the special is operator to test whether two
variables refer to the same object:

>>> a =3

>>> b = a

>>> id(a), id(b)
(135531064, 135531064)
>>> id(a) == id(b)
True

>>> a is b

True

>>> a =4

>>> id(a), id(b)
(135532056, 135531064)
>>> a is b

False

Let us make a corresponding example with a list:

>>> a = [2, 6]
>>> b = a

>>> a is b
True

>>> a = [1, 6, 3]
>>> a is b
False

Now a and b refer to two different lists. Instead of assigning the latter (new)
list to a, we could perform in-place modifications of the original list referred
to by a:

102 3. Basic Python

>>> a [2, 6]
>>> b = a

>>> al0] =1
>>> a.append(3)

>>> a

[1, 6, 3]
>>> b

[1, 6, 3]
>>> a is b
True

Dictionaries are mutable objects, like lists, and allows in-place changes in the
same way:

>>> a = dict(q=6, error=None)
>>> b = a

>>> al[’r’] = 2.5

>>> a

{’q’: 6, ’r’: 2.5, ’error’: None}
>>> a is b

True
>>> a = ’a string’ # make a refer to a new (string) object
>>> b # new contents in a do not affect b

{’q’: 6, ’r’: 2.5, ’error’: None}

What if we want to have b as a copy of a? For list we can use a[:] to
extract a copy” of the elements in a:

>>> a [2, 6, 1]

>>> b = al:]

>>> b is a

False

>>> a[0] = ’some string’

>>> b[0] # not affected by assignment to a[0]
2

For dictionaries, we use the copy method:

>>> a = {’refine’: False}
>>> b = a.copy()

>>> b is a

False

With instances of user-defined classes the situation gets a bit more com-
plicated. The shallow and deep copy concepts are closely related to the
assignment issue. Shallow copy means copying references and deep copy im-
plies copying the complete contents of an object (roughly speaking). Python’s
copy module lets us control whether an assignment should be a shallow or
deep copy. We refer to the documentation of the copy module in the Python
Library Reference for capabilities of the module and more precise handling

9 Note that for Numerical Python arrays, al:1 will not make a copy of the elements,
but a reference to all elements in a, see page 137.

3.2. Variables of Different Types 103

and definition of copy issues. Here, we shall as usual limit the presentation to
an illustrative example, showing what assignment and deep vs. shallow copy
means for user-defined objects, lists, and dictionaries.

Turning the attention to user-defined data types, we can create a very
simple class A with a single data item (self.x):

class A:
def __init__(self, value):
self.x = value
def repr__(self):

return ’x=Y%s’ % self.x

The __repr__ method allows printing any instance of class A, also when the
instance is part of a nested list. This feature is exploited in the tests below.

Assignment, shallow copy, and deep copy of an instance of A are performed
by

>>> a = A(-99) # make instance a
>>> b_assign = a # assignment
>>> b_shallow = copy.copy(a) # shallow copy

>>> b_deep copy.deepcopy(a) # deep copy

We then change the a.x attribute from -99 to 9. Let us see how this affects
the contents of the other variables:

>>> a.x =9

>>> print ’a.x=)s, b_assign.x=)s, b_shallow.x=Ys, b_deep.x=ls’ %\
(a.x, b_assign.x, b_shallow.x, b_deep.x)

a.x=9, b_assign.x=9, b_shallow.x=-99, b_deep.x=-99

The assignment of user-defined data types, as in b_assign = a, stores a ref-
erence to a in b_assign. Changing an attribute in a will then be reflected
in b_assign. The shallow copy copy.copy(a) creates an object of type A and
inserts references to the objects in a, i.e., b_shallow.x is a reference to the
integer a.x. The deep copy statement copy.deepcopy(a) results in b_deep.x
being a true copy of the value in a.x, not just a reference to it. When chang-
ing the integer a.x to 9, the shallow copy holds a reference to the previous
integer object pointed to by a.x, not the new integer object with value 9, and
that is why the change in a is not reflected in b_shallow. However, if we let
a.x be a list, a = A([-2,3]), and perform an in-place change of the list,

>>> a = A([-2,3])

>>> b_assign a

>>> b_shallow = copy.copy(a)

>>> b_deep copy .deepcopy (a)

>>> a.x[0] = 8 # in-place modification

the reference in the shallow copy points to the same list and will reflect the
change:
>>> print ’a.x=)s, b_assign.x=)s, b_shallow.x=Ys, b_deep.x=ls’ %\

(a.x, b_assign.x, b_shallow.x, b_deep.x)
a.x=[8, 3], b_assign.x=[8, 3], b_shallow.x=[8, 3], b_deep.x=[-2, 3]

104 3. Basic Python

These examples should demonstrate the fine differences between assignment,
shallow copy, and deep copy.

Let us look at a case with a heterogeneous list, where we change two list
items, one of them being an A instance:

>>> a = [4,3,5,[’some string’,2], A(-9)]

>>> b_assign a

>>> b_shallow = copy.copy(a)

>>> b_deep copy .deepcopy (a)

>>> b_slice a[0:5]

>>> al[3] = 999; a[4].x = -6

>>> print ’b_assign=/s\nb_shallow=/s\nb_deep=/s\nb_slice=Ys’ % \
(b_assign, b_shallow, b_deep, b_slice)

b_assign=[4, 3, 5, 999, x=-6]

b_shallow=[4, 3, 5, [’some string’, 2], x=-6]

b_deep=[4, 3, 5, [’some string’, 2], x=-9]

b_slice=[4, 3, 5, [’some string’, 2], x=-6]

The deep copy makes a complete copy of the object, and there is thus no
track of the changes in a. The variable b_assign is a reference, which reflects
all changes in a. Each item in the b_shallow list is a reference to the corre-
sponding item in a. Hence, when the list in a[3] is replaced by an integer
999, b_shallow[3] still holds a reference to the old list. On the other hand,
the reference b_shallow[4] to an A instance remains unaltered, only the x
attribute of that instance changes, and that is why the new value is “visible”
from b_shallow. Dictionaries behave in a completely similar way. A script
src/ex/copytypes.py contains the shown constructions and is available for
further investigation.

3.2.11 Determining a Variable’s Type

The are basically three ways of testing a variable’s type. Let us define
>>> files = [’myfilel.dat’, ’myfile2’]

and then show how to test if files is a list. The isinstance function checks
if an object is of a certain type (List, str, dict, float, int, etc.):

>>> isinstance(files, list)
True

The second argument to isinstance can also be a tuple of types. For example,
testing if files is either a list, tuple, or an instance of class MySeq, we could
issue

>>> isinstance(files, (list, tuple, MySeq))
True

The type(x) function returns the class object associated with x. Here are
two typical tests:

3.2. Variables of Different Types 105

>>> type(files) == type([])
True

>>> type(files) == list
True

The module types contains type objects used in older Python codes: ListType,
StringType, DictType, FloatType, IntType, etc.

>>> import types
>>> type(files) == types.ListType
True

We stick to the isinstance function in this book.
The next example concerns determining the type of the entries in a het-
erogeneous list:

somelist = [’text’, 1.28736, [’sub’, ’list’],
{’sub’ : ’dictionary’, ’heterogeneous’ : True},
(’some’, ’sub’, ’tuple’), 888, MyClass(’some input’)]

class_types = ((int, long), list, tuple, dict, str, basestring,
float, MyClass)

def typecheck(i):
for ¢ in class_types:
if isinstance(i, c):
print c,

for i in somelist:
print i, ’is’,
func (i)
print

The output of the tests becomes

text is <type ’str’> <type ’basestring’>

1.28736 is <type ’float’>

[’sub’, ’1list’] is <type ’list’>

{’heterogeneous’: 1, ’sub’: ’dictionary’} is <type ’dict’>
(’some’, ’sub’, ’tuple’) is <type ’tuple’>

888 is (<type ’int’>, <type ’long’>)

<__main__.MyClass instance at 0x4021e50c> is __main__.MyClass

Note that the string ’text’ is both a str and basestring. It is recommended
to test for strings with isinstance(s, basestring) rather than isinstance(s,
str), because the former is true whether the string is a plain string (str) or
a Unicode string (unicode).

The current code example is available in src/py/examples/type.py. This
file also contains alternative versions of the typecheck function using type.

Occasionally it is better to test if a variable belongs to a category of types
rather than to test if it is of a particular type. Python distinguishes between

— sequence types (list, tuple, Numerical Python array),

106 3. Basic Python

— number types (float, int, complex),

— mapping types (dictionary), and

— callable types (function, class with __call__ operator).
For variables in each of these classes there are certain legal operations. For
instance, sequences can be iterated, indexed, and sliced, and callables can be

called like functions. The operator module has some functions for checking
if a variable belongs to one of the mentioned type classes:

operator.isSequenceType(a) # True if a is a sequence
operator. isNumberType (a) # True if a is a number
operator.isMappingType (a) # True if a is a mapping
operator.isCallable(a) # True if a is a callable
callable(a) # recommended for callables

3.2.12 Exercises

Ezercise 3.1. Write format specifications in printf-style.
Consider the following initialization of a string, two integers, and a floating-
point variable:

name = ’myfile.tmp’; i = 47; s1 = 1.2; s2 = -1.987;

Write the string in a field of width 15 characters, and adjusted to the left;
write the i variable in a field of width 5 characters, and adjusted to the
right; write s1 as compactly as possible in scientific notation; and write s2 in
decimal notation in a field of minimum width. o

Ezercise 3.2. Write your own function for joining strings.

Write a function myjoin that concatenates a list of strings to a single
string, with a specified delimiter between the list elements. That is, myjoin
is supposed to be an implementation of string object’s join function (or
string.join) in terms of basic string operations. o

Exercise 3.3. Write an improved function for joining strings.

Perl’s join function can join an arbitrary composition of strings and lists
of strings. The purpose of this exercise is to write a similar function in Python.
Recall that the built-in join method in string objects, or the string.join
function, can only join strings in a list object. The function must handle
an arbitrary number of arguments, where each argument can be a string, a
list of strings, or a tuple of strings. The first argument should represent the
delimiter. As an illustration, the function, here called join, should be able to
handle the following examples:

>>> listl = [’s1’, ’s2’, ’s3’]

>>> tuplel = (’s4’, ’s5’)
>>> exl = join(’ ’, ’t1’, ’t2’, listl, tuplel, ’t3’, ’t4’)

3.2. Variables of Different Types 107

>>> exl

’t1 t2 sl s2 s3 s4 sb t3 t4’

>>> ex2 = join(’ # ’, listl, ’t0’)
>>> ex2

’sl # s2 # s3 # t0O°

Hint: Variable number of arguments in functions is treated in Chapter 3.3.3,
whereas Chapter 3.2.11 explains how to check the type of the arguments. ©

Exercise 3.4. Never modify a list you are iterating on.
Try this code segment:

print ’plain remove in a for loop:’
list = [3,4,2,1]
for item in list:
print ’visiting item %s in list %s’ % (item, list)
if item > 2:
list.remove (item)

After the loop, the list is [4,2,1] even though the item 4 is bigger than 2 and
should have been removed. The problem is that the for loop visits index 1 in
the second iteration of the loop, but the list is then [4,2,1] (since the first
item is removed), and index 1 is then the element 1, i.e., we fail to visit the
item 4.

The remedy is to never modify a list that you are iterating over. Instead
you should take a copy of the list. An element by element copy is provided
by 1ist[:] so we can write

for item in list[:]:

if item > 2:
list.remove(item)

This results in the expected list [2,1].

Write a code segment that removes all elements larger than 2 in the list
[3,4,2,1]1, but use a while loop and an index that is correctly updated in
each pass in the loop.

The same problem appears also with other list modification functions,
such as del, e.g.,

list = [3,4,2,1]

for item in list:
del 1ist[0]

Explain why the list is not empty (print 1ist and item inside the loop if you
are uncertain). Construct a new loop where del 1ist[0] successfully deletes
all list items, one by one. o

Exercise 3.5. Make a specialized sort function.

Suppose we have a script that performs numerous efficiency tests. The
output from the script contains lots of information, but our purpose now is
to extract information about the CPU time of each test and sort these CPU
times. The output from the tests takes the following form:

108 3. Basic Python

f95 -c -00 versions/main_wI0.f F77WAVE.f

f95 -o app -static main_wIO.o F77WAVE.o -1f2c
app < input > tmp.out

CPU-time: 255.97 f95 -00 formatted I/O

f95 -c -01 versions/main_wI0.f F77WAVE.f

f95 -o app -static main_wIO.o F77WAVE.o -1f2c
app < input > tmp.out

CPU-time: 252.47 £95 -01 formatted I/0

f95 -c -02 versions/main_wIO0.f F77WAVE.f

f95 -0 app -static main_wIO.o F77WAVE.o -1f2c
app < input > tmp.out

CPU-time: 252.40 95 -02 formatted I/0

First we need to extract the lines starting with CPU-time. Then we need
to sort the extracted lines with respect to the CPU time, which is the
number appearing in the second column. Write a script to accomplish this
task. A suitable testfile with output from an efficiency test can be found in
src/misc/efficiency.test.

Hint: Find all lines with CPU time results by using a string comparison of
the first 7 characters to detect the keyword CPU-time. Then write a tailored
sort function for sorting two lines (extract the CPU time from the second
column in both lines and compare the CPU times as floating-point numbers).
o

Exercise 3.6. Check if your system has a specific program.

Write a function taking a program name as argument and returning true
if the program is found in one of the directories in the PATH environment
variable and false otherwise. This function is useful for determining whether
a specific program is available or not. Hint: Read Chapter 3.2.5. o

Exzxercise 3.7. Find the paths to a collection of programs.

A script often makes use of other programs, and if these programs are
not available on the computer system, the script will not work. This exercise
shows how you can write a general function that tests whether the required
tools are available or not. You can then terminate the script and notify to
the user about the software packages that need to be installed.

The idea is to write a function findprograms taking a list of program names
as input and returning a dictionary with the program names as keys and the
programs’ complete paths on the current computer system as values. Search
the directories in the PATH environment variable as indicated in Exericise 3.6.
Allow a list of additional directories to search in as an optional argument to
the function. Programs that are not found should have the value None in the
returned dictionary.

Here is an illustrative example of using findprograms to test for the exis-
tence of some utilities used in this book:

programs = {
’gnuplot’ : ’plotting program’,

3.2. Variables of Different Types 109

’gs’ : ’ghostscript, ps/pdf converter and previewer’,
’f2py’ : ’generator for Python interfaces to Fortran’,

‘swig’ : ’generator for Python interfaces to C/C++’,
’convert’ : ’image conversion, part of the ImageMagick package’,
}

installed = findprograms (programs.keys())
for program in installed:
if installed[program]:
print ’You have %s (%s)’ % (program, programs[program])
else:
print ’*** Program’, program, ’was not found’
print > ... (%s)’ % programs [program]

On Windows you need to test for the existence of the program names with
.exe or .bat extensions added (Chapter 8.1.2 explains how you can make
separate code for Unix and Windows in this case). o

Exercise 3.8. Use Ezercise 3.7 to improve the simvizl.py script.

Use the findprograms function from Exercise 3.7 to check that the script
simvizl.py from Chapter 2.3 has access to the two programs oscillator and
gnuplot. <o

Exercise 3.9. Use Ezercise 3.7 to improve the loop4simviz2.py script.

The loop4simviz2.py script from Chapter 2.4.4 needs access to a range
of different tools (oscillator, gnuplot, convert, etc.). Use the findprograms
function from Exercise 3.7 to check that all the required tools are available
to the user of the script. In case a tool is missing, drop the corresponding
action (if not essential) and dump a warning message. o

Exercise 3.10. Find the version number of a utility.

The findprograms function developed in Exercise 3.7 is fine for checking
that certain utilities are available on the current computer system. However,
in many occasions it is not sufficient that a particular program exists, a
special version of the program might be needed. The purpose of the present
exercise is to produce code segments for checking the version of a program.

Suppose you need to know the version number of the Ghostscript (gs)
utility. Ghostview offers, like many other programs, a command-line option
for printing the version number. You can type gs -v and get a typical output

GNU Ghostscript 6.53 (2002-02-13)
Copyright (C) 2002 artofcode LLC, Benicia, CA. All rights reserved.

This Python code segment extracts 6.53 as the version number from the
output of gs -v:

installed = findprograms(programs.keys())

if installed[’gs’]:
failure, output = commands.getstatusoutput(’gs -v’)
version = float(output.read().split()[2])
output.close()

110 3. Basic Python

Write functions that return the version of gs, perl, convert, and swig. The
former three programs write their version information to standard output,
while swig writes to standard error, but both standard output and standard
error are captured by the system command above.

By the way, the version of Python is obtained from the built-in string

sys.version or the sys.version_info tuple:

>>> print sys.version

2.5 (r25:409, Feb 27 2007, 19:35:40)

[GCC 4.0.2 20050808 (prerelease) (Ubuntu 4.0.1-4ubuntu9)]
>>> sys.version[:3]

’2.5°

>>> sys.version_info

(2, 5, 0, ’final’, 0)

A typical Python function can be sketched as

def function_name(argl, arg2, arg3):
statements
return something

Any data structure can be returned, and None is returned in the absence of a
return statement. A simple example of a Python function may read

def debug(comment, var):
if os.environ.get(’PYDEBUG’, ’0’) == ’1°:
print comment, var

The function prints the contents of an arbitrary variable var, with a leading
text comment, if the environment variable PYDEBUG is defined and has a value
’1’. (Environment variables are strings, so true and false are taken as the
strings >1’ and >0’.) One can use the function to dump the contents of data
structures for debugging purposes:

vl = file.readlines() [3:]
debug(’file Y%s (exclusive header):’ % file.name, v1) # dump list

v2 = somefunc()
debug(’result of calling somefunc:’, v2)

The debugging is turned on and off by setting PYDEBUG in the executing envi-
ronment!:

10 Python has a built-in variable __debug__ that we could use instead of our own
PYDEBUG environment variable. __debug__ is set to false if the Python interpreter
is run with the -0 (optimize) option, i.e., we run python -0 scriptname.

3.3. Functions 111

export PYDEBUG=1
export PYDEBUG=0

Note the power of a dynamically typed language as Python: debug can be
used to dump the contents of any printable data structure!

Function Variables are Local. All variables declared in a function are local
to that function, and destroyed upon return, unless one explicitly specifies a
variable to be global:

def somefunc():
global cc # allow assignment to global variable cc

Global variables that are only accessed, not assigned, can be used without a
global statement. We refer to Chapter 8.7 for more detailed information on
the scope of variables in Python.

3.3.1 Keyword Arguments

Python allows the use of keyword arguments, also called named arguments.
This makes the code easy to read and use. Each argument is specified by a
keyword and a default value. Here is an example of a flexible function for
making directories (cf. the method we explain on page 53):

def mkdir(dirname, mode=0777, remove=True, chdir=True):
if os.path.isdir(dirname):
if remove:
shutil.rmtree(dirname)
else:
return False # did not make a new directory
os.mkdir (dirname, mode)
if chdir: os.chdir(dirname)
return True # made a new directory

In this function, dirname is a positional (also called required) argument,
whereas mode, remove, and chdir are keyword arguments with the specified
default values. If we call

mkdir(’tmpl’)

the default values for mode, remove, and chdir are used, meaning that tmp1
is removed if it exists, then created, and thereafter we change the current
working directory to tmpil. Some or all of the keyword arguments can be
supplied in the call, e.g.,

mkdir(’tmpl’, remove=False, mode=0755)

The sequence of the keyword arguments can be arbitrary as long as the
keyword is included in the call. In this latter example, chdir becomes True

112 3. Basic Python

(the default value). Note that keyword arguments must appear after the
positional arguments.

Sensible use of names in keyword arguments helps to document the code.
I think both function definitions and calls to functions are easier to read with
keyword arguments. Novice users can rely on default values, whereas more
experienced users can fine-tune the call (cf. the discussion on page 11). We
shall see that the Tkinter GUI module presented in Chapter 6 relies heavily
on keyword arguments.

3.3.2 Doc Strings

It is a Python programming standard to include a triple-quoted string, right
after the function heading, for documenting the function:

def mkdir(dirname, mode=0777, remove=True, chdir=True):
nnn

Create a directory dirname (os.mkdir(dirname,mode)).
If dirname exists, it is removed by shutil.rmtree if
remove is true. If chdir is true, the current working

directory is set to dirname (os.chdir(dirname)).
nnn

Such a string is called a doc string and will be used frequently hereafter in this
book. Appendix B.2 explains more about doc strings and how different tools
can automatically extract doc strings and generate documentation. The doc
string often contains an interactive session from a Python shell demonstrating
usage of the function. This session can be used for automatic testing of a
function, see Appendix B.4.5.

3.3.3 Variable Number of Arguments

Variable-length argument lists are allowed in Python functions. An asterix as
prefix to the argument name signifies a variable-length argument list. Here
is a sketch of a sample code:

def somefunc(a, b, *args):
args is a tuple of all supplied positional arguments

for arg in args:
<work with arg>

A double asterix as prefix denotes a variable-length set of of keyword argu-
ments:

def somefunc(a, b, *args, **kwargs):
args is a tuple of all supplied positional arguments
kwargs is a dictionary of all supplied keyword arguments

3.3. Functions 113

for arg in args:
<work with arg>
for key in kwargs:
<work with argument key and its value kwargsl[key]>

A function statistics with a variable number of arguments appears below.
The function returns a tuple containing the average and the minimum and
maximum value of all the arguments:

def statistics(xargs):

Compute the average, minimum and maximum of all arguments.
Input: a variable no of arguments (must be numbers).

Output: tuple (average, min, max).
nnn

avg = 0; n = 0; # avg and n are local variables

for number in args: # sum up all numbers (arguments)
n += 1; avg += number

avg /= float(n)

min = args[0]; max = args[0]
for term in args:
if term < min: min = term
if term > max: max = term

return avg, min, max

example on using the statistics function:
average, vmin, vmax = statistics(vl, v2, v3, b)
print ’average =’, average, ’min =’, vmin, ’max=’, vmax

Observe that three numbers are computed in the function and returned as a
single data structure (a tuple). This is the way to return multiple values from
a Python function. (C/C++ programmers may get worried about returning
local variables, but in Python only references are transferred, and the garbage
collecting system does not delete objects as long as there are references to
them.)

We remark that the statistics function was made for illustrating basic
Python programming. An experienced Python programmer would probably
write

def statistics(xargs):
return reduce(operator.add, args)/float(len(args)), \
min(args), max(args)

The reader is encouraged to look up the documentation of the four functions
reduce, operator.add, min, and max to understand this compact version of the
statistics function. With Python’s sum function the statistics function can
be even shorter and more understandable:

def statistics(xargs):
return sum(args)/float(len(args)), min(args), max(args)

114 3. Basic Python

3.3.4 Call by Reference

Fortran, C, and C++ programmers are used to pass variables to a function
and get the variables modified inside the function. This is commonly referred
to as call by reference, achieved by using pointers or references!!. Some also
speak about in situ or in-place modification of arguments. In Python the
same effect is not straightforward to obtain, because Python’s way of trans-
ferring arguments applies an assignment operator between the argument and
the value in the call (“call by assignment” could be an appropriate way of
describing Python’s call mechanism). That is, given a function def f(x,y)
and a call £(2,a), the x and y arguments get their values by assignments x=2
and y=a. If we want to change the a argument inside the £ function and notice
the change in the calling code, a must therefore be a mutable object (list,
dictionary, class instance, Numerical Python array) that allows in-place mod-
ifications. An immutable a object, like numbers, strings, and tuples, cannot
be changed in-place, and a new assignment to y, as in y=3, has no effect on a.
Note also that the x and y arguments are local variables which are destroyed
when returning from the function.

Let us illustrate how elements of a list or a dictionary can be changed
inside a function:

>>> def somefunc(mutable, item, item_value):
mutable[item] = item_value

>>> a = [’a’,’b’,’c’] # a list
>>> somefunc(a, 1, ’surprise’)
>>> print a

[’a’, ’surprise’, ’c’]
>>> a = {’build’ : ’yes’, ’install’ : ’no’}
>>> somefunc(a, ’copy’, True) # add key in a

>>> print a
{’install’: ’no’, ’copy’: True, ’build’: ’yes’}

Doing the same with a tuple, which is an immutable object, is not successful:

>>> a = (’a’, ’b’, ’c’)
>>> somefunc(a, 1, ’surprise’)

TypeError: object doesn’t support item assignment

See also comments on mutable and immutable types on page 84.

Instances of user-defined classes can also be modified in-place. Here is an
outline of how we can change a class instance argument in a call by reference
fashion:

11 We remark that by default and contrary to Fortran, C and C++ passes arguments
by value (i.e., the functions work on copies of the arguments). The point is that
the mentioned languages have constructs for call by reference.

3.3. Functions 115

class A:
def __init__(self, value):

self.int = value
self.dict = {’a’: self.int, ’b’: ’some string’}

def modify(x):
x.int = 2

x.dict[’b’] = ’another string’
al = A(4)
modify(al)

print ’int=}d dict=s’ % (al.int, al.dict)

The print statement results in
int=2 dict={’a’: 4, ’b’: ’another string’}

showing that the data in the a1l instance have been modified by the modify
function.

Our next example concerns a swap function that swaps the contents of
two variables. A Fortran programmer may attempt to write something like

>>> def swap(a, b):
tmp = b; b = a; a = tmp;

>>> a=1.2; b =1.3;

>>> swap(a, b)

>>> a, b # has a and b been swapped?
(1.2, 1.3) # no...

The a and b inside swap initially hold references to objects containing the
numbers 1.2 and 1.3, respectively. Then, the local variables a and b are
rebound to other float objects inside the function. At return the local a and
b are destroyed and no effect of the swapping is experienced in the calling
code. The right way to implement the swap function in Python is to return
the output variables, in this cased a swapped pair'?:

>>> def swap(a, b):
return b, a # return tuple (b, a)

>>> a=1.2; b =1.3;

>>> a, b = swap(a, b)

>>> a, b # has a and b been swapped?
(1.3, 1.2) # yes!

3.3.5 Treatment of Input and Output Arguments

Chapter 3.3.4 outlines some ways of performing call by reference in Python.
We should mention that the Pythonic way of writing functions aims at us-
ing function arguments for input variables only. Output variables should be

12 This swap operation is more elegantly expressed directly as b,a=a,b or
(b,a)=(a,b) or [b,al=[a,b] instead of calling a swap function.

116 3. Basic Python

returned. Even in the cases we send in a list, dictionary, or class instance
to a function, and modifications to the variable will be visible outside the
function, the modified variable is normally returned. There are of course ex-
ceptions from this style. One frequent case is functions called by os.path.walk
or f£ind (see Chapter 3.4.7). The return value of those functions is not handled
by the calling code so any update of the user-defined argument must rely on
call by reference.

Consider a function for generating a list of n random normally distributed
numbers in a function. Fortran programmers would perhaps come up with
the solution

def ngauss(r, n):
for i in range(n):
r[i] = random.gauss(0,1)

r = [0.0]*%10 # make list of 10 items, each equal to 0.0
ngauss(r, len(r))

This works well, but the more Pythonic version creates the list inside the
function and returns it:

def ngauss(n):
return [random.gauss(0,1) for i in range(n)]

r = ngauss(10)

There is no efficiency loss in returning a possibly large data structure, since
only the reference to the structure is actually returned. In case a function
produces several arrays, say a, b, and c, these are just returned as a tuple
(a,b,c). We remark that for large n one should in the present example apply
Numerical Python to generate a random array, see Chapter 4.3.1. Such a
solution runs 25 times faster than ngauss.

Multiple Lists as Arguments. Sending several lists or dictionaries to a func-
tion poses no problem: just send the variables separated by commas. We men-
tion this point since programmers coming from Perl will be used to working
with explicit reference variables when sending multiple arrays or hashes to a
subroutine.

3.3.6 Function Objects

Lambda Functions. Python offers anonymous inline functions known as
lambda functions. The construction

lambda <args>: <expression>

is equivalent to a function with <args> as arguments and <expression> as
return value:

3.4. Working with Files and Directories 117

def somefunc(<args>):
return <expression>

For example,

lambda x, y, z: 3*%x + 2%y - z

is a short cut for

def somefunc(x, y, z):
return 3*x + 2%y - z

Lambda functions can be used in places where we expect variables. Say we
have a function taking another function as argument:
def fill(a, f):
n = len(a); dx = 1.0/(n-1)
for i in range(n):
X = ixdx
ali] = f(x)

A lambda function can be used for the £ argument:
fill(a, lambda x: 3*x**4)
This is equivalent to

def somefunc(x):
return 3*x*x*x4

fill(a, somefunc)

Callable Instances. Functions can also be represented as methods in class in-
stances. A particular useful construction is instances with a __call__ method,
as explained on page 99. Such instances can be called as ordinary functions
and store extra information in attributes.

3.4 Working with Files and Directories

Python has extensive support for manipulating files and directories. Although
such tasks can be carried out by operating system commands from Chap-
ter 3.1.3, the built-in Python functions for file and directory manipulation
work in the same way on Unix, Windows, and Macintosh. Chapter 3.4.1
contains Python functionality for listing files (i.e., the counterparts to the
Unix 1s and Windows dir commands). Chapter 3.4.2 describes how to test
whether a filename reflects a standard file, a directory, or a link, and how to
extract the age and size of a file. Chapter 3.4.3 explains how to remove files
and directories, while copying and renaming files are the subjects of Chap-
ter 3.4.4 Splitting a complete filepath into the directory part and the filename
part is described in Chapter 3.4.5. Finally, Chapters 3.4.6 and 3.4.7 deal with
creating directories and moving around in directory trees and processing files.

118 3. Basic Python

3.4.1 Listing Files in a Directory

Suppose you want to obtain a list of all files, in the current directory, with
extensions .ps or .gif. The glob module is then convenient:

import glob
filelist = glob.glob(’*.ps’) + glob.glob(’*.gif’)

This action is referred to as file globbing. The glob function accepts filename
specifications written in Unix shell-style wildcard notation. You can look up
the documentation of the module fnmatch (used for wildcard matching) to
see an explanation of this notation.

To list all files in a directory, use the os.listdir function:

files = os.listdir(xr’C:\hpl\scripting\src\py\intro’) # Windows

files = os.listdir(’/home/hpl/scripting/src/py/intro’) # Unix

fully cross platform:

files = os.listdir(os.path.join(os.environ[’scripting’],
’src’, ’py’, ’intro’))

files = os.listdir(os.curdir) # all files in the current dir.

files = glob.glob(’*’) + glob.glob(’.*’) # equiv. to last line

3.4.2 Testing File Types

The functions isfile, isdir, and islink in the os.path module are used to
test if a string reflects the name of a regular file, a directory, or a link:

print myfile, ’is a’,

if os.path.isfile(myfile):
print ’plain file’

if os.path.isdir(myfile):
print ’directory’

if os.path.islink(myfile):
print ’link’

You can also find the age of a file and its size:
time_of_last_access os.path.getatime(myfile)

time_of_last_modification os.path.getmtime (myfile)
size = os.path.getsize(myfile)

Time is measured in seconds since January 1, 1970. To get the age in, e.g.,
days since last access, you can say

import time # time.time() returns the current time
age_in_days = (time.time()-time_of_last_access)/(60%60%24)

More detailed information about a file is provided by the os.stat function
and various utilities in the stat module:

3.4. Working with Files and Directories 119

import stat
myfile_stat = os.stat(myfile)
size = myfile_stat[stat.ST_SIZE]
mode = myfile_stat[stat.ST_MODE]
if stat.S_ISREG(mode) :
print ’%(myfile)s is a regular file with %(size)d bytes’ %\
vars()

We refer to the Python Library Reference for complete information about
the stat module.

Testing read, write, and execute permissions of a file can be performed
by the os.access function:

if os.access(myfile, os.W_0K):
print myfile, ’has write permission’
if os.access(myfile, os.R_OK | os.W_OK | os.X_0K):
print myfile, ’has read, write, and execute permission’

Such tests are very useful in CGI scripts (see Chapter 7.2).

3.4.3 Removing Files and Directories

Single files are removed by the os.remove function, e.g.,

os.remove (’mydata.dat’)

An alias for os.remove is os.unlink (which coincides with the traditional Unix
and Perl name of a function for removing files). Removal of a collection of
files, say all *.ps and *.gif files, can be done in this way:

for file in glob.glob(’*.ps’) + glob.glob(’*.gif’):
os.remove (file)

A directory can be removed by the rmdir command provided that the
directory is empty. Frequently, one wants to remove a directory tree full of
files, an action that requires the rmtree function from the shutil module!3:

shutil.rmtree(’mydir’)

We can easily make a function remove for unified treatment of file and
directory removal. Typical usage may be

remove(’my.dat’) # remove a single file my.dat
remove (’mytree’) # remove a single directory tree mytree

remove several files/trees with names in a list of strings:
remove (glob.glob(’*.tmp’) + glob.glob(’*.temp’))
remove ([’my.dat’, ’mydir’,’yourdir’] + glob.glob(’*.data’))

Here is an implementation of the remove function:

3 The corresponding Unix command is rm -rf mydir.

120 3. Basic Python

def remove(files):
"""Remove one or more files and/or directories."""

if isinstance(files, str): # is files a string?
files = [files] # convert files from a string to a list
if not isinstance(files, list): # is files not a list?
<report error>
for file in files:
if os.path.isdir(file):
shutil.rmtree(file)
elif os.path.isfile(file):
os.remove(file)

Here is a test of the flexibility of the remove function:

make 10 directories tmp_* and 10 tmp__* files:
for i in range(10):

os.mkdir (’tmp_’+str(i))

f = open(’tmp__’+str(i), ’w’); f.close()

remove(’tmp_1’) # tmp_1 is a directory
remove (glob.glob(’tmp_[0-9]’) + glob.glob(’tmp__[0-9]’))

As a remark about the implementation of the remove function above, we
realize that the test

if not isinstance(files, list):

is actually too strict. What we need is just a sequence of file/directory names
to be iterated. Whether the names are stored in a list, tuple, or Numerical
Python array is irrelevant. A better test is therefore

if not operator.isSequenceType(files):
<report error>

3.4.4 Copying and Renaming Files

Copying files is done with the shutil module:

import shutil
shutil.copy(myfile, tmpfile)

copy last access time and last modification time as well:
shutil.copy2(myfile, tmpfile)

copy a directory tree:
shutil.copytree(root_of_tree, destination_dir, True)

The third argument to copytree specifies the handling of symbolic links:
True means that symbolic linkes are preserved, whereas False implies that
symbolic links are replaced by a physical copy of the file.

3.4. Working with Files and Directories 121

Cross-platform composition of pathnames is well supported by Python:
os.path.join joins directory and file names with the right delimiter (/ on
Unix and Mac OS X, and \ on Windows) and the variables os.curdir and
os.pardir represent the current working directory and its parent directory,
respectively. A Unix command like

cp ../../fl.c .
can be given the following cross-platform implementation in Python:
shutil.copy(os.path. join(os.pardir,os.pardir,’fl.c’), os.curdir)
The rename function in the os module is used to rename a file:

os.rename(myfile, ’tmp.1’°) # rename myfile to ’tmp.1’

This function can also be used for moving a file (within the same file system).
Here myfile is moved to the directory d:

os.rename(myfile, os.path.join(d, myfile))

Moving files across file systems must be performed by a copy (shutil.copy2)
followed by a removal (os.remove):

shutil.copy2(myfile, os.path.join(d, myfile))
os.remove (myfile)

The latter approach to moving files is the safest.

3.4.5 Splitting Pathnames

Let fname be a complete path to a file, say

/usr/home/hpl/scripting/python/intro/hw.py

Occasionally you need to split such a filepath into the basename hw.py and
the directory name /usr/home/hpl/scripting/python/intro. In Python this is
accomplished by

basename = os.path.basename (fname)
dirname = os.path.dirname(fname)
or

dirname, basename = os.path.split(fname)

The extension is extracted by the os.path.splitext function,

root, extension = os.path.splitext(fname)

yielding ’>.py’ for extension and the rest of fname for root. The extension
without the leading dot is easily obtained by os.path.splitext(fname) [1][1:].

Changing some arbitrary extension of a file with name £ to a new extension
ext can be done by

122 3. Basic Python

newfile = os.path.splitext(f)[0] + ext

Here is a specific example:

>>> f = ’/some/path/case2.data_source’

>>> moviefile = os.path.basename(os.path.splitext(£f)[0] + ’.mpg’)
>>> moviefile

’case2.mpg’

3.4.6 Creating and Moving to Directories

The os module contains the functions mkdir for creating directories and chdir
for moving to directories:

origdir = os.getcwd() # remember where we are
newdir = os.path.join(os.pardir, ’mynewdir’)
if not os.path.isdir(newdir):

os.mkdir(newdir) # or os.mkdir (newdir,’0755’)
os.chdir (newdir)

os.chdir(origdir) # move back to the original directory
os.chdir(os.environ[’HOME’]) # move to home directory

Suppose you want to create a new directory py/src/testl in your home
directory, but neither py, nor src and testi exist. Instead of using three
consecutive mkdir commands to make the nested directories, Python offers
the os.makedirs command, which allows you to create the whole path in one
statement:

os.makedirs(os.path.join(os.environ[’HOME’], ’py’,’src’,’testl’))

3.4.7 Traversing Directory Trees

The call

os.path.walk(root, myfunc, arg)

traverses a directory tree root and calls myfunc(arg, dirname, files) for each
directory name dirname, where files is a list of the filenames in dir (actually
obtained from os.listdir(dirname)), and arg is a user-specified argument
transferred from the calling code. Unix users will recognize that os.path.walk
is the cross-platform Python counterpart to the useful Unix find command.
A trivial example of using os.path.walk is to write out the names of all
files in all subdirectories in your home tree. You can try this code segment
in an interactive Python shell to get a feeling for how os.path.walk works:

3.4. Working with Files and Directories 123

def ls(arg, dirname, files):
print dirname, ’has the files’, files

os.path.walk(os.environ[’HOME’], 1ls, None)

The arg argument is not needed in this application so we simply provide a
None value in the os.path.walk call.

A suitable code segment for creating a list all files that are larger than 1
Mb in the home directory might look as follows:

def checksizel(arg, dirname, files):
for file in files:
filepath = os.path.join(dirname, file)
if os.path.isfile(filepath):
size = os.path.getsize(filepath)
if size > 1000000:
size_in_Mb = size/1000000.0
arg.append((size_in_Mb, filename))

bigfiles = []
root = os.environ[’HOME’]
os.path.walk(root, checksizel, bigfiles)
for size, name in bigfiles:

print name, ’is’, size, ’Mb’

We now use arg to build a data structure, here a list of 2-tuples. Each 2-tuple
holds the size of the file in megabytes and the complete file path. If arg is to
be changed in the function called for each directory, it is essential that arg
is a mutable data structure that allows in-place modifications (cf. the call by
reference discussion in Chapter 3.3.4).

The dirname argument is the complete path to the currently visited di-
rectory, and the names in files are given relative to dirname. The current
working directory is not changed during the walk, i.e., the script “stays”
in the directory where the script was started. That is why we need to con-
struct filepath as a complete path by joining dirname and file'“. To change
the current working directory to dirname, just call os.chdir(dirname) in the
function that os.path.walk calls for each directory, and recall to set the cur-
rent working directory back to its original value at the end of the function
(otherwise os.path.walk will be confused):

def somefunc(arg, dirname, files):
origdir = os.getcwd(); os.chdir(dirname)
<do tasks>
os.chdir(origdir)

os.path.walk(root, somefunc, arg)

14 Per] programmers may be confused by this point since the find function in Perl’s
File: :Find package automatically moves the current working directory through
the tree.

124 3. Basic Python

As an alternative to os.path.walk, we can easily write our own function
with a similar behavior. Here is a version where the user-provided function
is called for each file, not each directory:

def find(func, rootdir, arg=None):
call func for each file in rootdir
files = os.listdir(rootdir) # get all files in rootdir
files.sort(lambda a, b: cmp(a.lower(), b.lower()))
for file in files:
fullpath = os.path.join(rootdir, file)
if os.path.islink(fullpath):
pass # drop links...
elif os.path.isdir(fullpath):
find(func, fullpath, arg) # recurse into directory
elif os.path.isfile(fullpath):
func(fullpath, arg) # file is regular, apply func
else:
print ’find: cannot treat ’, fullpath

The find function above is available in the module scitools.misc. Contrary
to the built-in function os.path.walk, our find visits files and directories in
case-insensitive sorted order.

We could use find to list all files larger than 1 Mb:

def checksize2(fullpath, bigfiles):
size = os.path.getsize(fullpath)
if size > 1000000:
bigfiles.append(’%.2fMb %s’ % (size/1000000.0, fullpath))

bigfiles = []
root = os.environ[’HOME’]
find(checksize2, root, bigfiles)
for fileinfo in bigfiles:

print fileinfo

The arg argument represents great flexibility. We may use it to hold both
input information and build data structures. The next example collects the
name and size of all files, with some specified extensions, being larger than a
given size. The output is sorted according to file size.

bigfiles = {’filelist’: [], # list of file names and sizes
’extensions’: (’.*ps’, ’.tiff’, ’.bmp’),
’size_limit’: 1000000, # 1 Mb
}

find(checksize3, os.environ[’HOME’], bigfiles)

def checksize3(fullpath, arg):
treat_file = False
ext = os.path.splitext(fullpath) [1]
import fnmatch # Unix shell-style wildcard matching
for s in arg[’extensions’]:
if fnmatch.fnmatch(ext, s):
treat_file = True # fullpath has right extension
size = os.path.getsize(fullpath)
if treat_file and size > arg[’size_limit’]:

3.4. Working with Files and Directories 125

size = ’J.2fMb’ % (size/1000000.0) # pretty print
arg[’filelist’].append({’size’: size, ’name’: fullpath})

sort files according to size
def filesort(a, b):
return cmp(float(al’size’][:-2]), float(b[’size’][:-21))
bigfiles[’filelist’].sort(filesort)
bigfiles[’filelist’] .reverse() # decreasing size
for fileinfo in bigfiles[’filelist’]:
print fileinfo[’name’], fileinfo[’size’]

Note the function used to sort the list: each element in bigfiles[’filelist’]
is a dictionary, and the size key holds a string where we must strip off the
unit Mb (last two characters) and convert to float before comparison.

3.4.8 Exercises

Exercise 8.11. Automate execution of a family of similar commands.

The loop4simviz2.py script from Chapter 2.4 generates a series of direc-
tories, with PostScript and PNG plots in each directory (among other files).
Suppose you want to convert all the PNG files to GIF format. This can be
accomplished by the convert utility that comes with the ImageMagick soft-
ware:

convert png:somefile.png gif:somefile.gif

By this command, a PNG file somefile.png is converted to GIF format and
stored in the file somefile.gif. Alternatively, you can use the Python Imaging
Library (PIL):

import Image
pngfile: filename for PNG file; giffile: filename for GIF file
Image.open(pngfile) .save(giffile)

Write a script for automating the conversion of many files. Input data to
the script constitute of a collection of directories given on the command line.
For each directory, let the script glob *.png imagefiles and transform each
imagefile to GIF format.

