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Preface

These days, Python is undoubtedly one of the major strategic technology platforms in
the financial industry. When I started writing the first edition of this book in 2013, I
still had many conversations and presentations in which I argued relentlessly for
Python’s competitive advantages in finance over other languages and platforms.
Toward the end of 2018, this is not a question anymore: financial institutions around
the world now simply try to make the best use of Python and its powerful ecosystem
of data analysis, visualization, and machine learning packages.

Beyond the realm of finance, Python is also often the language of choice in introduc‐
tory programming courses, such as in computer science programs. Beyond its reada‐
ble syntax and multiparadigm approach, a major reason for this is that Python has
also become a first class citizen in the areas of artificial intelligence (AI), machine
learning (ML), and deep learning (DL). Many of the most popular packages and
libraries in these areas are either written directly in Python (such as scikit-learn for
ML) or have Python wrappers available (such as TensorFlow for DL).

Finance itself is entering a new era, and two major forces are driving this evolution.
The first is the programmatic access to basically all the financial data available—in
general, this happens in real time and is what leads to data-driven finance. Decades
ago, most trading or investment decisions were driven by what traders and portfolio
managers could read in the newspaper or learn through personal conversations. Then
came terminals that brought financial data in real time to the traders’ and portfolio
managers’ desks via computers and electronic communication. Today, individuals
(or teams) can no longer keep up with the vast amounts of financial data generated in
even a single minute. Only machines, with their ever-increasing processing speeds
and computational power, can keep up with the volume and velocity of financial
data. This means, among other things, that most of today’s global equities trading
volume is driven by algorithms and computers rather than by human traders.

The second major force is the increasing importance of AI in finance. More and
more financial institutions try to capitalize on ML and DL algorithms to improve
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operations and their trading and investment performances. At the beginning of 2018,
the first dedicated book on “financial machine learning” was published, which under‐
scores this trend. Without a doubt, there are more to come. This leads to what might
be called AI-first finance, where flexible, parameterizable ML and DL algorithms
replace traditional financial theory—theory that might be elegant but no longer very
useful in the new era of data-driven, AI-first finance.

Python is the right programming language and ecosystem to tackle the challenges of
this era of finance. Although this book covers basic ML algorithms for unsupervised
and supervised learning (as well as deep neural networks, for instance), the focus is
on Python’s data processing and analysis capabilities. To fully account for the impor‐
tance of AI in finance—now and in the future—another book-length treatment is
necessary. However, most of the AI, ML, and DL techniques require such large
amounts of data that mastering data-driven finance should come first anyway.

This second edition of Python for Finance is more of an upgrade than an update. For
example, it adds a complete part (Part IV) about algorithmic trading. This topic has
recently become quite important in the financial industry, and is also quite popular
with retail traders. It also adds a more introductory part (Part II) where fundamental
Python programming and data analysis topics are presented before they are applied
in later parts of the book. On the other hand, some chapters from the first edition
have been deleted completely. For instance, the chapter on web techniques and pack‐
ages (such as Flask) was dropped because there are more dedicated and focused
books about such topics available today.

For the second edition, I tried to cover even more finance-related topics and to focus
on Python techniques that are particularly useful for financial data science, algorith‐
mic trading, and computational finance. As in the first edition, the approach is a
practical one, in that implementation and illustration come before theoretical details
and I generally focus on the big picture rather than the most arcane parameterization
options of a certain class, method, or function.

Having described the basic approach for the second edition, it is worth emphasizing
that this book is neither an introduction to Python programming nor to finance in
general. A vast number of excellent resources are available for both. This book is
located at the intersection of these two exciting fields, and assumes that the reader
has some background in programming (not necessarily Python) as well as in finance.
Such readers learn how to apply Python and its ecosystem to the financial domain.

The Jupyter Notebooks and codes accompanying this book can be accessed and exe‐
cuted via our Quant Platform. You can sign up for free at http://py4fi.pqp.io.

My company (The Python Quants) and myself provide many more resources to mas‐
ter Python for financial data science, artificial intelligence, algorithmic trading, and
computational finance. You can start by visiting the following sites:
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• Our company website
• My private website
• Our Python books website
• Our online training website
• The Certificate Program website

From all the offerings that we have created over the last few years, I am most proud of
our Certificate Program in Python for Algorithmic Trading. It provides over 150 hours
of live and recorded instruction, over 1,200 pages of documentation, over 5,000 lines
of Python code, and over 50 Jupyter Notebooks. The program is offered multiple
times per year and we update and improve it with every cohort. The online program
is the first of its kind, in that successful delegates obtain an official university certifi‐
cate in cooperation with htw saar University of Applied Sciences.

In addition, I recently started The AI Machine, a new project and company to stand‐
ardize the deployment of automated, algorithmic trading strategies. With this project,
we want to implement in a systematic and scalable fashion what we have been teach‐
ing over the years in the field, in order to capitalize on the many opportunities in the
algorithmic trading field. Thanks to Python—and data-driven and AI-first finance—
this project is possible these days even for a smaller team like ours.

I closed the preface for the first edition with the following words:

I am really excited that Python has established itself as an important technology in the
financial industry. I am also sure that it will play an even more important role there in
the future, in fields like derivatives and risk analytics or high performance computing.
My hope is that this book will help professionals, researchers, and students alike make
the most of Python when facing the challenges of this fascinating field.

When I wrote these lines in 2014, I couldn’t have predicted how important Python
would become in finance. In 2018, I am even happier that my expectations and hopes
have been so greatly surpassed. Maybe the first edition of the book played a small
part in this. In any case, a big thank you is in order to all the relentless open source
developers out there, without whom the success story of Python couldn’t have been
written.

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, and email addresses.
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Constant width

Used for program listings, as well as within paragraphs to refer to software pack‐
ages, programming languages, file extensions, filenames, program elements such
as variable or function names, databases, data types, environment variables,
statements, and keywords.

Constant width italic

Shows text that should be replaced with user-supplied values or by values deter‐
mined by context.

This element signifies a tip or suggestion.

This element signifies a general note.

This element indicates a warning or caution.

Using Code Examples
Supplemental material (in particular, Jupyter Notebooks and Python scripts/
modules) is available for usage and download at http://py4fi.pqp.io.

This book is here to help you get your job done. In general, if example code is offered
with this book, you may use it in your programs and documentation. You do not
need to contact us for permission unless you’re reproducing a significant portion of
the code. For example, writing a program that uses several chunks of code from this
book does not require permission. Selling or distributing a CD-ROM of examples
from O’Reilly books does require permission. Answering a question by citing this
book and quoting example code does not require permission. Incorporating a signifi‐
cant amount of example code from this book into your product’s documentation
does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the
title, author, publisher, and ISBN. For example: “Python for Finance, 2nd Edition, by
Yves Hilpisch (O’Reilly). Copyright 2019 Yves Hilpisch, 978-1-492-02433-0.”
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If you feel your use of code examples falls outside fair use or the permission given
above, feel free to contact us at permissions@oreilly.com.

O’Reilly Online Learning
For more than 40 years, O’Reilly Media has provided technol‐
ogy and business training, knowledge, and insight to help
companies succeed.

Our unique network of experts and innovators share their knowledge and expertise
through books, articles, and our online learning platform. O’Reilly’s online learning
platform gives you on-demand access to live training courses, in-depth learning
paths, interactive coding environments, and a vast collection of text and video from
O’Reilly and 200+ other publishers. For more information, visit http://oreilly.com.

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
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PART I

Python and Finance

This part introduces Python for finance. It consists of two chapters:

• Chapter 1 briefly discusses Python in general and argues in some detail why
Python is well suited to addressing the technological challenges in the financial
industry as well as in financial data analytics.

• Chapter 2 is about Python infrastructure; it provides a concise overview of
important aspects of managing a Python environment to get you started with
interactive financial analytics and financial application development in Python.





CHAPTER 1

Why Python for Finance

Banks are essentially technology firms.
—Hugo Banziger

The Python Programming Language
Python is a high-level, multipurpose programming language that is used in a wide
range of domains and technical fields. On the Python website you find the following
executive summary:

Python is an interpreted, object-oriented, high-level programming language with
dynamic semantics. Its high-level built in data structures, combined with dynamic typ‐
ing and dynamic binding, make it very attractive for Rapid Application Development,
as well as for use as a scripting or glue language to connect existing components
together. Python’s simple, easy to learn syntax emphasizes readability and therefore
reduces the cost of program maintenance. Python supports modules and packages,
which encourages program modularity and code reuse. The Python interpreter and the
extensive standard library are available in source or binary form without charge for all
major platforms, and can be freely distributed.

This pretty well describes why Python has evolved into one of the major program‐
ming languages today. Nowadays, Python is used by the beginner programmer as
well as by the highly skilled expert developer, at schools, in universities, at web com‐
panies, in large corporations and financial institutions, as well as in any scientific
field.

Among other features, Python is:

Open source
Python and the majority of supporting libraries and tools available are open
source and generally come with quite flexible and open licenses.
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Interpreted
The reference CPython implementation is an interpreter of the language that
translates Python code at runtime to executable byte code.

Multiparadigm
Python supports different programming and implementation paradigms, such as
object orientation and imperative, functional, or procedural programming.

Multipurpose
Python can be used for rapid, interactive code development as well as for build‐
ing large applications; it can be used for low-level systems operations as well as
for high-level analytics tasks.

Cross-platform
Python is available for the most important operating systems, such as Windows,
Linux, and macOS. It is used to build desktop as well as web applications, and it
can be used on the largest clusters and most powerful servers as well as on such
small devices as the Raspberry Pi.

Dynamically typed
Types in Python are in general inferred at runtime and not statically declared as
in most compiled languages.

Indentation aware
In contrast to the majority of other programming languages, Python uses inden‐
tation for marking code blocks instead of parentheses, brackets, or semicolons.

Garbage collecting
Python has automated garbage collection, avoiding the need for the programmer
to manage memory.

When it comes to Python syntax and what Python is all about, Python Enhancement
Proposal 20—i.e., the so-called “Zen of Python”—provides the major guidelines. It
can be accessed from every interactive shell with the command import this:

In [1]: import this
        The Zen of Python, by Tim Peters

        Beautiful is better than ugly.
        Explicit is better than implicit.
        Simple is better than complex.
        Complex is better than complicated.
        Flat is better than nested.
        Sparse is better than dense.
        Readability counts.
        Special cases aren't special enough to break the rules.
        Although practicality beats purity.
        Errors should never pass silently.
        Unless explicitly silenced.
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        In the face of ambiguity, refuse the temptation to guess.
        There should be one-- and preferably only one --obvious way to do it.
        Although that way may not be obvious at first unless you're Dutch.
        Now is better than never.
        Although never is often better than *right* now.
        If the implementation is hard to explain, it's a bad idea.
        If the implementation is easy to explain, it may be a good idea.
        Namespaces are one honking great idea -- let's do more of those!

A Brief History of Python
Although Python might still have the appeal of something new to some people, it has
been around for quite a long time. In fact, development efforts began in the 1980s by
Guido van Rossum from the Netherlands. He is still active in Python development
and has been awarded the title of Benevolent Dictator for Life by the Python commu‐
nity. In July 2018, van Rossum stepped down from this position after decades of
being an active driver of the Python core development efforts. The following can be
considered milestones in the development of Python:

• Python 0.9.0 released in 1991 (first release)
• Python 1.0 released in 1994
• Python 2.0 released in 2000
• Python 2.6 released in 2008
• Python 3.0 released in 2008
• Python 3.1 released in 2009
• Python 2.7 released in 2010
• Python 3.2 released in 2011
• Python 3.3 released in 2012
• Python 3.4 released in 2014
• Python 3.5 released in 2015
• Python 3.6 released in 2016
• Python 3.7 released in June 2018

It is remarkable, and sometimes confusing to Python newcomers, that there are two
major versions available, still being developed and, more importantly, in parallel use
since 2008. As of this writing, this will probably keep on for a little while since tons of
code available and in production is still Python 2.6/2.7. While the first edition of this
book was based on Python 2.7, this second edition uses Python 3.7 throughout.
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The Python Ecosystem
A major feature of Python as an ecosystem, compared to just being a programming
language, is the availability of a large number of packages and tools. These packages
and tools generally have to be imported when needed (e.g., a plotting library) or have
to be started as a separate system process (e.g., a Python interactive development
environment). Importing means making a package available to the current name‐
space and the current Python interpreter process.

Python itself already comes with a large set of packages and modules that enhance the
basic interpreter in different directions, known as the Python Standard Library. For
example, basic mathematical calculations can be done without any importing, while
more specialized mathematical functions need to be imported through the math mod‐
ule:

In [2]: 100 * 2.5 + 50
Out[2]: 300.0

In [3]: log(1)  

        -----------------------------------------------------------------
        NameError                       Traceback (most recent call last)
        <ipython-input-3-74f22a2fd43b> in <module>
        ----> 1 log(1)  

        NameError: name 'log' is not defined

In [4]: import math  

In [5]: math.log(1)  
Out[5]: 0.0

Without further imports, an error is raised.

After importing the math module, the calculation can be executed.

While math is a standard Python module available with any Python installation, there
are many more packages that can be installed optionally and that can be used in the
very same fashion as the standard modules. Such packages are available from differ‐
ent (web) sources. However, it is generally advisable to use a Python package man‐
ager that makes sure that all libraries are consistent with each other (see Chapter 2 for
more on this topic).

The code examples presented so far use interactive Python environments: IPython
and Jupyter, respectively. These are probably the most widely used interactive Python
environments at the time of this writing. Although IPython started out as just an
enhanced interactive Python shell, it today has many features typically found in inte‐
grated development environments (IDEs), such as support for profiling and debug‐
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ging. Those features missing in IPython are typically provided by advanced text/code
editors, like Vim, which can also be integrated with IPython. Therefore, it is not
unusual to combine IPython with one’s text/code editor of choice to form the basic
toolchain for a Python development process.

IPython enhances the standard interactive shell in many ways. Among other things, it
provides improved command-line history functions and allows for easy object
inspection. For instance, the help text (docstring) for a function is printed by just
adding a ? before or after the function name (adding ?? will provide even more infor‐
mation).

IPython originally came in two popular versions: a shell version and a browser-based
version (the Notebook). The Notebook variant proved so useful and popular that it
evolved into an independent, language-agnostic project now called Jupyter. Given
this background, it is no surprise that Jupyter Notebook inherits most of the benefi‐
cial features of IPython—and offers much more, for example when it comes to visual‐
ization.

Refer to VanderPlas (2016, Chapter 1) for more details on using IPython.

The Python User Spectrum
Python does not only appeal to professional software developers; it is also of use for
the casual developer as well as for domain experts and scientific developers.

Professional software developers find in Python all they might require to efficiently
build large applications. Almost all programming paradigms are supported; there are
powerful development tools available; and any task can, in principle, be addressed
with Python. These types of users typically build their own frameworks and classes,
also work on the fundamental Python and scientific stack, and strive to make the
most of the ecosystem.

Scientific developers or domain experts are generally heavy users of certain packages
and frameworks, have built their own applications that they enhance and optimize
over time, and tailor the ecosystem to their specific needs. These groups of users also
generally engage in longer interactive sessions, rapidly prototyping new code as well
as exploring and visualizing their research and/or domain data sets.

Casual programmers like to use Python generally for specific problems they know
that Python has its strengths in. For example, visiting the gallery page of matplotlib,
copying a certain piece of visualization code provided there, and adjusting the code
to their specific needs might be a beneficial use case for members of this group.

There is also another important group of Python users: beginner programmers, i.e.,
those that are just starting to program. Nowadays, Python has become a very popular
language at universities, colleges, and even schools to introduce students to program‐
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1 Python, for example, is a major language used in the Master of Financial Engineering Program at Baruch Col‐
lege of the City University of New York. The first edition of this book is in use at a large number of universi‐
ties around the world to teach Python for financial analysis and application building.

2 See http://wiki.python.org/moin/BeginnersGuide, where you will find links to many valuable resources for
both developers and non-developers getting started with Python.

ming.1 A major reason for this is that its basic syntax is easy to learn and easy to
understand, even for the non-developer. In addition, it is helpful that Python sup‐
ports almost all programming styles.2

The Scientific Stack
There is a certain set of packages that is collectively labeled the scientific stack. This
stack comprises, among others, the following packages:

NumPy

NumPy provides a multidimensional array object to store homogeneous or hetero‐
geneous data; it also provides optimized functions/methods to operate on this
array object.

SciPy

SciPy is a collection of subpackages and functions implementing important stan‐
dard functionality often needed in science or finance; for example, one finds
functions for cubic splines interpolation as well as for numerical integration.

matplotlib

This is the most popular plotting and visualization package for Python, provid‐
ing both 2D and 3D visualization capabilities.

pandas

pandas builds on NumPy and provides richer classes for the management and
analysis of time series and tabular data; it is tightly integrated with matplotlib
for plotting and PyTables for data storage and retrieval.

scikit-learn

scikit-learn is a popular machine learning (ML) package that provides a uni‐
fied application programming interface (API) for many different ML algorithms,
such as for estimation, classification, or clustering.

PyTables

PyTables is a popular wrapper for the HDF5 data storage package; it is a package
to implement optimized, disk-based I/O operations based on a hierarchical data‐
base/file format.
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Depending on the specific domain or problem, this stack is enlarged by additional
packages, which more often than not have in common that they build on top of one
or more of these fundamental packages. However, the least common denominator or
basic building blocks in general are the NumPy ndarray class (see Chapter 4) and the
pandas DataFrame class (see Chapter 5).

Taking Python as a programming language alone, there are a number of other lan‐
guages available that can probably keep up with its syntax and elegance. For example,
Ruby is a popular language often compared to Python. The language’s website
describes Ruby as:

A dynamic, open source programming language with a focus on simplicity and pro‐
ductivity. It has an elegant syntax that is natural to read and easy to write.

The majority of people using Python would probably also agree with the exact same
statement being made about Python itself. However, what distinguishes Python for
many users from equally appealing languages like Ruby is the availability of the scien‐
tific stack. This makes Python not only a good and elegant language to use, but also
one that is capable of replacing domain-specific languages and tool sets like Matlab
or R. It also provides by default anything that you would expect, say, as a seasoned
web developer or systems administrator. In addition, Python is good at interfacing
with domain-specific languages such as R, so that the decision usually is not about
either Python or something else—it is rather about which language should be the
major one.

Technology in Finance
With these “rough ideas” of what Python is all about, it makes sense to step back a bit
and to briefly contemplate the role of technology in finance. This will put one in a
position to better judge the role Python already plays and, even more importantly,
will probably play in the financial industry of the future.

In a sense, technology per se is nothing special to financial institutions (as compared,
for instance, to biotechnology companies) or to the finance function (as compared to
other corporate functions, like logistics). However, in recent years, spurred by inno‐
vation and also regulation, banks and other financial institutions like hedge funds
have evolved more and more into technology companies instead of being just finan‐
cial intermediaries. Technology has become a major asset for almost any financial
institution around the globe, having the potential to lead to competitive advantages
as well as disadvantages. Some background information can shed light on the reasons
for this development.
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Technology Spending
Banks and financial institutions together form the industry that spends the most on
technology on an annual basis. The following statement therefore shows not only that
technology is important for the financial industry, but that the financial industry is
also really important to the technology sector:

FRAMINGHAM, Mass., June 14, 2018 – Worldwide spending on information tech‐
nology (IT) by financial services firms will be nearly $500 billion in 2021, growing
from $440 billion in 2018, according to new data from a series of Financial Services IT
Spending Guides from International Data Corporation (IDC).

—IDC

In particular, banks and other financial institutions are engaging in a race to make
their business and operating models digital:

Bank spending on new technologies was predicted to amount to 19.9 billion U.S. dol‐
lars in 2017 in North America.
The banks develop current systems and work on new technological solutions in order
to increase their competitiveness on the global market and to attract clients interested
in new online and mobile technologies. It is a big opportunity for global fintech com‐
panies which provide new ideas and software solutions for the banking industry.

—Statista

Large multinational banks today generally employ thousands of developers to main‐
tain existing systems and build new ones. Large investment banks with heavy techno‐
logical requirements often have technology budgets of several billion USD per year.

Technology as Enabler
The technological development has also contributed to innovations and efficiency
improvements in the financial sector. Typically, projects in this area run under the
umbrella of digitalization.

The financial services industry has seen drastic technology-led changes over the past
few years. Many executives look to their IT departments to improve efficiency and
facilitate game-changing innovation—while somehow also lowering costs and con‐
tinuing to support legacy systems. Meanwhile, FinTech start-ups are encroaching
upon established markets, leading with customer-friendly solutions developed from
the ground up and unencumbered by legacy systems.

—PwC 19th Annual Global CEO Survey 2016

As a side effect of the increasing efficiency, competitive advantages must often be
looked for in ever more complex products or transactions. This in turn inherently
increases risks and makes risk management as well as oversight and regulation more
and more difficult. The financial crisis of 2007 and 2008 tells the story of potential
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dangers resulting from such developments. In a similar vein, “algorithms and com‐
puters gone wild” represent a potential risk to the financial markets; this materialized
dramatically in the so-called flash crash of May 2010, where automated selling led to
large intraday drops in certain stocks and stock indices. Part IV covers topics related
to the algorithmic trading of financial instruments.

Technology and Talent as Barriers to Entry
On the one hand, technology advances reduce cost over time, ceteris paribus. On the
other hand, financial institutions continue to invest heavily in technology to both
gain market share and defend their current positions. To be active today in certain
areas in finance often brings with it the need for large-scale investments in both tech‐
nology and skilled staff. As an example, consider the derivatives analytics space:

Aggregated over the total software lifecycle, firms adopting in-house strategies for
OTC [derivatives] pricing will require investments between $25 million and $36 mil‐
lion alone to build, maintain, and enhance a complete derivatives library.

—Ding (2010)

Not only is it costly and time-consuming to build a full-fledged derivatives analytics
library, but you also need to have enough experts to do so. And these experts have to
have the right tools and technologies available to accomplish their tasks. With the
development of the Python ecosystem, such efforts have become more efficient and
budgets in this regard can be reduced significantly today compared to, say, 10 years
ago. Part V covers derivatives analytics and builds a small but powerful and flexible
derivatives pricing library with Python and standard Python packages alone.

Another quote about the early days of Long-Term Capital Management (LTCM), for‐
merly one of the most respected quantitative hedge funds—which, however, went
bust in the late 1990s—further supports this insight about technology and talent:

Meriwether spent $20 million on a state-of-the-art computer system and hired a crack
team of financial engineers to run the show at LTCM, which set up shop in Greenwich,
Connecticut. It was risk management on an industrial level.

—Patterson (2010)

The same computing power that Meriwether had to buy for millions of dollars is
today probably available for thousands or can be rented from a cloud provider based
on a flexible fee plan. Chapter 2 shows how to set up an infrastructure in the cloud
for interactive financial analytics, application development, and deployment with
Python. The budgets for such a professional infrastructure start at a few USD per
month. On the other hand, trading, pricing, and risk management have become so
complex for larger financial institutions that today they need to deploy IT infrastruc‐
tures with tens of thousands of computing cores.
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Ever-Increasing Speeds, Frequencies, and Data Volumes
The one dimension of the finance industry that has been influenced most by techno‐
logical advances is the speed and frequency with which financial transactions are
decided and executed. Lewis (2014) describes so-called flash trading—i.e., trading at
the highest speeds possible—in vivid detail.

On the one hand, increasing data availability on ever-smaller time scales makes it
necessary to react in real time. On the other hand, the increasing speed and frequency
of trading makes the data volumes further increase. This leads to processes that rein‐
force each other and push the average time scale for financial transactions systemati‐
cally down. This is a trend that had already started a decade ago:

Renaissance’s Medallion fund gained an astonishing 80 percent in 2008, capitalizing
on the market’s extreme volatility with its lightning-fast computers. Jim Simons was
the hedge fund world’s top earner for the year, pocketing a cool $2.5 billion.

—Patterson (2010)

Thirty years’ worth of daily stock price data for a single stock represents roughly
7,500 closing quotes. This kind of data is what most of today’s finance theory is based
on. For example, modern or mean-variance portfolio theory (MPT), the capital asset
pricing model (CAPM), and value-at-risk (VaR) all have their foundations in daily
stock price data.

In comparison, on a typical trading day during a single trading hour the stock price
of Apple Inc. (AAPL) may be quoted around 15,000 times—roughly twice the number
of quotes compared to available end-of-day closing quotes over 30 years (see the
example in “Data-Driven and AI-First Finance” on page 24). This brings with it a
number of challenges:

Data processing
It does not suffice to consider and process end-of-day quotes for stocks or other
financial instruments; “too much” happens during the day, and for some instru‐
ments during 24 hours for 7 days a week.

Analytics speed
Decisions often have to be made in milliseconds or even faster, making it neces‐
sary to build the respective analytics capabilities and to analyze large amounts of
data in real time.

Theoretical foundations
Although traditional finance theories and concepts are far from being perfect,
they have been well tested (and sometimes well rejected) over time; for the milli‐
second and microsecond scales important as of today, consistent financial con‐
cepts and theories in the traditional sense that have proven to be somewhat
robust over time are still missing.
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All these challenges can in general only be addressed by modern technology. Some‐
thing that might also be a little bit surprising is that the lack of consistent theories
often is addressed by technological approaches, in that high-speed algorithms exploit
market microstructure elements (e.g., order flow, bid-ask spreads) rather than relying
on some kind of financial reasoning.

The Rise of Real-Time Analytics
There is one discipline that has seen a strong increase in importance in the finance
industry: financial and data analytics. This phenomenon has a close relationship to
the insight that speeds, frequencies, and data volumes increase at a rapid pace in the
industry. In fact, real-time analytics can be considered the industry’s answer to this
trend.

Roughly speaking, “financial and data analytics” refers to the discipline of applying
software and technology in combination with (possibly advanced) algorithms and
methods to gather, process, and analyze data in order to gain insights, to make deci‐
sions, or to fulfill regulatory requirements, for instance. Examples might include the
estimation of sales impacts induced by a change in the pricing structure for a finan‐
cial product in the retail branch of a bank, or the large-scale overnight calculation of
credit valuation adjustments (CVA) for complex portfolios of derivatives trades of an
investment bank.

There are two major challenges that financial institutions face in this context:

Big data
Banks and other financial institutions had to deal with massive amounts of data
even before the term “big data” was coined; however, the amount of data that has
to be processed during single analytics tasks has increased tremendously over
time, demanding both increased computing power and ever-larger memory and
storage capacities.

Real-time economy
In the past, decision makers could rely on structured, regular planning as well as
decision and (risk) management processes, whereas they today face the need to
take care of these functions in real time; several tasks that have been taken care of
in the past via overnight batch runs in the back office have now been moved to
the front office and are executed in real time.

Again, one can observe an interplay between advances in technology and financial/
business practice. On the one hand, there is the need to constantly improve analytics
approaches in terms of speed and capability by applying modern technologies. On
the other hand, advances on the technology side allow new analytics approaches that
were considered impossible (or infeasible due to budget constraints) a couple of years
or even months ago.
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One major trend in the analytics space has been the utilization of parallel architec‐
tures on the central processing unit (CPU) side and massively parallel architectures
on the general-purpose graphics processing unit (GPGPU) side. Current GPGPUs
have computing cores in the thousands, making necessary a sometimes radical
rethinking of what parallelism might mean to different algorithms. What is still an
obstacle in this regard is that users generally have to learn new programming para‐
digms and techniques to harness the power of such hardware.

Python for Finance
The previous section described selected aspects characterizing the role of technology
in finance:

• Costs for technology in the finance industry
• Technology as an enabler for new business and innovation
• Technology and talent as barriers to entry in the finance industry
• Increasing speeds, frequencies, and data volumes
• The rise of real-time analytics

This section analyzes how Python can help in addressing several of the challenges
these imply. But first, on a more fundamental level, a brief analysis of Python for
finance from a language and syntax point of view.

Finance and Python Syntax
Most people who make their first steps with Python in a finance context may attack
an algorithmic problem. This is similar to a scientist who, for example, wants to solve
a differential equation, evaluate an integral, or simply visualize some data. In general,
at this stage, little thought is given to topics like a formal development process, test‐
ing, documentation, or deployment. However, this especially seems to be the stage
where people fall in love with Python. A major reason for this might be that Python
syntax is generally quite close to the mathematical syntax used to describe scientific
problems or financial algorithms.

This can be illustrated by a financial algorithm, namely the valuation of a European
call option by Monte Carlo simulation. The example considers a Black-Scholes-
Merton (BSM) setup in which the option’s underlying risk factor follows a geometric
Brownian motion.

Assume the following numerical parameter values for the valuation:

• Initial stock index level S0 = 100
• Strike price of the European call option K = 105
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• Time to maturity T = 1 year
• Constant, riskless short rate r = 0.05
• Constant volatility σ = 0.2

In the BSM model, the index level at maturity is a random variable given by Equation
1-1, with z being a standard normally distributed random variable.

Equation 1-1. Black-Scholes-Merton (1973) index level at maturity

ST = S0 exp ((r –
1
2 σ 2)T + σ T z)

The following is an algorithmic description of the Monte Carlo valuation procedure:

1. Draw I pseudo-random numbers z(i), i ∈ {1, 2, ..., I }, from the standard normal
distribution.

2. Calculate all resulting index levels at maturity ST (i) for given z(i) and Equation
1-1.

3. Calculate all inner values of the option at maturity as hT(i) = max(ST(i) – K, 0).
4. Estimate the option present value via the Monte Carlo estimator as given in

Equation 1-2.

Equation 1-2. Monte Carlo estimator for European option

C0 ≈ e –rT 1
I ∑

I
h T (i)

This problem and algorithm must now be translated into Python. The following code
implements the required steps:

In [6]: import math
        import numpy as np  

In [7]: S0 = 100.  
        K = 105.  
        T = 1.0  
        r = 0.05  
        sigma = 0.2  

In [8]: I = 100000  

In [9]: np.random.seed(1000)  

In [10]: z = np.random.standard_normal(I)  
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In [11]: ST = S0 * np.exp((r - sigma ** 2 / 2) * T + sigma * math.sqrt(T) * z)  

In [12]: hT = np.maximum(ST - K, 0)  

In [13]: C0 = math.exp(-r * T) * np.mean(hT)  

In [14]: print('Value of the European call option: {:5.3f}.'.format(C0))  
         Value of the European call option: 8.019.

NumPy is used here as the main package.

The model and simulation parameter values are defined.

The seed value for the random number generator is fixed.

Standard normally distributed random numbers are drawn.

End-of-period values are simulated.

The option payoffs at maturity are calculated.

The Monte Carlo estimator is evaluated.

The resulting value estimate is printed.

Three aspects are worth highlighting:

Syntax
The Python syntax is indeed quite close to the mathematical syntax, e.g., when it
comes to the parameter value assignments.

Translation
Every mathematical and/or algorithmic statement can generally be translated
into a single line of Python code.

Vectorization
One of the strengths of NumPy is the compact, vectorized syntax, e.g., allowing for
100,000 calculations within a single line of code.

This code can be used in an interactive environment like IPython or Jupyter Note‐
book. However, code that is meant to be reused regularly typically gets organized in
so-called modules (or scripts), which are single Python files (technically text files)
with the suffix .py. Such a module could in this case look like Example 1-1 and could
be saved as a file named bsm_mcs_euro.py.
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Example 1-1. Monte Carlo valuation of European call option

#
# Monte Carlo valuation of European call option
# in Black-Scholes-Merton model
# bsm_mcs_euro.py
#
# Python for Finance, 2nd ed.
# (c) Dr. Yves J. Hilpisch
#
import math
import numpy as np

# Parameter Values
S0 = 100.  # initial index level
K = 105.  # strike price
T = 1.0  # time-to-maturity
r = 0.05  # riskless short rate
sigma = 0.2  # volatility

I = 100000  # number of simulations

# Valuation Algorithm
z = np.random.standard_normal(I)  # pseudo-random numbers
# index values at maturity
ST = S0 * np.exp((r - 0.5 * sigma ** 2) * T + sigma * math.sqrt(T) * z)
hT = np.maximum(ST - K, 0)  # payoff at maturity
C0 = math.exp(-r * T) * np.mean(hT)  # Monte Carlo estimator

# Result Output
print('Value of the European call option %5.3f.' % C0)

The algorithmic example in this subsection illustrates that Python, with its very syn‐
tax, is well suited to complement the classic duo of scientific languages, English and
mathematics. It seems that adding Python to the set of scientific languages makes it
more well rounded. One then has:

• English for writing and talking about scientific and financial problems, etc.
• Mathematics for concisely, exactly describing and modeling abstract aspects, algo‐

rithms, complex quantities, etc.
• Python for technically modeling and implementing abstract aspects, algorithms,

complex quantities, etc.
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Mathematics and Python Syntax

There is hardly any programming language that comes as close to
mathematical syntax as Python. Numerical algorithms are there‐
fore in general straightforward to translate from the mathematical
representation into the Pythonic implementation. This makes pro‐
totyping, development, and code maintenance in finance quite effi‐
cient with Python.

In some areas, it is common practice to use pseudo-code and therewith to introduce a
fourth language family member. The role of pseudo-code is to represent, for example,
financial algorithms in a more technical fashion that is both still close to the mathe‐
matical representation and already quite close to the technical implementation. In
addition to the algorithm itself, pseudo-code takes into account how computers work
in principle.

This practice generally has its cause in the fact that with most (compiled) program‐
ming languages the technical implementation is quite “far away” from its formal,
mathematical representation. The majority of programming languages make it neces‐
sary to include so many elements that are only technically required that it is hard to
see the equivalence between the mathematics and the code.

Nowadays, Python is often used in a pseudo-code way since its syntax is almost analo‐
gous to the mathematics and since the technical “overhead” is kept to a minimum.
This is accomplished by a number of high-level concepts embodied in the language
that not only have their advantages but also come in general with risks and/or other
costs. However, it is safe to say that with Python you can, whenever the need arises,
follow the same strict implementation and coding practices that other languages
might require from the outset. In that sense, Python can provide the best of both
worlds: high-level abstraction and rigorous implementation.

Efficiency and Productivity Through Python
At a high level, benefits from using Python can be measured in three dimensions:

Efficiency
How can Python help in getting results faster, in saving costs, and in saving time?

Productivity
How can Python help in getting more done with the same resources (people,
assets, etc.)?

Quality
What does Python allow one to do that alternative technologies do not allow for?
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A discussion of these aspects can by nature not be exhaustive. However, it can high‐
light some arguments as a starting point.

Shorter time-to-results
A field where the efficiency of Python becomes quite obvious is interactive data ana‐
lytics. This is a field that benefits tremendously from such powerful tools as IPython,
Jupyter Notebook, and packages like pandas.

Consider a finance student who is writing their master’s thesis and is interested in
S&P 500 index values. They want to analyze historical index levels for, say, a few
years to see how the volatility of the index has fluctuated over time and hope to find
evidence that volatility, in contrast to some typical model assumptions, fluctuates
over time and is far from being constant. The results should also be visualized. The
student mainly has to do the following:

• Retrieve index level data from the web
• Calculate the annualized rolling standard deviation of the log returns (volatility)
• Plot the index level data and the volatility results

These tasks are complex enough that not too long ago one would have considered
them to be something for professional financial analysts only. Today, even the
finance student can easily cope with such problems. The following code shows how
exactly this works—without worrying about syntax details at this stage (everything is
explained in detail in subsequent chapters):

In [16]: import numpy as np  
         import pandas as pd  
         from pylab import plt, mpl  

In [17]: plt.style.use('seaborn')  
         mpl.rcParams['font.family'] = 'serif'  
         %matplotlib inline

In [18]: data = pd.read_csv('../../source/tr_eikon_eod_data.csv',
                           index_col=0, parse_dates=True)  
         data = pd.DataFrame(data['.SPX']) 
         data.dropna(inplace=True)  
         data.info()  
         <class 'pandas.core.frame.DataFrame'>
         DatetimeIndex: 2138 entries, 2010-01-04 to 2018-06-29
         Data columns (total 1 columns):
         .SPX    2138 non-null float64
         dtypes: float64(1)
         memory usage: 33.4 KB

In [19]: data['rets'] = np.log(data / data.shift(1))  
         data['vola'] = data['rets'].rolling(252).std() * np.sqrt(252)  
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In [20]: data[['.SPX', 'vola']].plot(subplots=True, figsize=(10, 6));  

This imports NumPy and pandas.

This imports matplotlib and configures the plotting style and approach for
Jupyter.

pd.read_csv() allows the retrieval of remotely or locally stored data sets in
comma-separated values (CSV) form.

A subset of the data is picked and NaN (“not a number”) values eliminated.

This shows some metainformation about the data set.

The log returns are calculated in vectorized fashion (“no looping” on the Python
level).

The rolling, annualized volatility is derived.

This finally plots the two time series.

Figure 1-1 shows the graphical result of this brief interactive session. It can be consid‐
ered almost amazing that a few lines of code suffice to implement three rather com‐
plex tasks typically encountered in financial analytics: data gathering, complex and
repeated mathematical calculations, as well as visualization of the results. The exam‐
ple illustrates that pandas makes working with whole time series almost as simple as
doing mathematical operations on floating-point numbers.

Translated to a professional finance context, the example implies that financial ana‐
lysts can—when applying the right Python tools and packages that provide high-level
abstractions—focus on their domain and not on the technical intrinsicalities. Ana‐
lysts can also react faster, providing valuable insights almost in real time and making
sure they are one step ahead of the competition. This example of increased efficiency
can easily translate into measurable bottom-line effects.
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Figure 1-1. S&P 500 closing values and annualized volatility

Ensuring high performance
In general, it is accepted that Python has a rather concise syntax and that it is rela‐
tively efficient to code with. However, due to the very nature of Python being an
interpreted language, the prejudice persists that Python often is too slow for
compute-intensive tasks in finance. Indeed, depending on the specific implementa‐
tion approach, Python can be really slow. But it does not have to be slow—it can be
highly performing in almost any application area. In principle, one can distinguish at
least three different strategies for better performance:

Idioms and paradigms
In general, many different ways can lead to the same result in Python, but some‐
times with rather different performance characteristics; “simply” choosing the
right way (e.g., a specific implementation approach, such as the judicious use of
data structures, avoiding loops through vectorization, or the use of a specific
package such as pandas) can improve results significantly.

Compiling
Nowadays, there are several performance packages available that provide com‐
piled versions of important functions or that compile Python code statically or
dynamically (at runtime or call time) to machine code, which can make such
functions orders of magnitude faster than pure Python code; popular ones are
Cython and Numba.
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Parallelization
Many computational tasks, in particular in finance, can significantly benefit from
parallel execution; this is nothing special to Python but something that can easily
be accomplished with it.

Performance Computing with Python

Python per se is not a high-performance computing technology.
However, Python has developed into an ideal platform to access
current performance technologies. In that sense, Python has
become something like a glue language for performance computing
technologies.

This subsection sticks to a simple, but still realistic, example that touches upon all
three strategies (later chapters illustrate the strategies in detail). A quite common task
in financial analytics is to evaluate complex mathematical expressions on large arrays
of numbers. To this end, Python itself provides everything needed:

In [21]: import math
         loops = 2500000
         a = range(1, loops)
         def f(x):
             return 3 * math.log(x) + math.cos(x) ** 2
         %timeit r = [f(x) for x in a]
         1.59 s ± 41.2 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)

The Python interpreter needs about 1.6 seconds in this case to evaluate the function
f() 2,500,000 times. The same task can be implemented using NumPy, which provides
optimized (i.e., precompiled) functions to handle such array-based operations:

In [22]: import numpy as np
         a = np.arange(1, loops)
         %timeit r = 3 * np.log(a) + np.cos(a) ** 2
         87.9 ms ± 1.73 ms per loop (mean ± std. dev. of 7 runs, 10 loops each)

Using NumPy considerably reduces the execution time to about 88 milliseconds. How‐
ever, there is even a package specifically dedicated to this kind of task. It is called
numexpr, for “numerical expressions.” It compiles the expression to improve upon the
performance of the general NumPy functionality by, for example, avoiding in-memory
copies of ndarray objects along the way:

In [23]: import numexpr as ne
         ne.set_num_threads(1)
         f = '3 * log(a) + cos(a) ** 2'
         %timeit r = ne.evaluate(f)
         50.6 ms ± 4.2 ms per loop (mean ± std. dev. of 7 runs, 10 loops each)
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Using this more specialized approach further reduces execution time to about 50
milliseconds. However, numexpr also has built-in capabilities to parallelize the execu‐
tion of the respective operation. This allows us to use multiple threads of a CPU:

In [24]: ne.set_num_threads(4)
         %timeit r = ne.evaluate(f)
         22.8 ms ± 1.76 ms per loop (mean ± std. dev. of 7 runs, 10 loops each)

Parallelization brings execution time further down to below 23 milliseconds in this
case, with four threads utilized. Overall, this is a performance improvement of more
than 90 times. Note, in particular, that this kind of improvement is possible without
altering the basic problem/algorithm and without knowing any detail about compil‐
ing or parallelization approaches. The capabilities are accessible from a high level
even by non-experts. However, one has to be aware, of course, of which capabilities
and options exist.

This example shows that Python provides a number of options to make more out of
existing resources—i.e., to increase productivity. With the parallel approach, three
times as many calculations can be accomplished in the same amount of time as com‐
pared to the sequential approach—in this case simply by telling Python to use multi‐
ple available CPU threads instead of just one.

From Prototyping to Production
Efficiency in interactive analytics and performance when it comes to execution speed
are certainly two benefits of Python to consider. Yet another major benefit of using
Python for finance might at first sight seem a bit subtler; at second sight, it might
present itself as an important strategic factor for financial institutions. It is the possi‐
bility to use Python end-to-end, from prototyping to production.

Today’s practice in financial institutions around the globe, when it comes to financial
development processes, is still often characterized by a separated, two-step process.
On the one hand, there are the quantitative analysts (“quants”) responsible for model
development and technical prototyping. They like to use tools and environments like
Matlab and R that allow for rapid, interactive application development. At this stage
of the development efforts, issues like performance, stability, deployment, access
management, and version control, among others, are not that important. One is
mainly looking for a proof of concept and/or a prototype that exhibits the main
desired features of an algorithm or a whole application.

Once the prototype is finished, IT departments with their developers take over and
are responsible for translating the existing prototype code into reliable, maintainable,
and performant production code. Typically, at this stage there is a paradigm shift in
that compiled languages, such as C++ or Java, are used to fulfill the requirements for
deployment and production. Also, a formal development process with professional
tools, version control, etc., is generally applied.
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This two-step approach has a number of generally unintended consequences:

Inefficiencies
Prototype code is not reusable; algorithms have to be implemented twice; redun‐
dant efforts take time and resources; risks arise during translation

Diverse skill sets
Different departments show different skill sets and use different languages to
implement “the same things”; people not only program but also speak different
languages

Legacy code
Code is available and has to be maintained in different languages, often using dif‐
ferent styles of implementation

Using Python, on the other hand, enables a streamlined end-to-end process from the
first interactive prototyping steps to highly reliable and efficiently maintainable pro‐
duction code. The communication between different departments becomes easier.
The training of the workforce is also more streamlined in that there is only one major
language covering all areas of financial application building. It also avoids the inher‐
ent inefficiencies and redundancies when using different technologies in different
steps of the development process. All in all, Python can provide a consistent techno‐
logical framework for almost all tasks in financial analytics, financial application
development, and algorithm implementation.

Data-Driven and AI-First Finance
Basically all the observations regarding the relationship of technology and the finan‐
cial industry first formulated in 2014 for the first edition of this book still seem pretty
current and important in August 2018, at the time of updating this chapter for the
second edition of the book. However, this section comments on two major trends in
the financial industry that are about to reshape it in a fundamental way. These two
trends have mainly crystallized themselves over the last few years.

Data-Driven Finance
Some of the most important financial theories, such as MPT and CAPM, date as far
back as to the 1950s and 1960s. However, they still represent a cornerstone in the
education of students in such fields as economics, finance, financial engineering, and
business administration. This might be surprising since the empirical support for
most of these theories is meager at best, and the evidence is often in complete con‐
trast to what the theories suggest and imply. On the other hand, their popularity is
understandable since they are close to humans’ expectations of how financial markets
might behave and since they are elegant mathematical theories resting on a number
of appealing, if in general too simplistic, assumptions.
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The scientific method, say in physics, starts with data, for example from experiments
or observations, and moves on to hypotheses and theories that are then tested against
the data. If the tests are positive, the hypotheses and theories might be refined and
properly written down, for instance, in the form of a research paper for publication.
If the tests are negative, the hypotheses and theories are rejected and the search
begins anew for ones that conform with the data. Since physical laws are stable over
time, once such a law is discovered and well tested it is generally there to stay, in the
best case, forever.

The history of (quantitative) finance in large parts contradicts the scientific method.
In many cases, theories and models have been developed “from scratch” on the basis
of simplifying mathematical assumptions with the goal of discovering elegant
answers to central problems in finance. Among others, popular assumptions in
finance are normally distributed returns for financial instruments and linear relation‐
ships between quantities of interest. Since these phenomena are hardly ever found in
financial markets, it should not come as a surprise that empirical evidence for the ele‐
gant theories is often lacking. Many financial theories and models have been formu‐
lated, proven, and published first and have only later been tested empirically. To
some extent, this is of course due to the fact that financial data back in the 1950s to
the 1970s or even later was not available in the form that it is today even to students
getting started with a bachelor’s in finance.

The availability of such data to financial institutions has drastically increased since
the early to mid-1990s, and nowadays even individuals doing financial research or
getting involved in algorithmic trading have access to huge amounts of historical data
down to the tick level as well as real-time tick data via streaming services. This allows
us to return to the scientific method, which starts in general with the data before
ideas, hypotheses, models, and strategies are devised.

A brief example shall illustrate how straightforward it has become today to retrieve
professional data on a large scale even on a local machine, making use of Python and
a professional data subscription to the Eikon Data APIs. The following example
retrieves tick data for the Apple Inc. stock for one hour during a regular trading day.
About 15,000 tick quotes, including volume information, are retrieved. While the
symbol for the stock is AAPL, the Reuters Instrument Code (RIC) is AAPL.O:

In [26]: import eikon as ek  

In [27]: data = ek.get_timeseries('AAPL.O', fields='*',
                                  start_date='2018-10-18 16:00:00',
                                  end_date='2018-10-18 17:00:00',
                                  interval='tick')  

In [28]: data.info()  
         <class 'pandas.core.frame.DataFrame'>
         DatetimeIndex: 35350 entries, 2018-10-18 16:00:00.002000 to 2018-10-18
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          16:59:59.888000
         Data columns (total 2 columns):
         VALUE     35285 non-null float64
         VOLUME    35350 non-null float64
         dtypes: float64(2)
         memory usage: 828.5 KB

In [29]: data.tail()  
Out[29]: AAPL.O                    VALUE  VOLUME
         Date
         2018-10-18 16:59:59.433  217.13    10.0
         2018-10-18 16:59:59.433  217.13    12.0
         2018-10-18 16:59:59.439  217.13   231.0
         2018-10-18 16:59:59.754  217.14   100.0
         2018-10-18 16:59:59.888  217.13   100.0

Eikon Data API usage requires a subscription and an API connection.

Retrieves the tick data for the Apple Inc. (AAPL.O) stock.

Shows the last five rows of tick data.

The Eikon Data APIs give access not only to structured financial data, such as histori‐
cal price data, but also to unstructured data such as news articles. The next example
retrieves metadata for a small selection of news articles and shows the beginning of
one of the articles as full text:

In [30]: news = ek.get_news_headlines('R:AAPL.O Language:LEN',
                                  date_from='2018-05-01',
                                  date_to='2018-06-29',
                                  count=7)  

In [31]: news  
Out[31]:
                                     versionCreated  \
    2018-06-28 23:00:00.000 2018-06-28 23:00:00.000
    2018-06-28 21:23:26.526 2018-06-28 21:23:26.526
    2018-06-28 19:48:32.627 2018-06-28 19:48:32.627
    2018-06-28 17:33:10.306 2018-06-28 17:33:10.306
    2018-06-28 17:33:07.033 2018-06-28 17:33:07.033
    2018-06-28 17:31:44.960 2018-06-28 17:31:44.960
    2018-06-28 17:00:00.000 2018-06-28 17:00:00.000

                                                                          text  \
    2018-06-28 23:00:00.000  RPT-FOCUS-AI ambulances and robot doctors: Chi...
    2018-06-28 21:23:26.526  Why Investors Should Love Apple's (AAPL) TV En...
    2018-06-28 19:48:32.627  Reuters Insider - Trump: We're reclaiming our ...
    2018-06-28 17:33:10.306  Apple v. Samsung ends not with a whimper but a...
    2018-06-28 17:33:07.033  Apple's trade-war discount extended for anothe...
    2018-06-28 17:31:44.960  Other Products: Apple's fast-growing island of...
    2018-06-28 17:00:00.000  Pokemon Go creator plans to sell the tech behi...
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                                                                  storyId  \
    2018-06-28 23:00:00.000  urn:newsml:reuters.com:20180628:nL4N1TU4F8:6
    2018-06-28 21:23:26.526  urn:newsml:reuters.com:20180628:nNRA6e2vft:1
    2018-06-28 19:48:32.627  urn:newsml:reuters.com:20180628:nRTV1vNw1p:1
    2018-06-28 17:33:10.306  urn:newsml:reuters.com:20180628:nNRA6e1oza:1
    2018-06-28 17:33:07.033  urn:newsml:reuters.com:20180628:nNRA6e1pmv:1
    2018-06-28 17:31:44.960  urn:newsml:reuters.com:20180628:nNRA6e1m3n:1
    2018-06-28 17:00:00.000  urn:newsml:reuters.com:20180628:nL1N1TU0PC:3

                            sourceCode
    2018-06-28 23:00:00.000    NS:RTRS
    2018-06-28 21:23:26.526  NS:ZACKSC
    2018-06-28 19:48:32.627    NS:CNBC
    2018-06-28 17:33:10.306  NS:WALLST
    2018-06-28 17:33:07.033  NS:WALLST
    2018-06-28 17:31:44.960  NS:WALLST
    2018-06-28 17:00:00.000    NS:RTRS

In [32]: story_html = ek.get_news_story(news.iloc[1, 2])  

In [33]: from bs4 import BeautifulSoup  

In [34]: story = BeautifulSoup(story_html, 'html5lib').get_text()  

In [35]: print(story[83:958])  
         Jun 28, 2018 For years, investors and Apple AAPL have been beholden to
          the iPhone, which is hardly a negative since its flagship product is
          largely responsible for turning Apple into one of the world's biggest
          companies. But Apple has slowly pushed into new growth areas, with
          streaming television its newest frontier. So let's take a look at what
          Apple has planned as it readies itself to compete against the likes of
          Netflix NFLX and Amazon AMZN in the battle for the new age of
          entertainment.Apple's second-quarter revenues jumped by 16% to reach
          $61.14 billion, with iPhone revenues up 14%. However, iPhone unit sales
          climbed only 3% and iPhone revenues accounted for over 62% of total Q2
          sales. Apple knows this is not a sustainable business model, because
          rare is the consumer product that can remain in vogue for decades. This
          is why Apple has made a big push into news,

Retrieves metadata for a small selection of news articles.

Retrieves the full text of a single article, delivered as an HTML document.

Imports the BeautifulSoup HTML parsing package and …

… extracts the contents as plain text (a str object).

Prints the beginning of the news article.
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Although just scratching the surface, these two examples illustrate that structured
and unstructured historical financial data is available in a standardized, efficient way
via Python wrapper packages and data subscription services. In many circumstances,
similar data sets can be accessed for free even by individuals who make use of, for
instance, trading platforms such as the one by FXCM Group, LLC, that is introduced
in Chapter 14 and also used in Chapter 16. Once the data is on the Python level—
independent from the original source—the full power of the Python data analytics
ecosystem can be harnessed.

Data-Driven Finance

Data is what drives finance these days. Even some of the largest
and often most successful hedge funds call themselves “data-
driven” instead of “finance-driven.” More and more offerings are
making huge amounts of data available to large and small institu‐
tions and individuals. Python is generally the programming lan‐
guage of choice to interact with the APIs and to process and
analyze the data.

AI-First Finance
With the availability of large amounts of financial data via programmatic APIs, it has
become much easier and more fruitful to apply methods from artificial intelligence
(AI) in general and from machine and deep learning (ML, DL) in particular to finan‐
cial problems, such as in algorithmic trading.

Python can be considered a first-class citizen in the AI world as well. It is often the
programming language of choice for AI researchers and practitioners alike. In that
sense, the financial domain benefits from developments in diverse fields, sometimes
not even remotely connected to finance. As one example consider the TensorFlow
open source package for deep learning, which is developed and maintained by Goo‐
gle Inc. and used by (among others) its parent company Alphabet Inc. in its efforts to
build, produce, and sell self-driving cars.

Although for sure not even remotely related to the problem of automatically, algo‐
rithmically trading stock, TensorFlow can, for example, be used to predict move‐
ments in financial markets. Chapter 15 provides a number of examples in this regard.

One of the most widely used Python packages for ML is scikit-learn. The code that
follows shows how, in a highly simplified manner, classification algorithms from ML
can be used to predict the direction of future market price movements and to base an
algorithmic trading strategy on those predictions. All the details are explained in
Chapter 15, so the example is therefore rather concise. First, the data import and the
preparation of the features data (directional lagged log return data):
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In [36]: import numpy as np
         import pandas as pd

In [37]: data = pd.read_csv('../../source/tr_eikon_eod_data.csv',
                            index_col=0, parse_dates=True)
         data = pd.DataFrame(data['AAPL.O'])  
         data['Returns'] = np.log(data / data.shift())  
         data.dropna(inplace=True)

In [38]: lags = 6

In [39]: cols = []
         for lag in range(1, lags + 1):
             col = 'lag_{}'.format(lag)
             data[col] = np.sign(data['Returns'].shift(lag))  
             cols.append(col)
         data.dropna(inplace=True)

Selects historical end-of-day data for the Apple Inc. stock (AAPL.O).

Calculates the log returns over the complete history.

Generates DataFrame columns with directional lagged log return data (+1 or -1).

Next, the instantiation of a model object for a support vector machine (SVM) algo‐
rithm, the fitting of the model, and the prediction step. Figure 1-2 shows that the
prediction-based trading strategy, going long or short on Apple Inc. stock depending
on the prediction, outperforms the passive benchmark investment in the stock itself:

In [40]: from sklearn.svm import SVC

In [41]: model = SVC(gamma='auto')  

In [42]: model.fit(data[cols], np.sign(data['Returns']))  
Out[42]: SVC(C=1.0, cache_size=200, class_weight=None, coef0=0.0,
           decision_function_shape='ovr', degree=3, gamma='auto', kernel='rbf',
           max_iter=-1, probability=False, random_state=None, shrinking=True,
           tol=0.001, verbose=False)

In [43]: data['Prediction'] = model.predict(data[cols])  

In [44]: data['Strategy'] = data['Prediction'] * data['Returns']  

In [45]: data[['Returns', 'Strategy']].cumsum().apply(np.exp).plot(
                 figsize=(10, 6));  

Instantiates the model object.

Fits the model, given the features and the label data (all directional).
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Uses the fitted model to create the predictions (in-sample), which are the posi‐
tions of the trading strategy at the same time (long or short).

Calculates the log returns of the trading strategy given the prediction values and
the benchmark log returns.

Plots the performance of the ML-based trading strategy compared to the perfor‐
mance of the passive benchmark investment.

Figure 1-2. ML-based algorithmic trading strategy vs. passive benchmark investment in
Apple Inc. stock

The simplified approach taken here does not account for transaction costs, nor does
it separate the data set into training and testing subsets. However, it shows how
straightforward the application of ML algorithms to financial data is, at least in a
technical sense; practically, a number of important topics need to be considered (see
López de Prado (2018)).

AI-First Finance

AI will reshape finance in a way that other fields have been resha‐
ped already. The availability of large amounts of financial data via
programmatic APIs functions as an enabler in this context. Basic
methods from AI, ML, and DL are introduced in Chapter 13 and
applied to algorithmic trading in Chapters 15 and 16. A proper
treatment of AI-first finance, however, would require a book fully
dedicated to the topic.
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AI in finance, as a natural extension of data-driven finance, is for sure a fascinating
and exciting field, both from a research and a practitioner’s point of view. Although
this book uses several methods from AI, ML, and DL in different contexts, overall the
focus lies—in line with the subtitle of the book—on the fundamental Python techni‐
ques and approaches needed for data-driven finance. These are, however, equally
important for AI-first finance.

Conclusion
Python as a language—and even more so as an ecosystem—is an ideal technological
framework for the financial industry as whole and the individual working in finance
alike. It is characterized by a number of benefits, like an elegant syntax, efficient
development approaches, and usability for prototyping as well as production. With
its huge amount of available packages, libraries, and tools, Python seems to have
answers to most questions raised by recent developments in the financial industry in
terms of analytics, data volumes and frequency, compliance and regulation, as well as
technology itself. It has the potential to provide a single, powerful, consistent frame‐
work with which to streamline end-to-end development and production efforts even
across larger financial institutions.

In addition, Python has become the programming language of choice for artificial
intelligence in general and machine and deep learning in particular. Python is there‐
fore the right language for data-driven finance as well as for AI-first finance, two
recent trends that are about to reshape finance and the financial industry in funda‐
mental ways.

Further Resources
The following books cover several aspects only touched upon in this chapter in more
detail (e.g., Python tools, derivatives analytics, machine learning in general, and
machine learning in finance):

• Hilpisch, Yves (2015). Derivatives Analytics with Python. Chichester, England:
Wiley Finance.

• López de Prado, Marcos (2018). Advances in Financial Machine Learning.
Hoboken, NJ: John Wiley & Sons.

• VanderPlas, Jake (2016). Python Data Science Handbook. Sebastopol, CA:
O’Reilly.

When it comes to algorithmic trading, the author’s company offers a range of online
training programs that focus on Python and other tools and techniques required in
this rapidly growing field:
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• http://pyalgo.tpq.io
• http://certificate.tpq.io

Sources referenced in this chapter are, among others, the following:

• Ding, Cubillas (2010). “Optimizing the OTC Pricing and Valuation Infrastruc‐
ture.” Celent.

• Lewis, Michael (2014). Flash Boys. New York: W. W. Norton & Company.
• Patterson, Scott (2010). The Quants. New York: Crown Business.
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1 This edition is based on version 3.7 (the latest major release at the time of writing) of CPython, the original
and most popular version of the Python programming language.

CHAPTER 2

Python Infrastructure

In building a house, there is the problem of the selection of wood.
It is essential that the carpenter’s aim be to carry equipment that will cut well and,
when he has time, to sharpen that equipment.

—Miyamoto Musashi (The Book of Five Rings)

For someone new to Python, Python deployment might seem all but straightforward.
The same holds true for the wealth of libraries and packages that can be installed
optionally. First of all, there is not only one Python. Python comes in many different
flavors, like CPython, Jython, IronPython, and PyPy. Then there is the divide
between Python 2.7 and the 3.x world.1

Even after you’ve decided on a version, deployment is difficult for a number of addi‐
tional reasons:

• The interpreter (a standard CPython installation) only comes with the so-called
standard library (e.g., covering typical mathematical functions)

• Optional Python packages need to be installed separately—and there are hun‐
dreds of them

• Compiling/building such nonstandard packages on your own can be tricky due
to dependencies and operating system–specific requirements

• Taking care of these dependencies and of version consistency over time (i.e.,
maintenance) is often tedious and time consuming
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2 A recent project called pipenv combines the capabilities of the package manager pip with those of the virtual
environment manager virtualenv.

• Updates and upgrades for certain packages might necessitate recompiling a mul‐
titude of other packages

• Changing or replacing one package might cause trouble in (many) other places

Fortunately, there are tools and strategies available that can help. This chapter covers
the following types of technologies that help with Python deployment:

Package managers
Package managers like pip and conda help with the installing, updating, and
removing of Python packages; they also help with version consistency of differ‐
ent packages.

Virtual environment managers
A virtual environment manager like virtualenv or conda allows you to manage
multiple Python installations in parallel (e.g., to have both a Python 2.7 and 3.7
install on a single machine or to test the most recent development version of a
fancy Python package without risk).2

Containers
Docker containers represent complete filesystems containing all the pieces of a
system needed to run certain software, like code, runtime, or system tools. For
example, you can run an Ubuntu 18.04 operating system with a Python 3.7 install
and the respective Python code in a Docker container hosted on a machine run‐
ning macOS or Windows 10.

Cloud instances
Deploying Python code for financial applications generally requires high availa‐
bility, security, and also performance; these requirements can typically only be
met by the use of professional compute and storage infrastructure that is nowa‐
days available at attractive conditions in the form of fairly small to really large
and powerful cloud instances. One benefit of a cloud instance (i.e., a virtual
server) compared to a dedicated server rented longer-term is that users generally
get charged only for the hours of actual usage; another advantage is that such
cloud instances are available literally in a minute or two if needed, which helps
with agile development and also with scalability.

The structure of this chapter is as follows:

“conda as a Package Manager” on page 35
This section introduces conda as a package manager for Python.
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“conda as a Virtual Environment Manager” on page 41
This section focuses on conda’s capabilities as a virtual environment manager.

“Using Docker Containers” on page 45
This section gives a brief overview of Docker as a containerization technology
and focuses on the building of an Ubuntu-based container with a Python 3.7
installation.

“Using Cloud Instances” on page 50
The section shows how to deploy Python and Jupyter Notebook—a powerful,
browser-based tool suite for Python development—in the cloud.

The goal of this chapter is to set up a proper Python installation with the most impor‐
tant tools as well as numerical, data analysis, and visualization packages on a profes‐
sional infrastructure. This combination then serves as the backbone for
implementing and deploying the Python code in later chapters, be it interactive
financial analytics code or code in the form of scripts and modules.

conda as a Package Manager
Although conda can be installed standalone, an efficient way of doing it is via Mini‐
conda, a minimal Python distribution including conda as a package and virtual envi‐
ronment manager.

Installing Miniconda
Miniconda is available for Windows, macOS, and Linux. You can download the dif‐
ferent versions from the Miniconda webpage. In what follows, the Python 3.7 64-bit
version is assumed. The main example in this section is a session in an Ubuntu-based
Docker container which downloads the Linux 64-bit installer via wget and then
installs Miniconda. The code as shown should work—perhaps with minor modifica‐
tions—on any other Linux- or macOS-based machine as well:

$ docker run -ti -h py4fi -p 11111:11111 ubuntu:latest /bin/bash

root@py4fi:/# apt-get update; apt-get upgrade -y
...
root@py4fi:/# apt-get install -y bzip2 gcc wget
...
root@py4fi:/# cd root
root@py4fi:~# wget \
> https://repo.continuum.io/miniconda/Miniconda3-latest-Linux-x86_64.sh \
> -O miniconda.sh
...
HTTP request sent, awaiting response... 200 OK
Length: 62574861 (60M) [application/x-sh]
Saving to: 'miniconda.sh'
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miniconda.sh         100%[====================>]  59.68M  5.97MB/s    in 11s

2018-09-15 09:44:28 (5.42 MB/s) - 'miniconda.sh' saved [62574861/62574861]

root@py4fi:~# bash miniconda.sh

Welcome to Miniconda3 4.5.11

In order to continue the installation process, please review the license
agreement.
Please, press ENTER to continue
>>>

Simply pressing the Enter key starts the installation process. After reviewing the
license agreement, approve the terms by answering yes:

...
Do you accept the license terms? [yes|no]
[no] >>> yes

Miniconda3 will now be installed into this location:
/root/miniconda3

  - Press ENTER to confirm the location
  - Press CTRL-C to abort the installation
  - Or specify a different location below

[/root/miniconda3] >>>
PREFIX=/root/miniconda3
installing: python-3.7. ...
...
installing: requests-2.19.1-py37_0 ...
installing: conda-4.5.11-py37_0 ...
installation finished.

After you have agreed to the licensing terms and have confirmed the install location
you should allow Miniconda to prepend the new Miniconda install location to the
PATH environment variable by answering yes once again:

Do you wish the installer to prepend the Miniconda3 install location
to PATH in your /root/.bashrc ? [yes|no]
[no] >>> yes

Appending source /root/miniconda3/bin/activate to /root/.bashrc
A backup will be made to: /root/.bashrc-miniconda3.bak

For this change to become active, you have to open a new terminal.

Thank you for installing Miniconda3!
root@py4fi:~#
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3 The Miniconda installer is in general not as regularly updated as conda and Python themselves.

After that, you might want to upgrade conda as well as Python:3

root@py4fi:~# export PATH="/root/miniconda3/bin/:$PATH"
root@py4fi:~# conda update -y conda python
...
root@py4fi:~# echo ". /root/miniconda3/etc/profile.d/conda.sh" >> ~/.bashrc
root@py4fi:~# bash

After this rather simple installation procedure, you’ll have a basic Python install as
well as conda available. The basic Python install comes with some nice batteries
included, like the SQLite3 database engine. You might try out whether you can start
Python in a new shell instance after appending the relevant path to the respective
environment variable (as done previously):

root@py4fi:~# python
Python 3.7.0 (default, Jun 28 2018, 13:15:42)
[GCC 7.2.0] :: Anaconda, Inc. on linux
Type "help", "copyright", "credits" or "license" for more information.
>>> print('Hello Python for Finance World.')
Hello Python for Finance World.
>>> exit()
root@py4fi:~#

Basic Operations with conda
conda can be used to efficiently handle, among other things, the installing, updating,
and removing of Python packages. The following list provides an overview of the
major functions:

Installing Python x.x
conda install python=x.x

Updating Python
conda update python

Installing a package
conda install $PACKAGE_NAME

Updating a package
conda update $PACKAGE_NAME

Removing a package
conda remove $PACKAGE_NAME

Updating conda itself
conda update conda
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4 Installing the metapackage nomkl, e.g. with conda install numpy nomkl, avoids the automatic installation
and usage of mkl and related other packages.

Searching for packages
conda search $SEARCH_TERM

Listing installed packages
conda list

Given these capabilities, installing, for example, NumPy—one of the most important
libraries of the so-called scientific stack—requires a single command only. When the
installation takes place on a machine with an Intel processor, the procedure automat‐
ically installs the Intel Math Kernel Library (mkl), which speeds up numerical opera‐
tions not only for NumPy but also for a few other scientific Python packages:4

root@py4fi:~# conda install numpy
Solving environment: done

## Package Plan ##

  environment location: /root/miniconda3

  added / updated specs:
    - numpy

The following packages will be downloaded:

    package                    |            build
    ---------------------------|-----------------
    mkl-2019.0                 |              117       204.4 MB
    intel-openmp-2019.0        |              117         721 KB
    mkl_random-1.0.1           |   py37h4414c95_1         372 KB
    libgfortran-ng-7.3.0       |       hdf63c60_0         1.3 MB
    numpy-1.15.1               |   py37h1d66e8a_0          37 KB
    numpy-base-1.15.1          |   py37h81de0dd_0         4.2 MB
    blas-1.0                   |              mkl           6 KB
    mkl_fft-1.0.4              |   py37h4414c95_1         149 KB
    ------------------------------------------------------------
                                           Total:       211.1 MB

The following NEW packages will be INSTALLED:

    blas:           1.0-mkl
    intel-openmp:   2019.0-117
    libgfortran-ng: 7.3.0-hdf63c60_0
    mkl:            2019.0-117
    mkl_fft:        1.0.4-py37h4414c95_1
    mkl_random:     1.0.1-py37h4414c95_1
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    numpy:          1.15.1-py37h1d66e8a_0
    numpy-base:     1.15.1-py37h81de0dd_0

Proceed ([y]/n)? y

Downloading and Extracting Packages
mkl-2019.0           | 204.4 MB  | ####################################### | 100%
...
numpy-1.15.1         | 37 KB     | ####################################### | 100%
numpy-base-1.15.1    | 4.2 MB    | ####################################### | 100%
...
root@py4fi:~#

Multiple packages can also be installed at once. The -y flag indicates that all (poten‐
tial) questions shall be answered with yes:

root@py4fi:/# conda install -y ipython matplotlib pandas pytables scikit-learn \
> scipy
...
pytables-3.4.4       | 1.5 MB    | ####################################### | 100%
kiwisolver-1.0.1     | 83 KB     | ####################################### | 100%
icu-58.2             | 22.5 MB   | ####################################### | 100%
Preparing transaction: done
Verifying transaction: done
Executing transaction: done
root@py4fi:~#

After the resulting installation procedure, some of the most important libraries for
financial analytics are available in addition to the standard ones. These include:

IPython

An improved interactive Python shell

matplotlib

The standard plotting library in Python

NumPy

For efficient handling of numerical arrays

pandas

For management of tabular data, like financial time series data

PyTables

A Python wrapper for the HDF5 library

scikit-learn

A package for machine learning and related tasks

SciPy

A collection of scientific classes and functions (installed as a dependency)
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This provides a basic tool set for data analysis in general and financial analytics in
particular. The next example uses IPython and draws a set of pseudo-random num‐
bers with NumPy:

root@py4fi:~# ipython
Python 3.7.0 (default, Jun 28 2018, 13:15:42)
Type 'copyright', 'credits' or 'license' for more information
IPython 6.5.0 -- An enhanced Interactive Python. Type '?' for help.

In [1]: import numpy as np

In [2]: np.random.seed(100)

In [3]: np.random.standard_normal((5, 4))
Out[3]:
array([[-1.74976547,  0.3426804 ,  1.1530358 , -0.25243604],
       [ 0.98132079,  0.51421884,  0.22117967, -1.07004333],
       [-0.18949583,  0.25500144, -0.45802699,  0.43516349],
       [-0.58359505,  0.81684707,  0.67272081, -0.10441114],
       [-0.53128038,  1.02973269, -0.43813562, -1.11831825]])

In [4]: exit
root@py4fi:~#

Executing conda list shows which packages are installed:

root@py4fi:~# conda list
# packages in environment at /root/miniconda3:
#
# Name                    Version                   Build  Channel
asn1crypto                0.24.0                   py37_0
backcall                  0.1.0                    py37_0
blas                      1.0                         mkl
blosc                     1.14.4               hdbcaa40_0
bzip2                     1.0.6                h14c3975_5
...
python                    3.7.0                hc3d631a_0
...
wheel                     0.31.1                   py37_0
xz                        5.2.4                h14c3975_4
yaml                      0.1.7                had09818_2
zlib                      1.2.11               ha838bed_2
root@py4fi:~#

If a package is not needed anymore, it is efficiently removed with conda remove:

root@py4fi:~# conda remove scikit-learn
Solving environment: done

## Package Plan ##

  environment location: /root/miniconda3
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  removed specs:
    - scikit-learn

The following packages will be REMOVED:

    scikit-learn: 0.19.1-py37hedc7406_0

Proceed ([y]/n)? y

Preparing transaction: done
Verifying transaction: done
Executing transaction: done
root@py4fi:~#

conda as a package manager is already quite useful. However, its full power only
becomes evident when adding virtual environment management to the mix.

Easy Package Management

Using conda as a package manager makes installing, updating, and
removing Python packages a pleasant experience. There is no need
to take care of building and compiling packages on your own—
which can be tricky sometimes, given the list of dependencies a
package specifies and the specifics to be considered on different
operating systems.

conda as a Virtual Environment Manager
Depending on the version of the installer you choose, Miniconda provides a default
Python 2.7 or 3.7 installation. The virtual environment management capabilities of
conda allow one, for example, to add to a Python 3.7 default installation a completely
separate installation of Python 2.7.x. To this end, conda offers the following function‐
ality:

Creating a virtual environment
conda create --name $ENVIRONMENT_NAME

Activating an environment
conda activate $ENVIRONMENT_NAME

Deactivating an environment
conda deactivate $ENVIRONMENT_NAME

Removing an environment
conda env remove --name $ENVIRONMENT_NAME
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Exporting to an environment file
conda env export > $FILE_NAME

Creating an environment from a file
conda env create -f $FILE_NAME

Listing all environments
conda info --envs

As a simple illustration, the example code that follows creates an environment called
py27, installs IPython, and executes a line of Python 2.7.x code:

root@py4fi:~# conda create --name py27 python=2.7
Solving environment: done

## Package Plan ##

  environment location: /root/miniconda3/envs/py27

  added / updated specs:
    - python=2.7

The following NEW packages will be INSTALLED:

    ca-certificates: 2018.03.07-0
...
    python:          2.7.15-h1571d57_0
...
    zlib:            1.2.11-ha838bed_2

Proceed ([y]/n)? y

Preparing transaction: done
Verifying transaction: done
Executing transaction: done
#
# To activate this environment, use:
# > conda activate py27
#
# To deactivate an active environment, use:
# > conda deactivate
#

root@py4fi:~#

Notice how the prompt changes to include (py27) after the activation of the
environment:

root@py4fi:~# conda activate py27
(py27) root@py4fi:~# conda install ipython
Solving environment: done
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...
Executing transaction: done
(py27) root@py4fi:~#

Finally, this allows you to use IPython with Python 2.7 syntax:

(py27) root@py4fi:~# ipython
Python 2.7.15 |Anaconda, Inc.| (default, May  1 2018, 23:32:55)
Type "copyright", "credits" or "license" for more information.

IPython 5.8.0 -- An enhanced Interactive Python.
?         -> Introduction and overview of IPython's features.
%quickref -> Quick reference.
help      -> Python's own help system.
object?   -> Details about 'object', use 'object??' for extra details.

In [1]: print "Hello Python for Finance World!"
Hello Python for Finance World!

In [2]: exit
(py27) root@py4fi:~#

As this example demonstrates, using conda as a virtual environment manager allows
you to install different Python versions alongside each other. It also allows you to
install different versions of certain packages. The default Python install is not influ‐
enced by such a procedure, nor are other environments which might exist on the
same machine. All available environments can be shown via conda env list:

(py27) root@py4fi:~# conda env list
# conda environments:
#
base                     /root/miniconda3
py27                  *  /root/miniconda3/envs/py27

(py27) root@py4fi:~#

Sometimes it is necessary to share environment information with others or to use
environment information on multiple machines. To this end, one can export the
installed packages list to a file with conda env export. This only works properly by
default if the machines use the same operating system, since the build versions are
specified in the resulting YAML file, but they can be deleted to only specify the pack‐
age version:

(py27) root@py4fi:~# conda env export --no-builds > py27env.yml
(py27) root@py4fi:~# cat py27env.yml
name: py27
channels:
  - defaults
dependencies:
  - backports=1.0
...
  - python=2.7.15
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5 In the official documentation you find the following explanation: “Python ‘Virtual Environments’ allow
Python packages to be installed in an isolated location for a particular application, rather than being installed
globally.”

...
  - zlib=1.2.11
prefix: /root/miniconda3/envs/py27

(py27) root@py4fi:~#

Often a virtual environment, which is technically not that much more than a certain
(sub)folder structure, is created to do some quick tests.5 In such a case, the environ‐
ment is easily removed after deactivation via conda env remove:

(py27) root@py4fi:/# conda deactivate
root@py4fi:~# conda env remove -y --name py27

Remove all packages in environment /root/miniconda3/envs/py27:

## Package Plan ##

  environment location: /root/miniconda3/envs/py27

The following packages will be REMOVED:

    backports:                          1.0-py27_1
...
    zlib:                               1.2.11-ha838bed_2

root@py4fi:~#

This concludes the overview of conda as a virtual environment manager.

Easy Environment Management

conda does not only help with managing packages; it is also a vir‐
tual environment manager for Python. It simplifies the creation of
different Python environments, allowing you to have multiple ver‐
sions of Python and optional packages available on the same
machine without them influencing each other in any way. conda
also allows you to export environment information so you can
easily replicate it on multiple machines or share it with others.
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6 See Matthias and Kane (2015) for a comprehensive introduction to the Docker technology.

7 If the terms are not yet clear, they will become so in Chapter 6.

Using Docker Containers
Docker containers have taken the IT world by storm. Although the technology is still
relatively young, it has established itself as one of the benchmarks for the efficient
development and deployment of almost any kind of software application.

For the purposes of this book it suffices to think of a Docker container as a separate
(“containerized”) filesystem that includes an operating system (e.g., Ubuntu Server
18.04), a (Python) runtime, additional system and development tools, as well as fur‐
ther (Python) libraries and packages as needed. Such a Docker container might run
on a local machine with Windows 10 or on a cloud instance with a Linux operating
system, for instance.

This section does not go into all the exciting details of Docker containers. It is rather
a concise illustration of what the Docker technology can do in the context of Python
deployment.6

Docker Images and Containers
However, before moving on to the illustration, two fundamental concepts need to be
distinguished when talking about Docker. The first is a Docker image, which can be
compared to a Python class. The second is a Docker container, which can be com‐
pared to an instance of the respective Python class.7

On a more technical level, you find the following definition for an image in the
Docker glossary:

Docker images are the basis of containers. An Image is an ordered collection of root
filesystem changes and the corresponding execution parameters for use within a con‐
tainer runtime. An image typically contains a union of layered filesystems stacked on
top of each other. An image does not have state and it never changes.

Similarly, you find the following definition for a container in the Docker glossary,
which makes the analogy to Python classes and instances of such classes transparent:

A container is a runtime instance of a Docker image. A Docker container consists of: a
Docker image, an execution environment, and a standard set of instructions.

Depending on the operating system, the installation of Docker is somewhat different.
That is why this section does not go into the details. More information and further
links are found on the About Docker CE page.
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8 Consult Robbins (2016) for a concise introduction to and quick overview of bash scripting. Also see https://
www.gnu.org/software/bash.

Building an Ubuntu and Python Docker Image
This section illustrates the building of a Docker image based on the latest version of
Ubuntu, which includes Miniconda as well as a few important Python packages. In
addition, it does some Linux housekeeping by updating the Linux packages index,
upgrading packages if required, and installing certain additional system tools. To this
end, two scripts are needed. One is a bash script that does all the work on the Linux
level.8 The other is a so-called Dockerfile, which controls the building procedure for
the image itself.

The bash script in Example 2-1 that does the installing consists of three major parts.
The first part handles the Linux housekeeping. The second part installs Miniconda,
while the third part installs optional Python packages. There are also more detailed
comments inline.

Example 2-1. Script installing Python and optional packages

#!/bin/bash
#
# Script to Install
# Linux System Tools and
# Basic Python Components
#
# Python for Finance, 2nd ed.
# (c) Dr. Yves J. Hilpisch
#
# GENERAL LINUX
apt-get update  # updates the package index cache
apt-get upgrade -y  # updates packages
# installs system tools
apt-get install -y bzip2 gcc git htop screen vim wget
apt-get upgrade -y bash  # upgrades bash if necessary
apt-get clean  # cleans up the package index cache

# INSTALL MINICONDA
# downloads Miniconda
wget https://repo.continuum.io/miniconda/Miniconda3-latest-Linux-x86_64.sh -O \
  Miniconda.sh
bash Miniconda.sh -b  # installs it
rm -rf Miniconda.sh  # removes the installer
export PATH="/root/miniconda3/bin:$PATH"  # prepends the new path

# INSTALL PYTHON LIBRARIES
conda update -y conda python # updates conda & Python (if required)
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conda install -y pandas  # installs pandas
conda install -y ipython  # installs IPython shell

The Dockerfile in Example 2-2 uses the bash script in Example 2-1 to build a new
Docker image. It also has its major parts commented inline.

Example 2-2. Dockerfile to build the image

#
# Building a Docker Image with
# the Latest Ubuntu Version and
# Basic Python Install
#
# Python for Finance, 2nd ed.
# (c) Dr. Yves J. Hilpisch
#

# latest Ubuntu version
FROM ubuntu:latest

# information about maintainer
MAINTAINER yves

# add the bash script
ADD install.sh /

# change rights for the script
RUN chmod u+x /install.sh

# run the bash script
RUN /install.sh

# prepend the new path
ENV PATH /root/miniconda3/bin:$PATH

# execute IPython when container is run
CMD ["ipython"]

If these two files are in a single folder and Docker is installed, then the building of the
new Docker image is straightforward. Here, the tag py4fi:basic is used for the
image. This tag is needed to reference the image, for example when running a con‐
tainer based on it:

~/Docker$ docker build -t py4fi:basic .

...

Removing intermediate container 5fec0c9b2239
 ---> accee128d9e9
Step 6/7 : ENV PATH /root/miniconda3/bin:$PATH
 ---> Running in a2bb97686255
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Removing intermediate container a2bb97686255
 ---> 73b00c215351
Step 7/7 : CMD ["ipython"]
 ---> Running in ec7acd90c991
Removing intermediate container ec7acd90c991
 ---> 6c36b9117cd2
Successfully built 6c36b9117cd2
Successfully tagged py4fi:basic
~/Docker$

Existing Docker images can be listed via docker images. The new image should be at
the top of the list:

(py4fi) ~/Docker$ docker images
REPOSITORY       TAG             IMAGE ID            CREATED              SIZE
py4fi            basic           6c36b9117cd2        About a minute ago   1.79GB
ubuntu           latest          cd6d8154f1e1        9 days ago           84.1MB
(py4fi) ~/Docker$

Successfully building the py4fi:basic allows you to run the respective Docker con‐
tainer with docker run. The parameter combination -ti is needed for interactive
processes running within a Docker container, like a shell process (see the docker run
reference page):

~/Docker$ docker run -ti py4fi:basic
Python 3.7.0 (default, Jun 28 2018, 13:15:42)
Type 'copyright', 'credits' or 'license' for more information
IPython 6.5.0 -- An enhanced Interactive Python. Type '?' for help.

In [1]: import numpy as np

In [2]: a = np.random.standard_normal((5, 3))

In [3]: import pandas as pd

In [4]: df = pd.DataFrame(a, columns=['a', 'b', 'c'])

In [5]: df
Out[5]:
          a         b         c
0 -1.412661 -0.881592  1.704623
1 -1.294977  0.546676  1.027046
2  1.156361  1.979057  0.989772
3  0.546736 -0.479821  0.693907
4 -1.972943 -0.193964  0.769500

In [6]:

Exiting IPython will exit the container as well since it is the only application running
within the container. However, you can detach from a container by typing Ctrl-P
+Ctrl-Q.
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The docker ps command will still show the running container (and any other cur‐
rently running containers) after you’ve detached from it:

~/Docker$ docker ps
CONTAINER ID  IMAGE          COMMAND      CREATED             STATUS
e815df8f0f4d  py4fi:basic    "ipython"    About a minute ago  Up About a minute
4518917de7dc  ubuntu:latest  "/bin/bash"  About an hour ago   Up About an hour
d081b5c7add0  ubuntu:latest  "/bin/bash"  21 hours ago        Up 21 hours
~/Docker$

Attaching to a Docker container is accomplished with the command docker attach
$CONTAINER_ID (notice that a few letters of the $CONTAINER_ID are enough):

~/Docker$ docker attach e815d

In [6]: df.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 5 entries, 0 to 4
Data columns (total 3 columns):
a    5 non-null float64
b    5 non-null float64
c    5 non-null float64
dtypes: float64(3)
memory usage: 200.0 bytes

In [7]: exit
~/Docker$

The exit command terminates IPython and stops the Docker container. It can be
removed with docker rm:

~/Docker$ docker rm e815d
e815d
~/Docker$

Similarly, the Docker image py4fi:basic can be removed via docker rmi if not
needed any longer. While containers are relatively lightweight, single images might
consume quite a bit of storage. In the case of the py4fi:basic image, the size is close
to 2 GB. That is why you might want to regularly clean up the list of Docker images:

~/Docker$ docker rmi 6c36b9117cd2

Of course, there is much more to say about Docker containers and their benefits in
certain application scenarios. But for the purposes of this book, it’s enough to know
that they provide a modern approach to deploy Python, to do Python development in
a completely separate (containerized) environment, and to ship codes for algorithmic
trading.
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9 New users who sign up via this referral link get a starting credit of 10 USD for DigitalOcean.

Benefits of Docker Containers

If you are not yet using Docker containers, you should consider
doing so. They provide a number of benefits when it comes to
Python deployment and development efforts, not only when work‐
ing locally but in particular when working with remote cloud
instances and servers deploying code for algorithmic trading.

Using Cloud Instances
This section shows how to set up a full-fledged Python infrastructure on a
DigitalOcean cloud instance. There are many other cloud providers out there, among
them the leading provider, Amazon Web Services (AWS). However, DigitalOcean is
well known for its simplicity and also its relatively low rates for its smaller cloud
instances, called Droplets. The smallest Droplet, which is generally sufficient for
exploration and development purposes, only costs 5 USD per month or 0.007 USD
per hour. Usage is charged by the hour so that one can easily spin up a Droplet for 2
hours, say, destroy it afterward, and get charged just 0.014 USD.9

The goal of this section is to set up a Droplet on DigitalOcean that has a Python 3.7
installation plus typically needed packages (e.g., NumPy, pandas) in combination with
a password-protected and Secure Sockets Layer (SSL)–encrypted Jupyter Notebook
server installation. This server installation will provide three major tools that can be
used via a regular browser:

Jupyter Notebook
A popular interactive development environment that features a selection of dif‐
ferent language kernels (e.g., for Python, R, and Julia).

Terminal
A system shell implementation accessible via the browser that allows for all typi‐
cal system administration tasks and for usage of helpful tools like Vim and git.

Editor
A browser-based file editor with syntax highlighting for many different program‐
ming languages and file types as well as typical text/code editing capabilities.

Having Jupyter Notebook installed on a Droplet allows you to do Python develop‐
ment and deployment via the browser, circumventing the need to log in to the cloud
instance via Secure Shell (SSH) access.
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10 With a self-generated certificate you might need to add a security exception when prompted by the browser.

To accomplish the goal of this section, a number of files are needed:

Server setup script
This script orchestrates all the steps necessary, like, for instance, copying other
files to the Droplet and running them on the Droplet.

Python and Jupyter installation script
This installs Python, additional packages, and Jupyter Notebook, and starts the
Jupyter Notebook server.

Jupyter Notebook configuration file
This file is for the configuration of the Jupyter Notebook server, e.g., with respect
to password protection.

RSA public and private key files
These two files are needed for the SSL encryption of the Jupyter Notebook server.

The following subsections work backward through this list of files.

RSA Public and Private Keys
In order to create a secure connection to the Jupyter Notebook server via an arbitrary
browser, an SSL certificate consisting of RSA public and private keys is needed. In
general, one would expect such a certificate to come from a so-called Certificate
Authority (CA). For the purposes of this book, however, a self-generated certificate is
“good enough.”10 A popular tool to generate RSA key pairs is OpenSSL. The brief
interactive session that follows shows how to generate a certificate appropriate for use
with a Jupyter Notebook server (insert your own values for the country name and
other fields after the prompts):

~/cloud$ openssl req -x509 -nodes -days 365 -newkey \
> rsa:1024 -out cert.pem -keyout cert.key
Generating a 1024 bit RSA private key
..++++++
.......++++++
writing new private key to 'cert.key'

You are about to be asked to enter information that will be incorporated into your
certificate request. What you are about to enter is what is called a Distinguished
Name or a DN. There are quite a few fields, but you can leave some blank and others
will have a default value. If you enter ., the field will be left blank.

Country Name (2 letter code) [AU]:DE
State or Province Name (full name) [Some-State]:Saarland
Locality Name (eg, city) []:Voelklingen
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Organization Name (eg, company) [Internet Widgits Pty Ltd]:TPQ GmbH
Organizational Unit Name (eg, section) []:Python for Finance
Common Name (e.g. server FQDN or YOUR name) []:Jupyter
Email Address []:team@tpq.io
~/cloud$ ls
cert.key    cert.pem
~/cloud$

The two files cert.key and cert.pem need to be copied to the Droplet and need to be
referenced by the Jupyter Notebook configuration file. This file is presented next.

Jupyter Notebook Configuration File
A public Jupyter Notebook server can be deployed securely as explained in the docu‐
mentation. Among other features, Jupyter Notebook can be password protected. To
this end, there is a password hash code–generating function called passwd() available
in the notebook.auth subpackage. The following code generates a password hash
code with jupyter being the password itself:

~/cloud$ ipython
Python 3.7.0 (default, Jun 28 2018, 13:15:42)
Type 'copyright', 'credits' or 'license' for more information
IPython 6.5.0 -- An enhanced Interactive Python. Type '?' for help.

In [1]: from notebook.auth import passwd

In [2]: passwd('jupyter')
Out[2]: 'sha1:d4d34232ac3a:55ea0ffd78cc3299e3e5e6ecc0d36be0935d424b'

In [3]: exit

This hash code needs to be placed in the Jupyter Notebook configuration file as pre‐
sented in Example 2-3. The configuration file assumes that the RSA key files have
been copied on the Droplet to the /root/.jupyter/ folder.

Example 2-3. Jupyter Notebook configuration file

#
# Jupyter Notebook Configuration File
#
# Python for Finance, 2nd ed.
# (c) Dr. Yves J. Hilpisch
#
# SSL ENCRYPTION
# replace the following filenames (and files used) with your choice/files
c.NotebookApp.certfile = u'/root/.jupyter/cert.pem'
c.NotebookApp.keyfile = u'/root/.jupyter/cert.key'

# IP ADDRESS AND PORT
# set ip to '*' to bind on all IP addresses of the cloud instance
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c.NotebookApp.ip = '*'
# it is a good idea to set a known, fixed default port for server access
c.NotebookApp.port = 8888

# PASSWORD PROTECTION
# here: 'jupyter' as password
# replace the hash code with the one for your strong password
c.NotebookApp.password = 'sha1:d4d34232ac3a:55ea0ffd78cc3299e3e5e6ecc0d36be0935d424b'

# NO BROWSER OPTION
# prevent Jupyter from trying to open a browser
c.NotebookApp.open_browser = False

Jupyter and Security

Deploying Jupyter Notebook in the cloud principally leads to a
number of security issues since it is a full-fledged development
environment accessible via a web browser. It is therefore of para‐
mount importance to use the security measures that a Jupyter
Notebook server provides by default, like password protection and
SSL encryption. But this is just the beginning; further security
measures might be advisable depending on what exactly is done on
the cloud instance.

The next step is to make sure that Python and Jupyter Notebook get installed on the
Droplet.

Installation Script for Python and Jupyter Notebook
The bash script to install Python and Jupyter Notebook is similar to the one presen‐
ted in “Using Docker Containers” on page 45 to install Python via Miniconda in a
Docker container. However, the script in Example 2-4 needs to start the Jupyter
Notebook server as well. All major parts and lines of code are commented inline.

Example 2-4. Bash script to install Python and to run the Jupyter Notebook server

#!/bin/bash
#
# Script to Install
# Linux System Tools,
# Basic Python Packages and
# Jupyter Notebook Server
#
# Python for Finance, 2nd ed.
# (c) Dr. Yves J. Hilpisch
#
# GENERAL LINUX
apt-get update  # updates the package index cache
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apt-get upgrade -y  # updates packages
apt-get install -y bzip2 gcc git htop screen vim wget  # installs system tools
apt-get upgrade -y bash  # upgrades bash if necessary
apt-get clean  # cleans up the package index cache

# INSTALLING MINICONDA
wget https://repo.continuum.io/miniconda/Miniconda3-latest-Linux-x86_64.sh -O \
  Miniconda.sh
bash Miniconda.sh -b  # installs Miniconda
rm Miniconda.sh  # removes the installer
# prepends the new path for current session
export PATH="/root/miniconda3/bin:$PATH"
# prepends the new path in the shell configuration
echo ". /root/miniconda3/etc/profile.d/conda.sh" >> ~/.bashrc
echo "conda activate" >> ~/.bashrc

# INSTALLING PYTHON LIBRARIES
# More packages can/must be added
# depending on the use case.
conda update -y conda # updates conda if required
conda create -y -n py4fi python=3.7  # creates an environment
source activate py4fi  # activates the new environment
conda install -y jupyter  # interactive data analytics in the browser
conda install -y pytables  # wrapper for HDF5 binary storage
conda install -y pandas  #  data analysis package
conda install -y matplotlib  # standard plotting library
conda install -y scikit-learn  # machine learning library
conda install -y openpyxl  # library for Excel interaction
conda install -y pyyaml  # library to manage YAML files

pip install --upgrade pip  # upgrades the package manager
pip install cufflinks  # combining plotly with pandas

# COPYING FILES AND CREATING DIRECTORIES
mkdir /root/.jupyter
mv /root/jupyter_notebook_config.py /root/.jupyter/
mv /root/cert.* /root/.jupyter
mkdir /root/notebook
cd /root/notebook

# STARTING JUPYTER NOTEBOOK
jupyter notebook --allow-root

# STARTING JUPYTER NOTEBOOK
# as background process:
# jupyter notebook --allow-root &

This script needs to be copied to the Droplet and needs to be started by the orchestra‐
tion script as described in the next subsection.
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11 If you need assistance, visit either “How to Add SSH Keys to Droplets” or “How to Create SSH Keys with
PuTTY on Windows”.

Script to Orchestrate the Droplet Setup
The second bash script, which sets up the Droplet, is the shortest one (Example 2-5).
It mainly copies all the other files to the Droplet, whose IP address is expected as a
parameter. In the final line it starts the install.sh bash script, which in turn does the
installation itself and starts the Jupyter Notebook server.

Example 2-5. Bash script to set up the Droplet

#!/bin/bash
#
# Setting up a DigitalOcean Droplet
# with Basic Python Stack
# and Jupyter Notebook
#
# Python for Finance, 2nd ed.
# (c) Dr Yves J Hilpisch
#

# IP ADDRESS FROM PARAMETER
MASTER_IP=$1

# COPYING THE FILES
scp install.sh root@${MASTER_IP}:
scp cert.* jupyter_notebook_config.py root@${MASTER_IP}:

# EXECUTING THE INSTALLATION SCRIPT
ssh root@${MASTER_IP} bash /root/install.sh

Everything is now in place to give the setup code a try. On DigitalOcean, create a new
Droplet with options similar to these:

Operating system
Ubuntu 18.10 x64 (the newest version available at the time of this writing)

Size
1 core, 1 GB, 25 GB SSD (the smallest Droplet)

Data center region
Frankfurt (since your author lives in Germany)

SSH key
Add a (new) SSH key for password-less login 11
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Droplet name
You can go with the prespecified name or can choose something like py4fi

Clicking the Create button initiates the Droplet creation process, which generally
takes about one minute. The major outcome of the setup procedure is the IP address,
which might be, for instance, 46.101.156.199 if you chose Frankfurt as your data cen‐
ter location. Setting up the Droplet now is as easy as follows:

(py3) ~/cloud$ bash setup.sh 46.101.156.199

The resulting process might take a couple of minutes. It is finished when there is a
message from the Jupyter Notebook server saying something like:

The Jupyter Notebook is running at: https://[all ip addresses on your
system]:8888/

In any current browser, visiting the following address accesses the running Jupyter
Notebook server (note the https protocol):

https://46.101.156.199:8888

After perhaps requesting that you add a security exception, the Jupyter Notebook
login screen prompting for a password (in our case, jupyter) should appear. You are
now ready to start Python development in the browser via Jupyter Notebook, IPy‐
thon via a terminal window, or the text file editor. Other file management capabili‐
ties, such as file upload, deletion of files, and creation of folders, are also available.

Benefits of the Cloud

Cloud instances like those from DigitalOcean and Jupyter Note‐
book are a powerful combination, allowing the Python developer
and quant to work on and make use of professional compute and
storage infrastructure. Professional cloud and data center providers
make sure that your (virtual) machines are physically secure and
highly available. Using cloud instances also keeps the cost of the
exploration and development phase rather low, since usage gener‐
ally gets charged by the hour without the need to enter into a long-
term agreement.

Conclusion
Python is the programming language and technology platform of choice, not only for
this book but for almost every leading financial institution. However, Python deploy‐
ment can be tricky at best and sometimes even tedious and nerve-wracking. Fortu‐
nately, several technologies that help with the deployment issue have become
available in recent years. The open source conda helps with both Python package and
virtual environment management. Docker containers go even further, in that com‐
plete filesystems and runtime environments can be easily created in a technically
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shielded “sandbox” (i.e., the container). Going even one step further, cloud providers
like DigitalOcean offer compute and storage capacity in professionally managed and
secured data centers within minutes, billed by the hour. This in combination with a
Python 3.7 installation and a secure Jupyter Notebook server installation provides a
professional environment for Python development and deployment in the context of
Python-for-finance projects.

Further Resources
For Python package management, consult the following resources:

• pip package manager page
• conda package manager page
• Installing Packages page

For virtual environment management, consult these resources:

• virtualenv environment manager page
• conda Managing Environments page
• pipenv package and environment manager

The following resources (among others) provide information about Docker
containers:

• Docker home page
• Matthias, Karl, and Sean Kane (2015). Docker: Up and Running. Sebastopol, CA:

O’Reilly.

For a concise introduction to and overview of the bash scripting language, see:

• Robbins, Arnold (2016). Bash Pocket Reference. Sebastopol, CA: O’Reilly.

How to run a public Jupyter Notebook server securely is explained in the Jupyter Note‐
book documentation. There is also a hub available that allows the management of
multiple users for a Jupyter Notebook server, called JupyterHub.

To sign up on DigitalOcean with a 10 USD starting balance in your new account, visit
the page http://bit.ly/do_sign_up. This pays for two months of usage of the smallest
Droplet.
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PART II

Mastering the Basics

This part of the book is concerned with the basics of Python programming. The top‐
ics covered in this part are fundamental for all other chapters to follow in subsequent
parts and for Python usage in general.

The chapters are organized according to certain topics such that they can be used as a
reference to which the reader can come to look up examples and details related to the
topic of interest:

• Chapter 3 focuses on Python data types and structures.
• Chapter 4 is about NumPy and its ndarray class.
• Chapter 5 is about pandas and its DataFrame class.
• Chapter 6 discusses object-oriented programming (OOP) with Python.





CHAPTER 3

Data Types and Structures

Bad programmers worry about the code. Good programmers worry about data struc‐
tures and their relationships.

—Linus Torvalds

This chapter introduces the basic data types and data structures of Python, and is
organized as follows:

“Basic Data Types” on page 62
The first section introduces basic data types such as int, float, bool, and str.

“Basic Data Structures” on page 75
The second section introduces the fundamental data structures of Python (e.g.,
list objects) and illustrates, among other things, control structures, functional
programming approaches, and anonymous functions.

The aim of this chapter is to provide a general introduction to Python specifics when
it comes to data types and structures. The reader equipped with a background from
another programing language, say C or Matlab, should be able to easily grasp the dif‐
ferences that Python usage might bring along. The topics and idioms introduced here
are important and fundamental for the chapters to come.

The chapter covers the following data types and structures:

Object type Meaning Used for

int Integer value Natural numbers

float Floating-point number Real numbers

bool Boolean value Something true or false

str String object Character, word, text

tuple Immutable container Fixed set of objects, record
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1 The Cython package brings static typing and compiling features to Python that are comparable to those in C.
In fact, Cython is not only a package, it is a full-fledged hybrid programming language combining Python and
C.

Object type Meaning Used for

list Mutable container Changing set of objects

dict Mutable container Key-value store

set Mutable container Collection of unique objects

Basic Data Types
Python is a dynamically typed language, which means that the Python interpreter
infers the type of an object at runtime. In comparison, compiled languages like C are
generally statically typed. In these cases, the type of an object has to be specified for
the object before compile time.1

Integers
One of the most fundamental data types is the integer, or int:

In [1]: a = 10
        type(a)
Out[1]: int

The built-in function type provides type information for all objects with standard
and built-in types as well as for newly created classes and objects. In the latter case,
the information provided depends on the description the programmer has stored
with the class. There is a saying that “everything in Python is an object.” This means,
for example, that even simple objects like the int object just defined have built-in
methods. For example, one can get the number of bits needed to represent the int
object in memory by calling the method bit_length():

In [2]: a.bit_length()
Out[2]: 4

The number of bits needed increases the higher the integer value is that one assigns
to the object:

In [3]: a = 100000
        a.bit_length()
Out[3]: 17

In general, there are so many different methods that it is hard to memorize all meth‐
ods of all classes and objects. Advanced Python environments like IPython provide
tab completion capabilities that show all the methods attached to an object. You sim‐
ply type the object name followed by a dot (e.g., a.) and then press the Tab key. This
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2 This is different in Python 2.x, where floor division is the default. Floor division in Python 3.x is accom‐
plished by 3 // 4, which gives 0 as the result.

3 Here and in the following discussion, terms like float, float object, etc. are used interchangeably, acknowl‐
edging that every float is also an object. The same holds true for other object types.

then provides a collection of methods you can call on the object. Alternatively, the
Python built-in function dir gives a complete list of the attributes and methods of
any object.

A specialty of Python is that integers can be arbitrarily large. Consider, for example,
the googol number 10100. Python has no problem with such large numbers:

In [4]: googol = 10 ** 100
        googol
Out[4]: 10000000000000000000000000000000000000000000000000000000000000000000000000
        000000000000000000000000000

In [5]: googol.bit_length()
Out[5]: 333

Large Integers

Python integers can be arbitrarily large. The interpreter simply
uses as many bits/bytes as needed to represent the numbers.

Arithmetic operations on integers are also easy to implement:

In [6]: 1 + 4
Out[6]: 5

In [7]: 1 / 4
Out[7]: 0.25

In [8]: type(1 / 4)
Out[8]: float

Floats
The last expression returns the mathematically correct result of 0.25,2 which gives rise
to the next basic data type, the float. Adding a dot to an integer value, like in 1. or
1.0, causes Python to interpret the object as a float. Expressions involving a float
also return a float object in general:3

In [9]: 1.6 / 4
Out[9]: 0.4
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In [10]: type (1.6 / 4)
Out[10]: float

A float is a bit more involved in that the computerized representation of rational or
real numbers is in general not exact and depends on the specific technical approach
taken. To illustrate what this implies, let us define another float object, b. float
objects like this one are always represented internally up to a certain degree of accu‐
racy only. This becomes evident when adding 0.1 to b:

In [11]: b = 0.35
         type(b)
Out[11]: float

In [12]: b + 0.1
Out[12]: 0.44999999999999996

The reason for this is that float objects are internally represented in binary format;
that is, a decimal number 0 < n < 1 is represented by a series of the form
n = x

2 + y
4 + z

8 + .... For certain floating-point numbers the binary representation
might involve a large number of elements or might even be an infinite series. How‐
ever, given a fixed number of bits used to represent such a number—i.e., a fixed num‐
ber of terms in the representation series—inaccuracies are the consequence. Other
numbers can be represented perfectly and are therefore stored exactly even with a
finite number of bits available. Consider the following example:

In [13]: c = 0.5
         c.as_integer_ratio()
Out[13]: (1, 2)

One-half, i.e., 0.5, is stored exactly because it has an exact (finite) binary representa‐
tion as 0.5 = 1

2 . However, for b = 0.35 one gets something different than the
expected rational number 0.35 = 7

20 :

In [14]: b.as_integer_ratio()
Out[14]: (3152519739159347, 9007199254740992)

The precision is dependent on the number of bits used to represent the number. In
general, all platforms that Python runs on use the IEEE 754 double-precision stan‐
dard—i.e., 64 bits—for internal representation. This translates into a 15-digit relative
accuracy.

Since this topic is of high importance for several application areas in finance, it is
sometimes necessary to ensure the exact, or at least best possible, representation of
numbers. For example, the issue can be of importance when summing over a large set
of numbers. In such a situation, a certain kind and/or magnitude of representation
error might, in aggregate, lead to significant deviations from a benchmark value.
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The module decimal provides an arbitrary-precision object for floating-point num‐
bers and several options to address precision issues when working with such
numbers:

In [15]: import decimal
         from decimal import Decimal

In [16]: decimal.getcontext()
Out[16]: Context(prec=28, rounding=ROUND_HALF_EVEN, Emin=-999999, Emax=999999,
          capitals=1, clamp=0, flags=[], traps=[InvalidOperation, DivisionByZero,
          Overflow])

In [17]: d = Decimal(1) / Decimal (11)
         d
Out[17]: Decimal('0.09090909090909090909090909091')

One can change the precision of the representation by changing the respective
attribute value of the Context object:

In [18]: decimal.getcontext().prec = 4  

In [19]: e = Decimal(1) / Decimal (11)
         e
Out[19]: Decimal('0.09091')

In [20]: decimal.getcontext().prec = 50  

In [21]: f = Decimal(1) / Decimal (11)
         f
Out[21]: Decimal('0.090909090909090909090909090909090909090909090909091')

Lower precision than default.

Higher precision than default.

If needed, the precision can in this way be adjusted to the exact problem at hand and
one can operate with floating-point objects that exhibit different degrees of accuracy:

In [22]: g = d + e + f
         g
Out[22]: Decimal('0.27272818181818181818181818181909090909090909090909')

Arbitrary-Precision Floats

The module decimal provides an arbitrary-precision floating-point
number object. In finance, it might sometimes be necessary to
ensure high precision and to go beyond the 64-bit double-precision
standard.
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Booleans
In programming, evaluating a comparison or logical expression (such as 4 > 3, 4.5
<= 3.25 or (4 > 3) and (3 > 2)) yields one of True or False as output, two impor‐
tant Python keywords. Others are, for example, def, for, and if. A complete list of
Python keywords is available in the keyword module:

In [23]: import keyword

In [24]: keyword.kwlist
Out[24]: ['False',
          'None',
          'True',
          'and',
          'as',
          'assert',
          'async',
          'await',
          'break',
          'class',
          'continue',
          'def',
          'del',
          'elif',
          'else',
          'except',
          'finally',
          'for',
          'from',
          'global',
          'if',
          'import',
          'in',
          'is',
          'lambda',
          'nonlocal',
          'not',
          'or',
          'pass',
          'raise',
          'return',
          'try',
          'while',
          'with',
          'yield']

True and False are of data type bool, standing for Boolean value. The following code
shows Python’s comparison operators applied to the same operands with the resulting
bool objects:
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In [25]: 4 > 3  
Out[25]: True

In [26]: type(4 > 3)
Out[26]: bool

In [27]: type(False)
Out[27]: bool

In [28]: 4 >= 3  
Out[28]: True

In [29]: 4 < 3  
Out[29]: False

In [30]: 4 <= 3  
Out[30]: False

In [31]: 4 == 3  
Out[31]: False

In [32]: 4 != 3  
Out[32]: True

Is greater.

Is greater or equal.

Is smaller.

Is smaller or equal.

Is equal.

Is not equal.

Often, logical operators are applied on bool objects, which in turn yields another
bool object:

In [33]: True and True
Out[33]: True

In [34]: True and False
Out[34]: False

In [35]: False and False
Out[35]: False

In [36]: True or True
Out[36]: True
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In [37]: True or False
Out[37]: True

In [38]: False or False
Out[38]: False

In [39]: not True
Out[39]: False

In [40]: not False
Out[40]: True

Of course, both types of operators are often combined:

In [41]: (4 > 3) and (2 > 3)
Out[41]: False

In [42]: (4 == 3) or (2 != 3)
Out[42]: True

In [43]: not (4 != 4)
Out[43]: True

In [44]: (not (4 != 4)) and (2 == 3)
Out[44]: False

One major application area is to control the code flow via other Python keywords,
such as if or while (more examples later in the chapter):

In [45]: if 4 > 3:  
             print('condition true')  
         condition true

In [46]: i = 0  
         while i < 4:  
             print('condition true, i = ', i)  
             i += 1  
         condition true, i =  0
         condition true, i =  1
         condition true, i =  2
         condition true, i =  3

If condition holds true, execute code to follow.

The code to be executed if condition holds true.

Initializes the parameter i with 0.

As long as the condition holds true, execute and repeat the code to follow.

Prints a text and the value of parameter i.
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Increases the parameter value by 1; i += 1 is the same as i = i + 1.

Numerically, Python attaches a value of 0 to False and a value of 1 to True. When
transforming numbers to bool objects via the bool() function, a 0 gives False while
all other numbers give True:

In [47]: int(True)
Out[47]: 1

In [48]: int(False)
Out[48]: 0

In [49]: float(True)
Out[49]: 1.0

In [50]: float(False)
Out[50]: 0.0

In [51]: bool(0)
Out[51]: False

In [52]: bool(0.0)
Out[52]: False

In [53]: bool(1)
Out[53]: True

In [54]: bool(10.5)
Out[54]: True

In [55]: bool(-2)
Out[55]: True

Strings
Now that natural and floating-point numbers can be represented, this subsection
turns to text. The basic data type to represent text in Python is str. The str object
has a number of helpful built-in methods. In fact, Python is generally considered to
be a good choice when it comes to working with texts and text files of any kind and
any size. A str object is generally defined by single or double quotation marks or by
converting another object using the str() function (i.e., using the object’s standard
or user-defined str representation):

In [56]: t = 'this is a string object'

With regard to the built-in methods, you can, for example, capitalize the first word in
this object:

In [57]: t.capitalize()
Out[57]: 'This is a string object'
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Or you can split it into its single-word components to get a list object of all the
words (more on list objects later):

In [58]: t.split()
Out[58]: ['this', 'is', 'a', 'string', 'object']

You can also search for a word and get the position (i.e., index value) of the first letter
of the word back in a successful case:

In [59]: t.find('string')
Out[59]: 10

If the word is not in the str object, the method returns -1:

In [60]: t.find('Python')
Out[60]: -1

Replacing characters in a string is a typical task that is easily accomplished with the
replace() method:

In [61]: t.replace(' ', '|')
Out[61]: 'this|is|a|string|object'

The stripping of strings—i.e., deletion of certain leading/lagging characters—is also
often necessary:

In [62]: 'http://www.python.org'.strip('htp:/')
Out[62]: 'www.python.org'

Table 3-1 lists a number of helpful methods of the str object.

Table 3-1. Selected string methods

Method Arguments Returns/result

capitalize () Copy of the string with first letter capitalized

count (sub[, start[, end]]) Count of the number of occurrences of substring

encode ([encoding[, errors]]) Encoded version of the string

find (sub[, start[, end]]) (Lowest) index where substring is found

join (seq) Concatenation of strings in sequence seq

replace (old, new[, count]) Replaces old by new the first count times

split ([sep[, maxsplit]]) List of words in string with sep as separator

splitlines ([keepends]) Separated lines with line ends/breaks if keepends is True

strip (chars) Copy of string with leading/lagging characters in chars removed

upper () Copy with all letters capitalized
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Unicode Strings

A fundamental change from Python 2.7 (used for the first edition
of the book) to Python 3.7 (used for this second edition) is the
encoding and decoding of string objects and the introduction of
Unicode. This chapter does not go into the many details important
in this context; for the purposes of this book, which mainly deals
with numerical data and standard strings containing English
words, this omission seems justified.

Excursion: Printing and String Replacements
Printing str objects or string representations of other Python objects is usually
accomplished by the print() function:

In [63]: print('Python for Finance')  
         Python for Finance

In [64]: print(t)  
         this is a string object

In [65]: i = 0
         while i < 4:
             print(i)  
             i += 1
         0
         1
         2
         3

In [66]: i = 0
         while i < 4:
             print(i, end='|')  
             i += 1
         0|1|2|3|

Prints a str object.

Prints a str object referenced by a variable name.

Prints the string representation of an int object.

Specifies the final character(s) when printing; default is a line break (\n) as seen
before.

Python offers powerful string replacement operations. There is the old way, via the %
character, and the new way, via curly braces ({}) and format(). Both are still applied
in practice. This section cannot provide an exhaustive illustration of all options, but
the following code snippets show some important ones. First, the old way of doing it:
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In [67]: 'this is an integer %d' % 15  
Out[67]: 'this is an integer 15'

In [68]: 'this is an integer %4d' % 15  
Out[68]: 'this is an integer   15'

In [69]: 'this is an integer %04d' % 15  
Out[69]: 'this is an integer 0015'

In [70]: 'this is a float %f' % 15.3456  
Out[70]: 'this is a float 15.345600'

In [71]: 'this is a float %.2f' % 15.3456  
Out[71]: 'this is a float 15.35'

In [72]: 'this is a float %8f' % 15.3456  
Out[72]: 'this is a float 15.345600'

In [73]: 'this is a float %8.2f' % 15.3456  
Out[73]: 'this is a float    15.35'

In [74]: 'this is a float %08.2f' % 15.3456  
Out[74]: 'this is a float 00015.35'

In [75]: 'this is a string %s' % 'Python'  
Out[75]: 'this is a string Python'

In [76]: 'this is a string %10s' % 'Python'  
Out[76]: 'this is a string     Python'

int object replacement.

With fixed number of characters.

With leading zeros if necessary.

float object replacement.

With fixed number of decimals.

With fixed number of characters (and filled-up decimals).

With fixed number of characters and decimals …

… and leading zeros if necessary.

str object replacement.

With fixed number of characters.
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Now, here are the same examples implemented in the new way. Notice the slight dif‐
ferences in the output in some places:

In [77]: 'this is an integer {:d}'.format(15)
Out[77]: 'this is an integer 15'

In [78]: 'this is an integer {:4d}'.format(15)
Out[78]: 'this is an integer   15'

In [79]: 'this is an integer {:04d}'.format(15)
Out[79]: 'this is an integer 0015'

In [80]: 'this is a float {:f}'.format(15.3456)
Out[80]: 'this is a float 15.345600'

In [81]: 'this is a float {:.2f}'.format(15.3456)
Out[81]: 'this is a float 15.35'

In [82]: 'this is a float {:8f}'.format(15.3456)
Out[82]: 'this is a float 15.345600'

In [83]: 'this is a float {:8.2f}'.format(15.3456)
Out[83]: 'this is a float    15.35'

In [84]: 'this is a float {:08.2f}'.format(15.3456)
Out[84]: 'this is a float 00015.35'

In [85]: 'this is a string {:s}'.format('Python')
Out[85]: 'this is a string Python'

In [86]: 'this is a string {:10s}'.format('Python')
Out[86]: 'this is a string Python    '

String replacements are particularly useful in the context of multiple printing opera‐
tions where the printed data is updated, for instance, during a while loop:

In [87]: i = 0
         while i < 4:
             print('the number is %d' % i)
             i += 1
         the number is 0
         the number is 1
         the number is 2
         the number is 3

In [88]: i = 0
         while i < 4:
             print('the number is {:d}'.format(i))
             i += 1
         the number is 0
         the number is 1
         the number is 2
         the number is 3
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4 It is not possible to go into detail here, but there is a wealth of information available on the internet about
regular expressions in general and for Python in particular. For an introduction to this topic, refer to Fitzger‐
ald (2012).

Excursion: Regular Expressions
A powerful tool when working with str objects is regular expressions. Python pro‐
vides such functionality in the module re:

In [89]: import re

Suppose a financial analyst is faced with a large text file, such as a CSV file, which
contains certain time series and respective date-time information. More often than
not, this information is delivered in a format that Python cannot interpret directly.
However, the date-time information can generally be described by a regular expres‐
sion. Consider the following str object, containing three date-time elements, three
integers, and three strings. Note that triple quotation marks allow the definition of
str objects over multiple rows:

In [90]: series = """
         '01/18/2014 13:00:00', 100, '1st';
         '01/18/2014 13:30:00', 110, '2nd';
         '01/18/2014 14:00:00', 120, '3rd'
         """

The following regular expression describes the format of the date-time information
provided in the str object:4

In [91]: dt = re.compile("'[0-9/:\s]+'")  # datetime

Equipped with this regular expression, one can go on and find all the date-time ele‐
ments. In general, applying regular expressions to str objects also leads to perfor‐
mance improvements for typical parsing tasks:

In [92]: result = dt.findall(series)
         result
Out[92]: ["'01/18/2014 13:00:00'", "'01/18/2014 13:30:00'", "'01/18/2014
          14:00:00'"]

Regular Expressions

When parsing str objects, consider using regular expressions,
which can bring both convenience and performance to such
operations.

The resulting str objects can then be parsed to generate Python datetime objects
(see Appendix A for an overview of handling date and time data with Python). To
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parse the str objects containing the date-time information, one needs to provide
information of how to parse them—again as a str object:

In [93]: from datetime import datetime
         pydt = datetime.strptime(result[0].replace("'", ""),
                                  '%m/%d/%Y %H:%M:%S')
         pydt
Out[93]: datetime.datetime(2014, 1, 18, 13, 0)

In [94]: print(pydt)
         2014-01-18 13:00:00

In [95]: print(type(pydt))
         <class 'datetime.datetime'>

Later chapters provide more information on date-time data, the handling of such
data, and datetime objects and their methods. This is just meant to be a teaser for
this important topic in finance.

Basic Data Structures
As a general rule, data structures are objects that contain a possibly large number of
other objects. Among those that Python provides as built-in structures are:

tuple

An immutable collection of arbitrary objects; only a few methods available

list

A mutable collection of arbitrary objects; many methods available

dict

A key-value store object

set

An unordered collection object for other unique objects

Tuples
A tuple is an advanced data structure, yet it’s still quite simple and limited in its
applications. It is defined by providing objects in parentheses:

In [96]: t = (1, 2.5, 'data')
         type(t)
Out[96]: tuple

You can even drop the parentheses and provide multiple objects, just separated by
commas:
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In [97]: t = 1, 2.5, 'data'
         type(t)
Out[97]: tuple

Like almost all data structures in Python the tuple has a built-in index, with the help
of which you can retrieve single or multiple elements of the tuple. It is important to
remember that Python uses zero-based numbering, such that the third element of a
tuple is at index position 2:

In [98]: t[2]
Out[98]: 'data'

In [99]: type(t[2])
Out[99]: str

Zero-Based Numbering

In contrast to some other programming languages like Matlab,
Python uses zero-based numbering schemes. For example, the first
element of a tuple object has index value 0.

There are only two special methods that this object type provides: count() and
index(). The first counts the number of occurrences of a certain object and the sec‐
ond gives the index value of the first appearance of it:

In [100]: t.count('data')
Out[100]: 1

In [101]: t.index(1)
Out[101]: 0

tuple objects are immutable objects. This means that they, once defined, cannot be
changed easily.

Lists
Objects of type list are much more flexible and powerful in comparison to tuple
objects. From a finance point of view, you can achieve a lot working only with list
objects, such as storing stock price quotes and appending new data. A list object is
defined through brackets and the basic capabilities and behaviors are similar to those
of tuple objects:

In [102]: l = [1, 2.5, 'data']
          l[2]
Out[102]: 'data'

list objects can also be defined or converted by using the function list(). The fol‐
lowing code generates a new list object by converting the tuple object from the
previous example:
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In [103]: l = list(t)
          l
Out[103]: [1, 2.5, 'data']

In [104]: type(l)
Out[104]: list

In addition to the characteristics of tuple objects, list objects are also expandable
and reducible via different methods. In other words, whereas str and tuple objects
are immutable sequence objects (with indexes) that cannot be changed once created,
list objects are mutable and can be changed via different operations. You can
append list objects to an existing list object, and more:

In [105]: l.append([4, 3])  
          l
Out[105]: [1, 2.5, 'data', [4, 3]]

In [106]: l.extend([1.0, 1.5, 2.0])  
          l
Out[106]: [1, 2.5, 'data', [4, 3], 1.0, 1.5, 2.0]

In [107]: l.insert(1, 'insert')  
          l
Out[107]: [1, 'insert', 2.5, 'data', [4, 3], 1.0, 1.5, 2.0]

In [108]: l.remove('data')  
          l
Out[108]: [1, 'insert', 2.5, [4, 3], 1.0, 1.5, 2.0]

In [109]: p = l.pop(3)  
          print(l, p)
          [1, 'insert', 2.5, 1.0, 1.5, 2.0] [4, 3]

Append list object at the end.

Append elements of the list object.

Insert object before index position.

Remove first occurrence of object.

Remove and return object at index position.

Slicing is also easily accomplished. Here, slicing refers to an operation that breaks
down a data set into smaller parts (of interest):

In [110]: l[2:5]  
Out[110]: [2.5, 1.0, 1.5]

Return the third through fifth elements.
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Table 3-2 provides a summary of selected operations and methods of the list object.