To test the script, you can generate some directories with PNG files by
running loop4simviz2.py with the following command-line arguments:

b 02 0.25 -yaxis -0.5 0.5 -A 4 -noscreenplot

Run thereafter the automated conversion of PNG files to GIF format with
command-line arguments tmp_* (loop4simviz2.py generates directories with
names of the form tmp_x). o

Ezercise 8.12. Remove temporary files in a directory tree.
Computer work often involves a lot of temporary files, i.e., files that you
need for a while, but that can be cleaned up after some days. If you let the

126 3. Basic Python

name of all such temporary files contain the stem tmp, you can now and then
run a clean-up script that removes the files. Write a script that takes the
name of a directory tree as command-line argument and then removes all
files (in this tree) whose names contain the string tmp.

Hint: Use os.path.walk to traverse the directory tree (see Chapter 3.4.7)
and look up Chapter 3.2.8 to see how one can test if a string contains the
substring tmp. Avoid giving the script a name containing tmp as the script
may then remove itself! Also remember to test the script thoroughly, with
the physical removal statement replaced by some output message, before you
try it on a directory tree. o

Ezxercise 3.13. Find old and large files in a directory tree.

Write a function that traverses a user-given directory tree and returns a
list of all files that are larger than X Mb and that have not been accessed the
last Y days, where X and Y are parameters to the function. Include an option
in this function that moves the files to a subdirectory trash under /tmp (you
need to create trash if it does not exist).

Hints: Use shutil.copy and os.remove to move the files (and not os.rename,
it will not work for moving files across different filesystems). First build a list
of all files to be removed. Thereafter, remove the files physically.

To test the script, you can run a script fakefiletree.py (in src/tools),
which generates a directory tree (say) tmptree with files having arbitrary age
(up to one year) and arbitrary size between 5 Kb and 10 Mb:

fakefiletree.py tmptree

If you find that fakefiletree.py generates too many large files, causing the
disk to be filled up, you can take a copy of the script and modify the argu-
ments in the maketree function call. Remember to remove tmptree when you
have finished the testing. o

Exzxercise 3.14. Remove redundant files in a directory tree.

Make a script cleanfiles.py that takes a root of a directory tree as ar-
gument, traverses this directory tree, and for each file removes the file if
the name is among a prescribed set of target names. Target names can be
specified in Unix shell-style wildcard notation, for example,

tmp .*tmp* *.log *.aux *.idx *~ core a.out *.blg

If the user has a file called .cleanrc in the home directory, assume that this
file contains a list of target names, separated by whitespace. Use a default
set of target names in the case the user does not have a .cleanrc file.

With the option --fake, the script should just write the name of the file to
be removed to the screen but not perform the physical removal. The options
--size X and --age Y cause the script to also write out a list of files that are
larger than X Mb or older than Y weeks. The user can examine this list for
later removal.

3.4. Working with Files and Directories 127

The script file should act both as a module and as an executable script
(read about modules in Appendix B.1.1). For traversing the directory tree,
use the find function from page 124, available in the scitools.misc module.
Make a function add_file for processing each file found by find:

def add_file(fullpath, arg):

Add the given fullpath, to arg[’rm_files’] if fullpath
matches one of the names in the arg[’targetnames’] list.
The specification of names in targetnames follow the Unix
shell-style wildcard notation (an example may be
arg[’targetnames’]=[’tmp*’, ’*.log’, ’figx.xps’]).
arg[’rm_files’] contains pairs (fullpath, info), where
info is a string containing the file’s size (in Mb)

and the age (in weeks). In addition, add fullpath to

the arg[’old_or_large_files’] list if the size of the file
is larger than arg[’max_size’] (measured in Mb) or older

than arg[’max_age’] (measured in weeks).
nnn

Make another function cleanfiles, employing find and add_date, for printing
the removed files and the old or large candidate files.

Hints: Exercises 3.12 and 3.13 might be a useful starting point. Use the
fomatch module to handle Unix shell-style wildcard notation. It is advan-
tageous to store files for removal in a list and the large and/or old files in
another list. When the traversal of the directory tree has terminated, files can
be physically removed and lists can be printed. To test the script, generate
a directory tree using the fakefiletree.py utility mentioned in Exercise 3.13
and comment out the os.remove call.

Exercises B.4-B.11 (starting on page 734) equip the useful cleanfiles.py
script with good software engineering habits: user documentation, automatic
verification, and a well-organized directory structure packed in a single file.

o

Exercise 3.15. Annotate a filename with the current date.

Write a function that adds the current date to a filename. For example,
calling the function with the text myfile as argument results in the string
myfile_Aug22_2010 being returned if the current date is August 22, 2010.
Read about the time module in the Python Library Reference to see how
information about the date can be obtained. Exercise 3.16 has a useful appli-
cation of the function from the present exercise, namely a script that takes
backup of files and annotates backup directories with the date. o

Exercise 3.16. Automatic backup of recently modified files.

Make a script that searches some given directory trees for files with certain
extensions and copies files that have been modified the last three days to a
directory backup/copy-X in your home directory, where X is the current date.
For example,

backup.py $scripting/src .ps .eps .tex .xfig tex private

128 3. Basic Python

searches the directories $scripting/src, tex, and private for files with exten-
sions .ps, .eps, .tex, and .xfig. The files in this collection that have been
modified the last three days are copied to $HOME/backup/copy-Aug22_2010 if
the current date is August 22, 2010 ($HOME denotes your home directory).
Use the convention that command-line arguments starting with a dot denote
extensions, whereas the other arguments are roots in directory trees. Make
sure that the copy directory is non-existent if no files are copied.

Store files with full path in the backup directory such that files with
identical basenames do not overwrite each other. For example, the file with
path $HOME/project/a/filel.dat is copied to

$HOME/backup/copy-Aug22_2010/home/me/project/a/filel.dat

if the value of HOME equals /home/me.

Hint: Make use of Exercises 3.15, os.path.walk or £ind from Chapter 3.4.7,
and the movefiles function in scitools.misc (run pydoc to see a documenta-
tion of that function).

The files in the backup directory tree can easily be transferred to a mem-
ory stick or to another computer. o

Exercise 3.17. Search for a text in files with certain extensions.
Create a script search.py that searches for a specified string in files with
prescribed extensions in a directory tree. For example, running

search.py "Newton’s method" .tex .py

means visiting all files with extensions .tex and .py in the current directory
tree and checking each file if it contains the string Newton’s method. If the
string is found in a line in a file, the script should print the filename, the line
number, and the line, e.g.,

someletter.tex:124: when using Newton’s method. This allows
Hint: Chapter 3.2.8 explains how to search for a string within a string. o

Exercise 3.18. Search directories for plots and make HTML report.

Running lots of experiments with the simvizl.py and loop4simviz2.py
scripts from Chapters 2.3 and 2.4 results in lots of directories with plots. To
get an overview of the contents of all the directories you are asked to develop
a utility that

— traverses a directory tree,

— detects if a directory contains experiments with the oscillator code (i.e.,
the directory contains the files sim.dat, case.i, case.png, and case.ps,
where case is the name of the directory),

— loads the case.i file data into a dictionary with parameter names and
values,

3.4. Working with Files and Directories 129

— stores the path to the PNG plot together with the dictionary from the
previous point as a tuple in a list,

— applies this latter list to generate an HTML report containing all the
PNG plots with corresponding text information about the parameters.

Test the script on a series of directories as explained in the last paragraph of
Exercise 3.11. o

Ezercise 3.19. Fixz Uniz/Windows Line Ends.

Text files on MS-DOS and Windows have \r\n at the end of lines, whereas
Unix applies only \n. Hence, when moving a Unix file to Windows, line breaks
may not be visible in certain editors (Notepad is an example). Similarly, a file
written on a Windows system may be shown with a “strange character” at
the end of lines in certain editors (in Emacs, each line ends with "M). Python
strips off the \r character at line ends when reading text files on Windows
and adds the \r character automatically during write operations. This means
that one can, inside Python scripts, always work with \n as line terminator.
For this to be successful, files must be opened with ’r’> or >w’, not the binary
counterparts ’rb’ and ’wb’ (see Chapter 8.3.6).

Write a script win2unix for converting the line terminator \r\n to \n and
another script unix2win for converting \n to \r\n. The scripts take a list
of filenames and directory names on the command line as input. For each
directory, all files in the tree are to get their line ends fixed. Hint: Open
the files in >rb’ and ’wb’ mode (for binary files) such that \r remains un-
changed. Checking that a line ends in \r\n can be done by the code segments
if 1line[-2:] == ’\r\n’ or if line.endswith(’\r\n’).

Remark. On Macintosh computers, the line terminator is \r. It is easy to
write scripts that convert \r to and from the other line terminators. However,
conversion from \r must be run on a Mac, because on Unix and Windows
the file object’s readline or readlines functions swallow the whole file as one
line since no line terminator (\r\n or \n) is found on these platforms. See
Lutz [20, Ch. 5] for more details about line conversions. o

Chapter 4

Numerical Computing in Python

There is a frequent need for processing large amounts of data in computa-
tional science applications. Storing data in lists and traversing lists with plain
Python for loops leads to slow code, especially when compared with similar
code in compiled languages such as Fortran, C, or C++. Fortunately, there is
an extension of Python, commonly called Numerical Python, or abbreviated
NumPy, which offers efficient array computations. Numerical Python has a
fixed-size, homogeneous (fixed-type), multi-dimensional array type and lots
of functions for various array operations. The result is a dynamically typed
environment for array computing similar to basic Matlab. Usually, the speed
of NumPy operations is quite close to what is obtained in pure Fortran, C,
or C++.

A glimpse of Numerical Python is presented in Chapter 2.2.5. A more
comprehensive, yet compact introduction to basic NumPy computing, is pro-
vided in Chapter 4.1. Some non-trivial vectorization techniques are described
in Chapter 4.2. More advanced functionality of Numerical Python is listed
in Chapter 4.3. Two major scientific computing packages for Python, Scien-
tificPython and SciPy, are outlined in Chapter 4.4, along with the Python—
Matlab interface and a listing of many useful third-party modules for numer-
ical computing in Python.

There are three different implementations of Numerical Python: Numeric,
numarray, and numpy. The latter is the newest and contains all features of the
former two, plus some new enhancements. It is therefore recommended to
apply numpy. This package is documentended in a book which I highly recom-
mend to purchase. There are also some resources on the web that exemplify
usage of numpy (see doc.html). The free documentation of the old Numeric im-
plementation can be used to some extent for numpy programming, but there
are some significant changes, especially in coding style.

To use numpy it is common to perform a

from numpy import *

This import statement is require for the examples in this chapter to work.

Mixing Different Numerical Python Implementations. There is much code
around using the old Numeric implementation. Numeric arrays work well with
numpy arrays, but I will strongly recommend to port Numeric code to numpy,
especially since there are fundamental problems with Numeric on 64-bit ma-
chines. Usually, the port is a quite simple process as explained well in the

132 4. Numerical Computing in Python

numpy manual and on the webpages. Most of the Numeric functions are mir-
rored in numpy. However, numpy encourages the use of array methods instead
of functions. For example, in Numeric one can resize an array a to length n
with the function call resize(a, n), while the recommended numpy style is
a.resize(n). In this book we adapt to the new numpy style.

4.1 A Quick NumPy Primer

In the following sections we cover how to create arrays (Chapter 4.1.1), how

to work with indices and slices (Chapter 4.1.2), how to compute with arrays

without (slow) loops and explicit indexing (Chapter 4.1.4), how to determine

the type of an array and its elements (Chapter 4.1.6), as well as a discussion

of how arithmetic expressions generate temporary arrays (Chapter 4.1.4).
All of the code segments to be presented are collected in the script

src/py/intro/NumPy_basics.py

4.1.1 Creating Arrays

Creating NumPy arrays can be done in a variety of ways. Some common
methods are listed below.

Array of Specified Length, Filled with Zeros.

>>> from numpy import *

>>>n =4
>>> a = zeros(n) # one-dim. array of length n
>>> print a # str(a)
[o. 0. 0. 0.]
>>> a # repr(a)
array([0., 0., 0., 0.1)
>>>p=q=2
>>> a = zeros((p,q,3)) # pxq*3 three-dim. array
>>> print a
[[[f 0. 0. o0.]
[0o. 0. 0.1]
[[o. 0. o0.]
[o0. 0. 0.111

By default,zeros generates float elements, which has the same precision as
the C type double. Giving a second argument like int, complex, int16 (two-
byte integers as frequently used in sound arrays), or bool, other element types
can be generated.

There is also corresponding ones function which fills the array with unit
values.

4.1. A Quick NumPy Primer 133

Copying an FExisting Array. Sometimes we have an array x and want to
make a new array r with the same size as x and the same element type. We
can either copy x,

r = x.copy()

or we can call zeros with size and element type taken from x:

r = zeros(x.shape, x.dtype)

The shape and dtype attributes of arrays are explained later.

Array with a Sequence of Numbers. The call linspace(start, stop, n) pro-
duces a set of n uniformly distributed numbers starting with start and ending
with stop. For example,

>>> x = linspace(-5, 5, 11)
>>> print x
[-56. -4. -3. -2. -1. 0. 1. 2. 3. 4. 5.]

A special compact syntax is available through the syntax r_[start,stop,incjl:

>>> a = r_[-5:5:11j] # same as linspace(-1, 1, 11)
>>> print a
[-5. -4. -3. -2. -1. 0. 1. 2. 3. 4. 5.]

Note that in the compact syntax the step is specified as an imaginary number
with a j at the end.

Instead of specifying the number of array elements one can specify the
increment between two numbers in the sequence, here a unit increment:

>>> x = arange(-5, 5, 1, float)
>>> print x
[-6. -4. -3. -2. -1. 0. 1. 2. 3. 4.]

Note that the upper limit of the interval, here specified as 5, is ruled out be-
cause arange works like range, i.e., the largest element is less than the upper
limit. Unfortunately, because of round-off errors, the arange function is unre-
liable with respect to this behavior, see page 166. We therefore recommend
to avoid arange and instead use linspace from numpy or the function seq from
scitools.numpytutils:

>>> x = seq(-5, 5, 1)
>>> print x
[-6. -4. -3. -2. -1. 0. 1. 2. 3. 4. 5.]

seq works as arange, but the upper limit (here 5) is ensured to be included in
the sequence. Each element also becomes a floating-point number by default.

Also for arange there is a quick variant using r_, as for linspace: Also
here there is a quick variant:

134 4. Numerical Computing in Python

>>> a = r_[-5:5:1.0]
>>> print a
[-6. -4. -3. -2. -1. 0. 1. 2. 3. 4.]

With 1 as step instead of 1.0 (r_[-5:5:1]) the elements in a become integers.

Array Construction from a Python List. The array function makes an array
out of a Python list, e.g.,

>>> pl = [0, 1.2, 4, -9.1, 5, 8]
>>> a = array(pl)

Nested Python lists can be used to construct multi-dimensional NumPy ar-
rays:

>>> x
>>> a

[0, 0.5, 1]; y = [-6.1, -2, 1.2] # Python lists
array([x, y]) # form array with x and y as rows

If the lists contain integers only, array will produce integer elements in the
resulting array unless we add a type argument:

>>> z = array([1, 2, 3])

>>> print z

[1 2 3]

>>> z = array([1, 2, 3], float)
>>> print z

[1. 2. 3.]

Having a NumPy array, its tolist method creates a Python list. This can
be useful since not all functionality for Python lists is available for NumPy
arrays. For example, we can locate a specific element in the first row (x values)
using list functionality:

>>> i = a.tolist() [0].index(0.5)
>>> i
1

Sometimes we have some object a that can be an array, a list, or a tuple,
and we want to transform it to a NumPy array. The call

>>> a = asarray(a)

is then handy because it will do nothing if a already is a NumPy array.
Otherwise it will take a copy of the data and fill a NumPy array. Especially
in functions where you need to work with a NumPy array but would like to
offer users to send in anything that can be transformed to a NumPy array,
the asarray function is handy.

Changing Array Dimensions. The reshape method or the shape attribute is
used both to set and read the array dimensions:

4.1. A Quick NumPy Primer 135

>>> a = array([0, 1.2, 4, -9.1, 5, 8])

>>> a.shape = (2,3) # turn a into a 2x3 matrix

>>> a.shape = (a.size,) # turn a into a vector of length 6 again
>>> a.shape

(6,)

>>> a = a.reshape(2,3) # same effect as setting a.shape

>>> a.shape # get a’s shape

(2, 3

The total number of elements in an array is found by size(a). (A plain len(a)
returns 2, i.e., the length of the first dimension, just as 1en would behave when
applied to a nested Python list.)

Array Initialization from a Python Function. We can make a function that
maps an array index to an array value and use this function to initialize an
array:

>>> def myfunc(i, j):
return (i+1)*(j+4-1)

>>> # make 3x6 array where al[i,j] = myfunc(i,j):
>>> a = fromfunction(myfunc, (3,6))

>>> a
array([[4., 5., 6., 7., 8., 9.],
[6., 8., 10., 12., 14., 16.],
[6., 9., 12., 15., 18., 21.11)
Fortran vs. C' Storage Scheme. Multi-dimensional arrays are stored as a

one-dimensional sequence of elements in memory. A two-dimensional C array
is stored row by row, while Fortran stores it column by column. In Fortran
the first index runs faster than the second index, and so on, whereas in C the
first index runs slower than the second, and so forth, with the last index as
the fastest one. Figure 4.1 illustrates the differences in storage.

1 [2] 3] 4] 5] 6] csoage

‘1‘4‘2‘5‘3‘6‘F0rtranstorage

123
456

Fig. 4.1. Storage of a 2 x 3 matrix in C/C++/NumPy (upper) and Fortran (lower).

When we send NumPy arrays to C or Fortran code we must be aware of
the way the array is stored in memory. By default, NumPy arrays employ
the same storage scheme as in C, but we can easily change the ordering
of elements used in Fortran. Given any array a, with either C or Fortran

136 4. Numerical Computing in Python
ordering, we can transform the storage to either C or Fortran using NumPy’s
asarray function:

>>> af
>>> ac

asarray(a, order=’Fortran’)
asarray(a, order=’C’)

If asarray finds that no change in the ordering is necessary, the original array
is returned, otherwise a new array is returned with reordered elements. For a
two-dimensional array, the reordering corresponds to transposing the array.
To check if an array has C or Fortran ordering, we call

>>> isfortran(af)
True
>>> isfortran(ac)
False

When creating arrays using the array, zeros, or ones functions we can also
provide an order=’Fortran’ argument to get Fortran ordering. There is more
information about arrays and communication with Fortran in Chapter 9.

4.1.2 Array Indexing

Indexing of one-dimensional Numerical Python arrays follows the syntax of
Python lists:

a = linspace(-1, 1, 6)

al2:4] = -1 # set a[2] and a[3] equal to -1

al[-1] = a[0] # set last element equal to first one
al:] =0 # set all elements of a equal to O
a.£il11(0) # set all elements of a equal to O

An extended subscripting syntax is offered for multi-dimensional arrays:

a.shape = (2,3) # turn a into a 2x3 matrix
print al0,1] # print element (0,1)
ali,j]l = 10 # assignment to element (i,j)
alil [j]1 = 10 # equivalent syntax (slower)
print al:,k] # print column with index k
print afl1,:] # print second row

#

al:,:1 =0 set all elements of a equal to 0

A general index has the form start:stop:step, indicating all elements from
start up to stop-step in steps of step. Such an index can in general be
represented by a slice object (see page 391). We can illustrate slicing further
in an interactive session:

>>> a = linspace(0, 29, 30)

>>> a.shape = (5,6)

>>> a

array([[0., 1., 2., 3., 4., 5.
[6., 7., 8., 9., 10., 11.

[12., 13., 14., 15., 16
[18., 19., 20., 21., 22
[24., 25., 26., 27., 28

4.1. A Quick NumPy Primer

., 17.,]
., 23.,]
., 29.,1D)

>>> af1:3,:-1:2] # ali,j] for i=1,2 and j=0,2,4

array([[6., 8., 10.1,

[12., 14., 16.11)
>>> al::3,2:-1:2] # ali,j] for i=0,3 and j=2,4
array([[2., 4.7,

[20., 22.11)
>>> i = slice(None, None, 3); j = slice(2, -1, 2)
>>> ali,j]
array([[2., 4.1,

[20., 22.11)

137

It is important to know that slicing gives a reference to the underlying
array, which is different behavior than that of plain Python lists where slices
take a copy of the list data, see page 89 and Chapter 3.2.10. For example,

>>> b = al1l,:]

results in a reference to the 2nd row in a. Changing b will also change a (and

vice versa):

>>> print a[1,1]

12.0

>>> b[1] = 2

>>> print al1,1]

2.0 # change in b is reflected in a

If a true copy of the second row is wanted, we can call the copy method:

>>> b = al1,:].copy()
>>> print a[1,1]
12.0

>>> b[1] = 2
>>> print al1,1]
12.0

b and a are two different arrays now

a is not affected by change in b

Any integer list or array can be in fact be used as index. For example,
the slice a[f:t:i] is equivalent to a[range(f:t:i)]. An array b with boolean
values can also be used as index. The index set then corresponds to the indices
in b for which b’s value is True. This allows for boolean expressions as indices,

like ala<0]. The session below should illustrate som possibilities:

>>> a = linspace(l, 8, 8)

>>> a

array([1., 2., 3., 4., 5., 6., 7., 8.1)

>>> a[[1,6,7]1] = 10

>>> a

array([1., 10., 3., 4., 5., 6., 10., 10.1)
>>> a[range(2,8,3)] = -2

>>> a

array([1., 10., -2., 4., 5., -2., 10., 10.1)

>>> ala < 0] # pick out the negative elements of a

138 4. Numerical Computing in Python

array([-2., -2.])

>>> ala < 0] = a.max()

>>> a

array([1., 10., 10., 4., 5., 10., 10., 10.1)

Generalized indexing using integer arrays or lists is important for efficient
initialization of array elements.

4.1.3 Loops over Arrays

Iterating over an array can be done with a standard for loop over indices:

for i in xrange(a.shape[0]):
for j in xrange(a.shape[1]):
ali,jl = @+ *(G+1)*(j+2)
print ’al¥d,%dl=%g * % (i,j,ali,jl),
print # newline after each row

For large arrays, one should use the less memory-consuming and also more
efficient! xrange function instead of range.

There are several ways of iterating over an array a. The standard for e
in a construct iterates over the first index:

>>> print a

[[2. 6. 12.]
[4. 12. 24.]]

>>> for e in a:

print e
[2. 6. 12.]
[4. 12. 24.]

Iterating over all elements can be done by for e in a.flat:

>>> for e in a.flat:
print e

.0
0

2.0

0

R, DR ON -
[oNe]

2.
4.
A more useful iterator iterates over all elements, but extracts both the index
tuple and the corresponding array value:

! src/py/examples/efficiency/pyefficiency.py contains a test showing that
xrange is almost three times as fast range for administering a long empty loop
on my laptop.

4.1. A Quick NumPy Primer 139

>>> for index, value in ndenumerate(a):
print index, value

©, 0)

2.0
(0, 1) 6.0
(0, 2) 12.0
(1, 0) 4.0
(1, 1) 12.0
(1, 2) 24.0

Tests show that this last iteration can be six times more time consuming than
the traditional three loops over integer indices using xrange.

4.1.4 Array Computations

Loops over array elements should be avoided as this is computationally in-
efficient. Instead, NumPy offers lots of efficient C functions that operate on
the whole array at once. Consider, as an example,

b=23%xa -1

All elements in a are multiplied by 3 and the result is stored in a temporary
array. Then 1 is subtracted from each element in this temporary array, and
the result is stored in a new temporary array to which b becomes a reference.
All these array operations are performed by looping over the array elements
in efficient C code.

We may easily investigate the speed-up of array arithmetics compared to
a plain loop:

>>> import time # module for measuring CPU time

>>> a = linspace(0, 1, 1E+07) # create some array

>>> t0 = time.clock()

>>> b = 3%a -1

>>> t1 = time.clock() # t1-t0 is the CPU time of 3*a-1
>>> for i in xrange(a.size): b[i] = 3xali] - 1

>>> t2 = time.clock()

>>> print ’3*a-1: %g sec, loop: %g sec’ % (t1-t0, t2-t1)
3*a-1: 2.09 sec, loop: 31.27 sec

That is, the array expression 3*a-1 runs about 15 times faster than the loop-
based counterpart.

More memory conserving computation of b=3*a-1 can be done by in-place
modifications in b:

a
or multiply(b, 3, b)
or subtract(b, 1, b)

o oo
*

3
1

#
#

These operations require no extra memory as each element in b is modified
in-place. The code also runs almost twice as fast (on my laptop). Note that a

140 4. Numerical Computing in Python

is affected by these operations, since b initially shares its data with a, while if
we write b=3*a-1 the a variable remains unaltered. Starting with b=a.copy()
instead of b=a prevents changes in a.

The following operators offer in-place arithmetics in arrays:

a *= 3.0 # multiply a’s elements by 3
a-=1.0 # subtract 1 from each element
a /= 3.0 # divide each element by 3
a+=1.0 # add 1 to each element

a **x= 2.0 # square all elements

Another frequently used in-place operation is assignment directly to the ele-
ments in an existing array:

al:] = 3% - 1

Note the difference between assignment to al:] and a. In the former case
the elements of the right-hand side array are copied into the elements of the
array referred to by a, while in the latter case a refers to a new array object.

NumPy offers trigonometric functions, their inverse counterparts, and hy-
perbolic versions as well as the exponential and logarithmic functions. Here
are a few examples:

sin(b)

arcsin(c)

sinh(b)

same functions for the cos and tan families
b**2.5 # power function

log(b)

exp(b)

sqrt (b)

O000HOOO
wnn

Many more mathematical functions, such as Bessel functions, are offered by
the SciPy package (Chapter 4.4.2).

There are functions for finding maximum and minimum values and cor-
responding indices. Let us make a 5 x 4 array of random numbers between 0
and 20:

>>> a = arange(0, 20)

>>> random.seed(10) # fix seed

>>> random.shuffle(a) # in-place modification of a
>>> a.shape = 5,4

>>> print a

[[7 10 5 6]

[318 13 2]
[14 8 17 16]
[19 12 11 1]

Calling a.argmax() returns the index corresponding to the maximum value
of a. The index refers to a one-dimensional view of the array. The func-
tion a.ravel() makes multi-dimensional arrays one-dimensional (as they are
stored in memory). To find the maximum value is then a matter of doing

4.1. A Quick NumPy Primer 141

>>> max_index = a.argmax()

>>> ald = a.ravel()

>>> print ald

[710 5 6 318 13 214 8 17 16 19 12 11 1 0 15 4 9]
>>> max_value = ald[max_index]

>>> print ’max value = g for index %d’ % (max_index, max_value)
max value 19 for index 12

>>> print ald.max()

19

While a.argmax () returns an index, a.max () returns the largest value in a. Cor-
responding a.argmin() and a.min() methods also exist, as expected. Sorting
the array can be done as follows:

>>> ald.sort()
>>> print ald
[0 1 2 3 4 5 6 7 8 910 11 12 13 14 15 16 17 18 19]

Summing up array elements is a often useful:

>>> print sum(a), sum(ald)

Large and small values can be clipped away:

>>> ald = ald.clip(min=3, max=12)
>>> print ald
[3 3 3 3 4 5 6 7 8 910 11 12 12 12 12 12 12 12 12]

Simple statistics is available: a.mean() (or mean(a)) for the mean, a.var()
(or var(a)) for the variance a.std() (or std(a)) for the standard deviation,
median(a) for the median, and cov(x,y) for the covariance of x and y arrays.
There are also useful functions piecewise for piecewisely defined functions,
trapz for Trapezoidal integration of array values, diff for discrete finite dif-
ferences, a polynomial type, etc.

Matlab Compatibility. Most of the basic functions for arrays found in Matlab
are mirrored in NumPy. Examples include corrcoef, cov, cumprod, diag, diff,
eig, eye, fliplr, flipud, max, min, mean, median, prod, ptp, rot90, squeeze,
std, sum, svd, trapz, tri, tril, triu, and var. With the scitools.easyviz
package you also get access to plotting functions with names similar to those
in Matlab: plot, xlabel, ylabel, legend, title, surf, mesh — to mention some

Hidden Temporary Arrays. An important feature of NumPy is that most
mathematical functions written in plain Python for scalar variables will au-
tomatically be applicable to NumPy arrays as well. As an example, consider
the mathematical function f(z) = exp (—2?)In(1 + xsinz) implemented as
a plain Python function

def f1(x):
return exp(-x*x)*log(l+x*sin(x))

142 4. Numerical Computing in Python

Sending in a scalar value, say 3.1, £1 evaluates the expression e 31" In(1 +
3.1sin3.1). Sending in a NumPy array as x, returns an array where each
element equals £1 applied to the corresponding entry in the input array x.
However, “behind the curtain” several temporary arrays are created in order
to apply £1 to a vector:

templ = -x

temp2 = templ*x
temp3 = exp(temp2)
temp4 = sin(x)
tempS = x*temp4
temp6 = 1 + temp4

temp7 = log(tempb)

® NS otk W

result = temp3*temp7

Python quickly removes such temporary arrays.

4.1.5 More Array Functionality

Below we exemplify many useful array methods and attributes.

>>> a = zeros(4) + 3

>>> a
array([3., 3., 3., 3.]1) # float data
>>> a.item(2) # more efficient than al[2]
3.0
>>> a.itemset(3,-4.5) # more efficient than a[3]=-4.5
>>> a
array([3. , 3., 3., -4.5])
>>> a.shape = (2,2)
>>> a
array([[3. , 3. 1],
[3., -4.5]1])
>>> a.ravel() # from multi-dim to one-dim
array([3. , 3., 3., -4.5])
>>> a[0,1]=-88 # introduce non-symmetry
>>> a
array([[3. , -88. 1,

[3., -4.51D)
>>> a.transpose()

array([[3., 3.1,

[-88. , -4.5]11)
>>> a.ndim # no of dimensions
2
>>> len(a.shape) # no of dimensions
2
>>> rank(a) # no of dimensions
2

>>> a.size # total no of elements

4.1. A Quick NumPy Primer 143

4

>>> a.nbytes # a.size*a.itemsize
32

>>> b = a.astype(int) # change data type
>>> b

array([3, 3, 3, 31)

Numerical Python supports many data types for the array elements. Besides
the standard Python types float, int, complex, and bool, we have float96,
float64, float32, int32, int16, complex64, and complex128 to mention some
of the most important ones. The trailing number in the names of these data
types reflects the number of bits occupied by an array element.

The module numpy.1lib.scimath offers enhanced versions of some mathe-
matical functions such that both complex and real results can be returned,
depending on the input argument. For example, the sqrt function should re-
turn a real for a postive argument and a complex for a negative argument.
The basic sqrt function from numpy or math do not handle complex results,
cmath always returns complex results, while numpy.lib.scimath functions re-
turns real if possible, otherwise complex:

>>> from math import sqrt
>>> sqrt(-1)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
ValueError: math domain error
>>> from numpy import sqrt
>>> sqrt(-1)
Warning: invalid value encountered in sqrt
nan
>>> from cmath import sqrt
>>> sqrt(-1)
13
>>> sqrt(4) # cmath functions always return complex...
(2+03)
>>> from numpy.lib.scimath import sqrt
>>> sqrt(4)
2.0
>>> sqrt(-1)
13

We remark, however, that functions from numpy.lib.scimath may be quite
slow compared to those in numpy, as shown below.

Remark on Efficiency. The mathematical functions in NumPy work with
both scalar and array arguments. However, they are quite slow for scalar
arguments compared with the corresponding functions in the math module.
To illustrate this point, we have made a program in

src/py/examples/efficiency/asin_efficiency.py
1

which computes sin™ " x using asin from math and arcsin from the various
Numerical Python modules numpy, numpy.1lib.scimath, numarray, and Numeric.

144 4. Numerical Computing in Python

Calling just sin™! z and scaling the result of asin from math to one unit of
CPU time, arcsin from numpy required 12 units of CPU time, while arcsin
from Numeric, numarray, and numpy.lib.scimath led to 14, 18, and 92 units of
CPU time, respectively.

Burying the sin~! 2 operation inside a function,

def f(x, y):
return x**2 + arccos(x)*arcsin(x)

will naturally not lead to such dramatic differences between the various im-
plementations of the inverse sine function since there are more arithmetic
operations and function calls involved. Now the numpy-based version of £ used
6 units of CPU time, while the enhanced functions from numpy.lib.scimath
required almost 40 units of CPU time.

We learn two things from these timings: mathematical NumPy functions
are slow for scalar arguments (use math!), and the flexible functions from
numpy.lib.scimath are much less efficient than the similar (less flexible) func-
tions in numpy.

The efficiency considerations mentioned above are significant only when
the mathematical functions are called a (very) large number of times. A
profiling (see Chapter 8.10.2) will normally uncover this type of efficiency
problems. I therefore recommend to emphasize programming convenience and
safety, and when execution speed becomes critical, you may use the comments
in this section and the list in Chapter 8.10.3.

4.1.6 Type Testing

The NumPy array class has the name ndarray (“n-dimensional array”):

>>> type(a)

<type ’numpy.ndarray’>
>>> isinstance(a, ndarray)
True

The type of the array elements is described by the object a.dtype (“data
type”), which contains a name of the data type, a character code (correspond-
ing to the codes used in the struct module for binary I/0O, see Chapter 8.3.6),
and the number of bytes occupied by each array element:

>>> a.dtype.name

’float64’

>>> a.dtype.char # character code

)d)

>>> a.dtype.itemsize # no of bytes per element
8

>>> b = zeros(6, float32)

>>> a.dtype == b.dtype # do a and b have the same data type?
False

>>> ¢ = zeros(2, float)

>>> a.dtype == c.dtype

True

4.1. A Quick NumPy Primer 145

Controlling the data type is particularly important when communicating with
array processing functions written in Fortran, C, or C++ (Chapters 9 and
10).

Note that if you have an array of integers and assign floating-point num-
bers, everyting will be automatically converted to the array’s data type (here
integers):

>>> a = zeros(4, int)

>>> a[2] = 2.92

>>> print a

[0 0 2 0] # 2.92 was truncated to 2

4.1.7 Matrix Objects

The arrays created so far have been of type ndarray. NumPy also has a matrix
type called matrix or mat, which is similar to the basic matrix data structure
in Matlab. That is, one-dimensional arrays are either row or column vectors
when converted to the matrix type:

>>> x1 = array([1, 2, 3], float)
>>> x2 = matrix(x) # or mat(x)
>>> x2 # row vector
matrix([[1., 2., 3.11)
>>> x3 = mat(x).transpose() # column vector
>>> x3
matrix([[1.],
[2.1,
[3.1

>>> type(x3)

<class ’numpy.core.defmatrix.matrix’>
>>> isinstance(x3, matrix)

True

Arrays of higher dimension than two cannot be represented as matrix in-
stances.

A special feature of matrix objects is that the multiplication operator
represents the matrix-matrix, vector-matrix, or matrix-vector product as we
know from linear algebra:

>>> A = eye(3) # identity matrix
>>> A
array([[1., 0., 0.],
[o., 1., 0.1,
[o., 0., 1.1D
>>> A = mat(A)
>>> A
matrix([[1., 0., 0.1,
[o., 1., 0.1,
[o0., 0., 1.1

>>> y2 = x2%A # vector-matrix product

146 4. Numerical Computing in Python

>>> y2
matrix([[1., 2., 3.11)
>>> y3 = A*x3 # matrix-vector product
>>> y3
matrix([[1.7,
[2.1],
[3.1D
>>> Axx1 # no matrix-array product!

Traceback (most recent call last):
ValueError: matrices are not aligned

>>> # try array*array product:
>>> A = (zeros(9) + 1).reshape(3,3)

>>> A
array([[1., 1., 1.1,
[1., 1., 1.1,
(1., 1., 11D
>>> Axx1l # [A[O,:1*x1, A[1,:1*x1, A[2,:]*x1]
array([[1., 2., 3.1,
[1., 2., 3.1,
[1., 2., 3.1D
>>>B =A+1
>>> AxB # element-wise product
array([[2., 2., 2.1,
[2., 2., 2.1,
(2., 2., 2.1D
>>> A = mat(A); B = mat(B)
>>> AxB # matrix-matrix product
matrix([[6., 6., 6.1,
[6., 6., 6.1,
[6., 6., 6.1

4.1.8 Exercises

Ezxercise 4.1. Matriz-vector multiply with NumPy arrays.
Define a matrix and a vector, e.g.,

A
b

array([[1, 2, 3], [4, 5, 6], [7, 8, 101]1)
array([-3, -2, -11)

Use the NumPy manual to find a function that computes the standard matrix-
vector product A times b (i.e., the vector whose i-th component is Z?:o
Al4i,31%b[5]). ©

Ezercise 4.2. Work with slicing and matriz multiplication.

Extract the 2 x 2 matrix in the lower right corner of the matrix A in
Exercise 4.1 as a slice. Add this slice to another 2 x 2 matrix, multiply the
result by a 2 x 2 matrix, and insert this final result in the upper left corner
of the original matrix A. Control the result by hand calculations. o

4.2. Vectorized Algorithms 147

Exercise 4.3. Assignment and in-place NumPy array modifications.
Consider the following script:

from numpy import linspace

x = linspace(0, 1, 3)
#y=2xx + 1:

y=%x y*=2; y+=1
z = 4xx - 4:

z=X; z*=4; 2z -=4

print x, y, z

Explain why x, y, and z have the same values. How can the script be changed
such that y and z get the intended values? o

4.2 Vectorized Algorithms

Below we explain how Python functions with if tests can be vectorized with
the aid of the where function. We also describe how difference equations can
be vectorized using slices.

4.2.1 From Scalar to Array in Function Arguments

Mathematical Python functions with if tests will not handle NumPy arrays
correctly. Consider the sample function

def somefunc(x):
if x < 0:
return 0O
else:
return sin(x)

The operation x < 0 results in a boolean array where an element is True if the
corresponding element in x is less than zero, and False otherwise. However,
this array cannot be evaluated as a boolean value in an if test so a ValueError
exception is raised.

How can we extend the somefunc function shown above such that it works
with x as a NumPy array? The simplest solution is to use the vectorize
class in the numpy package. This class automatically vectorizes any function
of scalar arguments such that the function works with array arguments. For
example, executing

somefuncv = vectorize(somefunc)

gives a version somefuncv of somefunc where x can also be an array. The
array returned from somefuncv has elements of a type that is automatically
determined by vectorize. This type may be wrong, which is the case in the
present example, and then the output type must be specified explicitly:

148 4. Numerical Computing in Python

somefuncv = vectorize(somefunc, otypes=’d’)

Note that the data type must be specified by a character (and not float or
int), here we use ’d’ for float (double precision) elements. The somefuncv
object has no function name so we may set one:

somefuncv.__name__ = "vectorize(somefunc)"

Unfortunately, the speed of somefuncv is much lower than the best hand-
written versions below (see the end of src/py/intro/NumPy_basics.py for a
timing test that you can run on your own computer).

A possible first try to manually get the scalar code in the somefunc function
to work with array arguments is to insert a loop over the array entries:

def somefunc_NumPy(x):
r = x.copy() # allocate result array
for i in xrange(size(x)):

if x[i] < O:
r[i] = 0.0
else:
r[i] = sin(x[i])
return r

Such loops run very slowly in Python. Moreover, the implementation works
only for a one-dimensional array.

To make the code faster, we need to express our mathematical algorithm in
terms of vector operations and not elementwise operations based on indexing.
Loops will then be executed in fast C code in the Numerical Python library.
Such a rewrite is often referred to as vectorization. This technique is in many
interactive scientific computing environments, such as Octave and S-PLUS/R
(and formerly also in Matlab). Even in C, C++, and Fortran vectorization
can speed up the code, because simpler loops may be easier to optimize by
the compiler than more complicated loops. (This is particularly the case in
the present example because an if-test inside the loop prevents aggressive
compiler optimization.)

It is difficult to give general guidelines on how to vectorize a function that
does not work with array arguments, because the rewrite depends strongly on
the available functionality in the underlying library, here the NumPy package.
However, with NumPy, a function like

def f(x):
if condition:
x = <expressionl>
else:
x = <expression2>
return x

can be coded like this:

4.2. Vectorized Algorithms 149

def f_vectorized(x):
x1 = <expressionl>
x2 = <expression2>
return where(condition, x1, x2)

The where function returns an array of the same shape as that of condition,
and element no. i equals x1[i] if condition[i] is true, and x2[i] otherwise.
In our present example, we can write

def somefunc_NumPy2(x):
x1 = zeros(x.size, float)
x2 = sin(x)
return where(x < 0, x1, x2)

or even simpler

def somefunc_NumPy2b(x):
return where(x < 0, 0.0, sin(x))

On my laptop, this hand-written function ran over 50 times faster than the
function automatically generated by vectorize.

Sometimes the computations cannot be performed for all the values of
the incoming array. Consider, as an example,

def logpos(x):
if x <= 0:
return 0.0
else:
return log(x)

Now a simple log(x) when x is an array will not work if x has negative
elements. One remedy is to replace all illegal entries in x with legal ones, and
then perform log(x). The replaced entries will never enter the final answer
anyway:
def logposv(x):
x_pos = where(x > 0, x, 1) # subst. negative values by 1
rl = log(x_pos)

r = where(x < 0, 0.0, rl)
return r

4.2.2 Slicing

Slicing can be an important technique for vectorizing expressions, especially
in applications involving finite difference schemes, image processing, or smooth-
ing operations. Consider the following numerical recursion scheme:

uttt = pul_ + (1 —26)uf+ﬁuf+1, i1=1,...,n—1,
arising from solving a one-dimensional diffusion equation %lt‘ = giﬁ by an
explicit finite difference scheme. The index ¢ > 0 counts discrete levels in

150 4. Numerical Computing in Python

time, and 4 is a counter for points in space (i = 0,...,n). The quantity uf is
the unknown function u evaluated at grid point ¢ and time level /. In plain
Python we would typically code the scheme as

n = size(u)-1
for i in xrange(1l,n,1):
u_new[i] = betaxul[i-1] + (1-2*beta)*ul[i] + beta*ul[i+1]

where u_new holds uf“ fori=1,...,n, and u holds uf for the same 7 values.

The problem is that loops in Python are slow. A vectorized version consists
of adding three vectors: u[1:n-1], u[0:n-2], and u[2:n], with suitable scalar
coeflicients. That is, the loop is replaced by

ul1:n] = beta*ul[0:n-1] + (1-2%beta)*ull:n] + beta*ul[2:n+1]

We now compute slices of the arrays and add these to form the new u. Note
that there is no need for a separate array u_new since u becomes a new ar-
ray every time the statement is executed. This leads, of course, to tempo-
rary arrays in memory (the additions on the right-hand side of the previous
statement also introduce temporary arrays at each time level). It seems that
Python is able to deallocate or reuse temporary arrays, because the mem-
ory overhead does not increase steadily when the recursion scheme is run for
many time levels.

4.2.3 Exercises

Exercise 4.4. Vectorize a constant function.
The function

def initial_condition(x):
return 3.0

does not work properly when x is a NumPy array. In that case the function
should return a NumPy array with the same shape as x and with all entries
equal to 3.0. Perform the necessary modifications such that the function works
for both scalar types and NumPy arrays. o

Exercise 4.5. Vectorize a numerical integration rule.
The integral of a function f(z) from x = a to x = b can be calculated
numerically by the Trapezoidal rule:

/bf do~")+ " hn_lf Lih), h=""¢ 41
pwar s s+ s +nY fatin, h=" 0 @

n
i=1

Implement this approximation in a Python function containing a straightfor-
ward loop.