Table 3-2. Selected operations and methods of list objects

Method Arguments Returns/result

l[i] = x [i] Replaces i-th element by x

l[i:j:k] = s [i:j:k] Replaces every k-th element from i to j – 1 by s

append (x) Appends x to object

count (x) Number of occurrences of object x

del l[i:j:k] [i:j:k] Deletes elements with index values i to j – 1 and step size k

extend (s) Appends all elements of s to object

index (x[, i[, j]]) First index of x between elements i and j – 1

insert (i, x) Inserts x at/before index i

remove (x) Removes element x at first match

pop (i) Removes element with index i and returns it

reverse () Reverses all items in place

sort ([cmp[, key[, reverse]]]) Sorts all items in place

Excursion: Control Structures
Although a topic in themselves, control structures like for loops are maybe best intro‐
duced in Python based on list objects. This is due to the fact that looping in general
takes place over list objects, which is quite different to what is often the standard in
other languages. Take the following example. The for loop loops over the elements of
the list object l with index values 2 to 4 and prints the square of the respective ele‐
ments. Note the importance of the indentation (whitespace) in the second line:

In [111]: for element in l[2:5]:
              print(element ** 2)
          6.25
          1.0
          2.25

This provides a really high degree of flexibility in comparison to the typical counter-
based looping. Counter-based looping is also an option with Python, but is accom‐
plished using the range object:

In [112]: r = range(0, 8, 1)  
          r
Out[112]: range(0, 8)

In [113]: type(r)
Out[113]: range

Parameters are start, end, and step-size.
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For comparison, the same loop is implemented using range() as follows:

In [114]: for i in range(2, 5):
              print(l[i] ** 2)
          6.25
          1.0
          2.25

Looping over Lists

In Python you can loop over arbitrary list objects, no matter what
the content of the object is. This often avoids the introduction of a
counter.

Python also provides the typical (conditional) control elements if, elif, and else.
Their use is comparable in other languages:

In [115]: for i in range(1, 10):
              if i % 2 == 0:  
                  print("%d is even" % i)
              elif i % 3 == 0:
                  print("%d is multiple of 3" % i)
              else:
                  print("%d is odd" % i)
          1 is odd
          2 is even
          3 is multiple of 3
          4 is even
          5 is odd
          6 is even
          7 is odd
          8 is even
          9 is multiple of 3

% stands for modulo.

Similarly, while provides another means to control the flow:

In [116]: total = 0
          while total < 100:
              total += 1
          print(total)
          100

A specialty of Python is so-called list comprehensions. Instead of looping over existing
list objects, this approach generates list objects via loops in a rather compact fash‐
ion:

In [117]: m = [i ** 2 for i in range(5)]
          m
Out[117]: [0, 1, 4, 9, 16]
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In a certain sense, this already provides a first means to generate “something like”
vectorized code in that loops are implicit rather than explicit (vectorization of code is
discussed in more detail in Chapters 4 and 5).

Excursion: Functional Programming
Python provides a number of tools for functional programming support as well—i.e.,
the application of a function to a whole set of inputs (in our case list objects).
Among these tools are filter(), map(), and reduce(). However, one needs a func‐
tion definition first. To start with something really simple, consider a function f()
that returns the square of the input x:

In [118]: def f(x):
              return x ** 2
          f(2)
Out[118]: 4

Of course, functions can be arbitrarily complex, with multiple input/parameter
objects and even multiple outputs (return objects). However, consider the following
function:

In [119]: def even(x):
              return x % 2 == 0
          even(3)
Out[119]: False

The return object is a Boolean. Such a function can be applied to a whole list object
by using map():

In [120]: list(map(even, range(10)))
Out[120]: [True, False, True, False, True, False, True, False, True, False]

To this end, one can also provide a function definition directly as an argument to
map(), making use of lambda or anonymous functions:

In [121]: list(map(lambda x: x ** 2, range(10)))
Out[121]: [0, 1, 4, 9, 16, 25, 36, 49, 64, 81]

Functions can also be used to filter a list object. In the following example, the filter
returns elements of a list object that match the Boolean condition as defined by the
even function:

In [122]: list(filter(even, range(15)))
Out[122]: [0, 2, 4, 6, 8, 10, 12, 14]
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5 There are variants to the standard dict object, including among others an OrderedDict subclass, which
remembers the order in which entries are added. See https://docs.python.org/3/library/collections.html.

List Comprehensions, Functional Programming, Anonymous Functions

It can be considered good practice to avoid loops on the Python
level as far as possible. List comprehensions and functional pro‐
gramming tools like filter(), map(), and reduce() provide
means to write code without (explicit) loops that is both compact
and in general more readable. lambda or anonymous functions are
also powerful tools in this context.

Dicts
dict objects are dictionaries, and also mutable sequences, that allow data retrieval by
keys (which can, for example, be str objects). They are so-called key-value stores.
While list objects are ordered and sortable, dict objects are unordered and not
sortable, in general.5 An example best illustrates further differences to list objects.
Curly braces are what define dict objects:

In [123]: d = {
               'Name' : 'Angela Merkel',
               'Country' : 'Germany',
               'Profession' : 'Chancelor',
               'Age' : 64
               }
          type(d)
Out[123]: dict

In [124]: print(d['Name'], d['Age'])
          Angela Merkel 64

Again, this class of objects has a number of built-in methods:

In [125]: d.keys()
Out[125]: dict_keys(['Name', 'Country', 'Profession', 'Age'])

In [126]: d.values()
Out[126]: dict_values(['Angela Merkel', 'Germany', 'Chancelor', 64])

In [127]: d.items()
Out[127]: dict_items([('Name', 'Angela Merkel'), ('Country', 'Germany'),
           ('Profession', 'Chancelor'), ('Age', 64)])

In [128]: birthday = True
          if birthday:
              d['Age'] += 1
          print(d['Age'])
          65
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There are several methods to get iterator objects from a dict object. The iterator
objects behave like list objects when iterated over:

In [129]: for item in d.items():
              print(item)
          ('Name', 'Angela Merkel')
          ('Country', 'Germany')
          ('Profession', 'Chancelor')
          ('Age', 65)

In [130]: for value in d.values():
              print(type(value))
          <class 'str'>
          <class 'str'>
          <class 'str'>
          <class 'int'>

Table 3-3 provides a summary of selected operations and methods of the dict object.

Table 3-3. Selected operations and methods of dict objects

Method Arguments Returns/result

d[k] [k] Item of d with key k

d[k] = x [k] Sets item key k to x

del d[k] [k] Deletes item with key k

clear () Removes all items

copy () Makes a copy

items () Iterator over all items

keys () Iterator over all keys

values () Iterator over all values

popitem (k) Returns and removes item with key k

update ([e]) Updates items with items from e

Sets
The final data structure this section covers is the set object. Although set theory is a
cornerstone of mathematics and also of financial theory, there are not too many prac‐
tical applications for set objects. The objects are unordered collections of other
objects, containing every element only once:

In [131]: s = set(['u', 'd', 'ud', 'du', 'd', 'du'])
          s
Out[131]: {'d', 'du', 'u', 'ud'}

In [132]: t = set(['d', 'dd', 'uu', 'u'])
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With set objects, one can implement basic operations on sets as in mathematical set
theory. For example, one can generate unions, intersections, and differences:

In [133]: s.union(t)  
Out[133]: {'d', 'dd', 'du', 'u', 'ud', 'uu'}

In [134]: s.intersection(t)  
Out[134]: {'d', 'u'}

In [135]: s.difference(t)  
Out[135]: {'du', 'ud'}

In [136]: t.difference(s)  
Out[136]: {'dd', 'uu'}

In [137]: s.symmetric_difference(t)  
Out[137]: {'dd', 'du', 'ud', 'uu'}

All of s and t.

Items in both s and t.

Items in s but not in t.

Items in t but not in s.

Items in either s or t but not both.

One application of set objects is to get rid of duplicates in a list object:

In [138]: from random import randint
          l = [randint(0, 10) for i in range(1000)]  
          len(l)  
Out[138]: 1000

In [139]: l[:20]
Out[139]: [4, 2, 10, 2, 1, 10, 0, 6, 0, 8, 10, 9, 2, 4, 7, 8, 10, 8, 8, 2]

In [140]: s = set(l)
          s
Out[140]: {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10}

1,000 random integers between 0 and 10.

Number of elements in l.
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Conclusion
The basic Python interpreter provides a rich set of flexible data structures. From a
finance point of view, the following can be considered the most important ones:

Basic data types
In Python in general and finance in particular, the classes int, float, bool, and
str provide the atomic data types.

Standard data structures
The classes tuple, list, dict, and set have many application areas in finance,
with list being a flexible all-rounder for a number use cases.

Further Resources
With regard to data types and structures, this chapter focuses on those topics that
might be of particular importance for financial algorithms and applications. How‐
ever, it can only represent a starting point for the exploration of data structures and
data modeling in Python.

There are a number of valuable resources available to go deeper from here. The offi‐
cial documentation for Python data structures is found at https://docs.python.org/3/
tutorial/datastructures.html.

Good references in book form are:

• Goodrich, Michael, et al. (2013). Data Structures and Algorithms in Python.
Hoboken, NJ: John Wiley & Sons.

• Harrison, Matt (2017). Illustrated Guide to Python 3. CreateSpace Treading on
Python Series.

• Ramalho, Luciano (2016). Fluent Python. Sebastopol, CA: O’Reilly.

For an introduction to regular expressions, see:

• Fitzgerald, Michael (2012). Introducing Regular Expressions. Sebastopol, CA:
O’Reilly.
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CHAPTER 4

Numerical Computing with NumPy

Computers are useless. They can only give answers.
—Pablo Picasso

Although the Python interpreter itself already brings a rich variety of data structures
with it, NumPy and other libraries add to these in a valuable fashion. This chapter
focuses on NumPy, which provides a multidimensional array object to store homoge‐
neous or heterogeneous data arrays and supports vectorization of code.

The chapter covers the following data structures:

Object type Meaning Used for

ndarray (regular) n-dimensional array object Large arrays of numerical data

ndarray (record) 2-dimensional array object Tabular data organized in columns

This chapter is organized as follows:

“Arrays of Data” on page 86
This section is about the handling of arrays of data with pure Python code.

“Regular NumPy Arrays” on page 90
This is the core section about the regular NumPy ndarray class, the workhorse in
almost all data-intensive Python use cases involving numerical data.

“Structured NumPy Arrays” on page 105
This brief section introduces structured (or record) ndarray objects for the han‐
dling of tabular data with columns.
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“Vectorization of Code” on page 106
In this section, vectorization of code is discussed along with its benefits; the sec‐
tion also discusses the importance of memory layout in certain scenarios.

Arrays of Data
The previous chapter showed that Python provides some quite useful and flexible
general data structures. In particular, list objects can be considered a real workhorse
with many convenient characteristics and application areas. Using such a flexible
(mutable) data structure has a cost, in the form of relatively high memory usage,
slower performance, or both. However, scientific and financial applications generally
have a need for high-performing operations on special data structures. One of the
most important data structures in this regard is the array. Arrays generally structure
other (fundamental) objects of the same data type in rows and columns.

Assume for the moment that only numbers are relevant, although the concept gener‐
alizes to other types of data as well. In the simplest case, a one-dimensional array then
represents, mathematically speaking, a vector of, in general, real numbers, internally
represented by float objects. It then consists of a single row or column of elements
only. In the more common case, an array represents an i × j matrix of elements. This
concept generalizes to i × j × k cubes of elements in three dimensions as well as to
general n-dimensional arrays of shape i × j × k × l × ....

Mathematical disciplines like linear algebra and vector space theory illustrate that
such mathematical structures are of high importance in a number of scientific disci‐
plines and fields. It can therefore prove fruitful to have available a specialized class of
data structures explicitly designed to handle arrays conveniently and efficiently. This
is where the Python library NumPy comes into play, with its powerful ndarray class.
Before introducing this class in the next section, this section illustrates two alterna‐
tives for the handling of arrays.

Arrays with Python Lists
Arrays can be constructed with the built-in data structures presented in the previous
chapter. list objects are particularly suited to accomplishing this task. A simple list
can already be considered a one-dimensional array:

In [1]: v = [0.5, 0.75, 1.0, 1.5, 2.0]  

list object with numbers.

Since list objects can contain arbitrary other objects, they can also contain other
list objects. In that way, two- and higher-dimensional arrays are easily constructed
by nested list objects:
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In [2]: m = [v, v, v]  
        m  
Out[2]: [[0.5, 0.75, 1.0, 1.5, 2.0],
         [0.5, 0.75, 1.0, 1.5, 2.0],
         [0.5, 0.75, 1.0, 1.5, 2.0]]

list object with list objects …

… resulting in a matrix of numbers.

One can also easily select rows via simple indexing or single elements via double
indexing (whole columns, however, are not so easy to select):

In [3]: m[1]
Out[3]: [0.5, 0.75, 1.0, 1.5, 2.0]

In [4]: m[1][0]
Out[4]: 0.5

Nesting can be pushed further for even more general structures:

In [5]: v1 = [0.5, 1.5]
        v2 = [1, 2]
        m = [v1, v2]
        c = [m, m]  
        c
Out[5]: [[[0.5, 1.5], [1, 2]], [[0.5, 1.5], [1, 2]]]

In [6]: c[1][1][0]
Out[6]: 1

Cube of numbers.

Note that combining objects in the way just presented generally works with reference
pointers to the original objects. What does that mean in practice? Have a look at the
following operations:

In [7]: v = [0.5, 0.75, 1.0, 1.5, 2.0]
        m = [v, v, v]
        m
Out[7]: [[0.5, 0.75, 1.0, 1.5, 2.0],
         [0.5, 0.75, 1.0, 1.5, 2.0],
         [0.5, 0.75, 1.0, 1.5, 2.0]]

Now change the value of the first element of the v object and see what happens to the
m object:

In [8]: v[0] = 'Python'
        m
Out[8]: [['Python', 0.75, 1.0, 1.5, 2.0],
         ['Python', 0.75, 1.0, 1.5, 2.0],
         ['Python', 0.75, 1.0, 1.5, 2.0]]
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This can be avoided by using the deepcopy() function of the copy module:

In [9]: from copy import deepcopy
        v = [0.5, 0.75, 1.0, 1.5, 2.0]
        m = 3 * [deepcopy(v), ]  
        m
Out[9]: [[0.5, 0.75, 1.0, 1.5, 2.0],
         [0.5, 0.75, 1.0, 1.5, 2.0],
         [0.5, 0.75, 1.0, 1.5, 2.0]]

In [10]: v[0] = 'Python'  
         m  
Out[10]: [[0.5, 0.75, 1.0, 1.5, 2.0],
          [0.5, 0.75, 1.0, 1.5, 2.0],
          [0.5, 0.75, 1.0, 1.5, 2.0]]

Instead of reference pointer, physical copies are used.

As a consequence, a change in the original object …

… does not have any impact anymore.

The Python array Class
There is a dedicated array module available in Python. According to the documenta‐
tion:

This module defines an object type which can compactly represent an array of basic
values: characters, integers, floating point numbers. Arrays are sequence types and
behave very much like lists, except that the type of objects stored in them is con‐
strained. The type is specified at object creation time by using a type code, which is a
single character.

Consider the following code, which instantiates an array object out of a list object:

In [11]: v = [0.5, 0.75, 1.0, 1.5, 2.0]

In [12]: import array

In [13]: a = array.array('f', v)  
         a
Out[13]: array('f', [0.5, 0.75, 1.0, 1.5, 2.0])

In [14]: a.append(0.5)  
         a
Out[14]: array('f', [0.5, 0.75, 1.0, 1.5, 2.0, 0.5])

In [15]: a.extend([5.0, 6.75])  
         a
Out[15]: array('f', [0.5, 0.75, 1.0, 1.5, 2.0, 0.5, 5.0, 6.75])
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In [16]: 2 * a  
Out[16]: array('f', [0.5, 0.75, 1.0, 1.5, 2.0, 0.5, 5.0, 6.75, 0.5, 0.75, 1.0,
          1.5, 2.0, 0.5, 5.0, 6.75])

The instantiation of the array object with float as the type code.

Major methods work similar to those of the list object.

Although “scalar multiplication” works in principle, the result is not the mathe‐
matically expected one; rather, the elements are repeated.

Trying to append an object of a different data type than the one specified raises a
TypeError:

In [17]: a.append('string')  

         ---------------------------------------
         TypeErrorTraceback (most recent call last)
         <ipython-input-17-14cd6281866b> in <module>()
         ----> 1 a.append('string')  

         TypeError: must be real number, not str

In [18]: a.tolist()  
Out[18]: [0.5, 0.75, 1.0, 1.5, 2.0, 0.5, 5.0, 6.75]

Only float objects can be appended; other data types/type codes raise errors.

However, the array object can easily be converted back to a list object if such
flexibility is required.

An advantage of the array class is that it has built-in storage and retrieval functional‐
ity:

In [19]: f = open('array.apy', 'wb')  
         a.tofile(f)  
         f.close()  

In [20]: with open('array.apy', 'wb') as f:  
             a.tofile(f)  

In [21]: !ls -n arr*  
         -rw-r--r--@ 1 503  20  32 Nov  7 11:46 array.apy

Opens a file on disk for writing binary data.

Writes the array data to the file.

Closes the file.
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Alternative: uses a with context for the same operation.

Shows the file as written on disk.

As before, the data type of the array object is of importance when reading the data
from disk:

In [22]: b = array.array('f')  

In [23]: with open('array.apy', 'rb') as f:  
             b.fromfile(f, 5)  

In [24]: b  
Out[24]: array('f', [0.5, 0.75, 1.0, 1.5, 2.0])

In [25]: b = array.array('d')  

In [26]: with open('array.apy', 'rb') as f:
             b.fromfile(f, 2)  

In [27]: b  
Out[27]: array('d', [0.0004882813645963324, 0.12500002956949174])

Instantiates a new array object with type code float.

Opens the file for reading binary data …

… and reads five elements in the b object.

Instantiates a new array object with type code double.

Reads two elements from the file.

The difference in type codes leads to “wrong” numbers.

Regular NumPy Arrays
Composing array structures with list objects works, somewhat. But it is not really
convenient, and the list class has not been built with this specific goal in mind. It
has rather a much broader and more general scope. The array class is a bit more spe‐
cialized, providing some useful features for working with arrays of data. However, a
truly specialized class could be really beneficial to handle array-type structures.

The Basics
numpy.ndarray is just such a class, built with the specific goal of handling n-
dimensional arrays both conveniently and efficiently—i.e., in a highly performant
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manner. The basic handling of instances of this class is again best illustrated by
examples:

In [28]: import numpy as np  

In [29]: a = np.array([0, 0.5, 1.0, 1.5, 2.0])  
         a
Out[29]: array([0. , 0.5, 1. , 1.5, 2. ])

In [30]: type(a)  
Out[30]: numpy.ndarray

In [31]: a = np.array(['a', 'b', 'c'])  
         a
Out[31]: array(['a', 'b', 'c'], dtype='<U1')

In [32]: a = np.arange(2, 20, 2)  
         a
Out[32]: array([ 2,  4,  6,  8, 10, 12, 14, 16, 18])

In [33]: a = np.arange(8, dtype=np.float)  
         a
Out[33]: array([0., 1., 2., 3., 4., 5., 6., 7.])

In [34]: a[5:]  
Out[34]: array([5., 6., 7.])

In [35]: a[:2]  
Out[35]: array([0., 1.])

Imports the numpy package.

Creates an ndarray object out of a list object with floats.

Creates an ndarray object out of a list object with strs.

np.arange() works similar to range() …

… but takes as additional input the dtype parameter.

With one-dimensional ndarray objects, indexing works as usual.

A major feature of the ndarray class is the multitude of built-in methods. For
instance:

In [36]: a.sum()  
Out[36]: 28.0

In [37]: a.std()  
Out[37]: 2.29128784747792
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In [38]: a.cumsum()  
Out[38]: array([ 0.,  1.,  3.,  6., 10., 15., 21., 28.])

The sum of all elements.

The standard deviation of the elements.

The cumulative sum of all elements (starting at index position 0).

Another major feature is the (vectorized) mathematical operations defined on
ndarray objects:

In [39]: l = [0., 0.5, 1.5, 3., 5.]
         2 * l  
Out[39]: [0.0, 0.5, 1.5, 3.0, 5.0, 0.0, 0.5, 1.5, 3.0, 5.0]

In [40]: a
Out[40]: array([0., 1., 2., 3., 4., 5., 6., 7.])

In [41]: 2 * a  
Out[41]: array([ 0.,  2.,  4.,  6.,  8., 10., 12., 14.])

In [42]: a ** 2  
Out[42]: array([ 0.,  1.,  4.,  9., 16., 25., 36., 49.])

In [43]: 2 ** a  
Out[43]: array([  1.,   2.,   4.,   8.,  16.,  32.,  64., 128.])

In [44]: a ** a  
Out[44]: array([1.00000e+00, 1.00000e+00, 4.00000e+00, 2.70000e+01, 2.56000e+02,
                3.12500e+03, 4.66560e+04, 8.23543e+05])

Scalar multiplication with list objects leads to a repetition of elements.

By contrast, working with ndarray objects implements a proper scalar multipli‐
cation.

This calculates element-wise the square values.

This interprets the elements of the ndarray as the powers.

This calculates the power of every element to itself.

Universal functions are another important feature of the NumPy package. They are
“universal” in the sense that they in general operate on ndarray objects as well as on
basic Python data types. However, when applying universal functions to, say, a
Python float object, one needs to be aware of the reduced performance compared to
the same functionality found in the math module:
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In [45]: np.exp(a)  
Out[45]: array([1.00000000e+00, 2.71828183e+00, 7.38905610e+00, 2.00855369e+01,
                5.45981500e+01, 1.48413159e+02, 4.03428793e+02, 1.09663316e+03])

In [46]: np.sqrt(a)  
Out[46]: array([0.        , 1.        , 1.41421356, 1.73205081, 2.        ,
                2.23606798, 2.44948974, 2.64575131])

In [47]: np.sqrt(2.5)  
Out[47]: 1.5811388300841898

In [48]: import math  

In [49]: math.sqrt(2.5)  
Out[49]: 1.5811388300841898

In [50]: math.sqrt(a)  

         ---------------------------------------
         TypeErrorTraceback (most recent call last)
         <ipython-input-50-b39de4150838> in <module>()
         ----> 1 math.sqrt(a)  

         TypeError: only size-1 arrays can be converted to Python scalars

In [51]: %timeit np.sqrt(2.5)  
         722 ns ± 13.7 ns per loop (mean ± std. dev. of 7 runs, 1000000 loops
          each)

In [52]: %timeit math.sqrt(2.5)  
         91.8 ns ± 4.13 ns per loop (mean ± std. dev. of 7 runs, 10000000 loops
          each)

Calculates the exponential values element-wise.

Calculates the square root for every element.

Calculates the square root for a Python float object.

The same calculation, this time using the math module.

The math.sqrt() function cannot be applied to the ndarray object directly.

Applying the universal function np.sqrt() to a Python float object …

… is much slower than the same operation with the math.sqrt() function.
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Multiple Dimensions
The transition to more than one dimension is seamless, and all features presented so
far carry over to the more general cases. In particular, the indexing system is made
consistent across all dimensions:

In [53]: b = np.array([a, a * 2])  
         b
Out[53]: array([[ 0.,  1.,  2.,  3.,  4.,  5.,  6.,  7.],
                [ 0.,  2.,  4.,  6.,  8., 10., 12., 14.]])

In [54]: b[0]  
Out[54]: array([0., 1., 2., 3., 4., 5., 6., 7.])

In [55]: b[0, 2]  
Out[55]: 2.0

In [56]: b[:, 1]  
Out[56]: array([1., 2.])

In [57]: b.sum()  
Out[57]: 84.0

In [58]: b.sum(axis=0)  
Out[58]: array([ 0.,  3.,  6.,  9., 12., 15., 18., 21.])

In [59]: b.sum(axis=1)  
Out[59]: array([28., 56.])

Constructs a two-dimensional ndarray object out of the one-dimensional one.

Selects the first row.

Selects the third element in the first row; indices are separated, within the brack‐
ets, by a comma.

Selects the second column.

Calculates the sum of all values.

Calculates the sum along the first axis; i.e., column-wise.

Calculates the sum along the second axis; i.e., row-wise.

There are a number of ways to initialize (instantiate) ndarray objects. One is as pre‐
sented before, via np.array. However, this assumes that all elements of the array are
already available. In contrast, one might like to have the ndarray objects instantiated
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first to populate them later with results generated during the execution of code. To
this end, one can use the following functions:

In [60]: c = np.zeros((2, 3), dtype='i', order='C')  
         c
Out[60]: array([[0, 0, 0],
                [0, 0, 0]], dtype=int32)

In [61]: c = np.ones((2, 3, 4), dtype='i', order='C')  
         c
Out[61]: array([[[1, 1, 1, 1],
                 [1, 1, 1, 1],
                 [1, 1, 1, 1]],

                [[1, 1, 1, 1],
                 [1, 1, 1, 1],
                 [1, 1, 1, 1]]], dtype=int32)

In [62]: d = np.zeros_like(c, dtype='f16', order='C')  
         d
Out[62]: array([[[0., 0., 0., 0.],
                 [0., 0., 0., 0.],
                 [0., 0., 0., 0.]],

                [[0., 0., 0., 0.],
                 [0., 0., 0., 0.],
                 [0., 0., 0., 0.]]], dtype=float128)

In [63]: d = np.ones_like(c, dtype='f16', order='C')  
         d
Out[63]: array([[[1., 1., 1., 1.],
                 [1., 1., 1., 1.],
                 [1., 1., 1., 1.]],

                [[1., 1., 1., 1.],
                 [1., 1., 1., 1.],
                 [1., 1., 1., 1.]]], dtype=float128)

In [64]: e = np.empty((2, 3, 2))  
         e
Out[64]: array([[[0.00000000e+000, 0.00000000e+000],
                 [0.00000000e+000, 0.00000000e+000],
                 [0.00000000e+000, 0.00000000e+000]],

                [[0.00000000e+000, 0.00000000e+000],
                 [0.00000000e+000, 7.49874326e+247],
                 [1.28822975e-231, 4.33190018e-311]]])

In [65]: f = np.empty_like(c)  
         f
Out[65]: array([[[         0,          0,          0,          0],
                 [         0,          0,          0,          0],
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                 [         0,          0,          0,          0]],

                [[         0,          0,          0,          0],
                 [         0,          0,  740455269, 1936028450],
                 [         0,  268435456, 1835316017,       2041]]], dtype=int32)

In [66]: np.eye(5)  
Out[66]: array([[1., 0., 0., 0., 0.],
                [0., 1., 0., 0., 0.],
                [0., 0., 1., 0., 0.],
                [0., 0., 0., 1., 0.],
                [0., 0., 0., 0., 1.]])

In [67]: g = np.linspace(5, 15, 12) 
         g
Out[67]: array([ 5.        ,  5.90909091,  6.81818182,  7.72727273,  8.63636364,
                 9.54545455, 10.45454545, 11.36363636, 12.27272727, 13.18181818,
                14.09090909, 15.        ])

Creates an ndarray object prepopulated with zeros.

Creates an ndarray object prepopulated with ones.

The same, but takes another ndarray object to infer the shape.

Creates an ndarray object not prepopulated with anything (numbers depend on
the bits present in the memory).

Creates a square matrix as an ndarray object with the diagonal populated by
ones.

Creates a one-dimensional ndarray object with evenly spaced intervals between
numbers; parameters used are start, end, and num (number of elements).

For all these functions, one can provide the following parameters:

shape

Either an int, a sequence of int objects, or a reference to another ndarray

dtype (optional)
A dtype—these are NumPy-specific data types for ndarray objects

order (optional)
The order in which to store elements in memory: C for C-like (i.e., row-wise) or F
for Fortran-like (i.e., column-wise)

Here, it becomes obvious how NumPy specializes the construction of arrays with the
ndarray class, in comparison to the list -based approach:
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• The ndarray object has built-in dimensions (axes).
• The ndarray object is immutable; its length (size) is fixed.
• It only allows for a single data type (np.dtype) for the whole array.

The array class by contrast shares only the characteristic of allowing for a single data
type (type code, dtype).

The role of the order parameter is discussed later in the chapter. Table 4-1 provides
an overview of selected np.dtype objects (i.e., the basic data types NumPy allows).

Table 4-1. NumPy dtype objects

dtype Description Example

? Boolean ? (True or False)

i Signed integer i8 (64-bit)

u Unsigned integer u8 (64-bit)

f Floating point f8 (64-bit)

c Complex floating point c32 (256-bit)

m timedelta m (64-bit)

M datetime M (64-bit)

O Object O (pointer to object)

U Unicode U24 (24 Unicode characters)

V Raw data (void) V12 (12-byte data block)

Metainformation
Every ndarray object provides access to a number of useful attributes:

In [68]: g.size  
Out[68]: 12

In [69]: g.itemsize  
Out[69]: 8

In [70]: g.ndim  
Out[70]: 1

In [71]: g.shape  
Out[71]: (12,)

In [72]: g.dtype  
Out[72]: dtype('float64')

In [73]: g.nbytes  
Out[73]: 96

Regular NumPy Arrays | 97



The number of elements.

The number of bytes used to represent one element.

The number of dimensions.

The shape of the ndarray object.

The dtype of the elements.

The total number of bytes used in memory.

Reshaping and Resizing
Although ndarray objects are immutable by default, there are multiple options to
reshape and resize such an object. While reshaping in general just provides another
view on the same data, resizing in general creates a new (temporary) object. First,
some examples of reshaping:

In [74]: g = np.arange(15)

In [75]: g
Out[75]: array([ 0,  1,  2,  3,  4,  5,  6,  7,  8,  9, 10, 11, 12, 13, 14])

In [76]: g.shape  
Out[76]: (15,)

In [77]: np.shape(g) 
Out[77]: (15,)

In [78]: g.reshape((3, 5))  
Out[78]: array([[ 0,  1,  2,  3,  4],
                [ 5,  6,  7,  8,  9],
                [10, 11, 12, 13, 14]])

In [79]: h = g.reshape((5, 3))  
         h
Out[79]: array([[ 0,  1,  2],
                [ 3,  4,  5],
                [ 6,  7,  8],
                [ 9, 10, 11],
                [12, 13, 14]])

In [80]: h.T  
Out[80]: array([[ 0,  3,  6,  9, 12],
                [ 1,  4,  7, 10, 13],
                [ 2,  5,  8, 11, 14]])

In [81]: h.transpose()  
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Out[81]: array([[ 0,  3,  6,  9, 12],
                [ 1,  4,  7, 10, 13],
                [ 2,  5,  8, 11, 14]])

The shape of the original ndarray object.

Reshaping to two dimensions (memory view).

Creating a new object.

The transpose of the new ndarray object.

During a reshaping operation, the total number of elements in the ndarray object is
unchanged. During a resizing operation, this number changes—it either decreases
(“down-sizing”) or increases (“up-sizing”). Here some examples of resizing:

In [82]: g
Out[82]: array([ 0,  1,  2,  3,  4,  5,  6,  7,  8,  9, 10, 11, 12, 13, 14])

In [83]: np.resize(g, (3, 1))  
Out[83]: array([[0],
                [1],
                [2]])

In [84]: np.resize(g, (1, 5))  
Out[84]: array([[0, 1, 2, 3, 4]])

In [85]: np.resize(g, (2, 5))  
Out[85]: array([[0, 1, 2, 3, 4],
                [5, 6, 7, 8, 9]])

In [86]: n = np.resize(g, (5, 4))  
         n
Out[86]: array([[ 0,  1,  2,  3],
                [ 4,  5,  6,  7],
                [ 8,  9, 10, 11],
                [12, 13, 14,  0],
                [ 1,  2,  3,  4]])

Two dimensions, down-sizing.

Two dimensions, up-sizing.

Stacking is a special operation that allows the horizontal or vertical combination of
two ndarray objects. However, the size of the “connecting” dimension must be the
same:

In [87]: h
Out[87]: array([[ 0,  1,  2],
                [ 3,  4,  5],
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                [ 6,  7,  8],
                [ 9, 10, 11],
                [12, 13, 14]])

In [88]: np.hstack((h, 2 * h))  
Out[88]: array([[ 0,  1,  2,  0,  2,  4],
                [ 3,  4,  5,  6,  8, 10],
                [ 6,  7,  8, 12, 14, 16],
                [ 9, 10, 11, 18, 20, 22],
                [12, 13, 14, 24, 26, 28]])

In [89]: np.vstack((h, 0.5 * h))  
Out[89]: array([[ 0. ,  1. ,  2. ],
                [ 3. ,  4. ,  5. ],
                [ 6. ,  7. ,  8. ],
                [ 9. , 10. , 11. ],
                [12. , 13. , 14. ],
                [ 0. ,  0.5,  1. ],
                [ 1.5,  2. ,  2.5],
                [ 3. ,  3.5,  4. ],
                [ 4.5,  5. ,  5.5],
                [ 6. ,  6.5,  7. ]])

Horizontal stacking of two ndarray objects.

Vertical stacking of two ndarray objects.

Another special operation is the flattening of a multidimensional ndarray object to a
one-dimensional one. One can choose whether the flattening happens row-by-row (C
order) or column-by-column (F order):

In [90]: h
Out[90]: array([[ 0,  1,  2],
                [ 3,  4,  5],
                [ 6,  7,  8],
                [ 9, 10, 11],
                [12, 13, 14]])

In [91]: h.flatten()  
Out[91]: array([ 0,  1,  2,  3,  4,  5,  6,  7,  8,  9, 10, 11, 12, 13, 14])

In [92]: h.flatten(order='C')  
Out[92]: array([ 0,  1,  2,  3,  4,  5,  6,  7,  8,  9, 10, 11, 12, 13, 14])

In [93]: h.flatten(order='F')  
Out[93]: array([ 0,  3,  6,  9, 12,  1,  4,  7, 10, 13,  2,  5,  8, 11, 14])

In [94]: for i in h.flat:  
             print(i, end=',')
         0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,
In [95]: for i in h.ravel(order='C'):  
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             print(i, end=',')
         0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,
In [96]: for i in h.ravel(order='F'):  
             print(i, end=',')
         0,3,6,9,12,1,4,7,10,13,2,5,8,11,14,

The default order for flattening is C.

Flattening with F order.

The flat attribute provides a flat iterator (C order).

The ravel() method is an alternative to flatten().

Boolean Arrays
Comparison and logical operations in general work on ndarray objects the same way,
element-wise, as on standard Python data types. Evaluating conditions yield by
default a Boolean ndarray object (dtype is bool):

In [97]: h
Out[97]: array([[ 0,  1,  2],
                [ 3,  4,  5],
                [ 6,  7,  8],
                [ 9, 10, 11],
                [12, 13, 14]])

In [98]: h > 8  
Out[98]: array([[False, False, False],
                [False, False, False],
                [False, False, False],
                [ True,  True,  True],
                [ True,  True,  True]])

In [99]: h <= 7  
Out[99]: array([[ True,  True,  True],
                [ True,  True,  True],
                [ True,  True, False],
                [False, False, False],
                [False, False, False]])

In [100]: h == 5  
Out[100]: array([[False, False, False],
                 [False, False,  True],
                 [False, False, False],
                 [False, False, False],
                 [False, False, False]])

In [101]: (h == 5).astype(int)  
Out[101]: array([[0, 0, 0],
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                 [0, 0, 1],
                 [0, 0, 0],
                 [0, 0, 0],
                 [0, 0, 0]])

In [102]: (h > 4) & (h <= 12)  
Out[102]: array([[False, False, False],
                 [False, False,  True],
                 [ True,  True,  True],
                 [ True,  True,  True],
                 [ True, False, False]])

Is value greater than …?

Is value smaller or equal than …?

Is value equal to …?

Present True and False as integer values 0 and 1.

Is value greater than … and smaller than or equal to …?

Such Boolean arrays can be used for indexing and data selection. Notice that the fol‐
lowing operations flatten the data:

In [103]: h[h > 8]  
Out[103]: array([ 9, 10, 11, 12, 13, 14])

In [104]: h[(h > 4) & (h <= 12)]  
Out[104]: array([ 5,  6,  7,  8,  9, 10, 11, 12])

In [105]: h[(h < 4) | (h >= 12)]  
Out[105]: array([ 0,  1,  2,  3, 12, 13, 14])

Give me all values greater than …

Give me all values greater than … and smaller than or equal to …

Give me all values greater than … or smaller than or equal to …

A powerful tool in this regard is the np.where() function, which allows the definition
of actions/operations depending on whether a condition is True or False. The result
of applying np.where() is a new ndarray object of the same shape as the original one:

In [106]: np.where(h > 7, 1, 0)  
Out[106]: array([[0, 0, 0],
                 [0, 0, 0],
                 [0, 0, 1],
                 [1, 1, 1],
                 [1, 1, 1]])
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In [107]: np.where(h % 2 == 0, 'even', 'odd')  
Out[107]: array([['even', 'odd', 'even'],
                 ['odd', 'even', 'odd'],
                 ['even', 'odd', 'even'],
                 ['odd', 'even', 'odd'],
                 ['even', 'odd', 'even']], dtype='<U4')

In [108]: np.where(h <= 7, h * 2, h / 2)  
Out[108]: array([[ 0. ,  2. ,  4. ],
                 [ 6. ,  8. , 10. ],
                 [12. , 14. ,  4. ],
                 [ 4.5,  5. ,  5.5],
                 [ 6. ,  6.5,  7. ]])

In the new object, set 1 if True and 0 otherwise.

In the new object, set even if True and odd otherwise.

In the new object, set two times the h element if True and half the h element
otherwise.

Later chapters provide more examples of these important operations on ndarray
objects.

Speed Comparison
We’ll move on to structured arrays with NumPy shortly, but let us stick with regular
arrays for a moment and see what the specialization brings in terms of performance.

As a simple example, consider the generation of a matrix/array of shape 5,000 × 5,000
elements, populated with pseudo-random, standard normally distributed numbers.
The sum of all elements shall then be calculated. First, the pure Python approach,
where list comprehensions are used:

In [109]: import random
          I = 5000

In [110]: %time mat = [[random.gauss(0, 1) for j in range(I)] \
                       for i in range(I)]  
          CPU times: user 17.1 s, sys: 361 ms, total: 17.4 s
          Wall time: 17.4 s

In [111]: mat[0][:5]  
Out[111]: [-0.40594967782329183,
           -1.357757478015285,
           0.05129566894355976,
           -0.8958429976582192,
           0.6234174778878331]
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In [112]: %time sum([sum(l) for l in mat])  
          CPU times: user 142 ms, sys: 1.69 ms, total: 144 ms
          Wall time: 143 ms

Out[112]: -3561.944965714259

In [113]: import sys
          sum([sys.getsizeof(l) for l in mat])  
Out[113]: 215200000

The creation of the matrix via a nested list comprehension.

Some selected random numbers from those drawn.

The sums of the single list objects are first calculated during a list comprehen‐
sion; then the sum of the sums is taken.

This adds up the memory usage of all list objects.

Let us now turn to NumPy and see how the same problem is solved there. For conve‐
nience, the NumPy subpackage random offers a multitude of functions to instantiate an
ndarray object and populate it at the same time with pseudo-random numbers:

In [114]: %time mat = np.random.standard_normal((I, I))  
          CPU times: user 1.01 s, sys: 200 ms, total: 1.21 s
          Wall time: 1.21 s

In [115]: %time mat.sum()  
          CPU times: user 29.7 ms, sys: 1.15 ms, total: 30.8 ms
          Wall time: 29.4 ms

Out[115]: -186.12767026606448

In [116]: mat.nbytes  
Out[116]: 200000000

In [117]: sys.getsizeof(mat)  
Out[117]: 200000112

Creates the ndarray object with standard normally distributed random numbers;
it is faster by a factor of about 14.

Calculates the sum of all values in the ndarray object; it is faster by a factor of
4.5.

The NumPy approach also saves some memory since the memory overhead of the
ndarray object is tiny compared to the size of the data itself.
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Using NumPy Arrays

The use of NumPy for array-based operations and algorithms gener‐
ally results in compact, easily readable code and significant perfor‐
mance improvements over pure Python code.

Structured NumPy Arrays
The specialization of the ndarray class obviously brings a number of valuable bene‐
fits with it. However, a too narrow specialization might turn out to be too large a bur‐
den to carry for the majority of array-based algorithms and applications. Therefore,
NumPy provides structured ndarray and record recarray objects that allow you to
have a different dtype per column. What does “per column” mean? Consider the fol‐
lowing initialization of a structured ndarray object:

In [118]: dt = np.dtype([('Name', 'S10'), ('Age', 'i4'),
                         ('Height', 'f'), ('Children/Pets', 'i4', 2)])  

In [119]: dt  
Out[119]: dtype([('Name', 'S10'), ('Age', '<i4'), ('Height', '<f4'),
           ('Children/Pets', '<i4', (2,))])

In [120]: dt = np.dtype({'names': ['Name', 'Age', 'Height', 'Children/Pets'],
                       'formats':'O int float int,int'.split()})  

In [121]: dt  
Out[121]: dtype([('Name', 'O'), ('Age', '<i8'), ('Height', '<f8'),
           ('Children/Pets', [('f0', '<i8'), ('f1', '<i8')])])

In [122]: s = np.array([('Smith', 45, 1.83, (0, 1)),
                        ('Jones', 53, 1.72, (2, 2))], dtype=dt)  

In [123]: s  
Out[123]: array([('Smith', 45, 1.83, (0, 1)), ('Jones', 53, 1.72, (2, 2))],
          dtype=[('Name', 'O'), ('Age', '<i8'), ('Height', '<f8'),
           ('Children/Pets', [('f0', '<i8'), ('f1', '<i8')])])

In [124]: type(s)  
Out[124]: numpy.ndarray

The complex dtype is composed.

An alternative syntax to achieve the same result.

The structured ndarray is instantiated with two records.

The object type is still ndarray.
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In a sense, this construction comes quite close to the operation for initializing tables
in a SQL database: one has column names and column data types, with maybe some
additional information (e.g., maximum number of characters per str object). The
single columns can now be easily accessed by their names and the rows by their index
values:

In [125]: s['Name']  
Out[125]: array(['Smith', 'Jones'], dtype=object)

In [126]: s['Height'].mean()  
Out[126]: 1.775

In [127]: s[0]  
Out[127]: ('Smith', 45, 1.83, (0, 1))

In [128]: s[1]['Age']  
Out[128]: 53

Selecting a column by name.

Calling a method on a selected column.

Selecting a record.

Selecting a field in a record.

In summary, structured arrays are a generalization of the regular ndarray object type
in that the data type only has to be the same per column, like in tables in SQL data‐
bases. One advantage of structured arrays is that a single element of a column can be
another multidimensional object and does not have to conform to the basic NumPy
data types.

Structured Arrays

NumPy provides, in addition to regular arrays, structured (and
record) arrays that allow the description and handling of table-like
data structures with a variety of different data types per (named)
column. They bring SQL table–like data structures to Python, with
most of the benefits of regular ndarray objects (syntax, methods,
performance).

Vectorization of Code
Vectorization is a strategy to get more compact code that is possibly executed faster.
The fundamental idea is to conduct an operation on or to apply a function to a com‐
plex object “at once” and not by looping over the single elements of the object. In
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Python, functional programming tools such as map() and filter() provide some
basic means for vectorization. However, NumPy has vectorization built in deep down
in its core.

Basic Vectorization
As demonstrated in the previous section, simple mathematical operations—such as
calculating the sum of all elements—can be implemented on ndarray objects directly
(via methods or universal functions). More general vectorized operations are also
possible. For example, one can add two NumPy arrays element-wise as follows:

In [129]: np.random.seed(100)
          r = np.arange(12).reshape((4, 3))  
          s = np.arange(12).reshape((4, 3)) * 0.5  

In [130]: r  
Out[130]: array([[ 0,  1,  2],
                 [ 3,  4,  5],
                 [ 6,  7,  8],
                 [ 9, 10, 11]])

In [131]: s  
Out[131]: array([[0. , 0.5, 1. ],
                 [1.5, 2. , 2.5],
                 [3. , 3.5, 4. ],
                 [4.5, 5. , 5.5]])

In [132]: r + s  
Out[132]: array([[ 0. ,  1.5,  3. ],
                 [ 4.5,  6. ,  7.5],
                 [ 9. , 10.5, 12. ],
                 [13.5, 15. , 16.5]])

The first ndarray object with random numbers.

The second ndarray object with random numbers.

Element-wise addition as a vectorized operation (no looping).

NumPy also supports what is called broadcasting. This allows you to combine objects
of different shape within a single operation. Previous examples have already made
use of this. Consider the following examples:

In [133]: r + 3  
Out[133]: array([[ 3,  4,  5],
                 [ 6,  7,  8],
                 [ 9, 10, 11],
                 [12, 13, 14]])

In [134]: 2 * r  
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Out[134]: array([[ 0,  2,  4],
                 [ 6,  8, 10],
                 [12, 14, 16],
                 [18, 20, 22]])

In [135]: 2 * r + 3  
Out[135]: array([[ 3,  5,  7],
                 [ 9, 11, 13],
                 [15, 17, 19],
                 [21, 23, 25]])

During scalar addition, the scalar is broadcast and added to every element.

During scalar multiplication, the scalar is also broadcast to and multiplied with
every element.

This linear transformation combines both operations.

These operations work with differently shaped ndarray objects as well, up to a certain
point:

In [136]: r
Out[136]: array([[ 0,  1,  2],
                 [ 3,  4,  5],
                 [ 6,  7,  8],
                 [ 9, 10, 11]])

In [137]: r.shape
Out[137]: (4, 3)

In [138]: s = np.arange(0, 12, 4)  
          s  
Out[138]: array([0, 4, 8])

In [139]: r + s  
Out[139]: array([[ 0,  5, 10],
                 [ 3,  8, 13],
                 [ 6, 11, 16],
                 [ 9, 14, 19]])

In [140]: s = np.arange(0, 12, 3)  
          s  
Out[140]: array([0, 3, 6, 9])

In [141]: r + s  

          ---------------------------------------
          ValueErrorTraceback (most recent call last)
          <ipython-input-141-1890b26ec965> in <module>()
          ----> 1 r + s  
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          ValueError: operands could not be broadcast together
                      with shapes (4,3) (4,)

In [142]: r.transpose() + s  
Out[142]: array([[ 0,  6, 12, 18],
                 [ 1,  7, 13, 19],
                 [ 2,  8, 14, 20]])

In [143]: sr = s.reshape(-1, 1)  
          sr
Out[143]: array([[0],
                 [3],
                 [6],
                 [9]])

In [144]: sr.shape  
Out[144]: (4, 1)

In [145]: r + s.reshape(-1, 1)  
Out[145]: array([[ 0,  1,  2],
                 [ 6,  7,  8],
                 [12, 13, 14],
                 [18, 19, 20]])

A new one-dimensional ndarray object of length 3.

The r (matrix) and s (vector) objects can be added straightforwardly.

Another one-dimensional ndarray object of length 4.

The length of the new s (vector) object is now different from the length of the
second dimension of the r object.

Transposing the r object again allows for the vectorized addition.

Alternatively, the shape of s can be changed to (4, 1) to make the addition work
(the results are different, however).

Often, custom-defined Python functions work with ndarray objects as well. If the
implementation allows, arrays can be used with functions just as int or float objects
can. Consider the following function:

In [146]: def f(x):
              return 3 * x + 5  

In [147]: f(0.5)  
Out[147]: 6.5

In [148]: f(r)  
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Out[148]: array([[ 5,  8, 11],
                 [14, 17, 20],
                 [23, 26, 29],
                 [32, 35, 38]])

A simple Python function implementing a linear transform on parameter x.

The function f() applied to a Python float object.

The same function applied to an ndarray object, resulting in a vectorized and
element-wise evaluation of the function.

What NumPy does is to simply apply the function f to the object element-wise. In that
sense, by using this kind of operation one does not avoid loops; one only avoids them
on the Python level and delegates the looping to NumPy. On the NumPy level, looping
over the ndarray object is taken care of by optimized code, most of it written in C
and therefore generally faster than pure Python. This explains the "secret" behind
the performance benefits of using NumPy for array-based use cases.

Memory Layout
When ndarray objects are initialized by using np.zeros(), as in “Multiple Dimen‐
sions” on page 94, an optional argument for the memory layout is provided. This
argument specifies, roughly speaking, which elements of an array get stored in mem‐
ory next to each other (contiguously). When working with small arrays, this has
hardly any measurable impact on the performance of array operations. However,
when arrays get large, and depending on the (financial) algorithm to be implemented
on them, the story might be different. This is when memory layout comes into play
(see, for instance, Eli Bendersky’s article “Memory Layout of Multi-Dimensional
Arrays”).

To illustrate the potential importance of the memory layout of arrays in science and
finance, consider the following construction of multidimensional ndarray objects:

In [149]: x = np.random.standard_normal((1000000, 5))  

In [150]: y = 2 * x + 3  

In [151]: C = np.array((x, y), order='C')  

In [152]: F = np.array((x, y), order='F')  

In [153]: x = 0.0; y = 0.0  

In [154]: C[:2].round(2)  
Out[154]: array([[[-1.75,  0.34,  1.15, -0.25,  0.98],
                  [ 0.51,  0.22, -1.07, -0.19,  0.26],
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                  [-0.46,  0.44, -0.58,  0.82,  0.67],
                  ...,
                  [-0.05,  0.14,  0.17,  0.33,  1.39],
                  [ 1.02,  0.3 , -1.23, -0.68, -0.87],
                  [ 0.83, -0.73,  1.03,  0.34, -0.46]],

                 [[-0.5 ,  3.69,  5.31,  2.5 ,  4.96],
                  [ 4.03,  3.44,  0.86,  2.62,  3.51],
                  [ 2.08,  3.87,  1.83,  4.63,  4.35],
                  ...,
                  [ 2.9 ,  3.28,  3.33,  3.67,  5.78],
                  [ 5.04,  3.6 ,  0.54,  1.65,  1.26],
                  [ 4.67,  1.54,  5.06,  3.69,  2.07]]])

An ndarray object with large asymmetry in the two dimensions.

A linear transform of the original object data.

This creates a two-dimensional ndarray object with C order (row-major).

This creates a two-dimensional ndarray object with F order (column-major).

Memory is freed up (contingent on garbage collection).

Some numbers from the C object.

Let’s look at some fundamental examples and use cases for both types of ndarray
objects and consider the speed with which they are executed given the different mem‐
ory layouts:

In [155]: %timeit C.sum()  
          4.36 ms ± 89.3 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)

In [156]: %timeit F.sum()  
          4.21 ms ± 71.4 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)

In [157]: %timeit C.sum(axis=0)  
          17.9 ms ± 776 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)

In [158]: %timeit C.sum(axis=1)  
          35.1 ms ± 999 µs per loop (mean ± std. dev. of 7 runs, 10 loops each)

In [159]: %timeit F.sum(axis=0)  
          83.8 ms ± 2.63 ms per loop (mean ± std. dev. of 7 runs, 10 loops each)

In [160]: %timeit F.sum(axis=1)  
          67.9 ms ± 5.16 ms per loop (mean ± std. dev. of 7 runs, 10 loops each)

In [161]: F = 0.0; C = 0.0
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Calculates the sum of all elements.

Calculates the sums per row (“many”).

Calculates the sums per columns (“few”).

We can summarize the performance results as follows:

• When calculating the sum of all elements, the memory layout does not really
matter.

• The summing up over the C-ordered ndarray objects is faster both over rows and
over columns (an absolute speed advantage).

• With the C-ordered (row-major) ndarray object, summing up over rows is rela‐
tively faster compared to summing up over columns.

• With the F-ordered (column-major) ndarray object, summing up over columns
is relatively faster compared to summing up over rows.

Conclusion
NumPy is the package of choice for numerical computing in Python. The ndarray class
is specifically designed to be convenient and efficient in the handling of (large)
numerical data. Powerful methods and NumPy universal functions allow for vectorized
code that mostly avoids slow loops on the Python level. Many approaches introduced
in this chapter carry over to pandas and its DataFrame class as well (see Chapter 5).

Further Resources
Many helpful resources are provided at the NumPy website:

• http://www.numpy.org/

Good introductions to NumPy in book form are:

• McKinney, Wes (2017). Python for Data Analysis. Sebastopol, CA: O’Reilly.
• VanderPlas, Jake (2016). Python Data Science Handbook. Sebastopol, CA:

O’Reilly.
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CHAPTER 5

Data Analysis with pandas

Data! Data! Data! I can’t make bricks without clay!
—Sherlock Holmes

This chapter is about pandas, a library for data analysis with a focus on tabular data.
pandas is a powerful tool that not only provides many useful classes and functions
but also does a great job of wrapping functionality from other packages. The result is
a user interface that makes data analysis, and in particular financial analysis, a conve‐
nient and efficient task.

This chapter covers the following fundamental data structures:

Object type Meaning Used for

DataFrame 2-dimensional data object with index Tabular data organized in columns

Series 1-dimensional data object with index Single (time) series of data

The chapter is organized as follows:

“The DataFrame Class” on page 114
This section starts by exploring the basic characteristics and capabilities of the
DataFrame class of pandas by using simple and small data sets; it then shows how
to transform a NumPy ndarray object into a DataFrame object.

“Basic Analytics” on page 123 and “Basic Visualization” on page 126
Basic analytics and visualization capabilities are introduced in these sections
(later chapters go deeper into these topics).

“The Series Class” on page 128
This rather brief section covers the Series class of pandas, which in a sense rep‐
resents a special case of the DataFrame class with a single column of data only.
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“GroupBy Operations” on page 130
One of the strengths of the DataFrame class lies in grouping data according to a
single or multiple columns. This section explores the grouping capabilities of pan
das.

“Complex Selection” on page 132
This section illustrates how the use of (complex) conditions allows for the easy
selection of data from a DataFrame object.

“Concatenation, Joining, and Merging” on page 135
The combining of different data sets into one is an important operation in data
analysis. pandas provides different options to accomplish this task, as described
in this section.

“Performance Aspects” on page 141
Like Python in general, pandas often provides multiple options to accomplish the
same goal. This section takes a brief look at potential performance differences.

The DataFrame Class
At the core of pandas (and this chapter) is the DataFrame, a class designed to effi‐
ciently handle data in tabular form—i.e., data characterized by a columnar organiza‐
tion. To this end, the DataFrame class provides, for instance, column labeling as well
as flexible indexing capabilities for the rows (records) of the data set, similar to a table
in a relational database or an Excel spreadsheet.

This section covers some fundamental aspects of the pandas DataFrame class. The
class is so complex and powerful that only a fraction of its capabilities can be presen‐
ted here. Subsequent chapters provide more examples and shed light on different
aspects.

First Steps with the DataFrame Class
On a fundamental level, the DataFrame class is designed to manage indexed and
labeled data, not too different from a SQL database table or a worksheet in a spread‐
sheet application. Consider the following creation of a DataFrame object:

In [1]: import pandas as pd  

In [2]: df = pd.DataFrame([10, 20, 30, 40],  
                          columns=['numbers'],  
                          index=['a', 'b', 'c', 'd'])  

In [3]: df  
Out[3]:    numbers
        a       10
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        b       20
        c       30
        d       40

Imports pandas.

Defines the data as a list object.

Specifies the column label.

Specifies the index values/labels.

Shows the data as well as column and index labels of the DataFrame object.

This simple example already shows some major features of the DataFrame class when
it comes to storing data:

• Data itself can be provided in different shapes and types (list, tuple, ndarray,
and dict objects are candidates).

• Data is organized in columns, which can have custom names (labels).
• There is an index that can take on different formats (e.g., numbers, strings, time

information).

Working with a DataFrame object is in general pretty convenient and efficient with
regard to the handling of the object, e.g., compared to regular ndarray objects, which
are more specialized and more restricted when one wants to (say) enlarge an existing
object. At the same time, DataFrame objects are often as computationally efficient as
ndarray objects. The following are simple examples showing how typical operations
on a DataFrame object work:

In [4]: df.index  
Out[4]: Index(['a', 'b', 'c', 'd'], dtype='object')

In [5]: df.columns  
Out[5]: Index(['numbers'], dtype='object')

In [6]: df.loc['c']  
Out[6]: numbers    30
        Name: c, dtype: int64

In [7]: df.loc[['a', 'd']]  
Out[7]:    numbers
        a       10
        d       40

In [8]: df.iloc[1:3]  
Out[8]:    numbers
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        b       20
        c       30

In [9]: df.sum()  
Out[9]: numbers    100
        dtype: int64

In [10]: df.apply(lambda x: x ** 2)  
Out[10]:    numbers
         a      100
         b      400
         c      900
         d     1600

In [11]: df ** 2  
Out[11]:    numbers
         a      100
         b      400
         c      900
         d     1600

The index attribute and Index object.

The columns attribute and Index object.

Selects the value corresponding to index c.

Selects the two values corresponding to indices a and d.

Selects the second and third rows via the index positions.

Calculates the sum of the single column.

Uses the apply() method to calculate squares in vectorized fashion.

Applies vectorization directly as with ndarray objects.

Contrary to NumPy ndarray objects, enlarging the DataFrame object in both dimen‐
sions is possible:

In [12]: df['floats'] = (1.5, 2.5, 3.5, 4.5)  

In [13]: df
Out[13]:    numbers  floats
         a       10     1.5
         b       20     2.5
         c       30     3.5
         d       40     4.5

In [14]: df['floats']  
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Out[14]: a    1.5
         b    2.5
         c    3.5
         d    4.5
         Name: floats, dtype: float64

Adds a new column with float objects provided as a tuple object.

Selects this column and shows its data and index labels.

A whole DataFrame object can also be taken to define a new column. In such a case,
indices are aligned automatically:

In [15]: df['names'] = pd.DataFrame(['Yves', 'Sandra', 'Lilli', 'Henry'],
                                    index=['d', 'a', 'b', 'c'])  

In [16]: df
Out[16]:    numbers  floats   names
         a       10     1.5  Sandra
         b       20     2.5   Lilli
         c       30     3.5   Henry
         d       40     4.5    Yves

Another new column is created based on a DataFrame object.

Appending data works similarly. However, in the following example a side effect is
seen that is usually to be avoided—namely, the index gets replaced by a simple range
index:

In [17]: df.append({'numbers': 100, 'floats': 5.75, 'names': 'Jil'},
                        ignore_index=True)  
Out[17]:    numbers  floats   names
         0       10    1.50  Sandra
         1       20    2.50   Lilli
         2       30    3.50   Henry
         3       40    4.50    Yves
         4      100    5.75     Jil

In [18]: df = df.append(pd.DataFrame({'numbers': 100, 'floats': 5.75,
                                      'names': 'Jil'}, index=['y',]))  

In [19]: df
Out[19]:    numbers  floats   names
         a       10    1.50  Sandra
         b       20    2.50   Lilli
         c       30    3.50   Henry
         d       40    4.50    Yves
         y      100    5.75     Jil

In [20]: df = df.append(pd.DataFrame({'names': 'Liz'}, index=['z',]),
                        sort=False)  
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In [21]: df
Out[21]:    numbers  floats   names
         a     10.0    1.50  Sandra
         b     20.0    2.50   Lilli
         c     30.0    3.50   Henry
         d     40.0    4.50    Yves
         y    100.0    5.75     Jil
         z      NaN     NaN     Liz

In [22]: df.dtypes  
Out[22]: numbers    float64
         floats     float64
         names       object
         dtype: object

Appends a new row via a dict object; this is a temporary operation during which
index information gets lost.

Appends the row based on a DataFrame object with index information; the origi‐
nal index information is preserved.

Appends an incomplete data row to the DataFrame object, resulting in NaN val‐
ues.

Returns the different dtypes of the single columns; this is similar to what’s possi‐
ble with structured ndarray objects.

Although there are now missing values, the majority of method calls will still work:

In [23]: df[['numbers', 'floats']].mean()  
Out[23]: numbers    40.00
         floats      3.55
         dtype: float64

In [24]: df[['numbers', 'floats']].std()  
Out[24]: numbers    35.355339
         floats      1.662077
         dtype: float64

Calculates the mean over the two columns specified (ignoring rows with NaN val‐
ues).

Calculates the standard deviation over the two columns specified (ignoring rows
with NaN values).
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Second Steps with the DataFrame Class
The example in this subsection is based on an ndarray object with standard normally
distributed random numbers. It explores further features such as a DatetimeIndex to
manage time series data:

In [25]: import numpy as np

In [26]: np.random.seed(100)

In [27]: a = np.random.standard_normal((9, 4))

In [28]: a
Out[28]: array([[-1.74976547,  0.3426804 ,  1.1530358 , -0.25243604],
                [ 0.98132079,  0.51421884,  0.22117967, -1.07004333],
                [-0.18949583,  0.25500144, -0.45802699,  0.43516349],
                [-0.58359505,  0.81684707,  0.67272081, -0.10441114],
                [-0.53128038,  1.02973269, -0.43813562, -1.11831825],
                [ 1.61898166,  1.54160517, -0.25187914, -0.84243574],
                [ 0.18451869,  0.9370822 ,  0.73100034,  1.36155613],
                [-0.32623806,  0.05567601,  0.22239961, -1.443217  ],
                [-0.75635231,  0.81645401,  0.75044476, -0.45594693]])

Although one can construct DataFrame objects more directly (as seen before), using
an ndarray object is generally a good choice since pandas will retain the basic struc‐
ture and will “only” add metainformation (e.g., index values). It also represents a typ‐
ical use case for financial applications and scientific research in general. For example:

In [29]: df = pd.DataFrame(a)  

In [30]: df
Out[30]:           0         1         2         3
         0 -1.749765  0.342680  1.153036 -0.252436
         1  0.981321  0.514219  0.221180 -1.070043
         2 -0.189496  0.255001 -0.458027  0.435163
         3 -0.583595  0.816847  0.672721 -0.104411
         4 -0.531280  1.029733 -0.438136 -1.118318
         5  1.618982  1.541605 -0.251879 -0.842436
         6  0.184519  0.937082  0.731000  1.361556
         7 -0.326238  0.055676  0.222400 -1.443217
         8 -0.756352  0.816454  0.750445 -0.455947

Creates a DataFrame object from the ndarray object.

Table 5-1 lists the parameters that the DataFrame() function takes. In the table,
“array-like” means a data structure similar to an ndarray object—a list, for exam‐
ple. Index is an instance of the pandas Index class.
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Table 5-1. Parameters of DataFrame() function

Parameter Format Description

data ndarray/dict/DataFrame Data for DataFrame; dict can contain Series, ndarray, list

index Index/array-like Index to use; defaults to range(n)

columns Index/array-like Column headers to use; defaults to range(n)

dtype dtype, default None Data type to use/force; otherwise, it is inferred

copy bool, default None Copy data from inputs

As with structured arrays, and as seen before, DataFrame objects have column names
that can be defined directly by assigning a list object with the right number of ele‐
ments. This illustrates that one can define/change the attributes of the DataFrame
object easily:

In [31]: df.columns = ['No1', 'No2', 'No3', 'No4']  

In [32]: df
Out[32]:         No1       No2       No3       No4
         0 -1.749765  0.342680  1.153036 -0.252436
         1  0.981321  0.514219  0.221180 -1.070043
         2 -0.189496  0.255001 -0.458027  0.435163
         3 -0.583595  0.816847  0.672721 -0.104411
         4 -0.531280  1.029733 -0.438136 -1.118318
         5  1.618982  1.541605 -0.251879 -0.842436
         6  0.184519  0.937082  0.731000  1.361556
         7 -0.326238  0.055676  0.222400 -1.443217
         8 -0.756352  0.816454  0.750445 -0.455947

In [33]: df['No2'].mean()  
Out[33]: 0.7010330941456459

Specifies the column labels via a list object.

Picking a column is now made easy.

To work with financial time series data efficiently, one must be able to handle time
indices well. This can also be considered a major strength of pandas. For example,
assume that our nine data entries in the four columns correspond to month-end data,
beginning in January 2019. A DatetimeIndex object is then generated with the
date_range() function as follows:

In [34]: dates = pd.date_range('2019-1-1', periods=9, freq='M')  

In [35]: dates
Out[35]: DatetimeIndex(['2019-01-31', '2019-02-28', '2019-03-31', '2019-04-30',
                        '2019-05-31', '2019-06-30', '2019-07-31', '2019-08-31',
                        '2019-09-30'],
                       dtype='datetime64[ns]', freq='M')
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Creates a DatetimeIndex object.

Table 5-2 lists the parameters that the date_range() function takes.

Table 5-2. Parameters of date_range() function

Parameter Format Description

start string/datetime Left bound for generating dates

end string/datetime Right bound for generating dates

periods integer/None Number of periods (if start or end is None)

freq string/DateOffset Frequency string, e.g., 5D for 5 days

tz string/None Time zone name for localized index

normalize bool, default None Normalizes start and end to midnight

name string, default None Name of resulting index

The following code defines the just-created DatetimeIndex object as the relevant
index object, making a time series of the original data set:

In [36]: df.index = dates

In [37]: df
Out[37]:                  No1       No2       No3       No4
         2019-01-31 -1.749765  0.342680  1.153036 -0.252436
         2019-02-28  0.981321  0.514219  0.221180 -1.070043
         2019-03-31 -0.189496  0.255001 -0.458027  0.435163
         2019-04-30 -0.583595  0.816847  0.672721 -0.104411
         2019-05-31 -0.531280  1.029733 -0.438136 -1.118318
         2019-06-30  1.618982  1.541605 -0.251879 -0.842436
         2019-07-31  0.184519  0.937082  0.731000  1.361556
         2019-08-31 -0.326238  0.055676  0.222400 -1.443217
         2019-09-30 -0.756352  0.816454  0.750445 -0.455947

When it comes to the generation of DatetimeIndex objects with the help of the
date_range() function, there are a number of choices for the frequency parameter
freq. Table 5-3 lists all the options.

Table 5-3. Frequency parameter values for date_range() function

Alias Description

B Business day frequency

C Custom business day frequency (experimental)

D Calendar day frequency

W Weekly frequency

M Month end frequency

BM Business month end frequency
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Alias Description

MS Month start frequency

BMS Business month start frequency

Q Quarter end frequency

BQ Business quarter end frequency

QS Quarter start frequency

BQS Business quarter start frequency

A Year end frequency

BA Business year end frequency

AS Year start frequency

BAS Business year start frequency

H Hourly frequency

T Minutely frequency

S Secondly frequency

L Milliseconds

U Microseconds

In some circumstances, it pays off to have access to the original data set in the form of
the ndarray object. The values attribute provides direct access to it:

In [38]: df.values
Out[38]: array([[-1.74976547,  0.3426804 ,  1.1530358 , -0.25243604],
                [ 0.98132079,  0.51421884,  0.22117967, -1.07004333],
                [-0.18949583,  0.25500144, -0.45802699,  0.43516349],
                [-0.58359505,  0.81684707,  0.67272081, -0.10441114],
                [-0.53128038,  1.02973269, -0.43813562, -1.11831825],
                [ 1.61898166,  1.54160517, -0.25187914, -0.84243574],
                [ 0.18451869,  0.9370822 ,  0.73100034,  1.36155613],
                [-0.32623806,  0.05567601,  0.22239961, -1.443217  ],
                [-0.75635231,  0.81645401,  0.75044476, -0.45594693]])

In [39]: np.array(df)
Out[39]: array([[-1.74976547,  0.3426804 ,  1.1530358 , -0.25243604],
                [ 0.98132079,  0.51421884,  0.22117967, -1.07004333],
                [-0.18949583,  0.25500144, -0.45802699,  0.43516349],
                [-0.58359505,  0.81684707,  0.67272081, -0.10441114],
                [-0.53128038,  1.02973269, -0.43813562, -1.11831825],
                [ 1.61898166,  1.54160517, -0.25187914, -0.84243574],
                [ 0.18451869,  0.9370822 ,  0.73100034,  1.36155613],
                [-0.32623806,  0.05567601,  0.22239961, -1.443217  ],
                [-0.75635231,  0.81645401,  0.75044476, -0.45594693]])
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Arrays and DataFrames

One can generate a DataFrame object from an ndarray object, but
one can also easily generate an ndarray object out of a DataFrame
by using the values attribute of the DataFrame class or the function
np.array() of NumPy.

Basic Analytics
Like the NumPy ndarray class, the pandas DataFrame class has a multitude of conve‐
nience methods built in. As a starter, consider the methods info() and describe():

In [40]: df.info()  
         <class 'pandas.core.frame.DataFrame'>
         DatetimeIndex: 9 entries, 2019-01-31 to 2019-09-30
         Freq: M
         Data columns (total 4 columns):
         No1    9 non-null float64
         No2    9 non-null float64
         No3    9 non-null float64
         No4    9 non-null float64
         dtypes: float64(4)
         memory usage: 360.0 bytes

In [41]: df.describe()  
Out[41]:             No1       No2       No3       No4
         count  9.000000  9.000000  9.000000  9.000000
         mean  -0.150212  0.701033  0.289193 -0.387788
         std    0.988306  0.457685  0.579920  0.877532
         min   -1.749765  0.055676 -0.458027 -1.443217
         25%   -0.583595  0.342680 -0.251879 -1.070043
         50%   -0.326238  0.816454  0.222400 -0.455947
         75%    0.184519  0.937082  0.731000 -0.104411
         max    1.618982  1.541605  1.153036  1.361556

Provides metainformation regarding the data, columns, and index.

Provides helpful summary statistics per column (for numerical data).

In addition, one can easily get the column-wise or row-wise sums, means, and cumu‐
lative sums:

In [43]: df.sum()  
Out[43]: No1   -1.351906
         No2    6.309298
         No3    2.602739
         No4   -3.490089
         dtype: float64

In [44]: df.mean()  
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Out[44]: No1   -0.150212
         No2    0.701033
         No3    0.289193
         No4   -0.387788
         dtype: float64

In [45]: df.mean(axis=0)  
Out[45]: No1   -0.150212
         No2    0.701033
         No3    0.289193
         No4   -0.387788
         dtype: float64

In [46]: df.mean(axis=1)  
Out[46]: 2019-01-31   -0.126621
         2019-02-28    0.161669
         2019-03-31    0.010661
         2019-04-30    0.200390
         2019-05-31   -0.264500
         2019-06-30    0.516568
         2019-07-31    0.803539
         2019-08-31   -0.372845
         2019-09-30    0.088650
         Freq: M, dtype: float64

In [47]: df.cumsum()  
Out[47]:                  No1       No2       No3       No4
         2019-01-31 -1.749765  0.342680  1.153036 -0.252436
         2019-02-28 -0.768445  0.856899  1.374215 -1.322479
         2019-03-31 -0.957941  1.111901  0.916188 -0.887316
         2019-04-30 -1.541536  1.928748  1.588909 -0.991727
         2019-05-31 -2.072816  2.958480  1.150774 -2.110045
         2019-06-30 -0.453834  4.500086  0.898895 -2.952481
         2019-07-31 -0.269316  5.437168  1.629895 -1.590925
         2019-08-31 -0.595554  5.492844  1.852294 -3.034142
         2019-09-30 -1.351906  6.309298  2.602739 -3.490089

Column-wise sum.

Column-wise mean.

Row-wise mean.

Column-wise cumulative sum (starting at first index position).

DataFrame objects also understand NumPy universal functions, as expected:

In [48]: np.mean(df)  
Out[48]: No1   -0.150212
         No2    0.701033
         No3    0.289193
         No4   -0.387788
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         dtype: float64

In [49]: np.log(df)  
Out[49]:                  No1       No2       No3       No4
         2019-01-31       NaN -1.070957  0.142398       NaN
         2019-02-28 -0.018856 -0.665106 -1.508780       NaN
         2019-03-31       NaN -1.366486       NaN -0.832033
         2019-04-30       NaN -0.202303 -0.396425       NaN
         2019-05-31       NaN  0.029299       NaN       NaN
         2019-06-30  0.481797  0.432824       NaN       NaN
         2019-07-31 -1.690005 -0.064984 -0.313341  0.308628
         2019-08-31       NaN -2.888206 -1.503279       NaN
         2019-09-30       NaN -0.202785 -0.287089       NaN

In [50]: np.sqrt(abs(df))  
Out[50]:                  No1       No2       No3       No4
         2019-01-31  1.322787  0.585389  1.073795  0.502430
         2019-02-28  0.990616  0.717091  0.470297  1.034429
         2019-03-31  0.435311  0.504977  0.676777  0.659669
         2019-04-30  0.763934  0.903796  0.820196  0.323127
         2019-05-31  0.728890  1.014757  0.661918  1.057506
         2019-06-30  1.272392  1.241614  0.501876  0.917843
         2019-07-31  0.429556  0.968030  0.854986  1.166857
         2019-08-31  0.571173  0.235958  0.471593  1.201340
         2019-09-30  0.869685  0.903578  0.866282  0.675238

In [51]: np.sqrt(abs(df)).sum()  
Out[51]: No1    7.384345
         No2    7.075190
         No3    6.397719
         No4    7.538440
         dtype: float64

In [52]: 100 * df + 100  
Out[52]:                    No1         No2         No3         No4
         2019-01-31  -74.976547  134.268040  215.303580   74.756396
         2019-02-28  198.132079  151.421884  122.117967   -7.004333
         2019-03-31   81.050417  125.500144   54.197301  143.516349
         2019-04-30   41.640495  181.684707  167.272081   89.558886
         2019-05-31   46.871962  202.973269   56.186438  -11.831825
         2019-06-30  261.898166  254.160517   74.812086   15.756426
         2019-07-31  118.451869  193.708220  173.100034  236.155613
         2019-08-31   67.376194  105.567601  122.239961  -44.321700
         2019-09-30   24.364769  181.645401  175.044476   54.405307

Column-wise mean.

Element-wise natural logarithm; a warning is raised but the calculation runs
through, resulting in multiple NaN values.

Element-wise square root for the absolute values …
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… and column-wise mean values for the results.

A linear transform of the numerical data.

NumPy Universal Functions

In general, one can apply NumPy universal functions to pandas Data
Frame objects whenever they could be applied to an ndarray object
containing the same type of data.

pandas is quite error tolerant, in the sense that it captures errors and just puts a NaN
value where the respective mathematical operation fails. Not only this, but as briefly
shown before, one can also work with such incomplete data sets as if they were com‐
plete in a number of cases. This comes in handy, since reality is characterized by
incomplete data sets more often than one might wish.

Basic Visualization
Plotting of data is only one line of code away in general, once the data is stored in a
DataFrame object (see Figure 5-1):

In [53]: from pylab import plt, mpl  
         plt.style.use('seaborn')  
         mpl.rcParams['font.family'] = 'serif'  
         %matplotlib inline

In [54]: df.cumsum().plot(lw=2.0, figsize=(10, 6));  

Customizing the plotting style.

Plotting the cumulative sums of the four columns as a line plot.

Basically, pandas provides a wrapper around matplotplib (see Chapter 7), specifi‐
cally designed for DataFrame objects. Table 5-4 lists the parameters that the plot()
method takes.
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Figure 5-1. Line plot of a DataFrame object

Table 5-4. Parameters of plot() method

Parameter Format Description

x label/position, default None Only used when column values are x-ticks

y label/position, default None Only used when column values are y-ticks

subplots boolean, default False Plot columns in subplots

sharex boolean, default True Share the x-axis

sharey boolean, default False Share the y-axis

use_index boolean, default True Use DataFrame.index as x-ticks

stacked boolean, default False Stack (only for bar plots)

sort_columns boolean, default False Sort columns alphabetically before plotting

title string, default None Title for the plot

grid boolean, default False Show horizontal and vertical grid lines

legend boolean, default True Show legend of labels

ax matplotlib axis object matplotlib axis object to use for plotting

style string or list/dictionary Line plotting style (for each column)

kind string (e.g., "line", "bar", "barh", "kde",
"density")

Type of plot

logx boolean, default False Use logarithmic scaling of x-axis

logy boolean, default False Use logarithmic scaling of y-axis

xticks sequence, default Index X-ticks for the plot
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Parameter Format Description

yticks sequence, default Values Y-ticks for the plot

xlim 2-tuple, list Boundaries for x-axis

ylim 2-tuple, list Boundaries for y-axis

rot integer, default None Rotation of x-ticks

secondary_y boolean/sequence, default False Plot on secondary y-axis

mark_right boolean, default True Automatic labeling of secondary axis

colormap string/colormap object, default None Color map to use for plotting

kwds keywords Options to pass to matplotlib

As another example, consider a bar plot of the same data (see Figure 5-2):

In [55]: df.plot.bar(figsize=(10, 6), rot=15);  
         # df.plot(kind='bar', figsize=(10, 6))  

Plots the bar chart via .plot.bar().

Alternative syntax: uses the kind parameter to change the plot type.

Figure 5-2. Bar plot of a DataFrame object

The Series Class
So far this chapter has worked mainly with the pandas DataFrame class. Series is
another important class that comes with pandas. It is characterized by the fact that it
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has only a single column of data. In that sense, it is a specialization of the DataFrame
class that shares many but not all of its characteristics and capabilities. A Series
object is obtained when a single column is selected from a multicolumn DataFrame
object:

In [56]: type(df)
Out[56]: pandas.core.frame.DataFrame

In [57]: S = pd.Series(np.linspace(0, 15, 7), name='series')

In [58]: S
Out[58]: 0     0.0
         1     2.5
         2     5.0
         3     7.5
         4    10.0
         5    12.5
         6    15.0
         Name: series, dtype: float64

In [59]: type(S)
Out[59]: pandas.core.series.Series

In [60]: s = df['No1']

In [61]: s
Out[61]: 2019-01-31   -1.749765
         2019-02-28    0.981321
         2019-03-31   -0.189496
         2019-04-30   -0.583595
         2019-05-31   -0.531280
         2019-06-30    1.618982
         2019-07-31    0.184519
         2019-08-31   -0.326238
         2019-09-30   -0.756352
         Freq: M, Name: No1, dtype: float64

In [62]: type(s)
Out[62]: pandas.core.series.Series

The main DataFrame methods are available for Series objects as well. For illustra‐
tion, consider the mean() and plot() methods (see Figure 5-3):

In [63]: s.mean()
Out[63]: -0.15021177307319458

In [64]: s.plot(lw=2.0, figsize=(10, 6));
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Figure 5-3. Line plot of a Series object

GroupBy Operations
pandas has powerful and flexible grouping capabilities. They work similarly to group‐
ing in SQL as well as pivot tables in Microsoft Excel. To have something to group by
one can add, for instance, a column indicating the quarter the respective data of the
index belongs to:

In [65]: df['Quarter'] = ['Q1', 'Q1', 'Q1', 'Q2', 'Q2',
                          'Q2', 'Q3', 'Q3', 'Q3']
         df
Out[65]:                  No1       No2       No3       No4 Quarter
         2019-01-31 -1.749765  0.342680  1.153036 -0.252436      Q1
         2019-02-28  0.981321  0.514219  0.221180 -1.070043      Q1
         2019-03-31 -0.189496  0.255001 -0.458027  0.435163      Q1
         2019-04-30 -0.583595  0.816847  0.672721 -0.104411      Q2
         2019-05-31 -0.531280  1.029733 -0.438136 -1.118318      Q2
         2019-06-30  1.618982  1.541605 -0.251879 -0.842436      Q2
         2019-07-31  0.184519  0.937082  0.731000  1.361556      Q3
         2019-08-31 -0.326238  0.055676  0.222400 -1.443217      Q3
         2019-09-30 -0.756352  0.816454  0.750445 -0.455947      Q3

The following code groups by the Quarter column and outputs statistics for the sin‐
gle groups:

In [66]: groups = df.groupby('Quarter')  

In [67]: groups.size()  

130 | Chapter 5: Data Analysis with pandas



Out[67]: Quarter
         Q1    3
         Q2    3
         Q3    3
         dtype: int64

In [68]: groups.mean()  
Out[68]:               No1       No2       No3       No4
         Quarter
         Q1      -0.319314  0.370634  0.305396 -0.295772
         Q2       0.168035  1.129395 -0.005765 -0.688388
         Q3      -0.299357  0.603071  0.567948 -0.179203

In [69]: groups.max()  
Out[69]:               No1       No2       No3       No4
         Quarter
         Q1       0.981321  0.514219  1.153036  0.435163
         Q2       1.618982  1.541605  0.672721 -0.104411
         Q3       0.184519  0.937082  0.750445  1.361556

In [70]: groups.aggregate([min, max]).round(2)  
Out[70]:           No1         No2         No3         No4
                   min   max   min   max   min   max   min   max
         Quarter
         Q1      -1.75  0.98  0.26  0.51 -0.46  1.15 -1.07  0.44
         Q2      -0.58  1.62  0.82  1.54 -0.44  0.67 -1.12 -0.10
         Q3      -0.76  0.18  0.06  0.94  0.22  0.75 -1.44  1.36

Groups according to the Quarter column.

Gives the number of rows in each group.

Gives the mean per column.

Gives the maximum value per column.

Gives both the minimum and maximum values per column.

Grouping can also be done with multiple columns. To this end, another column,
indicating whether the month of the index date is odd or even, is introduced:

In [71]: df['Odd_Even'] = ['Odd', 'Even', 'Odd', 'Even', 'Odd', 'Even',
                           'Odd', 'Even', 'Odd']

In [72]: groups = df.groupby(['Quarter', 'Odd_Even'])

In [73]: groups.size()
Out[73]: Quarter  Odd_Even
         Q1       Even        1
                  Odd         2
         Q2       Even        2
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                  Odd         1
         Q3       Even        1
                  Odd         2
         dtype: int64

In [74]: groups[['No1', 'No4']].aggregate([sum, np.mean])
Out[74]:                        No1                 No4
                                sum      mean       sum      mean
         Quarter Odd_Even
         Q1      Even      0.981321  0.981321 -1.070043 -1.070043
                 Odd      -1.939261 -0.969631  0.182727  0.091364
         Q2      Even      1.035387  0.517693 -0.946847 -0.473423
                 Odd      -0.531280 -0.531280 -1.118318 -1.118318
         Q3      Even     -0.326238 -0.326238 -1.443217 -1.443217
                 Odd      -0.571834 -0.285917  0.905609  0.452805

Complex Selection
Often, data selection is accomplished by formulation of conditions on column values,
and potentially combining multiple such conditions logically. Consider the following
data set:

In [75]: data = np.random.standard_normal((10, 2))  

In [76]: df = pd.DataFrame(data, columns=['x', 'y'])  

In [77]: df.info()  
         <class 'pandas.core.frame.DataFrame'>
         RangeIndex: 10 entries, 0 to 9
         Data columns (total 2 columns):
         x    10 non-null float64
         y    10 non-null float64
         dtypes: float64(2)
         memory usage: 240.0 bytes

In [78]: df.head()  
Out[78]:           x         y
         0  1.189622 -1.690617
         1 -1.356399 -1.232435
         2 -0.544439 -0.668172
         3  0.007315 -0.612939
         4  1.299748 -1.733096

In [79]: df.tail()  
Out[79]:           x         y
         5 -0.983310  0.357508
         6 -1.613579  1.470714
         7 -1.188018 -0.549746
         8 -0.940046 -0.827932
         9  0.108863  0.507810
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ndarray object with standard normally distributed random numbers.

DataFrame object with the same random numbers.

The first five rows via the head() method.

The final five rows via the tail() method.

The following code illustrates the application of Python’s comparison operators and
logical operators on values in the two columns:

In [80]: df['x'] > 0.5  
Out[80]: 0     True
         1    False
         2    False
         3    False
         4     True
         5    False
         6    False
         7    False
         8    False
         9    False
         Name: x, dtype: bool

In [81]: (df['x'] > 0) & (df['y'] < 0)  
Out[81]: 0     True
         1    False
         2    False
         3     True
         4     True
         5    False
         6    False
         7    False
         8    False
         9    False
         dtype: bool

In [82]: (df['x'] > 0) | (df['y'] < 0)  
Out[82]: 0     True
         1     True
         2     True
         3     True
         4     True
         5    False
         6    False
         7     True
         8     True
         9     True
         dtype: bool
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Check whether value in column x is greater than 0.5.

Check whether value in column x is positive and value in column y is negative.

Check whether value in column x is positive or value in column y is negative.

Using the resulting Boolean Series objects, complex data (row) selection is straight‐
forward. Alternatively, one can use the query() method and pass the conditions as
str objects:

In [83]: df[df['x'] > 0]  
Out[83]:           x         y
         0  1.189622 -1.690617
         3  0.007315 -0.612939
         4  1.299748 -1.733096
         9  0.108863  0.507810

In [84]: df.query('x > 0')  
Out[84]:           x         y
         0  1.189622 -1.690617
         3  0.007315 -0.612939
         4  1.299748 -1.733096
         9  0.108863  0.507810

In [85]: df[(df['x'] > 0) & (df['y'] < 0)]  
Out[85]:           x         y
         0  1.189622 -1.690617
         3  0.007315 -0.612939
         4  1.299748 -1.733096

In [86]: df.query('x > 0 & y < 0')  
Out[86]:           x         y
         0  1.189622 -1.690617
         3  0.007315 -0.612939
         4  1.299748 -1.733096

In [87]: df[(df.x > 0) | (df.y < 0)]  
Out[87]:           x         y
         0  1.189622 -1.690617
         1 -1.356399 -1.232435
         2 -0.544439 -0.668172
         3  0.007315 -0.612939
         4  1.299748 -1.733096
         7 -1.188018 -0.549746
         8 -0.940046 -0.827932
         9  0.108863  0.507810

All rows for which the value in column x is greater than 0.
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All rows for which the value in column x is positive and the value in column y is
negative.

All rows for which the value in column x is positive or the value in column y is
negative (columns are accessed here via the respective attributes).

Comparison operators can also be applied to complete DataFrame objects at once:

In [88]: df > 0  
Out[88]:        x      y
         0   True  False
         1  False  False
         2  False  False
         3   True  False
         4   True  False
         5  False   True
         6  False   True
         7  False  False
         8  False  False
         9   True   True

In [89]: df[df > 0]  
Out[89]:           x         y
         0  1.189622       NaN
         1       NaN       NaN
         2       NaN       NaN
         3  0.007315       NaN
         4  1.299748       NaN
         5       NaN  0.357508
         6       NaN  1.470714
         7       NaN       NaN
         8       NaN       NaN
         9  0.108863  0.507810

Which values in the DataFrame object are positive?

Select all such values and put a NaN in all other places.

Concatenation, Joining, and Merging
This section walks through different approaches to combine two simple data sets in
the form of DataFrame objects. The two simple data sets are:

In [90]: df1 = pd.DataFrame(['100', '200', '300', '400'],
                             index=['a', 'b', 'c', 'd'],
                             columns=['A',])

In [91]: df1
Out[91]:      A
         a  100
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         b  200
         c  300
         d  400

In [92]: df2 = pd.DataFrame(['200', '150', '50'],
                             index=['f', 'b', 'd'],
                             columns=['B',])

In [93]: df2
Out[93]:      B
         f  200
         b  150
         d   50

Concatenation
Concatenation or appending basically means that rows are added from one DataFrame
object to another one. This can be accomplished via the append() method or via the
pd.concat() function. A major consideration is how the index values are handled:

In [94]: df1.append(df2, sort=False)  
Out[94]:      A    B
         a  100  NaN
         b  200  NaN
         c  300  NaN
         d  400  NaN
         f  NaN  200
         b  NaN  150
         d  NaN   50

In [95]: df1.append(df2, ignore_index=True, sort=False)  
Out[95]:      A    B
         0  100  NaN
         1  200  NaN
         2  300  NaN
         3  400  NaN
         4  NaN  200
         5  NaN  150
         6  NaN   50

In [96]: pd.concat((df1, df2), sort=False)  
Out[96]:      A    B
         a  100  NaN
         b  200  NaN
         c  300  NaN
         d  400  NaN
         f  NaN  200
         b  NaN  150
         d  NaN   50

In [97]: pd.concat((df1, df2), ignore_index=True, sort=False)  
Out[97]:      A    B
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         0  100  NaN
         1  200  NaN
         2  300  NaN
         3  400  NaN
         4  NaN  200
         5  NaN  150
         6  NaN   50

Appends data from df2 to df1 as new rows.

Does the same but ignores the indices.

Has the same effect as the first append operation.

Has the same effect as the second append operation.

Joining
When joining the two data sets, the sequence of the DataFrame objects also matters
but in a different way. Only the index values from the first DataFrame object are used.
This default behavior is called a left join:

In [98]: df1.join(df2)  
Out[98]:      A    B
         a  100  NaN
         b  200  150
         c  300  NaN
         d  400   50

In [99]: df2.join(df1)  
Out[99]:      B    A
         f  200  NaN
         b  150  200
         d   50  400

Index values of df1 are relevant.

Index values of df2 are relevant.

There are a total of four different join methods available, each leading to a different
behavior with regard to how index values and the corresponding data rows are
handled:

In [100]: df1.join(df2, how='left')  
Out[100]:      A    B
          a  100  NaN
          b  200  150
          c  300  NaN
          d  400   50
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In [101]: df1.join(df2, how='right')  
Out[101]:      A    B
          f  NaN  200
          b  200  150
          d  400   50

In [102]: df1.join(df2, how='inner')  
Out[102]:      A    B
          b  200  150
          d  400   50

In [103]: df1.join(df2, how='outer')  
Out[103]:      A    B
          a  100  NaN
          b  200  150
          c  300  NaN
          d  400   50
          f  NaN  200

Left join is the default operation.

Right join is the same as reversing the sequence of the DataFrame objects.

Inner join only preserves those index values found in both indices.

Outer join preserves all index values from both indices.

A join can also happen based on an empty DataFrame object. In this case, the col‐
umns are created sequentially, leading to behavior similar to a left join:

In [104]: df = pd.DataFrame()

In [105]: df['A'] = df1['A']  

In [106]: df
Out[106]:      A
          a  100
          b  200
          c  300
          d  400

In [107]: df['B'] = df2  

In [108]: df
Out[108]:      A    B
          a  100  NaN
          b  200  150
          c  300  NaN
          d  400   50

df1 as first column A.
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df2 as second column B.

Making use of a dictionary to combine the data sets yields a result similar to an outer
join since the columns are created simultaneously:

In [109]: df = pd.DataFrame({'A': df1['A'], 'B': df2['B']})  

In [110]: df
Out[110]:      A    B
          a  100  NaN
          b  200  150
          c  300  NaN
          d  400   50
          f  NaN  200

The columns of the DataFrame objects are used as values in the dict object.

Merging
While a join operation takes place based on the indices of the DataFrame objects to be
joined, a merge operation typically takes place on a column shared between the two
data sets. To this end, a new column C is added to both original DataFrame objects:

In [111]: c = pd.Series([250, 150, 50], index=['b', 'd', 'c'])
          df1['C'] = c
          df2['C'] = c

In [112]: df1
Out[112]:      A      C
          a  100    NaN
          b  200  250.0
          c  300   50.0
          d  400  150.0

In [113]: df2
Out[113]:      B      C
          f  200    NaN
          b  150  250.0
          d   50  150.0

By default, the merge operation in this case takes place based on the single shared
column C. Other options are available, however, such as an outer merge:

In [114]: pd.merge(df1, df2)  
Out[114]:      A      C    B
          0  100    NaN  200
          1  200  250.0  150
          2  400  150.0   50

In [115]: pd.merge(df1, df2, on='C')  
Out[115]:      A      C    B
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          0  100    NaN  200
          1  200  250.0  150
          2  400  150.0   50

In [116]: pd.merge(df1, df2, how='outer')  
Out[116]:      A      C    B
          0  100    NaN  200
          1  200  250.0  150
          2  300   50.0  NaN
          3  400  150.0   50

The default merge on column C.

An outer merge is also possible, preserving all data rows.

Many more types of merge operations are available, a few of which are illustrated in
the following code:

In [117]: pd.merge(df1, df2, left_on='A', right_on='B')
Out[117]:      A    C_x    B  C_y
          0  200  250.0  200  NaN

In [118]: pd.merge(df1, df2, left_on='A', right_on='B', how='outer')
Out[118]:      A    C_x    B    C_y
          0  100    NaN  NaN    NaN
          1  200  250.0  200    NaN
          2  300   50.0  NaN    NaN
          3  400  150.0  NaN    NaN
          4  NaN    NaN  150  250.0
          5  NaN    NaN   50  150.0

In [119]: pd.merge(df1, df2, left_index=True, right_index=True)
Out[119]:      A    C_x    B    C_y
          b  200  250.0  150  250.0
          d  400  150.0   50  150.0

In [120]: pd.merge(df1, df2, on='C', left_index=True)
Out[120]:      A      C    B
          f  100    NaN  200
          b  200  250.0  150
          d  400  150.0   50

In [121]: pd.merge(df1, df2, on='C', right_index=True)
Out[121]:      A      C    B
          a  100    NaN  200
          b  200  250.0  150
          d  400  150.0   50

In [122]: pd.merge(df1, df2, on='C', left_index=True, right_index=True)
Out[122]:      A      C    B
          b  200  250.0  150
          d  400  150.0   50
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Performance Aspects
Many examples in this chapter illustrate that there are often multiple options to ach‐
ieve the same goal with pandas. This section compares such options for adding up
two columns element-wise. First, the data set, generated with NumPy:

In [123]: data = np.random.standard_normal((1000000, 2))  

In [124]: data.nbytes  
Out[124]: 16000000

In [125]: df = pd.DataFrame(data, columns=['x', 'y'])  

In [126]: df.info()  
          <class 'pandas.core.frame.DataFrame'>
          RangeIndex: 1000000 entries, 0 to 999999
          Data columns (total 2 columns):
          x    1000000 non-null float64
          y    1000000 non-null float64
          dtypes: float64(2)
          memory usage: 15.3 MB

The ndarray object with random numbers.

The DataFrame object with the random numbers.

Second, some options to accomplish the task at hand with performance values:

In [127]: %time res = df['x'] + df['y']  
          CPU times: user 7.35 ms, sys: 7.43 ms, total: 14.8 ms
          Wall time: 7.48 ms

In [128]: res[:3]
Out[128]: 0    0.387242
          1   -0.969343
          2   -0.863159
          dtype: float64

In [129]: %time res = df.sum(axis=1)  
          CPU times: user 130 ms, sys: 30.6 ms, total: 161 ms
          Wall time: 101 ms

In [130]: res[:3]
Out[130]: 0    0.387242
          1   -0.969343
          2   -0.863159
          dtype: float64

In [131]: %time res = df.values.sum(axis=1)  
          CPU times: user 50.3 ms, sys: 2.75 ms, total: 53.1 ms
          Wall time: 27.9 ms
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1 The application of the eval() method requires the numexpr package to be installed.

In [132]: res[:3]
Out[132]: array([ 0.3872424 , -0.96934273, -0.86315944])

In [133]: %time res = np.sum(df, axis=1)  
          CPU times: user 127 ms, sys: 15.1 ms, total: 142 ms
          Wall time: 73.7 ms

In [134]: res[:3]
Out[134]: 0    0.387242
          1   -0.969343
          2   -0.863159
          dtype: float64

In [135]: %time res = np.sum(df.values, axis=1)  
          CPU times: user 49.3 ms, sys: 2.36 ms, total: 51.7 ms
          Wall time: 26.9 ms

In [136]: res[:3]
Out[136]: array([ 0.3872424 , -0.96934273, -0.86315944])

Working with the columns (Series objects) directly is the fastest approach.

This calculates the sums by calling the sum() method on the DataFrame object.

This calculates the sums by calling the sum() method on the ndarray object.

This calculates the sums by using the function np.sum() on the DataFrame
object.

This calculates the sums by using the function np.sum() on the ndarray object.

Finally, two more options which are based on the methods eval() and apply(),
respectively:1

In [137]: %time res = df.eval('x + y')  
          CPU times: user 25.5 ms, sys: 17.7 ms, total: 43.2 ms
          Wall time: 22.5 ms

In [138]: res[:3]
Out[138]: 0    0.387242
          1   -0.969343
          2   -0.863159
          dtype: float64

In [139]: %time res = df.apply(lambda row: row['x'] + row['y'], axis=1)  
          CPU times: user 19.6 s, sys: 83.3 ms, total: 19.7 s
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2 At the time of this writing, the PDF version has a total of more than 2,500 pages.

          Wall time: 19.9 s

In [140]: res[:3]
Out[140]: 0    0.387242
          1   -0.969343
          2   -0.863159
          dtype: float64

eval() is a method dedicated to evaluation of (complex) numerical expressions;
columns can be directly addressed.

The slowest option is to use the apply() method row-by-row; this is like looping
on the Python level over all rows.

Choose Wisely

pandas often provides multiple options to accomplish the same
goal. If unsure of which to use, compare the options to verify that
the best possible performance is achieved when time is critical. In
this simple example, execution times differ by orders of magnitude.

Conclusion
pandas is a powerful tool for data analysis and has become the central package in the
so-called PyData stack. Its DataFrame class is particularly suited to working with tab‐
ular data of any kind. Most operations on such objects are vectorized, leading not
only—as in the NumPy case—to concise code but also to high performance in general.
In addition, pandas makes working with incomplete data sets convenient (which is
not the case with NumPy, for instance). pandas and the DataFrame class will be central
in many later chapters of the book, where additional features will be used and intro‐
duced when necessary.

Further Reading
pandas is an open source project with both online documentation and a PDF version
available for download.2 The website provides links to both, and additional resources:

• http://pandas.pydata.org/
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As for NumPy, recommended references for pandas in book form are:

• McKinney, Wes (2017). Python for Data Analysis. Sebastopol, CA: O’Reilly.
• VanderPlas, Jake (2016). Python Data Science Handbook. Sebastopol, CA:

O’Reilly.
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CHAPTER 6

Object-Oriented Programming

The purpose of software engineering is to control complexity, not to create it.
—Pamela Zave

Object-oriented programming (OOP) is one of the most popular programming para‐
digms today. Used in the right way, it provides a number of advantages compared to,
for example, procedural programming. In many cases, OOP seems to be particularly
suited for financial modeling and implementing financial algorithms. However, there
are also many critics, voicing their skepticism about single aspects of OOP or even
the paradigm as a whole. This chapter takes a neutral stance, in that OOP is consid‐
ered an important tool that might not be the best one for every single problem, but
that should be at the disposal of programmers and quants working in finance.

With OOP, some new language comes along. The most important terms for the pur‐
poses of this book and chapter are (more follow later):

Class
An abstract definition of a certain type of objects. For example, a human being.

Object
An instance of a class. For example, Sandra.

Attribute
A feature of the class (class attribute) or of an instance of the class (instance
attribute). For example, being a mammal, being male or female, or color of the
eyes.

Method
An operation that the class or an instance of the class can implement. For exam‐
ple, walking.
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Parameters
Input taken by a method to influence its behavior. For example, three steps.

Instantiation
The process of creating a specific object based on an abstract class.

Translated into Python code, a simple class implementing the example of a human
being might look as follows:

In [1]: class HumanBeing(object):  
            def __init__(self, first_name, eye_color):  
                self.first_name = first_name  
                self.eye_color = eye_color  
                self.position = 0  
            def walk_steps(self, steps):  
                self.position += steps  

Class definition statement; self refers to the current instance of the class.

Special method called during instantiation.

First name attribute initialized with parameter value.

Eye color attribute initialized with parameter value.

Position attribute initialized with 0.

Method definition for walking with steps as parameter.

Code that changes the position given the steps value.

Based on the class definition, a new Python object can be instantiated and used:

In [2]: Sandra = HumanBeing('Sandra', 'blue')  

In [3]: Sandra.first_name  
Out[3]: 'Sandra'

In [4]: Sandra.position  
Out[4]: 0

In [5]: Sandra.walk_steps(5)  

In [6]: Sandra.position  
Out[6]: 5

The instantiation.

Accessing attribute values.
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Calling the method.

Accessing the updated position value.

There are several human aspects that might speak for the use of OOP:

Natural way of thinking
Human thinking typically evolves around real-world or abstract objects, like a
car or a financial instrument. OOP is suited to modeling such objects with their
characteristics.

Reducing complexity
Via different approaches, OOP helps to reduce the complexity of a problem or
algorithm and to model it feature-by-feature.

Nicer user interfaces
OOP allows in many cases for nicer user interfaces and more compact code. This
becomes evident, for example, when looking at the NumPy ndarray class or pan
das DataFrame class.

Pythonic way of modeling
Independent of the pros and cons of OOP, it is simply the dominant paradigm in
Python. This is where the saying “everything is an object in Python” comes from.
OOP also allows the programmer to build custom classes whose instances behave
like every other instance of a standard Python class.

There are also several technical aspects that might speak for OOP:

Abstraction
The use of attributes and methods allows building abstract, flexible models of
objects, with a focus on what is relevant and neglecting what is not needed. In
finance, this might mean having a general class that models a financial instru‐
ment in abstract fashion. Instances of such a class would then be concrete finan‐
cial products, engineered and offered by an investment bank, for example.

Modularity
OOP simplifies breaking code down into multiple modules which are then linked
to form the complete codebase. For example, modeling a European option on a
stock could be achieved by a single class or by two classes, one for the underlying
stock and one for the option itself.

Inheritance
Inheritance refers to the concept that one class can inherit attributes and meth‐
ods from another class. In finance, starting with a general financial instrument,
the next level could be a general derivative instrument, then a European option,
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then a European call option. Every class might inherit attributes and methods
from class(es) on a higher level.

Aggregation
Aggregation refers to the case in which an object is at least partly made up of
multiple other objects that might exist independently. A class modeling a Euro‐
pean call option might have as attributes other objects for the underlying stock
and the relevant short rate for discounting. The objects representing the stock
and the short rate can be used independently by other objects as well.

Composition
Composition is similar to aggregation, but here the single objects cannot exist
independently of each other. Consider a custom-tailored interest rate swap with
a fixed leg and a floating leg. The two legs do not exist independently of the swap
itself.

Polymorphism
Polymorphism can take on multiple forms. Of particular importance in a Python
context is what is called duck typing. This refers to the fact that standard opera‐
tions can be implemented on many different classes and their instances without
knowing exactly what object one is dealing with. For a class of financial instru‐
ments this might mean that one can call a method get_current_price() inde‐
pendent of the specific type of the object (stock, option, swap).

Encapsulation
This concept refers to the approach of making data within a class accessible only
via public methods. A class modeling a stock might have an attribute cur
rent_stock_price. Encapsulation would then give access to the attribute value
via a method get_current_stock_price() and would hide the data from the
user (i.e., make it private). This approach might avoid unintended effects by sim‐
ply working with and possibly changing attribute values. However, there are lim‐
its as to how data can be made private in a Python class.

On a somewhat higher level, many of these aspects can be summarized by two gener‐
als goals in software engineering:

Reusability
Concepts like inheritance and polymorphism improve code reusability and
increase the efficiency and productivity of the programmer. They also simplify
code maintenance.

Nonredundancy
At the same time, these approaches allow one to build almost nonredundant
code, avoiding double implementation effort and reducing debugging and testing
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effort as well as maintenance effort. They might also lead to a smaller overall
codebase.

This chapter is organized as follows:

“A Look at Python Objects” on page 149
This section takes a look at some Python objects through the lens of OOP.

“Basics of Python Classes” on page 154
This section introduces central elements of OOP in Python and uses financial
instruments and portfolio positions as major examples.

“Python Data Model” on page 159
This section discusses important elements of the Python data model and roles
that certain special methods play.

A Look at Python Objects
Let’s start by taking a brief look at some standard objects encountered in previous
chapters through the eyes of an OOP programmer.

int
To start simple, consider an integer object. Even with such a simple Python object,
the major OOP features are present:

In [7]: n = 5  

In [8]: type(n)  
Out[8]: int

In [9]: n.numerator  
Out[9]: 5

In [10]: n.bit_length()  
Out[10]: 3

In [11]: n + n  
Out[11]: 10

In [12]: 2 * n  
Out[12]: 10

In [13]: n.__sizeof__()  
Out[13]: 28

New instance n.

Type of the object.
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1 Special attributes and methods in Python are characterized by double leading and trailing underscores as in
__XYZ__(). n.__sizeof__() returns the size of the Python object n in bytes.

An attribute.

A method.

Applying the + operator (addition).

Applying the * operator (multiplication).

Calling the special method __sizeof__() to get the memory usage in bytes.1

list
list objects have some more methods but basically behave the same way:

In [14]: l = [1, 2, 3, 4]  

In [15]: type(l)  
Out[15]: list

In [16]: l[0]  
Out[16]: 1

In [17]: l.append(10)  

In [18]: l + l  
Out[18]: [1, 2, 3, 4, 10, 1, 2, 3, 4, 10]

In [19]: 2 * l  
Out[19]: [1, 2, 3, 4, 10, 1, 2, 3, 4, 10]

In [20]: sum(l)  
Out[20]: 20

In [21]: l.__sizeof__()  
Out[21]: 104

New instance l.

Type of the object.

Selecting an element via indexing.

A method.
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Applying the + operator (concatenation).

Applying the * operator (concatenation).

Applying the standard Python function sum().

Calling the special method __sizeof__() to get the memory usage in bytes.

ndarray
int and list objects are standard Python objects. The NumPy ndarray object is a
“custom-made” object from an open source package:

In [22]: import numpy as np  

In [23]: a = np.arange(16).reshape((4, 4))  

In [24]: a  
Out[24]: array([[ 0,  1,  2,  3],
                [ 4,  5,  6,  7],
                [ 8,  9, 10, 11],
                [12, 13, 14, 15]])

In [25]: type(a)  
Out[25]: numpy.ndarray

Importing numpy.

A new instance a.

Type of the object.

Although the ndarray object is not a standard object, it behaves in many cases as if it
were one—thanks to the Python data model, as explained later in this chapter:

In [26]: a.nbytes  
Out[26]: 128

In [27]: a.sum()  
Out[27]: 120

In [28]: a.cumsum(axis=0)  
Out[28]: array([[ 0,  1,  2,  3],
                [ 4,  6,  8, 10],
                [12, 15, 18, 21],
                [24, 28, 32, 36]])

In [29]: a + a  
Out[29]: array([[ 0,  2,  4,  6],
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                [ 8, 10, 12, 14],
                [16, 18, 20, 22],
                [24, 26, 28, 30]])

In [30]: 2 * a  
Out[30]: array([[ 0,  2,  4,  6],
                [ 8, 10, 12, 14],
                [16, 18, 20, 22],
                [24, 26, 28, 30]])

In [31]: sum(a)  
Out[31]: array([24, 28, 32, 36])

In [32]: np.sum(a)  
Out[32]: 120

In [33]: a.__sizeof__()  
Out[33]: 112

An attribute.

A method (aggregation).

A method (no aggregation).

Applying the + operator (addition).

Applying the * operator (multiplication).

Applying the standard Python function sum().

Applying the NumPy universal function np.sum().

Calling the special method __sizeof__() to get the memory usage in bytes.

DataFrame
Finally, a quick look at the pandas DataFrame object, which behaves similarly to the
ndarray object. First, the instantiation of the DataFrame object based on the ndarray
object:

In [34]: import pandas as pd  

In [35]: df = pd.DataFrame(a, columns=list('abcd'))  

In [36]: type(df)  
Out[36]: pandas.core.frame.DataFrame
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Importing pandas.

A new instance df.

Type of the object.

Second, a look at attributes, methods, and operations:

In [37]: df.columns  
Out[37]: Index(['a', 'b', 'c', 'd'], dtype='object')

In [38]: df.sum()  
Out[38]: a    24
         b    28
         c    32
         d    36
         dtype: int64

In [39]: df.cumsum()  
Out[39]:     a   b   c   d
         0   0   1   2   3
         1   4   6   8  10
         2  12  15  18  21
         3  24  28  32  36

In [40]: df + df  
Out[40]:     a   b   c   d
         0   0   2   4   6
         1   8  10  12  14
         2  16  18  20  22
         3  24  26  28  30

In [41]: 2 * df  
Out[41]:     a   b   c   d
         0   0   2   4   6
         1   8  10  12  14
         2  16  18  20  22
         3  24  26  28  30

In [42]: np.sum(df)  
Out[42]: a    24
         b    28
         c    32
         d    36
         dtype: int64

In [43]: df.__sizeof__()  
Out[43]: 208

An attribute.
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2 Camel-case naming for classes is recommended. However, if there is no ambiguity, lowercase or snake case
(as in financial_instrument) can also be used.

A method (aggregation).

A method (no aggregation).

Applying the + operator (addition).

Applying the * operator (multiplication).

Applying the NumPy universal function np.sum().

Calling the special method __sizeof__() to get the memory usage in bytes.

Basics of Python Classes
This section covers major concepts and the concrete syntax to make use of OOP in
Python. The context now is about building custom classes to model types of objects
that cannot be easily, efficiently, or properly modeled by existing Python object types.
Throughout, the example of a financial instrument is used.

Two lines of code suffice to create a new Python class:

In [44]: class FinancialInstrument(object):  
             pass  

In [45]: fi = FinancialInstrument()  

In [46]: type(fi)  
Out[46]: __main__.FinancialInstrument

In [47]: fi  
Out[47]: <__main__.FinancialInstrument at 0x116767278>

In [48]: fi.__str__()  
Out[48]: '<__main__.FinancialInstrument object at 0x116767278>'

In [49]: fi.price = 100  

In [50]: fi.price  
Out[50]: 100

Class definition statement.2

Some code; here simply the pass keyword.
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A new instance of the class named aapl.

The type of the object.

Every Python object comes with certain “special” attributes and methods (from
object); here, the special method to retrieve the string representation is called.

So-called data attributes—in contrast to regular attributes—can be defined on the
fly for every object.

An important special method is __init__, which gets called during every instantia‐
tion of an object. It takes as parameters the object itself (self, by convention) and
potentially multiple others:

In [51]: class FinancialInstrument(object):
             author = 'Yves Hilpisch'  
             def __init__(self, symbol, price):  
                 self.symbol = symbol  
                 self.price = price  

In [52]: FinancialInstrument.author  
Out[52]: 'Yves Hilpisch'

In [53]: aapl = FinancialInstrument('AAPL', 100)  

In [54]: aapl.symbol  
Out[54]: 'AAPL'

In [55]: aapl.author  
Out[55]: 'Yves Hilpisch'

In [56]: aapl.price = 105  

In [57]: aapl.price  
Out[57]: 105

Definition of a class attribute (inherited by every instance).

The special method __init__ called during initialization.

Definition of the instance attributes (individual to every instance).

A new instance of the class named fi.

Accessing an instance attribute.

Accessing a class attribute.
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Changing the value of an instance attribute.

Prices of financial instruments change regularly, but the symbol of a financial instru‐
ment probably does not change. To introduce encapsulation to the class definition,
two methods, get_price() and set_price(), might be defined. The code that fol‐
lows additionally inherits from the previous class definition (and not from object
anymore):

In [58]: class FinancialInstrument(FinancialInstrument):  
             def get_price(self):  
                 return self.price  
             def set_price(self, price):  
                 self.price = price  

In [59]: fi = FinancialInstrument('AAPL', 100)  

In [60]: fi.get_price()  
Out[60]: 100

In [61]: fi.set_price(105)  

In [62]: fi.get_price()  
Out[62]: 105

In [63]: fi.price  
Out[63]: 105

Class definition via inheritance from previous version.

Defines the get_price() method.

Defines the set_price() method …

… and updates the instance attribute value given the parameter value.

A new instance based on the new class definition named fi.

Calls the get_price() method to read the instance attribute value.

Updates the instance attribute value via set_price().

Direct access to the instance attribute.

Encapsulation generally has the goal of hiding data from the user working with a
class. Adding getter and setter methods is one part of achieving this goal. However,
this does not prevent the user from directly accessing and manipulating instance
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attributes. This is where private instance attributes come into play. They are defined
by two leading underscores:

In [64]: class FinancialInstrument(object):
             def __init__(self, symbol, price):
                 self.symbol = symbol
                 self.__price = price  
             def get_price(self):
                 return self.__price
             def set_price(self, price):
                 self.__price = price

In [65]: fi = FinancialInstrument('AAPL', 100)

In [66]: fi.get_price()  
Out[66]: 100

In [67]: fi.__price  

         -----------------------------------------------------------------
         AttributeError                  Traceback (most recent call last)
         <ipython-input-67-bd62f6cadb79> in <module>
         ----> 1 fi.__price  

         AttributeError: 'FinancialInstrument' object has no attribute '__price'

In [68]: fi._FinancialInstrument__price  
Out[68]: 100

In [69]: fi._FinancialInstrument__price = 105  

In [70]: fi.set_price(100)  

Price is defined as a private instance attribute.

The method get_price() returns its value.

Trying to access the attribute directly raises an error.

If the class name is prepended with a single leading underscore, direct access and
manipulation are still possible.

Sets the price back to its original value.
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Encapsulation in Python

Although encapsulation can basically be implemented for Python
classes via private instance attributes and respective methods deal‐
ing with them, the hiding of data from the user cannot be fully
enforced. In that sense, it is more an engineering principle in
Python than a technical feature of Python classes.

Consider another class that models a portfolio position of a financial instrument.
With the two classes aggregation as a concept is easily illustrated. An instance of the
PortfolioPosition class takes an instance of the FinancialInstrument class as an
attribute value. Adding an instance attribute, such as position_size, one can then
calculate, for instance, the position value:

In [71]: class PortfolioPosition(object):
             def __init__(self, financial_instrument, position_size):
                 self.position = financial_instrument  
                 self.__position_size = position_size  
             def get_position_size(self):
                 return self.__position_size
             def update_position_size(self, position_size):
                 self.__position_size = position_size
             def get_position_value(self):
                 return self.__position_size * \
                        self.position.get_price()  

In [72]: pp = PortfolioPosition(fi, 10)

In [73]: pp.get_position_size()
Out[73]: 10

In [74]: pp.get_position_value()  
Out[74]: 1000

In [75]: pp.position.get_price()  
Out[75]: 100

In [76]: pp.position.set_price(105)  

In [77]: pp.get_position_value()  
Out[77]: 1050

An instance attribute based on an instance of the FinancialInstrument class.

A private instance attribute of the PortfolioPosition class.

Calculates the position value based on the attributes.
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Methods attached to the instance attribute object can be accessed directly (could
be hidden as well).

Updates the price of the financial instrument.

Calculates the new position value based on the updated price.

Python Data Model
The examples in the previous section highlighted some aspects of the so-called
Python data or object model. The Python data model allows you to design classes that
consistently interact with basic language constructs of Python. Among others, it sup‐
ports (see Ramalho (2015), p. 4) the following tasks and constructs:

• Iteration
• Collection handling
• Attribute access
• Operator overloading
• Function and method invocation
• Object creation and destruction
• String representation (e.g., for printing)
• Managed contexts (i.e., with blocks)

Since the Python data model is so important, this section is dedicated to an example
(from Ramalho (2015), with slight adjustments) that explores several aspects of it. It
implements a class for one-dimensional, three-element vectors (think of vectors in
Euclidean space). First, the special method __init__:

In [78]: class Vector(object):
             def __init__(self, x=0, y=0, z=0):  
                 self.x = x  
                 self.y = y  
                 self.z = z  

In [79]: v = Vector(1, 2, 3)  

In [80]: v  
Out[80]: <__main__.Vector at 0x1167789e8>

Three preinitialized instance attributes (think three-dimensional space).

A new instance of the class named v.

Python Data Model | 159

https://docs.python.org/3/reference/datamodel.html


The default string representation.

The special method __repr__ allows the definition of custom string representations:

In [81]: class Vector(Vector):
             def __repr__(self):
                 return 'Vector(%r, %r, %r)' % (self.x, self.y, self.z)

In [82]: v = Vector(1, 2, 3)

In [83]: v  
Out[83]: Vector(1, 2, 3)

In [84]: print(v)  
         Vector(1, 2, 3)

The new string representation.

abs() and bool() are two standard Python functions whose behavior on the Vector
class can be defined via the special methods __abs__ and __bool__:

In [85]: class Vector(Vector):
             def __abs__(self):
                 return (self.x ** 2 +  self.y ** 2 +
                         self.z ** 2) ** 0.5  

             def __bool__(self):
                 return bool(abs(self))

In [86]: v = Vector(1, 2, -1)  

In [87]: abs(v)
Out[87]: 2.449489742783178

In [88]: bool(v)
Out[88]: True

In [89]: v = Vector()  

In [90]: v  
Out[90]: Vector(0, 0, 0)

In [91]: abs(v)
Out[91]: 0.0

In [92]: bool(v)
Out[92]: False

Returns the Euclidean norm given the three attribute values.

A new Vector object with nonzero attribute values.
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A new Vector object with zero attribute values only.

As shown multiple times, the + and * operators can be applied to almost any Python
object. The behavior is defined through the special methods __add__ and __mul__:

In [93]: class Vector(Vector):
             def __add__(self, other):
                 x = self.x + other.x
                 y = self.y + other.y
                 z = self.z + other.z
                 return Vector(x, y, z)  

             def __mul__(self, scalar):
                 return Vector(self.x * scalar,
                               self.y * scalar,
                               self.z * scalar)  

In [94]: v = Vector(1, 2, 3)

In [95]: v + Vector(2, 3, 4)
Out[95]: Vector(3, 5, 7)

In [96]: v * 2
Out[96]: Vector(2, 4, 6)

In this case, each special method returns an object of its own kind.

Another standard Python function is len(), which gives the length of an object in
number of elements. This function accesses the special method __len__ when called
on an object. On the other hand, the special method __getitem__ makes indexing via
the square bracket notation possible:

In [97]: class Vector(Vector):
             def __len__(self):
                 return 3  

             def __getitem__(self, i):
                 if i in [0, -3]: return self.x
                 elif i in [1, -2]: return self.y
                 elif i in [2, -1]: return self.z
                 else: raise IndexError('Index out of range.')

In [98]: v = Vector(1, 2, 3)

In [99]: len(v)
Out[99]: 3

In [100]: v[0]
Out[100]: 1

In [101]: v[-2]
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Out[101]: 2

In [102]: v[3]

          -----------------------------------------------------------------
          IndexError                      Traceback (most recent call last)
          <ipython-input-102-f998c57dcc1e> in <module>
          ----> 1 v[3]

          <ipython-input-97-b0ca25eef7b3> in __getitem__(self, i)
                7         elif i in [1, -2]: return self.y
                8         elif i in [2, -1]: return self.z
          ----> 9         else: raise IndexError('Index out of range.')

          IndexError: Index out of range.

All instances of the Vector class have a length of three.

Finally, the special method __iter__ defines the behavior during iterations over ele‐
ments of an object. An object for which this operation is defined is called iterable. For
instance, all collections and containers are iterable:

In [103]: class Vector(Vector):
              def __iter__(self):
                  for i in range(len(self)):
                      yield self[i]

In [104]: v = Vector(1, 2, 3)

In [105]: for i in range(3):  
              print(v[i])  
          1
          2
          3

In [106]: for coordinate in v:  
              print(coordinate)  
          1
          2
          3

Indirect iteration using index values (via __getitem__).

Direct iteration over the class instance (using __iter__).
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Enhancing Python

The Python data model allows the definition of Python classes that
interact with standard Python operators, functions, etc., seamlessly.
This makes Python a rather flexible programming language that
can easily be enhanced by new classes and types of objects.

As a summary, the following section provides the Vector class definition in a single
code block.

The Vector Class
In [107]: class Vector(object):
              def __init__(self, x=0, y=0, z=0):
                  self.x = x
                  self.y = y
                  self.z = z

              def __repr__(self):
                  return 'Vector(%r, %r, %r)' % (self.x, self.y, self.z)

              def __abs__(self):
                  return (self.x ** 2 +  self.y ** 2 + self.z ** 2) ** 0.5

              def __bool__(self):
                  return bool(abs(self))

              def __add__(self, other):
                  x = self.x + other.x
                  y = self.y + other.y
                  z = self.z + other.z
                  return Vector(x, y, z)

              def __mul__(self, scalar):
                  return Vector(self.x * scalar,
                                self.y * scalar,
                                self.z * scalar)

              def __len__(self):
                  return 3

              def __getitem__(self, i):
                  if i in [0, -3]: return self.x
                  elif i in [1, -2]: return self.y
                  elif i in [2, -1]: return self.z
                  else: raise IndexError('Index out of range.')

              def __iter__(self):
                  for i in range(len(self)):
                      yield self[i]
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Conclusion
This chapter introduces notions and approaches from object-oriented programming,
both theoretically and through Python examples. OOP is one of the main program‐
ming paradigms used in Python. It not only allows for the modeling and implemen‐
tation of rather complex applications, but also allows one to create custom objects
that behave like standard Python objects due to the flexible Python data model.
Although there are many critics who argue against OOP, it is safe to say that it pro‐
vides the Python programmer and quant with powerful tools that are helpful when a
certain degree of complexity is reached. The derivatives pricing package developed
and discussed in Part V presents such a case where OOP seems the only sensible pro‐
gramming paradigm to deal with the inherent complexities and requirements for
abstraction.

Further Resources
The following are valuable online resources about OOP in general and Python pro‐
gramming and OOP in particular:

• Lecture Notes on Object-Oriented Programming
• Object-Oriented Programming in Python

A great resource in book form about Python object orientation and the Python data
model is:

• Ramalho, Luciano (2016). Fluent Python. Sebastopol, CA: O’Reilly.
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PART III

Financial Data Science

This part of the book is about basic techniques, approaches, and packages for finan‐
cial data science. Many topics (such as visualization) and many packages (such as
scikit-learn) are fundamental for data science with Python. In that sense, this part
equips the quants and financial analysts with the Python tools they need to become
financial data scientists.

Like in Part II, the chapters are organized according to topics such that they can each
be used as a reference for the topic of interest:

• Chapter 7 discusses static and interactive visualization with matplotlib and
plotly.

• Chapter 8 is about handling financial time series data with pandas.
• Chapter 9 focuses on getting input/output (I/O) operations right and fast.
• Chapter 10 is all about making Python code fast.
• Chapter 11 focuses on frequently required mathematical tools in finance.
• Chapter 12 looks at using Python to implement methods from stochastics.
• Chapter 13 is about statistical and machine learning approaches.

http://scikit-learn.org/stable/




CHAPTER 7

Data Visualization

Use a picture. It’s worth a thousand words.
—Arthur Brisbane (1911)

This chapter is about the basic visualization capabilities of the matplotlib and
plotly packages.

Although there are more visualization packages available, matplotlib has established
itself as the benchmark and, in many situations, a robust and reliable visualization
tool. It is both easy to use for standard plots and flexible when it comes to more com‐
plex plots and customizations. In addition, it is tightly integrated with NumPy and
pandas and the data structures they provide.

matplotlib only allows for the generation of plots in the form of bitmaps (for exam‐
ple, in PNG or JPG format). On the other hand, modern web technologies—based,
for example, on the Data-Driven Documents (D3.js) standard—allow for nice inter‐
active and also embeddable plots (interactive, for example, in that one can zoom in to
inspect certain areas in greater detail). A package that makes it convenient to create
such D3.js plots with Python is plotly. A smaller additional library, called
Cufflinks, tightly integrates plotly with pandas DataFrame objects and allows for
the creation of popular financial plots (such as candlestick charts).

This chapter mainly covers the following topics:

“Static 2D Plotting” on page 168
This section introduces matplotlib and presents a selection of typical 2D plots,
from the most simple to some more advanced ones with two scales or different
subplots.
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“Static 3D Plotting” on page 191
Based on matplotlib, a selection of 3D plots useful for certain financial applica‐
tions are presented in this section.

“Interactive 2D Plotting” on page 195
This section introduces plotly and Cufflinks to create interactive 2D plots.
Making use of the QuantFigure feature of Cufflinks, this section is also about
typical financial plots used, for example, in technical stock analysis.

This chapter cannot be comprehensive with regard to data visualization with Python,
matplotlib, or plotly, but it provides a number of examples for the basic and
important capabilities of these packages for finance. Other examples are also found in
later chapters. For instance, Chapter 8 shows in more depth how to visualize financial
time series data with the pandas library.

Static 2D Plotting
Before creating the sample data and starting to plot, some imports and
customizations:

In [1]: import matplotlib as mpl  

In [2]: mpl.__version__  
Out[2]: '3.0.0'

In [3]: import matplotlib.pyplot as plt  

In [4]: plt.style.use('seaborn')  

In [5]: mpl.rcParams['font.family'] = 'serif'  

In [6]: %matplotlib inline

Imports matplotlib with the usual abbreviation mpl.

The version of matplotlib used.

Imports the main plotting (sub)package with the usual abbreviation plt.

Sets the plotting style to seaborn.

Sets the font to be serif in all plots.
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One-Dimensional Data Sets
The most fundamental, but nevertheless quite powerful, plotting function is
plt.plot(). In principle, it needs two sets of numbers:

x values
A list or an array containing the x coordinates (values of the abscissa)

y values
A list or an array containing the y coordinates (values of the ordinate)

The number of x and y values provided must match, of course. Consider the follow‐
ing code, whose output is presented in Figure 7-1:

In [7]: import numpy as np

In [8]: np.random.seed(1000)  

In [9]: y = np.random.standard_normal(20)  

In [10]: x = np.arange(len(y))  
         plt.plot(x, y);  

Fixes the seed for the random number generator for reproducibility.

Draws the random numbers (y values).

Fixes the integers (x values).

Calls the plt.plot() function with the x and y objects.
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Figure 7-1. Plot given x and y values

plt.plot() notices when an ndarray object is passed. In this case, there is no need to
provide the “extra” information of the x values. If one only provides the y values,
plt.plot() takes the index values as the respective x values. Therefore, the following
single line of code generates exactly the same output (see Figure 7-2):

In [11]: plt.plot(y);

170 | Chapter 7: Data Visualization



Figure 7-2. Plot given data as an ndarray object

NumPy Arrays and matplotlib

You can simply pass NumPy ndarray objects to matplotlib func‐
tions. matplotlib is able to interpret the data structures for simpli‐
fied plotting. However, be careful to not pass a too large and/or
complex array.

Since the majority of the ndarray methods return an ndarray object, one can also
pass the object with a method (or even multiple methods, in some cases) attached. By
calling the cumsum() method on the ndarray object with the sample data, one gets the
cumulative sum of this data and, as to be expected, a different output (see Figure 7-3):

In [12]: plt.plot(y.cumsum());
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Figure 7-3. Plot given an ndarray object with a method attached

In general, the default plotting style does not satisfy typical requirements for reports,
publications, etc. For example, one might want to customize the font used (e.g., for
compatibility with LaTeX fonts), to have labels at the axes, or to plot a grid for better
readability. This is where plotting styles come into play. In addition, matplotlib
offers a large number of functions to customize the plotting style. Some are easily
accessible; for others one has to dig a bit deeper. Easily accessible, for example, are
those functions that manipulate the axes and those that relate to grids and labels (see
Figure 7-4):

In [13]: plt.plot(y.cumsum())
         plt.grid(False)  
         plt.axis('equal');  

Turns off the grid.

Leads to equal scaling for the two axes.

172 | Chapter 7: Data Visualization



Figure 7-4. Plot without grid

Other options for plt.axis() are given in Table 7-1, the majority of which have to
be passed as a str object.

Table 7-1. Options for plt.axis()

Parameter Description
Empty Returns current axis limits

off Turns axis lines and labels off

equal Leads to equal scaling

scaled Produces equal scaling via dimension changes

tight Makes all data visible (tightens limits)

image Makes all data visible (with data limits)

[xmin, xmax, ymin, ymax] Sets limits to given (list of) values

In addition, one can directly set the minimum and maximum values of each axis by
using plt.xlim() and plt.ylim(). The following code provides an example whose
output is shown in Figure 7-5:

In [14]: plt.plot(y.cumsum())
         plt.xlim(-1, 20)
         plt.ylim(np.min(y.cumsum()) - 1,
                  np.max(y.cumsum()) + 1);
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Figure 7-5. Plot with custom axis limits

For the sake of better readability, a plot usually contains a number of labels—e.g., a
title and labels describing the nature of the x and y values. These are added by the
functions plt.title(), plt.xlabel(), and plt.ylabel(), respectively. By default,
plot() plots continuous lines, even if discrete data points are provided. The plotting
of discrete points is accomplished by choosing a different style option. Figure 7-6
overlays (red) points and a (blue) line with line width of 1.5 points:

In [15]: plt.figure(figsize=(10, 6))  
         plt.plot(y.cumsum(), 'b', lw=1.5)  
         plt.plot(y.cumsum(), 'ro')  
         plt.xlabel('index')  
         plt.ylabel('value')  
         plt.title('A Simple Plot');  

Increases the size of the figure.

Plots the data as a line in blue with line width of 1.5 points.

Plots the data as red (thick) dots.

Places a label on the x-axis.

Places a label on the y-axis.
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Places a title.

Figure 7-6. Plot with typical labels

By default, plt.plot() supports the color abbreviations in Table 7-2.

Table 7-2. Standard color abbreviations

Character Color

b Blue

g Green

r Red

c Cyan

m Magenta

y Yellow

k Black

w White

In terms of line and/or point styles, plt.plot() supports the characters listed in
Table 7-3.
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Table 7-3. Standard style characters

Character Symbol

- Solid line style

-- Dashed line style

-. Dash-dot line style

: Dotted line style

. Point marker

, Pixel marker

o Circle marker

v Triangle_down marker

^ Triangle_up marker

< Triangle_left marker

> Triangle_right marker

1 Tri_down marker

2 Tri_up marker

3 Tri_left marker

4 Tri_right marker

s Square marker

p Pentagon marker

* Star marker

h Hexagon1 marker

H Hexagon2 marker

+ Plus marker

x X marker

D Diamond marker

d Thin diamond marker

| Vline marker

_ Hline marker

Any color abbreviation can be combined with any style character. In this way, one
can make sure that different data sets are easily distinguished. The plotting style is
also reflected in the legend.

Two-Dimensional Data Sets
Plotting one-dimensional data can be considered a special case. In general, data sets
will consist of multiple separate subsets of data. The handling of such data sets fol‐
lows the same rules with matplotlib as with one-dimensional data. However, a
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number of additional issues might arise in such a context. For example, two data sets
might have such a different scaling that they cannot be plotted using the same y-
and/or x-axis scaling. Another issue might be that one might want to visualize two
different data sets in different ways, e.g., one by a line plot and the other by a bar plot.

The following code generates a two-dimensional sample data set as a NumPy ndarray
object of shape 20 × 2 with standard normally distributed pseudo-random numbers.
On this array, the method cumsum() is called to calculate the cumulative sum of the
sample data along axis 0 (i.e., the first dimension):

In [16]: y = np.random.standard_normal((20, 2)).cumsum(axis=0)

In general, one can also pass such two-dimensional arrays to plt.plot(). It will then
automatically interpret the contained data as separate data sets (along axis 1, i.e., the
second dimension). A respective plot is shown in Figure 7-7:

In [17]: plt.figure(figsize=(10, 6))
         plt.plot(y, lw=1.5)
         plt.plot(y, 'ro')
         plt.xlabel('index')
         plt.ylabel('value')
         plt.title('A Simple Plot');

Figure 7-7. Plot with two data sets

In such a case, further annotations might be helpful to better read the plot. You can
add individual labels to each data set and have them listed in the legend. The function
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plt.legend() accepts different locality parameters. 0 stands for best location, in the
sense that as little data as possible is hidden by the legend.

Figure 7-8 shows the plot of the two data sets, this time with a legend. In the generat‐
ing code, the ndarray object is not passed as a whole but the two data subsets (y[:,
0] and y[:, 1]) are accessed separately, which allows you to attach individual labels
to them:

In [18]: plt.figure(figsize=(10, 6))
         plt.plot(y[:, 0], lw=1.5, label='1st')  
         plt.plot(y[:, 1], lw=1.5, label='2nd')  
         plt.plot(y, 'ro')
         plt.legend(loc=0)  
         plt.xlabel('index')
         plt.ylabel('value')
         plt.title('A Simple Plot');

Defines labels for the data subsets.

Places a legend in the “best” location.

Figure 7-8. Plot with labeled data sets

Further location options for plt.legend() include those presented in Table 7-4.

178 | Chapter 7: Data Visualization



Table 7-4. Options for plt.legend()

Loc Description
Default Upper right

0 Best possible

1 Upper right

2 Upper left

3 Lower left

4 Lower right

5 Right

6 Center left

7 Center right

8 Lower center

9 Upper center

10 Center

Multiple data sets with a similar scaling, like simulated paths for the same financial
risk factor, can be plotted using a single y-axis. However, often data sets show rather
different scalings and the plotting of such data with a single y-scale generally leads to
a significant loss of visual information. To illustrate the effect, the following example
scales the first of the two data subsets by a factor of 100 and plots the data again (see
Figure 7-9):

In [19]: y[:, 0] = y[:, 0] * 100  

In [20]: plt.figure(figsize=(10, 6))
         plt.plot(y[:, 0], lw=1.5, label='1st')
         plt.plot(y[:, 1], lw=1.5, label='2nd')
         plt.plot(y, 'ro')
         plt.legend(loc=0)
         plt.xlabel('index')
         plt.ylabel('value')
         plt.title('A Simple Plot');

Rescales the first data subset.
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Figure 7-9. Plot with two differently scaled data sets

Inspection of Figure 7-9 reveals that the first data set is still “visually readable,” while
the second data set now looks like a straight line with the new scaling of the y-axis. In
a sense, information about the second data set now gets “visually lost.” There are two
basic approaches to resolve this problem through means of plotting, as opposed to
adjusting the data (e.g., through rescaling):

• Use of two y-axes (left/right)
• Use of two subplots (upper/lower, left/right)

The following example introduces a second y-axis to the plot. Figure 7-10 now has
two different y-axes. The left y-axis is for the first data set while the right y-axis is for
the second. Consequently, there are also two legends:

In [21]: fig, ax1 = plt.subplots()  
         plt.plot(y[:, 0], 'b', lw=1.5, label='1st')
         plt.plot(y[:, 0], 'ro')
         plt.legend(loc=8)
         plt.xlabel('index')
         plt.ylabel('value 1st')
         plt.title('A Simple Plot')
         ax2 = ax1.twinx()  
         plt.plot(y[:, 1], 'g', lw=1.5, label='2nd')
         plt.plot(y[:, 1], 'ro')
         plt.legend(loc=0)
         plt.ylabel('value 2nd');

180 | Chapter 7: Data Visualization



Defines the figure and axis objects.

Creates a second axis object that shares the x-axis.

Figure 7-10. Plot with two data sets and two y-axes

The key lines of code are those that help manage the axes:

fig, ax1 = plt.subplots()
ax2 = ax1.twinx()

By using the plt.subplots() function, one gets direct access to the underlying plot‐
ting objects (the figure, subplots, etc.). It allows one, for example, to generate a sec‐
ond subplot that shares the x-axis with the first subplot. In Figure 7-10, then, the two
subplots actually overlay each other.

Next, consider the case of two separate subplots. This option gives even more free‐
dom to handle the two data sets, as Figure 7-11 illustrates:

In [22]: plt.figure(figsize=(10, 6))
         plt.subplot(211)  
         plt.plot(y[:, 0], lw=1.5, label='1st')
         plt.plot(y[:, 0], 'ro')
         plt.legend(loc=0)
         plt.ylabel('value')
         plt.title('A Simple Plot')
         plt.subplot(212)  
         plt.plot(y[:, 1], 'g', lw=1.5, label='2nd')
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1 For an overview of which plot types are available, visit the matplotlib gallery.

         plt.plot(y[:, 1], 'ro')
         plt.legend(loc=0)
         plt.xlabel('index')
         plt.ylabel('value');

Defines the upper subplot 1.

Defines the lower subplot 2.

Figure 7-11. Plot with two subplots

The placing of subplots in a matplotlib figure object is accomplished by the use of a
special coordinate system. plt.subplot() takes as arguments three integers for
numrows, numcols, and fignum (either separated by commas or not). numrows speci‐
fies the number of rows, numcols the number of columns, and fignum the number of
the subplot, starting with 1 and ending with numrows * numcols. For example, a fig‐
ure with nine equally sized subplots would have numrows=3, numcols=3, and fig
num=1,2,...,9. The lower-right subplot would have the following “coordinates”:
plt.subplot(3, 3, 9).

Sometimes, it might be necessary or desired to choose two different plot types to vis‐
ualize such data. With the subplot approach one has the freedom to combine arbi‐
trary kinds of plots that matplotlib offers.1
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Figure 7-12 combines a line/point plot with a bar chart:

In [23]: plt.figure(figsize=(10, 6))
         plt.subplot(121)
         plt.plot(y[:, 0], lw=1.5, label='1st')
         plt.plot(y[:, 0], 'ro')
         plt.legend(loc=0)
         plt.xlabel('index')
         plt.ylabel('value')
         plt.title('1st Data Set')
         plt.subplot(122)
         plt.bar(np.arange(len(y)), y[:, 1], width=0.5,
                 color='g', label='2nd')  
         plt.legend(loc=0)
         plt.xlabel('index')
         plt.title('2nd Data Set');

Creates a bar subplot.

Figure 7-12. Plot combining line/point subplot with bar subplot

Other Plot Styles
When it comes to two-dimensional plotting, line and point plots are probably the
most important ones in finance; this is because many data sets embody time series
data, which generally is visualized by such plots. Chapter 8 addresses financial time
series data in detail. However, this section sticks with a two-dimensional data set of
random numbers and illustrates some alternative, and for financial applications use‐
ful, visualization approaches.
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The first is the scatter plot, where the values of one data set serve as the x values for
the other data set. Figure 7-13 shows such a plot. This plot type might be used, for
example, for plotting the returns of one financial time series against those of another
one. This example uses a new two-dimensional data set with some more data:

In [24]: y = np.random.standard_normal((1000, 2))  

In [25]: plt.figure(figsize=(10, 6))
         plt.plot(y[:, 0], y[:, 1], 'ro')  
         plt.xlabel('1st')
         plt.ylabel('2nd')
         plt.title('Scatter Plot');

Creates a larger data set with random numbers.

Scatter plot produced via the plt.plot() function.

Figure 7-13. Scatter plot via plt.plot() function

matplotlib also provides a specific function to generate scatter plots. It basically
works in the same way, but provides some additional features. Figure 7-14 shows the
corresponding scatter plot to Figure 7-13, this time generated using the plt.scat
ter() function:

In [26]: plt.figure(figsize=(10, 6))
         plt.scatter(y[:, 0], y[:, 1], marker='o')  
         plt.xlabel('1st')
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         plt.ylabel('2nd')
         plt.title('Scatter Plot');

Scatter plot produced via the plt.scatter() function.

Figure 7-14. Scatter plot via plt.scatter() function

Among other things, the plt.scatter() plotting function allows the addition of a
third dimension, which can be visualized through different colors and be described
by the use of a color bar. Figure 7-15 shows a scatter plot where there is a third
dimension illustrated by different colors of the single dots and with a color bar as a
legend for the colors. To this end, the following code generates a third data set with
random data, this time consisting of integers between 0 and 10:

In [27]: c = np.random.randint(0, 10, len(y))

In [28]: plt.figure(figsize=(10, 6))
         plt.scatter(y[:, 0], y[:, 1],
                     c=c,  
                     cmap='coolwarm',  
                     marker='o')  
         plt.colorbar()
         plt.xlabel('1st')
         plt.ylabel('2nd')
         plt.title('Scatter Plot');

Includes the third data set.
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Chooses the color map.

Defines the marker to be a thick dot.

Figure 7-15. Scatter plot with third dimension

Another type of plot, the histogram, is also often used in the context of financial
returns. Figure 7-16 puts the frequency values of the two data sets next to each other
in the same plot:

In [29]: plt.figure(figsize=(10, 6))
         plt.hist(y, label=['1st', '2nd'], bins=25)  
         plt.legend(loc=0)
         plt.xlabel('value')
         plt.ylabel('frequency')
         plt.title('Histogram');

Histogram plot produced via the plt.hist() function.

186 | Chapter 7: Data Visualization



Figure 7-16. Histogram for two data sets

Since the histogram is such an important plot type for financial applications, let’s
take a closer look at the use of plt.hist(). The following example illustrates the
parameters that are supported:

plt.hist(x, bins=10, range=None, normed=False, weights=None, cumulative=False,
bottom=None, histtype='bar', align='mid', orientation='vertical', rwidth=None,
log=False, color=None, label=None, stacked=False, hold=None, **kwargs)

Table 7-5 provides a description of the main parameters of the plt.hist() function.

Table 7-5. Parameters for plt.hist()

Parameter Description

x list object(s), ndarray object

bins Number of bins

range Lower and upper range of bins

normed Norming such that integral value is 1

weights Weights for every value in x

cumulative Every bin contains the counts of the lower bins

histtype Options (strings): bar, barstacked, step, stepfilled

align Options (strings): left, mid, right

orientation Options (strings): horizontal, vertical

rwidth Relative width of the bars

Static 2D Plotting | 187



Parameter Description

log Log scale

color Color per data set (array-like)

label String or sequence of strings for labels

stacked Stacks multiple data sets

Figure 7-17 shows a similar plot; this time, the data of the two data sets is stacked in
the histogram:

In [30]: plt.figure(figsize=(10, 6))
         plt.hist(y, label=['1st', '2nd'], color=['b', 'g'],
                     stacked=True, bins=20, alpha=0.5)
         plt.legend(loc=0)
         plt.xlabel('value')
         plt.ylabel('frequency')
         plt.title('Histogram');

Figure 7-17. Stacked histogram for two data sets

Another useful plot type is the boxplot. Similar to the histogram, the boxplot allows
both a concise overview of the characteristics of a data set and easy comparison of
multiple data sets. Figure 7-18 shows such a plot for our data sets:

In [31]: fig, ax = plt.subplots(figsize=(10, 6))
         plt.boxplot(y)  
         plt.setp(ax, xticklabels=['1st', '2nd'])  
         plt.xlabel('data set')
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         plt.ylabel('value')
         plt.title('Boxplot');

Boxplot produced via the plt.boxplot() function.

Sets individual x labels.

Figure 7-18. Boxplot for two data sets

This last example uses the function plt.setp(), which sets properties for a (set of)
plotting instance(s). For example, consider a line plot generated by:

line = plt.plot(data, 'r')

The following code changes the style of the line to “dashed”:

plt.setp(line, linestyle='--')

This way, one can easily change parameters after the plotting instance (“artist
object”) has been generated.

As a final illustration in this section, consider a mathematically inspired plot that can
also be found as an example in the matplotlib gallery. It plots a function and high‐
lights graphically the area below the function from a lower and to an upper limit—in
other words, the integral value of the function between the lower and upper limits.
The integral (value) to be illustrated is ∫a

b f (x)dx with f (x) = 1
2 · e x + 1, a = 1

2 , and
b = 3

2 . Figure 7-19 shows the resulting plot and demonstrates that matplotlib seam‐
lessly handles LaTeX typesetting for the inclusion of mathematical formulae into
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plots. First, the function definition, with integral limits as variables and data sets for
the x and y values:

In [32]: def func(x):
             return 0.5 * np.exp(x) + 1  
         a, b = 0.5, 1.5  
         x = np.linspace(0, 2)  
         y = func(x)  
         Ix = np.linspace(a, b)  
         Iy = func(Ix) 
         verts = [(a, 0)] + list(zip(Ix, Iy)) + [(b, 0)]  

The function definition.

The integral limits.

The x values to plot the function.

The y values to plot the function.

The x values within the integral limits.

The y values within the integral limits.

The list object with multiple tuple objects representing coordinates for the
polygon to be plotted.

Second, the plotting itself, which is a bit involved due to the many single objects to be
placed explicitly:

In [33]: from matplotlib.patches import Polygon
         fig, ax = plt.subplots(figsize=(10, 6))
         plt.plot(x, y, 'b', linewidth=2)  
         plt.ylim(bottom=0)  
         poly = Polygon(verts, facecolor='0.7', edgecolor='0.5')  
         ax.add_patch(poly)  
         plt.text(0.5 * (a + b), 1, r'$\int_a^b f(x)\mathrm{d}x$',
                  horizontalalignment='center', fontsize=20)  
         plt.figtext(0.9, 0.075, '$x$')  
         plt.figtext(0.075, 0.9, '$f(x)$')  
         ax.set_xticks((a, b))  
         ax.set_xticklabels(('$a$', '$b$'))  
         ax.set_yticks([func(a), func(b)])  
         ax.set_yticklabels(('$f(a)$', '$f(b)$'));  

Plots the function values as a blue line.

Defines the minimum y value for the ordinate axis.
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Plots the polygon (integral area) in gray.

Places the integral formula in the plot.

Places the axis labels.

Places the x labels.

Places the y labels.

Figure 7-19. Exponential function, integral area, and LaTeX labels

Static 3D Plotting
There are not too many fields in finance that really benefit from visualization in three
dimensions. However, one application area is volatility surfaces showing implied vol‐
atilities simultaneously for a number of times-to-maturity and strikes of the traded
options used. See also Appendix B for an example of value and vega surfaces being
visualized for a European call option. In what follows, the code artificially generates a
plot that resembles a volatility surface. To this end, consider the parameters:

• Strike values between 50 and 150
• Times-to-maturity between 0.5 and 2.5 years
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This provides a two-dimensional coordinate system. The NumPy np.meshgrid() func‐
tion can generate such a system out of two one-dimensional ndarray objects:

In [34]: strike = np.linspace(50, 150, 24)  

In [35]: ttm = np.linspace(0.5, 2.5, 24)  

In [36]: strike, ttm = np.meshgrid(strike, ttm)  

In [37]: strike[:2].round(1)  
Out[37]: array([[ 50. ,  54.3,  58.7,  63. ,  67.4,  71.7,  76.1,  80.4,  84.8,
                  89.1,  93.5,  97.8, 102.2, 106.5, 110.9, 115.2, 119.6, 123.9,
                 128.3, 132.6, 137. , 141.3, 145.7, 150. ],
                [ 50. ,  54.3,  58.7,  63. ,  67.4,  71.7,  76.1,  80.4,  84.8,
                  89.1,  93.5,  97.8, 102.2, 106.5, 110.9, 115.2, 119.6, 123.9,
                 128.3, 132.6, 137. , 141.3, 145.7, 150. ]])

In [38]: iv = (strike - 100) ** 2 / (100 * strike) / ttm  

In [39]: iv[:5, :3]  
Out[39]: array([[1.        , 0.76695652, 0.58132045],
                [0.85185185, 0.65333333, 0.4951989 ],
                [0.74193548, 0.56903226, 0.43130227],
                [0.65714286, 0.504     , 0.38201058],
                [0.58974359, 0.45230769, 0.34283001]])

The ndarray object with the strike values.

The ndarray object with the time-to-maturity values.

The two two-dimensional ndarray objects (grids) created.

The dummy implied volatility values.

The plot resulting from the following code is shown in Figure 7-20:

In [40]: from mpl_toolkits.mplot3d import Axes3D  
         fig = plt.figure(figsize=(10, 6))
         ax = fig.gca(projection='3d')  
         surf = ax.plot_surface(strike, ttm, iv, rstride=2, cstride=2,
                                cmap=plt.cm.coolwarm, linewidth=0.5,
                                antialiased=True)  
         ax.set_xlabel('strike')  
         ax.set_ylabel('time-to-maturity')  
         ax.set_zlabel('implied volatility')  
         fig.colorbar(surf, shrink=0.5, aspect=5);  

Imports the relevant 3D plotting features, which is required although Axes3D is
not directly used.
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Sets up a canvas for 3D plotting.

Creates the 3D plot.

Sets the x-axis label.

Sets the y-axis label.

Sets the z-axis label.

Creates a color bar.

Figure 7-20. 3D surface plot for (dummy) implied volatilities

Table 7-6 provides a description of the different parameters the plt.plot_surface()
function can take.

Table 7-6. Parameters for plot_surface()

Parameter Description

X, Y, Z Data values as 2D arrays

rstride Array row stride (step size)

cstride Array column stride (step size)

color Color of the surface patches

cmap Color map for the surface patches
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Parameter Description

facecolors Face colors for the individual patches

norm Instance of Normalize to map values to colors

vmin Minimum value to map

vmax Maximum value to map

shade Whether to shade the face colors

As with two-dimensional plots, the line style can be replaced by single points or, as in
what follows, single triangles. Figure 7-21 plots the same data as a 3D scatter plot but
now also with a different viewing angle, using the view_init() method to set it:

In [41]: fig = plt.figure(figsize=(10, 6))
         ax = fig.add_subplot(111, projection='3d')
         ax.view_init(30, 60)  
         ax.scatter(strike, ttm, iv, zdir='z', s=25,
                    c='b', marker='^')  
         ax.set_xlabel('strike')
         ax.set_ylabel('time-to-maturity')
         ax.set_zlabel('implied volatility');

Sets the viewing angle.

Creates a 3D scatter plot.

Figure 7-21. 3D scatter plot for (dummy) implied volatilities
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Interactive 2D Plotting
matplotlib allows you to create plots that are static bitmap objects or of PDF format.
Nowadays, there are many libraries available to create interactive plots based on the
D3.js standard. Such plots enable zooming in and out, hover effects for data inspec‐
tion, and more. They can in general also be easily embedded in web pages.

A popular platform and plotting library is plotly. It is dedicated to visualization for
data science and is in widespread use in the data science community. Major benefits
of plotly are its tight integration with the Python ecosystem and the ease of use—in
particular when combined with pandas DataFrame objects and the wrapper package
Cufflinks.

For some functionality, a free account is required. Once the credentials are granted
they should be stored locally for permanent use. For details, see the “Getting Started
with Plotly for Python” guide.

This section focuses on selected aspects only, in that Cufflinks is used exclusively to
create interactive plots from data stored in DataFrame objects.

Basic Plots
To get started from within a Jupyter Notebook context, some imports are required
and the notebook mode should be turned on:

In [42]: import pandas as pd

In [43]: import cufflinks as cf  
In [44]: import plotly.offline as plyo  

In [45]: plyo.init_notebook_mode(connected=True)  

Imports Cufflinks.

Imports the offline plotting capabilities of plotly.

Turns on the notebook plotting mode.

Remote or Local Rendering

With plotly, there is also the option to get the plots rendered on
the plotly servers. However, the notebook mode is generally much
faster, in particular when dealing with larger data sets. That said,
some functionality, like the streaming plot service of plotly, is
only available via communication with the server.
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The examples that follow rely again on pseudo-random numbers, this time stored in
a DataFrame object with DatetimeIndex (i.e., as time series data):

In [46]: a = np.random.standard_normal((250, 5)).cumsum(axis=0)  

In [47]: index = pd.date_range('2019-1-1',  
                               freq='B',  
                               periods=len(a)) 

In [48]: df = pd.DataFrame(100 + 5 * a,  
                           columns=list('abcde'),  
                           index=index)  

In [49]: df.head()  
Out[49]:                      a           b           c          d           e
         2019-01-01  109.037535   98.693865  104.474094  96.878857  100.621936
         2019-01-02  107.598242   97.005738  106.789189  97.966552  100.175313
         2019-01-03  101.639668  100.332253  103.183500  99.747869  107.902901
         2019-01-04   98.500363  101.208283  100.966242  94.023898  104.387256
         2019-01-07   93.941632  103.319168  105.674012  95.891062   86.547934

The standard normally distributed pseudo-random numbers.

The start date for the DatetimeIndex object.

The frequency (“business daily”).

The number of periods needed.

A linear transform of the raw data.

The column headers as single characters.

The DatetimeIndex object.

The first five rows of data.

Cufflinks adds a new method to the DataFrame class: df.iplot(). This method uses
plotly in the backend to create interactive plots. The code examples in this section
all make use of the option to download the interactive plot as a static bitmap, which
in turn is embedded in the text. In the Jupyter Notebook environment, the created
plots are all interactive. The result of the following code is shown in Figure 7-22:

In [50]: plyo.iplot(  
             df.iplot(asFigure=True),  
             image='png',  
             filename='ply_01'  
         )
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This makes use of the offline (notebook mode) capabilities of plotly.

The df.iplot() method is called with parameter asFigure=True to allow for
local plotting and embedding.

The image option provides in addition a static bitmap version of the plot.

The filename for the bitmap to be saved is specified (the file type extension is
added automatically).

Figure 7-22. Line plot for time series data with plotly, pandas, and Cufflinks

As with matplotlib in general and with the pandas plotting functionality, there are
multiple parameters available to customize such plots (see Figure 7-23):

In [51]: plyo.iplot(
             df[['a', 'b']].iplot(asFigure=True,
                      theme='polar',  
                      title='A Time Series Plot',  
                      xTitle='date',  
                      yTitle='value',  
                      mode={'a': 'markers', 'b': 'lines+markers'},  
                      symbol={'a': 'circle', 'b': 'diamond'},  
                      size=3.5,  
                      colors={'a': 'blue', 'b': 'magenta'},  
                                 ),
             image='png',
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             filename='ply_02'
         )

Selects a theme (plotting style) for the plot.

Adds a title.

Adds an x-axis label.

Adds a y-axis label.

Defines the plotting mode (line, marker, etc.) by column.

Defines the symbols to be used as markers by column.

Fixes the size for all markers.

Specifies the plotting color by column.

Figure 7-23. Line plot for two columns of the DataFrame object with customizations

Similar to matplotlib, plotly allows for a number of different plotting types. Plot‐
ting types available via Cufflinks are chart, scatter, bar, box, spread, ratio, heat
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map, surface, histogram, bubble, bubble3d, scatter3d, scattergeo, ohlc, candle,
pie, and choropleth. As an example of a plotting type different from a line plot, con‐
sider the histogram (see Figure 7-24):

In [52]: plyo.iplot(
             df.iplot(kind='hist',  
                      subplots=True,  
                      bins=15,  
                      asFigure=True),
             image='png',
             filename='ply_03'
         )

Specifies the plotting type.

Requires separate subplots for every column.

Sets the bins parameter (buckets to be used = bars to be plotted).

Figure 7-24. Histograms per column of the DataFrame object

Financial Plots
The combination of plotly, Cufflinks, and pandas proves particularly powerful
when working with financial time series data. Cufflinks provides specialized func‐
tionality to create typical financial plots and to add typical financial charting ele‐
ments, such as the Relative Strength Index (RSI), to name but one example. To this
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end, a persistent QuantFig object is created that can be plotted the same way as a
DataFrame object with Cufflinks.

This subsection uses a real financial data set, time series data for the EUR/USD
exchange rate (source: FXCM Forex Capital Markets Ltd.):

In [54]: raw = pd.read_csv('../../source/fxcm_eur_usd_eod_data.csv',
                          index_col=0, parse_dates=True)  

In [55]: raw.info()  
         <class 'pandas.core.frame.DataFrame'>
         DatetimeIndex: 1547 entries, 2013-01-01 22:00:00 to 2017-12-31 22:00:00
         Data columns (total 8 columns):
         BidOpen     1547 non-null float64
         BidHigh     1547 non-null float64
         BidLow      1547 non-null float64
         BidClose    1547 non-null float64
         AskOpen     1547 non-null float64
         AskHigh     1547 non-null float64
         AskLow      1547 non-null float64
         AskClose    1547 non-null float64
         dtypes: float64(8)
         memory usage: 108.8 KB

In [56]: quotes = raw[['AskOpen', 'AskHigh', 'AskLow', 'AskClose']]  
         quotes = quotes.iloc[-60:]  
         quotes.tail()  
Out[56]:                      AskOpen  AskHigh   AskLow  AskClose
         2017-12-25 22:00:00  1.18667  1.18791  1.18467   1.18587
         2017-12-26 22:00:00  1.18587  1.19104  1.18552   1.18885
         2017-12-27 22:00:00  1.18885  1.19592  1.18885   1.19426
         2017-12-28 22:00:00  1.19426  1.20256  1.19369   1.20092
         2017-12-31 22:00:00  1.20092  1.20144  1.19994   1.20144

Reads the financial data from a CSV file.

The resulting DataFrame object consists of multiple columns and more than
1,500 data rows.

Selects four columns from the DataFrame object (Open-High-Low-Close, or
OHLC).

Only a few data rows are used for the visualization.

Returns the final five rows of the resulting data set quotes.

During instantiation, the QuantFig object takes the DataFrame object as input and
allows for some basic customization. Plotting the data stored in the QuantFig object
qf then happens with the qf.iplot() method (see Figure 7-25):
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In [57]: qf = cf.QuantFig(
                  quotes,  
                  title='EUR/USD Exchange Rate',  
                  legend='top',  
                  name='EUR/USD'  
         )

In [58]: plyo.iplot(
             qf.iplot(asFigure=True),
             image='png',
             filename='qf_01'
         )

The DataFrame object is passed to the QuantFig constructor.

This adds a figure title.

The legend is placed at the top of the plot.

This gives the data set a name.

Figure 7-25. OHLC plot of EUR/USD data
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Adding typical financial charting elements, such as Bollinger bands, is possible via
different methods available for the QuantFig object (see Figure 7-26):

In [59]: qf.add_bollinger_bands(periods=15,  
                                boll_std=2)  

In [60]: plyo.iplot(qf.iplot(asFigure=True),
              image='png',
              filename='qf_02'
         )

The number of periods for the Bollinger band.

The number of standard deviations to be used for the band width.

Figure 7-26. OHLC plot of EUR/USD data with Bollinger band

Certain financial indicators, such as RSI, may be added as a subplot (see Figure 7-27):

In [61]: qf.add_rsi(periods=14,  
                   showbands=False)  

In [62]: plyo.iplot(
              qf.iplot(asFigure=True),
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              image='png',
              filename='qf_03'
         )

Fixes the RSI period.

Does not show an upper or lower band.

Figure 7-27. OHLC plot of EUR/USD data with Bollinger band and RSI

Conclusion
matplotlib can be considered both the benchmark and an all-rounder when it comes
to data visualization in Python. It is tightly integrated with NumPy and pandas, and the
basic functionality is easily and conveniently accessed. However, matplotlib is a
mighty library with a somewhat complex API. This makes it impossible to give a
broad overview of all the capabilities of matplotlib in this chapter.

This chapter introduces the basic functions of matplotlib for 2D and 3D plotting
useful in many financial contexts. Other chapters provide further examples of how to
use the package for visualization.

Conclusion | 203



In addition, this chapter covers plotly in combination with Cufflinks. This combi‐
nation makes the creation of interactive D3.js plots a convenient affair since only a
single method call on a DataFrame object is necessary in general. All technicalities are
taken care of in the backend. Furthermore, Cufflinks provides with the QuantFig
object an easy way to create typical financial plots with popular financial indicators.

Further Resources
A variety of resources for matplotlib can be found on the web, including:

• The home page, which is probably the best starting point
• A gallery with many useful examples
• A tutorial for 2D plotting
• A tutorial for 3D plotting

It has become kind of a standard routine to consult the gallery, look there for an
appropriate visualization example, and start with the corresponding example code.

The major resources for the plotly and Cufflinks packages are also online. These
include:

• The plotly home page
• A tutorial to get started with plotly for Python
• The Cufflinks GitHub page
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CHAPTER 8

Financial Time Series

[T]ime is what keeps everything from happening at once.
—Ray Cummings

Financial time series data is one of the most important types of data in finance. This
is data indexed by date and/or time. For example, prices of stocks over time represent
financial time series data. Similarly, the EUR/USD exchange rate over time represents
a financial time series; the exchange rate is quoted in brief intervals of time, and a
collection of such quotes then is a time series of exchange rates.

There is no financial discipline that gets by without considering time an important
factor. This mainly is the same as with physics and other sciences. The major tool to
cope with time series data in Python is pandas. Wes McKinney, the original and main
author of pandas, started developing the library when working as an analyst at AQR
Capital Management, a large hedge fund. It is safe to say that pandas has been
designed from the ground up to work with financial time series data.

The chapter is mainly based on two financial time series data sets in the form of
comma-separated values (CSV) files. It proceeds along the following lines:

“Financial Data” on page 206
This section is about the basics of working with financial times series data using
pandas: data import, deriving summary statistics, calculating changes over time,
and resampling.

“Rolling Statistics” on page 217
In financial analysis, rolling statistics play an important role. These are statistics
calculated in general over a fixed time interval that is rolled forward over the
complete data set. A popular example is simple moving averages. This section
illustrates how pandas supports the calculation of such statistics.

205



1 The file contains end-of-day (EOD) data for different financial instruments as retrieved from the Thomson
Reuters Eikon Data API.

“Correlation Analysis” on page 222
This section presents a case study based on financial time series data for the S&P
500 stock index and the VIX volatility index. It provides some support for the
stylized (empirical) fact that both indices are negatively correlated.

“High-Frequency Data” on page 228
This section works with high-frequency data, or tick data, which has become
commonplace in finance. pandas again proves powerful in handling such data
sets.

Financial Data
This section works with a locally stored financial data set in the form of a CSV file.
Technically, such files are simply text files with a data row structure characterized by
commas that separate single values. Before importing the data, some package imports
and customizations:

In [1]: import numpy as np
        import pandas as pd
        from pylab import mpl, plt
        plt.style.use('seaborn')
        mpl.rcParams['font.family'] = 'serif'
        %matplotlib inline

Data Import
pandas provides a number of different functions and DataFrame methods to import
data stored in different formats (CSV, SQL, Excel, etc.) and to export data to different
formats (see Chapter 9 for more details). The following code uses the pd.read_csv()
function to import the time series data set from the CSV file:1

In [2]: filename = '../../source/tr_eikon_eod_data.csv'  

In [3]: f = open(filename, 'r')  
        f.readlines()[:5]  
Out[3]: ['Date,AAPL.O,MSFT.O,INTC.O,AMZN.O,GS.N,SPY,.SPX,.VIX,EUR=,XAU=,GDX,
        ,GLD\n',
         '2010-01-01,,,,,,,,,1.4323,1096.35,,\n',
         '2010-01-04,30.57282657,30.95,20.88,133.9,173.08,113.33,1132.99,20.04,
        ,1.4411,1120.0,47.71,109.8\n',
         '2010-01-05,30.625683660000004,30.96,20.87,134.69,176.14,113.63,1136.52,
        ,19.35,1.4368,1118.65,48.17,109.7\n',
         '2010-01-06,30.138541290000003,30.77,20.8,132.25,174.26,113.71,1137.14,
        ,19.16,1.4412,1138.5,49.34,111.51\n']
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In [4]: data = pd.read_csv(filename,  
                           index_col=0, 
                           parse_dates=True)  

In [5]: data.info()  
        <class 'pandas.core.frame.DataFrame'>
        DatetimeIndex: 2216 entries, 2010-01-01 to 2018-06-29
        Data columns (total 12 columns):
        AAPL.O    2138 non-null float64
        MSFT.O    2138 non-null float64
        INTC.O    2138 non-null float64
        AMZN.O    2138 non-null float64
        GS.N      2138 non-null float64
        SPY       2138 non-null float64
        .SPX      2138 non-null float64
        .VIX      2138 non-null float64
        EUR=      2216 non-null float64
        XAU=      2211 non-null float64
        GDX       2138 non-null float64
        GLD       2138 non-null float64
        dtypes: float64(12)
        memory usage: 225.1 KB

Specifies the path and filename.

Shows the first five rows of the raw data (Linux/Mac).

The filename passed to the pd.read_csv() function.

Specifies that the first column shall be handled as an index.

Specifies that the index values are of type datetime.

The resulting DataFrame object.

At this stage, a financial analyst probably takes a first look at the data, either by
inspecting or visualizing it (see Figure 8-1):

In [6]: data.head()  
Out[6]:
                   AAPL.O  MSFT.O  INTC.O  AMZN.O    GS.N     SPY     .SPX   .VIX  \
    Date
    2010-01-01        NaN     NaN     NaN     NaN     NaN     NaN      NaN    NaN
    2010-01-04  30.572827  30.950   20.88  133.90  173.08  113.33  1132.99  20.04
    2010-01-05  30.625684  30.960   20.87  134.69  176.14  113.63  1136.52  19.35
    2010-01-06  30.138541  30.770   20.80  132.25  174.26  113.71  1137.14  19.16
    2010-01-07  30.082827  30.452   20.60  130.00  177.67  114.19  1141.69  19.06

                  EUR=     XAU=    GDX     GLD
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    Date
    2010-01-01  1.4323  1096.35    NaN     NaN
    2010-01-04  1.4411  1120.00  47.71  109.80
    2010-01-05  1.4368  1118.65  48.17  109.70
    2010-01-06  1.4412  1138.50  49.34  111.51
    2010-01-07  1.4318  1131.90  49.10  110.82

In [7]: data.tail()  
Out[7]:
                AAPL.O  MSFT.O  INTC.O   AMZN.O    GS.N     SPY     .SPX   .VIX  \
    Date
    2018-06-25  182.17   98.39   50.71  1663.15  221.54  271.00  2717.07  17.33
    2018-06-26  184.43   99.08   49.67  1691.09  221.58  271.60  2723.06  15.92
    2018-06-27  184.16   97.54   48.76  1660.51  220.18  269.35  2699.63  17.91
    2018-06-28  185.50   98.63   49.25  1701.45  223.42  270.89  2716.31  16.85
    2018-06-29  185.11   98.61   49.71  1699.80  220.57  271.28  2718.37  16.09

                  EUR=     XAU=    GDX     GLD
    Date
    2018-06-25  1.1702  1265.00  22.01  119.89
    2018-06-26  1.1645  1258.64  21.95  119.26
    2018-06-27  1.1552  1251.62  21.81  118.58
    2018-06-28  1.1567  1247.88  21.93  118.22
    2018-06-29  1.1683  1252.25  22.31  118.65

In [8]: data.plot(figsize=(10, 12), subplots=True);  

The first five rows …

… and the final five rows are shown.

This visualizes the complete data set via multiple subplots.
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Figure 8-1. Financial time series data as line plots

The data used is from the Thomson Reuters (TR) Eikon Data API. In the TR world
symbols for financial instruments are called Reuters Instrument Codes (RICs). The
financial instruments that the single RICs represent are:

In [9]: instruments = ['Apple Stock', 'Microsoft Stock',
                       'Intel Stock', 'Amazon Stock', 'Goldman Sachs Stock',
                       'SPDR S&P 500 ETF Trust', 'S&P 500 Index',
                       'VIX Volatility Index', 'EUR/USD Exchange Rate',
                       'Gold Price', 'VanEck Vectors Gold Miners ETF',
                       'SPDR Gold Trust']

In [10]: for ric, name in zip(data.columns, instruments):
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             print('{:8s} | {}'.format(ric, name))
         AAPL.O   | Apple Stock
         MSFT.O   | Microsoft Stock
         INTC.O   | Intel Stock
         AMZN.O   | Amazon Stock
         GS.N     | Goldman Sachs Stock
         SPY      | SPDR S&P 500 ETF Trust
         .SPX     | S&P 500 Index
         .VIX     | VIX Volatility Index
         EUR=     | EUR/USD Exchange Rate
         XAU=     | Gold Price
         GDX      | VanEck Vectors Gold Miners ETF
         GLD      | SPDR Gold Trust

Summary Statistics
The next step the financial analyst might take is to have a look at different summary
statistics for the data set to get a “feeling” for what it is all about:

In [11]: data.info()  
         <class 'pandas.core.frame.DataFrame'>
         DatetimeIndex: 2216 entries, 2010-01-01 to 2018-06-29
         Data columns (total 12 columns):
         AAPL.O    2138 non-null float64
         MSFT.O    2138 non-null float64
         INTC.O    2138 non-null float64
         AMZN.O    2138 non-null float64
         GS.N      2138 non-null float64
         SPY       2138 non-null float64
         .SPX      2138 non-null float64
         .VIX      2138 non-null float64
         EUR=      2216 non-null float64
         XAU=      2211 non-null float64
         GDX       2138 non-null float64
         GLD       2138 non-null float64
         dtypes: float64(12)
         memory usage: 225.1 KB

In [12]: data.describe().round(2)  
Out[12]:
            AAPL.O   MSFT.O   INTC.O   AMZN.O     GS.N      SPY     .SPX     .VIX  \
    count  2138.00  2138.00  2138.00  2138.00  2138.00  2138.00  2138.00  2138.00
    mean     93.46    44.56    29.36   480.46   170.22   180.32  1802.71    17.03
    std      40.55    19.53     8.17   372.31    42.48    48.19   483.34     5.88
    min      27.44    23.01    17.66   108.61    87.70   102.20  1022.58     9.14
    25%      60.29    28.57    22.51   213.60   146.61   133.99  1338.57    13.07
    50%      90.55    39.66    27.33   322.06   164.43   186.32  1863.08    15.58
    75%     117.24    54.37    34.71   698.85   192.13   210.99  2108.94    19.07
    max     193.98   102.49    57.08  1750.08   273.38   286.58  2872.87    48.00

              EUR=     XAU=      GDX      GLD
    count  2216.00  2211.00  2138.00  2138.00
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    mean      1.25  1349.01    33.57   130.09
    std       0.11   188.75    15.17    18.78
    min       1.04  1051.36    12.47   100.50
    25%       1.13  1221.53    22.14   117.40
    50%       1.27  1292.61    25.62   124.00
    75%       1.35  1428.24    48.34   139.00
    max       1.48  1898.99    66.63   184.59

info() gives some metainformation about the DataFrame object.

describe() provides useful standard statistics per column.

Quick Insights

pandas provides a number of methods to gain a quick overview
over newly imported financial time series data sets, such as info()
and describe(). They also allow for quick checks of whether the
importing procedure worked as desired (e.g., whether the Data
Frame object indeed has an index of type DatetimeIndex).

There are also options, of course, to customize what types of statistic to derive and
display:

In [13]: data.mean()  
Out[13]: AAPL.O      93.455973
         MSFT.O      44.561115
         INTC.O      29.364192
         AMZN.O     480.461251
         GS.N       170.216221
         SPY        180.323029
         .SPX      1802.713106
         .VIX        17.027133
         EUR=         1.248587
         XAU=      1349.014130
         GDX         33.566525
         GLD        130.086590
         dtype: float64

In [14]: data.aggregate([min,  
                         np.mean,  
                         np.std,  
                         np.median,  
                         max]  
         ).round(2)
Out[14]:
            AAPL.O  MSFT.O  INTC.O   AMZN.O    GS.N     SPY     .SPX   .VIX  EUR=  \
    min      27.44   23.01   17.66   108.61   87.70  102.20  1022.58   9.14  1.04
    mean     93.46   44.56   29.36   480.46  170.22  180.32  1802.71  17.03  1.25
    std      40.55   19.53    8.17   372.31   42.48   48.19   483.34   5.88  0.11
    median   90.55   39.66   27.33   322.06  164.43  186.32  1863.08  15.58  1.27
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    max     193.98  102.49   57.08  1750.08  273.38  286.58  2872.87  48.00  1.48

               XAU=    GDX     GLD
    min     1051.36  12.47  100.50
    mean    1349.01  33.57  130.09
    std      188.75  15.17   18.78
    median  1292.61  25.62  124.00
    max     1898.99  66.63  184.59

The mean value per column.

The minimum value per column.

The mean value per column.

The standard deviation per column.

The median per column.

The maximum value per column.

Using the aggregate() method also allows one to pass custom functions.

Changes over Time
Statistical analysis methods are often based on changes over time and not the abso‐
lute values themselves. There are multiple options to calculate the changes in a time
series over time, including absolute differences, percentage changes, and logarithmic
(log) returns.

First, the absolute differences, for which pandas provides a special method:

In [15]: data.diff().head()  
Out[15]:
                  AAPL.O  MSFT.O  INTC.O  AMZN.O  GS.N   SPY  .SPX  .VIX    EUR=  \
    Date
    2010-01-01       NaN     NaN     NaN     NaN   NaN   NaN   NaN   NaN     NaN
    2010-01-04       NaN     NaN     NaN     NaN   NaN   NaN   NaN   NaN  0.0088
    2010-01-05  0.052857   0.010   -0.01    0.79  3.06  0.30  3.53 -0.69 -0.0043
    2010-01-06 -0.487142  -0.190   -0.07   -2.44 -1.88  0.08  0.62 -0.19  0.0044
    2010-01-07 -0.055714  -0.318   -0.20   -2.25  3.41  0.48  4.55 -0.10 -0.0094

                 XAU=   GDX   GLD
    Date
    2010-01-01    NaN   NaN   NaN
    2010-01-04  23.65   NaN   NaN
    2010-01-05  -1.35  0.46 -0.10
    2010-01-06  19.85  1.17  1.81
    2010-01-07  -6.60 -0.24 -0.69
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In [16]: data.diff().mean()  
Out[16]: AAPL.O    0.064737
         MSFT.O    0.031246
         INTC.O    0.013540
         AMZN.O    0.706608
         GS.N      0.028224
         SPY       0.072103
         .SPX      0.732659
         .VIX     -0.019583
         EUR=     -0.000119
         XAU=      0.041887
         GDX      -0.015071
         GLD      -0.003455
         dtype: float64

diff() provides the absolute changes between two index values.

Of course, aggregation operations can be applied in addition.

From a statistics point of view, absolute changes are not optimal because they are
dependent on the scale of the time series data itself. Therefore, percentage changes
are usually preferred. The following code derives the percentage changes or percent‐
age returns (also: simple returns) in a financial context and visualizes their mean val‐
ues per column (see Figure 8-2):

In [17]: data.pct_change().round(3).head()  
Out[17]:
                AAPL.O  MSFT.O  INTC.O  AMZN.O   GS.N    SPY   .SPX   .VIX   EUR=  \
    Date
    2010-01-01     NaN     NaN     NaN     NaN    NaN    NaN    NaN    NaN    NaN
    2010-01-04     NaN     NaN     NaN     NaN    NaN    NaN    NaN    NaN  0.006
    2010-01-05   0.002   0.000  -0.000   0.006  0.018  0.003  0.003 -0.034 -0.003
    2010-01-06  -0.016  -0.006  -0.003  -0.018 -0.011  0.001  0.001 -0.010  0.003
    2010-01-07  -0.002  -0.010  -0.010  -0.017  0.020  0.004  0.004 -0.005 -0.007

                 XAU=    GDX    GLD
    Date
    2010-01-01    NaN    NaN    NaN
    2010-01-04  0.022    NaN    NaN
    2010-01-05 -0.001  0.010 -0.001
    2010-01-06  0.018  0.024  0.016
    2010-01-07 -0.006 -0.005 -0.006

In [18]: data.pct_change().mean().plot(kind='bar', figsize=(10, 6));  

pct_change() calculates the percentage change between two index values.

The mean values of the results are visualized as a bar plot.
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2 One of the advantages is additivity over time, which does not hold true for simple percentage changes/
returns.

Figure 8-2. Mean values of percentage changes as bar plot

As an alternative to percentage returns, log returns can be used. In some scenarios,
they are easier to handle and therefore often preferred in a financial context.2

Figure 8-3 shows the cumulative log returns for the single financial time series. This
type of plot leads to some form of normalization:

In [19]: rets = np.log(data / data.shift(1))  

In [20]: rets.head().round(3)  
Out[20]:
                AAPL.O  MSFT.O  INTC.O  AMZN.O   GS.N    SPY   .SPX   .VIX   EUR=  \
    Date
    2010-01-01     NaN     NaN     NaN     NaN    NaN    NaN    NaN    NaN    NaN
    2010-01-04     NaN     NaN     NaN     NaN    NaN    NaN    NaN    NaN  0.006
    2010-01-05   0.002   0.000  -0.000   0.006  0.018  0.003  0.003 -0.035 -0.003
    2010-01-06  -0.016  -0.006  -0.003  -0.018 -0.011  0.001  0.001 -0.010  0.003
    2010-01-07  -0.002  -0.010  -0.010  -0.017  0.019  0.004  0.004 -0.005 -0.007

                 XAU=    GDX    GLD
    Date
    2010-01-01    NaN    NaN    NaN
    2010-01-04  0.021    NaN    NaN
    2010-01-05 -0.001  0.010 -0.001
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    2010-01-06  0.018  0.024  0.016
    2010-01-07 -0.006 -0.005 -0.006

In [21]: rets.cumsum().apply(np.exp).plot(figsize=(10, 6));  

Calculates the log returns in vectorized fashion.

A subset of the results.

Plots the cumulative log returns over time; first the cumsum() method is called,
then np.exp() is applied to the results.

Figure 8-3. Cumulative log returns over time

Resampling
Resampling is an important operation on financial time series data. Usually this takes
the form of downsampling, meaning that, for example, a tick data series is resampled
to one-minute intervals or a time series with daily observations is resampled to one
with weekly or monthly observations (as shown in Figure 8-4):

In [22]: data.resample('1w', label='right').last().head()  
Out[22]:
                   AAPL.O  MSFT.O  INTC.O  AMZN.O    GS.N     SPY     .SPX   .VIX  \
    Date
    2010-01-03        NaN     NaN     NaN     NaN     NaN     NaN      NaN    NaN
    2010-01-10  30.282827   30.66   20.83  133.52  174.31  114.57  1144.98  18.13
    2010-01-17  29.418542   30.86   20.80  127.14  165.21  113.64  1136.03  17.91
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    2010-01-24  28.249972   28.96   19.91  121.43  154.12  109.21  1091.76  27.31
    2010-01-31  27.437544   28.18   19.40  125.41  148.72  107.39  1073.87  24.62

                  EUR=     XAU=    GDX     GLD
    Date
    2010-01-03  1.4323  1096.35    NaN     NaN
    2010-01-10  1.4412  1136.10  49.84  111.37
    2010-01-17  1.4382  1129.90  47.42  110.86
    2010-01-24  1.4137  1092.60  43.79  107.17
    2010-01-31  1.3862  1081.05  40.72  105.96

In [23]: data.resample('1m', label='right').last().head()  
Out[23]:
                   AAPL.O   MSFT.O  INTC.O  AMZN.O    GS.N       SPY     .SPX  \
    Date
    2010-01-31  27.437544  28.1800   19.40  125.41  148.72  107.3900  1073.87
    2010-02-28  29.231399  28.6700   20.53  118.40  156.35  110.7400  1104.49
    2010-03-31  33.571395  29.2875   22.29  135.77  170.63  117.0000  1169.43
    2010-04-30  37.298534  30.5350   22.84  137.10  145.20  118.8125  1186.69
    2010-05-31  36.697106  25.8000   21.42  125.46  144.26  109.3690  1089.41

                 .VIX    EUR=     XAU=    GDX      GLD
    Date
    2010-01-31  24.62  1.3862  1081.05  40.72  105.960
    2010-02-28  19.50  1.3625  1116.10  43.89  109.430
    2010-03-31  17.59  1.3510  1112.80  44.41  108.950
    2010-04-30  22.05  1.3295  1178.25  50.51  115.360
    2010-05-31  32.07  1.2305  1215.71  49.86  118.881

In [24]: rets.cumsum().apply(np.exp). resample('1m', label='right').last(
                                   ).plot(figsize=(10, 6));  

EOD data gets resampled to weekly time intervals …

… and monthly time intervals.

This plots the cumulative log returns over time: first, the cumsum() method is
called, then np.exp() is applied to the results; finally, the resampling takes place.
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3 Foresight bias—or, in its strongest form, perfect foresight—means that at some point in the financial analysis,
data is used that only becomes available at a later point. The result might be “too good” results, for example,
when backtesting a trading strategy.

Figure 8-4. Resampled cumulative log returns over time (monthly)

Avoiding Foresight Bias

When resampling, pandas takes by default in many cases the left
label (or index value) of the interval. To be financially consistent,
make sure to use the right label (index value) and in general the last
available data point in the interval. Otherwise, a foresight bias
might sneak into the financial analysis.3

Rolling Statistics
It is financial tradition to work with rolling statistics, often also called financial indi‐
cators or financial studies. Such rolling statistics are basic tools for financial chartists
and technical traders, for example. This section works with a single financial time
series only:

In [25]: sym = 'AAPL.O'

In [26]: data = pd.DataFrame(data[sym]).dropna()

In [27]: data.tail()
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Out[27]:             AAPL.O
         Date
         2018-06-25  182.17
         2018-06-26  184.43
         2018-06-27  184.16
         2018-06-28  185.50
         2018-06-29  185.11

An Overview
It is straightforward to derive standard rolling statistics with pandas:

In [28]: window = 20  

In [29]: data['min'] = data[sym].rolling(window=window).min()  

In [30]: data['mean'] = data[sym].rolling(window=window).mean()  

In [31]: data['std'] = data[sym].rolling(window=window).std()  

In [32]: data['median'] = data[sym].rolling(window=window).median()  

In [33]: data['max'] = data[sym].rolling(window=window).max()  

In [34]: data['ewma'] = data[sym].ewm(halflife=0.5, min_periods=window).mean()  

Defines the window; i.e., the number of index values to include.

Calculates the rolling minimum value.

Calculates the rolling mean value.

Calculates the rolling standard deviation.

Calculates the rolling median value.

Calculates the rolling maximum value.

Calculates the exponentially weighted moving average, with decay in terms of a
half life of 0.5.

To derive more specialized financial indicators, additional packages are generally
needed (see, for instance, the financial plots with Cufflinks in “Interactive 2D Plot‐
ting” on page 195). Custom ones can also easily be applied via the apply() method.

The following code shows a subset of the results and visualizes a selection of the cal‐
culated rolling statistics (see Figure 8-5):

In [35]: data.dropna().head()
Out[35]:
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                   AAPL.O        min       mean       std     median        max  \
    Date
    2010-02-01  27.818544  27.437544  29.580892  0.933650  29.821542  30.719969
    2010-02-02  27.979972  27.437544  29.451249  0.968048  29.711113  30.719969
    2010-02-03  28.461400  27.437544  29.343035  0.950665  29.685970  30.719969
    2010-02-04  27.435687  27.435687  29.207892  1.021129  29.547113  30.719969
    2010-02-05  27.922829  27.435687  29.099892  1.037811  29.419256  30.719969

                     ewma
    Date
    2010-02-01  27.805432
    2010-02-02  27.936337
    2010-02-03  28.330134
    2010-02-04  27.659299
    2010-02-05  27.856947

In [36]: ax = data[['min', 'mean', 'max']].iloc[-200:].plot(
              figsize=(10, 6), style=['g--', 'r--', 'g--'], lw=0.8)  
         data[sym].iloc[-200:].plot(ax=ax, lw=2.0);  

Plots three rolling statistics for the final 200 data rows.

Adds the original time series data to the plot.

Figure 8-5. Rolling statistics for minimum, mean, maximum values

Rolling Statistics | 219



A Technical Analysis Example
Rolling statistics are a major tool in the so-called technical analysis of stocks, as com‐
pared to the fundamental analysis which focuses, for instance, on financial reports
and the strategic positions of the company whose stock is being analyzed.

A decades-old trading strategy based on technical analysis is using two simple moving
averages (SMAs). The idea is that the trader should go long on a stock (or financial
instrument in general) when the shorter-term SMA is above the longer-term SMA
and should go short when the opposite holds true. The concepts can be made precise
with pandas and the capabilities of the DataFrame object.

Rolling statistics are generally only calculated when there is enough data given the
window parameter specification. As Figure 8-6 shows, the SMA time series only start
at the day for which there is enough data given the specific parameterization:

In [37]: data['SMA1'] = data[sym].rolling(window=42).mean()  

In [38]: data['SMA2'] = data[sym].rolling(window=252).mean()  

In [39]: data[[sym, 'SMA1', 'SMA2']].tail()
Out[39]:             AAPL.O        SMA1        SMA2
         Date
         2018-06-25  182.17  185.606190  168.265556
         2018-06-26  184.43  186.087381  168.418770
         2018-06-27  184.16  186.607381  168.579206
         2018-06-28  185.50  187.089286  168.736627
         2018-06-29  185.11  187.470476  168.901032

In [40]: data[[sym, 'SMA1', 'SMA2']].plot(figsize=(10, 6));  

Calculates the values for the shorter-term SMA.

Calculates the values for the longer-term SMA.

Visualizes the stock price data plus the two SMA time series.
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Figure 8-6. Apple stock price and two simple moving averages

In this context, the SMAs are only a means to an end. They are used to derive posi‐
tions to implement a trading strategy. Figure 8-7 visualizes a long position by a value
of 1 and a short position by a value of -1. The change in the position is triggered (vis‐
ually) by a crossover of the two lines representing the SMA time series:

In [41]: data.dropna(inplace=True)  

In [42]: data['positions'] = np.where(data['SMA1'] > data['SMA2'],  
                                      1,  
                                      -1)  

In [43]: ax = data[[sym, 'SMA1', 'SMA2', 'positions']].plot(figsize=(10, 6),
                                                       secondary_y='positions')
         ax.get_legend().set_bbox_to_anchor((0.25, 0.85));

Only complete data rows are kept.

If the shorter-term SMA value is greater than the longer-term one …

… go long on the stock (put a 1).

Otherwise, go short on the stock (put a -1).
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4 One reason behind this is that when the stock index comes down—during a crisis, for instance—trading vol‐
ume goes up, and therewith also the volatility. When the stock index is on the rise, investors generally are
calm and do not see much incentive to engage in heavy trading. In particular, long-only investors then try to
ride the trend even further.

Figure 8-7. Apple stock price, two simple moving averages and positions

The trading strategy implicitly derived here only leads to a few trades per se: only
when the position value changes (i.e., a crossover happens) does a trade take place.
Including opening and closing trades, this would add up to just six trades in total.

Correlation Analysis
As a further illustration of how to work with pandas and financial time series data,
consider the case of the S&P 500 stock index and the VIX volatility index. It is a styl‐
ized fact that when the S&P 500 rises, the VIX falls in general, and vice versa. This is
about correlation and not causation. This section shows how to come up with some
supporting statistical evidence for the stylized fact that the S&P 500 and the VIX are
(highly) negatively correlated.4

The Data
The data set now consists of two financial times series, both visualized in Figure 8-8:

In [44]: raw = pd.read_csv('../../source/tr_eikon_eod_data.csv',
                          index_col=0, parse_dates=True)  

In [45]: data = raw[['.SPX', '.VIX']].dropna()
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In [46]: data.tail()
Out[46]:                .SPX   .VIX
         Date
         2018-06-25  2717.07  17.33
         2018-06-26  2723.06  15.92
         2018-06-27  2699.63  17.91
         2018-06-28  2716.31  16.85
         2018-06-29  2718.37  16.09

In [47]: data.plot(subplots=True, figsize=(10, 6));

Reads the EOD data (originally from the Thomson Reuters Eikon Data API)
from a CSV file.

Figure 8-8. S&P 500 and VIX time series data (different subplots)

When plotting (parts of) the two time series in a single plot and with adjusted scal‐
ings, the stylized fact of negative correlation between the two indices becomes evident
through simple visual inspection (Figure 8-9):

In [48]: data.loc[:'2012-12-31'].plot(secondary_y='.VIX', figsize=(10, 6));  

.loc[:DATE] selects the data until the given value DATE.
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Figure 8-9. S&P 500 and VIX time series data (same plot)

Logarithmic Returns
As pointed out earlier, statistical analysis in general relies on returns instead of abso‐
lute changes or even absolute values. Therefore, we’ll calculate log returns first before
any further analysis takes place. Figure 8-10 shows the high variability of the log
returns over time. For both indices so-called “volatility clusters” can be spotted. In
general, periods of high volatility in the stock index are accompanied by the same
phenomena in the volatility index:

In [49]: rets = np.log(data / data.shift(1))

In [50]: rets.head()
Out[50]:                 .SPX      .VIX
         Date
         2010-01-04       NaN       NaN
         2010-01-05  0.003111 -0.035038
         2010-01-06  0.000545 -0.009868
         2010-01-07  0.003993 -0.005233
         2010-01-08  0.002878 -0.050024

In [51]: rets.dropna(inplace=True)

In [52]: rets.plot(subplots=True, figsize=(10, 6));
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Figure 8-10. Log returns of the S&P 500 and VIX over time

In such a context, the pandas scatter_matrix() plotting function comes in handy
for visualizations. It plots the log returns of the two series against each other, and one
can add either a histogram or a kernel density estimator (KDE) on the diagonal (see
Figure 8-11):

In [53]: pd.plotting.scatter_matrix(rets,  
                                    alpha=0.2,  
                                    diagonal='hist',  
                                    hist_kwds={'bins': 35},  
                                    figsize=(10, 6));

The data set to be plotted.

The alpha parameter for the opacity of the dots.

What to place on the diagonal; here: a histogram of the column data.

Keywords to be passed to the histogram plotting function.
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Figure 8-11. Log returns of the S&P 500 and VIX as a scatter matrix

OLS Regression
With all these preparations, an ordinary least-squares (OLS) regression analysis is
convenient to implement. Figure 8-12 shows a scatter plot of the log returns and the
linear regression line through the cloud of dots. The slope is obviously negative, pro‐
viding support for the stylized fact about the negative correlation between the two
indices:

In [54]: reg = np.polyfit(rets['.SPX'], rets['.VIX'], deg=1)  

In [55]: ax = rets.plot(kind='scatter', x='.SPX', y='.VIX', figsize=(10, 6))  
         ax.plot(rets['.SPX'], np.polyval(reg, rets['.SPX']), 'r', lw=2);  

This implements a linear OLS regression.

This plots the log returns as a scatter plot …

… to which the linear regression line is added.
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Figure 8-12. Log returns of the S&P 500 and VIX as a scatter matrix

Correlation
Finally, we consider correlation measures directly. Two such measures are consid‐
ered: a static one taking into account the complete data set and a rolling one showing
the correlation for a fixed window over time. Figure 8-13 illustrates that the correla‐
tion indeed varies over time but that it is always, given the parameterization, nega‐
tive. This provides strong support for the stylized fact that the S&P 500 and the VIX
indices are (strongly) negatively correlated:

In [56]: rets.corr()  
Out[56]:           .SPX      .VIX
         .SPX  1.000000 -0.804382
         .VIX -0.804382  1.000000

In [57]: ax = rets['.SPX'].rolling(window=252).corr(
                           rets['.VIX']).plot(figsize=(10, 6))  
         ax.axhline(rets.corr().iloc[0, 1], c='r');  

The correlation matrix for the whole DataFrame.

This plots the rolling correlation over time …

… and adds the static value to the plot as horizontal line.
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Figure 8-13. Correlation between S&P 500 and VIX (static and rolling)

High-Frequency Data
This chapter is about financial time series analysis with pandas. Tick data sets are a
special case of financial time series. Frankly, they can be handled more or less in the
same ways as, for instance, the EOD data set used throughout this chapter so far.
Importing such data sets also is quite fast in general with pandas. The data set used
comprises 17,352 data rows (see also Figure 8-14):

In [59]: %%time
         # data from FXCM Forex Capital Markets Ltd.
         tick = pd.read_csv('../../source/fxcm_eur_usd_tick_data.csv',
                              index_col=0, parse_dates=True)
         CPU times: user 1.07 s, sys: 149 ms, total: 1.22 s
         Wall time: 1.16 s

In [60]: tick.info()
         <class 'pandas.core.frame.DataFrame'>
         DatetimeIndex: 461357 entries, 2018-06-29 00:00:00.082000 to 2018-06-29
          20:59:00.607000
         Data columns (total 2 columns):
         Bid    461357 non-null float64
         Ask    461357 non-null float64
         dtypes: float64(2)
         memory usage: 10.6 MB

In [61]: tick['Mid'] = tick.mean(axis=1)  

In [62]: tick['Mid'].plot(figsize=(10, 6));
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Calculates the Mid price for every data row.

Figure 8-14. Tick data for EUR/USD exchange rate

Working with tick data is generally a scenario where resampling of financial time ser‐
ies data is needed. The code that follows resamples the tick data to five-minute bar
data (see Figure 8-15), which can then be used, for example, to backtest algorithmic
trading strategies or to implement a technical analysis:

In [63]: tick_resam = tick.resample(rule='5min', label='right').last()

In [64]: tick_resam.head()
Out[64]:                          Bid      Ask       Mid
         2018-06-29 00:05:00  1.15649  1.15651  1.156500
         2018-06-29 00:10:00  1.15671  1.15672  1.156715
         2018-06-29 00:15:00  1.15725  1.15727  1.157260
         2018-06-29 00:20:00  1.15720  1.15722  1.157210
         2018-06-29 00:25:00  1.15711  1.15712  1.157115

In [65]: tick_resam['Mid'].plot(figsize=(10, 6));
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Figure 8-15. Five-minute bar data for EUR/USD exchange rate

Conclusion
This chapter deals with financial time series, probably the most important data type
in the financial field. pandas is a powerful package to deal with such data sets, allow‐
ing not only for efficient data analyses but also easy visualizations, for instance.
pandas is also helpful in reading such data sets from different sources as well as in
exporting the data sets to different technical file formats. This is illustrated in the sub‐
sequent chapter.

Further Resources
Good references in book form for the topics covered in this chapter are:

• McKinney, Wes (2017). Python for Data Analysis. Sebastopol, CA: O’Reilly.
• VanderPlas, Jake (2016). Python Data Science Handbook. Sebastopol, CA:

O’Reilly.
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1 Here, no distinction is made between different levels of RAM and processor caches. The optimal use of cur‐
rent memory architectures is a topic in itself.

CHAPTER 9

Input/Output Operations

It is a capital mistake to theorize before one has data.
—Sherlock Holmes

As a general rule, the majority of data, be it in a finance context or any other applica‐
tion area, is stored on hard disk drives (HDDs) or some other form of permanent
storage device, like solid state disks (SSDs) or hybrid disk drives. Storage capacities
have been steadily increasing over the years, while costs per storage unit (e.g., per
megabyte) have been steadily falling.

At the same time, stored data volumes have been increasing at a much faster pace
than the typical random access memory (RAM) available even in the largest
machines. This makes it necessary not only to store data to disk for permanent stor‐
age, but also to compensate for lack of sufficient RAM by swapping data from RAM
to disk and back.

Input/output (I/O) operations are therefore important tasks when it comes to finance
applications and data-intensive applications in general. Often they represent the bot‐
tleneck for performance-critical computations, since I/O operations cannot typically
shuffle data fast enough to the RAM1 and from the RAM to the disk. In a sense, CPUs
are often “starving” due to slow I/O operations.

Although the majority of today’s financial and corporate analytics efforts are con‐
fronted with big data (e.g., of petascale size), single analytics tasks generally use data
subsets that fall in the “mid” data category. A study by Microsoft Research concludes:
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Our measurements as well as other recent work shows that the majority of real-world
analytic jobs process less than 100 GB of input, but popular infrastructures such as
Hadoop/MapReduce were originally designed for petascale processing.

—Appuswamy et al. (2013)

In terms of frequency, single financial analytics tasks generally process data of not
more than a couple of gigabytes (GB) in size—and this is a sweet spot for Python and
the libraries of its scientific stack, such as NumPy, pandas, and PyTables. Data sets of
such a size can also be analyzed in-memory, leading to generally high speeds with
today’s CPUs and GPUs. However, the data has to be read into RAM and the results
have to be written to disk, meanwhile ensuring that today’s performance require‐
ments are met.

This chapter addresses the following topics:

“Basic I/O with Python” on page 232
Python has built-in functions to serialize and store any object on disk and to read
it from disk into RAM; apart from that, Python is strong when it comes to work‐
ing with text files and SQL databases. NumPy also provides dedicated functions for
fast binary storage and retrieval of ndarray objects.

“I/O with pandas” on page 244
The pandas library provides a plenitude of convenience functions and methods
to read data stored in different formats (e.g., CSV, JSON) and to write data to
files in diverse formats.

“I/O with PyTables” on page 252
PyTables uses the HDF5 standard with hierarchical database structure and
binary storage to accomplish fast I/O operations for large data sets; speed often is
only bound by the hardware used.

“I/O with TsTables” on page 267
TsTables is a package that builds on top of PyTables and allows for fast storage
and retrieval of time series data.

Basic I/O with Python
Python itself comes with a multitude of I/O capabilities, some optimized for perfor‐
mance, others more for flexibility. In general, however, they are easily used in inter‐
active as well as in production settings.

Writing Objects to Disk
For later use, for documentation, or for sharing with others, one might want to store
Python objects on disk. One option is to use the pickle module. This module can
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serialize the majority of Python objects. Serialization refers to the conversion of an
object (hierarchy) to a byte stream; deserialization is the opposite operation.

As usual, some imports and customizations with regard to plotting first:

In [1]: from pylab import plt, mpl
        plt.style.use('seaborn')
        mpl.rcParams['font.family'] = 'serif'
        %matplotlib inline

The example that follows works with (pseudo-)random data, this time stored in a
list object:

In [2]: import pickle  
        import numpy as np
        from random import gauss  

In [3]: a = [gauss(1.5, 2) for i in range(1000000)]  

In [4]: path = '/Users/yves/Temp/data/'  

In [5]: pkl_file = open(path + 'data.pkl', 'wb')  

Imports the pickle module from the standard library.

Import gauss to generate normally distributed random numbers.

Creates a larger list object with random numbers.

Specifies the path where to store the data files.

Opens a file for writing in binary mode (wb).

The two major functions to serialize and deserialize Python objects are
pickle.dump(), for writing objects, and pickle.load(), for loading them into
memory:

In [6]: %time pickle.dump(a, pkl_file)  
        CPU times: user 37.2 ms, sys: 15.3 ms, total: 52.5 ms
        Wall time: 50.8 ms

In [7]: pkl_file.close()  

In [8]: ll $path*  
        -rw-r--r--  1 yves  staff  9002006 Oct 19 12:11
         /Users/yves/Temp/data/data.pkl

In [9]: pkl_file = open(path + 'data.pkl', 'rb')  

In [10]: %time b = pickle.load(pkl_file)  
         CPU times: user 34.1 ms, sys: 16.7 ms, total: 50.8 ms
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         Wall time: 48.7 ms

In [11]: a[:3]
Out[11]: [6.517874180585469, -0.5552400459507827, 2.8488946310833096]

In [12]: b[:3]
Out[12]: [6.517874180585469, -0.5552400459507827, 2.8488946310833096]

In [13]: np.allclose(np.array(a), np.array(b))  
Out[13]: True

Serializes the object a and saves it to the file.

Closes the file.

Shows the file on disk and its size (Mac/Linux).

Opens the file for reading in binary mode (rb).

Reads the object from disk and deserializes it.

Converting a and b to ndarrary objects, np.allclose() verifies that both con‐
tain the same data (numbers).

Storing and retrieving a single object with pickle obviously is quite simple. What
about two objects?

In [14]: pkl_file = open(path + 'data.pkl', 'wb')

In [15]: %time pickle.dump(np.array(a), pkl_file)  
         CPU times: user 58.1 ms, sys: 6.09 ms, total: 64.2 ms
         Wall time: 32.5 ms

In [16]: %time pickle.dump(np.array(a) ** 2, pkl_file)  
         CPU times: user 66.7 ms, sys: 7.22 ms, total: 73.9 ms
         Wall time: 39.3 ms

In [17]: pkl_file.close()

In [18]: ll $path*  
         -rw-r--r--  1 yves  staff  16000322 Oct 19 12:11
          /Users/yves/Temp/data/data.pkl

Serializes the ndarray version of a and saves it.

Serializes the squared ndarray version of a and saves it.

The file now has roughly double the size from before.
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What about reading the two ndarray objects back into memory?

In [19]: pkl_file = open(path + 'data.pkl', 'rb')

In [20]: x = pickle.load(pkl_file)  
         x[:4]
Out[20]: array([ 6.51787418, -0.55524005,  2.84889463,  5.94489175])

In [21]: y = pickle.load(pkl_file)  
         y[:4]
Out[21]: array([42.48268383,  0.30829151,  8.11620062, 35.34173791])

In [22]: pkl_file.close()

This retrieves the object that was stored first.

This retrieves the object that was stored second.

Obviously, pickle stores objects according to the first in, first out (FIFO) principle.
There is one major problem with this: there is no metainformation available to the
user to know beforehand what is stored in a pickle file.

A sometimes helpful workaround is to not store single objects, but a dict object con‐
taining all the other objects:

In [23]: pkl_file = open(path + 'data.pkl', 'wb')
         pickle.dump({'x': x, 'y': y}, pkl_file)  
         pkl_file.close()

In [24]: pkl_file = open(path + 'data.pkl', 'rb')
         data = pickle.load(pkl_file)  
         pkl_file.close()
         for key in data.keys():
             print(key, data[key][:4])
         x [ 6.51787418 -0.55524005  2.84889463  5.94489175]
         y [42.48268383  0.30829151  8.11620062 35.34173791]

In [25]: !rm -f $path*

Stores a dict object containing the two ndarray objects.

Retrieves the dict object.

This approach requires writing and reading all the objects at once, but this is a com‐
promise one can probably live with in many circumstances given the higher conve‐
nience it brings along.
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Compatibility Issues

The use of pickle for the serialization of objects is generally
straightforward. However, it might lead to problems when, e.g., a
Python package is upgraded and the new version of the package
cannot work anymore with the serialized object from the older ver‐
sion. It might also lead to problems when sharing such an object
across platforms and operating systems. It is therefore in general
advisable to work with the built-in reading and writing capabilities
of the packages such as NumPy and pandas that are discussed in the
following sections.

Reading and Writing Text Files
Text processing can be considered a strength of Python. In fact, many corporate and
scientific users use Python for exactly this task. With Python one has multiple
options to work with str objects, as well as with text files in general.

Assume the case of quite a large set of data that shall be shared as a CSV file.
Although such files have a special internal structure, they are basically plain text files.
The following code creates a dummy data set as an ndarray object, creates a Dateti
meIndex object, combines the two, and stores the data as a CSV text file:

In [26]: import pandas as pd

In [27]: rows = 5000  
         a = np.random.standard_normal((rows, 5)).round(4)  

In [28]: a  
Out[28]: array([[-0.0892, -1.0508, -0.5942,  0.3367,  1.508 ],
                [ 2.1046,  3.2623,  0.704 , -0.2651,  0.4461],
                [-0.0482, -0.9221,  0.1332,  0.1192,  0.7782],
                ...,
                [ 0.3026, -0.2005, -0.9947,  1.0203, -0.6578],
                [-0.7031, -0.6989, -0.8031, -0.4271,  1.9963],
                [ 2.4573,  2.2151,  0.158 , -0.7039, -1.0337]])

In [29]: t = pd.date_range(start='2019/1/1', periods=rows, freq='H')  

In [30]: t  
Out[30]: DatetimeIndex(['2019-01-01 00:00:00', '2019-01-01 01:00:00',
                        '2019-01-01 02:00:00', '2019-01-01 03:00:00',
                        '2019-01-01 04:00:00', '2019-01-01 05:00:00',
                        '2019-01-01 06:00:00', '2019-01-01 07:00:00',
                        '2019-01-01 08:00:00', '2019-01-01 09:00:00',
                        ...
                        '2019-07-27 22:00:00', '2019-07-27 23:00:00',
                        '2019-07-28 00:00:00', '2019-07-28 01:00:00',
                        '2019-07-28 02:00:00', '2019-07-28 03:00:00',
                        '2019-07-28 04:00:00', '2019-07-28 05:00:00',
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                        '2019-07-28 06:00:00', '2019-07-28 07:00:00'],
                       dtype='datetime64[ns]', length=5000, freq='H')

In [31]: csv_file = open(path + 'data.csv', 'w')  

In [32]: header = 'date,no1,no2,no3,no4,no5\n'  

In [33]: csv_file.write(header)  
Out[33]: 25

In [34]: for t_, (no1, no2, no3, no4, no5) in zip(t, a):  
             s = '{},{},{},{},{},{}\n'.format(t_, no1, no2, no3, no4, no5)  
             csv_file.write(s)  

In [35]: csv_file.close()

In [36]: ll $path*
         -rw-r--r--  1 yves  staff  284757 Oct 19 12:11
          /Users/yves/Temp/data/data.csv

Defines the number of rows for the data set.

Creates the ndarray object with the random numbers.

Creates a DatetimeIndex object of appropriate length (hourly intervals).

Opens a file for writing (w).

Defines the header row (column labels) and writes it as the first line.

Combines the data row-wise …

… into str objects …

… and writes it line-by-line (appending to the CSV text file).

The other way around works quite similarly. First, open the now-existing CSV file.
Second, read its content line-by-line using the .readline() or .readlines() meth‐
ods of the file object:

In [37]: csv_file = open(path + 'data.csv', 'r')  

In [38]: for i in range(5):
             print(csv_file.readline(), end='')  
         date,no1,no2,no3,no4,no5
         2019-01-01 00:00:00,-0.0892,-1.0508,-0.5942,0.3367,1.508
         2019-01-01 01:00:00,2.1046,3.2623,0.704,-0.2651,0.4461
         2019-01-01 02:00:00,-0.0482,-0.9221,0.1332,0.1192,0.7782
         2019-01-01 03:00:00,-0.359,-2.4955,0.6164,0.712,-1.4328
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In [39]: csv_file.close()

In [40]: csv_file = open(path + 'data.csv', 'r')  

In [41]: content = csv_file.readlines()  

In [42]: content[:5]  
Out[42]: ['date,no1,no2,no3,no4,no5\n',
          '2019-01-01 00:00:00,-0.0892,-1.0508,-0.5942,0.3367,1.508\n',
          '2019-01-01 01:00:00,2.1046,3.2623,0.704,-0.2651,0.4461\n',
          '2019-01-01 02:00:00,-0.0482,-0.9221,0.1332,0.1192,0.7782\n',
          '2019-01-01 03:00:00,-0.359,-2.4955,0.6164,0.712,-1.4328\n']

In [43]: csv_file.close()

Opens the file for reading (r).

Reads the file contents line-by-line and prints them.

Reads the file contents in a single step …

… the result of which is a list object with all lines as separate str objects.

CSV files are so important and commonplace that there is a csv module in the
Python standard library that simplifies the processing of these files. Two helpful
reader (iterator) objects of the csv module return either a list of list objects or a
list of dict objects:

In [44]: import csv

In [45]: with open(path + 'data.csv', 'r') as f:
             csv_reader = csv.reader(f)  
             lines = [line for line in csv_reader]

In [46]: lines[:5]  
Out[46]: [['date', 'no1', 'no2', 'no3', 'no4', 'no5'],
         ['2019-01-01 00:00:00', '-0.0892', '-1.0508', '-0.5942', '0.3367',
          '1.508'],
         ['2019-01-01 01:00:00', '2.1046', '3.2623', '0.704', '-0.2651',
          '0.4461'],
         ['2019-01-01 02:00:00', '-0.0482', '-0.9221', '0.1332', '0.1192',
          '0.7782'],
         ['2019-01-01 03:00:00', '-0.359', '-2.4955', '0.6164', '0.712',
          '-1.4328']]

In [47]: with open(path + 'data.csv', 'r') as f:
             csv_reader = csv.DictReader(f)  
             lines = [line for line in csv_reader]

In [48]: lines[:3]  
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2 For an overview of available database connectors for Python, visit https://wiki.python.org/moin/DatabaseInter
faces. Instead of working directly with relational databases, object relational mappers such as SQLAlchemy
often prove useful. They introduce an abstraction layer that allows for more Pythonic, object-oriented code.
They also allow you to more easily exchange one relational database for another in the backend.

Out[48]: [OrderedDict([('date', '2019-01-01 00:00:00'),
                       ('no1', '-0.0892'),
                       ('no2', '-1.0508'),
                       ('no3', '-0.5942'),
                       ('no4', '0.3367'),
                       ('no5', '1.508')]),
          OrderedDict([('date', '2019-01-01 01:00:00'),
                       ('no1', '2.1046'),
                       ('no2', '3.2623'),
                       ('no3', '0.704'),
                       ('no4', '-0.2651'),
                       ('no5', '0.4461')]),
          OrderedDict([('date', '2019-01-01 02:00:00'),
                       ('no1', '-0.0482'),
                       ('no2', '-0.9221'),
                       ('no3', '0.1332'),
                       ('no4', '0.1192'),
                       ('no5', '0.7782')])]

In [49]: !rm -f $path*

csv.reader() returns every single line as a list object.

csv.DictReader() returns every single line as an OrderedDict, which is a special
case of a dict object.

Working with SQL Databases
Python can work with any kind of Structured Query Language (SQL) database, and
in general also with any kind of NoSQL database. One SQL or relational database that
is delivered with Python by default is SQLite3. With it, the basic Python approach to
SQL databases can be easily illustrated:2

In [50]: import sqlite3 as sq3

In [51]: con = sq3.connect(path + 'numbs.db')  

In [52]: query = 'CREATE TABLE numbs (Date date, No1 real, No2 real)'  

In [53]: con.execute(query)  
Out[53]: <sqlite3.Cursor at 0x102655f10>

In [54]: con.commit()  
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3 See https://www.sqlite.org/lang.html for an overview of the SQLite3 language dialect.

In [55]: q = con.execute  

In [56]: q('SELECT * FROM sqlite_master').fetchall()  
Out[56]: [('table',
           'numbs',
           'numbs',
           2,
           'CREATE TABLE numbs (Date date, No1 real, No2 real)')]

Opens a database connection; a file is created if it does not exist.

A SQL query that creates a table with three columns.3

Executes the query …

… and commits the changes.

Defines a short alias for the con.execute() method.

Fetches metainformation about the database, showing the just-created table as
the single object.

Now that there is a database file with a table, this table can be populated with data.
Each row consists of a datetime object and two float objects:

In [57]: import datetime

In [58]: now = datetime.datetime.now()
         q('INSERT INTO numbs VALUES(?, ?, ?)', (now, 0.12, 7.3))  
Out[58]: <sqlite3.Cursor at 0x102655f80>

In [59]: np.random.seed(100)

In [60]: data = np.random.standard_normal((10000, 2)).round(4)  

In [61]: %%time
         for row in data:  
             now = datetime.datetime.now()
             q('INSERT INTO numbs VALUES(?, ?, ?)', (now, row[0], row[1]))
         con.commit()
         CPU times: user 115 ms, sys: 6.69 ms, total: 121 ms
         Wall time: 124 ms

In [62]: q('SELECT * FROM numbs').fetchmany(4)  
Out[62]: [('2018-10-19 12:11:15.564019', 0.12, 7.3),
          ('2018-10-19 12:11:15.592956', -1.7498, 0.3427),
          ('2018-10-19 12:11:15.593033', 1.153, -0.2524),
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          ('2018-10-19 12:11:15.593051', 0.9813, 0.5142)]

In [63]: q('SELECT * FROM numbs WHERE no1 > 0.5').fetchmany(4)  
Out[63]: [('2018-10-19 12:11:15.593033', 1.153, -0.2524),
          ('2018-10-19 12:11:15.593051', 0.9813, 0.5142),
          ('2018-10-19 12:11:15.593104', 0.6727, -0.1044),
          ('2018-10-19 12:11:15.593134', 1.619, 1.5416)]

In [64]: pointer = q('SELECT * FROM numbs')  

In [65]: for i in range(3):
             print(pointer.fetchone())  
         ('2018-10-19 12:11:15.564019', 0.12, 7.3)
         ('2018-10-19 12:11:15.592956', -1.7498, 0.3427)
         ('2018-10-19 12:11:15.593033', 1.153, -0.2524)

In [66]: rows = pointer.fetchall()  
         rows[:3]
Out[66]: [('2018-10-19 12:11:15.593051', 0.9813, 0.5142),
          ('2018-10-19 12:11:15.593063', 0.2212, -1.07),
          ('2018-10-19 12:11:15.593073', -0.1895, 0.255)]

Writes a single row (or record) to the numbs table.

Creates a larger dummy data set as an ndarray object.

Iterates over the rows of the ndarray object.

Retrieves a number of rows from the table.

The same, but with a condition on the values in the No1 column.

Defines a pointer object …

… that behaves like a generator object.

Retrieves all the remaining rows.

Finally, one might want to delete the table object in the database if it’s not required
anymore:

In [67]: q('DROP TABLE IF EXISTS numbs')  
Out[67]: <sqlite3.Cursor at 0x1187a7420>

In [68]: q('SELECT * FROM sqlite_master').fetchall()  
Out[68]: []

In [69]: con.close()  

In [70]: !rm -f $path*  
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Removes the table from the database.

There are no table objects left after this operation.

Closes the database connection.

Removes the database file from disk.

SQL databases are a rather broad topic; indeed, too broad and complex to be covered
in any significant way in this chapter. The basic messages are:

• Python integrates well with almost any database technology.
• The basic SQL syntax is mainly determined by the database in use; the rest is

what is called “Pythonic.”

A few more examples based on SQLite3 are included later in this chapter.

Writing and Reading NumPy Arrays
NumPy itself has functions to write and read ndarray objects in a convenient and per‐
formant fashion. This saves effort in some circumstances, such as when converting
NumPy dtype objects into specific database data types (e.g., for SQLite3). To illustrate
that NumPy can be an efficient replacement for a SQL-based approach, the following
code replicates the example from the previous section with NumPy.

Instead of pandas, the code uses the np.arange() function of NumPy to generate an
ndarray object with datetime objects stored:

In [71]: dtimes = np.arange('2019-01-01 10:00:00', '2025-12-31 22:00:00',
                           dtype='datetime64[m]')  

In [72]: len(dtimes)
Out[72]: 3681360

In [73]: dty = np.dtype([('Date', 'datetime64[m]'),
                         ('No1', 'f'), ('No2', 'f')])  

In [74]: data = np.zeros(len(dtimes), dtype=dty)  

In [75]: data['Date'] = dtimes  

In [76]: a = np.random.standard_normal((len(dtimes), 2)).round(4)  

In [77]: data['No1'] = a[:, 0]  
         data['No2'] = a[:, 1]  

In [78]: data.nbytes  
Out[78]: 58901760
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4 Note that such times might vary significantly even on the same machine when repeated multiple times,
because they depend, among other factors, on what the machine is doing CPU-wise and I/O-wise at the same
time.

Creates an ndarray object with datetime as the dtype.

Defines the special dtype object for the structured array.

Instantiates an ndarray object with the special dtype.

Populates the Date column.

The dummy data sets …

… which populate the No1 and No2 columns.

The size of the structured array in bytes.

Saving of ndarray objects is highly optimized and therefore quite fast. Almost 60
MB of data takes a fraction of a second to save on disk (here using an SSD). A
larger ndarray object with 480 MB of data takes about half a second to save on disk:4

In [79]: %time np.save(path + 'array', data)  
         CPU times: user 37.4 ms, sys: 58.9 ms, total: 96.4 ms
         Wall time: 77.9 ms

In [80]: ll $path*  
         -rw-r--r--  1 yves  staff  58901888 Oct 19 12:11
          /Users/yves/Temp/data/array.npy

In [81]: %time np.load(path + 'array.npy')  
         CPU times: user 1.67 ms, sys: 44.8 ms, total: 46.5 ms
         Wall time: 44.6 ms

Out[81]: array([('2019-01-01T10:00',  1.5131,  0.6973),
                ('2019-01-01T10:01', -1.722 , -0.4815),
                ('2019-01-01T10:02',  0.8251,  0.3019), ...,
                ('2025-12-31T21:57',  1.372 ,  0.6446),
                ('2025-12-31T21:58', -1.2542,  0.1612),
                ('2025-12-31T21:59', -1.1997, -1.097 )],
               dtype=[('Date', '<M8[m]'), ('No1', '<f4'), ('No2', '<f4')])

In [82]: %time data = np.random.standard_normal((10000, 6000)).round(4)  
         CPU times: user 2.69 s, sys: 391 ms, total: 3.08 s
         Wall time: 2.78 s

In [83]: data.nbytes  
Out[83]: 480000000
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In [84]: %time np.save(path + 'array', data)  
         CPU times: user 42.9 ms, sys: 300 ms, total: 343 ms
         Wall time: 481 ms

In [85]: ll $path*  
         -rw-r--r--  1 yves  staff  480000128 Oct 19 12:11
          /Users/yves/Temp/data/array.npy

In [86]: %time np.load(path + 'array.npy')  
         CPU times: user 2.32 ms, sys: 363 ms, total: 365 ms
         Wall time: 363 ms

Out[86]: array([[ 0.3066,  0.5951,  0.5826, ...,  1.6773,  0.4294, -0.2216],
                [ 0.8769,  0.7292, -0.9557, ...,  0.5084,  0.9635, -0.4443],
                [-1.2202, -2.5509, -0.0575, ..., -1.6128,  0.4662, -1.3645],
                ...,
                [-0.5598,  0.2393, -2.3716, ...,  1.7669,  0.2462,  1.035 ],
                [ 0.273 ,  0.8216, -0.0749, ..., -0.0552, -0.8396,  0.3077],
                [-0.6305,  0.8331,  1.3702, ...,  0.3493,  0.1981,  0.2037]])

In [87]: !rm -f $path*

This saves the structured ndarray object on disk.

The size on disk is hardly larger than in memory (due to binary storage).

This loads the structured ndarray object from disk.

A larger regular ndarray object.

These examples illustrate that writing to disk in this case is mainly hardware-bound,
since the speeds observed represent roughly the advertised writing speed of standard
SSDs at the time of this writing (about 500 MB/s).

In any case, one can expect that this form of data storage and retrieval is faster when
compared to SQL databases or using the pickle module for serialization. There are
two reasons: first, the data is mainly numeric; second, NumPy uses binary storage,
which reduces the overhead almost to zero. Of course, one does not have the func‐
tionality of a SQL database available with this approach, but PyTables will help in
this regard, as subsequent sections show.

I/O with pandas
One of the major strengths of pandas is that it can read and write different data for‐
mats natively, including:

• CSV (comma-separated values)
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• SQL (Structured Query Language)
• XLS/XSLX (Microsoft Excel files)
• JSON (JavaScript Object Notation)
• HTML (HyperText Markup Language)

Table 9-1 lists the supported formats and the corresponding import and export func‐
tions/methods of pandas and the DataFrame class, respectively. The parameters that,
for example, the pd.read_csv() import function takes are described in the documen‐
tation for pandas.read_csv.

Table 9-1. Import-export functions and methods

Format Input Output Remark
CSV pd.read_csv() .to_csv() Text file

XLS/XLSX pd.read_excel() .to_excel() Spreadsheet

HDF pd.read_hdf() .to_hdf() HDF5 database

SQL pd.read_sql() .to_sql() SQL table

JSON pd.read_json() .to_json() JavaScript Object Notation

MSGPACK pd.read_msgpack() .to_msgpack() Portable binary format

HTML pd.read_html() .to_html() HTML code

GBQ pd.read_gbq() .to_gbq() Google Big Query format

DTA pd.read_stata() .to_stata() Formats 104, 105, 108, 113-115, 117

Any pd.read_clipboard() .to_clipboard() E.g., from HTML page

Any pd.read_pickle() .to_pickle() (Structured) Python object

The test case is again a larger set of float objects:

In [88]: data = np.random.standard_normal((1000000, 5)).round(4)

In [89]: data[:3]
Out[89]: array([[ 0.4918,  1.3707,  0.137 ,  0.3981, -1.0059],
                [ 0.4516,  1.4445,  0.0555, -0.0397,  0.44  ],
                [ 0.1629, -0.8473, -0.8223, -0.4621, -0.5137]])

To this end, this section also revisits SQLite3 and compares the performance to alter‐
native formats using pandas.

Working with SQL Databases
All that follows with regard to SQLite3 should be familiar by now:

In [90]: filename = path + 'numbers'

In [91]: con = sq3.Connection(filename + '.db')
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In [92]: query = 'CREATE TABLE numbers (No1 real, No2 real,\
                 No3 real, No4 real, No5 real)'  

In [93]: q = con.execute
         qm = con.executemany

In [94]: q(query)
Out[94]: <sqlite3.Cursor at 0x1187a76c0>

Creates a table with five columns for real numbers (float objects).

This time, the .executemany() method can be applied since the data is available in a
single ndarray object. Reading and working with the data works as before. Query
results can also be visualized easily (see Figure 9-1):

In [95]: %%time
         qm('INSERT INTO numbers VALUES (?, ?, ?, ?, ?)', data)  
         con.commit()
         CPU times: user 7.3 s, sys: 195 ms, total: 7.49 s
         Wall time: 7.71 s

In [96]: ll $path*
         -rw-r--r--  1 yves  staff  52633600 Oct 19 12:11
          /Users/yves/Temp/data/numbers.db

In [97]: %%time
         temp = q('SELECT * FROM numbers').fetchall()  
         print(temp[:3])
         [(0.4918, 1.3707, 0.137, 0.3981, -1.0059), (0.4516, 1.4445, 0.0555,
          -0.0397, 0.44), (0.1629, -0.8473, -0.8223, -0.4621, -0.5137)]
         CPU times: user 1.7 s, sys: 124 ms, total: 1.82 s
         Wall time: 1.9 s

In [98]: %%time
         query = 'SELECT * FROM numbers WHERE No1 > 0 AND No2 < 0'
         res = np.array(q(query).fetchall()).round(3)  
         CPU times: user 639 ms, sys: 64.7 ms, total: 704 ms
         Wall time: 702 ms

In [99]: res = res[::100]  
         plt.figure(figsize=(10, 6))
         plt.plot(res[:, 0], res[:, 1], 'ro')  

Inserts the whole data set into the table in a single step.

Retrieves all the rows from the table in a single step.

Retrieves a selection of the rows and transforms it to an ndarray object.

Plots a subset of the query result.
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Figure 9-1. Scatter plot of the query result (selection)

From SQL to pandas
A generally more efficient approach, however, is the reading of either whole tables or
query results with pandas. When one can read a whole table into memory, analytical
queries can generally be executed much faster than when using the SQL disk-based
approach (out-of-memory).

Reading the whole table with pandas takes roughly the same amount of time as read‐
ing it into a NumPy ndarray object. There as here, the bottleneck performance-wise is
the SQL database:

In [100]: %time data = pd.read_sql('SELECT * FROM numbers', con)  
          CPU times: user 2.17 s, sys: 180 ms, total: 2.35 s
          Wall time: 2.32 s

In [101]: data.head()
Out[101]:       No1     No2     No3     No4     No5
          0  0.4918  1.3707  0.1370  0.3981 -1.0059
          1  0.4516  1.4445  0.0555 -0.0397  0.4400
          2  0.1629 -0.8473 -0.8223 -0.4621 -0.5137
          3  1.3064  0.9125  0.5142 -0.7868 -0.3398
          4 -0.1148 -1.5215 -0.7045 -1.0042 -0.0600

Reads all rows of the table into the DataFrame object named data.

The data is now in-memory, which allows for much faster analytics. The speedup is
often an order of magnitude or more. pandas can also master more complex queries,
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although it is neither meant nor able to replace SQL databases when it comes to com‐
plex relational data structures. The result of the query with multiple conditions com‐
bined is shown in Figure 9-2:

In [102]: %time data[(data['No1'] > 0) & (data['No2'] < 0)].head()  
          CPU times: user 47.1 ms, sys: 12.3 ms, total: 59.4 ms
          Wall time: 33.4 ms

Out[102]:        No1     No2     No3     No4     No5
          2   0.1629 -0.8473 -0.8223 -0.4621 -0.5137
          5   0.1893 -0.0207 -0.2104  0.9419  0.2551
          8   1.4784 -0.3333 -0.7050  0.3586 -0.3937
          10  0.8092 -0.9899  1.0364 -1.0453  0.0579
          11  0.9065 -0.7757 -0.9267  0.7797  0.0863

In [103]: %%time
          q = '(No1 < -0.5 | No1 > 0.5) & (No2 < -1 | No2 > 1)'  
          res = data[['No1', 'No2']].query(q)  
          CPU times: user 95.4 ms, sys: 22.4 ms, total: 118 ms
          Wall time: 56.4 ms

In [104]: plt.figure(figsize=(10, 6))
          plt.plot(res['No1'], res['No2'], 'ro');

Two conditions combined logically.

Four conditions combined logically.

Figure 9-2. Scatter plot of the query result (selection)
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As expected, using the in-memory analytics capabilities of pandas leads to a signifi‐
cant speedup, provided pandas is able to replicate the respective SQL statement.

This is not the only advantage of using pandas, since pandas is tightly integrated with
a number of other packages (including PyTables, the topic of the subsequent sec‐
tion). Here, it suffices to know that the combination of both can speed up I/O opera‐
tions considerably. This is shown in the following:

In [105]: h5s = pd.HDFStore(filename + '.h5s', 'w')  

In [106]: %time h5s['data'] = data  
          CPU times: user 46.7 ms, sys: 47.1 ms, total: 93.8 ms
          Wall time: 99.7 ms

In [107]: h5s  
Out[107]: <class 'pandas.io.pytables.HDFStore'>
          File path: /Users/yves/Temp/data/numbers.h5s

In [108]: h5s.close()  

This opens an HDF5 database file for writing; in pandas an HDFStore object is
created.

The complete DataFrame object is stored in the database file via binary storage.

The HDFStore object information.

The database file is closed.

The whole DataFrame with all the data from the original SQL table is written much
faster when compared to the same procedure with SQLite3. Reading is even faster:

In [109]: %%time
          h5s = pd.HDFStore(filename + '.h5s', 'r')  
          data_ = h5s['data']  
          h5s.close()  
          CPU times: user 11 ms, sys: 18.3 ms, total: 29.3 ms
          Wall time: 29.4 ms

In [110]: data_ is data  
Out[110]: False

In [111]: (data_ == data).all()  
Out[111]: No1    True
          No2    True
          No3    True
          No4    True
          No5    True
          dtype: bool
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In [112]: np.allclose(data_, data)  
Out[112]: True

In [113]: ll $path*  
          -rw-r--r--  1 yves  staff  52633600 Oct 19 12:11
           /Users/yves/Temp/data/numbers.db
          -rw-r--r--  1 yves  staff  48007240 Oct 19 12:11
           /Users/yves/Temp/data/numbers.h5s

This opens the HDF5 database file for reading.

The DataFrame is read and stored in-memory as data_.

The database file is closed.

The two DataFrame objects are not the same …

… but they now contain the same data.

Binary storage generally comes with less size overhead compared to SQL tables,
for instance.

Working with CSV Files
One of the most widely used formats to exchange financial data is the CSV format.
Although it is not really standardized, it can be processed by any platform and the
vast majority of applications concerned with data and financial analytics. Earlier, we
saw how to write and read data to and from CSV files with standard Python function‐
ality (see “Reading and Writing Text Files” on page 236). pandas makes this whole
procedure a bit more convenient, the code more concise, and the execution in general
faster (see also Figure 9-3):

In [114]: %time data.to_csv(filename + '.csv')  
          CPU times: user 6.44 s, sys: 139 ms, total: 6.58 s
          Wall time: 6.71 s

In [115]: ll $path
          total 283672
          -rw-r--r--  1 yves  staff  43834157 Oct 19 12:11 numbers.csv
          -rw-r--r--  1 yves  staff  52633600 Oct 19 12:11 numbers.db
          -rw-r--r--  1 yves  staff  48007240 Oct 19 12:11 numbers.h5s

In [116]: %time df = pd.read_csv(filename + '.csv')  
          CPU times: user 1.12 s, sys: 111 ms, total: 1.23 s
          Wall time: 1.23 s

In [117]: df[['No1', 'No2', 'No3', 'No4']].hist(bins=20, figsize=(10, 6));
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The .to_csv() method writes the DataFrame data to disk in CSV format.

The pd.read_csv() method then reads it back into memory as a new DataFrame
object.

Figure 9-3. Histograms for selected columns

Working with Excel Files
The following code briefly demonstrates how pandas can write data in Excel format
and read data from Excel spreadsheets. In this case, the data set is restricted to
100,000 rows (see also Figure 9-4):

In [118]: %time data[:100000].to_excel(filename + '.xlsx')  
          CPU times: user 25.9 s, sys: 520 ms, total: 26.4 s
          Wall time: 27.3 s

In [119]: %time df = pd.read_excel(filename + '.xlsx', 'Sheet1')  
          CPU times: user 5.78 s, sys: 70.1 ms, total: 5.85 s
          Wall time: 5.91 s

In [120]: df.cumsum().plot(figsize=(10, 6));
In [121]: ll $path*
          -rw-r--r--  1 yves  staff  43834157 Oct 19 12:11
           /Users/yves/Temp/data/numbers.csv
          -rw-r--r--  1 yves  staff  52633600 Oct 19 12:11
           /Users/yves/Temp/data/numbers.db
          -rw-r--r--  1 yves  staff  48007240 Oct 19 12:11
           /Users/yves/Temp/data/numbers.h5s
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          -rw-r--r--  1 yves  staff   4032725 Oct 19 12:12
           /Users/yves/Temp/data/numbers.xlsx

In [122]: rm -f $path*

The .to_excel() method writes the DataFrame data to disk in XLSX format.

The pd.read_excel() method then reads it back into memory as a new Data
Frame object, also specifying the sheet from which to read.

Generating the Excel spreadsheet file with a smaller subset of the data takes quite a
while. This illustrates what kind of overhead the spreadsheet structure brings along
with it.

Inspection of the generated files reveals that the DataFrame with HDFStore combina‐
tion is the most compact alternative (using compression, as described in the next sec‐
tion, further increases the benefits). The same amount of data as a CSV file—i.e., as a
text file—is somewhat larger in size. This is one reason for the slower performance
when working with CSV files, the other being the very fact that they are “only” gen‐
eral text files.

Figure 9-4. Line plots for all columns

I/O with PyTables
PyTables is a Python binding for the HDF5 database standard. It is specifically
designed to optimize the performance of I/O operations and make best use of the
available hardware. The library’s import name is tables. Similar to pandas, when it

252 | Chapter 9: Input/Output Operations



5 Many other databases require a server/client architecture. For interactive data and financial analytics, file-
based databases prove a bit more convenient and also sufficient for most purposes.

comes to in-memory analytics PyTables is neither able nor meant to be a full replace‐
ment for SQL databases. However, it brings along some features that further close the
gap. For example, a PyTables database can have many tables, and it supports com‐
pression and indexing and also nontrivial queries on tables. In addition, it can store
NumPy arrays efficiently and has its own flavor of array-like data structures.

To begin with, some imports:

In [123]: import tables as tb  
          import datetime as dt

The package name is PyTables, the import name is tables.

Working with Tables
PyTables provides a file-based database format, similar to SQLite3.5 The following
opens a database file and creates a table:

In [124]: filename = path + 'pytab.h5'

In [125]: h5 = tb.open_file(filename, 'w')  

In [126]: row_des = {
              'Date': tb.StringCol(26, pos=1),  
              'No1': tb.IntCol(pos=2),  
              'No2': tb.IntCol(pos=3),  
              'No3': tb.Float64Col(pos=4),  
              'No4': tb.Float64Col(pos=5)  
              }

In [127]: rows = 2000000

In [128]: filters = tb.Filters(complevel=0)  

In [129]: tab = h5.create_table('/', 'ints_floats',  
                                row_des,  
                                title='Integers and Floats',  
                                expectedrows=rows,  
                                filters=filters)  

In [130]: type(tab)
Out[130]: tables.table.Table

In [131]: tab
Out[131]: /ints_floats (Table(0,)) 'Integers and Floats'
            description := {
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            "Date": StringCol(itemsize=26, shape=(), dflt=b'', pos=0),
            "No1": Int32Col(shape=(), dflt=0, pos=1),
            "No2": Int32Col(shape=(), dflt=0, pos=2),
            "No3": Float64Col(shape=(), dflt=0.0, pos=3),
            "No4": Float64Col(shape=(), dflt=0.0, pos=4)}
            byteorder := 'little'
            chunkshape := (2621,)

Opens the database file in HDF5 binary storage format.

The Date column for date-time information (as a str object).

The two columns to store int objects.

The two columns to store float objects.

Via Filters objects, compression levels can be specified, among other things.

The node (path) and technical name of the table.

The description of the row data structure.

The name (title) of the table.

The expected number of rows; allows for optimizations.

The Filters object to be used for the table.

To populate the table with numerical data, two ndarray objects with random num‐
bers are generated: one with random integers, the other with random floating-point
numbers. The population of the table happens via a simple Python loop:

In [132]: pointer = tab.row  

In [133]: ran_int = np.random.randint(0, 10000, size=(rows, 2))  

In [134]: ran_flo = np.random.standard_normal((rows, 2)).round(4)  

In [135]: %%time
          for i in range(rows):
              pointer['Date'] = dt.datetime.now()  
              pointer['No1'] = ran_int[i, 0]  
              pointer['No2'] = ran_int[i, 1]  
              pointer['No3'] = ran_flo[i, 0]  
              pointer['No4'] = ran_flo[i, 1]  
              pointer.append()  
          tab.flush()  
          CPU times: user 8.16 s, sys: 78.7 ms, total: 8.24 s
          Wall time: 8.25 s
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In [136]: tab  
Out[136]: /ints_floats (Table(2000000,)) 'Integers and Floats'
            description := {
            "Date": StringCol(itemsize=26, shape=(), dflt=b'', pos=0),
            "No1": Int32Col(shape=(), dflt=0, pos=1),
            "No2": Int32Col(shape=(), dflt=0, pos=2),
            "No3": Float64Col(shape=(), dflt=0.0, pos=3),
            "No4": Float64Col(shape=(), dflt=0.0, pos=4)}
            byteorder := 'little'
            chunkshape := (2621,)

In [137]: ll $path*
          -rw-r--r--  1 yves  staff  100156248 Oct 19 12:12
           /Users/yves/Temp/data/pytab.h5

A pointer object is created.

The ndarray object with the random int objects is created.

The ndarray object with the random float objects is created.

The datetime object and the two int and two float objects are written row-by-
row.

The new row is appended.

All written rows are flushed; i.e., committed as permanent changes.

The changes are reflected in the Table object description.

The Python loop is quite slow in this case. There is a more performant and Pythonic
way to accomplish the same result, by the use of NumPy structured arrays. Equipped
with the complete data set stored in a structured array, the creation of the table boils
down to a single line of code. Note that the row description is not needed anymore;
PyTables uses the dtype object of the structured array to infer the data types instead:

In [138]: dty = np.dtype([('Date', 'S26'), ('No1', '<i4'), ('No2', '<i4'),
                                           ('No3', '<f8'), ('No4', '<f8')])  

In [139]: sarray = np.zeros(len(ran_int), dtype=dty)  

In [140]: sarray[:4]  
Out[140]: array([(b'', 0, 0, 0., 0.), (b'', 0, 0, 0., 0.), (b'', 0, 0, 0., 0.),
                 (b'', 0, 0, 0., 0.)],
          dtype=[('Date', 'S26'), ('No1', '<i4'), ('No2', '<i4'), ('No3', '<f8'),
           ('No4', '<f8')])

In [141]: %%time
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          sarray['Date'] = dt.datetime.now()  
          sarray['No1'] = ran_int[:, 0]  
          sarray['No2'] = ran_int[:, 1]  
          sarray['No3'] = ran_flo[:, 0]  
          sarray['No4'] = ran_flo[:, 1]  
          CPU times: user 161 ms, sys: 42.7 ms, total: 204 ms
          Wall time: 207 ms

In [142]: %%time
          h5.create_table('/', 'ints_floats_from_array', sarray,
                                title='Integers and Floats',
                                expectedrows=rows, filters=filters)  
          CPU times: user 42.9 ms, sys: 51.4 ms, total: 94.3 ms
          Wall time: 96.6 ms

Out[142]: /ints_floats_from_array (Table(2000000,)) 'Integers and Floats'
            description := {
            "Date": StringCol(itemsize=26, shape=(), dflt=b'', pos=0),
            "No1": Int32Col(shape=(), dflt=0, pos=1),
            "No2": Int32Col(shape=(), dflt=0, pos=2),
            "No3": Float64Col(shape=(), dflt=0.0, pos=3),
            "No4": Float64Col(shape=(), dflt=0.0, pos=4)}
            byteorder := 'little'
            chunkshape := (2621,)

This defines the special dtype object.

This creates the structured array with zeros (and empty strings).

A few records from the ndarray object.

The columns of the ndarray object are populated at once.

This creates the Table object and populates it with the data.

This approach is an order of magnitude faster, has more concise code, and achieves
the same result:

In [143]: type(h5)
Out[143]: tables.file.File

In [144]: h5  
Out[144]: File(filename=/Users/yves/Temp/data/pytab.h5, title='', mode='w',
           root_uep='/', filters=Filters(complevel=0, shuffle=False,
           bitshuffle=False, fletcher32=False, least_significant_digit=None))
          / (RootGroup) ''
          /ints_floats (Table(2000000,)) 'Integers and Floats'
            description := {
            "Date": StringCol(itemsize=26, shape=(), dflt=b'', pos=0),
            "No1": Int32Col(shape=(), dflt=0, pos=1),
            "No2": Int32Col(shape=(), dflt=0, pos=2),
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            "No3": Float64Col(shape=(), dflt=0.0, pos=3),
            "No4": Float64Col(shape=(), dflt=0.0, pos=4)}
            byteorder := 'little'
            chunkshape := (2621,)
          /ints_floats_from_array (Table(2000000,)) 'Integers and Floats'
            description := {
            "Date": StringCol(itemsize=26, shape=(), dflt=b'', pos=0),
            "No1": Int32Col(shape=(), dflt=0, pos=1),
            "No2": Int32Col(shape=(), dflt=0, pos=2),
            "No3": Float64Col(shape=(), dflt=0.0, pos=3),
            "No4": Float64Col(shape=(), dflt=0.0, pos=4)}
            byteorder := 'little'
            chunkshape := (2621,)

In [145]: h5.remove_node('/', 'ints_floats_from_array')  

The description of the File object with the two Table objects.

This removes the second Table object with the redundant data.

The Table object behaves pretty similar to NumPy structured ndarray objects in most
cases (see also Figure 9-5):

In [146]: tab[:3]  
Out[146]: array([(b'2018-10-19 12:12:28.227771', 8576, 5991, -0.0528, 0.2468),
                 (b'2018-10-19 12:12:28.227858', 2990, 9310, -0.0261, 0.3932),
                 (b'2018-10-19 12:12:28.227868', 4400, 4823,  0.9133, 0.2579)],
          dtype=[('Date', 'S26'), ('No1', '<i4'), ('No2', '<i4'), ('No3', '<f8'),
           ('No4', '<f8')])

In [147]: tab[:4]['No4']  
Out[147]: array([ 0.2468,  0.3932,  0.2579, -0.5582])

In [148]: %time np.sum(tab[:]['No3'])  
          CPU times: user 76.7 ms, sys: 74.8 ms, total: 151 ms
          Wall time: 152 ms

Out[148]: 88.8542999999997

In [149]: %time np.sum(np.sqrt(tab[:]['No1']))  
          CPU times: user 91 ms, sys: 57.9 ms, total: 149 ms
          Wall time: 164 ms

Out[149]: 133349920.3689251

In [150]: %%time
          plt.figure(figsize=(10, 6))
          plt.hist(tab[:]['No3'], bins=30);  
          CPU times: user 328 ms, sys: 72.1 ms, total: 400 ms
          Wall time: 456 ms
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Selecting rows via indexing.

Selecting column values only via indexing.

Applying NumPy universal functions.

Plotting a column from the Table object.

Figure 9-5. Histogram of column data

PyTables also provides flexible tools to query data via typical SQL-like statements, as
in the following example (the result of which is illustrated in Figure 9-6; compare it
with Figure 9-2, based on a pandas query):

In [151]: query = '((No3 < -0.5) | (No3 > 0.5)) & ((No4 < -1) | (No4 > 1))'  

In [152]: iterator = tab.where(query)  

In [153]: %time res = [(row['No3'], row['No4']) for row in iterator]  
          CPU times: user 269 ms, sys: 64.4 ms, total: 333 ms
          Wall time: 294 ms

In [154]: res = np.array(res)  
          res[:3]
Out[154]: array([[0.7694, 1.4866],
                 [0.9201, 1.3346],
                 [1.4701, 1.8776]])
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In [155]: plt.figure(figsize=(10, 6))
          plt.plot(res.T[0], res.T[1], 'ro');

The query as a str object, four conditions combined by logical operators.