4.3. More Advanced Array Computing 151

The code will run slowly compared to a vectorized version. Make the
vectorized version and introduce timings to measure the gain of vectorization.
Use the function

filr) =1+ 2z

as test functions for the integration. o

Exercise 4.6. Vectorize a formula containing an if condition.
Consider the following function f(x):

f(x)

1+1/n _ _ 14+1/n < <
n {0.5 (0.5 —x) ,0<2<05 (4.2)

T 140 |05 (2 —0.5)F Y 05 <z <1

Here, n is a real number, typically 0 < n < 1. (The formula describes the
velocity of a pressure-driven power-law fluid in a channel.) Make a vectorized
Python function for evaluating f(z) at a set of m equally spaced x values
between 0 and 1 (i.e., no loop over the x values should appear). o

Exercise 4.7. Slicing of two-dimensional arrays.

Consider the following recursive relation (arising when generalizing the
one-dimensional diffusion equation scheme in Chapter 4.2.2 to two dimen-
sions):

241 0 ¢ ’ ’ ’
U@er = Bui_1,; +Uiy1j + i1+) + (1 —4P)u; ;.
Write a straight Python loop implementing this recursion. Then replace the
loop by a vectorized expression based on slices. o

4.3 More Advanced Array Computing

Numerical Python contains a module random for efficient random number
generation, outlined in Chapter 4.3.1. Another Numerical Python module
linalg which solves linear systems, computes eigenvalues and eigenvectors,
etc., and is presented in Chapter 4.3.2. Tools for curveplotting are described
in Chapter 4.3.3. Chapter 4.3.4 deals with a curve fitting example, which
ties together linear algebra computations and curve plotting. Chapter 4.3.5
addresses vectorized array computations on structured grids.

Numerical Python comes with its own tools for storing arrays in files and
loading them into scripts again. These tools are covered in Chapter 4.3.6.
Chapter 4.3.6 also presents a module from the scitools package associated
with this book where two-dimensional NumPy arrays can be read from and
written to a tabular file format.

152 4. Numerical Computing in Python

4.3.1 Random Numbers

The basic module for generating uniform random numbers in Python is
random, which is a part of the standard Python distribution. This module
provides the function seed for setting the initial seed. Generating uniformly
distributed random numbers in (0, 1) or (a, b) is performed by the random and
uniform functions, respectively. Random variates from other distributions are
also supported (see the documentation of the random module in the Python
Library Reference for details). The next lines illustrate the basic usage of the
random module:

import random
random.seed(2198) # control the seed

print ’uniform random number on (0,1):’, random.random()
print ’uniform random number on (-1,1):’, random.uniform(-1,1)
print ’Normal(0,1) random number:’, random.gauss(0,1)

No call to the seed function implies calculating a seed based on the current
time. Giving a manual seed has the advantage that we can work with the
same sequence of random numbers each time the program is run. This is
important for debugging and code verification.

Calling up the random module in a loop for generating large random sam-
ples is a slow process. Much more efficient random number generation is
provided by the random module in the NumPy package. This module gets
imported by the standard from numpy import *, but since its name then is
identical with Python’s standard random module it is easy to mix the two.
The most basic usage of numpy’s random module is illustrated next. The main
point is that we can efficiently draw an array of random numbers at once:

from numpy import * # import random and other stuff

random. seed (12) # set seed
u = random.random(n) # n uniform numbers on (0,1)
u = random.uniform(-1, 1, n) # n uniform numbers on (-1,1)

The random module offers more general distributions, e.g., the normal distri-
butions:

mean = 0.0; stdev = 1.0
u = random.normal (mean, stdev, n)
m = sum(u)/n # empirical mean
s = sqrt(sum((u - m)**2)/(n-1)) # empirical st.dev.
print ’generated %d N(0,1) samples with\nmean %g °’\
’and st.dev. ’%g using numpy.random.normal’ % (n, m, s)

Logical operators on vectors are often useful when working with large vectors
of samples. As an illustrating example, we can find the probability that the
samples in u, generated in the previous code snippet, are less than 1.5:

p = sum(where(u < 1.5, 1, 0))

prob = p/float(n)
print ’probability=%.2f’ 7% prob

4.3. More Advanced Array Computing 153

The first line deserves a comment. The where (b, c1, c2) call returns an array,
say a, where a[i] is c1 if b[i] is True, and c2 if if b[i] is False. The b array is
a boolean array arising from a boolean expression involving a NumPy array,
such as u < 1.5 in this case. The array resulting from u < 1.5 has element
no. i equal to True if ulil < 1.5, otherwise this element is False. When sum
is applied to the array returned from where, having 0 or 1 values, the number
of random values less than 1.5 are computed.

Random samples drawn from the uniform, normal, multivariate normal,
exponential, beta, chi square, F, binomial, and multinomial distributions are
offered by numpy’s random module. We refer to the module’s doc string or the
NumPy manual for more details.

4.3.2 Linear Algebra

The 1linalg module, automatically imported in a from numpy import * state-
ment, contains functions for solving linear systems, finding the inverse and the
determinant of a matrix, as well as computing eigenvalues and eigenvectors.
An illustration of solving a linear system Az = b is given below.

from numpy import *

A = zeros((n,n))

x = zeros(n)
b = zeros(n)

for i in range(n):
x[i] = i/2.0 # some prescribed solution
for j in range(n):
Ali,j] = 2.0 + float(i+1)/float(j+i+1)

b = dot(A, x) # matrix-vector product: adjust rhs to fit x

solve linear system Axy=b:
y = linalg.solve(A, b)

We can now check if the solution of the linear system, as produced by
linalg.solve, coincides with the array x. Testing if x == y does not work,
becuase x == y results in an array of length n where element no. i is True if
x[i] == y[i]. The problem is that the boolean array arising from x == y can-
not be evaluated as a scalar boolean value in an if test. We can use the array
method al1() to check if all elements are True in this array. Therefore, if (x
== y).all() makes sense, but this test involves exact inequalities, which is
not a good idea when comparing floating-point numbers. A better test is

if sum(abs(x - y)) < 1.0E-12: print ’correct solution’
else: print ’wrong solution’,x,y

An alternative test is to use the allclose function from numpy, or equivalently
float_eq from scitools.numpyutils (see page 167). This function checks if
abs(x-y) is less than an absolute tolerance plus y times a relative tolerance.
A typical call is

154 4. Numerical Computing in Python

if allclose(x, y, atol=1.0E-12, rtol=1.0E-12):
print ’correct solution’

else:
print ’wrong solution’, x, y

The 1linalg module has more functionality, for instance functions for matrix
determinants and inverses:

d

linalg.det (A)

B

linalg.inv(A)

check result:

R = dot(A, B) - eye(n) # residual

R_norm = linalg.norm(R) # Frobenius norm of matrix R
print ’Residual R = A*A-inverse - I:’, R_norm

Eigenvalues can also be computed:

eigenvalues only:
A_eigenvalues = linalg.eigvals(A)

eigenvalues and eigenvectors:
A_eigenvalues, A_eigenvectors = linalg.eig(A)

for e, v in zip(A_eigenvalues, A_eigenvectors):
print ’eigenvalue %g has corresponding vector\nis’ % (e, v)

There are also functions svd for the Singular Value Decomposition of a matrix,
eigh for eigenvalues and -vectors of a Hermitian matrix, and cholesky for the
Cholesky decomposition of a symmetric, positive definite matrix.

4.3.3 Plotting

There are several Python packages available for plotting curves and visualiz-
ing 2D/3D scalar and vector fields. For curve plotting, the Gnuplot package
by Michael Haggerty (see doc.html for a link to the software) allows easy
access to the popular Gnuplot program from Python scripts. Chapter 5.3.3
has a worked example. A strength of the Gnuplot program is that it is very
easy to install on all major platforms. The Gnuplot Python interface comes
with a demo.py script which shows the basic usage.

The most promising and comprehensive plotting tool at the time of this
writing is Matplotlib. The widely used IDL environment, which has extensive
support for plotting, can be interfaced from Python through the pyIDL mod-
ule. Another plotting program, Grace, can be interfaced using the pygrace
module. With the pymat module (see Chapter 4.4.3) one can easily send
NumPy arrays to Matlab and plot them there.

It may be difficult to pick the optimal plotting package for use with a
Python script. That is one reason why we have created a unified Python in-
terface to several different plotting packages. This interface is called Easyviz.

4.3. More Advanced Array Computing 155

Both curve plots and more advanced 2D /3D visualization of scalar and vector
fields are supported by Easyviz. The interface was designed with three ideas
in mind: (i) a simple, Matlab-like syntax; (ii) a unified interface to lots of
visualization engines (called backends later): Gnuplot, VTK, Matlab, Mat-
plotlib, PyX, etc.; and (iii) a minimalistic interface which offers only basic
control of plots (fine-tuning is left to programming in the specific backend
directly).
The import statements to get access to the interface are either

from numpy import *
from scitools.easyviz import *

or

from scitools.all import *

The latter statement performs the former two, plus some more imports of
convenient features in scitools. Plotting a curve is very simple:

t = linspace(0, 3, 51) # 51 points between 0O and 3
y = tx*2%exp(-t**2)
plot(t, y)

We can add another curve and some noisy data points, pluss specify legends
for the three curves, fix the axis, add a title, and mark the x axis with a ¢
label:

y2 = t*xdxexp(-t**2)

pick out each 4 points and add random noise:

t3 = t[::4]

random.seed(11)

y3 = y2[::4] + random.normal(loc=0, scale=0.02, size=t3.size)

plot(t, yi, ’r-’)
hold(’on’)

plot(t, y2, ’b-’)
plot(t3, y3, ’bo’)
legend(’t~2*xexp(-t~2)°, ’t"4*exp(-t~2)’, ’data’)
title(’Simple Plot Demo’)
axis([0, 3, -0.05, 0.6])
xlabel(’t’)

ylabel(’y’)

show ()

hardcopy (’tmp0.eps’)
hardcopy (’tmp0.png’)

Matlab users will be familiar with this syntax. However, we also provide a
more compact plot command where the individual function calls above are
included through keyword arguments:

plot(t, y1, ’r-’, t, y2, ’b-’, t3, y3, ’bo’,
legend=(’t"2*exp(-t~2)’, ’t~4*exp(-t~2)’, ’data’),
title=’Simple Plot Demo’,

156 4. Numerical Computing in Python

axis=(0, 3, -0.05, 0.6),
xlabel="t’, ylabel=’y’,
hardcopy=’tmpl.ps’,
show=True)

hardcopy (’ tmpO.png’)

A scalar function f(z,y) may be visualized as an elevated surface with
colors using these commands:

x = linspace(-2, 2, 41) # 41 point on [-2, 2]
xv, yv = ndgrid(x, x) # define a 2D grid with points (xv,yv)
values = f(xv, yv) # function values
surfc(xv, yv, values,
shading=’interp’,
clevels=15,
clabels=’on’,
hidden=’on’,
show=True)

With Easyviz you can quickly write plotting commands in your Python
scripts and postpone the decision to employ a specific plotting package. For
example, you may start out with Gnuplot and later switch to Matplotlib, if
desired. The backend can either be set in a config file or by a command-line
option to the Python script,

--SCITOOLS_easyviz_backend name

where name is the name of the backend: gnuplot, vtk, matplotlib, blt, etc.
The specified backend must of course be installed on your computer system.

Easyviz is a light-weight interface and aimed at the functionality you need
“95%” of the time. This means that only the most basic plotting operations
are found in the interface. If you need more sophisticated operations, you can
grab the object that Easyviz applies for communication with the backend and
use this object to write plotting package-specific commands. As an example,
say you apply the gnuplot backend and want to write a text and display
an arrow in your plot. The following commands grab the backend object (a
Gnuplot instance), here called g, and then sends Gnuplot-specific commands
for writing the text and drawing the arrow:

g = get_backend()

if backend == ’gnuplot’:
g is a Gnuplot object, work with Gnuplot commands directly:
g(’set label "global maximum" at 0.1,0.5 font "Times,18"’)
g(’set arrow from 0.5,0.48 to 0.98,0.37 linewidth 2’)
g.refresh()
g.hardcopy(’tmp.eps’) # make new hardcopy

Easyviz also support making movies through the movie function, which
takes a Unix shell-style wildcard specification of a set of hardcopies that are
supposed to be the frames in the movie. Here is an example of animating a
Gaussian bell where the standard deviation is decreased from 2 to 0.2:

4.3. More Advanced Array Computing 157

from scitools.all import *

Gaussian bell with mean m and standard deviation s:
def f(x, m, s):
return (1.0/(sqrt(2*pi)*s))*exp(-0.5%((x-m)/s)**2)

m =0

s_start = 2

s_stop = 0.2

s_values = linspace(s_start, s_stop, 30)

x = linspace(m - 3*s_start, m + 3*s_start, 1000)
max_f = f(m, m, s_stop)

show the movie on the screen
and make hardcopies of frames simultaneously:
counter = 0
for s in s_values:
y = £f(x, 0, s)
plot(x, y, axis=[x[0], x[-1], -0.1, max_f],
xlabel="x’, ylabel="f’, legend=’s=Y4.2f’ 7% s,
hardcopy=’tmp_%04d.eps’ % counter)
counter += 1

movie(’tmp_*.eps’) # make movie file the simplest possible way

We refer to the doc string in the Easyviz package for more complete infor-
mation on what the package can do:

pydoc scitools.easyviz

Remark. When data are sent from Python to plotting programs, it may
happen that the programs need some time to display the data, and if the
calling script ends, the plotting program exits and no plot appears on the
screen. The remedy is to insert a time.sleep(s) command at the end of the
Python script (s is the number of seconds the script should halt at the end
to ensure that the plotting program gets enough time to finish the plot).

4.3.4 Example: Curve Fitting

The next example demonstrates how different numerical utilities in Python
can be put together to form a flexible and productive working environment in
the spirit of environments like Matlab. We shall illustrate how to fit a straight
line through a set of data points using the least squares method. The tasks
to be performed are

1. generate x as coordinates between 0 and 1,

2. generate eps as random samples from a normal distribution with mean 0
and standard deviation 0.25,

3. compute y as the straight line -2*x+3 plus the random perturbation eps,

158

5.

4. Numerical Computing in Python

form the least squares equations for fitting the parameters a and b in
a line a*x+b to the data points (the coefficient matrix has x in its first
column and ones in the second, the right-hand side is the y data),

plot the data, the exact line, and the fitted line, with help of Easyviz.

The resulting script, found in src/py/intro/leastsquares.py, is quite short
and (hopefully) self-explaining:

import sys
try:

n = int(sys.argv[1]) # no of data points
except:

n = 20

from scitools.all import * # import numpy and much of scitools

compute data points in x and y arrays:

x in (0,1) and y=-2*x+3+eps, where eps is normally
distributed with mean zero and st.dev. 0.25.
random. seed (20)

x = linspace(0.0, 1.0, n)

noise = random.normal(0, 0.25, n)

a_exact = -2.0; b_exact = 3.0

y_line = a_exact*x + b_exact

y = y_line + noise

create least squares system:

A = array([x, zeros(n)+1])

A = A.transpose()

result = linalg.lstsq(A, y)

result is a 4-tuple, the solution (a,b) is the 1st entry:
a, b = result[0]

plot:
plot(x, y, ’0o’,
x, y_line, ’r’,
X, axx + b, ’b’,
legend=(’data points’, ’original line’, ’fitted line’),
title=’y = Y%g*x + Jg: fit to y = Jg*x + %s + normal noise’ % \
(a, b, a_exact, b_exact),
hardcopy=’tmp.ps’)

Figure 4.2 shows the resulting PostScript plot (the Gnuplot program was
chosen as the backend for Easyviz).

There is an alternative and easier to use function polyfit in numpy, which

fits a polynomial of a given degree d to a set of xz-y data points stored in
one-dimensional arrays x and y:

coeffs = polyfit(x, y, d)

The coeffs list starts with the coefficients for the highest degree, i.e., the
polynomial is coeffs[0]*x**d + ... + coeffs[-1]. In the present application
of fitting a straight line we can write

a, b = polyfit(x, y, 1)

4.3. More Advanced Array Computing 159

y =-1.86794*x + 2.92875: fit to y = -2*x + 3.0 + normal noise

35 T T T T -
data points ©
original line
fitted line --------
3 i
o
]
o o
25 B
° o
SN ©
o]
2+ o [0 4
o]
°
15+ ° o J
o
o]
o]
1 | | | |
0 0.2 0.4 0.6 0.8 1

Fig. 4.2. The result of the script leastsquares.py, demonstrating a least squares
fit of a stright line through data points.

4.3.5 Arrays on Structured Grids

Suppose we have a two-dimensional grid consisting of points (x;,y;), ¢ =
0,1,...,1,5=0,1,...,J. The z; and y; coordinates are conveniently made
as one-dimensional arrays, e.g.,

x = linspace(0, 1, 5); y = linspace(-1, 1, 5)

A frequently encountered task in this context is to fill a two-dimensional
array a;; with point values of some scalar function f(z,y) of two variables,
ie., a;; = f(xi,y;) (the a array represents discrete values of the scalar field
f(z,y) on a rectangular grid). Filling the array can be accomplished by a
double loop:

a = zeros((x.size, y.size))
for i in xrange(x.size):
for j in xrange(y.size):

ali,jl = £([il1, y[3D

However, these loops run slowly so we may want to vectorize the evalua-
tion of a. The plain call a=f(x,y) does not work, as the following example
demonstrates:

>>> def f(x,y):
. return x +y

>>> x = linspace(0, 1, 3)

160 4. Numerical Computing in Python

>>> y = x.copy()
>>> f(x, y)
array([0., 1., 2.1)

The expression x+y simply adds the two vectors elementwise, i.e., a = x 4+ y
implies a; = x; + y; for all ¢, while what we want is a; ; = z; + y;. We may
achieve the latter result if we redimension x as a two-dimensional representa-
tion of a column vector, and y as a two-dimensional representation of a row
vector.

Eatending Coordinate Arrays for 2D Grids. We need to extend the one-
dimensional coordinate arrays with one extra dimension of unit length. An
obvious method is

XV = X; yv =
xv.shape = (x.size, 1)
yv.shape = (1, y.size)

We can equivalently use the reshape method:

xv = x.reshape(x.size, 1); yv = y.reshape(l, y.size)

A third alternative employs the newaxis element to add a dimension to a
NumPy array:

xv = x[:, newaxis]; yv = yl[newaxis, :]

In all three cases, xv and yv shares the data with x and y.
Now xv+yv evaluates to a two-dimensional array with the i,j element as
x[1] + y[jI:

array([[0. , 0.5, 1.1,
[o0.5, 1., 1.5],
(1., 1.5, 2. 1D

The extended xv and yv arrays can be quickly made by calling the ndgrid
function in scitools:

from scitools.numpyutils import x*
x = linspace(-2, 2, 101)
xv, yv = ndgrid(x, x)

evaluate a function
def f(x, y):

return exp(-sqrt(x*x + y*y))
values = f(xv, yv)

plot values:
from scitools.easyviz import surfc
surfc(xv, yv, values)

4.3. More Advanced Array Computing 161

Extending Coordinate Arrays for 8D Grids. A three-dimensional box-shaped
grid has grid-point locations on the form (z;,y;, zx). The coordinates in the
three space directions can be represented by three one-dimensional arrays x,
y, and z. To evaluate a function f(x,y,z) in a vectorized fashion, we must
extend x to a three-dimensional array with unit length in the 2nd and 3rd
dimensions, y to a three-dimensional array with unit length in the 1st and
3rd dimensions, and z to a three-dimensional array with unit length in the
1st and 2nd dimensions:

xv = x.reshape(x.size, 1, 1)
yv = y.reshape(l, y.size, 1)
zv = z.reshape(l, 1, z.size)
or

xv = x[:,newaxis,newaxis]

yv = y[newaxis,:,newaxis]

zv = z[newaxis,newaxis,:]

Calling a scalar function of three arguments, f(xv,yv,zv), may now yield
a three-dimensional array holding f values at the points in the box grid.
We remark that not all functions f(xv,yv,zv) will automatically work in
vectorized mode (see Chapter 4.2.1, the example below, and Exercise 4.4).

Sometimes a scalar function is to be evaluated over the grid with one or
more of the coordinates constant. For example, f(z,yo) for all z coordinates
in the grid is computed straightforwardly by f£(x,y_0). The result is a one-
dimensional array since x is a one-dimensional coordinate array and y_0 is
a scalar. In 3D, however, the computations get more involved. Say we want
to evaluate f(z,yo,z) for all z and z values, while yo is the maximum y
coordinate. Now we need two-dimensional extensions of the x and z coordinate
arrays:

x2 = x[:,newaxis]; 2z2 = z[newaxis,:]
v = £(x2, y[-11, z2)

The result v is a two-dimensional array reflecting the grid in an zz plane. We
may assign this array to a slice of a three-dimensional array over all the grid
points in a given plane:

ul:,-1,:1 = v

Computing f(xo,yo, z) for fixed zo and yo, while z takes on all legal coordi-
nates is simple since this computation only involves a one-dimensional grid.
We simply call £(x_0,y_0,2).

The ndgrid function mentioned above also handles 3D grids and boundary
slices of 3D grids. For example, in a box grid on [0, 1] x [0, 1] X [0,2] we can
extract the extended grid coordinates for a grid in the plane z = 1.5:

>>> x = linspace(0, 1, 3)

>>> y = linspace(0, 1, 2)
>>> # 2D slice of a 3D grid, with z=const:

162 4. Numerical Computing in Python

>>>z =1.5

>>> xv, yv, zv = ndgrid(x, y, z)
>>> xv
array([[0. 1,
[0.5],

[1. 1D
>>> yv

array([[0., 1.11)
>>> zv

1.5

A Class for 2D Grids. To hide the extensions of the coordinate arrays with
newaxis or reshape constructions, we can create a more easy-to-use grid class
(see Chapter 3.2.9 for a quick intro to Python classes). Limiting the interest
to uniform grids with constant spacings in the x and y direction, we could
write the class as follows:

class Grid2D:
def __init__(self,
xmin=0, xmax=1, dx=0.5,
ymin=0, ymax=1, dy=0.5):
coordinates in each space direction:
self .xcoor = seq(xmin, xmax, dx)
self .ycoor = seq(ymin, ymax, dy)

store for convenience:
self.dx = dx; self.dy = dy
self.nx = self.xcoor.size; self.ny = self.ycoor.size

make two-dim. versions of the coordinate arrays:
(needed for vectorized function evaluations)
self.xcoorv = self.xcoor[:, newaxis]

self .ycoorv = self.ycoor[newaxis, :]

def vectorized_eval(self, f):

"""Evaluate a vectorized function f at each grid point."""
return f(self.xcoorv, self.ycoorv)

The class may be used as illustrated below:
g = Grid2D(xmax=10, ymax=3, dx=0.5, dy=0.02)

def myfunc(x, y):
return x*sin(y) + y*sin(x)

a = g.vectorized_eval (myfunc)

check point value:

i=3; j=g.ny4; x =g.xcoor[il; y = g.ycoor[j]

print *£(%g, %g) = g = hg’ % (x, y, ali,jl, myfunc(x, y))
less trivial example:

def myfunc2(x, y):

return 2.0

a = g.vectorized_eval(myfunc2)

4.3. More Advanced Array Computing 163

In the second example, a becomes just the floating-point number 2.0, not an
array. We need to vectorize the constant function myfunc2 to get it to work
properly in the present context:

def myfunc2v(x, y):
return zeros((x.shape[0], y.shape[1])) + 2.0

a = g.vectorized_eval (myfunc2v)

Extensions and testing of the class take place in Chapters 8.9.2, 9, and 10.

4.3.6 File 1/0O with NumPy Arrays

Writing a NumPy array to file and reading it back again can be done with the
repr and eval functions?, respectively, as the following code snippet demon-
strates:

a = linspace(l, 21, 21)
a.shape = (2,10)

ASCII format:

file = open(’tmp.dat’, ’w’)

file.write(’Here is an array a:\n’)

file.write(repr(a)) # dump string representation of a
file.close()

load the array from file into b:

file = open(’tmp.dat’, ’r’)

file.readline() # load the first line (a comment)
b = eval(file.read())

file.close()

Now, b contains the same values as a. Note that repr(a) normally will span
multiple lines so storing more than one array in a file requires some delimiter
text between the arrays.

When working with large NumPy arrays that are written to or read
from files, binary format results in smaller files and significantly faster in-
put/output operations. The simplest way of storing and retrieving NumPy
arrays in binary format is to use pickling (see Chapter 8.3.2) via the cPickle
module:

al and a2 are two arrays

import cPickle

file = open(’tmp.dat’, ’wb’)
file.write(’This is the array al:\n’)
cPickle.dump(al, file)

file.write(’Here is another array a2:\n’)

2 See page 363 for examples of how eval and str or repr can be used to read and
write Python data structures from/to files.

164 4. Numerical Computing in Python

cPickle.dump(a2, file)
file.close()

file = open(’tmp.dat’, ’rb’)

file.readline() # swallow the initial comment line
bl = cPickle.load(file)

file.readline() # swallow next comment line

b2 = cPickle.load(file)

file.close()

One can also store NumPy arrays in binary format using the technique
of shelving (Chapter 8.3.3).

NumPy has special functions for converting an array to and from binary
format. The binary format is just a sequence of bytes stored in a plain Python
string. This sequence of bytes only contains the array elements and not infor-
mation on the shape and data type. In the code segment below we therefore
store the size of the array and its shape as plain text preceding the binary
data:

file = open(’tmp.dat’, ’wb’)

a_binary = a.tostring() # convert to binary format string
store first length (in bytes):

file.write(’%d\n%s\n’ 7 (a_binary.size, str(a.shape)))
file.write(a_binary) # dump string

file.close()

file = open(’tmp.dat’, ’rb’)

load binary data into b:

nbytes = int(file.readline()) # or eval(file.readline())
b_shape = eval(file.readline())

b = fromstring(file.read(nbytes))

b.shape = b_shape

file.close()

As always when working with binary files, be careful with potential little-
or big-endian problems when the files are moved from one computer platform
to another (see page 369). NumPy has functions for checking which endian
format the elements have, and array objects have a byteswap() method for
swapping between little- and big-endian.

Chapters 8.4.2-8.4.5 demonstrate and evaluate the use of standard Python
pickling, C-implemented (cPickle) pickling, formatted ASCII storage, and
shelving of NumPy arrays. The technique utilizing the cPickle module has
the fastest I/O and the lowest storage costs.

More general information on binary files and related input/output oper-
ations is provided in Chapter 8.3.6 and in the documentation of the struct
module in the Python Library Reference.

Numerical data are often stored in plain ASCII files with numbers in rows
and columns. Such files can be read into two-dimensional NumPy arrays
for numerical processing. We have made a module scitools.filetable for
reading and writing such tabular data from/to files. A simple example will

4.3. More Advanced Array Computing 165

illustrate how the module can be used. Assume we have a data file tmp.dat
like this:

0 0.0 0.0 1.0
1 1.0 1.0 2.0
2 4.0 8.0 17.0
3 9.0 27.0 82.0
4 16.0 64.0 257.0
5 25.0 125.0 626.0

The following interactive session demonstrates how we can load this file into
a two-dimensional NumPy array:

>>> import scitools.filetable as ft
>>> s = open(’tmp.dat’, ’r’)

>>> table = ft.read(s)

>>> s.close()

>>> print table

[[o. 0. 0. 1.]
[1 1. 1. 2.]
[2. 4. 8. 17.]
[3. 9. 27. 82.]
[4 16. 64. 257.]
[5 25. 125. 626.]]

Instead of reading the tabular data into two-dimensional array, the function
read_columns returns a list of one-dimensional arrays, one for each column of
data:

>>> s = open(’tmp.dat’, ’r’)

>>> x, y1, y2, y3 = ft.read_columns(s)
>>> s.close()

>>> print x

[o. 1. 2. 3. 4. 5.]

>>> print yi

[o. 1. 4. 9. 16. 25.]

>>> print y2

[o. 1. 8. 27. 64. 125.]
>>> print y3
[1. 2. 17. 82. 257. 626.]

There are corresponding functions write and write_columns for writing a
two-dimensional array and a set of one-dimensional arrays (columns) to file,
respectively. We refer to the documentation of the scitools.filetable mod-
ule for more details and examples.

The scripts src/py/intro/datatrans3x.py, with x as a, b, ¢, and d, imple-
ment different strategies for reading tabular data from files. There is a test
script datatrans-eff.py in the same directory which can be used to measure
the efficiency of the various strategies.

4.3.7 Functionality in the Numpyutils Module

The numpyutils module in the scitools package provides some useful add on
functions to what is found in NumPy:

166 4. Numerical Computing in Python

— seq: The seq function is similar to arange and linspace. It does the same
as arange, but guarantees to include the upper limit of the array. Contrary
to linspace, seq requires the increment between two elements and not the
total number of elements as argument.

seq(0, 1, 0.2) # 0., 0.2, 0.4, 0.6, 0.8, 1.0
seq(min=0, max=1, inc=0.2) # same as previous line
seq(0, 6, 2, int) # 0, 2, 4, 6 (integers)
seq(3) #0., 1., 2., 3.

The signature of the function reads

def seq(min=0.0, max=None, inc=1.0, type=float,
return_type=’NumPyArray’):

The return_type string argument specifies the returned data structure
holding the generated numbers: ’NumPyArray’ or ndarray implies a NumPy
array, ’list’ returns a standard Python list, and ’tuple’ returns a tuple.
Basically, the function creates a NumPy array using

r = arange(min, max + inc/2.0, inc, type)
and coverts r to list or tuple if necessary.

A warning is demanded regarding the standard use of arange: This func-
tion claims to not include the upper limit, but sometimes the upper limit
is included due to round-off errors. Try out the following code segment on
your computer to see how often the last element in a contains the upper
limit 1.0 or not:
N = 1001
for n in range(l, N):
a = arange(0, 1, 1.0/n)
last = a[-1]
print a.size-n, n, last
On my computer, the upper limit was included in 58 out 1001 cases, and
a then contained an extra element. Therefore, I suggest to avoid arange
for floating-point numbers and stick to linspace or seq.

— iseq: The fact that range and xrange do not include the upper limit in
integer sequences can be confusing or misleading sometimes when im-
plementing mathematical algorithms. The numpyutils module therefore
offers a function for generating integers from start up to and including
stop in increments of inc:

def iseq(start=0, stop=None, inc=1):
if stop is None: # simulate xrange(start+1) behavior
stop = start; start = 0; inc =1
return xrange(start, stop+inc, inc)

A relevant example may be coding of a formula like
rp = (ck — Ap2Try1)/dg, i=n—-2,n-3,...,0,

which translates into

4.3. More Advanced Array Computing 167

for k in iseq(n-2, 0, -1):
x[k] = (clk] - A[k,2]*x[k+1])/d[k]

Many find this more readable and easier to debug than a loop built with
range(n-2,-1,-1).

The iseq function is in general recommended when you need to iterate
over a part of an array, because it is easy to control that the arguments
to iseq correspond exactly to the loop limits used in the mathematical
specification of the algorithm. Such details are often important to quickly
get a correct implementation of an algorithm.

float_eq: float_eq(a, b, rtol, atol) returns a true value if a and b are
equal within a relative tolerance rtol (default 10'4) and an absolute tol-
erance atol (default 10'%). More precisely, the float_eq function returns
a true value if

abs(a-b) < atol + rtol*abs(b)

The arguments a and b can be float variables or NumPy arrays. In the
latter case, float_eq just calls allclose in numpy.

ndgrid: This function extends one-dimensional coordinate arrays with
extra dimensions, which is required for vectorized operations for com-
puting scalar and vector fields over 2D and 3D grids, as explained in
Chapter 4.3.5. For example,

>>> x = linspace(0, 1, 3) # coordinates along x axis
>>> y = linspace(0, 1, 2) # coordinates along y axis
>>> xv, yv = ndgrid(x, y)
>>> xv
array([[0. 1,

[0.51,

(1. 1D
>>> yv

array([[0., 1.11)

The ndgrid function also handles boundary grids, i.e., 1D /2D slices of 3D
grids with one/two of the coordinates kept constant, see the documenta-
tion of the function for further details.

(Remark. There are several ndgrid-like functions in numpy: meshgrid, mgrid,
and ogrid, but scitools has its own ndgrid function because meshgrid in
numpy is limited to 2D grids only and it always returns a full 2D array
and not the “sparse” extensions used in Chapter 4.3.5 (unit length in the
added dimensions). The ogrid function can produce “sparse” extensions,
but neither ogrid nor mgrid allow for non-uniform grid spacings. The
ndgrid in scitools.numpyutils also allow for both “matrix” indexing and
“erid” indexing of the coordinate arrays. All of these additional features
are important when working with 2D and 3D grids.)

wrap2callable: This is a function for turning integers, real numbers, func-
tions, user-defined objects (with a __call__ method), string formulas, and

168 4. Numerical Computing in Python

discrete grid data into some object that can be called as an ordinary func-
tion (see Chapters 12.2.1 and 12.2.2). You can write a function

def df(f, x, h):
f = wrap2callable(f) # ensure f is a function: f(x)
return (f(x+h) - £(x-h))/(2.0%h)

and call df with a variety of arguments:

x =2; h=0.01

print df(4.2, x, h) # constant 4.2
print df(’sin(x)’, x, h) # string function, sin(x)
def q(x):

return sin(x)
print df(q, x, h) # user-defined function q

xc = seq(0, 4, 0.05); yc = sin(xc)
print df((xc,yc), x, h) # discrete data xc, yc

The constant 4.2, user-defined function q, discrete data (xc,yc), and
string formula ’sin(x)’ will all be turned, by wrap2callable, into an ob-
ject £, which can be used as an ordinary function inside the df function.
Chapter 12.2.2 explains how to construct the wrap2callable tool.

— arr: This function provides a unified short-hand notation for creating
arrays in many different ways:

a = arr(100) # as zeros(100)

a = arr((M,N)) # as zeros((M,N))

a = arr((M,N), element_type=complex) # Complex elements

a = arr(N, interval=[1,10]) # as linspace(1,10,N)

a = arr(data=mylist) # as asarray(mylist)

a = arr(data=myarr, copy=True) # as array(myarr, copy=1)

a = arr(file_=’tmp.dat’) # load tabular data from file

The arr function is just a simple, unified interface to the zeros and array
function in NumPy, plus some file reading statements. The file format is
a table with a fixed number of columns and rows where whitespace is the
delimiter between numbers in a row. One- and two-dimensional arrays
can be read this way. The arr function makes several consistency and
error checks that are handy to have automated and hidden.

4.3.8 Exercises

Exercise 4.8. Implement FExercise 2.9 using NumPy arrays.

Solve the same problem as in Exercise 2.9, but use Numerical Python
and a vectorized algorithm. That is, generate a (long) random vector e of
2n uniform integer numbers ranging from 1 to 6, find the entries that are
6 by using where(e == 6, 1, 0), reshape the vector to a two-dimensional
2 x n array, add the two rows of this array to a new array e2, count how
many of the elements in e2 that are greater than zero (these are the events

4.3. More Advanced Array Computing 169

where at least one die shows a 6) by sum(where(e2 > 0, 1, 0)). Estimate the
probability from this count. Insert CPU-time measurements in the scripts
(see Chapter 4.1.4 or 8.10.1) and compare the plain Python loop and the
standard random module with the vectorized version utilizing random, where,
and sum from numpy. o

Exercise 4.9. Implement Exercise 2.10 using NumPy arrays.

Solve the same problem as in Exercise 2.10, but use Numerical Python
and a vectorized algorithm. Generate a random vector of 4n uniform integer
numbers ranging from 1 to 6, reshape this vector into an array with four
rows and n columns, representing the outcome of n throws with four dice,
sum the eyes and estimate the probability. Insert CPU-time measurements
in the scripts (see Chapter 4.1.4 or 8.10.1) and compare the plain Python
solution in Exercise 2.10 with the version utilizing NumPy functionality.

Hint: You may use the numpy functions random.randint, sum, and < (read
about them in the NumPy reference manual, and notice especially that sum
can sum the rows or the columns in a two-dimensional array). o

Exercise 4.10. Replace lists by NumPy arrays in convert2.py.

Modify the convert2.py such that the data are read into NumPy arrays
and written to files using either the scitools.filetable or TableIO modules
(see Chapter 4.3.6). The y variable should be a dictionary where the values
are one-dimensional NumPy arrays. o

Exercise 4.11. Use Easyviz in the simvizl.py script.

The simvizi.py script from Chapter 2.3 creates a file with Gnuplot com-
mands and executes Gnuplot via an operating system call. As an alterna-
tive to this approach, use Easyviz from Chapter 4.3.3 to make the graphics.
Load the data in the sim.dat file into NumPy arrays in the script, using the
filetable module from Chapter 4.3.6. Thereafter, use the plot function with
appropriate parameters to plot the data, set a title reflecting input parame-
ters, and create a hardcopy. o

Exercise 4.12. Extension of Fxercise 2.8.

Make a script as described in Exercise 2.8, but now you should modify
the src/py/intro/datatrans3.py script instead, i.e., all columns in the input
file are stored in NumPy arrays. Construct a new NumPy array with the
averages and write all arrays to an output file. o

Exercise 4.13. NumPy arrays and binary files.

Make a version of the src/py/intro/datatrans3a.py script (see Chap-
ter 4.3.6) that works with NumPy arrays and binary files (see Chapter 4.3.6).
For testing purposes, you will need two additional scripts for generating and
viewing binary files (see also Exercise 8.21). S

170 4. Numerical Computing in Python

Exercise 4.14. One-dimensional Monte Carlo integration.
One of the earliest applications of random numbers was numerical compu-
tation of integrals. Let x1,...,x, be uniformly distributed random numbers

between a and b. Then .

S fa) (4.3)

i=1

is an approximation to the integral f: f(x)dx. This method is usually referred
to as Monte Carlo integration. The uncertainty in the approximation of the
integral is estimated by the standard deviation

b—a n

g = Jn niIZf(x¢)2_n_1(f)2%ana izf(xi)z_(f)Q’

(4.4)
where f = n~! > iy f(zi). Since & tends to zero as n™ /%, a quite large n
is needed to compute integrals accurately (standard rules, such as Simpson’s
rule, the Trapezoidal rule, or Gauss-Legendre rules are more efficient). How-
ever, Monte Carlo integration is efficient for higher-dimensional integrals (see
next exercise).

Implement the Monte Carlo integration (4.3) in a Python script with an
explicit loop and calls to the random.random() function for generating random
numbers. Print the approximation to the integral and the error indicator
(4.4). Test the script on the integral [sinx dz. Add code in the script where
you utilize NumPy functionality for random number generation, i.e., a long
vector of random samples are generated, f is applied to this vector, followed
by a sum operation and division by n. Compare timings of the plain Python
code and the NumPy code.

We remark that the straightforward Monte Carlo algorithm presented
above can often be significantly improved by introducing more clever sam-
pling strategies [30, Ch. 7.8]. o

1/2

Exercise 4.15. Higher-dimensional Monte Carlo integration.
This exercise is a continuation of Exercise 4.14. Our aim now is to compute
the m-dimensional integral

/ flza, ... xm)dey - - - dayy, (4.5)
Q

where {2 is a domain of general shape in IR™. Monte Carlo integration is well
suited for such integrals. The idea is to embed (2 in a box B,

B = [051761] Ko [amvﬂm]v
such that 2 C B. Define a new function F' on B by

 flxa, o zm) i (21, 2m) €02
B, om) = { 0, otherwise (4.6)

4.3. More Advanced Array Computing 171

The integral (4.5) can now be computed as

1 B) < i .
/f($1,.-.,$m)dx1---dxm%Voume()E F(xg),---,x%?), (4.7)
0 n im1

where xgi), e ,x%), fori=1,...,nand j = 1,...,m, are mn independent,

uniformly distributed random numbers. To generate xél), we just draw a
number from the one-dimensional uniform distribution on [«;, G;].

Make a Python script for higher-dimensional integration using Monte
Carlo simulation. The function f and the domain {2 should be given as Python
functions. Make use of NumPy arrays.

Apply the script to functions where the integral is known, compute the

errors, and estimate the convergence rate empirically. o

Exercise 4.16. Load data file into NumPy array and visualize.

The file src/misc/temperatures.dat contains monthly and annual temper-
ature anomalies on the northern hemisphere in the period 1856-2000. The
anomalies are relative to the 1961-1990 mean. Visualizing these anomalies
may show if the temperatures have increased towards the end of the last
century.

Make a script taking the uppercase three-letter name of a month as
command-line argument (JAN, FEB, etc.), and visualizes how the tempera-
ture anomalies vary with the years. Hint: Load the file data into a NumPy
array, as explained in Chapter 4.3.6, and send the relevant columns of this
array to Gnuplot for visualization. You can use a dictionary to map from
month names to column indices. o

Exercise 4.17. Analyze trends in the data from Exercise 4.16.

This is a continuation of Exercise 4.16. Fit a straight line (by the method
of least squares, see Chapter 4.3.4) to the temperature data in the period
1961-1990 and another straight line to the data in the period 1990-2000. Plot
the two lines together with the noisy temperature anomalies. If the straight
line fit for the period 1990-2000 is significantly steeper than the straight line
fit for the period 1961-1990 it indicates a significant temperature rise in the
1990s. Hint: To find the index corresponding to (say) the entry 1961, you can
convert the NumPy data to a Python list by the tolist method and then use
the index method for lists (i.e., datal[:,0].tolist().index(1961)).

On http://cdiac.ornl.gov/trends/temp/jonescru/data.html one can find
more temperature data of this kind. o

Exercise 4.18. Ewvaluate a function over a 3D grid.

Write a class Grid3aD for representing a three-dimensional uniform grid on
a box with user-defined dimensions and cell resolution. The class should be
able to compute a three-dimensional array of function values over the grid
points, given a Python function. Here is an exemplifying code segment:

172 4. Numerical Computing in Python

temperature anomalitiesin NOV relative to the 1961-1990 period
l T T T T

T

temr;erature deviation
1961-1990 fit -
05T 1990-2000 fit |- |

- 2 . 5 1 1 1 1 1 1 1
1840 1860 1880 1900 1920 1940 1960 1980 2000

Fig. 4.3. Plot to be made by the script in Exercise 4.17. Temperature deviations
in November, relative to the 1961-1990 mean, are shown together with a straight
line fit to the 1961-1990 and the 1990-2000 data.

g = Grid3D(xmin=0, xmax=1, dx=0.1,
ymin=0, ymax=10, dy=0.5,
zmin=0, zmax=2, dz=0.02)
f = g.vectorized_eval(lambda x,y,z: sin(x)*y + 4%*z)

i=2; j=3; k=0
print ’value at (%g,%g,%g) = £l%d,%d,%d] = %g’ % \
(g.xcoor[i], g.ycoor[jl, g.zcoor[k]l, i, j, k, f[i,j,k])

Read Chapter 4.3.5 about a similar class Grid2D and extend the code to
three-dimensional grids.
o

Exercise 4.19. Evaluate a function over a plane or line in a 3D grid.