The iterator object based on the query.

The rows resulting from the query are collected via a list comprehension …

… and transformed to an ndarray object.

Figure 9-6. Scatter plot of column data

Fast Queries

Both pandas and PyTables are able to process relatively complex,
SQL-like queries and selections. They are both optimized for speed
when it comes to such operations. Although there are limits to
these approaches compared to relational databases, for most
numerical and financial applications these are often not relevant.

As the following examples show, working with data stored in PyTables as Table
objects gives the impression of working with NumPy or pandas objects in-memory,
both from a syntax and a performance point of view:

In [156]: %%time
          values = tab[:]['No3']
          print('Max %18.3f' % values.max())
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          print('Ave %18.3f' % values.mean())
          print('Min %18.3f' % values.min())
          print('Std %18.3f' % values.std())
          Max              5.224
          Ave              0.000
          Min             -5.649
          Std              1.000
          CPU times: user 163 ms, sys: 70.4 ms, total: 233 ms
          Wall time: 234 ms

In [157]: %%time
          res = [(row['No1'], row['No2']) for row in
                  tab.where('((No1 > 9800) | (No1 < 200)) \
                          & ((No2 > 4500) & (No2 < 5500))')]
          CPU times: user 165 ms, sys: 52.5 ms, total: 218 ms
          Wall time: 155 ms

In [158]: for r in res[:4]:
              print(r)
          (91, 4870)
          (9803, 5026)
          (9846, 4859)
          (9823, 5069)

In [159]: %%time
          res = [(row['No1'], row['No2']) for row in
                  tab.where('(No1 == 1234) & (No2 > 9776)')]
          CPU times: user 58.9 ms, sys: 40.5 ms, total: 99.4 ms
          Wall time: 81 ms

In [160]: for r in res:
              print(r)
          (1234, 9841)
          (1234, 9821)
          (1234, 9867)
          (1234, 9987)
          (1234, 9849)
          (1234, 9800)

Working with Compressed Tables
A major advantage of working with PyTables is the approach it takes to compression.
It uses compression not only to save space on disk, but also to improve the perfor‐
mance of I/O operations in certain hardware scenarios. How does this work? When
I/O is the bottleneck and the CPU is able to (de)compress data fast, the net effect of
compression in terms of speed might be positive. Since the following examples are
based on the I/O of a standard SSD, there is no speed advantage of compression to be
observed. However, there is also almost no disadvantage to using compression:

In [161]: filename = path + 'pytabc.h5'
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In [162]: h5c = tb.open_file(filename, 'w')

In [163]: filters = tb.Filters(complevel=5,  
                               complib='blosc')  

In [164]: tabc = h5c.create_table('/', 'ints_floats', sarray,
                                  title='Integers and Floats',
                                  expectedrows=rows, filters=filters)

In [165]: query = '((No3 < -0.5) | (No3 > 0.5)) & ((No4 < -1) | (No4 > 1))'

In [166]: iteratorc = tabc.where(query)  

In [167]: %time res = [(row['No3'], row['No4']) for row in iteratorc]  
          CPU times: user 300 ms, sys: 50.8 ms, total: 351 ms
          Wall time: 311 ms

In [168]: res = np.array(res)
          res[:3]
Out[168]: array([[0.7694, 1.4866],
                 [0.9201, 1.3346],
                 [1.4701, 1.8776]])

The complevel (compression level) parameter can take values between 0 (no
compression) and 9 (highest compression).

The Blosc compression engine is used, which is optimized for performance.

This creates the iterator object, based on the query from before.

The rows resulting from the query are collected via a list comprehension.

Generating the compressed Table object with the original data and doing analytics
on it is slightly slower compared to the uncompressed Table object. What about
reading the data into an ndarray object? Let’s check:

In [169]: %time arr_non = tab.read()  
          CPU times: user 63 ms, sys: 78.5 ms, total: 142 ms
          Wall time: 149 ms

In [170]: tab.size_on_disk
Out[170]: 100122200

In [171]: arr_non.nbytes
Out[171]: 100000000

In [172]: %time arr_com = tabc.read()  
          CPU times: user 106 ms, sys: 55.5 ms, total: 161 ms
          Wall time: 173 ms

In [173]: tabc.size_on_disk
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Out[173]: 41306140

In [174]: arr_com.nbytes
Out[174]: 100000000

In [175]: ll $path*  
          -rw-r--r--  1 yves  staff  200312336 Oct 19 12:12
           /Users/yves/Temp/data/pytab.h5
          -rw-r--r--  1 yves  staff   41341436 Oct 19 12:12
           /Users/yves/Temp/data/pytabc.h5

In [176]: h5c.close()  

Reading from the uncompressed Table object tab.

Reading from the compressed Table object tabc.

Comparing the sizes—the size of the compressed table is significantly reduced.

Closing the database file.

The examples show that there is hardly any speed difference when working with
compressed Table objects as compared to uncompressed ones. However, file sizes on
disk might—depending on the quality of the data—be significantly reduced, which
has a number of benefits:

• Storage costs are reduced.
• Backup costs are reduced.
• Network traffic is reduced.
• Network speed is improved (storage on and retrieval from remote servers is

faster).
• CPU utilization is increased to overcome I/O bottlenecks.

Working with Arrays
“Basic I/O with Python” on page 232 showed that NumPy has built-in fast writing and
reading capabilities for ndarray objects. PyTables is also quite fast and efficient when
it comes to storing and retrieving ndarray objects, and since it is based on a hierarch‐
ical database structure, many convenience features come on top:

In [177]: %%time
          arr_int = h5.create_array('/', 'integers', ran_int)  
          arr_flo = h5.create_array('/', 'floats', ran_flo)  
          CPU times: user 4.26 ms, sys: 37.2 ms, total: 41.5 ms
          Wall time: 46.2 ms
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In [178]: h5  
Out[178]: File(filename=/Users/yves/Temp/data/pytab.h5, title='', mode='w',
           root_uep='/', filters=Filters(complevel=0, shuffle=False,
           bitshuffle=False, fletcher32=False, least_significant_digit=None))
          / (RootGroup) ''
          /floats (Array(2000000, 2)) ''
            atom := Float64Atom(shape=(), dflt=0.0)
            maindim := 0
            flavor := 'numpy'
            byteorder := 'little'
            chunkshape := None
          /integers (Array(2000000, 2)) ''
            atom := Int64Atom(shape=(), dflt=0)
            maindim := 0
            flavor := 'numpy'
            byteorder := 'little'
            chunkshape := None
          /ints_floats (Table(2000000,)) 'Integers and Floats'
            description := {
            "Date": StringCol(itemsize=26, shape=(), dflt=b'', pos=0),
            "No1": Int32Col(shape=(), dflt=0, pos=1),
            "No2": Int32Col(shape=(), dflt=0, pos=2),
            "No3": Float64Col(shape=(), dflt=0.0, pos=3),
            "No4": Float64Col(shape=(), dflt=0.0, pos=4)}
            byteorder := 'little'
            chunkshape := (2621,)

In [179]: ll $path*
          -rw-r--r--  1 yves  staff  262344490 Oct 19 12:12
           /Users/yves/Temp/data/pytab.h5
          -rw-r--r--  1 yves  staff   41341436 Oct 19 12:12
           /Users/yves/Temp/data/pytabc.h5

In [180]: h5.close()

In [181]: !rm -f $path*

Stores the ran_int ndarray object.

Stores the ran_flo ndarray object.

The changes are reflected in the object description.

Writing these objects directly to an HDF5 database is faster than looping over the
objects and writing the data row-by-row to a Table object or using the approach via
structured ndarray objects.
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HDF5-Based Data Storage

The HDF5 hierarchical database (file) format is a powerful alterna‐
tive to, for example, relational databases when it comes to struc‐
tured numerical and financial data. Both on a standalone basis
when using PyTables directly and when combining it with the
capabilities of pandas, one can expect to get almost the maximum
I/O performance that the available hardware allows.

Out-of-Memory Computations
PyTables supports out-of-memory operations, which makes it possible to implement
array-based computations that do not fit in memory. To this end, consider the fol‐
lowing code based on the EArray class. This type of object can be expanded in one
dimension (row-wise), while the number of columns (elements per row) needs to be
fixed:

In [182]: filename = path + 'earray.h5'

In [183]: h5 = tb.open_file(filename, 'w')

In [184]: n = 500  

In [185]: ear = h5.create_earray('/', 'ear',  
                                atom=tb.Float64Atom(),  
                                shape=(0, n))  

In [186]: type(ear)
Out[186]: tables.earray.EArray

In [187]: rand = np.random.standard_normal((n, n))  
          rand[:4, :4]
Out[187]: array([[-1.25983231,  1.11420699,  0.1667485 ,  0.7345676 ],
                 [-0.13785424,  1.22232417,  1.36303097,  0.13521042],
                 [ 1.45487119, -1.47784078,  0.15027672,  0.86755989],
                 [-0.63519366,  0.1516327 , -0.64939447, -0.45010975]])

In [188]: %%time
          for _ in range(750):
              ear.append(rand)  
          ear.flush()
          CPU times: user 814 ms, sys: 1.18 s, total: 1.99 s
          Wall time: 2.53 s

In [189]: ear
Out[189]: /ear (EArray(375000, 500)) ''
            atom := Float64Atom(shape=(), dflt=0.0)
            maindim := 0
            flavor := 'numpy'
            byteorder := 'little'
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            chunkshape := (16, 500)

In [190]: ear.size_on_disk
Out[190]: 1500032000

The fixed number of columns.

The path and technical name of the EArray object.

The atomic dtype object of the single values.

The shape for instantiation (no rows, n columns).

The ndarray object with the random numbers …

… that gets appended many times.

For out-of-memory computations that do not lead to aggregations, another EArray
object of the same shape (size) is needed. PyTables has a special module to cope with
numerical expressions efficiently. It is called Expr and is based on the numerical
expression library numexpr. The code that follows uses Expr to calculate the mathe‐
matical expression in Equation 9-1 on the whole EArray object from before.

Equation 9-1. Example mathematical expression

y = 3 sin (x) + | x |

The results are stored in the out EArray object, and the expression evaluation hap‐
pens chunk-wise:

In [191]: out = h5.create_earray('/', 'out',
                                atom=tb.Float64Atom(),
                                shape=(0, n))

In [192]: out.size_on_disk
Out[192]: 0

In [193]: expr = tb.Expr('3 * sin(ear) + sqrt(abs(ear))')  

In [194]: expr.set_output(out, append_mode=True)  

In [195]: %time expr.eval()  
          CPU times: user 3.08 s, sys: 1.7 s, total: 4.78 s
          Wall time: 4.03 s

Out[195]: /out (EArray(375000, 500)) ''
            atom := Float64Atom(shape=(), dflt=0.0)
            maindim := 0
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            flavor := 'numpy'
            byteorder := 'little'
            chunkshape := (16, 500)

In [196]: out.size_on_disk
Out[196]: 1500032000

In [197]: out[0, :10]
Out[197]: array([-1.73369462,  3.74824436,  0.90627898,  2.86786818,
           1.75424957,
          -0.91108973, -1.68313885,  1.29073295, -1.68665599, -1.71345309])

In [198]: %time out_ = out.read()  
          CPU times: user 1.03 s, sys: 1.1 s, total: 2.13 s
          Wall time: 2.22 s

In [199]: out_[0, :10]
Out[199]: array([-1.73369462,  3.74824436,  0.90627898,  2.86786818,
           1.75424957,
          -0.91108973, -1.68313885,  1.29073295, -1.68665599, -1.71345309])

Transforms a str object–based expression to an Expr object.

Defines the output to be the out EArray object.

Initiates the evaluation of the expression.

Reads the whole EArray into memory.

Given that the whole operation takes place out-of-memory, it can be considered quite
fast, in particular as it is executed on standard hardware. As a benchmark, the in-
memory performance of the numexpr module (see also Chapter 10) can be consid‐
ered. It is faster, but not by a huge margin:

In [200]: import numexpr as ne  

In [201]: expr = '3 * sin(out_) + sqrt(abs(out_))'  

In [202]: ne.set_num_threads(1)  
Out[202]: 4

In [203]: %time ne.evaluate(expr)[0, :10]  
          CPU times: user 2.51 s, sys: 1.54 s, total: 4.05 s
          Wall time: 4.94 s

Out[203]: array([-1.64358578,  0.22567882,  3.31363043,  2.50443549,
           4.27413965,
          -1.41600606, -1.68373023,  4.01921805, -1.68117412, -1.66053597])

In [204]: ne.set_num_threads(4)  
Out[204]: 1
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In [205]: %time ne.evaluate(expr)[0, :10]  
          CPU times: user 3.39 s, sys: 1.94 s, total: 5.32 s
          Wall time: 2.96 s

Out[205]: array([-1.64358578,  0.22567882,  3.31363043,  2.50443549,
           4.27413965,
          -1.41600606, -1.68373023,  4.01921805, -1.68117412, -1.66053597])

In [206]: h5.close()

In [207]: !rm -f $path*

Imports the module for in-memory evaluations of numerical expressions.

The numerical expression as a str object.

Sets the number of threads to one.

Evaluates the numerical expression in-memory with one thread.

Sets the number of threads to four.

Evaluates the numerical expression in-memory with four threads.

I/O with TsTables
The package TsTables uses PyTables to build a high-performance storage for time
series data. The major usage scenario is “write once, retrieve multiple times.” This is a
typical scenario in financial analytics, where data is created in the markets, retrieved
in real-time or asynchronously, and stored on disk for later usage. That usage might
be in a larger trading strategy backtesting program that requires different subsets of a
historical financial time series over and over again. It is then important that data
retrieval happens fast.

Sample Data
As usual, the first task is the generation of a sample data set that is large enough to
illustrate the benefits of TsTables. The following code generates three rather long
financial time series based on the simulation of a geometric Brownian motion (see
Chapter 12):

In [208]: no = 5000000  
          co = 3  
          interval = 1. / (12 * 30 * 24 * 60)  
          vol = 0.2  
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In [209]: %%time
          rn = np.random.standard_normal((no, co))  
          rn[0] = 0.0  
          paths = 100 * np.exp(np.cumsum(-0.5 * vol ** 2 * interval +
                  vol * np.sqrt(interval) * rn, axis=0))  
          paths[0] = 100  
          CPU times: user 869 ms, sys: 175 ms, total: 1.04 s
          Wall time: 812 ms

The number of time steps.

The number of time series.

The time interval as a year fraction.

The volatility.

Standard normally distributed random numbers.

Sets the initial random numbers to zero.

The simulation based on an Euler discretization.

Sets the initial values of the paths to 100.

Since TsTables works pretty well with pandas DataFrame objects, the data is trans‐
formed to such an object (see also Figure 9-7):

In [210]: dr = pd.date_range('2019-1-1', periods=no, freq='1s')

In [211]: dr[-6:]
Out[211]: DatetimeIndex(['2019-02-27 20:53:14', '2019-02-27 20:53:15',
                         '2019-02-27 20:53:16', '2019-02-27 20:53:17',
                         '2019-02-27 20:53:18', '2019-02-27 20:53:19'],
                        dtype='datetime64[ns]', freq='S')

In [212]: df = pd.DataFrame(paths, index=dr, columns=['ts1', 'ts2', 'ts3'])

In [213]: df.info()
          <class 'pandas.core.frame.DataFrame'>
          DatetimeIndex: 5000000 entries, 2019-01-01 00:00:00 to 2019-02-27
           20:53:19
          Freq: S
          Data columns (total 3 columns):
          ts1    float64
          ts2    float64
          ts3    float64
          dtypes: float64(3)
          memory usage: 152.6 MB
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In [214]: df.head()
Out[214]:                             ts1         ts2         ts3
          2019-01-01 00:00:00  100.000000  100.000000  100.000000
          2019-01-01 00:00:01  100.018443   99.966644   99.998255
          2019-01-01 00:00:02  100.069023  100.004420   99.986646
          2019-01-01 00:00:03  100.086757  100.000246   99.992042
          2019-01-01 00:00:04  100.105448  100.036033   99.950618

In [215]: df[::100000].plot(figsize=(10, 6));

Figure 9-7. Selected data points of the financial time series

Data Storage
TsTables stores financial time series data based on a specific chunk-based structure
that allows for fast retrieval of arbitrary data subsets defined by some time interval.
To this end, the package adds the function create_ts() to PyTables. To provide the
data types for the table columns, the following uses a method based on the tb.Is
Description class from PyTables:

In [216]: import tstables as tstab

In [217]: class ts_desc(tb.IsDescription):
              timestamp = tb.Int64Col(pos=0)  
              ts1 = tb.Float64Col(pos=1)  
              ts2 = tb.Float64Col(pos=2)  
              ts3 = tb.Float64Col(pos=3)  
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In [218]: h5 = tb.open_file(path + 'tstab.h5', 'w')  

In [219]: ts = h5.create_ts('/', 'ts', ts_desc)  

In [220]: %time ts.append(df)  
          CPU times: user 1.36 s, sys: 497 ms, total: 1.86 s
          Wall time: 1.29 s

In [221]: type(ts)
Out[221]: tstables.tstable.TsTable

In [222]: ls -n $path
          total 328472
          -rw-r--r--  1 501  20  157037368 Oct 19 12:13 tstab.h5

The column for the timestamps.

The columns to store the numerical data.

Opens an HDF5 database file for writing (w).

Creates the TsTable object based on the ts_desc object.

Appends the data from the DataFrame object to the TsTable object.

Data Retrieval
Writing data with TsTables obviously is quite fast, even if hardware-dependent. The
same holds true for reading chunks of the data back into memory. Conveniently,
TsTables returns a DataFrame object (see also Figure 9-8):

In [223]: read_start_dt = dt.datetime(2019, 2, 1, 0, 0)  
          read_end_dt = dt.datetime(2019, 2, 5, 23, 59)  

In [224]: %time rows = ts.read_range(read_start_dt, read_end_dt)  
          CPU times: user 182 ms, sys: 73.5 ms, total: 255 ms
          Wall time: 163 ms

In [225]: rows.info()  
          <class 'pandas.core.frame.DataFrame'>
          DatetimeIndex: 431941 entries, 2019-02-01 00:00:00 to 2019-02-05
            23:59:00
          Data columns (total 3 columns):
          ts1    431941 non-null float64
          ts2    431941 non-null float64
          ts3    431941 non-null float64
          dtypes: float64(3)
          memory usage: 13.2 MB

In [226]: rows.head()  
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Out[226]:                            ts1        ts2         ts3
          2019-02-01 00:00:00  52.063640  40.474580  217.324713
          2019-02-01 00:00:01  52.087455  40.471911  217.250070
          2019-02-01 00:00:02  52.084808  40.458013  217.228712
          2019-02-01 00:00:03  52.073536  40.451408  217.302912
          2019-02-01 00:00:04  52.056133  40.450951  217.207481

In [227]: h5.close()

In [228]: (rows[::500] / rows.iloc[0]).plot(figsize=(10, 6));

The start time of the interval.

The end time of the interval.

The function ts.read_range() returns a DataFrame object for the interval.

The DataFrame object has a few hundred thousand data rows.

Figure 9-8. A specific time interval of the financial time series (normalized)

To better illustrate the performance of the TsTables-based data retrieval, consider
the following benchmark, which retrieves 100 chunks of data consisting of 3 days’
worth of 1-second bars. The retrieval of a DataFrame with 345,600 rows of data takes
less than one-tenth of a second:

In [229]: import random
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In [230]: h5 = tb.open_file(path + 'tstab.h5', 'r')

In [231]: ts = h5.root.ts._f_get_timeseries()  

In [232]: %%time
          for _ in range(100):  
              d = random.randint(1, 24)  
              read_start_dt = dt.datetime(2019, 2, d, 0, 0, 0)
              read_end_dt = dt.datetime(2019, 2, d + 3, 23, 59, 59)
              rows = ts.read_range(read_start_dt, read_end_dt)
          CPU times: user 7.17 s, sys: 1.65 s, total: 8.81 s
          Wall time: 4.78 s

In [233]: rows.info()  
          <class 'pandas.core.frame.DataFrame'>
          DatetimeIndex: 345600 entries, 2019-02-04 00:00:00 to 2019-02-07
            23:59:59
          Data columns (total 3 columns):
          ts1    345600 non-null float64
          ts2    345600 non-null float64
          ts3    345600 non-null float64
          dtypes: float64(3)
          memory usage: 10.5 MB

In [234]: !rm $path/tstab.h5

This connects to the TsTable object.

The data retrieval is repeated many times.

The starting day value is randomized.

The last DataFrame object is retrieved.

Conclusion
SQL-based or relational databases have advantages when it comes to complex data
structures that exhibit lots of relations between single objects/tables. This might jus‐
tify in some circumstances their performance disadvantage over pure NumPy

ndarray-based or pandas DataFrame–based approaches.

Many application areas in finance or science in general can succeed with a mainly
array-based data modeling approach. In these cases, huge performance improve‐
ments can be realized by making use of native NumPy I/O capabilities, a combination
of NumPy and PyTables capabilities, or the pandas approach via HDF5-based stores.
TsTables is particularly useful when working with large (financial) time series data
sets, especially in “write once, retrieve multiple times” scenarios.

272 | Chapter 9: Input/Output Operations



While a recent trend has been to use cloud-based solutions—where the cloud is made
up of a large number of computing nodes based on commodity hardware—one
should carefully consider, especially in a financial context, which hardware architec‐
ture best serves the analytics requirements. A study by Microsoft sheds some light on
this topic:

We claim that a single “scale-up” server can process each of these jobs and do as well
or better than a cluster in terms of performance, cost, power, and server density.

—Appuswamy et al. (2013)

Companies, research institutions, and others involved in data analytics should there‐
fore analyze first what specific tasks have to be accomplished in general and then
decide on the hardware/software architecture, in terms of:

Scaling out
Using a cluster with many commodity nodes with standard CPUs and relatively
low memory

Scaling up
Using one or a few powerful servers with many-core CPUs, possibly also GPUs
or even TPUs when machine and deep learning play a role, and large amounts of
memory

Scaling up hardware and applying appropriate implementation approaches might
significantly influence performance, which is the focus of the next chapter.

Further Resources
The paper cited at the beginning and end of the chapter is a good read, and a good
starting point to think about hardware architecture for financial analytics:

• Appuswamy, Raja, et al. (2013). “Nobody Ever Got Fired for Buying a Cluster”.
Microsoft Technical Report.

As usual, the web provides many valuable resources with regard to the topics and
Python packages covered in this chapter:

• For serialization of Python objects with pickle, refer to the documentation.
• An overview of the I/O capabilities of NumPy is provided on the website.
• For I/O with pandas, see the respective section in the online documentation.
• The PyTables home page provides both tutorials and detailed documentation.
• More information on TsTables can be found on its GitHub page.
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A friendly fork for TsTables is found at http://github.com/yhilpisch/tstables. Use pip
install git+git://github.com/yhilpisch/tstables to install the package from
this fork, which is maintained for compatibility with newer versions of pandas and
other Python packages.
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CHAPTER 10

Performance Python

Don’t lower your expectations to meet your performance. Raise your level of perfor‐
mance to meet your expectations.

—Ralph Marston

It is a long-lived prejudice that Python per se is a relatively slow programming lan‐
guage and not appropriate to implement computationally demanding tasks in
finance. Beyond the fact that Python is an interpreted language, the reasoning is usu‐
ally along the following lines: Python is slow when it comes to loops; loops are often
required to implement financial algorithms; therefore Python is too slow for financial
algorithm implementation. Another line of reasoning is: other (compiled) program‐
ming languages are fast at executing loops (such as C or C++); loops are often
required for financial algorithms; therefore these (compiled) programming languages
are well suited for finance and financial algorithm implementation.

Admittedly, it is possible to write proper Python code that executes rather slowly—
perhaps too slowly for many application areas. This chapter is about approaches to
speed up typical tasks and algorithms often encountered in a financial context. It
shows that with a judicious use of data structures, choosing the right implementation
idioms and paradigms, as well as using the right performance packages, Python is
able to compete even with compiled programming languages. This is due to, among
other factors, getting compiled itself.

To this end, this chapter introduces different approaches to speed up code:

Vectorization
Making use of Python’s vectorization capabilities is one approach already used
extensively in previous chapters.
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Dynamic compiling
Using the Numba package allows one to dynamically compile pure Python code
using LLVM technology.

Static compiling
Cython is not only a Python package but a hybrid language that combines Python
and C; it allows one, for instance, to use static type declarations and to statically
compile such adjusted code.

Multiprocessing
The multiprocessing module of Python allows for easy and simple paralleliza‐
tion of code execution.

This chapter addresses the following topics:

“Loops” on page 276
This section addresses Python loops and how to speed them up.

“Algorithms” on page 281
This section is concerned with standard mathematical algorithms that are often
used for performance benchmarks, such as Fibonacci number generation.

“Binomial Trees” on page 294
The binomial option pricing model is a widely used financial model that allows
for an interesting case study about a more involved financial algorithm.

“Monte Carlo Simulation” on page 299
Similarly, Monte Carlo simulation is widely used in financial practice for pricing
and risk management. It is computationally demanding and has long been con‐
sidered the domain of such languages as C or C++.

“Recursive pandas Algorithm” on page 304
This section addresses the speedup of a recursive algorithm based on financial
time series data. In particular, it presents different implementations for an algo‐
rithm calculating an exponentially weighted moving average (EWMA).

Loops
This section tackles the Python loop issue. The task is rather simple: a function shall
be written that draws a certain “large” number of random numbers and returns the
average of the values. The execution time is of interest, which can be estimated by the
magic functions %time and %timeit.
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Python
Let’s get started “slowly”—forgive the pun. In pure Python, such a function might
look like average_py():

In [1]: import random

In [2]: def average_py(n):
            s = 0  
            for i in range(n):
                s += random.random()  
            return s / n  

In [3]: n = 10000000  

In [4]: %time average_py(n)  
        CPU times: user 1.82 s, sys: 10.4 ms, total: 1.83 s
        Wall time: 1.93 s

Out[4]: 0.5000590124747943

In [5]: %timeit average_py(n)  
        1.31 s ± 159 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)

In [6]: %time sum([random.random() for _ in range(n)]) / n  
        CPU times: user 1.55 s, sys: 188 ms, total: 1.74 s
        Wall time: 1.74 s

Out[6]: 0.49987031710661173

Initializes the variable value for s.

Adds the uniformly distributed random values from the interval (0, 1) to s.

Returns the average value (mean).

Defines the number of iterations for the loop.

Times the function once.

Times the function multiple times for a more reliable estimate.

Uses a list comprehension instead of the function.

This sets the benchmark for the other approaches to follow.

Loops | 277



1 NumPy can also make use of dedicated mathematics libraries, such as the Intel Math Kernel Library (MKL).

NumPy
The strength of NumPy lies in its vectorization capabilities. Formally, loops vanish on
the Python level; the looping takes place one level deeper based on optimized and
compiled routines provided by NumPy.1 The function average_np() makes use of this
approach:

In [7]: import numpy as np

In [8]: def average_np(n):
            s = np.random.random(n)  
            return s.mean()  

In [9]: %time average_np(n)
        CPU times: user 180 ms, sys: 43.2 ms, total: 223 ms
        Wall time: 224 ms

Out[9]: 0.49988861556468317

In [10]: %timeit average_np(n)
         128 ms ± 2.01 ms per loop (mean ± std. dev. of 7 runs, 10 loops each)

In [11]: s = np.random.random(n)
         s.nbytes  
Out[11]: 80000000

Draws the random numbers “all at once” (no Python loop).

Returns the average value (mean).

Number of bytes used for the created ndarray object.

The speedup is considerable, reaching almost a factor of 10 or an order of magnitude.
However, the price that must be paid is significantly higher memory usage. This is
due to the fact that NumPy attains speed by preallocating data that can be processed in
the compiled layer. As a consquence, there is no way, given this approach, to work
with “streamed” data. This increased memory usage might even be prohibitively large
depending on the algorithm or problem at hand.

Vectorization and Memory

It is tempting to write vectorized code with NumPy whenever possi‐
ble due to the concise syntax and speed improvements typically
observed. However, these benefits often come at the price of a
much higher memory footprint.
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Numba
Numba is a package that allows the dynamic compiling of pure Python code by the use
of LLVM. The application in a simple case, like the one at hand, is surprisingly
straightforward and the dynamically compiled function average_nb() can be called
directly from Python:

In [12]: import numba

In [13]: average_nb = numba.jit(average_py)  

In [14]: %time average_nb(n)  
         CPU times: user 204 ms, sys: 34.3 ms, total: 239 ms
         Wall time: 278 ms

Out[14]: 0.4998865391283664

In [15]: %time average_nb(n)  
         CPU times: user 80.9 ms, sys: 457 µs, total: 81.3 ms
         Wall time: 81.7 ms

Out[15]: 0.5001357454250273

In [16]: %timeit average_nb(n)  
         75.5 ms ± 1.95 ms per loop (mean ± std. dev. of 7 runs, 10 loops each)

This creates the Numba function.

The compiling happens during runtime, leading to some overhead.

From the second execution (with the same input data types), the execution is
faster.

The combination of pure Python with Numba beats the NumPy version and preserves
the memory efficiency of the original loop-based implementation. It is also obvious
that the application of Numba in such simple cases comes with hardly any program‐
ming overhead.

No Free Lunch

The application of Numba sometimes seems like magic when one
compares the performance of the Python code to the compiled ver‐
sion, especially given its ease of use. However, there are many use
cases for which Numba is not suited and for which performance
gains are hardly observed or even impossible to achieve.
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Cython
Cython allows one to statically compile Python code. However, the application is not
as simple as with Numba since the code generally needs to be changed to see signifi‐
cant speed improvements. To begin with, consider the Cython function aver
age_cy1(), which introduces static type declarations for the used variables:

In [17]: %load_ext Cython

In [18]: %%cython -a
         import random  
         def average_cy1(int n):  
             cdef int i  
             cdef float s = 0  
             for i in range(n):
                 s += random.random()
             return s / n
Out[18]: <IPython.core.display.HTML object>

In [19]: %time average_cy1(n)
         CPU times: user 695 ms, sys: 4.31 ms, total: 699 ms
         Wall time: 711 ms

Out[19]: 0.49997106194496155

In [20]: %timeit average_cy1(n)
         752 ms ± 91.1 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)

Imports the random module within the Cython context.

Adds static type declarations for the variables n, i, and s.

Some speedup is observed, but not even close to that achieved by, for example, the
NumPy version. A bit more Cython optimization is necessary to beat even the Numba
version:

In [21]: %%cython
         from libc.stdlib cimport rand  
         cdef extern from 'limits.h':  
             int INT_MAX  
         cdef int i
         cdef float rn
         for i in range(5):
             rn = rand() / INT_MAX  
             print(rn)
         0.6792964339256287
         0.934692919254303
         0.3835020661354065
         0.5194163918495178
         0.8309653401374817
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In [22]: %%cython -a
         from libc.stdlib cimport rand  
         cdef extern from 'limits.h':  
             int INT_MAX  
         def average_cy2(int n):
             cdef int i
             cdef float s = 0
             for i in range(n):
                 s += rand() / INT_MAX  
             return s / n
Out[22]: <IPython.core.display.HTML object>

In [23]: %time average_cy2(n)
         CPU times: user 78.5 ms, sys: 422 µs, total: 79 ms
         Wall time: 79.1 ms

Out[23]: 0.500017523765564

In [24]: %timeit average_cy2(n)
         65.4 ms ± 706 µs per loop (mean ± std. dev. of 7 runs, 10 loops each)

Imports a random number generator from C.

Imports a constant value for the scaling of the random numbers.

Adds uniformly distributed random numbers from the interval (0, 1), after scal‐
ing.

This further optimized Cython version, average_cy2(), is now a bit faster than the
Numba version. However, the effort has also been a bit larger. Compared to the NumPy
version, Cython also preserves the memory efficiency of the original loop-based
implementation.

Cython = Python + C

Cython allows developers to tweak code for performance as much
as possible or as little as sensible—starting with a pure Python ver‐
sion, for instance, and adding more and more elements from C to
the code. The compilation step itself can also be parameterized to
further optimize the compiled version.

Algorithms
This section applies the performance-enhancing techniques from the previous sec‐
tion to some well-known problems and algorithms from mathematics. These algo‐
rithms are regularly used for performance benchmarks.
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Prime Numbers
Prime numbers play an important role not only in theoretical mathematics but also
in many applied computer science disciplines, such as encryption. A prime number is
a positive natural number greater than 1 that is only divisible without remainder by 1
and itself. There are no other factors. While it is difficult to find larger prime num‐
bers due to their rarity, it is easy to prove that a number is not prime. The only thing
that is needed is a factor other than 1 that divides the number without a remainder.

Python
There are a number of algorithmic implementations available to test if numbers are
prime. The following is a Python version that is not yet optimal from an algorithmic
point of view but is already quite efficient. The execution time for the larger prime p2,
however, is long:

In [25]: def is_prime(I):
             if I % 2 == 0: return False  
             for i in range(3, int(I ** 0.5) + 1, 2):  
                 if I % i == 0: return False  
             return True  

In [26]: n = int(1e8 + 3)  
         n
Out[26]: 100000003

In [27]: %time is_prime(n)
         CPU times: user 35 µs, sys: 0 ns, total: 35 µs
         Wall time: 39.1 µs

Out[27]: False

In [28]: p1 = int(1e8 + 7)  
         p1
Out[28]: 100000007

In [29]: %time is_prime(p1)
         CPU times: user 776 µs, sys: 1 µs, total: 777 µs
         Wall time: 787 µs

Out[29]: True

In [30]: p2 = 100109100129162907  

In [31]: p2.bit_length()  
Out[31]: 57

In [32]: %time is_prime(p2)
         CPU times: user 22.6 s, sys: 44.7 ms, total: 22.6 s
         Wall time: 22.7 s
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Out[32]: True

If the number is even, False is returned immediately.

The loop starts at 3 and goes until the square root of I plus 1 with step size 2.

As soon as a factor is identified the function returns False.

If no factor is found, True is returned.

Relatively small non-prime and prime numbers.

A larger prime number which requires longer execution times.

Numba

The loop structure of the algorithm in the function is_prime() lends itself well to
being dynamically compiled with Numba. The overhead again is minimal but the
speedup considerable:

In [33]: is_prime_nb = numba.jit(is_prime)

In [34]: %time is_prime_nb(n)  
         CPU times: user 87.5 ms, sys: 7.91 ms, total: 95.4 ms
         Wall time: 93.7 ms

Out[34]: False

In [35]: %time is_prime_nb(n)  
         CPU times: user 9 µs, sys: 1e+03 ns, total: 10 µs
         Wall time: 13.6 µs

Out[35]: False

In [36]: %time is_prime_nb(p1)
         CPU times: user 26 µs, sys: 0 ns, total: 26 µs
         Wall time: 31 µs

Out[36]: True

In [37]: %time is_prime_nb(p2)  
         CPU times: user 1.72 s, sys: 9.7 ms, total: 1.73 s
         Wall time: 1.74 s

Out[37]: True

The first call of is_prime_nb() involves the compiling overhead.
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From the second call, the speedup becomes fully visible.

The speedup for the larger prime is about an order of magnitude.

Cython

The application of Cython is straightforward as well. A plain Cython version without
type declarations already speeds up the code significantly:

In [38]: %%cython
         def is_prime_cy1(I):
             if I % 2 == 0: return False
             for i in range(3, int(I ** 0.5) + 1, 2):
                 if I % i == 0: return False
             return True

In [39]: %timeit is_prime(p1)
         394 µs ± 14.7 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)

In [40]: %timeit is_prime_cy1(p1)
         243 µs ± 6.58 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)

However, real improvements only materialize with the static type declarations. The
Cython version then even is slightly faster than the Numba one:

In [41]: %%cython
         def is_prime_cy2(long I):  
             cdef long i  
             if I % 2 == 0: return False
             for i in range(3, int(I ** 0.5) + 1, 2):
                 if I % i == 0: return False
             return True

In [42]: %timeit is_prime_cy2(p1)
         87.6 µs ± 27.7 µs per loop (mean ± std. dev. of 7 runs, 10000 loops each)

In [43]: %time is_prime_nb(p2)
         CPU times: user 1.68 s, sys: 9.73 ms, total: 1.69 s
         Wall time: 1.7 s

Out[43]: True

In [44]: %time is_prime_cy2(p2)
         CPU times: user 1.66 s, sys: 9.47 ms, total: 1.67 s
         Wall time: 1.68 s

Out[44]: True

Static type declarations for the two variables I and i.
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Multiprocessing
So far, all the optimization efforts have focused on the sequential code execution. In
particular with prime numbers, there might be a need to check multiple numbers at
the same time. To this end, the multiprocessing module can help speed up the code
execution further. It allows one to spawn multiple Python processes that run in paral‐
lel. The application is straightforward in the simple case at hand. First, an mp.Pool
object is set up with multiple processes. Second, the function to be executed is map‐
ped to the prime numbers to be checked:

In [45]: import multiprocessing as mp

In [46]: pool = mp.Pool(processes=4)  

In [47]: %time pool.map(is_prime, 10 * [p1])  
         CPU times: user 1.52 ms, sys: 2.09 ms, total: 3.61 ms
         Wall time: 9.73 ms

Out[47]: [True, True, True, True, True, True, True, True, True, True]

In [48]: %time pool.map(is_prime_nb, 10 * [p2])  
         CPU times: user 13.9 ms, sys: 4.8 ms, total: 18.7 ms
         Wall time: 10.4 s

Out[48]: [True, True, True, True, True, True, True, True, True, True]

In [49]: %time pool.map(is_prime_cy2, 10 * [p2])  
         CPU times: user 9.8 ms, sys: 3.22 ms, total: 13 ms
         Wall time: 9.51 s

Out[49]: [True, True, True, True, True, True, True, True, True, True]

The mp.Pool object is instantiated with multiple processes.

Then the respective function is mapped to a list object with prime numbers.

The observed speedup is significant. The Python function is_prime() takes more
than 20 seconds for the larger prime number p2. Both the is_prime_nb() and the
is_prime_cy2() functions take less than 10 seconds for 10 times the prime number
p2 when executed in parallel with four processes.

Parallel Processing

Parallel processing should be considered whenever different prob‐
lems of the same type need to be solved. The effect can be huge
when powerful hardware is available with many cores and suffi‐
cient working memory. multiprocessing is one easy-to-use mod‐
ule from the standard library.
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Fibonacci Numbers
Fibonacci numbers and sequences can be derived based on a simple algorithm. Start
with two ones: 1, 1. From the third number, the next Fibonacci number is derived as
the sum of the two preceding ones: 1, 1, 2, 3, 5, 8, 13, 21, …. This section analyzes two
different implementations, a recursive one and an iterative one.

Recursive algorithm
Similar to regular Python loops, it is known that regular recursive function imple‐
mentations are relatively slow with Python. Such functions call themselves potentially
a large number of times to come up with the final result. The function
fib_rec_py1() presents such an implementation. In this case, Numba does not help at
all with speeding up the execution. However, Cython shows significant speedups
based on static type declarations only:

In [50]: def fib_rec_py1(n):
             if n < 2:
                 return n
             else:
                 return fib_rec_py1(n - 1) + fib_rec_py1(n - 2)

In [51]: %time fib_rec_py1(35)
         CPU times: user 6.55 s, sys: 29 ms, total: 6.58 s
         Wall time: 6.6 s

Out[51]: 9227465

In [52]: fib_rec_nb = numba.jit(fib_rec_py1)

In [53]: %time fib_rec_nb(35)
         CPU times: user 3.87 s, sys: 24.2 ms, total: 3.9 s
         Wall time: 3.91 s

Out[53]: 9227465

In [54]: %%cython
         def fib_rec_cy(int n):
             if n < 2:
                 return n
             else:
                 return fib_rec_cy(n - 1) + fib_rec_cy(n - 2)

In [55]: %time fib_rec_cy(35)
         CPU times: user 751 ms, sys: 4.37 ms, total: 756 ms
         Wall time: 755 ms

Out[55]: 9227465
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The major problem with the recursive algorithm is that intermediate results are not
cached but rather recalculated. To avoid this particular problem, a decorator can be
used that takes care of the caching of intermediate results. This speeds up the execu‐
tion by multiple orders of magnitude:

In [56]: from functools import lru_cache as cache

In [57]: @cache(maxsize=None)  
         def fib_rec_py2(n):
             if n < 2:
                 return n
             else:
                 return fib_rec_py2(n - 1) + fib_rec_py2(n - 2)

In [58]: %time fib_rec_py2(35)  
         CPU times: user 64 µs, sys: 28 µs, total: 92 µs
         Wall time: 98 µs

Out[58]: 9227465

In [59]: %time fib_rec_py2(80)  
         CPU times: user 38 µs, sys: 8 µs, total: 46 µs
         Wall time: 51 µs

Out[59]: 23416728348467685

Caching intermediate results …

… leads to tremendous speedups in this case.

Iterative algorithm
Although the algorithm to calculate the nth Fibonacci number can be implemented
recursively, it doesn’t have to be. The following presents an iterative implementation
which is even in pure Python faster than the cached variant of the recursive
implementation. This is also the terrain where Numba leads to further improvements.
However, the Cython version comes out as the winner:

In [60]: def fib_it_py(n):
             x, y = 0, 1
             for i in range(1, n + 1):
                 x, y = y, x + y
             return x

In [61]: %time fib_it_py(80)
         CPU times: user 19 µs, sys: 1e+03 ns, total: 20 µs
         Wall time: 26 µs

Out[61]: 23416728348467685
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In [62]: fib_it_nb = numba.jit(fib_it_py)

In [63]: %time fib_it_nb(80)
         CPU times: user 57 ms, sys: 6.9 ms, total: 63.9 ms
         Wall time: 62 ms

Out[63]: 23416728348467685

In [64]: %time fib_it_nb(80)
         CPU times: user 7 µs, sys: 1 µs, total: 8 µs
         Wall time: 12.2 µs

Out[64]: 23416728348467685

In [65]: %%cython
         def fib_it_cy1(int n):
             cdef long i
             cdef long x = 0, y = 1
             for i in range(1, n + 1):
                 x, y = y, x + y
             return x

In [66]: %time fib_it_cy1(80)
         CPU times: user 4 µs, sys: 1e+03 ns, total: 5 µs
         Wall time: 11 µs

Out[66]: 23416728348467685

Now that everything is so fast, one might wonder why we’re just calculating the 80th
Fibonacci number and not the 150th, for instance. The problem is with the available
data types. While Python can basically handle arbitrarily large numbers (see “Basic
Data Types” on page 62), this is not true in general for the compiled languages. With
Cython one can, however, rely on a special data type to allow for numbers larger than
the double float object with 64 bits allows for:

In [67]: %%time
         fn = fib_rec_py2(150)  
         print(fn)  
         9969216677189303386214405760200
         CPU times: user 361 µs, sys: 115 µs, total: 476 µs
         Wall time: 430 µs

In [68]: fn.bit_length()  
Out[68]: 103

In [69]: %%time
         fn = fib_it_nb(150)  
         print(fn)  
         6792540214324356296
         CPU times: user 270 µs, sys: 78 µs, total: 348 µs
         Wall time: 297 µs
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In [70]: fn.bit_length()  
Out[70]: 63

In [71]: %%time
         fn = fib_it_cy1(150)  
         print(fn)  
         6792540214324356296
         CPU times: user 255 µs, sys: 71 µs, total: 326 µs
         Wall time: 279 µs

In [72]: fn.bit_length()  
Out[72]: 63

In [73]: %%cython
         cdef extern from *:
             ctypedef int int128 '__int128_t'  
         def fib_it_cy2(int n):
             cdef int128 i  
             cdef int128 x = 0, y = 1  
             for i in range(1, n + 1):
                 x, y = y, x + y
             return x

In [74]: %%time
         fn = fib_it_cy2(150)  
         print(fn)  
         9969216677189303386214405760200
         CPU times: user 280 µs, sys: 115 µs, total: 395 µs
         Wall time: 328 µs

In [75]: fn.bit_length()  
Out[75]: 103

The Python version is fast and correct.

The resulting integer has a bit length of 103 (> 64).

The Numba and Cython versions are faster but incorrect.

They suffer from an overflow issue due to the restriction to 64-bit int objects.

Imports the special 128-bit int object type and uses it.

The Cython version fib_it_cy2() now is faster and correct.
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2 The examples are inspired by a post on Code Review Stack Exchange.

The Number Pi
The final algorithm analyzed in this section is a Monte Carlo simulation–based algo‐
rithm to derive digits for the number pi (π).2 The basic idea relies on the fact that the
area A of a circle is given by A = πr 2. Therefore, π = A

r 2 . For a unit circle with radius
r = 1, it holds that π = A. The idea of the algorithm is to simulate random points with
coordinate values (x, y), with x, y ∈ [–1, 1]. The area of an origin-centered square
with side length of 2 is exactly 4. The area of the origin-centered unit circle is a frac‐
tion of the area of such a square. This fraction can be estimated by Monte Carlo sim‐
ulation: count all the points in the square, then count all the points in the circle, and
divide the number of points in the circle by the number of points in the square. The
following example demonstrates (see Figure 10-1):

In [76]: import random
         import numpy as np
         from pylab import mpl, plt
         plt.style.use('seaborn')
         mpl.rcParams['font.family'] = 'serif'
         %matplotlib inline

In [77]: rn = [(random.random() * 2 - 1, random.random() * 2 - 1)
               for _ in range(500)]

In [78]: rn = np.array(rn)
         rn[:5]
Out[78]: array([[ 0.45583018, -0.27676067],
                [-0.70120038,  0.15196888],
                [ 0.07224045,  0.90147321],
                [-0.17450337, -0.47660912],
                [ 0.94896746, -0.31511879]])

In [79]: fig = plt.figure(figsize=(7, 7))
         ax = fig.add_subplot(1, 1, 1)
         circ = plt.Circle((0, 0), radius=1, edgecolor='g', lw=2.0,
                           facecolor='None')  
         box = plt.Rectangle((-1, -1), 2, 2, edgecolor='b', alpha=0.3)  
         ax.add_patch(circ)  
         ax.add_patch(box)  
         plt.plot(rn[:, 0], rn[:, 1], 'r.')  
         plt.ylim(-1.1, 1.1)
         plt.xlim(-1.1, 1.1)

Draws the unit circle.

Draws the square with side length of 2.
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Draws the uniformly distributed random dots.

Figure 10-1. Unit circle and square with side length 2 with uniformly distributed ran‐
dom points

A NumPy implementation of this algorithm is rather concise but also memory-
intensive. Total execution time given the parameterization is about one second:

In [80]: n = int(1e7)

In [81]: %time rn = np.random.random((n, 2)) * 2 - 1
         CPU times: user 450 ms, sys: 87.9 ms, total: 538 ms
         Wall time: 573 ms

In [82]: rn.nbytes
Out[82]: 160000000

In [83]: %time distance = np.sqrt((rn ** 2).sum(axis=1))  
         distance[:8].round(3)
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         CPU times: user 537 ms, sys: 198 ms, total: 736 ms
         Wall time: 651 ms

Out[83]: array([1.181, 1.061, 0.669, 1.206, 0.799, 0.579, 0.694, 0.941])

In [84]: %time frac = (distance <= 1.0).sum() / len(distance)  
         CPU times: user 47.9 ms, sys: 6.77 ms, total: 54.7 ms
         Wall time: 28 ms

In [85]: pi_mcs = frac * 4  
         pi_mcs  
Out[85]: 3.1413396

The distance of the points from the origin (Euclidean norm).

The fraction of those points on the circle relative to all points.

This accounts for the square area of 4 for the estimation of the circle area and
therewith of π.

mcs_pi_py() is a Python function using a for loop and implementing the Monte
Carlo simulation in a memory-efficient manner. Note that the random numbers are
not scaled in this case. The execution time is longer than with the NumPy version, but
the Numba version is faster than NumPy in this case:

In [86]: def mcs_pi_py(n):
             circle = 0
             for _ in range(n):
                 x, y = random.random(), random.random()
                 if (x ** 2 + y ** 2) ** 0.5 <= 1:
                     circle += 1
             return (4 * circle) / n

In [87]: %time mcs_pi_py(n)
         CPU times: user 5.47 s, sys: 23 ms, total: 5.49 s
         Wall time: 5.43 s

Out[87]: 3.1418964

In [88]: mcs_pi_nb = numba.jit(mcs_pi_py)

In [89]: %time mcs_pi_nb(n)
         CPU times: user 319 ms, sys: 6.36 ms, total: 326 ms
         Wall time: 326 ms

Out[89]: 3.1422012

In [90]: %time mcs_pi_nb(n)
         CPU times: user 284 ms, sys: 3.92 ms, total: 288 ms
         Wall time: 291 ms
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Out[90]: 3.142066

A plain Cython version with static type declarations only does not perform that much
faster than the Python version. However, relying again on the random number gener‐
ation capabilities of C further speeds up the calculation considerably:

In [91]: %%cython -a
         import random
         def mcs_pi_cy1(int n):
             cdef int i, circle = 0
             cdef float x, y
             for i in range(n):
                 x, y = random.random(), random.random()
                 if (x ** 2 + y ** 2) ** 0.5 <= 1:
                     circle += 1
             return (4 * circle) / n
Out[91]: <IPython.core.display.HTML object>

In [92]: %time mcs_pi_cy1(n)
         CPU times: user 1.15 s, sys: 8.24 ms, total: 1.16 s
         Wall time: 1.16 s

Out[92]: 3.1417132

In [93]: %%cython -a
         from libc.stdlib cimport rand
         cdef extern from 'limits.h':
             int INT_MAX
         def mcs_pi_cy2(int n):
             cdef int i, circle = 0
             cdef float x, y
             for i in range(n):
                 x, y = rand() / INT_MAX, rand() / INT_MAX
                 if (x ** 2 + y ** 2) ** 0.5 <= 1:
                     circle += 1
             return (4 * circle) / n
Out[93]: <IPython.core.display.HTML object>

In [94]: %time mcs_pi_cy2(n)
         CPU times: user 170 ms, sys: 1.45 ms, total: 172 ms
         Wall time: 172 ms

Out[94]: 3.1419388

Algorithm Types

The algorithms analyzed in this section might not be directly
related to financial algorithms. However, the advantage is that they
are simple and easy to understand. In addition, typical algorithmic
problems encountered in a financial context can be discussed
within this simplified context.
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Binomial Trees
A popular numerical method to value options is the binomial option pricing model
pioneered by Cox, Ross, and Rubinstein (1979). This method relies on representing
the possible future evolution of an asset by a (recombining) tree. In this model, as in
the Black-Scholes-Merton (1973) setup, there is a risky asset, an index or stock, and a
riskless asset, a bond. The relevant time interval from today until the maturity of the
option is divided in general into equidistant subintervals of length Δt . Given an index
level at time s of Ss, the index level at t = s + Δt  is given by St = Ss · m, where m is
chosen randomly from {u, d} with 0 < d < e rΔt  < u = e σ Δt  as well as u = 1

d . r is the
constant, riskless short rate.

Python
The code that follows presents a Python implementation that creates a recombining
tree based on some fixed numerical parameters for the model:

In [95]: import math

In [96]: S0 = 36.  
         T = 1.0  
         r = 0.06  
         sigma = 0.2  

In [97]: def simulate_tree(M):
             dt = T / M  
             u = math.exp(sigma * math.sqrt(dt))  
             d = 1 / u  
             S = np.zeros((M + 1, M + 1))
             S[0, 0] = S0
             z = 1
             for t in range(1, M + 1):
                 for i in range(z):
                     S[i, t] = S[i, t-1] * u
                     S[i+1, t] = S[i, t-1] * d
                 z += 1
             return S

Initial value of the risky asset.

Time horizon for the binomial tree simulation.

Constant short rate.

Constant volatility factor.

Length of the time intervals.
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Factors for the upward and downward movements.

Contrary to what happens in typical tree plots, an upward movement is represented
in the ndarray object as a sideways movement, which decreases the ndarray size
considerably:

In [98]: np.set_printoptions(formatter={'float':
                                        lambda x: '%6.2f' % x})

In [99]: simulate_tree(4)  
Out[99]: array([[ 36.00,  39.79,  43.97,  48.59,  53.71],
                [  0.00,  32.57,  36.00,  39.79,  43.97],
                [  0.00,   0.00,  29.47,  32.57,  36.00],
                [  0.00,   0.00,   0.00,  26.67,  29.47],
                [  0.00,   0.00,   0.00,   0.00,  24.13]])

In [100]: %time simulate_tree(500)  
          CPU times: user 148 ms, sys: 4.49 ms, total: 152 ms
          Wall time: 154 ms

Out[100]: array([[ 36.00,  36.32,  36.65, ..., 3095.69, 3123.50, 3151.57],
                 [  0.00,  35.68,  36.00, ..., 3040.81, 3068.13, 3095.69],
                 [  0.00,   0.00,  35.36, ..., 2986.89, 3013.73, 3040.81],
                 ...,
                 [  0.00,   0.00,   0.00, ...,   0.42,   0.42,   0.43],
                 [  0.00,   0.00,   0.00, ...,   0.00,   0.41,   0.42],
                 [  0.00,   0.00,   0.00, ...,   0.00,   0.00,   0.41]])

Tree with 4 time intervals.

Tree with 500 time intervals.

NumPy
With some trickery, such a binomial tree can be created with NumPy based on fully
vectorized code:

In [101]: M = 4

In [102]: up = np.arange(M + 1)
          up = np.resize(up, (M + 1, M + 1))  
          up
Out[102]: array([[0, 1, 2, 3, 4],
                 [0, 1, 2, 3, 4],
                 [0, 1, 2, 3, 4],
                 [0, 1, 2, 3, 4],
                 [0, 1, 2, 3, 4]])

In [103]: down = up.T * 2  
          down
Out[103]: array([[0, 0, 0, 0, 0],
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                 [2, 2, 2, 2, 2],
                 [4, 4, 4, 4, 4],
                 [6, 6, 6, 6, 6],
                 [8, 8, 8, 8, 8]])

In [104]: up - down  
Out[104]: array([[ 0,  1,  2,  3,  4],
                 [-2, -1,  0,  1,  2],
                 [-4, -3, -2, -1,  0],
                 [-6, -5, -4, -3, -2],
                 [-8, -7, -6, -5, -4]])

In [105]: dt = T / M

In [106]: S0 * np.exp(sigma * math.sqrt(dt) * (up - down))  
Out[106]: array([[ 36.00,  39.79,  43.97,  48.59,  53.71],
                 [ 29.47,  32.57,  36.00,  39.79,  43.97],
                 [ 24.13,  26.67,  29.47,  32.57,  36.00],
                 [ 19.76,  21.84,  24.13,  26.67,  29.47],
                 [ 16.18,  17.88,  19.76,  21.84,  24.13]])

ndarray object with gross upward movements.

ndarray object with gross downward movements.

ndarray object with net upward (positive) and downward (negative) movements.

Tree for four time intervals (upper-right triangle of values).

In the NumPy case, the code is a bit more compact. However, more importantly, NumPy
vectorization achieves a speedup of an order of magnitude while not using more
memory:

In [107]: def simulate_tree_np(M):
              dt = T / M
              up = np.arange(M + 1)
              up = np.resize(up, (M + 1, M + 1))
              down = up.transpose() * 2
              S = S0 * np.exp(sigma * math.sqrt(dt) * (up - down))
              return S

In [108]: simulate_tree_np(4)
Out[108]: array([[ 36.00,  39.79,  43.97,  48.59,  53.71],
                 [ 29.47,  32.57,  36.00,  39.79,  43.97],
                 [ 24.13,  26.67,  29.47,  32.57,  36.00],
                 [ 19.76,  21.84,  24.13,  26.67,  29.47],
                 [ 16.18,  17.88,  19.76,  21.84,  24.13]])

In [109]: %time simulate_tree_np(500)
          CPU times: user 8.72 ms, sys: 7.07 ms, total: 15.8 ms
          Wall time: 12.9 ms
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Out[109]: array([[ 36.00,  36.32,  36.65, ..., 3095.69, 3123.50, 3151.57],
                 [ 35.36,  35.68,  36.00, ..., 3040.81, 3068.13, 3095.69],
                 [ 34.73,  35.05,  35.36, ..., 2986.89, 3013.73, 3040.81],
                 ...,
                 [  0.00,   0.00,   0.00, ...,   0.42,   0.42,   0.43],
                 [  0.00,   0.00,   0.00, ...,   0.41,   0.41,   0.42],
                 [  0.00,   0.00,   0.00, ...,   0.40,   0.41,   0.41]])

Numba
This financial algorithm should be well suited to optimization through Numba
dynamic compilation. And indeed, another speedup compared to the NumPy version
of an order of magnitude is observed. This makes the Numba version orders of magni‐
tude faster than the Python (or rather hybrid) version:

In [110]: simulate_tree_nb = numba.jit(simulate_tree)

In [111]: simulate_tree_nb(4)
Out[111]: array([[ 36.00,  39.79,  43.97,  48.59,  53.71],
                 [  0.00,  32.57,  36.00,  39.79,  43.97],
                 [  0.00,   0.00,  29.47,  32.57,  36.00],
                 [  0.00,   0.00,   0.00,  26.67,  29.47],
                 [  0.00,   0.00,   0.00,   0.00,  24.13]])

In [112]: %time simulate_tree_nb(500)
          CPU times: user 425 µs, sys: 193 µs, total: 618 µs
          Wall time: 625 µs

Out[112]: array([[ 36.00,  36.32,  36.65, ..., 3095.69, 3123.50, 3151.57],
                 [  0.00,  35.68,  36.00, ..., 3040.81, 3068.13, 3095.69],
                 [  0.00,   0.00,  35.36, ..., 2986.89, 3013.73, 3040.81],
                 ...,
                 [  0.00,   0.00,   0.00, ...,   0.42,   0.42,   0.43],
                 [  0.00,   0.00,   0.00, ...,   0.00,   0.41,   0.42],
                 [  0.00,   0.00,   0.00, ...,   0.00,   0.00,   0.41]])

In [113]: %timeit simulate_tree_nb(500)
          559 µs ± 46.1 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)

Cython
As before, Cython requires more adjustments to the code to see significant improve‐
ments. The following version uses mainly static type declarations and certain imports
that improve the performance compared to the regular Python imports and func‐
tions, respectively:

In [114]: %%cython -a
          import numpy as np
          cimport cython
          from libc.math cimport exp, sqrt
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          cdef float S0 = 36.
          cdef float T = 1.0
          cdef float r = 0.06
          cdef float sigma = 0.2
          def simulate_tree_cy(int M):
              cdef int z, t, i
              cdef float dt, u, d
              cdef float[:, :] S = np.zeros((M + 1, M + 1),
                                            dtype=np.float32)  
              dt = T / M
              u = exp(sigma * sqrt(dt))
              d = 1 / u
              S[0, 0] = S0
              z = 1
              for t in range(1, M + 1):
                  for i in range(z):
                      S[i, t] = S[i, t-1] * u
                      S[i+1, t] = S[i, t-1] * d
                  z += 1
              return np.array(S)
Out[114]: <IPython.core.display.HTML object>

Declaring the ndarray object to be a C array is critical for performance.

The Cython version shaves off another 30% of the execution time compared to the
Numba version:

In [115]: simulate_tree_cy(4)
Out[115]: array([[ 36.00,  39.79,  43.97,  48.59,  53.71],
                 [  0.00,  32.57,  36.00,  39.79,  43.97],
                 [  0.00,   0.00,  29.47,  32.57,  36.00],
                 [  0.00,   0.00,   0.00,  26.67,  29.47],
                 [  0.00,   0.00,   0.00,   0.00,  24.13]], dtype=float32)

In [116]: %time simulate_tree_cy(500)
          CPU times: user 2.21 ms, sys: 1.89 ms, total: 4.1 ms
          Wall time: 2.45 ms

Out[116]: array([[ 36.00,  36.32,  36.65, ..., 3095.77, 3123.59, 3151.65],
                 [  0.00,  35.68,  36.00, ..., 3040.89, 3068.21, 3095.77],
                 [  0.00,   0.00,  35.36, ..., 2986.97, 3013.81, 3040.89],
                 ...,
                 [  0.00,   0.00,   0.00, ...,   0.42,   0.42,   0.43],
                 [  0.00,   0.00,   0.00, ...,   0.00,   0.41,   0.42],
                 [  0.00,   0.00,   0.00, ...,   0.00,   0.00,   0.41]],
                dtype=float32)

In [117]: %timeit S = simulate_tree_cy(500)
          363 µs ± 29.5 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)
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Monte Carlo Simulation
Monte Carlo simulation is an indispensable numerical tool in computational finance.
It has been in use since long before the advent of modern computers. Banks and
other financial institutions use it, among others, for pricing and risk management
purposes. As a numerical method it is perhaps the most flexible and powerful one in
finance. However, it often also is the most computationally demanding one. That is
why Python was long dismissed as a proper programming language to implement
algorithms based on Monte Carlo simulation—at least for real-world application
scenarios.

This section analyzes the Monte Carlo simulation of the geometric Brownian motion,
a simple yet still widely used stochastic process to model the evolution of stock prices
or index levels. Among others, the Black-Scholes-Merton (1973) theory of option
pricing draws on this process. In their setup the underlying of the option to be valued
follows the stochastic differential equation (SDE), as seen in Equation 10-1. St is the
value of the underlying at time t; r is the constant, riskless short rate; σ is the constant
instantaneous volatility; and Zt is a Brownian motion.

Equation 10-1. Black-Scholes-Merton SDE (geometric Brownian motion)
dSt = rStdt + σStdZt

This SDE can be discretized over equidistant time intervals and simulated according
to Equation 10-2, which represents an Euler scheme. In this case, z is a standard nor‐
mally distributed random number. For M time intervals, the length of the time
interval is given as Δt ≡ T

M  where T is the time horizon for the simulation (for exam‐
ple, the maturity date of an option to be valued).

Equation 10-2. Black-Scholes-Merton difference equation (Euler scheme)

St = St –Δt exp ((r –
σ 2

2 )Δt + σ Δtz)
The Monte Carlo estimator for a European call option is then given by Equation
10-3, where ST (i) is the ith simulated value of the underlying at maturity T for a total
number of simulated paths I with i = 1, 2, …, I.

Equation 10-3. Monte Carlo estimator for European call option

C0 = e –rT 1
I ∑

I
max (ST (i) – K , 0)
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Python
First, a Python—or rather a hybrid—version, mcs_simulation_py(), that implements
the Monte Carlo simulation according to Equation 10-2. It is hybrid since it imple‐
ments Python loops on ndarray objects. As seen previously, this might make for a
good basis to dynamically compile the code with Numba. As before, the execution time
sets the benchmark. Based on the simulation, a European put option is valued:

In [118]: M = 100  
          I = 50000  

In [119]: def mcs_simulation_py(p):
              M, I = p
              dt = T / M
              S = np.zeros((M + 1, I))
              S[0] = S0
              rn = np.random.standard_normal(S.shape)  
              for t in range(1, M + 1):  
                  for i in range(I):  
                      S[t, i] = S[t-1, i] * math.exp((r - sigma ** 2 / 2) * dt +
                                            sigma * math.sqrt(dt) * rn[t, i])  
              return S

In [120]: %time S = mcs_simulation_py((M, I))
          CPU times: user 5.55 s, sys: 52.9 ms, total: 5.6 s
          Wall time: 5.62 s

In [121]: S[-1].mean()  
Out[121]: 38.22291254503985

In [122]: S0 * math.exp(r * T)  
Out[122]: 38.22611567563295

In [123]: K = 40.  

In [124]: C0 = math.exp(-r * T) * np.maximum(K - S[-1], 0).mean()  

In [125]: C0  #  
Out[125]: 3.860545188088036

The number of time intervals for discretization.

The number of paths to be simulated.

The random numbers, drawn in a single vectorized step.

The nested loop implementing the simulation based on the Euler scheme.

The mean end-of-period value based on the simulation.
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The theoretically expected end-of-period value.

The strike price of the European put option.

The Monte Carlo estimator for the option.

Figure 10-2 shows a histogram of the simulated values at the end of the simulation
period (maturity of the European put option).

Figure 10-2. Frequency distribution of the simulated end-of-period values

NumPy
The NumPy version, mcs_simulation_np(), is not too different. It still has one Python
loop, namely over the time intervals. The other dimension is handled by vectorized
code over all paths. It is about 20 times faster than the first version:

In [127]: def mcs_simulation_np(p):
              M, I = p
              dt = T / M
              S = np.zeros((M + 1, I))
              S[0] = S0
              rn = np.random.standard_normal(S.shape)
              for t in range(1, M + 1):  
                  S[t] = S[t-1] * np.exp((r - sigma ** 2 / 2) * dt +
                                         sigma * math.sqrt(dt) * rn[t]) 
              return S

In [128]: %time S = mcs_simulation_np((M, I))
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          CPU times: user 252 ms, sys: 32.9 ms, total: 285 ms
          Wall time: 252 ms

In [129]: S[-1].mean()
Out[129]: 38.235136032258595

In [130]: %timeit S = mcs_simulation_np((M, I))
          202 ms ± 27.7 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)

The loop over the time intervals.

The Euler scheme with vectorized NumPy code handling all paths at once.

Numba
It should not come as a surprise anymore that Numba is applied to such an algorithm
type easily, and with significant performance improvements. The Numba version,
mcs_simulation_nb(), is slightly faster than the NumPy version:

In [131]: mcs_simulation_nb = numba.jit(mcs_simulation_py)

In [132]: %time S = mcs_simulation_nb((M, I))  
          CPU times: user 673 ms, sys: 36.7 ms, total: 709 ms
          Wall time: 764 ms

In [133]: %time S = mcs_simulation_nb((M, I))  
          CPU times: user 239 ms, sys: 20.8 ms, total: 259 ms
          Wall time: 265 ms

In [134]: S[-1].mean()
Out[134]: 38.22350694016539

In [135]: C0 = math.exp(-r * T) * np.maximum(K - S[-1], 0).mean()

In [136]: C0
Out[136]: 3.8303077438193833

In [137]: %timeit S = mcs_simulation_nb((M, I))  
          248 ms ± 20.6 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)

First call with compile-time overhead.

Second call without that overhead.

Cython
With Cython, again not surprisingly, the effort required to speed up the code is
higher. However, the speedup itself is not greater. The Cython version, mcs_simula
tion_cy(), seems to be even a bit slower compared to the NumPy and Numba versions.
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Among other factors, some time is needed to transform the simulation results to an
ndarray object:

In [138]: %%cython
          import numpy as np
          cimport numpy as np
          cimport cython
          from libc.math cimport exp, sqrt
          cdef float S0 = 36.
          cdef float T = 1.0
          cdef float r = 0.06
          cdef float sigma = 0.2
          @cython.boundscheck(False)
          @cython.wraparound(False)
          def mcs_simulation_cy(p):
              cdef int M, I
              M, I = p
              cdef int t, i
              cdef float dt = T / M
              cdef double[:, :] S = np.zeros((M + 1, I))
              cdef double[:, :] rn = np.random.standard_normal((M + 1, I))
              S[0] = S0
              for t in range(1, M + 1):
                  for i in range(I):
                      S[t, i] = S[t-1, i] * exp((r - sigma ** 2 / 2) * dt +
                                                   sigma * sqrt(dt) * rn[t, i])
              return np.array(S)

In [139]: %time S = mcs_simulation_cy((M, I))
          CPU times: user 237 ms, sys: 65.2 ms, total: 302 ms
          Wall time: 271 ms

In [140]: S[-1].mean()
Out[140]: 38.241735841791574

In [141]: %timeit S = mcs_simulation_cy((M, I))
          221 ms ± 9.26 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)

Multiprocessing
Monte Carlo simulation is a task that lends itself well to parallelization. One
approach would be to parallelize the simulation of 100,000 paths, say, into 10 pro‐
cesses simulating 10,000 paths each. Another would be to parallelize the simulation
of the 100,000 paths into multiple processes, each simulating a different financial
instrument, for example. The former case—namely, the parallel simulation of a larger
number of paths based on a fixed number of separate processes—is illustrated in
what follows.

The following code again makes use of the multiprocessing module. It divides the
total number of paths to be simulated I into smaller chunks of size I

p  with p > 0. After
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all the single tasks are finished, the results are put together in a single ndarray object
via np.hstack(). This approach can be applied to any of the versions presented pre‐
viously. For the particular parameterization chosen here, there is no speedup to be
observed through this parallelization approach:

In [142]: import multiprocessing as mp

In [143]: pool = mp.Pool(processes=4)  

In [144]: p = 20  

In [145]: %timeit S = np.hstack(pool.map(mcs_simulation_np,
                                         p * [(M, int(I / p))]))
          288 ms ± 10.2 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)

In [146]: %timeit S = np.hstack(pool.map(mcs_simulation_nb,
                                         p * [(M, int(I / p))]))
          258 ms ± 8.69 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)

In [147]: %timeit S = np.hstack(pool.map(mcs_simulation_cy,
                                         p * [(M, int(I / p))]))
          274 ms ± 11.9 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)

The Pool object for parallelization.

The number of chunks into which the simulation is divided.

Multiprocessing Strategies

In finance, there are many algorithms that are useful for paralleli‐
zation. Some of these even allow the application of different strate‐
gies to parallelize the code. Monte Carlo simulation is a good
example in that multiple simulations can easily be executed in par‐
allel, either on a single machine or on multiple machines, and that
the algorithm itself allows a single simulation to be distributed over
multiple processes.

Recursive pandas Algorithm
This section addresses a somewhat special topic which is, however, an important one
in financial analytics: the implementation of recursive functions on financial time
series data stored in a pandas DataFrame object. While pandas allows for sophistica‐
ted vectorized operations on DataFrame objects, certain recursive algorithms are hard
or impossible to vectorize, leaving the financial analyst with slowly executed Python
loops on DataFrame objects. The examples that follow implement what is called the
exponentially weighted moving average (EWMA) in a simple form.
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The EWMA for a financial time series St , t ∈ {0, ⋯ , T }, is given by Equation 10-4.

Equation 10-4. Exponentially weighted moving average (EWMA)
EWM A0 = S0

EWM At = α · St + (1 – α) · EWM At –1, t ∈ {1, ⋯ , T }

Although simple in nature and straightforward to implement, such an algorithm
might lead to rather slow code.

Python
Consider first the Python version that iterates over the DatetimeIndex of a Data
Frame object containing financial time series data for a single financial instrument
(see Chapter 8). Figure 10-3 visualizes the financial time series and the EWMA time
series:

In [148]: import pandas as pd

In [149]: sym = 'SPY'

In [150]: data = pd.DataFrame(pd.read_csv('../../source/tr_eikon_eod_data.csv',
                                     index_col=0, parse_dates=True)[sym]).dropna()

In [151]: alpha = 0.25

In [152]: data['EWMA'] = data[sym]  

In [153]: %%time
          for t in zip(data.index, data.index[1:]):
              data.loc[t[1], 'EWMA'] = (alpha * data.loc[t[1], sym] +
                                        (1 - alpha) * data.loc[t[0], 'EWMA'])  
          CPU times: user 588 ms, sys: 16.4 ms, total: 605 ms
          Wall time: 591 ms

In [154]: data.head()
Out[154]:                SPY        EWMA
          Date
          2010-01-04  113.33  113.330000
          2010-01-05  113.63  113.405000
          2010-01-06  113.71  113.481250
          2010-01-07  114.19  113.658438
          2010-01-08  114.57  113.886328

In [155]: data[data.index > '2017-1-1'].plot(figsize=(10, 6));

Initializes the EWMA column.

Implements the algorithm based on a Python loop.
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Figure 10-3. Financial time series with EWMA

Now consider more general Python function ewma_py(). It can be applied directly on
the column or the raw financial times series data in the form of an ndarray object:

In [156]: def ewma_py(x, alpha):
              y = np.zeros_like(x)
              y[0] = x[0]
              for i in range(1, len(x)):
                  y[i] = alpha * x[i] + (1-alpha) * y[i-1]
              return y

In [157]: %time data['EWMA_PY'] = ewma_py(data[sym], alpha)  
          CPU times: user 33.1 ms, sys: 1.22 ms, total: 34.3 ms
          Wall time: 33.9 ms

In [158]: %time data['EWMA_PY'] = ewma_py(data[sym].values, alpha)  
          CPU times: user 1.61 ms, sys: 44 µs, total: 1.65 ms
          Wall time: 1.62 ms

Applies the function to the Series object directly (i.e., the column).

Applies the function to the ndarray object containing the raw data.

This approach already speeds up the code execution considerably—by a factor of
from about 20 to more than 100.
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Numba
The very structure of this algorithm promises further speedups when applying Numba.
And indeed, when the function ewma_nb() is applied to the ndarray version of the
data, the speedup is again by an order of magnitude:

In [159]: ewma_nb = numba.jit(ewma_py)

In [160]: %time data['EWMA_NB'] = ewma_nb(data[sym], alpha)  
          CPU times: user 269 ms, sys: 11.4 ms, total: 280 ms
          Wall time: 294 ms

In [161]: %timeit data['EWMA_NB'] = ewma_nb(data[sym], alpha)  
          30.9 ms ± 1.21 ms per loop (mean ± std. dev. of 7 runs, 10 loops each)

In [162]: %time data['EWMA_NB'] = ewma_nb(data[sym].values, alpha)  
          CPU times: user 94.1 ms, sys: 3.78 ms, total: 97.9 ms
          Wall time: 97.6 ms

In [163]: %timeit data['EWMA_NB'] = ewma_nb(data[sym].values, alpha)  
          134 µs ± 12.5 µs per loop (mean ± std. dev. of 7 runs, 10000 loops each)

Applies the function to the Series object directly (i.e., the column).

Applies the function to the ndarray object containing the raw data.

Cython
The Cython version, ewma_cy(), also achieves considerable speed improvements but
it is not as fast as the Numba version in this case:

In [164]: %%cython
          import numpy as np
          cimport cython
          @cython.boundscheck(False)
          @cython.wraparound(False)
          def ewma_cy(double[:] x, float alpha):
              cdef int i
              cdef double[:] y = np.empty_like(x)
              y[0] = x[0]
              for i in range(1, len(x)):
                  y[i] = alpha * x[i] + (1 - alpha) * y[i - 1]
              return y

In [165]: %time data['EWMA_CY'] = ewma_cy(data[sym].values, alpha)
          CPU times: user 2.98 ms, sys: 1.41 ms, total: 4.4 ms
          Wall time: 5.96 ms

In [166]: %timeit data['EWMA_CY'] = ewma_cy(data[sym].values, alpha)
          1.29 ms ± 194 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)

Recursive pandas Algorithm | 307



This final example illustrates again that there are in general multiple options to
implement (nonstandard) algorithms. All options might lead to exactly the same
results, while also showing considerably different performance characteristics. The
execution times in this example range from 0.1 ms to 500 ms—a factor of 5,000 times.

Best Versus First-Best

It is easy in general to translate algorithms to the Python program‐
ming language. However, it is equally easy to implement algo‐
rithms in a way that is unnecessarily slow given the menu of
performance options available. For interactive financial analytics, a
first-best solution—i.e., one that does the trick but which might not
be the fastest possible nor the most memory-efficient one—might
be perfectly fine. For financial applications in production, one
should strive to implement the best solution, even though this
might involve a bit more research and some formal benchmarking.

Conclusion
The Python ecosystem provides a number of ways to improve the performance of
code:

Idioms and paradigms
Some Python paradigms and idioms might be more performant than others,
given a specific problem; in many cases, for instance, vectorization is a paradigm
that not only leads to more concise code but also to higher speeds (sometimes at
the cost of a larger memory footprint).

Packages
There are a wealth of packages available for different types of problems, and
using a package adapted to the problem can often lead to much higher perfor‐
mance; good examples are NumPy with the ndarray class and pandas with the
DataFrame class.

Compiling
Powerful packages for speeding up financial algorithms are Numba and Cython for
the dynamic and static compilation of Python code.

Parallelization
Some Python packages, such as multiprocessing, allow for the easy paralleliza‐
tion of Python code; the examples in this chapter only use parallelization on a
single machine but the Python ecosystem also offers technologies for multi-
machine (cluster) parallelization.
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A major benefit of the performance approaches presented in this chapter is that they
are in general easily implementable, meaning that the additional effort required is
regularly low. In other words, performance improvements often are low-hanging
fruit given the performance packages available as of today.

Further Resources
For all the performance packages introduced in this chapter, there are helpful web
resources available:

• http://cython.org is the home of the Cython package and compiler project.
• The documentation for the multiprocessing module is found at https://

docs.python.org/3/library/multiprocessing.html.
• Information on Numba can be found at http://github.com/numba/numba and

https://numba.pydata.org.

For references in book form, see the following:

• Gorelick, Misha, and Ian Ozsvald (2014). High Performance Python. Sebastopol,
CA: O’Reilly.

• Smith, Kurt (2015). Cython. Sebastopol, CA: O’Reilly.

Original papers cited in this chapter:

• Black, Fischer, and Myron Scholes (1973). “The Pricing of Options and Corpo‐
rate Liabilities.” Journal of Political Economy, Vol. 81, No. 3, pp. 638–659.

• Cox, John, Stephen Ross, and Mark Rubinstein (1979). “Option Pricing: A Sim‐
plified Approach.” Journal of Financial Economics, Vol. 7, No. 3, pp. 229–263.

• Merton, Robert (1973). “Theory of Rational Option Pricing.” Bell Journal of Eco‐
nomics and Management Science, Vol. 4, pp. 141–183.
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CHAPTER 11

Mathematical Tools

The mathematicians are the priests of the modern world.
—Bill Gaede

Since the arrival of the so-called Rocket Scientists on Wall Street in the 1980s and
1990s, finance has evolved into a discipline of applied mathematics. While early
research papers in finance came with lots of text and few mathematical expressions
and equations, current ones are mainly comprised of mathematical expressions and
equations with some explanatory text around.

This chapter introduces some useful mathematical tools for finance, without provid‐
ing a detailed background for each of them. There are many useful books available on
this topic, so this chapter focuses on how to use the tools and techniques with
Python. In particular, it covers:

“Approximation” on page 312
Regression and interpolation are among the most often used numerical techni‐
ques in finance.

“Convex Optimization” on page 328
A number of financial disciplines need tools for convex optimization (for
instance, derivatives analytics when it comes to model calibration).

“Integration” on page 334
In particular, the valuation of financial (derivative) assets often boils down to the
evaluation of integrals.

“Symbolic Computation” on page 337
Python provides with SymPy a powerful package for symbolic mathematics, for
example, to solve (systems of) equations.
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Approximation
To begin with, the usual imports:

In [1]: import numpy as np
        from pylab import plt, mpl

In [2]: plt.style.use('seaborn')
        mpl.rcParams['font.family'] = 'serif'
        %matplotlib inline

Throughout this section, the main example function is the following, which is com‐
prised of a trigonometric term and a linear term:

In [3]: def f(x):
            return np.sin(x) + 0.5 * x

The main focus is the approximation of this function over a given interval by regres‐
sion and interpolation techniques. First, a plot of the function to get a better view of
what exactly the approximation shall achieve. The interval of interest shall be [–2π,
2π]. Figure 11-1 displays the function over the fixed interval defined via the np.lin
space() function. The function create_plot() is a helper function to create the
same type of plot required multiple times in this chapter:

In [4]: def create_plot(x, y, styles, labels, axlabels):
            plt.figure(figsize=(10, 6))
            for i in range(len(x)):
                plt.plot(x[i], y[i], styles[i], label=labels[i])
                plt.xlabel(axlabels[0])
                plt.ylabel(axlabels[1])
            plt.legend(loc=0)

In [5]: x = np.linspace(-2 * np.pi, 2 * np.pi, 50)  

In [6]: create_plot([x], [f(x)], ['b'], ['f(x)'], ['x', 'f(x)'])

The x values used for the plotting and the calculations.
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Figure 11-1. Example function plot

Regression
Regression is a rather efficient tool when it comes to function approximation. It is
not only suited to approximating one-dimensional functions but also works well in
higher dimensions. The numerical techniques needed to come up with regression
results are easily implemented and quickly executed. Basically, the task of regression,
given a set of so-called basis functions bd , d ∈ {1, . ⋯ , D}, is to find optimal param‐
eters α1

*, ⋯ , αD
* according to Equation 11-1, where yi ≡ f (xi) for i ∈ {1, ⋯ , I }

observation points. The xi are considered independent observations and the yi depen‐
dent observations (in a functional or statistical sense).

Equation 11-1. Minimization problem of regression

min
α1,...,αD

1
I ∑

i=1

I
(yi – ∑

d=1

D
αd · bd (xi))

2

Monomials as basis functions
One of the simplest cases is to take monomials as basis functions—i.e.,
b1 = 1, b2 = x, b3 = x 2, b4 = x 3, ⋯ . In such a case, NumPy has built-in functions for
both the determination of the optimal parameters (namely, np.polyfit()) and the
evaluation of the approximation given a set of input values (namely, np.polyval()).
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Table 11-1 lists the parameters the np.polyfit() function takes. Given the returned
optimal regression coefficients p from np.polyfit(), np.polyval(p, x) then
returns the regression values for the x coordinates.

Table 11-1. Parameters of polyfit() function

Parameter Description

x x coordinates (independent variable values)

y y coordinates (dependent variable values)

deg Degree of the fitting polynomial

full If True, returns diagnostic information in addition

w Weights to apply to the y coordinates

cov If True, returns covariance matrix in addition

In typical vectorized fashion, the application of np.polyfit() and np.polyval()
takes on the following form for a linear regression (i.e., for deg=1). Given the regres‐
sion estimates stored in the ry array, we can compare the regression result with the
original function as presented in Figure 11-2. Of course, a linear regression cannot
account for the sin part of the example function:

In [7]: res = np.polyfit(x, f(x), deg=1, full=True)  

In [8]: res  
Out[8]: (array([ 4.28841952e-01, -1.31499950e-16]),
         array([21.03238686]),
         2,
         array([1., 1.]),
         1.1102230246251565e-14)

In [9]: ry = np.polyval(res[0], x)  

In [10]: create_plot([x, x], [f(x), ry], ['b', 'r.'],
                     ['f(x)', 'regression'], ['x', 'f(x)'])

Linear regression step.

Full results: regression parameters, residuals, effective rank, singular values, and
relative condition number.

Evaluation using the regression parameters.
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Figure 11-2. Linear regression

To account for the sin part of the example function, higher-order monomials are
necessary. The next regression attempt takes monomials up to the order of 5 as basis
functions. It should not be too surprising that the regression result, as seen in
Figure 11-3, now looks much closer to the original function. However, it is still far
from being perfect:

In [11]: reg = np.polyfit(x, f(x), deg=5)
         ry = np.polyval(reg, x)

In [12]: create_plot([x, x], [f(x), ry], ['b', 'r.'],
                     ['f(x)', 'regression'], ['x', 'f(x)'])
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Figure 11-3. Regression with monomials up to order 5

The last attempt takes monomials up to order 7 to approximate the example func‐
tion. In this case the result, as presented in Figure 11-4, is quite convincing:

In [13]: reg = np.polyfit(x, f(x), 7)
         ry = np.polyval(reg, x)

In [14]: np.allclose(f(x), ry)  
Out[14]: False

In [15]: np.mean((f(x) - ry) ** 2)  
Out[15]: 0.0017769134759517689

In [16]: create_plot([x, x], [f(x), ry], ['b', 'r.'],
                     ['f(x)', 'regression'], ['x', 'f(x)'])

Checks whether the function and regression values are the same (or at least
close).

Calculates the Mean Squared Error (MSE) for the regression values given the
function values.
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Figure 11-4. Regression with monomials up to order 7

Individual basis functions
In general, one can reach better regression results by choosing better sets of basis
functions, e.g., by exploiting knowledge about the function to approximate. In this
case, the individual basis functions have to be defined via a matrix approach (i.e.,
using a NumPy ndarray object). First, the case with monomials up to order 3
(Figure 11-5). The central function here is np.linalg.lstsq():

In [17]: matrix = np.zeros((3 + 1, len(x)))  
         matrix[3, :] = x ** 3  
         matrix[2, :] = x ** 2  
         matrix[1, :] = x  
         matrix[0, :] = 1  

In [18]: reg = np.linalg.lstsq(matrix.T, f(x), rcond=None)[0]  

In [19]: reg.round(4)  
Out[19]: array([ 0.    ,  0.5628, -0.    , -0.0054])

In [20]: ry = np.dot(reg, matrix)  

In [21]: create_plot([x, x], [f(x), ry], ['b', 'r.'],
                     ['f(x)', 'regression'], ['x', 'f(x)'])

The ndarray object for the basis function values (matrix).

The basis function values from constant to cubic.
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The regression step.

The optimal regression parameters.

The regression estimates for the function values.

Figure 11-5. Regression with individual basis functions

The result in Figure 11-5 is not as good as expected based on our previous experience
with monomials. Using the more general approach allows us to exploit knowledge
about the example function—namely that there is a sin part in the function. There‐
fore, it makes sense to include a sine function in the set of basis functions. For sim‐
plicity, the highest-order monomial is replaced. The fit now is perfect, as the numbers
and Figure 11-6 illustrate:

In [22]: matrix[3, :] = np.sin(x)  

In [23]: reg = np.linalg.lstsq(matrix.T, f(x), rcond=None)[0]

In [24]: reg.round(4)  
Out[24]: array([0. , 0.5, 0. , 1. ])

In [25]: ry = np.dot(reg, matrix)

In [26]: np.allclose(f(x), ry)  
Out[26]: True

In [27]: np.mean((f(x) - ry) ** 2)  
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Out[27]: 3.404735992885531e-31

In [28]: create_plot([x, x], [f(x), ry], ['b', 'r.'],
                     ['f(x)', 'regression'], ['x', 'f(x)'])

The new basis function exploiting knowledge about the example function.

The optimal regression parameters recover the original parameters.

The regression now leads to a perfect fit.

Figure 11-6. Regression with the sine basis function

Noisy data
Regression can cope equally well with noisy data, be it data from simulation or from
(nonperfect) measurements. To illustrate this point, independent observations with
noise and dependent observations with noise are generated. Figure 11-7 reveals that
the regression results are closer to the original function than the noisy data points. In
a sense, the regression averages out the noise to some extent:

In [29]: xn = np.linspace(-2 * np.pi, 2 * np.pi, 50)  
         xn = xn + 0.15 * np.random.standard_normal(len(xn))  
         yn = f(xn) + 0.25 * np.random.standard_normal(len(xn))  

In [30]: reg = np.polyfit(xn, yn, 7)
         ry = np.polyval(reg, xn)
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In [31]: create_plot([x, x], [f(x), ry], ['b', 'r.'],
                     ['f(x)', 'regression'], ['x', 'f(x)'])

The new deterministic x values.

Introducing noise to the x values.

Introducing noise to the y values.

Figure 11-7. Regression for noisy data

Unsorted data
Another important aspect of regression is that the approach also works seamlessly
with unsorted data. The previous examples all rely on sorted x data. This does not
have to be the case. To make the point, let’s look at yet another randomization
approach for the x values. In this case, one can hardly identify any structure by just
visually inspecting the raw data:

In [32]: xu = np.random.rand(50) * 4 * np.pi - 2 * np.pi  
         yu = f(xu)

In [33]: print(xu[:10].round(2))  
         print(yu[:10].round(2))  
         [-4.17 -0.11 -1.91  2.33  3.34 -0.96  5.81  4.92 -4.56 -5.42]
         [-1.23 -0.17 -1.9   1.89  1.47 -1.29  2.45  1.48 -1.29 -1.95]

In [34]: reg = np.polyfit(xu, yu, 5)
         ry = np.polyval(reg, xu)
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In [35]: create_plot([xu, xu], [yu, ry], ['b.', 'ro'],
                     ['f(x)', 'regression'], ['x', 'f(x)'])

Randomizes the x values.

As with the noisy data, the regression approach does not care for the order of the
observation points. This becomes obvious upon inspecting the structure of the mini‐
mization problem in Equation 11-1. It is also obvious by the results, presented in
Figure 11-8.

Figure 11-8. Regression for unsorted data

Multiple dimensions
Another convenient characteristic of the least-squares regression approach is that it
carries over to multiple dimensions without too many modifications. As an example
function take fm(), as presented next:

In [36]: def fm(p):
             x, y = p
             return np.sin(x) + 0.25 * x + np.sqrt(y) + 0.05 * y ** 2

To properly visualize this function, grids (in two dimensions) of independent data
points are needed. Based on such two-dimensional grids of independent and result‐
ing dependent data points, embodied in the following by X, Y, and Z, Figure 11-9
presents the shape of the function fm():
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In [37]: x = np.linspace(0, 10, 20)
         y = np.linspace(0, 10, 20)
         X, Y = np.meshgrid(x, y)  

In [38]: Z = fm((X, Y))
         x = X.flatten()  
         y = Y.flatten()  

In [39]: from mpl_toolkits.mplot3d import Axes3D  

In [40]: fig = plt.figure(figsize=(10, 6))
         ax = fig.gca(projection='3d')
         surf = ax.plot_surface(X, Y, Z, rstride=2, cstride=2,
                                cmap='coolwarm', linewidth=0.5,
                                antialiased=True)
         ax.set_xlabel('x')
         ax.set_ylabel('y')
         ax.set_zlabel('f(x, y)')
         fig.colorbar(surf, shrink=0.5, aspect=5)

Generates 2D ndarray objects (“grids”) out of the 1D ndarray objects.

Yields 1D ndarray objects from the 2D ndarray objects.

Imports the 3D plotting capabilities from matplotlib as required.

Figure 11-9. The function with two parameters
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To get good regression results, the set of basis functions is essential. Therefore, fac‐
toring in knowledge about the function fm() itself, both an np.sin() and an
np.sqrt() function are included. Figure 11-10 shows the perfect regression results
visually:

In [41]: matrix = np.zeros((len(x), 6 + 1))
         matrix[:, 6] = np.sqrt(y)  
         matrix[:, 5] = np.sin(x)  
         matrix[:, 4] = y ** 2
         matrix[:, 3] = x ** 2
         matrix[:, 2] = y
         matrix[:, 1] = x
         matrix[:, 0] = 1

In [42]: reg = np.linalg.lstsq(matrix, fm((x, y)), rcond=None)[0]

In [43]: RZ = np.dot(matrix, reg).reshape((20, 20))  

In [44]: fig = plt.figure(figsize=(10, 6))
         ax = fig.gca(projection='3d')
         surf1 = ax.plot_surface(X, Y, Z, rstride=2, cstride=2,
                     cmap=mpl.cm.coolwarm, linewidth=0.5,
                     antialiased=True)  
         surf2 = ax.plot_wireframe(X, Y, RZ, rstride=2, cstride=2,
                                   label='regression')  
         ax.set_xlabel('x')
         ax.set_ylabel('y')
         ax.set_zlabel('f(x, y)')
         ax.legend()
         fig.colorbar(surf, shrink=0.5, aspect=5)

The np.sqrt() function for the y parameter.

The np.sin() function for the x parameter.

Transforms the regression results to the grid structure.

Plots the original function surface.

Plots the regression surface.
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Figure 11-10. Regression surface for function with two parameters

Regression

Least-squares regression approaches have multiple areas of appli‐
cation, including simple function approximation and function
approximation based on noisy or unsorted data. These approaches
can be applied to one-dimensional as well as multidimensional
problems. Due to the underlying mathematics, the application is
“almost always the same.”

Interpolation
Compared to regression, interpolation (e.g., with cubic splines) is more involved
mathematically. It is also limited to low-dimensional problems. Given an ordered set
of observation points (ordered in the x dimension), the basic idea is to do a regres‐
sion between two neighboring data points in such a way that not only are the data
points perfectly matched by the resulting piecewise-defined interpolation function,
but also the function is continuously differentiable at the data points. Continuous dif‐
ferentiability requires at least interpolation of degree 3—i.e., with cubic splines. How‐
ever, the approach also works in general with quadratic and even linear splines.

The following code implements a linear splines interpolation, the result of which is
shown in Figure 11-11:
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In [45]: import scipy.interpolate as spi  

In [46]: x = np.linspace(-2 * np.pi, 2 * np.pi, 25)

In [47]: def f(x):
             return np.sin(x) + 0.5 * x

In [48]: ipo = spi.splrep(x, f(x), k=1)  

In [49]: iy = spi.splev(x, ipo)  

In [50]: np.allclose(f(x), iy)  
Out[50]: True

In [51]: create_plot([x, x], [f(x), iy], ['b', 'ro'],
                     ['f(x)', 'interpolation'], ['x', 'f(x)'])

Imports the required subpackage from SciPy.

Implements a linear spline interpolation.

Derives the interpolated values.

Checks whether the interpolated values are close (enough) to the function values.

Figure 11-11. Linear splines interpolation (complete data set)

The application itself, given an x-ordered set of data points, is as simple as the appli‐
cation of np.polyfit() and np.polyval(). Here, the respective functions are
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sci.splrep() and sci.splev(). Table 11-2 lists the major parameters that the
sci.splrep() function takes.

Table 11-2. Parameters of splrep() function

Parameter Description

x (Ordered) x coordinates (independent variable values)

y (x-ordered) y coordinates (dependent variable values)

w Weights to apply to the y coordinates

xb, xe Interval to fit; if None then [x[0], x[-1]]

k Order of the spline fit (1 ≤ k ≤ 5)

s Smoothing factor (the larger, the more smoothing)

full_output If True, returns additional output

quiet If True, suppresses messages

Table 11-3 lists the parameters that the sci.splev() function takes.

Table 11-3. Parameters of splev() function

Parameter Description

x (Ordered) x coordinates (independent variable values)

tck Sequence of length 3 returned by splrep() (knots, coefficients, degree)

der Order of derivative (0 for function, 1 for first derivative)

ext Behavior if x not in knot sequence (0 = extrapolate, 1 = return 0, 2 = raise ValueError)

Spline interpolation is often used in finance to generate estimates for dependent val‐
ues of independent data points not included in the original observations. To this end,
the next example picks a much smaller interval and has a closer look at the interpola‐
ted values with the linear splines. Figure 11-12 reveals that the interpolation function
indeed interpolates linearly between two observation points. For certain applications
this might not be precise enough. In addition, it is evident that the function is not
continuously differentiable at the original data points—another drawback:

In [52]: xd = np.linspace(1.0, 3.0, 50)  
         iyd = spi.splev(xd, ipo)

In [53]: create_plot([xd, xd], [f(xd), iyd], ['b', 'ro'],
                     ['f(x)', 'interpolation'], ['x', 'f(x)'])

Smaller interval with more points.
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Figure 11-12. Linear splines interpolation (data subset)

A repetition of the complete exercise, this time using cubic splines, improves the
results considerably (see Figure 11-13):

In [54]: ipo = spi.splrep(x, f(x), k=3)  
         iyd = spi.splev(xd, ipo)  

In [55]: np.allclose(f(xd), iyd)  
Out[55]: False

In [56]: np.mean((f(xd) - iyd) ** 2)  
Out[56]: 1.1349319851436892e-08

In [57]: create_plot([xd, xd], [f(xd), iyd], ['b', 'ro'],
                     ['f(x)', 'interpolation'], ['x', 'f(x)'])

Cubic splines interpolation on complete data sets.

Results applied to the smaller interval.

The interpolation is still not perfect …

… but better than before.
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Figure 11-13. Cubic splines interpolation (data subset)

Interpolation

In those cases where spline interpolation can be applied, one can
expect better approximation results compared to a least-squares
regression approach. However, remember that sorted (and “non-
noisy”) data is required and that the approach is limited to low-
dimensional problems. It is also computationally more demanding
and might therefore take (much) longer than regression in certain
use cases.

Convex Optimization
In finance and economics, convex optimization plays an important role. Examples are
the calibration of option pricing models to market data or the optimization of an
agent’s utility function. As an example, take the function fm():

In [58]: def fm(p):
             x, y = p
             return (np.sin(x) + 0.05 * x ** 2
                   + np.sin(y) + 0.05 * y ** 2)

Figure 11-14 shows the function graphically for the defined intervals for x and y. Vis‐
ual inspection already reveals that this function has multiple local minima. The exis‐
tence of a global minimum cannot really be confirmed by this particular graphical
representation, but it seems to exist:
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In [59]: x = np.linspace(-10, 10, 50)
         y = np.linspace(-10, 10, 50)
         X, Y = np.meshgrid(x, y)
         Z = fm((X, Y))

In [60]: fig = plt.figure(figsize=(10, 6))
         ax = fig.gca(projection='3d')
         surf = ax.plot_surface(X, Y, Z, rstride=2, cstride=2,
                                cmap='coolwarm', linewidth=0.5,
                                antialiased=True)
         ax.set_xlabel('x')
         ax.set_ylabel('y')
         ax.set_zlabel('f(x, y)')
         fig.colorbar(surf, shrink=0.5, aspect=5)

Figure 11-14. Linear splines interpolation (data subset)

Global Optimization
In what follows, both a global minimization approach and a local one are imple‐
mented. The functions sco.brute() and sco.fmin() that are applied are from
scipy.optimize.

To have a closer look behind the scenes during minimization procedures, the follow‐
ing code amends the original function by an option to output current parameter val‐
ues as well as the function value. This allows us to keep track of all relevant
information for the procedure:
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In [61]: import scipy.optimize as sco  

In [62]: def fo(p):
             x, y = p
             z = np.sin(x) + 0.05 * x ** 2 + np.sin(y) + 0.05 * y ** 2
             if output == True:
                 print('%8.4f | %8.4f | %8.4f' % (x, y, z))  
             return z

In [63]: output = True
         sco.brute(fo, ((-10, 10.1, 5), (-10, 10.1, 5)), finish=None)  
         -10.0000 | -10.0000 |  11.0880
         -10.0000 | -10.0000 |  11.0880
         -10.0000 |  -5.0000 |   7.7529
         -10.0000 |   0.0000 |   5.5440
         -10.0000 |   5.0000 |   5.8351
         -10.0000 |  10.0000 |  10.0000
          -5.0000 | -10.0000 |   7.7529
          -5.0000 |  -5.0000 |   4.4178
          -5.0000 |   0.0000 |   2.2089
          -5.0000 |   5.0000 |   2.5000
          -5.0000 |  10.0000 |   6.6649
           0.0000 | -10.0000 |   5.5440
           0.0000 |  -5.0000 |   2.2089
           0.0000 |   0.0000 |   0.0000
           0.0000 |   5.0000 |   0.2911
           0.0000 |  10.0000 |   4.4560
           5.0000 | -10.0000 |   5.8351
           5.0000 |  -5.0000 |   2.5000
           5.0000 |   0.0000 |   0.2911
           5.0000 |   5.0000 |   0.5822
           5.0000 |  10.0000 |   4.7471
          10.0000 | -10.0000 |  10.0000
          10.0000 |  -5.0000 |   6.6649
          10.0000 |   0.0000 |   4.4560
          10.0000 |   5.0000 |   4.7471
          10.0000 |  10.0000 |   8.9120

Out[63]: array([0., 0.])

Imports the required subpackage from SciPy.

The information to print out if output = True.

The brute force optimization.

The optimal parameter values, given the initial parameterization of the function, are
x = y = 0. The resulting function value is also 0, as a quick review of the preceding
output reveals. One might be inclined to accept this as the global minimum. How‐
ever, the first parameterization here is quite rough, in that step sizes of 5 for both
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input parameters are used. This can of course be refined considerably, leading to bet‐
ter results in this case—and showing that the previous solution is not the optimal
one:

In [64]: output = False
         opt1 = sco.brute(fo, ((-10, 10.1, 0.1), (-10, 10.1, 0.1)), finish=None)

In [65]: opt1
Out[65]: array([-1.4, -1.4])

In [66]: fm(opt1)
Out[66]: -1.7748994599769203

The optimal parameter values are now x = y = –1.4 and the minimal function value
for the global minimization is about –1.7749.

Local Optimization
The local convex optimization that follows draws on the results from the global opti‐
mization. The function sco.fmin() takes as input the function to minimize and the
starting parameter values. Optional parameter values are the input parameter toler‐
ance and function value tolerance, as well as the maximum number of iterations and
function calls. The local optimization further improves the result:

In [67]: output = True
         opt2 = sco.fmin(fo, opt1, xtol=0.001, ftol=0.001,
                         maxiter=15, maxfun=20)  
          -1.4000 |  -1.4000 |  -1.7749
          -1.4700 |  -1.4000 |  -1.7743
          -1.4000 |  -1.4700 |  -1.7743
          -1.3300 |  -1.4700 |  -1.7696
          -1.4350 |  -1.4175 |  -1.7756
          -1.4350 |  -1.3475 |  -1.7722
          -1.4088 |  -1.4394 |  -1.7755
          -1.4438 |  -1.4569 |  -1.7751
          -1.4328 |  -1.4427 |  -1.7756
          -1.4591 |  -1.4208 |  -1.7752
          -1.4213 |  -1.4347 |  -1.7757
          -1.4235 |  -1.4096 |  -1.7755
          -1.4305 |  -1.4344 |  -1.7757
          -1.4168 |  -1.4516 |  -1.7753
          -1.4305 |  -1.4260 |  -1.7757
          -1.4396 |  -1.4257 |  -1.7756
          -1.4259 |  -1.4325 |  -1.7757
          -1.4259 |  -1.4241 |  -1.7757
          -1.4304 |  -1.4177 |  -1.7757
          -1.4270 |  -1.4288 |  -1.7757
         Warning: Maximum number of function evaluations has been exceeded.

In [68]: opt2
Out[68]: array([-1.42702972, -1.42876755])
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In [69]: fm(opt2)
Out[69]: -1.7757246992239009

The local convex optimization.

For many convex optimization problems it is advisable to have a global minimization
before the local one. The major reason for this is that local convex optimization algo‐
rithms can easily be trapped in a local minimum (or do “basin hopping”), ignoring
completely better local minima and/or a global minimum. The following shows that
setting the starting parameterization to x = y = 2 gives, for example, a “minimum”
value of above zero:

In [70]: output = False
         sco.fmin(fo, (2.0, 2.0), maxiter=250)
         Optimization terminated successfully.
                  Current function value: 0.015826
                  Iterations: 46
                  Function evaluations: 86

Out[70]: array([4.2710728 , 4.27106945])

Constrained Optimization
So far, this section only considers unconstrained optimization problems. However,
large classes of economic or financial optimization problems are constrained by one
or multiple constraints. Such constraints can formally take on the form of equalities
or inequalities.

As a simple example, consider the utility maximization problem of an (expected util‐
ity maximizing) investor who can invest in two risky securities. Both securities cost qa
= qb = 10 USD today. After one year, they have a payoff of 15 USD and 5 USD,
respectively, in state u, and of 5 USD and 12 USD, respectively, in state d. Both states
are equally likely. Denote the vector payoffs for the two securities by ra and rb,
respectively.

The investor has a budget of w0 = 100 USD to invest and derives utility from future
wealth according to the utility function u(w) = w, where w is the wealth (USD
amount) available. Equation 11-2 is a formulation of the maximization problem
where a, b are the numbers of securities bought by the investor.

332 | Chapter 11: Mathematical Tools



1 For details and examples of how to use the minimize function, refer to the documentation.

Equation 11-2. Expected utility maximization problem (1)

max
a,b

E(u(w1)) = p w1u + (1 – p) w1d

w1 = a · ra + b · rb

w0 ≥ a · qa + b · qb

a, b ≥ 0

Putting in all numerical assumptions, one gets the problem in Equation 11-3. Note
the change to the minimization of the negative expected utility.

Equation 11-3. Expected utility maximization problem (2)

min
a,b

– E(u(w1)) = – (0.5 · w1u + 0.5 · w1d )
w1u = a · 15 + b · 5
w1d = a · 5 + b · 12
100 ≥ a · 10 + b · 10
a, b ≥ 0

To solve this problem, the scipy.optimize.minimize() function is appropriate. This
function takes as input—in addition to the function to be minimized—conditions in
the form of equalities and inequalities (as a list of dict objects) as well as bound‐
aries for the parameters (as a tuple of tuple objects).1 The following translates the
problem from Equation 11-3 into Python code:

In [71]: import math

In [72]: def Eu(p):  
             s, b = p
             return -(0.5 * math.sqrt(s * 15 + b * 5) +
                      0.5 * math.sqrt(s * 5 + b * 12))

In [73]: cons = ({'type': 'ineq',
                  'fun': lambda p: 100 - p[0] * 10 - p[1] * 10})  

In [74]: bnds = ((0, 1000), (0, 1000))  

In [75]: result = sco.minimize(Eu, [5, 5], method='SLSQP',
                                bounds=bnds, constraints=cons)  
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The function to be minimized, in order to maximize the expected utility.

The inequality constraint as a dict object.

The boundary values for the parameters (chosen to be wide enough).

The constrained optimization.

The result object contains all the relevant information. With regard to the minimal
function value, one needs to recall to shift the sign back:

In [76]: result
Out[76]:      fun: -9.700883611487832
              jac: array([-0.48508096, -0.48489535])
          message: 'Optimization terminated successfully.'
             nfev: 21
              nit: 5
             njev: 5
           status: 0
          success: True
                x: array([8.02547122, 1.97452878])

In [77]: result['x']  
Out[77]: array([8.02547122, 1.97452878])

In [78]: -result['fun']  
Out[78]: 9.700883611487832

In [79]: np.dot(result['x'], [10, 10])  
Out[79]: 99.99999999999999

The optimal parameter values (i.e., the optimal portfolio).

The negative minimum function value as the optimal solution value.

The budget constraint is binding; all wealth is invested.

Integration
Especially when it comes to valuation and option pricing, integration is an important
mathematical tool. This stems from the fact that risk-neutral values of derivatives can
be expressed in general as the discounted expectation of their payoff under the risk-
neutral or martingale measure. The expectation in turn is a sum in the discrete case
and an integral in the continuous case. The subpackage scipy.integrate provides
different functions for numerical integration. The example function is known from
“Approximation” on page 312:
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2 See Chapter 7 for a more detailed discussion of this type of plot.

In [80]: import scipy.integrate as sci

In [81]: def f(x):
             return np.sin(x) + 0.5 * x

The integration interval shall be [0.5, 9.5], leading to the definite integral as in
Equation 11-4.

Equation 11-4. Integral of example function

∫
0.5

9.5

f (x)dx = ∫
0.5

9.5

sin (x) +
x
2 dx

The following code defines the major Python objects to evaluate the integral:

In [82]: x = np.linspace(0, 10)
         y = f(x)
         a = 0.5  
         b = 9.5  
         Ix = np.linspace(a, b)  
         Iy = f(Ix)  

Left integration limit.

Right integration limit.

Integration interval values.

Integration function values.

Figure 11-15 visualizes the integral value as the gray-shaded area under the function:2

In [83]: from matplotlib.patches import Polygon

In [84]: fig, ax = plt.subplots(figsize=(10, 6))
         plt.plot(x, y, 'b', linewidth=2)
         plt.ylim(bottom=0)
         Ix = np.linspace(a, b)
         Iy = f(Ix)
         verts = [(a, 0)] + list(zip(Ix, Iy)) + [(b, 0)]
         poly = Polygon(verts, facecolor='0.7', edgecolor='0.5')
         ax.add_patch(poly)
         plt.text(0.75 * (a + b), 1.5, r"$\int_a^b f(x)dx$",
                  horizontalalignment='center', fontsize=20)
         plt.figtext(0.9, 0.075, '$x$')
         plt.figtext(0.075, 0.9, '$f(x)$')
         ax.set_xticks((a, b))
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         ax.set_xticklabels(('$a$', '$b$'))
         ax.set_yticks([f(a), f(b)]);

Figure 11-15. Integral value as shaded area

Numerical Integration
The scipy.integrate subpackage contains a selection of functions to numerically
integrate a given mathematical function for upper and lower integration limits.
Examples are sci.fixed_quad() for fixed Gaussian quadrature, sci.quad() for
adaptive quadrature, and sci.romberg() for Romberg integration:

In [85]: sci.fixed_quad(f, a, b)[0]
Out[85]: 24.366995967084602

In [86]: sci.quad(f, a, b)[0]
Out[86]: 24.374754718086752

In [87]: sci.romberg(f, a, b)
Out[87]: 24.374754718086713

There are also a number of integration functions that take as input list or ndarray
objects with function values and input values, respectively. Examples in this regard
are sci.trapz(), using the trapezoidal rule, and sci.simps(), implementing
Simpson’s rule:

In [88]: xi = np.linspace(0.5, 9.5, 25)

In [89]: sci.trapz(f(xi), xi)
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Out[89]: 24.352733271544516

In [90]: sci.simps(f(xi), xi)
Out[90]: 24.37496418455075

Integration by Simulation
The valuation of options and derivatives by Monte Carlo simulation (see Chapter 12)
rests on the insight that one can evaluate an integral by simulation. To this end, draw
I random values of x between the integral limits and evaluate the integration function
at every random value for x. Sum up all the function values and take the average to
arrive at an average function value over the integration interval. Multiply this value
by the length of the integration interval to derive an estimate for the integral value.

The following code shows how the Monte Carlo estimated integral value converges—
although not monotonically—to the real one when one increases the number of ran‐
dom draws. The estimator is already quite close for relatively small numbers of
random draws:

In [91]: for i in range(1, 20):
             np.random.seed(1000)
             x = np.random.random(i * 10) * (b - a) + a  
             print(np.mean(f(x)) * (b - a))
         24.804762279331463
         26.522918898332378
         26.265547519223976
         26.02770339943824
         24.99954181440844
         23.881810141621663
         23.527912274843253
         23.507857658961207
         23.67236746066989
         23.679410416062886
         24.424401707879305
         24.239005346819056
         24.115396924962802
         24.424191987566726
         23.924933080533783
         24.19484212027875
         24.117348378249833
         24.100690929662274
         23.76905109847816

Number of random x values is increased with every iteration.

Symbolic Computation
The previous sections are mainly concerned with numerical computation. This sec‐
tion now introduces symbolic computation, which can be applied beneficially in
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many areas of finance. To this end, SymPy, a library specifically dedicated to symbolic
computation, is generally used.

Basics
SymPy introduces new classes of objects. A fundamental class is the Symbol class:

In [92]: import sympy as sy

In [93]: x = sy.Symbol('x')  
         y = sy.Symbol('y')  

In [94]: type(x)
Out[94]: sympy.core.symbol.Symbol

In [95]: sy.sqrt(x)  
Out[95]: sqrt(x)

In [96]: 3 + sy.sqrt(x) - 4 ** 2  
Out[96]: sqrt(x) - 13

In [97]: f = x ** 2 + 3 + 0.5 * x ** 2 + 3 / 2  

In [98]: sy.simplify(f)  
Out[98]: 1.5*x**2 + 4.5

Defines symbols to work with.

Applies a function on a symbol.

A numerical expression defined on symbol.

A function defined symbolically.

The function expression simplified.

This already illustrates a major difference to regular Python code. Although x has no
numerical value, the square root of x is nevertheless defined with SymPy since x is a
Symbol object. In that sense, sy.sqrt(x) can be part of arbitrary mathematical
expressions. Notice that SymPy in general automatically simplifies a given mathemati‐
cal expression. Similarly, one can define arbitrary functions using Symbol objects.
They are not to be confused with Python functions.

SymPy provides three basic renderers for mathematical expressions:

• LaTeX-based
• Unicode-based
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• ASCII-based

When working, for example, solely in a Jupyter Notebook environment (HTML-
based), LaTeX rendering is generally a good (i.e., visually appealing) choice. The code
that follows sticks to the simplest option, ASCII, to illustrate that there is no manual
typesetting involved:

In [99]: sy.init_printing(pretty_print=False, use_unicode=False)

In [100]: print(sy.pretty(f))
               2
          1.5*x  + 4.5

In [101]: print(sy.pretty(sy.sqrt(x) + 0.5))
            ___
          \/ x  + 0.5

This section cannot go into details, but SymPy also provides many other useful mathe‐
matical functions—for example, when it comes to numerically evaluating π. The fol‐
lowing example shows the first and final 40 characters of the string representation of
π up to the 400,000th digit. It also searches for a six-digit, day-first birthday—a popu‐
lar task in certain mathematics and IT circles:

In [102]: %time pi_str = str(sy.N(sy.pi, 400000))  
          CPU times: user 400 ms, sys: 10.9 ms, total: 411 ms
          Wall time: 501 ms

In [103]: pi_str[:42]  
Out[103]: '3.1415926535897932384626433832795028841971'

In [104]: pi_str[-40:]  
Out[104]: '8245672736856312185020980470362464176198'

In [105]: %time pi_str.find('061072')  
          CPU times: user 115 µs, sys: 1e+03 ns, total: 116 µs
          Wall time: 120 µs

Out[105]: 80847

Returns the string representation of the first 400,000 digits of π.

Shows the first 40 digits …

… and the final 40 digits.

Searches for a birthday date in the string.
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Equations
A strength of SymPy is solving equations, e.g., of the form x2 – 1 = 0. In general, SymPy
presumes that one is looking for a solution to the equation obtained by equating the
given expression to zero. Therefore, equations like x2 – 1 = 3 might have to be refor‐
mulated to get the desired result. Of course, SymPy can cope with more complex
expressions, like x3 + 0.5 x2 – 1 = 0. Finally, it can also deal with problems involving
imaginary numbers, such as x2 + y2 = 0:

In [106]: sy.solve(x ** 2 - 1)
Out[106]: [-1, 1]

In [107]: sy.solve(x ** 2 - 1 - 3)
Out[107]: [-2, 2]

In [108]: sy.solve(x ** 3 + 0.5 * x ** 2 - 1)
Out[108]: [0.858094329496553, -0.679047164748276 - 0.839206763026694*I,
           -0.679047164748276 + 0.839206763026694*I]

In [109]: sy.solve(x ** 2 + y ** 2)
Out[109]: [{x: -I*y}, {x: I*y}]

Integration and Differentiation
Another strength of SymPy is integration and differentiation. The example that fol‐
lows revisits the example function used for numerical- and simulation-based integra‐
tion and derives both a symbolically and a numerically exact solution. Symbol objects
for the integration limits objects are required to get started:

In [110]: a, b = sy.symbols('a b')  

In [111]: I = sy.Integral(sy.sin(x) + 0.5 * x, (x, a, b))  

In [112]: print(sy.pretty(I))  
            b
            /
           |
           |  (0.5*x + sin(x)) dx
           |
          /
          a

In [113]: int_func = sy.integrate(sy.sin(x) + 0.5 * x, x)  

In [114]: print(sy.pretty(int_func))  
                2
          0.25*x  - cos(x)

In [115]: Fb = int_func.subs(x, 9.5).evalf()  
          Fa = int_func.subs(x, 0.5).evalf()  
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In [116]: Fb - Fa  
Out[116]: 24.3747547180867

The Symbol objects for the integral limits.

The Integral object defined and pretty-printed.

The antiderivative derived and pretty-printed.

The values of the antiderivative at the limits, obtained via the .subs()
and .evalf() methods.

The exact numerical value of the integral.

The integral can also be solved symbolically with the symbolic integration limits:

In [117]: int_func_limits = sy.integrate(sy.sin(x) + 0.5 * x, (x, a, b))  

In [118]: print(sy.pretty(int_func_limits))  
                  2         2
          - 0.25*a  + 0.25*b  + cos(a) - cos(b)

In [119]: int_func_limits.subs({a : 0.5, b : 9.5}).evalf()  
Out[119]: 24.3747547180868

In [120]: sy.integrate(sy.sin(x) + 0.5 * x, (x, 0.5, 9.5))  
Out[120]: 24.3747547180867

Solving the integral symbolically.

Solving the integral numerically, using a dict object during substitution.

Solving the integral numerically in a single step.

Differentiation
The derivative of the antiderivative yields in general the original function. Applying
the sy.diff() function to the symbolic antiderivative illustrates this:

In [121]: int_func.diff()
Out[121]: 0.5*x + sin(x)

As with the integration example, differentiation shall now be used to derive the exact
solution of the convex minimization problem this chapter looked at earlier. To this
end, the respective function is defined symbolically, partial derivatives are derived,
and the roots are identified.
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A necessary but not sufficient condition for a global minimum is that both partial
derivatives are zero. However, there is no guarantee of a symbolic solution. Both
algorithmic and (multiple) existence issues come into play here. However, one can
solve the two first-order conditions numerically, providing “educated” guesses based
on the global and local minimization efforts from before:

In [122]: f = (sy.sin(x) + 0.05 * x ** 2
             + sy.sin(y) + 0.05 * y ** 2)  

In [123]: del_x = sy.diff(f, x)  
          del_x  
Out[123]: 0.1*x + cos(x)

In [124]: del_y = sy.diff(f, y)  
          del_y  
Out[124]: 0.1*y + cos(y)

In [125]: xo = sy.nsolve(del_x, -1.5)  
          xo  
Out[125]: -1.42755177876459

In [126]: yo = sy.nsolve(del_y, -1.5)  
          yo  
Out[126]: -1.42755177876459

In [127]: f.subs({x : xo, y : yo}).evalf()  
Out[127]: -1.77572565314742

The symbolic version of the function.

The two partial derivatives derived and printed.

Educated guesses for the roots and resulting optimal values.

The global minimum function value.

Again, providing uneducated/arbitrary guesses might trap the algorithm in a local
minimum instead of the global one:

In [128]: xo = sy.nsolve(del_x, 1.5)  
          xo
Out[128]: 1.74632928225285

In [129]: yo = sy.nsolve(del_y, 1.5)  
          yo
Out[129]: 1.74632928225285

In [130]: f.subs({x : xo, y : yo}).evalf()  
Out[130]: 2.27423381055640
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Uneducated guesses for the roots.

The local minimum function value.

This numerically illustrates that the first-order conditions are necessary but not
sufficient.

Symbolic Computations

When doing (financial) mathematics with Python, SymPy and sym‐
bolic computations prove to be a valuable tool. Especially for inter‐
active financial analytics, this can be a more efficient approach
compared to nonsymbolic approaches.

Conclusion
This chapter covers selected mathematical topics and tools important to finance. For
example, the approximation of functions is important in many financial areas, like
factor-based models, yield curve interpolation, and regression-based Monte Carlo
valuation approaches for American options. Convex optimization techniques are also
regularly needed in finance; for example, when calibrating parametric option pricing
models to market quotes or implied volatilities of options.

Numerical integration is central to, for example, the pricing of options and deriva‐
tives. Having derived the risk-neutral probability measure for a (set of) stochastic
process(es), option pricing boils down to taking the expectation of the option’s payoff
under the risk-neutral measure and discounting this value back to the present date.
Chapter 12 covers the simulation of several types of stochastic processes under the
risk-neutral measure.

Finally, this chapter introduces symbolic computation with SymPy. For a number of
mathematical operations, like integration, differentiation, or the solving of equations,
symbolic computation can prove a useful and efficient tool.

Further Resources
For further information on the Python libraries used in this chapter, consult the fol‐
lowing web resources:

• See the NumPy Reference for details on the NumPy functions used in this chapter.
• Visit the SciPy documentation on optimization and root finding for details on
scipy.optimize.

• Integration with scipy.integrate is explained in “Integration and ODEs”.
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• The SymPy website provides a wealth of examples and detailed documentation.

For a mathematical reference for the topics covered in this chapter, see:

• Brandimarte, Paolo (2006). Numerical Methods in Finance and Economics: A
MATLAB-Based Introduction. 2nd ed., Hoboken, NJ: John Wiley & Sons.
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CHAPTER 12

Stochastics

Predictability is not how things will go, but how they can go.
—Raheel Farooq

Nowadays, stochastics is one of the most important mathematical and numerical dis‐
ciplines in finance. In the beginning of the modern era of finance, mainly in the
1970s and 1980s, the major goal of financial research was to come up with closed-
form solutions for, e.g., option prices given a specific financial model. The require‐
ments have drastically changed in recent years in that not only is the correct
valuation of single financial instruments important to participants in the financial
markets, but also the consistent valuation of whole derivatives books, for example.
Similarly, to come up with consistent risk measures across a whole financial institu‐
tion, like value-at-risk and credit valuation adjustments, one needs to take into
account the whole book of the institution and all its counterparties. Such daunting
tasks can only be tackled by flexible and efficient numerical methods. Therefore, sto‐
chastics in general and Monte Carlo simulation in particular have risen to promi‐
nence in the financial field.