Extend Exercise 4.18 such that we can evaluate a function over a 3D grid
when one or two coordinates are held constant. Given a Grid3D object g, we
can typically write

a = g.vectorized_eval2(f, x=ALL, y=MIN, z=ALL)

to evaluate f(x,yo, z) for all and z coordinates, while yg is the minimum y
coordinate. Another example is

a = g.vectorized_eval2(f, x=MAX, y=MIN, z=ALL)

4.4. Other Tools for Numerical Computations 173

where we evaluate some f(xg, yo, z) for all z coordinates and with z as the
maximum z coordinate and yo as the minimum y coordinate. We can of
course use a numerical value for the x, y, and z arguments as well, e.g.,

a = g.vectorized_eval2(f, x=MAX, y=2.5, z=ALL)

You may use the trick on page 401 and implement the function in a subclass,
still with name Grid3D, to avoid touching the original Grid3p.py file.

Implement MIN, MAX, and ALL as global constants in the file. These constants
must have values that do not interfer with floating-point numbers so strings
might be an appropriate type (say MIN="min’, etc.).

<&
4.4 Other Tools for Numerical Computations

Several Python packages offer numerical computing functionality beyond
what is found in Numerical Python. Some of the most important ones are de-
scribed in the following. This covers ScientificPython, SciPy, and the Python-
Matlab interface, presented in Chapters 4.4.1-4.4.3, respectively. Such pack-
ages are built on Numerical Python. We also provide, in Chapter 4.4.5, a list
of many other packages of relevance for scientific computing with Python.

4.4.1 The ScientificPython Package

The ScientificPython package, developed by Konrad Hinsen, contains nu-
merous useful modules for scientific computing. For example, the package
offers functionality for automatic differentiation, interpolation, data fitting
via nonlinear least-squares, root finding, numerical integration, basic statis-
tics, histogram computation, visualization, and parallel computing (via MPI
or BSP). The package defines several data types, e.g., physical quantities
with dimension, 3D vectors, tensors, and polynomials, with associated oper-
ations. I/O functionality includes reading and writing netCDF files and files
with Fortran-style format specifications. The ScientificPython web page (see
link in doc.html) provides a complete overview of the various modules in the
package. Some simple examples are provided below.

The strength of ScientificPython is that the package contains (mostly)
pure Python code, which is trivial to install. A subset of ScientificPython,
dealing with Integration, interpolation, statistics, root finding, etc., is also
offered by SciPy (Chapter 4.4.2), usually in a faster compiled implementation.
However, SciPy is more difficult to install on Unix, so if ScientificPython
has the desired functionality and is fast enough, it represents an interesting
alternative.

174 4. Numerical Computing in Python

Both a tutorial and a reference manual are available for ScientificPython.
The code itself is very cleanly written and constitutes a good source for doc-
umentation as well as a starting point for extensions and customizations to
fit special needs. ScientificPython is also a primary example on how to orga-
nize a large Python project in terms of classes and modules into a package,
and how to embed extensive documentation in doc strings. Before you dive
into the source code, you should gain considerable familiarity with Numerical
Python.

The next pages show some examples of the capabilities of ScientificPython.
Our applications here are mostly motivated by needs later in the book.

Physical Quantities with Dimension. A very useful feature of ScientificPython
is the ability to perform calculations with physical units and convert from

one unit to another. The basic tool is class PhysicalQuantity, which repre-

sents a number and an associated unit (dimension). An interactive session

demonstrates some of the capabilities:

>>> from Scientific.Physics.PhysicalQuantities \
import PhysicalQuantity as PQ

>>> m = PQ(12, ’kg’) # number, dimension

>>> a = PQ(’0.88 km/s**2’) # alternative syntax (string)
>>> F = m*a

>>> F

PhysicalQuantity(10.56, *kg*km/s**2’)

>>> F = F.inBaseUnits()

>>> F

PhysicalQuantity(10560.0, mxkg/s**2’)

>>> F.convertToUnit (’MN’) # convert to Mega Newton
>>> F

PhysicalQuantity(0.01056, MN’)

>>> F = F + PQ(0.1, ’kPa*m*x2’) # kilo Pascal m"2
>>> F

PhysicalQuantity(0.010759999999999999, MN’)

>>> str(F)

’0.010759999999999999 MN’

>>> value = float(str(F).split() [0])

>>> value

0.010759999999999999

>>> F.inBaseUnits()
PhysicalQuantity(10759.999999999998, *mxkg/s**2’)
>>> PQ(’°0 degC’).inUnits0f(’degF’) # Celcius to Farenheit
PhysicalQuantity(31.999999999999936, >degF’)

I recommend reading the source code of the module to see the available units.

Unum by Pierre X. Denis (see link from doc.html) is another and more
advanced Python module for computing with units and performing unit con-
version. Unum supports unit calculations also with NumPy arrays. One dis-
advantage with Unum is that the input and output formats are different.
I therefore prefer to use PhysicalQuantity from ScientificPython when this
module provides sufficient functionality.

Automatic Differentiation. The module Derivatives enables differentiation
of expressions:

4.4. Other Tools for Numerical Computations 175

>>> from Scientific.Functions.Derivatives import DerivVar as D
>>> def somefunc(x, y, z):
return 3*x - y + 10*z**2

>>> x = D(2, index=0) # variable no. 0 with value 2
>>> y = D(0, index=1) # variable no. 1 with value O
>>> z = D(0.05, index=2) # variable no. 2 with value 0.05
>>> r = somefunc(x, y, z)

>>> r

(6.0250000000000004, [3.0, -1.0, 1.0])

The DerivVar (with short form D in this example) defines the value of a
variable and, optionally, its number in case of multi-valued functions. The
result of computing an expression with DerivVar instances is a new DerivVar
instance, here named r, containing the value of the expression and the value
of the partial derivatives of the expression. In our example, 6.025 is the value
of somefunc, while [3.0, -1.0, 1.0] are the values of somefunc differentiated
with respect to x, y, and z (the list index corresponds to the index argument
in the construction of DerivVar instances). There is, naturally, no need for
numbering the independent variable in the single-variable case:

>>> from numpy import *
>>> print sin(D(0.0))
(0.0, [1.0]) # (sin(0), [cos(0)])

Note that the sin function must allow NumPy array arguments. Higher-order
derivatives can be computed by specifying an order keyword argument to the
DerivVar constructor:

>>> x = D(1, order=3)
>>> x*%*3
(1, [3], [[6]1, [[[61]11) # Oth, 1st, 2nd, 3rd derivative

A derivative of n-th order is represented as an n-dimensional list. For example,
2nd order derivatives of somefunc can be computed by

>>> x = D(10, index=0, order=2)
>>> y = D(0, index=1, order=2)
>>> z = D(1, index=2, order=2)
>>> r = somefunc(x, y, z)

>>> r

(40, [3, -1, 201, ([0, O, 01, [0, O, O, [0, O, 2011)
>>> r[2][2]1[0] # d~2(somefunc)/dzdx

0

>>> r[2][2][2] # d"2(somefunc)/dz"2

20

The module FirstDerivatives is more efficient than Derivatives for comput-
ing first-order derivatives. To use it, just do

from Scientific.Functions.FirstDerivatives import DerivVar

176 4. Numerical Computing in Python

An alternative to automatic differentiation with ScientificPython is to use
the SymPy package for symbolic differentiation, see Chapter 4.4.4.

Interpolation. Class InterpolatingFunction in the Interpolation module
offers interpolation of an m-valued function of n variables, defined on a box-
shaped grid. Let us first illustrate the usage by interpolating a scalar function
of one variable:

>>> from Scientific.Functions.Interpolation \
import InterpolatingFunction as Ip

>>> from scitools.numpyutils import *

>>> t = linspace(0, 10, 101)

>>> v = sin(t)

>>> vi = Ip((t,), v)

>>> # interpolate and compare with exact result:

>>> vi(5.05), sin(5.05)

(-0.94236947849543551, -0.94354866863590658)

>>> # interpolate the derivative of v:

>>> vid = vi.derivative()

>>> vid(5.05), cos(5.05)

(0.33109592335406074, 0.33123392023675369)

>>> # compute the integral of v over all t values:

>>> vi.definiteIntegral(), -cos(t[-1]) - (-cos(t[0]))

(1.837538713981457, 1.8390715290764525)

As a two-dimensional example, we show how we can easily interpolate func-
tions defined via class Grid2D from Chapter 4.3.5:

>>> # make sure we can import Grid2D.py:
>>> sys.path.insert(0, os.path.join(os.environ[’scripting’],
’src’, ’py’, ’examples’)) # location of Grid2D
>>> from Grid2D import Grid2D
>>> g = Grid2D(dx=0.1, dy=0.2)
>>> f = g(lambda x, y: sin(pi*x)*sin(pix*y))
>>> fi = Ip((g.xcoor, g.ycoor), f)
>>> # interpolate at (0.51,0.42) and compare with exact result:
>>> £i(0.51,0.42), sin(pi*0.51)*sin(pi*0.42)
(0.94640171438438569, 0.96810522380784525)

Nonlinear Least Squares. Suppose you have a scalar function of d variables
(z1,...,24) and n parameters (p1,...,pn),

f(@1, . 2a5p15 -, Pn)s
and that we have m measurements of values of this function:
f(i) = f(xgi),...,x&i);pl,...,pn), i=1,....,m.
To fit the parameters p1,...,p, in f to the data points

(@, oa). S0), i=1, .

4.4. Other Tools for Numerical Computations 177

a nonlinear least squares method can be used. This method is available
through the leastSquaresFit function in the LeastSquares module in Sci-
entificPython. The function makes use of the standard Levenberg-Marquardt
algorithm, combined with automatic derivatives of f.

The user needs to provide a function for evaluating f:

def f(p, x):
return scalar_value
Here, p is a list of the n parameters p1, ..., p,, and x is a list of the values of

the d independent variables 1, ..., x4 in f. The set of data points is collected
in a nested tuple or list:

((x1, f1), ..., (xm, fm))

or

((x1, f1, s1), ..., (xm, fm, sm))
The x1,...,xm tuples correspond to the (xgi), . ,xfj)) set of independent vari-
ables, and £1,. .. £m correspond to f(V. The s1,. .., sm parameters are optional,

default to unity, and reflect the statistical variance of the data point, i.e., the
inverse of the point’s statistical weight in the fitting procedure.
The nonlinear least squares fit is obtained by calling

from Scientific.Functions.LeastSquares import leastSquaresFit
r = leastSquaresFit(f, p_guess, data, max_iterations=None)

where £ is the function f in our notation, p_guess is an initial guess of the
solution, i.e., the p1,...,p, values, data holds the nested tuple of all data
points (((x1,£1),...,(xm,fm))), and the final parameter limits the number
of iterations in case of convergence problems. The return value r contains a
list of the optimal p1,...,p, values and the chi-square value describing the
quality of the fit.

A simple example may illustrate the use further. We want to fit the pa-
rameters C, a, D, and b in the model

e(Ax, At; Ca, D, b) = CAz® + DAt"

to data ((Az®, Ay®), e®) from a numerical experiment®. In our test we
randomly perturb the e function to produce the data set.

>>> def error_model(p, x):
C’ a’ D’ b = p

dx, dt = x
e = Ckdx**xa + D*xdt**b
return e

3 A typical application is fitting a convergence estimate for a numerical method for
solving partial differential equations with space cell size Ax and time step size
At.

178 4. Numerical Computing in Python

>>> data = []
>>> import random; random.seed(11)
>>C=1; a=2;D=2; b=1; p= (C, a, D, b)
>>> dx = 0.5; dt = 1.0
>>> for i in range(7): # create 7 data points
dx /= 2; dt /=2
e = error_model(p, (dx, dt))
e += random.gauss(0, 0.01*e) # make some noise in e
data.append(((dx,dt), e))
>>> from Scientific.Functions.LeastSquares import leastSquaresFit
>>> p_guess = (1, 2, 2, 1) # exact guess... (if no noise)
>>> r = leastSquaresFit(error_model, p_guess, data)
>>> r[0] # fitted parameter values
[1.0864630262152011, 2.0402214672667118, 1.9767714371137151,
0.99937257343868868]
>>> r[1] # quality of fit
8.2409274338033922e-06

The results are reasonably accurate.

Statistical Data Analysis. The ScientificPython package also support some
simple statistical data analysis, as exemplified by the code below:

from numpy import random

import Scientific.Statistics as S

data = random.normal(1.0, 0.5, 100000)

mean = S.mean(data)

stdev = S.standardDeviation(data)

median = S.median(data)

skewness = S.skewness(data)

print ’mean=%.2f standard deviation=},.2f skewness=},.1f °’\
‘median=%.2f’ % (mean, stdev, skewness, median)

The documentation of the Scientific.Statistics module contains a few more
functions for analysis. Histogram computations are also possible:

from Scientific.Statistics.Histogram import Histogram

h = Histogram(data, 50) # use 50 bins between min & max samples
h.normalize() # make probabilities in histogram

The histogram can easily be plotted:

from scitools.easyviz import *
plot(h.getBinIndices(), h.getBinCounts())

You can run the src/py/intro/ScientificPython.py script to see what the
resulting graphs look like.

4.4.2 The SciPy Package

The SciPy package [14], primarily developed by Eric Jones, Travis Oliphant,
and Pearu Peterson, is an impressive and rapidly developing environment for

4.4. Other Tools for Numerical Computations 179

scientific computing with Python. It extends ScientificPython significantly,
but also has some overlap. The SciPy tutorial provides a good example-
oriented overview of the capabilities of the package. The forthcoming exam-
ples on applying SciPy are meant as an appetizer for the reader to go through
the SciPy tutorial in detail.

SciPy might require some efforts in the installation on Unix, see Ap-
pendix A.1.5. The source code of the SciPy Python modules provides a good
source of documentation, foremost in terms of carefully written doc strings,
but also in terms of clean code. You can either browse the source code di-
rectly or get the function signatures and doc strings formatted by pydoc or
the help function in the Python shell.

Help Functionality. SciPy has a nice built-in help functionality. If you have
done the recommended

from scipy import *

then you can write info(mod) or info(mod.name) for getting the documen-
tation of a module mod, or a function or class name in mod. For many SciPy
modules the standard help utility drowns the user in information (mainly
because of all the imported names in SciPy modules), but the info function
provides just the doc string.

Studying the source code of a function is sometimes a necessary way to
obtain documentation, especially about how arguments are treated and what
the return values really are. SciPy has a function source which displays the
source code of an object, e.g., source (mod.name).

Special Mathematical Functions. The scipy.special module contains a wide
range of special mathematical functions: Airy functions, elliptic functions
and integrals, Bessel functions, gamma and related functions, error func-
tions, Fresnel integrals, Legendre functions, hyper-geometric functions, Math-
ieu functions, spheroidal wave functions, and Kelvin functions. Run inside a
Python shell from scipy import special and then info(special) to see a
listing of all available functions.

Just as an example, let us print the first four zeros of the Bessel function
ng

>>> from scipy.special import jn_zeros

>>> jn_zeros(3, 4)
array([6.3801619 , 9.76102313, 13.01520072, 16.22346616])

SciPy is well equipped with doc strings so it is easy to figure out which
functions to call and what the arguments are.

Integration. SciPy has interfaces to the classical QUADPACK Fortran li-
brary from Netlib [25] for numerical computations of integrals. A simple
illustration is

>>> from scipy import integrate
>>> def myfunc(x):

180 4. Numerical Computing in Python

return sin(x)
>>> result, error = integrate.quad(myfunc, 0, pi)
>>> result, error
(2.0, 2.2204460492503131e-14)

The quad function can take lots of additional arguments (error tolerances
among other things). The underlying Fortran library requires the function to
be integrated to take one argument only, but SciPy often allows additional
arguments represented as a tuple/list args (this is actually a feature of F2PY
when wrapping the Fortran code). For example,

>>> def myfunc(x, a, b):
return a + b*sin(x)
>>> p=0; g=1
>>> integrate.quad(myfunc, O, pi, args=(p,q), epsabs=1.0e-9)
(2.0, 2.2204460492503131e-14)

There are also functions for various types of Gauss quadrature.

ODE Solvers. SciPy’s integrate module makes use of the widely used
ODEPACK Fortran software from Netlib [25] for solving ordinary differential
equations (ODEs). The integrate.odeint function applies the LSODA For-
tran routine as solver. There is also a base class IntegratorBase which can
be subclassed to add new ODE solvers (see documentation in ode.py). The
only method in this hierarchy at the time of the current writing is the VODE
integrator from Netlib.

Let us implement the oscillator code from Chapter 2.3 in SciPy. The
2nd-order ODE must be written as a first-order system

Yo = Y1, (4.8)
i1 = (Asin(wt) —byr — cf(yo))/m (4.9)

We have here used (yo, y1) as unknowns rather than the more standard math-
ematical notation (y1,y2), because we in the code will work with lists or
NumPy arrays being indexed from 0.

The following class does the job:

class Oscillator:
"""Implementation of the oscillator code using SciPy."""
def __init__(self, *xkwargs):
"""Initialize parameters from keyword arguments."""
self.p = {’m’: 1.0, ’b’: 0.7, ’c’: 5.0, ’func’: ’y’,
’A’: 5.0, ’w’: 2*pi, ’y0’: 0.2,
>tstop’: 30.0, ’dt’: 0.05}
self .p.update (kwargs)

def scan(self):

Read parameters from standard input in the same

sequence as the F77 oscillator code.
nnn

for name in ’m’, ’b’, ’c’, ’func’, ’A’, ’w’, \

4.4. Other Tools for Numerical Computations 181

’y0’, ’tstop’, ’dt’:
if name == ’func’: # expect string
self.p[’func’] = sys.stdin.readline().strip()
else:
self.p[name] = float(sys.stdin.readline())

def solve(self):
"""Solve ODE system."""
mapping: name of f(y) to Python function for f(y):
self._fy = {’y’: lambda y: y, ’siny’: lambda y: sin(y),
’y3’: lambda y: y - y**3/6.0}
set initial conditions:
self.y0 = [self.p[’y0’], 0.0]
call SciPy solver:
from scitools.numpyutils import seq
self.t = seq(0, self.p[’tstop’], self.p[’dt’])

from scipy.integrate import odeint
self.yvec = odeint(self.f, self.y0, self.t)

self.y = self.yvec[:,0] # y(t)

write t and y(t) to sim.dat file:

f = open(’sim.dat’, ’w’)

for y, t in zip(self.y, self.t):
f.write(C%g %g\n’ % (t, y))

f.close()

def f(self, y, t):
"""Right-hand side of 1st-order ODE system."""
A, w, b, ¢, m = [plk] for k in ’A’, ’w’, ’b’, ’c’, ’m’]
f = self._fyl[self.p[’func’]]
return [y[1], (A*cos(wxt) - b*y[1] - cx£f(y[0]))/m]

The code should be straightforward, perhaps with the exception of self._fy.
This dictionary is introduced as a mapping between the name of the spring
function f(y) and the corresponding Python function. The details of the
arguments and return values of odeint can be obtained from the doc string
(just type help(odeint) inside a Python shell).

Testing class Oscillator against the 2nd-order Runge-Kutta integrator
implemented in the oscillator program can be done as follows:

def test_0Oscillator(dt=0.05):
s = Oscillator (m=5, dt=dt)
t1 = os.times()
s.solve()
t2 = os.times()
print ’CPU time of odeint:’, t2[0]-t1[0] + t2[1]-t1[1]

compare with the oscillator program:

cmd = ’./simvizl.py -noscreenplot -case tmpl’

for option in s.p: # construct command-line options
cmd += ’ -’+option + ’ ’ + str(s.ploption])

import commands

t3 = os.times()

failure, output = commands.getstatusoutput(cmd)

t4 = os.times()

182 4. Numerical Computing in Python

print ’CPU time of oscillator:’, t4[2]-t3[2] + t4[3]-t3[3]
plot:

from scitools.filetable import readfile

t, y = readfile(os.path.join(’tmpl’,’sim.dat’))

from scitools.easyviz import *

plot(t, y, ’r-’, s.t, s.y, ’b-’, legend=(’RK2’, ’LSODE’))
hardcopy (’tmp.ps’)

The CPU measurements show that LSODA and oscillator are about equally
fast when the difference in solutions is visually negligible (see Figure 4.4).
Note that LSODA probably applies a different time step internally than what
we specify. Information on the numerical details of the integration can be
obtained by setting a parameter full_output:

self .yvec, self.info = odeint(self.f, self.y0, self.t,
full_output=True)

The self.info dictionary is a huge collection of data. From the other result
parameter, the array self.info[’hu’], we can extract the time step sizes
actually used inside the integrator. For At = 0.01 the time step varied from
0.00178 to 0.043. This shows that LSODA is capable of taking longer steps,
but requires more internal computations, so the overall work becomes roughly
equivalent to a constant step-size 2nd-order Runge-Kutta algorithm for this
particular test case.

Fortunately, these code segments show how compact and convenient nu-
merical computing can be in Python. In this ODE example the performance
is optimal too, so we definitely face an environment based on “the best of all
worlds”.

o - B —
=
005 \ , \'\ /\/\/\ i \

I A T N

Fig. 4.4. Comparison of the 2nd-order Runge-Kutta method in oscillator and
the LSODA Fortran routine (from SciPy) for At = 0.05 (left figure) and At = 0.01
(right figure).

4.4. Other Tools for Numerical Computations 183

Random Variables and Statistics. SciPy has a module stats, which offers
lots of functions for drawing random numbers from a variety of distributions
and computing empirical statistics. An overview is provided by info(stats),
while more detailed information can be gained by running info on individual
functions. The stats module also imports the Python interface RPy to the
statistical computing environment R, (if R and RPy are installed) and thereby
allows Python data to be analyzed by the very rich functionality in R.

Linear Algebra. SciPy extends the linear algebra functionality of NumPy
significantly through its 1inalg module. The SciPy tutorial lists the syntax for
finding the determinant of a matrix, solving linear systems, computing the in-
verse and the pseudo-inverse of a matrix, performing linear least squares com-
putations, decomposition of matrices (Cholesky, QR, Schur), finding eigen-
values and eigenvectors, calculating the singular value decomposition, and
computing norms (check in particular the definitions of the norms - they
may be different from what you intuitively assume). The functions in the
linalg module call up LAPACK and ATLAS (if SciPy is built with these
packages) and therefore provides very efficient implementation and tuning of
the linear algebra algorithms.

Optimization and Root Finding. SciPy’s optimize module interfaces the
well-known Fortran package MINPACK from Netlib [25] for optimization
problems. MINPACK offers minimization and nonlinear least squares algo-
rithms with and without gradient information. The optimize module also
has routines for simulated annealing and for finding zeros of functions. The
tutorial contains several examples to get started.

Interpolation. The interpolate module offers linear interpolation of one-
dimensional data, plus an interface to the classical Fortran package FIT-
PACK from Netlib [25] for spline interpolation of one- and two-dimensional
data. There is also a signal processing toolbox. The tutorial contains several
examples on spline computations and filtering.

4.4.3 The Python—Matlab Interface

A Python module pymat makes it possible to send NumPy arrays directly to
Matlab and perform computations or visualizations in Matlab. The module
is simple to use as there are only five functions to be aware of:

— open for opening a Matlab session,

— close for closing the session,

— eval for evaluating a Matlab command,

— put for sending a matrix to Matlab, and

— get for extracting a matrix from the Matlab session.

184 4. Numerical Computing in Python

Here is a simple example, where we create x coordinates in Python and let
Matlab compute y = sin(x) and plot the (x,y) points:

import pymat

x = linspace(0, 4*math.pi, 401)
m = pymat.open()

pymat.put(m, ’x’, x);
pymat.eval(m, ’y = sin(x)’)
pymat.eval(m, ’plot(x,y)’)

y = pymat.get(m, ’y’) # get values from Matlab
import time; time.sleep(4) # wait 4s before killing the plot...
pymat.close(m) # Matlab terminates

There is also a module mlaburap (see link in doc.htm1) which makes all Matlab
commands directly available in Python.

4.4.4 Symbolic Computing in Python

There are several useful packages for symbolic computing in Python. The
most comprehensive, SAGE (see link from doc.html), is a complete environ-
ment for symbolic and numerical computing, using an extension of Python
as interface and programming language. The SAGE package contains a lot
of Python packages and interfaces to many large, high-quality, mathemati-
cal software systems. For example, SAGE is packed with NumPy and SciPy,
and SAGE allows you to use Python to access Magma, Maple, Mathemat-
ica, MATLAB, and MuPAD, and the free programs Axiom, GAP, GP/PARI,
Macaulay2, Maxima, Octave, and Singular. A very nice feature is the abil-
ity to create notebooks combining code, graphics, and mathematical type-
setting in reports. SAGE has a wide range of mathematical objects (rings,
fields, groups, etc.) for supporting research in pure mathematics. Although
the symbolic computing support is very powerful and versatile in SAGE, the
package aims at mathematicians and may therefore appear as considerably
more complicated to understand and use than the tools mentioned below.
We refer to the SAGE tutorial for an introduction to the package. SAGE
is usually simple to install and therefore constitutes a smart way of getting
many Python packages installed on your computer.

Swiginac (see link in doc.html) is a SWIG-based Python interface to the
very efficient GiNaC C++ library for symbolic computing. That is, to use
Swiginac you need to install GiNaC. Pyginac (see link in doc.html) is an
alternative to Swiginac, which applies Boost.Python to interface the GiNaC
library. This package is at the time of this writing in an alpha state. Another
interesting package under very active development is SymPy (see link in
doc.html), which is written in pure Python and therefore trivial to install.
SymPy is also included in the SAGE distribution. Below we illustrate the
simple use of SymPy and Swiginac.

SymPy. Contrary to common symbolic computing systems such as Maple
and Mathematica, mathematical symbols must in SymPy be declared as

4.4. Other Tools for Numerical Computations 185

Symbol(’x’), symbol(’y’), etc. Then, mathematical expressions remain sym-
bolic expressions. Here is a sample session:

>>> from sympy import *

>>> x = Symbol(’x’)

>>> f = cos(acos(x))

>>> f

cos(acos(x))

>>> sin(x).series(x, 4)

X - 1/6%x**x3 + 0(x**4)

>>> dcos = diff(cos(2*x), x)
>>> dcos

—-2xsin (2%x)

>>> dcos.subs(x, pi).evalf() # x=pi, float evaluation
0

>>> I = integrate(log(x), x)
>>> print I

-x + x*log(x)

The SymPy tutorial, reached from the SymPy homepage, has many more
examples.

Using the StringFunction type developed in Chapter 12.2.1, one can eas-
ily turn expressions from SymPy into ordinary Python functions which are
as fast as if the string expressions had been hardcoded in the normal way
we write Python functions. Let us demonstrate how we can use SymPy to
differentiate

2
flx;t,m,0, A a,w) = Aexp <— (x 2_ m))e‘“t sin(2mwz)
o

with respect to x twice and turn the symbolic formula into a fast Python
function:

def make_symbols(*args):
return [Symbol(s) for s in args]

a, A, omega, sigma, m, t = \
make_symbols(’a’, ’A’, ’omega’, ’sigma’, ’m’, ’t’)
f = Axexp(-((x-m)/(2*sigma))**2)*exp (-axt)*sin(2*pi*omega*x)
prms = {’A’: 1, ’a’: 0.1, ’m’: 1, ’sigma’: 1,
’omega’: 1, ’t’: 0.2}
ddf_formula = diff(f, x, 2)
ddf = StringFunction(ddf_formula, **prms)
print ddf_formula

x=0.1
print ’\nddf (x=%g) = %g’ % (x, ddf(x))

The output (split manually into several lines) becomes

-1/2*%A*sigmax* (-2) *exp(-a*t - 1/4xsigma**(-2)*(x - m)**2)*\
sin(2xpi*omega*x) - 4*xAxpikx*2%omegax*2*exp(-a*xt - 1/4x\

186

4. Numerical Computing in Python

sigmakx (-2)*(x - m)**2)*sin(2*pikomega*x) + (1/16)*A*\
sigma** (-4)* (-2*m + 2xx)**2*kexp(-a*t - 1/4*xsigma**(-2)*\
(x - m)**2)*sin(2*pi*omega*x) - pi*A*omega*sigma*(-2)*\
(-2xm + 2*x)*exp(-axt - 1/4*sigmax*(-2)*(x - m)**x2)x*\
cos (2xpi*omega*x)

ddf (x=0.1) = -18.8372

Swiginac. Both SAGE and SymPy have seemingly borrowed naming con-
ventions from GiNaC and Swiginac, so the syntax differences between the
three packages are small. Here is a sample session:

>>> from swiginac import *

>>> x = symbol(’x’)

>>> cos(acos(x))

X

>>> series(sin(x), x==0,4) # Oth to 4th term
1xx+(-1/6) *x**3+0rder (x**4)

>>> dcos = diff(cos(2#*x), x)

>>> dcos

-2%sin(2*x)

>>> dcos.subs(x==Pi) .evalf() # x=pi, float evaluation
0

>>> # integrate log(x) from x=1 to x=2:

>>> I = integrate(x, 1, 2, log(x))

>>> I.evalf()

0.38629436097734410374

Regarding the last integration example, GiNaC can only integrate polynomi-
als symbolically, so [12 In x dzx is here integrated numerically. We refer to the
Swiginac tutorial for more examples.

4.4.5 Some Useful Python Modules

Below is a list of some modules and packages for numerical computing with
Python. A more complete list of available modules can be obtained from
either the “Math” and “Graphics” sections of The Vaults of Parnassus or the
“Scientific/Engineering” section of the PyPI page. Both Vaults of Parnassus
and PyPI may be reached from the doc.html webpage.

Biggles: Curve plotting based on GNU plotutils.
CAGE: A fairly generic and complete cellular automata engine.

crng, rv: A collection of high-quality random number generators imple-
mented in C.

DISLIN: Curve and surface plotting.
disipyl: Object-oriented interface to DISLIN.
ELLIPT2D: 2D finite element solver for elliptic equations.

FIAT: A new way of evaluating finite element basis functions.

4.4. Other Tools for Numerical Computations

FiPy: tools for finite volume programming.

fraction.py: Fraction arithmetics.

Gato: Visualization of algorithms on graph structures.
GDChart: Simple curve plotting and bar charts.

gdmodule: Interface to the GD graphics drawing library.
GGobi: Visualization of high-dimensional data.

Gimp-Python: Tools for writing GIMP plug-ins in Python.
GMPY: General Multiprecision PYthon module.

pygrace.py: Interface to the Grace curveplotting program.
pyIDL.py: Interface to the IDL system.

Matplotlib: High-quality curve plotting with Matlab-like syntax.
MatPy: Matlab/Octave-style expressions for matrix computations.
MayaVi: Simple-to-use 3D visualization toolkit based on Vtk.
Mlabwrap: Interface to all Matlab commands.

MMTK: Molecular simulation toolkit.

NURBS: Non-uniform rational B-splines.

PIL: Image processing library.

Pivy: Interface to the Coin (Openlnventor) 3D graphics library.
pyacad: Combination of Python and Autocad.

pycdf: Flexible reading of netCDF files.

PyGlut: Interface to the OpenGL Utility Toolkit (GLUT).
PyOpenGL: Interface to OpenGL.

PyePiX: Interface to ePix for creating IATEX graphics.

Pygame: Modules for multimedia, games, and visualization.

PyGeo: Visualization of 3D dynamic geometries.

187

PyGiNaC: Interface to the GiNaC C++ library for symbolic computing.

PyLab: Matlab compatible commands for computing and plotting.
PYML: Interface to Mathematica.

PyMOL: Molecular modeling toolkit.

Py-OpenDX: Interface to the OpenDX data visualization system.
PyQwt: Curve plotting widget a la BLT for use with PyQt.
Pyscript: Programming of high-quality PostScript graphics.
Pysparse: Sparse matrices and solvers with Python interface.

PySPG: Run another code with varying input parameters.

188 4. Numerical Computing in Python

— Python Frame Buffer: Simple-to-use interactive drawing.

— PythonPlot: Tkinter-based curve plotting program.

PyTables: Interface to HDF5 data storage tools.

PyX: TgX-like Python interface to PostScript drawing/plotting.

RPy: Interface to the R (S-PLUS) statistical computing environment.

Signaltools: Signal processing functionality a la Matlab.
— SimPy: Discrete event simulation.

— Unum: Unit conversions and calculations.

— Uncertainties: Arithmetics for numbers with errors.

— VPython: easy-to-use animation of 3D objects.

— ZOE: Simple OpenGL based graphics engine.

Chapter 5

Combining Python with Fortran, C,
and C+-+

Most languages offer the possibility to call code written in other languages,
but in Python this is a particularly simple and smooth process. One reason is
that Python was initially designed for being integrated with C and extended
with new C code. The support for C implicitly provides support for closely
related languages like Fortran and C++. Another reason is that tools, such
as F2PY and SWIG, have been developed in recent years to assist the in-
tegration and, in simpler cases, fully automate it. The present chapter is a
first introduction to mixed language programming with Python, Fortran 77
(F77), C, and C++. The focus is on applying the tools F2PY and SWIG to
automate the integration process.

Chapter 5.1.2 gives an introduction to the nature of mixed language pro-
gramming. Chapter 5.2 applies a simple Scientific Hello World example to
demonstrate how to call F77, C, and C++ from Python. The F77 simulator
from Chapter 2.3 can be equipped with a Python interface. A case study on
how to perform this integration of Python and F77 is presented in Chap-
ter 5.3.

In scientific computing we often invoke compiled languages to perform
numerical operations on large array structures. This topic is treated in detail
in Chapters 9 and 10.

Readers interested in Python-Fortran integration only may skip reading
the C and C++ material in Chapters 5.2.2 and 5.2.3. Conversely, those who
want to avoid the Fortran material may skip Chapters 5.2.1 and 5.3.

5.1 About Mixed Language Programming

First, in Chapter 5.1.1, we briefly describe the contexts where mixed language
programming is useful and some implications to numerical code design.

Integration of Python with Fortran 77 (F77), C, and C++ code requires
a communication layer, called wrapper code. Chapter 5.1.2 outlines the need
for wrapper code and how it looks like. Thereafter, in Chapter 5.1.3, some
tools are mentioned for generating wrapper code or assisting the writing of
such code.

190 5. Combining Python with Fortran, C, and C++

5.1.1 Applications of Mixed Language Programming

Integration of Python with Fortran, C, or C++ code is of interest in two
main contexts:

1. Migration of slow code. We write a new application in Python, but mi-
grate numerical intensive calculations to Fortran or C/C++.

2. Access to existing numerical code. We want to call existing numerical
libraries or applications in Fortran or C/C++ directly from Python.

In both cases we want to benefit from using Python for non-numerical tasks.
This involves user interfaces, I/O, report generation, and management of
the entire application. Having such components in Python makes it fast and
convenient to modify code, test, glue with other packages, steer computations
interactively, and perform similar tasks needed when exploring scientific or
engineering problems. The syntax and usage can be made close to that of
Matlab, indicating that such interfaces may greatly simplify the usage of the
underlying compiled language code. A user may be productive in this type
of environment with only some basic knowledge of Python.

The two types of mixed language programming pose different challenges.
When interfacing a monolithic application in a compiled language, one often
wants to interface only the computationally intensive functions. That is, one
discards I/O, user interfaces, etc. and moves these parts to Python. The
design of the monolithic application determines how easy it is to split the
code into the desired components.

Writing a new scientific computing application in Python and moving
CPU-time critical parts to a compiled language has certain significant ad-
vantages. First of all, the design of the application will often be better than
what is accomplished in a compiled language. The reason is that the many
powerful language features of Python make it easier to create abstractions
that are close to the problem formulation and well suited for future exten-
sions. The resulting code is usually compact and easy to read. The class
and module concepts help organizing even very large applications. What we
achieve is a high-level design of numerical applications. By careful profiling
(see Chapter 8.10.2) one can identify bottlenecks and move these to Fortran,
C, or C++. Existing Fortran, C, or C++4 code may be reused for this purpose,
but the interfaces might need adjustments to integrate well with high-level
Python abstractions.

5.1.2 Calling C from Python

Interpreted languages differ a lot from compiled languages like C, C++, and
Fortran as we have outlined in Chapter 1.1. Calling code written in a compiled
language from Python is therefore not a trivial task. Fortran, C, and C++

5.1. About Mixed Language Programming 191

Java have strong typing rules, which means that a variable is declared and
allocated in memory with proper size before it is used. In Python, variables
are typeless, at least in the sense that a variable can be an integer and then
change to a string or a window button:

d =3.2 # d holds a float
d = ’txt’ # d holds a string
d = Button(frame, text=’push’) # d holds a Button instance

In a compiled language, d can only hold one type of variable, while in Python
d just references an object of any defined type (like void* in C/C++). This
is one of the reasons why we need a technically quite comprehensive interface
between a language with static typing and a dynamically typed language.

Python is implemented in C and designed to be extended with C functions.
Naturally, there are rules and C utilities available for sending variables from
Python to C and back again. Let us look at a simple example to illustrate
how wrapper code may look like.

Suppose we in a Python script want to call a C function that takes two
doubles as arguments and returns a double:

extern double hwil(double rl, double r2);

This C function will be available in a module (say) hw. In the Python script
we can then write

from hw import hwl
rli =1.2; r2 =-1.2
s = hwi(rl, r2)

The Python code must call a wrapper function, written in C, where the
contents of the arguments are analyzed, the double precision floating-point
numbers are extracted and stored in straight C double variables. Then, the
wrapper function can call our C function hwi. Since the hwi function returns
a double, we need to convert this double to a Python object that can be
returned to the calling Python code and referred by the object s. A wrapper
function can in this case look as follows:

static PyObject *_wrap_hwl(PyObject *self, PyObject *args) {
double argl, arg2, result;

if (!PyArg_ParseTuple(args, "dd:hwl", &argl, &arg2)) {
return NULL; /* wrong arguments provided */
}

result = hwi(argl, arg2);
return Py_BuildValue("d", result);
}

All objects in Python are derived from the PyObject “class” (Python is coded
in pure C, but the implementation simulates object-oriented programming).
A wrapper function typically takes two arguments, self and args. The first is

192 5. Combining Python with Fortran, C, and C++

of relevance only when dealing with instance methods, and args holds a tuple
of the arguments sent from Python, here r1 and r2, which we expect to be
two doubles. (A third argument to the wrapper function may hold keyword
arguments.) We may use the utility PyArg_ParseTuple in the Python C library
for converting the args object to two double variables (specified as the string
dd). The doubles are stored in the help variables argl and arg2. Having these
variables, we can call the hwi function. The Py_BuildValue function from the
Python C library packs a C variable (here of type double) as a Python object,
which is returned to the calling code and there appears as a standard Python
float object.

The wrapper function must be compiled, here with a C compiler. We
must also compile the file with the hwi function. The object code of the hwi
function must then be linked with the wrapper code to form a shared library
module. Such a shared library module is also often referred to as an extension
module and can be loaded into Python using the standard import statement.
From Python, it is impossible! to distinguish between a pure Python module
or an extension module based on pure C code.

5.1.3 Automatic Generation of Wrapper Code

As we have tried to demonstrate, the writing of wrapper functions requires
knowledge of how Python objects are manipulated in C code. In other words,
one needs to know details of the C interface to Python, referred to as the
Python C APT (API stands for Application Programming Interface). The of-
ficial electronic Python documentation (see link from doc.html) has a tutorial
for the C API, called “Extending and Embedding the Python Interpreter”
[33], and a reference manual for the API, called “Python/C API”. The C
API is also covered in numerous books [2,12,20,22].

The major problem with writing wrapper code is that it is a big job: each
C function you want to call from Python must have an associated wrapper
function. Such manual work is boring and error-prone. Luckily, tools have
been developed to automate this manual work.

SWIG (Simplified Wrapper Interface Generator), originally developed by
David Beazley, automates the generation of wrapper code for interfacing C
and C++ software from dynamically typed languages. Lots of such languages
are supported, including Guile, Java, Mzscheme, Ocaml, Perl, Pike, PHP,
Python, Ruby, and Tcl. Sometimes SWIG may be a bit difficult to use be-
yond the getting-started examples in the SWIG manual. This is due to the
flexibility of C and especially C++-, and the different nature of dynamically
typed languages and C/C++.

! This is not completely correct: the module’s file attribute is the name of a
.py file for a pure Python module and the name of a compiled shared library file
for a C extension module. Also, C extension modules cannot be reimported with
the reload function.

5.1. About Mixed Language Programming 193

Making an interface between Fortran code and Python is very easy using
the high-level tool F2PY, developed by Pearu Peterson. Very often F2PY is
able to generate C wrapper code for Fortran libraries in a fully automatic
way. Transferring NumPy arrays between Python and compiled code is much
simpler with F2PY than with SWIG. Fortunately, F2PY can also be used
with C code, though this requires some familiarity with Fortran. For C++
code it can be an idea to write a small C interface and use F2PY on this
interface in order to pass arrays between Python and C++.

A tool called Instant can be used to put C or C++ code inline in Python
code and get automatically compiled as an extension library, much in the
same way as F2PY does. Instant has good support for NumPy arrays and is
very easy to use. SWIG is invisibly applied to generate the wrapper code.

In this book we mainly concentrate on making Python interfaces to C,
C++, and Fortran functions that do not use any of the features in the Python
C API. However, sometimes one desires to manipulate Python data struc-
tures, like lists, dictionaries, and NumPy arrays, in C or C++ code. This
requires the C or C++ code to make direct use of the Python and NumPy
C API. One will then often wind the wrapper functionality and the data
manipulation into one function. Examples on such programming appear in
Chapters 10.2 and 10.3.

It should be mentioned that there is a Python interpreter, called Jython,
implemented in 100% pure Java, which allows a seamless integration of Python
and Java code. There is no need to write wrappers: any Java class can be
used in a Jython script and vice versa.

Alternatives to F2PY, Instant, and SWIG. We will in this book mostly use
F2PY, Instant, and SWIG to interface Fortran, C, and C++ from Python,
but several other tools for assisting the generation of wrapper functions can
be used. CXX, Boost.Python, and SCXX are C++ tools that simplify pro-
gramming with the Python C API. With these tools, the C++ code becomes
much closer to pure Python than C code operating on the C API directly.
Another important application of the tools is to generate Python interfaces
to C++ packages. However, the tools do not generate the interfaces auto-
matically, and manual coding is necessary. The use of SCXX is exemplified
in Chapter 10.3. SIP is a tool for wrapping C++ (and C) code, much like
SWIG, but it is specialized for Python-C++ integration and has a potential
for producing more efficient code than SWIG. The documentation of SIP
is unfortunately still sparse at the time of this writing. Weave allows inline
C++ code in Python scripts and is hence a tool much like Instant.

Psyco is a very simple-to-use tool for speeding up Python code. It works
like a kind of just-in-time compiler, which analyzes the Python code at run
time and moves time-critical parts to C. Pyrex is a small language for sim-
plified writing of extension modules. The purpose is to reduce the normally
quite comprehensive work of developing a C extension module from scratch.
Links to the mentioned tools can be found in the doc.html file.

194 5. Combining Python with Fortran, C, and C++

Systems like COM/DCOM, CORBA, XML-RPC, and ILU are sometimes
useful alternatives to the code wrapping scheme described above. The Python
script and the C, C++, or Fortran code communicate in this case through a
layer of objects, where the data are copied back and forth between the script
and the compiled language code. The codes on each side of the layer can be
run as separate processes, and the communication can be over a network.
The great advantage is that it becomes easy to run the light-weight script on
a small computer and leave heavy computations to a more powerful machine.
One can also create interfaces to C, C4++, and Fortran codes that can be
easily called from a wide range of languages.