This chapter introduces the following topics from a Python perspective:

“Random Numbers” on page 346
It all starts with pseudo-random numbers, which build the basis for all simula‐
tion efforts; although quasi-random numbers (e.g., based on Sobol sequences)
have gained some popularity in finance, pseudo-random numbers still seem to
be the benchmark.

“Simulation” on page 352
In finance, two simulation tasks are of particular importance: simulation of ran‐
dom variables and of stochastic processes.
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1 For simplicity, we will speak of random numbers knowing that all numbers used will be pseudo-random.

“Valuation” on page 375
The two main disciplines when it comes to valuation are the valuation of deriva‐
tives with European exercise (at a specific date) and American exercise (over a
specific time interval); there are also instruments with Bermudan exercise, or
exercise at a finite set of specific dates.

“Risk Measures” on page 383
Simulation lends itself pretty well to the calculation of risk measures like value-
at-risk, credit value-at-risk, and credit valuation adjustments.

Random Numbers
Throughout this chapter, to generate random numbers,1 the functions provided by
the numpy.random subpackage are used:

In [1]: import math
        import numpy as np
        import numpy.random as npr  
        from pylab import plt, mpl

In [2]: plt.style.use('seaborn')
        mpl.rcParams['font.family'] = 'serif'
        %matplotlib inline

Imports the random number generation subpackage from NumPy.

For example, the rand() function returns random numbers from the open interval
[0,1) in the shape provided as a parameter to the function. The return object is an
ndarray object. Such numbers can be easily transformed to cover other intervals of
the real line. For instance, if one wants to generate random numbers from the inter‐
val [a,b)=[5,10), one can transform the returned numbers from npr.rand() as in the
next example—this also works in multiple dimensions due to NumPy broadcasting:

In [3]: npr.seed(100)  
        np.set_printoptions(precision=4) 

In [4]: npr.rand(10)  
Out[4]: array([0.5434, 0.2784, 0.4245, 0.8448, 0.0047, 0.1216, 0.6707, 0.8259,
               0.1367, 0.5751])

In [5]: npr.rand(5, 5)  
Out[5]: array([[0.8913, 0.2092, 0.1853, 0.1084, 0.2197],
               [0.9786, 0.8117, 0.1719, 0.8162, 0.2741],
               [0.4317, 0.94  , 0.8176, 0.3361, 0.1754],
               [0.3728, 0.0057, 0.2524, 0.7957, 0.0153],
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               [0.5988, 0.6038, 0.1051, 0.3819, 0.0365]])

In [6]: a = 5.  
        b = 10.  
        npr.rand(10) * (b - a) + a  
Out[6]: array([9.4521, 9.9046, 5.2997, 9.4527, 7.8845, 8.7124, 8.1509, 7.9092,
               5.1022, 6.0501])

In [7]: npr.rand(5, 5) * (b - a) + a  
Out[7]: array([[7.7234, 8.8456, 6.2535, 6.4295, 9.262 ],
               [9.875 , 9.4243, 6.7975, 7.9943, 6.774 ],
               [6.701 , 5.8904, 6.1885, 5.2243, 7.5272],
               [6.8813, 7.964 , 8.1497, 5.713 , 9.6692],
               [9.7319, 8.0115, 6.9388, 6.8159, 6.0217]])

Fixes the seed value for reproducibility and fixes the number of digits for print‐
outs.

Uniformly distributed random numbers as one-dimensional ndarray object.

Uniformly distributed random numbers as two-dimensional ndarray object.

Lower limit …

… and upper limit …

… for the transformation to another interval.

The same transformation for two dimensions.

Table 12-1 lists functions to generate simple random numbers.

Table 12-1. Functions for simple random number generation

Function Parameters Returns/result

rand d0, d1, ..., dn Random values in the given shape

randn d0, d1, ..., dn A sample (or samples) from the standard normal distribution

randint low[, high, size] Random integers from low (inclusive) to high (exclusive)

random_integers low[, high, size] Random integers between low and high, inclusive

random_sample [size] Random floats in the half-open interval [0.0, 1.0)

random [size] Random floats in the half-open interval [0.0, 1.0)

ranf [size] Random floats in the half-open interval [0.0, 1.0)

sample [size] Random floats in the half-open interval [0.0, 1.0)

choice a[, size, replace, p] Random sample from a given 1D array

bytes length Random bytes
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It is straightforward to visualize some random draws generated by selected functions
from Table 12-1. Figure 12-1 shows the results graphically for two continuous distri‐
butions and two discrete ones:

In [8]: sample_size = 500
        rn1 = npr.rand(sample_size, 3)  
        rn2 = npr.randint(0, 10, sample_size)  
        rn3 = npr.sample(size=sample_size)  
        a = [0, 25, 50, 75, 100]  
        rn4 = npr.choice(a, size=sample_size) 

In [9]: fig, ((ax1, ax2), (ax3, ax4)) = plt.subplots(nrows=2, ncols=2,
                                                     figsize=(10, 8))
        ax1.hist(rn1, bins=25, stacked=True)
        ax1.set_title('rand')
        ax1.set_ylabel('frequency')
        ax2.hist(rn2, bins=25)
        ax2.set_title('randint')
        ax3.hist(rn3, bins=25)
        ax3.set_title('sample')
        ax3.set_ylabel('frequency')
        ax4.hist(rn4, bins=25)
        ax4.set_title('choice');

Uniformly distributed random numbers.

Random integers for a given interval.

Randomly sampled values from a finite list object.
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Figure 12-1. Histograms of simple random numbers

Table 12-2 lists functions for generating random numbers according to different dis‐
tributions.

Table 12-2. Functions to generate random numbers according to different distribution laws

Function Parameters Returns/result

beta a, b[, size] Samples for a beta distribution over [0, 1]

binomial n, p[, size] Samples from a binomial distribution

chisquare df[, size] Samples from a chi-square distribution

dirichlet alpha[, size] Samples from the Dirichlet distribution

exponential [scale, size] Samples from the exponential distribution

f dfnum, dfden[, size] Samples from an F distribution

gamma shape[, scale, size] Samples from a gamma distribution

geometric p[, size] Samples from the geometric distribution

gumbel [loc, scale, size] Samples from a Gumbel distribution

hypergeometric ngood, nbad, nsample[,
size]

Samples from a hypergeometric distribution
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Function Parameters Returns/result

laplace [loc, scale, size] Samples from the Laplace or double exponential
distribution

logistic [loc, scale, size] Samples from a logistic distribution

lognormal [mean, sigma, size] Samples from a log-normal distribution

logseries p[, size] Samples from a logarithmic series distribution

multinomial n, pvals[, size] Samples from a multinomial distribution

multivariate_normal mean, cov[, size] Samples from a multivariate normal distribution

negative_binomial n, p[, size] Samples from a negative binomial distribution

noncentral_chisquare df, nonc[, size] Samples from a noncentral chi-square distribution

noncentral_f dfnum, dfden, nonc[,
size]

Samples from the noncentral F distribution

normal [loc, scale, size] Samples from a normal (Gaussian) distribution

pareto a[, size] Samples from a Pareto II or Lomax distribution with the
specified shape

poisson [lam, size] Samples from a Poisson distribution

power a[, size] Samples in [0, 1] from a power distribution with positive
exponent a – 1

rayleigh [scale, size] Samples from a Rayleigh distribution

standard_cauchy [size] Samples from standard Cauchy distribution with mode = 0

standard_exponential [size] Samples from the standard exponential distribution

standard_gamma shape[, size] Samples from a standard gamma distribution

standard_normal [size] Samples from a standard normal distribution (mean=0,
stdev=1)

standard_t df[, size] Samples from a Student’s t distribution with df degrees of
freedom

triangular left, mode, right[,
size]

Samples from the triangular distribution over the interval
[left, right]

uniform [low, high, size] Samples from a uniform distribution

vonmises mu, kappa[, size] Samples from a von Mises distribution

wald mean, scale[, size] Samples from a Wald, or inverse Gaussian, distribution

weibull a[, size] Samples from a Weibull distribution

zipf a[, size] Samples from a Zipf distribution

Although there is much criticism around the use of (standard) normal distributions
in finance, they are an indispensable tool and still the most widely used type of distri‐
bution, in analytical as well as numerical applications. One reason is that many finan‐
cial models directly rest in one way or another on a normal distribution or a log-
normal distribution. Another reason is that many financial models that do not rest
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directly on a (log-)normal assumption can be discretized, and therewith approxima‐
ted for simulation purposes, by the use of the normal distribution.

As an illustration, Figure 12-2 visualizes random draws from the following
distributions:

• Standard normal with mean of 0 and standard deviation of 1
• Normal with mean of 100 and standard deviation of 20
• Chi square with 0.5 degrees of freedom
• Poisson with lambda of 1

Figure 12-2 shows the results for the three continuous distributions and the discrete
one (Poisson). The Poisson distribution is used, for example, to simulate the arrival
of (rare) external events, like a jump in the price of an instrument or an exogenic
shock. Here is the code that generates it:

In [10]: sample_size = 500
         rn1 = npr.standard_normal(sample_size)  
         rn2 = npr.normal(100, 20, sample_size)  
         rn3 = npr.chisquare(df=0.5, size=sample_size)  
         rn4 = npr.poisson(lam=1.0, size=sample_size)  

In [11]: fig, ((ax1, ax2), (ax3, ax4)) = plt.subplots(nrows=2, ncols=2,
                                                      figsize=(10, 8))
         ax1.hist(rn1, bins=25)
         ax1.set_title('standard normal')
         ax1.set_ylabel('frequency')
         ax2.hist(rn2, bins=25)
         ax2.set_title('normal(100, 20)')
         ax3.hist(rn3, bins=25)
         ax3.set_title('chi square')
         ax3.set_ylabel('frequency')
         ax4.hist(rn4, bins=25)
         ax4.set_title('Poisson');

Standard normally distributed random numbers.

Normally distributed random numbers.

Chi-square distributed random numbers.

Poisson distributed numbers.
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Figure 12-2. Histograms of random samples for different distributions

NumPy and Random Numbers

This section shows that NumPy is a powerful (even indispensable)
tool when generating pseudo-random numbers in Python. The cre‐
ation of small or large ndarray objects with such numbers is not
only convenient but also performant.

Simulation
Monte Carlo simulation (MCS) is among the most important numerical techniques
in finance, if not the most important and widely used. This mainly stems from the
fact that it is the most flexible numerical method when it comes to the evaluation of
mathematical expressions (e.g., integrals), and specifically the valuation of financial
derivatives. The flexibility comes at the cost of a relatively high computational bur‐
den, though, since often hundreds of thousands or even millions of complex compu‐
tations have to be carried out to come up with a single value estimate.
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Random Variables
Consider, for example, the Black-Scholes-Merton setup for option pricing. In their
setup, the level of a stock index ST at a future date T given a level S0 as of today is
given according to Equation 12-1.

Equation 12-1. Simulating future index level in Black-Scholes-Merton setup

ST = S0 exp ((r –
1
2 σ 2)T + σ T z)

The variables and parameters have the following meaning:

ST
Index level at date T

r
Constant riskless short rate

σ
Constant volatility (= standard deviation of returns) of S

z
Standard normally distributed random variable

This financial model is parameterized and simulated as follows. The output of this
simulation code is shown in Figure 12-3:

In [12]: S0 = 100  
         r = 0.05  
         sigma = 0.25  
         T = 2.0  
         I = 10000  
         ST1 = S0 * np.exp((r - 0.5 * sigma ** 2) * T +
                 sigma * math.sqrt(T) * npr.standard_normal(I))  

In [13]: plt.figure(figsize=(10, 6))
         plt.hist(ST1, bins=50)
         plt.xlabel('index level')
         plt.ylabel('frequency');

The initial index level.

The constant riskless short rate.

The constant volatility factor.

The horizon in year fractions.
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The number of simulations.

The simulation itself via a vectorized expression; the discretization scheme makes
use of the npr.standard_normal() function.

Figure 12-3. Statically simulated geometric Brownian motion (via npr.standard_nor‐
mal())

Figure 12-3 suggests that the distribution of the random variable as defined in Equa‐
tion 12-1 is log-normal. One could therefore also try to use the npr.lognormal()
function to directly derive the values for the random variable. In that case, one has to
provide the mean and the standard deviation to the function:

In [14]: ST2 = S0 * npr.lognormal((r - 0.5 * sigma ** 2) * T,
                                   sigma * math.sqrt(T), size=I)  

In [15]: plt.figure(figsize=(10, 6))
         plt.hist(ST2, bins=50)
         plt.xlabel('index level')
         plt.ylabel('frequency');

The simulation via a vectorized expression; the discretization scheme makes use
of the npr.lognormal() function.

The result is shown in Figure 12-4.
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Figure 12-4. Statically simulated geometric Brownian motion (via npr.lognormal())

By visual inspection, Figures 12-3 and 12-4 indeed look pretty similar. This can be
verified a bit more rigorously by comparing statistical moments of the resulting dis‐
tributions. To compare the distributional characteristics of simulation results, the
scipy.stats subpackage and the helper function print_statistics(), as defined
here, prove useful:

In [16]: import scipy.stats as scs

In [17]: def print_statistics(a1, a2):
             ''' Prints selected statistics.

             Parameters
             ==========
             a1, a2: ndarray objects
                 results objects from simulation
             '''
             sta1 = scs.describe(a1)  
             sta2 = scs.describe(a2)  
             print('%14s %14s %14s' %
                 ('statistic', 'data set 1', 'data set 2'))
             print(45 * "-")
             print('%14s %14.3f %14.3f' % ('size', sta1[0], sta2[0]))
             print('%14s %14.3f %14.3f' % ('min', sta1[1][0], sta2[1][0]))
             print('%14s %14.3f %14.3f' % ('max', sta1[1][1], sta2[1][1]))
             print('%14s %14.3f %14.3f' % ('mean', sta1[2], sta2[2]))
             print('%14s %14.3f %14.3f' % ('std', np.sqrt(sta1[3]),
                                           np.sqrt(sta2[3])))
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             print('%14s %14.3f %14.3f' % ('skew', sta1[4], sta2[4]))
             print('%14s %14.3f %14.3f' % ('kurtosis', sta1[5], sta2[5]))

In [18]: print_statistics(ST1, ST2)
              statistic     data set 1     data set 2
         ---------------------------------------------
                   size      10000.000      10000.000
                    min         32.327         28.230
                    max        414.825        409.110
                   mean        110.730        110.431
                    std         40.300         39.878
                   skew          1.122          1.115
               kurtosis          2.438          2.217

The scs.describe() function gives back important statistics for a data set.

Obviously, the statistics of both simulation results are quite similar. The differences
are mainly due to what is called the sampling error in simulation. Another error can
also be introduced when discretely simulating continuous stochastic processes—
namely the discretization error, which plays no role here due to the static nature of
the simulation approach.

Stochastic Processes
Roughly speaking, a stochastic process is a sequence of random variables. In that
sense, one should expect something similar to a sequence of repeated simulations of a
random variable when simulating a process. This is mainly true, apart from the fact
that the draws are typically not independent but rather depend on the result(s) of the
previous draw(s). In general, however, stochastic processes used in finance exhibit
the Markov property, which mainly says that tomorrow’s value of the process only
depends on today’s state of the process, and not any other more “historic” state or
even the whole path history. The process then is also called memoryless.

Geometric Brownian motion
Consider now the Black-Scholes-Merton model in its dynamic form, as described by
the stochastic differential equation (SDE) in Equation 12-2. Here, Zt is a standard
Brownian motion. The SDE is called a geometric Brownian motion. The values of St

are log-normally distributed and the (marginal) returns 
d St
St

 normally.

Equation 12-2. Stochastic differential equation in Black-Scholes-Merton setup
dSt = rStdt + σStdZt
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The SDE in Equation 12-2 can be discretized exactly by an Euler scheme. Such a
scheme is presented in Equation 12-3, with Δt  being the fixed discretization interval
and zt being a standard normally distributed random variable.

Equation 12-3. Simulating index levels dynamically in Black-Scholes-Merton setup

St = St –Δt exp ((r –
1
2 σ 2)Δt + σ Δtzt)

As before, translation into Python and NumPy code is straightforward. The resulting
end values for the index level are log-normally distributed again, as Figure 12-5 illus‐
trates. The first four moments are also quite close to those resulting from the static
simulation approach:

In [19]: I = 10000  
         M = 50  
         dt = T / M  
         S = np.zeros((M + 1, I))  
         S[0] = S0  
         for t in range(1, M + 1):
             S[t] = S[t - 1] * np.exp((r - 0.5 * sigma ** 2) * dt +
                     sigma * math.sqrt(dt) * npr.standard_normal(I))  

In [20]: plt.figure(figsize=(10, 6))
         plt.hist(S[-1], bins=50)
         plt.xlabel('index level')
         plt.ylabel('frequency');

The number of paths to be simulated.

The number of time intervals for the discretization.

The length of the time interval in year fractions.

The two-dimensional ndarray object for the index levels.

The initial values for the initial point in time t = 0.

The simulation via semivectorized expression; the loop is over the points in time
starting at t = 1 and ending at t = T.
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Figure 12-5. Dynamically simulated geometric Brownian motion at maturity

Following is a comparison of the statistics resulting from the dynamic simulation as
well as from the static simulation. Figure 12-6 shows the first 10 simulated paths:

In [21]: print_statistics(S[-1], ST2)
              statistic     data set 1     data set 2
         ---------------------------------------------
                   size      10000.000      10000.000
                    min         27.746         28.230
                    max        382.096        409.110
                   mean        110.423        110.431
                    std         39.179         39.878
                   skew          1.069          1.115
               kurtosis          2.028          2.217

In [22]: plt.figure(figsize=(10, 6))
         plt.plot(S[:, :10], lw=1.5)
         plt.xlabel('time')
         plt.ylabel('index level');
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Figure 12-6. Dynamically simulated geometric Brownian motion paths

Using the dynamic simulation approach not only allows us to visualize paths as dis‐
played in Figure 12-6, but also to value options with American/Bermudan exercise or
options whose payoff is path-dependent. One gets the full dynamic picture over time,
so to say.

Square-root diffusion
Another important class of financial processes is mean-reverting processes, which are
used to model short rates or volatility processes, for example. A popular and widely
used model is the square-root diffusion, as proposed by Cox, Ingersoll, and Ross
(1985). Equation 12-4 provides the respective SDE.

Equation 12-4. Stochastic differential equation for square-root diffusion

d xt = κ(θ – xt)dt + σ xtdZt

The variables and parameters have the following meaning:

xt
Process level at date t

κ
Mean-reversion factor
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θ
Long-term mean of the process

σ
Constant volatility parameter

Zt
Standard Brownian motion

It is well known that the values of xt are chi-squared distributed. However, as stated
before, many financial models can be discretized and approximated by using the nor‐
mal distribution (i.e., a so-called Euler discretization scheme). While the Euler
scheme is exact for the geometric Brownian motion, it is biased for the majority of
other stochastic processes. Even if there is an exact scheme available—one for the
square-root diffusion will be presented later—the use of an Euler scheme might be
desirable for numerical and/or computational reasons. Defining s = t – Δt  and
x + ≡ max (x, 0), Equation 12-5 presents such an Euler scheme. This particular one is
generally called full truncation in the literature (see Hilpisch (2015) for more details
and other schemes).

Equation 12-5. Euler discretization for square-root diffusion

x̃ t = x̃ s + κ(θ – x̃ s
+)Δt + σ x̃ s

+ Δtzt

xt = x̃ t
+

The square-root diffusion has the convenient and realistic characteristic that the val‐
ues of xt remain strictly positive. When discretizing it by an Euler scheme, negative
values cannot be excluded. That is the reason why one works always with the positive
version of the originally simulated process. In the simulation code, one therefore
needs two ndarray objects instead of only one. Figure 12-7 shows the result of the
simulation graphically as a histogram:

In [23]: x0 = 0.05  
         kappa = 3.0  
         theta = 0.02  
         sigma = 0.1  
         I = 10000
         M = 50
         dt = T / M

In [24]: def srd_euler():
             xh = np.zeros((M + 1, I))
             x = np.zeros_like(xh)
             xh[0] = x0
             x[0] = x0
             for t in range(1, M + 1):
                 xh[t] = (xh[t - 1] +
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                          kappa * (theta - np.maximum(xh[t - 1], 0)) * dt +
                          sigma * np.sqrt(np.maximum(xh[t - 1], 0)) *
                          math.sqrt(dt) * npr.standard_normal(I))  
             x = np.maximum(xh, 0)
             return x
         x1 = srd_euler()

In [25]: plt.figure(figsize=(10, 6))
         plt.hist(x1[-1], bins=50)
         plt.xlabel('value')
         plt.ylabel('frequency');

The initial value (e.g., for a short rate).

The mean reversion factor.

The long-term mean value.

The volatility factor.

The simulation based on an Euler scheme.

Figure 12-7. Dynamically simulated square-root diffusion at maturity (Euler scheme)

Figure 12-8 then shows the first 10 simulated paths, illustrating the resulting negative
average drift (due to x0 > θ) and the convergence to θ = 0.02:
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In [26]: plt.figure(figsize=(10, 6))
         plt.plot(x1[:, :10], lw=1.5)
         plt.xlabel('time')
         plt.ylabel('index level');

Figure 12-8. Dynamically simulated square-root diffusion paths (Euler scheme)

Equation 12-6 presents the exact discretization scheme for the square-root diffusion
based on the noncentral chi-square distribution χd

'2 with

df =
4θκ
σ 2

degrees of freedom and noncentrality parameter

nc =
4κe –κΔt

σ 2(1 – e –κΔt) xs

Equation 12-6. Exact discretization for square-root diffusion

xt =
σ 2(1 – e –κΔt)

4κ χd
'2( 4κe –κΔt

σ 2(1 – e –κΔt) xs)
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The Python implementation of this discretization scheme is a bit more involved but
still quite concise. Figure 12-9 shows the output at maturity of the simulation with
the exact scheme as a histogram:

In [27]: def srd_exact():
             x = np.zeros((M + 1, I))
             x[0] = x0
             for t in range(1, M + 1):
                 df = 4 * theta * kappa / sigma ** 2  
                 c = (sigma ** 2 * (1 - np.exp(-kappa * dt))) / (4 * kappa)  
                 nc = np.exp(-kappa * dt) / c * x[t - 1]  
                 x[t] = c * npr.noncentral_chisquare(df, nc, size=I)  
             return x
         x2 = srd_exact()

In [28]: plt.figure(figsize=(10, 6))
         plt.hist(x2[-1], bins=50)
         plt.xlabel('value')
         plt.ylabel('frequency');

Exact discretization scheme, making use of npr.noncentral_chisquare().

Figure 12-9. Dynamically simulated square-root diffusion at maturity (exact scheme)

Figure 12-10 presents as before the first 10 simulated paths, again displaying the neg‐
ative average drift and the convergence to θ:

In [29]: plt.figure(figsize=(10, 6))
         plt.plot(x2[:, :10], lw=1.5)
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         plt.xlabel('time')
         plt.ylabel('index level');

Figure 12-10. Dynamically simulated square-root diffusion paths (exact scheme)

Comparing the main statistics from the different approaches reveals that the biased
Euler scheme indeed performs quite well when it comes to the desired statistical
properties:

In [30]: print_statistics(x1[-1], x2[-1])
              statistic     data set 1     data set 2
         ---------------------------------------------
                   size      10000.000      10000.000
                    min          0.003          0.005
                    max          0.049          0.047
                   mean          0.020          0.020
                    std          0.006          0.006
                   skew          0.529          0.532
               kurtosis          0.289          0.273

In [31]: I = 250000
         %time x1 = srd_euler()
         CPU times: user 1.62 s, sys: 184 ms, total: 1.81 s
         Wall time: 1.08 s

In [32]: %time x2 = srd_exact()
         CPU times: user 3.29 s, sys: 39.8 ms, total: 3.33 s
         Wall time: 1.98 s

In [33]: print_statistics(x1[-1], x2[-1])
         x1 = 0.0; x2 = 0.0
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              statistic     data set 1     data set 2
         ---------------------------------------------
                   size     250000.000     250000.000
                    min          0.002          0.003
                    max          0.071          0.055
                   mean          0.020          0.020
                    std          0.006          0.006
                   skew          0.563          0.579
               kurtosis          0.492          0.520

However, a major difference can be observed in terms of execution speed, since sam‐
pling from the noncentral chi-square distribution is more computationally demand‐
ing than from the standard normal distribution. The exact scheme takes roughly
twice as much time for virtually the same results as with the Euler scheme.

Stochastic volatility
One of the major simplifying assumptions of the Black-Scholes-Merton model is the
constant volatility. However, volatility in general is neither constant nor deterministic
—it is stochastic. Therefore, a major advancement with regard to financial modeling
was achieved in the early 1990s with the introduction of so-called stochastic volatility
models. One of the most popular models that fall into that category is that of Heston
(1993), which is presented in Equation 12-7.

Equation 12-7. Stochastic differential equations for Heston stochastic volatility
model

dSt = rStdt + vtStdZt
1

dvt = κv(θv – vt)dt + σv vtdZt
2

dZt
1dZt

2 = ρ

The meaning of the variables and parameters can now be inferred easily from the dis‐
cussion of the geometric Brownian motion and the square-root diffusion. The
parameter ρ represents the instantaneous correlation between the two standard
Brownian motions Zt

1, Zt
2. This allows us to account for a stylized fact called the lev‐

erage effect, which in essence states that volatility goes up in times of stress (declining
markets) and goes down in times of a bull market (rising markets).

Consider the following parameterization of the model. To account for the correlation
between the two stochastic processes, one needs to determine the Cholesky decom‐
position of the correlation matrix:

In [34]: S0 = 100.
         r = 0.05
         v0 = 0.1  
         kappa = 3.0
         theta = 0.25
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         sigma = 0.1
         rho = 0.6  
         T = 1.0

In [35]: corr_mat = np.zeros((2, 2))
         corr_mat[0, :] = [1.0, rho]
         corr_mat[1, :] = [rho, 1.0]
         cho_mat = np.linalg.cholesky(corr_mat)  

In [36]: cho_mat  
Out[36]: array([[1. , 0. ],
                [0.6, 0.8]])

Initial (instantaneous) volatility value.

Fixed correlation between the two Brownian motions.

Cholesky decomposition and resulting matrix.

Before the start of the simulation of the stochastic processes the whole set of random
numbers for both processes is generated, looking to use set 0 for the index process
and set 1 for the volatility process. For the volatility process modeled by a square-root
diffusion, the Euler scheme is chosen, taking into account the correlation via the
Cholesky matrix:

In [37]: M = 50
         I = 10000
         dt = T / M

In [38]: ran_num = npr.standard_normal((2, M + 1, I))  

In [39]: v = np.zeros_like(ran_num[0])
         vh = np.zeros_like(v)

In [40]: v[0] = v0
         vh[0] = v0

In [41]: for t in range(1, M + 1):
             ran = np.dot(cho_mat, ran_num[:, t, :])  
             vh[t] = (vh[t - 1] +
                      kappa * (theta - np.maximum(vh[t - 1], 0)) * dt +
                      sigma * np.sqrt(np.maximum(vh[t - 1], 0)) *
                      math.sqrt(dt) * ran[1])  

In [42]: v = np.maximum(vh, 0)

Generates the three-dimensional random number data set.

Picks out the relevant random number subset and transforms it via the Cholesky
matrix.
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Simulates the paths based on an Euler scheme.

The simulation of the index level process also takes into account the correlation and
uses the (in this case) exact Euler scheme for the geometric Brownian motion.
Figure 12-11 shows the simulation results at maturity as a histogram for both the
index level process and the volatility process:

In [43]: S = np.zeros_like(ran_num[0])
         S[0] = S0
         for t in range(1, M + 1):
             ran = np.dot(cho_mat, ran_num[:, t, :])
             S[t] = S[t - 1] * np.exp((r - 0.5 * v[t]) * dt +
                             np.sqrt(v[t]) * ran[0] * np.sqrt(dt))

In [44]: fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(10, 6))
         ax1.hist(S[-1], bins=50)
         ax1.set_xlabel('index level')
         ax1.set_ylabel('frequency')
         ax2.hist(v[-1], bins=50)
         ax2.set_xlabel('volatility');

Figure 12-11. Dynamically simulated stochastic volatility process at maturity

This illustrates another advantage of working with the Euler scheme for the square-
root diffusion: correlation is easily and consistently accounted for since one only draws
standard normally distributed random numbers. There is no simple way of achieving
the same with a mixed approach (i.e., using Euler for the index and the noncentral
chi-square-based exact approach for the volatility process).
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An inspection of the first 10 simulated paths of each process (see Figure 12-12) shows
that the volatility process is drifting positively on average and that it, as expected,
converges to θ = 0.25:

In [45]: print_statistics(S[-1], v[-1])
              statistic     data set 1     data set 2
         ---------------------------------------------
                   size      10000.000      10000.000
                    min         20.556          0.174
                    max        517.798          0.328
                   mean        107.843          0.243
                    std         51.341          0.020
                   skew          1.577          0.124
               kurtosis          4.306          0.048

In [46]: fig, (ax1, ax2) = plt.subplots(2, 1, sharex=True,
                                        figsize=(10, 6))
         ax1.plot(S[:, :10], lw=1.5)
         ax1.set_ylabel('index level')
         ax2.plot(v[:, :10], lw=1.5)
         ax2.set_xlabel('time')
         ax2.set_ylabel('volatility');

Figure 12-12. Dynamically simulated stochastic volatility process paths

Having a brief look at the statistics for the maturity date for both data sets reveals a
pretty high maximum value for the index level process. In fact, this is much higher
than a geometric Brownian motion with constant volatility could ever climb, ceteris
paribus.
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Jump diffusion
Stochastic volatility and the leverage effect are stylized (empirical) facts found in a
number of markets. Another important stylized fact is the existence of jumps in asset
prices and, for example, volatility. In 1976, Merton published his jump diffusion
model, enhancing the Black-Scholes-Merton setup through a model component gen‐
erating jumps with log-normal distribution. The risk-neutral SDE is presented in
Equation 12-8.

Equation 12-8. Stochastic differential equation for Merton jump diffusion model
dSt = (r – rj)Stdt + σStdZt + J tStd N t

For completeness, here is an overview of the variables’ and parameters’ meaning:

St
Index level at date t

r
Constant riskless short rate

rJ ≡ λ · (e μJ +δ 2/2 - 1)
Drift correction for jump to maintain risk neutrality

σ
Constant volatility of S

Zt
Standard Brownian motion

Jt
Jump at date t with distribution …

• … log (1 + J t) ≈ N( log (1 + μJ ) – δ 2

2 , δ 2) with …
• … N as the cumulative distribution function of a standard normal random

variable

Nt
Poisson process with intensity λ

Equation 12-9 presents an Euler discretization for the jump diffusion where the zt
n

are standard normally distributed and the yt are Poisson distributed with intensity λ.

Equation 12-9. Euler discretization for Merton jump diffusion model

St = St –Δt(e (r –rJ –σ 2/2)Δt +σ Δt zt
1

+ (e μJ +δ zt
2

– 1)yt)
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Given the discretization scheme, consider the following numerical parameterization:

In [47]: S0 = 100.
         r = 0.05
         sigma = 0.2
         lamb = 0.75  
         mu = -0.6  
         delta = 0.25  
         rj = lamb * (math.exp(mu + 0.5 * delta ** 2) - 1)  

In [48]: T = 1.0
         M = 50
         I = 10000
         dt = T / M

The jump intensity.

The mean jump size.

The jump volatility.

The drift correction.

This time, three sets of random numbers are needed. Notice in Figure 12-13 the sec‐
ond peak (bimodal frequency distribution), which is due to the jumps:

In [49]: S = np.zeros((M + 1, I))
         S[0] = S0
         sn1 = npr.standard_normal((M + 1, I))  
         sn2 = npr.standard_normal((M + 1, I))  
         poi = npr.poisson(lamb * dt, (M + 1, I))  
         for t in range(1, M + 1, 1):
             S[t] = S[t - 1] * (np.exp((r - rj - 0.5 * sigma ** 2) * dt +
                                sigma * math.sqrt(dt) * sn1[t]) +
                                (np.exp(mu + delta * sn2[t]) - 1) *
                                poi[t])  
             S[t] = np.maximum(S[t], 0)

In [50]: plt.figure(figsize=(10, 6))
         plt.hist(S[-1], bins=50)
         plt.xlabel('value')
         plt.ylabel('frequency');

Standard normally distributed random numbers.

Poisson distributed random numbers.

Simulation based on the exact Euler scheme.
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Figure 12-13. Dynamically simulated jump diffusion process at maturity

The negative jumps can also be spotted in the first 10 simulated index level paths, as
presented in Figure 12-14:

In [51]: plt.figure(figsize=(10, 6))
         plt.plot(S[:, :10], lw=1.5)
         plt.xlabel('time')
         plt.ylabel('index level');
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Figure 12-14. Dynamically simulated jump diffusion process paths

Variance Reduction
Because the Python functions used so far generate pseudo-random numbers and due
to the varying sizes of the samples drawn, the resulting sets of numbers might not
exhibit statistics close enough to the expected or desired ones. For example, one
would expect a set of standard normally distributed random numbers to show a
mean of 0 and a standard deviation of 1. Let us check what statistics different sets of
random numbers exhibit. To achieve a realistic comparison, the seed value for the
random number generator is fixed:

In [52]: print('%15s %15s' % ('Mean', 'Std. Deviation'))
         print(31 * '-')
         for i in range(1, 31, 2):
             npr.seed(100)
             sn = npr.standard_normal(i ** 2 * 10000)
             print('%15.12f %15.12f' % (sn.mean(), sn.std()))
                    Mean  Std. Deviation
         -------------------------------
          0.001150944833  1.006296354600
          0.002841204001  0.995987967146
          0.001998082016  0.997701714233
          0.001322322067  0.997771186968
          0.000592711311  0.998388962646
         -0.000339730751  0.998399891450
         -0.000228109010  0.998657429396
          0.000295768719  0.998877333340
          0.000257107789  0.999284894532
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2 The approach here is inspired by the Law of Large Numbers.

3 The described method works for symmetric median 0 random variables only, like standard normally dis‐
tributed random variables, which are almost exclusively used throughout.

         -0.000357870642  0.999456401088
         -0.000528443742  0.999617831131
         -0.000300171536  0.999445228838
         -0.000162924037  0.999516059328
          0.000135778889  0.999611052522
          0.000182006048  0.999619405229

In [53]: i ** 2 * 10000
Out[53]: 8410000

The results show that the statistics “somehow” get better the larger the number of
draws becomes.2 But they still do not match the desired ones, even in our largest sam‐
ple with more than 8,000,000 random numbers.

Fortunately, there are easy-to-implement, generic variance reduction techniques
available to improve the matching of the first two moments of the (standard) normal
distribution. The first technique is to use antithetic variates. This approach simply
draws only half the desired number of random draws, and adds the same set of ran‐
dom numbers with the opposite sign afterward.3 For example, if the random number
generator (i.e., the respective Python function) draws 0.5, then another number with
value –0.5 is added to the set. By construction, the mean value of such a data set must
equal zero.

With NumPy this is concisely implemented by using the function np.concatenate().
The following repeats the exercise from before, this time using antithetic variates:

In [54]: sn = npr.standard_normal(int(10000 / 2))
         sn = np.concatenate((sn, -sn))  

In [55]: np.shape(sn)  
Out[55]: (10000,)

In [56]: sn.mean()  
Out[56]: 2.842170943040401e-18

In [57]: print('%15s %15s' % ('Mean', 'Std. Deviation'))
         print(31 * "-")
         for i in range(1, 31, 2):
             npr.seed(1000)
             sn = npr.standard_normal(i ** 2 * int(10000 / 2))
             sn = np.concatenate((sn, -sn))
             print("%15.12f %15.12f" % (sn.mean(), sn.std()))
                    Mean  Std. Deviation
         -------------------------------
          0.000000000000  1.009653753942
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         -0.000000000000  1.000413716783
          0.000000000000  1.002925061201
         -0.000000000000  1.000755212673
          0.000000000000  1.001636910076
         -0.000000000000  1.000726758438
         -0.000000000000  1.001621265149
          0.000000000000  1.001203722778
         -0.000000000000  1.000556669784
         -0.000000000000  1.000113464185
         -0.000000000000  0.999435175324
         -0.000000000000  0.999356961431
         -0.000000000000  0.999641436845
         -0.000000000000  0.999642768905
         -0.000000000000  0.999638303451

This concatenates the two ndarray objects …

… to arrive at the desired number of random numbers.

The resulting mean value is zero (within standard floating-point arithmetic
errors).

As immediately noticed, this approach corrects the first moment perfectly—which
should not come as a surprise due to the very construction of the data set. However,
this approach does not have any influence on the second moment, the standard devi‐
ation. Using another variance reduction technique, called moment matching, helps
correct in one step both the first and second moments:

In [58]: sn = npr.standard_normal(10000)

In [59]: sn.mean()
Out[59]: -0.001165998295162494

In [60]: sn.std()
Out[60]: 0.991255920204605

In [61]: sn_new = (sn - sn.mean()) / sn.std()  

In [62]: sn_new.mean()
Out[62]: -2.3803181647963357e-17

In [63]: sn_new.std()
Out[63]: 0.9999999999999999

Corrects both the first and second moment in a single step.

By subtracting the mean from every single random number and dividing every single
number by the standard deviation, this technique ensures that the set of random
numbers matches the desired first and second moments of the standard normal dis‐
tribution (almost) perfectly.
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The following function utilizes the insight with regard to variance reduction techni‐
ques and generates standard normal random numbers for process simulation using
either two, one, or no variance reduction technique(s):

In [64]: def gen_sn(M, I, anti_paths=True, mo_match=True):
             ''' Function to generate random numbers for simulation.

             Parameters
             ==========
             M: int
                 number of time intervals for discretization
             I: int
                 number of paths to be simulated
             anti_paths: boolean
                 use of antithetic variates
             mo_math: boolean
                 use of moment matching
             '''
             if anti_paths is True:
                 sn = npr.standard_normal((M + 1, int(I / 2)))
                 sn = np.concatenate((sn, -sn), axis=1)
             else:
                 sn = npr.standard_normal((M + 1, I))
             if mo_match is True:
                 sn = (sn - sn.mean()) / sn.std()
             return sn

Vectorization and Simulation

Vectorization with NumPy is a natural, concise, and efficient
approach to implementing Monte Carlo simulation algorithms in
Python. However, using NumPy vectorization comes with a larger
memory footprint in general. For alternatives that might be equally
fast, see Chapter 10.

Valuation
One of the most important applications of Monte Carlo simulation is the valuation of
contingent claims (options, derivatives, hybrid instruments, etc.). Simply stated, in a
risk-neutral world, the value of a contingent claim is the discounted expected payoff
under the risk-neutral (martingale) measure. This is the probability measure that
makes all risk factors (stocks, indices, etc.) drift at the riskless short rate, making the
discounted processes martingales. According to the Fundamental Theorem of Asset
Pricing, the existence of such a probability measure is equivalent to the absence of
arbitrage.

A financial option embodies the right to buy (call option) or sell (put option) a speci‐
fied financial instrument at a given maturity date (European option), or over a
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specified period of time (American option), at a given price (strike price). Let us first
consider the simpler case of European options in terms of valuation.

European Options
The payoff of a European call option on an index at maturity is given by h(ST) ≡
max(ST – K, 0), where ST is the index level at maturity date T and K is the strike price.
Given a, or in complete markets the, risk-neutral measure for the relevant stochastic
process (e.g., geometric Brownian motion), the price of such an option is given by the
formula in Equation 12-10.

Equation 12-10. Pricing by risk-neutral expectation

C0 = e –rT E0
Q(h (ST )) = e –rT ∫

0

∞

h (s)q(s)ds

Chapter 11 sketches how to numerically evaluate an integral by Monte Carlo simula‐
tion. This approach is used in the following and applied to Equation 12-10. Equation
12-11 provides the respective Monte Carlo estimator for the European option, where
S̃ T

i  is the Tth simulated index level at maturity.

Equation 12-11. Risk-neutral Monte Carlo estimator

C0̃ = e –rT 1
I ∑

i=1

I
h (S̃ T

i )

Consider now the following parameterization for the geometric Brownian motion
and the valuation function gbm_mcs_stat(), taking as a parameter only the strike
price. Here, only the index level at maturity is simulated. As a reference, consider the
case with a strike price of K = 105:

In [65]: S0 = 100.
         r = 0.05
         sigma = 0.25
         T = 1.0
         I = 50000

In [66]: def gbm_mcs_stat(K):
             ''' Valuation of European call option in Black-Scholes-Merton
             by Monte Carlo simulation (of index level at maturity)

             Parameters
             ==========
             K: float
                 (positive) strike price of the option

             Returns
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             =======
             C0: float
                 estimated present value of European call option
             '''
             sn = gen_sn(1, I)
             # simulate index level at maturity
             ST = S0 * np.exp((r - 0.5 * sigma ** 2) * T
                          + sigma * math.sqrt(T) * sn[1])
             # calculate payoff at maturity
             hT = np.maximum(ST - K, 0)
             # calculate MCS estimator
             C0 = math.exp(-r * T) * np.mean(hT)
             return C0

In [67]: gbm_mcs_stat(K=105.)  
Out[67]: 10.044221852841922

The Monte Carlo estimator value for the European call option.

Next, consider the dynamic simulation approach and allow for European put options
in addition to the call option. The function gbm_mcs_dyna() implements the algo‐
rithm. The code also compares option price estimates for a call and a put stroke at the
same level:

In [68]: M = 50  

In [69]: def gbm_mcs_dyna(K, option='call'):
             ''' Valuation of European options in Black-Scholes-Merton
             by Monte Carlo simulation (of index level paths)

             Parameters
             ==========
             K: float
                 (positive) strike price of the option
             option : string
                 type of the option to be valued ('call', 'put')

             Returns
             =======
             C0: float
                 estimated present value of European call option
             '''
             dt = T / M
             # simulation of index level paths
             S = np.zeros((M + 1, I))
             S[0] = S0
             sn = gen_sn(M, I)
             for t in range(1, M + 1):
                 S[t] = S[t - 1] * np.exp((r - 0.5 * sigma ** 2) * dt
                         + sigma * math.sqrt(dt) * sn[t])
             # case-based calculation of payoff
             if option == 'call':
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                 hT = np.maximum(S[-1] - K, 0)
             else:
                 hT = np.maximum(K - S[-1], 0)
             # calculation of MCS estimator
             C0 = math.exp(-r * T) * np.mean(hT)
             return C0

In [70]: gbm_mcs_dyna(K=110., option='call')  
Out[70]: 7.950008525028434

In [71]: gbm_mcs_dyna(K=110., option='put')  
Out[71]: 12.629934942682004

The number of time intervals for the discretization.

The Monte Carlo estimator value for the European call option.

The Monte Carlo estimator value for the European put option.

The question is how well these simulation-based valuation approaches perform rela‐
tive to the benchmark value from the Black-Scholes-Merton valuation formula. To
find out, the following code generates respective option values/estimates for a range
of strike prices, using the analytical option pricing formula for European calls found
in the module bsm_functions.py (see “Python Script” on page 392).

First, we compare the results from the static simulation approach with precise analyt‐
ical values:

In [72]: from bsm_functions import bsm_call_value

In [73]: stat_res = []  
         dyna_res = []  
         anal_res = []  
         k_list = np.arange(80., 120.1, 5.)  
         np.random.seed(100)

In [74]: for K in k_list:
             stat_res.append(gbm_mcs_stat(K))  
             dyna_res.append(gbm_mcs_dyna(K))  
             anal_res.append(bsm_call_value(S0, K, T, r, sigma))  

In [75]: stat_res = np.array(stat_res)  
         dyna_res = np.array(dyna_res)  
         anal_res = np.array(anal_res)  

Instantiates empty list objects to collect the results.

Creates an ndarray object containing the range of strike prices.

Simulates/calculates and collects the option values for all strike prices.

378 | Chapter 12: Stochastics



Transforms the list objects to ndarray objects.

Figure 12-15 shows the results. All valuation differences are smaller than 1% abso‐
lutely. There are both negative and positive value differences:

In [76]: plt.figure(figsize=(10, 6))
         fig, (ax1, ax2) = plt.subplots(2, 1, sharex=True, figsize=(10, 6))
         ax1.plot(k_list, anal_res, 'b', label='analytical')
         ax1.plot(k_list, stat_res, 'ro', label='static')
         ax1.set_ylabel('European call option value')
         ax1.legend(loc=0)
         ax1.set_ylim(bottom=0)
         wi = 1.0
         ax2.bar(k_list - wi / 2, (anal_res - stat_res) / anal_res * 100, wi)
         ax2.set_xlabel('strike')
         ax2.set_ylabel('difference in %')
         ax2.set_xlim(left=75, right=125);
Out[76]: <Figure size 720x432 with 0 Axes>

Figure 12-15. Analytical option values vs. Monte Carlo estimators (static simulation)

A similar picture emerges for the dynamic simulation and valuation approach, whose
results are reported in Figure 12-16. Again, all valuation differences are smaller than
1% absolutely, with both positive and negative deviations. As a general rule, the qual‐
ity of the Monte Carlo estimator can be controlled for by adjusting the number of
time intervals M used and/or the number of paths I simulated:

In [77]: fig, (ax1, ax2) = plt.subplots(2, 1, sharex=True, figsize=(10, 6))
         ax1.plot(k_list, anal_res, 'b', label='analytical')
         ax1.plot(k_list, dyna_res, 'ro', label='dynamic')
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         ax1.set_ylabel('European call option value')
         ax1.legend(loc=0)
         ax1.set_ylim(bottom=0)
         wi = 1.0
         ax2.bar(k_list - wi / 2, (anal_res - dyna_res) / anal_res * 100, wi)
         ax2.set_xlabel('strike')
         ax2.set_ylabel('difference in %')
         ax2.set_xlim(left=75, right=125);

Figure 12-16. Analytical option values vs. Monte Carlo estimators (dynamic simula‐
tion)

American Options
The valuation of American options is more involved compared to European options.
In this case, an optimal stopping problem has to be solved to come up with a fair value
of the option. Equation 12-12 formulates the valuation of an American option as
such a problem. The problem formulation is already based on a discrete time grid for
use with numerical simulation. In a sense, it is therefore more correct to speak of an
option value given Bermudan exercise. For the time interval converging to zero
length, the value of the Bermudan option converges to the one of the American
option.

Equation 12-12. American option prices as optimal stopping problem

V 0 = sup
τ∈{0,Δt ,2Δt ,...,T }

e –rT E0
Q(h τ(Sτ))
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4 For algorithmic details, refer to Hilpisch (2015).

The algorithm described in the following is called Least-Squares Monte Carlo (LSM)
and is from the paper by Longstaff and Schwartz (2001). It can be shown that the
value of an American (Bermudan) option at any given date t is given as
V t(s) = max (h t(s), Ct(s)), where Ct(s) = Et

Q(e –rΔtV t +Δt(St +Δt)| St = s) is the so-called
continuation value of the option given an index level of St=s.

Consider now that we have simulated I paths of the index level over M time intervals
of equal size Δt . Define Y t ,i ≡ e –rΔtV t +Δt ,i to be the simulated continuation value for
path i at time t. We cannot use this number directly because it would imply perfect
foresight. However, we can use the cross section of all such simulated continuation
values to estimate the (expected) continuation value by least-squares regression.

Given a set of basis functions bd , d = 1, ⋯ , D, the continuation value is then given
by the regression estimate Ĉt,i = ∑d =1

D αd ,t
* · bd (St ,i), where the optimal regression

parameters α * are the solution of the least-squares problem stated in Equation 12-13.

Equation 12-13. Least-squares regression for American option valuation

min
α1,t ,...,αD,t

1
I ∑

i=1

I
(Y t ,i – ∑

d=1

D
αd ,t · bd (St ,i))

2

The function gbm_mcs_amer() implements the LSM algorithm for both American call
and put options:4

In [78]: def gbm_mcs_amer(K, option='call'):
             ''' Valuation of American option in Black-Scholes-Merton
             by Monte Carlo simulation by LSM algorithm

             Parameters
             ==========
             K: float
                 (positive) strike price of the option
             option: string
                 type of the option to be valued ('call', 'put')

             Returns
             =======
             C0: float
                 estimated present value of American call option
             '''
             dt = T / M
             df = math.exp(-r * dt)
             # simulation of index levels
             S = np.zeros((M + 1, I))
             S[0] = S0
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5 Since no dividend payments are assumed (having an index in mind), there generally is no early exercise pre‐
mium for call options (i.e., no incentive to exercise the option early).

             sn = gen_sn(M, I)
             for t in range(1, M + 1):
                 S[t] = S[t - 1] * np.exp((r - 0.5 * sigma ** 2) * dt
                         + sigma * math.sqrt(dt) * sn[t])
             # case based calculation of payoff
             if option == 'call':
                 h = np.maximum(S - K, 0)
             else:
                 h = np.maximum(K - S, 0)
             # LSM algorithm
             V = np.copy(h)
             for t in range(M - 1, 0, -1):
                 reg = np.polyfit(S[t], V[t + 1] * df, 7)
                 C = np.polyval(reg, S[t])
                 V[t] = np.where(C > h[t], V[t + 1] * df, h[t])
             # MCS estimator
             C0 = df * np.mean(V[1])
             return C0

In [79]: gbm_mcs_amer(110., option='call')
Out[79]: 7.721705606305352

In [80]: gbm_mcs_amer(110., option='put')
Out[80]: 13.609997625418051

The European value of an option represents a lower bound to the American option’s
value. The difference is generally called the early exercise premium. What follows
compares European and American option values for the same range of strikes as
before to estimate the early exercise premium, this time with puts:5

In [81]: euro_res = []
         amer_res = []

In [82]: k_list = np.arange(80., 120.1, 5.)

In [83]: for K in k_list:
             euro_res.append(gbm_mcs_dyna(K, 'put'))
             amer_res.append(gbm_mcs_amer(K, 'put'))

In [84]: euro_res = np.array(euro_res)
         amer_res = np.array(amer_res)

Figure 12-17 shows that for the range of strikes chosen the early exercise premium
can rise to up to 10%:

In [85]: fig, (ax1, ax2) = plt.subplots(2, 1, sharex=True, figsize=(10, 6))
         ax1.plot(k_list, euro_res, 'b', label='European put')
         ax1.plot(k_list, amer_res, 'ro', label='American put')

382 | Chapter 12: Stochastics



         ax1.set_ylabel('call option value')
         ax1.legend(loc=0)
         wi = 1.0
         ax2.bar(k_list - wi / 2, (amer_res - euro_res) / euro_res * 100, wi)
         ax2.set_xlabel('strike')
         ax2.set_ylabel('early exercise premium in %')
         ax2.set_xlim(left=75, right=125);

Figure 12-17. European vs. American Monte Carlo estimators

Risk Measures
In addition to valuation, risk management is another important application area of
stochastic methods and simulation. This section illustrates the calculation/estimation
of two of the most common risk measures applied today in the finance industry.

Value-at-Risk
Value-at-risk (VaR) is one of the most widely used risk measures, and a much deba‐
ted one. Loved by practitioners for its intuitive appeal, it is widely discussed and criti‐
cized by many—mainly on theoretical grounds, with regard to its limited ability to
capture what is called tail risk (more on this shortly). In words, VaR is a number
denoted in currency units (e.g., USD, EUR, JPY) indicating a loss (of a portfolio, a
single position, etc.) that is not exceeded with some confidence level (probability)
over a given period of time.
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Consider a stock position, worth 1 million USD today, that has a VaR of 50,000 USD
at a confidence level of 99% over a time period of 30 days (one month). This VaR
figure says that with a probability of 99% (i.e., in 99 out of 100 cases), the loss to be
expected over a period of 30 days will not exceed 50,000 USD. However, it does not
say anything about the size of the loss once a loss beyond 50,000 USD occurs—i.e., if
the maximum loss is 100,000 or 500,000 USD what the probability of such a specific
“higher than VaR loss” is. All it says is that there is a 1% probability that a loss of a
minimum of 50,000 USD or higher will occur.

Assume the Black-Scholes-Merton setup and consider the following parameterization
and simulation of index levels at a future date T = 30/365 (a period of 30 days). The
estimation of VaR figures requires the simulated absolute profits and losses relative
to the value of the position today in a sorted manner, i.e., from the severest loss to the
largest profit. Figure 12-18 shows the histogram of the simulated absolute perfor‐
mance values:

In [86]: S0 = 100
         r = 0.05
         sigma = 0.25
         T = 30 / 365.
         I = 10000

In [87]: ST = S0 * np.exp((r - 0.5 * sigma ** 2) * T +
                      sigma * np.sqrt(T) * npr.standard_normal(I))  

In [88]: R_gbm = np.sort(ST - S0)  

In [89]: plt.figure(figsize=(10, 6))
         plt.hist(R_gbm, bins=50)
         plt.xlabel('absolute return')
         plt.ylabel('frequency');

Simulates end-of-period values for the geometric Brownian motion.

Calculates the absolute profits and losses per simulation run and sorts the values.
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Figure 12-18. Absolute profits and losses from simulation (geometric Brownian motion)

Having the ndarray object with the sorted results, the scs.scoreatpercentile()
function already does the trick. All one has to do is to define the percentiles of inter‐
est (in percent values). In the list object percs, 0.1 translates into a confidence level
of 100% – 0.1% = 99.9%. The 30-day VaR given a confidence level of 99.9% in this
case is 18.8 currency units, while it is 8.5 at the 90% confidence level:

In [91]: percs = [0.01, 0.1, 1., 2.5, 5.0, 10.0]
         var = scs.scoreatpercentile(R_gbm, percs)
         print('%16s %16s' % ('Confidence Level', 'Value-at-Risk'))
         print(33 * '-')
         for pair in zip(percs, var):
             print('%16.2f %16.3f' % (100 - pair[0], -pair[1]))
         Confidence Level    Value-at-Risk
         ---------------------------------
                    99.99           21.814
                    99.90           18.837
                    99.00           15.230
                    97.50           12.816
                    95.00           10.824
                    90.00            8.504

As a second example, recall the jump diffusion setup from Merton, which is simula‐
ted dynamically. In this case, with the jump component having a negative mean, one
sees something like a bimodal distribution for the simulated profits/losses in
Figure 12-19. From a normal distribution point of view, one sees a pronounced left
fat tail:
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In [92]: dt = 30. / 365 / M
         rj = lamb * (math.exp(mu + 0.5 * delta ** 2) - 1)

In [93]: S = np.zeros((M + 1, I))
         S[0] = S0
         sn1 = npr.standard_normal((M + 1, I))
         sn2 = npr.standard_normal((M + 1, I))
         poi = npr.poisson(lamb * dt, (M + 1, I))
         for t in range(1, M + 1, 1):
             S[t] = S[t - 1] * (np.exp((r - rj - 0.5 * sigma ** 2) * dt
                                + sigma * math.sqrt(dt) * sn1[t])
                                + (np.exp(mu + delta * sn2[t]) - 1)
                                * poi[t])
             S[t] = np.maximum(S[t], 0)

In [94]: R_jd = np.sort(S[-1] - S0)

In [95]: plt.figure(figsize=(10, 6))
         plt.hist(R_jd, bins=50)
         plt.xlabel('absolute return')
         plt.ylabel('frequency');

Figure 12-19. Absolute profits and losses from simulation (jump diffusion)
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For this process and parameterization, the VaR over 30 days at the 90% level is
almost identical as with the geometric Brownian motion, while it is more than three
times as high at the 99.9% level (70 vs. 18.8 currency units):

In [96]: percs = [0.01, 0.1, 1., 2.5, 5.0, 10.0]
         var = scs.scoreatpercentile(R_jd, percs)
         print('%16s %16s' % ('Confidence Level', 'Value-at-Risk'))
         print(33 * '-')
         for pair in zip(percs, var):
             print('%16.2f %16.3f' % (100 - pair[0], -pair[1]))
         Confidence Level    Value-at-Risk
         ---------------------------------
                    99.99           76.520
                    99.90           69.396
                    99.00           55.974
                    97.50           46.405
                    95.00           24.198
                    90.00            8.836

This illustrates the problem of capturing the tail risk so often encountered in finan‐
cial markets by the standard VaR measure.

To further illustrate the point, Figure 12-20 lastly shows the VaR measures for both
cases in direct comparison graphically. As the plot reveals, the VaR measures behave
completely differently given a range of typical confidence levels:

In [97]: percs = list(np.arange(0.0, 10.1, 0.1))
         gbm_var = scs.scoreatpercentile(R_gbm, percs)
         jd_var = scs.scoreatpercentile(R_jd, percs)

In [98]: plt.figure(figsize=(10, 6))
         plt.plot(percs, gbm_var, 'b', lw=1.5, label='GBM')
         plt.plot(percs, jd_var, 'r', lw=1.5, label='JD')
         plt.legend(loc=4)
         plt.xlabel('100 - confidence level [%]')
         plt.ylabel('value-at-risk')
         plt.ylim(ymax=0.0);
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Figure 12-20. Value-at-risk for geometric Brownian motion and jump diffusion

Credit Valuation Adjustments
Other important risk measures are the credit value-at-risk (CVaR) and the credit val‐
uation adjustment (CVA), which is derived from the CVaR. Roughly speaking, CVaR
is a measure for the risk resulting from the possibility that a counterparty might not
be able to honor its obligations—for example, if the counterparty goes bankrupt. In
such a case there are two main assumptions to be made: the probability of default and
the (average) loss level.

To make it specific, consider again the benchmark setup of Black-Scholes-Merton
with the parameterization in the following code. In the simplest case, one considers a
fixed (average) loss level L and a fixed probability p of default (per year) of a counter‐
party. Using the Poisson distribution, default scenarios are generated as follows, tak‐
ing into account that a default can only occur once:

In [99]: S0 = 100.
         r = 0.05
         sigma = 0.2
         T = 1.
         I = 100000

In [100]: ST = S0 * np.exp((r - 0.5 * sigma ** 2) * T
                       + sigma * np.sqrt(T) * npr.standard_normal(I))

In [101]: L = 0.5  
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In [102]: p = 0.01  

In [103]: D = npr.poisson(p * T, I)  

In [104]: D = np.where(D > 1, 1, D)  

Defines the loss level.

Defines the probability of default.

Simulates default events.

Limits defaults to one such event.

Without default, the risk-neutral value of the future index level should be equal to the
current value of the asset today (up to differences resulting from numerical errors).
The CVaR and the present value of the asset, adjusted for the credit risk, are given as
follows:

In [105]: math.exp(-r * T) * np.mean(ST)  
Out[105]: 99.94767178982691

In [106]: CVaR = math.exp(-r * T) * np.mean(L * D * ST)  
          CVaR  
Out[106]: 0.4883560258963962

In [107]: S0_CVA = math.exp(-r * T) * np.mean((1 - L * D) * ST)  
          S0_CVA  
Out[107]: 99.45931576393053

In [108]: S0_adj = S0 - CVaR  
          S0_adj  
Out[108]: 99.5116439741036

Discounted average simulated value of the asset at T.

CVaR as the discounted average of the future losses in the case of a default.

Discounted average simulated value of the asset at T, adjusted for the simulated
losses from default.

Current price of the asset adjusted by the simulated CVaR.

In this particular simulation example, one observes roughly 1,000 losses due to credit
risk, which is to be expected given the assumed default probability of 1% and 100,000
simulated paths. Figure 12-21 shows the complete frequency distribution of the losses
due to a default. Of course, in the large majority of cases (i.e., in about 99,000 of the
100,000 cases) there is no loss to observe:
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In [109]: np.count_nonzero(L * D * ST)  
Out[109]: 978

In [110]: plt.figure(figsize=(10, 6))
          plt.hist(L * D * ST, bins=50)
          plt.xlabel('loss')
          plt.ylabel('frequency')
          plt.ylim(ymax=175);

Number of default events and therewith loss events.

Figure 12-21. Losses due to risk-neutrally expected default (stock)

Consider now the case of a European call option. Its value is about 10.4 currency
units at a strike of 100. The CVaR is about 5 cents given the same assumptions with
regard to probability of default and loss level:

In [111]: K = 100.
          hT = np.maximum(ST - K, 0)

In [112]: C0 = math.exp(-r * T) * np.mean(hT)  
          C0  
Out[112]: 10.396916492839354

In [113]: CVaR = math.exp(-r * T) * np.mean(L * D * hT)  
          CVaR  
Out[113]: 0.05159099858923533

In [114]: C0_CVA = math.exp(-r * T) * np.mean((1 - L * D) * hT)  

390 | Chapter 12: Stochastics



          C0_CVA  
Out[114]: 10.34532549425012

The Monte Carlo estimator value for the European call option.

The CVaR as the discounted average of the future losses in the case of a default.

The Monte Carlo estimator value for the European call option, adjusted for the
simulated losses from default.

Compared to the case of a regular asset, the option case has somewhat different char‐
acteristics. One only sees a little more than 500 losses due to a default, although there
are again 1,000 defaults in total. This results from the fact that the payoff of the
option at maturity has a high probability of being zero. Figure 12-22 shows that the
CVaR for the option has quite a different frequency distribution compared to the reg‐
ular asset case:

In [115]: np.count_nonzero(L * D * hT)  
Out[115]: 538

In [116]: np.count_nonzero(D)  
Out[116]: 978

In [117]: I - np.count_nonzero(hT)  
Out[117]: 44123

In [118]: plt.figure(figsize=(10, 6))
          plt.hist(L * D * hT, bins=50)
          plt.xlabel('loss')
          plt.ylabel('frequency')
          plt.ylim(ymax=350);

The number of losses due to default.

The number of defaults.

The number of cases for which the option expires worthless.
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Figure 12-22. Losses due to risk-neutrally expected default (call option)

Python Script
The following presents an implementation of central functions related to the Black-
Scholes-Merton model for the analytical pricing of European (call) options. For
details of the model, see Black and Scholes (1973) as well as Merton (1973). See
Appendix B for an alternative implementation based on a Python class.

#
# Valuation of European call options
# in Black-Scholes-Merton model
# incl. vega function and implied volatility estimation
# bsm_functions.py
#
# (c) Dr. Yves J. Hilpisch
# Python for Finance, 2nd ed.
#

def bsm_call_value(S0, K, T, r, sigma):
    ''' Valuation of European call option in BSM model.
    Analytical formula.

    Parameters
    ==========
    S0: float
        initial stock/index level
    K: float
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        strike price
    T: float
        maturity date (in year fractions)
    r: float
        constant risk-free short rate
    sigma: float
        volatility factor in diffusion term

    Returns
    =======
    value: float
        present value of the European call option
    '''
    from math import log, sqrt, exp
    from scipy import stats

    S0 = float(S0)
    d1 = (log(S0 / K) + (r + 0.5 * sigma ** 2) * T) / (sigma * sqrt(T))
    d2 = (log(S0 / K) + (r - 0.5 * sigma ** 2) * T) / (sigma * sqrt(T))
    # stats.norm.cdf --> cumulative distribution function
    #                    for normal distribution
    value = (S0 * stats.norm.cdf(d1, 0.0, 1.0) -
             K * exp(-r * T) * stats.norm.cdf(d2, 0.0, 1.0))
    return value

def bsm_vega(S0, K, T, r, sigma):
    ''' Vega of European option in BSM model.

    Parameters
    ==========
    S0: float
        initial stock/index level
    K: float
        strike price
    T: float
        maturity date (in year fractions)
    r: float
        constant risk-free short rate
    sigma: float
        volatility factor in diffusion term

    Returns
    =======
    vega: float
        partial derivative of BSM formula with respect
        to sigma, i.e. vega

    '''
    from math import log, sqrt
    from scipy import stats
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    S0 = float(S0)
    d1 = (log(S0 / K) + (r + 0.5 * sigma ** 2) * T) / (sigma * sqrt(T))
    vega = S0 * stats.norm.pdf(d1, 0.0, 1.0) * sqrt(T)
    return vega

# Implied volatility function

def bsm_call_imp_vol(S0, K, T, r, C0, sigma_est, it=100):
    ''' Implied volatility of European call option in BSM model.

    Parameters
    ==========
    S0: float
        initial stock/index level
    K: float
        strike price
    T: float
        maturity date (in year fractions)
    r: float
        constant risk-free short rate
    sigma_est: float
        estimate of impl. volatility
    it: integer
        number of iterations

    Returns
    =======
    simga_est: float
        numerically estimated implied volatility
    '''
    for i in range(it):
        sigma_est -= ((bsm_call_value(S0, K, T, r, sigma_est) - C0) /
                      bsm_vega(S0, K, T, r, sigma_est))
    return sigma_est

Conclusion
This chapter deals with methods and techniques important to the application of
Monte Carlo simulation in finance. In particular, it first shows how to generate
pseudo-random numbers based on different distribution laws. It proceeds with the
simulation of random variables and stochastic processes, which is important in many
financial areas. Two application areas are discussed in some depth in this chapter:
valuation of options with European and American exercise and the estimation of risk
measures like value-at-risk and credit valuation adjustments.

The chapter illustrates that Python in combination with NumPy is well suited to imple‐
menting even such computationally demanding tasks as the valuation of American
options by Monte Carlo simulation. This is mainly due to the fact that the majority of
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functions and classes of NumPy are implemented in C, which leads to considerable
speed advantages in general over pure Python code. A further benefit is the compact‐
ness and readability of the resulting code due to vectorized operations.

Further Resources
The original article introducing Monte Carlo simulation to finance is:

• Boyle, Phelim (1977). “Options: A Monte Carlo Approach.” Journal of Financial
Economics, Vol. 4, No. 4, pp. 322–338.

Other original papers cited in this chapter are (see also Chapter 18):

• Black, Fischer, and Myron Scholes (1973). “The Pricing of Options and Corpo‐
rate Liabilities.” Journal of Political Economy, Vol. 81, No. 3, pp. 638–659.

• Cox, John, Jonathan Ingersoll, and Stephen Ross (1985). “A Theory of the Term
Structure of Interest Rates.” Econometrica, Vol. 53, No. 2, pp. 385–407.

• Heston, Steven (1993). “A Closed-Form Solution for Options with Stochastic
Volatility with Applications to Bond and Currency Options.” The Review of
Financial Studies, Vol. 6, No. 2, 327–343.

• Merton, Robert (1973). “Theory of Rational Option Pricing.” Bell Journal of Eco‐
nomics and Management Science, Vol. 4, pp. 141–183.

• Merton, Robert (1976). “Option Pricing When the Underlying Stock Returns Are
Discontinuous.” Journal of Financial Economics, Vol. 3, No. 3, pp. 125–144.

The following books cover the topics of this chapter in more depth (however, the first
one does not cover technical implementation details):

• Glasserman, Paul (2004). Monte Carlo Methods in Financial Engineering. New
York: Springer.

• Hilpisch, Yves (2015). Derivatives Analytics with Python. Chichester, England:
Wiley Finance.

It took until the turn of the century for an efficient method to value American
options by Monte Carlo simulation to finally be published:

• Longstaff, Francis, and Eduardo Schwartz (2001). “Valuing American Options by
Simulation: A Simple Least Squares Approach.” Review of Financial Studies, Vol.
14, No. 1, pp. 113–147.
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A broad and in-depth treatment of credit risk is provided in:

• Duffie, Darrell, and Kenneth Singleton (2003). Credit Risk—Pricing, Measure‐
ment, and Management. Princeton, NJ: Princeton University Press.
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CHAPTER 13

Statistics

I can prove anything by statistics except the truth.
—George Canning

Statistics is a vast field, but the tools and results it provides have become indispensa‐
ble for finance. This explains the popularity of domain-specific languages like R in
the finance industry. The more elaborate and complex statistical models become, the
more important it is to have available easy-to-use and high-performing computa‐
tional solutions.

A single chapter in a book like this one cannot do justice to the richness and depth of
the field of statistics. Therefore, the approach—as in many other chapters—is to focus
on selected topics that seem of importance or that provide a good starting point when
it comes to the use of Python for the particular tasks at hand. The chapter has four
focal points:

“Normality Tests” on page 398
A large number of important financial models, like modern or mean-variance
portfolio theory (MPT) and the capital asset pricing model (CAPM), rest on the
assumption that returns of securities are normally distributed. Therefore, this
chapter presents approaches to test a given time series for normality of returns.

“Portfolio Optimization” on page 415
MPT can be considered one of the biggest successes of statistics in finance. Start‐
ing in the early 1950s with the work of pioneer Harry Markowitz, this theory
began to replace people’s reliance on judgment and experience with rigorous
mathematical and statistical methods when it comes to the investment of money
in financial markets. In that sense, it is maybe the first real quantitative model
and approach in finance.
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1 Another central assumption is the one of linearity. For example, financial markets are assumed, in general, to
exhibit a linear relationship between demand, say for shares of a stock, and the price to be paid for the shares.
In other words, markets are assumed, in general, to be perfectly liquid in the sense that varying demand does
not have any influence on the unit price for a financial instrument.

“Bayesian Statistics” on page 429
On a conceptual level, Bayesian statistics introduces the notion of beliefs of
agents and the updating of beliefs to statistics. When it comes to linear regression,
this might take the form of having a statistical distribution for regression param‐
eters instead of single point estimates (e.g., for the intercept and slope of the
regression line). Nowadays, Bayesian methods are widely used in finance, which
is why this section illustrates Bayesian methods based on some examples.

“Machine Learning” on page 444
Machine learning (or statistical learning) is based on advanced statistical meth‐
ods and is considered a subdiscipline of artificial intelligence (AI). Like statistics
itself, machine learning offers a rich set of approaches and models to learn from
data sets and create predictions based on what is learned. Different algorithms of
learning are distinguished, such as those for supervised learning or unsupervised
learning. The types of problems solved by the algorithms differ as well, such as
estimation or classification. The examples presented in this chapter fall in the cat‐
egory of supervised learning for classification.

Many aspects in this chapter relate to date and/or time information. Refer to Appen‐
dix A for an overview of handling such data with Python, NumPy, and pandas.

Normality Tests
The normal distribution can be considered the most important distribution in finance
and one of the major statistical building blocks of financial theory. Among others, the
following cornerstones of financial theory rest to a large extent on the assumption
that returns of a financial instrument are normally distributed:1

Portfolio theory
When stock returns are normally distributed, optimal portfolio choice can be
cast into a setting where only the (expected) mean return and the variance of the
returns (or the volatility) as well as the covariances between different stocks are
relevant for an investment decision (i.e., an optimal portfolio composition).

Capital asset pricing model
Again, when stock returns are normally distributed, prices of single stocks can be
elegantly expressed in linear relationship to a broad market index; the relation‐
ship is generally expressed by a measure for the co-movement of a single stock
with the market index called beta or β.
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Efficient markets hypothesis
An efficient market is a market where prices reflect all available information,
where “all” can be defined more narrowly or more widely (e.g., as in “all publicly
available” information vs. including also “only privately available” information).
If this hypothesis holds true, then stock prices fluctuate randomly and returns are
normally distributed.

Option pricing theory
Brownian motion is the benchmark model for the modeling of random price
movements of financial instruments; the famous Black-Scholes-Merton option
pricing formula uses a geometric Brownian motion as the model for a stock’s
random price fluctuations over time, leading to log-normally distributed prices
and normally distributed returns.

This by far nonexhaustive list underpins the importance of the normality assumption
in finance.

Benchmark Case
To set the stage for further analyses, the analysis starts with the geometric Brownian
motion as one of the canonical stochastic processes used in financial modeling. The
following can be said about the characteristics of paths from a geometric Brownian
motion S:

Normal log returns
Log returns log

St
Ss

= log St – log Ss between two times 0 < s < t are normally
distributed.

Log-normal values
At any time t > 0, the values St are log-normally distributed.

For what follows, the plotting setup is taken care of first. Then a number of Python
packages, including scipy.stats and statsmodels.api, are imported:

In [1]: import math
        import numpy as np
        import scipy.stats as scs
        import statsmodels.api as sm
        from pylab import mpl, plt

In [2]: plt.style.use('seaborn')
        mpl.rcParams['font.family'] = 'serif'
        %matplotlib inline

The following uses the function gen_paths() to generate sample Monte Carlo paths
for the geometric Brownian motion (see also Chapter 12):
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In [3]: def gen_paths(S0, r, sigma, T, M, I):
            ''' Generate Monte Carlo paths for geometric Brownian motion.

            Parameters
            ==========
            S0: float
                initial stock/index value
            r: float
                constant short rate
            sigma: float
                constant volatility
            T: float
                final time horizon
            M: int
                number of time steps/intervals
            I: int
                number of paths to be simulated

            Returns
            =======
            paths: ndarray, shape (M + 1, I)
                simulated paths given the parameters
            '''
            dt = T / M
            paths = np.zeros((M + 1, I))
            paths[0] = S0
            for t in range(1, M + 1):
                rand = np.random.standard_normal(I)
                rand = (rand - rand.mean()) / rand.std()  
                paths[t] = paths[t - 1] * np.exp((r - 0.5 * sigma ** 2) * dt +
                                                 sigma * math.sqrt(dt) * rand)  
            return paths

Matching first and second moment.

Vectorized Euler discretization of geometric Brownian motion.

The simulation is based on the parameterization for the Monte Carlo simulation as
shown here, generating, in combination with the function gen_paths(), 250,000
paths with 50 time steps each. Figure 13-1 shows the first 10 simulated paths:

In [4]: S0 = 100.  
        r = 0.05  
        sigma = 0.2  
        T = 1.0  
        M = 50  
        I = 250000  
        np.random.seed(1000)

In [5]: paths = gen_paths(S0, r, sigma, T, M, I)

In [6]: S0 * math.exp(r * T)  
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Out[6]: 105.12710963760242

In [7]: paths[-1].mean()  
Out[7]: 105.12645392478755

In [8]: plt.figure(figsize=(10, 6))
        plt.plot(paths[:, :10])
        plt.xlabel('time steps')
        plt.ylabel('index level');

Initial value for simulated processes.

Constant short rate.

Constant volatility factor.

Time horizon in year fractions.

Number of time intervals.

Number of simulated processes.

Expected value and average simulated value.

Figure 13-1. Ten simulated paths of geometric Brownian motion
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The main interest is in the distribution of the log returns. To this end, an ndarray
object with all the log returns is created based on the simulated paths. Here, a single
simulated path and the resulting log returns are shown:

In [9]: paths[:, 0].round(4)
Out[9]: array([100.    ,  97.821 ,  98.5573, 106.1546, 105.899 ,  99.8363,
               100.0145, 102.6589, 105.6643, 107.1107, 108.7943, 108.2449,
               106.4105, 101.0575, 102.0197, 102.6052, 109.6419, 109.5725,
               112.9766, 113.0225, 112.5476, 114.5585, 109.942 , 112.6271,
               112.7502, 116.3453, 115.0443, 113.9586, 115.8831, 117.3705,
               117.9185, 110.5539, 109.9687, 104.9957, 108.0679, 105.7822,
               105.1585, 104.3304, 108.4387, 105.5963, 108.866 , 108.3284,
               107.0077, 106.0034, 104.3964, 101.0637,  98.3776,  97.135 ,
                95.4254,  96.4271,  96.3386])

In [10]: log_returns = np.log(paths[1:] / paths[:-1])

In [11]: log_returns[:, 0].round(4)
Out[11]: array([-0.022 ,  0.0075,  0.0743, -0.0024, -0.059 ,  0.0018,  0.0261,
                 0.0289,  0.0136,  0.0156, -0.0051, -0.0171, -0.0516,  0.0095,
                 0.0057,  0.0663, -0.0006,  0.0306,  0.0004, -0.0042,  0.0177,
                -0.0411,  0.0241,  0.0011,  0.0314, -0.0112, -0.0095,  0.0167,
                 0.0128,  0.0047, -0.0645, -0.0053, -0.0463,  0.0288, -0.0214,
                -0.0059, -0.0079,  0.0386, -0.0266,  0.0305, -0.0049, -0.0123,
                -0.0094, -0.0153, -0.0324, -0.0269, -0.0127, -0.0178,  0.0104,
                -0.0009])

This is something one might experience in financial markets as well: days when one
makes a positive return on an investment and other days when one is losing money
relative to the most recent wealth position.

The function print_statistics() is a wrapper function for the scs.describe()
function from the scipy.stats subpackage. It mainly generates a better
(human-)readable output for such statistics as the mean, the skewness, or the kurtosis
of a given (historical or simulated) data set:

In [13]: def print_statistics(array):
             ''' Prints selected statistics.

             Parameters
             ==========
             array: ndarray
                 object to generate statistics on
             '''
             sta = scs.describe(array)
             print('%14s %15s' % ('statistic', 'value'))
             print(30 * '-')
             print('%14s %15.5f' % ('size', sta[0]))
             print('%14s %15.5f' % ('min', sta[1][0]))
             print('%14s %15.5f' % ('max', sta[1][1]))
             print('%14s %15.5f' % ('mean', sta[2]))
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2 For the fundamentals of stochastic and Itô calculus needed in this context, refer to Glasserman (2004).

             print('%14s %15.5f' % ('std', np.sqrt(sta[3])))
             print('%14s %15.5f' % ('skew', sta[4]))
             print('%14s %15.5f' % ('kurtosis', sta[5]))

In [14]: print_statistics(log_returns.flatten())
              statistic           value
         ------------------------------
                   size  12500000.00000
                    min        -0.15664
                    max         0.15371
                   mean         0.00060
                    std         0.02828
                   skew         0.00055
               kurtosis         0.00085

In [15]: log_returns.mean() * M + 0.5 * sigma ** 2  
Out[15]: 0.05000000000000005

In [16]: log_returns.std() * math.sqrt(M)  
Out[16]: 0.20000000000000015

Annualized mean log return after correction for the Itô term.2

Annualized volatility; i.e., annualized standard deviation of log returns.

The data set in this case consists of 12,500,000 data points with the values mainly
lying between +/– 0.15. One would expect annualized values of 0.05 for the mean
return (after correcting for the Itô term) and 0.2 for the standard deviation (volatil‐
ity). The annualized values almost match these values perfectly (multiply the mean
value by 50 and correct it for the Itô term; multiply the standard deviation by 50).
One reason for the good match is the use of moment matching for variance reduction
when drawing the random numbers (see “Variance Reduction” on page 372).

Figure 13-2 compares the frequency distribution of the simulated log returns with the
probability density function (PDF) of the normal distribution given the parameteri‐
zations for r and sigma. The function used is norm.pdf() from the scipy.stats sub‐
package. There is obviously quite a good fit:

In [17]: plt.figure(figsize=(10, 6))
         plt.hist(log_returns.flatten(), bins=70, density=True,
                  label='frequency', color='b')
         plt.xlabel('log return')
         plt.ylabel('frequency')
         x = np.linspace(plt.axis()[0], plt.axis()[1])
         plt.plot(x, scs.norm.pdf(x, loc=r / M, scale=sigma / np.sqrt(M)),
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                  'r', lw=2.0, label='pdf')  
         plt.legend();

Plots the PDF for the assumed parameters scaled to the interval length.

Figure 13-2. Histogram of log returns of geometric Brownian motion and normal den‐
sity function

Comparing a frequency distribution (histogram) with a theoretical PDF is not the
only way to graphically “test” for normality. So-called quantile-quantile (QQ) plots
are also well suited for this task. Here, sample quantile values are compared to theo‐
retical quantile values. For normally distributed sample data sets, such a plot might
look like Figure 13-3, with the absolute majority of the quantile values (dots) lying on
a straight line:

In [18]: sm.qqplot(log_returns.flatten()[::500], line='s')
         plt.xlabel('theoretical quantiles')
         plt.ylabel('sample quantiles');
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Figure 13-3. Quantile-quantile plot for log returns of geometric Brownian motion

However appealing the graphical approaches might be, they generally cannot replace
more rigorous testing procedures. The function normality_tests() used in the next
example combines three different statistical tests:

Skewness test (skewtest())
This tests whether the skew of the sample data is “normal” (i.e., has a value close
enough to zero).

Kurtosis test (kurtosistest())
Similarly, this tests whether the kurtosis of the sample data is “normal” (again,
close enough to zero).

Normality test (normaltest())
This combines the other two test approaches to test for normality.

The test values indicate that the log returns of the geometric Brownian motion are
indeed normally distributed—i.e., they show p-values of 0.05 or above:

In [19]: def normality_tests(arr):
             ''' Tests for normality distribution of given data set.

             Parameters
             ==========
             array: ndarray
                 object to generate statistics on
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             '''
             print('Skew of data set  %14.3f' % scs.skew(arr))
             print('Skew test p-value %14.3f' % scs.skewtest(arr)[1])
             print('Kurt of data set  %14.3f' % scs.kurtosis(arr))
             print('Kurt test p-value %14.3f' % scs.kurtosistest(arr)[1])
             print('Norm test p-value %14.3f' % scs.normaltest(arr)[1])

In [20]: normality_tests(log_returns.flatten())  
         Skew of data set           0.001
         Skew test p-value          0.430
         Kurt of data set           0.001
         Kurt test p-value          0.541
         Norm test p-value          0.607

All p-values are well above 0.05.

Finally, a check whether the end-of-period values are indeed log-normally dis‐
tributed. This boils down to a normality test, since one only has to transform the data
by applying the log function to it to then arrive at normally distributed values (or
maybe not). Figure 13-4 plots both the log-normally distributed end-of-period values
and the transformed ones (“log index level”):

In [21]: f, (ax1, ax2) = plt.subplots(1, 2, figsize=(10, 6))
         ax1.hist(paths[-1], bins=30)
         ax1.set_xlabel('index level')
         ax1.set_ylabel('frequency')
         ax1.set_title('regular data')
         ax2.hist(np.log(paths[-1]), bins=30)
         ax2.set_xlabel('log index level')
         ax2.set_title('log data')
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Figure 13-4. Histogram of simulated end-of-period index levels for geometric Brownian
motion

The statistics for the data set show expected behavior—for example, a mean value
close to 105. The log index level values have skew and kurtosis values close to zero
and they show high p-values, providing strong support for the normal distribution
hypothesis:

In [22]: print_statistics(paths[-1])
              statistic           value
         ------------------------------
                   size    250000.00000
                    min        42.74870
                    max       233.58435
                   mean       105.12645
                    std        21.23174
                   skew         0.61116
               kurtosis         0.65182

In [23]: print_statistics(np.log(paths[-1]))
              statistic           value
         ------------------------------
                   size    250000.00000
                    min         3.75534
                    max         5.45354
                   mean         4.63517
                    std         0.19998
                   skew        -0.00092
               kurtosis        -0.00327
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In [24]: normality_tests(np.log(paths[-1]))
         Skew of data set          -0.001
         Skew test p-value          0.851
         Kurt of data set          -0.003
         Kurt test p-value          0.744
         Norm test p-value          0.931

Figure 13-5 compares again the frequency distribution with the PDF of the normal
distribution, showing a pretty good fit (as now is, of course, to be expected):

In [25]: plt.figure(figsize=(10, 6))
         log_data = np.log(paths[-1])
         plt.hist(log_data, bins=70, density=True,
                  label='observed', color='b')
         plt.xlabel('index levels')
         plt.ylabel('frequency')
         x = np.linspace(plt.axis()[0], plt.axis()[1])
         plt.plot(x, scs.norm.pdf(x, log_data.mean(), log_data.std()),
                  'r', lw=2.0, label='pdf')
         plt.legend();

Figure 13-5. Histogram of log index levels of geometric Brownian motion and normal
density function

Figure 13-6 also supports the hypothesis that the log index levels are normally
distributed:

In [26]: sm.qqplot(log_data, line='s')
         plt.xlabel('theoretical quantiles')
         plt.ylabel('sample quantiles');
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Figure 13-6. Quantile-quantile plot for log index levels of geometric Brownian motion

Normality

The normality assumption with regard to the uncertain returns of
financial instruments is central to a number of financial theories.
Python provides efficient statistical and graphical means to test
whether time series data is normally distributed or not.

Real-World Data
This section analyzes four historical financial time series, two for technology stocks
and two for exchange traded funds (ETFs):

• APPL.O: Apple Inc. stock price
• MSFT.O: Microsoft Inc. stock price
• SPY: SPDR S&P 500 ETF Trust
• GLD: SPDR Gold Trust

The data management tool of choice is pandas (see Chapter 8). Figure 13-7 shows the
normalized prices over time:

In [27]: import pandas as pd

Normality Tests | 409



In [28]: raw = pd.read_csv('../../source/tr_eikon_eod_data.csv',
                          index_col=0, parse_dates=True).dropna()

In [29]: symbols = ['SPY', 'GLD', 'AAPL.O', 'MSFT.O']

In [30]: data = raw[symbols]
         data = data.dropna()

In [31]: data.info()
         <class 'pandas.core.frame.DataFrame'>
         DatetimeIndex: 2138 entries, 2010-01-04 to 2018-06-29
         Data columns (total 4 columns):
         SPY       2138 non-null float64
         GLD       2138 non-null float64
         AAPL.O    2138 non-null float64
         MSFT.O    2138 non-null float64
         dtypes: float64(4)
         memory usage: 83.5 KB

In [32]: data.head()
Out[32]:                SPY     GLD     AAPL.O  MSFT.O
         Date
         2010-01-04  113.33  109.80  30.572827  30.950
         2010-01-05  113.63  109.70  30.625684  30.960
         2010-01-06  113.71  111.51  30.138541  30.770
         2010-01-07  114.19  110.82  30.082827  30.452
         2010-01-08  114.57  111.37  30.282827  30.660

In [33]: (data / data.iloc[0] * 100).plot(figsize=(10, 6))

Figure 13-7. Normalized prices of financial instruments over time
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Figure 13-8 shows the log returns of the financial instruments as histograms:

In [34]: log_returns = np.log(data / data.shift(1))
         log_returns.head()
Out[34]:                  SPY       GLD    AAPL.O    MSFT.O
         Date
         2010-01-04       NaN       NaN       NaN       NaN
         2010-01-05  0.002644 -0.000911  0.001727  0.000323
         2010-01-06  0.000704  0.016365 -0.016034 -0.006156
         2010-01-07  0.004212 -0.006207 -0.001850 -0.010389
         2010-01-08  0.003322  0.004951  0.006626  0.006807

In [35]: log_returns.hist(bins=50, figsize=(10, 8));

Figure 13-8. Histograms of log returns for financial instruments

As a next step, consider the different statistics for the time series data sets. The kurto‐
sis values seem to be especially far from normal for all four data sets:

In [36]: for sym in symbols:
             print('\nResults for symbol {}'.format(sym))
             print(30 * '-')
             log_data = np.array(log_returns[sym].dropna())
             print_statistics(log_data)  
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         Results for symbol SPY
         ------------------------------
              statistic           value
         ------------------------------
                   size      2137.00000
                    min        -0.06734
                    max         0.04545
                   mean         0.00041
                    std         0.00933
                   skew        -0.52189
               kurtosis         4.52432

         Results for symbol GLD
         ------------------------------
              statistic           value
         ------------------------------
                   size      2137.00000
                    min        -0.09191
                    max         0.04795
                   mean         0.00004
                    std         0.01020
                   skew        -0.59934
               kurtosis         5.68423

         Results for symbol AAPL.O
         ------------------------------
              statistic           value
         ------------------------------
                   size      2137.00000
                    min        -0.13187
                    max         0.08502
                   mean         0.00084
                    std         0.01591
                   skew        -0.23510
               kurtosis         4.78964

         Results for symbol MSFT.O
         ------------------------------
              statistic           value
         ------------------------------
                   size      2137.00000
                    min        -0.12103
                    max         0.09941
                   mean         0.00054
                    std         0.01421
                   skew        -0.09117
               kurtosis         7.29106

Statistics for time series of financial instruments.
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Figure 13-9 shows the QQ plot for the SPY ETF. Obviously, the sample quantile val‐
ues do not lie on a straight line, indicating “non-normality.” On the left and right
sides there are many values that lie well below the line and well above the line, respec‐
tively. In other words, the time series data exhibits fat tails. This term refers to a (fre‐
quency) distribution where large negative and positive values are observed more
often than a normal distribution would imply. The same conclusions can be drawn
from Figure 13-10, which presents the data for the Microsoft stock. There also seems
to be evidence for a fat-tailed distribution:

In [37]: sm.qqplot(log_returns['SPY'].dropna(), line='s')
         plt.title('SPY')
         plt.xlabel('theoretical quantiles')
         plt.ylabel('sample quantiles');
In [38]: sm.qqplot(log_returns['MSFT.O'].dropna(), line='s')
         plt.title('MSFT.O')
         plt.xlabel('theoretical quantiles')
         plt.ylabel('sample quantiles');

Figure 13-9. Quantile-quantile plot for SPY log returns
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Figure 13-10. Quantile-quantile plot for MSFT.O log returns

This finally leads to the statistical normality tests:

In [39]: for sym in symbols:
             print('\nResults for symbol {}'.format(sym))
             print(32 * '-')
             log_data = np.array(log_returns[sym].dropna())
             normality_tests(log_data)  

         Results for symbol SPY
         --------------------------------
         Skew of data set          -0.522
         Skew test p-value          0.000
         Kurt of data set           4.524
         Kurt test p-value          0.000
         Norm test p-value          0.000

         Results for symbol GLD
         --------------------------------
         Skew of data set          -0.599
         Skew test p-value          0.000
         Kurt of data set           5.684
         Kurt test p-value          0.000
         Norm test p-value          0.000

         Results for symbol AAPL.O
         --------------------------------
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3 See Markowitz (1952).

         Skew of data set          -0.235
         Skew test p-value          0.000
         Kurt of data set           4.790
         Kurt test p-value          0.000
         Norm test p-value          0.000

         Results for symbol MSFT.O
         --------------------------------
         Skew of data set          -0.091
         Skew test p-value          0.085
         Kurt of data set           7.291
         Kurt test p-value          0.000
         Norm test p-value          0.000

Normality test results for the times series of the financial instruments.

The p-values of the different tests are all zero, strongly rejecting the test hypothesis that
the different sample data sets are normally distributed. This shows that the normal
assumption for stock market returns and other asset classes—as, for example,
embodied in the geometric Brownian motion model—cannot be justified in general
and that one might have to use richer models that are able to generate fat tails (e.g.,
jump diffusion models or models with stochastic volatility).

Portfolio Optimization
Modern or mean-variance portfolio theory is a major cornerstone of financial theory.
Based on this theoretical breakthrough the Nobel Prize in Economics was awarded to
its inventor, Harry Markowitz, in 1990. Although formulated in the 1950s, it is still a
theory taught to finance students and applied in practice today (often with some
minor or major modifications).3 This section illustrates the fundamental principles of
the theory.

Chapter 5 in the book by Copeland, Weston, and Shastri (2005) provides an intro‐
duction to the formal topics associated with MPT. As pointed out previously, the
assumption of normally distributed returns is fundamental to the theory:

By looking only at mean and variance, we are necessarily assuming that no other statis‐
tics are necessary to describe the distribution of end-of-period wealth. Unless investors
have a special type of utility function (quadratic utility function), it is necessary to
assume that returns have a normal distribution, which can be completely described by
mean and variance.
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The Data
The analysis and examples that follow use the same financial instruments as before.
The basic idea of MPT is to make use of diversification to achieve a minimal portfolio
risk given a target return level or a maximum portfolio return given a certain level of
risk. One would expect such diversification effects for the right combination of a
larger number of assets and a certain diversity in the assets. However, to convey the
basic ideas and to show typical effects, four financial instruments shall suffice.
Figure 13-11 shows the frequency distribution of the log returns for the financial
instruments:

In [40]: symbols = ['AAPL.O', 'MSFT.O', 'SPY', 'GLD']  

In [41]: noa = len(symbols)  

In [42]: data = raw[symbols]

In [43]: rets = np.log(data / data.shift(1))

In [44]: rets.hist(bins=40, figsize=(10, 8));

Four financial instruments for portfolio composition.

Number of financial instruments defined.

The covariance matrix for the financial instruments to be invested in is the central
piece of the portfolio selection process. pandas has a built-in method to generate the
covariance matrix on which the same scaling factor is applied:

In [45]: rets.mean() * 252  
Out[45]: AAPL.O    0.212359
         MSFT.O    0.136648
         SPY       0.102928
         GLD       0.009141
         dtype: float64

In [46]: rets.cov() * 252  
Out[46]:           AAPL.O    MSFT.O       SPY       GLD
         AAPL.O  0.063773  0.023427  0.021039  0.001513
         MSFT.O  0.023427  0.050917  0.022244 -0.000347
         SPY     0.021039  0.022244  0.021939  0.000062
         GLD     0.001513 -0.000347  0.000062  0.026209

Annualized mean returns.

Annualized covariance matrix.
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Figure 13-11. Histograms of log returns of financial instruments

The Basic Theory
In what follows, it is assumed that an investor is not allowed to set up short positions
in a financial instrument. Only long positions are allowed, which implies that 100%
of the investor’s wealth has to be divided among the available instruments in such a
way that all positions are long (positive) and that the positions add up to 100%. Given
the four instruments, one could, for example, invest equal amounts into every such
instrument—i.e., 25% of the available wealth in each. The following code generates
four uniformly distributed random numbers between 0 and 1 and then normalizes
the values such that the sum of all values equals 1:

In [47]: weights = np.random.random(noa)  
         weights /= np.sum(weights)  

In [48]: weights
Out[48]: array([0.07650728, 0.06021919, 0.63364218, 0.22963135])

In [49]: weights.sum()
Out[49]: 1.0
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Random portfolio weights …

… normalized to 1 or 100%.

As verified here, the weights indeed add up to 1; i.e., ∑I wi = 1, where I is the number
of financial instruments and wi > 0 is the weight of financial instrument i. Equation
13-1 provides the formula for the expected portfolio return given the weights for the
single instruments. This is an expected portfolio return in the sense that historical
mean performance is assumed to be the best estimator for future (expected) perfor‐
mance. Here, the ri are the state-dependent future returns (vector with return values
assumed to be normally distributed) and μi is the expected return for instrument i.
Finally, wT is the transpose of the weights vector and μ is the vector of the expected
security returns.

Equation 13-1. General formula for expected portfolio return

μp = E(∑
I

wiri)

= ∑
I

wiE(ri)

= ∑
I

wiμi

= w T μ

Translated into Python this boils down to a single line of code including annualiza‐
tion:

In [50]: np.sum(rets.mean() * weights) * 252  
Out[50]: 0.09179459482057793

Annualized portfolio return given the portfolio weights.

The second object of importance in MPT is the expected portfolio variance. The cova‐
riance between two securities is defined by σij = σ ji = E(ri – μi)(rj – μj). The variance
of a security is the special case of the covariance with itself: σi

2 = E((ri – μi)2).
Figure 13-12 provides the covariance matrix for a portfolio of securities (assuming an
equal weight of 1 for every security).
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Figure 13-12. Portfolio covariance matrix

Equipped with the portfolio covariance matrix, Equation 13-2 then provides the for‐
mula for the expected portfolio variance.

Equation 13-2. General formula for expected portfolio variance

σp
2 = E((r – μ)2)

= ∑
i∈I

∑
j∈I

wiwjσij

= w T Σw

In Python, this all again boils down to a single line of code, making heavy use of
NumPy vectorization capabilities. The np.dot() function gives the dot product of two
vectors/matrices. The T attribute or transpose() method gives the transpose of a
vector or matrix. Given the portfolio variance, the (expected) portfolio standard devi‐
ation or volatility σp = σp

2 is then only one square root away:

In [51]: np.dot(weights.T, np.dot(rets.cov() * 252, weights))  
Out[51]: 0.014763288666485574

In [52]: math.sqrt(np.dot(weights.T, np.dot(rets.cov() * 252, weights)))  
Out[52]: 0.12150427427249452

Annualized portfolio variance given the portfolio weights.

Annualized portfolio volatility given the portfolio weights.

Python and Vectorization

The MPT example shows how efficient it is with Python to trans‐
late mathematical concepts, like portfolio return or portfolio var‐
iance, into executable, vectorized code (an argument made in
Chapter 1).
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This mainly completes the tool set for mean-variance portfolio selection. Of para‐
mount interest to investors is what risk-return profiles are possible for a given set of
financial instruments, and their statistical characteristics. To this end, the following
implements a Monte Carlo simulation (see Chapter 12) to generate random portfolio
weight vectors on a larger scale. For every simulated allocation, the code records the
resulting expected portfolio return and variance. To simplify the code, two functions,
port_ret() and port_vol(), are defined:

In [53]: def port_ret(weights):
             return np.sum(rets.mean() * weights) * 252

In [54]: def port_vol(weights):
             return np.sqrt(np.dot(weights.T, np.dot(rets.cov() * 252, weights)))

In [55]: prets = []
         pvols = []
         for p in range (2500):  
             weights = np.random.random(noa)  
             weights /= np.sum(weights)  
             prets.append(port_ret(weights))  
             pvols.append(port_vol(weights))  
         prets = np.array(prets)
         pvols = np.array(pvols)

Monte Carlo simulation of portfolio weights.

Collects the resulting statistics in list objects.

Figure 13-13 illustrates the results of the Monte Carlo simulation. In addition, it pro‐
vides results for the Sharpe ratio, defined as SR ≡

μp – rf
σp

—i.e., the expected excess
return of the portfolio over the risk-free short rate rf divided by the expected standard
deviation of the portfolio. For simplicity, rf ≡ 0 is assumed:

In [56]: plt.figure(figsize=(10, 6))
         plt.scatter(pvols, prets, c=prets / pvols,
                     marker='o', cmap='coolwarm')
         plt.xlabel('expected volatility')
         plt.ylabel('expected return')
         plt.colorbar(label='Sharpe ratio');
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4 An alternative to np.sum(x) – 1 would be to write np.sum(x) == 1, taking into account that with Python the
Boolean True value equals 1 and the False value equals 0.

Figure 13-13. Expected return and volatility for random portfolio weights

It is clear by inspection of Figure 13-13 that not all weight distributions perform well
when measured in terms of mean and volatility. For example, for a fixed risk level of,
say, 15%, there are multiple portfolios that all show different returns. As an investor,
one is generally interested in the maximum return given a fixed risk level or the mini‐
mum risk given a fixed return expectation. This set of portfolios then makes up the
so-called efficient frontier. This is derived later in this section.

Optimal Portfolios
This minimization function is quite general and allows for equality constraints,
inequality constraints, and numerical bounds for the parameters.

First, the maximization of the Sharpe ratio. Formally, the negative value of the Sharpe
ratio is minimized to derive at the maximum value and the optimal portfolio compo‐
sition. The constraint is that all parameters (weights) add up to 1. This can be formu‐
lated as follows using the conventions of the minimize() function.4 The parameter
values (weights) are also bound to be between 0 and 1. These values are provided to
the minimization function as a tuple of tuples.
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The only input that is missing for a call of the optimization function is a starting
parameter list (initial guess for the weights vector). An equal distribution of weights
will do:

In [57]: import scipy.optimize as sco

In [58]: def min_func_sharpe(weights):  
             return -port_ret(weights) / port_vol(weights)  

In [59]: cons = ({'type': 'eq', 'fun': lambda x:  np.sum(x) - 1})  

In [60]: bnds = tuple((0, 1) for x in range(noa))  

In [61]: eweights = np.array(noa * [1. / noa,])  
         eweights  
Out[61]: array([0.25, 0.25, 0.25, 0.25])

In [62]: min_func_sharpe(eweights)
Out[62]: -0.8436203363155397

Function to be minimized.

Equality constraint.

Bounds for the parameters.

Equal weights vector.

Calling the function returns more than just the optimal parameter values. The results
are stored in an object called opts. The main interest lies in getting the optimal port‐
folio composition. To this end, one can access the results object by providing the key
of interest; i.e., x in this case:

In [63]: %%time
         opts = sco.minimize(min_func_sharpe, eweights,
                             method='SLSQP', bounds=bnds,
                             constraints=cons)  
         CPU times: user 67.6 ms, sys: 1.94 ms, total: 69.6 ms
         Wall time: 75.2 ms

In [64]: opts  
Out[64]:      fun: -0.8976673894052725
         jac: array([ 8.96826386e-05,  8.30739737e-05, -2.45958567e-04,
          1.92895532e-05])
          message: 'Optimization terminated successfully.'
             nfev: 36
              nit: 6
             njev: 6
           status: 0
          success: True
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                x: array([0.51191354, 0.19126414, 0.25454109, 0.04228123])

In [65]: opts['x'].round(3)  
Out[65]: array([0.512, 0.191, 0.255, 0.042])

In [66]: port_ret(opts['x']).round(3)  
Out[66]: 0.161

In [67]: port_vol(opts['x']).round(3)  
Out[67]: 0.18

In [68]: port_ret(opts['x']) / port_vol(opts['x'])  
Out[68]: 0.8976673894052725

The optimization (i.e., minimization of function min_func_sharpe()).

The results from the optimization.

The optimal portfolio weights.

The resulting portfolio return.

The resulting portfolio volatility.

The maximum Sharpe ratio.

Next, the minimization of the variance of the portfolio. This is the same as minimiz‐
ing the volatility:

In [69]: optv = sco.minimize(port_vol, eweights,
                             method='SLSQP', bounds=bnds,
                             constraints=cons)  

In [70]: optv
Out[70]:      fun: 0.1094215526341138
              jac: array([0.11098004, 0.10948556, 0.10939826, 0.10944918])
          message: 'Optimization terminated successfully.'
             nfev: 54
              nit: 9
             njev: 9
           status: 0
          success: True
         x: array([1.62630326e-18, 1.06170720e-03, 5.43263079e-01,
          4.55675214e-01])

In [71]: optv['x'].round(3)
Out[71]: array([0.   , 0.001, 0.543, 0.456])

In [72]: port_vol(optv['x']).round(3)
Out[72]: 0.109
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In [73]: port_ret(optv['x']).round(3)
Out[73]: 0.06

In [74]: port_ret(optv['x']) / port_vol(optv['x'])
Out[74]: 0.5504173653075624

The minimization of the portfolio volatility.

This time, the portfolio is made up of only three financial instruments. This portfolio
mix leads to the so-called minimum volatility or minimum variance portfolio.

Efficient Frontier
The derivation of all optimal portfolios—i.e., all portfolios with minimum volatility
for a given target return level (or all portfolios with maximum return for a given risk
level)—is similar to the previous optimizations. The only difference is that one has to
iterate over multiple starting conditions.

The approach taken is to fix a target return level and to derive for each such level
those portfolio weights that lead to the minimum volatility value. For the optimiza‐
tion, this leads to two conditions: one for the target return level, tret, and one for the
sum of the portfolio weights as before. The boundary values for each parameter stay
the same. When iterating over different target return levels (trets), one condition for
the minimization changes. That is why the constraints dictionary is updated during
every loop:

In [75]: cons = ({'type': 'eq', 'fun': lambda x:  port_ret(x) - tret},
                 {'type': 'eq', 'fun': lambda x:  np.sum(x) - 1})  

In [76]: bnds = tuple((0, 1) for x in weights)

In [77]: %%time
         trets = np.linspace(0.05, 0.2, 50)
         tvols = []
         for tret in trets:
             res = sco.minimize(port_vol, eweights, method='SLSQP',
                                bounds=bnds, constraints=cons)  
             tvols.append(res['fun'])
         tvols = np.array(tvols)
         CPU times: user 2.6 s, sys: 13.1 ms, total: 2.61 s
         Wall time: 2.66 s

The two binding constraints for the efficient frontier.

The minimization of portfolio volatility for different target returns.

Figure 13-14 shows the optimization results. The thick line indicates the optimal
portfolios given a certain target return; the dots are, as before, the random portfolios.
In addition, the figure shows two larger stars, one for the minimum volatility/
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variance portfolio (the leftmost portfolio) and one for the portfolio with the maxi‐
mum Sharpe ratio:

In [78]: plt.figure(figsize=(10, 6))
         plt.scatter(pvols, prets, c=prets / pvols,
                     marker='.', alpha=0.8, cmap='coolwarm')
         plt.plot(tvols, trets, 'b', lw=4.0)
         plt.plot(port_vol(opts['x']), port_ret(opts['x']),
                  'y*', markersize=15.0)
         plt.plot(port_vol(optv['x']), port_ret(optv['x']),
                  'r*', markersize=15.0)
         plt.xlabel('expected volatility')
         plt.ylabel('expected return')
         plt.colorbar(label='Sharpe ratio')

Figure 13-14. Minimum risk portfolios for given return levels (efficient frontier)

The efficient frontier is comprised of all optimal portfolios with a higher return than
the absolute minimum variance portfolio. These portfolios dominate all other portfo‐
lios in terms of expected returns given a certain risk level.

Capital Market Line
In addition to risky financial instruments like stocks or commodities (such as gold),
there is in general one universal, riskless investment opportunity available: cash or
cash accounts. In an idealized world, money held in a cash account with a large bank
can be considered riskless (e.g., through public deposit insurance schemes). The
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downside is that such a riskless investment generally yields only a small return, some‐
times close to zero.

However, taking into account such a riskless asset enhances the efficient investment
opportunity set for investors considerably. The basic idea is that investors first deter‐
mine an efficient portfolio of risky assets and then add the riskless asset to the mix.
By adjusting the proportion of the investor’s wealth to be invested in the riskless asset
it is possible to achieve any risk-return profile that lies on the straight line (in the
risk-return space) between the riskless asset and the efficient portfolio.

Which efficient portfolio (out of the many options) is to be taken to invest in opti‐
mally? It is the one portfolio where the tangent line of the efficient frontier goes
exactly through the risk-return point of the riskless portfolio. For example, consider a
riskless interest rate of rf = 0.01. The portfolio is to be found on the efficient frontier
for which the tangent goes through the point (σf , rf ) = (0, 0.01) in risk-return space.

For the calculations that follow, a functional approximation and the first derivative
for the efficient frontier are used. Cubic splines interpolation provides such a differ‐
entiable functional approximation (see Chapter 11). For the spline interpolation, only
those portfolios from the efficient frontier are used. Via this numerical approach it is
possible to define a continuously differentiable function f(x) for the efficient frontier
and the respective first derivative function df(x):

In [79]: import scipy.interpolate as sci

In [80]: ind = np.argmin(tvols)  
         evols = tvols[ind:]  
         erets = trets[ind:]  

In [81]: tck = sci.splrep(evols, erets)  

In [82]: def f(x):
             ''' Efficient frontier function (splines approximation). '''
             return sci.splev(x, tck, der=0)
         def df(x):
             ''' First derivative of efficient frontier function. '''
             return sci.splev(x, tck, der=1)

Index position of minimum volatility portfolio.

Relevant portfolio volatility and return values.

Cubic splines interpolation on these values.

What is now to be derived is a linear function t(x) = a + b · x representing the line
that passes through the riskless asset in risk-return space and that is tangent to the
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efficient frontier. Equation 13-3 describes all three conditions that the function t(x)
needs to satisfy.

Equation 13-3. Mathematical conditions for capital market line
t(x) = a + b · x
t(0) = rf ⇔ a = rf

t(x) = f (x) ⇔ a + b · x = f (x)
t '(x) = f '(x) ⇔ b = f '(x)

Since there is no closed formula for the efficient frontier or the first derivative of it,
one has to solve the system of equations in Equation 13-3 numerically. To this end,
define a Python function that returns the values of all three equations given the
parameter set p = (a, b, x).

The function sco.fsolve() from scipy.optimize is capable of solving such a system
of equations. In addition to the function equations(), an initial parameterization is
provided. Note that success or failure of the optimization might depend on the initial
parameterization, which therefore has to be chosen carefully—generally by a combi‐
nation of educated guesses with trial and error:

In [83]: def equations(p, rf=0.01):
             eq1 = rf - p[0]  
             eq2 = rf + p[1] * p[2] - f(p[2])  
             eq3 = p[1] - df(p[2])  
             return eq1, eq2, eq3

In [84]: opt = sco.fsolve(equations, [0.01, 0.5, 0.15])  

In [85]: opt  
Out[85]: array([0.01      , 0.84470952, 0.19525391])

In [86]: np.round(equations(opt), 6)  
Out[86]: array([ 0.,  0., -0.])

The equations describing the capital market line (CML).

Solving these equations for given initial values.

The optimal parameter values.

The equation values are all zero.

Figure 13-15 presents the results graphically; the star represents the optimal portfolio
from the efficient frontier for which the tangent line passes through the riskless asset
point (0, rf = 0.01):
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In [87]: plt.figure(figsize=(10, 6))
         plt.scatter(pvols, prets, c=(prets - 0.01) / pvols,
                     marker='.', cmap='coolwarm')
         plt.plot(evols, erets, 'b', lw=4.0)
         cx = np.linspace(0.0, 0.3)
         plt.plot(cx, opt[0] + opt[1] * cx, 'r', lw=1.5)
         plt.plot(opt[2], f(opt[2]), 'y*', markersize=15.0)
         plt.grid(True)
         plt.axhline(0, color='k', ls='--', lw=2.0)
         plt.axvline(0, color='k', ls='--', lw=2.0)
         plt.xlabel('expected volatility')
         plt.ylabel('expected return')
         plt.colorbar(label='Sharpe ratio')

Figure 13-15. Capital market line and tangent portfolio (star) for risk-free rate of 1%

The portfolio weights of the optimal (tangent) portfolio are as follows. Only three of
the four assets are in the mix:

In [88]: cons = ({'type': 'eq', 'fun': lambda x:  port_ret(x) - f(opt[2])},
                 {'type': 'eq', 'fun': lambda x:  np.sum(x) - 1})  
         res = sco.minimize(port_vol, eweights, method='SLSQP',
                            bounds=bnds, constraints=cons)

In [89]: res['x'].round(3)  
Out[89]: array([0.59 , 0.221, 0.189, 0.   ])

In [90]: port_ret(res['x'])
Out[90]: 0.1749328414905194
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5 For a Python-based introduction into these and other fundamental concepts of Bayesian statistics, refer to
Downey (2013).

In [91]: port_vol(res['x'])
Out[91]: 0.19525371793918325

In [92]: port_ret(res['x']) / port_vol(res['x'])
Out[92]: 0.8959257899765407

Binding constraints for the tangent portfolio (gold star in Figure 13-15).

The portfolio weights for this particular portfolio.

Bayesian Statistics
Bayesian statistics nowadays is widely popular in empirical finance. This chapter can
for sure not lay the foundations for all concepts of the field. The reader should there‐
fore consult, if needed, a textbook like the one by Geweke (2005) for a general intro‐
duction or Rachev (2008) for one that is financially motivated.

Bayes’ Formula
The most common interpretation of Bayes’ formula in finance is the diachronic inter‐
pretation. This mainly states that over time one learns new information about certain
variables or parameters of interest, like the mean return of a time series. Equation
13-4 states the theorem formally.

Equation 13-4. Bayes’s formula

p(H | D) =
p(H ) · p(D | H )

p(D)

Here, H stands for an event, the hypothesis, and D represents the data an experiment
or the real world might present.5 On the basis of these fundamental notions, one has:

p(H)
The prior probability

p(D)
The probability for the data under any hypothesis, called the normalizing con‐
stant

p(D | H )
The likelihood (i.e., the probability) of the data under hypothesis H
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6 Examples originally provided by Thomas Wiecki, one of the main authors of the PyMC3 package.

p(H | D)
The posterior probability; i.e., after one has seen the data

Consider a simple example. There two boxes, B1 and B2. Box B1 contains 30 black
balls and 60 red balls, while box B2 contains 60 black balls and 30 red balls. A ball is
randomly drawn from one of the two boxes. Assume the ball is black. What are the
probabilities for the hypotheses “H1: Ball is from box B1”; and “H2: Ball is from box
B2,” respectively?

Before the random draw of the the ball, both hypotheses are equally likely. After it is
clear that the ball is black, one has to update the probability for both hypotheses
according to Bayes’ formula. Consider hypothesis H1:

• Prior: p(H1) = 1
2

• Normalizing constant: p(D) = 1
2 · 1

3 + 1
2 · 2

3 = 1
2

• Likelihood: p(D | H1) = 1
3

This gives the updated probability for H1 of p(H1 | D) =
1
2 ·

1
3

1
2

= 1
3 .

This result also makes sense intuitively. The probability of drawing a black ball from
box B2 is twice as high as that of the same event happening with box B1. Therefore,
having drawn a black ball, the hypothesis H2 has with p(H2 | D) = 2

3  an updated
probability two times as high as the updated probability for hypothesis H1.

Bayesian Regression
With PyMC3 the Python ecosystem provides a comprehensive package to technically
implement Bayesian statistics and probabilistic programming.

Consider the following example based on noisy data around a straight line.6 First, a
linear ordinary least-squares regression (see Chapter 11) is implemented on the data
set, the result of which is visualized in Figure 13-16:

In [1]: import numpy as np
        import pandas as pd
        import datetime as dt
        from pylab import mpl, plt

In [2]: plt.style.use('seaborn')
        mpl.rcParams['font.family'] = 'serif'
        np.random.seed(1000)
        %matplotlib inline
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In [3]: x = np.linspace(0, 10, 500)
        y = 4 + 2 * x + np.random.standard_normal(len(x)) * 2

In [4]: reg = np.polyfit(x, y, 1)

In [5]: reg
Out[5]: array([2.03384161, 3.77649234])

In [6]: plt.figure(figsize=(10, 6))
        plt.scatter(x, y, c=y, marker='v', cmap='coolwarm')
        plt.plot(x, reg[1] + reg[0] * x, lw=2.0)
        plt.colorbar()
        plt.xlabel('x')
        plt.ylabel('y')

Figure 13-16. Sample data points and regression line

The results of the OLS regression approach are fixed values for the two parameters of
the regression line (intercept and slope). Note that the highest-order monomial factor
(in this case, the slope of the regression line) is at index level 0 and that the intercept
is at index level 1. The original parameters 2 and 4 are not perfectly recovered, but
this of course is due to the noise included in the data.

Second, a Bayesian regression making use of the PyMC3 package. Here, it is assumed
that the parameters are distributed in a certain way. For example, consider the equa‐
tion describing the regression line ŷ(x) = α + β · x. Assume now the following priors:
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7 For example, the Monte Carlo algorithms used throughout the book and analyzed in detail in Chapter 12 all
generate so-called Markov chains, since the immediate next step/value only depends on the current state of
the process and not on any other historic state or value.

• α is normally distributed with mean 0 and a standard deviation of 20.
• β is normally distributed with mean 0 and a standard deviation of 10.

For the likelihood, assume a normal distribution with a mean of ŷ(x) and a uniformly
distributed standard deviation of between 0 and 10.

A major element of Bayesian regression is Markov chain Monte Carlo (MCMC) sam‐
pling.7 In principle, this is the same as drawing balls multiple times from boxes, as in
the simple example in the previous section—just in a more systematic, automated
way.

For the technical sampling, there are three different functions to call:

• find_MAP() finds the starting point for the sampling algorithm by deriving the
local maximum a posteriori point.

• NUTS() implements the so-called “efficient No-U-Turn Sampler with dual aver‐
aging” (NUTS) algorithm for MCMC sampling given the assumed priors.

• sample() draws a number of samples given the starting value from find_MAP()
and the optimal step size from the NUTS algorithm.

All this is to be wrapped into a PyMC3 Model object and executed within a with
statement:

In [8]: import pymc3 as pm

In [9]: %%time
        with pm.Model() as model:
            # model
            alpha = pm.Normal('alpha', mu=0, sd=20)  
            beta = pm.Normal('beta', mu=0, sd=10)  
            sigma = pm.Uniform('sigma', lower=0, upper=10)  
            y_est = alpha + beta * x  
            likelihood = pm.Normal('y', mu=y_est, sd=sigma,
                                   observed=y)  

            # inference
            start = pm.find_MAP()  
            step = pm.NUTS()  
            trace = pm.sample(100, tune=1000, start=start,
                              progressbar=True)  
        logp = -1,067.8, ||grad|| = 60.354: 100%|██████████| 28/28 [00:00<00:00,
         474.70it/s]
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        Only 100 samples in chain.
        Auto-assigning NUTS sampler...
        Initializing NUTS using jitter+adapt_diag...
        Multiprocess sampling (2 chains in 2 jobs)
        NUTS: [sigma, beta, alpha]
        Sampling 2 chains: 100%|██████████| 2200/2200 [00:03<00:00,
         690.96draws/s]

        CPU times: user 6.2 s, sys: 1.72 s, total: 7.92 s
        Wall time: 1min 28s

In [10]: pm.summary(trace)  
Out[10]:
               mean        sd  mc_error   hpd_2.5  hpd_97.5       n_eff      Rhat
    alpha  3.764027  0.174796  0.013177  3.431739  4.070091  152.446951  0.996281
    beta   2.036318  0.030519  0.002230  1.986874  2.094008  106.505590  0.999155
    sigma  2.010398  0.058663  0.004517  1.904395  2.138187  188.643293  0.998547

In [11]: trace[0]  
Out[11]: {'alpha': 3.9303300798212444,
          'beta': 2.0020264758995463,
          'sigma_interval__': -1.3519315719461853,
          'sigma': 2.0555476283253156}

Defines the priors.

Specifies the linear regression.

Defines the likelihood.

Finds the starting value by optimization.

Instantiates the MCMC algorithm.

Draws posterior samples using NUTS.

Shows summary statistics from samplings.

Estimates from the first sample.

The three estimates shown are rather close to the original values (4, 2, 2). However,
the whole procedure yields more estimates. They are best illustrated with the help of
a trace plot, as in Figure 13-17—i.e., a plot showing the resulting posterior distribu‐
tion for the different parameters as well as all single estimates per sample. The poste‐
rior distribution gives an intuitive sense about the uncertainty in the estimates:

In [12]: pm.traceplot(trace, lines={'alpha': 4, 'beta': 2, 'sigma': 2});
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Figure 13-17. Posterior distributions and trace plots

Taking only the alpha and beta values from the regression, one can draw all result‐
ing regression lines as shown in Figure 13-18:

In [13]: plt.figure(figsize=(10, 6))
         plt.scatter(x, y, c=y, marker='v', cmap='coolwarm')
         plt.colorbar()
         plt.xlabel('x')
         plt.ylabel('y')
         for i in range(len(trace)):
             plt.plot(x, trace['alpha'][i] + trace['beta'][i] * x)  

Plots single regression lines.
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Figure 13-18. Regression lines based on the different estimates

Two Financial Instruments
Having introduced Bayesian regression with PyMC3 based on dummy data, the move
to real financial data is straightforward. The example uses financial time series data
for the two exchange traded funds (ETFs) GLD and GDX (see Figure 13-19):

In [14]: raw = pd.read_csv('../../source/tr_eikon_eod_data.csv',
                           index_col=0, parse_dates=True)

In [15]: data = raw[['GDX', 'GLD']].dropna()

In [16]: data = data / data.iloc[0]  

In [17]: data.info()
         <class 'pandas.core.frame.DataFrame'>
         DatetimeIndex: 2138 entries, 2010-01-04 to 2018-06-29
         Data columns (total 2 columns):
         GDX    2138 non-null float64
         GLD    2138 non-null float64
         dtypes: float64(2)
         memory usage: 50.1 KB

In [18]: data.iloc[-1] / data.iloc[0] - 1  
Out[18]: GDX   -0.532383
         GLD    0.080601
         dtype: float64
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8 Note all visualizations here are based on normalized price data and not, as might be better in real-world
applications, on return data, for instance.

In [19]: data.corr()  
Out[19]:          GDX      GLD
         GDX  1.00000  0.71539
         GLD  0.71539  1.00000

In [20]: data.plot(figsize=(10, 6));

Normalizes the data to a starting value of 1.

Calculates the relative performances.

Calculates the correlation between the two instruments.

Figure 13-19. Normalized prices for GLD and GDX over time

In what follows, the dates of the single data points are visualized in scatter plots. To
this end, the DatetimeIndex object of the DataFrame is transformed to matplotlib
dates. Figure 13-20 shows a scatter plot of the time series data, plotting the GLD values
against the GDX values and illustrating the dates of each data pair by different color‐
ings:8

In [21]: data.index[:3]
Out[21]: DatetimeIndex(['2010-01-04', '2010-01-05', '2010-01-06'],
          dtype='datetime64[ns]', name='Date', freq=None)
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In [22]: mpl_dates = mpl.dates.date2num(data.index.to_pydatetime())  
         mpl_dates[:3]
Out[22]: array([733776., 733777., 733778.])

In [23]: plt.figure(figsize=(10, 6))
         plt.scatter(data['GDX'], data['GLD'], c=mpl_dates,
                     marker='o', cmap='coolwarm')
         plt.xlabel('GDX')
         plt.ylabel('GLD')
         plt.colorbar(ticks=mpl.dates.DayLocator(interval=250),
                      format=mpl.dates.DateFormatter('%d %b %y'));  

Converts the DatetimeIndex object to matplotlib dates.

Customizes the color bar for the dates.

Figure 13-20. Scatter plot of GLD prices against GDX prices

The following code implements a Bayesian regression on the basis of these two time
series. The parameterizations are essentially the same as in the previous example with
dummy data. Figure 13-21 shows the results from the MCMC sampling procedure
given the assumptions about the prior probability distributions for the three
parameters:

In [24]: with pm.Model() as model:
             alpha = pm.Normal('alpha', mu=0, sd=20)
             beta = pm.Normal('beta', mu=0, sd=20)
             sigma = pm.Uniform('sigma', lower=0, upper=50)
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             y_est = alpha + beta * data['GDX'].values

             likelihood = pm.Normal('GLD', mu=y_est, sd=sigma,
                                    observed=data['GLD'].values)

             start = pm.find_MAP()
             step = pm.NUTS()
             trace = pm.sample(250, tune=2000, start=start,
                               progressbar=True)
         logp = 1,493.7, ||grad|| = 188.29: 100%|██████████| 27/27 [00:00<00:00,
          1609.34it/s]
         Only 250 samples in chain.
         Auto-assigning NUTS sampler...
         Initializing NUTS using jitter+adapt_diag...
         Multiprocess sampling (2 chains in 2 jobs)
         NUTS: [sigma, beta, alpha]
         Sampling 2 chains: 100%|██████████| 4500/4500 [00:09<00:00,
          465.07draws/s]
         The estimated number of effective samples is smaller than 200 for some
          parameters.

In [25]: pm.summary(trace)
Out[25]:
               mean        sd  mc_error   hpd_2.5  hpd_97.5       n_eff      Rhat
    alpha  0.913335  0.005983  0.000356  0.901586  0.924714  184.264900  1.001855
    beta   0.385394  0.007746  0.000461  0.369154  0.398291  215.477738  1.001570
    sigma  0.119484  0.001964  0.000098  0.115305  0.123315  312.260213  1.005246

In [26]: fig = pm.traceplot(trace)

Figure 13-21. Posterior distributions and trace plots for GDX and GLD data
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Figure 13-22 adds all the resulting regression lines to the scatter plot from before.
However, all the regression lines are pretty close to each other:

In [27]: plt.figure(figsize=(10, 6))
         plt.scatter(data['GDX'], data['GLD'], c=mpl_dates,
                     marker='o', cmap='coolwarm')
         plt.xlabel('GDX')
         plt.ylabel('GLD')
         for i in range(len(trace)):
             plt.plot(data['GDX'],
                      trace['alpha'][i] + trace['beta'][i] * data['GDX'])
         plt.colorbar(ticks=mpl.dates.DayLocator(interval=250),
                      format=mpl.dates.DateFormatter('%d %b %y'));

Figure 13-22. Multiple Bayesian regression lines through GDX and GLD data

The figure reveals a major drawback of the regression approach used: the approach
does not take into account evolutions over time. That is, the most recent data is
treated the same way as the oldest data.

Updating Estimates over Time
As pointed out before, the Bayesian approach in finance is generally most useful
when seen as diachronic—i.e., in the sense that new data revealed over time allows
for better regressions and estimates through updating or learning.

To incorporate this concept in the current example, assume that the regression
parameters are not only random and distributed in some fashion, but that they follow
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some kind of random walk over time. It is the same generalization used when making
the transition in financial theory from random variables to stochastic processes
(which are essentially ordered sequences of random variables).

To this end, define a new PyMC3 model, this time specifying parameter values as ran‐
dom walks. After having specified the distributions of the random walk parameters,
one proceeds with specifying the random walks for alpha and beta. To make the
whole procedure more efficient, 50 data points at a time share common coefficients:

In [28]: from pymc3.distributions.timeseries import GaussianRandomWalk

In [29]: subsample_alpha = 50
         subsample_beta = 50

In [30]: model_randomwalk = pm.Model()
         with model_randomwalk:
             sigma_alpha = pm.Exponential('sig_alpha', 1. / .02, testval=.1)  
             sigma_beta = pm.Exponential('sig_beta', 1. / .02, testval=.1)  
             alpha = GaussianRandomWalk('alpha', sigma_alpha ** -2,
                                 shape=int(len(data) / subsample_alpha))  
             beta = GaussianRandomWalk('beta', sigma_beta ** -2,
                                 shape=int(len(data) / subsample_beta))  
             alpha_r = np.repeat(alpha, subsample_alpha)  
             beta_r = np.repeat(beta, subsample_beta)  
             regression = alpha_r + beta_r * data['GDX'].values[:2100]  
             sd = pm.Uniform('sd', 0, 20)  
             likelihood = pm.Normal('GLD', mu=regression, sd=sd,
                                    observed=data['GLD'].values[:2100])  

Defines priors for the random walk parameters.

Models for the random walks.

Brings the parameter vectors to interval length.

Defines the regression model.

The prior for the standard deviation.

Defines the likelihood with mu from regression results.

All these definitions are a bit more involved than before due to the use of random
walks instead of a single random variable. However, the inference steps with the
MCMC sampling remain essentially the same. Note, though, that the computational
burden increases substantially since the algorithm has to estimate parameters per
random walk sample—i.e., 1,950 / 50 = 39 parameter combinations in this case
(instead of 1, as before):
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In [31]: %%time
         import scipy.optimize as sco
         with model_randomwalk:
             start = pm.find_MAP(vars=[alpha, beta],
                                 fmin=sco.fmin_l_bfgs_b)
             step = pm.NUTS(scaling=start)
             trace_rw = pm.sample(250, tune=1000, start=start,
                                  progressbar=True)
         logp = -6,657:   2%|▏         | 82/5000 [00:00<00:08, 550.29it/s]
         Only 250 samples in chain.
         Auto-assigning NUTS sampler...
         Initializing NUTS using jitter+adapt_diag...
         Multiprocess sampling (2 chains in 2 jobs)
         NUTS: [sd, beta, alpha, sig_beta, sig_alpha]
         Sampling 2 chains: 100%|██████████| 2500/2500 [02:48<00:00,  8.59draws/s]

         CPU times: user 27.5 s, sys: 3.68 s, total: 31.2 s
         Wall time: 5min 3s

In [32]: pm.summary(trace_rw).head()  
Out[32]:
                  mean        sd  mc_error   hpd_2.5  hpd_97.5        n_eff  \
    alpha__0  0.673846  0.040224  0.001376  0.592655  0.753034  1004.616544
    alpha__1  0.424819  0.041257  0.001618  0.348102  0.509757   804.760648
    alpha__2  0.456817  0.057200  0.002011  0.321125  0.553173   800.225916
    alpha__3  0.268148  0.044879  0.001725  0.182744  0.352197   724.967532
    alpha__4  0.651465  0.057472  0.002197  0.544076  0.761216   978.073246

                  Rhat
    alpha__0  0.998637
    alpha__1  0.999540
    alpha__2  0.998075
    alpha__3  0.998995
    alpha__4  0.998060

The summary statistics per interval (first five and alpha only).

Figure 13-23 illustrates the evolution of the regression parameters alpha and beta
over time by plotting a subset of the estimates:

In [33]: sh = np.shape(trace_rw['alpha'])  
         sh  
Out[33]: (500, 42)

In [34]: part_dates = np.linspace(min(mpl_dates),
                                  max(mpl_dates), sh[1])  

In [35]: index = [dt.datetime.fromordinal(int(date)) for
                 date in part_dates]  

In [36]: alpha = {'alpha_%i' % i: v for i, v in
                  enumerate(trace_rw['alpha']) if i < 20}  
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In [37]: beta = {'beta_%i' % i: v for i, v in
                  enumerate(trace_rw['beta']) if i < 20}  

In [38]: df_alpha = pd.DataFrame(alpha, index=index)  

In [39]: df_beta = pd.DataFrame(beta, index=index)  

In [40]: ax = df_alpha.plot(color='b', style='-.', legend=False,
                            lw=0.7, figsize=(10, 6))
         df_beta.plot(color='r', style='-.', legend=False,
                      lw=0.7, ax=ax)
         plt.ylabel('alpha/beta');

Shape of the object with parameter estimates.

Creates a list of dates to match the number of intervals.

Collects the relevant parameter time series in two DataFrame objects.

Figure 13-23. Selected parameter estimates over time

Absolute Price Data Versus Relative Return Data

The analyses in this section are based on normalized price data.
This is for illustration purposes only, because the respective graph‐
ical results are easier to understand and interpret (they are visually
“more appealing”). For real-world financial applications one would
instead rely on return data, for instance, to ensure stationarity of
the time series data.
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Using the mean alpha and beta values, Figure 13-24 illustrates how the regression is
updated over time. The 39 different regression lines resulting from the mean alpha
and beta values are displayed. It is obvious that updating over time improves the
regression fit (for the current/most recent data) significantly—in other words, “every
time period needs its own regression”:

In [41]: plt.figure(figsize=(10, 6))
         plt.scatter(data['GDX'], data['GLD'], c=mpl_dates,
                     marker='o', cmap='coolwarm')
         plt.colorbar(ticks=mpl.dates.DayLocator(interval=250),
                      format=mpl.dates.DateFormatter('%d %b %y'))
         plt.xlabel('GDX')
         plt.ylabel('GLD')
         x = np.linspace(min(data['GDX']), max(data['GDX']))
         for i in range(sh[1]):  
             alpha_rw = np.mean(trace_rw['alpha'].T[i])
             beta_rw = np.mean(trace_rw['beta'].T[i])
             plt.plot(x, alpha_rw + beta_rw * x, '--', lw=0.7,
                     color=plt.cm.coolwarm(i / sh[1]))

Plots the regression lines for all time intervals of length 50.

Figure 13-24. Scatter plot with time-dependent regression lines (updated estimates)

This concludes the section on Bayesian statistics. Python offers with PyMC3 a compre‐
hensive package to implement different approaches from Bayesian statistics and
probabilistic programming. Bayesian regression in particular is a tool that has
become quite popular and important in quantitative finance.
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9 For more unsupervised learning algorithms available in scikit-learn, see the documentation.

Machine Learning
In finance and many other fields, the “name of the game” these days is machine learn‐
ing (ML). As the following quote puts it:

Econometrics might be good enough to succeed in financial academia (for now), but
succeeding in practice requires ML.

—Marcos López de Prado (2018)

Machine learning subsumes different types of algorithms that are basically able to
learn on their own certain relationships, patterns, etc. from raw data. “Further
Resources” on page 463 lists a number of books that can be consulted on the
mathematical and statistical aspects of machine learning approaches and algorithms
as well as on topics related to their implementation and practical use. For example,
Alpaydin (2016) provides a gentle introduction to the field and gives a nontechnical
overview of the types of algorithms that are typically used.

This section takes a rigorously practical approach and focuses on selected implemen‐
tation aspects only—with a view on the techniques used in Chapter 15. However, the
algorithms and techniques introduced can of course be used in many different finan‐
cial areas and not only in algorithmic trading. The section covers two types of algo‐
rithms: unsupervised and supervised learning algorithms.

One of the most popular packages for machine learning with Python is scikit-
learn. It not only provides implementations of a great variety of ML algorithms, but
also provides a large number of helpful tools for pre- and post-processing activities
related to ML tasks. This section mainly relies on this package. It also uses Tensor
Flow in the context of deep neural networks (DNNs).

VanderPlas (2016) provides a concise introduction to different ML algorithms based
on Python and scikit-learn. Albon (2018) offers a number of recipes for typical
tasks in ML, also mainly using Python and scikit-learn.

Unsupervised Learning
Unsupervised learning embodies the idea that a machine learning algorithm discovers
insights from raw data without any further guidance. One such algorithm is the k-
means clustering algorithm that clusters a raw data set into a number of subsets and
assigns these subsets labels (“cluster 0,” “cluster 1,” etc.). Another one is Gaussian
mixture.9
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The data

Among other things, scikit-learn allows the creation of sample data sets for differ‐
ent types of ML problems. The following creates a sample data set suited to illustrat‐
ing k-means clustering.

First, some standard imports and configurations:

In [1]: import numpy as np
        import pandas as pd
        import datetime as dt
        from pylab import mpl, plt

In [2]: plt.style.use('seaborn')
        mpl.rcParams['font.family'] = 'serif'
        np.random.seed(1000)
        np.set_printoptions(suppress=True, precision=4)
        %matplotlib inline

Second, the creation of the sample data set. Figure 13-25 visualizes the sample data:

In [3]: from sklearn.datasets.samples_generator import make_blobs

In [4]: X, y = make_blobs(n_samples=250, centers=4,
                          random_state=500, cluster_std=1.25)  

In [5]: plt.figure(figsize=(10, 6))
        plt.scatter(X[:, 0], X[:, 1], s=50);

Creates the sample data set for clustering with 250 samples and 4 centers.

Figure 13-25. Sample data for the application of clustering algorithms
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k-means clustering

One of the convenient features of scikit-learn is that it provides a standardized
API to apply different kinds of algorithms. The following code shows the basic steps
for k-means clustering that are repeated for other models afterwards:

• Importing the model class
• Instantiating a model object
• Fitting the model object to some data
• Predicting the outcome given the fitted model for some data

Figure 13-26 shows the results:

In [6]: from sklearn.cluster import KMeans  

In [7]: model = KMeans(n_clusters=4, random_state=0)  

In [8]: model.fit(X)  
Out[8]: KMeans(algorithm='auto', copy_x=True, init='k-means++', max_iter=300,
            n_clusters=4, n_init=10, n_jobs=None, precompute_distances='auto',
            random_state=0, tol=0.0001, verbose=0)

In [9]: y_kmeans = model.predict(X)  

In [10]: y_kmeans[:12]  
Out[10]: array([1, 1, 0, 3, 0, 1, 3, 3, 3, 0, 2, 2], dtype=int32)

In [11]: plt.figure(figsize=(10, 6))
         plt.scatter(X[:, 0], X[:, 1], c=y_kmeans,  cmap='coolwarm');

Imports the model class from scikit-learn.

Instantiates a model object, given certain parameters; knowledge about the sam‐
ple data is used to inform the instantiation.

Fits the model object to the raw data.

Predicts the cluster (number) given the raw data.

Shows some cluster numbers as predicted.
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Figure 13-26. Sample data and identified clusters

Gaussian mixture
As an alternative clustering method, consider Gaussian mixture. The application is
the same, and with the appropriate parameterization, the results are also the same:

In [12]: from sklearn.mixture import GaussianMixture

In [13]: model = GaussianMixture(n_components=4, random_state=0)

In [14]: model.fit(X)
Out[14]: GaussianMixture(covariance_type='full', init_params='kmeans',
          max_iter=100,
         means_init=None, n_components=4, n_init=1, precisions_init=None,
                 random_state=0, reg_covar=1e-06, tol=0.001, verbose=0,
                 verbose_interval=10, warm_start=False, weights_init=None)

In [15]: y_gm = model.predict(X)

In [16]: y_gm[:12]
Out[16]: array([1, 1, 0, 3, 0, 1, 3, 3, 3, 0, 2, 2])

In [17]: (y_gm == y_kmeans).all()  
Out[17]: True

The results from k-means clustering and Gaussian mixture are the same.
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10 For an overview of the classification algorithms for supervised learning available in scikit-learn, refer to the
documentation. Note that many of these algorithms are also available for estimation instead of classification.

Supervised Learning
Supervised learning is machine learning with some guidance in the form of known
results or observed data. This means that the raw data already contains what the ML
algorithm is supposed to learn. In what follows, the focus lies on classification prob‐
lems as opposed to estimation problems. While estimation problems are about the
estimation of real-valued quantities in general, classification problems are character‐
ized by an effort to assign to a certain feature combination a certain class (integer
value) from a relatively small set of classes (integer values).

The examples in the previous subsection showed that with unsupervised learning the
algorithms come up with their own categorical labels for the clusters identified. With
four clusters, the labels are 0, 1, 2, and 3. In supervised learning, such categorical
labels are already given, so that the algorithm can learn the relationship between the
features and the categories (classes). In other words, during the fitting step, the algo‐
rithm knows the right class for the given feature value combinations.

This subsection illustrates the application of the following classification algorithms:
Gaussian Naive Bayes, logistic regression, decision trees, deep neural networks, and
support vector machines.10

The data

Again, scikit-learn allows the creation of an appropriate sample data set to apply
classification algorithms. In order to be able to visualize the results, the sample data
only contains two real-valued, informative features and a single binary label (a binary
label is characterized by two different classes only, 0 and 1). The following code cre‐
ates the sample data, shows some extracts of the data, and visualizes the data (see
Figure 13-27):

In [18]: from sklearn.datasets import make_classification

In [19]: n_samples = 100

In [20]: X, y = make_classification(n_samples=n_samples, n_features=2,
                                    n_informative=2, n_redundant=0,
                                    n_repeated=0, random_state=250)

In [21]: X[:5]  
Out[21]: array([[ 1.6876, -0.7976],
                [-0.4312, -0.7606],
                [-1.4393, -1.2363],
                [ 1.118 , -1.8682],
                [ 0.0502,  0.659 ]])
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In [22]: X.shape  
Out[22]: (100, 2)

In [23]: y[:5]  
Out[23]: array([1, 0, 0, 1, 1])

In [24]: y.shape  
Out[24]: (100,)

plt.figure(figsize=(10, 6))
plt.hist(X);
In [25]: plt.figure(figsize=(10, 6))
         plt.scatter(x=X[:, 0], y=X[:, 1], c=y, cmap='coolwarm');

The two informative, real-valued features.

The single binary label.

Figure 13-27. Sample data for the application of classification algorithms

Gaussian Naive Bayes
Gaussian Naive Bayes (GNB) is generally considered to be a good baseline algorithm
for a multitude of different classification problems. The application is in line with the
steps outlined in “k-means clustering” on page 446:

In [26]: from sklearn.naive_bayes import GaussianNB
         from sklearn.metrics import accuracy_score
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In [27]: model = GaussianNB()

In [28]: model.fit(X, y)
Out[28]: GaussianNB(priors=None, var_smoothing=1e-09)

In [29]: model.predict_proba(X).round(4)[:5]  
Out[29]: array([[0.0041, 0.9959],
                [0.8534, 0.1466],
                [0.9947, 0.0053],
                [0.0182, 0.9818],
                [0.5156, 0.4844]])

In [30]: pred = model.predict(X)  

In [31]: pred  
Out[31]: array([1, 0, 0, 1, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 1, 1,
          0,
         0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0,
         0, 1, 1, 1, 0, 0, 1, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 0,
         0, 0, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1,
                0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0])

In [32]: pred == y  
Out[32]: array([ True,  True,  True,  True, False,  True,  True,  True,  True,
                 True, False,  True,  True,  True,  True,  True,  True,  True,
                 True,  True,  True,  True, False, False, False,  True,  True,
                 True,  True,  True,  True,  True,  True, False,  True,  True,
                 True,  True,  True,  True,  True,  True,  True,  True,  True,
                 True,  True,  True,  True,  True,  True, False,  True, False,
                 True,  True,  True,  True,  True,  True,  True,  True,  True,
                 True,  True, False,  True,  True,  True,  True,  True,  True,
                 True,  True,  True,  True,  True,  True, False,  True, False,
                 True,  True,  True,  True,  True,  True,  True,  True,  True,
                 True,  True, False,  True, False,  True,  True,  True,  True,
                 True])

In [33]: accuracy_score(y, pred)  
Out[33]: 0.87

Shows the probabilities that the algorithm assigns to each class after fitting.

Based on the probabilities, predicts the binary classes for the data set.

Compares the predicted classes with the real ones.

Calculates the accuracy score given the predicted values.

Figure 13-28 visualizes the correct and false predictions from GNB:

In [34]: Xc = X[y == pred]  
         Xf = X[y != pred]  
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In [35]: plt.figure(figsize=(10, 6))
         plt.scatter(x=Xc[:, 0], y=Xc[:, 1], c=y[y == pred],
                     marker='o', cmap='coolwarm')  
         plt.scatter(x=Xf[:, 0], y=Xf[:, 1], c=y[y != pred],
                     marker='x', cmap='coolwarm')  

Selects the correct predictions and plots them.

Selects the false predictions and plots them.

Figure 13-28. Correct (dots) and false predictions (crosses) from GNB

Logistic regression
Logistic regression (LR) is a fast and scalable classification algorithm. The accuracy in
this particular case is slightly better than with GNB:

In [36]: from sklearn.linear_model import LogisticRegression

In [37]: model = LogisticRegression(C=1, solver='lbfgs')

In [38]: model.fit(X, y)
Out[38]: LogisticRegression(C=1, class_weight=None, dual=False,
          fit_intercept=True,
                   intercept_scaling=1, max_iter=100, multi_class='warn',
                   n_jobs=None, penalty='l2', random_state=None, solver='lbfgs',
                   tol=0.0001, verbose=0, warm_start=False)

In [39]: model.predict_proba(X).round(4)[:5]
Out[39]: array([[0.011 , 0.989 ],
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                [0.7266, 0.2734],
                [0.971 , 0.029 ],
                [0.04  , 0.96  ],
                [0.4843, 0.5157]])

In [40]: pred = model.predict(X)

In [41]: accuracy_score(y, pred)
Out[41]: 0.9

In [42]: Xc = X[y == pred]
         Xf = X[y != pred]

In [43]: plt.figure(figsize=(10, 6))
         plt.scatter(x=Xc[:, 0], y=Xc[:, 1], c=y[y == pred],
                     marker='o', cmap='coolwarm')
         plt.scatter(x=Xf[:, 0], y=Xf[:, 1], c=y[y != pred],
                     marker='x', cmap='coolwarm');

Decision trees
Decision trees (DTs) are yet another type of classification algorithm that scales quite
well. With a maximum depth of 1, the algorithm already performs slightly better than
both GNB and LR (see also Figure 13-29):

In [44]: from sklearn.tree import DecisionTreeClassifier

In [45]: model = DecisionTreeClassifier(max_depth=1)

In [46]: model.fit(X, y)
Out[46]: DecisionTreeClassifier(class_weight=None, criterion='gini',
          max_depth=1,
                     max_features=None, max_leaf_nodes=None,
                     min_impurity_decrease=0.0, min_impurity_split=None,
                     min_samples_leaf=1, min_samples_split=2,
         min_weight_fraction_leaf=0.0, presort=False, random_state=None,
                     splitter='best')

In [47]: model.predict_proba(X).round(4)[:5]
Out[47]: array([[0.08, 0.92],
                [0.92, 0.08],
                [0.92, 0.08],
                [0.08, 0.92],
                [0.08, 0.92]])

In [48]: pred = model.predict(X)

In [49]: accuracy_score(y, pred)
Out[49]: 0.92

In [50]: Xc = X[y == pred]
         Xf = X[y != pred]
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In [51]: plt.figure(figsize=(10, 6))
         plt.scatter(x=Xc[:, 0], y=Xc[:, 1], c=y[y == pred],
                     marker='o', cmap='coolwarm')
         plt.scatter(x=Xf[:, 0], y=Xf[:, 1], c=y[y != pred],
                     marker='x', cmap='coolwarm');

Figure 13-29. Correct (dots) and false predictions (crosses) from DT (max_depth=1)

However, increasing the maximum depth parameter for the decision tree allows one
to reach a perfect result:

In [52]: print('{:>8s} | {:8s}'.format('depth', 'accuracy'))
         print(20 * '-')
         for depth in range(1, 7):
             model = DecisionTreeClassifier(max_depth=depth)
             model.fit(X, y)
             acc = accuracy_score(y, model.predict(X))
             print('{:8d} | {:8.2f}'.format(depth, acc))
            depth | accuracy
         --------------------
                1 |     0.92
                2 |     0.92
                3 |     0.94
                4 |     0.97
                5 |     0.99
                6 |     1.00
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11 For more details and available parameters, refer to the documentation on the multi-layer perceptron classi‐
fier.

Deep neural networks
Deep neural networks (DNNs) are considered to be among the most powerful—but
also computationally demanding—algorithms for both estimation and classification.
The open sourcing of the TensorFlow package by Google and related success stories
are in part responsible for their popularity. DNNs are capable of learning and model‐
ing complex nonlinear relationships. Although their origins date back to the 1970s,
they only recently have become feasible on a large scale due to advances in hardware
(CPUs, GPUs, TPUs), numerical algorithms, and related software implementations.

While other ML algorithms, such as linear models of LR type, can be fitted efficiently
based on a standard optimization problem, DNNs rely on deep learning, which
requires in general a large number of repeated steps to adjust certain parameters
(weights) and compare the results to the data. In that sense, deep learning can be
compared to Monte Carlo simulation in mathematical finance where the price of, say,
a European call option can be estimated on the basis of 100,000 simulated paths for
the underlying. On the other hand, the Black-Scholes-Merton option pricing formula
is available in closed form and can be evaluated analytically.

While Monte Carlo simulation is among the most flexible and powerful numerical
techniques in mathematical finance, there’s a cost to pay in terms of the high compu‐
tational burden and large memory footprint. The same holds true for deep learning,
which is more flexible in general than many other ML algorithms but which requires
greater computational power.

DNNs with scikit-learn.    Although it is quite different in nature, scikit-learn provides
the same API for its MLPClassifier algorithm class,11 which is a DNN model, as for
the other ML algorithms used before. With just two so-called hidden layers it reaches
a perfect result on the test data (the hidden layers are what make deep learning out of
simple learning—e.g., “learning” weights in the context of a linear regression instead
of using OLS regression to derive them directly):

In [53]: from sklearn.neural_network import MLPClassifier

In [54]: model = MLPClassifier(solver='lbfgs', alpha=1e-5,
                               hidden_layer_sizes=2 * [75], random_state=10)

In [55]: %time model.fit(X, y)
         CPU times: user 537 ms, sys: 14.2 ms, total: 551 ms
         Wall time: 340 ms

Out[55]: MLPClassifier(activation='relu', alpha=1e-05, batch_size='auto',
          beta_1=0.9,
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                beta_2=0.999, early_stopping=False, epsilon=1e-08,
                hidden_layer_sizes=[75, 75], learning_rate='constant',
                learning_rate_init=0.001, max_iter=200, momentum=0.9,
                n_iter_no_change=10, nesterovs_momentum=True, power_t=0.5,
                random_state=10, shuffle=True, solver='lbfgs', tol=0.0001,
                validation_fraction=0.1, verbose=False, warm_start=False)

In [56]: pred = model.predict(X)
         pred
Out[56]: array([1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1, 0, 0, 0, 1, 1, 0, 1, 0, 1, 1,
          0,
         1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0,
         0, 1, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1,
         0, 0, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 0, 1, 0, 0, 0, 1,
                0, 1, 1, 1, 0, 1, 1, 0, 0, 0, 0, 0])

In [57]: accuracy_score(y, pred)
Out[57]: 1.0

DNNs with TensorFlow.    The API of TensorFlow is different from the scikit-learn
standard. However, the application of the DNNClassifier class is similarly straight‐
forward:

In [58]: import tensorflow as tf
         tf.logging.set_verbosity(tf.logging.ERROR)  

In [59]: fc = [tf.contrib.layers.real_valued_column('features')]  

In [60]: model = tf.contrib.learn.DNNClassifier(hidden_units=5 * [250],
                                                n_classes=2,
                                                feature_columns=fc)  

In [61]: def input_fn():  
             fc = {'features': tf.constant(X)}
             la = tf.constant(y)
             return fc, la

In [62]: %time model.fit(input_fn=input_fn, steps=100)  
         CPU times: user 7.1 s, sys: 1.35 s, total: 8.45 s
         Wall time: 4.71 s

Out[62]: DNNClassifier(params={'head':
          <tensorflow.contrib.learn.python.learn ... head._BinaryLogisticHead
          object at 0x1a3ee692b0>, 'hidden_units': [250, 250, 250, 250, 250],
          'feature_columns': (_RealValuedColumn(column_name='features',
          dimension=1, default_value=None, dtype=tf.float32, normalizer=None),),
          'optimizer': None, 'activation_fn': <function relu at 0x1a3aa75b70>,
          'dropout': None, 'gradient_clip_norm': None,
          'embedding_lr_multipliers': None, 'input_layer_min_slice_size': None})

In [63]: model.evaluate(input_fn=input_fn, steps=1)  
Out[63]: {'loss': 0.18724777,
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          'accuracy': 0.91,
          'labels/prediction_mean': 0.5003989,
          'labels/actual_label_mean': 0.5,
          'accuracy/baseline_label_mean': 0.5,
          'auc': 0.9782,
          'auc_precision_recall': 0.97817385,
          'accuracy/threshold_0.500000_mean': 0.91,
          'precision/positive_threshold_0.500000_mean': 0.9019608,
          'recall/positive_threshold_0.500000_mean': 0.92,
          'global_step': 100}

In [64]: pred = np.array(list(model.predict(input_fn=input_fn)))  
         pred[:10]  
Out[64]: array([1, 0, 0, 1, 1, 0, 1, 1, 1, 1])

In [65]: %time model.fit(input_fn=input_fn, steps=750)  
         CPU times: user 29.8 s, sys: 7.51 s, total: 37.3 s
         Wall time: 13.6 s

Out[65]: DNNClassifier(params={'head':
          <tensorflow.contrib.learn.python.learn ... head._BinaryLogisticHead
          object at 0x1a3ee692b0>, 'hidden_units': [250, 250, 250, 250, 250],
          'feature_columns': (_RealValuedColumn(column_name='features',
          dimension=1, default_value=None, dtype=tf.float32, normalizer=None),),
          'optimizer': None, 'activation_fn': <function relu at 0x1a3aa75b70>,
          'dropout': None, 'gradient_clip_norm': None,
          'embedding_lr_multipliers': None, 'input_layer_min_slice_size': None})

In [66]: model.evaluate(input_fn=input_fn, steps=1)  
Out[66]: {'loss': 0.09271307,
          'accuracy': 0.94,
          'labels/prediction_mean': 0.5274486,
          'labels/actual_label_mean': 0.5,
          'accuracy/baseline_label_mean': 0.5,
          'auc': 0.99759996,
          'auc_precision_recall': 0.9977609,
          'accuracy/threshold_0.500000_mean': 0.94,
          'precision/positive_threshold_0.500000_mean': 0.9074074,
          'recall/positive_threshold_0.500000_mean': 0.98,
          'global_step': 850}

Sets the verbosity for TensorFlow logging.

Defines the real-valued features abstractly.

Instantiates the model object.

Features and label data are to be delivered by a function.

Fits the model through learning and evaluates it.
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Predicts the label values based on the feature values.

Retrains the model based on more learning steps; the previous results are taken
as a starting point.

Accuracy increases after retraining.

This only scratches the surface of TensorFlow, which is used in a number of demand‐
ing use cases, such as Alphabet Inc.’s effort to build self-driving cars. In terms of
speed, the training of TensorFlow’s models in general benefits significantly from the
use of specialized hardware such as GPUs and TPUs instead of CPUs.

Feature transforms
For a number of reasons, it might be beneficial or even necessary to transform real-
valued features. The following code shows some typical transformations and visual‐
izes the results for comparison in Figure 13-30:

In [67]: from sklearn import preprocessing

In [68]: X[:5]
Out[68]: array([[ 1.6876, -0.7976],
                [-0.4312, -0.7606],
                [-1.4393, -1.2363],
                [ 1.118 , -1.8682],
                [ 0.0502,  0.659 ]])

In [69]: Xs = preprocessing.StandardScaler().fit_transform(X)  
         Xs[:5]
Out[69]: array([[ 1.2881, -0.5489],
                [-0.3384, -0.5216],
                [-1.1122, -0.873 ],
                [ 0.8509, -1.3399],
                [ 0.0312,  0.5273]])

In [70]: Xm = preprocessing.MinMaxScaler().fit_transform(X)  
         Xm[:5]
Out[70]: array([[0.7262, 0.3563],
                [0.3939, 0.3613],
                [0.2358, 0.2973],
                [0.6369, 0.2122],
                [0.4694, 0.5523]])

In [71]: Xn1 = preprocessing.Normalizer(norm='l1').transform(X)  
         Xn1[:5]
Out[71]: array([[ 0.6791, -0.3209],
                [-0.3618, -0.6382],
                [-0.5379, -0.4621],
                [ 0.3744, -0.6256],
                [ 0.0708,  0.9292]])
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In [72]: Xn2 = preprocessing.Normalizer(norm='l2').transform(X)  
         Xn2[:5]
Out[72]: array([[ 0.9041, -0.4273],
                [-0.4932, -0.8699],
                [-0.7586, -0.6516],
                [ 0.5135, -0.8581],
                [ 0.076 ,  0.9971]])

In [73]: plt.figure(figsize=(10, 6))
         markers = ['o', '.', 'x', '^', 'v']
         data_sets = [X, Xs, Xm, Xn1, Xn2]
         labels = ['raw', 'standard', 'minmax', 'norm(1)', 'norm(2)']
         for x, m, l in zip(data_sets, markers, labels):
             plt.scatter(x=x[:, 0], y=x[:, 1], c=y,
                     marker=m, cmap='coolwarm', label=l)
         plt.legend();

Transforms the features data to standard normally distributed data with zero
mean and unit variance.

Transforms the features data to a given range for every feature as defined by the
minimum and maximum values per feature.

Scales the features data individually to the unit norm (L1 or L2).

Figure 13-30. Raw and transformed data in comparison
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In terms of pattern recognition tasks, a transformation to categorical features is often
helpful or even required to achieve acceptable results. To this end, the real values of
the features are mapped to a limited, fixed number of possible integer values (cate‐
gories, classes):

In [74]: X[:5]
Out[74]: array([[ 1.6876, -0.7976],
                [-0.4312, -0.7606],
                [-1.4393, -1.2363],
                [ 1.118 , -1.8682],
                [ 0.0502,  0.659 ]])

In [75]: Xb = preprocessing.Binarizer().fit_transform(X)  
         Xb[:5]
Out[75]: array([[1., 0.],
                [0., 0.],
                [0., 0.],
                [1., 0.],
                [1., 1.]])

In [76]: 2 ** 2  
Out[76]: 4

In [77]: Xd = np.digitize(X, bins=[-1, 0, 1])  
         Xd[:5]
Out[77]: array([[3, 1],
                [1, 1],
                [0, 0],
                [3, 0],
                [2, 2]])

In [78]: 4 ** 2  
Out[78]: 16

Transforms the features to binary features.

The number of possible feature value combinations for two binary features.

Transforms the features to categorical features based on a list of values used for
binning.

The number of possible feature value combinations, with three values used for
binning for two features.

Train-test splits: Support vector machines
At this point, every seasoned ML researcher and practitioner reading this probably
has concerns with regard to the implementations in this section: they all rely on the
same data for training, learning, and prediction. The quality of an ML algorithm can
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of course be better judged when different data (sub)sets are used for training and
learning on the one hand and testing on the other hand. This comes closer to a real-
world application scenario.

Again, scikit-learn provides a function to accomplish such an approach efficiently.
In particular, the train_test_split() function allows the splitting of data sets into
training and test data in a randomized, but nevertheless repeatable, fashion.

The following code uses yet another classification algorithm, the support vector
machine (SVM). It first fits the SVM model based on the training data:

In [79]: from sklearn.svm import SVC
         from sklearn.model_selection import train_test_split

In [80]: train_x, test_x, train_y, test_y = train_test_split(X, y, test_size=0.33,
                                                             random_state=0)

In [81]: model = SVC(C=1, kernel='linear')

In [82]: model.fit(train_x, train_y)  
Out[82]: SVC(C=1, cache_size=200, class_weight=None, coef0=0.0,
             decision_function_shape='ovr', degree=3, gamma='auto_deprecated',
           kernel='linear', max_iter=-1, probability=False, random_state=None,
           shrinking=True, tol=0.001, verbose=False)

In [83]: pred_train = model.predict(train_x)  

In [84]: accuracy_score(train_y, pred_train)  
Out[84]: 0.9402985074626866

Fits the model based on the training data.

Predicts the training data label values.

The accuracy of the training data prediction (“in-sample”).

Next, the testing of the fitted model based on the test data. Figure 13-31 shows the
correct and false predictions for the test data. The accuracy on the test data is—as one
would naturally expect—lower than on the training data:

In [85]: pred_test = model.predict(test_x)  

In [86]: test_y == pred_test  
Out[86]: array([ True,  True,  True,  True,  True,  True,  True,  True,  True,
                 True, False, False, False,  True,  True,  True, False, False,
                False,  True,  True,  True,  True,  True,  True,  True,  True,
                 True,  True,  True,  True, False,  True])

In [87]: accuracy_score(test_y, pred_test)  
Out[87]: 0.7878787878787878
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In [88]: test_c = test_x[test_y == pred_test]
         test_f = test_x[test_y != pred_test]

In [89]: plt.figure(figsize=(10, 6))
         plt.scatter(x=test_c[:, 0], y=test_c[:, 1], c=test_y[test_y == pred_test],
                     marker='o', cmap='coolwarm')
         plt.scatter(x=test_f[:, 0], y=test_f[:, 1], c=test_y[test_y != pred_test],
                     marker='x', cmap='coolwarm');

Predicts the testing data label values based on the test data.

Evaluates the accuracy of the fitted model for the test data (“out-of-sample”).

Figure 13-31. Correct (dots) and false predictions (crosses) from SVM for test data

The SVM classification algorithm provides a number of options for the kernel to be
used. Depending on the problem at hand, different kernels might lead to quite differ‐
ent results (i.e., accuracy scores), as the following analysis shows. The code first trans‐
forms the real-valued features into categorical ones:

In [90]: bins = np.linspace(-4.5, 4.5, 50)

In [91]: Xd = np.digitize(X, bins=bins)

In [92]: Xd[:5]
Out[92]: array([[34, 21],
                [23, 21],
                [17, 18],
                [31, 15],
                [25, 29]])
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In [93]: train_x, test_x, train_y, test_y = train_test_split(Xd, y, test_size=0.33,
                                                             random_state=0)

In [94]: print('{:>8s} | {:8s}'.format('kernel', 'accuracy'))
         print(20 * '-')
         for kernel in ['linear', 'poly', 'rbf', 'sigmoid']:
             model = SVC(C=1, kernel=kernel, gamma='auto')
             model.fit(train_x, train_y)
             acc = accuracy_score(test_y, model.predict(test_x))
             print('{:>8s} | {:8.3f}'.format(kernel, acc))
           kernel | accuracy
         --------------------
           linear |    0.848
             poly |    0.758
              rbf |    0.788
          sigmoid |    0.455

Conclusion
Statistics is not only an important discipline in its own right, but also provides indis‐
pensable tools for many other disciplines, like finance and the social sciences. It is
impossible to give a broad overview of such a large subject in a single chapter. This
chapter therefore focuses on four important topics, illustrating the use of Python and
several statistics libraries on the basis of realistic examples:

Normality
The normality assumption with regard to financial market returns is an impor‐
tant one for many financial theories and applications; it is therefore important to
be able to test whether certain time series data conforms to this assumption. As
seen in “Normality Tests” on page 398—via graphical and statistical means—
real-world return data generally is not normally distributed.

Portfolio optimization
MPT, with its focus on the mean and variance/volatility of returns, can be con‐
sidered not only one of the first but also one of the major conceptual successes of
statistics in finance; the important concept of investment diversification is beauti‐
fully illustrated in this context.

Bayesian statistics
Bayesian statistics in general (and Bayesian regression in particular) has become
a popular tool in finance, since this approach overcomes some shortcomings of
other approaches, as introduced, for instance, in Chapter 11; even if the mathe‐
matics and the formalism are more involved, the fundamental ideas—like the
updating of probability/distribution beliefs over time—are easily grasped (at least
intuitively).
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Machine learning
Nowadays, machine learning has established itself in the financial domain along‐
side traditional statistical methods and techniques. The chapter introduces ML
algorithms for unsupervised learning (such as k-means clustering) and super‐
vised learning (such as DNN classifiers) and illustrates selected related topics,
such as feature transforms and train-test splits.

Further Resources
For more information on the topics and packages covered in this chapter, consult the
following online resources:

• The documentation on SciPy’s statistical functions
• The documentation of the statsmodels library
• Details on the optimization functions used in this chapter
• The documentation for PyMC3
• The documentation for scikit-learn

Useful references in book form for more background information are:

• Albon, Chris (2018). Machine Learning with Python Cookbook. Sebastopol, CA:
O’Reilly.

• Alpaydin, Ethem (2016). Machine Learning. Cambridge, MA: MIT Press.
• Copeland, Thomas, Fred Weston, and Kuldeep Shastri (2005). Financial Theory

and Corporate Policy. Boston, MA: Pearson.
• Downey, Allen (2013). Think Bayes. Sebastopol, CA: O’Reilly.
• Geweke, John (2005). Contemporary Bayesian Econometrics and Statistics. Hobo‐

ken, NJ: John Wiley & Sons.
• Hastie, Trevor, Robert Tibshirani, and Jerome Friedman (2009). The Elements of

Statistical Learning: Data Mining, Inference, and Prediction. New York: Springer.
• James, Gareth, et al. (2013). An Introduction to Statistical Learning—With Appli‐

cations in R. New York: Springer.
• López de Prado, Marcos (2018). Advances in Financial Machine Learning. Hobo‐

ken, NJ: John Wiley & Sons.
• Rachev, Svetlozar, et al. (2008). Bayesian Methods in Finance. Hoboken, NJ: John

Wiley & Sons.
• VanderPlas, Jake (2016). Python Data Science Handbook. Sebastopol, CA:

O’Reilly.
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The paper introducing modern portfolio theory is:

Markowitz, Harry (1952). “Portfolio Selection.” Journal of Finance, Vol. 7, pp. 77–91.
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PART IV

Algorithmic Trading

This part of the book is about the use of Python for algorithmic trading. More and
more trading platforms and brokers allow their clients to use, for example, REST
APIs to programmatically retrieve historical data or streaming data, or to place buy
and sell orders. What has been the domain of large financial institutions for a long
period now has become accessible even to retail algorithmic traders. In this space,
Python has secured a top position as a programming language and technology plat‐
form. Among other factors, this is driven by the fact that many trading platforms,
such as the one from FXCM Forex Capital Markets, provide easy-to-use Python
wrapper packages for their REST APIs.

This part of the book comprises three chapters:

• Chapter 14 introduces the FXCM trading platform, its REST API, and the fxcmpy
wrapper package.

• Chapter 15 focuses on the use of methods from statistics and machine learning to
derive algorithmic trading strategies; the chapter also shows how to use vector‐
ized backtesting.

• Chapter 16 looks at the deployment of automated algorithmic trading strategies;
it addresses capital management, backtesting for performance and risk, online
algorithms, and deployment.





CHAPTER 14

The FXCM Trading Platform

Financial institutions like to call what they do trading. Let’s be honest. It’s not trading;
it’s betting.

—Graydon Carter

This chapter introduces the trading platform from FXCM Group, LLC (“FXCM”
hereafter), with its RESTful and streaming application programming interface (API),
as well as the Python wrapper package fxcmpy. FXCM offers to retail and institu‐
tional traders a number of financial products that can be traded both via traditional
trading applications and programmatically via the API. The focus of the products lies
on currency pairs as well as contracts for difference (CFDs) on major stock indices
and commodities, etc.
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Risk Disclaimer

Trading forex/CFDs on margin carries a high level of risk and may
not be suitable for all investors as you could sustain losses in excess
of deposits. Leverage can work against you. The products are
intended for retail and professional clients. Due to the certain
restrictions imposed by the local law and regulation, German resi‐
dent retail client(s) could sustain a total loss of deposited funds but
are not subject to subsequent payment obligations beyond the
deposited funds. Be aware and fully understand all risks associated
with the market and trading. Prior to trading any products, care‐
fully consider your financial situation and experience level. Any
opinions, news, research, analyses, prices, or other information is
provided as general market commentary, and does not constitute
investment advice. The market commentary has not been prepared
in accordance with legal requirements designed to promote the
independence of investment research, and it is therefore not sub‐
ject to any prohibition on dealing ahead of dissemination. FXCM
and the author will not accept liability for any loss or damage,
including without limitation to, any loss of profit, which may arise
directly or indirectly from use of or reliance on such information.

The trading platform of FXCM allows even individual traders with smaller capital
positions to implement and deploy algorithmic trading strategies.

This chapter covers the basic functionalities of the FXCM trading API and the
fxcmpy Python package required to implement an automated algorithmic trading
strategy programmatically. It is structured as follows:

“Getting Started” on page 469
This section shows how to set up everything to work with the FXCM REST API
for algorithmic trading.

“Retrieving Data” on page 469
This section shows how to retrieve and work with financial data (down to the
tick level).

“Working with the API” on page 474
This section illustrates typical tasks implemented using the REST API, such as
retrieving historical and streaming data, placing orders, and looking up account
information.
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1 Note that FXCM demo accounts are only offered for certain countries.

Getting Started
Detailed documentation of the FXCM API is found at https://fxcm.github.io/rest-api-
docs. To install the Python wrapper package fxcmpy, execute this command in the
shell:

pip install fxcmpy

The documentation for the fxcmpy package is found at http://fxcmpy.tpq.io.

To get started with the FXCM trading API and the fxcmpy package, a free demo
account with FXCM is sufficient.1 The next step is to create a unique API token—say,
YOUR_FXCM_API_TOKEN—from within the demo account. A connection to the API is
then opened, for example, via:

import fxcmpy
api = fxcmpy.fxcmpy(access_token=YOUR_FXCM_API_TOKEN, log_level='error')

Alternatively, a configuration file (say, fxcm.cfg) can be used to connect to the API.
This file’s contents should look as follows:

[FXCM]
log_level = error
log_file = PATH_TO_AND_NAME_OF_LOG_FILE
access_token = YOUR_FXCM_API_TOKEN

One can then connect to the API via:

import fxcmpy
api = fxcmpy.fxcmpy(config_file='fxcm.cfg')

By default, the fxcmpy class connects to the demo server. However, by the use of the
server parameter, the connection can be made to the live trading server (if such an
account exists):

api = fxcmpy.fxcmpy(config_file='fxcm.cfg', server='demo')  
api = fxcmpy.fxcmpy(config_file='fxcm.cfg', server='real')  

Connects to the demo server.

Connects to the live trading server.

Retrieving Data
FXCM provides access to historical market price data sets, such as tick data, in a pre-
packaged variant. This means that one can retrieve, for instance, compressed files
from FXCM servers that contain tick data for the EUR/USD exchange rate for week
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26 of 2018, as described in the following subsection. The retrieval of historical candles
data from the API is explained in the subsequent subsection.

Retrieving Tick Data
For a number of currency pairs, FXCM provides historical tick data. The fxcmpy
package makes retrieval of such tick data and working with it convenient. First, some
imports:

In [1]: import time
        import numpy as np
        import pandas as pd
        import datetime as dt
        from pylab import mpl, plt

In [2]: plt.style.use('seaborn')
        mpl.rcParams['font.family'] = 'serif'
        %matplotlib inline

Second, a look at the available symbols (currency pairs) for which tick data is
available:

In [3]: from fxcmpy import fxcmpy_tick_data_reader as tdr

In [4]: print(tdr.get_available_symbols())
        ('AUDCAD', 'AUDCHF', 'AUDJPY', 'AUDNZD', 'CADCHF', 'EURAUD', 'EURCHF',
         'EURGBP', 'EURJPY', 'EURUSD', 'GBPCHF', 'GBPJPY', 'GBPNZD', 'GBPUSD',
         'GBPCHF', 'GBPJPY', 'GBPNZD', 'NZDCAD', 'NZDCHF', 'NZDJPY', 'NZDUSD',
         'USDCAD', 'USDCHF', 'USDJPY')

The following code retrieves one week’s worth of tick data for a single symbol. The
resulting pandas DataFrame object has more than 1.5 million data rows:

In [5]: start = dt.datetime(2018, 6, 25)  
        stop = dt.datetime(2018, 6, 30)  

In [6]: td = tdr('EURUSD', start, stop)  

In [7]: td.get_raw_data().info()  
        <class 'pandas.core.frame.DataFrame'>
        Index: 1963779 entries, 06/24/2018 21:00:12.290 to 06/29/2018
         20:59:00.607
        Data columns (total 2 columns):
        Bid    float64
        Ask    float64
        dtypes: float64(2)
        memory usage: 44.9+ MB

In [8]: td.get_data().info()  
        <class 'pandas.core.frame.DataFrame'>
        DatetimeIndex: 1963779 entries, 2018-06-24 21:00:12.290000 to 2018-06-29
         20:59:00.607000
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        Data columns (total 2 columns):
        Bid    float64
        Ask    float64
        dtypes: float64(2)
        memory usage: 44.9 MB

In [9]: td.get_data().head()
Out[9]:                             Bid      Ask
        2018-06-24 21:00:12.290  1.1662  1.16660
        2018-06-24 21:00:16.046  1.1662  1.16650
        2018-06-24 21:00:22.846  1.1662  1.16658
        2018-06-24 21:00:22.907  1.1662  1.16660
        2018-06-24 21:00:23.441  1.1662  1.16663

This retrieves the data file, unpacks it, and stores the raw data in a DataFrame
object (as an attribute to the resulting object).

The td.get_raw_data() method returns the DataFrame object with the raw data;
i.e., with the index values still being str objects.

The td.get_data() method returns a DataFrame object for which the index has
been transformed to a DatetimeIndex.

Since the tick data is stored in a DataFrame object, it is straightforward to pick a sub‐
set of the data and to implement typical financial analytics tasks on it. Figure 14-1
shows a plot of the mid prices derived for the subset and a simple moving average
(SMA):

In [10]: sub = td.get_data(start='2018-06-29 12:00:00',
                           end='2018-06-29 12:15:00')  

In [11]: sub.head()
Out[11]:                              Bid      Ask
         2018-06-29 12:00:00.011  1.16497  1.16498
         2018-06-29 12:00:00.071  1.16497  1.16497
         2018-06-29 12:00:00.079  1.16497  1.16498
         2018-06-29 12:00:00.091  1.16495  1.16498
         2018-06-29 12:00:00.205  1.16496  1.16498

In [12]: sub['Mid'] = sub.mean(axis=1)  

In [13]: sub['SMA'] = sub['Mid'].rolling(1000).mean()  

In [14]: sub[['Mid', 'SMA']].plot(figsize=(10, 6), lw=0.75);

Picks a subset of the complete data set.

Calculates the mid prices from the bid and ask prices.
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Derives SMA values over intervals of 1,000 ticks.

Figure 14-1. Historical mid tick prices for EUR/USD and SMA

Retrieving Candles Data
FXCM also provides access to historical candles data (beyond the API)—i.e., to data
for certain homogeneous time intervals (“bars”) with open, high, low, and close val‐
ues for both bid and ask prices.

First, a look at the available symbols for which candles data is provided:

In [15]: from fxcmpy import fxcmpy_candles_data_reader as cdr

In [16]: print(cdr.get_available_symbols())
         ('AUDCAD', 'AUDCHF', 'AUDJPY', 'AUDNZD', 'CADCHF', 'EURAUD', 'EURCHF',
          'EURGBP', 'EURJPY', 'EURUSD', 'GBPCHF', 'GBPJPY', 'GBPNZD', 'GBPUSD',
          'GBPCHF', 'GBPJPY', 'GBPNZD', 'NZDCAD', 'NZDCHF', 'NZDJPY', 'NZDUSD',
          'USDCAD', 'USDCHF', 'USDJPY')

Second, the data retrieval itself. It is similar to the tick data retrieval. The only differ‐
ence is that a period value—i.e., the bar length—needs to be specified (e.g., m1 for one
minute, H1 for one hour, or D1 for one day):

In [17]: start = dt.datetime(2018, 5, 1)
         stop = dt.datetime(2018, 6, 30)

In [18]: period = 'H1'  

In [19]: candles = cdr('EURUSD', start, stop, period)
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In [20]: data = candles.get_data()

In [21]: data.info()
         <class 'pandas.core.frame.DataFrame'>
         DatetimeIndex: 1080 entries, 2018-04-29 21:00:00 to 2018-06-29 20:00:00
         Data columns (total 8 columns):
         BidOpen     1080 non-null float64
         BidHigh     1080 non-null float64
         BidLow      1080 non-null float64
         BidClose    1080 non-null float64
         AskOpen     1080 non-null float64
         AskHigh     1080 non-null float64
         AskLow      1080 non-null float64
         AskClose    1080 non-null float64
         dtypes: float64(8)
         memory usage: 75.9 KB

In [22]: data[data.columns[:4]].tail()  
Out[22]:                      BidOpen  BidHigh   BidLow  BidClose
         2018-06-29 16:00:00  1.16768  1.16820  1.16731   1.16769
         2018-06-29 17:00:00  1.16769  1.16826  1.16709   1.16781
         2018-06-29 18:00:00  1.16781  1.16816  1.16668   1.16684
         2018-06-29 19:00:00  1.16684  1.16792  1.16638   1.16774
         2018-06-29 20:00:00  1.16774  1.16904  1.16758   1.16816

In [23]: data[data.columns[4:]].tail()  
Out[23]:                      AskOpen  AskHigh   AskLow  AskClose
         2018-06-29 16:00:00  1.16769  1.16820  1.16732   1.16771
         2018-06-29 17:00:00  1.16771  1.16827  1.16711   1.16782
         2018-06-29 18:00:00  1.16782  1.16817  1.16669   1.16686
         2018-06-29 19:00:00  1.16686  1.16794  1.16640   1.16775
         2018-06-29 20:00:00  1.16775  1.16907  1.16760   1.16861

Specifies the period value.

Open, high, low, close values for the bid prices.

Open, high, low, close values for the ask prices.

To conclude this section, the following code calculates mid close prices and two
SMAs, and plots the results (see Figure 14-2):

In [24]: data['MidClose'] = data[['BidClose', 'AskClose']].mean(axis=1)  

In [25]: data['SMA1'] = data['MidClose'].rolling(30).mean()  
         data['SMA2'] = data['MidClose'].rolling(100).mean()  

In [26]: data[['MidClose', 'SMA1', 'SMA2']].plot(figsize=(10, 6));

Calculates the mid close prices from the bid and ask close prices.
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Calculates two SMAs, one for a shorter time interval, one for a longer one.

Figure 14-2. Historical hourly mid close prices for EUR/USD and two SMAs

Working with the API
While the previous sections demonstrate retrieving prepackaged historical tick data
and candles data from FXCM servers, this section shows how to retrieve historical
data via the API. For this, a connection object to the FXCM API is needed. Therefore,
first the import of the fxcmpy package, the connection to the API (based on the
unique API token), and a look at the available instruments:

In [27]: import fxcmpy

In [28]: fxcmpy.__version__
Out[28]: '1.1.33'

In [29]: api = fxcmpy.fxcmpy(config_file='../fxcm.cfg')  

In [30]: instruments = api.get_instruments()

In [31]: print(instruments)
         ['EUR/USD', 'XAU/USD', 'GBP/USD', 'UK100', 'USDOLLAR', 'XAG/USD', 'GER30',
          'FRA40', 'USD/CNH', 'EUR/JPY', 'USD/JPY', 'CHN50', 'GBP/JPY', 'AUD/JPY',
          'CHF/JPY', 'USD/CHF', 'GBP/CHF', 'AUD/USD', 'EUR/AUD', 'EUR/CHF',
          'EUR/CAD', 'EUR/GBP', 'AUD/CAD', 'NZD/USD', 'USD/CAD', 'CAD/JPY',
          'GBP/AUD', 'NZD/JPY', 'US30', 'GBP/CAD', 'SOYF', 'GBP/NZD', 'AUD/NZD',
          'USD/SEK', 'EUR/SEK', 'EUR/NOK', 'USD/NOK', 'USD/MXN', 'AUD/CHF',
          'EUR/NZD', 'USD/ZAR', 'USD/HKD', 'ZAR/JPY', 'BTC/USD', 'USD/TRY',
          'EUR/TRY', 'NZD/CHF', 'CAD/CHF', 'NZD/CAD', 'TRY/JPY', 'AUS200',
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          'ESP35', 'HKG33', 'JPN225', 'NAS100', 'SPX500', 'Copper', 'EUSTX50',
          'USOil', 'UKOil', 'NGAS', 'Bund']

This connects to the API; adjust the path/filename.

Retrieving Historical Data
Once connected, data retrieval for specific time intervals is accomplished via a single
method call. When using the get_candles() method, the parameter period can be
one of m1, m5, m15, m30, H1, H2, H3, H4, H6, H8, D1, W1, or M1. The following code gives a
few examples. Figure 14-3 shows one-minute bar ask close prices for the EUR/USD
instrument (currency pair):

In [32]: candles = api.get_candles('USD/JPY', period='D1', number=10)  

In [33]: candles[candles.columns[:4]]  
Out[33]:                      bidopen  bidclose  bidhigh   bidlow
         date
         2018-10-08 21:00:00  113.760   113.219  113.937  112.816
         2018-10-09 21:00:00  113.219   112.946  113.386  112.863
         2018-10-10 21:00:00  112.946   112.267  113.281  112.239
         2018-10-11 21:00:00  112.267   112.155  112.528  111.825
         2018-10-12 21:00:00  112.155   112.200  112.491  111.873
         2018-10-14 21:00:00  112.163   112.130  112.270  112.109
         2018-10-15 21:00:00  112.130   111.758  112.230  111.619
         2018-10-16 21:00:00  112.151   112.238  112.333  111.727
         2018-10-17 21:00:00  112.238   112.636  112.670  112.009
         2018-10-18 21:00:00  112.636   112.168  112.725  111.942

In [34]: candles[candles.columns[4:]]  
Out[34]:                      askopen  askclose  askhigh   asklow  tickqty
         date
         2018-10-08 21:00:00  113.840   113.244  113.950  112.827   184835
         2018-10-09 21:00:00  113.244   112.970  113.399  112.875   321755
         2018-10-10 21:00:00  112.970   112.287  113.294  112.265   329174
         2018-10-11 21:00:00  112.287   112.175  112.541  111.835   568231
         2018-10-12 21:00:00  112.175   112.243  112.504  111.885   363233
         2018-10-14 21:00:00  112.219   112.181  112.294  112.145      581
         2018-10-15 21:00:00  112.181   111.781  112.243  111.631   322304
         2018-10-16 21:00:00  112.163   112.271  112.345  111.740   253420
         2018-10-17 21:00:00  112.271   112.664  112.682  112.022   542166
         2018-10-18 21:00:00  112.664   112.237  112.738  111.955   369012

In [35]: start = dt.datetime(2017, 1, 1)  
         end = dt.datetime(2018, 1, 1)  

In [36]: candles = api.get_candles('EUR/GBP', period='D1',
                                   start=start, stop=end)  

In [37]: candles.info()  
         <class 'pandas.core.frame.DataFrame'>

Working with the API | 475



         DatetimeIndex: 309 entries, 2017-01-03 22:00:00 to 2018-01-01 22:00:00
         Data columns (total 9 columns):
         bidopen     309 non-null float64
         bidclose    309 non-null float64
         bidhigh     309 non-null float64
         bidlow      309 non-null float64
         askopen     309 non-null float64
         askclose    309 non-null float64
         askhigh     309 non-null float64
         asklow      309 non-null float64
         tickqty     309 non-null int64
         dtypes: float64(8), int64(1)
         memory usage: 24.1 KB

In [38]: candles = api.get_candles('EUR/USD', period='m1', number=250)  

In [39]: candles['askclose'].plot(figsize=(10, 6))

Retrieves the 10 most recent end-of-day prices.

Retrieves end-of-day prices for a whole year.

Retrieves the most recent one-minute bar prices available.

Figure 14-3. Historical ask close prices for EUR/USD (minute bars)
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Retrieving Streaming Data
While historical data is important to, for example, backtest algorithmic trading strate‐
gies, continuous access to real-time or streaming data (during trading hours) is
required to deploy and automate algorithmic trading strategies. The FXCM API
allows for the subscription to real-time data streams for all instruments. The fxcmpy
wrapper package supports this functionality, among others, in that it allows users to
provide user-defined functions (so-called callback functions) to process the real-time
data stream.

The following code presents a simple callback function—it only prints out selected
elements of the data set retrieved—and uses it to process data retrieved in real time
after subscribing to the desired instrument (here, EUR/USD):

In [40]: def output(data, dataframe):
             print('%3d | %s | %s | %6.5f, %6.5f'
                   % (len(dataframe), data['Symbol'],
                      pd.to_datetime(int(data['Updated']), unit='ms'),
                      data['Rates'][0], data['Rates'][1]))  

In [41]: api.subscribe_market_data('EUR/USD', (output,))  
           1 | EUR/USD | 2018-10-19 11:36:39.735000 | 1.14694, 1.14705
           2 | EUR/USD | 2018-10-19 11:36:39.776000 | 1.14694, 1.14706
           3 | EUR/USD | 2018-10-19 11:36:40.714000 | 1.14695, 1.14707
           4 | EUR/USD | 2018-10-19 11:36:41.646000 | 1.14696, 1.14708
           5 | EUR/USD | 2018-10-19 11:36:41.992000 | 1.14696, 1.14709
           6 | EUR/USD | 2018-10-19 11:36:45.131000 | 1.14696, 1.14708
           7 | EUR/USD | 2018-10-19 11:36:45.247000 | 1.14696, 1.14709

In [42]: api.get_last_price('EUR/USD')  
Out[42]: Bid     1.14696
         Ask     1.14709
         High    1.14775
         Low     1.14323
         Name: 2018-10-19 11:36:45.247000, dtype: float64

In [43]: api.unsubscribe_market_data('EUR/USD')  
           8 | EUR/USD | 2018-10-19 11:36:48.239000 | 1.14696, 1.14708

The callback function that prints out certain elements of the retrieved data set.

The subscription to a specific real-time data stream; data is processed asynchro‐
nously as long as there is no “unsubscribe” event.

During the subscription, the .get_last_price() method returns the last avail‐
able data set.

This unsubscribes from the real-time data stream.
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2 See the documentation for details.

3 Quantities are in thousands of the instrument for currency pairs. Also note that different accounts might have
different leverage ratios. This implies that the same position might require more or less equity (margin)
depending on the relevant leverage ratio. Adjust the example quantities to lower values if necessary.

Callback Functions

Callback functions are a flexible means to process real-time
streaming data based on a Python function or even multiple such
functions. They can be used for simple tasks, such as the printing
of incoming data, or complex tasks, such as generating trading sig‐
nals based on online trading algorithms (see Chapter 16).

Placing Orders
The FXCM API allows the placement and management of all types of orders that are
also available via the trading application of FXCM (such as entry orders or trailing
stop loss orders).2 However, the following code illustrates basic market buy and sell
orders only since they are in general sufficient to at least get started with algorithmic
trading. It first verifies that there are no open positions, then opens different posi‐
tions (via the create_market_buy_order() method):

In [44]: api.get_open_positions()  
Out[44]: Empty DataFrame
         Columns: []
         Index: []

In [45]: order = api.create_market_buy_order('EUR/USD', 10)  

In [46]: sel = ['tradeId', 'amountK', 'currency',
                'grossPL', 'isBuy']  

In [47]: api.get_open_positions()[sel]  
Out[47]:      tradeId  amountK currency  grossPL  isBuy
         0  132607899       10  EUR/USD  0.17436   True

In [48]: order = api.create_market_buy_order('EUR/GBP', 5)  

In [49]: api.get_open_positions()[sel]
Out[49]:      tradeId  amountK currency  grossPL  isBuy
         0  132607899       10  EUR/USD  0.17436   True
         1  132607928        5  EUR/GBP -1.53367   True

Shows the open positions for the connected (default) account.

Opens a position of 100,000 in the EUR/USD currency pair.3
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Shows the open positions for selected elements only.

Opens another position of 50,000 in the EUR/GBP currency pair.

While the create_market_buy_order() function opens or increases positions, the
create_market_sell_order() function allows one to close or decrease positions.
There are also more general methods that allow the closing out of positions, as the
following code illustrates:

In [50]: order = api.create_market_sell_order('EUR/USD', 3)  

In [51]: order = api.create_market_buy_order('EUR/GBP', 5)  

In [52]: api.get_open_positions()[sel]  
Out[52]:      tradeId  amountK currency  grossPL  isBuy
         0  132607899       10  EUR/USD  0.17436   True
         1  132607928        5  EUR/GBP -1.53367   True
         2  132607930        3  EUR/USD -1.33369  False
         3  132607932        5  EUR/GBP -1.64728   True

In [53]: api.close_all_for_symbol('EUR/GBP')  

In [54]: api.get_open_positions()[sel]
Out[54]:      tradeId  amountK currency  grossPL  isBuy
         0  132607899       10  EUR/USD  0.17436   True
         1  132607930        3  EUR/USD -1.33369  False

In [55]: api.close_all()  

In [56]: api.get_open_positions()
Out[56]: Empty DataFrame
         Columns: []
         Index: []

This reduces the position in the EUR/USD currency pair.

This increases the position in the EUR/GBP currency pair.

For EUR/GBP there are now two open long positions; contrary to the EUR/USD
position, they are not netted.

The close_all_for_symbol() method closes all positions for the specified
symbol.

The close_all() method closes all open positions.
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Account Information
Beyond, for example, open positions, the FXCM API allows retrieval of more general
account information as well. For example, one can look up the default account (if
there are multiple accounts) or get an overview of the equity and margin situation:

In [57]: api.get_default_account()  
Out[57]: 1090495

In [58]: api.get_accounts().T  
Out[58]:                           0
         accountId           1090495
         accountName        01090495
         balance              4915.2
         dayPL                -41.97
         equity               4915.2
         grossPL                   0
         hedging                   Y
         mc                        N
         mcDate
         ratePrecision             0
         t                         6
         usableMargin         4915.2
         usableMargin3        4915.2
         usableMargin3Perc       100
         usableMarginPerc        100
         usdMr                     0
         usdMr3                    0

Shows the default accountId value.

Shows for all accounts the financial situation and some parameters.

Conclusion
This chapter is about the REST API of FXCM for algorithmic trading and covers the
following topics:

• Setting everything up for API usage
• Retrieving historical tick data
• Retrieving historical candles data
• Retrieving streaming data in real time
• Placing market buy and sell orders
• Looking up account information
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The FXCM API and the fxcmpy wrapper package provide, of course, more function‐
ality, but these are the basic building blocks needed to get started with algorithmic
trading.

Further Resources
For further details on the FXCM trading API and the Python wrapper package, con‐
sult the documentation:

• Trading API
• fxcmpy package

For a comprehensive online training program covering Python for algorithmic trad‐
ing, see http://certificate.tpq.io.
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1 Source: “Does the Past Predict the Future?” Economist.com, 23 September 2009, available at https://
www.economist.com/free-exchange/2009/09/23/does-the-past-predict-the-future.

2 An alternative approach would be the event-based backtesting of trading strategies, during which the arrival of
new data in markets is simulated by explicitly looping over every single new data point.

CHAPTER 15

Trading Strategies

[T]hey were silly enough to think you can look at the past to predict the future.
—The Economist1

This chapter is about the vectorized backtesting of algorithmic trading strategies. The
term algorithmic trading strategy is used to describe any type of financial trading
strategy that is based on an algorithm designed to take long, short, or neutral posi‐
tions in financial instruments on its own without human interference. A simple algo‐
rithm, such as “altering every five minutes between a long and a neutral position in
the stock of Apple, Inc.,” satisfies this definition. For the purposes of this chapter and
a bit more technically, an algorithmic trading strategy is represented by some Python
code that, given the availability of new data, decides whether to buy or sell a financial
instrument in order to take long, short, or neutral positions in it.

The chapter does not provide an overview of algorithmic trading strategies (see “Fur‐
ther Resources” on page 519 for references that cover algorithmic trading strategies in
more detail). It rather focuses on the technical aspects of the vectorized backtesting
approach for a select few such strategies. With this approach the financial data on
which the strategy is tested is manipulated in general as a whole, applying vectorized
operations on NumPy ndarray and pandas DataFrame objects that store the financial
data.2

Another focus of the chapter is the application of machine and deep learning algo‐
rithms to formulate algorithmic trading strategies. To this end, classification
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3 Note that when working with real values, every pattern might be unique or at least rather rare, which makes it
difficult to train an algorithm and to conclude anything from an observed pattern.

algorithms are trained on historical data in order to predict future directional market
movements. This in general requires the transformation of the financial data from
real values to a relatively small number of categorical values.3 This allows us to har‐
ness the pattern recognition power of such algorithms.

The chapter is broken down into the following sections:

“Simple Moving Averages” on page 484
This section focuses on an algorithmic trading strategy based on simple moving
averages and how to backtest such a strategy.

“Random Walk Hypothesis” on page 491
This section introduces the random walk hypothesis.

“Linear OLS Regression” on page 494
This section looks at using OLS regression to derive an algorithmic trading
strategy.

“Clustering” on page 499
In this section, we explore using unsupervised learning algorithms to derive algo‐
rithmic trading strategies.

“Frequency Approach” on page 501
This section introduces a simple frequentist approach for algorithmic trading.

“Classification” on page 504
Here we look at classification algorithms from machine learning for algorithmic
trading.

“Deep Neural Networks” on page 512
This section focuses on deep neural networks and how to use them for algorith‐
mic trading.

Simple Moving Averages
Trading based on simple moving averages (SMAs) is a decades-old trading approach
(see, for example, the paper by Brock et al. (1992)). Although many traders use SMAs
for their discretionary trading, they can also be used to formulate simple algorithmic
trading strategies. This section uses SMAs to introduce vectorized backtesting of
algorithmic trading strategies. It builds on the technical analysis example in Chap‐
ter 8.
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Data Import
First, some imports:

In [1]: import numpy as np
        import pandas as pd
        import datetime as dt
        from pylab import mpl, plt

In [2]: plt.style.use('seaborn')
        mpl.rcParams['font.family'] = 'serif'
        %matplotlib inline

Second, the reading of the raw data and the selection of the financial time series for a
single symbol, the stock of Apple, Inc. (AAPL.O). The analysis in this section is based
on end-of-day data; intraday data is used in subsequent sections:

In [3]: raw = pd.read_csv('../../source/tr_eikon_eod_data.csv',
                          index_col=0, parse_dates=True)

In [4]: raw.info()
        <class 'pandas.core.frame.DataFrame'>
        DatetimeIndex: 2216 entries, 2010-01-01 to 2018-06-29
        Data columns (total 12 columns):
        AAPL.O    2138 non-null float64
        MSFT.O    2138 non-null float64
        INTC.O    2138 non-null float64
        AMZN.O    2138 non-null float64
        GS.N      2138 non-null float64
        SPY       2138 non-null float64
        .SPX      2138 non-null float64
        .VIX      2138 non-null float64
        EUR=      2216 non-null float64
        XAU=      2211 non-null float64
        GDX       2138 non-null float64
        GLD       2138 non-null float64
        dtypes: float64(12)
        memory usage: 225.1 KB

In [5]: symbol = 'AAPL.O'

In [6]: data = (
            pd.DataFrame(raw[symbol])
            .dropna()
        )

Trading Strategy
Third, the calculation of the SMA values for two different rolling window sizes.
Figure 15-1 shows the three time series visually:
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4 Similarly, for a long only strategy one would use +1 for a long position and 0 for a neutral position.

In [7]: SMA1 = 42  
        SMA2 = 252  

In [8]: data['SMA1'] = data[symbol].rolling(SMA1).mean()  
        data['SMA2'] = data[symbol].rolling(SMA2).mean()  

In [9]: data.plot(figsize=(10, 6));

Calculates the values for the shorter SMA.

Calculates the values for the longer SMA.

Figure 15-1. Apple stock price and two simple moving averages

Fourth, the derivation of the positions. The trading rules are:

• Go long (= +1) when the shorter SMA is above the longer SMA.
• Go short (= -1) when the shorter SMA is below the longer SMA.4

The positions are visualized in Figure 15-2:

In [10]: data.dropna(inplace=True)

In [11]: data['Position'] = np.where(data['SMA1'] > data['SMA2'], 1, -1)  

In [12]: data.tail()

486 | Chapter 15: Trading Strategies



Out[12]:             AAPL.O        SMA1        SMA2  Position
         Date
         2018-06-25  182.17  185.606190  168.265556         1
         2018-06-26  184.43  186.087381  168.418770         1
         2018-06-27  184.16  186.607381  168.579206         1
         2018-06-28  185.50  187.089286  168.736627         1
         2018-06-29  185.11  187.470476  168.901032         1

In [13]: ax = data.plot(secondary_y='Position', figsize=(10, 6))
         ax.get_legend().set_bbox_to_anchor((0.25, 0.85));

np.where(cond, a, b) evaluates the condition cond element-wise and places a
when True and b otherwise.

Figure 15-2. Apple stock price, two SMAs, and resulting positions

This replicates the results derived in Chapter 8. What is not addressed there is if fol‐
lowing the trading rules—i.e., implementing the algorithmic trading strategy—is
superior compared to the benchmark case of simply going long on the Apple stock
over the whole period. Given that the strategy leads to two periods only during which
the Apple stock should be shorted, differences in the performance can only result
from these two periods.

Vectorized Backtesting
The vectorized backtesting can now be implemented as follows. First, the log returns
are calculated. Then the positionings, represented as +1 or -1, are multiplied by the
relevant log return. This simple calculation is possible since a long position earns the
return of the Apple stock and a short position earns the negative return of the Apple
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5 The basic idea is that the algorithm can only set up a position in the Apple stock given today’s market data
(e.g., just before the close). The position then earns tomorrow’s return.

stock. Finally, the log returns for the Apple stock and the algorithmic trading strategy
based on SMAs need to be added up and the exponential function applied to arrive at
the performance values:

In [14]: data['Returns'] = np.log(data[symbol] / data[symbol].shift(1))  

In [15]: data['Strategy'] = data['Position'].shift(1) * data['Returns']  

In [16]: data.round(4).head()
Out[16]:              AAPL.O     SMA1     SMA2  Position  Returns  Strategy
         Date
         2010-12-31  46.0800  45.2810  37.1207         1      NaN       NaN
         2011-01-03  47.0814  45.3497  37.1862         1   0.0215    0.0215
         2011-01-04  47.3271  45.4126  37.2525         1   0.0052    0.0052
         2011-01-05  47.7142  45.4661  37.3223         1   0.0081    0.0081
         2011-01-06  47.6757  45.5226  37.3921         1  -0.0008   -0.0008

In [17]: data.dropna(inplace=True)

In [18]: np.exp(data[['Returns', 'Strategy']].sum())  
Out[18]: Returns     4.017148
         Strategy    5.811299
         dtype: float64

In [19]: data[['Returns', 'Strategy']].std() * 252 ** 0.5  
Out[19]: Returns     0.250571
         Strategy    0.250407
         dtype: float64

Calculates the log returns of the Apple stock (i.e., the benchmark investment).

Multiplies the position values, shifted by one day, by the log returns of the Apple
stock; the shift is required to avoid a foresight bias.5

Sums up the log returns for the strategy and the benchmark investment and cal‐
culates the exponential value to arrive at the absolute performance.

Calculates the annualized volatility for the strategy and the benchmark invest‐
ment.

The numbers show that the algorithmic trading strategy indeed outperforms the
benchmark investment of passively holding the Apple stock. Due to the type and
characteristics of the strategy, the annualized volatility is the same, such that it also
outperforms the benchmark investment on a risk-adjusted basis.
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To gain a better picture of the overall performance, Figure 15-3 shows the perfor‐
mance of the Apple stock and the algorithmic trading strategy over time:

In [20]: ax = data[['Returns', 'Strategy']].cumsum(
                 ).apply(np.exp).plot(figsize=(10, 6))
         data['Position'].plot(ax=ax, secondary_y='Position', style='--')
         ax.get_legend().set_bbox_to_anchor((0.25, 0.85));

Figure 15-3. Performance of Apple stock and SMA-based trading strategy over time

Simplifications

The vectorized backtesting approach as introduced in this subsec‐
tion is based on a number of simplifying assumptions. Among oth‐
ers, transactions costs (fixed fees, bid-ask spreads, lending costs,
etc.) are not included. This might be justifiable for a trading strat‐
egy that leads to a few trades only over multiple years. It is also
assumed that all trades take place at the end-of-day closing prices
for the Apple stock. A more realistic backtesting approach would
take these and other (market microstructure) elements into
account.

Optimization
A natural question that arises is if the chosen parameters SMA1=42 and SMA2=252 are
the “right” ones. In general, investors prefer higher returns to lower returns ceteris
paribus. Therefore, one might be inclined to search for those parameters that maxi‐
mize the return over the relevant period. To this end, a brute force approach can be
used that simply repeats the whole vectorized backtesting procedure for different
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parameter combinations, records the results, and does a ranking afterward. This is
what the following code does:

In [21]: from itertools import product

In [22]: sma1 = range(20, 61, 4)  
         sma2 = range(180, 281, 10)  

In [23]: results = pd.DataFrame()
         for SMA1, SMA2 in product(sma1, sma2):  
             data = pd.DataFrame(raw[symbol])
             data.dropna(inplace=True)
             data['Returns'] = np.log(data[symbol] / data[symbol].shift(1))
             data['SMA1'] = data[symbol].rolling(SMA1).mean()
             data['SMA2'] = data[symbol].rolling(SMA2).mean()
             data.dropna(inplace=True)
             data['Position'] = np.where(data['SMA1'] > data['SMA2'], 1, -1)
             data['Strategy'] = data['Position'].shift(1) * data['Returns']
             data.dropna(inplace=True)
             perf = np.exp(data[['Returns', 'Strategy']].sum())
             results = results.append(pd.DataFrame(
                         {'SMA1': SMA1, 'SMA2': SMA2,
                          'MARKET': perf['Returns'],
                          'STRATEGY': perf['Strategy'],
                          'OUT': perf['Strategy'] - perf['Returns']},
                          index=[0]), ignore_index=True)  

Specifies the parameter values for SMA1.

Specifies the parameter values for SMA2.

Combines all values for SMA1 with those for SMA2.

Records the vectorized backtesting results in a DataFrame object.

The following code gives an overview of the results and shows the seven best-
performing parameter combinations of all those backtested. The ranking is imple‐
mented according to the outperformance of the algorithmic trading strategy
compared to the benchmark investment. The performance of the benchmark invest‐
ment varies since the choice of the SMA2 parameter influences the length of the time
interval and data set on which the vectorized backtest is implemented:

In [24]: results.info()
         <class 'pandas.core.frame.DataFrame'>
         RangeIndex: 121 entries, 0 to 120
         Data columns (total 5 columns):
         SMA1        121 non-null int64
         SMA2        121 non-null int64
         MARKET      121 non-null float64
         STRATEGY    121 non-null float64
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         OUT         121 non-null float64
         dtypes: float64(3), int64(2)
         memory usage: 4.8 KB

In [25]: results.sort_values('OUT', ascending=False).head(7)
Out[25]:      SMA1  SMA2    MARKET  STRATEGY       OUT
         56     40   190  4.650342  7.175173  2.524831
         39     32   240  4.045619  6.558690  2.513071
         59     40   220  4.220272  6.544266  2.323994
         46     36   200  4.074753  6.389627  2.314874
         55     40   180  4.574979  6.857989  2.283010
         70     44   220  4.220272  6.469843  2.249571
         101    56   200  4.074753  6.319524  2.244772

According to the brute force–based optimization, SMA1=40 and SMA2=190 are the opti‐
mal parameters, leading to an outperformance of some 230 percentage points. How‐
ever, this result is heavily dependent on the data set used and is prone to overfitting.
A more rigorous approach would be to implement the optimization on one data set,
the in-sample or training data set, and test it on another one, the out-of-sample or
testing data set.

Overfitting

In general, any type of optimization, fitting, or training in the con‐
text of algorithmic trading strategies is prone to what is called over‐
fitting. This means that parameters might be chosen that perform
(exceptionally) well for the used data set but might perform
(exceptionally) badly on other data sets or in practice.

Random Walk Hypothesis
The previous section introduces vectorized backtesting as an efficient tool to backtest
algorithmic trading strategies. The single strategy backtested based on a single finan‐
cial time series, namely historical end-of-day prices for the Apple stock, outperforms
the benchmark investment of simply going long on the Apple stock over the same
period.

Although rather specific in nature, these results are in contrast to what the random
walk hypothesis (RWH) predicts, namely that such predictive approaches should not
yield any outperformance at all. The RWH postulates that prices in financial markets
follow a random walk, or, in continuous time, an arithmetic Brownian motion
without drift. The expected value of an arithmetic Brownian motion without drift at
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6 For a formal definition and deeper discussion of random walks and Brownian motion–based processes, refer
to Baxter and Rennie (1996).

any point in the future equals its value today.6 As a consequence, the best predictor
for tomorrow’s price, in a least-squares sense, is today’s price if the RWH applies.

The consequences are summarized in the following quote:

For many years, economists, statisticians, and teachers of finance have been interested
in developing and testing models of stock price behavior. One important model that
has evolved from this research is the theory of random walks. This theory casts serious
doubt on many other methods for describing and predicting stock price behavior—
methods that have considerable popularity outside the academic world. For example,
we shall see later that, if the random-walk theory is an accurate description of reality,
then the various “technical” or “chartist” procedures for predicting stock prices are
completely without value.

—Eugene F. Fama (1965)

The RWH is consistent with the efficient markets hypothesis (EMH), which, non-
technically speaking, states that market prices reflect “all available information.” Dif‐
ferent degrees of efficiency are generally distinguished, such as weak, semi-strong, and
strong, defining more specifically what “all available information” entails. Formally,
such a definition can be based on the concept of an information set in theory and on
a data set for programming purposes, as the following quote illustrates:

A market is efficient with respect to an information set S if it is impossible to make
economic profits by trading on the basis of information set S.

—Michael Jensen (1978)

Using Python, the RWH can be tested for a specific case as follows. A financial time
series of historical market prices is used for which a number of lagged versions are
created—say, five. OLS regression is then used to predict the market prices based on
the lagged market prices created before. The basic idea is that the market prices from
yesterday and four more days back can be used to predict today’s market price.

The following Python code implements this idea and creates five lagged versions of
the historical end-of-day closing levels of the S&P 500 stock index:

In [26]: symbol = '.SPX'

In [27]: data = pd.DataFrame(raw[symbol])

In [28]: lags = 5
         cols = []
         for lag in range(1, lags + 1):
             col = 'lag_{}'.format(lag)  
             data[col] = data[symbol].shift(lag)  
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             cols.append(col)  

In [29]: data.head(7)
Out[29]:                .SPX    lag_1    lag_2    lag_3    lag_4    lag_5
         Date
         2010-01-01      NaN      NaN      NaN      NaN      NaN      NaN
         2010-01-04  1132.99      NaN      NaN      NaN      NaN      NaN
         2010-01-05  1136.52  1132.99      NaN      NaN      NaN      NaN
         2010-01-06  1137.14  1136.52  1132.99      NaN      NaN      NaN
         2010-01-07  1141.69  1137.14  1136.52  1132.99      NaN      NaN
         2010-01-08  1144.98  1141.69  1137.14  1136.52  1132.99      NaN
         2010-01-11  1146.98  1144.98  1141.69  1137.14  1136.52  1132.99

In [30]: data.dropna(inplace=True)

Defines a column name for the current lag value.

Creates the lagged version of the market prices for the current lag value.

Collects the column names for later reference.

Using NumPy, the OLS regression is straightforward to implement. As the optimal
regression parameters show, lag_1 indeed is the most important one in predicting
the market price based on OLS regression. Its value is close to 1. The other four val‐
ues are rather close to 0. Figure 15-4 visualizes the optimal regression parameter
values.

Figure 15-4. Optimal regression parameters from OLS regression for price prediction
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When using the optimal results to visualize the prediction values as compared to the
original index values for the S&P 500, it becomes obvious from Figure 15-5 that
indeed lag_1 is basically what is used to come up with the prediction value. Graphi‐
cally speaking, the prediction line in Figure 15-5 is the original time series shifted by
one day to the right (with some minor adjustments).

Figure 15-5. S&P 500 levels compared to prediction values from OLS regression

All in all, the brief analysis in this section reveals some support for both the RWH
and the EMH. For sure, the analysis is done for a single stock index only and uses a
rather specific parameterization—but this can easily be widened to incorporate mul‐
tiple financial instruments across multiple asset classes, different values for the num‐
ber of lags, etc. In general, one will find out that the results are qualitatively more or
less the same. After all, the RWH and EMH are among the financial theories that
have broad empirical support. In that sense, any algorithmic trading strategy must
prove its worth by proving that the RWH does not apply in general. This for sure is a
tough hurdle.

Linear OLS Regression
This section applies linear OLS regression to predict the direction of market move‐
ments based on historical log returns. To keep things simple, only two features are
used. The first feature (lag_1) represents the log returns of the financial time series
lagged by one day. The second feature (lag_2) lags the log returns by two days. Log
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returns—in contrast to prices—are stationary in general, which often is a necessary
condition for the application of statistical and ML algorithms.

The basic idea behind the usage of lagged log returns as features is that they might be
informative in predicting future returns. For example, one might hypothesize that
after two downward movements an upward movement is more likely (“mean rever‐
sion”), or, to the contrary, that another downward movement is more likely
(“momentum” or “trend”). The application of regression techniques allows the for‐
malization of such informal reasonings.

The Data
First, the importing and preparation of the data set. Figure 15-6 shows the frequency
distribution of the daily historical log returns for the EUR/USD exchange rate. They
are the basis for the features as well as the labels to be used in what follows:

In [3]: raw = pd.read_csv('../../source/tr_eikon_eod_data.csv',
                          index_col=0, parse_dates=True).dropna()

In [4]: raw.columns
Out[4]: Index(['AAPL.O', 'MSFT.O', 'INTC.O', 'AMZN.O', 'GS.N', 'SPY', '.SPX',
               '.VIX', 'EUR=', 'XAU=', 'GDX', 'GLD'],
               dtype='object')

In [5]: symbol = 'EUR='

In [6]: data = pd.DataFrame(raw[symbol])

In [7]: data['returns'] = np.log(data / data.shift(1))

In [8]: data.dropna(inplace=True)

In [9]: data['direction'] = np.sign(data['returns']).astype(int)

In [10]: data.head()
Out[10]:               EUR=   returns  direction
         Date
         2010-01-05  1.4368 -0.002988         -1
         2010-01-06  1.4412  0.003058          1
         2010-01-07  1.4318 -0.006544         -1
         2010-01-08  1.4412  0.006544          1
         2010-01-11  1.4513  0.006984          1

In [11]: data['returns'].hist(bins=35, figsize=(10, 6));
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Figure 15-6. Histogram of log returns for EUR/USD exchange rate

Second, the code that creates the features data by lagging the log returns and visual‐
izes it in combination with the returns data (see Figure 15-7):

In [12]: lags = 2

In [13]: def create_lags(data):
             global cols
             cols = []
             for lag in range(1, lags + 1):
                 col = 'lag_{}'.format(lag)
                 data[col] = data['returns'].shift(lag)
                 cols.append(col)

In [14]: create_lags(data)

In [15]: data.head()
Out[15]:               EUR=   returns  direction     lag_1     lag_2
         Date
         2010-01-05  1.4368 -0.002988         -1       NaN       NaN
         2010-01-06  1.4412  0.003058          1 -0.002988       NaN
         2010-01-07  1.4318 -0.006544         -1  0.003058 -0.002988
         2010-01-08  1.4412  0.006544          1 -0.006544  0.003058
         2010-01-11  1.4513  0.006984          1  0.006544 -0.006544

In [16]: data.dropna(inplace=True)

In [17]: data.plot.scatter(x='lag_1', y='lag_2', c='returns',
                           cmap='coolwarm', figsize=(10, 6), colorbar=True)
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         plt.axvline(0, c='r', ls='--')
         plt.axhline(0, c='r', ls='--');

Figure 15-7. Scatter plot based on features and labels data

Regression
With the data set completed, linear OLS regression can be applied to learn about any
potential (linear) relationships, to predict market movement based on the features,
and to backtest a trading strategy based on the predictions. Two basic approaches are
available: using the log returns or only the direction data as the dependent variable
during the regression. In any case, predictions are real-valued and therefore trans‐
formed to either +1 or -1 to only work with the direction of the prediction:

In [18]: from sklearn.linear_model import LinearRegression  

In [19]: model = LinearRegression()  

In [20]: data['pos_ols_1'] = model.fit(data[cols],
                                       data['returns']).predict(data[cols])  

In [21]: data['pos_ols_2'] = model.fit(data[cols],
                                       data['direction']).predict(data[cols])  

In [22]: data[['pos_ols_1', 'pos_ols_2']].head()
Out[22]:             pos_ols_1  pos_ols_2
         Date
         2010-01-07  -0.000166  -0.000086
         2010-01-08   0.000017   0.040404
         2010-01-11  -0.000244  -0.011756
         2010-01-12  -0.000139  -0.043398
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         2010-01-13  -0.000022   0.002237

In [23]: data[['pos_ols_1', 'pos_ols_2']] = np.where(
                     data[['pos_ols_1', 'pos_ols_2']] > 0, 1, -1)  

In [24]: data['pos_ols_1'].value_counts()  
Out[24]: -1    1847
          1     288
         Name: pos_ols_1, dtype: int64

In [25]: data['pos_ols_2'].value_counts()  
Out[25]:  1    1377
         -1     758
         Name: pos_ols_2, dtype: int64

In [26]: (data['pos_ols_1'].diff() != 0).sum()  
Out[26]: 555

In [27]: (data['pos_ols_2'].diff() != 0).sum()  
Out[27]: 762

The linear OLS regression implementation from scikit-learn is used.

The regression is implemented on the log returns directly …

… and on the direction data which is of primary interest.

The real-valued predictions are transformed to directional values (+1, -1).

The two approaches yield different directional predictions in general.

However, both lead to a relatively large number of trades over time.

Equipped with the directional prediction, vectorized backtesting can be applied to
judge the performance of the resulting trading strategies. At this stage, the analysis is
based on a number of simplifying assumptions, such as “zero transaction costs” and
the usage of the same data set for both training and testing. Under these assumptions,
however, both regression-based strategies outperform the benchmark passive invest‐
ment, while only the strategy trained on the direction of the market shows a positive
overall performance (Figure 15-8):

In [28]: data['strat_ols_1'] = data['pos_ols_1'] * data['returns']

In [29]: data['strat_ols_2'] = data['pos_ols_2'] * data['returns']

In [30]: data[['returns', 'strat_ols_1', 'strat_ols_2']].sum().apply(np.exp)
Out[30]: returns        0.810644
         strat_ols_1    0.942422
         strat_ols_2    1.339286
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         dtype: float64

In [31]: (data['direction'] == data['pos_ols_1']).value_counts()  
Out[31]: False    1093
         True     1042
         dtype: int64

In [32]: (data['direction'] == data['pos_ols_2']).value_counts()  
Out[32]: True     1096
         False    1039
         dtype: int64

In [33]: data[['returns', 'strat_ols_1', 'strat_ols_2']].cumsum(
                 ).apply(np.exp).plot(figsize=(10, 6));

Shows the number of correct and false predictions by the strategies.

Figure 15-8. Performance of EUR/USD and regression-based strategies over time

Clustering
This section applies k-means clustering, as introduced in “Machine Learning” on
page 444, to financial time series data to automatically come up with clusters that are
used to formulate a trading strategy. The idea is that the algorithm identifies two
clusters of feature values that predict either an upward movement or a downward
movement.

The following code applies the k-means algorithm to the two features as used before.
Figure 15-9 visualizes the two clusters:
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In [34]: from sklearn.cluster import KMeans

In [35]: model = KMeans(n_clusters=2, random_state=0)  

In [36]: model.fit(data[cols])
Out[36]: KMeans(algorithm='auto', copy_x=True, init='k-means++', max_iter=300,
             n_clusters=2, n_init=10, n_jobs=None, precompute_distances='auto',
             random_state=0, tol=0.0001, verbose=0)

In [37]: data['pos_clus'] = model.predict(data[cols])

In [38]: data['pos_clus'] = np.where(data['pos_clus'] == 1, -1, 1)  

In [39]: data['pos_clus'].values
Out[39]: array([-1,  1, -1, ...,  1,  1, -1])

In [40]: plt.figure(figsize=(10, 6))
         plt.scatter(data[cols].iloc[:, 0], data[cols].iloc[:, 1],
                     c=data['pos_clus'], cmap='coolwarm');

Two clusters are chosen for the algorithm.

Given the cluster values, the position is chosen.

Figure 15-9. Two clusters as identified by the k-means algorithm

Admittedly, this approach is quite arbitrary in this context—after all, how should the
algorithm know what one is looking for? However, the resulting trading strategy
shows a slight outperformance at the end compared to the benchmark passive invest‐
ment (see Figure 15-10). It is noteworthy that no guidance (supervision) is given and
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that the hit ratio—i.e., the number of correct predictions in relationship to all predic‐
tions made—is less than 50%:

In [41]: data['strat_clus'] = data['pos_clus'] * data['returns']

In [42]: data[['returns', 'strat_clus']].sum().apply(np.exp)
Out[42]: returns       0.810644
         strat_clus    1.277133
         dtype: float64

In [43]: (data['direction'] == data['pos_clus']).value_counts()
Out[43]: True     1077
         False    1058
         dtype: int64

In [44]: data[['returns', 'strat_clus']].cumsum(
                 ).apply(np.exp).plot(figsize=(10, 6));

Figure 15-10. Performance of EUR/USD and k-means-based strategy over time

Frequency Approach
Beyond more sophisticated algorithms and techniques, one might come up with the
idea of just implementing a frequency approach to predict directional movements in
financial markets. To this end, one might transform the two real-valued features to
binary ones and assess the probability of an upward and a downward movement,
respectively, from the historical observations of such movements, given the four pos‐
sible combinations for the two binary features ((0, 0), (0, 1), (1, 0), (1, 1)).
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Making use of the data analysis capabilities of pandas, such an approach is relatively
easy to implement:

In [45]: def create_bins(data, bins=[0]):
             global cols_bin
             cols_bin = []
             for col in cols:
                 col_bin = col + '_bin'
                 data[col_bin] = np.digitize(data[col], bins=bins)  
                 cols_bin.append(col_bin)

In [46]: create_bins(data)

In [47]: data[cols_bin + ['direction']].head()  
Out[47]:             lag_1_bin  lag_2_bin  direction
         Date
         2010-01-07          1          0         -1
         2010-01-08          0          1          1
         2010-01-11          1          0          1
         2010-01-12          1          1         -1
         2010-01-13          0          1          1

In [48]: grouped = data.groupby(cols_bin + ['direction'])
         grouped.size()  
Out[48]: lag_1_bin  lag_2_bin  direction
         0          0          -1           239
                                0             4
                                1           258
                    1          -1           262
                                1           288
         1          0          -1           272
                                0             1
                                1           278
                    1          -1           278
                                0             4
                                1           251
         dtype: int64

In [49]: res = grouped['direction'].size().unstack(fill_value=0)  

In [50]: def highlight_max(s):
             is_max = s == s.max()
             return ['background-color: yellow' if v else '' for v in is_max]  

In [51]: res.style.apply(highlight_max, axis=1)  
Out[51]: <pandas.io.formats.style.Styler at 0x1a194216a0>

Digitizes the feature values given the bins parameter.

Shows the digitized feature values and the label values.
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Shows the frequency of the possible movements conditional on the feature value
combinations.

Transforms the DataFrame object to have the frequencies in columns.

Highlights the highest-frequency value per feature value combination.

Given the frequency data, three feature value combinations hint at a downward
movement while one lets an upward movement seem more likely. This translates into
a trading strategy the performance of which is shown in Figure 15-11:

In [52]: data['pos_freq'] = np.where(data[cols_bin].sum(axis=1) == 2, -1, 1)  

In [53]: (data['direction'] == data['pos_freq']).value_counts()
Out[53]: True     1102
         False    1033
         dtype: int64

In [54]: data['strat_freq'] = data['pos_freq'] * data['returns']

In [55]: data[['returns', 'strat_freq']].sum().apply(np.exp)
Out[55]: returns       0.810644
         strat_freq    0.989513
         dtype: float64

In [56]: data[['returns', 'strat_freq']].cumsum(
                 ).apply(np.exp).plot(figsize=(10, 6));

Translates the findings given the frequencies to a trading strategy.
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Figure 15-11. Performance of EUR/USD and frequency-based trading strategy over
time

Classification
This section applies the classification algorithms from ML (as introduced in
“Machine Learning” on page 444) to the problem of predicting the direction of price
movements in financial markets. With that background and the examples from pre‐
vious sections, the application of the logistic regression, Gaussian Naive Bayes, and
support vector machine approaches is as straightforward as applying them to smaller
sample data sets.

Two Binary Features
First, a fitting of the models based on the binary feature values and the derivation of
the resulting position values:

In [57]: from sklearn import linear_model
         from sklearn.naive_bayes import GaussianNB
         from sklearn.svm import SVC

In [58]: C = 1

In [59]: models = {
             'log_reg': linear_model.LogisticRegression(C=C),
             'gauss_nb': GaussianNB(),
             'svm': SVC(C=C)
         }
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In [60]: def fit_models(data):  
             mfit = {model: models[model].fit(data[cols_bin],
                                              data['direction'])
                     for model in models.keys()}

In [61]: fit_models(data)

In [62]: def derive_positions(data):  
             for model in models.keys():
                 data['pos_' + model] = models[model].predict(data[cols_bin])

In [63]: derive_positions(data)

A function that fits all models.

A function that derives all position values from the fitted models.

Second, the vectorized backtesting of the resulting trading strategies. Figure 15-12
visualizes the performance over time:

In [64]: def evaluate_strats(data):  
             global sel
             sel = []
             for model in models.keys():
                 col = 'strat_' + model
                 data[col] = data['pos_' + model] * data['returns']
                 sel.append(col)
             sel.insert(0, 'returns')

In [65]: evaluate_strats(data)

In [66]: sel.insert(1, 'strat_freq')

In [67]: data[sel].sum().apply(np.exp)  
Out[67]: returns           0.810644
         strat_freq        0.989513
         strat_log_reg     1.243322
         strat_gauss_nb    1.243322
         strat_svm         0.989513
         dtype: float64

In [68]: data[sel].cumsum().apply(np.exp).plot(figsize=(10, 6));

A function that evaluates all resulting trading strategies.

Some strategies might show the exact same performance.
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Figure 15-12. Performance of EUR/USD and classification-based trading strategies
(two binary lags) over time

Five Binary Features
In an attempt to improve the strategies’ performance, the following code works with
five binary lags instead of two. In particular, the performance of the SVM-based
strategy is significantly improved (see Figure 15-13). On the other hand, the perfor‐
mance of the LR- and GNB-based strategies is worse:

In [69]: data = pd.DataFrame(raw[symbol])

In [70]: data['returns'] = np.log(data / data.shift(1))

In [71]: data['direction'] = np.sign(data['returns'])

In [72]: lags = 5  
         create_lags(data)
         data.dropna(inplace=True)

In [73]: create_bins(data)  
         cols_bin
Out[73]: ['lag_1_bin', 'lag_2_bin', 'lag_3_bin', 'lag_4_bin', 'lag_5_bin']

In [74]: data[cols_bin].head()
Out[74]:             lag_1_bin  lag_2_bin  lag_3_bin  lag_4_bin  lag_5_bin
         Date
         2010-01-12          1          1          0          1          0
         2010-01-13          0          1          1          0          1
         2010-01-14          1          0          1          1          0
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         2010-01-15          0          1          0          1          1
         2010-01-19          0          0          1          0          1

In [75]: data.dropna(inplace=True)

In [76]: fit_models(data)

In [77]: derive_positions(data)

In [78]: evaluate_strats(data)

In [79]: data[sel].sum().apply(np.exp)
Out[79]: returns           0.805002
         strat_log_reg     0.971623
         strat_gauss_nb    0.986420
         strat_svm         1.452406
         dtype: float64

In [80]: data[sel].cumsum().apply(np.exp).plot(figsize=(10, 6));

Five lags of the log returns series are now used.

The real-valued features data is transformed to binary data.

Figure 15-13. Performance of EUR/USD and classification-based trading strategies
(five binary lags) over time
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Five Digitized Features
Finally, the following code uses the first and second moment of the historical log
returns to digitize the features data, allowing for more possible feature value combi‐
nations. This improves the performance of all classification algorithms used, but for
SVM the improvement is again most pronounced (see Figure 15-14):

In [81]: mu = data['returns'].mean()  
         v = data['returns'].std()  

In [82]: bins = [mu - v, mu, mu + v]  
         bins  
Out[82]: [-0.006033537040418665, -0.00010174015279231306, 0.005830056734834039]

In [83]: create_bins(data, bins)

In [84]: data[cols_bin].head()
Out[84]:             lag_1_bin  lag_2_bin  lag_3_bin  lag_4_bin  lag_5_bin
         Date
         2010-01-12          3          3          0          2          1
         2010-01-13          1          3          3          0          2
         2010-01-14          2          1          3          3          0
         2010-01-15          1          2          1          3          3
         2010-01-19          0          1          2          1          3

In [85]: fit_models(data)

In [86]: derive_positions(data)

In [87]: evaluate_strats(data)

In [88]: data[sel].sum().apply(np.exp)
Out[88]: returns           0.805002
         strat_log_reg     1.431120
         strat_gauss_nb    1.815304
         strat_svm         5.653433
         dtype: float64

In [89]: data[sel].cumsum().apply(np.exp).plot(figsize=(10, 6));

The mean log return and …

… the standard deviation are used …

… to digitize the features data.
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Figure 15-14. Performance of EUR/USD and classification-based trading strategies
(five digitized lags) over time

Types of Features

This chapter exclusively works with lagged return data as features
data, mostly in binarized or digitized form. This is mainly done for
convenience, since such features data can be derived from the
financial time series itself. However, in practical applications the
features data can be gained from a wealth of different data sources
and might include other financial time series and statistics derived
thereof, macroeconomic data, company financial indicators, or
news articles. Refer to López de Prado (2018) for an in-depth dis‐
cussion of this topic. There are also Python packages for automated
time series feature extraction available, such as tsfresh.

Sequential Train-Test Split
To better judge the performance of the classification algorithms, the code that follows
implements a sequential train-test split. The idea here is to simulate the situation
where only data up to a certain point in time is available on which to train an ML
algorithm. During live trading, the algorithm is then faced with data it has never seen
before. This is where the algorithm must prove its worth. In this particular case, all
classification algorithms outperform—under the simplified assumptions from before
—the passive benchmark investment, but only the GNB and LR algorithms achieve a
positive absolute performance (Figure 15-15):
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In [90]: split = int(len(data) * 0.5)

In [91]: train = data.iloc[:split].copy()  

In [92]: fit_models(train)  

In [93]: test = data.iloc[split:].copy()  

In [94]: derive_positions(test)  

In [95]: evaluate_strats(test)  

In [96]: test[sel].sum().apply(np.exp)
Out[96]: returns           0.850291
         strat_log_reg     0.962989
         strat_gauss_nb    0.941172
         strat_svm         1.048966
         dtype: float64

In [97]: test[sel].cumsum().apply(np.exp).plot(figsize=(10, 6));

Trains all classification algorithms on the training data.

Tests all classification algorithms on the test data.

Figure 15-15. Performance of EUR/USD and classification-based trading strategies
(sequential train-test split)
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Randomized Train-Test Split
The classification algorithms are trained and tested on binary or digitized features
data. The idea is that the feature value patterns allow a prediction of future market
movements with a better hit ratio than 50%. Implicitly, it is assumed that the pat‐
terns’ predictive power persists over time. In that sense, it shouldn’t make (too much
of) a difference on which part of the data an algorithm is trained and on which part
of the data it is tested—implying that one can break up the temporal sequence of the
data for training and testing.

A typical way to do this is a randomized train-test split to test the performance of the
classification algorithms out-of-sample—again trying to emulate reality, where an
algorithm during trading is faced with new data on a continuous basis. The approach
used is the same as that applied to the sample data in “Train-test splits: Support vec‐
tor machines” on page 459. Based on this approach, the SVM algorithm shows again
the best performance out-of-sample (see Figure 15-16):

In [98]: from sklearn.model_selection import train_test_split

In [99]: train, test = train_test_split(data, test_size=0.5,
                                        shuffle=True, random_state=100)

In [100]: train = train.copy().sort_index()  

In [101]: train[cols_bin].head()
Out[101]:             lag_1_bin  lag_2_bin  lag_3_bin  lag_4_bin  lag_5_bin
          Date
          2010-01-12          3          3          0          2          1
          2010-01-13          1          3          3          0          2
          2010-01-14          2          1          3          3          0
          2010-01-15          1          2          1          3          3
          2010-01-20          1          0          1          2          1

In [102]: test = test.copy().sort_index()  

In [103]: fit_models(train)

In [104]: derive_positions(test)

In [105]: evaluate_strats(test)

In [106]: test[sel].sum().apply(np.exp)
Out[106]: returns           0.878078
          strat_log_reg     0.735893
          strat_gauss_nb    0.765009
          strat_svm         0.695428
          dtype: float64

In [107]: test[sel].cumsum().apply(np.exp).plot(figsize=(10, 6));
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Train and test data sets are copied and brought back in temporal order.

Figure 15-16. Performance of EUR/USD and classification-based trading strategies
(randomized train-test split)

Deep Neural Networks
Deep neural networks (DNNs) try to emulate the functioning of the human brain.
They are in general composed of an input layer (the features), an output layer (the
labels), and a number of hidden layers. The presence of hidden layers is what makes a
neural network deep. It allows it to learn more complex relationships and to perform
better on a number of problem types. When applying DNNs one generally speaks of
deep learning instead of machine learning. For an introduction to this field, refer to
Géron (2017) or Gibson and Patterson (2017).

DNNs with scikit-learn
This section applies the MLPClassifier algorithm from scikit-learn, as introduced
in “Deep neural networks” on page 454. First, it is trained and tested on the whole
data set, using the digitized features. The algorithm achieves exceptional performance
in-sample (see Figure 15-17), which illustrates the power of DNNs for this type of
problem. It also hints at strong overfitting, since the performance indeed seems unre‐
alistically good:

In [108]: from sklearn.neural_network import MLPClassifier

In [109]: model = MLPClassifier(solver='lbfgs', alpha=1e-5,
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                                hidden_layer_sizes=2 * [250],
                                random_state=1)

In [110]: %time model.fit(data[cols_bin], data['direction'])
          CPU times: user 16.1 s, sys: 156 ms, total: 16.2 s
          Wall time: 9.85 s

Out[110]: MLPClassifier(activation='relu', alpha=1e-05, batch_size='auto',
           beta_1=0.9,
                 beta_2=0.999, early_stopping=False, epsilon=1e-08,
                 hidden_layer_sizes=[250, 250], learning_rate='constant',
                 learning_rate_init=0.001, max_iter=200, momentum=0.9,
                 n_iter_no_change=10, nesterovs_momentum=True, power_t=0.5,
                 random_state=1, shuffle=True, solver='lbfgs', tol=0.0001,
                 validation_fraction=0.1, verbose=False, warm_start=False)

In [111]: data['pos_dnn_sk'] = model.predict(data[cols_bin])

In [112]: data['strat_dnn_sk'] = data['pos_dnn_sk'] * data['returns']

In [113]: data[['returns', 'strat_dnn_sk']].sum().apply(np.exp)
Out[113]: returns          0.805002
          strat_dnn_sk    35.156677
          dtype: float64

In [114]: data[['returns', 'strat_dnn_sk']].cumsum().apply(
                      np.exp).plot(figsize=(10, 6));

Figure 15-17. Performance of EUR/USD and DNN-based trading strategy (scikit-learn,
in-sample)

Deep Neural Networks | 513



To avoid overfitting of the DNN model, a randomized train-test split is applied next.
The algorithm again outperforms the passive benchmark investment and achieves a
positive absolute performance (Figure 15-18). However, the results seem more realis‐
tic now:

In [115]: train, test = train_test_split(data, test_size=0.5,
                                         random_state=100)

In [116]: train = train.copy().sort_index()

In [117]: test = test.copy().sort_index()

In [118]: model = MLPClassifier(solver='lbfgs', alpha=1e-5, max_iter=500,
                               hidden_layer_sizes=3 * [500], random_state=1)  

In [119]: %time model.fit(train[cols_bin], train['direction'])
          CPU times: user 2min 26s, sys: 1.02 s, total: 2min 27s
          Wall time: 1min 31s

Out[119]: MLPClassifier(activation='relu', alpha=1e-05, batch_size='auto',
           beta_1=0.9,
                 beta_2=0.999, early_stopping=False, epsilon=1e-08,
                 hidden_layer_sizes=[500, 500, 500], learning_rate='constant',
                 learning_rate_init=0.001, max_iter=500, momentum=0.9,
                 n_iter_no_change=10, nesterovs_momentum=True, power_t=0.5,
                 random_state=1, shuffle=True, solver='lbfgs', tol=0.0001,
                 validation_fraction=0.1, verbose=False, warm_start=False)

In [120]: test['pos_dnn_sk'] = model.predict(test[cols_bin])

In [121]: test['strat_dnn_sk'] = test['pos_dnn_sk'] * test['returns']

In [122]: test[['returns', 'strat_dnn_sk']].sum().apply(np.exp)
Out[122]: returns         0.878078
          strat_dnn_sk    1.242042
          dtype: float64

In [123]: test[['returns', 'strat_dnn_sk']].cumsum(
                      ).apply(np.exp).plot(figsize=(10, 6));

Increases the number of hidden layers and hidden units.
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Figure 15-18. Performance of EUR/USD and DNN-based trading strategy (scikit-learn,
randomized train-test split)

DNNs with TensorFlow
TensorFlow has become a popular package for deep learning. It is developed and sup‐
ported by Google Inc. and applied there to a great variety of machine learning prob‐
lems. Zedah and Ramsundar (2018) cover TensorFlow for deep learning in depth.

As with scikit-learn, the application of the DNNClassifier algorithm from Tensor
Flow to derive an algorithmic trading strategy is straightforward given the back‐
ground from “Deep neural networks” on page 454. The training and test data is the
same as before. First, the training of the model. In-sample, the algorithm outperforms
the passive benchmark investment and shows a considerable absolute return (see
Figure 15-19), again hinting at overfitting:

In [124]: import tensorflow as tf
          tf.logging.set_verbosity(tf.logging.ERROR)

In [125]: fc = [tf.contrib.layers.real_valued_column('lags', dimension=lags)]

In [126]: model = tf.contrib.learn.DNNClassifier(hidden_units=3 * [500],
                                                 n_classes=len(bins) + 1,
                                                 feature_columns=fc)

In [127]: def input_fn():
              fc = {'lags': tf.constant(data[cols_bin].values)}
              la = tf.constant(data['direction'].apply(
                               lambda x: 0 if x < 0 else 1).values,
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                               shape=[data['direction'].size, 1])
              return fc, la

In [128]: %time model.fit(input_fn=input_fn, steps=250)  
          CPU times: user 2min 7s, sys: 8.85 s, total: 2min 16s
          Wall time: 49 s

Out[128]: DNNClassifier(params={'head':
           <tensorflow.contrib.learn.python.learn.estimators.head._MultiClassHead
           object at 0x1a19acf898>, 'hidden_units': [500, 500, 500],
           'feature_columns': (_RealValuedColumn(column_name='lags', dimension=5,
           default_value=None, dtype=tf.float32, normalizer=None),), 'optimizer':
           None, 'activation_fn': <function relu at 0x1161441e0>, 'dropout':
           None, 'gradient_clip_norm': None, 'embedding_lr_multipliers': None,
           'input_layer_min_slice_size': None})

In [129]: model.evaluate(input_fn=input_fn, steps=1)  
Out[129]: {'loss': 0.6879357, 'accuracy': 0.5379925, 'global_step': 250}

In [130]: pred = np.array(list(model.predict(input_fn=input_fn)))  
          pred[:10]  
Out[130]: array([0, 0, 0, 0, 0, 1, 0, 1, 1, 0])

In [131]: data['pos_dnn_tf'] = np.where(pred > 0, 1, -1)  

In [132]: data['strat_dnn_tf'] = data['pos_dnn_tf'] * data['returns']

In [133]: data[['returns', 'strat_dnn_tf']].sum().apply(np.exp)
Out[133]: returns         0.805002
          strat_dnn_tf    2.437222
          dtype: float64

In [134]: data[['returns', 'strat_dnn_tf']].cumsum(
                      ).apply(np.exp).plot(figsize=(10, 6));

The time needed for training might be considerable.

The binary predictions (0, 1) …

… need to be transformed to market positions (-1, +1).
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Figure 15-19. Performance of EUR/USD and DNN-based trading strategy (TensorFlow,
in-sample)

The following code again implements a randomized train-test split to get a more real‐
istic view of the performance of the DNN-based algorithmic trading strategy. The
performance is, as expected, worse out-of-sample (see Figure 15-20). In addition,
given the specific parameterization the TensorFlow DNNClassifier underperforms
the scikit-learn MLPClassifier algorithm by quite few percentage points:

In [135]: model = tf.contrib.learn.DNNClassifier(hidden_units=3 * [500],
                                                 n_classes=len(bins) + 1,
                                                 feature_columns=fc)

In [136]: data = train

In [137]: %time model.fit(input_fn=input_fn, steps=2500)
          CPU times: user 11min 7s, sys: 1min 7s, total: 12min 15s
          Wall time: 4min 27s

Out[137]: DNNClassifier(params={'head':
           <tensorflow.contrib.learn.python.learn.estimators.head._MultiClassHead
           object at 0x116828cc0>, 'hidden_units': [500, 500, 500],
           'feature_columns': (_RealValuedColumn(column_name='lags', dimension=5,
           default_value=None, dtype=tf.float32, normalizer=None),), 'optimizer':
           None, 'activation_fn': <function relu at 0x1161441e0>, 'dropout':
           None, 'gradient_clip_norm': None, 'embedding_lr_multipliers': None,
           'input_layer_min_slice_size': None})

In [138]: data = test
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In [139]: model.evaluate(input_fn=input_fn, steps=1)
Out[139]: {'loss': 0.82882184, 'accuracy': 0.48968107, 'global_step': 2500}

In [140]: pred = np.array(list(model.predict(input_fn=input_fn)))

In [141]: test['pos_dnn_tf'] = np.where(pred > 0, 1, -1)

In [142]: test['strat_dnn_tf'] = test['pos_dnn_tf'] * test['returns']

In [143]: test[['returns', 'strat_dnn_sk', 'strat_dnn_tf']].sum().apply(np.exp)
Out[143]: returns         0.878078
          strat_dnn_sk    1.242042
          strat_dnn_tf    1.063968
          dtype: float64

In [144]: test[['returns', 'strat_dnn_sk', 'strat_dnn_tf']].cumsum(
                      ).apply(np.exp).plot(figsize=(10, 6));

Figure 15-20. Performance of EUR/USD and DNN-based trading strategy (TensorFlow,
randomized train-test split)
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Performance Results

All performance results shown for the different algorithmic trading
strategies from vectorized backtesting so far are illustrative only.
Beyond the simplifying assumption of no transaction costs, the
results depend on a number of other (mostly arbitrarily chosen)
parameters. They also depend on the relative small end-of-day
price data set used throughout for the EUR/USD exchange rate.
The focus lies on illustrating the application of different
approaches and ML algorithms to financial data, not on deriving a
robust algorithmic trading strategy to be deployed in practice. The
next chapter addresses some of these issues.

Conclusion
This chapter is about algorithmic trading strategies and judging their performance
based on vectorized backtesting. It starts with a rather simple algorithmic trading
strategy based on two simple moving averages, a type of strategy known and used in
practice for decades. This strategy is used to illustrate vectorized backtesting, making
heavy use of the vectorization capabilities of NumPy and pandas for data analysis.

Using OLS regression, the chapter also illustrates the random walk hypothesis on the
basis of a real financial time series. This is the benchmark against which any algorith‐
mic trading strategy must prove its worth.

The core of the chapter is the application of machine learning algorithms, as intro‐
duced in “Machine Learning” on page 444. A number of algorithms, the majority of
which are of classification type, are used and applied based on mostly the same
“rhythm.” As features, lagged log returns data is used in a number of variants—
although this is a restriction that for sure is not necessary. It is mostly done for con‐
venience and simplicity. In addition, the analysis is based on a number of simplifying
assumptions since the focus is mainly on the technical aspects of applying machine
learning algorithms to financial time series data to predict the direction of financial
market movements.

Further Resources
The papers referenced in this chapter are:

• Brock, William, Josef Lakonishok, and Blake LeBaron (1992). “Simple Technical
Trading Rules and the Stochastic Properties of Stock Returns.” Journal of
Finance, Vol. 47, No. 5, pp. 1731–1764.

• Fama, Eugene (1965). “Random Walks in Stock Market Prices.” Selected Papers,
No. 16, Graduate School of Business, University of Chicago.
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• Jensen, Michael (1978). “Some Anomalous Evidence Regarding Market Effi‐
ciency.” Journal of Financial Economics, Vol. 6, No. 2/3, pp. 95–101.

Finance books covering topics relevant to this chapter include:

• Baxter, Martin, and Andrew Rennie (1996). Financial Calculus. Cambridge, Eng‐
land: Cambridge University Press.

• Chan, Ernest (2009). Quantitative Trading. Hoboken, NJ: John Wiley & Sons.
• Chan, Ernest (2013). Algorithmic Trading. Hoboken, NJ: John Wiley & Sons.
• Chan, Ernest (2017). Machine Trading. Hoboken, NJ: John Wiley & Sons.
• López de Prado, Marcos (2018). Advances in Financial Machine Learning. Hobo‐

ken, NJ: John Wiley & Sons.

Technology books covering topics relevant to this chapter include:

• Albon, Chris (2018). Machine Learning with Python Cookbook. Sebastopol, CA:
O’Reilly.

• Géron, Aurélien (2017). Hands-On Machine Learning with Scikit-Learn and
Tensorflow. Sebastopol, CA: O’Reilly.

• Gibson, Adam, and Josh Patterson (2017). Deep Learning. Sebastopol, CA:
O’Reilly.

• VanderPlas, Jake (2016). Python Data Science Handbook. Sebastopol, CA:
O’Reilly.
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Learning. Sebastopol, CA: O’Reilly.

For a comprehensive online training program covering Python for algorithmic trad‐
ing, see http://certificate.tpq.io.
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CHAPTER 16

Automated Trading

People worry that computers will get too smart and take over the world, but the real
problem is that they’re too stupid and they’ve already taken over the world.

—Pedro Domingos

“Now what?” one might think. A trading platform is available that allows one to
retrieve historical data and streaming data, to place buy and sell orders, and to check
the account status. A number of different methods have been introduced to derive
algorithmic trading strategies by predicting the direction of market price movements.
How can this all be put together to work in automated fashion? This question cannot
be answered in any generality. However, this chapter addresses a number of topics
that are important in this context. The chapter assumes that a single automated algo‐
rithmic trading strategy only shall be deployed. This simplifies, among others, aspects
like capital and risk management.