The approach based on wrapper code allows transfer of huge data struc-
tures by just passing pointers around, which is very efficient when the script
and the compiled language code are run on the same machine. Learning the
basics of F2PY takes an hour or two, SWIG require somewhat more time,
but still very much less than the the complicated and comprehensive “inter-
face definition languages” COM/DCOM, CORBA, XML-RPC, and ILU. One
can summarize these competing philosophies by saying that tools like F2PY
and SWIG offer simplicity and efficiency, whereas COM/DCOM, CORBA,
XML-RPC, and ILU give more flexibility and more complexity.

5.2 Scientific Hello World Examples

As usual in this book, we introduce new concepts using the simple Scientific
Hello World example (see Chapters 2.1 and 6.1). In the context of mixed
language programming, we make an extended version of this example where
some functions in a module are involved. The first function, hwi, returns the
sine of the sum of two numbers. The second function, hw2, computes the same
sine value, but writes the value together with the “Hello, World!” message to
the screen. A pure Python implementation of our module, called hw, reads

#!/usr/bin/env python
"""Pure Python Scientific Hello World module."""
import math, sys

def hwi(rl, r2):
s = math.sin(rl + r2)
return s

def hw2(r1l, r2):
s = math.sin(rl + r2)
print ’Hello, World! sin(%g+hg)=hg’ % (rl,r2,s)

The hwi function returns a value, whereas hw2 does not. Furthermore, hwil
contains pure numerical computations, whereas hw2 also performs I/0.
An application script utilizing the hw module may take the form

#!/usr/bin/env python
"""Scientific Hello World script using the module hw."""

5.2. Scientific Hello World Examples 195

import sys
from hw import hwl, hw2
try:
rl = float(sys.argv[1]); 12 = float(sys.argv[2])
except IndexError:
print ’Usage:’, sys.argv[0], ’rl r2’; sys.exit(1)
print ’hwl, result:’, hwi(rl, r2)
print ’hw2, result: ’,
hw2(rl, r2)

The goal of the next subsections is to migrate the hwi and hw2 functions in
the hw module to F77, C, and C++4. The application script will remain the
same, as the language used for implementing the module hw is transparent
in the Python code. We will also involve a third function, hw3, which is a
version of hwl where s is an output argument, in call by reference style, and
not a return variable. A pure Python implementation of hw3 has no meaning
(cf. Chapter 3.3 and the Call by Reference paragraph).

The Python implementations of the module and the application script are
available as the files hw.py and hwa.py, respectively. These files are found in
the directory src/py/mixed/hw.

5.2.1 Combining Python and Fortran

A Fortran 77 implementation of hwi and hw2, as well as a main program for
testing the functions, appear in the file src/py/mixed/hw/F77/hw.£f. The two
functions are written as

real*8 function hwi(ril, r2)
real*8 r1, r2

hwl = sin(rl + r2)

return

end

subroutine hw2(r1, r2)

real*8 rl, r2, s

s = sin(rl + r2)

write(*,1000) ’Hello, World! sin(’,ri1+r2,’)=’,s
1000 format(A,F6.3,A,F8.6)

return

end

We shall use the F2PY tool for creating a Python interface to the F77 versions
of hwi and hw2. F2PY comes with the NumPy package so when you install
NumPy, automatically install F2PY and get an executable £2py that we sall
make use of. Since creation of the F2PY interface implies generation of some
files, we make a subdirectory, f2py-hw, and run F2PY in this subdirectory.
The F2PY command is very simple:

f2py -m hw -c ../hw.f

196 5. Combining Python with Fortran, C, and C++

The -m option specifies the name of the extension module, whereas the -c
option indicates that F2PY should compile and link the module. The result
of the F2PY command is an extension module in the file hw.so?, which may
be loaded into Python by an ordinary import statement. It is a good habit
to test that the module is successfully built and can be imported:

python -c ’import hw’

The -c option to python allows us to write a short script as a text argument.
The application script hwa.py presented on page 194 can be used to test
the functions in the module. That is, this script cannot see whether we have
written the hw module in Fortran or Python.
The F2PY command may result in some annoying error messages when
F2PY searches for a suitable Fortran compiler. To avoid these messages, we
can specify the compiler to be used, for instance GNU’s g77 compiler:

f2py -m hw -c --fcompiler=Gnu ../hw.f

You can run £2py -c¢ --help-fcompiler to see a list of the supported Fortran
compilers on your system (--help-fcompiler shows a list of C compilers).
F2PY has lots of other options to fine-tune the interface. This is well ex-
plained in the F2PY manual.

When dealing with more complicated Fortran libraries, one may want to
create Python interfaces to only some of the functions. In the present case we
could explicitly demand interfaces to the hwi and hw2 functions by including
the specification only: <functions> : after the name of the Fortran file(s),
e.g.,

f2py -m hw -c --fcompiler=Gnu ../hw.f only: hwl hw2 :

The interface to the extension module is specified as Fortran 90 module in-
terfaces, and the -h hw.pyf option makes F2PY write the Fortran 90 module
interfaces to a file hw.pyf such that you can adjust them according to your
needs.

Handling of Output Arguments. To see how we actually need to adjust the
interface file hw.pyf, we have written a third function in the hw.f file:

subroutine hw3(ri, r2, s)
real*8 rl, r2, s

s = sin(rl + r2)

return

end

This is an alternative version of hwi where the result of the computations
is stored in the output argument s. Since Fortran 77 employs the call by
reference technique for all arguments, any change to an argument is visible
in the calling code. If we let F2PY generate interfaces to all the functions in
hw.f,

2 On Windows the extension is .d11 and on Mac OS X the extension is .dylib.

5.2. Scientific Hello World Examples 197

f2py -m hw -h hw.pyf ../hw.f

the interface file hw.pyf becomes

python module hw ! in

interface ! in :hw
function hwi(r1l,r2) ! in :hw:../hw.f

real*8 :: ril

real*8 :: r2

real*8 :: hwl

end function hwl

subroutine hw2(r1,r2) ! in :hw:../hw.f
real*8 :: ril
real*8 :: r2

end subroutine hw2

subroutine hw3(ri1,r2,s) ! in :hw:../hw.f

real*8 :: ril
real*8 :: r2
real*8 :: s

end subroutine hw3
end interface
end python module hw

By default, F2PY treats r1, r2, and s in the hw3 function as input arguments.
Trying to call hw3,

>>> from hw import hw3

>>rl1 =1; r2=-1; s =10
>>> hw3(rl, r2, s)

>>> print s

10 # should be 0.0

shows that the value of the Fortran s variable is not returned to the Python s
variable in the call. The remedy is to tell F2PY that s is an output parameter.
To this end, we must in the hw.pyf file replace

real*8 :: s

by the Fortran 90 specification of an output variable:

real*8, intent(out) :: s

Without any intent specification the variable is assumed to be an input
variable. The directives intent(in) and intent(out) specify input and out-
put variables, respectively, while intent (in,out) and intent (inout)? are em-
ployed for variables used for input and output.

Compiling and linking the hw module, utilizing the modified interface
specification in hw.pyf, are now performed by

f2py -c --fcompiler=Gnu hw.pyf ../hw.f

3 The latter is not recommended for use with F2PY, see Chapter 9.3.3.

198 5. Combining Python with Fortran, C, and C++

F2PY always equips the extension module with a doc string® specifying the
signature of each function:

>>> import hw
>>> print hw.__doc_
Functions:
hwl = hwi(ril,r2)
hw2(ri1,r2)
s = hw3(r1,r2)

Novice F2PY users will get a surprise that F2PY has changed the hw3 interface
to become more Pythonic, i.e., from Python we write

s = hw3(rl, r2)

In other words, s is now returned from the hw3 function, as seen from Python.
This is the Pythonic way of programming — results are returned form func-
tions. For a Fortran routine

subroutine somef(il, i2, ol, 02, 03, o4, iol)

where i1 and i2 are input variables, o1, 02, 03, and o4 are output variables,
and iol is an input/output variable, the generated Python interface will have
i1, i2, and iol as arguments to somef and o1, 02, 03, 04, and io1l as a returned
tuple:

ol, 02, 03, o4, iol = somef(il, i2, iol)

Fortunately, F2PY automatically generates doc strings explaining how the
signature of the function is changed.

Sometimes it may be convenient to perform the modification of the .pyf
interface file automatically. In the present case we could use the subst.py
script from Chapter 8.2.11 to edit hw.pyf:

subst.py ’real*8\s#*::\s*s’ ’real*8, intent(out) :: s’ hw.pyf

When the editing is done automatically, it is convenient to allow F2PY gen-
erate a new (default) interface file the next time we run F2PY, even if a
possibly edited hw.pyf file exists. The --overwrite-signature option allows
us to generate a new hw.pyf file. Our set of commands for creating the desired
Python interface to hw.f now becomes

f2py -m hw -h hw.pyf ../hw.f --overwrite-signature
subst.py ’real*8\s#*::\s*s’ ’real*8, intent(out) :: s’ hw.pyf
f2py -c --fcompiler=Gnu hw.pyf ../hw.f

Various F2PY commands for creating the present extension module are col-
lected in the src/py/mixed/hw/f2py-hw/make_module.sh script.

A quick one-line command for checking that the Fortran-based hw module
passes a minium test might take the form

4 The doc string is available as a variable __doc see Appendix B.2.

——

5.2. Scientific Hello World Examples 199

python -c ’import hw; print hw.hw3(1.0,-1.0)°

As an alternative to editing the hw.pyf file, we may insert an intent
specification as a special Cf2py comment in the Fortran source code file:

subroutine hw3(rl, r2, s)
real*8 rl, r2, s
Cf2py intent(out) s
s = sin(rl + r2)
return
end

F2PY will now realize that s is to be specified as an output variable. If you
intend to write new F77 code to be interfaced by F2PY, you should definitely
insert C£2py comments to specify input, output, and input/output arguments
to functions as this eliminates the need to save and edit the .pyf file. The
safest way of writing hw3 is to specify the input/output nature of all the
function arguments:

subroutine hw3(ri, r2, s)
real*8 rl, r2, s
Cf2py intent(in) ril
Cf2py intent(in) r2
Cf2py intent(out) s
s = sin(rl + r2)
return
end

The intent specification also helps to document the usage of the routine.

Case Sensitivity. Fortran is not case sensitive so we may mix lower and
upper case letters with no effect in the Fortran code. However, F2PY converts
all Fortran names to their lower case equivalents. A routine declared as Hw3
in Fortran must then be called as hw3 in Python. F2PY has an option for
preserving the case when seen from Python.

Troubleshooting. If something goes wrong in the compilation, linking or
module loading stage, you must first check that the F2PY commands are
correct. The F2PY manual is the definite source for looking up the syntax.
In some cases you need to tweak the compile and link commands. The easiest
approach is to run F2PY, then cut, paste, and edit the various commands that
F2PY writes to the screen. Missing libraries are occasionally a problem, but
the necessary libraries can simply be added as part of the F2PY command.
Another problem is that many Fortran compilers transparently add an under-
score at the end of function names. F2PY has macros for adding/removing
underscores in the C wrapper code. When trouble with underscores arise,
you may try to switch to GNU’s g77 compiler as this compiler usually works
smoothly with F2PY.

If you run into trouble with the interface generated by F2PY, you may
want to examine in detail how F2PY builds the interface. The default behav-
ior of F2PY is to remove the .pyf file and the generated wrapper code after

200 5. Combining Python with Fortran, C, and C++

the extension module is built, but the --build-dir tmp1 option makes F2PY
store the generated files in a subdirectory tmp1 such that you can inspect the
files. With basic knowledge about the NumPy C API (see Chapter 10.2) you
may be able to detect what the interface is actually doing. However, my main
experience is that F2PY works well in automatic mode as long as you include
proper Cf2py intent comments in the Fortran code.

Building the Extension Module Using Distutils. The standard way of build-
ing and installing Python modules, including extension modules containing
compiled code in C, C++, or Fortran, is to use the Python’s Distutils (Dis-
tribution Utilities) tool, which comes with the standard Python distribution.
An enhanced version of Distutils with better support for Fortran code comes
with Numerical Python, and its use will be illustrated here. The procedure
consists of creating a script setup.py, which calls a function setup in Distutils.
Building a Python module out of Fortran files is then a matter of running
the setup.py script, e.g.,

python setup.py build

to build the extension module or

python setup.py install

to build and install the module. In the testing phase it is recommended just
to build the module. The resulting shared library file, hw.so, is located in a
directory tree build created by setup.py. To build the an extension module
in the current working directory, a general command is

python setup.py build build_ext --inplace

In our case where the source code for the extension module consists of
the file hw.f in the parent directory, the setup.py script takes the following
form:

from numpy.distutils.core import Extension, setup

setup(name="hw’,
ext_modules=[Extension(name=’hw’, sources=[’../hw.f’])],

)

Extension modules, consisting of compiled code, are indicated by the keyword
argument ext_modules, which takes a list of Extension objects. Each Extension
object is created with two required parameters, the name of the extension
module and a list of the source files to be compiled. The setup function ac-
cepts additional keyword arguments like description, author, author_email,
license, etc., for supplying more information with the module. There are
easy-to-read introductions to Distutils in the electronic Python documenta-
tion (see link in doc.html): “Installing Python Modules” shows how to run a
setup.py script, and “Distributing Python Modules” describes how to write
a setup.py script. More information on setup.py scripts with Fortran code
appears in the Numerical Python Manual.

5.2. Scientific Hello World Examples 201

5.2.2 Combining Python and C

The implementation of the hwi, hw2, and hw3 functions in C takes the form

#include <stdio.h>
#include <math.h>

double hwl(double ri1, double r2)

{
double s;
s = sin(rl + r2);
return s;
¥
void hw2(double rl, double r2)
{
double s;

s = sin(rl + r2);
printf ("Hello, World! sin(%g+kg)=lig\n", rl, r2, s);
}

/* special version of hwl where the result is an argument: */
void hw3(double rl, double r2, double *s)
{

*s = sin(rl + r2);

}

The purpose of the hw3 function is explained in Chapter 5.2.1. We use this
function to demonstrate how to handle output arguments. You can find the
complete code in the file src/py/mixed/hw/C/hw.c.

Using F2PY. F2PY is a very convenient tool also for wrapping C func-
tions, at least for C functions taking arguments of the basic C data types
that also Fortran has (int, float/double, char, and the corresponding point-
ers). For each C function we want to call from Python, we need to write its
signature in a .pyf file. Personally, I prefer to quickly write the C function’s
signature in Fortran 77, together with appropriate C£2py comments, and then
use F2PY to automatically generate the corresponding .pyf file. Thereafter,
F2PY compiles and links the C code using information in this .pyf file. Let
us show these steps for our three C functions.

Step 1 consists in writing down the Fortran 77 signatures of the C func-
tions, with C£2py comment specifications for the arguments. By default, F2PY
assumes that all C arguments are pointers (since this is the way Fortran treats
arguments). An argument argl that is to be passed by value must therefore
be marked as intent(c) argl in a Cf2py comment. Also the function name
must be marked with intent(c) to indicate that it is a C function. For our
three C functions, the corresponding Fortran signatures with approriate Cf2py
comments read

real*8 function hwi(ri, r2)
Cf2py intent(c) hwi

202 5. Combining Python with Fortran, C, and C++

real*8 r1, r2
Cf2py intent(c) ri1, r2
end

subroutine hw2(ri, r2)
Cf2py intent(c) hw2

real*8 r1, r2
Cf2py intent(c) ri1, r2

end

subroutine hw3(rl, r2, s)
Cf2py intent(c) hw3

real*8 rl, r2, s
Cf2py intent(c) rl, r2
Cf2py intent(out) s

end

Running f2py -m hw -h hw.pyf on this F77 file results in a hw.pyf file we
can use together with the C source hw.c for building the module with the
command £2py -c¢ hw.pyf hw.c. The make.sh script in the directory

src/py/mixed/hw/C/f2py-hw

runs the whole recipe plus a test.

Using Ctypes. Recently, Python has been extended with a module ctypes for
interfacing C code without writing wrapper any code. In the Python program
one can load a shared library and call its functions directly, provided that
the arguments are of special new ctypes types. For example, if you want to
send a float variable to a C function, you have to convert it to a c_double
type and send this variable to the C function. Let us demonstrate this for
the three C functions in hw.c.

The first step consists of making a shared library hw.so out of the hw.c
file:

gcc -shared -o hw.so ../hw.c

In a Python script we can load this shared library:

from ctypes import *
hw_lib = CDLL(’hw.so’) # load shared library

To call the hwi function, which returns a C double, we must specify the return
value and convert arguments to c_double:

hw_lib.hwl.restype = c_double
s = hw_1lib.hwil(c_double(1), c_double(2.14159))
print s, type(s)

The returned value in s is automatically converted to Python float object.
Instead of explicitly converting each argument to a proper C type from

the ctypes module, we can once and for all list the argument types for a

function and just call the function with ordinary Python data types:

5.2. Scientific Hello World Examples 203

hw_1lib.hw2.argtypes = [c_double, c_doublel
hw_lib.hwl.restype = None # returns void
hw_lib.hw2(1, 2.14159)

Here, we have explicitly specified that the C function returns void, by setting
restype to None. Finally, calling hw3 requires restype to be specified, but
because of the pointer argument, we must use a byref(s) construction for
this argument, where s is the right C type to be returned by reference. In
addition, we must explicitly convert all other arguments to the corresponding
C type:

s = c_double()
hw_lib.hw3(c_double(1), c_double(2.14159), byref(s))
print s.value

Now, ¢ is a ctypes object and its value is given by s.value (a Python float
in this case). The complete example is found in

src/py/mixed/hw/C/ctypes-hw/hwa.py

For many C functions, ctypes provides an easy way to call the functions
directly from Python, but it is also very easy for a beginner to get segmen-
tation faults. I find F2PY to be much safer, quicker, and simpler to use.
Although ctypes appears to be particularly attractive for interfacing small
parts of a big C library that is only available in compiled form, F2PY can also
be used to interface compiled C libraries as long as you have a documentation
of the C API such that the proper .pyf files can be constructed.

Using SWIG. We shall now use the SWIG tool to automatically generate
wrapper code for the three C functions in hw.c. As will be evident, SWIG
requires considerably more manual work than F2PY and ctypes to produce
the extension module.

Since the creation of an extension module generates several files, it is con-
venient to work in a separate directory. In our case we work in a subdirectory
swig-hw of src/py/mixed/hw/C.

The Python interface to our C code is defined in what we call a SWIG
interface file. Such files normally have the extension .i, and we use the name
hw.i in the current example. A SWIG interface file to our hw module could
be written as follows:

/* file: hw.i */

%module hw

/At

/* include C header files necessary to compile the interface */
#include "hw.h"

h}

double hwil(double ril, double r2);
void hw2(double rl, double r2);
void hw3(double rl, double r2, double *s);

204 5. Combining Python with Fortran, C, and C++

The syntax of SWIG interface files consists of a mixture of special SWIG
directives, C preprocessor directives, and C code. SWIG directives are always
preceded by a % sign, while C preprocessor directives are recognized by a #.
SWIG allows comments as in C and C++ in the interface file.

The Y%module directive defines the name of the extension module, here
chosen to be hw. The %{ ... }% block is used for inserting C code necessary for
successful compilation of the Python-C interface. Normally this is a collection
of header files declaring functions in the module and including the necessary
header files from system software and packages that our module depends on.

The next part of the SWIG interface file declares the functions we want
to make a Python interface to. Our previously listed interface file contains
the signatures of the three functions we want to call from Python. When
the number of functions to be interfaced is large, we will normally have a
C header file with the signatures of all functions that can be called from
application codes. The interface can then be specified by just including this
header file, e.g.,

%include "hw.h"

In the present case, such a header file hw.h takes the form

#ifndef HW_H

#define HW_H

extern double hwi(double rl, double r2);

extern void hw2(double rl, double r2);

extern void hw3(double rl, double r2, doublex s);
#endif

One can also use %include to include other SWIG interface files instead of C
header files® and thereby merge several separately defined interfaces.
The wrapper code is generated by running

swig -python -I.. hw.i

SWIG can also generate interfaces in many other languages, including Perl,
Ruby, and Tcl. For example, one simply replaces -python with -perl5 to
create a Perl interface. The -I option tells swig where to search for C header
files (here hw.h). Recall that the source code of our module, hw.h and hw.c,
resides in the parent directory of swig-hw. The swig command results in a file
hw_wrap.c containing the C wrapper code, plus a Python module hw.py. The
latter constitutes our interface to the extension module.

Compiling the Shared Library. The next step is to compile the wrapper
code, the C source code with the hwi, hw2, and hw3 functions, and link the
resulting objects files to form a shared library file _hw.so, which constitutes
our extension module. Note the underscore prefix in _hw.so, this is required

5 Examples of ready-made interface files that can be useful in other interface files
are found in the SWIG manual.

5.2. Scientific Hello World Examples 205

because SWIG generates a Python module hw.py that loads _hw.so. There
are different ways to compile and link the C codes, and two approaches are
explained in the following.

A complete manual procedure for compiling and linking our extension
module _hw.so goes as follows:

gcc -I.. -0 -I/some/path/include/python2.5 -c ../hw.c hw_wrap.c
gcc -shared -o _hw.so hw.o hw_wrap.o

The generated wrapper code in hw_wrap.c needs to include the Python header
file, and the -I/some/path/include/Python2.5 option tells the compiler, here
gcc, where to look for that header file. The path /some/path must be replaced
by a suitable directory on your system. (If you employ the suggested set-up
in Appendix A.1, /some/path is given by the environment variable PREFIX.)
We have also included a -I.. option to make gcc look for header files in the
parent directory, where we have the source code for the C functions. In this
simple introductory example we do not need header files for the source code
so -I.. has no effect, but its inclusion makes the compilation recipe more
reusable.

The second gcc command builds a shared library file _hw.so out of the
object files created by the first command. Occasionally, this second command
also needs to link in some additional libraries.

Python knows its version number and where it is installed. We can use this
information to write more portable commands for compiling and linking the
extension module. The Bash script make_module_1.sh in the swig-hw directory
provides the recipe:

swig -python -I.. hw.i

root=‘python -c ’import sys; print sys.prefix’‘
ver=‘python -c ’import sys; print sys.version[:3]’¢

gcc -0 -I.. -I$root/include/python$ver -c ../hw.c hw_wrap.c
gcc -shared -o _hw.so hw.o hw_wrap.o

Note that we also run SWIG in this script such that all steps in creating the
extension module are carried out.

Building the Extension Module Using Distutils. It is a Python standard to
write a setup.py script to build and install modules with compiled code. A
glimpse of a setup.py script appears on page 200 together with references to
literature on how to write and run such scripts. Here we show how to make
a a setup.py script for our hw module with C files.

Let us first write a version of the setup.py script where we use the basic
Distutils functionality that comes with the standard Python distribution.
The script will then first run SWIG to generate the wrapper code hw_wrap.c
and thereafter call the Python function setup in the Distutils package for
compiling and linking the module.

206 5. Combining Python with Fortran, C, and C++

import commands, os
from distutils.core import setup, Extension

name = ’hw’ # name of the module

version = 1.0 # the module’s version number
swig_cmd = ’swig -python -I.. %s.i’ 7 name

print ’running SWIG:’, swig_cmd

failure, output = commands.getstatusoutput (swig_cmd)
sources = [’../hw.c’, ’hw_wrap.c’]

setup(name = name, version = version,
ext_modules = [Extension(’_’ + name, # SWIG requires _
sources,
include_dirs=[os.pardir])

D

The setup function is used to build and install Python modules in general and
therefore has many options. Optional arguments are used to control include
directories for the compilation (demanded in the current example), libraries
to link with, special compiler options, and so on. We refer to the doc string
in class Extension for more documentation:

from distutils.core import Extension
print Extension.__doc_

The presented setup.py script is written in a generic fashion and should be
applicable to any set of C source code files by just editing the name and
sources variables.

In our setup.py script we run SWIG manually. We could, in fact, just
list the hw.i SWIG interface file instead of the C wrapper code in hw_wrap.c.
SWIG would then be run on the hw.i file and the resulting wrapper code
would be compiled and linked.

Building the hw module is enabled by

python setup.py build
python setup.py install --install-platlib=.

The first command builds the module in a scratch directory, and the sec-
ond command installs the extension module in the current working directory
(which means copying the shared library file _hw.so to this directory).

Using numpy .distutils, the building prcoess is simpler as numpy.distutils
has built-in SWIG support. We just have to list the interface file and the C
code as the source files:

from numpy.distutils.core import setup, Extension

import os
name = ’hw’ # name of the module
version = 1.0 # the module’s version number

sources = [’hw.i’, ’../hw.c’]

5.2. Scientific Hello World Examples 207

setup (name=name, version=version,
ext_modules = [Extension(’_’ + name, # SWIG requires _
sources,
include_dirs=[os.pardir])

D

Testing the Fxtension Module. The extension module is not properly built
unless we can import it without errors, so the first rough test is

python -c ’import hw’

We remark that we actually import the Python module in the file hw.py,
which then imports the extension module in the file _hw.so.

The application script on page 194 can be used as is with our C extension
module hw. Adding calls to the hw3 function reveals that there is a major
problem:

>>> from hw import hw3

>>rl1 =1; r2=-1; s =10

>>> hw3(rl, r2, s)

TypeError: Type error. Expected _p_double

That is, our s cannot be passed as a C pointer argument (the subdirectory
error contains the interface file, compilation script, and test script for this
unsuccessful try).

Handling Output Arguments. SWIG offers so-called typemaps for deal-
ing with pointers that represent output arguments from a function. The file
typemaps.i, which comes with the SWIG distribution, contains some ready-
made typemaps for specifying pointers as input, output, or input/output
arguments to functions. In the present case we change the declaration of hw3
as follows:

%include "typemaps.i"
void hw3(double rl, double r2, double *0UTPUT);

The wrapper code now returns the third argument such that Python must
call the function as

s = hw3(r1l, r2)

In other words, SWIG makes a more Pythonic interface to hw3 (hwi and hw3
then have the same interface as seen from Python). In Chapter 5.2.1 we
emphasize that F2PY performs similar adjustments of interfaces to Fortran
codes.

The most convenient way of defining a SWIG interface is to just include
the C header files of interest instead of repeating the signature of the C
functions in the interface file. The special treatment of the output argument
double *s in the hw3 function required us in the current example to manually
write up all the functions in the interface file. SWIG has, however, several

208 5. Combining Python with Fortran, C, and C++

directives to tweak interfaces such that one can include the C header files
with some predefined adjustments. The %apply directive can be used to tag
some argument names with a, e.g., OUTPUT specification:

%apply double *0UTPUT { double *s }

Any double *s in an argument list, such as in the hw3 function, will now be
an output argument.

The above %apply directive helps us to specify the interface by just includ-
ing the whole header file hw.h. The interface file thereby gets more compact:

/* file: hw2.i, as hw.i but we use %apply and ’%include "hw.h" */
Jmodule hw

At

/* include C header files necessary to compile the interface */
/* not required here, but typically

#include "hw.h"

*/

%t

%include "typemaps.i"
%apply double *0OUTPUT { double *s }
%include "hw.h"

We have called this file hw2.1i, and a corresponding script for compiling and
likning the extension module is make_module_3.sh.

5.2.3 Combining Python and C++ Functions

We have also made a C++ version of the hwi, hw2, and hw3 functions. The
C++ code is not very different from the C code, and the integration of
Python and C++ with the aid of SWIG is almost identical to the integration
of Python and C as explained in Chapter 5.2.2. You should therefore be
familiar with that chapter before continuing.

The C++ version of hwi, hw2, and hw3 reads

#include <iostream>
#include <math.h>

double hwi(double ri1, double r2)
{
double s = sin(rl + r2);
return s;

}

void hw2(double rl, double r2)
{
double s = sin(rl + r2);
std::cout << "Hello, World! sin(" << rl << "+" << r2
<< ")=" << s << std::endl;

5.2. Scientific Hello World Examples 209

void hw3(double rl, double r2, double* s)
{
*s = sin(rl + r2);

}

The hw3 function will normally use a reference instead of a pointer for the s
argument. This version of hw3 is called hw4 in the C++ code:

void hw4(double rl, double r2, double& s)
{
s = sin(rl + r2);

}

The complete code is found in src/py/mixed/hw/C++/func/hw.cpp.
We create the extension module in the directory

src/py/mixed/hw/C++/func/swig-hw

For the hwi, hw2, and hw3 functions we can use the same SWIG interface as we
developed for the C version of these three functions. To handle the reference
argument in hw4 we can use the %apply directive as explained in Chapter 5.2.2.
Using %apply to handle the output arguments in both hw3 and hw4 enables
us to define the interface by just including the header file hw.h, where all the
C++ functions in hw.cpp are listed. The interface file then takes the form

/* file: hw.i */
Ymodule hw
YAl

/* include C++ header files necessary to compile the interface */
#include "hw.h"
h}

%include "typemaps.i"

%apply double *0OUTPUT { doublex s }
%apply double *0OUTPUT { double& s }
%include "hw.h"

This file is named hw.i. The hw.h file is as in the C version, except that the
C++ version has an additional line declaring hw4:

extern void hw4(double rl, double r2, double& s);

Running SWIG with C++ code should include the -c++ option:

swig -python -c++ -I.. hw.i

The result is then a C++ wrapper code hw_wrap.cxx and a Python module
file hw.py.

The next step is to compile the wrapper code and the C++ functions,
and then link the pieces together as a shared library _hw.so. A C+-+ compiler
is used for this purpose. The relevant commands, written in Bash and using
Python to parameterize where Python is installed and which version we use,
may be written as

210 5. Combining Python with Fortran, C, and C++

swig -python -c++ -I.. hw.i

root=‘python -c ’import sys; print sys.prefix’‘

ver=‘python -c ’import sys; print sys.version[:3]’¢

g++ -0 -I.. -I$root/include/python$ver -c ../hw.cpp hw_wrap.cxx
gt++ -shared -o _hw.so hw.o hw_wrap.o

We are now ready to test the module:

>>> import hw
>>> hw.hw2(-1,1)
Hello, World! sin(-1+1)=0

Compiling and linking the module can alternatively be done by Distutils
and a setup.py script as we explained in Chapter 5.2.2. Complete scripts
setup.py (Python’s basic Distutils) and setup2.py (numpy.distutils) can be
found in the directory

src/py/mixed/hw/C++/func/swig-hw

The four functions in the module are tested in the hwa.py script, located in
the same directory.

Interfacing C++ code containing classes is a bit more involved, as ex-
plained in the next section.

5.2.4 Combining Python and C++4 Classes

Chapter 5.2.3 explained how to interface C++ functions, but when we com-
bine Python and C+4 we usually work with classes in C++. The present
section gives a brief introduction to interfacing classes in C++. To this end,
we have made a class version of the hw module. A class HelloWorld stores
the two numbers r1 and r2 as well as s, where s=sin(r1+r2), as private data
members. The public interface offers functions for setting r1 and r2, comput-
ing s, and writing “Hello, World!” type messages. We want to use SWIG to
generate a Python version of class HelloWorld.

The Complete C++ Code. Here is the complete declaration of the class and
an associated operator<< output function, found in the file HelloWorld.h in
src/py/mixed/hw/C++/class

#ifndef HELLOWORLD_H

#define HELLOWORLD_H

#include <iostream>

class HelloWorld

{
protected:
double r1, r2, s;
void compute(); // compute s=sin(ri+r2)

public:

5.2. Scientific Hello World Examples 211

HelloWorld();
~“HelloWorld();

void set(double r1l, double r2);
double get() const { return s; }
void message(std::ostream& out) const;

};

std::ostream&
operator << (std::ostream& out, const HelloWorld& hw);
#endif

The definition of the various functions is collected in HelloWorld.cpp. Its
content is

#include "HelloWorld.h"
#include <math.h>

HelloWorld:: HelloWorld()
{r1=1r2=0; compute(); }

HelloWorld:: ~HelloWorld() {}

void HelloWorld:: compute()
{ s = sin(r1 + r2); }

void HelloWorld:: set(double ri_, double r2_)
{

rl =rl_; r2 = r1r2_;

compute(); // compute s
}

void HelloWorld:: message(std::ostream& out) const
{
out << "Hello, World! sin(" << rl1 << " + "
<< r2 << ")=" << get() << std::endl;
}

std::ostream&
operator << (std::ostream& out, const HelloWorld& hw)
{ hw.message(out); return out; }

To exemplify subclassing we have made a trivial subclass, implemented in
the files HelloWorld2.h and HelloWorld2.cpp. The header file HelloWorld2.h
declares the subclass

#ifndef HELLOWORLD2_H
#define HELLOWORLD2_H
#include "HelloWorld.h"

class HelloWorld2 : public HelloWorld
{

public:

void gets(double& s_) const;

};
#endif

212 5. Combining Python with Fortran, C, and C++

The HelloWorld2.cpp file contains the body of the gets function:

#include "HelloWorld2.h"
void HelloWorld2:: gets(double& s_) const { s_ = s; }

The gets function has a reference argument, intended as an output argument,
to exemplify how this is treated in a class context (gets is thus a counterpart
to the hw4 function in Chapter 5.2.3).

The SWIG Interface File. In the present case we want to reflect the complete
HelloWorld class in Python. We can therefore use HelloWorld.h to define the
interface in the SWIG interface file hw.i. To compile the interface, we also
need to include the header files in the section after the %module directive:

/* file: hw.i */

Jmodule hw

Al

/* include C++ header files necessary to compile the interface */
#include "HelloWorld.h"

#include "HelloWorld2.h"

h}

%include "HelloWorld.h"
%include "HelloWorld2.h"

With the double& s output argument in the HelloWorld2::gets function we
get the same problem as with the s argument in the hw3 and hw4 functions.
Using the SWIG directive %apply, we can specify that s is an output argu-
ment and thereafter just include the header file to define the interface to the
HelloWorld2 subclass

%include "HelloWorld.h"

%include "typemaps.i"

%apply double *0UTPUT { double& s_ }
%include "HelloWorld2.h"

The Python call syntax of gets reads s = hw2.gets() if hw2 is a HelloWorld?2
instance. As with the hw3 and hw4 functions in Chapter 5.2.3, the output
argument in C++ becomes a return value in the Python interface.

The HelloWorld.h file defines support for printing HelloWorld objects. A
calling Python script cannot directly make use of this output facility since the
“output medium” is an argument of type std: :ostream, which is unknown to
Python. (Sending, e.g., sys.stdout to such functions will fail if we have not
“swig-ed” std::ostream, a task that might be highly non-trivial.) It would
be simpler to have an additional function in class HelloWorld for printing the
object to standard output. Fortunately, SWIG enables us to define additional
class functions as part of the interface file. The %extend directive is used for
this purpose:

%extend HelloWorld {
void print_() { self->message(std::cout); }

5.2. Scientific Hello World Examples 213

Note that the C++4 object is accessed as self in functions inside the %extend
directive. Also note that the name of the function is print_: we cannot use
print since this will interfere with the reserved keyword print in the calling
Python script. It is a convention to add a single trailing underscore to names
coinciding with Python keywords (see page 704).

Making the Extension Module. When the interface file hw. i is ready, we can
run SWIG to generate the wrapper code:

swig -python -c++ -I.. hw.i

SWIG issues a warning that the operator<< function cannot be wrapped. The
files generated by SWIG are hw_wrap.cxx and hw.py. The former contains the
wrapper code, and the latter is a module with a Python mapping of the
classes HelloWorld and HelloWorld2).

Compiling and linking must be done with the C++ compiler:

root=‘python -c ’import sys; print sys.prefix’‘
ver=‘python -c ’import sys; print sys.version[:3]’¢
g++ -0 -I.. -I$root/include/python$ver \

-c ../HelloWorld.cpp ../HelloWorld2.cpp hw_wrap.cxx
gt++ -shared -o _hw.so HelloWorld.o HelloWorld2.o hw_wrap.o

Recall that _hw.so is the name of the shared library file when hw is the name
of the module.

An alternative to the manual procedure above is to write a setup.py script,
either using Python’s standard Distutils or the improved numpy.distutils.
Examples on both such scripts are found in the directory

src/py/mixed/hw/C++/class/swig-hw

A simple test script for the generated extension module might take the
form

import sys
from hw import HelloWorld, HelloWorld2

hw = HelloWorld()

rl = float(sys.argv[1]); r2 = float(sys.argv[2])
hw.set(r1l, r2)

s = hw.get()

print "Hello, World! sin(%g + %g)=%g" % (rl, r2, s)
hw.print_Q)

hw2 = HelloWorld2()

hw2.set(rl, r2)

s = hw.gets()

print "Hello, World2! sin(%g + %g)=%g" % (rl, r2, s)

Readers who intend to couple Python and C++ via SWIG are strongly
encouraged to read the SWIG manual, especially the Python chapter, and
study the Python examples that come with the SWIG source code.

214 5. Combining Python with Fortran, C, and C++

Remark on Efficiency. When SWIG wraps a C++ class, the wrapper func-
tions are stand-alone functions, not member functions of a class. For example,
the wrapper for the HelloWorld::set member function becomes the global
function HelloWorld_set in the _hw.so module. However, SWIG generates a
file hw.py containing so-called proxy classes, in Python, with the same inter-
face as the underlying C++ classes. A method in a proxy class just calls the
appropriate wrapper function in the _hw.so module. In this way, the C++
class is reflected in Python. A downside is that there is some overhead associ-
ated with the proxy class. For C++ functions called a large number of times
from Python, one should consider bypassing the proxy class and calling the
underlying function in _hw.so directly, or one can write more optimal exten-
sion modules by hand, see Chapter 10.3, or one can use SIP which produces
more efficient interfaces to C++ code.

5.2.5 Exercises

Ezercise 5.1. Implement a numerical integration rule in F77.

Implement the Trapezoidal rule (4.1) from Exercise 4.5 on page 150 in
F77 along with a function to integrate and a main program. Verify that the
program works (check, e.g., that a linear function is integrated exactly, i.e.,
the error is zero to machine precision). Thereafter, interface this code from
Python and write a new main program in Python calling the integration rule
in F77 (the function to be integrated is still implemented in F77). Compare
the timings with the plain and vectorized Python versions in the test problem
suggested in Exercise 4.5. o

FEzercise 5.2. Implement a numerical integration rule in C.
As Exercise 5.1, but implement the numerical integration rule and the
function to be integrated in C. o

Ezercise 5.3. Implement a numerical integration rule in C++.

This is an extension of Exercise 5.2. Make an integration rule class hier-
archy in C++, where different classes implement different rules. Here is an
example on typical usage (in C++):

#include <Trapezoidal.h>

#include <math.h>

int main()

{
MyFuncl f; // function object to be integrated
f.w =0.11; f.a = 2; // parameters in f
double a = 1; double b = 2«M_PI/f.w; // integration limits
int n = 100; // no of integration points
Trapezoidal t; // integration rule
double I = t.integrate(a, b, f, n);

5.3. A Simple Computational Steering Example 215

The function to be integrated is an object with an overloaded operator()
function such that the object can be called like an ordinary function (just
like the special method __call__ in Python):

class MyFuncl
{
public:
double a, w;
MyFunci1(double a_=1, double w_=1,) { a=a_; w=w_; }
virtual double operator() (double x) const
{ return axexp(-x*x)*log(x + x*sin(w*x)); }

};

Implement this code and the Trapezoidal class. Use SWIG to make a Python
interface to the C++ code, and write the main program above in Python. ¢

5.3 A Simple Computational Steering Example

A direct Python interface to functions in a simulation code can be used to
start the simulation, view results, change parameters, continue simulation,
and so on. This is referred to as computational steering. The current section
is devoted to an initial example on computational steering, where we add a
Python interface to a Fortran 77 code. Our simulator is the oscillator code
from Chapter 2.3. The Fortran 77 implementation of this code is found in

src/app/oscillator/F77/oscillator.f

The original program reads input data from standard input, computes a time
series (by solving a differential equation), and stores the results in a file. You
should review the material from Chapter 2.3 before continuing reading.

When steering this application from a Python script we would like to do
two core operations in Fortran 77:

— set the parameters in the problem,

— run a number of time steps.

The F77 code stores the parameters in the problem in a common block. This
common block can be accessed in the Python code, but assignment strings
in this block directly is not recommended. It is safer to send strings from
the Python script to the F77 code through a function call and let F77 store
the supplied strings in the internal common block variables. Here we employ
the same technique for all variables that we need to transfer from Python
to Fortran. Fortunately, oscillator.f already has a function scan2 for this
purpose:

subroutine scan2(m_, b_, c_, A_, w_, yO_, tstop_, dt_, func_)
real*8 m_, b_, c_, A_, w_, yO_, tstop_, dt_
character func_x*(*)

216 5. Combining Python with Fortran, C, and C++

When it comes to running the simulation a number of steps, the original
timeloop function in oscillator.f needs to be modified for computational
steering. Similar adjustments are needed in lots of other codes as well, to
enable computational steering.

5.3.1 Modified Time Loop for Repeated Simulations

In computational steering we need to run the simulation for a specified num-
ber of time steps or in a specified time interval. We also need access to the
computed solution such that it can be visualized from the scripting interface.
In the present case it means that we need to write a tailored time loop func-
tion working with NumPy arrays and other data structures from the Python
code.

The timeloop function stores the solution at the current and the previous
time levels only. Visualization and arbitrary rewinding of simulations demand
the solution to be stored for all time steps. We introduce the two-dimensional
array y with dimensions n and maxsteps-1 for this purpose. The n and maxsteps
parameters are explained later. Internally, the new time loop routine needs
to convert back and forth between the y array and the one-dimensional ar-
ray used for the solution in the oscillator.f code. These modifications just
exemplify that computational steering usually demands some new functions
having different interfaces and working with different data structures com-
pared with the existing functions in traditional codes without support for
steering.

Our alternative time loop function, called timeloop2, is found in a file
timeloop2.f in the directory

src/py/mixed/simviz

The function has the following Fortran signature:
subroutine timeloop2(y, n, maxsteps, step, time, nsteps)

integer n, step, nsteps, maxsteps
real*8 time, y(n,0:maxsteps-1)

The parameter n is the number of components in the system of first-order
differential equations, i.e., 2 in the present example. Recall that a second-
order differential equation, like (2.1) on page 47, is rewritten as a system
of two first-order differential equations before applying standard numerical
methods to compute the solution. The unknown functions in the first-order
system are y and dy/dt. The y array stores the solution of component i (y
for i=0 and dy/dt for i=1) at time step j in the entry y(i,3). That is, discrete
values of y are stored in the first row of y, and discrete values of dy/dt are
stored in the second row.

The step parameter is the time step number of the initial time step when
timeloop2 is called. At return, step equals the current time step number.

5.3. A Simple Computational Steering Example 217

The parameter time is the corresponding time value, i.e., initial time when
timeloop?2 is called and present time at return. The simulation is performed
for nsteps time steps, with a time step size dt, which is already provided
through a scan2 call and stored in a common block in the F77 code. The
maxsteps parameter is the total number of time steps that can be stored in y.

For the purpose of making a Python interface to timeloop2, it is sufficient
to know the argument list, that step and time are input and output parame-
ters, that the function advances the solution nsteps time steps, and that the
computed values are stored in y.

5.3.2 Creating a Python Interface

We use F2PY to create a Python interface to the scan2 and timeloop2 func-
tions in the F77 files oscillator.f and timeloop2.f. We create the extension
module in a subdirectory £2py-oscillator of the directory where timeloop2.f
is located.

Working with F2PY consists basically of three steps as described on
page 478: (i) classifying all arguments to all functions by inserting appropri-
ate Cf2py directives, (ii) calling F2PY with standard command-line options
to build the module, and (iii) importing the module in Python and printing
the doc strings of the module and each of its functions.