The chapter covers the following topics:

“Capital Management” on page 522
As this section demonstrates, depending on the strategy characteristics and the
trading capital available, the Kelly criterion helps with sizing the trades.

“ML-Based Trading Strategy” on page 532
To gain confidence in an algorithmic trading strategy, the strategy needs to be
backtested thoroughly both with regard to performance and risk characteristics;
the example strategy used is based on a classification algorithm from machine
learning as introduced in Chapter 15.

“Online Algorithm” on page 544
To deploy the algorithmic trading strategy for automated trading, it needs to be
translated into an online algorithm that works with incoming streaming data in
real time.
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“Infrastructure and Deployment” on page 546
To run automated algorithmic trading strategies robustly and reliably, deploy‐
ment in the cloud is the preferred option from an availability, performance, and
security point of view.

“Logging and Monitoring” on page 547
To be able to analyze the history and certain events during the deployment of an
automated trading strategy, logging plays an important role; monitoring via
socket communication allows one to observe events (remotely) in real time.

Capital Management
A central question in algorithmic trading is how much capital to deploy to a given
algorithmic trading strategy given the total available capital. The answer to this ques‐
tion depends on the main goal one is trying to achieve by algorithmic trading. Most
individuals and financial institutions will agree that the maximization of long-term
wealth is a good candidate objective. This is what Edward Thorpe had in mind when
he derived the Kelly criterion for investing, as described in the paper by Rotando and
Thorp (1992).

The Kelly Criterion in a Binomial Setting
The common way of introducing the theory of the Kelly criterion for investing is on
the basis of a coin tossing game, or more generally a binomial setting (where only two
outcomes are possible). This section follows that route. Assume a gambler is playing a
coin tossing game against an infinitely rich bank or casino. Assume further that the
probability for heads is some value p for which 1

2  < p < 1 holds. Probability for tails is
defined by q = 1 – p < 1

2 . The gambler can place bets b > 0 of arbitrary size, whereby
the gambler wins the same amount if right and loses it all if wrong. Given the
assumptions about the probabilities, the gambler would of course want to bet on
heads. Therefore, the expected value for this betting game B (i.e., the random variable
representing this game) in a one-shot setting is:

E B = p · b – q · b = (p – q) · b > 0

A risk-neutral gambler with unlimited funds would like to bet as large an amount as
possible since this would maximize the expected payoff. However, trading in finan‐
cial markets is not a one-shot game in general. It is a repeated one. Therefore, assume
that bi represents the amount that is bet on day i and that c0 represents the initial cap‐
ital. The capital c1 at the end of day one depends on the betting success on that day
and might be either c0 + b1 or c0 – b1. The expected value for a gamble that is repeated
n times then is:
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E B n = c0 + ∑
i=1

n
(p – q) · bi

In classical economic theory, with risk-neutral, expected utility-maximizing agents, a
gambler would try to maximize this expression. It is easily seen that it is maximized
by betting all available funds—i.e., bi = ci – 1—like in the one-shot scenario. However,
this in turn implies that a single loss will wipe out all available funds and will lead to
ruin (unless unlimited borrowing is possible). Therefore, this strategy does not lead
to a maximization of long-term wealth.

While betting the maximum capital available might lead to sudden ruin, betting
nothing at all avoids any kind of loss but does not benefit from the advantageous
gamble either. This is where the Kelly criterion comes into play, since it derives the
optimal fraction f* of the available capital to bet per round of betting. Assume that n =
h + t, where h stands for the number of heads observed during n rounds of betting
and where t stands for the number of tails. With these definitions, the available capi‐
tal after n rounds is:

cn = c0 · (1 + f )h · (1 – f )t

In such a context, long-term wealth maximization boils down to maximizing the
average geometric growth rate per bet, which is given as:

r g = log ( cn

c0
)1/n

= log ( c0 · (1 + f )h · (1 – f )t

c0
)1/n

= log ((1 + f )h · (1 – f )t)1/n

= h
n log (1 + f ) +

t
n log (1 – f )

The problem then formally is to maximize the expected average rate of growth by
choosing f optimally. With E h = n · p and E t = n · q, one gets:

E r g = E
h
n log (1 + f ) +

t
n log (1 – f )

= E p log (1 + f ) + q log (1 – f )
= p log (1 + f ) + q log (1 – f )
≡ G( f )
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One can now maximize the term by choosing the optimal fraction f* according to the
first-order condition. The first derivative is given by:

G '( f ) = p
1 + f –

q
1 – f

= p – pf – q – qf
(1 + f )(1 – f )

= p – q – f
(1 + f )(1 – f )

From the first-order condition, one gets:

If one trusts this to be the maximum (and not the minimum), this result implies that
it is optimal to invest a fraction f * = p – q per round of betting. With, for example, p =
0.55 one has f * = 0.55 – 0.45 = 0.1, indicating that the optimal fraction is 10%.

The following Python code formalizes these concepts and results through simulation.
First, some imports and configurations:

In [1]: import math
        import time
        import numpy as np
        import pandas as pd
        import datetime as dt
        import cufflinks as cf
        from pylab import plt
In [2]: np.random.seed(1000)
        plt.style.use('seaborn')
        %matplotlib inline

The idea is to simulate, for example, 50 series with 100 coin tosses per series. The
Python code for this is straightforward:

In [3]: p = 0.55  

In [4]: f = p - (1 - p)  

In [5]: f  
Out[5]: 0.10000000000000009

In [6]: I = 50  

In [7]: n = 100  

Fixes the probability for heads.
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Calculates the optimal fraction according to the Kelly criterion.

The number of series to be simulated.

The number of trials per series.

The major part is the Python function run_simulation(), which achieves the simula‐
tion according to the prior assumptions. Figure 16-1 shows the simulation results:

In [8]: def run_simulation(f):
            c = np.zeros((n, I))  
            c[0] = 100  
            for i in range(I):  
                for t in range(1, n):  
                    o = np.random.binomial(1, p)  
                    if o > 0:  
                        c[t, i] = (1 + f) * c[t - 1, i]  
                    else:  
                        c[t, i] = (1 - f) * c[t - 1, i]  
            return c

In [9]: c_1 = run_simulation(f)  

In [10]: c_1.round(2)
Out[10]: array([[100.  , 100.  , 100.  , ..., 100.  , 100.  , 100.  ],
                [ 90.  , 110.  ,  90.  , ..., 110.  ,  90.  , 110.  ],
                [ 99.  , 121.  ,  99.  , ..., 121.  ,  81.  , 121.  ],
                ...,
                [226.35, 338.13, 413.27, ..., 123.97, 123.97, 123.97],
                [248.99, 371.94, 454.6 , ..., 136.37, 136.37, 136.37],
                [273.89, 409.14, 409.14, ..., 122.73, 150.01, 122.73]])

In [11]: plt.figure(figsize=(10, 6))
         plt.plot(c_1, 'b', lw=0.5)  
         plt.plot(c_1.mean(axis=1), 'r', lw=2.5);  

Instantiates an ndarray object to store the simulation results.

Initializes the starting capital with 100.

Outer loop for the series simulations.

Inner loop for the series itself.

Simulates the tossing of a coin.

If 1, i.e., heads …

… then add the win to the capital.
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If 0, i.e., tails …

… then subtract the loss from the capital.

Runs the simulation.

Plots all 50 series.

Plots the average over all 50 series.

Figure 16-1. 50 simulated series with 100 trials each (red line = average)

The following code repeats the simulation for different values of f. As shown in
Figure 16-2, a lower fraction leads to a lower growth rate on average. Higher values
might lead to a higher average capital at the end of the simulation (f = 0.25) or to a
much lower average capital (f = 0.5). In both cases where the fraction f is higher, the
volatility increases considerably:

In [12]: c_2 = run_simulation(0.05)  

In [13]: c_3 = run_simulation(0.25)  

In [14]: c_4 = run_simulation(0.5)  

In [15]: plt.figure(figsize=(10, 6))
         plt.plot(c_1.mean(axis=1), 'r', label='$f^*=0.1$')
         plt.plot(c_2.mean(axis=1), 'b', label='$f=0.05$')
         plt.plot(c_3.mean(axis=1), 'y', label='$f=0.25$')
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1 The exposition follows Hung (2010).

         plt.plot(c_4.mean(axis=1), 'm', label='$f=0.5$')
         plt.legend(loc=0);

Simulation with f = 0.05.

Simulation with f = 0.25.

Simulation with f = 0.5.

Figure 16-2. Average capital over time for different fractions

The Kelly Criterion for Stocks and Indices
Assume now a stock market setting in which the relevant stock (index) can take on
only two values after a period of one year from today, given its known value today.
The setting is again binomial, but this time a bit closer on the modeling side to stock
market realities.1 Specifically, assume that:

P(r S = μ + σ) = P(r S = μ – σ) =
1
2
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with E r S = μ > 0 being the expected return of the stock over one year and σ > 0
being the standard deviation of returns (volatility). In a one-period setting, one gets
for the available capital after one year (with c0 and f defined as before):

c( f ) = c0 · (1 + (1 – f ) · r + f · r S )

Here, r is the constant short rate earned on cash not invested in the stock. Maximiz‐
ing the geometric growth rate means maximizing the term:

G( f ) = E log
c( f )

c0

Assume now that there are n relevant trading days in the year so that for each such
trading day i:

P(ri
S =

μ
n +

σ
n ) = P(ri

S =
μ
n –

σ
n ) =

1
2

Note that volatility scales with the square root of the number of trading days. Under
these assumptions, the daily values scale up to the yearly ones from before and one
gets:

cn( f ) = c0 · ∏i=1
n (1 + (1 – f ) ·

r
n + f · ri

S )
One now has to maximize the following quantity to achieve maximum long-term
wealth when investing in the stock:

Gn( f ) = E log
cn( f )

c0

= E ∑
i=1

n
log (1 + (1 – f ) ·

r
n + f · ri

S )
=

1
2 ∑

i=1

n
log (1 + (1 – f ) ·

r
n + f · ( μ

n +
σ
n ))

+ log (1 + (1 – f ) ·
r
n + f · ( μ

n –
σ
n ))

= n
2 log ((1 + (1 – f ) ·

r
n + f ·

μ
n )2

–
f 2σ 2

n )
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Using a Taylor series expansion, one finally arrives at:

Gn( f ) = r + (μ – r) · f –
σ 2

2 · f 2 + �( 1
n )

or for infinitely many trading points in time—i.e., for continuous trading—at:

G∞( f ) = r + (μ – r) · f –
σ 2

2 · f 2

The optimal fraction f* then is given through the first-order condition by the
expression:

f * =
μ – r

σ 2

I.e., the expected excess return of the stock over the risk-free rate divided by the var‐
iance of the returns. This expression looks similar to the Sharpe ratio (see “Portfolio
Optimization” on page 415) but is different.

A real-world example shall illustrate the application of these formulae and their role
in leveraging equity deployed to trading strategies. The trading strategy under con‐
sideration is simply a passive long position in the S&P 500 index. To this end, base
data is quickly retrieved and required statistics are easily derived:

In [16]: raw = pd.read_csv('../../source/tr_eikon_eod_data.csv',
                           index_col=0, parse_dates=True)

In [17]: symbol = '.SPX'

In [18]: data = pd.DataFrame(raw[symbol])

In [19]: data['returns'] = np.log(data / data.shift(1))

In [20]: data.dropna(inplace=True)

In [21]: data.tail()
Out[21]:                .SPX   returns
         Date
         2018-06-25  2717.07 -0.013820
         2018-06-26  2723.06  0.002202
         2018-06-27  2699.63 -0.008642
         2018-06-28  2716.31  0.006160
         2018-06-29  2718.37  0.000758
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The statistical properties of the S&P 500 index over the period covered suggest an
optimal fraction of about 4.5 to be invested in the long position in the index. In other
words, for every dollar available 4.5 dollars shall be invested—implying a leverage
ratio of 4.5, in accordance with the optimal Kelly “fraction” (or rather “factor” in this
case). Ceteris paribus, the Kelly criterion implies a higher leverage the higher the
expected return and the lower the volatility (variance):

In [22]: mu = data.returns.mean() * 252  

In [23]: mu  
Out[23]: 0.09898579893004976

In [24]: sigma = data.returns.std() * 252 ** 0.5  

In [25]: sigma  
Out[25]: 0.1488567510081967

In [26]: r = 0.0  

In [27]: f = (mu - r) / sigma ** 2 

In [28]: f  
Out[28]: 4.4672043679706865

Calculates the annualized return.

Calculates the annualized volatility.

Sets the risk-free rate to 0 (for simplicity).

Calculates the optimal Kelly fraction to be invested in the strategy.

The following code simulates the application of the Kelly criterion and the optimal
leverage ratio. For simplicity and comparison reasons, the initial equity is set to 1
while the initially invested total capital is set to 1 · f *. Depending on the performance
of the capital deployed to the strategy, the total capital itself is adjusted daily accord‐
ing to the available equity. After a loss, the capital is reduced; after a profit, the capital
is increased. The evolution of the equity position compared to the index itself is
shown in Figure 16-3:

In [29]: equs = []

In [30]: def kelly_strategy(f):
             global equs
             equ = 'equity_{:.2f}'.format(f)
             equs.append(equ)
             cap = 'capital_{:.2f}'.format(f)
             data[equ] = 1  
             data[cap] = data[equ] * f  
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             for i, t in enumerate(data.index[1:]):
                 t_1 = data.index[i]  
                 data.loc[t, cap] = data[cap].loc[t_1] * \
                                     math.exp(data['returns'].loc[t])  
                 data.loc[t, equ] = data[cap].loc[t] - \
                                     data[cap].loc[t_1] + \
                                     data[equ].loc[t_1]  
                 data.loc[t, cap] = data[equ].loc[t] * f  

In [31]: kelly_strategy(f * 0.5)  

In [32]: kelly_strategy(f * 0.66)  

In [33]: kelly_strategy(f)  

In [34]: print(data[equs].tail())
                     equity_2.23  equity_2.95  equity_4.47
         Date
         2018-06-25     4.707070     6.367340     8.794342
         2018-06-26     4.730248     6.408727     8.880952
         2018-06-27     4.639340     6.246147     8.539593
         2018-06-28     4.703365     6.359932     8.775296
         2018-06-29     4.711332     6.374152     8.805026

In [35]: ax = data['returns'].cumsum().apply(np.exp).plot(legend=True,
                                                          figsize=(10, 6))
         data[equs].plot(ax=ax, legend=True);

Generates a new column for equity and sets the initial value to 1.

Generates a new column for capital and sets the initial value to 1 · f *.

Picks the right DatetimeIndex value for the previous values.

Calculates the new capital position given the return.

Adjusts the equity value according to the capital position performance.

Adjusts the capital position given the new equity position and the fixed leverage
ratio.

Simulates the Kelly criterion–based strategy for half of f …

… for two-thirds of f …

… and for f itself.
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Figure 16-3. Cumulative performance of S&P 500 compared to equity position given
different values of f

As Figure 16-3 illustrates, applying the optimal Kelly leverage leads to a rather erratic
evolution of the equity position (high volatility) which is—given the leverage ratio of
4.47—intuitively plausible. One would expect the volatility of the equity position to
increase with increasing leverage. Therefore, practitioners often reduce the leverage
to, for example, “half Kelly”—i.e., in the current example to 1

2 · f * ≈ 2.23. Therefore,
Figure 16-3 also shows the evolution of the equity position of values lower than “full
Kelly.” The risk indeed reduces with lower values of f.

ML-Based Trading Strategy
Chapter 14 introduces the FXCM trading platform, its REST API, and the Python
wrapper package fxcmpy. This section combines an ML-based approach for predict‐
ing the direction of market price movements with historical data from the FXCM
REST API to backtest an algorithmic trading strategy for the EUR/USD currency pair.
It uses vectorized backtesting, taking into account this time the bid-ask spread as pro‐
portional transaction costs. It also adds, compared to the plain vectorized backtesting
approach as introduced in Chapter 15, a more in-depth analysis of the risk character‐
istics of the trading strategy tested.
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Vectorized Backtesting
The backtest is based on intraday data, more specifically on bars of length five
minutes. The following code connects to the FXCM REST API and retrieves five-
minute bar data for a whole month. Figure 16-4 visualizes the mid close prices over
the period for which data is retrieved:

In [36]: import fxcmpy

In [37]: fxcmpy.__version__
Out[37]: '1.1.33'

In [38]: api = fxcmpy.fxcmpy(config_file='../fxcm.cfg')  

In [39]: data = api.get_candles('EUR/USD', period='m5',
                                 start='2018-06-01 00:00:00',
                                 stop='2018-06-30 00:00:00')  

In [40]: data.iloc[-5:, 4:]
Out[40]:                      askopen  askclose  askhigh   asklow  tickqty
         date
         2018-06-29 20:35:00  1.16862   1.16882  1.16896  1.16839      601
         2018-06-29 20:40:00  1.16882   1.16853  1.16898  1.16852      387
         2018-06-29 20:45:00  1.16853   1.16826  1.16862  1.16822      592
         2018-06-29 20:50:00  1.16826   1.16836  1.16846  1.16819      842
         2018-06-29 20:55:00  1.16836   1.16861  1.16876  1.16834      540

In [41]: data.info()
         <class 'pandas.core.frame.DataFrame'>
         DatetimeIndex: 6083 entries, 2018-06-01 00:00:00 to 2018-06-29 20:55:00
         Data columns (total 9 columns):
         bidopen     6083 non-null float64
         bidclose    6083 non-null float64
         bidhigh     6083 non-null float64
         bidlow      6083 non-null float64
         askopen     6083 non-null float64
         askclose    6083 non-null float64
         askhigh     6083 non-null float64
         asklow      6083 non-null float64
         tickqty     6083 non-null int64
         dtypes: float64(8), int64(1)
         memory usage: 475.2 KB

In [42]: spread = (data['askclose'] - data['bidclose']).mean()  
         spread  
Out[42]: 2.6338977478217845e-05

In [43]: data['midclose'] = (data['askclose'] + data['bidclose']) / 2  

In [44]: ptc = spread / data['midclose'].mean()  
         ptc  
Out[44]: 2.255685318140426e-05
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In [45]: data['midclose'].plot(figsize=(10, 6), legend=True);

Connects to the API and retrieves the data.

Calculates the average bid-ask spread.

Calculates the mid close prices from the ask and bid close prices.

Calculates the average proportional transaction costs given the average spread
and the average mid close price.

Figure 16-4. EUR/USD exchange rate (five-minute bars)

The ML-based strategy is based on lagged return data that is binarized. That is, the
ML algorithm learns from historical patterns of upward and downward movements
whether another upward or downward movement is more likely. Accordingly, the
following code creates features data with values of 0 and 1 as well as labels data with
values of +1 and -1 indicating the observed market direction in all cases:

In [46]: data['returns'] = np.log(data['midclose'] / data['midclose'].shift(1))

In [47]: data.dropna(inplace=True)

In [48]: lags = 5

In [49]: cols = []
         for lag in range(1, lags + 1):
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             col = 'lag_{}'.format(lag)
             data[col] = data['returns'].shift(lag)  
             cols.append(col)

In [50]: data.dropna(inplace=True)

In [51]: data[cols] = np.where(data[cols] > 0, 1, 0)  

In [52]: data['direction'] = np.where(data['returns'] > 0, 1, -1)  

In [53]: data[cols + ['direction']].head()
Out[53]:                      lag_1  lag_2  lag_3  lag_4  lag_5  direction
         date
         2018-06-01 00:30:00      1      0      1      0      1          1
         2018-06-01 00:35:00      1      1      0      1      0          1
         2018-06-01 00:40:00      1      1      1      0      1          1
         2018-06-01 00:45:00      1      1      1      1      0          1
         2018-06-01 00:50:00      1      1      1      1      1         -1

Creates the lagged return data given the number of lags.

Transforms the feature values to binary data.

Transforms the returns data to directional label data.

Given the features and label data, different supervised learning algorithms can now
be applied. In what follows, a support vector machine algorithm for classification is
used from the scikit-learn ML package. The code trains and tests the algorithmic
trading strategy based on a sequential train-test split. The accuracy scores of the
model for the training and test data are slightly above 50%, while the score is even a
bit higher on the test data. Instead of accuracy scores, one would also speak in a
financial trading context of the hit ratio of the trading strategy; i.e., the number of
winning trades compared to all trades. Since the hit ratio is greater than 50%, this
might indicate—in the context of the Kelly criterion—a slight edge compared to a
random walk setting:

In [54]: from sklearn.svm import SVC
         from sklearn.metrics import accuracy_score

In [55]: model = SVC(C=1, kernel='linear', gamma='auto')

In [56]: split = int(len(data) * 0.80)

In [57]: train = data.iloc[:split].copy()

In [58]: model.fit(train[cols], train['direction'])
Out[58]: SVC(C=1, cache_size=200, class_weight=None, coef0=0.0,
         decision_function_shape='ovr', degree=3, gamma='auto', kernel='linear',
           max_iter=-1, probability=False, random_state=None, shrinking=True,
           tol=0.001, verbose=False)
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2 It is a stylized empirical fact that it is of paramount importance for investment and trading performance to
get the largest market movements right—i.e., the biggest upward and downward movements. This aspect is
neatly illustrated in Figures 16-5 and 16-7, which show that the trading strategy gets a large upward move‐
ment in the underlying instrument wrong, leading to a large dip for the trading strategy.

In [59]: accuracy_score(train['direction'], model.predict(train[cols]))  
Out[59]: 0.5198518823287389

In [60]: test = data.iloc[split:].copy()

In [61]: test['position'] = model.predict(test[cols])

In [62]: accuracy_score(test['direction'], test['position'])  
Out[62]: 0.5419407894736842

The accuracy of the predictions from the trained model in-sample (training
data).

The accuracy of the predictions from the trained model out-of-sample (test data).

It is well known that the hit ratio is only one aspect of success in financial trading.
Also crucial are, among other things, the transaction costs implied by the trading
strategy and getting the important trades right.2 To this end, only a formal vectorized
backtesting approach allows judgment of the quality of the trading strategy. The fol‐
lowing code takes into account the proportional transaction costs based on the aver‐
age bid-ask spread. Figure 16-5 compares the performance of the algorithmic trading
strategy (without and with proportional transaction costs) to the performance of the
passive benchmark investment:

In [63]: test['strategy'] = test['position'] * test['returns']  

In [64]: sum(test['position'].diff() != 0)  
Out[64]: 660

In [65]: test['strategy_tc'] = np.where(test['position'].diff() != 0,
                                        test['strategy'] - ptc,  
                                        test['strategy'])

In [66]: test[['returns', 'strategy', 'strategy_tc']].sum(
                 ).apply(np.exp)
Out[66]: returns        0.999324
         strategy       1.026141
         strategy_tc    1.010977
         dtype: float64

In [67]: test[['returns', 'strategy', 'strategy_tc']].cumsum(
                 ).apply(np.exp).plot(figsize=(10, 6));
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Derives the log returns for the ML-based algorithmic trading strategy.

Calculates the number of trades implied by the trading strategy based on changes
in the position.

Whenever a trade takes place, the proportional transaction costs are subtracted
from the strategy’s log return on that day.

Figure 16-5. Performance of EUR/USD exchange rate and algorithmic trading strategy

Limitations of Vectorized Backtesting

Vectorized backtesting has its limits with regard to how closely to
market realities strategies can be tested. For example, it does not
allow direct inclusion of fixed transaction costs per trade. One
could, as an approximation, take a multiple of the average propor‐
tional transaction costs (based on average position sizes) to
account indirectly for fixed transactions costs. However, this would
not be precise in general. If a higher degree of precision is required
other approaches, such as event-based backtesting with explicit
loops over every bar of the price data, need to be applied.
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Optimal Leverage
Equipped with the trading strategy’s log returns data, the mean and variance values
can be calculated in order to derive the optimal leverage according to the Kelly crite‐
rion. The code that follows scales the numbers to annualized values, although this
does not change the optimal leverage values according to the Kelly criterion since the
mean return and the variance scale with the same factor:

In [68]: mean = test[['returns', 'strategy_tc']].mean() * len(data) * 12  
         mean
Out[68]: returns       -0.040535
         strategy_tc    0.654711
         dtype: float64

In [69]: var = test[['returns', 'strategy_tc']].var() * len(data) * 12  
         var
Out[69]: returns        0.007861
         strategy_tc    0.007837
         dtype: float64

In [70]: vol = var ** 0.5  
         vol
Out[70]: returns        0.088663
         strategy_tc    0.088524
         dtype: float64

In [71]: mean / var  
Out[71]: returns        -5.156448
         strategy_tc    83.545792
         dtype: float64

In [72]: mean / var * 0.5  
Out[72]: returns        -2.578224
         strategy_tc    41.772896
         dtype: float64

Annualized mean returns.

Annualized variances.

Annualized volatilities.

Optimal leverage according to the Kelly criterion (“full Kelly”).

Optimal leverage according to the Kelly criterion (“half Kelly”).

Using the “half Kelly” criterion, the optimal leverage for the trading strategy is about
40. With a number of brokers, such as FXCM, and financial instruments, such as for‐
eign exchange and contracts for difference (CFDs), such leverage ratios are feasible,
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3 Leverage increases risks associated with trading strategies significantly. Traders should read the risk disclaim‐
ers and regulations carefully. A positive backtesting performance is also no guarantee whatsoever of future
performance. All results shown are illustrative only and are meant to demonstrate the application of pro‐
gramming and analytics approaches. In some jurisdictions, such as in Germany, leverage ratios are capped for
retail traders based on different groups of financial instruments.

even for retail traders.3 Figure 16-6 shows in comparison the performance of the trad‐
ing strategy with transaction costs for different leverage values:

In [73]: to_plot = ['returns', 'strategy_tc']

In [74]: for lev in [10, 20, 30, 40, 50]:
             label = 'lstrategy_tc_%d' % lev
             test[label] = test['strategy_tc'] * lev  
             to_plot.append(label)

In [75]: test[to_plot].cumsum().apply(np.exp).plot(figsize=(10, 6));

Scales the strategy returns for different leverage values.

Figure 16-6. Performance of algorithmic trading strategy for different leverage values

Risk Analysis
Since leverage increases the risk associated with a trading strategy, a more in-depth
risk analysis seems in order. The risk analysis that follows assumes a leverage ratio of
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30. First, the maximum drawdown and the longest drawdown period are calculated.
Maximum drawdown is the largest loss (dip) after a recent high. Accordingly, the
longest drawdown period is the longest period that the trading strategy needs to get
back to a recent high. The analysis assumes that the initial equity position is 3,333
EUR, leading to an initial position size of 100,000 EUR for a leverage ratio of 30. It
also assumes that there are no adjustments with regard to the equity over time, no
matter what the performance is:

In [76]: equity = 3333  

In [77]: risk = pd.DataFrame(test['lstrategy_tc_30'])  

In [78]: risk['equity'] = risk['lstrategy_tc_30'].cumsum(
                 ).apply(np.exp) * equity  

In [79]: risk['cummax'] = risk['equity'].cummax()  

In [80]: risk['drawdown'] = risk['cummax'] - risk['equity']  

In [81]: risk['drawdown'].max()  
Out[81]: 781.7073602069818

In [82]: t_max = risk['drawdown'].idxmax()  
         t_max  
Out[82]: Timestamp('2018-06-29 02:45:00')

The initial equity.

The relevant log returns time series …

… scaled by the initial equity.

The cumulative maximum values over time.

The drawdown values over time.

The maximum drawdown value.

The point in time when it happens.
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Technically a (new) high is characterized by a drawdown value of 0. The drawdown
period is the time between two such highs. Figure 16-7 visualizes both the maximum
drawdown and the drawdown periods:

In [83]: temp = risk['drawdown'][risk['drawdown'] == 0]  

In [84]: periods = (temp.index[1:].to_pydatetime() -
                    temp.index[:-1].to_pydatetime())  

In [85]: periods[20:30]  
Out[85]: array([datetime.timedelta(seconds=68700),
                datetime.timedelta(seconds=72000),
         datetime.timedelta(seconds=1800), datetime.timedelta(seconds=300),
         datetime.timedelta(seconds=600), datetime.timedelta(seconds=300),
                datetime.timedelta(seconds=17400),
         datetime.timedelta(seconds=4500), datetime.timedelta(seconds=1500),
                datetime.timedelta(seconds=900)], dtype=object)

In [86]: t_per = periods.max()  

In [87]: t_per  
Out[87]: datetime.timedelta(seconds=76500)

In [88]: t_per.seconds / 60 / 60  
Out[88]: 21.25

In [89]: risk[['equity', 'cummax']].plot(figsize=(10, 6))
         plt.axvline(t_max, c='r', alpha=0.5);

Identifies highs for which the drawdown must be 0.

Calculates the timedelta values between all highs.

The longest drawdown period in seconds …

… and hours.
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Figure 16-7. Maximum drawdown (vertical line) and drawdown periods (horizontal
lines)

Another important risk measure is value-at-risk (VaR). It is quoted as a currency
amount and represents the maximum loss to be expected given both a certain time
horizon and a confidence level. The code that follows derives VaR values based on
the log returns of the equity position for the leveraged trading strategy over time for
different confidence levels. The time interval is fixed to the bar length of five minutes:

In [91]: import scipy.stats as scs

In [92]: percs = np.array([0.01, 0.1, 1., 2.5, 5.0, 10.0])  

In [93]: risk['returns'] = np.log(risk['equity'] /
                                  risk['equity'].shift(1))

In [94]: VaR = scs.scoreatpercentile(equity * risk['returns'], percs)  

In [95]: def print_var():
             print('%16s %16s' % ('Confidence Level', 'Value-at-Risk'))
             print(33 * '-')
             for pair in zip(percs, VaR):
                 print('%16.2f %16.3f' % (100 - pair[0], -pair[1]))  

In [96]: print_var()  
         Confidence Level    Value-at-Risk
         ---------------------------------
                    99.99          400.854
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                    99.90          175.932
                    99.00           88.139
                    97.50           60.485
                    95.00           45.010
                    90.00           32.056

Defines the percentile values to be used.

Calculates the VaR values given the percentile values.

Translates the percentile values into confidence levels and the VaR values (nega‐
tive values) to positive values for printing.

Finally, the following code calculates the VaR values for a time horizon of one hour
by resampling the original DataFrame object. In effect, the VaR values are increased
for all confidence levels but the highest one:

In [97]: hourly = risk.resample('1H', label='right').last()  

In [98]: hourly['returns'] = np.log(hourly['equity'] /
                                  hourly['equity'].shift(1))

In [99]: VaR = scs.scoreatpercentile(equity * hourly['returns'], percs)  

In [100]: print_var()
          Confidence Level    Value-at-Risk
          ---------------------------------
                     99.99          389.524
                     99.90          372.657
                     99.00          205.662
                     97.50          186.999
                     95.00          164.869
                     90.00          101.835

Resamples the data from five-minute to one-hour bars.

Recalculates the VaR values for the resampled data.

Persisting the Model Object
Once the algorithmic trading strategy is “accepted” based on the backtesting, leverag‐
ing, and risk analysis results, the model object might be persisted for later use in
deployment. It embodies now the ML-based trading strategy or the trading algo‐
rithm:

In [101]: import pickle

In [102]: pickle.dump(model, open('algorithm.pkl', 'wb'))
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Online Algorithm
The trading algorithm tested so far is an offline algorithm. Such algorithms use a
complete data set to solve a problem at hand. The problem has been to train an SVM
algorithm based on binarized features data and directional label data. In practice,
when deploying the trading algorithm in financial markets, it must consume data
piece-by-piece as it arrives to predict the direction of the market movement for the
next time interval (bar). This section makes use of the persisted model object from
the previous section and embeds it into a streaming data environment.

The code that transforms the offline trading algorithm into an online trading algo‐
rithm mainly addresses the following issues:

Tick data
Tick data arrives in real time and is to be processed in real time

Resampling
The tick data is to be resampled to the appropriate bar size given the trading
algorithm

Prediction
The trading algorithm generates a prediction for the direction of the market
movement over the relevant time interval that by nature lies in the future

Orders
Given the current position and the prediction (“signal”) generated by the algo‐
rithm, an order is placed or the position is kept

“Retrieving Streaming Data” on page 477 shows how to retrieve tick data from the
FXCM REST API in real time. The basic approach is to subscribe to a market data
stream and pass a callback function that processes the data.

First, the persisted trading algorithm is loaded—it represents the trading logic to be
followed. It might also be useful to define a helper function to print out the open
position(s) while the trading algorithm is trading:

In [103]: algorithm = pickle.load(open('algorithm.pkl', 'rb'))

In [104]: algorithm
Out[104]: SVC(C=1, cache_size=200, class_weight=None, coef0=0.0,
          decision_function_shape='ovr', degree=3, gamma='auto',
          kernel='linear', max_iter=-1, probability=False,
          random_state=None, shrinking=True, tol=0.001, verbose=False)

In [105]: sel = ['tradeId', 'amountK', 'currency',
                 'grossPL', 'isBuy']  

In [106]: def print_positions(pos):
              print('\n\n' + 50 * '=')
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              print('Going {}.\n'.format(pos))
              time.sleep(1.5)  
              print(api.get_open_positions()[sel])  
              print(50 * '=' + '\n\n')

Defines the DataFrame columns to be shown.

Waits a bit for the order to be executed and reflected in the open positions.

Prints the open positions.

Before the online algorithm is defined and started, a few parameter values are set:

In [107]: symbol = 'EUR/USD'  
          bar = '15s'  
          amount = 100  
          position = 0  
          min_bars = lags + 1  
          df = pd.DataFrame()  

Instrument symbol to be traded.

Bar length for resampling; for easier testing, the bar length might be shortened
compared to the real deployment length (e.g., 15 seconds instead of 5 minutes).

The amount, in thousands, to be traded.

The initial position (“neutral”).

The minimum number of resampled bars required for the first prediction and
trade to be possible.

An empty DataFrame object to be used later for the resampled data.

Following is the callback function automated_strategy() that transforms the trad‐
ing algorithm into a real-time context:

In [108]: def automated_strategy(data, dataframe):
              global min_bars, position, df
              ldf = len(dataframe)  
              df = dataframe.resample(bar, label='right').last().ffill()  
              if ldf % 20 == 0:
                  print('%3d' % len(dataframe), end=',')

              if len(df) > min_bars:
                  min_bars = len(df)
                  df['Mid'] = df[['Bid', 'Ask']].mean(axis=1)
                  df['Returns'] = np.log(df['Mid'] / df['Mid'].shift(1))
                  df['Direction'] = np.where(df['Returns'] > 0, 1, -1)
                  features = df['Direction'].iloc[-(lags + 1):-1]  
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                  features = features.values.reshape(1, -1)  
                  signal = algorithm.predict(features)[0]  

                  if position in [0, -1] and signal == 1:  
                      api.create_market_buy_order(
                          symbol, amount - position * amount)
                      position = 1
                      print_positions('LONG')

                  elif position in [0, 1] and signal == -1:  
                      api.create_market_sell_order(
                          symbol, amount + position * amount)
                      position = -1
                      print_positions('SHORT')

              if len(dataframe) > 350:  
                  api.unsubscribe_market_data('EUR/USD')
                  api.close_all()

Captures the length of the DataFrame object with the tick data.

Resamples the tick data to the defined bar length.

Picks the relevant feature values for all lags …

… and reshapes them to a form that the model can use for prediction.

Generates the prediction value (either +1 or -1).

The conditions to enter (or keep) a long position.

The conditions to enter (or keep) a short position.

The condition to stop trading and close out any open positions (arbitrarily
defined based on the number of ticks retrieved).

Infrastructure and Deployment
Deploying an automated algorithmic trading strategy with real funds requires an
appropriate infrastructure. Among others, the infrastructure should satisfy the fol‐
lowing conditions:

Reliability
The infrastructure on which to deploy an algorithmic trading strategy should
allow for high availability (e.g., > 99.9%) and should otherwise take care of relia‐
bility (automatic backups, redundancy of drives and web connections, etc.).
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4 Use the link http://bit.ly/do_sign_up to get a 10 USD bonus on DigitalOcean when signing up for a new
account.

Performance
Depending on the amount of data being processed and the computational
demand the algorithms generate, the infrastructure must have enough CPU
cores, working memory (RAM), and storage (SSD); in addition, the web connec‐
tions should be sufficiently fast.

Security
The operating system and the applications run on it should be protected by
strong passwords as well as SSL encryption; the hardware should be protected
from fire, water, and unauthorized physical access.

Basically, these requirements can only be fulfilled by renting appropriate infrastruc‐
ture from a professional data center or a cloud provider. Investments in the physical
infrastructure to satisfy the aforementioned requirements can in general only be jus‐
tified by the bigger or even biggest players in the financial markets.

From a development and testing point of view, even the smallest Droplet (cloud
instance) from DigitalOcean is enough to get started. At the time of this writing such
a Droplet costs 5 USD per month; usage is billed by the hour and a server can be cre‐
ated within minutes and destroyed within seconds.4

How to set up a Droplet with DigitalOcean is explained in detail in the section “Using
Cloud Instances” on page 50, with bash scripts that can be adjusted to reflect individ‐
ual requirements regarding Python packages, for example.

Operational Risks

Although the development and testing of automated algorithmic
trading strategies is possible from a local computer (desktop, note‐
book, etc.), it is not appropriate for the deployment of live strate‐
gies trading real money. A simple loss of the web connection or a
brief power outage might bring down the whole algorithm, leaving,
for example, unintended open positions in the portfolio or causing
data set corruption (due to missing out on real-time tick data),
potentially leading to wrong signals and unintended trades/
positions.

Logging and Monitoring
Let’s assume that the automated algorithmic trading strategy is to be deployed on a
remote server (cloud instance, leased server, etc.), that all required Python packages
have been installed (see “Using Cloud Instances” on page 50), and that, for instance,
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Jupyter Notebook is running securely. What else needs to be considered from the
algorithmic trader’s point of view if they do not want to sit all day in front of the
screen while logged in to the server?

This section addresses two important topics in this regard: logging and real-time
monitoring. Logging persists information and events on disk for later inspection. It is
standard practice in software application development and deployment. However,
here the focus might be put rather on the financial side, logging important financial
data and event information for later inspection and analysis. The same holds true for
real-time monitoring making use of socket communication. Via sockets a constant
real-time stream of important financial aspects can be created that can be retrieved
and processed on a local computer, even if the deployment happens in the cloud.

“Automated Trading Strategy” on page 550 presents a Python script implementing all
these aspects and making use of the code from “Online Algorithm” on page 544. The
script puts the code in a shape that allows, for example, the deployment of the algo‐
rithmic trading strategy—based on the persisted algorithm object—on a remote
server. It adds both logging and monitoring capabilities based on a custom function
that, among others, makes use of ZeroMQ for socket communication. In combination
with the short script from “Strategy Monitoring” on page 553, this allows for remote
real-time monitoring of the activity on a remote server.

When the script from “Automated Trading Strategy” on page 550 is run, either locally
or remotely, the output that is logged and sent via the socket looks as follows:

2018-07-25 09:16:15.568208
==================================================================
NUMBER OF BARS: 24

==================================================================
MOST RECENT DATA
                          Mid   Returns  Direction
2018-07-25 07:15:30  1.168885 -0.000009         -1
2018-07-25 07:15:45  1.168945  0.000043          1
2018-07-25 07:16:00  1.168895 -0.000051         -1
2018-07-25 07:16:15  1.168895 -0.000009         -1
2018-07-25 07:16:30  1.168885 -0.000017         -1

==================================================================
features: [[ 1 -1  1 -1 -1]]
position: -1
signal:   -1

2018-07-25 09:16:15.581453
==================================================================
no trade placed

****END OF CYCLE***
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5 Note that the socket communication as implemented in the two scripts is not encrypted and is sending plain
text over the web, which might represent a security risk in production.

2018-07-25 09:16:30.069737
==================================================================
NUMBER OF BARS: 25

==================================================================
MOST RECENT DATA
                          Mid   Returns  Direction
2018-07-25 07:15:45  1.168945  0.000043          1
2018-07-25 07:16:00  1.168895 -0.000051         -1
2018-07-25 07:16:15  1.168895 -0.000009         -1
2018-07-25 07:16:30  1.168950  0.000034          1
2018-07-25 07:16:45  1.168945 -0.000017         -1

==================================================================
features: [[-1  1 -1 -1  1]]
position: -1
signal:   1

2018-07-25 09:16:33.035094
==================================================================

==================================================
Going LONG.

    tradeId  amountK currency  grossPL  isBuy
0  61476318      100  EUR/USD       -2   True
==================================================

****END OF CYCLE***

Running the script from “Strategy Monitoring” on page 553 locally then allows the
real-time retrieval and processing of such information. Of course, it is easy to adjust
the logging and streaming data to one’s own requirements.5 Similarly, one can also,
for example, persist DataFrame objects as created during the execution of the trading
script. Furthermore, the trading script and the whole logic can be adjusted to include
such elements as stop losses or take profit targets programmatically. Alternatively,
one could make use of more sophisticated order types available via the FXCM trading
API.
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Consider All Risks

Trading currency pairs and/or CFDs is associated with a number of
financial risks. Implementing an algorithmic trading strategy for
such instruments automatically leads to a number of additional
risks. Among them are flaws in the trading and/or execution logic.
as well as technical risks such as problems with socket communica‐
tions or delayed retrieval or even loss of tick data during the
deployment. Therefore, before one deploys a trading strategy in
automated fashion one should make sure that all associated mar‐
ket, execution, operational, technical, and other risks have been
identified, evaluated, and addressed. The code presented in this
chapter is intended only for technical illustration purposes.

Conclusion
This chapter is about the deployment of an algorithmic trading strategy—based on a
classification algorithm from machine learning to predict the direction of market
movements—in automated fashion. It addresses such important topics as capital
management (based on the Kelly criterion), vectorized backtesting for performance
and risk, the transformation of offline to online trading algorithms, an appropriate
infrastructure for deployment, as well as logging and monitoring during deployment.

The topic of this chapter is complex and requires a broad skill set from the algorith‐
mic trading practitioner. On the other hand, having a REST API for algorithmic trad‐
ing available, such as the one from FXCM, simplifies the automation task
considerably since the core part boils down mainly to making use of the capabilities
of the Python wrapper package fxcmpy for tick data retrieval and order placement.
Around this core, elements to mitigate operational and technical risks as far as possi‐
ble have to be added.

Python Scripts
Automated Trading Strategy
The following is the Python script to implement the algorithmic trading strategy in
automated fashion, including logging and monitoring.

#
# Automated ML-Based Trading Strategy for FXCM
# Online Algorithm, Logging, Monitoring
#
# Python for Finance, 2nd ed.
# (c) Dr. Yves J. Hilpisch
#
import zmq
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import time
import pickle
import fxcmpy
import numpy as np
import pandas as pd
import datetime as dt

sel = ['tradeId', 'amountK', 'currency',
       'grossPL', 'isBuy']

log_file = 'automated_strategy.log'

# loads the persisted algorithm object
algorithm = pickle.load(open('algorithm.pkl', 'rb'))

# sets up the socket communication via ZeroMQ (here: "publisher")
context = zmq.Context()
socket = context.socket(zmq.PUB)

# this binds the socket communication to all IP addresses of the machine
socket.bind('tcp://0.0.0.0:5555')

def logger_monitor(message, time=True, sep=True):
    ''' Custom logger and monitor function.
    '''
    with open(log_file, 'a') as f:
        t = str(dt.datetime.now())
        msg = ''
        if time:
            msg += '\n' + t + '\n'
        if sep:
            msg += 66 * '=' + '\n'
        msg += message + '\n\n'
        # sends the message via the socket
        socket.send_string(msg)
        # writes the message to the log file
        f.write(msg)

def report_positions(pos):
    ''' Prints, logs and sends position data.
    '''
    out = '\n\n' + 50 * '=' + '\n'
    out += 'Going {}.\n'.format(pos) + '\n'
    time.sleep(2)  # waits for the order to be executed
    out += str(api.get_open_positions()[sel]) + '\n'
    out += 50 * '=' + '\n'
    logger_monitor(out)
    print(out)
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def automated_strategy(data, dataframe):
    ''' Callback function embodying the trading logic.
    '''
    global min_bars, position, df
    # resampling of the tick data
    df = dataframe.resample(bar, label='right').last().ffill()

    if len(df) > min_bars:
        min_bars = len(df)
        logger_monitor('NUMBER OF TICKS: {} | '.format(len(dataframe)) +
                       'NUMBER OF BARS: {}'.format(min_bars))
        # data processing and feature preparation
        df['Mid'] = df[['Bid', 'Ask']].mean(axis=1)
        df['Returns'] = np.log(df['Mid'] / df['Mid'].shift(1))
        df['Direction'] = np.where(df['Returns'] > 0, 1, -1)
        # picks relevant points
        features = df['Direction'].iloc[-(lags + 1):-1]
        # necessary reshaping
        features = features.values.reshape(1, -1)
        # generates the signal (+1 or -1)
        signal = algorithm.predict(features)[0]

        # logs and sends major financial information
        logger_monitor('MOST RECENT DATA\n' +
                       str(df[['Mid', 'Returns', 'Direction']].tail()),
                       False)
        logger_monitor('features: ' + str(features) + '\n' +
                       'position: ' + str(position) + '\n' +
                       'signal:   ' + str(signal), False)

        # trading logic
        if position in [0, -1] and signal == 1:  # going long?
            api.create_market_buy_order(
                symbol, size - position * size)  # places a buy order
            position = 1  # changes position to long
            report_positions('LONG')

        elif position in [0, 1] and signal == -1:  # going short?
            api.create_market_sell_order(
                symbol, size + position * size)  # places a sell order
            position = -1  # changes position to short
            report_positions('SHORT')
        else:  # no trade
            logger_monitor('no trade placed')

        logger_monitor('****END OF CYCLE***\n\n', False, False)

    if len(dataframe) > 350:  # stopping condition
        api.unsubscribe_market_data('EUR/USD')  # unsubscribes from data stream
        report_positions('CLOSE OUT')
        api.close_all()  # closes all open positions
        logger_monitor('***CLOSING OUT ALL POSITIONS***')
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if __name__ == '__main__':
    symbol = 'EUR/USD'  # symbol to be traded
    bar = '15s'  # bar length; adjust for testing and deployment
    size = 100  # position size in thousand currency units
    position = 0  # initial position
    lags = 5  # number of lags for features data
    min_bars = lags + 1  # minimum length for resampled DataFrame
    df = pd.DataFrame()
    # adjust configuration file location
    api = fxcmpy.fxcmpy(config_file='../fxcm.cfg')
    # the main asynchronous loop using the callback function
    api.subscribe_market_data(symbol, (automated_strategy,))

Strategy Monitoring
The following is the Python script to implement a local or remote monitoring of the
automated algorithmic trading strategy via socket communication.

#
# Automated ML-Based Trading Strategy for FXCM
# Strategy Monitoring via Socket Communication
#
# Python for Finance, 2nd ed.
# (c) Dr. Yves J. Hilpisch
#
import zmq

# sets up the socket communication via ZeroMQ (here: "subscriber")
context = zmq.Context()
socket = context.socket(zmq.SUB)

# adjust the IP address to reflect the remote location
socket.connect('tcp://REMOTE_IP_ADDRESS:5555')

# configures the socket to retrieve every message
socket.setsockopt_string(zmq.SUBSCRIBE, '')

while True:
    msg = socket.recv_string()
    print(msg)
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Further Resources
The papers cited in this chapter are:

• Rotando, Louis, and Edward Thorp (1992). “The Kelly Criterion and the Stock
Market.” The American Mathematical Monthly, Vol. 99, No. 10, pp. 922–931.

• Hung, Jane (2010): “Betting with the Kelly Criterion.” http://bit.ly/
betting_with_kelly.

For a comprehensive online training program covering Python for algorithmic trad‐
ing see http://certificate.tpq.io.
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1 See Bittman (2009) for an introduction to options trading and related topics like market fundamentals and
the role of the so-called Greeks in options risk management.

PART V

Derivatives Analytics

This part of the book is concerned with the development of a smaller, but neverthe‐
less still powerful, real-world application for the pricing of options and derivatives by
Monte Carlo simulation.1 The goal is to have, in the end, a set of Python classes—a
pricing library called DX, for Derivatives analytiX—that allows for the following:

Modeling
To model short rates for discounting purposes; to model European and Ameri‐
can options, including their underlying risk factors as well as their relevant mar‐
ket environments; to model even complex portfolios consisting of multiple
options with multiple (possibly correlated) underlying risk factors

Simulation
To simulate risk factors based on geometric Brownian motion and jump diffu‐
sions as well as on square-root diffusions, and to simulate a number of such risk
factors simultaneously and consistently, whether they are correlated or not

Valuation
To value, by the risk-neutral valuation approach, European and American
options with arbitrary payoffs; to value portfolios composed of such options in a
consistent, integrated fashion (“global valuation”)



Risk management
To estimate numerically the most important Greeks—i.e., the delta and the vega
of an option/derivative—independent of the underlying risk factor or the exer‐
cise type

Application
To use the package to value and manage a portfolio of non-traded American
options on the DAX 30 stock index in market-consistent fashion; i.e., based on a
calibrated model for the DAX 30 index

The material presented in this part of the book relies on the DX analytics package,
which is developed and maintained by the author and The Python Quants GmbH
(and available, e.g., via the Quant Platform). The full-fledged version allows, for
instance, the modeling, pricing, and risk management of complex multi-risk deriva‐
tives and trading books composed thereof.

This part is divided into the following chapters:

• Chapter 17 presents the valuation framework in both theoretical and technical
form. Theoretically, the Fundamental Theorem of Asset Pricing and the risk-
neutral valuation approach are central. Technically, the chapter presents Python
classes for risk-neutral discounting and for market environments.

• Chapter 18 is concerned with the simulation of risk factors based on geometric
Brownian motion, jump diffusions, and square-root diffusion processes; a
generic class and three specialized classes are discussed.

• Chapter 19 addresses the valuation of single derivatives with European or Ameri‐
can exercise based on a single underlying risk factor; again, a generic and two
specialized classes represent the major building blocks. The generic class allows
the estimation of the delta and the vega independent of the option type.

• Chapter 20 is about the valuation of possibly complex derivatives portfolios with
multiple derivatives based on multiple possibly correlated underlyings; a simple
class for the modeling of a derivatives position is presented as well as a more
complex class for a consistent portfolio valuation.

• Chapter 21 uses the DX library developed in the other chapters to value and risk-
manage a portfolio of American put options on the DAX 30 stock index.

http://dx-analytics.com
http://pqp.io


CHAPTER 17

Valuation Framework

Compound interest is the greatest mathematical discovery of all time.
—Albert Einstein

This chapter provides the framework for the development of the DX library by intro‐
ducing the most fundamental concepts needed for such an undertaking. It briefly
reviews the Fundamental Theorem of Asset Pricing, which provides the theoretical
background for the simulation and valuation. It then proceeds by addressing the fun‐
damental concepts of date handling and risk-neutral discounting. This chapter con‐
siders only the simplest case of constant short rates for the discounting, but more
complex and realistic models can be added to the library quite easily. This chapter
also introduces the concept of a market environment—i.e., a collection of constants,
lists, and curves needed for the instantiation of almost any other class to come in sub‐
sequent chapters.

The chapter comprises the following sections:

“Fundamental Theorem of Asset Pricing” on page 558
This section introduces the Fundamental Theorem of Asset Pricing, which pro‐
vides the theoretical background for the library to be developed.

“Risk-Neutral Discounting” on page 560
This section develops a class for the risk-neutral discounting of future payoffs of
options and other derivative instruments.

“Market Environments” on page 565
This section develops a class to manage market environments for the pricing of
single instruments and portfolios composed of multiple instruments.
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1 Refer to Delbaen and Schachermayer (2004) for a comprehensive review and details of the mathematical
machinery involved. See also Chapter 4 of Hilpisch (2015) for a shorter introduction, in particular for the
discrete time version.

Fundamental Theorem of Asset Pricing
The Fundamental Theorem of Asset Pricing is one of the cornerstones and success
stories of modern financial theory and mathematics.1 The central notion underlying
the theorem is the concept of a martingale measure; i.e., a probability measure that
removes the drift from a discounted risk factor (stochastic process). In other words,
under a martingale measure, all risk factors drift with the risk-free short rate—and
not with any other market rate involving some kind of risk premium over the risk-
free short rate.

A Simple Example
Consider a simple economy at the dates today and tomorrow with a risky asset, a
“stock,” and a riskless asset, a “bond.” The bond costs 10 USD today and pays off 10
USD tomorrow (zero interest rates). The stock costs 10 USD today and, with a proba‐
bility of 60% and 40%, respectively, pays off 20 USD or 0 USD tomorrow. The riskless
return of the bond is 0. The expected return of the stock is 0.6 · 20 + 0.4 · 0

10 – 1 = 0.2, or
20%. This is the risk premium the stock pays for its riskiness.

Consider now a call option with strike price of 15 USD. What is the fair value of such
a contingent claim that pays 5 USD with 60% probability and 0 USD otherwise? One
can take the expectation, for example, and discount the resulting value back (here
with zero interest rates). This approach yields a value of 0.6 ⋅ 5 = 3 USD, since the
option pays 5 USD in the case where the stock price moves up to 20 USD and 0 USD
otherwise.

However, there is another approach that has been successfully applied to option pric‐
ing problems like this: replication of the option’s payoff through a portfolio of traded
securities. It is easily verified that buying 0.25 of the stock perfectly replicates the
option’s payoff (in the 60% case one then has 0.25 ⋅ 20 = 5 USD). A quarter of the
stock only costs 2.5 USD and not 3 USD. Taking expectations under the real-world
probability measure overvalues the option.

Why is this the case? The real-world measure implies a risk premium of 20% for the
stock since the risk involved in the stock (gaining 100% or losing 100%) is “real” in
the sense that it cannot be diversified or hedged away. On the other hand, there is a
portfolio available that replicates the option’s payoff without any risk. This also
implies that someone writing (selling) such an option can completely hedge away any
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2 The strategy would involve selling an option at a price of 2.5 USD and buying 0.25 stocks for 2.5 USD. The
payoff of such a portfolio is 0 no matter what scenario plays out in the simple economy.

3 See Williams (1991) on the probabilistic concepts.
4 See Delbaen and Schachermayer (2004).

risk.2 Such a perfectly hedged portfolio of an option and a hedge position must yield
the riskless rate in order to avoid arbitrage opportunities (i.e., the opportunity to
make some money out of no money with a positive probability).

Can one save the approach of taking expectations to value the call option? Yes, it is
possible. One “only” has to change the probability in such a way that the risky asset,
the stock, drifts with the riskless short rate of zero. Obviously, a (martingale) measure
giving equal mass of 50% to both scenarios accomplishes this; the calculation is
0.5 · 20 + 0.5 · 0

10 – 1 = 0. Now, taking expectations of the option’s payoff under the new
martingale measure yields the correct (arbitrage-free) fair value: 0.5 ⋅ 5 + 0.5 ⋅ 0 = 2.5
USD.

The General Results
The beauty of this approach is that it carries over to even the most complex econo‐
mies with, for example, continuous time modeling (i.e., a continuum of points in
time to consider), large numbers of risky assets, complex derivative payoffs, etc.

Therefore, consider a general market model in discrete time:3

A general market model ℳ in discrete time is a collection of:

• A finite state space Ω

• A filtration �

• A strictly positive probability measure P defined on ℘(Ω)
• A terminal date T ∈ ℕ, T  < ∞

• A set � ≡ {(St
k )t∈{0,...,T } : k ∈ {0, ..., K }} of K+1 strictly positive security price pro‐

cesses

Together one has ℳ = {(Ω, ℘(Ω), �, P), T , �}.

Based on such a general market model, one can formulate the Fundamental Theorem
of Asset Pricing as follows:4
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Consider the general market model ℳ. According to the Fundamental Theorem of
Asset Pricing, the following three statements are equivalent:

• There are no arbitrage opportunities in the market model ℳ.

• The set ℚ of P-equivalent martingale measures is nonempty.

• The set ℙ of consistent linear price systems is nonempty.

When it comes to valuation and pricing of contingent claims (i.e., options, deriva‐
tives, futures, forwards, swaps, etc.), the importance of the theorem is illustrated by
the following corollary:

If the market model ℳ is arbitrage-free, then there exists a unique price V0 associated
with any attainable (i.e., replicable) contingent claim (option, derivative, etc.) VT. It
satisfies ∀ Q ∈ ℚ : V 0 = E0

Q(e –rT V T ), where e–rT is the relevant risk-neutral discount
factor for a constant short rate r.

This result illustrates the importance of the theorem, and shows that our simple rea‐
soning from earlier indeed carries over to the general market model.

Due to the role of the martingale measure, this approach to valuation is also often
called the martingale approach, or—since under the martingale measure all risky
assets drift with the riskless short rate—the risk-neutral valuation approach. The sec‐
ond term might, for our purposes, be the better one because in numerical applica‐
tions, one “simply” lets the risk factors (stochastic processes) drift by the risk-neutral
short rate. One does not have to deal with the probability measures directly for our
applications—they are, however, what theoretically justifies the central theoretical
results applied and the technical approach implemented.

Finally, consider market completeness in the general market model:

The market model ℳ is complete if it is arbitrage-free and if every contingent claim
(option, derivative, etc.) is attainable (i.e., replicable).
Suppose that the market model ℳ is arbitrage-free. The market model is complete if
and only if ℳ is a singleton; i.e., if there is a unique P-equivalent martingale measure.

This mainly completes the discussion of the theoretical background for what follows.
For a detailed exposition of the concepts, notions, definitions, and results, refer to
Chapter 4 of Hilpisch (2015).

Risk-Neutral Discounting
Obviously, risk-neutral discounting is central to the risk-neutral valuation approach.
This section therefore develops a Python class for risk-neutral discounting. However,
it pays to first have a closer look at the modeling and handling of relevant dates for a
valuation.
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5 Adding a time component is actually a straightforward undertaking, which is nevertheless not done here for
the ease of the exposition.

Modeling and Handling Dates
A necessary prerequisite for discounting is the modeling of dates (see also Appen‐
dix A). For valuation purposes, one typically divides the time interval between today
and the final date of the general market model T into discrete time intervals. These
time intervals can be homogeneous (i.e., of equal length), or they can be heterogene‐
ous (i.e., of varying length). A valuation library should be able to handle the more
general case of heterogeneous time intervals, since the simpler case is then automati‐
cally included. Therefore, the code works with lists of dates, assuming that the small‐
est relevant time interval is one day. This implies that intraday events are considered
irrelevant, for which one would have to model time (in addition to dates).5

To compile a list of relevant dates, one can basically take one of two approaches: con‐
structing a list of concrete dates (e.g., as datetime objects in Python) or of year frac‐
tions (as decimal numbers, as is often done in theoretical works).

Some imports first:

In [1]: import numpy as np
        import pandas as pd
        import datetime as dt

In [2]: from pylab import mpl, plt
        plt.style.use('seaborn')
        mpl.rcParams['font.family'] = 'serif'
        %matplotlib inline

In [3]: import sys
        sys.path.append('../dx')

For example, the following two definitions of dates and fractions are (roughly)
equivalent:

In [4]: dates = [dt.datetime(2020, 1, 1), dt.datetime(2020, 7, 1),
                 dt.datetime(2021, 1, 1)]

In [5]: (dates[1] - dates[0]).days / 365.
Out[5]: 0.4986301369863014

In [6]: (dates[2] - dates[1]).days / 365.
Out[6]: 0.5041095890410959

In [7]: fractions = [0.0, 0.5, 1.0]
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They are only roughly equivalent since year fractions seldom lie on the beginning (0
a.m.) of a certain day. Just consider the result of dividing a year by 50.

Sometimes it is necessary to get year fractions out of a list of dates. The function
get_year_deltas() does the job:

#
# DX Package
#
# Frame -- Helper Function
#
# get_year_deltas.py
#
# Python for Finance, 2nd ed.
# (c) Dr. Yves J. Hilpisch
#
import numpy as np

def get_year_deltas(date_list, day_count=365.):
    ''' Return vector of floats with day deltas in year fractions.
    Initial value normalized to zero.

    Parameters
    ==========
    date_list: list or array
        collection of datetime objects
    day_count: float
        number of days for a year
        (to account for different conventions)

    Results
    =======
    delta_list: array
        year fractions
    '''

    start = date_list[0]
    delta_list = [(date - start).days / day_count
                  for date in date_list]
    return np.array(delta_list)

This function can then be applied as follows:

In [8]: from get_year_deltas import get_year_deltas

In [9]: get_year_deltas(dates)
Out[9]: array([0.        , 0.49863014, 1.00273973])

When modeling the short rate, it becomes clear what the benefit of this conversion is.
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6 For the pricing of, for example, short-dated options, this assumption seems satisfied in many circumstances.

7 A unit zero-coupon bond pays exactly one currency unit at its maturity and no coupons between today and
maturity.

8 See Chapter 6 for the basics of object-oriented programming (OOP) in Python. Here, and for the rest of this
part, the naming deviates from the standard PEP 8 conventions with regard to Python class names. PEP 8
recommends using “CapWords” or “CamelCase” convention in general for Python class names. The code in
this part rather uses the function name convention as mentioned in PEP 8 as a valid alternative “in cases
where the interface is documented and used primarily as a callable.”

Constant Short Rate
The exposition to follow focuses on the simplest case for discounting by the short
rate; namely, the case where the short rate is constant through time. Many option
pricing models, like the ones of Black-Scholes-Merton (1973), Merton (1976), or
Cox-Ross-Rubinstein (1979), make this assumption.6 Assume continuous discount‐
ing, as is usual for option pricing applications. In such a case, the general discount
factor as of today, given a future date t and a constant short rate of r, is then given by
D0(t) = e –rt . Of course, for the end of the economy the special case D0(T ) = e –rT

holds true. Note that here both t and T are in year fractions.

The discount factors can also be interpreted as the value of a unit zero-coupon bond
(ZCB) as of today, maturing at t and T, respectively.7 Given two dates t ≥ s ≥ 0, the
discount factor relevant for discounting from t to s is then given by the equation
Ds(t) = D0(t) / D0(s) = e –rt / e –rs = e –rt · e rs = e –r (t –s).

The following translates these considerations into Python code in the form of a class:8

#
# DX Library
#
# Frame -- Constant Short Rate Class
#
# constant_short_rate.py
#
# Python for Finance, 2nd ed.
# (c) Dr. Yves J. Hilpisch
#
from get_year_deltas import *

class constant_short_rate(object):
    ''' Class for constant short rate discounting.

    Attributes
    ==========
    name: string
        name of the object
    short_rate: float (positive)
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        constant rate for discounting

    Methods
    =======
    get_discount_factors:
        get discount factors given a list/array of datetime objects
        or year fractions
    '''

    def __init__(self, name, short_rate):
        self.name = name
        self.short_rate = short_rate
        if short_rate < 0:
            raise ValueError('Short rate negative.')
            # this is debatable given recent market realities

    def get_discount_factors(self, date_list, dtobjects=True):
        if dtobjects is True:
            dlist = get_year_deltas(date_list)
        else:
            dlist = np.array(date_list)
        dflist = np.exp(self.short_rate * np.sort(-dlist))
        return np.array((date_list, dflist)).T

The application of the class dx.constant_short_rate is best illustrated by a simple,
concrete example. The main result is a two-dimensional ndarray object containing
pairs of a datetime object and the relevant discount factor. The class in general and
the object csr in particular work with year fractions as well:

In [10]: from constant_short_rate import constant_short_rate

In [11]: csr = constant_short_rate('csr', 0.05)

In [12]: csr.get_discount_factors(dates)
Out[12]: array([[datetime.datetime(2020, 1, 1, 0, 0), 0.9510991280247174],
                [datetime.datetime(2020, 7, 1, 0, 0), 0.9753767163648953],
                [datetime.datetime(2021, 1, 1, 0, 0), 1.0]], dtype=object)

In [13]: deltas = get_year_deltas(dates)
         deltas
Out[13]: array([0.        , 0.49863014, 1.00273973])

In [14]: csr.get_discount_factors(deltas, dtobjects=False)
Out[14]: array([[0.        , 0.95109913],
                [0.49863014, 0.97537672],
                [1.00273973, 1.        ]])

This class will take care of all discounting operations needed in other classes.
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9 On this concept see also Fletcher and Gardner (2009), who use market environments extensively.

Market Environments
Market environment is “just” a name for a collection of other data and Python
objects. However, it is rather convenient to work with this abstraction since it simpli‐
fies a number of operations and also allows for a consistent modeling of recurring
aspects.9 A market environment mainly consists of three dictionaries to store the fol‐
lowing types of data and Python objects:

Constants
These can be, for example, model parameters or option maturity dates.

Lists
These are collections of objects in general, like a list of objects modeling (risky)
securities.

Curves
These are objects for discounting; e.g., an instance of the dx.con

stant_short_rate class.

Following is the code for the dx.market_environment class. Refer to Chapter 3 for
details on the handling of dict objects:

#
# DX Package
#
# Frame -- Market Environment Class
#
# market_environment.py
#
# Python for Finance, 2nd ed.
# (c) Dr. Yves J. Hilpisch
#

class market_environment(object):
    ''' Class to model a market environment relevant for valuation.

    Attributes
    ==========
    name: string
        name of the market environment
    pricing_date: datetime object
        date of the market environment

    Methods
    =======
    add_constant:
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        adds a constant (e.g. model parameter)
    get_constant:
        gets a constant
    add_list:
        adds a list (e.g. underlyings)
    get_list:
        gets a list
    add_curve:
        adds a market curve (e.g. yield curve)
    get_curve:
        gets a market curve
    add_environment:
        adds and overwrites whole market environments
        with constants, lists, and curves
    '''

    def __init__(self, name, pricing_date):
        self.name = name
        self.pricing_date = pricing_date
        self.constants = {}
        self.lists = {}
        self.curves = {}

    def add_constant(self, key, constant):
        self.constants[key] = constant

    def get_constant(self, key):
        return self.constants[key]

    def add_list(self, key, list_object):
        self.lists[key] = list_object

    def get_list(self, key):
        return self.lists[key]

    def add_curve(self, key, curve):
        self.curves[key] = curve

    def get_curve(self, key):
        return self.curves[key]

    def add_environment(self, env):
        # overwrites existing values, if they exist
        self.constants.update(env.constants)
        self.lists.update(env.lists)
        self.curves.update(env.curves)

Although there is nothing really special about the dx.market_environment class, a
simple example shall illustrate how convenient it is to work with instances of the
class:
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In [15]: from market_environment import market_environment

In [16]: me = market_environment('me_gbm', dt.datetime(2020, 1, 1))

In [17]: me.add_constant('initial_value', 36.)

In [18]: me.add_constant('volatility', 0.2)

In [19]: me.add_constant('final_date', dt.datetime(2020, 12, 31))

In [20]: me.add_constant('currency', 'EUR')

In [21]: me.add_constant('frequency', 'M')

In [22]: me.add_constant('paths', 10000)

In [23]: me.add_curve('discount_curve', csr)

In [24]: me.get_constant('volatility')
Out[24]: 0.2

In [25]: me.get_curve('discount_curve').short_rate
Out[25]: 0.05

This illustrates the basic handling of this rather generic “storage” class. For practical
applications, market data and other data as well as Python objects are first collected,
then a dx.market_environment object is instantiated and filled with the relevant data
and objects. This is then delivered in a single step to other classes that need the data
and objects stored in the respective dx.market_environment object.

A major advantage of this object-oriented modeling approach is, for example, that
instances of the dx.constant_short_rate class can live in multiple environments
(see the topic of aggregation in Chapter 6). Once the instance is updated—for exam‐
ple, when a new constant short rate is set—all the instances of the dx.market_envi
ronment class containing that particular instance of the discounting class will be
updated automatically.

Flexibility

The market environment class as introduced in this section is a
flexible means to model and store any quantities and input data
relevant to the pricing of options and derivatives and portfolios
composed thereof. However, this flexibility also leads to opera‐
tional risks in that it is easy to pass nonsensical data, objects, etc. to
the class during instantiation, which might or might not be cap‐
tured during instantiation. In a production context, a number of
checks need to be added to at least capture obviously wrong cases.
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Conclusion
This chapter provides the basic framework for the larger project of building a Python
package to value options and other derivatives by Monte Carlo simulation. The chap‐
ter introduces the Fundamental Theorem of Asset Pricing, illustrating it by a rather
simple numerical example. Important results in this regard are provided for a general
market model in discrete time.

The chapter also develops a Python class for risk-neutral discounting purposes to
make numerical use of the mathematical machinery of the Fundamental Theorem of
Asset Pricing. Based on a list object of either Python datetime objects or float
objects representing year fractions, instances of the class dx.constant_short_rate
provide the appropriate discount factors (present values of unit zero-coupon bonds).

The chapter concludes with the rather generic dx.market_environment class, which
allows for the collection of relevant data and Python objects for modeling, simula‐
tion, valuation, and other purposes.

To simplify future imports, a wrapper module called dx_frame.py is used:

#
# DX Analytics Package
#
# Frame Functions & Classes
#
# dx_frame.py
#
# Python for Finance, 2nd ed.
# (c) Dr. Yves J. Hilpisch
#
import datetime as dt

from get_year_deltas import get_year_deltas
from constant_short_rate import constant_short_rate
from market_environment import market_environment

A single import statement like the following then makes all framework components
available in a single step:

import dx_frame

Thinking of a Python package of modules, there is also the option to store all relevant
Python modules in a (sub)folder and to put in that folder a special __init__.py file
that does all the imports. For example, when storing all modules in a folder called dx,
say, the file presented next does the job. However, notice the naming convention for
this particular file:
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#
# DX Package
# packaging file
# __init__.py
#
import datetime as dt

from get_year_deltas import get_year_deltas
from constant_short_rate import constant_short_rate
from market_environment import market_environment

In that case you can just use the folder name to accomplish all the imports at once:

from dx import *

Or, via the alternative approach:

import dx

Further Resources
Useful references in book form for the topics covered in this chapter are:

• Bittman, James (2009). Trading Options as a Professional. New York: McGraw
Hill.

• Delbaen, Freddy, and Walter Schachermayer (2004). The Mathematics of
Arbitrage. Berlin, Heidelberg: Springer-Verlag.

• Fletcher, Shayne, and Christopher Gardner (2009). Financial Modelling in
Python. Chichester, England: Wiley Finance.

• Hilpisch, Yves (2015). Derivatives Analytics with Python. Chichester, England:
Wiley Finance.

• Williams, David (1991). Probability with Martingales. Cambridge, England:
Cambridge University Press.

For the original research papers defining the models cited in this chapter, refer to the
“Further Resources” sections in subsequent chapters.
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1 The text speaks of “random” numbers knowing that they are in general “pseudo-random” only.

CHAPTER 18

Simulation of Financial Models

The purpose of science is not to analyze or describe but to make useful models of the
world.

—Edward de Bono

Chapter 12 introduces in some detail the Monte Carlo simulation of stochastic pro‐
cesses using Python and NumPy. This chapter applies the basic techniques presented
there to implement simulation classes as a central component of the DX package. The
set of stochastic processes is restricted to three widely used ones. In particular, the
chapter comprises the following sections:

“Random Number Generation” on page 572
This section develops a function to generate standard normally distributed ran‐
dom numbers using variance reduction techniques.1

“Generic Simulation Class” on page 574
This section develops a generic simulation class from which the other specific
simulatation classes inherit fundamental attributes and methods.

“Geometric Brownian Motion” on page 577
This section is about the geometric Brownian motion (GBM) that was intro‐
duced to the option pricing literature through the seminal works of Black and
Scholes (1973) and Merton (1973); it is used several times throughout this book
and still represents—despite its known shortcomings and given the mounting
empirical evidence against it—a benchmark process for option and derivative
valuation purposes.
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2 See Glasserman (2004), Chapter 2, on generating random numbers and random variables.

“Jump Diffusion” on page 582
The jump diffusion, as introduced to finance by Merton (1976), adds a log-
normally distributed jump component to the GBM. This allows one to take into
account that, for example, short-term out-of-the-money (OTM) options often
seem to have priced in the possibility of larger jumps; in other words, relying on
GBM as a financial model often cannot explain the market values of such OTM
options satisfactorily, while a jump diffusion may be able to do so.

“Square-Root Diffusion” on page 587
The square-root diffusion, popularized in finance by Cox, Ingersoll, and Ross
(1985), is used to model mean-reverting quantities like interest rates and volatil‐
ity; in addition to being mean-reverting, the process stays positive, which is gen‐
erally a desirable characteristic for those quantities.

For further details on the simulation of the models presented in this chapter, refer
also to Hilpisch (2015). In particular, that book contains a complete case study based
on the jump diffusion model of Merton (1976).

Random Number Generation
Random number generation is a central task of Monte Carlo simulation.2 Chapter 12
shows how to use Python and subpackages such as numpy.random to generate random
numbers with different distributions. For the project at hand, standard normally dis‐
tributed random numbers are the most important ones. That is why it pays off to
have the convenience function sn_random_numbers(), defined here, available for
generating this particular type of random numbers:

#
# DX Package
#
# Frame -- Random Number Generation
#
# sn_random_numbers.py
#
# Python for Finance, 2nd ed.
# (c) Dr. Yves J. Hilpisch
#
import numpy as np

def sn_random_numbers(shape, antithetic=True, moment_matching=True,
                      fixed_seed=False):
    ''' Returns an ndarray object of shape shape with (pseudo)random numbers
    that are standard normally distributed.
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3 Glasserman (2004) presents in Chapter 4 an overview and theoretical details of different variance reduction
techniques.

    Parameters
    ==========
    shape: tuple (o, n, m)
        generation of array with shape (o, n, m)
    antithetic: Boolean
        generation of antithetic variates
    moment_matching: Boolean
        matching of first and second moments
    fixed_seed: Boolean
        flag to fix the seed

    Results
    =======
    ran: (o, n, m) array of (pseudo)random numbers
    '''
    if fixed_seed:
        np.random.seed(1000)
    if antithetic:
        ran = np.random.standard_normal(
            (shape[0], shape[1], shape[2] // 2))
        ran = np.concatenate((ran, -ran), axis=2)
    else:
        ran = np.random.standard_normal(shape)
    if moment_matching:
        ran = ran - np.mean(ran)
        ran = ran / np.std(ran)
    if shape[0] == 1:
        return ran[0]
    else:
        return ran

The variance reduction techniques used in this function, namely antithetic paths and
moment matching, are also illustrated in Chapter 12.3 The application of the function
is straightforward:

In [26]: from sn_random_numbers import *

In [27]: snrn = sn_random_numbers((2, 2, 2), antithetic=False,
                                  moment_matching=False, fixed_seed=True)
         snrn
Out[27]: array([[[-0.8044583 ,  0.32093155],
                 [-0.02548288,  0.64432383]],

                [[-0.30079667,  0.38947455],
                 [-0.1074373 , -0.47998308]]])

In [28]: round(snrn.mean(), 6)
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Out[28]: -0.045429

In [29]: round(snrn.std(), 6)
Out[29]: 0.451876

In [30]: snrn = sn_random_numbers((2, 2, 2), antithetic=False,
                                  moment_matching=True, fixed_seed=True)
         snrn
Out[30]: array([[[-1.67972865,  0.81075283],
                 [ 0.04413963,  1.52641815]],

                [[-0.56512826,  0.96243813],
                 [-0.13722505, -0.96166678]]])

In [31]: round(snrn.mean(), 6)
Out[31]: -0.0

In [32]: round(snrn.std(), 6)
Out[32]: 1.0

This function will prove a workhorse for the simulation classes to follow.

Generic Simulation Class
Object-oriented modeling—as introduced in Chapter 6—allows inheritance of
attributes and methods. This is what the following code makes use of when building
the simulation classes: one starts with a generic simulation class containing those
attributes and methods that all other simulation classes share and can then focus with
the other classes on specific elements of the stochastic process to be simulated.

Instantiating an object of any simulation class happens by providing three attributes
only:

name

A str object as a name for the model simulation object

mar_env

An instance of the dx.market_environment class

corr

A flag (bool) indicating whether the object is correlated or not

This again illustrates the role of a market environment: to provide in a single step all
data and objects required for simulation and valuation. The methods of the generic
class are:

generate_time_grid()

This method generates the time grid of relevant dates used for the simulation;
this task is the same for every simulation class.
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get_instrument_values()

Every simulation class has to return the ndarray object with the simulated
instrument values (e.g., simulated stock prices, commodities prices, volatilities).

The code for the generic model simulation class follows. The methods make use of
other methods that the model-tailored classes will provide, like self.gener
ate_paths(). The details in this regard become clear when one has the full picture of
a specialized, nongeneric simulation class. First, the base class:

#
# DX Package
#
# Simulation Class -- Base Class
#
# simulation_class.py
#
# Python for Finance, 2nd ed.
# (c) Dr. Yves J. Hilpisch
#
import numpy as np
import pandas as pd

class simulation_class(object):
    ''' Providing base methods for simulation classes.

    Attributes
    ==========
    name: str
        name of the object
    mar_env: instance of market_environment
        market environment data for simulation
    corr: bool
        True if correlated with other model object

    Methods
    =======
    generate_time_grid:
        returns time grid for simulation
    get_instrument_values:
        returns the current instrument values (array)
    '''

    def __init__(self, name, mar_env, corr):
        self.name = name
        self.pricing_date = mar_env.pricing_date
        self.initial_value = mar_env.get_constant('initial_value')
        self.volatility = mar_env.get_constant('volatility')
        self.final_date = mar_env.get_constant('final_date')
        self.currency = mar_env.get_constant('currency')
        self.frequency = mar_env.get_constant('frequency')
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        self.paths = mar_env.get_constant('paths')
        self.discount_curve = mar_env.get_curve('discount_curve')
        try:
            # if time_grid in mar_env take that object
            # (for portfolio valuation)
            self.time_grid = mar_env.get_list('time_grid')
        except:
            self.time_grid = None
        try:
            # if there are special dates, then add these
            self.special_dates = mar_env.get_list('special_dates')
        except:
            self.special_dates = []
        self.instrument_values = None
        self.correlated = corr
        if corr is True:
            # only needed in a portfolio context when
            # risk factors are correlated
            self.cholesky_matrix = mar_env.get_list('cholesky_matrix')
            self.rn_set = mar_env.get_list('rn_set')[self.name]
            self.random_numbers = mar_env.get_list('random_numbers')

    def generate_time_grid(self):
        start = self.pricing_date
        end = self.final_date
        # pandas date_range function
        # freq = e.g. 'B' for Business Day,
        # 'W' for Weekly, 'M' for Monthly
        time_grid = pd.date_range(start=start, end=end,
                                  freq=self.frequency).to_pydatetime()
        time_grid = list(time_grid)
        # enhance time_grid by start, end, and special_dates
        if start not in time_grid:
            time_grid.insert(0, start)
            # insert start date if not in list
        if end not in time_grid:
            time_grid.append(end)
            # insert end date if not in list
        if len(self.special_dates) > 0:
            # add all special dates
            time_grid.extend(self.special_dates)
            # delete duplicates
            time_grid = list(set(time_grid))
            # sort list
            time_grid.sort()
        self.time_grid = np.array(time_grid)

    def get_instrument_values(self, fixed_seed=True):
        if self.instrument_values is None:
            # only initiate simulation if there are no instrument values
            self.generate_paths(fixed_seed=fixed_seed, day_count=365.)
        elif fixed_seed is False:
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            # also initiate resimulation when fixed_seed is False
            self.generate_paths(fixed_seed=fixed_seed, day_count=365.)
        return self.instrument_values

Parsing of the market environment is embedded in the special method __init__(),
which is called during instantiation. To keep the code concise, there are no sanity
checks implemented. For example, the following line of code is considered a “suc‐
cess,” no matter if the content is indeed an instance of a discounting class or not.
Therefore, one has to be rather careful when compiling and passing dx.market_envi
ronment objects to any simulation class:

self.discount_curve = mar_env.get_curve('discount_curve')

Table 18-1 shows all components a dx.market_environment object must contain for
the generic and therefore for all other simulation classes.

Table 18-1. Elements of the market environment for all simulation classes

Element Type Mandatory Description

initial_value Constant Yes Initial value of process at pricing_date

volatility Constant Yes Volatility coefficient of process

final_date Constant Yes Simulation horizon

currency Constant Yes Currency of the financial entity

frequency Constant Yes Date frequency, as pandas freq parameter

paths Constant Yes Number of paths to be simulated

discount_curve Curve Yes Instance of dx.constant_short_rate

time_grid List No Time grid of relevant dates (in portfolio context)

random_numbers List No Random number np.ndarray object (for correlated objects)

cholesky_matrix List No Cholesky matrix (for correlated objects)

rn_set List No dict object with pointer to relevant random number set

Everything that has to do with the correlation of model simulation objects is
explained in subsequent chapters. In this chapter, the focus is on the simulation of
single, uncorrelated processes. Similarly, the option to pass a time_grid is only rele‐
vant in a portfolio context, something also explained later.

Geometric Brownian Motion
Geometric Brownian motion is a stochastic process, as described in Equation 18-1
(see also Equation 12-2 in Chapter 12, in particular for the meaning of the parame‐
ters and variables). The drift of the process is already set equal to the riskless, con‐
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stant short rate r, implying that one operates under the equivalent martingale
measure (see Chapter 17).

Equation 18-1. Stochastic differential equation of geometric Brownian motion

dSt = rStdt + σStdZt

Equation 18-2 presents an Euler discretization of the stochastic differential equation
for simulation purposes (see also Equation 12-3 in Chapter 12 for further details).
The general framework is a discrete time market model, such as the general market
model ℳ from Chapter 17, with a finite set of relevant dates 0 < t1 < t2 < … < T.

Equation 18-2. Difference equation to simulate the geometric Brownian motion

Stm+1 = Stm
exp ((r –

σ 2

2 )(tm+1 – tm) + σ tm+1 – tmzt)
0 ≤ tm < tm+1 ≤ T

The Simulation Class
Following is the specialized class for the GBM model:

#
# DX Package
#
# Simulation Class -- Geometric Brownian Motion
#
# geometric_brownian_motion.py
#
# Python for Finance, 2nd ed.
# (c) Dr. Yves J. Hilpisch
#
import numpy as np

from sn_random_numbers import sn_random_numbers
from simulation_class import simulation_class

class geometric_brownian_motion(simulation_class):
    ''' Class to generate simulated paths based on
    the Black-Scholes-Merton geometric Brownian motion model.

    Attributes
    ==========
    name: string
        name of the object
    mar_env: instance of market_environment
        market environment data for simulation
    corr: Boolean
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        True if correlated with other model simulation object

    Methods
    =======
    update:
        updates parameters
    generate_paths:
        returns Monte Carlo paths given the market environment
    '''

    def __init__(self, name, mar_env, corr=False):
        super(geometric_brownian_motion, self).__init__(name, mar_env, corr)

    def update(self, initial_value=None, volatility=None, final_date=None):
        if initial_value is not None:
            self.initial_value = initial_value
        if volatility is not None:
            self.volatility = volatility
        if final_date is not None:
            self.final_date = final_date
        self.instrument_values = None

    def generate_paths(self, fixed_seed=False, day_count=365.):
        if self.time_grid is None:
            # method from generic simulation class
            self.generate_time_grid()
        # number of dates for time grid
        M = len(self.time_grid)
        # number of paths
        I = self.paths
        # ndarray initialization for path simulation
        paths = np.zeros((M, I))
        # initialize first date with initial_value
        paths[0] = self.initial_value
        if not self.correlated:
            # if not correlated, generate random numbers
            rand = sn_random_numbers((1, M, I),
                                     fixed_seed=fixed_seed)
        else:
            # if correlated, use random number object as provided
            # in market environment
            rand = self.random_numbers
        short_rate = self.discount_curve.short_rate
        # get short rate for drift of process
        for t in range(1, len(self.time_grid)):
            # select the right time slice from the relevant
            # random number set
            if not self.correlated:
                ran = rand[t]
            else:
                ran = np.dot(self.cholesky_matrix, rand[:, t, :])
                ran = ran[self.rn_set]
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            dt = (self.time_grid[t] - self.time_grid[t - 1]).days / day_count
            # difference between two dates as year fraction
            paths[t] = paths[t - 1] * np.exp((short_rate - 0.5 *
                                            self.volatility ** 2) * dt +
                                            self.volatility * np.sqrt(dt) * ran)
            # generate simulated values for the respective date
        self.instrument_values = paths

In this particular case, the dx.market_environment object has to contain only the
data and objects shown in Table 18-1—i.e., the minimum set of components.

The method update() does what its name suggests: it allows the updating of selected
important parameters of the model. The method generate_paths() is, of course, a
bit more involved. However, it has a number of inline comments that should make
clear the most important aspects. Some complexity is brought into this method by, in
principle, allowing for the correlation between different model simulation objects—
the purpose of which will become clearer later, especially in Chapter 20.

A Use Case
The following interactive IPython session illustrates the use of the GBM simulation
class. First, one has to generate a dx.market_environment object with all the manda‐
tory elements:

In [33]: from dx_frame import *

In [34]: me_gbm = market_environment('me_gbm', dt.datetime(2020, 1, 1))

In [35]: me_gbm.add_constant('initial_value', 36.)
         me_gbm.add_constant('volatility', 0.2)
         me_gbm.add_constant('final_date', dt.datetime(2020, 12, 31))
         me_gbm.add_constant('currency', 'EUR')
         me_gbm.add_constant('frequency', 'M')  
         me_gbm.add_constant('paths', 10000)

In [36]: csr = constant_short_rate('csr', 0.06)

In [37]: me_gbm.add_curve('discount_curve', csr)

Monthly frequency with month end as default.

Second, one instantiates a model simulation object to work with:

In [38]: from geometric_brownian_motion import geometric_brownian_motion

In [39]: gbm = geometric_brownian_motion('gbm', me_gbm)  

In [40]: gbm.generate_time_grid()  

In [41]: gbm.time_grid  
Out[41]: array([datetime.datetime(2020, 1, 1, 0, 0),
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                datetime.datetime(2020, 1, 31, 0, 0),
                datetime.datetime(2020, 2, 29, 0, 0),
                datetime.datetime(2020, 3, 31, 0, 0),
                datetime.datetime(2020, 4, 30, 0, 0),
                datetime.datetime(2020, 5, 31, 0, 0),
                datetime.datetime(2020, 6, 30, 0, 0),
                datetime.datetime(2020, 7, 31, 0, 0),
                datetime.datetime(2020, 8, 31, 0, 0),
                datetime.datetime(2020, 9, 30, 0, 0),
                datetime.datetime(2020, 10, 31, 0, 0),
                datetime.datetime(2020, 11, 30, 0, 0),
                datetime.datetime(2020, 12, 31, 0, 0)], dtype=object)

In [42]: %time paths_1 = gbm.get_instrument_values()  
         CPU times: user 21.3 ms, sys: 6.74 ms, total: 28.1 ms
         Wall time: 40.3 ms

In [43]: paths_1.round(3)  
Out[43]: array([[36.   , 36.   , 36.   , ..., 36.   , 36.   , 36.   ],
                [37.403, 38.12 , 34.4  , ..., 36.252, 35.084, 39.668],
                [39.562, 42.335, 32.405, ..., 34.836, 33.637, 37.655],
                ...,
                [40.534, 33.506, 23.497, ..., 37.851, 30.122, 30.446],
                [42.527, 36.995, 21.885, ..., 36.014, 30.907, 30.712],
                [43.811, 37.876, 24.1  , ..., 36.263, 28.138, 29.038]])

In [44]: gbm.update(volatility=0.5)  

In [45]: %time paths_2 = gbm.get_instrument_values()  
         CPU times: user 27.8 ms, sys: 3.91 ms, total: 31.7 ms
         Wall time: 19.8 ms

Instantiates the simulation object.

Generates the time grid …

… and shows it; note that the initial date is added.

Simulates the paths given the parameterization.

Updates the volatility parameter and repeats the simulation.

Figure 18-1 shows 10 simulated paths for the two different parameterizations. The
effect of increasing the volatility parameter value is easy to see:

In [46]: plt.figure(figsize=(10, 6))
         p1 = plt.plot(gbm.time_grid, paths_1[:, :10], 'b')
         p2 = plt.plot(gbm.time_grid, paths_2[:, :10], 'r-.')
         l1 = plt.legend([p1[0], p2[0]],
                         ['low volatility', 'high volatility'], loc=2)
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         plt.gca().add_artist(l1)
         plt.xticks(rotation=30);

Figure 18-1. Simulated paths from GBM simulation class

Vectorization for Simulation

As argued and shown already in Chapter 12, vectorization
approaches using NumPy and pandas are well suited to writing con‐
cise and performant simulation code.

Jump Diffusion
Equipped with the background knowledge from the dx.geometric_brownian_motion
class, it is now straightforward to implement a class for the jump diffusion model
described by Merton (1976). The stochastic differential equation for the jump diffu‐
sion model is shown in Equation 18-3 (see also Equation 12-8 in Chapter 12, in par‐
ticular for the meaning of the parameters and variables).

Equation 18-3. Stochastic differential equation for Merton jump diffusion model
dSt = (r – rJ )Stdt + σStdZt + J tStd N t

582 | Chapter 18: Simulation of Financial Models



An Euler discretization for simulation purposes is presented in Equation 18-4 (see
also Equation 12-9 in Chapter 12 and the more detailed explanations given there).

Equation 18-4. Euler discretization for Merton jump diffusion model

Stm+1 = Stm( exp ((r – rJ –
σ 2

2 )(tm+1 – tm) + σ tm+1 – tmzt
1) + (e μJ +δ zt

2

– 1)yt)
0 ≤ tm < tm+1 ≤ T

The Simulation Class
The Python code for the dx.jump_diffusion simulation class follows. This class
should by now contain no surprises. Of course, the model is different, but the design
and the methods are essentially the same:

#
# DX Package
#
# Simulation Class -- Jump Diffusion
#
# jump_diffusion.py
#
# Python for Finance, 2nd ed.
# (c) Dr. Yves J. Hilpisch
#
import numpy as np

from sn_random_numbers import sn_random_numbers
from simulation_class import simulation_class

class jump_diffusion(simulation_class):
    ''' Class to generate simulated paths based on
    the Merton (1976) jump diffusion model.

    Attributes
    ==========
    name: str
        name of the object
    mar_env: instance of market_environment
        market environment data for simulation
    corr: bool
        True if correlated with other model object

    Methods
    =======
    update:
        updates parameters
    generate_paths:
        returns Monte Carlo paths given the market environment
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    '''

    def __init__(self, name, mar_env, corr=False):
        super(jump_diffusion, self).__init__(name, mar_env, corr)
        # additional parameters needed
        self.lamb = mar_env.get_constant('lambda')
        self.mu = mar_env.get_constant('mu')
        self.delt = mar_env.get_constant('delta')

    def update(self, initial_value=None, volatility=None, lamb=None,
               mu=None, delta=None, final_date=None):
        if initial_value is not None:
            self.initial_value = initial_value
        if volatility is not None:
            self.volatility = volatility
        if lamb is not None:
            self.lamb = lamb
        if mu is not None:
            self.mu = mu
        if delta is not None:
            self.delt = delta
        if final_date is not None:
            self.final_date = final_date
        self.instrument_values = None

    def generate_paths(self, fixed_seed=False, day_count=365.):
        if self.time_grid is None:
            # method from generic simulation class
            self.generate_time_grid()
        # number of dates for time grid
        M = len(self.time_grid)
        # number of paths
        I = self.paths
        # ndarray initialization for path simulation
        paths = np.zeros((M, I))
        # initialize first date with initial_value
        paths[0] = self.initial_value
        if self.correlated is False:
            # if not correlated, generate random numbers
            sn1 = sn_random_numbers((1, M, I),
                                    fixed_seed=fixed_seed)
        else:
            # if correlated, use random number object as provided
            # in market environment
            sn1 = self.random_numbers

        # standard normally distributed pseudo-random numbers
        # for the jump component
        sn2 = sn_random_numbers((1, M, I),
                                fixed_seed=fixed_seed)

        rj = self.lamb * (np.exp(self.mu + 0.5 * self.delt ** 2) - 1)
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        short_rate = self.discount_curve.short_rate
        for t in range(1, len(self.time_grid)):
            # select the right time slice from the relevant
            # random number set
            if self.correlated is False:
                ran = sn1[t]
            else:
                # only with correlation in portfolio context
                ran = np.dot(self.cholesky_matrix, sn1[:, t, :])
                ran = ran[self.rn_set]
            dt = (self.time_grid[t] - self.time_grid[t - 1]).days / day_count
            # difference between two dates as year fraction
            poi = np.random.poisson(self.lamb * dt, I)
            # Poisson-distributed pseudo-random numbers for jump component
            paths[t] = paths[t - 1] * (
                np.exp((short_rate - rj -
                        0.5 * self.volatility ** 2) * dt +
                       self.volatility * np.sqrt(dt) * ran) +
                (np.exp(self.mu + self.delt * sn2[t]) - 1) * poi)
        self.instrument_values = paths

Of course, since this is a different model, it needs a different set of elements in the
dx.market_environment object. In addition to those for the generic simulation class
(see Table 18-1), there are three parameters required, as outlined in Table 18-2:
namely, the parameters of the log-normal jump component, lambda, mu, and delta.

Table 18-2. Specific elements of the market environment for dx.jump_diffusion class

Element Type Mandatory Description

lambda Constant Yes Jump intensity (probability p.a.)

mu Constant Yes Expected jump size

delta Constant Yes Standard deviation of jump size

For the generation of the paths, this class needs further random numbers because of
the jump component. Inline comments in the method generate_paths() highlight
the two spots where these additional random numbers are generated. For the genera‐
tion of Poisson-distributed random numbers, see also Chapter 12.

A Use Case
The following interactive session illustrates how to use the simulation class
dx.jump_diffusion. The dx.market_environment object defined for the GBM object
is used as a basis:

In [47]: me_jd = market_environment('me_jd', dt.datetime(2020, 1, 1))

In [48]: me_jd.add_constant('lambda', 0.3)  

Jump Diffusion | 585



         me_jd.add_constant('mu', -0.75)  
         me_jd.add_constant('delta', 0.1)  

In [49]: me_jd.add_environment(me_gbm)  

In [50]: from jump_diffusion import jump_diffusion

In [51]: jd = jump_diffusion('jd', me_jd)

In [52]: %time paths_3 = jd.get_instrument_values()  
         CPU times: user 28.6 ms, sys: 4.37 ms, total: 33 ms
         Wall time: 49.4 ms

In [53]: jd.update(lamb=0.9)  

In [54]: %time paths_4 = jd.get_instrument_values()  
         CPU times: user 29.7 ms, sys: 3.58 ms, total: 33.3 ms
         Wall time: 66.7 ms

The three additional parameters for the dx.jump_diffusion object. These are
specific to the simulation class.

Adds a complete environment to the existing one.

Simulates the paths with the base parameters.

Increases the jump intensity parameters.

Simulates the paths with the updated parameter.

Figure 18-2 compares a couple of simulated paths from the two sets with low and
high intensity (jump probability), respectively. It is easy to spot several jumps for the
low-intensity case and the multiple jumps for the high-intensity case in the figure:

In [55]: plt.figure(figsize=(10, 6))
         p1 = plt.plot(gbm.time_grid, paths_3[:, :10], 'b')
         p2 = plt.plot(gbm.time_grid, paths_4[:, :10], 'r-.')
         l1 = plt.legend([p1[0], p2[0]],
                         ['low intensity', 'high intensity'], loc=3)
         plt.gca().add_artist(l1)
         plt.xticks(rotation=30);
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Figure 18-2. Simulated paths from jump diffusion simulation class

Square-Root Diffusion
The third stochastic process to be simulated is the square-root diffusion as used, for
example, by Cox, Ingersoll, and Ross (1985) to model stochastic short rates. Equation
18-5 shows the stochastic differential equation of the process (see also Equation 12-4
in Chapter 12 for further details).

Equation 18-5. Stochastic differential equation of square-root diffusion

d xt = κ(θ – xt)dt + σ xtdZt

The code uses the discretization scheme as presented in Equation 18-6 (see also
Equation 12-5 in Chapter 12, as well as Equation 12-6 for an alternative, exact
scheme).

Equation 18-6. Euler discretization for square-root diffusion (full truncation
scheme)

x̃ tm+1 = x̃ tm
+ κ(θ – x̃ s

+)(tm+1 – tm) + σ x̃ s
+ tm+1 – tmzt

xtm+1 = x̃ tm`1
`
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The Simulation Class
Following is the Python code for the dx.square_root_diffusion simulation class,
which is the third and final one. Apart from, of course, a different model and discreti‐
zation scheme, the class does not contain anything new compared to the other two
specialized classes:

#
# DX Package
#
# Simulation Class -- Square-Root Diffusion
#
# square_root_diffusion.py
#
# Python for Finance, 2nd ed.
# (c) Dr. Yves J. Hilpisch
#
import numpy as np

from sn_random_numbers import sn_random_numbers
from simulation_class import simulation_class

class square_root_diffusion(simulation_class):
    ''' Class to generate simulated paths based on
    the Cox-Ingersoll-Ross (1985) square-root diffusion model.

    Attributes
    ==========
    name : string
        name of the object
    mar_env : instance of market_environment
        market environment data for simulation
    corr : Boolean
        True if correlated with other model object

    Methods
    =======
    update :
        updates parameters
    generate_paths :
        returns Monte Carlo paths given the market environment
    '''

    def __init__(self, name, mar_env, corr=False):
        super(square_root_diffusion, self).__init__(name, mar_env, corr)
        # additional parameters needed
        self.kappa = mar_env.get_constant('kappa')
        self.theta = mar_env.get_constant('theta')

    def update(self, initial_value=None, volatility=None, kappa=None,
               theta=None, final_date=None):
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        if initial_value is not None:
            self.initial_value = initial_value
        if volatility is not None:
            self.volatility = volatility
        if kappa is not None:
            self.kappa = kappa
        if theta is not None:
            self.theta = theta
        if final_date is not None:
            self.final_date = final_date
        self.instrument_values = None

    def generate_paths(self, fixed_seed=True, day_count=365.):
        if self.time_grid is None:
            self.generate_time_grid()
        M = len(self.time_grid)
        I = self.paths
        paths = np.zeros((M, I))
        paths_ = np.zeros_like(paths)
        paths[0] = self.initial_value
        paths_[0] = self.initial_value
        if self.correlated is False:
            rand = sn_random_numbers((1, M, I),
                                     fixed_seed=fixed_seed)
        else:
            rand = self.random_numbers

        for t in range(1, len(self.time_grid)):
            dt = (self.time_grid[t] - self.time_grid[t - 1]).days / day_count
            if self.correlated is False:
                ran = rand[t]
            else:
                ran = np.dot(self.cholesky_matrix, rand[:, t, :])
                ran = ran[self.rn_set]

            # full truncation Euler discretization
            paths_[t] = (paths_[t - 1] + self.kappa *
                         (self.theta - np.maximum(0, paths_[t - 1, :])) * dt +
                         np.sqrt(np.maximum(0, paths_[t - 1, :])) *
                         self.volatility * np.sqrt(dt) * ran)
            paths[t] = np.maximum(0, paths_[t])
        self.instrument_values = paths

Table 18-3 lists the two elements of the market environment that are specific to this
class.

Table 18-3. Specific elements of the market environment for dx.square_root_diffusion class

Element Type Mandatory Description

kappa Constant Yes Mean reversion factor

theta Constant Yes Long-term mean of process
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A Use Case
A rather brief example illustrates the use of the simulation class. As usual, one needs
a market environment, for example, to model a volatility (index) process:

In [56]: me_srd = market_environment('me_srd', dt.datetime(2020, 1, 1)) 

In [57]: me_srd.add_constant('initial_value', .25)
         me_srd.add_constant('volatility', 0.05)
         me_srd.add_constant('final_date', dt.datetime(2020, 12, 31))
         me_srd.add_constant('currency', 'EUR')
         me_srd.add_constant('frequency', 'W')
         me_srd.add_constant('paths', 10000)

In [58]: me_srd.add_constant('kappa', 4.0)
         me_srd.add_constant('theta', 0.2)

In [59]: me_srd.add_curve('discount_curve', constant_short_rate('r', 0.0))  

In [60]: from square_root_diffusion import square_root_diffusion

In [61]: srd = square_root_diffusion('srd', me_srd)  

In [62]: srd_paths = srd.get_instrument_values()[:, :10]  

Additional parameters for the dx.square_root_diffusion object.

The discount_curve object is required by default but not needed for the simula‐
tion.

Instantiates the object …

… simulates the paths, and selects 10.

Figure 18-3 illustrates the mean-reverting characteristic by showing how the simula‐
ted paths on average revert to the long-term mean theta (dashed line), which is
assumed to be 0.2:

In [63]: plt.figure(figsize=(10, 6))
         plt.plot(srd.time_grid, srd.get_instrument_values()[:, :10])
         plt.axhline(me_srd.get_constant('theta'), color='r',
                     ls='--', lw=2.0)
         plt.xticks(rotation=30);
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Figure 18-3. Simulated paths from square-root diffusion simulation class (dashed line
= long-term mean theta)

Conclusion
This chapter develops all the tools and classes needed for the simulation of the three
stochastic processes of interest: geometric Brownian motion, jump diffusions, and
square-root diffusions. The chapter presents a function to conveniently generate
standard normally distributed random numbers. It then proceeds by introducing a
generic model simulation class. Based on this foundation, the chapter introduces
three specialized simulation classes and presents use cases for these classes.

To simplify future imports one can again use a wrapper module, this one called
dx_simulation.py:

#
# DX Package
#
# Simulation Functions & Classes
#
# dx_simulation.py
#
# Python for Finance, 2nd ed.
# (c) Dr. Yves J. Hilpisch
#
import numpy as np
import pandas as pd
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from dx_frame import *
from sn_random_numbers import sn_random_numbers
from simulation_class import simulation_class
from geometric_brownian_motion import geometric_brownian_motion
from jump_diffusion import jump_diffusion
from square_root_diffusion import square_root_diffusion

As with the first wrapper module, dx_frame.py, the benefit is that a single import
statement makes available all simulation components:

from dx_simulation import *

Since dx_simulation.py also imports everything from dx_frame.py, this single import
in fact exposes all functionality developed so far. The same holds true for the
enhanced __init__.py file in the dx folder:

#
# DX Package
# packaging file
# __init__.py
#
import numpy as np
import pandas as pd
import datetime as dt

# frame
from get_year_deltas import get_year_deltas
from constant_short_rate import constant_short_rate
from market_environment import market_environment

# simulation
from sn_random_numbers import sn_random_numbers
from simulation_class import simulation_class
from geometric_brownian_motion import geometric_brownian_motion
from jump_diffusion import jump_diffusion
from square_root_diffusion import square_root_diffusion

Further Resources
Useful references in book form for the topics covered in this chapter are:

• Glasserman, Paul (2004). Monte Carlo Methods in Financial Engineering. New
York: Springer.

• Hilpisch, Yves (2015): Derivatives Analytics with Python. Chichester, England:
Wiley Finance.

Original papers cited in this chapter are:

• Black, Fischer, and Myron Scholes (1973). “The Pricing of Options and Corpo‐
rate Liabilities.” Journal of Political Economy, Vol. 81, No. 3, pp. 638–659.
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• Cox, John, Jonathan Ingersoll, and Stephen Ross (1985). “A Theory of the Term
Structure of Interest Rates.” Econometrica, Vol. 53, No. 2, pp. 385–407.

• Merton, Robert (1973). “Theory of Rational Option Pricing.” Bell Journal of Eco‐
nomics and Management Science, Vol. 4, pp. 141–183.

• Merton, Robert (1976). “Option Pricing When the Underlying Stock Returns Are
Discontinuous.” Journal of Financial Economics, Vol. 3, No. 3, pp. 125–144.
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CHAPTER 19

Derivatives Valuation

Derivatives are a huge, complex issue.
—Judd Gregg

Options and derivatives valuation has long been the domain of the so-called rocket
scientists on Wall Street—i.e., people with a PhD in physics or a similarly demanding
discipline when it comes to the mathematics involved. However, the application of
the models by the means of numerical methods like Monte Carlo simulation is gener‐
ally a little less involved than the theoretical models themselves.

This is particularly true for the valuation of options and derivatives with European
exercise—i.e., where exercise is only possible at a certain predetermined date. It is a
bit less true for options and derivatives with American exercise, where exercise is
allowed at any point over a prespecified period of time. This chapter introduces and
uses the Least-Squares Monte Carlo (LSM) algorithm, which has become a bench‐
mark algorithm when it comes to American options valuation based on Monte Carlo
simulation.

The current chapter is similar in structure to Chapter 18 in that it first introduces a
generic valuation class and then provides two specialized valuation classes, one for
European exercise and another for American exercise. The generic valuation class
contains methods to numerically estimate the most important Greeks of an option:
the delta and the vega. Therefore, the valuation classes are important not only for val‐
uation purposes, but also for risk management purposes.

The chapter is structured as follows:

“Generic Valuation Class” on page 596
This section introduces the generic valuation class from which the specific ones
inherit.
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“European Exercise” on page 600
This section is about the valuation class for options and derivatives with Euro‐
pean exercise.

“American Exercise” on page 607
This section covers the valuation class for options and derivatives with American
exercise.

Generic Valuation Class
As with the generic simulation class, one instantiates an object of the valuation class
by providing only a few inputs (in this case, four):

name

A str object, as a name for the model simulation object

underlying

An instance of a simulation class representing the underlying

mar_env

An instance of the dx.market_environment class

payoff_func

A Python str object containing the payoff function for the option/derivative

The generic class has three methods:

update()

Updates selected valuation parameters (attributes)

delta()

Calculates a numerical value for the delta of an option/derivative

vega()

Calculates the vega of an option/derivative

Equipped with the background knowledge from the previous chapters about the DX
package, the generic valuation class as presented here should be almost self-
explanatory; where appropriate, inline comments are also provided. Again, the class
is presented in its entirety first, then discussed in more detail:

#
# DX Package
#
# Valuation -- Base Class
#
# valuation_class.py
#
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# Python for Finance, 2nd ed.
# (c) Dr. Yves J. Hilpisch
#

class valuation_class(object):
    ''' Basic class for single-factor valuation.

    Attributes
    ==========
    name: str
        name of the object
    underlying: instance of simulation class
        object modeling the single risk factor
    mar_env: instance of market_environment
        market environment data for valuation
    payoff_func: str
        derivatives payoff in Python syntax
        Example: 'np.maximum(maturity_value - 100, 0)'
        where maturity_value is the NumPy vector with
        respective values of the underlying
        Example: 'np.maximum(instrument_values - 100, 0)'
        where instrument_values is the NumPy matrix with
        values of the underlying over the whole time/path grid

    Methods
    =======
    update:
        updates selected valuation parameters
    delta:
        returns the delta of the derivative
    vega:
        returns the vega of the derivative
    '''

    def __init__(self, name, underlying, mar_env, payoff_func=''):
        self.name = name
        self.pricing_date = mar_env.pricing_date
        try:
            # strike is optional
            self.strike = mar_env.get_constant('strike')
        except:
            pass
        self.maturity = mar_env.get_constant('maturity')
        self.currency = mar_env.get_constant('currency')
        # simulation parameters and discount curve from simulation object
        self.frequency = underlying.frequency
        self.paths = underlying.paths
        self.discount_curve = underlying.discount_curve
        self.payoff_func = payoff_func
        self.underlying = underlying
        # provide pricing_date and maturity to underlying
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        self.underlying.special_dates.extend([self.pricing_date,
                                              self.maturity])

    def update(self, initial_value=None, volatility=None,
               strike=None, maturity=None):
        if initial_value is not None:
            self.underlying.update(initial_value=initial_value)
        if volatility is not None:
            self.underlying.update(volatility=volatility)
        if strike is not None:
            self.strike = strike
        if maturity is not None:
            self.maturity = maturity
            # add new maturity date if not in time_grid
            if maturity not in self.underlying.time_grid:
                self.underlying.special_dates.append(maturity)
                self.underlying.instrument_values = None

    def delta(self, interval=None, accuracy=4):
        if interval is None:
            interval = self.underlying.initial_value / 50.
        # forward-difference approximation
        # calculate left value for numerical delta
        value_left = self.present_value(fixed_seed=True)
        # numerical underlying value for right value
        initial_del = self.underlying.initial_value + interval
        self.underlying.update(initial_value=initial_del)
        # calculate right value for numerical delta
        value_right = self.present_value(fixed_seed=True)
        # reset the initial_value of the simulation object
        self.underlying.update(initial_value=initial_del - interval)
        delta = (value_right - value_left) / interval
        # correct for potential numerical errors
        if delta < -1.0:
            return -1.0
        elif delta > 1.0:
            return 1.0
        else:
            return round(delta, accuracy)

    def vega(self, interval=0.01, accuracy=4):
        if interval < self.underlying.volatility / 50.:
            interval = self.underlying.volatility / 50.
        # forward-difference approximation
        # calculate the left value for numerical vega
        value_left = self.present_value(fixed_seed=True)
        # numerical volatility value for right value
        vola_del = self.underlying.volatility + interval
        # update the simulation object
        self.underlying.update(volatility=vola_del)
        # calculate the right value for numerical vega
        value_right = self.present_value(fixed_seed=True)
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1 For details on how to estimate Greeks numerically by Monte Carlo simulation, refer to Chapter 7 of Glasser‐
man (2004). The code uses forward-difference schemes only since this leads to only one additional simulation
and revaluation of the option. For example, a central-difference approximation would lead to two option
revaluations and therefore a higher computational burden.

        # reset volatility value of simulation object
        self.underlying.update(volatility=vola_del - interval)
        vega = (value_right - value_left) / interval
        return round(vega, accuracy)

One topic covered by the generic dx.valuation_class class is the estimation of
Greeks. This is worth taking a closer look at. To this end, assume that a continuously
differentiable function V (S0, σ0) is available that represents the present value of an
option. The delta of the option is then defined as the first partial derivative with
respect to the current value of the underlying S0; i.e., Δ = ∂V ( · )

∂S0
.

Suppose now that from Monte Carlo valuation (see Chapter 12 and subsequent sec‐
tions in this chapter) there is a numerical Monte Carlo estimator V̄ (S0, σ0) available
for the option value. A numerical approximation for the delta of the option is then
given in Equation 19-1.1 This is what the delta() method of the generic valuation
class implements. The method assumes the existence of a present_value() method
that returns the Monte Carlo estimator given a certain set of parameter values.

Equation 19-1. Numerical delta of an option

Δ̄ =
V̄ (S0 + ΔS , σ0) – V̄ (S0, σ0)

ΔS , ΔS > 0

Similarly, the vega of the instrument is defined as the first partial derivative of the
present value with respect to the current (instantaneous) volatility σ0, i.e., V = ∂V ( · )

∂σ0
.

Again assuming the existence of a Monte Carlo estimator for the value of the option,
Equation 19-2 provides a numerical approximation for the vega. This is what the
vega() method of the dx.valuation_class class implements.

Equation 19-2. Numerical vega of an option

V =
V̄ (S0, σ0 + Δσ) – V̄ (S0, σ0)

Δσ , Δσ > 0

Note that the discussion of delta and vega is based only on the existence of either a
differentiable function or a Monte Carlo estimator for the present value of an option.
This is the very reason why one can define methods to numerically estimate these
quantities without knowledge of the exact definition and numerical implementation
of the Monte Carlo estimator.
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European Exercise
The first case to which the generic valuation class is specialized is the case of Euro‐
pean exercise. To this end, consider the following simplified recipe to generate a
Monte Carlo estimator for an option value:

1. Simulate the relevant underlying risk factor S under the risk-neutral measure I
times to come up with as many simulated values of the underlying at the matur‐
ity of the option T—i.e., S̄ T (i), i ∈ {1, 2, ..., I }.

2. Calculate the payoff hT of the option at maturity for every simulated value of the
underlying—i.e., h T (S̄ T (i)), i ∈ {1, 2, ..., I }.

3. Derive the Monte Carlo estimator for the option’s present value as
V̄ 0 ≡ e –rT 1

I ∑i=1
I h T (S̄ T (i)).

The Valuation Class
The following code shows the class implementing the present_value() method
based on this recipe. In addition, it contains the method generate_payoff() to gen‐
erate the simulated paths and the payoff of the option given the simulated paths.
This, of course, builds the very basis for the Monte Carlo estimator:

#
# DX Package
#
# Valuation -- European Exercise Class
#
# valuation_mcs_european.py
#
# Python for Finance, 2nd ed.
# (c) Dr. Yves J. Hilpisch
#
import numpy as np

from valuation_class import valuation_class

class valuation_mcs_european(valuation_class):
    ''' Class to value European options with arbitrary payoff
    by single-factor Monte Carlo simulation.

    Methods
    =======
    generate_payoff:
        returns payoffs given the paths and the payoff function
    present_value:
        returns present value (Monte Carlo estimator)
    '''
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    def generate_payoff(self, fixed_seed=False):
        '''
        Parameters
        ==========
        fixed_seed: bool
            use same/fixed seed for valuation
        '''
        try:
            # strike is optional
            strike = self.strike
        except:
            pass
        paths = self.underlying.get_instrument_values(fixed_seed=fixed_seed)
        time_grid = self.underlying.time_grid
        try:
            time_index = np.where(time_grid == self.maturity)[0]
            time_index = int(time_index)
        except:
            print('Maturity date not in time grid of underlying.')
        maturity_value = paths[time_index]
        # average value over whole path
        mean_value = np.mean(paths[:time_index], axis=1)
        # maximum value over whole path
        max_value = np.amax(paths[:time_index], axis=1)[-1]
        # minimum value over whole path
        min_value = np.amin(paths[:time_index], axis=1)[-1]
        try:
            payoff = eval(self.payoff_func)
            return payoff
        except:
            print('Error evaluating payoff function.')

    def present_value(self, accuracy=6, fixed_seed=False, full=False):
        '''
        Parameters
        ==========
        accuracy: int
            number of decimals in returned result
        fixed_seed: bool
            use same/fixed seed for valuation
        full: bool
            return also full 1d array of present values
        '''
        cash_flow = self.generate_payoff(fixed_seed=fixed_seed)
        discount_factor = self.discount_curve.get_discount_factors(
            (self.pricing_date, self.maturity))[0, 1]
        result = discount_factor * np.sum(cash_flow) / len(cash_flow)
        if full:
            return round(result, accuracy), discount_factor * cash_flow
        else:
            return round(result, accuracy)
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The generate_payoff() method provides some special objects to be used for the def‐
inition of the payoff of the option:

• strike is the strike of the option.
• maturity_value represents the 1D ndarray object with the simulated values of

the underlying at maturity of the option.
• mean_value is the average of the underlying over a whole path from today until

maturity.
• max_value is the maximum value of the underlying over a whole path.
• min_value gives the minimum value of the underlying over a whole path.

The last three allow for the efficient handling of options with Asian (i.e., lookback or
path-dependent) features.

Flexible Payoffs

The approach taken for the valuation of options and derivatives
with European exercise is quite flexible in that arbitrary payoff
functions can be defined. This allows, among other things, model‐
ing of derivatives with conditional exercise (e.g., options) as well as
unconditional exercise (e.g., forwards). It also allows the inclusion
of exotic payoff elements, such as lookback features.

A Use Case
The application of the valuation class dx.valuation_mcs_european is best illustrated
by a specific use case. However, before a valuation class can be instantiated, an
instance of a simulation object—i.e., an underlying for the option to be valued—is
needed. From Chapter 18, the dx.geometric_brownian_motion class is used to
model the underlying:

In [64]: me_gbm = market_environment('me_gbm', dt.datetime(2020, 1, 1))

In [65]: me_gbm.add_constant('initial_value', 36.)
         me_gbm.add_constant('volatility', 0.2)
         me_gbm.add_constant('final_date', dt.datetime(2020, 12, 31))
         me_gbm.add_constant('currency', 'EUR')
         me_gbm.add_constant('frequency', 'M')
         me_gbm.add_constant('paths', 10000)

In [66]: csr = constant_short_rate('csr', 0.06)

In [67]: me_gbm.add_curve('discount_curve', csr)

In [68]: gbm = geometric_brownian_motion('gbm', me_gbm)
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In addition to a simulation object, one needs to define a market environment for the
option itself. It has to contain at least a maturity and a currency. Optionally, a value
for the strike parameter can be included as well:

In [69]: me_call = market_environment('me_call', me_gbm.pricing_date)

In [70]: me_call.add_constant('strike', 40.)
         me_call.add_constant('maturity', dt.datetime(2020, 12, 31))
         me_call.add_constant('currency', 'EUR')

A central element, of course, is the payoff function, provided here as a str object
containing Python code that the eval() function can evaluate. A European call
option shall be modeled. Such an option has a payoff of hT = max(ST – K, 0), with ST
being the value of the underlying at maturity and K being the strike price of the
option. In Python and NumPy—with vectorized storage of all simulated values—this
takes on the following form:

In [71]: payoff_func = 'np.maximum(maturity_value - strike, 0)'

Having all the ingredients together, one can then instantiate an object from the
dx.valuation_mcs_european class. With the valuation object available, all quantities
of interest are only one method call away:

In [72]: from valuation_mcs_european import valuation_mcs_european

In [73]: eur_call = valuation_mcs_european('eur_call', underlying=gbm,
                                 mar_env=me_call, payoff_func=payoff_func)

In [74]: %time eur_call.present_value()  
         CPU times: user 14.8 ms, sys: 4.06 ms, total: 18.9 ms
         Wall time: 43.5 ms

Out[74]: 2.146828

In [75]: %time eur_call.delta()  
         CPU times: user 12.4 ms, sys: 2.68 ms, total: 15.1 ms
         Wall time: 40.1 ms

Out[75]: 0.5155

In [76]: %time eur_call.vega()  
         CPU times: user 21 ms, sys: 2.72 ms, total: 23.7 ms
         Wall time: 89.9 ms

Out[76]: 14.301

Estimates the present value of the European call option.

Estimates the delta of the option numerically; the delta is positive for calls.
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Estimates the vega of the option numerically; the vega is positive for both calls
and puts.

Once the valuation object is instantiated, a more comprehensive analysis of the
present value and the Greeks is easily implemented. The following code calculates the
present value, delta, and vega for initial values of the underlying ranging from 34 to
46 EUR. The results are presented graphically in Figure 19-1:

In [77]: %%time
         s_list = np.arange(34., 46.1, 2.)
         p_list = []; d_list = []; v_list = []
         for s in s_list:
             eur_call.update(initial_value=s)
             p_list.append(eur_call.present_value(fixed_seed=True))
             d_list.append(eur_call.delta())
             v_list.append(eur_call.vega())
         CPU times: user 374 ms, sys: 8.82 ms, total: 383 ms
         Wall time: 609 ms

In [78]: from plot_option_stats import plot_option_stats

In [79]: plot_option_stats(s_list, p_list, d_list, v_list)
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Figure 19-1. Present value, delta, and vega estimates for European call option

The visualization makes use of the helper function plot_option_stats():

#
# DX Package
#
# Valuation -- Plotting Options Statistics
#
# plot_option_stats.py
#
# Python for Finance, 2nd ed.
# (c) Dr. Yves J. Hilpisch
#
import matplotlib.pyplot as plt

def plot_option_stats(s_list, p_list, d_list, v_list):
    ''' Plots option prices, deltas, and vegas for a set of
    different initial values of the underlying.