The first step is easy: looking at the declaration of timeloop2, we realize
that y, time, and step are input and output parameters, whereas nsteps is
an input parameter. We therefore insert

Cf2py intent(in,out) step
Cf2py intent(in,out) time
Cf2py intent(in,out) y
Cf2py intent(in) nsteps

in timeloop2, after the declaration of the subroutine arguments.

The n and maxsteps parameters are array dimensions and are made op-
tional by F2PY in the Python interface. That is, the F2PY generated wrapper
code extracts these parameters from the NumPy objects and feeds them to
the Fortran subroutine. We can therefore (very often) forget about array
dimension arguments in subroutines.

The second step consists of running the appropriate command for building
the module:

f2py -m oscillator -c --build-dir tmpl --fcompiler=Gnu \
../timeloop2.f $scripting/src/app/oscillator/F77/oscillator.f \
only: scan2 timeloop2 :

The name of the module (-m) is oscillator, we demand a compilation and
linking (-c), files generated by F2PY are saved in the tmp1l subdirectory
(--build-dir), we specify the compiler (here GNU’s g77), we list the two

218 5. Combining Python with Fortran, C, and C++

Fortran files that constitute the module, and we restrict the interface to two
functions only: scan2 and timeloop2

The third step tests if the module can be successfully imported and what
the interface from Python looks like:

>>> import oscillator
>>> print oscillator.__doc__
This module ’oscillator’ is auto-generated with f2py (version:...)
Functions:
y,step,time = timeloop2(y,step,time,nsteps,
n=shape(y,0) ,maxsteps=shape(y,1))
scan2(m_,b_,c_,a_,w_,y0_,tstop_,dt_,func_)
COMMON blocks:
/data/ m,b,c,a,w,y0,tstop,dt,func(20)

If desired, one can also examine the generated interface file oscillator.pyf
in the tmp1l subdirectory.

Notice from the documentation of the timeloop2 interface that F2PY
moves array dimensions, here n and maxsteps, to the end of the argument
list. Array dimensions become keyword arguments with default values ex-
tracted from the associated array objects. We can therefore omit array di-
mensions when calling Fortran from Python. The importance of printing out
the extension module’s doc string can hardly be exaggerated since the Python
interface may have an argument list different from what is declared in the
Fortran code.

Looking at the doc string of the oscillator module, we see that we get
access to the common block in the Fortran code. This allows us to adjust,
e.g., the time step parameter dt directly from the Python code:

oscillator.data.dt = 2.5

Support for setting character strings in common blocks is “poor” in the cur-
rent version of F2PY. However, other data types like float, int, etc., can
safely be set directly in common blocks.

For convenience, the Bourne shell script make_module.sh, located in the
directory f2py-oscillator, builds the module and writes out doc strings.

5.3.3 The Steering Python Script

When operating the oscillator code from Python, we want to repeat the
following procedure:

— adjust a parameter in Python,

update the corresponding data structure in the F77 code,

run a number of time steps, and

— plot the solution.

5.3. A Simple Computational Steering Example 219

To this end, we create a function setprm() for transferring parameters in the
Python script to the F77 code, and a function run(nsteps) for running the
simulation nsteps steps and plotting the solution.

The physical and numerical parameters are variables in the Python script.
Their values can be set in a GUI or from command-line options, as we demon-
strate in the scripts simvizGUI2.py and simvizl.py from Chapters 6.2 and 2.3,
respectively. However, scripts used to steer simulations are subject to frequent
changes so a useful approach is often to just hardcode a set of approprite de-
fault values, for instance,

m=1.0; b=20.7; ¢ =5.0; func = ’y’; A = 5.0; w = 2*math.pi
yO = 0.2; tstop = 30.0; dt = 0.05

and then assign new values when needed, directly in the script file, or in an
interactive Python session, as we shall demonstrate.

The setprm() function for transferring the physical and numerical param-
eters from the Python script to the F77 code is just a short notation for a
complete call to the scan2 F77 function:

def setprm():
oscillator.scan2(m, b, ¢, A, w, yO, tstop, dt, func)

The run(nsteps) function calls the timeloop2 function in the oscillator mod-
ule and plots the solution. We have here chosen to exemplify how the Gnuplot
module can be used directly to plot array data:

from scitools.numpyutils import seq, zeros
maxsteps = 10000

n=2

y = zeros((n,maxsteps))

step = 0; time = 0.0

import Gnuplot
gl = Gnuplot.Gnuplot(persist=1) # (y(t),dy/dt) plot
g2 = Gnuplot.Gnuplot(persist=1) # y(t) plot

def run(nsteps):
global step, time, y
if step+nsteps > maxsteps:
print ’no more memory available in y’; return

y, step, time = oscillator.timeloop2(y, step, time, nsteps)

t = seq(0.0, time, dt)

y1 = y[0,0:step+1]

y2 = y[1,0:step+1]
gl.plot(Gnuplot.Data(yl,y2, with=’lines’))
g2.plot(Gnuplot.Data(t, yl, with=’lines’))

In the present case we use 0 as base index for y in the Python script (required)
and 1 in the F77 code. Such “inconsistency” is unfortunately a candidate for
bugs in numerical codes, but 1 as base index is a common habit in Fortran
routines so it might be an idea to illustrate how to deal with this.

220 5. Combining Python with Fortran, C, and C++

Fig. 5.1. Plots produced by an interactive session involving the oscillator mod-
ule, as explained in Chapter 5.3.3. To the left is the displacement y(¢), and to the
right is the trajectory (y(t),y’(t)).

The first plot is a phase space curve (y, dy/dt), easily created by extract-
ing the steps 0 up to, but not including, step+1. We can write the extraction
compactly as y[:,0:step+1]. To plot the y(¢) curve, we extract the first com-
ponent of the solution for the same number of steps: y[0,0:step+1]. The
corresponding ¢ values are stored in an array t (note that we use seq from
scitools.numpyutils to ensure that the upper limit, time, is included as last
element, cf. Chapter 4.3.7).

A complete steering Python module is found in

src/py/mixed/simviz/f2py/simviz_steering.py

This module imports the oscillator extension module, defines physical pa-
rameters such as m, b, c, etc., and the previously shown setprm and run func-
tions, plus more to be described later.

Let us demonstrate how we can perform a simulation in several steps.
First, we launch a Python shell (IPython or the IDLE shell) and import the
steering interface to the oscillator program:

from simviz_steering import *

We can now issue commands like

setprm() # send default values to the oscillator code
run(60) # simulate the first 60 time steps

w = math.pi # change the frequency of the applied load

setprm() # notify simulator about any parameter change
run(120) # simulate for another 120 steps

A =10 # change the amplitude of the applied load
setprm()

run(100)

5.3. A Simple Computational Steering Example

221

The run function updates the solution in a plot on the screen so we can
immediately see the effect of changing parameters and running the simulator.

To rewind the simulator nsteps, and perhaps change parameters and re-
run some steps, the simviz_steering module contains the function

def rewind(nsteps=0):
global step, time

if nsteps == # start all over again?
step = 0
time = 0.0
else: # rewind nsteps
step -= nsteps
time -= nsteps*dt

Here is an example in the interactive shell:

>>>
>>>
>>>
>>>
>>>
>>>

from simviz_steering import *
run(50)

rewind (50)

A=20

setprm()

run(50) # try again the 50 steps,

now with A=20

A session where we check the effect of changing the amplitude and frequency

of the load during the simulation can look like this:

>>> rewind()

>>> A=1; setprm(); run(100)
>>> run(300)

>>> rewind (200)

>>> A=10; setprm(); run(200)

>>>> rewind(200)
>>> w=1; setprm(); run(400)

With the following function from simviz_steering.py we can generate hard-

copies of the plots when desired:

def psplot():

gl.hardcopy(filename="tmp_phaseplot_%d.ps’ % step,

enhanced=1, mode=’eps’, color=0,

fontname=’Times-Roman’, fontsize=28)
g2.hardcopy(filename="tmp_yl_%d.ps’ % step,

enhanced=1, mode=’eps’, color=0,

fontname=’Times-Roman’,

fontsize=28)

Hopefully, the reader has realized how easy it is to create a dynamic working
environment where functionality can be added on the fly with the aid of

Python scripts.

Remark. You should not change dt during a simulation without a complete
rewind to time zero. The reason is that the t array used for plotting y; (¢) is
based on a constant time step during the whole simulation. However, recom-
puting the solution with a smaller time step is often necessary if the first try

leads to numerical instabilities.

222 5. Combining Python with Fortran, C, and C++

5.3.4 Equipping the Steering Script with a GUI

We can now easily combine the simviz_steering.py script from the last sec-
tion with the GUI simvizGUI2.py from Chapter 6.2. The physical and nu-
merical parameters are fetched from the GUI, sent to the oscillator module
by calling its scan2 function, and when we press Compute in the GUI, we
call up the run function to run the Fortran code and use Gnuplot to display
results. That is, we have a GUI performing function calls to the simulator
code and the visualization program. This is an alternative to the file-based
communication in Chapter 6.2.

The GUI code could be placed at the end of the simviz_steering module.
A Detter solution is to import simviz_steering in the GUI script. We want
the GUI script to run the initializing statements in simviz_steering, and this
will be done by a straight

import simviz_steering as S

statement.

It would be nice to have a slider reflecting the number of steps in the solu-
tion. Dragging this slider backwards and clicking on compute again will then
correspond to rewinding the solution and repeating the simulation, with po-
tentially new physical or numerical data. All we have to do in the constructor
in class SimVizGUI is

self.p[’step’] = IntVar(); self.p[’step’].set(0)
self.slider(slider_frame, self.p[’step’], 0, 1000, ’step’)

The self.compute function in the simvizGUI2.py script must be completely
rewritten (we do not launch simviz1.py as a stand-alone script anymore):

def compute(self):
"""run oscillator code"""
rewind_nsteps = S.step - self.p[’step’].get()
if rewind_nsteps > O:
print ’rewinding’, rewind_nsteps, ’steps, ’,
S.rewind(rewind_nsteps) # adjust time and step
print ’time =’, S.time
nsteps = int((self.p[’tstop’].get()-S.time)\
/self .p[’dt’].get())
print ’compute’, nsteps, ’new steps’
self.setprm() # notify S and oscillator about new parameters
S.run(nsteps)
S.step is altered in S.run so update it:
self.p[’step’].set(S.step)

The new self.setprm function looks like

def setprm(self):
"""transfer GUI parameters to oscillator code"""
safest to transfer via simviz_steering as that
module employs the parameters internally:

5.4. Scripting Interfaces to Large Libraries 223

S.m = self.p[’m’].get(); S.b = self.p[’b’].get()

S.c = self.p[’c’].get(); S.A = self.p[’A’].get()

S.w = self.p[’w’].get(); S.y0 = self.p[’y0’].get()
S.tstop = self.p[’tstop’].get()

S.dt = self.p[’dt’].get(); S.func = self.p[’func’].get()
S.setprm()

These small modifications to simvizGUI.py have been saved in a new file

src/py/mixed/simviz/f2py/simvizGUI_steering.py

Run that file, set tstop to 5, click Compute, watch that the step slider has
moved to 100, change the m slider to 5, w to 0.1, tstop to 40, move step back
to step 50, and click Compute again.

The resulting application is perhaps not of much direct use in science and
engineering, but it is sufficiently simple and general to demonstrate how to
glue simulation, visualization, and GUIs by sending arrays and other variables
between different codes. The reader should be able to extend this introductory
example to more complicated applications.

5.4 Scripting Interfaces to Large Libraries

The information on creating Python interfaces to Fortran, C, and C++4 codes
so far in this chapter have been centered around simple educational examples
to keep the focus on technical details. Migration of slow Python code to
complied languages will have a lot in common with these examples. However,
one important application of the technology is to generate Python interfaces
to existing codes. How does this work out in practice for large legacy codes?
The present section shares some experience from interfacing the C++ library
Diffpack [15].

About Diffpack. Diffpack is a programming environment aimed at scientists
and engineering who develop codes for solving partial differential equations
(PDEs). Diffpack contains a huge C++ library of numerical functionality
needed when solving PDEs. For example, the library contains class hierarchies
for arrays, linear systems, linear system solvers and preconditioners, grids
and corresponding fields for finite difference, element, and volume methods,
as well as utilities for data storage, adaptivity, multi-level methods, parallel
computing, etc. To solve a specific PDE, one must write a C++ program,
which utilizes various classes in the Diffpack library to perform the basic
steps in the solution method (e.g., generate mesh, compute linear system,
solve linear system, store solution).

Diffpack comes with lots of example programs for solving basic equations
like wave equations, heat equations, Poisson equations, nonlinear convection-
diffusion equations, the Navier-Stokes equations, the equations of linear elas-
ticity and elasto-viscoplasticity, as well as systems of such equations. Many

224 5. Combining Python with Fortran, C, and C++

of these example programs are equipped with scripts for automating simula-
tion and visualization [15]. These scripts are typically straightforward exten-
sions of the simviz1.py (Chapter 2.3) and simvizGUI2.py (Chapter 6.2) scripts
heavily used throughout the present text. Running Diffpack simulators and
visualization systems as stand-alone programs from a tailored Python script
may well result in an efficient working environment. The need to use C++
functions and classes directly in the Python code is not critical for a ready-
made Diffpack simulator applied in a traditional style.

During program development, however, the request for calling Diffpack
directly from Python scripts becomes evident. Code is changing quickly, and
convenient tools for rapid testing, dumping of data, immediate visualiza-
tion, etc., are useful. In a way, the interactive Python shell may in this case
provide a kind of problem-specific scientific debugger. Doing such dynamic
testing and developing is more effective in Python than in C++. Also when
it comes to gluing Diffpack with other packages, without relying on stand-
alone applications with slow communication through files, a Python-Diffpack
interface is of great interest.

Using SWIG. At the time of this writing, we are trying to interface the
whole Diffpack library with the aid of SWIG. This is a huge task because
a robust interface requires many changes in the library code. For example,
operator= and the copy constructor of user-defined classes are heavily used in
the wrapper code generated by SWIG. Since not all Diffpack classes provided
an operator= or copy constructor, the default versions as automatically gen-
erated by C++ were used “silently” in the interface. This led in some cases to
strange behavior whose reason was difficult to find. The problem was absent
in Diffpack, simply because the problematic objects were (normally) not used
in a context where operator= and the copy constructor were invoked. Most
of the SWIG-induced adjustments of Diffpack are technically sound, also in
a pure C++ context. The main message here is simple: C++ code develop-
ers must be prepared for some adjustments of the source before generating
scripting interfaces via SWIG.

Earlier versions of SWIG did not support macros, templates, operator
overloading, and some more advanced C++ features. This has improved a
lot with the SWIG version 1.3 initiative. Now quite complicated C++ can
be handled. Nevertheless, Diffpack applies macros in many contexts, and not
all of the macros were satisfactorily handled by SWIG. Our simplest solution
to the problem was to run the C++ preprocessor and automatically (via
a script) generate (parts of) the SWIG interface based on the preprocessor
output with macros expanded.

Wrapping Simulators. Rather than wrapping the complete Diffpack library,
one can wrap the C+-+ simulator, i.e. the “main program”, for solving a
specific PDE, as this is a much simpler and limited task. Running SWIG
successfully on the simulator header files requires some guidelines and au-
tomation scripts. Moreover, for such a Python interface to be useful, some

5.4. Scripting Interfaces to Large Libraries 225

of the most important classes in the Diffpack library must also be wrapped
and used from Python scripts. The techniques and tools for wrapping simu-
lators are explained in quite some detail in [17]. Here we shall only mention
some highlights regarding the technical issues and share some experience with
interfacing Python and a huge C++ library.

Preprocessing header files to expand macros and gluing the result auto-
matically in the SWIG interface file is performed by a script. The interface file
can be extended with extra access functions, but the automatically generated
file suffices in many cases.

Compiling and Linking. The next step in creating the interface is to com-
pile and link Diffpack and the wrapper code. Since Diffpack relies heavily on
makefiles, compiling the wrapper code is easiest done with SWIG’s template
makefiles. These need access to variables in the Diffpack makefiles so we ex-
tended the latter with a functionality of dumping key information, in form
of make variables, to a file, which then is included in the SWIG makefile. In
other words, tweaking makefiles from two large packages (SWIG and Diff-
pack) was a necessary task. With the aid of scripts and some adjustments in
the Diffpack makefiles, the compilation and linking process is now fully auto-
matic: the extension module is built by simply writing make. The underlying
makefile is automatically generated by a script.

Converting Data Between Diffpack and Python. Making Python interfaces
to the most important Diffpack classes required a way of transferring data
between Python and Diffpack. Data in this context is usually potentially very
large arrays. By default, SWIG just applies pointers, and this is efficient, but
unsafe. OQur experience so far is that copying data is the recommended default
behavior. This is safe for newcomers to the system, and the copying can
easily be replaced by efficient pointer communication for the more advanced
Python-SWIG-Diffpack developer. Copying data structures back and forth
between Diffpack and Python can be based on C++ code (conversion classes,
as explained in Chapter 10.3.3) or on SWIG’s typemap facility. We ended up
with typemaps for the simplest and smallest data structures, such as strings,
while we used filters for arrays and large data structures. Newcomers can
more easily inspect C++ conversion functions than typemaps to get complete
documentation of how the data transfer is handled.

Basically, the data conversion takes place in static functions. For example,
a NumPy array created in Python may be passed on as the array of grid
point values in a Diffpack field object, and this object may be transformed
to a corresponding Vtk object for visualization.

Visualization with Vtk. The visualization system Vtk comes with a Python
interface. This interface lacks good documentation, but the source code is
well written and represented satisfactory documentation for realizing the in-
tegration of Vtk, Python, and Diffpack. Any Vtk object can be converted
into a PyObject Python representation. That is, Vtk is completely wrapped

226 5. Combining Python with Fortran, C, and C++

in Python. For convenience we prefer to call Vtk through MayaVi, a high-level
interface to Vtk written in Python.

Ezxample on a Script. Below is a simple script for steering a simulation
involving a two-dimensional, time-dependent heat equation. The script feeds
input data to the simulator using Diffpack’s menu system. After solving the
problem the solution field (temperature) is grabbed and converted to a Vtk
field. Then we open MayaVi and specify the type of visualization we want.

from DP import *
from Heatl import *
menu = MenuSystem()

import some Diffpack library utilities

import heat equation simulator

enable programming Diffpack menus

R some init of the menu system

heat = Heat1() make simulator object

heat.define (menu) generate input menus

grid_str = ’P=PreproBox | d=2 [0,1]x[0,1] | d=2 e=ElmB4n2D ’\
’div=[16,16] grading=[1,1]"’

menu.set(’gridfile’, grid_str) # send menu commands to Diffpack

heat.scan() # load menu and initialize data structs

heat.solveProblem() # solve PDE problem

HHHEHHH

dp2py = dp2pyfilters() # copy filters for Diffpack-Vtk-Python
import vtk, mayavi # interfaces to Vtk-based visualization
vtk_field = dp2py.dp2vtk(heat.u()) # solution u -> Vtk field

v = mayavi.mayavi() # use MayaVi for visualization
v_field = v.open_vtk_data(vtk_field)

v.load_module(’SurfaceMap’, 0)
v.load_module(’Axes’, 0)

.axes.SetCorner0ffset(0.0) # configure the axes module
v.load_module(’Outline’, 0)
v.load_filter(’WarpScalar’, config=0)

config_file = open(’visualize.config’)
f.load_config(config_file)

v.Render() # plot the temperature

HhopPEE
1

Reference [17] contains more examples. For instance, in [17] we set up a
loop over discretization parameters in the steering Python script and compute
convergence rates of the solution using the nonlinear least squares module in
ScientificPython.

Chapter 6

Introduction to GUI Programming

Python codes can quickly be altered and re-run, a property that encourages
direct editing of the source code to change parameters and program behav-
ior. This type of hardcoded changes is usually limited to the developer of
the code. However, the edit-and-run strategy may soon be error-prone and
introduce bugs. Most users, and even the developer, of a script will benefit
from some kind of user interface. In Chapter 2 we have defined user interfaces
through command-line options, which are very convenient if a script is to be
called from other scripts. A stand-alone application, at least as seen from an
end-user, is often simpler to apply if it is equipped with a self-explanatory
graphical user interface (GUI). This chapter explains how easy it is to add a
small-size GUI to Python scripts.

To construct a GUI, one needs to call up functionality in a GUI toolkit.
There are many GUI toolkits available for Python programmers. The simplest
one is Tkinter, while PyGtk, PyQt, and wxPython constitute more sophis-
ticated toolkits that are gaining increased popularity. All of these toolkits
require underlying C or C++ libraries to be installed on your computer: Tk-
inter, PyGtk, PyQt, and wxPython require the Tk, Gtk, Qt, and wxWindows
libraries, respectively. Most Python installations have Tk incorporated, a fact
that makes Tkinter the default GUI toolkit. Unless you are experienced with
GUI programming, I recommend to start with Tkinter, since it is easier to
use than PyGtk, PyQt, and wxPython. As soon as you find yourself working
a significant amount of time with GUI development in Python, it is time to
reconsider the choice of toolkit and your working style.

There are two ways of creating a GUIL Either you write a Python pro-
gram calling up functionality in the GUI toolkit, or you apply a graphical
designer tool to compose the GUI interactively on the screen followed by
automatic generation of the necessary code. The doc.html file contains links
to software and tutorials for some popular designer tools: Page for Tkinter,
Qt Designer for PyQt, Glade for PyGtk, and wxGlade for wxPython. Even if
you end up using a designer tool, you will need some knowledge of basic GUI
programming, typically the topics covered in the present chapter. When you
know how to program with a GUI toolkit, you are well prepared to address
some important topics for computational scientists: embedding plotting areas
in GUIs (Chapter 11.1), making animated graphics (Chapter 11.3), and de-
veloping custom tools for automatically generating frequently needed GUIs
(Chapter 11.4).

228 6. Introduction to GUI Programming

Chapter 6.1 provides an example-oriented first introduction to GUI pro-
gramming. How to wrap GUIs around command-line oriented scripts, like
simvizl.py from Chapter 2.3, is the topic of Chapter 6.2. Thereafter we list
how to use the most common Tkinter and Pmw widgets in Chapter 6.3. After
this introduction, I encourage you to take a look at a designer tool such as
Glade, which works with PyGtk. There are links to several introductions to
Glade in doc.html. A particular advantage of Glade is that the GUI code
is completely separated from the application since the GUI specification is
stored in an XML file. It is wise to pick up this separation principle and use
it for GUI programming in general.

6.1 Scientific Hello World GUI

After some remarks in Chapter 6.1.1, regarding Tkinter programming in gen-
eral, we start in Chapters 6.1.2-6.1.9, with coding a graphical version of the
Scientific Hello World script from Chapter 2.1. A slight extension of this GUI
may function as a graphical calculator, as shown in Chapter 6.1.10.

6.1.1 Introductory Topics

Basic Terms. GUI programming deals with graphical objects called widgets.
Looking at a window in a typical GUI, the window may consist of buttons,
text fields, sliders, and other graphical elements. Each button, slider, text
field, etc. is referred to as a widget!. There are also “invisible” widgets, called
frames, for just holding a set of smaller widgets. A full GUI is a hierarchy
of widgets, with a toplevel widget representing the complete window of the
GUI. The geometric arrangement of widgets in parent widgets is performed
by a geometry manager.

All scripts we have met in this book so far have a single and obvious
program flow. GUI applications are fundamentally different in this regard.
First one builds the hierarchy of widgets and then the program enters an
event loop. This loop records events, such as keyboard input or a mouse click
somewhere in the GUI, and executes procedures in the widgets to respond to
each event. Hence, there is no predefined program flow: the user controls the
series of actions in the program at run time by performing a set of events.

Megawidgets. Simple widgets like labels and buttons are easy to create
in Tkinter, but as soon as you encounter more comprehensive GUIs, sev-
eral Tkinter elements must be combined to create the desired widgets. For
example, user-friendly list widgets will typically be build as a composition
of a basic list widget, a label widget, and two scrollbars widgets. One soon

! In some of the literature, window and widget are used as interchangeable terms.
Here we shall stick to the term widget for GUI building blocks.

6.1. Scientific Hello World GUI 229

ends up constructing the same composite widgets over and over again. For-
tunately, there are extensions of Tkinter that offer easy-to-use, sophisticated,
composite widgets, normally referred to as megawidgets. The Pmw (Python
megawidgets) library, implemented in pure Python, provides a collection of
very useful megawidgets that we will apply extensively in this book.

Documentation of Python/Tkinter Programming. Tkinter programming is
documented in an excellent way through the book by Grayson [10]. This
book explains advanced GUI programming through complete examples and
demonstrates that Python, Tkinter, and Pmw can be used for highly complex
professional applications. The book also contains the original Tk man pages
(written for Tcl/Tk programmers) translated to the actual Python/Tkinter
syntax.

The exposition in the present chapter aims at getting novice Python and
GUI programmers started with Tkinter and Pmw. The information given is
sufficient for equipping smaller scripts with buttons, images, text fields, and
so on. Some more advanced use of Tkinter and Pmw is exemplified in Chap-
ter 11, and with this information you probably have enough basic knowledge
to easily navigate in more detailed and advanced documentation like [10]. If
you plan to do some serious projects with Tkinter/Pmw programming, you
should definitely get your hands on Grayson’s book [10].

There is a convenient online Python/Tkinter documentation, “Introduc-
tion to Tkinter”, by Fredrik Lundh, to which there is a link in the doc.html
page. The Python FAQ is also a good place to look up useful Tkinter infor-
mation. The Pmw module comes with very good documentation in HTML
format.

Demo Programs. GUI programming is greatly simplified if you can find
examples on working constructions that can be adapted to your own applica-
tions. Some examples of interest for the computational scientist or engineer
are found in this book, but only a limited set of the available GUI features
are exemplified. Hence, you may need to make use of other sources as well.

The Python source comes with several example scripts on Tkinter pro-
gramming. Go to the Demo/tkinter subdirectory of the source distribution.
The guido and matt directories contain numerous basic and useful exam-
ples on GUI programming with Python and Tkinter. These demo scripts are
small and to-the-point — an attractive feature for novice GUI programmers.
Grayson’s book [10] has numerous (more advanced) examples, and the source
code can be obtained over the Internet.

The Pmw package contains a very useful demo facility. The A11.py script
in the demos subdirectory of the Pmw source offers a GUI where you can
examine the layout, functionality, and source code of all the Python megaw-
idgets. The electronic Pmw documentation also contains many instructive
examples.

There are three main GUI demos in this chapter and Chapter 11:

230 6. Introduction to GUI Programming

— the demoGUI.py script in Chapter 6.3, which may act as some kind of a
quick-reference for the most common widgets,

— the simvizGUI*.py family of scripts in Chapter 6.2, which equip the sim-
ulation and visualization script from Chapter 2.3 with a GUI, and

— the planet*.py family of scripts in Chapter 11.3 for introducing animated
graphics.

6.1.2 The First Python/Tkinter Encounter

GUI toolkits are often introduced by making a trivial Hello World example,
usually a button with “Hello, World!”, which upon a user click destroys the
window. Our counterpart to such an introductory GUI example is a graphical
version of the Scientific Hello World script described in Chapter 2.1. For
pedagogical reasons it will be convenient to define a series of Scientific Hello
World GUIs with increasing complexity to demonstrate basic features of GUI
programming. The layout of the first version of this GUI is displayed in
Figure 6.1. The GUI has a label with “Hello, World!”, but in addition the

Hello, WoHd! The sine of |1 2 equals | 0.932039085967

Fig. 6.1. Scientific Hello World GUI, version 1 (hwGUI1.py).

user can specify a number in a field, and when clicking the equals button, the
GUI can display the sine of the number.

A Python/Tkinter implementation of the GUI in Figure 6.1 can take the
following form.

The Complete Code.

#!/usr/bin/env python
from Tkinter import =*
import math

root = Tk() # root (main) window
top = Frame(root) # create frame
top.pack(side=’top’) # pack frame in main window

hwtext = Label(top, text=’Hello, World! The sine of’)
hwtext.pack(side=’left’)

r = StringVar() # variable to be attached to r_entry
r.set(’1.2’) # default value

r_entry = Entry(top, width=6, textvariable=r)
r_entry.pack(side=’left’)

s = StringVar() # variable to be attached to s_label

6.1. Scientific Hello World GUI 231

def comp_s():
global s
s.set(’%g’ % math.sin(float(r.get()))) # construct string

compute = Button(top, text=’ equals ’, command=comp_s)
compute.pack(side=’left’)

s_label = Label(top, textvariable=s, width=18)
s_label.pack(side=’left’)

root.mainloop()

The script is available as the file hwGUI1.py in src/py/gui.

Dissection. We need to load the Tkinter module to get access to the Python
bindings to Tk widgets. Writing

from Tkinter import *

means that we can access the Tkinter variables, functions, and classes without
prefixing the names with Tkinter. Later, when we also use the Pmw library,
we will sometimes write import Tkinter, which requires us to use the Tkinter
prefix. This can be convenient to distinguish Tkinter and Pmw functionality.

The GUIT script starts with creating a root (or main) window and then a
frame widget to hold all other widgets:

root = Tk() # root (main) window
top = Frame(root) # create frame
top.pack(side="top’) # pack frame in main window

When creating a widget, such as the frame top, we always need to assign
a parent widget, here root. This is the way we define the widget hierarchy
in our GUI application. Widgets must be packed before they can appear on
the screen, accomplished by calling the pack method. The keyword argument
side lets you control how the widgets are packed: vertically (side=’top’ or
side="bottom’) or horizontally (side=’left’ or side=’right’). How we pack
the top frame in the root window is of no importance since we only have
one widget, the frame, in the root window. The frame is not a requirement,
but it is a good habit to group GUI elements in frames — it tends to make
extensions easier.

Inside the top frame we start with defining a label containing the text
’Hello, World! The sine of’:

hwtext = Label(top, text=’Hello, World! The sine of’)
hwtext.pack(side=’1left’)

All widgets inside the top frame are to be packed from left to right, specified
by the side=’1left’ argument to pack.

The next widget is a text entry where the user is supposed to write a num-
ber. A Python variable r is tied to this widget such that r always contains
the text in the widget. Tkinter cannot tie ordinary Python variables to the

232 6. Introduction to GUI Programming

contents of a widget: one must use special Tkinter variables. Here we apply a
string variable, represented by the class StringVar. We could also have used
DoubleVar, which holds floating-point numbers. Declaring a StringVar vari-
able, setting its default value, and binding it to a text entry widget translate
to

r = StringVar() # variable to be attached to widgets
r.set(’1.2’); # default value

r_entry = Entry(top, width=6, textvariable=r);
r_entry.pack(side=’left’);

A similar construction is needed for the s variable, which will be tied to the
label containing the result of the sine computation:
s = StringVar() # variable to be attached to widgets

s_label = Label(top, textvariable=s, width=18)
s_label.pack(side=’left’)

Provided we do not need to access the widget after packing, we can merge
creation and packing, e.g.,

Label(top, textvariable=s, width=18).pack(side=’left’)

The equals button, placed between the text entry and the result label, is
supposed to call a function comp_s when being pressed. The function must be
declared before we can tie it to the button widget:

def comp_s():

global s
s.set(’%g’ ' math.sin(float(r.get()))) # construct string

compute = Button(top, text=’ equals ’, command=comp_s)
compute.pack(side=’left’);

Observe that we have to convert the string r.get to a float prior to computing
the sine and then convert the result to a string again before calling s.set.
The global s is not required here, but it is a good habit to explicitly declare
global variables that are altered in a function.

The last statement in a GUI script is a call to the event loop:

root.mainloop()

Without this call nothing is shown on the screen.

The StringVar variable is continuously updated as the user writes charac-
ters in the text entry field. We can make a very simple GUI illustrating this
point, where a label displays the contents of a StringVar variable bound to a
text entry field:

#!/usr/bin/env python

from Tkinter import *

root = Tk()

r = StringVar()

Entry(root, textvariable=r).pack()
Label(root, textvariable=r).pack()
root.mainloop()

6.1. Scientific Hello World GUI 233

Start this GUI (the code is in the file stringvar.py), write some text in the
entry field, and observe how the label is updated for each character you write.
Also observe that the label and window expand when more space is needed.

The reason why we need to use special StringVar variables and not a plain
Python string is easy to explain. When sending a string as the textvariable
argument in Entry or Label constructors, the widget can only work on a copy
of the string, whereas an instance of a StringVar class is transferred as a
reference and the widget can make in-place changes of the contents of the
instance (see Chapter 3.3.4).

6.1.3 Binding Events

Let us modify the previous GUI such that pressing the return key in the
text entry field performs the sine computation. The look of the GUI hardly
changes, but it is natural to replace the equals button by a text (label), as
depicted in Figure 6.2. Replacing a button with a label is easy:

Hello, WoHd! The sine ufequals 0.932039065967

Fig. 6.2. Scientific Hello World GUI, version 2 (hwGUI2.py).

equals = Label(top, text=’ equals ’)
equals.pack(side=’left’)

Binding the event “pressing return in the text entry r_entry” to calling the
comp_s subroutine is accomplished by the widget’s bind method:

r_entry.bind(’<Return>’, comp_s)

To be able to call the bind method, it is important that we have a vari-
able holding the text entry (here r_entry). It is also of importance that the
function called by an event (here comp_s) takes an event object as argument:

def comp_s(event):
global s
s.set(’%g’ % math.sin(float(r.get()))) # construct string

You can find the complete script in the file hwGUI2.py.
Another useful binding is to destroy the GUI by pressing 'q’ on the key-
board anywhere in the window:

def quit(event):
root.destroy()

root.bind(’<g>’, quit)

234 6. Introduction to GUI Programming

For the fun of it, we can pop up a dialog box to confirm the quit:

import tkMessageBox
def quit(event):
if tkMessageBox.askokcancel(’Quit’,’Do you really want to quit?’):
root.destroy()

root.bind(’<g>’, quit)

The corresponding script is found in hwGUI3.py. Try it! The look of the GUI
is identical to what is shown in Figure 6.2.

6.1.4 Changing the Layout

Alternative Widget Packing. Instead of packing the GUI elements from left
to right we could pack them vertically (i.e. from top to bottom), as shown
in Figure 6.3. Vertical packing is simply a matter of calling the pack method
with the argument side=’top’:

hwtext. pack(side=’top’)
r_entry.pack(side=’top’)
compute.pack(side=’top’)
s_label.pack(side=’top’)

The corresponding script has the name hwGUI4.py.

Hello, Wodd! The sine of

equals
0.932039055967

Fig. 6.3. Scientific Hello World GUI, version 4 (hwGUI4.py).

Controlling the Layout. The layout of the previous GUI can be manipulated
in various ways. We can, for instance, add a quit button and arrange the
widgets as shown in Figure 6.4. To obtain this result, we need to do a more

Hello, World!
The sineof |12 | equals 0.932039085967

Goodhye, GUI World! |

Fig. 6.4. Scientific Hello World GUI, version 5 (hwGUI5.py).

6.1. Scientific Hello World GUI 235

sophisticated packing of the widgets. We already know that widgets can be
packed from top to bottom (or vice versa) or from left to right (or vice
versa). From Figure 6.4 we see that the window contains three rows of widgets
packed from top to bottom. The middle row contains several widgets packed
horizontally from left to right. The idea is that a collection of widgets can be
packed into a frame, while the frames or single widgets can then be packed
into the main window or another frame.

As an example of how to pack widgets inside a frame, we wrap a frame
around the label “Hello, World!”:

create frame to hold the first widget row:

hwframe = Frame(top)

this frame (row) is packed from top to bottom:
hwframe.pack(side=’top’)

create label in the frame:

hwtext = Label (hwframe, text=’Hello, World!’)
hwtext.pack(side=’top’) # side is irrelevant (one widget!)

Our next task is to declare a set of widgets for the sine computations, pack
them horizontally, and then pack this frame in the vacant space from the top
in the top frame:

create frame to hold the middle row of widgets:

rframe = Frame(top)

this frame (row) is packed from top to bottom (in the top frame):
rframe.pack(side="top’)

create label and entry in the frame and pack from left:
r_label = Label(rframe, text=’The sine of’)
r_label.pack(side=’left’)

r = StringVar() # variable to be attached to r_entry
r.set(’1.2?) # default value

r_entry = Entry(rframe, width=6, textvariable=r)
r_entry.pack(side=’left’)

s = StringVar() # variable to be attached to s_label
def comp_s(event):
global s
s.set(’%g’ % math.sin(float(r.get()))) # construct string

r_entry.bind(’<Return>’, comp_s)

compute = Label(rframe, text=’ equals ’)
compute.pack(side=’left’)

s_label = Label(rframe, textvariable=s, width=12)
s_label.pack(side=’left’)

Notice that the widget hierarchy is reflected in the way we create children
of widgets. For example, we create the compute label as a child of rframe.
The complete script is found in the file hwGUIS.py. We remark that only the
middle row of the GUI requires a frame: both the “Hello, World!” label and

236 6. Introduction to GUI Programming

the quit button can be packed with side=’top’ directly into the top frame.
In the hwGUI5.py code we use a frame for the “Hello, World!” label, just for
illustration, but not for the quit button.

The hwGUI5. py script also offers a quit button bound to a quit function in
addition to binding 'q’ on the keyboard to the quit function. Unfortunately,
Python demands that a function called from a button (using command=quit)
takes no arguments while a function called from an event binding, such as
the statement root.bind(’<g>’,quit), must take one argument event, cf. our
previous example on a quit function. This potential inconvenience is elegantly
resolved by defining a quit function with an optional argument:

def quit(event=None):
root.destroy()

Controlling the Widgets’ Appearance. The GUI shown in Figure 6.5 dis-
plays the text “Hello, World!” in a larger boldface font. Changing the font is
performed with an optional argument when constructing the label:

hwtext = Label (hwframe, text=’Hello, World!’, font=’times 18 bold’)

Fonts can be specified in various ways:

font
font

’times 18 bold’ # cross-platform font description
(’Times’, 18, ’bold’) # tuple (font family, size, style)

X11 font specification:
font = ’-adobe-times-bold-r—normal-*—18—*—k—k—k—k—k—%’

hwtext = Label (hwframe, text=’Hello, World!’, font=font)

Enlarging the font leads to a squeezed appearance of the widgets in the GUI.
We therefore add some space around the widget as part of the pack command:

hwtext.pack(side=’top’, pady=20)

Here, pady=20 means that we add a space of 20 pixels in the vertical direction.
Padding in the horizontal direction is specified by the padx keyword. The
complete script is found in the file hwGUI6.py.

Changing the colors of the foreground text or the background of a widget
is straightforward:

quit_button = Button(

top, text=’Goodbye, GUI World!’, command=quit,
background=’yellow’, foreground=’blue’)

Making this quit button fill the entire horizontal space in the GUI, as shown
in Figure 6.6, is enabled by the £i11 option to pack:

quit_button.pack(side=’top’, pady=5, fill=’x’)

6.1. Scientific Hello World GUI 237

Hello, World!

The sine of equals 0.932039085967

Goodhye, GUI Worid! |

Fig. 6.5. Scientific Hello World GUI, version 6 (hwGUI6.py).

Hello, World!

The sine of equals 0.932039085967

Goodbye, GUI Word! |

Fig. 6.6. Scientific Hello World GUI, version 7 (hwGUIT7.py).

The £i11 value ’x’ means expanding the widget in horizontal direction, ’y’
indicates expansion in vertical direction (no space left here in that direc-
tion), or *both’, meaning both horizontal and vertical fill. You can play with
hwGUI7.py to see the effect of using fill and setting colors.

The anchor option to pack controls how the widgets are placed in the
available space. By default, pack inserts the widget in a centered position
(anchor="center’). Figure 6.7 shows an example where the widgets appear
left-adjusted. This packing employs the option anchor="w’ (*w’ means west,
and other anchor values are ’s’ for south, ’n’ for north, ’nw’ for north
west, etc.). There is also more space around the text inside the quit wid-
get in this GUI, specified by the ipadx and ipady options. For example,
ipadx=30,ipady=30 adds a space of 30 pixels around the text:

quit_button.pack(side=’top’,pady=5,ipadx=30,ipady=30,anchor="w’)

The complete script appears in the file hwGUIS.py.

Chapter 6.1.7 guides the reader through an interactive session for increas-
ing the understanding of how the pack method and its many options work.
Chapter 6.1.8 describes an alternative to pack, called grid, which applies a
table format for controlling the layout of the widgets in a GUI.

238 6. Introduction to GUI Programming

Hello, World!

The sine of equals 0.932039085967

Goodbye, GUI Word!

Fig. 6.7. Scientific Hello World GUI, version 8 (hwGUIS8.py).

6.1.5 The Final Scientific Hello World GUI

In our final version of our introductory GUI we replace the equals label by a
button with a flat relief? such that it looks like a label but performs compu-
tations when being pressed:

compute = Button(rframe, text=’ equals ’,
command=comp_s, relief=’flat’)
compute.pack(side=’left’)

Figure 6.16a on page 261 demonstrates various values and effects of the relief
keyword.

When the computation function comp_s is bound to pressing the return
key in the text entry widget,

r_entry.bind(’<Return>’, comp_s)

an event object is passed as the first argument to the function, while when
bound to a button, no event argument is present (cf. our previous discussion
of calling the quit function through a button or an event binding). The comp_s
function must therefore take an optional event argument:

def comp_s(event=None) :
global s
s.set(’%g’ % math.sin(float(r.get()))) # construct string

The GUI has the same appearance as in Figure 6.6. The complete code is
found in the file hwGUI9.py and is listed next.

2 Relief is the three-dimensional effect that makes a button appear as raised and
an entry field as sunken.

6.1. Scientific Hello World GUI 239

#!/usr/bin/env python
from Tkinter import *
import math

root = Tk() # root (main) window
top = Frame(root) # create frame
top.pack(side="top’) # pack frame in main window

create frame to hold the first widget row:

hwframe = Frame(top)

this frame (row) is packed from top to bottom (in the top frame):
hwframe.pack(side=’top’)

create label in the frame:

font = ’times 18 bold’

hwtext = Label (hwframe, text=’Hello, World!’, font=font)
hwtext.pack(side=’top’, pady=20)

create frame to hold the middle row of widgets:
rframe = Frame(top)

this frame (row) is packed from top to bottom:
rframe.pack(side=’top’, padx=10, pady=20)

create label and entry in the frame and pack from left:
r_label = Label(rframe, text=’The sine of’)
r_label.pack(side=’left’)

r = StringVar() # variable to be attached to r_entry
r.set(’1.2?) # default value

r_entry = Entry(rframe, width=6, textvariable=r)
r_entry.pack(side=’left’)

s = StringVar() # variable to be attached to s_label
def comp_s(event=None) :
global s
s.set(’%g’ % math.sin(float(r.get()))) # construct string

r_entry.bind(’<Return>’, comp_s)

compute = Button(rframe, text=’ equals ’, command=comp_s,
relief="flat’)
compute.pack(side=’left’)

s_label = Label(rframe, textvariable=s, width=12)
s_label.pack(side=’left’)

finally, make a quit button:
def quit(event=None):
root.destroy()
quit_button = Button(top, text=’Goodbye, GUI World!’, command=quit,
background=’yellow’, foreground=’blue’)
quit_button.pack(side=’top’, pady=5, fill=’x’)
root.bind(’<g>’, quit)

root.mainloop()

240 6. Introduction to GUI Programming

6.1.6 An Alternative to Tkinter Variables

The Scientific Hello World scripts with a GUI presented so far, use special
Tkinter variables for holding the input from the text entry widget and the
result to be displayed in a label widget. Instead of using variables tied to the
widgets, one can simply read the contents of a widget or update widgets, when
needed. In fact, all the widget properties that can be set at construction time,
can also be updated when desired, using the configure or config methods
(the names are equivalent). The cget method is used to extract a widget
property. If w is a Label widget, we can run

>>> w.configure(text="new text’)
>>> w.config(text="new text’)

>>> w[’text’] = ’new text’ # equiv. to w.configure or w.config
>>> print w.cget(’text’)

‘new text’

>>> print w[’text’] # equiv. to w.cget

‘new text’

Consider the script hwGUI9.py. We now modify the script and create the
entry widget without any textvariable option:

r_entry = Entry(rframe, width=6)
r_entry.pack(side=’left’)

A default value can be inserted directly in the widget:

r_entry.insert(’end’, ’1.2’) # insert default text ’1.2’

Inserting text requires a specification of where to start the text: here we
specify ’end’, which means the end of the current text (but there is no text
at the present stage).

When we need to extract the contents of the entry widget, we call its get
method (many widgets provide such type of function for extracting the user’s
input):

r
S

float (r_entry.get())
math.sin(r)

The label widget s_label, which is supposed to hold the result of the sine
computation, can at any time be updated by a configure method. For exam-
ple, right after s is assigned the sine value, we can say

s_label.configure(text=str(s))

or use a printf-like string if format control is desired:

s_label.configure(text=’%g’ % s)

The complete code is found in hwGUI9_novar.

Whether to bind variables to the contents of widgets or use the get and
configure methods, is up to the programmer. We apply both techniques in
this book.

6.1. Scientific Hello World GUI 241

6.1.7 About the Pack Command

Below is a summary of common options to the pack command. Most of the
options are exemplified in Chapter 6.1.4.

The side option controls the way the widgets are stacked. The various
values are: ’left’ for placing the widget as far left as possible in the
frame, ’right’ for stacking from the right instead, *top’ (default) for
stacking the widgets from top to bottom, and ’bottom’ for stacking the
widgets from bottom to top.

The padx and pady options add space to the widget in the horizontal and
vertical directions, respectively. For example, the space around a button
can be made larger.

The ipadx and ipady options add space inside the widget. For example,
a button can be made larger.

The anchor option controls the placement of the text inside the widget.
The options are ’center’ for center, ’*w’ for west, ’n’w for north west,
s’ for south, and so on.

The £i11 option with value *x’ lets the widget fill all available horizontal
space. The value ’y’ implies filling all available vertical space, and *both’
is the combination of ’x’ and ’y’.

The expand option with a true value (1, True, or ’yes’) creates a frame
around the widget that extends as much as possible, in the directions

specified by £i11, when the main window is resized by the user (see
Chapter 6.3.21).

Getting an understanding of the pack command takes some time. A very

good tool for developing a feel for how the pack options work is a demo
program src/tools/packdemo.tcl, written by Ryan McCormack. With this
script you can interactively see the effect of padding, filling, anchoring, and
packing left-right versus top-bottom. Figure 6.8 shows the GUI of the script.

The reader is strongly encouraged to start the packdemo.tcl script and

perform the steps listed below to achieve an understanding of how the various
options to pack influence the placement of widgets.

1.

Start with pressing Spawn R to place a widget in the right part of the
white frame.

A widget is placed in the available space of its parent widget. In the demo
script packdemo.tcl the available space is recognized by its white color.
Placing a new widget in the left part of the available space, corresponding
to pack(side=’1left’), is performed by clicking on Spawn L. The widget
itself is just big enough to hold its text Object 2, but it has a larger
geometrical area available, marked with a gray color.

242 6. Introduction to GUI Programming

packdemo.tcl L SpawnT f SpawnE [SpawnL § Spawn R |b ShrinkWrap

Oblecl]

' Object 2

= Object 7

Object 9

| Objects

Pack. Configure:

| Location: «. top . bottom < left .. Hght

! Anchor: - center e N we B wes B s W w s Ne e T s S8 ws SW

| iEwpand Fll: .. none .. %y . both padsx: §3 pady: §3

Fig. 6.8. The GUI of the packdemo.tcl script for illustrating the effect of various
options to the pack command for placing widgets.

3. Clicking on Fill: y corresponds to pack(side=’left’,fill="y’). The effect
is that the widget fills the entire gray space. Click Fill: none to reset the
fill option.

4. Pressing the check button Expand illustrates the expand=True option: the
available area for the widget is now the complete available space in the
parent widget. The widget can expand into all of this area if we request
a fill in both directions (Fill: both).

5. Reset the expand and fill options. Try different anchoring: n, s, e, and
so on. These actions move the widget around in the available gray space.
Turn on Expand and see the effect of anchoring in this case.

6. Turn off the expand option and reset the anchoring to the center position.
Change the padx and pady parameters to 30 and 50, respectively. You will
see that the space around the widget, the gray area, is enlarged.

7. Try different side parameters: top, bottom, and right by choosing Spawn T,
Spawn B, Spawn R. Observe how the values of the padx and pady parameters
influence the size of the gray area.

6.1. Scientific Hello World GUI 243

8. Click on Shrink Wrap. The space in the parent of the spawned widgets is
now made as small as possible. This is the normal layout when creating
a GUL

Playing with packdemo.tcl as outlined in the previous list hopefully estab-
lishes an understanding that makes it easier to construct the correct pack
commands for a desired layout.

More information on how the pack method and its options work is found
in [10, Ch. 5] and [26, Ch. 17].

6.1.8 An Introduction to the Grid Geometry Manager

The grid geometry manager, grid, is an alternative to the pack method. Wid-
gets are placed in a grid of m X n cells, like a spreadsheet. In some cases this
gives simpler control of the GUI layout than using the pack command. How-
ever, in most cases pack is the simplest choice and clearly the most widespread
tool among Tk programmers for placing widgets.

We have rewritten the Hello World GUI script hwGUI9.py to make use of
the grid geometry manager. Figure 6.6 on page 237 displays the layout of
this GUI. There are three rows of widgets, one widget in the first row, four
widgets in the second row, and one widget in the last row. This makes up
3 x 4 cells in the GUI layout. The widget in the first row should be centered
in the space of all four columns, and the widget in the last row should expand
across all columns. The version of the Python script hwGUI9.py utilizing the
grid geometry manager is called hwGUI9_grid.py and is explained after the
complete source code listing.

The Complete Code.

#!/usr/bin/env python
from Tkinter import *
import math

root = Tk() # root (main) window
top = Frame(root) # create frame
top.pack(side=’top’) # pack frame in main window

use grid to place widgets in 3x4 cells:

font = ’times 18 bold’
hwtext = Label(top, text=’Hello, World!’, font=font)
hwtext.grid(row=0, column=0, columnspan=4, pady=20)

r_label = Label(top, text=’The sine of’)
r_label.grid(row=1, column=0)

r = StringVar() # variable to be attached to r_entry
r.set(’1.2?) # default value

r_entry = Entry(top, width=6, textvariable=r)
r_entry.grid(row=1, column=1)

244 6. Introduction to GUI Programming

s = StringVar() # variable to be attached to s_label
def comp_s(event=None) :
global s
s.set(’%g’ % math.sin(float(r.get()))) # construct string

r_entry.bind(’<Return>’, comp_s)

compute = Button(top, text=’ equals ’, command=comp_s, relief=’flat’)
compute.grid(row=1, column=2)

s_label = Label(top, textvariable=s, width=12)
s_label.grid(row=1, column=3)

finally, make a quit button:
def quit(event=None):
root.destroy()
quit_button = Button(top, text=’Goodbye, GUI World!’, command=quit,
background=’yellow’, foreground=’blue’)
quit_button.grid(row=2, column=0, columnspan=4, pady=5, sticky=’ew’)
root.bind(’<g>’, quit)

root.mainloop()

Dissection. The only difference from hwGUI9.py is that we do not use sub-
frames to pack widgets. Instead, we lay out all widgets in a 3 x 4 cell structure
within a top frame. For example, the text entry widget is placed in the second
row and column (row and column indices start at 0):

r_entry.grid(row=1, column=1)

The “Hello, World!” label is placed in the first row and first column, allowing
it to span the whole row of four columns:

hwtext.grid(row=0, column=0, columnspan=4, pady=20)

A corresponding rowspan option enables spanning a specified number of rows.

The quit button should also span four columns, but in addition we want it
to fill all the available space in that row. This is achieved with the sticky op-
tion: sticky=’ew’. In the case a cell is larger than the widget inside it, sticky
controls the size and position of the widget. The parameters ’n’ (north),
’s’ (south), e’ (east), and ’w’ (west), and any combinations of them, let
you justify the widget to the top, bottom, right, or left. The quit button has
sticky=’ew’, which means that the button is placed towards left and right at
the same time, i.e., it expands the whole row.

The GUI in Figure 6.7 on page 238 can be realized with the grid geometry
manager by using the sticky option. The “Hello, World!” label and the quit
button are simply placed with sticky="w’.

More detailed information about the grid geometry manager is found in
[10] and [38]. One can use pack and grid in the same application, as we do
in the simvizGUI2.py script in Chapter 6.2.

6.1. Scientific Hello World GUI 245

6.1.9 Implementing a GUI as a Class

GUTI scripts often assemble some primitive Tk widgets into a more compre-
hensive interface, which occasionally can be reused as a part of another GUI.
The class concept is very well suited for encapsulating the details of a GUI
component and makes it simple to reuse the GUI in other GUIs. We shall
therefore in this book implement Python GUIs in terms of classes to promote
reuse. To illustrate this technique, we consider the final version of the Hello
World GUI, in the file hwGUI9.py, and reorganize that code using classes. The
basic ideas are sketched below.

— Send in a parent (also called master) widget to the constructor of the
class. All widgets in the class are then children of the parent widget. This
makes it easy to embed the GUI in this class in other GUIs: just construct
the GUI instance with a different parent widget. In many cases, including
this introductory example, the supplied parent widget is the main (root)
window of the GUI.

— Let the constructor make all permanent widgets. If the code in the con-
structor becomes comprehensive, we can divide it into smaller pieces im-
plemented as methods.

— The variables r and s, which are tied to an entry widget and a label
widget, respectively, must be class attributes such that they are accessible
in all class methods.

— The comp_s and quit functions are methods in the class.

The rest of this chapter only assumes that the reader has grasped the very
basics of Python classes, e.g., as described in Chapter 3.2.9.
Before we present the complete code, we outline the contents of the class:

class HelloWorld:
def __init__(self, parent):

store parent
create widgets as in hwGUI9.py

def quit(self, event=None):
call parent’s quit, for use with binding to ’q’
and quit button

def comp_s(self, event=None):
sine computation

root = Tk()
hello = HelloWorld(root)
root.mainloop()

Here is the specific hwGUI10.py script implementing all Python details in the
previous sketch of the program.

246 6. Introduction to GUI Programming

#!/usr/bin/env python
"""Class version of hwGUI9.py."""

from Tkinter import *
import math

class HelloWorld:
def __init__(self, parent):
self .master = parent # store the parent
top = Frame(parent) # frame for all class widgets
top.pack(side=’top’) # pack frame in parent’s window

create frame to hold the first widget row:

hwframe = Frame(top)

this frame (row) is packed from top to bottom:
hwframe.pack(side=’top’)

create label in the frame:

font = ’times 18 bold’

hwtext = Label (hwframe, text=’Hello, World!’, font=font)
hwtext.pack(side=’top’, pady=20)

create frame to hold the middle row of widgets:
rframe = Frame(top)

this frame (row) is packed from top to bottom:
rframe.pack(side=’top’, padx=10, pady=20)

create label and entry in the frame and pack from left:
r_label = Label(rframe, text=’The sine of’)
r_label.pack(side=’left’)

self.r = StringVar() # variable to be attached to r_entry
self.r.set(’1.2’) # default value

r_entry = Entry(rframe, width=6, textvariable=self.r)
r_entry.pack(side=’left’)

r_entry.bind(’<Return>’, self.comp_s)

compute = Button(rframe, text=’ equals ’,
command=self.comp_s, relief="flat’)
compute.pack(side=’left’)

self.s = StringVar() # variable to be attached to s_label
s_label = Label(rframe, textvariable=self.s, width=12)
s_label.pack(side=’left’)

finally, make a quit button:
quit_button = Button(top, text=’Goodbye, GUI World!’,
command=self.quit,
background=’yellow’ ,foreground=’blue’)
quit_button.pack(side=’top’, pady=5, fill=’x’)
self .master.bind(’<qg>’, self.quit)

def quit(self, event=None):
self.master.quit()

def comp_s(self, event=None):
self.s.set(’%g’ % math.sin(float(self.r.get())))

6.1. Scientific Hello World GUI 247

root = Tk() # root (main) window
hello = HelloWorld(root)
root.mainloop()

With the previous outline of the organization of the class and the fact that
all statements in the functions are copied from the non-class versions of the
hwGUI*.py codes, there is hopefully no need for dissecting the hwGUI10.py
script. From now on we will put all our GUIs in classes.

6.1.10 A Simple Graphical Function Evaluator

Consider the GUI shown in Figure 6.9. The user can type in the formula of a
mathematical function f(z) and evaluate the function at a particular value of
x. The GUI elements are familiar, consisting of labels and entry fields. How
much code do you think is required by such a GUI? In compiled languages,
like C and C++, the code has a considerable size as you probably need to
parse mathematical expressions. Just a few Python statements are necessary
to build this GUI, thanks to the possibility in interpreted, dynamically typed
languages for evaluating an arbitrary string as program code.

Define f(x): [< + 4°cos(8) x=|12 M= -2.73873

Fig. 6.9. GUI for evaluating user-defined functions.

The labels and text entries are straightforward to create if one has un-
derstood the introductory Hello World GUI scripts from Chapters 6.1.2 and
6.1.3. The contents in the text entry fields and the result label are set and
extracted using insert/configure and get commands as explained in Chap-
ter 6.1.6 (we could, alternatively, tie Tkinter variables to the entry fields).

We build a label, a text entry field f_entry for the f(x) expression, a
new label, a text entry field x_entry for the z value, a button “f=" (with
flat relief) for computing f(x), and finally a label s_1abel for the result of f
applied to x. The button is bound to a function calc, which must grab the
expression for f(x), grab the z value, compute the f(x) value, and update
s_label with the result. We want to call calc by either pressing the button
or typing return in the x_entry field. In the former case, no arguments are
transferred to calc, while in the latter case, calc receives an event argument.
We can create calc as follows:

def calc(event=None):
f_txt = f_entry.get() # get function expression as string
x = float(x_entry.get()) # define x
res = eval(f_txt) # the magic line calculating f(x)

248 6. Introduction to GUI Programming

global s_label
s_label.configure(text=’%g’ % res) # display f(x) value

Note that since s_label is changed, we need to declare it as a global variable
in the function.

The only non-trivial part of the calc code is the evaluation of f(z). We
have a string expression for f(x) available as £_txt, and we have the value of
x available as a floating point number x. Python offers the function eval(s)
to evaluate an arbitrary expression s as Python code (see Chapter 8.1.3).
Hence, eval (f_txt) can now be used to evaluate the f(x) function. Of course,
f_txt must contain a mathematical expression in valid Python syntax. The
statement

res = eval(f_txt)

works well if £_txt is, e.g., x + sin(x), since x is a variable with a value when

res = ... is executed and since x + sin(x) is valid Python syntax. The value

of res is the same as if this variable were set as res = x + sin(x). On the

other hand, the expression x + sin(x*a) for f_txt does not work well, because

a is not defined in this script. Observe that in order to write expressions like

sin(x), we need to have imported the math module as from math import *.
The complete code is found in src/py/gui/simplecalc.py.

6.1.11 Exercises

Ezercise 6.1. Modify the Scientific Hello World GUIL

Create a GUI as shown in Figure 6.10, where the user can write a number
and click on sin, cos, tan, or sqrt to take the sine, cosine, etc. of the number.
After the GUI is functioning, adjust the layout such that the computed num-
ber appears to the right in the label field. (Hint: Look up the man page for
the Label widget. The “Introduction to Tkinter” link in doc.html is a starting
point.) S

|1.2 sin | cos | tan | sqrt || 0.932039

Fig.6.10. GUI to be developed in Exercise 6.1. The GUI consists of an entry field,
four buttons, and a label (with sunken relief).

Exercise 6.2. Change the layout of the GUI in Exercise 6.1.

Change the GUI in Exercise 6.1 on page 248 such that the layout becomes
similar to the one in Figure 6.11. Now there is only one input/output field
(and you can work with only one StringVar or DoubleVar variable), just like
a calculator. A Courier 18pt bold font is used in the text entry field.

o

6.1. Scientific Hello World GUI 249

| 0.648108

sinl cnsl t.anl sqrtl
fuit |

Fig. 6.11. GUI to be developed in Exercise 6.2.

Exercise 6.3. Control a layout with the grid geometry manager.
Consider the following script, whose result is displayed in Figure 6.12a:

#!/usr/bin/env python
from Tkinter import *

root = Tk()

root.configure(background=’gray’)

row = 0

for color in (’red’, ’orange’, ’yellow’, ’blue’, ’green’,

’brown’, ’purple’, ’gray’, ’pink’):
1 = Label(root, text=color, background=’white’)
1l.grid(row=row, column=0)
f = Frame(root, background=color, width=100, height=2)
f.grid(row=row, column=1)
row = row + 1
root.mainloop()

Use appropriate grid options (sticky and pady) to obtain the improved layout
in Figure 6.12b. The original script is available in src/misc/colorsgridl.py.
o

red [
orange
red ——m—— yellow
orsnge owe [
yellow
blue green [T
oo orown [
prown purvie
purple —M88
pink pink.

Fig.6.12. To the left is the layout produced by the script listed in Exercise 6.3,
and to the right is the desired layout.

250 6. Introduction to GUI Programming

Ezercise 6.4. Make a demo of Newton’s method.

The purpose of this exercise is to make a GUI for demonstrating the steps
in Newton’s method for solving equations f(z) = 0. The GUI consists of a
text entry for writing the function f(z) (in valid Python syntax), a text entry
for giving a start point x(for the iteration, a button Next step for computing
and visualizing the next iteration in the method, and a label containing the
current approximation to the root of the equation f(z) = 0. The user fills
in the mathematical expression for f(x), clicks repeatedly on Next step, and
for each click a Gnuplot window pops up with a graph y = f(x), a graph
of the straight line approximation to f(x): y = f'(xp)(z — zp) + f(2,), and
a vertical dotted line z = z,, indicating where the current approximation z,
to the root is located. Recall that Newton’s method uses the straight line
approximation to find the next x,. Use a finite difference approximation to
evaluate f/(z):

yo fedh) = fz—h)
for h small (say h ~ 1075). Test the GUI with f(x) = x —sinz and f(x) =
tanh z.

Hint: see Chapter 4.3.3 for how to make Gnuplot plots directly from a
Python script. The range of the x axis must be adjusted according to the
current value of the z, point.

6.2 Adding GUIs to Scripts

Scripts are normally first developed with a command-line based user interface
for two reasons: (i) parsing command-line options is easy to code (see Chap-
ter 2.3.5 or 8.1.1), and (ii) scripts taking input data from the command line
(or file) are easily reused by other scripts (cf. Chapter 2.4). When a desire for
having a graphical user interface arises, this can be created as a separate GUI
wrapper on top of the command-line oriented script. The main advantage of
such a strategy is that we can reuse the hopefully well-tested command-line
oriented script.

The forthcoming sections show how to make a GUI wrapper on top of the
simvizl.py script from Chapter 2.3. With this example, and a little help from
Chapter 6.3, you should be able to wrap your own command-line oriented
tools with simple graphical user interfaces. You need to be familiar with
Chapter 6.1 before proceeding.

<

6.2.1 A Simulation and Visualization Script with a GUI

Chapter 2.3 describes a script simvizi.py for automating the execution of
a simulation program and the subsequent visualization of the results. The

6.2. Adding GUIs to Scripts 251

interface to this script is a set of command-line options. A GUI version of
the script will typically replace the command-line options with text entry
fields, sliders, and other graphical elements. Our aim now is to make a GUI
front-end to simvizi.py, i.e., we collect input data from the GUI, construct
the proper simvizl.py command, and run that command by in the operating
system.

Our first attempt to create the GUI is found in the file simvizGUI1.py in
the directory src/py/gui. The look of this GUI is shown in Figure 6.13. The
layout in the middle part of the GUI is far from satisfactory, but we shall
improve the placement of the widgets in forthcoming versions of the script.

m func Iy

1.00

W IE 2831852

Ja Acos(wt)
0.00 1.00 2.00 3.00 4.00 5.00 istop ISD.D
] time step ID,DE

0.70
i casename |tmp1
0.00 0.40 0.80 1.20 1.60 2.00
[
5.0 Compute |
JE
0.0 4.0 6.0 12.0 16.0 20.0 Quit |
A
3.0
| T
0.0 2.0 4.0 6.0 8.0 100

i

0.20
| T

0.00 0.20 0.40 0.60 0.80 1.00

Fig. 6.13. Snapshot of the simvizGUI1.py GUI. Note the ugly arrangement of the
label and text entry widgets in the middle part.

Here is a rough sketch of the class used to realize the GUI:

class SimVizGUI:
def __init__(self, parent):
nn llBuild the GUI . nnn

def compute(self):
nn "le Simvizl 'py' nnn

Clicking on the Compute button makes a call to compute, where the contents
of the GUI elements are extracted to form the proper simvizl.py command.

The input data to simvizi.py fall in three categories: text, numbers of
“arbitrary” value, and numbers in a prescribed interval. An entry widget is

252 6. Introduction to GUI Programming

useful for the two first categories, whereas a slider is convenient for the latter.
To tie variables to widgets, we may represent all the floating-point numbers by
DoubleVar objects and all text variables by StringVar objects. Since there are
10 input parameters in total, we can avoid repetitive construction of sliders
and text entry fields by providing functions for these two actions. Text entry
fields are created by

def textentry(self, parent, variable, label):
"""Make a textentry field tied to variable."""
pack a label and entry horizontally in a frame:
f = Frame(parent)
f.pack(side=’top’, padx=2, pady=2)
1 = Label(f, text=label)
1.pack(side=’left’)
widget = Entry(f, textvariable=variable, width=8)
widget.pack(side=’left’, anchor=’w’)
return widget

The Scale widget is used to create sliders:

def slider(self, parent, variable, low, high, label):
"""Make a slider [low,high] tied to variable."""
widget = Scale(parent, orient=’horizontal’,
from_=low, to=high, # range of slider
tickmarks on the slider "axis":
tickinterval=(high-low)/5.0,
the steps of the counter above the slider:
resolution=(high-low)/100.0,
label=label, # label printed above the slider
length=300, # length of slider in pixels
variable=variable) # slider value is tied to variable
widget.pack(side=’top’)
return widget

We employ the idea from Chapter 3.2.5 of putting all parameters in a script
into a common dictionary. This dictionary will now consist of Tkinter vari-
ables of type DoubleVar or StringVar tied to widgets. A typical realization of
a slider widget follows this pattern:

self.p[’m’] = DoubleVar(); self.p[’m’].set(1.0)
self.slider(slider_frame, self.p[’m’], O, 5, ’m’)

This creates a slider, with label m, ranging from 0 to 5, packed in the parent
frame slider_frame. The default value of the slider is 1. We have simply
dropped to store the widget returned from self.slider, because we do not
have a need for this. (If the need should arise later, we can easily store the
widgets in a dictionary (say) self.w, typically self.w[’m’] in the present
example. See also Exercise 6.7.)

All the slider widgets are placed in a frame in the left part of the GUI
(slider_frame). In the middle part (middle_frame) we place the text entries,
plus two buttons, one for running simvizi.py and one for destroying the GUI.
In the right part, we include a sketch of the problem being solved.

6.2. Adding GUIs to Scripts 253

The compute function runs through all the keys in the self.p dictionary
and builds the simviz1.py using a very compact list comprehension statement:

def compute(self):
nn llle Sil‘[lViZl 'py‘ nnn
add simvizl.py’s directory to PATH:
os.environ[’PATH’] += os.pathsep + os.path.join(
os.environ[’scripting’], ’src’, ’py’, ’intro’)
cmd = ’simvizl.py ’
join options; -X self.p[’X’].get()
opts = [’-Us %s’ % (prm, str(self.p[prm].get()))
for prm in self.p]
cmd += ’ . join(opts)
print cmd
failure, output = commands.getstatusoutput(cmd)
if failure:
tkMessageBox .Message (icon="error’, type=’ok’,
message=’Underlying simvizl.py script failed’,
title="Error’) .show()

If simviz1.py fails, we launch a dialog box with an error message. The module
tkMessageBox has a ready-made dialog widget Message whose basic use here
is hopefully easy to understand. More information on this and other types of
message boxes appears in Chapter 6.3.15.

A sketch of the physical problem being solved by the present application
is useful, especially if the symbols in the sketch correspond to labels in the
GUI. Tk supports inclusion of GIF pictures, and the following lines do the
job in our script:

sketch_frame = Frame(self.master)
sketch_frame.pack(side=’left’, padx=2, pady=2)

gifpic = os.path.join(os.environ[’scripting’],
’src’,’misc’,’figs’,’simviz2.xfig.t.gif’)

self .sketch = PhotoImage(file=gifpic)

Label(sketch_frame, image=self.sketch).pack(side=’top’,pady=20)

We remark that the variable holding the PhotoImage object must be a class
attribute (no picture will be displayed if we use a local variable).

6.2.2 Improving the Layout

Improving the Layout Using the Grid Geometry Manager. As already men-
tioned, the layout of this GUI (Figure 6.13 on page 251) is not satisfactory:
we need to align the text entry widgets in the middle part of the window.
One method would be to pack the labels and the entries in a table fashion,
as in a spreadsheet. The grid geometry manager from Chapter 6.1.8 is the
right tool for this purpose. We introduce a new frame, entry_frame, inside
the middle frame to hold the labels and text entries. The labels are placed

254 6. Introduction to GUI Programming

by grid in column 0 and the text entries are put in column 1. A class vari-
able row_counter is used to count the rows in the two-column grid. The new
statements in the constructor are the creation of the entry frame and the
initialization of the row counter, whereas the call to textentry for setting up
the widgets almost remains the same (only the parent frame is changed):

entry_frame = Frame(middle_frame, borderwidth=2)
entry_frame.pack(side=’top’, pady=22, padx=12)

self.row_counter = O # updated in self.textentry

self.p[’func’] = StringVar(); self.p[’func’].set(’y’)
self.textentry(entry_frame, self.p[’func’], ’func’)

The textentry method must be changed since it now makes use of the grid
geometry manager:

def textentry(self, parent, variable, label):
"""Make a textentry field tied to variable."""
pack a label and entry horizontally in a frame:
1 = Label(parent, text=label)
1l.grid(column=0, row=self.row_counter, sticky=’w’)
widget = Entry(parent, textvariable=variable, width=8)
widget.grid(column=1, row=self.row_counter)
self.row_counter += 1
return widget

The complete code is found in simvizGUI2.py in src/py/gui. A snapshot of
the GUI appears in Figure 6.14 (compare with Figure 6.13 to see the layout
improvement). The extra space (pady=22, padx=12) in the entry frame is an
essential ingredient in the layout.

Improving the Layout Using the Pmw EntryField Widget. Text entry fields
are often used in GUIs, and the packing of a Label and an Entry in a Frame
is a tedious, repetitive construction. The Pmw package offers a megawidget,
Pmw.EntryField, for constructing a text entry field with a label in one state-
ment. This will be our first example on working with megawidgets from the
Pmw library. A particularly attractive feature of the Pmw.EntryField widget
is that a function Pmw.alignlabels can be used to nicely align several entry
fields under each other. This means that the nice alignment we obtained in
simvizGUI2.py by using the grid geometry manager can be more easily accom-
plished using Pmw.EntryField megawidgets. (You are encouraged to modify
simvizGUI2.py to use Pmw.EntryField in Exercise 6.6.)

The textentry method takes the following simple form if we apply the
Pmw.EntryField megawidget:

def textentry(self, parent, variable, label):
"""Make a textentry field tied to variable."""
widget = Pmw.EntryField(parent,
labelpos=’w’,
label_text=label,

6.2. Adding GUIs to Scripts 255

1.00 p— 7

w 6.20a185¢ Acos(wt)

0.00 1.00 2.00 J.o0n 4.00 43.00

. tstop 300
0.70 g iy |10 W M

[e N N U E }'0

0.00 0.40 0.60 1.20 1.60 2.00

2.0

T Compute C
0.0 4.0 6.0 12.0 16.0 20.0 4' fu
] nc
A Quit
5.0 4'

0.0 2.0 4.0 6.0 8.0 10.0
y0
0.20
I L1

0.00 0.20 0.40 0.60 0.80 1.00

Fig. 6.14. Snapshot of the simvizGUI2.py GUL

entry_textvariable=variable,
entry_width=8)
widget.pack(side="top’)
return widget

Pmw megawidgets are built of standard Tk widgets and implemented in pure
Python. The Pmw.EntryField widget, for example, consists of a Tk label and a
Tk entry widget. Typical options for the label part have the same name as in
a standard Label widget, but with a prefix label_ (for example, label_text,
label_width). Similarly, Entry widget options are prefixed by entry_ (for ex-
ample, entry_textvariable and entry_width). The labelpos option is specific
to the megawidget and indicates where the label is to be positioned: ’w’
means west, i.e., to the left of the entry; ’n’ means north, i.e., centered
above the entry; ’nw’ means north west, i.e., adjusted to the left above the
entry; s’ denotes south (below); ’e’ denotes east (to the right), and so on.
The labelpos option must be given for the label_text label to be displayed.

In the calling code, it is smart to store the Pmw.EntryField widgets in a
list,

ew = [1 # hold Pmw.EntryField widgets
self.p[’func’] = StringVar(); self.p[’func’].set(’y’)
ew.append(self.textentry(middle_frame, self.p[’func’], ’func’))

The list ew allows us to use the Pmw.alignlabels method for nice alignment:

Pmw.alignlabels (ew)

The labels and entries are placed in a grid-like fashion as in Figure 6.14.

256 6. Introduction to GUI Programming

Scripts using Pmw need an initialization after the root window is created,
typically

root = Tk()
Pmw.initialise(root)

The present description of Pmw.EntryField is meant as a first Pmw en-
counter. More advanced features of Pmw.EntryField appear in Chapter 6.3.4.

Remark. Gluing simulation, visualization, and perhaps data analysis is one
of the major applications of scripting in computational science. Wrapping
a command-line based script like simviz1.py with a GUI, as exemplified in
simvizGUI2.py, is therefore a frequently encountered task. Our simvizGUI2.py
script is a special-purpose script whose statements are tightly connected to
the underlying simvizl.py script. By constructing reusable library tools and
following a set of coding rules, it is possible to write the GUI wrapper in
a few lines. In fact, typical simulation and visualization GUIs can be al-
most automatically generated! Chapter 11.4 explains the design and usage of
such tools. If you plan to write quite some GUIs similar to simvizGUI2.py, I
strongly recommend reading Chapter 11.4.

6.2.3 Exercises

Exercise 6.5. Program with Pmw.EntryField in hwGUI10.py.
Modify the hwGUI10.py script such that the label ”The sine of” and the
text entry are replaced by a Pmw.EntryField megawidget. o

Exercise 6.6. Program with Pmw.EntryField in simvizGUI2.py.

Modify the simvizGUI2.py script such that all text entries are implemented
with the Pmw.EntryField megawidget. (Use the pack geometry manager ex-
clusively.) o

Ezercise 6.7. Replace Tkinter variables by set/get-like functions.

Instead of using StringVar and DoubleVar variables tied to widgets in the
simvizGUI2.py script, one can call functions in the widgets for setting and
getting the slider and text entry values. Use the src/py/gui/hwGUI9_novar.py
script as an example (see Chapter 6.1.6). Implement this approach and discuss
pros and cons relative to simvizGUI2.py. (Hint: Now the returned widgets
from the textentry and slider functions must be stored, e.g., in a dictionary
self.w. The self.p dictionary can be dropped.) o

Exercise 6.8. Use simvizl.py as a module in simvizGUI2.py.

The simvizGUI2.py script runs simvizl.py as a separate operating system
process. To avoid starting a separate process, we can use the module version of
simviz1.py, developed in Exercise B.1, as a module in simvizGUI2.py. Perform
the necessary modifications of simvizGUI2.py. o

6.3. A List of Common Widget Operations 257

Exercise 6.9. Apply Matlab for visualization in simvizGUI2.py.

The purpose of this exercise is to use Matlab as visualization engine in
the simvizGUI2.py script from Chapter 6.2. Use two methods for visualiz-
ing data with Matlab: (i) a Matlab script (M-file) as in Exercise 2.14 and
(ii) the direct Python-Matlab connection offered by the pymat module shown
in Chapter 4.4.3. (In the latter case, open the connection to Matlab in the
constructor of the GUI and close it in the destructor). Add two extra but-
tons Visualize (Mfile) and Visualize (pymat), and corresponding functions, for
visualizing sim.dat by the two Matlab-based methods.

You can issue Matlab commands for reading data from the sim.dat file
or you can load the sim.dat file into NumPy arrays in the script and transfer
the arrays to Matlab. o

6.3 A List of Common Widget Operations

A Python script demoGUI.py, in the src/py/gui directory, has been developed
to demonstrate the basic usage of many of the most common Tkinter and
Pmw widgets. Looking at this GUI and its source code should give you a
quick recipe for how to construct widely used GUI elements. Once a widget
is up and running, it is quite easy to study its man page for fine-tuning the
desired functionality. The purpose of the widget demo script is to help you
with quickly getting a basic version of a GUI up and running.

Contents and Layout. Figure 6.15 shows the look of the main window pro-
duced by demoGUI.py. The GUI consists of a menu bar with four pulldown
menus: File, Dialogs, Demo, and Help, plus a core area with text entries, a slider,
a checkbutton, two ordinary buttons, and a status label. Clicking on the Dis-
play widgets for list data button launches a window (Figure 6.18 on page 270)
with list box widgets, combo boxes, radio and check buttons, and an option
menu. The File menu (Figure 6.17a on page 268) demonstrates file dialogs
(Figures 6.17d—e on page 268) and how to terminate the application.

Examples on other types of dialogs are provided by the Dialogs menu
(Figure 6.17b on page 268). This includes short messages (Figure 6.19 on
page 276), arbitrary user-defined dialogs (Figure 6.20 on page 277), and di-
alogs for choosing colors (Figure 6.21 on page 279). The File-Open... and
Help—Tutorial menus also demonstrate how to load a large piece of text, e.g. a
file, into a scrollable text widget in a separate window.

The Demo menu (Figure 6.17¢ on page 268) shows the effect of the relief
and borderwidth widget options as well as a list of pre-defined bitmap images
(Figure 6.16 on page 261).

The following text with short widget constructions assumes that you have
played around with the demoGUI.py script and noticed its behavior. Observe
that when you activate (most of) the widgets, a status label at the bottom
of the main window is updated with information about your actions. This

258 6. Introduction to GUI Programming

File Dialogs Demo Help

case name | my_first_casd |

mass |1EI—
damping [00
amplitude [2
Spring ¥ — |

initial value {0}

1.60

I L

0.00 0.50 1.00 1.50 2.00

| store data

Display widgets for list data |

Display the source code |

|3Iider value: 1.60 |

Fig.6.15. GUI for demonstrating basic usage of Tkinter and Pmw widgets
(demoGUI.py script).

feature makes it easy to demonstrate, in the demoGUI.py source code, how to
extract user input from a widget.

Organization of the Source Code. The script demoGUI.py is organized as a
class, named TkinterPmwDemo. The widgets between the menu bar and the
two buttons in the main window are managed by a class InputFields, which
is reused when creating a user-defined dialog, see Figure 6.20 on page 277.
The demo of widgets for list data, launched by pressing the button in the
main window, is also realized as a class named InputLists. The InputFields
and InputLists classes work much in the same way as megawidgets, as many
widgets are put together, but they are not megawidgets in the strict meaning
of the term, because there is very limited control of the widgets’ properties
from the calling code.

Look at the Source Code! The reader is encouraged to invest some time
to get familiar with the demoGUI.py script. A good start is to concentrate
on class InputFields only. This class defines nicely aligned Pmw.EntryField
widgets, a Pmw.OptionMenu widget, a Tkinter.Scale widget (slider), and a
Tkinter.Checkbutton. The following code segment imports demoGUI.py as a
module and creates the InputFields GUI:

6.3. A List of Common Widget Operations 259

from demoGUI import InputFields

root = Tk()

Pmw.initialise(root)

status_line = Label(root)

widget = InputFields(root, status_line)

widget.pack()

status_line.pack() # put the status line below the widgets

Notice that the InputFields class demands a “status line”, i.e., a Label to
which it can send information about user actions. We therefore need to create
such a label in the calling code. Also notice that we can explicitly pack
the InputFields GUI and place it above the status line. Launch the GUI
as described (or simply run demoGUI.py fields, which is a short-cut). Load
the demoGUI.py file into an editor and get familiar with the organization of
the InputFields class. All the widgets are created in the create function.
Most widgets have a command keyword argument which ties user actions in
the widget to a function. This function normally retrieves the user-provided
contents of the widget and updates the status line (label) accordingly.

When you know how class InputFields roughly works, you can take a look
at InputLists, which follows the same pattern. Thereafter it is appropriate to
look at the main class, TkinterPmwDemo, to see how to total GUI makes use of
basic Tkinter widgets, Pmw, and the InputFields and InputLists classes. An
important part of class TkinterPmwDemo is the menu bar with pulldown menus
and all the associated dialogs. The widgets here follow the same set-up as
in the InputFields and InputLists classes, i.e., most widgets use a command
keyword argument to call a function for retrieving widget data and update
the status line.

If you want to build a GUI and borrow code from demoGUI.py, you can
launch demoGUI.py, find the desired widget, find the creation of that widget in
the file demoGUI.py (this is one reason why you need to be a bit familiar with
the structure of the source code), copy the source, and edit it to your needs,
normally with a visit to the man page of the widget so you can fine-tune
details.

On the following pages we shall describe the various widgets encountered
in demoGUI.py in more detail. The shown code segments are mostly taken
directly from the demoGUI.py script.

6.3.1 Frame

The frame widget is a container used to hold and group other widgets, usually
for controlling the layout.

self .topframe = Frame(self.master, borderwidth=2, relief=’groove’)
self.topframe.pack(side=’top’)

The border of the frame can be adjusted in various ways. The size of the
border (in pixels) is specified by the borderwidth option, which can be com-
bined with the relief option to obtain a three-dimensional effect. The effect

260 6. Introduction to GUI Programming

is demonstrated in the demoGUI.py main window (relief=’groove’), see Fig-
ure 6.15, and in the relief demo in Figure 6.16a. Space around the frame is
controlled by the padx and pady options, when packing the frame, or using
borderwidth with relief="flat’ (default).

Occasionally a scrolled frame is needed. That is, we can fix the size of the
frame, and if the widgets inside the frame need more space, scrollbars are
automatically added such that one can scroll through the frame’s widgets.
Pmw offers a megawidget frame with built-in scrollbars:

self.topframe = Pmw.ScrolledFrame(self.master,
usehullsize=1, hull_height=210, hull_width=340)

In this case, the size of the frame is 210 x 340 pixels. The Pmw.ScrolledFrame
widget is a composite widget, consisting of a standard Frame widget, Tk
scrollbars, and an optional label widget. To access the plain Frame widget, we
need to call

self.topframe.interior()

This frame widget can act as parent for other widgets. You can start the Pmw
user-defined dialog on the Dialog menu to see a Pmw.ScrolledFrame widget in
action.

6.3.2 Label

Label widgets typically display a text, such as the headline “Widgets for list
data” in Figure 6.18 on page 270. This particular label is constructed by

header = Label(parent, text=’Widgets for list data’,
font=’courier 14 bold’, foreground=’blue’,
background="#%02x%02x%02x’ % (196,196,196))

header.pack(side=’top’, pady=10, ipady=10, fill=’x’)

Fonts can be named (like here) or be X11 font specification strings, as on
page 236. Colors are specified either by names or by the hexadecimal code.
(Observe how three rgb values (196,196,196) are converted to hexadecimal
form using a simple format string: %02x prints an integer in hexadecimal form
in a field of width 2 characters, padded with zeroes from the left if necessary.)

The relief option (encountered in Chapter 6.3.1) can also be used in
labels to obtain, e.g., a sunken or raised effect. The demo script displays the
effect of all the relief values, see Figure 6.16a, using the following code to
generate widgets in a loop:

use a frame to align examples on various relief values:
frame = Frame(parent); frame.pack(side=’top’,pady=15)

reliefs = (’groove’, ’raised’, ’ridge’, ’sunken’, ’flat’)
row = 0
for borderwidth in (0,2,4,6):

6.3. A List of Common Widget Operations 261

reliefs with borderwidth=0: groove raised ridge sunken flat
|sunken flat
Isunken flat

lsunken flat

reliefs with borderwidth=2: |groove raise |
reliefs with borderwidth=4: gmnvel I
reliefs with borderwidth=6: I gmuvel mlsel:ll

EEE

Predefined bitmaps, which can be used to
label dialogs (questions, info etc.)

emror gray?d graysl hourglass info questhead guestion warming

Fig.6.16. The Demo menu in Figure 6.15 gives rise to the pulldown menu in
Figure 6.17c. The entry Relief/borderwidth lanuches the window displayed in (a),
with examples of various relief values and the effect of the borderwidth parameter.
Clicking the entry Bitmaps on the Demo menu, results in a list of various pre-defined
bitmaps (for labels, buttons, and dialogs), as shown in (b).

label = Label(frame, text=’reliefs with borderwidth=Y%d: ’> % \
borderwidth)
label.grid(row=row, column=0, sticky=’w’, pady=5)
for i in range(len(reliefs)):
1 = Label(frame, text=reliefs[i], relief=reliefs[i],
borderwidth=borderwidth)
1l.grid(row=row, column=i+1, padx=5, pady=5)
row += 1

The individual widgets are here placed in a table fashion, with two rows and
six columns, using grid as geometry manager instead of pack. Information
about grid is given in Chapter 6.1.8.

Looking at Figure 6.16a, we see that the borderwidth option amplifies the
effect of the relief. By default, borderwidth is 2 in labels and buttons, and 0
in frames.

Labels can also hold images, either predefined bitmaps or GIF files. The
script simvizGUIl.py exemplifies a label with a GIF image (see page 253),
whereas we here show how to include a series of predefined Tk bitmaps:

262 6. Introduction to GUI Programming

bitmaps = (’error’, ’gray25’, ’gray50’, ’hourglass’,
’info’, ’questhead’, ’question’, ’warning’)

Label (parent, text="""\

Predefined bitmaps, which can be used to

label dialogs (questions, info, etc.)""",

foreground=’red’) .pack()

frame = Frame(parent); frame.pack(side=’top’, pady=5)

for i in range(len(bitmaps)): # write name of bitmaps
Label(frame, text=bitmaps[i]).grid(row=0, column=i+1)

for i in range(len(bitmaps)): # insert bitmaps
Label(frame, bitmap=bitmaps[i]).grid(row=1, column=i+1)

Also here we use the grid geometry manager to place the widgets. Figure 6.16b
displays the resulting graphics.