    Parameters
    ==========
    s_list: array or list
        set of initial values of the underlying
    p_list: array or list
        present values
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    d_list: array or list
        results for deltas
    v_list: array or list
        results for vegas
    '''
    plt.figure(figsize=(10, 7))
    sub1 = plt.subplot(311)
    plt.plot(s_list, p_list, 'ro', label='present value')
    plt.plot(s_list, p_list, 'b')
    plt.legend(loc=0)
    plt.setp(sub1.get_xticklabels(), visible=False)
    sub2 = plt.subplot(312)
    plt.plot(s_list, d_list, 'go', label='Delta')
    plt.plot(s_list, d_list, 'b')
    plt.legend(loc=0)
    plt.ylim(min(d_list) - 0.1, max(d_list) + 0.1)
    plt.setp(sub2.get_xticklabels(), visible=False)
    sub3 = plt.subplot(313)
    plt.plot(s_list, v_list, 'yo', label='Vega')
    plt.plot(s_list, v_list, 'b')
    plt.xlabel('initial value of underlying')
    plt.legend(loc=0)

This illustrates that working with the DX package—despite the fact that heavy numer‐
ics are involved—boils down to an approach that is comparable to having a closed-
form option pricing formula available. However, this approach does not only apply to
such simple or “plain vanilla” payoffs as the one considered so far. With exactly the
same approach, one can handle more complex payoffs.

To this end, consider the following payoff, a mixture of a regular and an Asian payoff.
The handling and the analysis are the same and are mainly independent of the type of
payoff defined. Figure 19-2 shows that delta becomes 1 when the initial value of the
underlying reaches the strike price of 40 in this case. Every (marginal) increase of the
initial value of the underlying leads to the same (marginal) increase in the option’s
value from this particular point on:

In [80]: payoff_func = 'np.maximum(0.33 * '
         payoff_func += '(maturity_value + max_value) - 40, 0)'  

In [81]: eur_as_call = valuation_mcs_european('eur_as_call', underlying=gbm,
                                     mar_env=me_call, payoff_func=payoff_func)

In [82]: %%time
         s_list = np.arange(34., 46.1, 2.)
         p_list = []; d_list = []; v_list = []
         for s in s_list:
             eur_as_call.update(s)
             p_list.append(eur_as_call.present_value(fixed_seed=True))
             d_list.append(eur_as_call.delta())
             v_list.append(eur_as_call.vega())
         CPU times: user 319 ms, sys: 14.2 ms, total: 333 ms
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2 American exercise refers to a situation where exercise is possible at every instant of time over a fixed time
interval (at least during trading hours). Bermudan exercise generally refers to a situation where there are mul‐
tiple discrete exercise dates. In numerical applications, American exercise is approximated by Bermudan
exercise, and maybe letting the number of exercise dates go to infinity in the limit.

         Wall time: 488 ms

In [83]: plot_option_stats(s_list, p_list, d_list, v_list)

Payoff dependent on both the simulated maturity value and the maximum value
over the simulated path.

Figure 19-2. Present value, delta, and vega estimates for option with Asian feature

American Exercise
The valuation of options with American exercise or Bermudan exercise is much more
involved than with European exercise.2 Therefore, a bit more valuation theory is
needed before proceeding to the valuation class.
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3 That is why their algorithm is generally abbreviated as LSM, for Least-Squares Monte Carlo.

4 Kohler (2010) provides a concise overview of the theory of American option valuation in general and the use
of regression-based methods in particular.

Least-Squares Monte Carlo
Although Cox, Ross, and Rubinstein (1979) presented with their binomial model a
simple numerical method to value European and American options in the same
framework, only with the Longstaff-Schwartz (2001) approach was the valuation of
American options by Monte Carlo simulation (MCS) satisfactorily solved. The major
problem is that MCS per se is a forward-moving algorithm, while the valuation of
American options is generally accomplished by backward induction, estimating the
continuation value of the American option starting at maturity and working back to
the present.

The major insight of the Longstaff-Schwartz (2001) model is to use an ordinary least-
squares regression to estimate the continuation value based on the cross section of all
available simulated values.3 The algorithm takes into account, per path:

• The simulated value of the underlying(s)
• The inner value of the option
• The actual continuation value given the specific path

In discrete time, the value of a Bermudan option (and in the limit of an American
option) is given by the optimal stopping problem, as presented in Equation 19-3 for a
finite set of points in time 0 < t1 < t2 < … < T.4

Equation 19-3. Optimal stopping problem in discrete time for Bermudan option

V 0 = sup
τ∈{0,t1,t2,...,T }

e –rτE0
Q(h τ(Sτ))

Equation 19-4 presents the continuation value of the American option at date 0 ≤ tm
< T. It is the risk-neutral expectation at date tm under the martingale measure of the
value of the American option V tm+1

 at the subsequent date.

Equation 19-4. Continuation value for the American option

Ctm
(s) = e –r (tm+1–tm)Etm

Q (V tm`1(Stm`1) | Stm
= s)
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The value of the American option V tm
 at date tm can be shown to equal the formula in

Equation 19-5—i.e., the maximum of the payoff of immediate exercise (inner value)
and the expected payoff of not exercising (continuation value).

Equation 19-5. Value of American option at any given date
V tm

= max (h tm
(s), Ctm

(s))

In Equation 19-5, the inner value is of course easily calculated. The continuation
value is what makes it a bit trickier. The Longstaff-Schwartz (2001) algorithm
approximates this value by a regression, as presented in Equation 19-6. There, i
stands for the current simulated path, D is the number of basis functions for the
regression used, α * are the optimal regression parameters, and bd is the regression
function with number d.

Equation 19-6. Regression-based approximation of continuation value

C̄ tm,i = ∑
d=1

D
αd ,tm

* · bd (Stm,i)

The optimal regression parameters are the result of the solution of the least-squares
regression problem presented in Equation 19-7. Here, Y tm,i ≡ e –r (tm+1–tm)V tm+1,i is the
actual continuation value at date tm for path i (and not a regressed/estimated one).

Equation 19-7. Ordinary least-squares regression

min
α1,tm

,...,αD,tm

1
I ∑

i=1

I

(Y tm,i – ∑
d=1

D
αd ,tm

· bd (Stm,i))
2

This completes the basic (mathematical) tool set to value an American option by
MCS.

The Valuation Class
The code that follows represents the class for the valuation of options and derivatives
with American exercise. There is one noteworthy step in the implementation of the
LSM algorithm in the present_value() method (which is also commented on
inline): the optimal decision step. Here, it is important that, based on the decision that
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5 See also Chapter 6 of Hilpisch (2015).

is made, the LSM algorithm takes either the inner value or the actual continuation
value, and not the estimated continuation value:5

#
# DX Package
#
# Valuation -- American Exercise Class
#
# valuation_mcs_american.py
#
# Python for Finance, 2nd ed.
# (c) Dr. Yves J. Hilpisch
#
import numpy as np

from valuation_class import valuation_class

class valuation_mcs_american(valuation_class):
    ''' Class to value American options with arbitrary payoff
    by single-factor Monte Carlo simulation.

    Methods
    =======
    generate_payoff:
        returns payoffs given the paths and the payoff function
    present_value:
        returns present value (LSM Monte Carlo estimator)
        according to Longstaff-Schwartz (2001)
    '''

    def generate_payoff(self, fixed_seed=False):
        '''
        Parameters
        ==========
        fixed_seed:
            use same/fixed seed for valuation
        '''
        try:
            # strike is optional
            strike = self.strike
        except:
            pass
        paths = self.underlying.get_instrument_values(fixed_seed=fixed_seed)
        time_grid = self.underlying.time_grid
        time_index_start = int(np.where(time_grid == self.pricing_date)[0])
        time_index_end = int(np.where(time_grid == self.maturity)[0])
        instrument_values = paths[time_index_start:time_index_end + 1]
        payoff = eval(self.payoff_func)
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        return instrument_values, payoff, time_index_start, time_index_end

    def present_value(self, accuracy=6, fixed_seed=False, bf=5, full=False):
        '''
        Parameters
        ==========
        accuracy: int
            number of decimals in returned result
        fixed_seed: bool
            use same/fixed seed for valuation
        bf: int
            number of basis functions for regression
        full: bool
            return also full 1d array of present values
        '''
        instrument_values, inner_values, time_index_start, time_index_end = \
            self.generate_payoff(fixed_seed=fixed_seed)
        time_list = self.underlying.time_grid[
            time_index_start:time_index_end + 1]
        discount_factors = self.discount_curve.get_discount_factors(
            time_list, dtobjects=True)
        V = inner_values[-1]
        for t in range(len(time_list) - 2, 0, -1):
            # derive relevant discount factor for given time interval
            df = discount_factors[t, 1] / discount_factors[t + 1, 1]
            # regression step
            rg = np.polyfit(instrument_values[t], V * df, bf)
            # calculation of continuation values per path
            C = np.polyval(rg, instrument_values[t])
            # optimal decision step:
            # if condition is satisfied (inner value > regressed cont. value)
            # then take inner value; take actual cont. value otherwise
            V = np.where(inner_values[t] > C, inner_values[t], V * df)
        df = discount_factors[0, 1] / discount_factors[1, 1]
        result = df * np.sum(V) / len(V)
        if full:
            return round(result, accuracy), df * V
        else:
            return round(result, accuracy)

A Use Case
As has become by now the means of choice, a use case shall illustrate how to work
with the dx.valuation_mcs_american class. The use case replicates all American
option values as presented in Table 1 of the seminal paper by Longstaff and Schwartz
(2001). The underlying is the same as before, a dx.geometric_brownian_motion
object. The initial parameterization is as follows:

In [84]: me_gbm = market_environment('me_gbm', dt.datetime(2020, 1, 1))

In [85]: me_gbm.add_constant('initial_value', 36.)
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6 The main reason is that the “optimal” exercise policy based on the regression estimates for the continuation
values is in fact “suboptimal.”

7 See Chapter 6 in Hilpisch (2015) for a dual algorithm leading to an upper bound and a Python implementa‐
tion thereof.

         me_gbm.add_constant('volatility', 0.2)
         me_gbm.add_constant('final_date', dt.datetime(2021, 12, 31))
         me_gbm.add_constant('currency', 'EUR')
         me_gbm.add_constant('frequency', 'W')
         me_gbm.add_constant('paths', 50000)

In [86]: csr = constant_short_rate('csr', 0.06)

In [87]: me_gbm.add_curve('discount_curve', csr)

In [88]: gbm = geometric_brownian_motion('gbm', me_gbm)

In [89]: payoff_func = 'np.maximum(strike - instrument_values, 0)'

In [90]: me_am_put = market_environment('me_am_put', dt.datetime(2020, 1, 1))

In [91]: me_am_put.add_constant('maturity', dt.datetime(2020, 12, 31))
         me_am_put.add_constant('strike', 40.)
         me_am_put.add_constant('currency', 'EUR')

The next step is to instantiate the valuation object based on the numerical assump‐
tions and to initiate the valuations. The valuation of the American put option can
take quite a bit longer than the same task for the European options. Not only is the
number of paths and time intervals increased, but the algorithm is also more compu‐
tationally demanding due to the backward induction and the regression per induc‐
tion step. The numerical estimate obtained for the first option considered is close to
the correct one reported in the original paper of 4.478:

In [92]: from valuation_mcs_american import valuation_mcs_american

In [93]: am_put = valuation_mcs_american('am_put', underlying=gbm,
                             mar_env=me_am_put, payoff_func=payoff_func)

In [94]: %time am_put.present_value(fixed_seed=True, bf=5)
         CPU times: user 1.57 s, sys: 219 ms, total: 1.79 s
         Wall time: 2.01 s

Out[94]: 4.472834

Due to the very construction of the LSM Monte Carlo estimator, it represents a lower
bound of the mathematically correct American option value.6 Therefore, one expects
the numerical estimate to lie under the true value in any numerically realistic case.
Alternative dual estimators can provide upper bounds as well.7 Taken together, two
such different estimators then define an interval for the true American option value.
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The main stated goal of this use case is to replicate all American option values of
Table 1 in the original paper. To this end, one only needs to combine the valuation
object with a nested loop. During the innermost loop, the valuation object has to be
updated according to the then-current parameterization:

In [95]: %%time
         ls_table = []
         for initial_value in (36., 38., 40., 42., 44.):
             for volatility in (0.2, 0.4):
                 for maturity in (dt.datetime(2020, 12, 31),
                                  dt.datetime(2021, 12, 31)):
                     am_put.update(initial_value=initial_value,
                                   volatility=volatility,
                                   maturity=maturity)
                     ls_table.append([initial_value,
                                      volatility,
                                      maturity,
                                      am_put.present_value(bf=5)])
         CPU times: user 41.1 s, sys: 2.46 s, total: 43.5 s
         Wall time: 1min 30s

In [96]: print('S0  | Vola | T | Value')
         print(22 * '-')
         for r in ls_table:
             print('%d  | %3.1f  | %d | %5.3f' %
                   (r[0], r[1], r[2].year - 2019, r[3]))
         S0  | Vola | T | Value
         ----------------------
         36  | 0.2  | 1 | 4.447
         36  | 0.2  | 2 | 4.773
         36  | 0.4  | 1 | 7.006
         36  | 0.4  | 2 | 8.377
         38  | 0.2  | 1 | 3.213
         38  | 0.2  | 2 | 3.645
         38  | 0.4  | 1 | 6.069
         38  | 0.4  | 2 | 7.539
         40  | 0.2  | 1 | 2.269
         40  | 0.2  | 2 | 2.781
         40  | 0.4  | 1 | 5.211
         40  | 0.4  | 2 | 6.756
         42  | 0.2  | 1 | 1.556
         42  | 0.2  | 2 | 2.102
         42  | 0.4  | 1 | 4.466
         42  | 0.4  | 2 | 6.049
         44  | 0.2  | 1 | 1.059
         44  | 0.2  | 2 | 1.617
         44  | 0.4  | 1 | 3.852
         44  | 0.4  | 2 | 5.490

These results are a simplified version of Table 1 in the paper by Longstaff and
Schwartz (2001). Overall, the numerical values come close to those reported in the
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paper, where some different parameters have been used (they use, for example, dou‐
ble the number of paths).

To conclude the use case, note that the estimation of Greeks for American options is
formally the same as for European options—a major advantage of the implemented
approach over alternative numerical methods (like the binomial model):

In [97]: am_put.update(initial_value=36.)
         am_put.delta()
Out[97]: -0.4631

In [98]: am_put.vega()
Out[98]: 18.0961

Least-Squares Monte Carlo

The LSM valuation algorithm of Longstaff and Schwartz (2001) is a
numerically efficient algorithm to value options and even complex
derivatives with American or Bermudan exercise features. The OLS
regression step allows the approximation of the optimal exercise
strategy based on an efficient numerical method. Since OLS regres‐
sion can easily handle high-dimensional data, it makes it a flexible
method in derivatives pricing.

Conclusion
This chapter is about the numerical valuation of European and American options
based on Monte Carlo simulation. The chapter introduces a generic valuation class,
called dx.valuation_class. This class provides methods, for example, to estimate
the most important Greeks (delta, vega) for both types of options, independent of the
simulation object (i.e., the risk factor or stochastic process) used for the valuation.

Based on the generic valuation class, the chapter presents two specialized classes,
dx.valuation_mcs_european and dx.valuation_mcs_american. The class for the
valuation of European options is mainly a straightforward implementation of the
risk-neutral valuation approach presented in Chapter 17 in combination with the
numerical estimation of an expectation term (i.e., an integral by Monte Carlo simula‐
tion, as discussed in Chapter 11).

The class for the valuation of American options needs a certain kind of regression-
based valuation algorithm, called Least-Squares Monte Carlo (LSM). This is due to
the fact that for American options an optimal exercise policy has to be derived for a
valuation. This is theoretically and numerically a bit more involved. However, the
respective present_value() method of the class is still concise.
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The approach taken with the DX derivatives analytics package proves to be beneficial.
Without too much effort one is able to value a relatively large class of options with
the following features:

• Single risk factor
• European or American exercise
• Arbitrary payoff

In addition, one can estimate the most important Greeks for this class of options. To
simplify future imports, again a wrapper module is used, this time called dx_valua‐
tion.py:

#
# DX Package
#
# Valuation Classes
#
# dx_valuation.py
#
# Python for Finance, 2nd ed.
# (c) Dr. Yves J. Hilpisch
#
import numpy as np
import pandas as pd

from dx_simulation import *
from valuation_class import valuation_class
from valuation_mcs_european import valuation_mcs_european
from valuation_mcs_american import valuation_mcs_american

The __init__.py file in the dx folder is updated accordingly:

#
# DX Package
# packaging file
# __init__.py
#
import numpy as np
import pandas as pd
import datetime as dt

# frame
from get_year_deltas import get_year_deltas
from constant_short_rate import constant_short_rate
from market_environment import market_environment
from plot_option_stats import plot_option_stats

# simulation
from sn_random_numbers import sn_random_numbers
from simulation_class import simulation_class
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from geometric_brownian_motion import geometric_brownian_motion
from jump_diffusion import jump_diffusion
from square_root_diffusion import square_root_diffusion

# valuation
from valuation_class import valuation_class
from valuation_mcs_european import valuation_mcs_european
from valuation_mcs_american import valuation_mcs_american
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• Cox, John, Stephen Ross, and Mark Rubinstein (1979). “Option Pricing: A Sim‐
plified Approach.” Journal of Financial Economics, Vol. 7, No. 3, pp. 229–263.

• Kohler, Michael (2010). “A Review on Regression-Based Monte Carlo Methods
for Pricing American Options.” In Luc Devroye et al. (eds.): Recent Developments
in Applied Probability and Statistics (pp. 37–58). Heidelberg: Physica-Verlag.

• Longstaff, Francis, and Eduardo Schwartz (2001). “Valuing American Options by
Simulation: A Simple Least Squares Approach.” Review of Financial Studies, Vol.
14, No. 1, pp. 113–147.
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CHAPTER 20

Portfolio Valuation

Price is what you pay. Value is what you get.
—Warren Buffet

By now, the whole approach for building the DX derivatives analytics package—and
its associated benefits—should be clear. By strictly relying on Monte Carlo simulation
as the only numerical method, the approach accomplishes an almost complete modu‐
larization of the analytics package:

Discounting
The relevant risk-neutral discounting is taken care of by an instance of the
dx.constant_short_rate class.

Relevant data
Relevant data, parameters, and other input are stored in (several) instances of the
dx.market_environment class.

Simulation objects
Relevant risk factors (underlyings) are modeled as instances of one of three sim‐
ulation classes:

• dx.geometric_brownian_motion

• dx.jump_diffusion

• dx.square_root_diffusion
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Valuation objects
Options and derivatives to be valued are modeled as instances of one of two valu‐
ation classes:

• dx.valuation_mcs_european

• dx.valuation_mcs_american

One last step is missing: the valuation of possibly complex portfolios of options and
derivatives. To this end, the following requirements shall be satisfied:

Nonredundancy
Every risk factor (underlying) is modeled only once and potentially used by mul‐
tiple valuation objects.

Correlations
Correlations between risk factors have to be accounted for.

Positions
An option position, for example, consists of a certain number of option
contracts.

However, although it is in principle allowed (it is in fact even required) to provide a
currency for both simulation and valuation objects, the following code assumes that
portfolios are denominated in a single currency only. This simplifies the aggregation
of values within a portfolio significantly, because one can abstract from exchange
rates and currency risks.

The chapter presents two new classes: a simple one to model a derivatives position,
and a more complex one to model and value a derivatives portfolio. It is structured as
follows:

“Derivatives Positions” on page 618
This section introduces the class to model a single derivatives position.

“Derivatives Portfolios” on page 622
This section introduces the core class to value a portfolio of potentially many
derivatives positions.

Derivatives Positions
In principle, a derivatives position is nothing more than a combination of a valuation
object and a quantity for the instrument modeled.
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The Class
The code that follows presents the class to model a derivatives position. It is mainly a
container for data and objects. In addition, it provides a get_info() method, print‐
ing the data and object information stored in an instance of the class:

#
# DX Package
#
# Portfolio -- Derivatives Position Class
#
# derivatives_position.py
#
# Python for Finance, 2nd ed.
# (c) Dr. Yves J. Hilpisch
#

class derivatives_position(object):
    ''' Class to model a derivatives position.

    Attributes
    ==========

    name: str
        name of the object
    quantity: float
        number of assets/derivatives making up the position
    underlying: str
        name of asset/risk factor for the derivative
    mar_env: instance of market_environment
        constants, lists, and curves relevant for valuation_class
    otype: str
        valuation class to use
    payoff_func: str
        payoff string for the derivative

    Methods
    =======
    get_info:
        prints information about the derivatives position
    '''

    def __init__(self, name, quantity, underlying, mar_env,
                 otype, payoff_func):
        self.name = name
        self.quantity = quantity
        self.underlying = underlying
        self.mar_env = mar_env
        self.otype = otype
        self.payoff_func = payoff_func
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    def get_info(self):
        print('NAME')
        print(self.name, '\n')
        print('QUANTITY')
        print(self.quantity, '\n')
        print('UNDERLYING')
        print(self.underlying, '\n')
        print('MARKET ENVIRONMENT')
        print('\n**Constants**')
        for key, value in self.mar_env.constants.items():
            print(key, value)
        print('\n**Lists**')
        for key, value in self.mar_env.lists.items():
            print(key, value)
        print('\n**Curves**')
        for key in self.mar_env.curves.items():
            print(key, value)
        print('\nOPTION TYPE')
        print(self.otype, '\n')
        print('PAYOFF FUNCTION')
        print(self.payoff_func)

To define a derivatives position the following information is required, which is
almost the same as for the instantiation of a valuation class:

name

Name of the position as a str object

quantity

Quantity of options/derivatives

underlying

Instance of simulation object as a risk factor

mar_env

Instance of dx.market_environment

otype

str, either "European" or "American"

payoff_func

Payoff as a Python str object

A Use Case
The following interactive session illustrates the use of the class. However, first a defi‐
nition of a simulation object is needed (but not in full; only the most important,
object-specific information is required):
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In [99]: from dx_valuation import *

In [100]: me_gbm = market_environment('me_gbm', dt.datetime(2020, 1, 1))  

In [101]: me_gbm.add_constant('initial_value', 36.)  
          me_gbm.add_constant('volatility', 0.2)  
          me_gbm.add_constant('currency', 'EUR')  

In [102]: me_gbm.add_constant('model', 'gbm')  

The dx.market_environment object for the underlying.

The model type needs to be specified here.

Similarly, for the definition of the derivatives position, one does not need a “com‐
plete” dx.market_environment object. Missing information is provided later (during
the portfolio valuation), when the simulation object is instantiated:

In [103]: from derivatives_position import derivatives_position

In [104]: me_am_put = market_environment('me_am_put', dt.datetime(2020, 1, 1))  

In [105]: me_am_put.add_constant('maturity', dt.datetime(2020, 12, 31))  
          me_am_put.add_constant('strike', 40.)  
          me_am_put.add_constant('currency', 'EUR')  

In [106]: payoff_func = 'np.maximum(strike - instrument_values, 0)'  

In [107]: am_put_pos = derivatives_position(
                       name='am_put_pos',
                       quantity=3,
                       underlying='gbm',
                       mar_env=me_am_put,
                       otype='American',
                       payoff_func=payoff_func)  

In [108]: am_put_pos.get_info()
          NAME
          am_put_pos

          QUANTITY
          3

          UNDERLYING
          gbm

          MARKET ENVIRONMENT

          **Constants**
          maturity 2020-12-31 00:00:00
          strike 40.0
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1 In practice, the approach chosen here is sometimes called global valuation instead of instrument-specific valu‐
ation. See Albanese, Gimonet, and White (2010a).

          currency EUR

          **Lists**

          **Curves**

          OPTION TYPE
          American

          PAYOFF FUNCTION
          np.maximum(strike - instrument_values, 0)

The dx.market_environment object for the derivative.

The payoff function of the derivative.

The instantiation of the derivatives_position object.

Derivatives Portfolios
From a portfolio perspective, a relevant market is mainly composed of the relevant
risk factors (underlyings) and their correlations, as well as the derivatives and deriva‐
tives positions, respectively, to be valued. Theoretically, the analysis to follow now
deals with a general market model ℳ as defined in Chapter 17, and applies the Fun‐
damental Theorem of Asset Pricing (with its corollaries) to it.1

The Class
A somewhat complex Python class implementing a portfolio valuation based on the
Fundamental Theorem of Asset Pricing—taking into account multiple relevant risk
factors and multiple derivatives positions—is presented next. The class is docu‐
mented inline, especially during passages that implement functionality specific to the
purpose at hand:

#
# DX Package
#
# Portfolio -- Derivatives Portfolio Class
#
# derivatives_portfolio.py
#
# Python for Finance, 2nd ed.
# (c) Dr. Yves J. Hilpisch
#
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import numpy as np
import pandas as pd

from dx_valuation import *

# models available for risk factor modeling
models = {'gbm': geometric_brownian_motion,
          'jd': jump_diffusion,
          'srd': square_root_diffusion}

# allowed exercise types
otypes = {'European': valuation_mcs_european,
          'American': valuation_mcs_american}

class derivatives_portfolio(object):
    ''' Class for modeling and valuing portfolios of derivatives positions.

    Attributes
    ==========
    name: str
        name of the object
    positions: dict
        dictionary of positions (instances of derivatives_position class)
    val_env: market_environment
        market environment for the valuation
    assets: dict
        dictionary of market environments for the assets
    correlations: list
        correlations between assets
    fixed_seed: bool
        flag for fixed random number generator seed

    Methods
    =======
    get_positions:
        prints information about the single portfolio positions
    get_statistics:
        returns a pandas DataFrame object with portfolio statistics
    '''

    def __init__(self, name, positions, val_env, assets,
                 correlations=None, fixed_seed=False):
        self.name = name
        self.positions = positions
        self.val_env = val_env
        self.assets = assets
        self.underlyings = set()
        self.correlations = correlations
        self.time_grid = None
        self.underlying_objects = {}
        self.valuation_objects = {}
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        self.fixed_seed = fixed_seed
        self.special_dates = []
        for pos in self.positions:
            # determine earliest starting_date
            self.val_env.constants['starting_date'] = \
                min(self.val_env.constants['starting_date'],
                    positions[pos].mar_env.pricing_date)
            # determine latest date of relevance
            self.val_env.constants['final_date'] = \
                max(self.val_env.constants['final_date'],
                    positions[pos].mar_env.constants['maturity'])
            # collect all underlyings and
            # add to set (avoids redundancy)
            self.underlyings.add(positions[pos].underlying)

        # generate general time grid
        start = self.val_env.constants['starting_date']
        end = self.val_env.constants['final_date']
        time_grid = pd.date_range(start=start, end=end,
                                  freq=self.val_env.constants['frequency']
                                  ).to_pydatetime()
        time_grid = list(time_grid)
        for pos in self.positions:
            maturity_date = positions[pos].mar_env.constants['maturity']
            if maturity_date not in time_grid:
                time_grid.insert(0, maturity_date)
                self.special_dates.append(maturity_date)
        if start not in time_grid:
            time_grid.insert(0, start)
        if end not in time_grid:
            time_grid.append(end)
        # delete duplicate entries
        time_grid = list(set(time_grid))
        # sort dates in time_grid
        time_grid.sort()
        self.time_grid = np.array(time_grid)
        self.val_env.add_list('time_grid', self.time_grid)

        if correlations is not None:
            # take care of correlations
            ul_list = sorted(self.underlyings)
            correlation_matrix = np.zeros((len(ul_list), len(ul_list)))
            np.fill_diagonal(correlation_matrix, 1.0)
            correlation_matrix = pd.DataFrame(correlation_matrix,
                                              index=ul_list, columns=ul_list)
            for i, j, corr in correlations:
                corr = min(corr, 0.999999999999)
                # fill correlation matrix
                correlation_matrix.loc[i, j] = corr
                correlation_matrix.loc[j, i] = corr
            # determine Cholesky matrix
            cholesky_matrix = np.linalg.cholesky(np.array(correlation_matrix))
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            # dictionary with index positions for the
            # slice of the random number array to be used by
            # respective underlying
            rn_set = {asset: ul_list.index(asset)
                      for asset in self.underlyings}

            # random numbers array, to be used by
            # all underlyings (if correlations exist)
            random_numbers = sn_random_numbers((len(rn_set),
                                                len(self.time_grid),
                                                self.val_env.constants['paths']),
                                               fixed_seed=self.fixed_seed)

            # add all to valuation environment that is
            # to be shared with every underlying
            self.val_env.add_list('cholesky_matrix', cholesky_matrix)
            self.val_env.add_list('random_numbers', random_numbers)
            self.val_env.add_list('rn_set', rn_set)

        for asset in self.underlyings:
            # select market environment of asset
            mar_env = self.assets[asset]
            # add valuation environment to market environment
            mar_env.add_environment(val_env)
            # select right simulation class
            model = models[mar_env.constants['model']]
            # instantiate simulation object
            if correlations is not None:
                self.underlying_objects[asset] = model(asset, mar_env,
                                                       corr=True)
            else:
                self.underlying_objects[asset] = model(asset, mar_env,
                                                       corr=False)

        for pos in positions:
            # select right valuation class (European, American)
            val_class = otypes[positions[pos].otype]
            # pick market environment and add valuation environment
            mar_env = positions[pos].mar_env
            mar_env.add_environment(self.val_env)
            # instantiate valuation class
            self.valuation_objects[pos] = \
                val_class(name=positions[pos].name,
                          mar_env=mar_env,
                          underlying=self.underlying_objects[
                    positions[pos].underlying],
                payoff_func=positions[pos].payoff_func)

    def get_positions(self):
        ''' Convenience method to get information about
        all derivatives positions in a portfolio. '''
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        for pos in self.positions:
            bar = '\n' + 50 * '-'
            print(bar)
            self.positions[pos].get_info()
            print(bar)

    def get_statistics(self, fixed_seed=False):
        ''' Provides portfolio statistics. '''
        res_list = []
        # iterate over all positions in portfolio
        for pos, value in self.valuation_objects.items():
            p = self.positions[pos]
            pv = value.present_value(fixed_seed=fixed_seed)
            res_list.append([
                p.name,
                p.quantity,
                # calculate all present values for the single instruments
                pv,
                value.currency,
                # single instrument value times quantity
                pv * p.quantity,
                # calculate delta of position
                value.delta() * p.quantity,
                # calculate vega of position
                value.vega() * p.quantity,
            ])
        # generate a pandas DataFrame object with all results
        res_df = pd.DataFrame(res_list,
                              columns=['name', 'quant.', 'value', 'curr.',
                                       'pos_value', 'pos_delta', 'pos_vega'])
        return res_df

Object Orientation

The class dx.derivatives_portfolio illustrates a number of ben‐
efits of object orientation as mentioned in Chapter 6. At first
inspection, it might look like a complex piece of Python code.
However, the financial problem that it solves is a pretty complex
one and it provides the flexibility to address a large number of dif‐
ferent use cases. It is hard to imagine how all this could be achieved
without the use of object-oriented programming and Python
classes.

A Use Case
In terms of the DX analytics package, the modeling capabilities are, on a high level,
restricted to a combination of a simulation and a valuation class. There are a total of
six possible combinations:
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models = {'gbm' : geometric_brownian_motion,
          'jd' : jump_diffusion
          'srd': square_root_diffusion}

otypes = {'European' : valuation_mcs_european,
          'American' : valuation_mcs_american}

The interactive use case that follows combines selected elements to define two differ‐
ent derivatives positions that are then combined into a portfolio.

Recall the derivatives_position class with the gbm and am_put_pos objects from
the previous section. To illustrate the use of the derivatives_portfolio class, we’ll
define both an additional underlying and an additional options position. First, a
dx.jump_diffusion object:

In [109]: me_jd = market_environment('me_jd', me_gbm.pricing_date)

In [110]: me_jd.add_constant('lambda', 0.3) 
          me_jd.add_constant('mu', -0.75)
          me_jd.add_constant('delta', 0.1)
          me_jd.add_environment(me_gbm) 

In [111]: me_jd.add_constant('model', 'jd') 

Adds jump diffusion-specific parameters.

Adds other parameters from gbm.

Needed for portfolio valuation.

Second, a European call option based on this new simulation object:

In [112]: me_eur_call = market_environment('me_eur_call', me_jd.pricing_date)

In [113]: me_eur_call.add_constant('maturity', dt.datetime(2020, 6, 30))
          me_eur_call.add_constant('strike', 38.)
          me_eur_call.add_constant('currency', 'EUR')

In [114]: payoff_func = 'np.maximum(maturity_value - strike, 0)'

In [115]: eur_call_pos = derivatives_position(
                       name='eur_call_pos',
                       quantity=5,
                       underlying='jd',
                       mar_env=me_eur_call,
                       otype='European',
                       payoff_func=payoff_func)

From a portfolio perspective, the relevant market now is as shown in the following in
underlyings and positions. For the moment, the definitions do not include correla‐
tions between the underlyings. Compiling a dx.market_environment for the portfo‐
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lio valuation is the last step before the instantiation of a derivatives_portfolio
object:

In [116]: underlyings = {'gbm': me_gbm, 'jd' : me_jd}  
          positions = {'am_put_pos' : am_put_pos,
                       'eur_call_pos' : eur_call_pos}  

In [117]: csr = constant_short_rate('csr', 0.06)  

In [118]: val_env = market_environment('general', me_gbm.pricing_date)
          val_env.add_constant('frequency', 'W')
          val_env.add_constant('paths', 25000)
          val_env.add_constant('starting_date', val_env.pricing_date)
          val_env.add_constant('final_date', val_env.pricing_date)  
          val_env.add_curve('discount_curve', csr)  

In [119]: from derivatives_portfolio import derivatives_portfolio

In [120]: portfolio = derivatives_portfolio(
                          name='portfolio',
                          positions=positions,
                          val_env=val_env,
                          assets=underlyings,
                          fixed_seed=False)  

Relevant risk factors.

Relevant portfolio postions.

Unique discounting object for the portfolio valuation.

final_date is not yet known; therefore, set pricing_date as preliminary value.

Instantiation of the derivatives_portfolio object.

Now one can harness the power of the valuation class and easily get important statis‐
tics for the derivatives_portfolio object just defined. The sum of the position val‐
ues, deltas, and vegas is also easily calculated. This portfolio is slightly long delta
(almost neutral) and long vega:

In [121]: %time portfolio.get_statistics(fixed_seed=False)
          CPU times: user 4.68 s, sys: 409 ms, total: 5.09 s
          Wall time: 14.5 s

Out[121]:
               name  quant.     value curr.  pos_value  pos_delta  pos_vega
    0    am_put_pos       3  4.458891   EUR  13.376673    -2.0430   31.7850
    1  eur_call_pos       5  2.828634   EUR  14.143170     3.2525   42.2655

In [122]: portfolio.get_statistics(fixed_seed=False)[
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              ['pos_value', 'pos_delta', 'pos_vega']].sum()  
Out[122]: pos_value    27.502731
          pos_delta     1.233500
          pos_vega     74.050500
          dtype: float64

In [123]: portfolio.get_positions()  

          ...

In [124]: portfolio.valuation_objects['am_put_pos'].present_value()  
Out[124]: 4.453187

In [125]: portfolio.valuation_objects['eur_call_pos'].delta()  
Out[125]: 0.6514

Aggregation of single position values.

This method call would create a rather lengthy output about all positions.

The present value estimate for a single position.

The delta estimate for a single position.

The derivatives portfolio valuation is conducted based on the assumption that the
risk factors are not correlated. This is easily verified by inspecting two simulated
paths (see Figure 20-1), one for each simulation object:

In [126]: path_no = 888
          path_gbm = portfolio.underlying_objects[
              'gbm'].get_instrument_values()[:, path_no]
          path_jd = portfolio.underlying_objects[
              'jd'].get_instrument_values()[:, path_no]

In [127]: plt.figure(figsize=(10,6))
          plt.plot(portfolio.time_grid, path_gbm, 'r', label='gbm')
          plt.plot(portfolio.time_grid, path_jd, 'b', label='jd')
          plt.xticks(rotation=30)
          plt.legend(loc=0)
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Figure 20-1. Noncorrelated risk factors (two sample paths)

Now consider the case where the two risk factors are highly positively correlated. In
this case, there is no direct influence on the values of the single positions in the
portfolio:

In [128]: correlations = [['gbm', 'jd', 0.9]]

In [129]: port_corr = derivatives_portfolio(
                          name='portfolio',
                          positions=positions,
                          val_env=val_env,
                          assets=underlyings,
                          correlations=correlations,
                          fixed_seed=True)

In [130]: port_corr.get_statistics()
Out[130]:
               name  quant.     value curr.  pos_value  pos_delta  pos_vega
    0    am_put_pos       3  4.458556   EUR  13.375668    -2.0376   30.8676
    1  eur_call_pos       5  2.817813   EUR  14.089065     3.3375   42.2340

However, the correlation takes place behind the scenes. The graphical illustration in
Figure 20-2 takes the same combination of paths as before. The two paths now almost
move in parallel:

In [131]: path_gbm = port_corr.underlying_objects['gbm'].\
                      get_instrument_values()[:, path_no]
          path_jd = port_corr.underlying_objects['jd'].\
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                      get_instrument_values()[:, path_no]

In [132]: plt.figure(figsize=(10, 6))
          plt.plot(portfolio.time_grid, path_gbm, 'r', label='gbm')
          plt.plot(portfolio.time_grid, path_jd, 'b', label='jd')
          plt.xticks(rotation=30)
          plt.legend(loc=0);

Figure 20-2. Correlated risk factors (two sample paths)

As a last numerical and conceptual example, consider the frequency distribution of the
portfolio present value. This is something impossible to generate in general with other
approaches, like the application of analytical formulae or the binomial option pricing
model. Setting the parameter full=True causes the complete set of present values per
option position to be returned after the present value estimation:

In [133]: pv1 = 5 * port_corr.valuation_objects['eur_call_pos'].\
                      present_value(full=True)[1]
          pv1
Out[133]: array([ 0.        , 39.71423714, 24.90720272, ...,  0.        ,
                  6.42619093,  8.15838265])

In [134]: pv2 = 3 * port_corr.valuation_objects['am_put_pos'].\
                      present_value(full=True)[1]
          pv2
Out[134]: array([21.31806027, 10.71952869, 19.89804376, ..., 21.39292703,
                 17.59920608,  0.        ])

Derivatives Portfolios | 631



First, compare the frequency distribution of the two positions. The payoff profiles of
the two positions, as displayed in Figure 20-3, are quite different. Note that the values
for both the x- and y-axes are limited for better readability:

In [135]: plt.figure(figsize=(10, 6))
          plt.hist([pv1, pv2], bins=25,
                   label=['European call', 'American put']);
          plt.axvline(pv1.mean(), color='r', ls='dashed',
                      lw=1.5, label='call mean = %4.2f' % pv1.mean())
          plt.axvline(pv2.mean(), color='r', ls='dotted',
                      lw=1.5, label='put mean = %4.2f' % pv2.mean())
          plt.xlim(0, 80); plt.ylim(0, 10000)
          plt.legend();

Figure 20-3. Frequency distribution of present values of the two positions

Figure 20-4 finally shows the full frequency distribution of the portfolio present val‐
ues. One can clearly see the offsetting diversification effects of combining a call with a
put option:

In [136]: pvs = pv1 + pv2
          plt.figure(figsize=(10, 6))
          plt.hist(pvs, bins=50, label='portfolio');
          plt.axvline(pvs.mean(), color='r', ls='dashed',
                      lw=1.5, label='mean = %4.2f' % pvs.mean())
          plt.xlim(0, 80); plt.ylim(0, 7000)
          plt.legend();
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Figure 20-4. Portfolio frequency distribution of present values

What impact does the correlation between the two risk factors have on the risk of the
portfolio, measured in the standard deviation of the present values? This can be
answered by the following two estimations:

In [137]: pvs.std()  
Out[137]: 16.723724772741118

In [138]: pv1 = (5 * portfolio.valuation_objects['eur_call_pos'].
                      present_value(full=True)[1])
          pv2 = (3 * portfolio.valuation_objects['am_put_pos'].
                      present_value(full=True)[1])
          (pv1 + pv2).std()  
Out[138]: 21.80498672323975

Standard deviation of portfolio values with correlation.

Standard deviation of portfolio values without correlation.

Although the mean value stays constant (ignoring numerical deviations), correlation
obviously significantly decreases the portfolio risk when measured in this way. Again,
this is an insight that it is not really possible to gain when using alternative numerical
methods or valuation approaches.
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Conclusion
This chapter addresses the valuation and risk management of a portfolio of multiple
derivatives positions dependent on multiple (possibly correlated) risk factors. To this
end, a new class called derivatives_position is introduced to model an options or
derivatives position. The main focus, however, lies on the derivatives_portfolio
class, which implements some more complex tasks. For example, the class takes care
of:

• Correlations between risk factors (the class generates a single consistent set of
random numbers for the simulation of all risk factors)

• Instantiation of simulation objects given the single market environments and the
general valuation environment, as well as the derivatives positions

• Generation of portfolio statistics based on all the assumptions, the risk factors
involved, and the terms of the derivatives positions

The examples presented in this chapter can only show some simple versions of deriv‐
atives portfolios that can be managed and valued with the DX package developed so
far and the derivatives_portfolio class. Natural extensions to the DX package
would be the addition of more sophisticated financial models, like a stochastic vola‐
tility model, and multi-risk valuation classes to model and value derivatives depen‐
dent on multiple risk factors (like a European basket option or an American
maximum call option, to name just two). At this stage, the modular modeling using
OOP and the application of a valuation framework as general as the Fundamental
Theorem of Asset Pricing (or “global valuation”) play out their strengths: the non‐
redundant modeling of the risk factors and the accounting for the correlations
between them will then also have a direct influence on the values and Greeks of
multi-risk derivatives.

The following is a final wrapper module bringing all the components of the DX analyt‐
ics package together for a single import statement:

#
# DX Package
#
# All components
#
# dx_package.py
#
# Python for Finance, 2nd ed.
# (c) Dr. Yves J. Hilpisch
#
from dx_valuation import *
from derivatives_position import derivatives_position
from derivatives_portfolio import derivatives_portfolio

634 | Chapter 20: Portfolio Valuation



And here is the now-complete __init__.py file for the dx folder:

#
# DX Package
# packaging file
# __init__.py
#
import numpy as np
import pandas as pd
import datetime as dt

# frame
from get_year_deltas import get_year_deltas
from constant_short_rate import constant_short_rate
from market_environment import market_environment
from plot_option_stats import plot_option_stats

# simulation
from sn_random_numbers import sn_random_numbers
from simulation_class import simulation_class
from geometric_brownian_motion import geometric_brownian_motion
from jump_diffusion import jump_diffusion
from square_root_diffusion import square_root_diffusion

# valuation
from valuation_class import valuation_class
from valuation_mcs_european import valuation_mcs_european
from valuation_mcs_american import valuation_mcs_american

# portfolio
from derivatives_position import derivatives_position
from derivatives_portfolio import derivatives_portfolio

Further Resources
As for the preceding chapters on the DX derivatives analytics package, Glasserman
(2004) is a comprehensive resource for Monte Carlo simulation in the context of
financial engineering and applications. Hilpisch (2015) also provides Python-based
implementations of the most important Monte Carlo algorithms:

• Glasserman, Paul (2004). Monte Carlo Methods in Financial Engineering. New
York: Springer.

• Hilpisch, Yves (2015). Derivatives Analytics with Python. Chichester, England:
Wiley Finance.

However, there is hardly any research available when it comes to the valuation of
(complex) portfolios of derivatives in a consistent, nonredundant fashion by Monte
Carlo simulation. A notable exception, at least from a conceptual point of view, is the
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brief article by Albanese, Gimonet, and White (2010a). There is a bit more detail in
the working paper by the same team of authors:

• Albanese, Claudio, Guillaume Gimonet and Steve White (2010a). “Towards a
Global Valuation Model”. Risk Magazine, Vol. 23, No. 5, pp. 68–71.

• Albanese, Claudio, Guillaume Gimonet and Steve White (2010b). “Global Valua‐
tion and Dynamic Risk Management”. Working paper.
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1 For details, refer to Hilpisch (2015).

CHAPTER 21

Market-Based Valuation

We are facing extreme volatility.
—Carlos Ghosn

A major task in derivatives analytics is the market-based valuation of options and
derivatives that are not liquidly traded. To this end, one generally calibrates a pricing
model to market quotes of liquidly traded options and uses the calibrated model for
the pricing of the non-traded options.1

This chapter presents a case study based on the DX package and illustrates that this
package, as developed step-by-step in the previous four chapters, is suited to imple‐
ment a market-based valuation. The case study is based on the DAX 30 stock index,
which is a blue chip stock market index consisting of stocks of 30 major German
companies. On this index, liquidly traded European call and put options are avail‐
able.

The chapter is divided into sections that implement the following major tasks:

“Options Data” on page 638
One needs two types of data, namely for the DAX 30 stock index itself and for
the liquidly traded European options on the index.

“Model Calibration” on page 641
To value the non-traded options in a market-consistent fashion, one generally
first calibrates the chosen model to quoted option prices in such a way that the
model based on the optimal parameters replicates the market prices as well as
possible.
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“Portfolio Valuation” on page 651
Equipped with the data and a market-calibrated model for the DAX 30 stock
index, the final task then is to model and value the non-traded options; impor‐
tant risk measures are also estimated on a position and portfolio level.

The index and options data used in this chapter are from the Thomson Reuters Eikon
Data API (see “Python Code” on page 654).

Options Data
To get started, here are the required imports and customizations:

In [1]: import numpy as np
        import pandas as pd
        import datetime as dt

In [2]: from pylab import mpl, plt
        plt.style.use('seaborn')
        mpl.rcParams['font.family'] = 'serif'
        %matplotlib inline

In [3]: import sys
        sys.path.append('../')
        sys.path.append('../dx')

Given the data file as created in “Python Code” on page 654, the options data is read
with pandas and processed such that date information is given as pd.Timestamp
objects:

In [4]: dax = pd.read_csv('../../source/tr_eikon_option_data.csv',
                          index_col=0)  

In [5]: for col in ['CF_DATE', 'EXPIR_DATE']:
            dax[col] = dax[col].apply(lambda date: pd.Timestamp(date))  

In [6]: dax.info()  
        <class 'pandas.core.frame.DataFrame'>
        Int64Index: 115 entries, 0 to 114
        Data columns (total 7 columns):
        Instrument    115 non-null object
        CF_DATE       115 non-null datetime64[ns]
        EXPIR_DATE    114 non-null datetime64[ns]
        PUTCALLIND    114 non-null object
        STRIKE_PRC    114 non-null float64
        CF_CLOSE      115 non-null float64
        IMP_VOLT      114 non-null float64
        dtypes: datetime64[ns](2), float64(3), object(2)
        memory usage: 7.2+ KB

In [7]: dax.set_index('Instrument').head(7)  
Out[7]:

638 | Chapter 21: Market-Based Valuation



2 The implied volatility of an option is the volatility value that gives, ceteris paribus, when put into the Black-
Scholes-Merton (1973) option pricing formula, the market quote of the option.

                       CF_DATE EXPIR_DATE PUTCALLIND  STRIKE_PRC  CF_CLOSE  \
    Instrument
    .GDAXI          2018-04-27        NaT        NaN         NaN  12500.47
    GDAX105000G8.EX 2018-04-27 2018-07-20       CALL     10500.0   2040.80
    GDAX105000S8.EX 2018-04-27 2018-07-20       PUT      10500.0     32.00
    GDAX108000G8.EX 2018-04-27 2018-07-20       CALL     10800.0   1752.40
    GDAX108000S8.EX 2018-04-26 2018-07-20       PUT      10800.0     43.80
    GDAX110000G8.EX 2018-04-27 2018-07-20       CALL     11000.0   1562.80
    GDAX110000S8.EX 2018-04-27 2018-07-20       PUT      11000.0     54.50

                     IMP_VOLT
    Instrument
    .GDAXI                NaN
    GDAX105000G8.EX     23.59
    GDAX105000S8.EX     23.59
    GDAX108000G8.EX     22.02
    GDAX108000S8.EX     22.02
    GDAX110000G8.EX     21.00
    GDAX110000S8.EX     21.00

Reads the data with pd.read_csv().

Processes the two columns with date information.

The resulting DataFrame object.

The following code stores the relevant index level for the DAX 30 in a variable and
creates two new DataFrame objects, one for calls and one for puts. Figure 21-1
presents the market quotes for the calls and their implied volatilities:2

In [8]: initial_value = dax.iloc[0]['CF_CLOSE']  

In [9]: calls = dax[dax['PUTCALLIND'] == 'CALL'].copy()  
        puts = dax[dax['PUTCALLIND'] == 'PUT '].copy()  

In [10]: calls.set_index('STRIKE_PRC')[['CF_CLOSE', 'IMP_VOLT']].plot(
             secondary_y='IMP_VOLT', style=['bo', 'rv'], figsize=(10, 6));

Assigns the relevant index level to the initial_value variable.

Separates the options data for calls and puts into two new DataFrame objects.
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Figure 21-1. Market quotes and implied volatilities for European call options on the
DAX 30

Figure 21-2 presents the market quotes for the puts and their implied volatilities:

In [11]: ax = puts.set_index('STRIKE_PRC')[['CF_CLOSE', 'IMP_VOLT']].plot(
             secondary_y='IMP_VOLT', style=['bo', 'rv'], figsize=(10, 6))
         ax.get_legend().set_bbox_to_anchor((0.25, 0.5));
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3 See Hilpisch (2015), Chapter 11, for more details.

Figure 21-2. Market quotes and implied volatilities for European put options on the
DAX 30

Model Calibration
This section selects the relevant market data, models the European options on the
DAX 30 index, and implements the calibration procedure itself.

Relevant Market Data
Model calibration generally takes place based on a smaller subset of the available
option market quotes.3 To this end, the following code selects only those European
call options whose strike price is relatively close to the current index level (see
Figure 21-3). In other words, only those European call options are selected that are
not too far in-the-money or out-of-the-money:

In [12]: limit = 500  

In [13]: option_selection = calls[abs(calls['STRIKE_PRC'] - initial_value)
                                  < limit].copy()  

In [14]: option_selection.info()  
         <class 'pandas.core.frame.DataFrame'>
         Int64Index: 20 entries, 43 to 81
         Data columns (total 7 columns):
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         Instrument    20 non-null object
         CF_DATE       20 non-null datetime64[ns]
         EXPIR_DATE    20 non-null datetime64[ns]
         PUTCALLIND    20 non-null object
         STRIKE_PRC    20 non-null float64
         CF_CLOSE      20 non-null float64
         IMP_VOLT      20 non-null float64
         dtypes: datetime64[ns](2), float64(3), object(2)
         memory usage: 1.2+ KB

In [15]: option_selection.set_index('Instrument').tail()  
Out[15]:
                       CF_DATE EXPIR_DATE PUTCALLIND  STRIKE_PRC  CF_CLOSE  \
    Instrument
    GDAX128000G8.EX 2018-04-27 2018-07-20       CALL     12800.0     182.4
    GDAX128500G8.EX 2018-04-27 2018-07-20       CALL     12850.0     162.0
    GDAX129000G8.EX 2018-04-25 2018-07-20       CALL     12900.0     142.9
    GDAX129500G8.EX 2018-04-27 2018-07-20       CALL     12950.0     125.4
    GDAX130000G8.EX 2018-04-27 2018-07-20       CALL     13000.0     109.4

                     IMP_VOLT
    Instrument
    GDAX128000G8.EX     12.70
    GDAX128500G8.EX     12.52
    GDAX129000G8.EX     12.36
    GDAX129500G8.EX     12.21
    GDAX130000G8.EX     12.06

In [16]: option_selection.set_index('STRIKE_PRC')[['CF_CLOSE', 'IMP_VOLT']].plot(
             secondary_y='IMP_VOLT', style=['bo', 'rv'], figsize=(10, 6));

Sets the limit value for the derivation of the strike price from the current index
level (moneyness condition).

Selects, based on the limit value, the European call options to be included for
the calibration.

The resulting DataFrame with the European call options for the calibration.
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Figure 21-3. European call options on the DAX 30 used for model calibration

Option Modeling
Having the relevant market data defined, the DX package can now be used to model
the European call options. The definition of the dx.market_environment object to
model the DAX 30 index follows, along the lines of the examples in previous
chapters:

In [17]: import dx

In [18]: pricing_date = option_selection['CF_DATE'].max()  

In [19]: me_dax = dx.market_environment('DAX30', pricing_date)  

In [20]: maturity = pd.Timestamp(calls.iloc[0]['EXPIR_DATE'])  

In [21]: me_dax.add_constant('initial_value', initial_value)  
         me_dax.add_constant('final_date', maturity)  
         me_dax.add_constant('currency', 'EUR')  

In [22]: me_dax.add_constant('frequency', 'B')  
         me_dax.add_constant('paths', 10000)  

In [23]: csr = dx.constant_short_rate('csr', 0.01)  
         me_dax.add_curve('discount_curve', csr)  

Defines the initial or pricing date given the options data.
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Instantiates the dx.market_environment object.

Defines the maturity date given the options data.

Adds the basic model parameters.

Adds the simulation-related parameters.

Defines and adds a dx.constant_short_rate object.

This code then adds the model-specific parameters for the dx.jump_diffusion class
and instantiates a respective simulation object:

In [24]: me_dax.add_constant('volatility', 0.2)
         me_dax.add_constant('lambda', 0.8)
         me_dax.add_constant('mu', -0.2)
         me_dax.add_constant('delta', 0.1)

In [25]: dax_model = dx.jump_diffusion('dax_model', me_dax)

As an example for a European call option, consider the following parameterization
for which the strike is set equal to the current index level of the DAX 30. This allows
for a first value estimation based on Monte Carlo simulation:

In [26]: me_dax.add_constant('strike', initial_value)  
         me_dax.add_constant('maturity', maturity)

In [27]: payoff_func = 'np.maximum(maturity_value - strike, 0)'  

In [28]: dax_eur_call = dx.valuation_mcs_european('dax_eur_call',
                                 dax_model, me_dax, payoff_func)  

In [29]: dax_eur_call.present_value()  
Out[29]: 654.298085

Sets the value for strike equal to the initial_value.

Defines the payoff function for a European call option.

Instantiates the valuation object.

Initiates the simulation and value estimation.

Similarly, valuation objects can be defined for all relevant European call options on
the DAX 30 index. The only parameter that changes is the strike price:

In [30]: option_models = {}  
         for option in option_selection.index:
             strike = option_selection['STRIKE_PRC'].loc[option]  
             me_dax.add_constant('strike', strike)  
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             option_models[strike] = dx.valuation_mcs_european(
                                         'eur_call_%d' % strike,
                                         dax_model,
                                         me_dax,
                                         payoff_func)

The valuation objects are collected in a dict object.

Selects the relevant strike price and (re)defines it in the dx.market_environment
object.

Now, based on the valuation objects for all relevant options, the function calcu
late_model_values() returns the model values for all options given a set of the
model-specific parameter values p0:

In [32]: def calculate_model_values(p0):
             ''' Returns all relevant option values.

             Parameters
             ===========
             p0: tuple/list
                 tuple of kappa, theta, volatility

             Returns
             =======
             model_values: dict
                 dictionary with model values
             '''
             volatility, lamb, mu, delta = p0
             dax_model.update(volatility=volatility, lamb=lamb,
                              mu=mu, delta=delta)
             return {
                     strike: model.present_value(fixed_seed=True)
                     for strike, model in option_models.items()
                 }

In [33]: calculate_model_values((0.1, 0.1, -0.4, 0.0))
Out[33]: {12050.0: 611.222524,
          12100.0: 571.83659,
          12150.0: 533.595853,
          12200.0: 496.607225,
          12250.0: 460.863233,
          12300.0: 426.543355,
          12350.0: 393.626483,
          12400.0: 362.066869,
          12450.0: 331.877733,
          12500.0: 303.133596,
          12550.0: 275.987049,
          12600.0: 250.504646,
          12650.0: 226.687523,
          12700.0: 204.550609,
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4 There are multiple alternatives to define the target function for the calibration procedure. See Hilpisch (2015),
Chapter 11, for a discussion of this topic.

          12750.0: 184.020514,
          12800.0: 164.945082,
          12850.0: 147.249829,
          12900.0: 130.831722,
          12950.0: 115.681449,
          13000.0: 101.917351}

The function calculate_model_values() is used during the calibration procedure,
as described next.

Calibration Procedure
Calibration of an option pricing model is, in general, a convex optimization problem.
The most widely used function for the calibration—i.e., the minimization of some
error function value—is the mean-squared error (MSE) for the model option values
given the market quotes of the options.4 Assume there are N relevant options, and
also model and market quotes. The problem of calibrating an option pricing model to
the market quotes based on the MSE is then given in Equation 21-1. There, Cn

* and
Cn

mod  are the market price and the model price of the nth option, respectively. p is the
parameter set provided as input to the option pricing model.

Equation 21-1. Mean-squared error for model calibration

min
p

1
N ∑

n=1

N

(Cn
* – Cn

mod (p))2

The Python function mean_squared_error() implements this approach to model cal‐
ibration technically. A global variable i is used to control the output of intermediate
parameter tuple objects and the resulting MSE:

In [34]: i = 0
         def mean_squared_error(p0):
             ''' Returns the mean-squared error given
             the model and market values.

             Parameters
             ===========
             p0: tuple/list
                 tuple of kappa, theta, volatility

             Returns
             =======
             MSE: float
                 mean-squared error
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             '''
             global i
             model_values = np.array(list(
                     calculate_model_values(p0).values()))  
             market_values = option_selection['CF_CLOSE'].values  
             option_diffs = model_values - market_values  
             MSE = np.sum(option_diffs ** 2) / len(option_diffs)  
             if i % 75 == 0:
                 if i == 0:
                     print('%4s  %6s  %6s  %6s  %6s --> %6s' %
                          ('i', 'vola', 'lambda', 'mu', 'delta', 'MSE'))
                 print('%4d  %6.3f  %6.3f  %6.3f  %6.3f --> %6.3f' %
                         (i, p0[0], p0[1], p0[2], p0[3], MSE))
             i += 1
             return MSE

In [35]: mean_squared_error((0.1, 0.1, -0.4, 0.0))  
            i    vola  lambda      mu   delta -->    MSE
            0   0.100   0.100  -0.400   0.000 --> 728.375

Out[35]: 728.3752973715275

Estimates the set of model values.

Picks out the market quotes.

Calculates element-wise the differences between the two.

Calculates the mean-squared error value.

Illustrates such a calculation based on sample parameters.

Chapter 11 introduces the two functions (spo.brute() and spo.fmin()) that are
used to implement the calibration procedure. First, the global minimization based on
ranges for the four model-specific parameter values. The result is an optimal parame‐
ter combination given all the parameter combinations checked during the brute force
minimization:

In [36]: import scipy.optimize as spo

In [37]: %%time
         i = 0
         opt_global = spo.brute(mean_squared_error,
                           ((0.10, 0.201, 0.025),  # range for volatility
                            (0.10, 0.80, 0.10),  # range for jump intensity
                            (-0.40, 0.01, 0.10),  # range for average jump size
                            (0.00, 0.121, 0.02)),  # range for jump variability
                          finish=None)
            i    vola  lambda      mu   delta -->    MSE
            0   0.100   0.100  -0.400   0.000 --> 728.375
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           75   0.100   0.300  -0.400   0.080 --> 5157.513
          150   0.100   0.500  -0.300   0.040 --> 12199.386
          225   0.100   0.700  -0.200   0.000 --> 6904.932
          300   0.125   0.200  -0.200   0.100 --> 855.412
          375   0.125   0.400  -0.100   0.060 --> 621.800
          450   0.125   0.600   0.000   0.020 --> 544.137
          525   0.150   0.100   0.000   0.120 --> 3410.776
          600   0.150   0.400  -0.400   0.080 --> 46775.769
          675   0.150   0.600  -0.300   0.040 --> 56331.321
          750   0.175   0.100  -0.200   0.000 --> 14562.213
          825   0.175   0.300  -0.200   0.100 --> 24599.738
          900   0.175   0.500  -0.100   0.060 --> 19183.167
          975   0.175   0.700   0.000   0.020 --> 11871.683
         1050   0.200   0.200   0.000   0.120 --> 31736.403
         1125   0.200   0.500  -0.400   0.080 --> 130372.718
         1200   0.200   0.700  -0.300   0.040 --> 126365.140
         CPU times: user 1min 45s, sys: 7.07 s, total: 1min 52s
         Wall time: 1min 56s

In [38]: mean_squared_error(opt_global)
Out[38]: 17.946670038040985

The opt_global values are intermediate results only. They are used as starting values
for the local minimization. Given the parameterization used, the opt_local values
are final and optimal given certain assumed tolerance levels:

In [39]: %%time
         i = 0
         opt_local = spo.fmin(mean_squared_error, opt_global,
                              xtol=0.00001, ftol=0.00001,
                              maxiter=200, maxfun=550)
            i    vola  lambda      mu   delta -->    MSE
            0   0.100   0.200  -0.300   0.000 --> 17.947
           75   0.098   0.216  -0.302  -0.001 -->  7.885
          150   0.098   0.216  -0.300  -0.001 -->  7.371
         Optimization terminated successfully.
                  Current function value: 7.371163
                  Iterations: 100
                  Function evaluations: 188
         CPU times: user 15.6 s, sys: 1.03 s, total: 16.6 s
         Wall time: 16.7 s

In [40]: i = 0
         mean_squared_error(opt_local)  
            i    vola  lambda      mu   delta -->    MSE
            0   0.098   0.216  -0.300  -0.001 -->  7.371

Out[40]: 7.371162645265256

In [41]: calculate_model_values(opt_local)  
Out[41]: {12050.0: 647.428189,
          12100.0: 607.402796,
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          12150.0: 568.46137,
          12200.0: 530.703659,
          12250.0: 494.093839,
          12300.0: 458.718401,
          12350.0: 424.650128,
          12400.0: 392.023241,
          12450.0: 360.728543,
          12500.0: 330.727256,
          12550.0: 302.117223,
          12600.0: 274.98474,
          12650.0: 249.501807,
          12700.0: 225.678695,
          12750.0: 203.490065,
          12800.0: 182.947468,
          12850.0: 163.907583,
          12900.0: 146.259349,
          12950.0: 129.909743,
          13000.0: 114.852425}

The mean-squared error given the optimal parameter values.

The model values given the optimal parameter values.

Next, we compare the model values for the optimal parameters with the market
quotes. The pricing errors are calculated as the absolute differences between the
model values and market quotes and as the deviation in percent from the market
quotes:

In [42]: option_selection['MODEL'] = np.array(list(calculate_model_values(
                                                   opt_local).values()))
         option_selection['ERRORS_EUR'] = (option_selection['MODEL'] -
                                           option_selection['CF_CLOSE'])
         option_selection['ERRORS_%'] = (option_selection['ERRORS_EUR'] /
                                         option_selection['CF_CLOSE']) * 100

In [43]: option_selection[['MODEL', 'CF_CLOSE', 'ERRORS_EUR', 'ERRORS_%']]
Out[43]:          MODEL  CF_CLOSE  ERRORS_EUR  ERRORS_%
         43  647.428189     642.6    4.828189  0.751352
         45  607.402796     604.4    3.002796  0.496823
         47  568.461370     567.1    1.361370  0.240058
         49  530.703659     530.4    0.303659  0.057251
         51  494.093839     494.8   -0.706161 -0.142716
         53  458.718401     460.3   -1.581599 -0.343602
         55  424.650128     426.8   -2.149872 -0.503719
         57  392.023241     394.4   -2.376759 -0.602627
         59  360.728543     363.3   -2.571457 -0.707805
         61  330.727256     333.3   -2.572744 -0.771900
         63  302.117223     304.8   -2.682777 -0.880176
         65  274.984740     277.5   -2.515260 -0.906400
         67  249.501807     251.7   -2.198193 -0.873338
         69  225.678695     227.3   -1.621305 -0.713289
         71  203.490065     204.1   -0.609935 -0.298841
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         73  182.947468     182.4    0.547468  0.300147
         75  163.907583     162.0    1.907583  1.177520
         77  146.259349     142.9    3.359349  2.350839
         79  129.909743     125.4    4.509743  3.596286
         81  114.852425     109.4    5.452425  4.983935

In [44]: round(option_selection['ERRORS_EUR'].mean(), 3)  
Out[44]: 0.184

In [45]: round(option_selection['ERRORS_%'].mean(), 3)  
Out[45]: 0.36

The average pricing error in EUR.

The average pricing error in percent.

Figure 21-4 visualizes the valuation results and errors:

In [46]: fix, (ax1, ax2, ax3) = plt.subplots(3, sharex=True, figsize=(10, 10))
         strikes = option_selection['STRIKE_PRC'].values
         ax1.plot(strikes, option_selection['CF_CLOSE'], label='market quotes')
         ax1.plot(strikes, option_selection['MODEL'], 'ro', label='model values')
         ax1.set_ylabel('option values')
         ax1.legend(loc=0)
         wi = 15
         ax2.bar(strikes - wi / 2., option_selection['ERRORS_EUR'], width=wi)
         ax2.set_ylabel('errors [EUR]')
         ax3.bar(strikes - wi / 2., option_selection['ERRORS_%'], width=wi)
         ax3.set_ylabel('errors [%]')
         ax3.set_xlabel('strikes');

Calibration Speed

The calibration of an option pricing model to market data in gen‐
eral requires the recalculation of hundreds or even thousands of
option values. This is therefore typically done based on analytical
pricing formulae. Here, the calibration procedure relies on Monte
Carlo simulation as the pricing method, which is computationally
more demanding compared to analytical methods. Nevertheless,
the calibration procedure does not take “too long” even on a typical
notebook. The use of parallelization techniques, for instance, can
speed up the calibration considerably.
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Figure 21-4. Model values and market quotes after calibration

Portfolio Valuation
Being equipped with a calibrated model reflecting realities in the financial markets as
represented by market quotes of liquidly traded options enables one to model and
value non-traded options and derivatives. The idea is that calibration “infuses” the
correct risk-neutral martingale measure into the model via optimal parameters.
Based on this measure, the machinery of the Fundamental Theorem of Asset Pricing
can then be applied to contingent claims beyond those used for the calibration.

This section considers a portfolio of American put options on the DAX 30 index.
There are no such options available that are liquidly traded on exchanges. For sim‐
plicity, it is assumed that the American put options have the same maturity as the
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European call options used for the calibration. Similarly, the same strikes are
assumed.

Modeling Option Positions
First, the market environment for the underlying risk factor, the DAX 30 stock index,
is modeled with the optimal parameters from the calibration being used:

In [47]: me_dax = dx.market_environment('me_dax', pricing_date)
         me_dax.add_constant('initial_value', initial_value)
         me_dax.add_constant('final_date', pricing_date)
         me_dax.add_constant('currency', 'EUR')

In [48]: me_dax.add_constant('volatility', opt_local[0])  
         me_dax.add_constant('lambda', opt_local[1])  
         me_dax.add_constant('mu', opt_local[2])  
         me_dax.add_constant('delta', opt_local[3])  

In [49]: me_dax.add_constant('model', 'jd')

This adds the optimal parameters from the calibration.

Second, the option positions and the associated environments are defined and stored
in two separate dict objects:

In [50]: payoff_func = 'np.maximum(strike - instrument_values, 0)'

In [51]: shared = dx.market_environment('share', pricing_date)  
         shared.add_constant('maturity', maturity)  
         shared.add_constant('currency', 'EUR')  

In [52]: option_positions = {}
         option_environments = {}
         for option in option_selection.index:
             option_environments[option] = dx.market_environment(
                 'am_put_%d' % option, pricing_date)  
             strike = option_selection['STRIKE_PRC'].loc[option]  
             option_environments[option].add_constant('strike', strike)  
             option_environments[option].add_environment(shared)  
             option_positions['am_put_%d' % strike] = \
                             dx.derivatives_position(
                                 'am_put_%d' % strike,
                                 quantity=np.random.randint(10, 50),
                                 underlying='dax_model',
                                 mar_env=option_environments[option],
                                 otype='American',
                                 payoff_func=payoff_func)  

Defines a shared dx.market_environment object as the basis for all option-
specific environments.
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Defines and stores a new dx.market_environment object for the relevant Ameri‐
can put option.

Defines and stores the strike price parameter for the option.

Adds the elements from the shared dx.market_environment object to the
option-specific one.

Defines the dx.derivatives_position object with a randomized quantity.

The Options Portfolio
To value the portfolio with all the American put options, a valuation environment is
needed. It contains the major parameters for the estimation of position values and
risk statistics:

In [53]: val_env = dx.market_environment('val_env', pricing_date)
         val_env.add_constant('starting_date', pricing_date)
         val_env.add_constant('final_date', pricing_date)  
         val_env.add_curve('discount_curve', csr)
         val_env.add_constant('frequency', 'B')
         val_env.add_constant('paths', 25000)

In [54]: underlyings = {'dax_model' : me_dax}  

In [55]: portfolio = dx.derivatives_portfolio('portfolio', option_positions,
                                              val_env, underlyings)  

In [56]: %time results = portfolio.get_statistics(fixed_seed=True)
         CPU times: user 1min 5s, sys: 2.91 s, total: 1min 8s
         Wall time: 38.2 s

In [57]: results.round(1)
Out[57]:             name  quant.  value curr.  pos_value  pos_delta  pos_vega
         0   am_put_12050      33  151.6   EUR     5002.8       -4.7   38206.9
         1   am_put_12100      38  161.5   EUR     6138.4       -5.7   51365.2
         2   am_put_12150      20  171.3   EUR     3426.8       -3.3   27894.5
         3   am_put_12200      12  183.9   EUR     2206.6       -2.2   18479.7
         4   am_put_12250      37  197.4   EUR     7302.8       -7.3   59423.5
         5   am_put_12300      37  212.3   EUR     7853.9       -8.2   65911.9
         6   am_put_12350      36  228.4   EUR     8224.1       -9.0   70969.4
         7   am_put_12400      16  244.3   EUR     3908.4       -4.3   32871.4
         8   am_put_12450      17  262.7   EUR     4465.6       -5.1   37451.2
         9   am_put_12500      16  283.4   EUR     4534.8       -5.2   36158.2
         10  am_put_12550      38  305.3   EUR    11602.3      -13.3   86869.9
         11  am_put_12600      10  330.4   EUR     3303.9       -3.9   22144.5
         12  am_put_12650      38  355.5   EUR    13508.3      -16.0   89124.8
         13  am_put_12700      40  384.2   EUR    15367.5      -18.6   90871.2
         14  am_put_12750      13  413.5   EUR     5375.7       -6.5   28626.0
         15  am_put_12800      49  445.0   EUR    21806.6      -26.3  105287.3
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         16  am_put_12850      30  477.4   EUR    14321.8      -17.0   60757.2
         17  am_put_12900      33  510.3   EUR    16840.1      -19.7   69163.6
         18  am_put_12950      40  544.4   EUR    21777.0      -24.9   80472.3
         19  am_put_13000      35  582.3   EUR    20378.9      -22.9   66522.6

In [58]: results[['pos_value','pos_delta','pos_vega']].sum().round(1)
Out[58]: pos_value     197346.2
         pos_delta       -224.0
         pos_vega     1138571.1
         dtype: float64

The final_date parameter is later reset to the final maturity date over all options
in the portfolio.

The American put options in the portfolio are all written on the same underlying
risk factor, the DAX 30 stock index.

This instantiates the dx.derivatives_portfolio object.

The estimation of all statistics takes a little while, since it is all based on Monte Carlo
simulation and such estimations are particularly compute-intensive for American
options due to the application of the Least-Squares Monte Carlo (LSM) algorithm.
Because we are dealing with long positions of American put options only, the portfo‐
lio is short delta and long vega.

Python Code
The following presents code to retrieve options data for the German DAX 30 stock
index from the Eikon Data API:

In [1]: import eikon as ek  
        import pandas as pd
        import datetime as dt
        import configparser as cp

In [2]: cfg = cp.ConfigParser()  
        cfg.read('eikon.cfg')  
Out[2]: ['eikon.cfg']

In [3]: ek.set_app_id(cfg['eikon']['app_id'])  

In [4]: fields = ['CF_DATE', 'EXPIR_DATE', 'PUTCALLIND',
                  'STRIKE_PRC', 'CF_CLOSE', 'IMP_VOLT']  

In [5]: dax = ek.get_data('0#GDAXN8*.EX', fields=fields)[0]  

In [6]: dax.info()  

        <class 'pandas.core.frame.DataFrame'>
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        RangeIndex: 115 entries, 0 to 114
        Data columns (total 7 columns):
        Instrument    115 non-null object
        CF_DATE       115 non-null object
        EXPIR_DATE    114 non-null object
        PUTCALLIND    114 non-null object
        STRIKE_PRC    114 non-null float64
        CF_CLOSE      115 non-null float64
        IMP_VOLT      114 non-null float64
        dtypes: float64(3), object(4)
        memory usage: 6.4+ KB

In [7]: dax['Instrument'] = dax['Instrument'].apply(
            lambda x: x.replace('/', ''))  

In [8]: dax.set_index('Instrument').head(10)
Out[8]:                     CF_DATE  EXPIR_DATE PUTCALLIND  STRIKE_PRC  CF_CLOSE  \
        Instrument
        .GDAXI           2018-04-27        None       None         NaN  12500.47
        GDAX105000G8.EX  2018-04-27  2018-07-20       CALL     10500.0   2040.80
        GDAX105000S8.EX  2018-04-27  2018-07-20       PUT      10500.0     32.00
        GDAX108000G8.EX  2018-04-27  2018-07-20       CALL     10800.0   1752.40
        GDAX108000S8.EX  2018-04-26  2018-07-20       PUT      10800.0     43.80
        GDAX110000G8.EX  2018-04-27  2018-07-20       CALL     11000.0   1562.80
        GDAX110000S8.EX  2018-04-27  2018-07-20       PUT      11000.0     54.50
        GDAX111500G8.EX  2018-04-27  2018-07-20       CALL     11150.0   1422.50
        GDAX111500S8.EX  2018-04-27  2018-07-20       PUT      11150.0     64.30
        GDAX112000G8.EX  2018-04-27  2018-07-20       CALL     11200.0   1376.10

                         IMP_VOLT
        Instrument
        .GDAXI                NaN
        GDAX105000G8.EX     23.59
        GDAX105000S8.EX     23.59
        GDAX108000G8.EX     22.02
        GDAX108000S8.EX     22.02
        GDAX110000G8.EX     21.00
        GDAX110000S8.EX     21.00
        GDAX111500G8.EX     20.24
        GDAX111500S8.EX     20.25
        GDAX112000G8.EX     19.99

In [9]: dax.to_csv('../../source/tr_eikon_option_data.csv')  

Imports the eikon Python wrapper package.

Reads the login credentials for the Eikon Data API.

Defines the data fields to be retrieved.
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Retrieves options data for the July 2018 expiry.

Replaces the slash character / in the instrument names.

Writes the data set as a CSV file.

Conclusion
This chapter presents a larger, realistic use case for the application of the DX analytics
package to the valuation of a portfolio of non-traded American options on the Ger‐
man DAX 30 stock index. The chapter addresses three main tasks typically involved
in any real-world derivatives analytics application:

Obtaining data
Current, correct market data builds the basis of any modeling and valuation
effort in derivatives analytics; one needs index data as well as options data for the
DAX 30.

Model calibration
To value, manage, and hedge non-traded options and derivatives in a market-
consistent fashion, one has to calibrate the parameters of an appropriate model
(simulation object) to the relevant option market quotes (relevant with regard to
maturity and strikes). The model of choice is the jump diffusion model, which is
in some cases appropriate for modeling a stock index; the calibration results are
quite good although the model only offers three degrees of freedom (lambda as
the jump intensity, mu as the expected jump size, and delta as the variability of
the jump size).

Portfolio valuation
Based on the market data and the calibrated model, a portfolio with the Ameri‐
can put options on the DAX 30 index was modeled and major statistics (position
values, deltas, and vegas) were estimated.

The realistic use case in this chapter shows the flexibility and the power of the DX
package; it essentially allows one to address the major analytical tasks with regard to
derivatives. The very approach and architecture make the application largely compa‐
rable to the benchmark case of a Black-Scholes-Merton analytical formula for Euro‐
pean options. Once the valuation objects are defined, one can use them in a similar
way as an analytical formula—despite the fact that under the hood, computationally
demanding and memory-intensive algorithms are applied.
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Further Resources
As for previous chapters, the following book is a good general reference for the topics
covered in this chapter, especially when it comes to the calibration of option pricing
models:

• Hilpisch, Yves (2015). Derivatives Analytics with Python. Chichester, England:
Wiley Finance.

With regard to the consistent valuation and management of derivatives portfolios,
see also the resources at the end of Chapter 20.
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APPENDIX A

Dates and Times

As in the majority of scientific disciplines, dates and times play an important role in
finance. This appendix introduces different aspects of this topic when it comes to
Python programming. It cannot, of course, be exhaustive. However, it provides an
introduction to the main areas of the Python ecosystem that support the modeling of
date and time information.

Python
The datetime module from the Python standard library allows for the implementa‐
tion of the most important date and time–related tasks:

In [1]: from pylab import mpl, plt
        plt.style.use('seaborn')
        mpl.rcParams['font.family'] = 'serif'
        %matplotlib inline

In [2]: import datetime as dt

In [3]: dt.datetime.now()  
Out[3]: datetime.datetime(2018, 10, 19, 15, 17, 32, 164295)

In [4]: to = dt.datetime.today()  
        to
Out[4]: datetime.datetime(2018, 10, 19, 15, 17, 32, 177092)

In [5]: type(to)
Out[5]: datetime.datetime

In [6]: dt.datetime.today().weekday()  
Out[6]: 4

Returns the exact date and system time.
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Returns the day of the week as a number, where 0 = Monday.

Of course, datetime objects can be defined freely:

In [7]: d = dt.datetime(2020, 10, 31, 10, 5, 30, 500000)  
        d
Out[7]: datetime.datetime(2020, 10, 31, 10, 5, 30, 500000)

In [8]: str(d)  
Out[8]: '2020-10-31 10:05:30.500000'

In [9]: print(d)  
        2020-10-31 10:05:30.500000

In [10]: d.year  
Out[10]: 2020

In [11]: d.month  
Out[11]: 10

In [12]: d.day  
Out[12]: 31

In [13]: d.hour  
Out[13]: 10

Custom datetime object.

String representation.

Printing such an object.

The year …

… month …

… day …

… and hour attributes of the object.

Transformations and split-ups are easily accomplished:

In [14]: o = d.toordinal()  
         o
Out[14]: 737729

In [15]: dt.datetime.fromordinal(o)  
Out[15]: datetime.datetime(2020, 10, 31, 0, 0)

In [16]: t = dt.datetime.time(d)  
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         t
Out[16]: datetime.time(10, 5, 30, 500000)

In [17]: type(t)
Out[17]: datetime.time

In [18]: dd = dt.datetime.date(d)  
         dd
Out[18]: datetime.date(2020, 10, 31)

In [19]: d.replace(second=0, microsecond=0)  
Out[19]: datetime.datetime(2020, 10, 31, 10, 5)

Transformation to ordinal number.

Transformation from ordinal number.

Splitting up the time component.

Splitting up the date component.

Setting selected values to 0.

timedelta objects result from, among other things, arithmetic operations on date
time objects (i.e., finding the difference between two such objects):

In [20]: td = d - dt.datetime.now()  
         td
Out[20]: datetime.timedelta(days=742, seconds=67678, microseconds=169720)

In [21]: type(td)  
Out[21]: datetime.timedelta

In [22]: td.days
Out[22]: 742

In [23]: td.seconds
Out[23]: 67678

In [24]: td.microseconds
Out[24]: 169720

In [25]: td.total_seconds()  
Out[25]: 64176478.16972

The difference between two datetime objects …

… gives a timedelta object.

The difference in seconds.
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There are multiple ways to transform a datetime object into different representa‐
tions, as well as to generate datetime objects out of, say, str objects. Details are
found in the documentation of the datetime module. Here are a few examples:

In [26]: d.isoformat()  
Out[26]: '2020-10-31T10:05:30.500000'

In [27]: d.strftime('%A, %d. %B %Y %I:%M%p')  
Out[27]: 'Saturday, 31. October 2020 10:05AM'

In [28]: dt.datetime.strptime('2017-03-31', '%Y-%m-%d')  
Out[28]: datetime.datetime(2017, 3, 31, 0, 0)

In [29]: dt.datetime.strptime('30-4-16', '%d-%m-%y')  
Out[29]: datetime.datetime(2016, 4, 30, 0, 0)

In [30]: ds = str(d)
         ds
Out[30]: '2020-10-31 10:05:30.500000'

In [31]: dt.datetime.strptime(ds, '%Y-%m-%d %H:%M:%S.%f')  
Out[31]: datetime.datetime(2020, 10, 31, 10, 5, 30, 500000)

ISO format string representation.

Exact template for string representation.

datetime object from str object based on template.

In addition to the now() and today() functions, there is also the utcnow() function,
which gives the exact date and time information in UTC (Coordinated Universal
Time, formerly known as Greenwich Mean Time, or GMT). This represents a one-
hour or two-hour difference from the author’s time zone (Central European Time,
CET, or Central European Summer Time, CEST):

In [32]: dt.datetime.now()
Out[32]: datetime.datetime(2018, 10, 19, 15, 17, 32, 438889)

In [33]: dt.datetime.utcnow()  
Out[33]: datetime.datetime(2018, 10, 19, 13, 17, 32, 448897)

In [34]: dt.datetime.now() - dt.datetime.utcnow()  
Out[34]: datetime.timedelta(seconds=7199, microseconds=999995)

Returns the current UTC time.

Returns the difference between local time and UTC time.
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Another class of the datetime module is the tzinfo class, a generic time zone class
with methods utcoffset(), dst(), and tzname(). A definition for UTC and CEST
time might look as follows:

In [35]: class UTC(dt.tzinfo):
             def utcoffset(self, d):
                 return dt.timedelta(hours=0)  
             def dst(self, d):
                 return dt.timedelta(hours=0)  
             def tzname(self, d):
                 return 'UTC'

In [36]: u = dt.datetime.utcnow()

In [37]: u
Out[37]: datetime.datetime(2018, 10, 19, 13, 17, 32, 474585)

In [38]: u = u.replace(tzinfo=UTC())  

In [39]: u
Out[39]: datetime.datetime(2018, 10, 19, 13, 17, 32, 474585, tzinfo=<__main__.UTC
          object at 0x11c9a2320>)

In [40]: class CEST(dt.tzinfo):
             def utcoffset(self, d):
                 return dt.timedelta(hours=2)  
             def dst(self, d):
                 return dt.timedelta(hours=1)  
             def tzname(self, d):
                 return 'CEST'

In [41]: c = u.astimezone(CEST())  
         c
Out[41]: datetime.datetime(2018, 10, 19, 15, 17, 32, 474585,
          tzinfo=<__main__.CEST object at 0x11c9a2cc0>)

In [42]: c - c.dst()  
Out[42]: datetime.datetime(2018, 10, 19, 14, 17, 32, 474585,
          tzinfo=<__main__.CEST object at 0x11c9a2cc0>)

No offsets for UTC.

Attaches the dt.tzinfo object via the replace() method.

Regular and DST (Daylight Saving Time) offsets for CEST.

Transforms the UTC time zone to the CEST time zone.

Gives the DST time for the transformed datetime object.
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There is a Python module available called pytz that implements the most important
time zones from around the world:

In [43]: import pytz

In [44]: pytz.country_names['US']  
Out[44]: 'United States'

In [45]: pytz.country_timezones['BE']  
Out[45]: ['Europe/Brussels']

In [46]: pytz.common_timezones[-10:]  
Out[46]: ['Pacific/Wake',
          'Pacific/Wallis',
          'US/Alaska',
          'US/Arizona',
          'US/Central',
          'US/Eastern',
          'US/Hawaii',
          'US/Mountain',
          'US/Pacific',
          'UTC']

A single country.

A single time zone.

Some common time zones.

With pytz, there is generally no need to define custom tzinfo objects:

In [47]: u = dt.datetime.utcnow()

In [48]: u = u.replace(tzinfo=pytz.utc)  

In [49]: u
Out[49]: datetime.datetime(2018, 10, 19, 13, 17, 32, 611417, tzinfo=<UTC>)

In [50]: u.astimezone(pytz.timezone('CET'))  
Out[50]: datetime.datetime(2018, 10, 19, 15, 17, 32, 611417, tzinfo=<DstTzInfo
          'CET' CEST+2:00:00 DST>)

In [51]: u.astimezone(pytz.timezone('GMT'))  
Out[51]: datetime.datetime(2018, 10, 19, 13, 17, 32, 611417, tzinfo=<StaticTzInfo
          'GMT'>)

In [52]: u.astimezone(pytz.timezone('US/Central'))  
Out[52]: datetime.datetime(2018, 10, 19, 8, 17, 32, 611417, tzinfo=<DstTzInfo
          'US/Central' CDT-1 day, 19:00:00 DST>)

Defining the tzinfo object via pytz.
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Transforming a datetime object to different time zones.

NumPy
NumPy also provides functionality to deal with date and time information:

In [53]: import numpy as np

In [54]: nd = np.datetime64('2020-10-31') 
         nd
Out[54]: numpy.datetime64('2020-10-31')

In [55]: np.datetime_as_string(nd)  
Out[55]: '2020-10-31'

In [56]: np.datetime_data(nd)  
Out[56]: ('D', 1)

In [57]: d
Out[57]: datetime.datetime(2020, 10, 31, 10, 5, 30, 500000)

In [58]: nd = np.datetime64(d)  
         nd
Out[58]: numpy.datetime64('2020-10-31T10:05:30.500000')

In [59]: nd.astype(dt.datetime)  
Out[59]: datetime.datetime(2020, 10, 31, 10, 5, 30, 500000)

Construction from str object and string representation.

Metainformation about the data itself (type, size).

Construction from datetime object.

Conversion to datetime object.

Another way to construct such an object is by providing a str object, e.g., with the
year and month and the frequency information. Note that the object value then
defaults to the first day of the month. The construction of ndarray objects based on
list objects also is possible:

In [60]: nd = np.datetime64('2020-10', 'D')
         nd
Out[60]: numpy.datetime64('2020-10-01')

In [61]: np.datetime64('2020-10') == np.datetime64('2020-10-01')
Out[61]: True

In [62]: np.array(['2020-06-10', '2020-07-10', '2020-08-10'], dtype='datetime64')
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Out[62]: array(['2020-06-10', '2020-07-10', '2020-08-10'], dtype='datetime64[D]')

In [63]: np.array(['2020-06-10T12:00:00', '2020-07-10T12:00:00',
                   '2020-08-10T12:00:00'], dtype='datetime64[s]')
Out[63]: array(['2020-06-10T12:00:00', '2020-07-10T12:00:00',
                '2020-08-10T12:00:00'], dtype='datetime64[s]')

One can also generate ranges of dates by using the function np.arange(). Different
frequencies (e.g., days, weeks, or seconds) are easily taken care of:

In [64]: np.arange('2020-01-01', '2020-01-04', dtype='datetime64')  
Out[64]: array(['2020-01-01', '2020-01-02', '2020-01-03'], dtype='datetime64[D]')

In [65]: np.arange('2020-01-01', '2020-10-01', dtype='datetime64[M]')  
Out[65]: array(['2020-01', '2020-02', '2020-03', '2020-04', '2020-05',
                '2020-06', '2020-07', '2020-08', '2020-09'],
                dtype='datetime64[M]')

In [66]: np.arange('2020-01-01', '2020-10-01', dtype='datetime64[W]')[:10]  
Out[66]: array(['2019-12-26', '2020-01-02', '2020-01-09', '2020-01-16',
                '2020-01-23', '2020-01-30', '2020-02-06', '2020-02-13',
                '2020-02-20', '2020-02-27'], dtype='datetime64[W]')

In [67]: dtl = np.arange('2020-01-01T00:00:00', '2020-01-02T00:00:00',
                         dtype='datetime64[h]')  
         dtl[:10]
Out[67]: array(['2020-01-01T00', '2020-01-01T01', '2020-01-01T02',
                '2020-01-01T03', '2020-01-01T04', '2020-01-01T05', '2020-01-01T06',
                '2020-01-01T07', '2020-01-01T08', '2020-01-01T09'],
                dtype='datetime64[h]')

In [68]: np.arange('2020-01-01T00:00:00', '2020-01-02T00:00:00',
                   dtype='datetime64[s]')[:10]  
Out[68]: array(['2020-01-01T00:00:00', '2020-01-01T00:00:01',
                '2020-01-01T00:00:02', '2020-01-01T00:00:03',
                '2020-01-01T00:00:04', '2020-01-01T00:00:05',
                '2020-01-01T00:00:06', '2020-01-01T00:00:07',
                '2020-01-01T00:00:08', '2020-01-01T00:00:09'],
               dtype='datetime64[s]')

In [69]: np.arange('2020-01-01T00:00:00', '2020-01-02T00:00:00',
                   dtype='datetime64[ms]')[:10]  
Out[69]: array(['2020-01-01T00:00:00.000', '2020-01-01T00:00:00.001',
                '2020-01-01T00:00:00.002', '2020-01-01T00:00:00.003',
                '2020-01-01T00:00:00.004', '2020-01-01T00:00:00.005',
                '2020-01-01T00:00:00.006', '2020-01-01T00:00:00.007',
                '2020-01-01T00:00:00.008', '2020-01-01T00:00:00.009'],
               dtype='datetime64[ms]')

Daily frequency.

Monthly frequency.
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Weekly frequency.

Hourly frequency.

Second frequency.

Millisecond frequency.

Plotting date-time and/or time series data can sometimes be tricky. matplotlib has
support for standard datetime objects. Transforming NumPy datetime64 information
into Python datetime information generally does the trick, as the following example,
whose result is shown in Figure A-1, illustrates:

In [70]: import matplotlib.pyplot as plt
         %matplotlib inline

In [71]: np.random.seed(3000)
         rnd = np.random.standard_normal(len(dtl)).cumsum() ** 2

In [72]: fig = plt.figure(figsize=(10, 6))
         plt.plot(dtl.astype(dt.datetime), rnd)  
         fig.autofmt_xdate();  

Uses the datetime information as x values.

Autoformats the datetime ticks on the x-axis.

Figure A-1. Plot with datetime x-ticks autoformatted
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pandas
The pandas package was designed, at least to some extent, with time series data in
mind. Therefore, the package provides classes that are able to efficiently handle date
and time information, like the DatetimeIndex class for time indices (see the docu‐
mentation at http://bit.ly/timeseries_doc).

pandas introduces the Timestamp object as a further alternative to datetime and
datetime64 objects:

In [73]: import pandas as pd

In [74]: ts = pd.Timestamp('2020-06-30')  
         ts
Out[74]: Timestamp('2020-06-30 00:00:00')

In [75]: d = ts.to_pydatetime()  
         d
Out[75]: datetime.datetime(2020, 6, 30, 0, 0)

In [76]: pd.Timestamp(d)  
Out[76]: Timestamp('2020-06-30 00:00:00')

In [77]: pd.Timestamp(nd)  
Out[77]: Timestamp('2020-10-01 00:00:00')

Timestamp object from str object.

datetime object from Timestamp object.

Timestamp from datetime object.

Timestamp from datetime64 object.

Another important class is the aforementioned DatetimeIndex class, which is a col‐
lection of Timestamp objects with a number of helpful methods attached. A Dateti
meIndex object can be created with the pd.date_range() function, which is rather
flexible and powerful for constructing time indices (see Chapter 8 for more details on
this function). Typical conversions are possible:

In [78]: dti = pd.date_range('2020/01/01', freq='M', periods=12)  
         dti
Out[78]: DatetimeIndex(['2020-01-31', '2020-02-29', '2020-03-31', '2020-04-30',
                        '2020-05-31', '2020-06-30', '2020-07-31', '2020-08-31',
                        '2020-09-30', '2020-10-31', '2020-11-30', '2020-12-31'],
                       dtype='datetime64[ns]', freq='M')

In [79]: dti[6]
Out[79]: Timestamp('2020-07-31 00:00:00', freq='M')
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In [80]: pdi = dti.to_pydatetime()  
         pdi
Out[80]: array([datetime.datetime(2020, 1, 31, 0, 0),
                datetime.datetime(2020, 2, 29, 0, 0),
                datetime.datetime(2020, 3, 31, 0, 0),
                datetime.datetime(2020, 4, 30, 0, 0),
                datetime.datetime(2020, 5, 31, 0, 0),
                datetime.datetime(2020, 6, 30, 0, 0),
                datetime.datetime(2020, 7, 31, 0, 0),
                datetime.datetime(2020, 8, 31, 0, 0),
                datetime.datetime(2020, 9, 30, 0, 0),
                datetime.datetime(2020, 10, 31, 0, 0),
                datetime.datetime(2020, 11, 30, 0, 0),
                datetime.datetime(2020, 12, 31, 0, 0)], dtype=object)

In [81]: pd.DatetimeIndex(pdi)  
Out[81]: DatetimeIndex(['2020-01-31', '2020-02-29', '2020-03-31', '2020-04-30',
                        '2020-05-31', '2020-06-30', '2020-07-31', '2020-08-31',
                        '2020-09-30', '2020-10-31', '2020-11-30', '2020-12-31'],
                       dtype='datetime64[ns]', freq=None)

In [82]: pd.DatetimeIndex(dtl)  
Out[82]: DatetimeIndex(['2020-01-01 00:00:00', '2020-01-01 01:00:00',
                        '2020-01-01 02:00:00', '2020-01-01 03:00:00',
                        '2020-01-01 04:00:00', '2020-01-01 05:00:00',
                        '2020-01-01 06:00:00', '2020-01-01 07:00:00',
                        '2020-01-01 08:00:00', '2020-01-01 09:00:00',
                        '2020-01-01 10:00:00', '2020-01-01 11:00:00',
                        '2020-01-01 12:00:00', '2020-01-01 13:00:00',
                        '2020-01-01 14:00:00', '2020-01-01 15:00:00',
                        '2020-01-01 16:00:00', '2020-01-01 17:00:00',
                        '2020-01-01 18:00:00', '2020-01-01 19:00:00',
                        '2020-01-01 20:00:00', '2020-01-01 21:00:00',
                        '2020-01-01 22:00:00', '2020-01-01 23:00:00'],
                       dtype='datetime64[ns]', freq=None)

DatetimeIndex object with monthly frequency for 12 periods.

DatetimeIndex object converted to ndarray objects with datetime objects.

DatetimeIndex object from ndarray object with datetime objects.

DatetimeIndex object from ndarray object with datetime64 objects.

pandas takes care of proper plotting of date-time information (see Figure A-2 and
also Chapter 8):

In [83]: rnd = np.random.standard_normal(len(dti)).cumsum() ** 2

In [84]: df = pd.DataFrame(rnd, columns=['data'], index=dti)
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In [85]: df.plot(figsize=(10, 6));

Figure A-2. pandas plot with Timestamp x-ticks autoformatted

pandas also integrates well with the pytz module to manage time zones:

In [86]: pd.date_range('2020/01/01', freq='M', periods=12,
                       tz=pytz.timezone('CET'))
Out[86]: DatetimeIndex(['2020-01-31 00:00:00+01:00', '2020-02-29
          00:00:00+01:00',
         '2020-03-31 00:00:00+02:00', '2020-04-30 00:00:00+02:00',
         '2020-05-31 00:00:00+02:00', '2020-06-30 00:00:00+02:00',
         '2020-07-31 00:00:00+02:00', '2020-08-31 00:00:00+02:00',
         '2020-09-30 00:00:00+02:00', '2020-10-31 00:00:00+01:00',
         '2020-11-30 00:00:00+01:00', '2020-12-31 00:00:00+01:00'],
                       dtype='datetime64[ns, CET]', freq='M')

In [87]: dti = pd.date_range('2020/01/01', freq='M', periods=12, tz='US/Eastern')
         dti
Out[87]: DatetimeIndex(['2020-01-31 00:00:00-05:00', '2020-02-29
          00:00:00-05:00',
         '2020-03-31 00:00:00-04:00', '2020-04-30 00:00:00-04:00',
         '2020-05-31 00:00:00-04:00', '2020-06-30 00:00:00-04:00',
         '2020-07-31 00:00:00-04:00', '2020-08-31 00:00:00-04:00',
         '2020-09-30 00:00:00-04:00', '2020-10-31 00:00:00-04:00',
         '2020-11-30 00:00:00-05:00', '2020-12-31 00:00:00-05:00'],
                       dtype='datetime64[ns, US/Eastern]', freq='M')

In [88]: dti.tz_convert('GMT')
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Out[88]: DatetimeIndex(['2020-01-31 05:00:00+00:00', '2020-02-29
          05:00:00+00:00',
         '2020-03-31 04:00:00+00:00', '2020-04-30 04:00:00+00:00',
         '2020-05-31 04:00:00+00:00', '2020-06-30 04:00:00+00:00',
         '2020-07-31 04:00:00+00:00', '2020-08-31 04:00:00+00:00',
         '2020-09-30 04:00:00+00:00', '2020-10-31 04:00:00+00:00',
         '2020-11-30 05:00:00+00:00', '2020-12-31 05:00:00+00:00'],
                       dtype='datetime64[ns, GMT]', freq='M')
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APPENDIX B

BSM Option Class

Class Definition
The following presents a class definition for a European call option in the Black-
Scholes-Merton (1973) model. The class-based implementation is an alternative to
the one based on functions as presented in “Python Script” on page 392:

#
# Valuation of European call options in Black-Scholes-Merton model
# incl. vega function and implied volatility estimation
# -- class-based implementation
#
# Python for Finance, 2nd ed.
# (c) Dr. Yves J. Hilpisch
#
from math import log, sqrt, exp
from scipy import stats

class bsm_call_option(object):
    ''' Class for European call options in BSM model.

    Attributes
    ==========
    S0: float
        initial stock/index level
    K: float
        strike price
    T: float
        maturity (in year fractions)
    r: float
        constant risk-free short rate
    sigma: float
        volatility factor in diffusion term
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    Methods
    =======
    value: float
        returns the present value of call option
    vega: float
        returns the vega of call option
    imp_vol: float
        returns the implied volatility given option quote
    '''

    def __init__(self, S0, K, T, r, sigma):
        self.S0 = float(S0)
        self.K = K
        self.T = T
        self.r = r
        self.sigma = sigma

    def value(self):
        ''' Returns option value.
        '''
        d1 = ((log(self.S0 / self.K) +
               (self.r + 0.5 * self.sigma ** 2) * self.T) /
              (self.sigma * sqrt(self.T)))
        d2 = ((log(self.S0 / self.K) +
               (self.r - 0.5 * self.sigma ** 2) * self.T) /
              (self.sigma * sqrt(self.T)))
        value = (self.S0 * stats.norm.cdf(d1, 0.0, 1.0) -
                 self.K * exp(-self.r * self.T) * stats.norm.cdf(d2, 0.0, 1.0))
        return value

    def vega(self):
        ''' Returns vega of option.
        '''
        d1 = ((log(self.S0 / self.K) +
               (self.r + 0.5 * self.sigma ** 2) * self.T) /
              (self.sigma * sqrt(self.T)))
        vega = self.S0 * stats.norm.pdf(d1, 0.0, 1.0) * sqrt(self.T)
        return vega

    def imp_vol(self, C0, sigma_est=0.2, it=100):
        ''' Returns implied volatility given option price.
        '''
        option = bsm_call_option(self.S0, self.K, self.T, self.r, sigma_est)
        for i in range(it):
            option.sigma -= (option.value() - C0) / option.vega()
        return option.sigma
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Class Usage
This class can be used in an interactive Jupyter Notebook session as follows:

In [1]: from bsm_option_class import *

In [2]: o = bsm_call_option(100., 105., 1.0, 0.05, 0.2)
        type(o)
Out[2]: bsm_option_class.bsm_call_option

In [3]: value = o.value()
        value
Out[3]: 8.021352235143176

In [4]: o.vega()
Out[4]: 39.67052380842653

In [5]: o.imp_vol(C0=value)
Out[5]: 0.2

The option class can also be used to visualize, for example, the value and vega of the
option for different strikes and maturities. It is, in the end, one of the major advan‐
tages of having an analytical option pricing formula available. The following Python
code generates the option statistics for different maturity-strike combinations:

In [6]: import numpy as np
        maturities = np.linspace(0.05, 2.0, 20)
        strikes = np.linspace(80, 120, 20)
        K, T = np.meshgrid(strikes, maturities)
        C = np.zeros_like(K)
        V = np.zeros_like(C)
        for t in enumerate(maturities):
            for k in enumerate(strikes):
                o.T = t[1]
                o.K = k[1]
                C[t[0], k[0]] = o.value()
                V[t[0], k[0]] = o.vega()

First, a look at the option values. Figure B-1 presents the value surface for the Euro‐
pean call option:

In [7]: from pylab import cm, mpl, plt
        from mpl_toolkits.mplot3d import Axes3D
        mpl.rcParams['font.family'] = 'serif'
        %matplotlib inline

In [8]: fig = plt.figure(figsize=(12, 7))
        ax = fig.gca(projection='3d')
        surf = ax.plot_surface(K, T, C, rstride=1, cstride=1,
                    cmap=cm.coolwarm, linewidth=0.5, antialiased=True)
        ax.set_xlabel('strike')
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        ax.set_ylabel('maturity')
        ax.set_zlabel('European call option value')
        fig.colorbar(surf, shrink=0.5, aspect=5);

Figure B-1. Value surface for European call option

Second, a look at the vega values. Figure B-2 presents the vega surface for the Euro‐
pean call option:

In [9]: fig = plt.figure(figsize=(12, 7))
        ax = fig.gca(projection='3d')
        surf = ax.plot_surface(K, T, V, rstride=1, cstride=1,
                    cmap=cm.coolwarm, linewidth=0.5, antialiased=True)
        ax.set_xlabel('strike')
        ax.set_ylabel('maturity')
        ax.set_zlabel('Vega of European call option')
        fig.colorbar(surf, shrink=0.5, aspect=5);
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Figure B-2. Vega surface for European call option
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numerical integration, 336
package imports and customizations, 334
use cases for, 334

interactive 2D plotting
basic plots, 195-199
financial plots, 199-203
packages for, 195

interpolation technique
basic idea of, 324
linear splines interpolation, 324
potential drawbacks of, 328
sci.splrep() and sci.splev() functions, 325

IPython
benefits and history of, 6
exiting, 48
GBM simulation class, 580
installing, 39
interactive data analytics and, 19
tab completion capabilities, 62

with Python 2.7 syntax, 42
is_prime() function, 283, 285
is_prime_cy2() function, 285
is_prime_nb() function, 285
iterative algorithms, 287

J
joining, using pandas, 137
jump diffusion, 369, 582-586
Jupyter

downloading, xvi
Jupyter Notebook

basics of, 50
configuration file, 52
history of, 6
installation script, 53
security measures, 53

K
k-means clustering algorithm, 444, 446,

499-501
Kelly criterion

for stocks and indices, 527-532
in binomial settings, 522-526

kernel density estimator (KDE), 225
key-value stores, 81
keyword module, 66
kurtosis test, 405

L
lambda functions, 80
LaTeX typesetting, 189, 339
Least-Squares Monte Carlo (LSM), 381, 608
least-squares regression, 321
left join, 137
leverage effect, 365
linear regression, 314
linear splines interpolation, 324
list comprehensions, 79
lists

constructing arrays with, 86
defining, 76
expanding and reducing, 77
looping over, 79
in market environment, 565
in object-oriented programming, 150
operations and methods, 78

LLVM (low level virtual machine), 279
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log returns, calculating, 214, 224
log-normal distribution, 354, 399
logical operators, 67
logistic regression (LR), 451, 504
longest drawdown period, 540
Longstaff-Schwartz model, 608
loops

Cython, 280
estimating execution time, 276
Numba, 279
NumPy, 278
Python, 277

loss level, 388

M
machine learning (ML)

adoption of in financial industry, 28
basics of, 398
packages for, 444
supervised learning, 448-461
types covered, 444
unsupervised learning, 444-447

map() function, 80
market environments, 565, 574
market-based valuation

model calibration, 641-650
options data, 638-640
Python code for, 654

Markov chain Monte Carlo (MCMC) sampling,
432, 437

Markov property, 356
Markowitz, Harry, 397, 415
martingale approach, 560
martingale measure, 375, 558, 578
mathematical tools

adoption of applied mathematics in finan‐
cial industry, 311

approximation, 312-328
convex optimization, 328-334
integration, 334-337
mathematics and Python syntax, 18
symbolic computation, 337-343

matplotlib
basics of, 8
benefits of, 167
boxplot generation using, 188
date-time information, 667
histogram generation using, 186, 225
matplotlib gallery, 189

NumPy data structures and, 171
pandas wrapper around, 126
scatter plot generation using, 184, 246
static 2D plotting using, 168-191

maximization of long-term wealth, 522
maximization of the Sharpe ratio, 421
maximum drawdown, 540
McKinney, Wes, 205
mcs_pi_py() function, 292
mcs_simulation_cy() function, 302
mcs_simulation_nb() function, 302
mcs_simulation_np() function, 301
mcs_simulation_py() function, 300
mean return, 398
mean() method, 129
mean-reverting processes, 359
mean-squared error (MSE), 646
mean-variance portfolio selection, 420
memory layout, 110
memoryless process, 356
merging, using pandas, 139
methods, in object-oriented programming, 145
Miniconda, 35
minimization function, 421
minimization of portfolio variance, 423
minimize() function, 421
min_func_sharpe() function, 423
ML-based trading strategy

optimal leverage, 538
overview of, 532
persisting model object, 543
risk analysis, 539-543
vectorized backtesting, 533-537

MLPClassifier algorithm class, 454
Modern Portfolio Theory (MPT), 415 (see also

portfolio optimization)
modularization, 147, 617
moment matching, 374, 573
Monte Carlo simulation, 14, 290, 299-304, 337,

352, 375
multiplication (*) operator, 150, 161
multiprocessing module, 276, 285, 303
mutable objects, 77

N
noisy data, 319
nonredundancy, 148
norm.pdf() function, 403
normal distribution, 398
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normal log returns, 399
normality tests

benchmark case, 399-409
real-world data, 409-415
role of in finance, 397, 398
skewness, kurtosis, and normality, 405

normality_tests() function, 405
normalization, 214
normalized price data, 442
normaltest(), 405
now() function, 662
np.allclose() function, 234
np.arange() function, 242, 666
np.concatenate() function, 373
np.dot() function, 419
np.exp() function, 215
np.lin space() function, 312
np.meshgrid() function, 192
np.polyfit(), 313, 325
np.polyval(), 313, 325
np.sum() function, 142
npr.lognormal() function, 354
npr.standard_normal() function, 354
Numba

binomial trees using, 297
exponentially weighted moving average

(EWMA), 307
looping in, 279
Monte Carlo simulation using, 302
potential drawbacks of, 279
prime number algorithm, 283

numerical integration, 336
NumPy

basics of, 8, 85
binomial trees using, 295
data structures covered, 85
date-time information, 665-667
datetime64 information, 667
handling arrays of data with Python, 86-90
looping in, 278
Monte Carlo simulation using, 301
regular NumPy arrays

Boolean arrays, 101
built-in methods, 91
mathematical operations, 92
metainformation, 97
multiple dimensions, 94
NumPy dtype objects, 97
numpy.ndarray class, 90, 151, 170

reshaping and resizing, 98
speed comparison, 103
universal functions, 92

structured NumPy arrays, 105
universal functions applied to pandas, 126
vectorization of code, 106-112
writing and reading NumPy arrays, 242

numpy.random subpackage, 346, 572
NUTS() function, 432

O
object relational mappers, 239
object-oriented programming (OOP)

benefits and drawbacks of, 145
dx.derivatives_portfolio class, 626
example class implementation, 146
features of, 147
Python classes, 154-159
Python data model, 159-163
Python objects, 149-154
terminology used in, 145
Vector class, 163

objects, in object-oriented programming, 145
online algorithm, 544
OpenSSL, 51
optimal decision step, 609
optimal fraction f *, 523
optimal stopping problem, 380, 608
option pricing theory, 399
opts object, 422
ordinary least-squares (OLS) regression, 226,

494-498
out-of-memory computations, 264
overfitting, 491

P
package managers

basics of, 34
conda basic operations, 37-41
Miniconda installation, 35

pandas
basic analytics, 123-126
basic visualization, 126
basics of, 8
benefits of, 113
calculating changes over time using,

212-215
complex selection, 132-135
concatenation, 135

686 | Index



correlation analysis using, 222-227
data formats supported, 244
data structures covered, 113
DataFrame class, 114-123, 152
date-time information, 668-670
development of, 205
error tolerance of, 126
GroupBy operations, 130
handling high frequency data using, 228
import-export functions and methods, 245
importing financial data using, 206-209
joining, 137
merging, 139
multiple options provided by, 143
NumPy universal functions and, 126
performance aspects, 141
recursive function implementations,

304-308
rolling statistics using, 218
Series class, 128
summary statistics using, 210-212
working with CSV files in, 250
working with Excel files in, 251
working with SQL databases in, 245

paradigms and idioms, 308
parallel processing, 285
parallelization, 303, 308
parameters, in object-oriented programming,

146
pct_change() function, 213
pd.concat() function, 136
pd.date_range() function, 668
pd.read_csv() function, 206, 245, 251
percentage change, calculating, 213
perfect foresight, 217
performance Python

algorithms, 281-293
approaches to speed up tasks, 275, 308
binomial trees, 294-298
ensuring high performance, 21
loops, 276-281
Monte Carlo simulation, 299-304
recursive pandas algorithms, 304-308
supposed Python shortcomings, 275

pi (π), 290
pickle.dump() function, 233
pickle.load() function, 233
plot() method, 126, 129
plotly

basic plots, 195
benefits of, 167, 195
Getting Started with Plotly for Python

guide, 195
local or remote rendering, 195
plotting types available, 198

plot_option_stats() function, 605
plt.axis() function, 173
plt.boxplot() function, 188
plt.hist() function, 186
plt.legend() function, 177
plt.plot() function, 169, 177
plt.plot_surface() function, 193
plt.scatter() function, 184
plt.setp() funtion, 189
plt.subplots() function, 181
plt.title() function, 174
plt.xlabel() function, 174
plt.xlim() function, 173
plt.ylabel() function, 174
plt.ylim() function, 173
Poisson distribution, 351
polymorphism, 148
portfolio optimization

basic theory behind, 417
capital market line, 425
efficient frontier, 424
minimal risk through diversification, 416
normally distributed returns and, 415
optimal portfolios, 421
pioneering work of Harry Markowitz, 397

portfolio theory, 398, 415
portfolio valuation

derivatives portfolios
class to model, 622-626
use cases for, 626-633

derivatives positions
class to model, 618
use cases for, 620

wrapper module for, 634
port_ret() function, 420
port_vol() function, 420
present_value() method, 599
price movements, predicting direction of, 504
pricing library, 555
prime numbers

definition of, 282
multiprocessing module and, 285
testing for with Cython, 284
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testing for with Numba, 283
testing for with Python, 282

print() function, 71
print_statistics() function, 355, 402
private instance attributes, 157
probability density function (PDF), 403
probability of default, 388
pseudo-code, 18
pseudo-random numbers, 346, 372
put options, 375
PyMC3, 430
PyTables

basics of, 8
benefits of, 252
out-of-memory computations, 264
working with arrays, 262
working with compressed tables, 260
working with tables, 253

Python data model
benefits of, 163
example model implementation, 159-163
tasks and constructs supported by, 159

Python data structures
built-in structures, 75
control structures, 78
dicts, 81, 235
functional programming, 80
lists, 76, 150
sets, 82
structures covered, 61
tuples, 75

Python data types
Booleans, 66
dynamically versus statically typed lan‐

guages, 62
floats, 63
integers, 62, 149
printing and string replacements, 71
regular expressions and, 74
strings, 69
types covered, 61

Python Enhancement Proposal 20, 4
Python for Algorithmic Trading certificate pro‐

gram, xv
Python infrastructure

cloud instances, 50-56
Docker containers, 45-50
package managers, 35-41
tools and strategies available, 34

version selection and deployment, 33
virtual environment managers, 41-44

Python programming language (see also object-
oriented programming)
adoption of in financial industry, xiii
benefits of, 18
ecosystem for, 6, 308
efficiency and productivity through, 18-23
ensuring high performance, 21
executive summary and features, 3
from prototyping to production, 23
history of, 5
scientific stack, 8
syntax, 4, 14-18
user spectrum, 7

Python Quant Platform, xiv
The Python Quants GmbH, 556
Python Standard Library, 6
pytz module, 664

Q
Quant Platform, 556
quantile-quantile (QQ) plots, 404

R
rand() function, 346
random access memory (RAM), 231
random numbers

generating random number to different dis‐
tribution laws, 349

normal distribution in finance, 350
numpy.random subpackage for, 346
simple random number generation, 347
standard normally distributed, 572
visualization of generation, 348
visualization of random number generation

from various distributions, 351
random variables, 353
random walk hypothesis (RWH), 440, 491-494
randomized train-test split, 511
range() method, 78
re module, 74
real-time analytics, 13
real-time data, 477
real-time economy, 13
recombining trees, 294
recursive function implementations, 286,

304-308
reduce() function, 80
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regression technique
individual basis functions, 317
least-squares approach, 321
linear regression, 314
monomials as basis functions, 313
multiple dimensions and, 321
noisy data and, 319
np.polyval() function, 314
ordinary least-squares (OLS) regression,

226, 494-498
parameters of polyfit() function, 314
task of, 313
unsorted data, 320

regular expressions, 74
relational databases, 239
relative return data, 442
Relative Strength Index (RSI), 199
relevant markets, 622
replace() method, 70
resampling, 215
reusability, 148
Reuters Instrument Codes (RICs), 209
risk management

automated trading, 547
credit valuation adjustments (CVA), 388
FXCM trading platform, 468
minimizing portfolio risk, 416
valuation classes for, 595
value-at-risk (VaR), 383

risk-neutral discounting
constant short rate, 563
modeling and handling dates, 560

risk-neutral investors, 523
risk-neutral valuation approach, 560
riskless assets, 426
rolling statistics

deriving using pandas, 218
financial time series example, 217
technical analysis example, 220

Romberg integration, 336
RSA public and private keys, 51

S
sample() function, 432
sampling error, 356
scaling out versus scaling up, 273
scatter plots, 184, 246
scatter_matrix() function, 225
sci.fixed_quad(), 336

sci.quad(), 336
sci.romberg(), 336
sci.splev() function, 325
sci.splrep() function, 325
scientific method, 25
scientific stack, 8
scikit-learn

basics of, 8
benefits of for machine learning, 444
DNNs with, 454, 512-514
predicting market price movements, 28

SciPy
basics of, 8, 39
documentation, 343, 463
scipy.integrate package, 334
scipy.integrate subpackage, 336
scipy.optimize.minimize() function, 333
scipy.stats subpackage, 355, 402

sco.fmin() function, 331
sco.fsolve() function, 427
scs.describe() function, 356, 402
scs.scoreatpercentile() function, 385
Secure Shell (SSH), 50
Secure Sockets Layer (SSL), 50
self.generate_paths(), 575
sequential train-test split, 509
serialization, 233, 236
Series class, 128
sets, 82
set_price() method, 156
Sharpe ratio, 421
short rates, 359, 563
simple moving averages (SMAs), 220, 484-491
simulation

dynamic simulation, 356
random variables, 353
stochastic processes, 356
value of in finance, 352
variance reduction, 372

simulation classes
generic simulation class, 574-577
geometric Brownian motion, 577-582
jump diffusion, 582-586
overview of, 614
random number generation, 572
square-root diffusion, 587-590
wrapper module for, 591

skewness test, 405
slicing, 77
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sn_random_numbers() function, 572
solid state disks (SSDs), 231
SQLAlchemy, 239
SQLite3, 239
square-root diffusion, 359, 587-590
stacking, 99
standard normally distributed random num‐

bers, 572
static coupling, 276
statically typed languages, 62
statistical learning, 398
statistics

Bayesian statistics, 429-443
machine learning (ML), 444-461
normality tests, 398-409
portfolio optimization, 415-428
value of in finance, 397

stochastic differential equation (SDE), 299, 356
stochastic processes

definition of, 356
geometric Brownian motion, 356, 399
jump diffusion, 369
square-root diffusion, 359
stochastic volatility, 365

stochastic volatility models, 365
stochastics

Python script, 392
random numbers, 346-352
risk measures, 383-391
simulation, 352-375
use cases for, 345
valuation, 375-382

str() function, 69
streaming data, 477
strike values, 191, 376
strings

parsing date-time information, 74
printing and string replacements, 71
string methods, 69
text representation with, 69
Unicode strings, 71

Structured Query Language (SQL) databases
from SQL to pandas, 247
working with in pandas, 245
working with in Python, 239

sum() method, 142
summary statistics, 210-212
supervised learning

classification versus estimation problems,
448

data for, 448
decision trees (DTs), 452
deep neural networks (DNNs), 454-461
definition of, 448
Gaussian Naive Bayes (GNB), 449, 504
logistic regression (LR), 451, 504

support vector machine (SVM) algorithm, 29,
460, 504

sy.diff() function, 341
Symbol class, 338
symbolic computation

differentiation, 341
equations, 340
integration and differentiation, 340
Symbol class, 338
SymPy library for, 337

SymPy, 337-343

T
tables

compressed tables with PyTables, 260
data retrieval with TsTables, 270
data storage with TsTables, 269
I/O with PyTables, 253

tail risk, 383
technical analysis, rolling statistics using pan‐

das, 220
technology in finance

advances in speed and frequency, 12
potential of, 9
real-time analytics, 13
technology and talent as barriers to entry,

11
technology as enabler, 10
technology spending, 10

TensorFlow, 28, 455, 515-519
Terminal, 50
text files

compatibility issues, 236
I/O with Python, 232
reading and writing with Python, 236

text/code editors, 7, 50
tick data, 228, 470
time indices, 120
time-to-results, improved with Python, 19
timedelta objects, 661
times-to-maturity, 191
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Timestamp object, 668
today() function, 662
.to_csv() method, 251
trace plots, 433
trading strategies

algorithmic trading, defined, 483
classification, 504-511
deep neural networks (DNNs) and, 512-519
frequency approach, 501-503
k-means clustering algorithm, 499-501
linear OLS regression, 494-498
ML-based trading strategy, 532-543
random walk hypothesis, 491-494
simple moving averages (SMAs), 484-491
vectorized backtesting approach, 483

train_test_split() function, 460
ts.read_range() function, 271
TsTables

data retrieval, 270
data storage, 269
sample data, 267

tuples, 75
type function, 62
typographical conventions, xv
tzinfo class, 663
tzname() method, 663

U
Unicode strings, 71
unit zero-coupon bond (ZCB), 563
unsorted data, 320
unsupervised learning

algorithms performing, 444
data for, 445
Gaussian mixture, 447
k-means clustering algorithm, 446

update() method, 580
user-defined functions, 477
UTC (Coordinated Universal Time), 662
utcnow() function, 662

utcoffset() method, 663

V
valuation

American options, 380
derivatives valuation, 595-616
European options, 14, 376
market-based valuation, 637-657
portfolio valuation, 617-636
valuation of contingent claims, 375

valuation framework
Fundamental Theorem of Asset Pricing,

558-560
market environments, 565-567
risk-neutral discounting, 560-564

value-at-risk (VaR), 383, 542
van Rossum, Guido, 5
variance of the returns, 398
variance reduction, 372, 573
vectorization of code

benefits of, 308
increased memory footprint with, 278
speeding up typical tasks with, 275
with NumPy, 106-112
with NumPy looping, 278

vectorized backtesting approach, 483, 487,
533-537

vega, 599
view_init() method, 194
Vim, 7
virtual environment managers, 34, 41-44
volatility clusters, spotting, 224
volatility processes, 359
volatility surfaces, 191

Z
Zen of Python, 4
zero-based numbering, 76
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