A button executes a command when being pressed.

Button(self.master, text=’Display widgets for list data’,
command=self.list_dialog, width=29).pack(pady=2)

The horizontal size is specified by the width option. When left out, the but-
ton’s size is just large enough to display the text. A button can hold an image
or bitmap instead of a text.

6.3.4 Text Entry

One-line text entry fields are represented by entry widgets, usually in com-
bination with a leading label, packed together in a frame:

frame = Frame(parent); frame.pack()

Label(frame, text=’case name’).pack(side=’left’)

self.entry_var = StringVar(); self.entry_var.set(’mycase’)

e = Entry(frame, textvariable=self.entry_var, width=15,
command=somefunc)

e.pack(side=’left’)

Since such constructions are frequently needed, it is more convenient to use
the Pmw.EntryField megawidget (see also page 254):

self.case_widget = Pmw.EntryField(parent,
labelpos=’w’,
label_text=’case name’,
entry_width=15,
entry_textvariable=self.case,
command=self.status_entries)

Another convenient feature of Pmw.EntryField is that multiple entries can be
nicely aligned below each other. This is exemplified in the main window of
the demoGUI.py GUI, see Figure 6.15 on page 258. Having several widgets

6.3. A List of Common Widget Operations 263

with labels, here Pmw.EntryField and Pmw.OptionMenu widgets, we can collect
the widget instances in a list or tuple and call Pmw.alignlabels to nicely align
the labels:

widgets = (self.case_widget, self.mass_widget,
self .damping_widget, self.A_widget, self.func_widget)
Pmw.alignlabels(widgets)

The various Pmw.EntryField widgets in demoGUI.py demonstrate some use-
ful options. Of particular interest is the validate option, which takes a dic-
tionary, e.g.,

{’validator’ : ’real’, ’min’: 0, ’max’: 2.5}

as a description of valid user input. In the current example, the input must
be a real variable in the interval [0,2.5]. The Pmw.EntryField manual page,
which can be reached by links from doc.html, explains the validation features
in more detail.

To show the use of a validate argument, consider the entry field mass,
where the input must be a positive real number:

self .mass = DoubleVar(); self.mass.set(1.0)
self .mass_widget = Pmw.EntryField(parent,

labelpos=’w’, # n, nw, ne, e, and so on
label_text=’mass’,
validate={’validator’: ’real’, ’min’: O},

entry_width=15,
entry_textvariable=self.mass,
command=self.status_entries)

Try to write a negative number in this field. Writing a minus sign, for instance,
disables further writing. It is also impossible to write letters.

The self.status_entries method, given through the command option, is
called when hitting the return key inside the entry field. Here, this method
grabs the input data in all four entry fields and displays the result in the
status label at the bottom of the GUI:

def status_entries(self):
"""Read values from entry widgets or variables tied to them."""
s = "entry fields: ’" + self.case.get() + \
", "+ str(self.mass.get()) + \
", " + self.damping_widget.get() + \
", " + str(self.A.get())
self.status_line.configure(text=s)

The self.status_line widget is a plain label, constructed like this:

self.status_line = Label(frame, relief=’groove’,
font="helvetica 8’, anchor=’w’)

264 6. Introduction to GUI Programming

Change the contents of some entry fields, hit return, and observe that the
status label is updated.

Most entry fields are tied to a Tkinter variable. For example, the mass wid-
get has an associated variable self.mass, such that calling self.mass.get()
anywhere in the script extracts the value of this particular entry field. How-
ever, for demonstration purposes we have included a Pmw.EntryField instance
self.damping_widget, which is not connected to a Tkinter variable. To get the
entry field’s content, we call the widget’s get function: damping_widget.get ()
(cf. the status_entries function).

Setting the value of an entry can either be done through the Tkinter vari-
able’s set method or the set method in the Pmw.EntryField widget. Similar
get/set functionality is explained in relation to the hwGUI9_novar.py script
or page 240.

6.3.5 Balloon Help

Balloon help means that a small window with an explaining text pops up
when the user points at a widget in a user interface. Such a feature can be
very helpful for novice users of an application, but quite irritating for more
experienced users. Most GUIs therefore have a way of turning the balloon
help on and off.

Creating balloon help with Pmw is very easy. First a Balloon object is
declared and bound to the parent widget or the top frame of the window:

self.balloon = Pmw.Balloon(self.master) # used for all balloon helps

Thereafter we can bind a balloon help text to any widget, e.g., a Pmw.EntryField
widget self.A_widget:

self.balloon.bind(self .A_widget,
’Pressing return updates the status line’)

If you point with the mouse at the entry field with name amplitude, in the main
window of the demoGUI.py application, you will see a balloon help popping
up:

amplitude [z

SFJ Pressing retum updates the status line |
til ¥ I

The help can be turned on and off with aid of the Balloon help entry on the
Help menu in the menu bar.

6.3. A List of Common Widget Operations 265

6.3.6 Option Menu

An option menu is a kind of pulldown menu suitable for selecting one out of
n options. The realization of such a menu in Figure 6.15 on page 258 is based
on a convenient Pmw widget® and created by the following code:

self.func = StringVar(); self.func.set(’y’)

self.func_widget = Pmw.OptionMenu(parent,
labelpos=’w’, # n, nw, ne, e, and so on
label_text=’spring’,
items=[’y’, ’y3’, ’siny’],
menubutton_textvariable=self.func,
menubutton_width=6,
command=self.status_option)

The function being called when selecting an option takes the selected value
as a string argument:

def status_option(self, value):
self.status_line.configure(text=self.func.get())
or use the value argument instead of a Tkinter variable:
self.status_line.configure(text=value)

6.3.7 Slider

A slider, also called ruler or scale widget, is used to set a real or integer
variable inside a specified interval. In Tkinter a slider is represented by the
Scale class. The value of the slider is tied to a Tkinter variable (StringVar,
DoubleVar, IntVar).

self.y0 = DoubleVar(); self.y0.set(0.2)

self.y0O_widget = Scale(parent,
orient=’horizontal’,
from_=0, to=2, # range of slider
tickinterval=0.5, # tickmarks on the slider "axis"
resolution=0.05, # the steps of the counter above the slider
label=’initial value y(0)’, # label printed above the slider
#font="helvetica 12 italic’, # optional font
length=300, # length of slider in pixels
variable=self.yO0, # value is tied to self.yO
command=self.status_slider)

When the mouse is over the slider, the self.status_slider method is called,
and the current value is “continuously” updated in the status line:

def status_slider(self, value):
self.status_line.configure(text=’slider value: ’ + \
str(self.y0.get()))
or
self.status_line.configure(text=’slider value: ’ + value)

3 Tkinter also has an option menu widget, called OptionMenu.

266 6. Introduction to GUI Programming

6.3.8 Check Button

A boolean variable can be turned on or off using a check button widget. The
check button is visualized as a “light” marker with an accompanying text.
Pressing the button toggles the value of the associated boolean variable (an
integer with values 0 or 1):

self.store_data = IntVar(); self.store_data.set(1)
self.store_data_widget = Checkbutton(parent,
text=’store data’,
variable=self.store_data,
command=self.status_checkbutton)

A function can also be called when pressing a check button. In the demoGUI.py
script, this function reports the state of the boolean variable:

def status_checkbutton(self):
self.status_line.configure(text=’store data checkbutton: ’ + \
str(self.store_data.get()))

6.3.9 Making a Simple Megawidget

The entry fields, the option menu, the slider, and the check button in Fig-
ure 6.15 are collected in a separate class InputFields. This class represents a
kind of megawidget. Two statements are sufficient for realizing this part of
the total GUI:

fields = InputFields(self.master, self.status_line,
balloon=self.balloon, scrolled=False)
fields.pack(side=’top’)

The InputFields class defines a top frame self.topframe, into which all wid-
gets are packed, such that a simple pack method,

def pack(self, *xkwargs): # method in class InputFields
self.topframe.pack(kwargs, expand=True, fill=’both’)

enables us to place the composite widget fields wherever we want. Note
that the arbitrary set of keyword arguments, **kwargs, is just transferred
from the calling code to the pack method of self.topframe, see page 112
for an explanation of variable-length keyword arguments (**kwargs). Also
note that after kwargs in the self.topframe.pack call we add expand=True
and fill="both’, meaning that we force the widget to be aware of the user’s
window resize actions (see Chapter 6.3.21).

The parameter scrolled in the InputFields constructor allows us to choose
between a standard Frame, whose size is determined by the size of the interior
widgets, or a scrolled frame (Pmw.ScrolledFrame) with fixed size. The version
with scrollbars is used in the user-defined dialog launched by the Dialog—Pmw

6.3. A List of Common Widget Operations 267

user-defined dialog menu. The constructor also takes information about an ex-
ternal status label and a balloon help.

The code in class InputFields is simply made up of our examples on
Pmw.EntryField widgets, Checkbutton, Scale, and Pmw.0OptionMenu from previ-
ous sections. We encourage the reader to have a look at class InputFields to
see how easy it is to group a set of widgets as one object and use the object
as a simple megawidget®.

6.3.10 Menu Bar

Graphical user interfaces frequently feature a menu bar at the top of the
main window. Figure 6.15 on page 258 shows such a menu bar, with four
menus: File, Dialog, Demo, and Help. The look of the former three pulldown
menus appears in Figure 6.17a—c. These menus can be created by the plain
Tk widgets Menu and Menubutton. However, the code becomes shorter if we
use the composite widget Pmw.MenuBar.

The Pmw.MenuBar widget is instantiated by

self .menu_bar = me.MenuBar(parent,
hull_relief=’raised’,
hull_borderwidth=1,
balloon=self.balloon,
hotkeys=True) # define accelerators
self .menu_bar.pack(fill="x’)

The relief of the menu bar is usually raised, so this is an important parameter
for achieving the right look. We may also provide a balloon help. The hotkeys
option allows us to define hotkeys or accelerators. If you look at the File menu
in Figure 6.15, you see that there is an underscore under the F in File. This
means that typing Alt+f on the keyboard® is equivalent to pointing the cursor
to File and clicking the left mouse button. The File menu is pulled down, and
with the down-arrow on the keyboard one can move to, e.g., Open... and hit
return to invoke the file open menu. Instead of using the arrow, one can type
Alt+o to open the file dialog directly, because the letter O is underlined in
the menu item Open.... These accelerators are very convenient for quick and
mouse-free use of a graphical user interface. With hotkeys=True, the MenuBar
widget automatically assigns appropriate accelerators.
The next natural step is to show how we realize the File menu:

self.menu_bar.addmenu(’File’, None, tearoff=True)

self .menu_bar.addmenuitem(’File’, ’command’,
statusHelp=’Open a file’,
label="0Open...’,

4 Making a real megawidget, according to the Pmw standard, is a more compre-
hensive task, but well described in the Pmw manual.
5 Hold the Alt key down while pressing f or shift-f (F).

268 6. Introduction to GUI Programming

Tk confinnation dialog
Tk message dialog

i List data
Open... P message dialog =
Save as... Ponw user-defined dialog Reliefmorderwidth
Quit Color dialogs - Bitmaps
(a) (b) (c)
Directory: fusripliscripting/srciguifpy thon = I Directory: fusrfhpliscripting/srciguifpython - I
3 CvsS Bl hw-GUI3 py B hw-novarpy E tm £ CVsS
1 PSE E hw-GUI. py E plot-GUIT.py E tm £ PSE
[El bitpy El hw-GUIS.py E plot-GUIZ.py B s
B demo.py Bl hw-GUIB.py B plot- GUI3 py B =
E demo.py- Bl fe-GUIT py E plot-GUI4.py
E hw-GUIT.py E hw-GUIS.py E plot-GUIA.py-
B hw-GUIZ py B hw-GUH0.py B scrolledlisthoxpy
|3 I = = =
File name: |hwaUHEl.py ‘ Open File name; |mgﬂ\e.tmd ‘ ‘ Save |
Files of type: anyfile (") ~| cancel | Files of type: lemporary files (*.tmp) ~| cance |
(d) ()

Fig. 6.17. The GUI in Figure 6.15 on page 258 has a menu bar with File, Dialogs,
Demo, and Help menu buttons. The former three menus are displayed in (a), (b),
and (c). The entries Open... and Save as... in the File menu in (a) pop up the file
dialogs in (d) and (e).

command=self.file_read)

self.menu_bar.addmenuitem(’File’, ’command’,
statusHelp=’Save a file’,
label=’Save as...’,
command=self.file_save)

self.menu_bar.addmenuitem(’File’, ’command’,
statusHelp="Exit this application’,
label="Quit’,

command=self.quit)

The addmenu method adds a new pulldown menu to the menu bar. The None
argument is a balloon help, but here we drop the help since the purpose of
our File menu needs no further explanation. The tearoff option allows us to
“tear oft” the pulldown menu. If you click on File, or use the Alt+f accelerator,
you see a dashed line at the top of the menu. Clicking on this dashed line
tears off the menu so it is permanently available in a separate window. The
feature is best understood by testing it out.

An entry in the pulldown menu is added using the addmenuitem function,
which takes the name of the parent menu as first argument (here ’File’).

6.3. A List of Common Widget Operations 269

The second argument specifies the type of menu item: ’command’ is a simple
button/label-like item, ’checkbutton’ results in a check button (see Help—
Balloon help), and ’separator’ makes a separating line. We refer as usual to the
Pmw manual for explaining the various options of a megawidget. The label
keyword argument is used to assign a visible name for this menu item, whereas
command specifies the function that carries out the tasks associated with the
menu item. The self.file_read and self.file_save methods are explained
later, and self.quit is similar to the quit function in the introductory GUIs
in Chapter 6.1.

The statusHelp keyword argument is used to assign a help message. To
view this message, the balloon help instance must be tied to a message bar
(Pmw.MessageBar) in the main window. We have not included this feature since
this is the task of Exercise 6.13.

On the Dialogs menu we have a Color dialogs item that pops up a new pull-
down menu. Such nested menus are usually referred to as cascading menus,
and the addcascademenu method is used to create them:

self.menu_bar.addmenu(’Dialogs’,
’Demonstrate various Tk/Pmw dialog boxes’, # balloon help
tearoff=True)

self .menu_bar.addcascademenu(’Dialogs’, ’Color dialogs’,
statusHelp=’Exemplify different color dialogs’)

self.menu_bar.addmenuitem(’Color dialogs’, ’command’,
label="Tk Color Dialog’,
command=self. tk_color_dialog)

6.3.11 List Data

The Display widgets for list data button in the main window of the demoGUI.py
GUI launches a separate window, see Figure 6.18, with various examples of
suitable widgets for list-type data. The window is realized as a composite
widget, implemented in class InputLists. This implementation follows the
ideas of class InputFields described in Chapter 6.3.9.

A list of alternatives can be displayed using many different widgets: list
box, combo box, option menu, radio buttons, and check buttons. The choice
depends on the number of list items and whether we want to select single or
multiple items.

6.3.12 Listbox

The most flexible widget for displaying and selecting list data is the list box.
It can handle long lists, if equipped with scrollbars, and it enables single or
multiple items to be selected. Pmw offers a basic Tk list box combined with a

270 6. Introduction to GUI Programming

Widgets for list data

plain listbox simple combo box dropdown combo box
single selection

[list item 2 [list item & hd|
list item 1

list item 2 1=

list item 3

list item <

list item 5

list item 6 /

plain listbox . =
multiple selection Option Menu: item2 —'|

= Tk radio buttons - radiol .- radioZ - radio3 .- radiod

Pmw radio buttons
single selection
Pmw check buttons
£ multiple selection

e iteml % itemZ . item3 . ilemd

i Heml W item2 | item3 W items

Fig.6.18. [Illustration of various widgets for representing list data:
Pmw.ScrolledListBox, Pmw.ComboBox, Pmw.RadioSelect, and Tk Radiobutton.
The window is launched either from the Display widgets for list data button in the
main menu window in Figure 6.15, or from the List data item on the Demo menu
(Figure 6.17c).

label and two scrollbars, called Pmw.ScrolledListBox. The code segment from
demoGUI.py should explain the basic construction:

self.listl = Pmw.ScrolledListBox(frame,
listbox_selectmode=’single’, # or ’multiple’
vscrollmode=’static’, hscrollmode=’dynamic’,
listbox_width=12, listbox_height=6,
label_text=’plain listbox\nsingle selection’,
labelpos=’n’,
selectioncommand=self.status_list1)

self.listl.pack(side=’left’, padx=10, anchor=’n’)

The list box can be configured for selecting a single item only or a collection
of items, using the listbox_selectmode keyword argument. Four values of
this argument are possible: single and multiple, requiring the user to click
on items, as well as browse and extended for single and multiple choices,
respectively, obtained by holding the left mouse button down and moving it
over the list. The reader is encouraged to edit the select mode argument in
the list box demo and try out the four values.

Vertical and horizontal scrollbars are controlled by the vscrollmode and
hscrollmode keywords, respectively, which take on the values static (always
include scrollbars), dynamic (include scrollbars only when required, i.e., when

6.3. A List of Common Widget Operations 271

the list is longer than the specified or default widget size), and none (no
scrollbars). The widget size is here given as 6 lines of maximum 12 characters,
assigned through the listbox_height and listbox_weight arguments. The list
box has an optional label (1abel_text) which can be placed above the list,
indicated here by labelpos="n’ (’n’ means north, other values are ’w’ for
west, nw’ for north-west, and so on). Note that labelpos must be speficied
for the list box to work if 1abel_text is specified.

A function can be called when clicking on an item in the list, here the
name of this function is self.status_list1. The purpose of this function is to
extract information about the items that have been marked by the user. These
are provided by the getcurselection and curselection list box functions. The
former returns the text of the chosen items, whereas the latter returns the
indices of the chosen items (first index is 0).

def status_listl(self):
"""Extract single list selection."""

selected_item = self.listl.getcurselection() [0]
selected_index = self.listl.curselection() [0]
text = ’selected list item=’ + str(selected_item) + \

>, index=’ + str(selected_index)
self.status_line.configure(text=text)

We have also exemplified a list box where the user can select multiple items:

self.list2 = Pmw.ScrolledListBox(frame_left,
listbox_selectmode="multiple’,
vscrollmode=’static’, hscrollmode=’dynamic’,
listbox_width=12, listbox_height=6,
label_text=’plain listbox\nmultiple selection’,
labelpos=’n’,
items=listitems,
selectioncommand=self.status_list?2)

self.list2.pack(side=’left’, anchor=’n’)

def status_list2(self):
"""Extract multiple list selectiomns."""

selected_items = self.list2.getcurselection() # tuple
selected_indices = self.list2.curselection() # tuple
text = ’list items=’ + str(selected_items) + \

>, indices=’ + str(selected_indices)
self.status_line.configure(text=text)

Values of list items can be provided at construction time using the items
keyword argument and a Python list or tuple as value:

self.list2 = Pmw.ScrolledListBox(frame,
items=listitems,
)

Alternatively, the list can be filled out item by item after the widget con-
struction:

272 6. Introduction to GUI Programming

for item in listitems:
self.listl.insert(’end’, item) # insert after end of list

A third alternative is to use submit the whole list at once:
self.listl.setlist(listitems)

or with configure (using the keyword for the constructor):
self.list.configure(items=listitems)

The ScrolledListBox class contains standard Tkinter widgets: a Listbox,
a Label, and two Scrollbars. Arguments related to the label have the same
name as in the basic Label widget, except that they are prefixed by label_, as
in label_text. Similarly, one can invoke Listbox arguments by prefixing the
arguments to ScrolledListBox by listbox_, one example being listbox_width.
This naming convention is important to know about, because various options
for the Tkinter widget building blocks are not included in the Pmw documen-
tation. The programmer actually needs to look up the Tkinter (or Tk) man
pages for those details. Hence, to get documentation about the listbox_width
parameter, one must consult the width option in the basic Listbox man page.
Appropriate sources for such a man page are the electronic Tkinter man
pages or the original Tcl/Tk man pages (see doc.html for relevant links), or
the nicely typeset Tkinter man pages in Grayson’s book [10]. Note that the
name of the list box widget is 1istbox in Tk and Listbox in Tkinter.

The underlying Tkinter objects in Pmw widgets can be reached using the
component method. Here is an example accessing the Tkinter Listbox object
in the ScrolledListBox megawidget (for making a blue background color in
the list):

self.list.component (’listbox’).configure(background=’blue’)

The Pmw documentation lists the strings that can be used in the component
call.

6.3.13 Radio Button

A parameter that can take on n distinct values may for small n be represented
by n radio buttons. Each radio button represents a possible value and looks
like a check button, with a “light” marker and an associated text, but the n
radio buttons are bound to the same variable. That is, only one button at a
time can be in an active state. Radio buttons are thus an alternative to list
boxes with single item selection, provided the list is short.

Plain Tk radio buttons can be constructed as follows.

self.radio_var = StringVar() # common variable for radio buttons
self.radiol = Frame(frame_right)

self.radiol.pack(side=’top’, pady=5)

Label (self.radiol,

6.3. A List of Common Widget Operations 273

text="Tk radio buttons’).pack(side=’left’)

for radio in (’radiol’, ’radio2’, ’radio3’, ’radio4d’):
r = Radiobutton(self.radiol, text=radio, variable=self.radio_var,
value=’radiobutton no. ’ + radiol[5],

command=self.status_radiol)
r.pack(side=’left’)

The self.status_radiol method is called when the user clicks on a radio
button, and the value of the associated self.radio_var variable is written in
the status line:

def status_radiol(self):
text = ’radiobutton variable = ’ + self.radio_var.get()
self.status_line.configure(text=text)

The values that self.radio_var can take on are specified through the value
keyword argument in the construction of the radio button.

Pmw also offers a set of radio buttons: Pmw.RadioSelect. One advantage
with Pmw.RadioSelect is the flexible choice of the type of buttons: one can
have radio buttons (single selection), check buttons (multiple selection), or
plain buttons in single or multiple selection mode. The user’s selections can
only be obtained through the function given as command argument to the
constructor. If it is more convenient to tie a Tkinter variable to a set of radio
buttons, the previous construction with self.radiol_var and the Radiobutton
widget is preferable.

A set of radio buttons is declared as exemplified below.

self.radio2 = Pmw.RadioSelect(frame_right,
selectmode=’single’,
buttontype=’radiobutton’, # ’button’: plain button layout
labelpos=’w’,
label_text=’Pmw radio buttons\nsingle selection’,
orient=’horizontal’,
frame_relief=’ridge’, # try some decoration...
command=self.status_radio2)

self.radio2.pack(side=’top’, padx=10, anchor=’w’)

add items; radio buttons are only feasible for a few items:
for text in (Piteml’, ’item2’, ’item3’, ’item4’):
self.radio2.add(text)
self .radio2.invoke(’item2’) # ’item2’ is pressed by default

def status_radio2(self, value):
text = ’Pmw check buttons: ’ + value
self.status_line.configure(text=text)

Almost the same construction can be used to define a set of check buttons.
This is convenient for a list with multiple selections, although check buttons
are most commonly associated with boolean variables, with one variable tied
to each button. With Pmw.RadioSelect we must extract the selected items in a
function and, if desired, convert this information to a set of boolean variables.

274 6. Introduction to GUI Programming

check button list:
self.radio3 = me.RadioSelect(frame_right,
selectmode="multiple’,
buttontype=’checkbutton’,
labelpos=’"w’,
label_text=’Pmw check buttons\nmultiple selection’,
orient=’horizontal’,
frame_relief=’ridge’, # try some decoration...
command=self.status_radio3)
self.radio3.pack(side=’top’, padx=10, anchor=’w’)

add items; radio xobuttons are only feasible for a few items:

for text in (Piteml’, ’item2’, ’item3’, ’itemd’):
self.radio3.add(text)

press ’item2’ and ’item4’ by default:

self.radio3.invoke(’item2’); self.radio3.invoke(’item4’)

def status_radio3(self, button_name, pressed):

if pressed: action = ’pressed’

else: action = ’released’

text = ’Pmw radio button ’ + button_name + ’ was ’ + \
action + ’; pressed buttons: ’ + \

str(self.radio3.getcurselection())
self.status_line.configure(text=text)

6.3.14 Combo Box

A combo box can be viewed as a list, allowing single selections, where the
selected item is displayed in a separate field. In a sense, combo boxes are
easier to work with than lists. Figure 6.18 on page 270 displays two types of
combo boxes offered by the Pmw ComboBox widget: (i) a simple combo box,
where the list is visible all the time, and (ii) a dropdown combo box, where
the list becomes visible upon clicking on the arrow. The basic usage is the
same for both types:

having a Python list listitems, put it into a Pmw.ComboBox:
self.combol = Pmw.ComboBox (frame,
label_text=’simple combo box’,
labelpos=’nw’,
scrolledlist_items=listitems,
selectioncommand=self.status_combobox,
listbox_height=6,
dropdown=False)
self.combol.pack(side=’left’, padx=10, anchor=’n’)

Check out the description of the Pmw list box widget to see the meaning of
most of the keyword arguments. The dropdown parameter controls whether
we have a simple combo box (false) or a dropdown combo box (true). The
value of this parameter is actually the only difference between the two combo
boxes in Figure 6.18.

6.3. A List of Common Widget Operations 275

Clicking on items in the combo box forces a call to a function, here
self.status_combobox, which takes the chosen list item value as argument:

def status_combobox(self, value):
text = ’combo box value = ’ + str(value)
self.status_line.configure(text=text)

6.3.15 Message Box

A message box widget allows a message to pop up in a separate window,
Three examples on such boxes are shown in Figure 6.19. These boxes are
launched from the Dialog menu in the demoGUI.py application.

The message box in Figure 6.19a is created by the function askokcancel
in the tkMessageBox module:

import tkMessageBox

def confirmation_dialog(self):
message = ’This is a demo of a Tk conformation dialog box’
ok = tkMessageBox.askokcancel(’Quit’, message)
if ok:
self.status_line.configure(text="’0K’ was pressed")
else:
self.status_line.configure(text="’Cancel’ was pressed")

The buttons are labeled OK and Cancel, whereas the argument ’Quit’ specifies
the title in the window manager decoration of the dialog box. Another version
of this message box is askyesno (also present in the demoGUI.py code), where
the buttons have the names Yes and No.

Figure 6.19b shows a plain Tk message box:

def Tk_message_dialog(self):
message = ’This is a demo of a Tk message dialog box’
answer = tkMessageBox.Message(icon=’info’, type=’ok’,
message=message, title=’About’).show()
self.status_line.configure(text="’%s’ was pressed" J, answer)

As icon one can provide some of the predefined bitmaps (see Figure 6.16b
on page 261). The type argument allows us to control the label of the button
that quits the dialog window. Typical values are ok for a button with text
OK, okcancel for two buttons with text OK and Cancel, yesno for two buttons
with text Yes and No, and yesnocancel for three buttons with text Yes, No,
and Cancel. The return value stored in answer can be used to take appropriate
actions (values of answer are typically ’ok’, ’yes’, ’no’, ’cancel’). We see
that the Message widget is a generalization of the askokcancel and askyesno
functions.

Error messages may be displayed by the tkMessageBox.showerror function:

tkMessageBox.showerror(title=’Error’, message=’invalid number’)

276 6. Introduction to GUI Programming

(3) This is a demo of a Tk

@ This is a demo of a Tk message dialog box

conformation dialog box

oK Ccancel ok |
(a) (b)

. Thisis a demo of the Prmw.MessageDialog box,
§ which is useful for writing longer text messages
o the user,

()

Fig.6.19. The dialog menu in Figure 6.17b on page 268 has three items
for demonstrating typical message boxes: (a) Tk confirmation dialog (made by
tkMessage.askokcancel); (b) Tk message dialog (made by tkMessage.Message);
(c) Pmw message dialog (made by Pmw.MessageBox).

Run pydoc tkMessageBox to see the documentation of the various functions
in that module.

Pmw provides several convenient and flexible dialog widgets. The Pmw
message dialog entry of the Dialog pulldown menu in demoGUI.py activates
Pmw’s MessageDialog widget shown in Figure 6.19c.

def Pmw_message_dialog(self):

message = nn u\

This is a demo of the Pmw.MessageDialog box,
which is useful for writing longer text messages
to the user."""

Pmw.MessageDialog(self .master, title=’Description’,
buttons=(’Quit’,), message_text=message,
message_justify=’left’,
message_font=’helvetica 127,
icon_bitmap=’info’,

must be present if icon_bitmap is:
iconpos=’w’)

The MessageDialog class is composed of a Tk label widget for showing the
message® and button widgets. The label component’s keyword arguments are
the same as for the constructor of class Label, except that they are prefixed
by a message_ string. The justify argument of a Label controls how multiple

5 That is why we need explicit newlines in the message text.

6.3. A List of Common Widget Operations 277

lines are typeset. By default, all lines are centered, while we here demand
them to be justified to the left. The icon_bitmap values can be one of the
names of the predefined bitmaps (see Figure 6.16b on page 261).

6.3.16 User-Defined Dialogs

Pmw offers a Dialog widget for user-defined dialog boxes. The user can insert
any set of widgets and specify a set of control buttons. This makes it easy to
tailor a dialog to one’s specific needs. Figure 6.20 shows such a dialog box,
launched from the Pmw user-defined dialog entry of the Dialog menu. Clicking
on this menu entry activates the self.userdef_dialog function, which creates
a Pmw Dialog widget and fills it with entries: an option menu, a slider, and a
check button. Fortunately, all these widgets are created and packed properly
by class InputFields (see Chapter 6.3.9).

=

mass |1 -0
damping ID,EI
amplitude IZ

Spring ¥ — |

initial value y{0)
0.20

I
0.00 0.50 1.00 1.50 2.00 /

Apply | Cancel |

Fig. 6.20. A user-defined Pmw dialog (made by Pmw.Dialog). The dialog arises
from clicking on the Pmw user-defined dialog item in the menu in Figure 6.17b on
page 268.

def userdef_dialog(self):
self.userdef_d = Pmw.Dialog(self.master,
title=’Programmer-Defined Dialog’,
buttons=(’Apply’, ’Cancel’),
#defaultbutton=’Apply’,
command=self.userdef_dialog_action)

self .userdef_d_gui = InputFields(self.userdef_d.interior(),
self.status_line,
self.balloon, scrolled=True)
self .userdef_d_gui.pack()

The Pmw.Dialog widget’s interior frame, which we can use as parent widget, is
accessed through the interior() method. Upon clicking one of the buttons,

278 6. Introduction to GUI Programming

in the present case Apply or Cancel, the self.userdef_dialog_action method
is called. In this method we can extract the user’s input. Here we only present
the skeleton of such a method:

def userdef_dialog_action(self, result):
result contains the name of the button that we clicked
if result == ’Apply’:
example on extracting dialog variables:
case = self.userdef_d_gui.case.get()
else:
text = ’you just canceled the dialog’
self.status_line.configure(text=text)
self .userdef_d.destroy() # destroy dialog window

6.3.17 Color-Picker Dialogs

Full-fledged graphical applications often let the user change background and
foreground colors. Picking the right color is most conveniently done in a dialog
where one can experiment with color compositions in an interactive way. A
basic Tk dialog, accessible through the tkColorChooser module from Python
scripts, is launched from the Tk color dialog entry in the Color dialogs submenu
of the Dialog pulldown menu. Selecting this entry calls the following function,
which runs the dialog and changes the background color:

def tk_color_dialog(self):
import tkColorChooser
color = tkColorChooser.Chooser(
initialcolor=’gray’,title=’Choose background color’).show()

or:

color = tkColorChooser.askcolor()

color[0] is now an (r,g,b) tuple and

color[1] is a hexadecimal number; send the latter to
tk_setPalette to change the background color:

(when Cancel is pressed, color is (None,None))

if color[0] is not None:
self .master.tk_setPalette(color[1])
text = ’new background color is ’ + str(color[0]) + \
> (rgb) or ’ + str(color[1])
self.status_line.configure(text=text)

A snapshot of the color-picker dialog is shown in Figure 6.21. We mention
that the tk_setPalette method with a more sophisticated argument list can
be used to change the whole color scheme for an application (see the man
pages for more information).

Information on tkColorChooser and other modules not included in the
Tkinter module can be found in the source files of these modules in the
Lib/1lib-tk directory of the Python source code distribution.

There is a more sophisticated color editor that comes with Python, called
Pynche and located in the Tools/pynche directory of the Python source. At

6.3. A List of Common Widget Operations 279

the time of this writing, you need to install Pynche manually by copying
Tools/pynche to some directory where Python can find modules (see Ap-
pendix B.1) or include the path of the Tools directory in PYTHONPATH. The
README file in the pynche directory describes the nice features of this color-
picker tool.

Selaction:

ﬂed: |19|:| - ‘
I#DEDEDE

&
green: [190 R

&
Blue: |15[| |

&

o |

Fig. 6.21. The entry Color dialogs in the Dialogs menu launches a new pulldown
menu with an entry Tk color dialog whose resulting dialog box is displayed above.
The Tk color dialog is made by the tkColorChooser module.

6.3.18 File Selection Dialogs

File dialogs are used to prompt the user for a filename, often combined with
browsing of existing filenames and directories, see Figure 6.17d—e. A module
tkFileDialog provides access to basic Tk file dialogs for loading and saving
files. The class Open is used for asking the user about a filename for loading:

import tkFileDialog
fname = tkFileDialog.Open(filetypes=[(’anyfile’,’*’)]) .show()
if fname:

f = open(fname, ’r’)

The filetypes argument allows us to specify a family of relevant files, here
called anyfile, and a glob-style (Unix shell-style wildcard) specification of the
filenames. The call to show pops up a separate window containing icons of all
the files specified by filetypes in the current directory, see Figure 6.17e. In
the present example all files and directories are shown. You can click on an
icon and then on Open. The window is then closed, and the chosen filename
is returned as a string, here stored in fname. It is not possible to return from
the file dialog before a valid filename is provided, but pressing Cancel returns
an empty string (that is why we make the test if fname). Do not forget the
show call, without it no file dialog is shown!

280 6. Introduction to GUI Programming

The filetypes list is used to specify the type of files that are to be dis-
played in the dialog. For instance,

filetypes=[(’datafiles’,’*.dat’),(’gridfiles’,’*.grid’)]

makes the dialog show the names of either all x.dat files or all *.grid files.
Through an option menu in the dialog the user can choose which of these
two classes of files that should be displayed.

The tkFileDialog also contains a SaveAs class for fetching an output file-
name. The usage is the same as for the Open class (Figure 6.17f displays the
layout of the dialog):

fname = tkFileDialog.SaveAs(
filetypes=[(’temporary files’,’*.tmp’)],
initialfile=’myfile.tmp’,
title=’Save a file’).show()
if fname:
f = open(fname, ’w’)

There is seemingly no need for a filetypes argument if we are supposed to
write a filename anyway, but without the filetypes argument, the file dialog
box contains by default an icon for all files in the current directory, which is
something you often do not want.

Occasionally a directory name, rather than the name of a file, is what we
want the user to provide. The tkFileDialog.Directory dialog is used for this
purpose:

dir = tkFileDialog.Directory(title=’Choose a directory’).show()

The layout of the file dialogs can be changed to Motif style if we make
the call

root.tk_strictMotif (1)

right after root is created as the toplevel Tk widget (root=Tk()). Try it!

Pmw offers an unofficial file dialog PmwFileDialog and a directory browser
PmwDirBrowser.py, both found in the contrib subdirectory of the Pmw source.
Their simple usage is demonstrated at the end of the source files.

6.3.19 Toplevel

The toplevel widget is a frame that appears as a separate top-level window,
much in the same way as a dialog box, except that the top-level widget is
empty after construction. An application of toplevel widgets is provided by
the File Dialogs—Open entry of the pulldown menu: We ask the user for a file
and display the contents of the file in a separate window:

6.3. A List of Common Widget Operations 281

fname = tkFileDialog.Open(filetypes=[(’anyfile’,’*’)]).show()
if fname:
self .display_file(fname, self.master)

The display_file method shown below uses the Toplevel widget to launch a
new window. In this new window we insert a text widget containing the text
in the file.

Since scrollbars are likely to be needed when displaying the file, we apply
Pmw’s ScrolledText widget, whose usage is close to that of ScrolledListBox.
Provided you are familiar with the latter, the code for creating a separate
window with the file in a text widget should be easy to understand:

def display_file(self, filename, parent):
"""Read file into a text widget in a _separate_ window."""
filewindow = Toplevel(parent) # new window

f = open(filename, ’r’); filestr = f.read(); £.close()

filetext = Pmw.ScrolledText(filewindow,
borderframe=5, # a bit space around the text
vscrollmode=’dynamic’, hscrollmode=’dynamic’,
labelpos=’n’, label_text=’Contents of file ’+filename,
text_width=80, text_height=50,
text_wrap=’none’) # do not break lines
filetext.pack(expand=True, fill=’both’)
filetext.insert(’end’, filestr)

Button(filewindow, text=’Quit’,
command=filewindow.destroy) . pack(pady=10)

This example works with a fixed-size text widget having 50 lines and 80
characters per line. In the real demoGUI.py code we split the file text filestr
into lines, count the number of lines, find the maximum line width, and adjust
text_width and text_height accordingly. The options to the underlying Tk
text widget are prefixed by text_, so to look up the meaning of text_wrap,
you look up the wrap option in the Tkinter or Tk man page’ for the text
widget. This option controls the way lines are broken: at words (word), at
characters (char), or not at all (none).

When a new window is launched you often want to bring the new window
automatically in focus. This can be done by

filewindow.focus_set ()

6.3.20 Some Other Types of Widgets

Canvas widgets are used for structured graphics, such as drawing circles,
rectangles, and lines, as well as for displaying text and other widgets. With

7 Note that the name of the text widget is Text in Tkinter and text in Tk.

282 6. Introduction to GUI Programming

a canvas widget one can create highly interactive graphical applications and
implement new custom widgets. There are far more features available for
canvas widgets than labels, buttons, and lists, so we postpone the treatment
to Chapter 11.3.

The text widget, briefly met in Chapter 6.3.19, is a very flexible widget
for editing and displaying text. Text widgets also allow for embedded images
and other widgets. There are numerous possibilities for diverse types of user
interactions, some of which are demonstrated in Chapters 11.2.2 and 11.2.3.

A notebook is a set of layered widgets, called pages, where the user can
click on labels to choose a page in the notebook. The page generally contains a
collection of other widgets. A complete example is provided in Chapter 12.2.4.

The Pmw megawidget ButtonBox simplifies the layout of several buttons
that are to be nicely aligned with consistent sizes. Example on usage is pro-
vided in Chapter 11.1.1.

There is an extension of the Pmw library, called PmwContribD, which
offers additional megawidgets: a progress meter, a tree structure navigator,
a scrolled list with multiple columns, and a GUI application framework, to
mention a few.

Remark. The demoGUI.py script with its explanations in the previous text
describes short “getting-started” versions for many of the most common Tk-
inter and Pmw widgets. More detailed information is certainly needed when
programming your own real applications, and we comment on useful infor-
mation sources at the beginning of this chapter.

6.3.21 Adapting Widgets to the User’s Resize Actions

Sometimes you want widgets to expand or shrink when the user resizes the
main window. This requires a special combination of the expand and fill
options in the pack command or the sticky and weight options in the grid
method. The details will be explained through a specific example.

Resizing with Pack. We shall create a simple tool for displaying the contents
of a file in a scrollable® text widget. The minimal code looks like this and is
found in src/py/gui/fileshowl.py:

#!/usr/bin/env python

"""show a file in a text widget"""
from Tkinter import *

import Pmw, sys

try: filename = sys.argv[1]
except: print ’Usage: %s filename’ % sys.argv[0]; sys.exit(1)
root = Tk()

8 List box, canvas, entry, and text widgets often get too big and therefore need
scrollbars. Basic Tk widgets can be combined with scrollbars, but we recommend
to use megawidgets with built-in horizontal and vertical scrollbars that can be
activated automatically when needed.

6.3. A List of Common Widget Operations 283

top = Frame(root); top.pack(side=’top’)
text = Pmw.ScrolledText (top,
borderframe=5, # a bit space around the text...
vscrollmode=’dynamic’, hscrollmode=’dynamic’,
labelpos=’n’, label_text=’file %s’ % filename,
text_width=40, text_height=4,
text_wrap=’none’, # do not break too long lines
)
text.pack()
insert file as a string in the text widget:
text.insert(’end’, open(filename,’r’).read())
Button(top, text=’Quit’, command=root.destroy) .pack(pady=15)
root.mainloop()

Use functionality of your window manager to increase the size of the
window containing this GUIL. The window becomes bigger, but the text widget
is still small, see Figure 6.22. What you want is to expand the text widget
as you expand the window. This is accomplished by packing the text widget
with the expand=True and fill=’both’ options:

text.pack(expand=True, fill=’both’)

The expand=True option allows the widget to expand into free space arising
from resizing the window, and £i11 specifies in which directions the widget is
allowed to expand. The widget itself and its parent widgets must all be packed
with expand=True,fill=’both’ to obtain the desired resizing functionality.
Here it means that the top frame must be packed as

top.pack(side=’top’, expand=True, fill=’both’)
Now the text widget becomes bigger as you increase the size of the main

window, cf. Figure 6.23. The modified file is called fileshow2.py.

file fileshow1 py

import Pmw, sys

iy filename = #vs. argv(l] —
except: print 'Usage: %s filename' % sys
root = Tk()

R I P

Quit |

Fig. 6.22. A simple GUI for displaying text files. The main window has been resized
by the user, but the size of the text widget remains the same.

284 6. Introduction to GUI Programming

file fileshow1 py

from Tkinter import +

import Pmor, sys

try: filename = sys. argw[l]

except: print 'Usage: %3 filename' % sys arqu(0], sys

root = Thi)

top = Frame (root); top. pack{side='top')

text = Pmw. ScrolledText (top,
borderframe=5, # 2 bit space around the text. .
vscrollmodes="dynanic', hscrollmode='dynamic',
lahelpos="n', label text='file %' % filename,
text width=40, text height=4,

= I =

Fig. 6.23. Same GUI as in Figure 6.22, but the text widget is now allowed to
expand in size as the main window is enlarged.

Resizing with Grid. Correct resizing of widgets according to resizing of the
main window is enabled by a combination of the sticky and weight options
if the widgets are packed with the grid geometry manager. The previous
example in this section, where a file is displayed in a scrollable text widget, see
Figure 6.23, can be realized with the grid geometry manager by working with
2 x 1 cells, specifying sticky="news’ for the text widget, and setting weight=1
for the cells that are to be resized. The specification of weight is done by the
rowconfigure and columnconfigure commands of the frame holding the grid.

top = Frame(root); top.pack(side=’top’, expand=True, fill=’both’)
text = Pmw.ScrolledText(top, ...)

text.grid(column=0, row=0, sticky=’news’)

top.rowconfigure(0, weight=1)

top.columnconfigure(0, weight=1)

Button(top, text=’Quit’, command=root.destroy).\
grid(column=0, row=1, pady=15)

The file src/py/gui/fileshow3.py contains the complete code.

6.3.22 Customizing Fonts and Colors

Some of our introductory GUI scripts in Chapter 6.1 demonstrate how to con-
trol the font and colors in a widget by the font, background, and foreground
keyword arguments. Such hardcoding of fonts and colors is normally not con-
sidered as a good thing. Inst